1 /* 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by the University of 19 * California, Berkeley and its contributors. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 37 * 38 * 39 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 40 * All rights reserved. 41 * 42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 43 * 44 * Permission to use, copy, modify and distribute this software and 45 * its documentation is hereby granted, provided that both the copyright 46 * notice and this permission notice appear in all copies of the 47 * software, derivative works or modified versions, and any portions 48 * thereof, and that both notices appear in supporting documentation. 49 * 50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 53 * 54 * Carnegie Mellon requests users of this software to return to 55 * 56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 57 * School of Computer Science 58 * Carnegie Mellon University 59 * Pittsburgh PA 15213-3890 60 * 61 * any improvements or extensions that they make and grant Carnegie the 62 * rights to redistribute these changes. 63 */ 64 65 /* 66 * Virtual memory mapping module. 67 */ 68 69 #include <sys/cdefs.h> 70 __FBSDID("$FreeBSD$"); 71 72 #include <sys/param.h> 73 #include <sys/systm.h> 74 #include <sys/ktr.h> 75 #include <sys/lock.h> 76 #include <sys/mutex.h> 77 #include <sys/proc.h> 78 #include <sys/vmmeter.h> 79 #include <sys/mman.h> 80 #include <sys/vnode.h> 81 #include <sys/resourcevar.h> 82 #include <sys/sysent.h> 83 #include <sys/shm.h> 84 85 #include <vm/vm.h> 86 #include <vm/vm_param.h> 87 #include <vm/pmap.h> 88 #include <vm/vm_map.h> 89 #include <vm/vm_page.h> 90 #include <vm/vm_object.h> 91 #include <vm/vm_pager.h> 92 #include <vm/vm_kern.h> 93 #include <vm/vm_extern.h> 94 #include <vm/swap_pager.h> 95 #include <vm/uma.h> 96 97 /* 98 * Virtual memory maps provide for the mapping, protection, 99 * and sharing of virtual memory objects. In addition, 100 * this module provides for an efficient virtual copy of 101 * memory from one map to another. 102 * 103 * Synchronization is required prior to most operations. 104 * 105 * Maps consist of an ordered doubly-linked list of simple 106 * entries; a single hint is used to speed up lookups. 107 * 108 * Since portions of maps are specified by start/end addresses, 109 * which may not align with existing map entries, all 110 * routines merely "clip" entries to these start/end values. 111 * [That is, an entry is split into two, bordering at a 112 * start or end value.] Note that these clippings may not 113 * always be necessary (as the two resulting entries are then 114 * not changed); however, the clipping is done for convenience. 115 * 116 * As mentioned above, virtual copy operations are performed 117 * by copying VM object references from one map to 118 * another, and then marking both regions as copy-on-write. 119 */ 120 121 /* 122 * vm_map_startup: 123 * 124 * Initialize the vm_map module. Must be called before 125 * any other vm_map routines. 126 * 127 * Map and entry structures are allocated from the general 128 * purpose memory pool with some exceptions: 129 * 130 * - The kernel map and kmem submap are allocated statically. 131 * - Kernel map entries are allocated out of a static pool. 132 * 133 * These restrictions are necessary since malloc() uses the 134 * maps and requires map entries. 135 */ 136 137 static struct mtx map_sleep_mtx; 138 static uma_zone_t mapentzone; 139 static uma_zone_t kmapentzone; 140 static uma_zone_t mapzone; 141 static uma_zone_t vmspace_zone; 142 static struct vm_object kmapentobj; 143 static void vmspace_zinit(void *mem, int size); 144 static void vmspace_zfini(void *mem, int size); 145 static void vm_map_zinit(void *mem, int size); 146 static void vm_map_zfini(void *mem, int size); 147 static void _vm_map_init(vm_map_t map, vm_offset_t min, vm_offset_t max); 148 149 #ifdef INVARIANTS 150 static void vm_map_zdtor(void *mem, int size, void *arg); 151 static void vmspace_zdtor(void *mem, int size, void *arg); 152 #endif 153 154 void 155 vm_map_startup(void) 156 { 157 mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF); 158 mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL, 159 #ifdef INVARIANTS 160 vm_map_zdtor, 161 #else 162 NULL, 163 #endif 164 vm_map_zinit, vm_map_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 165 uma_prealloc(mapzone, MAX_KMAP); 166 kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry), 167 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 168 UMA_ZONE_MTXCLASS | UMA_ZONE_VM); 169 uma_prealloc(kmapentzone, MAX_KMAPENT); 170 mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry), 171 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 172 uma_prealloc(mapentzone, MAX_MAPENT); 173 } 174 175 static void 176 vmspace_zfini(void *mem, int size) 177 { 178 struct vmspace *vm; 179 180 vm = (struct vmspace *)mem; 181 182 vm_map_zfini(&vm->vm_map, sizeof(vm->vm_map)); 183 } 184 185 static void 186 vmspace_zinit(void *mem, int size) 187 { 188 struct vmspace *vm; 189 190 vm = (struct vmspace *)mem; 191 192 vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map)); 193 } 194 195 static void 196 vm_map_zfini(void *mem, int size) 197 { 198 vm_map_t map; 199 200 map = (vm_map_t)mem; 201 mtx_destroy(&map->system_mtx); 202 lockdestroy(&map->lock); 203 } 204 205 static void 206 vm_map_zinit(void *mem, int size) 207 { 208 vm_map_t map; 209 210 map = (vm_map_t)mem; 211 map->nentries = 0; 212 map->size = 0; 213 map->infork = 0; 214 mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK); 215 lockinit(&map->lock, PVM, "thrd_sleep", 0, LK_NOPAUSE); 216 } 217 218 #ifdef INVARIANTS 219 static void 220 vmspace_zdtor(void *mem, int size, void *arg) 221 { 222 struct vmspace *vm; 223 224 vm = (struct vmspace *)mem; 225 226 vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg); 227 } 228 static void 229 vm_map_zdtor(void *mem, int size, void *arg) 230 { 231 vm_map_t map; 232 233 map = (vm_map_t)mem; 234 KASSERT(map->nentries == 0, 235 ("map %p nentries == %d on free.", 236 map, map->nentries)); 237 KASSERT(map->size == 0, 238 ("map %p size == %lu on free.", 239 map, (unsigned long)map->size)); 240 KASSERT(map->infork == 0, 241 ("map %p infork == %d on free.", 242 map, map->infork)); 243 } 244 #endif /* INVARIANTS */ 245 246 /* 247 * Allocate a vmspace structure, including a vm_map and pmap, 248 * and initialize those structures. The refcnt is set to 1. 249 * The remaining fields must be initialized by the caller. 250 */ 251 struct vmspace * 252 vmspace_alloc(min, max) 253 vm_offset_t min, max; 254 { 255 struct vmspace *vm; 256 257 GIANT_REQUIRED; 258 vm = uma_zalloc(vmspace_zone, M_WAITOK); 259 CTR1(KTR_VM, "vmspace_alloc: %p", vm); 260 _vm_map_init(&vm->vm_map, min, max); 261 pmap_pinit(vmspace_pmap(vm)); 262 vm->vm_map.pmap = vmspace_pmap(vm); /* XXX */ 263 vm->vm_refcnt = 1; 264 vm->vm_shm = NULL; 265 vm->vm_exitingcnt = 0; 266 return (vm); 267 } 268 269 void 270 vm_init2(void) 271 { 272 uma_zone_set_obj(kmapentzone, &kmapentobj, lmin(cnt.v_page_count, 273 (VM_MAX_KERNEL_ADDRESS - KERNBASE) / PAGE_SIZE) / 8); 274 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL, 275 #ifdef INVARIANTS 276 vmspace_zdtor, 277 #else 278 NULL, 279 #endif 280 vmspace_zinit, vmspace_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 281 pmap_init2(); 282 } 283 284 static __inline void 285 vmspace_dofree(struct vmspace *vm) 286 { 287 CTR1(KTR_VM, "vmspace_free: %p", vm); 288 289 /* 290 * Make sure any SysV shm is freed, it might not have been in 291 * exit1(). 292 */ 293 shmexit(vm); 294 295 /* 296 * Lock the map, to wait out all other references to it. 297 * Delete all of the mappings and pages they hold, then call 298 * the pmap module to reclaim anything left. 299 */ 300 vm_map_lock(&vm->vm_map); 301 (void) vm_map_delete(&vm->vm_map, vm->vm_map.min_offset, 302 vm->vm_map.max_offset); 303 vm_map_unlock(&vm->vm_map); 304 305 pmap_release(vmspace_pmap(vm)); 306 uma_zfree(vmspace_zone, vm); 307 } 308 309 void 310 vmspace_free(struct vmspace *vm) 311 { 312 GIANT_REQUIRED; 313 314 if (vm->vm_refcnt == 0) 315 panic("vmspace_free: attempt to free already freed vmspace"); 316 317 if (--vm->vm_refcnt == 0 && vm->vm_exitingcnt == 0) 318 vmspace_dofree(vm); 319 } 320 321 void 322 vmspace_exitfree(struct proc *p) 323 { 324 struct vmspace *vm; 325 326 GIANT_REQUIRED; 327 vm = p->p_vmspace; 328 p->p_vmspace = NULL; 329 330 /* 331 * cleanup by parent process wait()ing on exiting child. vm_refcnt 332 * may not be 0 (e.g. fork() and child exits without exec()ing). 333 * exitingcnt may increment above 0 and drop back down to zero 334 * several times while vm_refcnt is held non-zero. vm_refcnt 335 * may also increment above 0 and drop back down to zero several 336 * times while vm_exitingcnt is held non-zero. 337 * 338 * The last wait on the exiting child's vmspace will clean up 339 * the remainder of the vmspace. 340 */ 341 if (--vm->vm_exitingcnt == 0 && vm->vm_refcnt == 0) 342 vmspace_dofree(vm); 343 } 344 345 /* 346 * vmspace_swap_count() - count the approximate swap useage in pages for a 347 * vmspace. 348 * 349 * The map must be locked. 350 * 351 * Swap useage is determined by taking the proportional swap used by 352 * VM objects backing the VM map. To make up for fractional losses, 353 * if the VM object has any swap use at all the associated map entries 354 * count for at least 1 swap page. 355 */ 356 int 357 vmspace_swap_count(struct vmspace *vmspace) 358 { 359 vm_map_t map = &vmspace->vm_map; 360 vm_map_entry_t cur; 361 int count = 0; 362 363 for (cur = map->header.next; cur != &map->header; cur = cur->next) { 364 vm_object_t object; 365 366 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 && 367 (object = cur->object.vm_object) != NULL) { 368 VM_OBJECT_LOCK(object); 369 if (object->type == OBJT_SWAP && 370 object->un_pager.swp.swp_bcount != 0) { 371 int n = (cur->end - cur->start) / PAGE_SIZE; 372 373 count += object->un_pager.swp.swp_bcount * 374 SWAP_META_PAGES * n / object->size + 1; 375 } 376 VM_OBJECT_UNLOCK(object); 377 } 378 } 379 return (count); 380 } 381 382 void 383 _vm_map_lock(vm_map_t map, const char *file, int line) 384 { 385 int error; 386 387 if (map->system_map) 388 _mtx_lock_flags(&map->system_mtx, 0, file, line); 389 else { 390 error = lockmgr(&map->lock, LK_EXCLUSIVE, NULL, curthread); 391 KASSERT(error == 0, ("%s: failed to get lock", __func__)); 392 } 393 map->timestamp++; 394 } 395 396 void 397 _vm_map_unlock(vm_map_t map, const char *file, int line) 398 { 399 400 if (map->system_map) 401 _mtx_unlock_flags(&map->system_mtx, 0, file, line); 402 else 403 lockmgr(&map->lock, LK_RELEASE, NULL, curthread); 404 } 405 406 void 407 _vm_map_lock_read(vm_map_t map, const char *file, int line) 408 { 409 int error; 410 411 if (map->system_map) 412 _mtx_lock_flags(&map->system_mtx, 0, file, line); 413 else { 414 error = lockmgr(&map->lock, LK_EXCLUSIVE, NULL, curthread); 415 KASSERT(error == 0, ("%s: failed to get lock", __func__)); 416 } 417 } 418 419 void 420 _vm_map_unlock_read(vm_map_t map, const char *file, int line) 421 { 422 423 if (map->system_map) 424 _mtx_unlock_flags(&map->system_mtx, 0, file, line); 425 else 426 lockmgr(&map->lock, LK_RELEASE, NULL, curthread); 427 } 428 429 int 430 _vm_map_trylock(vm_map_t map, const char *file, int line) 431 { 432 int error; 433 434 error = map->system_map ? 