1 /*- 2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * The Mach Operating System project at Carnegie-Mellon University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 35 * 36 * 37 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 38 * All rights reserved. 39 * 40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 41 * 42 * Permission to use, copy, modify and distribute this software and 43 * its documentation is hereby granted, provided that both the copyright 44 * notice and this permission notice appear in all copies of the 45 * software, derivative works or modified versions, and any portions 46 * thereof, and that both notices appear in supporting documentation. 47 * 48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 51 * 52 * Carnegie Mellon requests users of this software to return to 53 * 54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 55 * School of Computer Science 56 * Carnegie Mellon University 57 * Pittsburgh PA 15213-3890 58 * 59 * any improvements or extensions that they make and grant Carnegie the 60 * rights to redistribute these changes. 61 */ 62 63 /* 64 * Virtual memory mapping module. 65 */ 66 67 #include <sys/cdefs.h> 68 __FBSDID("$FreeBSD$"); 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/elf.h> 73 #include <sys/kernel.h> 74 #include <sys/ktr.h> 75 #include <sys/lock.h> 76 #include <sys/mutex.h> 77 #include <sys/proc.h> 78 #include <sys/vmmeter.h> 79 #include <sys/mman.h> 80 #include <sys/vnode.h> 81 #include <sys/racct.h> 82 #include <sys/resourcevar.h> 83 #include <sys/rwlock.h> 84 #include <sys/file.h> 85 #include <sys/sysctl.h> 86 #include <sys/sysent.h> 87 #include <sys/shm.h> 88 89 #include <vm/vm.h> 90 #include <vm/vm_param.h> 91 #include <vm/pmap.h> 92 #include <vm/vm_map.h> 93 #include <vm/vm_page.h> 94 #include <vm/vm_pageout.h> 95 #include <vm/vm_object.h> 96 #include <vm/vm_pager.h> 97 #include <vm/vm_kern.h> 98 #include <vm/vm_extern.h> 99 #include <vm/vnode_pager.h> 100 #include <vm/swap_pager.h> 101 #include <vm/uma.h> 102 103 /* 104 * Virtual memory maps provide for the mapping, protection, 105 * and sharing of virtual memory objects. In addition, 106 * this module provides for an efficient virtual copy of 107 * memory from one map to another. 108 * 109 * Synchronization is required prior to most operations. 110 * 111 * Maps consist of an ordered doubly-linked list of simple 112 * entries; a self-adjusting binary search tree of these 113 * entries is used to speed up lookups. 114 * 115 * Since portions of maps are specified by start/end addresses, 116 * which may not align with existing map entries, all 117 * routines merely "clip" entries to these start/end values. 118 * [That is, an entry is split into two, bordering at a 119 * start or end value.] Note that these clippings may not 120 * always be necessary (as the two resulting entries are then 121 * not changed); however, the clipping is done for convenience. 122 * 123 * As mentioned above, virtual copy operations are performed 124 * by copying VM object references from one map to 125 * another, and then marking both regions as copy-on-write. 126 */ 127 128 static struct mtx map_sleep_mtx; 129 static uma_zone_t mapentzone; 130 static uma_zone_t kmapentzone; 131 static uma_zone_t vmspace_zone; 132 static int vmspace_zinit(void *mem, int size, int flags); 133 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, 134 vm_offset_t max); 135 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map); 136 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry); 137 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry); 138 static int vm_map_growstack(vm_map_t map, vm_offset_t addr, 139 vm_map_entry_t gap_entry); 140 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 141 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags); 142 #ifdef INVARIANTS 143 static void vmspace_zdtor(void *mem, int size, void *arg); 144 #endif 145 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, 146 vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max, 147 int cow); 148 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry, 149 vm_offset_t failed_addr); 150 151 #define CONTAINS_BITS(set, bits) ((~(set) & (bits)) == 0) 152 153 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \ 154 ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \ 155 !((e)->eflags & MAP_ENTRY_NEEDS_COPY))) 156 157 /* 158 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type 159 * stable. 160 */ 161 #define PROC_VMSPACE_LOCK(p) do { } while (0) 162 #define PROC_VMSPACE_UNLOCK(p) do { } while (0) 163 164 /* 165 * VM_MAP_RANGE_CHECK: [ internal use only ] 166 * 167 * Asserts that the starting and ending region 168 * addresses fall within the valid range of the map. 169 */ 170 #define VM_MAP_RANGE_CHECK(map, start, end) \ 171 { \ 172 if (start < vm_map_min(map)) \ 173 start = vm_map_min(map); \ 174 if (end > vm_map_max(map)) \ 175 end = vm_map_max(map); \ 176 if (start > end) \ 177 start = end; \ 178 } 179 180 #ifndef UMA_MD_SMALL_ALLOC 181 182 /* 183 * Allocate a new slab for kernel map entries. The kernel map may be locked or 184 * unlocked, depending on whether the request is coming from the kernel map or a 185 * submap. This function allocates a virtual address range directly from the 186 * kernel map instead of the kmem_* layer to avoid recursion on the kernel map 187 * lock and also to avoid triggering allocator recursion in the vmem boundary 188 * tag allocator. 189 */ 190 static void * 191 kmapent_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 192 int wait) 193 { 194 vm_offset_t addr; 195 int error, locked; 196 197 *pflag = UMA_SLAB_PRIV; 198 199 if (!(locked = vm_map_locked(kernel_map))) 200 vm_map_lock(kernel_map); 201 addr = vm_map_findspace(kernel_map, vm_map_min(kernel_map), bytes); 202 if (addr + bytes < addr || addr + bytes > vm_map_max(kernel_map)) 203 panic("%s: kernel map is exhausted", __func__); 204 error = vm_map_insert(kernel_map, NULL, 0, addr, addr + bytes, 205 VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT); 206 if (error != KERN_SUCCESS) 207 panic("%s: vm_map_insert() failed: %d", __func__, error); 208 if (!locked) 209 vm_map_unlock(kernel_map); 210 error = kmem_back_domain(domain, kernel_object, addr, bytes, M_NOWAIT | 211 M_USE_RESERVE | (wait & M_ZERO)); 212 if (error == KERN_SUCCESS) { 213 return ((void *)addr); 214 } else { 215 if (!locked) 216 vm_map_lock(kernel_map); 217 vm_map_delete(kernel_map, addr, bytes); 218 if (!locked) 219 vm_map_unlock(kernel_map); 220 return (NULL); 221 } 222 } 223 224 static void 225 kmapent_free(void *item, vm_size_t size, uint8_t pflag) 226 { 227 vm_offset_t addr; 228 int error __diagused; 229 230 if ((pflag & UMA_SLAB_PRIV) == 0) 231 /* XXX leaked */ 232 return; 233 234 addr = (vm_offset_t)item; 235 kmem_unback(kernel_object, addr, size); 236 error = vm_map_remove(kernel_map, addr, addr + size); 237 KASSERT(error == KERN_SUCCESS, 238 ("%s: vm_map_remove failed: %d", __func__, error)); 239 } 240 241 /* 242 * The worst-case upper bound on the number of kernel map entries that may be 243 * created before the zone must be replenished in _vm_map_unlock(). 244 */ 245 #define KMAPENT_RESERVE 1 246 247 #endif /* !UMD_MD_SMALL_ALLOC */ 248 249 /* 250 * vm_map_startup: 251 * 252 * Initialize the vm_map module. Must be called before any other vm_map 253 * routines. 254 * 255 * User map and entry structures are allocated from the general purpose 256 * memory pool. Kernel maps are statically defined. Kernel map entries 257 * require special handling to avoid recursion; see the comments above 258 * kmapent_alloc() and in vm_map_entry_create(). 259 */ 260 void 261 vm_map_startup(void) 262 { 263 mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF); 264 265 /* 266 * Disable the use of per-CPU buckets: map entry allocation is 267 * serialized by the kernel map lock. 268 */ 269 kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry), 270 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 271 UMA_ZONE_VM | UMA_ZONE_NOBUCKET); 272 #ifndef UMA_MD_SMALL_ALLOC 273 /* Reserve an extra map entry for use when replenishing the reserve. */ 274 uma_zone_reserve(kmapentzone, KMAPENT_RESERVE + 1); 275 uma_prealloc(kmapentzone, KMAPENT_RESERVE + 1); 276 uma_zone_set_allocf(kmapentzone, kmapent_alloc); 277 uma_zone_set_freef(kmapentzone, kmapent_free); 278 #endif 279 280 mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry), 281 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 282 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL, 283 #ifdef INVARIANTS 284 vmspace_zdtor, 285 #else 286 NULL, 287 #endif 288 vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 289 } 290 291 static int 292 vmspace_zinit(void *mem, int size, int flags) 293 { 294 struct vmspace *vm; 295 vm_map_t map; 296 297 vm = (struct vmspace *)mem; 298 map = &vm->vm_map; 299 300 memset(map, 0, sizeof(*map)); 301 mtx_init(&map->system_mtx, "vm map (system)", NULL, 302 MTX_DEF | MTX_DUPOK); 303 sx_init(&map->lock, "vm map (user)"); 304 PMAP_LOCK_INIT(vmspace_pmap(vm)); 305 return (0); 306 } 307 308 #ifdef INVARIANTS 309 static void 310 vmspace_zdtor(void *mem, int size, void *arg) 311 { 312 struct vmspace *vm; 313 314 vm = (struct vmspace *)mem; 315 KASSERT(vm->vm_map.nentries == 0, 316 ("vmspace %p nentries == %d on free", vm, vm->vm_map.nentries)); 317 KASSERT(vm->vm_map.size == 0, 318 ("vmspace %p size == %ju on free", vm, (uintmax_t)vm->vm_map.size)); 319 } 320 #endif /* INVARIANTS */ 321 322 /* 323 * Allocate a vmspace structure, including a vm_map and pmap, 324 * and initialize those structures. The refcnt is set to 1. 325 */ 326 struct vmspace * 327 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit) 328 { 329 struct vmspace *vm; 330 331 vm = uma_zalloc(vmspace_zone, M_WAITOK); 332 KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL")); 333 if (!pinit(vmspace_pmap(vm))) { 334 uma_zfree(vmspace_zone, vm); 335 return (NULL); 336 } 337 CTR1(KTR_VM, "vmspace_alloc: %p", vm); 338 _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max); 339 refcount_init(&vm->vm_refcnt, 1); 340 vm->vm_shm = NULL; 341 vm->vm_swrss = 0; 342 vm->vm_tsize = 0; 343 vm->vm_dsize = 0; 344 vm->vm_ssize = 0; 345 vm->vm_taddr = 0; 346 vm->vm_daddr = 0; 347 vm->vm_maxsaddr = 0; 348 return (vm); 349 } 350 351 #ifdef RACCT 352 static void 353 vmspace_container_reset(struct proc *p) 354 { 355 356 PROC_LOCK(p); 357 racct_set(p, RACCT_DATA, 0); 358 racct_set(p, RACCT_STACK, 0); 359 racct_set(p, RACCT_RSS, 0); 360 racct_set(p, RACCT_MEMLOCK, 0); 361 racct_set(p, RACCT_VMEM, 0); 362 PROC_UNLOCK(p); 363 } 364 #endif 365 366 static inline void 367 vmspace_dofree(struct vmspace *vm) 368 { 369 370 CTR1(KTR_VM, "vmspace_free: %p", vm); 371 372 /* 373 * Make sure any SysV shm is freed, it might not have been in 374 * exit1(). 375 */ 376 shmexit(vm); 377 378 /* 379 * Lock the map, to wait out all other references to it. 380 * Delete all of the mappings and pages they hold, then call 381 * the pmap module to reclaim anything left. 382 */ 383 (void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map), 384 vm_map_max(&vm->vm_map)); 385 386 pmap_release(vmspace_pmap(vm)); 387 vm->vm_map.pmap = NULL; 388 uma_zfree(vmspace_zone, vm); 389 } 390 391 void 392 vmspace_free(struct vmspace *vm) 393 { 394 395 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 396 "vmspace_free() called"); 397 398 if (refcount_release(&vm->vm_refcnt)) 399 vmspace_dofree(vm); 400 } 401 402 void 403 vmspace_exitfree(struct proc *p) 404 { 405 struct vmspace *vm; 406 407 PROC_VMSPACE_LOCK(p); 408 vm = p->p_vmspace; 409 p->p_vmspace = NULL; 410 PROC_VMSPACE_UNLOCK(p); 411 KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace")); 412 vmspace_free(vm); 413 } 414 415 void 416 vmspace_exit(struct thread *td) 417 { 418 struct vmspace *vm; 419 struct proc *p; 420 bool released; 421 422 p = td->td_proc; 423 vm = p->p_vmspace; 424 425 /* 426 * Prepare to release the vmspace reference. The thread that releases 427 * the last reference is responsible for tearing down the vmspace. 428 * However, threads not releasing the final reference must switch to the 429 * kernel's vmspace0 before the decrement so that the subsequent pmap 430 * deactivation does not modify a freed vmspace. 431 */ 432 refcount_acquire(&vmspace0.vm_refcnt); 433 if (!(released = refcount_release_if_last(&vm->vm_refcnt))) { 434 if (p->p_vmspace != &vmspace0) { 435 PROC_VMSPACE_LOCK(p); 436 p->p_vmspace = &vmspace0; 437 PROC_VMSPACE_UNLOCK(p); 438 pmap_activate(td); 439 } 440 released = refcount_release(&vm->vm_refcnt); 441 } 442 if (released) { 443 /* 444 * pmap_remove_pages() expects the pmap to be active, so switch 445 * back first if necessary. 446 */ 447 if (p->p_vmspace != vm) { 448 PROC_VMSPACE_LOCK(p); 449 p->p_vmspace = vm; 450 PROC_VMSPACE_UNLOCK(p); 451 pmap_activate(td); 452 } 453 pmap_remove_pages(vmspace_pmap(vm)); 454 PROC_VMSPACE_LOCK(p); 455 p->p_vmspace = &vmspace0; 456 PROC_VMSPACE_UNLOCK(p); 457 pmap_activate(td); 458 vmspace_dofree(vm); 459 } 460 #ifdef RACCT 461 if (racct_enable) 462 vmspace_container_reset(p); 463 #endif 464 } 465 466 /* Acquire reference to vmspace owned by another process. */ 467 468 struct vmspace * 469 vmspace_acquire_ref(struct proc *p) 470 { 471 struct vmspace *vm; 472 473 PROC_VMSPACE_LOCK(p); 474 vm = p->p_vmspace; 475 if (vm == NULL || !refcount_acquire_if_not_zero(&vm->vm_refcnt)) { 476 PROC_VMSPACE_UNLOCK(p); 477 return (NULL); 478 } 479 if (vm != p->p_vmspace) { 480 PROC_VMSPACE_UNLOCK(p); 481 vmspace_free(vm); 482 return (NULL); 483 } 484 PROC_VMSPACE_UNLOCK(p); 485 return (vm); 486 } 487 488 /* 489 * Switch between vmspaces in an AIO kernel process. 490 * 491 * The new vmspace is either the vmspace of a user process obtained 492 * from an active AIO request or the initial vmspace of the AIO kernel 493 * process (when it is idling). Because user processes will block to 494 * drain any active AIO requests before proceeding in exit() or 495 * execve(), the reference count for vmspaces from AIO requests can 496 * never be 0. Similarly, AIO kernel processes hold an extra 497 * reference on their initial vmspace for the life of the process. As 498 * a result, the 'newvm' vmspace always has a non-zero reference 499 * count. This permits an additional reference on 'newvm' to be 500 * acquired via a simple atomic increment rather than the loop in 501 * vmspace_acquire_ref() above. 502 */ 503 void 504 vmspace_switch_aio(struct vmspace *newvm) 505 { 506 struct vmspace *oldvm; 507 508 /* XXX: Need some way to assert that this is an aio daemon. */ 509 510 KASSERT(refcount_load(&newvm->vm_refcnt) > 0, 511 ("vmspace_switch_aio: newvm unreferenced")); 512 513 oldvm = curproc->p_vmspace; 514 if (oldvm == newvm) 515 return; 516 517 /* 518 * Point to the new address space and refer to it. 519 */ 520 curproc->p_vmspace = newvm; 521 refcount_acquire(&newvm->vm_refcnt); 522 523 /* Activate the new mapping. */ 524 pmap_activate(curthread); 525 526 vmspace_free(oldvm); 527 } 528 529 void 530 _vm_map_lock(vm_map_t map, const char *file, int line) 531 { 532 533 if (map->system_map) 534 mtx_lock_flags_(&map->system_mtx, 0, file, line); 535 else 536 sx_xlock_(&map->lock, file, line); 537 map->timestamp++; 538 } 539 540 void 541 vm_map_entry_set_vnode_text(vm_map_entry_t entry, bool add) 542 { 543 vm_object_t object; 544 struct vnode *vp; 545 bool vp_held; 546 547 if ((entry->eflags & MAP_ENTRY_VN_EXEC) == 0) 548 return; 549 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 550 ("Submap with execs")); 551 object = entry->object.vm_object; 552 KASSERT(object != NULL, ("No object for text, entry %p", entry)); 553 if ((object->flags & OBJ_ANON) != 0) 554 object = object->handle; 555 else 556 KASSERT(object->backing_object == NULL, 557 ("non-anon object %p shadows", object)); 558 KASSERT(object != NULL, ("No content object for text, entry %p obj %p", 559 entry, entry->object.vm_object)); 560 561 /* 562 * Mostly, we do not lock the backing object. It is 563 * referenced by the entry we are processing, so it cannot go 564 * away. 565 */ 566 vm_pager_getvp(object, &vp, &vp_held); 567 if (vp != NULL) { 568 if (add) { 569 VOP_SET_TEXT_CHECKED(vp); 570 } else { 571 vn_lock(vp, LK_SHARED | LK_RETRY); 572 VOP_UNSET_TEXT_CHECKED(vp); 573 VOP_UNLOCK(vp); 574 } 575 if (vp_held) 576 vdrop(vp); 577 } 578 } 579 580 /* 581 * Use a different name for this vm_map_entry field when it's use 582 * is not consistent with its use as part of an ordered search tree. 583 */ 584 #define defer_next right 585 586 static void 587 vm_map_process_deferred(void) 588 { 589 struct thread *td; 590 vm_map_entry_t entry, next; 591 vm_object_t object; 592 593 td = curthread; 594 entry = td->td_map_def_user; 595 td->td_map_def_user = NULL; 596 while (entry != NULL) { 597 next = entry->defer_next; 598 MPASS((entry->eflags & (MAP_ENTRY_WRITECNT | 599 MAP_ENTRY_VN_EXEC)) != (MAP_ENTRY_WRITECNT | 600 MAP_ENTRY_VN_EXEC)); 601 if ((entry->eflags & MAP_ENTRY_WRITECNT) != 0) { 602 /* 603 * Decrement the object's writemappings and 604 * possibly the vnode's v_writecount. 605 */ 606 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 607 ("Submap with writecount")); 608 object = entry->object.vm_object; 609 KASSERT(object != NULL, ("No object for writecount")); 610 vm_pager_release_writecount(object, entry->start, 611 entry->end); 612 } 613 vm_map_entry_set_vnode_text(entry, false); 614 vm_map_entry_deallocate(entry, FALSE); 615 entry = next; 616 } 617 } 618 619 #ifdef INVARIANTS 620 static void 621 _vm_map_assert_locked(vm_map_t map, const char *file, int line) 622 { 623 624 if (map->system_map) 625 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 626 else 627 sx_assert_(&map->lock, SA_XLOCKED, file, line); 628 } 629 630 #define VM_MAP_ASSERT_LOCKED(map) \ 631 _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE) 632 633 enum { VMMAP_CHECK_NONE, VMMAP_CHECK_UNLOCK, VMMAP_CHECK_ALL }; 634 #ifdef DIAGNOSTIC 635 static int enable_vmmap_check = VMMAP_CHECK_UNLOCK; 636 #else 637 static int enable_vmmap_check = VMMAP_CHECK_NONE; 638 #endif 639 SYSCTL_INT(_debug, OID_AUTO, vmmap_check, CTLFLAG_RWTUN, 640 &enable_vmmap_check, 0, "Enable vm map consistency checking"); 641 642 static void _vm_map_assert_consistent(vm_map_t map, int check); 643 644 #define VM_MAP_ASSERT_CONSISTENT(map) \ 645 _vm_map_assert_consistent(map, VMMAP_CHECK_ALL) 646 #ifdef DIAGNOSTIC 647 #define VM_MAP_UNLOCK_CONSISTENT(map) do { \ 648 if (map->nupdates > map->nentries) { \ 649 _vm_map_assert_consistent(map, VMMAP_CHECK_UNLOCK); \ 650 map->nupdates = 0; \ 651 } \ 652 } while (0) 653 #else 654 #define VM_MAP_UNLOCK_CONSISTENT(map) 655 #endif 656 #else 657 #define VM_MAP_ASSERT_LOCKED(map) 658 #define VM_MAP_ASSERT_CONSISTENT(map) 659 #define VM_MAP_UNLOCK_CONSISTENT(map) 660 #endif /* INVARIANTS */ 661 662 void 663 _vm_map_unlock(vm_map_t map, const char *file, int line) 664 { 665 666 VM_MAP_UNLOCK_CONSISTENT(map); 667 if (map->system_map) { 668 #ifndef UMA_MD_SMALL_ALLOC 669 if (map == kernel_map && (map->flags & MAP_REPLENISH) != 0) { 670 uma_prealloc(kmapentzone, 1); 671 map->flags &= ~MAP_REPLENISH; 672 } 673 #endif 674 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 675 } else { 676 sx_xunlock_(&map->lock, file, line); 677 vm_map_process_deferred(); 678 } 679 } 680 681 void 682 _vm_map_lock_read(vm_map_t map, const char *file, int line) 683 { 684 685 if (map->system_map) 686 mtx_lock_flags_(&map->system_mtx, 0, file, line); 687 else 688 sx_slock_(&map->lock, file, line); 689 } 690 691 void 692 _vm_map_unlock_read(vm_map_t map, const char *file, int line) 693 { 694 695 if (map->system_map) { 696 KASSERT((map->flags & MAP_REPLENISH) == 0, 697 ("%s: MAP_REPLENISH leaked", __func__)); 698 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 699 } else { 700 sx_sunlock_(&map->lock, file, line); 701 vm_map_process_deferred(); 702 } 703 } 704 705 int 706 _vm_map_trylock(vm_map_t map, const char *file, int line) 707 { 708 int error; 709 710 error = map->system_map ? 