435 !_mtx_trylock(&map->system_mtx, 0, file, line) : 436 lockmgr(&map->lock, LK_EXCLUSIVE | LK_NOWAIT, NULL, curthread); 437 if (error == 0) 438 map->timestamp++; 439 return (error == 0); 440 } 441 442 int 443 _vm_map_trylock_read(vm_map_t map, const char *file, int line) 444 { 445 int error; 446 447 error = map->system_map ? 448 !_mtx_trylock(&map->system_mtx, 0, file, line) : 449 lockmgr(&map->lock, LK_EXCLUSIVE | LK_NOWAIT, NULL, curthread); 450 return (error == 0); 451 } 452 453 int 454 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line) 455 { 456 457 if (map->system_map) { 458 #ifdef INVARIANTS 459 _mtx_assert(&map->system_mtx, MA_OWNED, file, line); 460 #endif 461 } else 462 KASSERT(lockstatus(&map->lock, curthread) == LK_EXCLUSIVE, 463 ("%s: lock not held", __func__)); 464 map->timestamp++; 465 return (0); 466 } 467 468 void 469 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line) 470 { 471 472 if (map->system_map) { 473 #ifdef INVARIANTS 474 _mtx_assert(&map->system_mtx, MA_OWNED, file, line); 475 #endif 476 } else 477 KASSERT(lockstatus(&map->lock, curthread) == LK_EXCLUSIVE, 478 ("%s: lock not held", __func__)); 479 } 480 481 /* 482 * vm_map_unlock_and_wait: 483 */ 484 int 485 vm_map_unlock_and_wait(vm_map_t map, boolean_t user_wait) 486 { 487 488 mtx_lock(&map_sleep_mtx); 489 vm_map_unlock(map); 490 return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps", 0)); 491 } 492 493 /* 494 * vm_map_wakeup: 495 */ 496 void 497 vm_map_wakeup(vm_map_t map) 498 { 499 500 /* 501 * Acquire and release map_sleep_mtx to prevent a wakeup() 502 * from being performed (and lost) between the vm_map_unlock() 503 * and the msleep() in vm_map_unlock_and_wait(). 504 */ 505 mtx_lock(&map_sleep_mtx); 506 mtx_unlock(&map_sleep_mtx); 507 wakeup(&map->root); 508 } 509 510 long 511 vmspace_resident_count(struct vmspace *vmspace) 512 { 513 return pmap_resident_count(vmspace_pmap(vmspace)); 514 } 515 516 /* 517 * vm_map_create: 518 * 519 * Creates and returns a new empty VM map with 520 * the given physical map structure, and having 521 * the given lower and upper address bounds. 522 */ 523 vm_map_t 524 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max) 525 { 526 vm_map_t result; 527 528 result = uma_zalloc(mapzone, M_WAITOK); 529 CTR1(KTR_VM, "vm_map_create: %p", result); 530 _vm_map_init(result, min, max); 531 result->pmap = pmap; 532 return (result); 533 } 534 535 /* 536 * Initialize an existing vm_map structure 537 * such as that in the vmspace structure. 538 * The pmap is set elsewhere. 539 */ 540 static void 541 _vm_map_init(vm_map_t map, vm_offset_t min, vm_offset_t max) 542 { 543 544 map->header.next = map->header.prev = &map->header; 545 map->needs_wakeup = FALSE; 546 map->system_map = 0; 547 map->min_offset = min; 548 map->max_offset = max; 549 map->first_free = &map->header; 550 map->root = NULL; 551 map->timestamp = 0; 552 } 553 554 void 555 vm_map_init(vm_map_t map, vm_offset_t min, vm_offset_t max) 556 { 557 _vm_map_init(map, min, max); 558 mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK); 559 lockinit(&map->lock, PVM, "thrd_sleep", 0, LK_NOPAUSE); 560 } 561 562 /* 563 * vm_map_entry_dispose: [ internal use only ] 564 * 565 * Inverse of vm_map_entry_create. 566 */ 567 static void 568 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry) 569 { 570 uma_zfree(map->system_map ? kmapentzone : mapentzone, entry); 571 } 572 573 /* 574 * vm_map_entry_create: [ internal use only ] 575 * 576 * Allocates a VM map entry for insertion. 577 * No entry fields are filled in. 578 */ 579 static vm_map_entry_t 580 vm_map_entry_create(vm_map_t map) 581 { 582 vm_map_entry_t new_entry; 583 584 if (map->system_map) 585 new_entry = uma_zalloc(kmapentzone, M_NOWAIT); 586 else 587 new_entry = uma_zalloc(mapentzone, M_WAITOK); 588 if (new_entry == NULL) 589 panic("vm_map_entry_create: kernel resources exhausted"); 590 return (new_entry); 591 } 592 593 /* 594 * vm_map_entry_set_behavior: 595 * 596 * Set the expected access behavior, either normal, random, or 597 * sequential. 598 */ 599 static __inline void 600 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior) 601 { 602 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) | 603 (behavior & MAP_ENTRY_BEHAV_MASK); 604 } 605 606 /* 607 * vm_map_entry_splay: 608 * 609 * Implements Sleator and Tarjan's top-down splay algorithm. Returns 610 * the vm_map_entry containing the given address. If, however, that 611 * address is not found in the vm_map, returns a vm_map_entry that is 612 * adjacent to the address, coming before or after it. 613 */ 614 static vm_map_entry_t 615 vm_map_entry_splay(vm_offset_t address, vm_map_entry_t root) 616 { 617 struct vm_map_entry dummy; 618 vm_map_entry_t lefttreemax, righttreemin, y; 619 620 if (root == NULL) 621 return (root); 622 lefttreemax = righttreemin = &dummy; 623 for (;; root = y) { 624 if (address < root->start) { 625 if ((y = root->left) == NULL) 626 break; 627 if (address < y->start) { 628 /* Rotate right. */ 629 root->left = y->right; 630 y->right = root; 631 root = y; 632 if ((y = root->left) == NULL) 633 break; 634 } 635 /* Link into the new root's right tree. */ 636 righttreemin->left = root; 637 righttreemin = root; 638 } else if (address >= root->end) { 639 if ((y = root->right) == NULL) 640 break; 641 if (address >= y->end) { 642 /* Rotate left. */ 643 root->right = y->left; 644 y->left = root; 645 root = y; 646 if ((y = root->right) == NULL) 647 break; 648 } 649 /* Link into the new root's left tree. */ 650 lefttreemax->right = root; 651 lefttreemax = root; 652 } else 653 break; 654 } 655 /* Assemble the new root. */ 656 lefttreemax->right = root->left; 657 righttreemin->left = root->right; 658 root->left = dummy.right; 659 root->right = dummy.left; 660 return (root); 661 } 662 663 /* 664 * vm_map_entry_{un,}link: 665 * 666 * Insert/remove entries from maps. 667 */ 668 static void 669 vm_map_entry_link(vm_map_t map, 670 vm_map_entry_t after_where, 671 vm_map_entry_t entry) 672 { 673 674 CTR4(KTR_VM, 675 "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map, 676 map->nentries, entry, after_where); 677 map->nentries++; 678 entry->prev = after_where; 679 entry->next = after_where->next; 680 entry->next->prev = entry; 681 after_where->next = entry; 682 683 if (after_where != &map->header) { 684 if (after_where != map->root) 685 vm_map_entry_splay(after_where->start, map->root); 686 entry->right = after_where->right; 687 entry->left = after_where; 688 after_where->right = NULL; 689 } else { 690 entry->right = map->root; 691 entry->left = NULL; 692 } 693 map->root = entry; 694 } 695 696 static void 697 vm_map_entry_unlink(vm_map_t map, 698 vm_map_entry_t entry) 699 { 700 vm_map_entry_t next, prev, root; 701 702 if (entry != map->root) 703 vm_map_entry_splay(entry->start, map->root); 704 if (entry->left == NULL) 705 root = entry->right; 706 else { 707 root = vm_map_entry_splay(entry->start, entry->left); 708 root->right = entry->right; 709 } 710 map->root = root; 711 712 prev = entry->prev; 713 next = entry->next; 714 next->prev = prev; 715 prev->next = next; 716 map->nentries--; 717 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map, 718 map->nentries, entry); 719 } 720 721 /* 722 * vm_map_lookup_entry: [ internal use only ] 723 * 724 * Finds the map entry containing (or 725 * immediately preceding) the specified address 726 * in the given map; the entry is returned 727 * in the "entry" parameter. The boolean 728 * result indicates whether the address is 729 * actually contained in the map. 730 */ 731 boolean_t 732 vm_map_lookup_entry( 733 vm_map_t map, 734 vm_offset_t address, 735 vm_map_entry_t *entry) /* OUT */ 736 { 737 vm_map_entry_t cur; 738 739 cur = vm_map_entry_splay(address, map->root); 740 if (cur == NULL) 741 *entry = &map->header; 742 else { 743 map->root = cur; 744 745 if (address >= cur->start) { 746 *entry = cur; 747 if (cur->end > address) 748 return (TRUE); 749 } else 750 *entry = cur->prev; 751 } 752 return (FALSE); 753 } 754 755 /* 756 * vm_map_insert: 757 * 758 * Inserts the given whole VM object into the target 759 * map at the specified address range. The object's 760 * size should match that of the address range. 761 * 762 * Requires that the map be locked, and leaves it so. 763 * 764 * If object is non-NULL, ref count must be bumped by caller 765 * prior to making call to account for the new entry. 766 */ 767 int 768 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 769 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, 770 int cow) 771 { 772 vm_map_entry_t new_entry; 773 vm_map_entry_t prev_entry; 774 vm_map_entry_t temp_entry; 775 vm_eflags_t protoeflags; 776 777 /* 778 * Check that the start and end points are not bogus. 779 */ 780 if ((start < map->min_offset) || (end > map->max_offset) || 781 (start >= end)) 782 return (KERN_INVALID_ADDRESS); 783 784 /* 785 * Find the entry prior to the proposed starting address; if it's part 786 * of an existing entry, this range is bogus. 787 */ 788 if (vm_map_lookup_entry(map, start, &temp_entry)) 789 return (KERN_NO_SPACE); 790 791 prev_entry = temp_entry; 792 793 /* 794 * Assert that the next entry doesn't overlap the end point. 795 */ 796 if ((prev_entry->next != &map->header) && 797 (prev_entry->next->start < end)) 798 return (KERN_NO_SPACE); 799 800 protoeflags = 0; 801 802 if (cow & MAP_COPY_ON_WRITE) 803 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY; 804 805 if (cow & MAP_NOFAULT) { 806 protoeflags |= MAP_ENTRY_NOFAULT; 807 808 KASSERT(object == NULL, 809 ("vm_map_insert: paradoxical MAP_NOFAULT request")); 810 } 811 if (cow & MAP_DISABLE_SYNCER) 812 protoeflags |= MAP_ENTRY_NOSYNC; 813 if (cow & MAP_DISABLE_COREDUMP) 814 protoeflags |= MAP_ENTRY_NOCOREDUMP; 815 816 if (object != NULL) { 817 /* 818 * OBJ_ONEMAPPING must be cleared unless this mapping 819 * is trivially proven to be the only mapping for any 820 * of the object's pages. (Object granularity 821 * reference counting is insufficient to recognize 822 * aliases with precision.) 823 */ 824 if (object != kmem_object) 825 mtx_lock(&Giant); 826 VM_OBJECT_LOCK(object); 827 if (object->ref_count > 1 || object->shadow_count != 0) 828 vm_object_clear_flag(object, OBJ_ONEMAPPING); 829 VM_OBJECT_UNLOCK(object); 830 if (object != kmem_object) 831 mtx_unlock(&Giant); 832 } 833 else if ((prev_entry != &map->header) && 834 (prev_entry->eflags == protoeflags) && 835 (prev_entry->end == start) && 836 (prev_entry->wired_count == 0) && 837 ((prev_entry->object.vm_object == NULL) || 838 vm_object_coalesce(prev_entry->object.vm_object, 839 OFF_TO_IDX(prev_entry->offset), 840 (vm_size_t)(prev_entry->end - prev_entry->start), 841 (vm_size_t)(end - prev_entry->end)))) { 842 /* 843 * We were able to extend the object. Determine if we 844 * can extend the previous map entry to include the 845 * new range as well. 846 */ 847 if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) && 848 (prev_entry->protection == prot) && 849 (prev_entry->max_protection == max)) { 850 map->size += (end - prev_entry->end); 851 prev_entry->end = end; 852 vm_map_simplify_entry(map, prev_entry); 853 return (KERN_SUCCESS); 854 } 855 856 /* 857 * If we can extend the object but cannot extend the 858 * map entry, we have to create a new map entry. We 859 * must bump the ref count on the extended object to 860 * account for it. object may be NULL. 861 */ 862 object = prev_entry->object.vm_object; 863 offset = prev_entry->offset + 864 (prev_entry->end - prev_entry->start); 865 vm_object_reference(object); 866 } 867 868 /* 869 * NOTE: if conditionals fail, object can be NULL here. This occurs 870 * in things like the buffer map where we manage kva but do not manage 871 * backing objects. 872 */ 873 874 /* 875 * Create a new entry 876 */ 877 new_entry = vm_map_entry_create(map); 878 new_entry->start = start; 879 new_entry->end = end; 880 881 new_entry->eflags = protoeflags; 882 new_entry->object.vm_object = object; 883 new_entry->offset = offset; 884 new_entry->avail_ssize = 0; 885 886 new_entry->inheritance = VM_INHERIT_DEFAULT; 887 new_entry->protection = prot; 888 new_entry->max_protection = max; 889 new_entry->wired_count = 0; 890 891 /* 892 * Insert the new entry into the list 893 */ 894 vm_map_entry_link(map, prev_entry, new_entry); 895 map->size += new_entry->end - new_entry->start; 896 897 /* 898 * Update the free space hint 899 */ 900 if ((map->first_free == prev_entry) && 901 (prev_entry->end >= new_entry->start)) { 902 map->first_free = new_entry; 903 } 904 905 #if 0 906 /* 907 * Temporarily removed to avoid MAP_STACK panic, due to 908 * MAP_STACK being a huge hack. Will be added back in 909 * when MAP_STACK (and the user stack mapping) is fixed. 910 */ 911 /* 912 * It may be possible to simplify the entry 913 */ 914 vm_map_simplify_entry(map, new_entry); 915 #endif 916 917 if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) { 918 mtx_lock(&Giant); 919 pmap_object_init_pt(map->pmap, start, 920 object, OFF_TO_IDX(offset), end - start, 921 cow & MAP_PREFAULT_PARTIAL); 922 mtx_unlock(&Giant); 923 } 924 925 return (KERN_SUCCESS); 926 } 927 928 /* 929 * Find sufficient space for `length' bytes in the given map, starting at 930 * `start'. The map must be locked. Returns 0 on success, 1 on no space. 931 */ 932 int 933 vm_map_findspace( 934 vm_map_t map, 935 vm_offset_t start, 936 vm_size_t length, 937 vm_offset_t *addr) 938 { 939 vm_map_entry_t entry, next; 940 vm_offset_t end; 941 942 if (start < map->min_offset) 943 start = map->min_offset; 944 if (start > map->max_offset) 945 return (1); 946 947 /* 948 * Look for the first possible address; if there's already something 949 * at this address, we have to start after it. 950 */ 951 if (start == map->min_offset) { 952 if ((entry = map->first_free) != &map->header) 953 start = entry->end; 954 } else { 955 vm_map_entry_t tmp; 956 957 if (vm_map_lookup_entry(map, start, &tmp)) 958 start = tmp->end; 959 entry = tmp; 960 } 961 962 /* 963 * Look through the rest of the map, trying to fit a new region in the 964 * gap between existing regions, or after the very last region. 965 */ 966 for (;; start = (entry = next)->end) { 967 /* 968 * Find the end of the proposed new region. Be sure we didn't 969 * go beyond the end of the map, or wrap around the address; 970 * if so, we lose. Otherwise, if this is the last entry, or 971 * if the proposed new region fits before the next entry, we 972 * win. 973 */ 974 end = start + length; 975 if (end > map->max_offset || end < start) 976 return (1); 977 next = entry->next; 978 if (next == &map->header || next->start >= end) 979 break; 980 } 981 *addr = start; 982 if (map == kernel_map) { 983 vm_offset_t ksize; 984 if ((ksize = round_page(start + length)) > kernel_vm_end) { 985 pmap_growkernel(ksize); 986 } 987 } 988 return (0); 989 } 990 991 /* 992 * vm_map_find finds an unallocated region in the target address 993 * map with the given length. The search is defined to be 994 * first-fit from the specified address; the region found is 995 * returned in the same parameter. 996 * 997 * If object is non-NULL, ref count must be bumped by caller 998 * prior to making call to account for the new entry. 999 */ 1000 int 1001 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1002 vm_offset_t *addr, /* IN/OUT */ 1003 vm_size_t length, boolean_t find_space, vm_prot_t prot, 1004 vm_prot_t max, int cow) 1005 { 1006 vm_offset_t start; 1007 int result, s = 0; 1008 1009 start = *addr; 1010 1011 if (map == kmem_map) 1012 s = splvm(); 1013 1014 vm_map_lock(map); 1015 if (find_space) { 1016 if (vm_map_findspace(map, start, length, addr)) { 1017 vm_map_unlock(map); 1018 if (map == kmem_map) 1019 splx(s); 1020 return (KERN_NO_SPACE); 1021 } 1022 start = *addr; 1023 } 1024 result = vm_map_insert(map, object, offset, 1025 start, start + length, prot, max, cow); 1026 vm_map_unlock(map); 1027 1028 if (map == kmem_map) 1029 splx(s); 1030 1031 return (result); 1032 } 1033 1034 /* 1035 * vm_map_simplify_entry: 1036 * 1037 * Simplify the given map entry by merging with either neighbor. This 1038 * routine also has the ability to merge with both neighbors. 1039 * 1040 * The map must be locked. 1041 * 1042 * This routine guarentees that the passed entry remains valid (though 1043 * possibly extended). When merging, this routine may delete one or 1044 * both neighbors. 1045 */ 1046 void 1047 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry) 1048 { 1049 vm_map_entry_t next, prev; 1050 vm_size_t prevsize, esize; 1051 1052 if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) 1053 return; 1054 1055 prev = entry->prev; 1056 if (prev != &map->header) { 1057 prevsize = prev->end - prev->start; 1058 if ( (prev->end == entry->start) && 1059 (prev->object.vm_object == entry->object.vm_object) && 1060 (!prev->object.vm_object || 1061 (prev->offset + prevsize == entry->offset)) && 1062 (prev->eflags == entry->eflags) && 1063 (prev->protection == entry->protection) && 1064 (prev->max_protection == entry->max_protection) && 1065 (prev->inheritance == entry->inheritance) && 1066 (prev->wired_count == entry->wired_count)) { 1067 if (map->first_free == prev) 1068 map->first_free = entry; 1069 vm_map_entry_unlink(map, prev); 1070 entry->start = prev->start; 1071 entry->offset = prev->offset; 1072 if (prev->object.vm_object) 1073 vm_object_deallocate(prev->object.vm_object); 1074 vm_map_entry_dispose(map, prev); 1075 } 1076 } 1077 1078 next = entry->next; 1079 if (next != &map->header) { 1080 esize = entry->end - entry->start; 1081 if ((entry->end == next->start) && 1082 (next->object.vm_object == entry->object.vm_object) && 1083 (!entry->object.vm_object || 1084 (entry->offset + esize == next->offset)) && 1085 (next->eflags == entry->eflags) && 1086 (next->protection == entry->protection) && 1087 (next->max_protection == entry->max_protection) && 1088 (next->inheritance == entry->inheritance) && 1089 (next->wired_count == entry->wired_count)) { 1090 if (map->first_free == next) 1091 map->first_free = entry; 1092 vm_map_entry_unlink(map, next); 1093 entry->end = next->end; 1094 if (next->object.vm_object) 1095 vm_object_deallocate(next->object.vm_object); 1096 vm_map_entry_dispose(map, next); 1097 } 1098 } 1099 } 1100 /* 1101 * vm_map_clip_start: [ internal use only ] 1102 * 1103 * Asserts that the given entry begins at or after 1104 * the specified address; if necessary, 1105 * it splits the entry into two. 1106 */ 1107 #define vm_map_clip_start(map, entry, startaddr) \ 1108 { \ 1109 if (startaddr > entry->start) \ 1110 _vm_map_clip_start(map, entry, startaddr); \ 1111 } 1112 1113 /* 1114 * This routine is called only when it is known that 1115 * the entry must be split. 1116 */ 1117 static void 1118 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start) 1119 { 1120 vm_map_entry_t new_entry; 1121 1122 /* 1123 * Split off the front portion -- note that we must insert the new 1124 * entry BEFORE this one, so that this entry has the specified 1125 * starting address. 1126 */ 1127 vm_map_simplify_entry(map, entry); 1128 1129 /* 1130 * If there is no object backing this entry, we might as well create 1131 * one now. If we defer it, an object can get created after the map 1132 * is clipped, and individual objects will be created for the split-up 1133 * map. This is a bit of a hack, but is also about the best place to 1134 * put this improvement. 1135 */ 1136 if (entry->object.vm_object == NULL && !map->system_map) { 1137 vm_object_t object; 1138 object = vm_object_allocate(OBJT_DEFAULT, 1139 atop(entry->end - entry->start)); 1140 entry->object.vm_object = object; 1141 entry->offset = 0; 1142 } 1143 1144 new_entry = vm_map_entry_create(map); 1145 *new_entry = *entry; 1146 1147 new_entry->end = start; 1148 entry->offset += (start - entry->start); 1149 entry->start = start; 1150 1151 vm_map_entry_link(map, entry->prev, new_entry); 1152 1153 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1154 vm_object_reference(new_entry->object.vm_object); 1155 } 1156 } 1157 1158 /* 1159 * vm_map_clip_end: [ internal use only ] 1160 * 1161 * Asserts that the given entry ends at or before 1162 * the specified address; if necessary, 1163 * it splits the entry into two. 1164 */ 1165 #define vm_map_clip_end(map, entry, endaddr) \ 1166 { \ 1167 if ((endaddr) < (entry->end)) \ 1168 _vm_map_clip_end((map), (entry), (endaddr)); \ 1169 } 1170 1171 /* 1172 * This routine is called only when it is known that 1173 * the entry must be split. 