711 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 712 !sx_try_xlock_(&map->lock, file, line); 713 if (error == 0) 714 map->timestamp++; 715 return (error == 0); 716 } 717 718 int 719 _vm_map_trylock_read(vm_map_t map, const char *file, int line) 720 { 721 int error; 722 723 error = map->system_map ? 724 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 725 !sx_try_slock_(&map->lock, file, line); 726 return (error == 0); 727 } 728 729 /* 730 * _vm_map_lock_upgrade: [ internal use only ] 731 * 732 * Tries to upgrade a read (shared) lock on the specified map to a write 733 * (exclusive) lock. Returns the value "0" if the upgrade succeeds and a 734 * non-zero value if the upgrade fails. If the upgrade fails, the map is 735 * returned without a read or write lock held. 736 * 737 * Requires that the map be read locked. 738 */ 739 int 740 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line) 741 { 742 unsigned int last_timestamp; 743 744 if (map->system_map) { 745 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 746 } else { 747 if (!sx_try_upgrade_(&map->lock, file, line)) { 748 last_timestamp = map->timestamp; 749 sx_sunlock_(&map->lock, file, line); 750 vm_map_process_deferred(); 751 /* 752 * If the map's timestamp does not change while the 753 * map is unlocked, then the upgrade succeeds. 754 */ 755 sx_xlock_(&map->lock, file, line); 756 if (last_timestamp != map->timestamp) { 757 sx_xunlock_(&map->lock, file, line); 758 return (1); 759 } 760 } 761 } 762 map->timestamp++; 763 return (0); 764 } 765 766 void 767 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line) 768 { 769 770 if (map->system_map) { 771 KASSERT((map->flags & MAP_REPLENISH) == 0, 772 ("%s: MAP_REPLENISH leaked", __func__)); 773 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 774 } else { 775 VM_MAP_UNLOCK_CONSISTENT(map); 776 sx_downgrade_(&map->lock, file, line); 777 } 778 } 779 780 /* 781 * vm_map_locked: 782 * 783 * Returns a non-zero value if the caller holds a write (exclusive) lock 784 * on the specified map and the value "0" otherwise. 785 */ 786 int 787 vm_map_locked(vm_map_t map) 788 { 789 790 if (map->system_map) 791 return (mtx_owned(&map->system_mtx)); 792 else 793 return (sx_xlocked(&map->lock)); 794 } 795 796 /* 797 * _vm_map_unlock_and_wait: 798 * 799 * Atomically releases the lock on the specified map and puts the calling 800 * thread to sleep. The calling thread will remain asleep until either 801 * vm_map_wakeup() is performed on the map or the specified timeout is 802 * exceeded. 803 * 804 * WARNING! This function does not perform deferred deallocations of 805 * objects and map entries. Therefore, the calling thread is expected to 806 * reacquire the map lock after reawakening and later perform an ordinary 807 * unlock operation, such as vm_map_unlock(), before completing its 808 * operation on the map. 809 */ 810 int 811 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line) 812 { 813 814 VM_MAP_UNLOCK_CONSISTENT(map); 815 mtx_lock(&map_sleep_mtx); 816 if (map->system_map) { 817 KASSERT((map->flags & MAP_REPLENISH) == 0, 818 ("%s: MAP_REPLENISH leaked", __func__)); 819 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 820 } else { 821 sx_xunlock_(&map->lock, file, line); 822 } 823 return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps", 824 timo)); 825 } 826 827 /* 828 * vm_map_wakeup: 829 * 830 * Awaken any threads that have slept on the map using 831 * vm_map_unlock_and_wait(). 832 */ 833 void 834 vm_map_wakeup(vm_map_t map) 835 { 836 837 /* 838 * Acquire and release map_sleep_mtx to prevent a wakeup() 839 * from being performed (and lost) between the map unlock 840 * and the msleep() in _vm_map_unlock_and_wait(). 841 */ 842 mtx_lock(&map_sleep_mtx); 843 mtx_unlock(&map_sleep_mtx); 844 wakeup(&map->root); 845 } 846 847 void 848 vm_map_busy(vm_map_t map) 849 { 850 851 VM_MAP_ASSERT_LOCKED(map); 852 map->busy++; 853 } 854 855 void 856 vm_map_unbusy(vm_map_t map) 857 { 858 859 VM_MAP_ASSERT_LOCKED(map); 860 KASSERT(map->busy, ("vm_map_unbusy: not busy")); 861 if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) { 862 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP); 863 wakeup(&map->busy); 864 } 865 } 866 867 void 868 vm_map_wait_busy(vm_map_t map) 869 { 870 871 VM_MAP_ASSERT_LOCKED(map); 872 while (map->busy) { 873 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0); 874 if (map->system_map) 875 msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0); 876 else 877 sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0); 878 } 879 map->timestamp++; 880 } 881 882 long 883 vmspace_resident_count(struct vmspace *vmspace) 884 { 885 return pmap_resident_count(vmspace_pmap(vmspace)); 886 } 887 888 /* 889 * Initialize an existing vm_map structure 890 * such as that in the vmspace structure. 891 */ 892 static void 893 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 894 { 895 896 map->header.eflags = MAP_ENTRY_HEADER; 897 map->needs_wakeup = FALSE; 898 map->system_map = 0; 899 map->pmap = pmap; 900 map->header.end = min; 901 map->header.start = max; 902 map->flags = 0; 903 map->header.left = map->header.right = &map->header; 904 map->root = NULL; 905 map->timestamp = 0; 906 map->busy = 0; 907 map->anon_loc = 0; 908 #ifdef DIAGNOSTIC 909 map->nupdates = 0; 910 #endif 911 } 912 913 void 914 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 915 { 916 917 _vm_map_init(map, pmap, min, max); 918 mtx_init(&map->system_mtx, "vm map (system)", NULL, 919 MTX_DEF | MTX_DUPOK); 920 sx_init(&map->lock, "vm map (user)"); 921 } 922 923 /* 924 * vm_map_entry_dispose: [ internal use only ] 925 * 926 * Inverse of vm_map_entry_create. 927 */ 928 static void 929 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry) 930 { 931 uma_zfree(map->system_map ? kmapentzone : mapentzone, entry); 932 } 933 934 /* 935 * vm_map_entry_create: [ internal use only ] 936 * 937 * Allocates a VM map entry for insertion. 938 * No entry fields are filled in. 939 */ 940 static vm_map_entry_t 941 vm_map_entry_create(vm_map_t map) 942 { 943 vm_map_entry_t new_entry; 944 945 #ifndef UMA_MD_SMALL_ALLOC 946 if (map == kernel_map) { 947 VM_MAP_ASSERT_LOCKED(map); 948 949 /* 950 * A new slab of kernel map entries cannot be allocated at this 951 * point because the kernel map has not yet been updated to 952 * reflect the caller's request. Therefore, we allocate a new 953 * map entry, dipping into the reserve if necessary, and set a 954 * flag indicating that the reserve must be replenished before 955 * the map is unlocked. 956 */ 957 new_entry = uma_zalloc(kmapentzone, M_NOWAIT | M_NOVM); 958 if (new_entry == NULL) { 959 new_entry = uma_zalloc(kmapentzone, 960 M_NOWAIT | M_NOVM | M_USE_RESERVE); 961 kernel_map->flags |= MAP_REPLENISH; 962 } 963 } else 964 #endif 965 if (map->system_map) { 966 new_entry = uma_zalloc(kmapentzone, M_NOWAIT); 967 } else { 968 new_entry = uma_zalloc(mapentzone, M_WAITOK); 969 } 970 KASSERT(new_entry != NULL, 971 ("vm_map_entry_create: kernel resources exhausted")); 972 return (new_entry); 973 } 974 975 /* 976 * vm_map_entry_set_behavior: 977 * 978 * Set the expected access behavior, either normal, random, or 979 * sequential. 980 */ 981 static inline void 982 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior) 983 { 984 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) | 985 (behavior & MAP_ENTRY_BEHAV_MASK); 986 } 987 988 /* 989 * vm_map_entry_max_free_{left,right}: 990 * 991 * Compute the size of the largest free gap between two entries, 992 * one the root of a tree and the other the ancestor of that root 993 * that is the least or greatest ancestor found on the search path. 994 */ 995 static inline vm_size_t 996 vm_map_entry_max_free_left(vm_map_entry_t root, vm_map_entry_t left_ancestor) 997 { 998 999 return (root->left != left_ancestor ? 1000 root->left->max_free : root->start - left_ancestor->end); 1001 } 1002 1003 static inline vm_size_t 1004 vm_map_entry_max_free_right(vm_map_entry_t root, vm_map_entry_t right_ancestor) 1005 { 1006 1007 return (root->right != right_ancestor ? 1008 root->right->max_free : right_ancestor->start - root->end); 1009 } 1010 1011 /* 1012 * vm_map_entry_{pred,succ}: 1013 * 1014 * Find the {predecessor, successor} of the entry by taking one step 1015 * in the appropriate direction and backtracking as much as necessary. 1016 * vm_map_entry_succ is defined in vm_map.h. 1017 */ 1018 static inline vm_map_entry_t 1019 vm_map_entry_pred(vm_map_entry_t entry) 1020 { 1021 vm_map_entry_t prior; 1022 1023 prior = entry->left; 1024 if (prior->right->start < entry->start) { 1025 do 1026 prior = prior->right; 1027 while (prior->right != entry); 1028 } 1029 return (prior); 1030 } 1031 1032 static inline vm_size_t 1033 vm_size_max(vm_size_t a, vm_size_t b) 1034 { 1035 1036 return (a > b ? a : b); 1037 } 1038 1039 #define SPLAY_LEFT_STEP(root, y, llist, rlist, test) do { \ 1040 vm_map_entry_t z; \ 1041 vm_size_t max_free; \ 1042 \ 1043 /* \ 1044 * Infer root->right->max_free == root->max_free when \ 1045 * y->max_free < root->max_free || root->max_free == 0. \ 1046 * Otherwise, look right to find it. \ 1047 */ \ 1048 y = root->left; \ 1049 max_free = root->max_free; \ 1050 KASSERT(max_free == vm_size_max( \ 1051 vm_map_entry_max_free_left(root, llist), \ 1052 vm_map_entry_max_free_right(root, rlist)), \ 1053 ("%s: max_free invariant fails", __func__)); \ 1054 if (max_free - 1 < vm_map_entry_max_free_left(root, llist)) \ 1055 max_free = vm_map_entry_max_free_right(root, rlist); \ 1056 if (y != llist && (test)) { \ 1057 /* Rotate right and make y root. */ \ 1058 z = y->right; \ 1059 if (z != root) { \ 1060 root->left = z; \ 1061 y->right = root; \ 1062 if (max_free < y->max_free) \ 1063 root->max_free = max_free = \ 1064 vm_size_max(max_free, z->max_free); \ 1065 } else if (max_free < y->max_free) \ 1066 root->max_free = max_free = \ 1067 vm_size_max(max_free, root->start - y->end);\ 1068 root = y; \ 1069 y = root->left; \ 1070 } \ 1071 /* Copy right->max_free. Put root on rlist. */ \ 1072 root->max_free = max_free; \ 1073 KASSERT(max_free == vm_map_entry_max_free_right(root, rlist), \ 1074 ("%s: max_free not copied from right", __func__)); \ 1075 root->left = rlist; \ 1076 rlist = root; \ 1077 root = y != llist ? y : NULL; \ 1078 } while (0) 1079 1080 #define SPLAY_RIGHT_STEP(root, y, llist, rlist, test) do { \ 1081 vm_map_entry_t z; \ 1082 vm_size_t max_free; \ 1083 \ 1084 /* \ 1085 * Infer root->left->max_free == root->max_free when \ 1086 * y->max_free < root->max_free || root->max_free == 0. \ 1087 * Otherwise, look left to find it. \ 1088 */ \ 1089 y = root->right; \ 1090 max_free = root->max_free; \ 1091 KASSERT(max_free == vm_size_max( \ 1092 vm_map_entry_max_free_left(root, llist), \ 1093 vm_map_entry_max_free_right(root, rlist)), \ 1094 ("%s: max_free invariant fails", __func__)); \ 1095 if (max_free - 1 < vm_map_entry_max_free_right(root, rlist)) \ 1096 max_free = vm_map_entry_max_free_left(root, llist); \ 1097 if (y != rlist && (test)) { \ 1098 /* Rotate left and make y root. */ \ 1099 z = y->left; \ 1100 if (z != root) { \ 1101 root->right = z; \ 1102 y->left = root; \ 1103 if (max_free < y->max_free) \ 1104 root->max_free = max_free = \ 1105 vm_size_max(max_free, z->max_free); \ 1106 } else if (max_free < y->max_free) \ 1107 root->max_free = max_free = \ 1108 vm_size_max(max_free, y->start - root->end);\ 1109 root = y; \ 1110 y = root->right; \ 1111 } \ 1112 /* Copy left->max_free. Put root on llist. */ \ 1113 root->max_free = max_free; \ 1114 KASSERT(max_free == vm_map_entry_max_free_left(root, llist), \ 1115 ("%s: max_free not copied from left", __func__)); \ 1116 root->right = llist; \ 1117 llist = root; \ 1118 root = y != rlist ? y : NULL; \ 1119 } while (0) 1120 1121 /* 1122 * Walk down the tree until we find addr or a gap where addr would go, breaking 1123 * off left and right subtrees of nodes less than, or greater than addr. Treat 1124 * subtrees with root->max_free < length as empty trees. llist and rlist are 1125 * the two sides in reverse order (bottom-up), with llist linked by the right 1126 * pointer and rlist linked by the left pointer in the vm_map_entry, and both 1127 * lists terminated by &map->header. This function, and the subsequent call to 1128 * vm_map_splay_merge_{left,right,pred,succ}, rely on the start and end address 1129 * values in &map->header. 1130 */ 1131 static __always_inline vm_map_entry_t 1132 vm_map_splay_split(vm_map_t map, vm_offset_t addr, vm_size_t length, 1133 vm_map_entry_t *llist, vm_map_entry_t *rlist) 1134 { 1135 vm_map_entry_t left, right, root, y; 1136 1137 left = right = &map->header; 1138 root = map->root; 1139 while (root != NULL && root->max_free >= length) { 1140 KASSERT(left->end <= root->start && 1141 root->end <= right->start, 1142 ("%s: root not within tree bounds", __func__)); 1143 if (addr < root->start) { 1144 SPLAY_LEFT_STEP(root, y, left, right, 1145 y->max_free >= length && addr < y->start); 1146 } else if (addr >= root->end) { 1147 SPLAY_RIGHT_STEP(root, y, left, right, 1148 y->max_free >= length && addr >= y->end); 1149 } else 1150 break; 1151 } 1152 *llist = left; 1153 *rlist = right; 1154 return (root); 1155 } 1156 1157 static __always_inline void 1158 vm_map_splay_findnext(vm_map_entry_t root, vm_map_entry_t *rlist) 1159 { 1160 vm_map_entry_t hi, right, y; 1161 1162 right = *rlist; 1163 hi = root->right == right ? NULL : root->right; 1164 if (hi == NULL) 1165 return; 1166 do 1167 SPLAY_LEFT_STEP(hi, y, root, right, true); 1168 while (hi != NULL); 1169 *rlist = right; 1170 } 1171 1172 static __always_inline void 1173 vm_map_splay_findprev(vm_map_entry_t root, vm_map_entry_t *llist) 1174 { 1175 vm_map_entry_t left, lo, y; 1176 1177 left = *llist; 1178 lo = root->left == left ? NULL : root->left; 1179 if (lo == NULL) 1180 return; 1181 do 1182 SPLAY_RIGHT_STEP(lo, y, left, root, true); 1183 while (lo != NULL); 1184 *llist = left; 1185 } 1186 1187 static inline void 1188 vm_map_entry_swap(vm_map_entry_t *a, vm_map_entry_t *b) 1189 { 1190 vm_map_entry_t tmp; 1191 1192 tmp = *b; 1193 *b = *a; 1194 *a = tmp; 1195 } 1196 1197 /* 1198 * Walk back up the two spines, flip the pointers and set max_free. The 1199 * subtrees of the root go at the bottom of llist and rlist. 1200 */ 1201 static vm_size_t 1202 vm_map_splay_merge_left_walk(vm_map_entry_t header, vm_map_entry_t root, 1203 vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t llist) 1204 { 1205 do { 1206 /* 1207 * The max_free values of the children of llist are in 1208 * llist->max_free and max_free. Update with the 1209 * max value. 1210 */ 1211 llist->max_free = max_free = 1212 vm_size_max(llist->max_free, max_free); 1213 vm_map_entry_swap(&llist->right, &tail); 1214 vm_map_entry_swap(&tail, &llist); 1215 } while (llist != header); 1216 root->left = tail; 1217 return (max_free); 1218 } 1219 1220 /* 1221 * When llist is known to be the predecessor of root. 1222 */ 1223 static inline vm_size_t 1224 vm_map_splay_merge_pred(vm_map_entry_t header, vm_map_entry_t root, 1225 vm_map_entry_t llist) 1226 { 1227 vm_size_t max_free; 1228 1229 max_free = root->start - llist->end; 1230 if (llist != header) { 1231 max_free = vm_map_splay_merge_left_walk(header, root, 1232 root, max_free, llist); 1233 } else { 1234 root->left = header; 1235 header->right = root; 1236 } 1237 return (max_free); 1238 } 1239 1240 /* 1241 * When llist may or may not be the predecessor of root. 1242 */ 1243 static inline vm_size_t 1244 vm_map_splay_merge_left(vm_map_entry_t header, vm_map_entry_t root, 1245 vm_map_entry_t llist) 1246 { 1247 vm_size_t max_free; 1248 1249 max_free = vm_map_entry_max_free_left(root, llist); 1250 if (llist != header) { 1251 max_free = vm_map_splay_merge_left_walk(header, root, 1252 root->left == llist ? root : root->left, 1253 max_free, llist); 1254 } 1255 return (max_free); 1256 } 1257 1258 static vm_size_t 1259 vm_map_splay_merge_right_walk(vm_map_entry_t header, vm_map_entry_t root, 1260 vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t rlist) 1261 { 1262 do { 1263 /* 1264 * The max_free values of the children of rlist are in 1265 * rlist->max_free and max_free. Update with the 1266 * max value. 1267 */ 1268 rlist->max_free = max_free = 1269 vm_size_max(rlist->max_free, max_free); 1270 vm_map_entry_swap(&rlist->left, &tail); 1271 vm_map_entry_swap(&tail, &rlist); 1272 } while (rlist != header); 1273 root->right = tail; 1274 return (max_free); 1275 } 1276 1277 /* 1278 * When rlist is known to be the succecessor of root. 1279 */ 1280 static inline vm_size_t 1281 vm_map_splay_merge_succ(vm_map_entry_t header, vm_map_entry_t root, 1282 vm_map_entry_t rlist) 1283 { 1284 vm_size_t max_free; 1285 1286 max_free = rlist->start - root->end; 1287 if (rlist != header) { 1288 max_free = vm_map_splay_merge_right_walk(header, root, 1289 root, max_free, rlist); 1290 } else { 1291 root->right = header; 1292 header->left = root; 1293 } 1294 return (max_free); 1295 } 1296 1297 /* 1298 * When rlist may or may not be the succecessor of root. 1299 */ 1300 static inline vm_size_t 1301 vm_map_splay_merge_right(vm_map_entry_t header, vm_map_entry_t root, 1302 vm_map_entry_t rlist) 1303 { 1304 vm_size_t max_free; 1305 1306 max_free = vm_map_entry_max_free_right(root, rlist); 1307 if (rlist != header) { 1308 max_free = vm_map_splay_merge_right_walk(header, root, 1309 root->right == rlist ? root : root->right, 1310 max_free, rlist); 1311 } 1312 return (max_free); 1313 } 1314 1315 /* 1316 * vm_map_splay: 1317 * 1318 * The Sleator and Tarjan top-down splay algorithm with the 1319 * following variation. Max_free must be computed bottom-up, so 1320 * on the downward pass, maintain the left and right spines in 1321 * reverse order. Then, make a second pass up each side to fix 1322 * the pointers and compute max_free. The time bound is O(log n) 1323 * amortized. 1324 * 1325 * The tree is threaded, which means that there are no null pointers. 