1174 */ 1175 static void 1176 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end) 1177 { 1178 vm_map_entry_t new_entry; 1179 1180 /* 1181 * If there is no object backing this entry, we might as well create 1182 * one now. If we defer it, an object can get created after the map 1183 * is clipped, and individual objects will be created for the split-up 1184 * map. This is a bit of a hack, but is also about the best place to 1185 * put this improvement. 1186 */ 1187 if (entry->object.vm_object == NULL && !map->system_map) { 1188 vm_object_t object; 1189 object = vm_object_allocate(OBJT_DEFAULT, 1190 atop(entry->end - entry->start)); 1191 entry->object.vm_object = object; 1192 entry->offset = 0; 1193 } 1194 1195 /* 1196 * Create a new entry and insert it AFTER the specified entry 1197 */ 1198 new_entry = vm_map_entry_create(map); 1199 *new_entry = *entry; 1200 1201 new_entry->start = entry->end = end; 1202 new_entry->offset += (end - entry->start); 1203 1204 vm_map_entry_link(map, entry, new_entry); 1205 1206 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1207 vm_object_reference(new_entry->object.vm_object); 1208 } 1209 } 1210 1211 /* 1212 * VM_MAP_RANGE_CHECK: [ internal use only ] 1213 * 1214 * Asserts that the starting and ending region 1215 * addresses fall within the valid range of the map. 1216 */ 1217 #define VM_MAP_RANGE_CHECK(map, start, end) \ 1218 { \ 1219 if (start < vm_map_min(map)) \ 1220 start = vm_map_min(map); \ 1221 if (end > vm_map_max(map)) \ 1222 end = vm_map_max(map); \ 1223 if (start > end) \ 1224 start = end; \ 1225 } 1226 1227 /* 1228 * vm_map_submap: [ kernel use only ] 1229 * 1230 * Mark the given range as handled by a subordinate map. 1231 * 1232 * This range must have been created with vm_map_find, 1233 * and no other operations may have been performed on this 1234 * range prior to calling vm_map_submap. 1235 * 1236 * Only a limited number of operations can be performed 1237 * within this rage after calling vm_map_submap: 1238 * vm_fault 1239 * [Don't try vm_map_copy!] 1240 * 1241 * To remove a submapping, one must first remove the 1242 * range from the superior map, and then destroy the 1243 * submap (if desired). [Better yet, don't try it.] 1244 */ 1245 int 1246 vm_map_submap( 1247 vm_map_t map, 1248 vm_offset_t start, 1249 vm_offset_t end, 1250 vm_map_t submap) 1251 { 1252 vm_map_entry_t entry; 1253 int result = KERN_INVALID_ARGUMENT; 1254 1255 vm_map_lock(map); 1256 1257 VM_MAP_RANGE_CHECK(map, start, end); 1258 1259 if (vm_map_lookup_entry(map, start, &entry)) { 1260 vm_map_clip_start(map, entry, start); 1261 } else 1262 entry = entry->next; 1263 1264 vm_map_clip_end(map, entry, end); 1265 1266 if ((entry->start == start) && (entry->end == end) && 1267 ((entry->eflags & MAP_ENTRY_COW) == 0) && 1268 (entry->object.vm_object == NULL)) { 1269 entry->object.sub_map = submap; 1270 entry->eflags |= MAP_ENTRY_IS_SUB_MAP; 1271 result = KERN_SUCCESS; 1272 } 1273 vm_map_unlock(map); 1274 1275 return (result); 1276 } 1277 1278 /* 1279 * vm_map_protect: 1280 * 1281 * Sets the protection of the specified address 1282 * region in the target map. If "set_max" is 1283 * specified, the maximum protection is to be set; 1284 * otherwise, only the current protection is affected. 1285 */ 1286 int 1287 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 1288 vm_prot_t new_prot, boolean_t set_max) 1289 { 1290 vm_map_entry_t current; 1291 vm_map_entry_t entry; 1292 1293 vm_map_lock(map); 1294 1295 VM_MAP_RANGE_CHECK(map, start, end); 1296 1297 if (vm_map_lookup_entry(map, start, &entry)) { 1298 vm_map_clip_start(map, entry, start); 1299 } else { 1300 entry = entry->next; 1301 } 1302 1303 /* 1304 * Make a first pass to check for protection violations. 1305 */ 1306 current = entry; 1307 while ((current != &map->header) && (current->start < end)) { 1308 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 1309 vm_map_unlock(map); 1310 return (KERN_INVALID_ARGUMENT); 1311 } 1312 if ((new_prot & current->max_protection) != new_prot) { 1313 vm_map_unlock(map); 1314 return (KERN_PROTECTION_FAILURE); 1315 } 1316 current = current->next; 1317 } 1318 1319 /* 1320 * Go back and fix up protections. [Note that clipping is not 1321 * necessary the second time.] 1322 */ 1323 current = entry; 1324 while ((current != &map->header) && (current->start < end)) { 1325 vm_prot_t old_prot; 1326 1327 vm_map_clip_end(map, current, end); 1328 1329 old_prot = current->protection; 1330 if (set_max) 1331 current->protection = 1332 (current->max_protection = new_prot) & 1333 old_prot; 1334 else 1335 current->protection = new_prot; 1336 1337 /* 1338 * Update physical map if necessary. Worry about copy-on-write 1339 * here -- CHECK THIS XXX 1340 */ 1341 if (current->protection != old_prot) { 1342 mtx_lock(&Giant); 1343 vm_page_lock_queues(); 1344 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 1345 VM_PROT_ALL) 1346 pmap_protect(map->pmap, current->start, 1347 current->end, 1348 current->protection & MASK(current)); 1349 #undef MASK 1350 vm_page_unlock_queues(); 1351 mtx_unlock(&Giant); 1352 } 1353 vm_map_simplify_entry(map, current); 1354 current = current->next; 1355 } 1356 vm_map_unlock(map); 1357 return (KERN_SUCCESS); 1358 } 1359 1360 /* 1361 * vm_map_madvise: 1362 * 1363 * This routine traverses a processes map handling the madvise 1364 * system call. Advisories are classified as either those effecting 1365 * the vm_map_entry structure, or those effecting the underlying 1366 * objects. 1367 */ 1368 int 1369 vm_map_madvise( 1370 vm_map_t map, 1371 vm_offset_t start, 1372 vm_offset_t end, 1373 int behav) 1374 { 1375 vm_map_entry_t current, entry; 1376 int modify_map = 0; 1377 1378 /* 1379 * Some madvise calls directly modify the vm_map_entry, in which case 1380 * we need to use an exclusive lock on the map and we need to perform 1381 * various clipping operations. Otherwise we only need a read-lock 1382 * on the map. 1383 */ 1384 switch(behav) { 1385 case MADV_NORMAL: 1386 case MADV_SEQUENTIAL: 1387 case MADV_RANDOM: 1388 case MADV_NOSYNC: 1389 case MADV_AUTOSYNC: 1390 case MADV_NOCORE: 1391 case MADV_CORE: 1392 modify_map = 1; 1393 vm_map_lock(map); 1394 break; 1395 case MADV_WILLNEED: 1396 case MADV_DONTNEED: 1397 case MADV_FREE: 1398 vm_map_lock_read(map); 1399 break; 1400 default: 1401 return (KERN_INVALID_ARGUMENT); 1402 } 1403 1404 /* 1405 * Locate starting entry and clip if necessary. 1406 */ 1407 VM_MAP_RANGE_CHECK(map, start, end); 1408 1409 if (vm_map_lookup_entry(map, start, &entry)) { 1410 if (modify_map) 1411 vm_map_clip_start(map, entry, start); 1412 } else { 1413 entry = entry->next; 1414 } 1415 1416 if (modify_map) { 1417 /* 1418 * madvise behaviors that are implemented in the vm_map_entry. 1419 * 1420 * We clip the vm_map_entry so that behavioral changes are 1421 * limited to the specified address range. 1422 */ 1423 for (current = entry; 1424 (current != &map->header) && (current->start < end); 1425 current = current->next 1426 ) { 1427 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 1428 continue; 1429 1430 vm_map_clip_end(map, current, end); 1431 1432 switch (behav) { 1433 case MADV_NORMAL: 1434 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL); 1435 break; 1436 case MADV_SEQUENTIAL: 1437 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL); 1438 break; 1439 case MADV_RANDOM: 1440 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM); 1441 break; 1442 case MADV_NOSYNC: 1443 current->eflags |= MAP_ENTRY_NOSYNC; 1444 break; 1445 case MADV_AUTOSYNC: 1446 current->eflags &= ~MAP_ENTRY_NOSYNC; 1447 break; 1448 case MADV_NOCORE: 1449 current->eflags |= MAP_ENTRY_NOCOREDUMP; 1450 break; 1451 case MADV_CORE: 1452 current->eflags &= ~MAP_ENTRY_NOCOREDUMP; 1453 break; 1454 default: 1455 break; 1456 } 1457 vm_map_simplify_entry(map, current); 1458 } 1459 vm_map_unlock(map); 1460 } else { 1461 vm_pindex_t pindex; 1462 int count; 1463 1464 /* 1465 * madvise behaviors that are implemented in the underlying 1466 * vm_object. 1467 * 1468 * Since we don't clip the vm_map_entry, we have to clip 1469 * the vm_object pindex and count. 1470 */ 1471 for (current = entry; 1472 (current != &map->header) && (current->start < end); 1473 current = current->next 1474 ) { 1475 vm_offset_t useStart; 1476 1477 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 1478 continue; 1479 1480 pindex = OFF_TO_IDX(current->offset); 1481 count = atop(current->end - current->start); 1482 useStart = current->start; 1483 1484 if (current->start < start) { 1485 pindex += atop(start - current->start); 1486 count -= atop(start - current->start); 1487 useStart = start; 1488 } 1489 if (current->end > end) 1490 count -= atop(current->end - end); 1491 1492 if (count <= 0) 1493 continue; 1494 1495 vm_object_madvise(current->object.vm_object, 1496 pindex, count, behav); 1497 if (behav == MADV_WILLNEED) { 1498 mtx_lock(&Giant); 1499 pmap_object_init_pt( 1500 map->pmap, 1501 useStart, 1502 current->object.vm_object, 1503 pindex, 1504 (count << PAGE_SHIFT), 1505 MAP_PREFAULT_MADVISE 1506 ); 1507 mtx_unlock(&Giant); 1508 } 1509 } 1510 vm_map_unlock_read(map); 1511 } 1512 return (0); 1513 } 1514 1515 1516 /* 1517 * vm_map_inherit: 1518 * 1519 * Sets the inheritance of the specified address 1520 * range in the target map. Inheritance 1521 * affects how the map will be shared with 1522 * child maps at the time of vm_map_fork. 1523 */ 1524 int 1525 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 1526 vm_inherit_t new_inheritance) 1527 { 1528 vm_map_entry_t entry; 1529 vm_map_entry_t temp_entry; 1530 1531 switch (new_inheritance) { 1532 case VM_INHERIT_NONE: 1533 case VM_INHERIT_COPY: 1534 case VM_INHERIT_SHARE: 1535 break; 1536 default: 1537 return (KERN_INVALID_ARGUMENT); 1538 } 1539 vm_map_lock(map); 1540 VM_MAP_RANGE_CHECK(map, start, end); 1541 if (vm_map_lookup_entry(map, start, &temp_entry)) { 1542 entry = temp_entry; 1543 vm_map_clip_start(map, entry, start); 1544 } else 1545 entry = temp_entry->next; 1546 while ((entry != &map->header) && (entry->start < end)) { 1547 vm_map_clip_end(map, entry, end); 1548 entry->inheritance = new_inheritance; 1549 vm_map_simplify_entry(map, entry); 1550 entry = entry->next; 1551 } 1552 vm_map_unlock(map); 1553 return (KERN_SUCCESS); 1554 } 1555 1556 /* 1557 * vm_map_unwire: 1558 * 1559 * Implements both kernel and user unwiring. 1560 */ 1561 int 1562 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end, 1563 boolean_t user_unwire) 1564 { 1565 vm_map_entry_t entry, first_entry, tmp_entry; 1566 vm_offset_t saved_start; 1567 unsigned int last_timestamp; 1568 int rv; 1569 boolean_t need_wakeup, result; 1570 1571 vm_map_lock(map); 1572 VM_MAP_RANGE_CHECK(map, start, end); 1573 if (!vm_map_lookup_entry(map, start, &first_entry)) { 1574 vm_map_unlock(map); 1575 return (KERN_INVALID_ADDRESS); 1576 } 1577 last_timestamp = map->timestamp; 1578 entry = first_entry; 1579 while (entry != &map->header && entry->start < end) { 1580 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 1581 /* 1582 * We have not yet clipped the entry. 1583 */ 1584 saved_start = (start >= entry->start) ? start : 1585 entry->start; 1586 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 1587 if (vm_map_unlock_and_wait(map, user_unwire)) { 1588 /* 1589 * Allow interruption of user unwiring? 1590 */ 1591 } 1592 vm_map_lock(map); 1593 if (last_timestamp+1 != map->timestamp) { 1594 /* 1595 * Look again for the entry because the map was 1596 * modified while it was unlocked. 1597 * Specifically, the entry may have been 1598 * clipped, merged, or deleted. 1599 */ 1600 if (!vm_map_lookup_entry(map, saved_start, 1601 &tmp_entry)) { 1602 if (saved_start == start) { 1603 /* 1604 * First_entry has been deleted. 1605 */ 1606 vm_map_unlock(map); 1607 return (KERN_INVALID_ADDRESS); 1608 } 1609 end = saved_start; 1610 rv = KERN_INVALID_ADDRESS; 1611 goto done; 1612 } 1613 if (entry == first_entry) 1614 first_entry = tmp_entry; 1615 else 1616 first_entry = NULL; 1617 entry = tmp_entry; 1618 } 1619 last_timestamp = map->timestamp; 1620 continue; 1621 } 1622 vm_map_clip_start(map, entry, start); 1623 vm_map_clip_end(map, entry, end); 1624 /* 1625 * Mark the entry in case the map lock is released. (See 1626 * above.) 1627 */ 1628 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 1629 /* 1630 * Check the map for holes in the specified region. 1631 */ 1632 if (entry->end < end && (entry->next == &map->header || 1633 entry->next->start > entry->end)) { 1634 end = entry->end; 1635 rv = KERN_INVALID_ADDRESS; 1636 goto done; 1637 } 1638 /* 1639 * Require that the entry is wired. 1640 */ 1641 if (entry->wired_count == 0 || (user_unwire && 1642 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0)) { 1643 end = entry->end; 1644 rv = KERN_INVALID_ARGUMENT; 1645 goto done; 1646 } 1647 entry = entry->next; 1648 } 1649 rv = KERN_SUCCESS; 1650 done: 1651 need_wakeup = FALSE; 1652 if (first_entry == NULL) { 1653 result = vm_map_lookup_entry(map, start, &first_entry); 1654 KASSERT(result, ("vm_map_unwire: lookup failed")); 1655 } 1656 entry = first_entry; 1657 while (entry != &map->header && entry->start < end) { 1658 if (rv == KERN_SUCCESS) { 1659 if (user_unwire) 1660 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 1661 entry->wired_count--; 1662 if (entry->wired_count == 0) { 1663 /* 1664 * Retain the map lock. 1665 */ 1666 vm_fault_unwire(map, entry->start, entry->end); 1667 } 1668 } 1669 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, 1670 ("vm_map_unwire: in-transition flag missing")); 1671 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 1672 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 1673 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 1674 need_wakeup = TRUE; 1675 } 1676 vm_map_simplify_entry(map, entry); 1677 entry = entry->next; 1678 } 1679 vm_map_unlock(map); 1680 if (need_wakeup) 1681 vm_map_wakeup(map); 1682 return (rv); 1683 } 1684 1685 /* 1686 * vm_map_wire: 1687 * 1688 * Implements both kernel and user wiring. 1689 */ 1690 int 1691 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, 1692 boolean_t user_wire) 1693 { 1694 vm_map_entry_t entry, first_entry, tmp_entry; 1695 vm_offset_t saved_end, saved_start; 1696 unsigned int last_timestamp; 1697 int rv; 1698 boolean_t need_wakeup, result; 1699 1700 vm_map_lock(map); 1701 VM_MAP_RANGE_CHECK(map, start, end); 1702 if (!vm_map_lookup_entry(map, start, &first_entry)) { 1703 vm_map_unlock(map); 1704 return (KERN_INVALID_ADDRESS); 1705 } 1706 last_timestamp = map->timestamp; 1707 entry = first_entry; 1708 while (entry != &map->header && entry->start < end) { 1709 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 1710 /* 1711 * We have not yet clipped the entry. 1712 */ 1713 saved_start = (start >= entry->start) ? start : 1714 entry->start; 1715 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 1716 if (vm_map_unlock_and_wait(map, user_wire)) { 1717 /* 1718 * Allow interruption of user wiring? 1719 */ 1720 } 1721 vm_map_lock(map); 1722 if (last_timestamp + 1 != map->timestamp) { 1723 /* 1724 * Look again for the entry because the map was 1725 * modified while it was unlocked. 1726 * Specifically, the entry may have been 1727 * clipped, merged, or deleted. 1728 */ 1729 if (!vm_map_lookup_entry(map, saved_start, 1730 &tmp_entry)) { 1731 if (saved_start == start) { 1732 /* 1733 * first_entry has been deleted. 1734 */ 1735 vm_map_unlock(map); 1736 return (KERN_INVALID_ADDRESS); 1737 } 1738 end = saved_start; 1739 rv = KERN_INVALID_ADDRESS; 1740 goto done; 1741 } 1742 if (entry == first_entry) 1743 first_entry = tmp_entry; 1744 else 1745 first_entry = NULL; 1746 entry = tmp_entry; 1747 } 1748 last_timestamp = map->timestamp; 1749 continue; 1750 } 1751 vm_map_clip_start(map, entry, start); 1752 vm_map_clip_end(map, entry, end); 1753 /* 1754 * Mark the entry in case the map lock is released. (See 1755 * above.) 1756 */ 1757 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 1758 /* 1759 * 1760 */ 1761 if (entry->wired_count == 0) { 1762 entry->wired_count++; 1763 saved_start = entry->start; 1764 saved_end = entry->end; 1765 /* 1766 * Release the map lock, relying on the in-transition 1767 * mark. 1768 */ 1769 vm_map_unlock(map); 1770 rv = vm_fault_wire(map, saved_start, saved_end, 1771 user_wire); 1772 vm_map_lock(map); 1773 if (last_timestamp + 1 != map->timestamp) { 1774 /* 1775 * Look again for the entry because the map was 1776 * modified while it was unlocked. The entry 1777 * may have been clipped, but NOT merged or 1778 * deleted. 1779 */ 1780 result = vm_map_lookup_entry(map, saved_start, 1781 &tmp_entry); 1782 KASSERT(result, ("vm_map_wire: lookup failed")); 1783 if (entry == first_entry) 1784 first_entry = tmp_entry; 1785 else 1786 first_entry = NULL; 1787 entry = tmp_entry; 1788 while (entry->end < saved_end) { 1789 if (rv != KERN_SUCCESS) { 1790 KASSERT(entry->wired_count == 1, 1791 ("vm_map_wire: bad count")); 1792 entry->wired_count = -1; 1793 } 1794 entry = entry->next; 1795 } 1796 } 1797 last_timestamp = map->timestamp; 1798 if (rv != KERN_SUCCESS) { 1799 KASSERT(entry->wired_count == 1, 1800 ("vm_map_wire: bad count")); 1801 /* 1802 * Assign an out-of-range value to represent 1803 * the failure to wire this entry. 1804 */ 1805 entry->wired_count = -1; 1806 end = entry->end; 1807 goto done; 1808 } 1809 } else if (!user_wire || 1810 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 1811 entry->wired_count++; 1812 } 1813 /* 1814 * Check the map for holes in the specified region. 1815 */ 1816 if (entry->end < end && (entry->next == &map->header || 1817 entry->next->start > entry->end)) { 1818 end = entry->end; 1819 rv = KERN_INVALID_ADDRESS; 1820 goto done; 1821 } 1822 entry = entry->next; 1823 } 1824 rv = KERN_SUCCESS; 1825 done: 1826 need_wakeup = FALSE; 1827 if (first_entry == NULL) { 1828 result = vm_map_lookup_entry(map, start, &first_entry); 1829 KASSERT(result, ("vm_map_wire: lookup failed")); 1830 } 1831 entry = first_entry; 1832 while (entry != &map->header && entry->start < end) { 1833 if (rv == KERN_SUCCESS) { 1834 if (user_wire) 1835 entry->eflags |= MAP_ENTRY_USER_WIRED; 1836 } else if (entry->wired_count == -1) { 1837 /* 1838 * Wiring failed on this entry. Thus, unwiring is 1839 * unnecessary. 1840 */ 1841 entry->wired_count = 0; 1842 } else { 1843 if (!user_wire || 1844 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) 1845 entry->wired_count--; 1846 if (entry->wired_count == 0) { 1847 /* 1848 * Retain the map lock. 1849 */ 1850 vm_fault_unwire(map, entry->start, entry->end); 1851 } 1852 } 1853 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, 1854 ("vm_map_wire: in-transition flag missing")); 1855 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 1856 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 1857 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 1858 need_wakeup = TRUE; 1859 } 1860 vm_map_simplify_entry(map, entry); 1861 entry = entry->next; 1862 } 1863 vm_map_unlock(map); 1864 if (need_wakeup) 1865 vm_map_wakeup(map); 1866 return (rv); 1867 } 1868 1869 /* 1870 * vm_map_clean 1871 * 1872 * Push any dirty cached pages in the address range to their pager. 1873 * If syncio is TRUE, dirty pages are written synchronously. 1874 * If invalidate is TRUE, any cached pages are freed as well. 1875 * 1876 * Returns an error if any part of the specified range is not mapped. 1877 */ 1878 int 1879 vm_map_clean( 1880 vm_map_t map, 1881 vm_offset_t start, 1882 vm_offset_t end, 1883 boolean_t syncio, 1884 boolean_t invalidate) 1885 { 1886 vm_map_entry_t current; 1887 vm_map_entry_t entry; 1888 vm_size_t size; 1889 vm_object_t object; 1890 vm_ooffset_t offset; 1891 1892 GIANT_REQUIRED; 1893 1894 vm_map_lock_read(map); 1895 VM_MAP_RANGE_CHECK(map, start, end); 1896 if (!vm_map_lookup_entry(map, start, &entry)) { 1897 vm_map_unlock_read(map); 1898 return (KERN_INVALID_ADDRESS); 1899 } 1900 /* 1901 * Make a first pass to check for holes. 