1326 * When a node has no left child, its left pointer points to its 1327 * predecessor, which the last ancestor on the search path from the root 1328 * where the search branched right. Likewise, when a node has no right 1329 * child, its right pointer points to its successor. The map header node 1330 * is the predecessor of the first map entry, and the successor of the 1331 * last. 1332 * 1333 * The new root is the vm_map_entry containing "addr", or else an 1334 * adjacent entry (lower if possible) if addr is not in the tree. 1335 * 1336 * The map must be locked, and leaves it so. 1337 * 1338 * Returns: the new root. 1339 */ 1340 static vm_map_entry_t 1341 vm_map_splay(vm_map_t map, vm_offset_t addr) 1342 { 1343 vm_map_entry_t header, llist, rlist, root; 1344 vm_size_t max_free_left, max_free_right; 1345 1346 header = &map->header; 1347 root = vm_map_splay_split(map, addr, 0, &llist, &rlist); 1348 if (root != NULL) { 1349 max_free_left = vm_map_splay_merge_left(header, root, llist); 1350 max_free_right = vm_map_splay_merge_right(header, root, rlist); 1351 } else if (llist != header) { 1352 /* 1353 * Recover the greatest node in the left 1354 * subtree and make it the root. 1355 */ 1356 root = llist; 1357 llist = root->right; 1358 max_free_left = vm_map_splay_merge_left(header, root, llist); 1359 max_free_right = vm_map_splay_merge_succ(header, root, rlist); 1360 } else if (rlist != header) { 1361 /* 1362 * Recover the least node in the right 1363 * subtree and make it the root. 1364 */ 1365 root = rlist; 1366 rlist = root->left; 1367 max_free_left = vm_map_splay_merge_pred(header, root, llist); 1368 max_free_right = vm_map_splay_merge_right(header, root, rlist); 1369 } else { 1370 /* There is no root. */ 1371 return (NULL); 1372 } 1373 root->max_free = vm_size_max(max_free_left, max_free_right); 1374 map->root = root; 1375 VM_MAP_ASSERT_CONSISTENT(map); 1376 return (root); 1377 } 1378 1379 /* 1380 * vm_map_entry_{un,}link: 1381 * 1382 * Insert/remove entries from maps. On linking, if new entry clips 1383 * existing entry, trim existing entry to avoid overlap, and manage 1384 * offsets. On unlinking, merge disappearing entry with neighbor, if 1385 * called for, and manage offsets. Callers should not modify fields in 1386 * entries already mapped. 1387 */ 1388 static void 1389 vm_map_entry_link(vm_map_t map, vm_map_entry_t entry) 1390 { 1391 vm_map_entry_t header, llist, rlist, root; 1392 vm_size_t max_free_left, max_free_right; 1393 1394 CTR3(KTR_VM, 1395 "vm_map_entry_link: map %p, nentries %d, entry %p", map, 1396 map->nentries, entry); 1397 VM_MAP_ASSERT_LOCKED(map); 1398 map->nentries++; 1399 header = &map->header; 1400 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist); 1401 if (root == NULL) { 1402 /* 1403 * The new entry does not overlap any existing entry in the 1404 * map, so it becomes the new root of the map tree. 1405 */ 1406 max_free_left = vm_map_splay_merge_pred(header, entry, llist); 1407 max_free_right = vm_map_splay_merge_succ(header, entry, rlist); 1408 } else if (entry->start == root->start) { 1409 /* 1410 * The new entry is a clone of root, with only the end field 1411 * changed. The root entry will be shrunk to abut the new 1412 * entry, and will be the right child of the new root entry in 1413 * the modified map. 1414 */ 1415 KASSERT(entry->end < root->end, 1416 ("%s: clip_start not within entry", __func__)); 1417 vm_map_splay_findprev(root, &llist); 1418 root->offset += entry->end - root->start; 1419 root->start = entry->end; 1420 max_free_left = vm_map_splay_merge_pred(header, entry, llist); 1421 max_free_right = root->max_free = vm_size_max( 1422 vm_map_splay_merge_pred(entry, root, entry), 1423 vm_map_splay_merge_right(header, root, rlist)); 1424 } else { 1425 /* 1426 * The new entry is a clone of root, with only the start field 1427 * changed. The root entry will be shrunk to abut the new 1428 * entry, and will be the left child of the new root entry in 1429 * the modified map. 1430 */ 1431 KASSERT(entry->end == root->end, 1432 ("%s: clip_start not within entry", __func__)); 1433 vm_map_splay_findnext(root, &rlist); 1434 entry->offset += entry->start - root->start; 1435 root->end = entry->start; 1436 max_free_left = root->max_free = vm_size_max( 1437 vm_map_splay_merge_left(header, root, llist), 1438 vm_map_splay_merge_succ(entry, root, entry)); 1439 max_free_right = vm_map_splay_merge_succ(header, entry, rlist); 1440 } 1441 entry->max_free = vm_size_max(max_free_left, max_free_right); 1442 map->root = entry; 1443 VM_MAP_ASSERT_CONSISTENT(map); 1444 } 1445 1446 enum unlink_merge_type { 1447 UNLINK_MERGE_NONE, 1448 UNLINK_MERGE_NEXT 1449 }; 1450 1451 static void 1452 vm_map_entry_unlink(vm_map_t map, vm_map_entry_t entry, 1453 enum unlink_merge_type op) 1454 { 1455 vm_map_entry_t header, llist, rlist, root; 1456 vm_size_t max_free_left, max_free_right; 1457 1458 VM_MAP_ASSERT_LOCKED(map); 1459 header = &map->header; 1460 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist); 1461 KASSERT(root != NULL, 1462 ("vm_map_entry_unlink: unlink object not mapped")); 1463 1464 vm_map_splay_findprev(root, &llist); 1465 vm_map_splay_findnext(root, &rlist); 1466 if (op == UNLINK_MERGE_NEXT) { 1467 rlist->start = root->start; 1468 rlist->offset = root->offset; 1469 } 1470 if (llist != header) { 1471 root = llist; 1472 llist = root->right; 1473 max_free_left = vm_map_splay_merge_left(header, root, llist); 1474 max_free_right = vm_map_splay_merge_succ(header, root, rlist); 1475 } else if (rlist != header) { 1476 root = rlist; 1477 rlist = root->left; 1478 max_free_left = vm_map_splay_merge_pred(header, root, llist); 1479 max_free_right = vm_map_splay_merge_right(header, root, rlist); 1480 } else { 1481 header->left = header->right = header; 1482 root = NULL; 1483 } 1484 if (root != NULL) 1485 root->max_free = vm_size_max(max_free_left, max_free_right); 1486 map->root = root; 1487 VM_MAP_ASSERT_CONSISTENT(map); 1488 map->nentries--; 1489 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map, 1490 map->nentries, entry); 1491 } 1492 1493 /* 1494 * vm_map_entry_resize: 1495 * 1496 * Resize a vm_map_entry, recompute the amount of free space that 1497 * follows it and propagate that value up the tree. 1498 * 1499 * The map must be locked, and leaves it so. 1500 */ 1501 static void 1502 vm_map_entry_resize(vm_map_t map, vm_map_entry_t entry, vm_size_t grow_amount) 1503 { 1504 vm_map_entry_t header, llist, rlist, root; 1505 1506 VM_MAP_ASSERT_LOCKED(map); 1507 header = &map->header; 1508 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist); 1509 KASSERT(root != NULL, ("%s: resize object not mapped", __func__)); 1510 vm_map_splay_findnext(root, &rlist); 1511 entry->end += grow_amount; 1512 root->max_free = vm_size_max( 1513 vm_map_splay_merge_left(header, root, llist), 1514 vm_map_splay_merge_succ(header, root, rlist)); 1515 map->root = root; 1516 VM_MAP_ASSERT_CONSISTENT(map); 1517 CTR4(KTR_VM, "%s: map %p, nentries %d, entry %p", 1518 __func__, map, map->nentries, entry); 1519 } 1520 1521 /* 1522 * vm_map_lookup_entry: [ internal use only ] 1523 * 1524 * Finds the map entry containing (or 1525 * immediately preceding) the specified address 1526 * in the given map; the entry is returned 1527 * in the "entry" parameter. The boolean 1528 * result indicates whether the address is 1529 * actually contained in the map. 1530 */ 1531 boolean_t 1532 vm_map_lookup_entry( 1533 vm_map_t map, 1534 vm_offset_t address, 1535 vm_map_entry_t *entry) /* OUT */ 1536 { 1537 vm_map_entry_t cur, header, lbound, ubound; 1538 boolean_t locked; 1539 1540 /* 1541 * If the map is empty, then the map entry immediately preceding 1542 * "address" is the map's header. 1543 */ 1544 header = &map->header; 1545 cur = map->root; 1546 if (cur == NULL) { 1547 *entry = header; 1548 return (FALSE); 1549 } 1550 if (address >= cur->start && cur->end > address) { 1551 *entry = cur; 1552 return (TRUE); 1553 } 1554 if ((locked = vm_map_locked(map)) || 1555 sx_try_upgrade(&map->lock)) { 1556 /* 1557 * Splay requires a write lock on the map. However, it only 1558 * restructures the binary search tree; it does not otherwise 1559 * change the map. Thus, the map's timestamp need not change 1560 * on a temporary upgrade. 1561 */ 1562 cur = vm_map_splay(map, address); 1563 if (!locked) { 1564 VM_MAP_UNLOCK_CONSISTENT(map); 1565 sx_downgrade(&map->lock); 1566 } 1567 1568 /* 1569 * If "address" is contained within a map entry, the new root 1570 * is that map entry. Otherwise, the new root is a map entry 1571 * immediately before or after "address". 1572 */ 1573 if (address < cur->start) { 1574 *entry = header; 1575 return (FALSE); 1576 } 1577 *entry = cur; 1578 return (address < cur->end); 1579 } 1580 /* 1581 * Since the map is only locked for read access, perform a 1582 * standard binary search tree lookup for "address". 1583 */ 1584 lbound = ubound = header; 1585 for (;;) { 1586 if (address < cur->start) { 1587 ubound = cur; 1588 cur = cur->left; 1589 if (cur == lbound) 1590 break; 1591 } else if (cur->end <= address) { 1592 lbound = cur; 1593 cur = cur->right; 1594 if (cur == ubound) 1595 break; 1596 } else { 1597 *entry = cur; 1598 return (TRUE); 1599 } 1600 } 1601 *entry = lbound; 1602 return (FALSE); 1603 } 1604 1605 /* 1606 * vm_map_insert1() is identical to vm_map_insert() except that it 1607 * returns the newly inserted map entry in '*res'. In case the new 1608 * entry is coalesced with a neighbor or an existing entry was 1609 * resized, that entry is returned. In any case, the returned entry 1610 * covers the specified address range. 1611 */ 1612 static int 1613 vm_map_insert1(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1614 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow, 1615 vm_map_entry_t *res) 1616 { 1617 vm_map_entry_t new_entry, next_entry, prev_entry; 1618 struct ucred *cred; 1619 vm_eflags_t protoeflags; 1620 vm_inherit_t inheritance; 1621 u_long bdry; 1622 u_int bidx; 1623 1624 VM_MAP_ASSERT_LOCKED(map); 1625 KASSERT(object != kernel_object || 1626 (cow & MAP_COPY_ON_WRITE) == 0, 1627 ("vm_map_insert: kernel object and COW")); 1628 KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0 || 1629 (cow & MAP_SPLIT_BOUNDARY_MASK) != 0, 1630 ("vm_map_insert: paradoxical MAP_NOFAULT request, obj %p cow %#x", 1631 object, cow)); 1632 KASSERT((prot & ~max) == 0, 1633 ("prot %#x is not subset of max_prot %#x", prot, max)); 1634 1635 /* 1636 * Check that the start and end points are not bogus. 1637 */ 1638 if (start == end || !vm_map_range_valid(map, start, end)) 1639 return (KERN_INVALID_ADDRESS); 1640 1641 if ((map->flags & MAP_WXORX) != 0 && (prot & (VM_PROT_WRITE | 1642 VM_PROT_EXECUTE)) == (VM_PROT_WRITE | VM_PROT_EXECUTE)) 1643 return (KERN_PROTECTION_FAILURE); 1644 1645 /* 1646 * Find the entry prior to the proposed starting address; if it's part 1647 * of an existing entry, this range is bogus. 1648 */ 1649 if (vm_map_lookup_entry(map, start, &prev_entry)) 1650 return (KERN_NO_SPACE); 1651 1652 /* 1653 * Assert that the next entry doesn't overlap the end point. 1654 */ 1655 next_entry = vm_map_entry_succ(prev_entry); 1656 if (next_entry->start < end) 1657 return (KERN_NO_SPACE); 1658 1659 if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL || 1660 max != VM_PROT_NONE)) 1661 return (KERN_INVALID_ARGUMENT); 1662 1663 protoeflags = 0; 1664 if (cow & MAP_COPY_ON_WRITE) 1665 protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY; 1666 if (cow & MAP_NOFAULT) 1667 protoeflags |= MAP_ENTRY_NOFAULT; 1668 if (cow & MAP_DISABLE_SYNCER) 1669 protoeflags |= MAP_ENTRY_NOSYNC; 1670 if (cow & MAP_DISABLE_COREDUMP) 1671 protoeflags |= MAP_ENTRY_NOCOREDUMP; 1672 if (cow & MAP_STACK_GROWS_DOWN) 1673 protoeflags |= MAP_ENTRY_GROWS_DOWN; 1674 if (cow & MAP_STACK_GROWS_UP) 1675 protoeflags |= MAP_ENTRY_GROWS_UP; 1676 if (cow & MAP_WRITECOUNT) 1677 protoeflags |= MAP_ENTRY_WRITECNT; 1678 if (cow & MAP_VN_EXEC) 1679 protoeflags |= MAP_ENTRY_VN_EXEC; 1680 if ((cow & MAP_CREATE_GUARD) != 0) 1681 protoeflags |= MAP_ENTRY_GUARD; 1682 if ((cow & MAP_CREATE_STACK_GAP_DN) != 0) 1683 protoeflags |= MAP_ENTRY_STACK_GAP_DN; 1684 if ((cow & MAP_CREATE_STACK_GAP_UP) != 0) 1685 protoeflags |= MAP_ENTRY_STACK_GAP_UP; 1686 if (cow & MAP_INHERIT_SHARE) 1687 inheritance = VM_INHERIT_SHARE; 1688 else 1689 inheritance = VM_INHERIT_DEFAULT; 1690 if ((cow & MAP_SPLIT_BOUNDARY_MASK) != 0) { 1691 /* This magically ignores index 0, for usual page size. */ 1692 bidx = (cow & MAP_SPLIT_BOUNDARY_MASK) >> 1693 MAP_SPLIT_BOUNDARY_SHIFT; 1694 if (bidx >= MAXPAGESIZES) 1695 return (KERN_INVALID_ARGUMENT); 1696 bdry = pagesizes[bidx] - 1; 1697 if ((start & bdry) != 0 || (end & bdry) != 0) 1698 return (KERN_INVALID_ARGUMENT); 1699 protoeflags |= bidx << MAP_ENTRY_SPLIT_BOUNDARY_SHIFT; 1700 } 1701 1702 cred = NULL; 1703 if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0) 1704 goto charged; 1705 if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) && 1706 ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) { 1707 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start)) 1708 return (KERN_RESOURCE_SHORTAGE); 1709 KASSERT(object == NULL || 1710 (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 || 1711 object->cred == NULL, 1712 ("overcommit: vm_map_insert o %p", object)); 1713 cred = curthread->td_ucred; 1714 } 1715 1716 charged: 1717 /* Expand the kernel pmap, if necessary. */ 1718 if (map == kernel_map && end > kernel_vm_end) 1719 pmap_growkernel(end); 1720 if (object != NULL) { 1721 /* 1722 * OBJ_ONEMAPPING must be cleared unless this mapping 1723 * is trivially proven to be the only mapping for any 1724 * of the object's pages. (Object granularity 1725 * reference counting is insufficient to recognize 1726 * aliases with precision.) 1727 */ 1728 if ((object->flags & OBJ_ANON) != 0) { 1729 VM_OBJECT_WLOCK(object); 1730 if (object->ref_count > 1 || object->shadow_count != 0) 1731 vm_object_clear_flag(object, OBJ_ONEMAPPING); 1732 VM_OBJECT_WUNLOCK(object); 1733 } 1734 } else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) == 1735 protoeflags && 1736 (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP | 1737 MAP_VN_EXEC)) == 0 && 1738 prev_entry->end == start && (prev_entry->cred == cred || 1739 (prev_entry->object.vm_object != NULL && 1740 prev_entry->object.vm_object->cred == cred)) && 1741 vm_object_coalesce(prev_entry->object.vm_object, 1742 prev_entry->offset, 1743 (vm_size_t)(prev_entry->end - prev_entry->start), 1744 (vm_size_t)(end - prev_entry->end), cred != NULL && 1745 (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) { 1746 /* 1747 * We were able to extend the object. Determine if we 1748 * can extend the previous map entry to include the 1749 * new range as well. 1750 */ 1751 if (prev_entry->inheritance == inheritance && 1752 prev_entry->protection == prot && 1753 prev_entry->max_protection == max && 1754 prev_entry->wired_count == 0) { 1755 KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) == 1756 0, ("prev_entry %p has incoherent wiring", 1757 prev_entry)); 1758 if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0) 1759 map->size += end - prev_entry->end; 1760 vm_map_entry_resize(map, prev_entry, 1761 end - prev_entry->end); 1762 *res = vm_map_try_merge_entries(map, prev_entry, 1763 next_entry); 1764 return (KERN_SUCCESS); 1765 } 1766 1767 /* 1768 * If we can extend the object but cannot extend the 1769 * map entry, we have to create a new map entry. We 1770 * must bump the ref count on the extended object to 1771 * account for it. object may be NULL. 1772 */ 1773 object = prev_entry->object.vm_object; 1774 offset = prev_entry->offset + 1775 (prev_entry->end - prev_entry->start); 1776 vm_object_reference(object); 1777 if (cred != NULL && object != NULL && object->cred != NULL && 1778 !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 1779 /* Object already accounts for this uid. */ 1780 cred = NULL; 1781 } 1782 } 1783 if (cred != NULL) 1784 crhold(cred); 1785 1786 /* 1787 * Create a new entry 1788 */ 1789 new_entry = vm_map_entry_create(map); 1790 new_entry->start = start; 1791 new_entry->end = end; 1792 new_entry->cred = NULL; 1793 1794 new_entry->eflags = protoeflags; 1795 new_entry->object.vm_object = object; 1796 new_entry->offset = offset; 1797 1798 new_entry->inheritance = inheritance; 1799 new_entry->protection = prot; 1800 new_entry->max_protection = max; 1801 new_entry->wired_count = 0; 1802 new_entry->wiring_thread = NULL; 1803 new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT; 1804 new_entry->next_read = start; 1805 1806 KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry), 1807 ("overcommit: vm_map_insert leaks vm_map %p", new_entry)); 1808 new_entry->cred = cred; 1809 1810 /* 1811 * Insert the new entry into the list 1812 */ 1813 vm_map_entry_link(map, new_entry); 1814 if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0) 1815 map->size += new_entry->end - new_entry->start; 1816 1817 /* 1818 * Try to coalesce the new entry with both the previous and next 1819 * entries in the list. Previously, we only attempted to coalesce 1820 * with the previous entry when object is NULL. Here, we handle the 1821 * other cases, which are less common. 1822 */ 1823 vm_map_try_merge_entries(map, prev_entry, new_entry); 1824 *res = vm_map_try_merge_entries(map, new_entry, next_entry); 1825 1826 if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) { 1827 vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset), 1828 end - start, cow & MAP_PREFAULT_PARTIAL); 1829 } 1830 1831 return (KERN_SUCCESS); 1832 } 1833 1834 /* 1835 * vm_map_insert: 1836 * 1837 * Inserts the given VM object into the target map at the 1838 * specified address range. 1839 * 1840 * Requires that the map be locked, and leaves it so. 1841 * 1842 * If object is non-NULL, ref count must be bumped by caller 1843 * prior to making call to account for the new entry. 1844 */ 1845 int 1846 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1847 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow) 1848 { 1849 vm_map_entry_t res; 1850 1851 return (vm_map_insert1(map, object, offset, start, end, prot, max, 1852 cow, &res)); 1853 } 1854 1855 /* 1856 * vm_map_findspace: 1857 * 1858 * Find the first fit (lowest VM address) for "length" free bytes 1859 * beginning at address >= start in the given map. 1860 * 1861 * In a vm_map_entry, "max_free" is the maximum amount of 1862 * contiguous free space between an entry in its subtree and a 1863 * neighbor of that entry. This allows finding a free region in 1864 * one path down the tree, so O(log n) amortized with splay 1865 * trees. 1866 * 1867 * The map must be locked, and leaves it so. 1868 * 1869 * Returns: starting address if sufficient space, 1870 * vm_map_max(map)-length+1 if insufficient space. 1871 */ 1872 vm_offset_t 1873 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length) 1874 { 1875 vm_map_entry_t header, llist, rlist, root, y; 1876 vm_size_t left_length, max_free_left, max_free_right; 1877 vm_offset_t gap_end; 1878 1879 VM_MAP_ASSERT_LOCKED(map); 1880 1881 /* 1882 * Request must fit within min/max VM address and must avoid 1883 * address wrap. 1884 */ 1885 start = MAX(start, vm_map_min(map)); 1886 if (start >= vm_map_max(map) || length > vm_map_max(map) - start) 1887 return (vm_map_max(map) - length + 1); 1888 1889 /* Empty tree means wide open address space. */ 1890 if (map->root == NULL) 1891 return (start); 1892 1893 /* 1894 * After splay_split, if start is within an entry, push it to the start 1895 * of the following gap. If rlist is at the end of the gap containing 1896 * start, save the end of that gap in gap_end to see if the gap is big 1897 * enough; otherwise set gap_end to start skip gap-checking and move 1898 * directly to a search of the right subtree. 1899 */ 1900 header = &map->header; 1901 root = vm_map_splay_split(map, start, length, &llist, &rlist); 1902 gap_end = rlist->start; 1903 if (root != NULL) { 1904 start = root->end; 1905 if (root->right != rlist) 1906 gap_end = start; 1907 max_free_left = vm_map_splay_merge_left(header, root, llist); 1908 max_free_right = vm_map_splay_merge_right(header, root, rlist); 1909 } else if (rlist != header) { 1910 root = rlist; 1911 rlist = root->left; 1912 max_free_left = vm_map_splay_merge_pred(header, root, llist); 1913 max_free_right = vm_map_splay_merge_right(header, root, rlist); 1914 } else { 1915 root = llist; 1916 llist = root->right; 1917 max_free_left = vm_map_splay_merge_left(header, root, llist); 1918 max_free_right = vm_map_splay_merge_succ(header, root, rlist); 1919 } 1920 root->max_free = vm_size_max(max_free_left, max_free_right); 1921 map->root = root; 1922 VM_MAP_ASSERT_CONSISTENT(map); 1923 if (length <= gap_end - start) 1924 return (start); 1925 1926 /* With max_free, can immediately tell if no solution. */ 1927 if (root->right == header || length > root->right->max_free) 1928 return (vm_map_max(map) - length + 1); 1929 1930 /* 1931 * Splay for the least large-enough gap in the right subtree. 