1902 */ 1903 for (current = entry; current->start < end; current = current->next) { 1904 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 1905 vm_map_unlock_read(map); 1906 return (KERN_INVALID_ARGUMENT); 1907 } 1908 if (end > current->end && 1909 (current->next == &map->header || 1910 current->end != current->next->start)) { 1911 vm_map_unlock_read(map); 1912 return (KERN_INVALID_ADDRESS); 1913 } 1914 } 1915 1916 if (invalidate) { 1917 vm_page_lock_queues(); 1918 pmap_remove(map->pmap, start, end); 1919 vm_page_unlock_queues(); 1920 } 1921 /* 1922 * Make a second pass, cleaning/uncaching pages from the indicated 1923 * objects as we go. 1924 */ 1925 for (current = entry; current->start < end; current = current->next) { 1926 offset = current->offset + (start - current->start); 1927 size = (end <= current->end ? end : current->end) - start; 1928 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 1929 vm_map_t smap; 1930 vm_map_entry_t tentry; 1931 vm_size_t tsize; 1932 1933 smap = current->object.sub_map; 1934 vm_map_lock_read(smap); 1935 (void) vm_map_lookup_entry(smap, offset, &tentry); 1936 tsize = tentry->end - offset; 1937 if (tsize < size) 1938 size = tsize; 1939 object = tentry->object.vm_object; 1940 offset = tentry->offset + (offset - tentry->start); 1941 vm_map_unlock_read(smap); 1942 } else { 1943 object = current->object.vm_object; 1944 } 1945 /* 1946 * Note that there is absolutely no sense in writing out 1947 * anonymous objects, so we track down the vnode object 1948 * to write out. 1949 * We invalidate (remove) all pages from the address space 1950 * anyway, for semantic correctness. 1951 * 1952 * note: certain anonymous maps, such as MAP_NOSYNC maps, 1953 * may start out with a NULL object. 1954 */ 1955 while (object && object->backing_object) { 1956 object = object->backing_object; 1957 offset += object->backing_object_offset; 1958 if (object->size < OFF_TO_IDX(offset + size)) 1959 size = IDX_TO_OFF(object->size) - offset; 1960 } 1961 if (object && (object->type == OBJT_VNODE) && 1962 (current->protection & VM_PROT_WRITE)) { 1963 /* 1964 * Flush pages if writing is allowed, invalidate them 1965 * if invalidation requested. Pages undergoing I/O 1966 * will be ignored by vm_object_page_remove(). 1967 * 1968 * We cannot lock the vnode and then wait for paging 1969 * to complete without deadlocking against vm_fault. 1970 * Instead we simply call vm_object_page_remove() and 1971 * allow it to block internally on a page-by-page 1972 * basis when it encounters pages undergoing async 1973 * I/O. 1974 */ 1975 int flags; 1976 1977 vm_object_reference(object); 1978 vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY, curthread); 1979 flags = (syncio || invalidate) ? OBJPC_SYNC : 0; 1980 flags |= invalidate ? OBJPC_INVAL : 0; 1981 VM_OBJECT_LOCK(object); 1982 vm_object_page_clean(object, 1983 OFF_TO_IDX(offset), 1984 OFF_TO_IDX(offset + size + PAGE_MASK), 1985 flags); 1986 VM_OBJECT_UNLOCK(object); 1987 VOP_UNLOCK(object->handle, 0, curthread); 1988 vm_object_deallocate(object); 1989 } 1990 if (object && invalidate && 1991 ((object->type == OBJT_VNODE) || 1992 (object->type == OBJT_DEVICE))) { 1993 VM_OBJECT_LOCK(object); 1994 vm_object_page_remove(object, 1995 OFF_TO_IDX(offset), 1996 OFF_TO_IDX(offset + size + PAGE_MASK), 1997 FALSE); 1998 VM_OBJECT_UNLOCK(object); 1999 } 2000 start += size; 2001 } 2002 2003 vm_map_unlock_read(map); 2004 return (KERN_SUCCESS); 2005 } 2006 2007 /* 2008 * vm_map_entry_unwire: [ internal use only ] 2009 * 2010 * Make the region specified by this entry pageable. 2011 * 2012 * The map in question should be locked. 2013 * [This is the reason for this routine's existence.] 2014 */ 2015 static void 2016 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 2017 { 2018 vm_fault_unwire(map, entry->start, entry->end); 2019 entry->wired_count = 0; 2020 } 2021 2022 /* 2023 * vm_map_entry_delete: [ internal use only ] 2024 * 2025 * Deallocate the given entry from the target map. 2026 */ 2027 static void 2028 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry) 2029 { 2030 vm_map_entry_unlink(map, entry); 2031 map->size -= entry->end - entry->start; 2032 2033 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 2034 vm_object_deallocate(entry->object.vm_object); 2035 } 2036 2037 vm_map_entry_dispose(map, entry); 2038 } 2039 2040 /* 2041 * vm_map_delete: [ internal use only ] 2042 * 2043 * Deallocates the given address range from the target 2044 * map. 2045 */ 2046 int 2047 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end) 2048 { 2049 vm_object_t object; 2050 vm_map_entry_t entry; 2051 vm_map_entry_t first_entry; 2052 2053 /* 2054 * Find the start of the region, and clip it 2055 */ 2056 if (!vm_map_lookup_entry(map, start, &first_entry)) 2057 entry = first_entry->next; 2058 else { 2059 entry = first_entry; 2060 vm_map_clip_start(map, entry, start); 2061 } 2062 2063 /* 2064 * Save the free space hint 2065 */ 2066 if (entry == &map->header) { 2067 map->first_free = &map->header; 2068 } else if (map->first_free->start >= start) { 2069 map->first_free = entry->prev; 2070 } 2071 2072 /* 2073 * Step through all entries in this region 2074 */ 2075 while ((entry != &map->header) && (entry->start < end)) { 2076 vm_map_entry_t next; 2077 vm_offset_t s, e; 2078 vm_pindex_t offidxstart, offidxend, count; 2079 2080 /* 2081 * Wait for wiring or unwiring of an entry to complete. 2082 */ 2083 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0) { 2084 unsigned int last_timestamp; 2085 vm_offset_t saved_start; 2086 vm_map_entry_t tmp_entry; 2087 2088 saved_start = entry->start; 2089 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2090 last_timestamp = map->timestamp; 2091 (void) vm_map_unlock_and_wait(map, FALSE); 2092 vm_map_lock(map); 2093 if (last_timestamp + 1 != map->timestamp) { 2094 /* 2095 * Look again for the entry because the map was 2096 * modified while it was unlocked. 2097 * Specifically, the entry may have been 2098 * clipped, merged, or deleted. 2099 */ 2100 if (!vm_map_lookup_entry(map, saved_start, 2101 &tmp_entry)) 2102 entry = tmp_entry->next; 2103 else { 2104 entry = tmp_entry; 2105 vm_map_clip_start(map, entry, 2106 saved_start); 2107 } 2108 } 2109 continue; 2110 } 2111 vm_map_clip_end(map, entry, end); 2112 2113 s = entry->start; 2114 e = entry->end; 2115 next = entry->next; 2116 2117 offidxstart = OFF_TO_IDX(entry->offset); 2118 count = OFF_TO_IDX(e - s); 2119 object = entry->object.vm_object; 2120 2121 /* 2122 * Unwire before removing addresses from the pmap; otherwise, 2123 * unwiring will put the entries back in the pmap. 2124 */ 2125 if (entry->wired_count != 0) { 2126 vm_map_entry_unwire(map, entry); 2127 } 2128 2129 offidxend = offidxstart + count; 2130 2131 if (object == kernel_object || object == kmem_object) { 2132 VM_OBJECT_LOCK(object); 2133 vm_object_page_remove(object, offidxstart, offidxend, FALSE); 2134 VM_OBJECT_UNLOCK(object); 2135 } else { 2136 mtx_lock(&Giant); 2137 vm_page_lock_queues(); 2138 pmap_remove(map->pmap, s, e); 2139 vm_page_unlock_queues(); 2140 if (object != NULL) { 2141 VM_OBJECT_LOCK(object); 2142 if (object->ref_count != 1 && 2143 (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING && 2144 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) { 2145 vm_object_collapse(object); 2146 vm_object_page_remove(object, offidxstart, offidxend, FALSE); 2147 if (object->type == OBJT_SWAP) 2148 swap_pager_freespace(object, offidxstart, count); 2149 if (offidxend >= object->size && 2150 offidxstart < object->size) 2151 object->size = offidxstart; 2152 } 2153 VM_OBJECT_UNLOCK(object); 2154 } 2155 mtx_unlock(&Giant); 2156 } 2157 2158 /* 2159 * Delete the entry (which may delete the object) only after 2160 * removing all pmap entries pointing to its pages. 2161 * (Otherwise, its page frames may be reallocated, and any 2162 * modify bits will be set in the wrong object!) 2163 */ 2164 vm_map_entry_delete(map, entry); 2165 entry = next; 2166 } 2167 return (KERN_SUCCESS); 2168 } 2169 2170 /* 2171 * vm_map_remove: 2172 * 2173 * Remove the given address range from the target map. 2174 * This is the exported form of vm_map_delete. 2175 */ 2176 int 2177 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 2178 { 2179 int result, s = 0; 2180 2181 if (map == kmem_map) 2182 s = splvm(); 2183 2184 vm_map_lock(map); 2185 VM_MAP_RANGE_CHECK(map, start, end); 2186 result = vm_map_delete(map, start, end); 2187 vm_map_unlock(map); 2188 2189 if (map == kmem_map) 2190 splx(s); 2191 2192 return (result); 2193 } 2194 2195 /* 2196 * vm_map_check_protection: 2197 * 2198 * Assert that the target map allows the specified privilege on the 2199 * entire address region given. The entire region must be allocated. 2200 * 2201 * WARNING! This code does not and should not check whether the 2202 * contents of the region is accessible. For example a smaller file 2203 * might be mapped into a larger address space. 2204 * 2205 * NOTE! This code is also called by munmap(). 2206 */ 2207 boolean_t 2208 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 2209 vm_prot_t protection) 2210 { 2211 vm_map_entry_t entry; 2212 vm_map_entry_t tmp_entry; 2213 2214 vm_map_lock_read(map); 2215 if (!vm_map_lookup_entry(map, start, &tmp_entry)) { 2216 vm_map_unlock_read(map); 2217 return (FALSE); 2218 } 2219 entry = tmp_entry; 2220 2221 while (start < end) { 2222 if (entry == &map->header) { 2223 vm_map_unlock_read(map); 2224 return (FALSE); 2225 } 2226 /* 2227 * No holes allowed! 2228 */ 2229 if (start < entry->start) { 2230 vm_map_unlock_read(map); 2231 return (FALSE); 2232 } 2233 /* 2234 * Check protection associated with entry. 2235 */ 2236 if ((entry->protection & protection) != protection) { 2237 vm_map_unlock_read(map); 2238 return (FALSE); 2239 } 2240 /* go to next entry */ 2241 start = entry->end; 2242 entry = entry->next; 2243 } 2244 vm_map_unlock_read(map); 2245 return (TRUE); 2246 } 2247 2248 /* 2249 * vm_map_copy_entry: 2250 * 2251 * Copies the contents of the source entry to the destination 2252 * entry. The entries *must* be aligned properly. 2253 */ 2254 static void 2255 vm_map_copy_entry( 2256 vm_map_t src_map, 2257 vm_map_t dst_map, 2258 vm_map_entry_t src_entry, 2259 vm_map_entry_t dst_entry) 2260 { 2261 vm_object_t src_object; 2262 2263 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP) 2264 return; 2265 2266 if (src_entry->wired_count == 0) { 2267 2268 /* 2269 * If the source entry is marked needs_copy, it is already 2270 * write-protected. 2271 */ 2272 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) { 2273 vm_page_lock_queues(); 2274 pmap_protect(src_map->pmap, 2275 src_entry->start, 2276 src_entry->end, 2277 src_entry->protection & ~VM_PROT_WRITE); 2278 vm_page_unlock_queues(); 2279 } 2280 2281 /* 2282 * Make a copy of the object. 2283 */ 2284 if ((src_object = src_entry->object.vm_object) != NULL) { 2285 2286 if ((src_object->handle == NULL) && 2287 (src_object->type == OBJT_DEFAULT || 2288 src_object->type == OBJT_SWAP)) { 2289 VM_OBJECT_LOCK(src_object); 2290 vm_object_collapse(src_object); 2291 VM_OBJECT_UNLOCK(src_object); 2292 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) { 2293 vm_object_split(src_entry); 2294 src_object = src_entry->object.vm_object; 2295 } 2296 } 2297 2298 vm_object_reference(src_object); 2299 VM_OBJECT_LOCK(src_object); 2300 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 2301 VM_OBJECT_UNLOCK(src_object); 2302 dst_entry->object.vm_object = src_object; 2303 src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 2304 dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 2305 dst_entry->offset = src_entry->offset; 2306 } else { 2307 dst_entry->object.vm_object = NULL; 2308 dst_entry->offset = 0; 2309 } 2310 2311 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start, 2312 dst_entry->end - dst_entry->start, src_entry->start); 2313 } else { 2314 /* 2315 * Of course, wired down pages can't be set copy-on-write. 2316 * Cause wired pages to be copied into the new map by 2317 * simulating faults (the new pages are pageable) 2318 */ 2319 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry); 2320 } 2321 } 2322 2323 /* 2324 * vmspace_fork: 2325 * Create a new process vmspace structure and vm_map 2326 * based on those of an existing process. The new map 2327 * is based on the old map, according to the inheritance 2328 * values on the regions in that map. 2329 * 2330 * The source map must not be locked. 2331 */ 2332 struct vmspace * 2333 vmspace_fork(struct vmspace *vm1) 2334 { 2335 struct vmspace *vm2; 2336 vm_map_t old_map = &vm1->vm_map; 2337 vm_map_t new_map; 2338 vm_map_entry_t old_entry; 2339 vm_map_entry_t new_entry; 2340 vm_object_t object; 2341 2342 GIANT_REQUIRED; 2343 2344 vm_map_lock(old_map); 2345 old_map->infork = 1; 2346 2347 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset); 2348 bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy, 2349 (caddr_t) &vm1->vm_endcopy - (caddr_t) &vm1->vm_startcopy); 2350 new_map = &vm2->vm_map; /* XXX */ 2351 new_map->timestamp = 1; 2352 2353 old_entry = old_map->header.next; 2354 2355 while (old_entry != &old_map->header) { 2356 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2357 panic("vm_map_fork: encountered a submap"); 2358 2359 switch (old_entry->inheritance) { 2360 case VM_INHERIT_NONE: 2361 break; 2362 2363 case VM_INHERIT_SHARE: 2364 /* 2365 * Clone the entry, creating the shared object if necessary. 2366 */ 2367 object = old_entry->object.vm_object; 2368 if (object == NULL) { 2369 object = vm_object_allocate(OBJT_DEFAULT, 2370 atop(old_entry->end - old_entry->start)); 2371 old_entry->object.vm_object = object; 2372 old_entry->offset = (vm_offset_t) 0; 2373 } 2374 2375 /* 2376 * Add the reference before calling vm_object_shadow 2377 * to insure that a shadow object is created. 2378 */ 2379 vm_object_reference(object); 2380 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 2381 vm_object_shadow(&old_entry->object.vm_object, 2382 &old_entry->offset, 2383 atop(old_entry->end - old_entry->start)); 2384 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 2385 /* Transfer the second reference too. */ 2386 vm_object_reference( 2387 old_entry->object.vm_object); 2388 vm_object_deallocate(object); 2389 object = old_entry->object.vm_object; 2390 } 2391 VM_OBJECT_LOCK(object); 2392 vm_object_clear_flag(object, OBJ_ONEMAPPING); 2393 VM_OBJECT_UNLOCK(object); 2394 2395 /* 2396 * Clone the entry, referencing the shared object. 2397 */ 2398 new_entry = vm_map_entry_create(new_map); 2399 *new_entry = *old_entry; 2400 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2401 new_entry->wired_count = 0; 2402 2403 /* 2404 * Insert the entry into the new map -- we know we're 2405 * inserting at the end of the new map. 2406 */ 2407 vm_map_entry_link(new_map, new_map->header.prev, 2408 new_entry); 2409 2410 /* 2411 * Update the physical map 2412 */ 2413 pmap_copy(new_map->pmap, old_map->pmap, 2414 new_entry->start, 2415 (old_entry->end - old_entry->start), 2416 old_entry->start); 2417 break; 2418 2419 case VM_INHERIT_COPY: 2420 /* 2421 * Clone the entry and link into the map. 2422 */ 2423 new_entry = vm_map_entry_create(new_map); 2424 *new_entry = *old_entry; 2425 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2426 new_entry->wired_count = 0; 2427 new_entry->object.vm_object = NULL; 2428 vm_map_entry_link(new_map, new_map->header.prev, 2429 new_entry); 2430 vm_map_copy_entry(old_map, new_map, old_entry, 2431 new_entry); 2432 break; 2433 } 2434 old_entry = old_entry->next; 2435 } 2436 2437 new_map->size = old_map->size; 2438 old_map->infork = 0; 2439 vm_map_unlock(old_map); 2440 2441 return (vm2); 2442 } 2443 2444 int 2445 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 2446 vm_prot_t prot, vm_prot_t max, int cow) 2447 { 2448 vm_map_entry_t prev_entry; 2449 vm_map_entry_t new_stack_entry; 2450 vm_size_t init_ssize; 2451 int rv; 2452 2453 if (addrbos < vm_map_min(map)) 2454 return (KERN_NO_SPACE); 2455 2456 if (max_ssize < sgrowsiz) 2457 init_ssize = max_ssize; 2458 else 2459 init_ssize = sgrowsiz; 2460 2461 vm_map_lock(map); 2462 2463 /* If addr is already mapped, no go */ 2464 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) { 2465 vm_map_unlock(map); 2466 return (KERN_NO_SPACE); 2467 } 2468 2469 /* If we would blow our VMEM resource limit, no go */ 2470 if (map->size + init_ssize > 2471 curthread->td_proc->p_rlimit[RLIMIT_VMEM].rlim_cur) { 2472 vm_map_unlock(map); 2473 return (KERN_NO_SPACE); 2474 } 2475 2476 /* If we can't accomodate max_ssize in the current mapping, 2477 * no go. However, we need to be aware that subsequent user 2478 * mappings might map into the space we have reserved for 2479 * stack, and currently this space is not protected. 2480 * 2481 * Hopefully we will at least detect this condition 2482 * when we try to grow the stack. 2483 */ 2484 if ((prev_entry->next != &map->header) && 2485 (prev_entry->next->start < addrbos + max_ssize)) { 2486 vm_map_unlock(map); 2487 return (KERN_NO_SPACE); 2488 } 2489 2490 /* We initially map a stack of only init_ssize. We will 2491 * grow as needed later. Since this is to be a grow 2492 * down stack, we map at the top of the range. 2493 * 2494 * Note: we would normally expect prot and max to be 2495 * VM_PROT_ALL, and cow to be 0. Possibly we should 2496 * eliminate these as input parameters, and just 2497 * pass these values here in the insert call. 2498 */ 2499 rv = vm_map_insert(map, NULL, 0, addrbos + max_ssize - init_ssize, 2500 addrbos + max_ssize, prot, max, cow); 2501 2502 /* Now set the avail_ssize amount */ 2503 if (rv == KERN_SUCCESS){ 2504 if (prev_entry != &map->header) 2505 vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize); 2506 new_stack_entry = prev_entry->next; 2507 if (new_stack_entry->end != addrbos + max_ssize || 2508 new_stack_entry->start != addrbos + max_ssize - init_ssize) 2509 panic ("Bad entry start/end for new stack entry"); 2510 else 2511 new_stack_entry->avail_ssize = max_ssize - init_ssize; 2512 } 2513 2514 vm_map_unlock(map); 2515 return (rv); 2516 } 2517 2518 /* Attempts to grow a vm stack entry. Returns KERN_SUCCESS if the 2519 * desired address is already mapped, or if we successfully grow 2520 * the stack. Also returns KERN_SUCCESS if addr is outside the 2521 * stack range (this is strange, but preserves compatibility with 2522 * the grow function in vm_machdep.c). 2523 */ 2524 int 2525 vm_map_growstack (struct proc *p, vm_offset_t addr) 2526 { 2527 vm_map_entry_t prev_entry; 2528 vm_map_entry_t stack_entry; 2529 vm_map_entry_t new_stack_entry; 2530 struct vmspace *vm = p->p_vmspace; 2531 vm_map_t map = &vm->vm_map; 2532 vm_offset_t end; 2533 int grow_amount; 2534 int rv; 2535 int is_procstack; 2536 2537 GIANT_REQUIRED; 2538 2539 Retry: 2540 vm_map_lock_read(map); 2541 2542 /* If addr is already in the entry range, no need to grow.*/ 2543 if (vm_map_lookup_entry(map, addr, &prev_entry)) { 2544 vm_map_unlock_read(map); 2545 return (KERN_SUCCESS); 2546 } 2547 2548 if ((stack_entry = prev_entry->next) == &map->header) { 2549 vm_map_unlock_read(map); 2550 return (KERN_SUCCESS); 2551 } 2552 if (prev_entry == &map->header) 2553 end = stack_entry->start - stack_entry->avail_ssize; 2554 else 2555 end = prev_entry->end; 2556 2557 /* This next test mimics the old grow function in vm_machdep.c. 2558 * It really doesn't quite make sense, but we do it anyway 2559 * for compatibility. 2560 * 2561 * If not growable stack, return success. This signals the 2562 * caller to proceed as he would normally with normal vm. 2563 */ 2564 if (stack_entry->avail_ssize < 1 || 2565 addr >= stack_entry->start || 2566 addr < stack_entry->start - stack_entry->avail_ssize) { 2567 vm_map_unlock_read(map); 2568 return (KERN_SUCCESS); 2569 } 2570 2571 /* Find the minimum grow amount */ 2572 grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE); 2573 if (grow_amount > stack_entry->avail_ssize) { 2574 vm_map_unlock_read(map); 2575 return (KERN_NO_SPACE); 2576 } 2577 2578 /* If there is no longer enough space between the entries 2579 * nogo, and adjust the available space. Note: this 2580 * should only happen if the user has mapped into the 2581 * stack area after the stack was created, and is 2582 * probably an error. 2583 * 2584 * This also effectively destroys any guard page the user 2585 * might have intended by limiting the stack size. 2586 */ 2587 if (grow_amount > stack_entry->start - end) { 2588 if (vm_map_lock_upgrade(map)) 2589 goto Retry; 2590 2591 stack_entry->avail_ssize = stack_entry->start - end; 2592 2593 vm_map_unlock(map); 2594 return (KERN_NO_SPACE); 2595 } 2596 2597 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr; 2598 2599 /* If this is the main process stack, see if we're over the 2600 * stack limit. 2601 */ 2602 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > 2603 p->p_rlimit[RLIMIT_STACK].rlim_cur)) { 2604 vm_map_unlock_read(map); 2605 return (KERN_NO_SPACE); 2606 } 2607 2608 /* Round up the grow amount modulo SGROWSIZ */ 2609 grow_amount = roundup (grow_amount, sgrowsiz); 2610 if (grow_amount > stack_entry->avail_ssize) { 2611 grow_amount = stack_entry->avail_ssize; 2612 } 2613 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > 2614 p->p_rlimit[RLIMIT_STACK].rlim_cur)) { 2615 grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur - 2616 ctob(vm->vm_ssize); 2617 } 2618 2619 /* If we would blow our VMEM resource limit, no go */ 2620 if (map->size + grow_amount > 2621 curthread->td_proc->p_rlimit[RLIMIT_VMEM].rlim_cur) { 2622 vm_map_unlock_read(map); 2623 return (KERN_NO_SPACE); 2624 } 2625 2626 if (vm_map_lock_upgrade(map)) 2627 goto Retry; 2628 2629 /* Get the preliminary new entry start value */ 2630 addr = stack_entry->start - grow_amount; 2631 2632 /* If this puts us into the previous entry, cut back our growth 2633 * to the available space. Also, see the note above. 