1932 */ 1933 llist = rlist = header; 1934 for (left_length = 0;; 1935 left_length = vm_map_entry_max_free_left(root, llist)) { 1936 if (length <= left_length) 1937 SPLAY_LEFT_STEP(root, y, llist, rlist, 1938 length <= vm_map_entry_max_free_left(y, llist)); 1939 else 1940 SPLAY_RIGHT_STEP(root, y, llist, rlist, 1941 length > vm_map_entry_max_free_left(y, root)); 1942 if (root == NULL) 1943 break; 1944 } 1945 root = llist; 1946 llist = root->right; 1947 max_free_left = vm_map_splay_merge_left(header, root, llist); 1948 if (rlist == header) { 1949 root->max_free = vm_size_max(max_free_left, 1950 vm_map_splay_merge_succ(header, root, rlist)); 1951 } else { 1952 y = rlist; 1953 rlist = y->left; 1954 y->max_free = vm_size_max( 1955 vm_map_splay_merge_pred(root, y, root), 1956 vm_map_splay_merge_right(header, y, rlist)); 1957 root->max_free = vm_size_max(max_free_left, y->max_free); 1958 } 1959 map->root = root; 1960 VM_MAP_ASSERT_CONSISTENT(map); 1961 return (root->end); 1962 } 1963 1964 int 1965 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1966 vm_offset_t start, vm_size_t length, vm_prot_t prot, 1967 vm_prot_t max, int cow) 1968 { 1969 vm_offset_t end; 1970 int result; 1971 1972 end = start + length; 1973 KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 || 1974 object == NULL, 1975 ("vm_map_fixed: non-NULL backing object for stack")); 1976 vm_map_lock(map); 1977 VM_MAP_RANGE_CHECK(map, start, end); 1978 if ((cow & MAP_CHECK_EXCL) == 0) { 1979 result = vm_map_delete(map, start, end); 1980 if (result != KERN_SUCCESS) 1981 goto out; 1982 } 1983 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) { 1984 result = vm_map_stack_locked(map, start, length, sgrowsiz, 1985 prot, max, cow); 1986 } else { 1987 result = vm_map_insert(map, object, offset, start, end, 1988 prot, max, cow); 1989 } 1990 out: 1991 vm_map_unlock(map); 1992 return (result); 1993 } 1994 1995 static const int aslr_pages_rnd_64[2] = {0x1000, 0x10}; 1996 static const int aslr_pages_rnd_32[2] = {0x100, 0x4}; 1997 1998 static int cluster_anon = 1; 1999 SYSCTL_INT(_vm, OID_AUTO, cluster_anon, CTLFLAG_RW, 2000 &cluster_anon, 0, 2001 "Cluster anonymous mappings: 0 = no, 1 = yes if no hint, 2 = always"); 2002 2003 static bool 2004 clustering_anon_allowed(vm_offset_t addr, int cow) 2005 { 2006 2007 switch (cluster_anon) { 2008 case 0: 2009 return (false); 2010 case 1: 2011 return (addr == 0 || (cow & MAP_NO_HINT) != 0); 2012 case 2: 2013 default: 2014 return (true); 2015 } 2016 } 2017 2018 static long aslr_restarts; 2019 SYSCTL_LONG(_vm, OID_AUTO, aslr_restarts, CTLFLAG_RD, 2020 &aslr_restarts, 0, 2021 "Number of aslr failures"); 2022 2023 /* 2024 * Searches for the specified amount of free space in the given map with the 2025 * specified alignment. Performs an address-ordered, first-fit search from 2026 * the given address "*addr", with an optional upper bound "max_addr". If the 2027 * parameter "alignment" is zero, then the alignment is computed from the 2028 * given (object, offset) pair so as to enable the greatest possible use of 2029 * superpage mappings. Returns KERN_SUCCESS and the address of the free space 2030 * in "*addr" if successful. Otherwise, returns KERN_NO_SPACE. 2031 * 2032 * The map must be locked. Initially, there must be at least "length" bytes 2033 * of free space at the given address. 2034 */ 2035 static int 2036 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 2037 vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr, 2038 vm_offset_t alignment) 2039 { 2040 vm_offset_t aligned_addr, free_addr; 2041 2042 VM_MAP_ASSERT_LOCKED(map); 2043 free_addr = *addr; 2044 KASSERT(free_addr == vm_map_findspace(map, free_addr, length), 2045 ("caller failed to provide space %#jx at address %p", 2046 (uintmax_t)length, (void *)free_addr)); 2047 for (;;) { 2048 /* 2049 * At the start of every iteration, the free space at address 2050 * "*addr" is at least "length" bytes. 2051 */ 2052 if (alignment == 0) 2053 pmap_align_superpage(object, offset, addr, length); 2054 else 2055 *addr = roundup2(*addr, alignment); 2056 aligned_addr = *addr; 2057 if (aligned_addr == free_addr) { 2058 /* 2059 * Alignment did not change "*addr", so "*addr" must 2060 * still provide sufficient free space. 2061 */ 2062 return (KERN_SUCCESS); 2063 } 2064 2065 /* 2066 * Test for address wrap on "*addr". A wrapped "*addr" could 2067 * be a valid address, in which case vm_map_findspace() cannot 2068 * be relied upon to fail. 2069 */ 2070 if (aligned_addr < free_addr) 2071 return (KERN_NO_SPACE); 2072 *addr = vm_map_findspace(map, aligned_addr, length); 2073 if (*addr + length > vm_map_max(map) || 2074 (max_addr != 0 && *addr + length > max_addr)) 2075 return (KERN_NO_SPACE); 2076 free_addr = *addr; 2077 if (free_addr == aligned_addr) { 2078 /* 2079 * If a successful call to vm_map_findspace() did not 2080 * change "*addr", then "*addr" must still be aligned 2081 * and provide sufficient free space. 2082 */ 2083 return (KERN_SUCCESS); 2084 } 2085 } 2086 } 2087 2088 int 2089 vm_map_find_aligned(vm_map_t map, vm_offset_t *addr, vm_size_t length, 2090 vm_offset_t max_addr, vm_offset_t alignment) 2091 { 2092 /* XXXKIB ASLR eh ? */ 2093 *addr = vm_map_findspace(map, *addr, length); 2094 if (*addr + length > vm_map_max(map) || 2095 (max_addr != 0 && *addr + length > max_addr)) 2096 return (KERN_NO_SPACE); 2097 return (vm_map_alignspace(map, NULL, 0, addr, length, max_addr, 2098 alignment)); 2099 } 2100 2101 /* 2102 * vm_map_find finds an unallocated region in the target address 2103 * map with the given length. The search is defined to be 2104 * first-fit from the specified address; the region found is 2105 * returned in the same parameter. 2106 * 2107 * If object is non-NULL, ref count must be bumped by caller 2108 * prior to making call to account for the new entry. 2109 */ 2110 int 2111 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 2112 vm_offset_t *addr, /* IN/OUT */ 2113 vm_size_t length, vm_offset_t max_addr, int find_space, 2114 vm_prot_t prot, vm_prot_t max, int cow) 2115 { 2116 vm_offset_t alignment, curr_min_addr, min_addr; 2117 int gap, pidx, rv, try; 2118 bool cluster, en_aslr, update_anon; 2119 2120 KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 || 2121 object == NULL, 2122 ("vm_map_find: non-NULL backing object for stack")); 2123 MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE && 2124 (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0)); 2125 if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL || 2126 (object->flags & OBJ_COLORED) == 0)) 2127 find_space = VMFS_ANY_SPACE; 2128 if (find_space >> 8 != 0) { 2129 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags")); 2130 alignment = (vm_offset_t)1 << (find_space >> 8); 2131 } else 2132 alignment = 0; 2133 en_aslr = (map->flags & MAP_ASLR) != 0; 2134 update_anon = cluster = clustering_anon_allowed(*addr, cow) && 2135 (map->flags & MAP_IS_SUB_MAP) == 0 && max_addr == 0 && 2136 find_space != VMFS_NO_SPACE && object == NULL && 2137 (cow & (MAP_INHERIT_SHARE | MAP_STACK_GROWS_UP | 2138 MAP_STACK_GROWS_DOWN)) == 0 && prot != PROT_NONE; 2139 curr_min_addr = min_addr = *addr; 2140 if (en_aslr && min_addr == 0 && !cluster && 2141 find_space != VMFS_NO_SPACE && 2142 (map->flags & MAP_ASLR_IGNSTART) != 0) 2143 curr_min_addr = min_addr = vm_map_min(map); 2144 try = 0; 2145 vm_map_lock(map); 2146 if (cluster) { 2147 curr_min_addr = map->anon_loc; 2148 if (curr_min_addr == 0) 2149 cluster = false; 2150 } 2151 if (find_space != VMFS_NO_SPACE) { 2152 KASSERT(find_space == VMFS_ANY_SPACE || 2153 find_space == VMFS_OPTIMAL_SPACE || 2154 find_space == VMFS_SUPER_SPACE || 2155 alignment != 0, ("unexpected VMFS flag")); 2156 again: 2157 /* 2158 * When creating an anonymous mapping, try clustering 2159 * with an existing anonymous mapping first. 2160 * 2161 * We make up to two attempts to find address space 2162 * for a given find_space value. The first attempt may 2163 * apply randomization or may cluster with an existing 2164 * anonymous mapping. If this first attempt fails, 2165 * perform a first-fit search of the available address 2166 * space. 2167 * 2168 * If all tries failed, and find_space is 2169 * VMFS_OPTIMAL_SPACE, fallback to VMFS_ANY_SPACE. 2170 * Again enable clustering and randomization. 2171 */ 2172 try++; 2173 MPASS(try <= 2); 2174 2175 if (try == 2) { 2176 /* 2177 * Second try: we failed either to find a 2178 * suitable region for randomizing the 2179 * allocation, or to cluster with an existing 2180 * mapping. Retry with free run. 2181 */ 2182 curr_min_addr = (map->flags & MAP_ASLR_IGNSTART) != 0 ? 2183 vm_map_min(map) : min_addr; 2184 atomic_add_long(&aslr_restarts, 1); 2185 } 2186 2187 if (try == 1 && en_aslr && !cluster) { 2188 /* 2189 * Find space for allocation, including 2190 * gap needed for later randomization. 2191 */ 2192 pidx = MAXPAGESIZES > 1 && pagesizes[1] != 0 && 2193 (find_space == VMFS_SUPER_SPACE || find_space == 2194 VMFS_OPTIMAL_SPACE) ? 1 : 0; 2195 gap = vm_map_max(map) > MAP_32BIT_MAX_ADDR && 2196 (max_addr == 0 || max_addr > MAP_32BIT_MAX_ADDR) ? 2197 aslr_pages_rnd_64[pidx] : aslr_pages_rnd_32[pidx]; 2198 *addr = vm_map_findspace(map, curr_min_addr, 2199 length + gap * pagesizes[pidx]); 2200 if (*addr + length + gap * pagesizes[pidx] > 2201 vm_map_max(map)) 2202 goto again; 2203 /* And randomize the start address. */ 2204 *addr += (arc4random() % gap) * pagesizes[pidx]; 2205 if (max_addr != 0 && *addr + length > max_addr) 2206 goto again; 2207 } else { 2208 *addr = vm_map_findspace(map, curr_min_addr, length); 2209 if (*addr + length > vm_map_max(map) || 2210 (max_addr != 0 && *addr + length > max_addr)) { 2211 if (cluster) { 2212 cluster = false; 2213 MPASS(try == 1); 2214 goto again; 2215 } 2216 rv = KERN_NO_SPACE; 2217 goto done; 2218 } 2219 } 2220 2221 if (find_space != VMFS_ANY_SPACE && 2222 (rv = vm_map_alignspace(map, object, offset, addr, length, 2223 max_addr, alignment)) != KERN_SUCCESS) { 2224 if (find_space == VMFS_OPTIMAL_SPACE) { 2225 find_space = VMFS_ANY_SPACE; 2226 curr_min_addr = min_addr; 2227 cluster = update_anon; 2228 try = 0; 2229 goto again; 2230 } 2231 goto done; 2232 } 2233 } else if ((cow & MAP_REMAP) != 0) { 2234 if (!vm_map_range_valid(map, *addr, *addr + length)) { 2235 rv = KERN_INVALID_ADDRESS; 2236 goto done; 2237 } 2238 rv = vm_map_delete(map, *addr, *addr + length); 2239 if (rv != KERN_SUCCESS) 2240 goto done; 2241 } 2242 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) { 2243 rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot, 2244 max, cow); 2245 } else { 2246 rv = vm_map_insert(map, object, offset, *addr, *addr + length, 2247 prot, max, cow); 2248 } 2249 if (rv == KERN_SUCCESS && update_anon) 2250 map->anon_loc = *addr + length; 2251 done: 2252 vm_map_unlock(map); 2253 return (rv); 2254 } 2255 2256 /* 2257 * vm_map_find_min() is a variant of vm_map_find() that takes an 2258 * additional parameter ("default_addr") and treats the given address 2259 * ("*addr") differently. Specifically, it treats "*addr" as a hint 2260 * and not as the minimum address where the mapping is created. 2261 * 2262 * This function works in two phases. First, it tries to 2263 * allocate above the hint. If that fails and the hint is 2264 * greater than "default_addr", it performs a second pass, replacing 2265 * the hint with "default_addr" as the minimum address for the 2266 * allocation. 2267 */ 2268 int 2269 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 2270 vm_offset_t *addr, vm_size_t length, vm_offset_t default_addr, 2271 vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max, 2272 int cow) 2273 { 2274 vm_offset_t hint; 2275 int rv; 2276 2277 hint = *addr; 2278 if (hint == 0) { 2279 cow |= MAP_NO_HINT; 2280 *addr = hint = default_addr; 2281 } 2282 for (;;) { 2283 rv = vm_map_find(map, object, offset, addr, length, max_addr, 2284 find_space, prot, max, cow); 2285 if (rv == KERN_SUCCESS || default_addr >= hint) 2286 return (rv); 2287 *addr = hint = default_addr; 2288 } 2289 } 2290 2291 /* 2292 * A map entry with any of the following flags set must not be merged with 2293 * another entry. 2294 */ 2295 #define MAP_ENTRY_NOMERGE_MASK (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | \ 2296 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP | MAP_ENTRY_VN_EXEC | \ 2297 MAP_ENTRY_STACK_GAP_UP | MAP_ENTRY_STACK_GAP_DN) 2298 2299 static bool 2300 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry) 2301 { 2302 2303 KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 || 2304 (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0, 2305 ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable", 2306 prev, entry)); 2307 return (prev->end == entry->start && 2308 prev->object.vm_object == entry->object.vm_object && 2309 (prev->object.vm_object == NULL || 2310 prev->offset + (prev->end - prev->start) == entry->offset) && 2311 prev->eflags == entry->eflags && 2312 prev->protection == entry->protection && 2313 prev->max_protection == entry->max_protection && 2314 prev->inheritance == entry->inheritance && 2315 prev->wired_count == entry->wired_count && 2316 prev->cred == entry->cred); 2317 } 2318 2319 static void 2320 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry) 2321 { 2322 2323 /* 2324 * If the backing object is a vnode object, vm_object_deallocate() 2325 * calls vrele(). However, vrele() does not lock the vnode because 2326 * the vnode has additional references. Thus, the map lock can be 2327 * kept without causing a lock-order reversal with the vnode lock. 2328 * 2329 * Since we count the number of virtual page mappings in 2330 * object->un_pager.vnp.writemappings, the writemappings value 2331 * should not be adjusted when the entry is disposed of. 2332 */ 2333 if (entry->object.vm_object != NULL) 2334 vm_object_deallocate(entry->object.vm_object); 2335 if (entry->cred != NULL) 2336 crfree(entry->cred); 2337 vm_map_entry_dispose(map, entry); 2338 } 2339 2340 /* 2341 * vm_map_try_merge_entries: 2342 * 2343 * Compare two map entries that represent consecutive ranges. If 2344 * the entries can be merged, expand the range of the second to 2345 * cover the range of the first and delete the first. Then return 2346 * the map entry that includes the first range. 2347 * 2348 * The map must be locked. 2349 */ 2350 vm_map_entry_t 2351 vm_map_try_merge_entries(vm_map_t map, vm_map_entry_t prev_entry, 2352 vm_map_entry_t entry) 2353 { 2354 2355 VM_MAP_ASSERT_LOCKED(map); 2356 if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 && 2357 vm_map_mergeable_neighbors(prev_entry, entry)) { 2358 vm_map_entry_unlink(map, prev_entry, UNLINK_MERGE_NEXT); 2359 vm_map_merged_neighbor_dispose(map, prev_entry); 2360 return (entry); 2361 } 2362 return (prev_entry); 2363 } 2364 2365 /* 2366 * vm_map_entry_back: 2367 * 2368 * Allocate an object to back a map entry. 2369 */ 2370 static inline void 2371 vm_map_entry_back(vm_map_entry_t entry) 2372 { 2373 vm_object_t object; 2374 2375 KASSERT(entry->object.vm_object == NULL, 2376 ("map entry %p has backing object", entry)); 2377 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 2378 ("map entry %p is a submap", entry)); 2379 object = vm_object_allocate_anon(atop(entry->end - entry->start), NULL, 2380 entry->cred, entry->end - entry->start); 2381 entry->object.vm_object = object; 2382 entry->offset = 0; 2383 entry->cred = NULL; 2384 } 2385 2386 /* 2387 * vm_map_entry_charge_object 2388 * 2389 * If there is no object backing this entry, create one. Otherwise, if 2390 * the entry has cred, give it to the backing object. 2391 */ 2392 static inline void 2393 vm_map_entry_charge_object(vm_map_t map, vm_map_entry_t entry) 2394 { 2395 2396 VM_MAP_ASSERT_LOCKED(map); 2397 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 2398 ("map entry %p is a submap", entry)); 2399 if (entry->object.vm_object == NULL && !map->system_map && 2400 (entry->eflags & MAP_ENTRY_GUARD) == 0) 2401 vm_map_entry_back(entry); 2402 else if (entry->object.vm_object != NULL && 2403 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 2404 entry->cred != NULL) { 2405 VM_OBJECT_WLOCK(entry->object.vm_object); 2406 KASSERT(entry->object.vm_object->cred == NULL, 2407 ("OVERCOMMIT: %s: both cred e %p", __func__, entry)); 2408 entry->object.vm_object->cred = entry->cred; 2409 entry->object.vm_object->charge = entry->end - entry->start; 2410 VM_OBJECT_WUNLOCK(entry->object.vm_object); 2411 entry->cred = NULL; 2412 } 2413 } 2414 2415 /* 2416 * vm_map_entry_clone 2417 * 2418 * Create a duplicate map entry for clipping. 2419 */ 2420 static vm_map_entry_t 2421 vm_map_entry_clone(vm_map_t map, vm_map_entry_t entry) 2422 { 2423 vm_map_entry_t new_entry; 2424 2425 VM_MAP_ASSERT_LOCKED(map); 2426 2427 /* 2428 * Create a backing object now, if none exists, so that more individual 2429 * objects won't be created after the map entry is split. 2430 */ 2431 vm_map_entry_charge_object(map, entry); 2432 2433 /* Clone the entry. */ 2434 new_entry = vm_map_entry_create(map); 2435 *new_entry = *entry; 2436 if (new_entry->cred != NULL) 2437 crhold(entry->cred); 2438 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 2439 vm_object_reference(new_entry->object.vm_object); 2440 vm_map_entry_set_vnode_text(new_entry, true); 2441 /* 2442 * The object->un_pager.vnp.writemappings for the object of 2443 * MAP_ENTRY_WRITECNT type entry shall be kept as is here. The 2444 * virtual pages are re-distributed among the clipped entries, 2445 * so the sum is left the same. 2446 */ 2447 } 2448 return (new_entry); 2449 } 2450 2451 /* 2452 * vm_map_clip_start: [ internal use only ] 2453 * 2454 * Asserts that the given entry begins at or after 2455 * the specified address; if necessary, 2456 * it splits the entry into two. 2457 */ 2458 static int 2459 vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t startaddr) 2460 { 2461 vm_map_entry_t new_entry; 2462 int bdry_idx; 2463 2464 if (!map->system_map) 2465 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2466 "%s: map %p entry %p start 0x%jx", __func__, map, entry, 2467 (uintmax_t)startaddr); 2468 2469 if (startaddr <= entry->start) 2470 return (KERN_SUCCESS); 2471 2472 VM_MAP_ASSERT_LOCKED(map); 2473 KASSERT(entry->end > startaddr && entry->start < startaddr, 2474 ("%s: invalid clip of entry %p", __func__, entry)); 2475 2476 bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry); 2477 if (bdry_idx != 0) { 2478 if ((startaddr & (pagesizes[bdry_idx] - 1)) != 0) 2479 return (KERN_INVALID_ARGUMENT); 2480 } 2481 2482 new_entry = vm_map_entry_clone(map, entry); 2483 2484 /* 2485 * Split off the front portion. Insert the new entry BEFORE this one, 2486 * so that this entry has the specified starting address. 2487 */ 2488 new_entry->end = startaddr; 2489 vm_map_entry_link(map, new_entry); 2490 return (KERN_SUCCESS); 2491 } 2492 2493 /* 2494 * vm_map_lookup_clip_start: 2495 * 2496 * Find the entry at or just after 'start', and clip it if 'start' is in 2497 * the interior of the entry. Return entry after 'start', and in 2498 * prev_entry set the entry before 'start'. 2499 */ 2500 static int 2501 vm_map_lookup_clip_start(vm_map_t map, vm_offset_t start, 2502 vm_map_entry_t *res_entry, vm_map_entry_t *prev_entry) 2503 { 2504 vm_map_entry_t entry; 2505 int rv; 2506 2507 if (!map->system_map) 2508 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2509 "%s: map %p start 0x%jx prev %p", __func__, map, 2510 (uintmax_t)start, prev_entry); 2511 2512 if (vm_map_lookup_entry(map, start, prev_entry)) { 2513 entry = *prev_entry; 2514 rv = vm_map_clip_start(map, entry, start); 2515 if (rv != KERN_SUCCESS) 2516 return (rv); 2517 *prev_entry = vm_map_entry_pred(entry); 2518 } else 2519 entry = vm_map_entry_succ(*prev_entry); 2520 *res_entry = entry; 2521 return (KERN_SUCCESS); 2522 } 2523 2524 /* 2525 * vm_map_clip_end: [ internal use only ] 2526 * 2527 * Asserts that the given entry ends at or before 2528 * the specified address; if necessary, 2529 * it splits the entry into two. 2530 */ 2531 static int 2532 vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t endaddr) 2533 { 2534 vm_map_entry_t new_entry; 2535 int bdry_idx; 2536 2537 if (!map->system_map) 2538 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2539 "%s: map %p entry %p end 0x%jx", __func__, map, entry, 2540 (uintmax_t)endaddr); 2541 2542 if (endaddr >= entry->end) 2543 return (KERN_SUCCESS); 2544 2545 VM_MAP_ASSERT_LOCKED(map); 2546 KASSERT(entry->start < endaddr && entry->end > endaddr, 2547 ("%s: invalid clip of entry %p", __func__, entry)); 2548 2549 bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry); 2550 if (bdry_idx != 0) { 2551 if ((endaddr & (pagesizes[bdry_idx] - 1)) != 0) 2552 return (KERN_INVALID_ARGUMENT); 2553 } 2554 2555 new_entry = vm_map_entry_clone(map, entry); 2556 2557 /* 2558 * Split off the back portion. Insert the new entry AFTER this one, 2559 * so that this entry has the specified ending address. 2560 */ 2561 new_entry->start = endaddr; 2562 vm_map_entry_link(map, new_entry); 2563 2564 return (KERN_SUCCESS); 2565 } 2566 2567 /* 2568 * vm_map_submap: [ kernel use only ] 2569 * 2570 * Mark the given range as handled by a subordinate map. 2571 * 2572 * This range must have been created with vm_map_find, 2573 * and no other operations may have been performed on this 2574 * range prior to calling vm_map_submap. 2575 * 2576 * Only a limited number of operations can be performed 2577 * within this rage after calling vm_map_submap: 2578 * vm_fault 2579 * [Don't try vm_map_copy!] 2580 * 2581 * To remove a submapping, one must first remove the 2582 * range from the superior map, and then destroy the 2583 * submap (if desired). [Better yet, don't try it.] 2584 */ 2585 int 2586 vm_map_submap( 2587 vm_map_t map, 2588 vm_offset_t start, 2589 vm_offset_t end, 2590 vm_map_t submap) 2591 { 2592 vm_map_entry_t entry; 2593 int result; 2594 2595 result = KERN_INVALID_ARGUMENT; 2596 2597 vm_map_lock(submap); 2598 submap->flags |= MAP_IS_SUB_MAP; 2599 vm_map_unlock(submap); 2600 2601 vm_map_lock(map); 2602 VM_MAP_RANGE_CHECK(map, start, end); 2603 if (vm_map_lookup_entry(map, start, &entry) && entry->end >= end && 2604 (entry->eflags & MAP_ENTRY_COW) == 0 && 2605 entry->object.vm_object == NULL) { 2606 result = vm_map_clip_start(map, entry, start); 2607 if (result != KERN_SUCCESS) 2608 goto unlock; 2609 result = vm_map_clip_end(map, entry, end); 2610 if (result != KERN_SUCCESS) 2611 goto unlock; 2612 entry->object.sub_map = submap; 2613 entry->eflags |= MAP_ENTRY_IS_SUB_MAP; 2614 result = KERN_SUCCESS; 2615 } 2616 unlock: 2617 vm_map_unlock(map); 2618 2619 if (result != KERN_SUCCESS) { 2620 vm_map_lock(submap); 2621 submap->flags &= ~MAP_IS_SUB_MAP; 2622 vm_map_unlock(submap); 2623 } 2624 return (result); 2625 } 2626 2627 /* 2628 * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified 2629 */ 2630 #define MAX_INIT_PT 96 2631 2632 /* 2633 * vm_map_pmap_enter: 2634 * 2635 * Preload the specified map's pmap with mappings to the specified 2636 * object's memory-resident pages. No further physical pages are 2637 * allocated, and no further virtual pages are retrieved from secondary 2638 * storage. If the specified flags include MAP_PREFAULT_PARTIAL, then a 2639 * limited number of page mappings are created at the low-end of the 2640 * specified address range. (For this purpose, a superpage mapping 2641 * counts as one page mapping.) Otherwise, all resident pages within 2642 * the specified address range are mapped. 2643 */ 2644 static void 2645 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 2646 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags) 2647 { 2648 vm_offset_t start; 2649 vm_page_t p, p_start; 2650 vm_pindex_t mask, psize, threshold, tmpidx; 2651 2652 if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL) 2653 return; 2654 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 2655 VM_OBJECT_WLOCK(object); 2656 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 2657 pmap_object_init_pt(map->pmap, addr, object, pindex, 2658 size); 2659 VM_OBJECT_WUNLOCK(object); 2660 return; 2661 } 2662 VM_OBJECT_LOCK_DOWNGRADE(object); 2663 } else 2664 VM_OBJECT_RLOCK(object); 2665 2666 psize = atop(size); 2667 if (psize + pindex > object->size) { 2668 if (pindex >= object->size) { 2669 VM_OBJECT_RUNLOCK(object); 2670 return; 2671 } 2672 psize = object->size - pindex; 2673 } 2674 2675 start = 0; 2676 p_start = NULL; 2677 threshold = MAX_INIT_PT; 2678 2679 p = vm_page_find_least(object, pindex); 2680 /* 2681 * Assert: the variable p is either (1) the page with the 2682 * least pindex greater than or equal to the parameter pindex 2683 * or (2) NULL. 2684 */ 2685 for (; 2686 p != NULL && (tmpidx = p->pindex - pindex) < psize; 2687 p = TAILQ_NEXT(p, listq)) { 2688 /* 2689 * don't allow an madvise to blow away our really 2690 * free pages allocating pv entries. 2691 */ 2692 if (((flags & MAP_PREFAULT_MADVISE) != 0 && 2693 vm_page_count_severe()) || 2694 ((flags & MAP_PREFAULT_PARTIAL) != 0 && 2695 tmpidx >= threshold)) { 2696 psize = tmpidx; 2697 break; 2698 } 2699 if (vm_page_all_valid(p)) { 2700 if (p_start == NULL) { 2701 start = addr + ptoa(tmpidx); 2702 p_start = p; 2703 } 2704 /* Jump ahead if a superpage mapping is possible. */ 2705 if (p->psind > 0 && ((addr + ptoa(tmpidx)) & 2706 (pagesizes[p->psind] - 1)) == 0) { 2707 mask = atop(pagesizes[p->psind]) - 1; 2708 if (tmpidx + mask < psize && 2709 vm_page_ps_test(p, PS_ALL_VALID, NULL)) { 2710 p += mask; 2711 threshold += mask; 2712 } 2713 } 2714 } else if (p_start != NULL) { 2715 pmap_enter_object(map->pmap, start, addr + 2716 ptoa(tmpidx), p_start, prot); 2717 p_start = NULL; 2718 } 2719 } 2720 if (p_start != NULL) 2721 pmap_enter_object(map->pmap, start, addr + ptoa(psize), 2722 p_start, prot); 2723 VM_OBJECT_RUNLOCK(object); 2724 } 2725 2726 static void 2727 vm_map_protect_guard(vm_map_entry_t entry, vm_prot_t new_prot, 2728 vm_prot_t new_maxprot, int flags) 2729 { 2730 vm_prot_t old_prot; 2731 2732 MPASS((entry->eflags & MAP_ENTRY_GUARD) != 0); 2733 if ((entry->eflags & (MAP_ENTRY_STACK_GAP_UP | 2734 MAP_ENTRY_STACK_GAP_DN)) == 0) 2735 return; 2736 2737 old_prot = PROT_EXTRACT(entry->offset); 2738 if ((flags & VM_MAP_PROTECT_SET_MAXPROT) != 0) { 2739 entry->offset = PROT_MAX(new_maxprot) | 2740 (new_maxprot & old_prot); 2741 } 2742 if ((flags & VM_MAP_PROTECT_SET_PROT) != 0) { 2743 entry->offset = new_prot | PROT_MAX( 2744 PROT_MAX_EXTRACT(entry->offset)); 2745 } 2746 } 2747 2748 /* 2749 * vm_map_protect: 2750 * 2751 * Sets the protection and/or the maximum protection of the 2752 * specified address region in the target map. 2753 */ 2754 int 2755 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 2756 vm_prot_t new_prot, vm_prot_t new_maxprot, int flags) 2757 { 2758 vm_map_entry_t entry, first_entry, in_tran, prev_entry; 2759 vm_object_t obj; 2760 struct ucred *cred; 2761 vm_offset_t orig_start; 2762 vm_prot_t check_prot, max_prot, old_prot; 2763 int rv; 2764 2765 if (start == end) 2766 return (KERN_SUCCESS); 2767 2768 if (CONTAINS_BITS(flags, VM_MAP_PROTECT_SET_PROT | 2769 VM_MAP_PROTECT_SET_MAXPROT) && 2770 !CONTAINS_BITS(new_maxprot, new_prot)) 2771 return (KERN_OUT_OF_BOUNDS); 2772 2773 orig_start = start; 2774 again: 2775 in_tran = NULL; 2776 start = orig_start; 2777 vm_map_lock(map); 2778 2779 if ((map->flags & MAP_WXORX) != 0 && 2780 (flags & VM_MAP_PROTECT_SET_PROT) != 0 && 2781 CONTAINS_BITS(new_prot, VM_PROT_WRITE | VM_PROT_EXECUTE)) { 2782 vm_map_unlock(map); 2783 return (KERN_PROTECTION_FAILURE); 2784 } 2785 2786 /* 2787 * Ensure that we are not concurrently wiring pages. vm_map_wire() may 2788 * need to fault pages into the map and will drop the map lock while 2789 * doing so, and the VM object may end up in an inconsistent state if we 2790 * update the protection on the map entry in between faults. 2791 */ 2792 vm_map_wait_busy(map); 2793 2794 VM_MAP_RANGE_CHECK(map, start, end); 2795 2796 if (!vm_map_lookup_entry(map, start, &first_entry)) 2797 first_entry = vm_map_entry_succ(first_entry); 2798 2799 if ((flags & VM_MAP_PROTECT_GROWSDOWN) != 0 && 2800 (first_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0) { 2801 /* 2802 * Handle Linux's PROT_GROWSDOWN flag. 2803 * It means that protection is applied down to the 2804 * whole stack, including the specified range of the 2805 * mapped region, and the grow down region (AKA 2806 * guard). 2807 */ 2808 while (!CONTAINS_BITS(first_entry->eflags, 2809 MAP_ENTRY_GUARD | MAP_ENTRY_STACK_GAP_DN) && 2810 first_entry != vm_map_entry_first(map)) 2811 first_entry = vm_map_entry_pred(first_entry); 2812 start = first_entry->start; 2813 } 2814 2815 /* 2816 * Make a first pass to check for protection violations. 2817 */ 2818 check_prot = 0; 2819 if ((flags & VM_MAP_PROTECT_SET_PROT) != 0) 2820 check_prot |= new_prot; 2821 if ((flags & VM_MAP_PROTECT_SET_MAXPROT) != 0) 2822 check_prot |= new_maxprot; 2823 for (entry = first_entry; entry->start < end; 2824 entry = vm_map_entry_succ(entry)) { 2825 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) { 2826 vm_map_unlock(map); 2827 return (KERN_INVALID_ARGUMENT); 2828 } 2829 if ((entry->eflags & (MAP_ENTRY_GUARD | 2830 MAP_ENTRY_STACK_GAP_DN | MAP_ENTRY_STACK_GAP_UP)) == 2831 MAP_ENTRY_GUARD) 2832 continue; 2833 max_prot = (entry->eflags & (MAP_ENTRY_STACK_GAP_DN | 2834 MAP_ENTRY_STACK_GAP_UP)) != 0 ? 2835 PROT_MAX_EXTRACT(entry->offset) : entry->max_protection; 2836 if (!CONTAINS_BITS(max_prot, check_prot)) { 2837 vm_map_unlock(map); 2838 return (KERN_PROTECTION_FAILURE); 2839 } 2840 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0) 2841 in_tran = entry; 2842 } 2843 2844 /* 2845 * Postpone the operation until all in-transition map entries have 2846 * stabilized. An in-transition entry might already have its pages 2847 * wired and wired_count incremented, but not yet have its 2848 * MAP_ENTRY_USER_WIRED flag set. In which case, we would fail to call 2849 * vm_fault_copy_entry() in the final loop below. 2850 */ 2851 if (in_tran != NULL) { 2852 in_tran->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2853 vm_map_unlock_and_wait(map, 0); 2854 goto again; 2855 } 2856 2857 /* 2858 * Before changing the protections, try to reserve swap space for any 2859 * private (i.e., copy-on-write) mappings that are transitioning from 2860 * read-only to read/write access. If a reservation fails, break out 2861 * of this loop early and let the next loop simplify the entries, since 2862 * some may now be mergeable. 2863 */ 2864 rv = vm_map_clip_start(map, first_entry, start); 2865 if (rv != KERN_SUCCESS) { 2866 vm_map_unlock(map); 2867 return (rv); 2868 } 2869 for (entry = first_entry; entry->start < end; 2870 entry = vm_map_entry_succ(entry)) { 2871 rv = vm_map_clip_end(map, entry, end); 2872 if (rv != KERN_SUCCESS) { 2873 vm_map_unlock(map); 2874 return (rv); 2875 } 2876 2877 if ((flags & VM_MAP_PROTECT_SET_PROT) == 0 || 2878 ((new_prot & ~entry->protection) & VM_PROT_WRITE) == 0 || 2879 ENTRY_CHARGED(entry) || 2880 (entry->eflags & MAP_ENTRY_GUARD) != 0) 2881 continue; 2882 2883 cred = curthread->td_ucred; 2884 obj = entry->object.vm_object; 2885 2886 if (obj == NULL || 2887 (entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0) { 2888 if (!swap_reserve(entry->end - entry->start)) { 2889 rv = KERN_RESOURCE_SHORTAGE; 2890 end = entry->end; 2891 break; 2892 } 2893 crhold(cred); 2894 entry->cred = cred; 2895 continue; 2896 } 2897 2898 VM_OBJECT_WLOCK(obj); 2899 if ((obj->flags & OBJ_SWAP) == 0) { 2900 VM_OBJECT_WUNLOCK(obj); 2901 continue; 2902 } 2903 2904 /* 2905 * Charge for the whole object allocation now, since 2906 * we cannot distinguish between non-charged and 2907 * charged clipped mapping of the same object later. 2908 */ 2909 KASSERT(obj->charge == 0, 2910 ("vm_map_protect: object %p overcharged (entry %p)", 2911 obj, entry)); 2912 if (!swap_reserve(ptoa(obj->size))) { 2913 VM_OBJECT_WUNLOCK(obj); 2914 rv = KERN_RESOURCE_SHORTAGE; 2915 end = entry->end; 2916 break; 2917 } 2918 2919 crhold(cred); 2920 obj->cred = cred; 2921 obj->charge = ptoa(obj->size); 2922 VM_OBJECT_WUNLOCK(obj); 2923 } 2924 2925 /* 2926 * If enough swap space was available, go back and fix up protections. 2927 * Otherwise, just simplify entries, since some may have been modified. 2928 * [Note that clipping is not necessary the second time.] 2929 */ 2930 for (prev_entry = vm_map_entry_pred(first_entry), entry = first_entry; 2931 entry->start < end; 2932 vm_map_try_merge_entries(map, prev_entry, entry), 2933 prev_entry = entry, entry = vm_map_entry_succ(entry)) { 2934 if (rv != KERN_SUCCESS) 2935 continue; 2936 2937 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) { 2938 vm_map_protect_guard(entry, new_prot, new_maxprot, 2939 flags); 2940 continue; 2941 } 2942 2943 old_prot = entry->protection; 2944 2945 if ((flags & VM_MAP_PROTECT_SET_MAXPROT) != 0) { 2946 entry->max_protection = new_maxprot; 2947 entry->protection = new_maxprot & old_prot; 2948 } 2949 if ((flags & VM_MAP_PROTECT_SET_PROT) != 0) 2950 entry->protection = new_prot; 2951 2952 /* 2953 * For user wired map entries, the normal lazy evaluation of 2954 * write access upgrades through soft page faults is 2955 * undesirable. Instead, immediately copy any pages that are 2956 * copy-on-write and enable write access in the physical map. 2957 */ 2958 if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0 && 2959 (entry->protection & VM_PROT_WRITE) != 0 && 2960 (old_prot & VM_PROT_WRITE) == 0) 2961 vm_fault_copy_entry(map, map, entry, entry, NULL); 2962 2963 /* 2964 * When restricting access, update the physical map. Worry 2965 * about copy-on-write here. 2966 */ 2967 if ((old_prot & ~entry->protection) != 0) { 2968 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 2969 VM_PROT_ALL) 2970 pmap_protect(map->pmap, entry->start, 2971 entry->end, 2972 entry->protection & MASK(entry)); 2973 #undef MASK 2974 } 2975 } 2976 vm_map_try_merge_entries(map, prev_entry, entry); 2977 vm_map_unlock(map); 2978 return (rv); 2979 } 2980 2981 /* 2982 * vm_map_madvise: 2983 * 2984 * This routine traverses a processes map handling the madvise 2985 * system call. Advisories are classified as either those effecting 2986 * the vm_map_entry structure, or those effecting the underlying 2987 * objects. 2988 */ 2989 int 2990 vm_map_madvise( 2991 vm_map_t map, 2992 vm_offset_t start, 2993 vm_offset_t end, 2994 int behav) 2995 { 2996 vm_map_entry_t entry, prev_entry; 2997 int rv; 2998 bool modify_map; 2999 3000 /* 3001 * Some madvise calls directly modify the vm_map_entry, in which case 3002 * we need to use an exclusive lock on the map and we need to perform 3003 * various clipping operations. Otherwise we only need a read-lock 3004 * on the map. 3005 */ 3006 switch(behav) { 3007 case MADV_NORMAL: 3008 case MADV_SEQUENTIAL: 3009 case MADV_RANDOM: 3010 case MADV_NOSYNC: 3011 case MADV_AUTOSYNC: 3012 case MADV_NOCORE: 3013 case MADV_CORE: 3014 if (start == end) 3015 return (0); 3016 modify_map = true; 3017 vm_map_lock(map); 3018 break; 3019 case MADV_WILLNEED: 3020 case MADV_DONTNEED: 3021 case MADV_FREE: 3022 if (start == end) 3023 return (0); 3024 modify_map = false; 3025 vm_map_lock_read(map); 3026 break; 3027 default: 3028 return (EINVAL); 3029 } 3030 3031 /* 3032 * Locate starting entry and clip if necessary. 3033 */ 3034 VM_MAP_RANGE_CHECK(map, start, end); 3035 3036 if (modify_map) { 3037 /* 3038 * madvise behaviors that are implemented in the vm_map_entry. 3039 * 3040 * We clip the vm_map_entry so that behavioral changes are 3041 * limited to the specified address range. 3042 */ 3043 rv = vm_map_lookup_clip_start(map, start, &entry, &prev_entry); 3044 if (rv != KERN_SUCCESS) { 3045 vm_map_unlock(map); 3046 return (vm_mmap_to_errno(rv)); 3047 } 3048 3049 for (; entry->start < end; prev_entry = entry, 3050 entry = vm_map_entry_succ(entry)) { 3051 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) 3052 continue; 3053 3054 rv = vm_map_clip_end(map, entry, end); 3055 if (rv != KERN_SUCCESS) { 3056 vm_map_unlock(map); 3057 return (vm_mmap_to_errno(rv)); 3058 } 3059 3060 switch (behav) { 3061 case MADV_NORMAL: 3062 vm_map_entry_set_behavior(entry, 3063 MAP_ENTRY_BEHAV_NORMAL); 3064 break; 3065 case MADV_SEQUENTIAL: 3066 vm_map_entry_set_behavior(entry, 3067 MAP_ENTRY_BEHAV_SEQUENTIAL); 3068 break; 3069 case MADV_RANDOM: 3070 vm_map_entry_set_behavior(entry, 3071 MAP_ENTRY_BEHAV_RANDOM); 3072 break; 3073 case MADV_NOSYNC: 3074 entry->eflags |= MAP_ENTRY_NOSYNC; 3075 break; 3076 case MADV_AUTOSYNC: 3077 entry->eflags &= ~MAP_ENTRY_NOSYNC; 3078 break; 3079 case MADV_NOCORE: 3080 entry->eflags |= MAP_ENTRY_NOCOREDUMP; 3081 break; 3082 case MADV_CORE: 3083 entry->eflags &= ~MAP_ENTRY_NOCOREDUMP; 3084 break; 3085 default: 3086 break; 3087 } 3088 vm_map_try_merge_entries(map, prev_entry, entry); 3089 } 3090 vm_map_try_merge_entries(map, prev_entry, entry); 3091 vm_map_unlock(map); 3092 } else { 3093 vm_pindex_t pstart, pend; 3094 3095 /* 3096 * madvise behaviors that are implemented in the underlying 3097 * vm_object. 3098 * 3099 * Since we don't clip the vm_map_entry, we have to clip 3100 * the vm_object pindex and count. 3101 */ 3102 if (!vm_map_lookup_entry(map, start, &entry)) 3103 entry = vm_map_entry_succ(entry); 3104 for (; entry->start < end; 3105 entry = vm_map_entry_succ(entry)) { 3106 vm_offset_t useEnd, useStart; 3107 3108 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) 3109 continue; 3110 3111 /* 3112 * MADV_FREE would otherwise rewind time to 3113 * the creation of the shadow object. Because 3114 * we hold the VM map read-locked, neither the 3115 * entry's object nor the presence of a 3116 * backing object can change. 3117 */ 3118 if (behav == MADV_FREE && 3119 entry->object.vm_object != NULL && 3120 entry->object.vm_object->backing_object != NULL) 3121 continue; 3122 3123 pstart = OFF_TO_IDX(entry->offset); 3124 pend = pstart + atop(entry->end - entry->start); 3125 useStart = entry->start; 3126 useEnd = entry->end; 3127 3128 if (entry->start < start) { 3129 pstart += atop(start - entry->start); 3130 useStart = start; 3131 } 3132 if (entry->end > end) { 3133 pend -= atop(entry->end - end); 3134 useEnd = end; 3135 } 3136 3137 if (pstart >= pend) 3138 continue; 3139 3140 /* 3141 * Perform the pmap_advise() before clearing 3142 * PGA_REFERENCED in vm_page_advise(). Otherwise, a 3143 * concurrent pmap operation, such as pmap_remove(), 3144 * could clear a reference in the pmap and set 3145 * PGA_REFERENCED on the page before the pmap_advise() 3146 * had completed. Consequently, the page would appear 3147 * referenced based upon an old reference that 3148 * occurred before this pmap_advise() ran. 3149 */ 3150 if (behav == MADV_DONTNEED || behav == MADV_FREE) 3151 pmap_advise(map->pmap, useStart, useEnd, 3152 behav); 3153 3154 vm_object_madvise(entry->object.vm_object, pstart, 3155 pend, behav); 3156 3157 /* 3158 * Pre-populate paging structures in the 3159 * WILLNEED case. For wired entries, the 3160 * paging structures are already populated. 