2634 */ 2635 if (addr < end) { 2636 stack_entry->avail_ssize = stack_entry->start - end; 2637 addr = end; 2638 } 2639 2640 rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start, 2641 p->p_sysent->sv_stackprot, VM_PROT_ALL, 0); 2642 2643 /* Adjust the available stack space by the amount we grew. */ 2644 if (rv == KERN_SUCCESS) { 2645 if (prev_entry != &map->header) 2646 vm_map_clip_end(map, prev_entry, addr); 2647 new_stack_entry = prev_entry->next; 2648 if (new_stack_entry->end != stack_entry->start || 2649 new_stack_entry->start != addr) 2650 panic ("Bad stack grow start/end in new stack entry"); 2651 else { 2652 new_stack_entry->avail_ssize = stack_entry->avail_ssize - 2653 (new_stack_entry->end - 2654 new_stack_entry->start); 2655 if (is_procstack) 2656 vm->vm_ssize += btoc(new_stack_entry->end - 2657 new_stack_entry->start); 2658 } 2659 } 2660 2661 vm_map_unlock(map); 2662 return (rv); 2663 } 2664 2665 /* 2666 * Unshare the specified VM space for exec. If other processes are 2667 * mapped to it, then create a new one. The new vmspace is null. 2668 */ 2669 void 2670 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser) 2671 { 2672 struct vmspace *oldvmspace = p->p_vmspace; 2673 struct vmspace *newvmspace; 2674 2675 GIANT_REQUIRED; 2676 newvmspace = vmspace_alloc(minuser, maxuser); 2677 bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy, 2678 (caddr_t) (newvmspace + 1) - (caddr_t) &newvmspace->vm_startcopy); 2679 /* 2680 * This code is written like this for prototype purposes. The 2681 * goal is to avoid running down the vmspace here, but let the 2682 * other process's that are still using the vmspace to finally 2683 * run it down. Even though there is little or no chance of blocking 2684 * here, it is a good idea to keep this form for future mods. 2685 */ 2686 p->p_vmspace = newvmspace; 2687 pmap_pinit2(vmspace_pmap(newvmspace)); 2688 vmspace_free(oldvmspace); 2689 if (p == curthread->td_proc) /* XXXKSE ? */ 2690 pmap_activate(curthread); 2691 } 2692 2693 /* 2694 * Unshare the specified VM space for forcing COW. This 2695 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 2696 */ 2697 void 2698 vmspace_unshare(struct proc *p) 2699 { 2700 struct vmspace *oldvmspace = p->p_vmspace; 2701 struct vmspace *newvmspace; 2702 2703 GIANT_REQUIRED; 2704 if (oldvmspace->vm_refcnt == 1) 2705 return; 2706 newvmspace = vmspace_fork(oldvmspace); 2707 p->p_vmspace = newvmspace; 2708 pmap_pinit2(vmspace_pmap(newvmspace)); 2709 vmspace_free(oldvmspace); 2710 if (p == curthread->td_proc) /* XXXKSE ? */ 2711 pmap_activate(curthread); 2712 } 2713 2714 /* 2715 * vm_map_lookup: 2716 * 2717 * Finds the VM object, offset, and 2718 * protection for a given virtual address in the 2719 * specified map, assuming a page fault of the 2720 * type specified. 2721 * 2722 * Leaves the map in question locked for read; return 2723 * values are guaranteed until a vm_map_lookup_done 2724 * call is performed. Note that the map argument 2725 * is in/out; the returned map must be used in 2726 * the call to vm_map_lookup_done. 2727 * 2728 * A handle (out_entry) is returned for use in 2729 * vm_map_lookup_done, to make that fast. 2730 * 2731 * If a lookup is requested with "write protection" 2732 * specified, the map may be changed to perform virtual 2733 * copying operations, although the data referenced will 2734 * remain the same. 2735 */ 2736 int 2737 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 2738 vm_offset_t vaddr, 2739 vm_prot_t fault_typea, 2740 vm_map_entry_t *out_entry, /* OUT */ 2741 vm_object_t *object, /* OUT */ 2742 vm_pindex_t *pindex, /* OUT */ 2743 vm_prot_t *out_prot, /* OUT */ 2744 boolean_t *wired) /* OUT */ 2745 { 2746 vm_map_entry_t entry; 2747 vm_map_t map = *var_map; 2748 vm_prot_t prot; 2749 vm_prot_t fault_type = fault_typea; 2750 2751 RetryLookup:; 2752 /* 2753 * Lookup the faulting address. 2754 */ 2755 2756 vm_map_lock_read(map); 2757 #define RETURN(why) \ 2758 { \ 2759 vm_map_unlock_read(map); \ 2760 return (why); \ 2761 } 2762 2763 /* 2764 * If the map has an interesting hint, try it before calling full 2765 * blown lookup routine. 2766 */ 2767 entry = map->root; 2768 *out_entry = entry; 2769 if (entry == NULL || 2770 (vaddr < entry->start) || (vaddr >= entry->end)) { 2771 /* 2772 * Entry was either not a valid hint, or the vaddr was not 2773 * contained in the entry, so do a full lookup. 2774 */ 2775 if (!vm_map_lookup_entry(map, vaddr, out_entry)) 2776 RETURN(KERN_INVALID_ADDRESS); 2777 2778 entry = *out_entry; 2779 } 2780 2781 /* 2782 * Handle submaps. 2783 */ 2784 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 2785 vm_map_t old_map = map; 2786 2787 *var_map = map = entry->object.sub_map; 2788 vm_map_unlock_read(old_map); 2789 goto RetryLookup; 2790 } 2791 2792 /* 2793 * Check whether this task is allowed to have this page. 2794 * Note the special case for MAP_ENTRY_COW 2795 * pages with an override. This is to implement a forced 2796 * COW for debuggers. 2797 */ 2798 if (fault_type & VM_PROT_OVERRIDE_WRITE) 2799 prot = entry->max_protection; 2800 else 2801 prot = entry->protection; 2802 fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE); 2803 if ((fault_type & prot) != fault_type) { 2804 RETURN(KERN_PROTECTION_FAILURE); 2805 } 2806 if ((entry->eflags & MAP_ENTRY_USER_WIRED) && 2807 (entry->eflags & MAP_ENTRY_COW) && 2808 (fault_type & VM_PROT_WRITE) && 2809 (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) { 2810 RETURN(KERN_PROTECTION_FAILURE); 2811 } 2812 2813 /* 2814 * If this page is not pageable, we have to get it for all possible 2815 * accesses. 2816 */ 2817 *wired = (entry->wired_count != 0); 2818 if (*wired) 2819 prot = fault_type = entry->protection; 2820 2821 /* 2822 * If the entry was copy-on-write, we either ... 2823 */ 2824 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 2825 /* 2826 * If we want to write the page, we may as well handle that 2827 * now since we've got the map locked. 2828 * 2829 * If we don't need to write the page, we just demote the 2830 * permissions allowed. 2831 */ 2832 if (fault_type & VM_PROT_WRITE) { 2833 /* 2834 * Make a new object, and place it in the object 2835 * chain. Note that no new references have appeared 2836 * -- one just moved from the map to the new 2837 * object. 2838 */ 2839 if (vm_map_lock_upgrade(map)) 2840 goto RetryLookup; 2841 2842 vm_object_shadow( 2843 &entry->object.vm_object, 2844 &entry->offset, 2845 atop(entry->end - entry->start)); 2846 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 2847 2848 vm_map_lock_downgrade(map); 2849 } else { 2850 /* 2851 * We're attempting to read a copy-on-write page -- 2852 * don't allow writes. 2853 */ 2854 prot &= ~VM_PROT_WRITE; 2855 } 2856 } 2857 2858 /* 2859 * Create an object if necessary. 2860 */ 2861 if (entry->object.vm_object == NULL && 2862 !map->system_map) { 2863 if (vm_map_lock_upgrade(map)) 2864 goto RetryLookup; 2865 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT, 2866 atop(entry->end - entry->start)); 2867 entry->offset = 0; 2868 vm_map_lock_downgrade(map); 2869 } 2870 2871 /* 2872 * Return the object/offset from this entry. If the entry was 2873 * copy-on-write or empty, it has been fixed up. 2874 */ 2875 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 2876 *object = entry->object.vm_object; 2877 2878 /* 2879 * Return whether this is the only map sharing this data. 2880 */ 2881 *out_prot = prot; 2882 return (KERN_SUCCESS); 2883 2884 #undef RETURN 2885 } 2886 2887 /* 2888 * vm_map_lookup_done: 2889 * 2890 * Releases locks acquired by a vm_map_lookup 2891 * (according to the handle returned by that lookup). 2892 */ 2893 void 2894 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry) 2895 { 2896 /* 2897 * Unlock the main-level map 2898 */ 2899 vm_map_unlock_read(map); 2900 } 2901 2902 #include "opt_ddb.h" 2903 #ifdef DDB 2904 #include <sys/kernel.h> 2905 2906 #include <ddb/ddb.h> 2907 2908 /* 2909 * vm_map_print: [ debug ] 2910 */ 2911 DB_SHOW_COMMAND(map, vm_map_print) 2912 { 2913 static int nlines; 2914 /* XXX convert args. */ 2915 vm_map_t map = (vm_map_t)addr; 2916 boolean_t full = have_addr; 2917 2918 vm_map_entry_t entry; 2919 2920 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 2921 (void *)map, 2922 (void *)map->pmap, map->nentries, map->timestamp); 2923 nlines++; 2924 2925 if (!full && db_indent) 2926 return; 2927 2928 db_indent += 2; 2929 for (entry = map->header.next; entry != &map->header; 2930 entry = entry->next) { 2931 db_iprintf("map entry %p: start=%p, end=%p\n", 2932 (void *)entry, (void *)entry->start, (void *)entry->end); 2933 nlines++; 2934 { 2935 static char *inheritance_name[4] = 2936 {"share", "copy", "none", "donate_copy"}; 2937 2938 db_iprintf(" prot=%x/%x/%s", 2939 entry->protection, 2940 entry->max_protection, 2941 inheritance_name[(int)(unsigned char)entry->inheritance]); 2942 if (entry->wired_count != 0) 2943 db_printf(", wired"); 2944 } 2945 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 2946 db_printf(", share=%p, offset=0x%jx\n", 2947 (void *)entry->object.sub_map, 2948 (uintmax_t)entry->offset); 2949 nlines++; 2950 if ((entry->prev == &map->header) || 2951 (entry->prev->object.sub_map != 2952 entry->object.sub_map)) { 2953 db_indent += 2; 2954 vm_map_print((db_expr_t)(intptr_t) 2955 entry->object.sub_map, 2956 full, 0, (char *)0); 2957 db_indent -= 2; 2958 } 2959 } else { 2960 db_printf(", object=%p, offset=0x%jx", 2961 (void *)entry->object.vm_object, 2962 (uintmax_t)entry->offset); 2963 if (entry->eflags & MAP_ENTRY_COW) 2964 db_printf(", copy (%s)", 2965 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 2966 db_printf("\n"); 2967 nlines++; 2968 2969 if ((entry->prev == &map->header) || 2970 (entry->prev->object.vm_object != 2971 entry->object.vm_object)) { 2972 db_indent += 2; 2973 vm_object_print((db_expr_t)(intptr_t) 2974 entry->object.vm_object, 2975 full, 0, (char *)0); 2976 nlines += 4; 2977 db_indent -= 2; 2978 } 2979 } 2980 } 2981 db_indent -= 2; 2982 if (db_indent == 0) 2983 nlines = 0; 2984 } 2985 2986 2987 DB_SHOW_COMMAND(procvm, procvm) 2988 { 2989 struct proc *p; 2990 2991 if (have_addr) { 2992 p = (struct proc *) addr; 2993 } else { 2994 p = curproc; 2995 } 2996 2997 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 2998 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 2999 (void *)vmspace_pmap(p->p_vmspace)); 3000 3001 vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL); 3002 } 3003 3004 #endif /* DDB */ 3005