3161 */ 3162 if (behav == MADV_WILLNEED && 3163 entry->wired_count == 0) { 3164 vm_map_pmap_enter(map, 3165 useStart, 3166 entry->protection, 3167 entry->object.vm_object, 3168 pstart, 3169 ptoa(pend - pstart), 3170 MAP_PREFAULT_MADVISE 3171 ); 3172 } 3173 } 3174 vm_map_unlock_read(map); 3175 } 3176 return (0); 3177 } 3178 3179 /* 3180 * vm_map_inherit: 3181 * 3182 * Sets the inheritance of the specified address 3183 * range in the target map. Inheritance 3184 * affects how the map will be shared with 3185 * child maps at the time of vmspace_fork. 3186 */ 3187 int 3188 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 3189 vm_inherit_t new_inheritance) 3190 { 3191 vm_map_entry_t entry, lentry, prev_entry, start_entry; 3192 int rv; 3193 3194 switch (new_inheritance) { 3195 case VM_INHERIT_NONE: 3196 case VM_INHERIT_COPY: 3197 case VM_INHERIT_SHARE: 3198 case VM_INHERIT_ZERO: 3199 break; 3200 default: 3201 return (KERN_INVALID_ARGUMENT); 3202 } 3203 if (start == end) 3204 return (KERN_SUCCESS); 3205 vm_map_lock(map); 3206 VM_MAP_RANGE_CHECK(map, start, end); 3207 rv = vm_map_lookup_clip_start(map, start, &start_entry, &prev_entry); 3208 if (rv != KERN_SUCCESS) 3209 goto unlock; 3210 if (vm_map_lookup_entry(map, end - 1, &lentry)) { 3211 rv = vm_map_clip_end(map, lentry, end); 3212 if (rv != KERN_SUCCESS) 3213 goto unlock; 3214 } 3215 if (new_inheritance == VM_INHERIT_COPY) { 3216 for (entry = start_entry; entry->start < end; 3217 prev_entry = entry, entry = vm_map_entry_succ(entry)) { 3218 if ((entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) 3219 != 0) { 3220 rv = KERN_INVALID_ARGUMENT; 3221 goto unlock; 3222 } 3223 } 3224 } 3225 for (entry = start_entry; entry->start < end; prev_entry = entry, 3226 entry = vm_map_entry_succ(entry)) { 3227 KASSERT(entry->end <= end, ("non-clipped entry %p end %jx %jx", 3228 entry, (uintmax_t)entry->end, (uintmax_t)end)); 3229 if ((entry->eflags & MAP_ENTRY_GUARD) == 0 || 3230 new_inheritance != VM_INHERIT_ZERO) 3231 entry->inheritance = new_inheritance; 3232 vm_map_try_merge_entries(map, prev_entry, entry); 3233 } 3234 vm_map_try_merge_entries(map, prev_entry, entry); 3235 unlock: 3236 vm_map_unlock(map); 3237 return (rv); 3238 } 3239 3240 /* 3241 * vm_map_entry_in_transition: 3242 * 3243 * Release the map lock, and sleep until the entry is no longer in 3244 * transition. Awake and acquire the map lock. If the map changed while 3245 * another held the lock, lookup a possibly-changed entry at or after the 3246 * 'start' position of the old entry. 3247 */ 3248 static vm_map_entry_t 3249 vm_map_entry_in_transition(vm_map_t map, vm_offset_t in_start, 3250 vm_offset_t *io_end, bool holes_ok, vm_map_entry_t in_entry) 3251 { 3252 vm_map_entry_t entry; 3253 vm_offset_t start; 3254 u_int last_timestamp; 3255 3256 VM_MAP_ASSERT_LOCKED(map); 3257 KASSERT((in_entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 3258 ("not in-tranition map entry %p", in_entry)); 3259 /* 3260 * We have not yet clipped the entry. 3261 */ 3262 start = MAX(in_start, in_entry->start); 3263 in_entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 3264 last_timestamp = map->timestamp; 3265 if (vm_map_unlock_and_wait(map, 0)) { 3266 /* 3267 * Allow interruption of user wiring/unwiring? 3268 */ 3269 } 3270 vm_map_lock(map); 3271 if (last_timestamp + 1 == map->timestamp) 3272 return (in_entry); 3273 3274 /* 3275 * Look again for the entry because the map was modified while it was 3276 * unlocked. Specifically, the entry may have been clipped, merged, or 3277 * deleted. 3278 */ 3279 if (!vm_map_lookup_entry(map, start, &entry)) { 3280 if (!holes_ok) { 3281 *io_end = start; 3282 return (NULL); 3283 } 3284 entry = vm_map_entry_succ(entry); 3285 } 3286 return (entry); 3287 } 3288 3289 /* 3290 * vm_map_unwire: 3291 * 3292 * Implements both kernel and user unwiring. 3293 */ 3294 int 3295 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end, 3296 int flags) 3297 { 3298 vm_map_entry_t entry, first_entry, next_entry, prev_entry; 3299 int rv; 3300 bool holes_ok, need_wakeup, user_unwire; 3301 3302 if (start == end) 3303 return (KERN_SUCCESS); 3304 holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0; 3305 user_unwire = (flags & VM_MAP_WIRE_USER) != 0; 3306 vm_map_lock(map); 3307 VM_MAP_RANGE_CHECK(map, start, end); 3308 if (!vm_map_lookup_entry(map, start, &first_entry)) { 3309 if (holes_ok) 3310 first_entry = vm_map_entry_succ(first_entry); 3311 else { 3312 vm_map_unlock(map); 3313 return (KERN_INVALID_ADDRESS); 3314 } 3315 } 3316 rv = KERN_SUCCESS; 3317 for (entry = first_entry; entry->start < end; entry = next_entry) { 3318 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 3319 /* 3320 * We have not yet clipped the entry. 3321 */ 3322 next_entry = vm_map_entry_in_transition(map, start, 3323 &end, holes_ok, entry); 3324 if (next_entry == NULL) { 3325 if (entry == first_entry) { 3326 vm_map_unlock(map); 3327 return (KERN_INVALID_ADDRESS); 3328 } 3329 rv = KERN_INVALID_ADDRESS; 3330 break; 3331 } 3332 first_entry = (entry == first_entry) ? 3333 next_entry : NULL; 3334 continue; 3335 } 3336 rv = vm_map_clip_start(map, entry, start); 3337 if (rv != KERN_SUCCESS) 3338 break; 3339 rv = vm_map_clip_end(map, entry, end); 3340 if (rv != KERN_SUCCESS) 3341 break; 3342 3343 /* 3344 * Mark the entry in case the map lock is released. (See 3345 * above.) 3346 */ 3347 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 3348 entry->wiring_thread == NULL, 3349 ("owned map entry %p", entry)); 3350 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 3351 entry->wiring_thread = curthread; 3352 next_entry = vm_map_entry_succ(entry); 3353 /* 3354 * Check the map for holes in the specified region. 3355 * If holes_ok, skip this check. 3356 */ 3357 if (!holes_ok && 3358 entry->end < end && next_entry->start > entry->end) { 3359 end = entry->end; 3360 rv = KERN_INVALID_ADDRESS; 3361 break; 3362 } 3363 /* 3364 * If system unwiring, require that the entry is system wired. 3365 */ 3366 if (!user_unwire && 3367 vm_map_entry_system_wired_count(entry) == 0) { 3368 end = entry->end; 3369 rv = KERN_INVALID_ARGUMENT; 3370 break; 3371 } 3372 } 3373 need_wakeup = false; 3374 if (first_entry == NULL && 3375 !vm_map_lookup_entry(map, start, &first_entry)) { 3376 KASSERT(holes_ok, ("vm_map_unwire: lookup failed")); 3377 prev_entry = first_entry; 3378 entry = vm_map_entry_succ(first_entry); 3379 } else { 3380 prev_entry = vm_map_entry_pred(first_entry); 3381 entry = first_entry; 3382 } 3383 for (; entry->start < end; 3384 prev_entry = entry, entry = vm_map_entry_succ(entry)) { 3385 /* 3386 * If holes_ok was specified, an empty 3387 * space in the unwired region could have been mapped 3388 * while the map lock was dropped for draining 3389 * MAP_ENTRY_IN_TRANSITION. Moreover, another thread 3390 * could be simultaneously wiring this new mapping 3391 * entry. Detect these cases and skip any entries 3392 * marked as in transition by us. 3393 */ 3394 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 3395 entry->wiring_thread != curthread) { 3396 KASSERT(holes_ok, 3397 ("vm_map_unwire: !HOLESOK and new/changed entry")); 3398 continue; 3399 } 3400 3401 if (rv == KERN_SUCCESS && (!user_unwire || 3402 (entry->eflags & MAP_ENTRY_USER_WIRED))) { 3403 if (entry->wired_count == 1) 3404 vm_map_entry_unwire(map, entry); 3405 else 3406 entry->wired_count--; 3407 if (user_unwire) 3408 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 3409 } 3410 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 3411 ("vm_map_unwire: in-transition flag missing %p", entry)); 3412 KASSERT(entry->wiring_thread == curthread, 3413 ("vm_map_unwire: alien wire %p", entry)); 3414 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 3415 entry->wiring_thread = NULL; 3416 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 3417 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 3418 need_wakeup = true; 3419 } 3420 vm_map_try_merge_entries(map, prev_entry, entry); 3421 } 3422 vm_map_try_merge_entries(map, prev_entry, entry); 3423 vm_map_unlock(map); 3424 if (need_wakeup) 3425 vm_map_wakeup(map); 3426 return (rv); 3427 } 3428 3429 static void 3430 vm_map_wire_user_count_sub(u_long npages) 3431 { 3432 3433 atomic_subtract_long(&vm_user_wire_count, npages); 3434 } 3435 3436 static bool 3437 vm_map_wire_user_count_add(u_long npages) 3438 { 3439 u_long wired; 3440 3441 wired = vm_user_wire_count; 3442 do { 3443 if (npages + wired > vm_page_max_user_wired) 3444 return (false); 3445 } while (!atomic_fcmpset_long(&vm_user_wire_count, &wired, 3446 npages + wired)); 3447 3448 return (true); 3449 } 3450 3451 /* 3452 * vm_map_wire_entry_failure: 3453 * 3454 * Handle a wiring failure on the given entry. 3455 * 3456 * The map should be locked. 3457 */ 3458 static void 3459 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry, 3460 vm_offset_t failed_addr) 3461 { 3462 3463 VM_MAP_ASSERT_LOCKED(map); 3464 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 && 3465 entry->wired_count == 1, 3466 ("vm_map_wire_entry_failure: entry %p isn't being wired", entry)); 3467 KASSERT(failed_addr < entry->end, 3468 ("vm_map_wire_entry_failure: entry %p was fully wired", entry)); 3469 3470 /* 3471 * If any pages at the start of this entry were successfully wired, 3472 * then unwire them. 3473 */ 3474 if (failed_addr > entry->start) { 3475 pmap_unwire(map->pmap, entry->start, failed_addr); 3476 vm_object_unwire(entry->object.vm_object, entry->offset, 3477 failed_addr - entry->start, PQ_ACTIVE); 3478 } 3479 3480 /* 3481 * Assign an out-of-range value to represent the failure to wire this 3482 * entry. 3483 */ 3484 entry->wired_count = -1; 3485 } 3486 3487 int 3488 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags) 3489 { 3490 int rv; 3491 3492 vm_map_lock(map); 3493 rv = vm_map_wire_locked(map, start, end, flags); 3494 vm_map_unlock(map); 3495 return (rv); 3496 } 3497 3498 /* 3499 * vm_map_wire_locked: 3500 * 3501 * Implements both kernel and user wiring. Returns with the map locked, 3502 * the map lock may be dropped. 3503 */ 3504 int 3505 vm_map_wire_locked(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags) 3506 { 3507 vm_map_entry_t entry, first_entry, next_entry, prev_entry; 3508 vm_offset_t faddr, saved_end, saved_start; 3509 u_long incr, npages; 3510 u_int bidx, last_timestamp; 3511 int rv; 3512 bool holes_ok, need_wakeup, user_wire; 3513 vm_prot_t prot; 3514 3515 VM_MAP_ASSERT_LOCKED(map); 3516 3517 if (start == end) 3518 return (KERN_SUCCESS); 3519 prot = 0; 3520 if (flags & VM_MAP_WIRE_WRITE) 3521 prot |= VM_PROT_WRITE; 3522 holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0; 3523 user_wire = (flags & VM_MAP_WIRE_USER) != 0; 3524 VM_MAP_RANGE_CHECK(map, start, end); 3525 if (!vm_map_lookup_entry(map, start, &first_entry)) { 3526 if (holes_ok) 3527 first_entry = vm_map_entry_succ(first_entry); 3528 else 3529 return (KERN_INVALID_ADDRESS); 3530 } 3531 for (entry = first_entry; entry->start < end; entry = next_entry) { 3532 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 3533 /* 3534 * We have not yet clipped the entry. 3535 */ 3536 next_entry = vm_map_entry_in_transition(map, start, 3537 &end, holes_ok, entry); 3538 if (next_entry == NULL) { 3539 if (entry == first_entry) 3540 return (KERN_INVALID_ADDRESS); 3541 rv = KERN_INVALID_ADDRESS; 3542 goto done; 3543 } 3544 first_entry = (entry == first_entry) ? 3545 next_entry : NULL; 3546 continue; 3547 } 3548 rv = vm_map_clip_start(map, entry, start); 3549 if (rv != KERN_SUCCESS) 3550 goto done; 3551 rv = vm_map_clip_end(map, entry, end); 3552 if (rv != KERN_SUCCESS) 3553 goto done; 3554 3555 /* 3556 * Mark the entry in case the map lock is released. (See 3557 * above.) 3558 */ 3559 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 3560 entry->wiring_thread == NULL, 3561 ("owned map entry %p", entry)); 3562 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 3563 entry->wiring_thread = curthread; 3564 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 3565 || (entry->protection & prot) != prot) { 3566 entry->eflags |= MAP_ENTRY_WIRE_SKIPPED; 3567 if (!holes_ok) { 3568 end = entry->end; 3569 rv = KERN_INVALID_ADDRESS; 3570 goto done; 3571 } 3572 } else if (entry->wired_count == 0) { 3573 entry->wired_count++; 3574 3575 npages = atop(entry->end - entry->start); 3576 if (user_wire && !vm_map_wire_user_count_add(npages)) { 3577 vm_map_wire_entry_failure(map, entry, 3578 entry->start); 3579 end = entry->end; 3580 rv = KERN_RESOURCE_SHORTAGE; 3581 goto done; 3582 } 3583 3584 /* 3585 * Release the map lock, relying on the in-transition 3586 * mark. Mark the map busy for fork. 3587 */ 3588 saved_start = entry->start; 3589 saved_end = entry->end; 3590 last_timestamp = map->timestamp; 3591 bidx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry); 3592 incr = pagesizes[bidx]; 3593 vm_map_busy(map); 3594 vm_map_unlock(map); 3595 3596 for (faddr = saved_start; faddr < saved_end; 3597 faddr += incr) { 3598 /* 3599 * Simulate a fault to get the page and enter 3600 * it into the physical map. 3601 */ 3602 rv = vm_fault(map, faddr, VM_PROT_NONE, 3603 VM_FAULT_WIRE, NULL); 3604 if (rv != KERN_SUCCESS) 3605 break; 3606 } 3607 vm_map_lock(map); 3608 vm_map_unbusy(map); 3609 if (last_timestamp + 1 != map->timestamp) { 3610 /* 3611 * Look again for the entry because the map was 3612 * modified while it was unlocked. The entry 3613 * may have been clipped, but NOT merged or 3614 * deleted. 3615 */ 3616 if (!vm_map_lookup_entry(map, saved_start, 3617 &next_entry)) 3618 KASSERT(false, 3619 ("vm_map_wire: lookup failed")); 3620 first_entry = (entry == first_entry) ? 3621 next_entry : NULL; 3622 for (entry = next_entry; entry->end < saved_end; 3623 entry = vm_map_entry_succ(entry)) { 3624 /* 3625 * In case of failure, handle entries 3626 * that were not fully wired here; 3627 * fully wired entries are handled 3628 * later. 3629 */ 3630 if (rv != KERN_SUCCESS && 3631 faddr < entry->end) 3632 vm_map_wire_entry_failure(map, 3633 entry, faddr); 3634 } 3635 } 3636 if (rv != KERN_SUCCESS) { 3637 vm_map_wire_entry_failure(map, entry, faddr); 3638 if (user_wire) 3639 vm_map_wire_user_count_sub(npages); 3640 end = entry->end; 3641 goto done; 3642 } 3643 } else if (!user_wire || 3644 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 3645 entry->wired_count++; 3646 } 3647 /* 3648 * Check the map for holes in the specified region. 3649 * If holes_ok was specified, skip this check. 3650 */ 3651 next_entry = vm_map_entry_succ(entry); 3652 if (!holes_ok && 3653 entry->end < end && next_entry->start > entry->end) { 3654 end = entry->end; 3655 rv = KERN_INVALID_ADDRESS; 3656 goto done; 3657 } 3658 } 3659 rv = KERN_SUCCESS; 3660 done: 3661 need_wakeup = false; 3662 if (first_entry == NULL && 3663 !vm_map_lookup_entry(map, start, &first_entry)) { 3664 KASSERT(holes_ok, ("vm_map_wire: lookup failed")); 3665 prev_entry = first_entry; 3666 entry = vm_map_entry_succ(first_entry); 3667 } else { 3668 prev_entry = vm_map_entry_pred(first_entry); 3669 entry = first_entry; 3670 } 3671 for (; entry->start < end; 3672 prev_entry = entry, entry = vm_map_entry_succ(entry)) { 3673 /* 3674 * If holes_ok was specified, an empty 3675 * space in the unwired region could have been mapped 3676 * while the map lock was dropped for faulting in the 3677 * pages or draining MAP_ENTRY_IN_TRANSITION. 3678 * Moreover, another thread could be simultaneously 3679 * wiring this new mapping entry. Detect these cases 3680 * and skip any entries marked as in transition not by us. 3681 * 3682 * Another way to get an entry not marked with 3683 * MAP_ENTRY_IN_TRANSITION is after failed clipping, 3684 * which set rv to KERN_INVALID_ARGUMENT. 3685 */ 3686 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 3687 entry->wiring_thread != curthread) { 3688 KASSERT(holes_ok || rv == KERN_INVALID_ARGUMENT, 3689 ("vm_map_wire: !HOLESOK and new/changed entry")); 3690 continue; 3691 } 3692 3693 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) { 3694 /* do nothing */ 3695 } else if (rv == KERN_SUCCESS) { 3696 if (user_wire) 3697 entry->eflags |= MAP_ENTRY_USER_WIRED; 3698 } else if (entry->wired_count == -1) { 3699 /* 3700 * Wiring failed on this entry. Thus, unwiring is 3701 * unnecessary. 3702 */ 3703 entry->wired_count = 0; 3704 } else if (!user_wire || 3705 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 3706 /* 3707 * Undo the wiring. Wiring succeeded on this entry 3708 * but failed on a later entry. 3709 */ 3710 if (entry->wired_count == 1) { 3711 vm_map_entry_unwire(map, entry); 3712 if (user_wire) 3713 vm_map_wire_user_count_sub( 3714 atop(entry->end - entry->start)); 3715 } else 3716 entry->wired_count--; 3717 } 3718 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 3719 ("vm_map_wire: in-transition flag missing %p", entry)); 3720 KASSERT(entry->wiring_thread == curthread, 3721 ("vm_map_wire: alien wire %p", entry)); 3722 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION | 3723 MAP_ENTRY_WIRE_SKIPPED); 3724 entry->wiring_thread = NULL; 3725 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 3726 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 3727 need_wakeup = true; 3728 } 3729 vm_map_try_merge_entries(map, prev_entry, entry); 3730 } 3731 vm_map_try_merge_entries(map, prev_entry, entry); 3732 if (need_wakeup) 3733 vm_map_wakeup(map); 3734 return (rv); 3735 } 3736 3737 /* 3738 * vm_map_sync 3739 * 3740 * Push any dirty cached pages in the address range to their pager. 3741 * If syncio is TRUE, dirty pages are written synchronously. 3742 * If invalidate is TRUE, any cached pages are freed as well. 3743 * 3744 * If the size of the region from start to end is zero, we are 3745 * supposed to flush all modified pages within the region containing 3746 * start. Unfortunately, a region can be split or coalesced with 3747 * neighboring regions, making it difficult to determine what the 3748 * original region was. Therefore, we approximate this requirement by 3749 * flushing the current region containing start. 3750 * 3751 * Returns an error if any part of the specified range is not mapped. 3752 */ 3753 int 3754 vm_map_sync( 3755 vm_map_t map, 3756 vm_offset_t start, 3757 vm_offset_t end, 3758 boolean_t syncio, 3759 boolean_t invalidate) 3760 { 3761 vm_map_entry_t entry, first_entry, next_entry; 3762 vm_size_t size; 3763 vm_object_t object; 3764 vm_ooffset_t offset; 3765 unsigned int last_timestamp; 3766 int bdry_idx; 3767 boolean_t failed; 3768 3769 vm_map_lock_read(map); 3770 VM_MAP_RANGE_CHECK(map, start, end); 3771 if (!vm_map_lookup_entry(map, start, &first_entry)) { 3772 vm_map_unlock_read(map); 3773 return (KERN_INVALID_ADDRESS); 3774 } else if (start == end) { 3775 start = first_entry->start; 3776 end = first_entry->end; 3777 } 3778 3779 /* 3780 * Make a first pass to check for user-wired memory, holes, 3781 * and partial invalidation of largepage mappings. 3782 */ 3783 for (entry = first_entry; entry->start < end; entry = next_entry) { 3784 if (invalidate) { 3785 if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0) { 3786 vm_map_unlock_read(map); 3787 return (KERN_INVALID_ARGUMENT); 3788 } 3789 bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry); 3790 if (bdry_idx != 0 && 3791 ((start & (pagesizes[bdry_idx] - 1)) != 0 || 3792 (end & (pagesizes[bdry_idx] - 1)) != 0)) { 3793 vm_map_unlock_read(map); 3794 return (KERN_INVALID_ARGUMENT); 3795 } 3796 } 3797 next_entry = vm_map_entry_succ(entry); 3798 if (end > entry->end && 3799 entry->end != next_entry->start) { 3800 vm_map_unlock_read(map); 3801 return (KERN_INVALID_ADDRESS); 3802 } 3803 } 3804 3805 if (invalidate) 3806 pmap_remove(map->pmap, start, end); 3807 failed = FALSE; 3808 3809 /* 3810 * Make a second pass, cleaning/uncaching pages from the indicated 3811 * objects as we go. 3812 */ 3813 for (entry = first_entry; entry->start < end;) { 3814 offset = entry->offset + (start - entry->start); 3815 size = (end <= entry->end ? end : entry->end) - start; 3816 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) { 3817 vm_map_t smap; 3818 vm_map_entry_t tentry; 3819 vm_size_t tsize; 3820 3821 smap = entry->object.sub_map; 3822 vm_map_lock_read(smap); 3823 (void) vm_map_lookup_entry(smap, offset, &tentry); 3824 tsize = tentry->end - offset; 3825 if (tsize < size) 3826 size = tsize; 3827 object = tentry->object.vm_object; 3828 offset = tentry->offset + (offset - tentry->start); 3829 vm_map_unlock_read(smap); 3830 } else { 3831 object = entry->object.vm_object; 3832 } 3833 vm_object_reference(object); 3834 last_timestamp = map->timestamp; 3835 vm_map_unlock_read(map); 3836 if (!vm_object_sync(object, offset, size, syncio, invalidate)) 3837 failed = TRUE; 3838 start += size; 3839 vm_object_deallocate(object); 3840 vm_map_lock_read(map); 3841 if (last_timestamp == map->timestamp || 3842 !vm_map_lookup_entry(map, start, &entry)) 3843 entry = vm_map_entry_succ(entry); 3844 } 3845 3846 vm_map_unlock_read(map); 3847 return (failed ? KERN_FAILURE : KERN_SUCCESS); 3848 } 3849 3850 /* 3851 * vm_map_entry_unwire: [ internal use only ] 3852 * 3853 * Make the region specified by this entry pageable. 3854 * 3855 * The map in question should be locked. 3856 * [This is the reason for this routine's existence.] 3857 */ 3858 static void 3859 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 3860 { 3861 vm_size_t size; 3862 3863 VM_MAP_ASSERT_LOCKED(map); 3864 KASSERT(entry->wired_count > 0, 3865 ("vm_map_entry_unwire: entry %p isn't wired", entry)); 3866 3867 size = entry->end - entry->start; 3868 if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0) 3869 vm_map_wire_user_count_sub(atop(size)); 3870 pmap_unwire(map->pmap, entry->start, entry->end); 3871 vm_object_unwire(entry->object.vm_object, entry->offset, size, 3872 PQ_ACTIVE); 3873 entry->wired_count = 0; 3874 } 3875 3876 static void 3877 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map) 3878 { 3879 3880 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) 3881 vm_object_deallocate(entry->object.vm_object); 3882 uma_zfree(system_map ? kmapentzone : mapentzone, entry); 3883 } 3884 3885 /* 3886 * vm_map_entry_delete: [ internal use only ] 3887 * 3888 * Deallocate the given entry from the target map. 3889 */ 3890 static void 3891 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry) 3892 { 3893 vm_object_t object; 3894 vm_pindex_t offidxstart, offidxend, size1; 3895 vm_size_t size; 3896 3897 vm_map_entry_unlink(map, entry, UNLINK_MERGE_NONE); 3898 object = entry->object.vm_object; 3899 3900 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) { 3901 MPASS(entry->cred == NULL); 3902 MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0); 3903 MPASS(object == NULL); 3904 vm_map_entry_deallocate(entry, map->system_map); 3905 return; 3906 } 3907 3908 size = entry->end - entry->start; 3909 map->size -= size; 3910 3911 if (entry->cred != NULL) { 3912 swap_release_by_cred(size, entry->cred); 3913 crfree(entry->cred); 3914 } 3915 3916 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || object == NULL) { 3917 entry->object.vm_object = NULL; 3918 } else if ((object->flags & OBJ_ANON) != 0 || 3919 object == kernel_object) { 3920 KASSERT(entry->cred == NULL || object->cred == NULL || 3921 (entry->eflags & MAP_ENTRY_NEEDS_COPY), 3922 ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry)); 3923 offidxstart = OFF_TO_IDX(entry->offset); 3924 offidxend = offidxstart + atop(size); 3925 VM_OBJECT_WLOCK(object); 3926 if (object->ref_count != 1 && 3927 ((object->flags & OBJ_ONEMAPPING) != 0 || 3928 object == kernel_object)) { 3929 vm_object_collapse(object); 3930 3931 /* 3932 * The option OBJPR_NOTMAPPED can be passed here 3933 * because vm_map_delete() already performed 3934 * pmap_remove() on the only mapping to this range 3935 * of pages. 3936 */ 3937 vm_object_page_remove(object, offidxstart, offidxend, 3938 OBJPR_NOTMAPPED); 3939 if (offidxend >= object->size && 3940 offidxstart < object->size) { 3941 size1 = object->size; 3942 object->size = offidxstart; 3943 if (object->cred != NULL) { 3944 size1 -= object->size; 3945 KASSERT(object->charge >= ptoa(size1), 3946 ("object %p charge < 0", object)); 3947 swap_release_by_cred(ptoa(size1), 3948 object->cred); 3949 object->charge -= ptoa(size1); 3950 } 3951 } 3952 } 3953 VM_OBJECT_WUNLOCK(object); 3954 } 3955 if (map->system_map) 3956 vm_map_entry_deallocate(entry, TRUE); 3957 else { 3958 entry->defer_next = curthread->td_map_def_user; 3959 curthread->td_map_def_user = entry; 3960 } 3961 } 3962 3963 /* 3964 * vm_map_delete: [ internal use only ] 3965 * 3966 * Deallocates the given address range from the target 3967 * map. 3968 */ 3969 int 3970 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end) 3971 { 3972 vm_map_entry_t entry, next_entry, scratch_entry; 3973 int rv; 3974 3975 VM_MAP_ASSERT_LOCKED(map); 3976 3977 if (start == end) 3978 return (KERN_SUCCESS); 3979 3980 /* 3981 * Find the start of the region, and clip it. 3982 * Step through all entries in this region. 3983 */ 3984 rv = vm_map_lookup_clip_start(map, start, &entry, &scratch_entry); 3985 if (rv != KERN_SUCCESS) 3986 return (rv); 3987 for (; entry->start < end; entry = next_entry) { 3988 /* 3989 * Wait for wiring or unwiring of an entry to complete. 3990 * Also wait for any system wirings to disappear on 3991 * user maps. 3992 */ 3993 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 || 3994 (vm_map_pmap(map) != kernel_pmap && 3995 vm_map_entry_system_wired_count(entry) != 0)) { 3996 unsigned int last_timestamp; 3997 vm_offset_t saved_start; 3998 3999 saved_start = entry->start; 4000 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 4001 last_timestamp = map->timestamp; 4002 (void) vm_map_unlock_and_wait(map, 0); 4003 vm_map_lock(map); 4004 if (last_timestamp + 1 != map->timestamp) { 4005 /* 4006 * Look again for the entry because the map was 4007 * modified while it was unlocked. 4008 * Specifically, the entry may have been 4009 * clipped, merged, or deleted. 4010 */ 4011 rv = vm_map_lookup_clip_start(map, saved_start, 4012 &next_entry, &scratch_entry); 4013 if (rv != KERN_SUCCESS) 4014 break; 4015 } else 4016 next_entry = entry; 4017 continue; 4018 } 4019 4020 /* XXXKIB or delete to the upper superpage boundary ? */ 4021 rv = vm_map_clip_end(map, entry, end); 4022 if (rv != KERN_SUCCESS) 4023 break; 4024 next_entry = vm_map_entry_succ(entry); 4025 4026 /* 4027 * Unwire before removing addresses from the pmap; otherwise, 4028 * unwiring will put the entries back in the pmap. 4029 */ 4030 if (entry->wired_count != 0) 4031 vm_map_entry_unwire(map, entry); 4032 4033 /* 4034 * Remove mappings for the pages, but only if the 4035 * mappings could exist. For instance, it does not 4036 * make sense to call pmap_remove() for guard entries. 4037 */ 4038 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || 4039 entry->object.vm_object != NULL) 4040 pmap_map_delete(map->pmap, entry->start, entry->end); 4041 4042 if (entry->end == map->anon_loc) 4043 map->anon_loc = entry->start; 4044 4045 /* 4046 * Delete the entry only after removing all pmap 4047 * entries pointing to its pages. (Otherwise, its 4048 * page frames may be reallocated, and any modify bits 4049 * will be set in the wrong object!) 4050 */ 4051 vm_map_entry_delete(map, entry); 4052 } 4053 return (rv); 4054 } 4055 4056 /* 4057 * vm_map_remove: 4058 * 4059 * Remove the given address range from the target map. 4060 * This is the exported form of vm_map_delete. 4061 */ 4062 int 4063 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 4064 { 4065 int result; 4066 4067 vm_map_lock(map); 4068 VM_MAP_RANGE_CHECK(map, start, end); 4069 result = vm_map_delete(map, start, end); 4070 vm_map_unlock(map); 4071 return (result); 4072 } 4073 4074 /* 4075 * vm_map_check_protection: 4076 * 4077 * Assert that the target map allows the specified privilege on the 4078 * entire address region given. The entire region must be allocated. 4079 * 4080 * WARNING! This code does not and should not check whether the 4081 * contents of the region is accessible. For example a smaller file 4082 * might be mapped into a larger address space. 4083 * 4084 * NOTE! This code is also called by munmap(). 4085 * 4086 * The map must be locked. A read lock is sufficient. 4087 */ 4088 boolean_t 4089 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 4090 vm_prot_t protection) 4091 { 4092 vm_map_entry_t entry; 4093 vm_map_entry_t tmp_entry; 4094 4095 if (!vm_map_lookup_entry(map, start, &tmp_entry)) 4096 return (FALSE); 4097 entry = tmp_entry; 4098 4099 while (start < end) { 4100 /* 4101 * No holes allowed! 4102 */ 4103 if (start < entry->start) 4104 return (FALSE); 4105 /* 4106 * Check protection associated with entry. 4107 */ 4108 if ((entry->protection & protection) != protection) 4109 return (FALSE); 4110 /* go to next entry */ 4111 start = entry->end; 4112 entry = vm_map_entry_succ(entry); 4113 } 4114 return (TRUE); 4115 } 4116 4117 /* 4118 * 4119 * vm_map_copy_swap_object: 4120 * 4121 * Copies a swap-backed object from an existing map entry to a 4122 * new one. Carries forward the swap charge. May change the 4123 * src object on return. 4124 */ 4125 static void 4126 vm_map_copy_swap_object(vm_map_entry_t src_entry, vm_map_entry_t dst_entry, 4127 vm_offset_t size, vm_ooffset_t *fork_charge) 4128 { 4129 vm_object_t src_object; 4130 struct ucred *cred; 4131 int charged; 4132 4133 src_object = src_entry->object.vm_object; 4134 charged = ENTRY_CHARGED(src_entry); 4135 if ((src_object->flags & OBJ_ANON) != 0) { 4136 VM_OBJECT_WLOCK(src_object); 4137 vm_object_collapse(src_object); 4138 if ((src_object->flags & OBJ_ONEMAPPING) != 0) { 4139 vm_object_split(src_entry); 4140 src_object = src_entry->object.vm_object; 4141 } 4142 vm_object_reference_locked(src_object); 4143 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 4144 VM_OBJECT_WUNLOCK(src_object); 4145 } else 4146 vm_object_reference(src_object); 4147 if (src_entry->cred != NULL && 4148 !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 4149 KASSERT(src_object->cred == NULL, 4150 ("OVERCOMMIT: vm_map_copy_anon_entry: cred %p", 4151 src_object)); 4152 src_object->cred = src_entry->cred; 4153 src_object->charge = size; 4154 } 4155 dst_entry->object.vm_object = src_object; 4156 if (charged) { 4157 cred = curthread->td_ucred; 4158 crhold(cred); 4159 dst_entry->cred = cred; 4160 *fork_charge += size; 4161 if (!(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 4162 crhold(cred); 4163 src_entry->cred = cred; 4164 *fork_charge += size; 4165 } 4166 } 4167 } 4168 4169 /* 4170 * vm_map_copy_entry: 4171 * 4172 * Copies the contents of the source entry to the destination 4173 * entry. The entries *must* be aligned properly. 4174 */ 4175 static void 4176 vm_map_copy_entry( 4177 vm_map_t src_map, 4178 vm_map_t dst_map, 4179 vm_map_entry_t src_entry, 4180 vm_map_entry_t dst_entry, 4181 vm_ooffset_t *fork_charge) 4182 { 4183 vm_object_t src_object; 4184 vm_map_entry_t fake_entry; 4185 vm_offset_t size; 4186 4187 VM_MAP_ASSERT_LOCKED(dst_map); 4188 4189 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP) 4190 return; 4191 4192 if (src_entry->wired_count == 0 || 4193 (src_entry->protection & VM_PROT_WRITE) == 0) { 4194 /* 4195 * If the source entry is marked needs_copy, it is already 4196 * write-protected. 4197 */ 4198 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 && 4199 (src_entry->protection & VM_PROT_WRITE) != 0) { 4200 pmap_protect(src_map->pmap, 4201 src_entry->start, 4202 src_entry->end, 4203 src_entry->protection & ~VM_PROT_WRITE); 4204 } 4205 4206 /* 4207 * Make a copy of the object. 4208 */ 4209 size = src_entry->end - src_entry->start; 4210 if ((src_object = src_entry->object.vm_object) != NULL) { 4211 if ((src_object->flags & OBJ_SWAP) != 0) { 4212 vm_map_copy_swap_object(src_entry, dst_entry, 4213 size, fork_charge); 4214 /* May have split/collapsed, reload obj. */ 4215 src_object = src_entry->object.vm_object; 4216 } else { 4217 vm_object_reference(src_object); 4218 dst_entry->object.vm_object = src_object; 4219 } 4220 src_entry->eflags |= MAP_ENTRY_COW | 4221 MAP_ENTRY_NEEDS_COPY; 4222 dst_entry->eflags |= MAP_ENTRY_COW | 4223 MAP_ENTRY_NEEDS_COPY; 4224 dst_entry->offset = src_entry->offset; 4225 if (src_entry->eflags & MAP_ENTRY_WRITECNT) { 4226 /* 4227 * MAP_ENTRY_WRITECNT cannot 4228 * indicate write reference from 4229 * src_entry, since the entry is 4230 * marked as needs copy. Allocate a 4231 * fake entry that is used to 4232 * decrement object->un_pager writecount 4233 * at the appropriate time. Attach 4234 * fake_entry to the deferred list. 4235 */ 4236 fake_entry = vm_map_entry_create(dst_map); 4237 fake_entry->eflags = MAP_ENTRY_WRITECNT; 4238 src_entry->eflags &= ~MAP_ENTRY_WRITECNT; 4239 vm_object_reference(src_object); 4240 fake_entry->object.vm_object = src_object; 4241 fake_entry->start = src_entry->start; 4242 fake_entry->end = src_entry->end; 4243 fake_entry->defer_next = 4244 curthread->td_map_def_user; 4245 curthread->td_map_def_user = fake_entry; 4246 } 4247 4248 pmap_copy(dst_map->pmap, src_map->pmap, 4249 dst_entry->start, dst_entry->end - dst_entry->start, 4250 src_entry->start); 4251 } else { 4252 dst_entry->object.vm_object = NULL; 4253 if ((dst_entry->eflags & MAP_ENTRY_GUARD) == 0) 4254 dst_entry->offset = 0; 4255 if (src_entry->cred != NULL) { 4256 dst_entry->cred = curthread->td_ucred; 4257 crhold(dst_entry->cred); 4258 *fork_charge += size; 4259 } 4260 } 4261 } else { 4262 /* 4263 * We don't want to make writeable wired pages copy-on-write. 4264 * Immediately copy these pages into the new map by simulating 4265 * page faults. The new pages are pageable. 4266 */ 4267 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry, 4268 fork_charge); 4269 } 4270 } 4271 4272 /* 4273 * vmspace_map_entry_forked: 4274 * Update the newly-forked vmspace each time a map entry is inherited 4275 * or copied. The values for vm_dsize and vm_tsize are approximate 4276 * (and mostly-obsolete ideas in the face of mmap(2) et al.) 4277 */ 4278 static void 4279 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2, 4280 vm_map_entry_t entry) 4281 { 4282 vm_size_t entrysize; 4283 vm_offset_t newend; 4284 4285 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) 4286 return; 4287 entrysize = entry->end - entry->start; 4288 vm2->vm_map.size += entrysize; 4289 if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) { 4290 vm2->vm_ssize += btoc(entrysize); 4291 } else if (entry->start >= (vm_offset_t)vm1->vm_daddr && 4292 entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) { 4293 newend = MIN(entry->end, 4294 (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)); 4295 vm2->vm_dsize += btoc(newend - entry->start); 4296 } else if (entry->start >= (vm_offset_t)vm1->vm_taddr && 4297 entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) { 4298 newend = MIN(entry->end, 4299 (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)); 4300 vm2->vm_tsize += btoc(newend - entry->start); 4301 } 4302 } 4303 4304 /* 4305 * vmspace_fork: 4306 * Create a new process vmspace structure and vm_map 4307 * based on those of an existing process. The new map 4308 * is based on the old map, according to the inheritance 4309 * values on the regions in that map. 4310 * 4311 * XXX It might be worth coalescing the entries added to the new vmspace. 4312 * 4313 * The source map must not be locked. 4314 */ 4315 struct vmspace * 4316 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge) 4317 { 4318 struct vmspace *vm2; 4319 vm_map_t new_map, old_map; 4320 vm_map_entry_t new_entry, old_entry; 4321 vm_object_t object; 4322 int error, locked __diagused; 4323 vm_inherit_t inh; 4324 4325 old_map = &vm1->vm_map; 4326 /* Copy immutable fields of vm1 to vm2. */ 4327 vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map), 4328 pmap_pinit); 4329 if (vm2 == NULL) 4330 return (NULL); 4331 4332 vm2->vm_taddr = vm1->vm_taddr; 4333 vm2->vm_daddr = vm1->vm_daddr; 4334 vm2->vm_maxsaddr = vm1->vm_maxsaddr; 4335 vm2->vm_stacktop = vm1->vm_stacktop; 4336 vm2->vm_shp_base = vm1->vm_shp_base; 4337 vm_map_lock(old_map); 4338 if (old_map->busy) 4339 vm_map_wait_busy(old_map); 4340 new_map = &vm2->vm_map; 4341 locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */ 4342 KASSERT(locked, ("vmspace_fork: lock failed")); 4343 4344 error = pmap_vmspace_copy(new_map->pmap, old_map->pmap); 4345 if (error != 0) { 4346 sx_xunlock(&old_map->lock); 4347 sx_xunlock(&new_map->lock); 4348 vm_map_process_deferred(); 4349 vmspace_free(vm2); 4350 return (NULL); 4351 } 4352 4353 new_map->anon_loc = old_map->anon_loc; 4354 new_map->flags |= old_map->flags & (MAP_ASLR | MAP_ASLR_IGNSTART | 4355 MAP_ASLR_STACK | MAP_WXORX); 4356 4357 VM_MAP_ENTRY_FOREACH(old_entry, old_map) { 4358 if ((old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) 4359 panic("vm_map_fork: encountered a submap"); 4360 4361 inh = old_entry->inheritance; 4362 if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 && 4363 inh != VM_INHERIT_NONE) 4364 inh = VM_INHERIT_COPY; 4365 4366 switch (inh) { 4367 case VM_INHERIT_NONE: 4368 break; 4369 4370 case VM_INHERIT_SHARE: 4371 /* 4372 * Clone the entry, creating the shared object if 4373 * necessary. 4374 */ 4375 object = old_entry->object.vm_object; 4376 if (object == NULL) { 4377 vm_map_entry_back(old_entry); 4378 object = old_entry->object.vm_object; 4379 } 4380 4381 /* 4382 * Add the reference before calling vm_object_shadow 4383 * to insure that a shadow object is created. 4384 */ 4385 vm_object_reference(object); 4386 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 4387 vm_object_shadow(&old_entry->object.vm_object, 4388 &old_entry->offset, 4389 old_entry->end - old_entry->start, 4390 old_entry->cred, 4391 /* Transfer the second reference too. */ 4392 true); 4393 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 4394 old_entry->cred = NULL; 4395 4396 /* 4397 * As in vm_map_merged_neighbor_dispose(), 4398 * the vnode lock will not be acquired in 4399 * this call to vm_object_deallocate(). 4400 */ 4401 vm_object_deallocate(object); 4402 object = old_entry->object.vm_object; 4403 } else { 4404 VM_OBJECT_WLOCK(object); 4405 vm_object_clear_flag(object, OBJ_ONEMAPPING); 4406 if (old_entry->cred != NULL) { 4407 KASSERT(object->cred == NULL, 4408 ("vmspace_fork both cred")); 4409 object->cred = old_entry->cred; 4410 object->charge = old_entry->end - 4411 old_entry->start; 4412 old_entry->cred = NULL; 4413 } 4414 4415 /* 4416 * Assert the correct state of the vnode 4417 * v_writecount while the object is locked, to 4418 * not relock it later for the assertion 4419 * correctness. 4420 */ 4421 if (old_entry->eflags & MAP_ENTRY_WRITECNT && 4422 object->type == OBJT_VNODE) { 4423 KASSERT(((struct vnode *)object-> 4424 handle)->v_writecount > 0, 4425 ("vmspace_fork: v_writecount %p", 4426 object)); 4427 KASSERT(object->un_pager.vnp. 4428 writemappings > 0, 4429 ("vmspace_fork: vnp.writecount %p", 4430 object)); 4431 } 4432 VM_OBJECT_WUNLOCK(object); 4433 } 4434 4435 /* 4436 * Clone the entry, referencing the shared object. 4437 */ 4438 new_entry = vm_map_entry_create(new_map); 4439 *new_entry = *old_entry; 4440 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 4441 MAP_ENTRY_IN_TRANSITION); 4442 new_entry->wiring_thread = NULL; 4443 new_entry->wired_count = 0; 4444 if (new_entry->eflags & MAP_ENTRY_WRITECNT) { 4445 vm_pager_update_writecount(object, 4446 new_entry->start, new_entry->end); 4447 } 4448 vm_map_entry_set_vnode_text(new_entry, true); 4449 4450 /* 4451 * Insert the entry into the new map -- we know we're 4452 * inserting at the end of the new map. 4453 */ 4454 vm_map_entry_link(new_map, new_entry); 4455 vmspace_map_entry_forked(vm1, vm2, new_entry); 4456 4457 /* 4458 * Update the physical map 4459 */ 4460 pmap_copy(new_map->pmap, old_map->pmap, 4461 new_entry->start, 4462 (old_entry->end - old_entry->start), 4463 old_entry->start); 4464 break; 4465 4466 case VM_INHERIT_COPY: 4467 /* 4468 * Clone the entry and link into the map. 4469 */ 4470 new_entry = vm_map_entry_create(new_map); 4471 *new_entry = *old_entry; 4472 /* 4473 * Copied entry is COW over the old object. 4474 */ 4475 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 4476 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_WRITECNT); 4477 new_entry->wiring_thread = NULL; 4478 new_entry->wired_count = 0; 4479 new_entry->object.vm_object = NULL; 4480 new_entry->cred = NULL; 4481 vm_map_entry_link(new_map, new_entry); 4482 vmspace_map_entry_forked(vm1, vm2, new_entry); 4483 vm_map_copy_entry(old_map, new_map, old_entry, 4484 new_entry, fork_charge); 4485 vm_map_entry_set_vnode_text(new_entry, true); 4486 break; 4487 4488 case VM_INHERIT_ZERO: 4489 /* 4490 * Create a new anonymous mapping entry modelled from 4491 * the old one. 4492 */ 4493 new_entry = vm_map_entry_create(new_map); 4494 memset(new_entry, 0, sizeof(*new_entry)); 4495 4496 new_entry->start = old_entry->start; 4497 new_entry->end = old_entry->end; 4498 new_entry->eflags = old_entry->eflags & 4499 ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION | 4500 MAP_ENTRY_WRITECNT | MAP_ENTRY_VN_EXEC | 4501 MAP_ENTRY_SPLIT_BOUNDARY_MASK); 4502 new_entry->protection = old_entry->protection; 4503 new_entry->max_protection = old_entry->max_protection; 4504 new_entry->inheritance = VM_INHERIT_ZERO; 4505 4506 vm_map_entry_link(new_map, new_entry); 4507 vmspace_map_entry_forked(vm1, vm2, new_entry); 4508 4509 new_entry->cred = curthread->td_ucred; 4510 crhold(new_entry->cred); 4511 *fork_charge += (new_entry->end - new_entry->start); 4512 4513 break; 4514 } 4515 } 4516 /* 4517 * Use inlined vm_map_unlock() to postpone handling the deferred 4518 * map entries, which cannot be done until both old_map and 4519 * new_map locks are released. 4520 */ 4521 sx_xunlock(&old_map->lock); 4522 sx_xunlock(&new_map->lock); 4523 vm_map_process_deferred(); 4524 4525 return (vm2); 4526 } 4527 4528 /* 4529 * Create a process's stack for exec_new_vmspace(). This function is never 4530 * asked to wire the newly created stack. 4531 */ 4532 int 4533 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 4534 vm_prot_t prot, vm_prot_t max, int cow) 4535 { 4536 vm_size_t growsize, init_ssize; 4537 rlim_t vmemlim; 4538 int rv; 4539 4540 MPASS((map->flags & MAP_WIREFUTURE) == 0); 4541 growsize = sgrowsiz; 4542 init_ssize = (max_ssize < growsize) ? max_ssize : growsize; 4543 vm_map_lock(map); 4544 vmemlim = lim_cur(curthread, RLIMIT_VMEM); 4545 /* If we would blow our VMEM resource limit, no go */ 4546 if (map->size + init_ssize > vmemlim) { 4547 rv = KERN_NO_SPACE; 4548 goto out; 4549 } 4550 rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot, 4551 max, cow); 4552 out: 4553 vm_map_unlock(map); 4554 return (rv); 4555 } 4556 4557 static int stack_guard_page = 1; 4558 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN, 4559 &stack_guard_page, 0, 4560 "Specifies the number of guard pages for a stack that grows"); 4561 4562 static int 4563 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 4564 vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow) 4565 { 4566 vm_map_entry_t gap_entry, new_entry, prev_entry; 4567 vm_offset_t bot, gap_bot, gap_top, top; 4568 vm_size_t init_ssize, sgp; 4569 int orient, rv; 4570 4571 /* 4572 * The stack orientation is piggybacked with the cow argument. 4573 * Extract it into orient and mask the cow argument so that we 4574 * don't pass it around further. 4575 */ 4576 orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP); 4577 KASSERT(orient != 0, ("No stack grow direction")); 4578 KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP), 4579 ("bi-dir stack")); 4580 4581 if (max_ssize == 0 || 4582 !vm_map_range_valid(map, addrbos, addrbos + max_ssize)) 4583 return (KERN_INVALID_ADDRESS); 4584 sgp = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 || 4585 (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 : 4586 (vm_size_t)stack_guard_page * PAGE_SIZE; 4587 if (sgp >= max_ssize) 4588 return (KERN_INVALID_ARGUMENT); 4589 4590 init_ssize = growsize; 4591 if (max_ssize < init_ssize + sgp) 4592 init_ssize = max_ssize - sgp; 4593 4594 /* If addr is already mapped, no go */ 4595 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) 4596 return (KERN_NO_SPACE); 4597 4598 /* 4599 * If we can't accommodate max_ssize in the current mapping, no go. 4600 */ 4601 if (vm_map_entry_succ(prev_entry)->start < addrbos + max_ssize) 4602 return (KERN_NO_SPACE); 4603 4604 /* 4605 * We initially map a stack of only init_ssize. We will grow as 4606 * needed later. Depending on the orientation of the stack (i.e. 4607 * the grow direction) we either map at the top of the range, the 4608 * bottom of the range or in the middle. 4609 * 4610 * Note: we would normally expect prot and max to be VM_PROT_ALL, 4611 * and cow to be 0. Possibly we should eliminate these as input 4612 * parameters, and just pass these values here in the insert call. 4613 */ 4614 if (orient == MAP_STACK_GROWS_DOWN) { 4615 bot = addrbos + max_ssize - init_ssize; 4616 top = bot + init_ssize; 4617 gap_bot = addrbos; 4618 gap_top = bot; 4619 } else /* if (orient == MAP_STACK_GROWS_UP) */ { 4620 bot = addrbos; 4621 top = bot + init_ssize; 4622 gap_bot = top; 4623 gap_top = addrbos + max_ssize; 4624 } 4625 rv = vm_map_insert1(map, NULL, 0, bot, top, prot, max, cow, 4626 &new_entry); 4627 if (rv != KERN_SUCCESS) 4628 return (rv); 4629 KASSERT(new_entry->end == top || new_entry->start == bot, 4630 ("Bad entry start/end for new stack entry")); 4631 KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 || 4632 (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0, 4633 ("new entry lacks MAP_ENTRY_GROWS_DOWN")); 4634 KASSERT((orient & MAP_STACK_GROWS_UP) == 0 || 4635 (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0, 4636 ("new entry lacks MAP_ENTRY_GROWS_UP")); 4637 if (gap_bot == gap_top) 4638 return (KERN_SUCCESS); 4639 rv = vm_map_insert1(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE, 4640 VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ? 4641 MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP), &gap_entry); 4642 if (rv == KERN_SUCCESS) { 4643 KASSERT((gap_entry->eflags & MAP_ENTRY_GUARD) != 0, 4644 ("entry %p not gap %#x", gap_entry, gap_entry->eflags)); 4645 KASSERT((gap_entry->eflags & (MAP_ENTRY_STACK_GAP_DN | 4646 MAP_ENTRY_STACK_GAP_UP)) != 0, 4647 ("entry %p not stack gap %#x", gap_entry, 4648 gap_entry->eflags)); 4649 4650 /* 4651 * Gap can never successfully handle a fault, so 4652 * read-ahead logic is never used for it. Re-use 4653 * next_read of the gap entry to store 4654 * stack_guard_page for vm_map_growstack(). 4655 * Similarly, since a gap cannot have a backing object, 4656 * store the original stack protections in the 4657 * object offset. 4658 */ 4659 gap_entry->next_read = sgp; 4660 gap_entry->offset = prot | PROT_MAX(max); 4661 } else { 4662 (void)vm_map_delete(map, bot, top); 4663 } 4664 return (rv); 4665 } 4666 4667 /* 4668 * Attempts to grow a vm stack entry. Returns KERN_SUCCESS if we 4669 * successfully grow the stack. 4670 */ 4671 static int 4672 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry) 4673 { 4674 vm_map_entry_t stack_entry; 4675 struct proc *p; 4676 struct vmspace *vm; 4677 struct ucred *cred; 4678 vm_offset_t gap_end, gap_start, grow_start; 4679 vm_size_t grow_amount, guard, max_grow, sgp; 4680 vm_prot_t prot, max; 4681 rlim_t lmemlim, stacklim, vmemlim; 4682 int rv, rv1 __diagused; 4683 bool gap_deleted, grow_down, is_procstack; 4684 #ifdef notyet 4685 uint64_t limit; 4686 #endif 4687 #ifdef RACCT 4688 int error __diagused; 4689 #endif 4690 4691 p = curproc; 4692 vm = p->p_vmspace; 4693 4694 /* 4695 * Disallow stack growth when the access is performed by a 4696 * debugger or AIO daemon. The reason is that the wrong 4697 * resource limits are applied. 4698 */ 4699 if (p != initproc && (map != &p->p_vmspace->vm_map || 4700 p->p_textvp == NULL)) 4701 return (KERN_FAILURE); 4702 4703 MPASS(!map->system_map); 4704 4705 lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK); 4706 stacklim = lim_cur(curthread, RLIMIT_STACK); 4707 vmemlim = lim_cur(curthread, RLIMIT_VMEM); 4708 retry: 4709 /* If addr is not in a hole for a stack grow area, no need to grow. */ 4710 if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry)) 4711 return (KERN_FAILURE); 4712 if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0) 4713 return (KERN_SUCCESS); 4714 if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) { 4715 stack_entry = vm_map_entry_succ(gap_entry); 4716 if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 || 4717 stack_entry->start != gap_entry->end) 4718 return (KERN_FAILURE); 4719 grow_amount = round_page(stack_entry->start - addr); 4720 grow_down = true; 4721 } else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) { 4722 stack_entry = vm_map_entry_pred(gap_entry); 4723 if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 || 4724 stack_entry->end != gap_entry->start) 4725 return (KERN_FAILURE); 4726 grow_amount = round_page(addr + 1 - stack_entry->end); 4727 grow_down = false; 4728 } else { 4729 return (KERN_FAILURE); 4730 } 4731 guard = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 || 4732 (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 : 4733 gap_entry->next_read; 4734 max_grow = gap_entry->end - gap_entry->start; 4735 if (guard > max_grow) 4736 return (KERN_NO_SPACE); 4737 max_grow -= guard; 4738 if (grow_amount > max_grow) 4739 return (KERN_NO_SPACE); 4740 4741 /* 4742 * If this is the main process stack, see if we're over the stack 4743 * limit. 4744 */ 4745 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr && 4746 addr < (vm_offset_t)vm->vm_stacktop; 4747 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) 4748 return (KERN_NO_SPACE); 4749 4750 #ifdef RACCT 4751 if (racct_enable) { 4752 PROC_LOCK(p); 4753 if (is_procstack && racct_set(p, RACCT_STACK, 4754 ctob(vm->vm_ssize) + grow_amount)) { 4755 PROC_UNLOCK(p); 4756 return (KERN_NO_SPACE); 4757 } 4758 PROC_UNLOCK(p); 4759 } 4760 #endif 4761 4762 grow_amount = roundup(grow_amount, sgrowsiz); 4763 if (grow_amount > max_grow) 4764 grow_amount = max_grow; 4765 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 4766 grow_amount = trunc_page((vm_size_t)stacklim) - 4767 ctob(vm->vm_ssize); 4768 } 4769 4770 #ifdef notyet 4771 PROC_LOCK(p); 4772 limit = racct_get_available(p, RACCT_STACK); 4773 PROC_UNLOCK(p); 4774 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit)) 4775 grow_amount = limit - ctob(vm->vm_ssize); 4776 #endif 4777 4778 if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) { 4779 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) { 4780 rv = KERN_NO_SPACE; 4781 goto out; 4782 } 4783 #ifdef RACCT 4784 if (racct_enable) { 4785 PROC_LOCK(p); 4786 if (racct_set(p, RACCT_MEMLOCK, 4787 ptoa(pmap_wired_count(map->pmap)) + grow_amount)) { 4788 PROC_UNLOCK(p); 4789 rv = KERN_NO_SPACE; 4790 goto out; 4791 } 4792 PROC_UNLOCK(p); 4793 } 4794 #endif 4795 } 4796 4797 /* If we would blow our VMEM resource limit, no go */ 4798 if (map->size + grow_amount > vmemlim) { 4799 rv = KERN_NO_SPACE; 4800 goto out; 4801 } 4802 #ifdef RACCT 4803 if (racct_enable) { 4804 PROC_LOCK(p); 4805 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) { 4806 PROC_UNLOCK(p); 4807 rv = KERN_NO_SPACE; 4808 goto out; 4809 } 4810 PROC_UNLOCK(p); 4811 } 4812 #endif 4813 4814 if (vm_map_lock_upgrade(map)) { 4815 gap_entry = NULL; 4816 vm_map_lock_read(map); 4817 goto retry; 4818 } 4819 4820 if (grow_down) { 4821 /* 4822 * The gap_entry "offset" field is overloaded. See 4823 * vm_map_stack_locked(). 4824 */ 4825 prot = PROT_EXTRACT(gap_entry->offset); 4826 max = PROT_MAX_EXTRACT(gap_entry->offset); 4827 sgp = gap_entry->next_read; 4828 4829 grow_start = gap_entry->end - grow_amount; 4830 if (gap_entry->start + grow_amount == gap_entry->end) { 4831 gap_start = gap_entry->start; 4832 gap_end = gap_entry->end; 4833 vm_map_entry_delete(map, gap_entry); 4834 gap_deleted = true; 4835 } else { 4836 MPASS(gap_entry->start < gap_entry->end - grow_amount); 4837 vm_map_entry_resize(map, gap_entry, -grow_amount); 4838 gap_deleted = false; 4839 } 4840 rv = vm_map_insert(map, NULL, 0, grow_start, 4841 grow_start + grow_amount, prot, max, MAP_STACK_GROWS_DOWN); 4842 if (rv != KERN_SUCCESS) { 4843 if (gap_deleted) { 4844 rv1 = vm_map_insert1(map, NULL, 0, gap_start, 4845 gap_end, VM_PROT_NONE, VM_PROT_NONE, 4846 MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN, 4847 &gap_entry); 4848 MPASS(rv1 == KERN_SUCCESS); 4849 gap_entry->next_read = sgp; 4850 gap_entry->offset = prot | PROT_MAX(max); 4851 } else 4852 vm_map_entry_resize(map, gap_entry, 4853 grow_amount); 4854 } 4855 } else { 4856 grow_start = stack_entry->end; 4857 cred = stack_entry->cred; 4858 if (cred == NULL && stack_entry->object.vm_object != NULL) 4859 cred = stack_entry->object.vm_object->cred; 4860 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred)) 4861 rv = KERN_NO_SPACE; 4862 /* Grow the underlying object if applicable. */ 4863 else if (stack_entry->object.vm_object == NULL || 4864 vm_object_coalesce(stack_entry->object.vm_object, 4865 stack_entry->offset, 4866 (vm_size_t)(stack_entry->end - stack_entry->start), 4867 grow_amount, cred != NULL)) { 4868 if (gap_entry->start + grow_amount == gap_entry->end) { 4869 vm_map_entry_delete(map, gap_entry); 4870 vm_map_entry_resize(map, stack_entry, 4871 grow_amount); 4872 } else { 4873 gap_entry->start += grow_amount; 4874 stack_entry->end += grow_amount; 4875 } 4876 map->size += grow_amount; 4877 rv = KERN_SUCCESS; 4878 } else 4879 rv = KERN_FAILURE; 4880 } 4881 if (rv == KERN_SUCCESS && is_procstack) 4882 vm->vm_ssize += btoc(grow_amount); 4883 4884 /* 4885 * Heed the MAP_WIREFUTURE flag if it was set for this process. 4886 */ 4887 if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) { 4888 rv = vm_map_wire_locked(map, grow_start, 4889 grow_start + grow_amount, 4890 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 4891 } 4892 vm_map_lock_downgrade(map); 4893 4894 out: 4895 #ifdef RACCT 4896 if (racct_enable && rv != KERN_SUCCESS) { 4897 PROC_LOCK(p); 4898 error = racct_set(p, RACCT_VMEM, map->size); 4899 KASSERT(error == 0, ("decreasing RACCT_VMEM failed")); 4900 if (!old_mlock) { 4901 error = racct_set(p, RACCT_MEMLOCK, 4902 ptoa(pmap_wired_count(map->pmap))); 4903 KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed")); 4904 } 4905 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize)); 4906 KASSERT(error == 0, ("decreasing RACCT_STACK failed")); 4907 PROC_UNLOCK(p); 4908 } 4909 #endif 4910 4911 return (rv); 4912 } 4913 4914 /* 4915 * Unshare the specified VM space for exec. If other processes are 4916 * mapped to it, then create a new one. The new vmspace is null. 4917 */ 4918 int 4919 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser) 4920 { 4921 struct vmspace *oldvmspace = p->p_vmspace; 4922 struct vmspace *newvmspace; 4923 4924 KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0, 4925 ("vmspace_exec recursed")); 4926 newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit); 4927 if (newvmspace == NULL) 4928 return (ENOMEM); 4929 newvmspace->vm_swrss = oldvmspace->vm_swrss; 4930 /* 4931 * This code is written like this for prototype purposes. The 4932 * goal is to avoid running down the vmspace here, but let the 4933 * other process's that are still using the vmspace to finally 4934 * run it down. Even though there is little or no chance of blocking 4935 * here, it is a good idea to keep this form for future mods. 4936 */ 4937 PROC_VMSPACE_LOCK(p); 4938 p->p_vmspace = newvmspace; 4939 PROC_VMSPACE_UNLOCK(p); 4940 if (p == curthread->td_proc) 4941 pmap_activate(curthread); 4942 curthread->td_pflags |= TDP_EXECVMSPC; 4943 return (0); 4944 } 4945 4946 /* 4947 * Unshare the specified VM space for forcing COW. This 4948 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 4949 */ 4950 int 4951 vmspace_unshare(struct proc *p) 4952 { 4953 struct vmspace *oldvmspace = p->p_vmspace; 4954 struct vmspace *newvmspace; 4955 vm_ooffset_t fork_charge; 4956 4957 /* 4958 * The caller is responsible for ensuring that the reference count 4959 * cannot concurrently transition 1 -> 2. 4960 */ 4961 if (refcount_load(&oldvmspace->vm_refcnt) == 1) 4962 return (0); 4963 fork_charge = 0; 4964 newvmspace = vmspace_fork(oldvmspace, &fork_charge); 4965 if (newvmspace == NULL) 4966 return (ENOMEM); 4967 if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) { 4968 vmspace_free(newvmspace); 4969 return (ENOMEM); 4970 } 4971 PROC_VMSPACE_LOCK(p); 4972 p->p_vmspace = newvmspace; 4973 PROC_VMSPACE_UNLOCK(p); 4974 if (p == curthread->td_proc) 4975 pmap_activate(curthread); 4976 vmspace_free(oldvmspace); 4977 return (0); 4978 } 4979 4980 /* 4981 * vm_map_lookup: 4982 * 4983 * Finds the VM object, offset, and 4984 * protection for a given virtual address in the 4985 * specified map, assuming a page fault of the 4986 * type specified. 4987 * 4988 * Leaves the map in question locked for read; return 4989 * values are guaranteed until a vm_map_lookup_done 4990 * call is performed. Note that the map argument 4991 * is in/out; the returned map must be used in 4992 * the call to vm_map_lookup_done. 4993 * 4994 * A handle (out_entry) is returned for use in 4995 * vm_map_lookup_done, to make that fast. 4996 * 4997 * If a lookup is requested with "write protection" 4998 * specified, the map may be changed to perform virtual 4999 * copying operations, although the data referenced will 5000 * remain the same. 5001 */ 5002 int 5003 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 5004 vm_offset_t vaddr, 5005 vm_prot_t fault_typea, 5006 vm_map_entry_t *out_entry, /* OUT */ 5007 vm_object_t *object, /* OUT */ 5008 vm_pindex_t *pindex, /* OUT */ 5009 vm_prot_t *out_prot, /* OUT */ 5010 boolean_t *wired) /* OUT */ 5011 { 5012 vm_map_entry_t entry; 5013 vm_map_t map = *var_map; 5014 vm_prot_t prot; 5015 vm_prot_t fault_type; 5016 vm_object_t eobject; 5017 vm_size_t size; 5018 struct ucred *cred; 5019 5020 RetryLookup: 5021 5022 vm_map_lock_read(map); 5023 5024 RetryLookupLocked: 5025 /* 5026 * Lookup the faulting address. 5027 */ 5028 if (!vm_map_lookup_entry(map, vaddr, out_entry)) { 5029 vm_map_unlock_read(map); 5030 return (KERN_INVALID_ADDRESS); 5031 } 5032 5033 entry = *out_entry; 5034 5035 /* 5036 * Handle submaps. 5037 */ 5038 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 5039 vm_map_t old_map = map; 5040 5041 *var_map = map = entry->object.sub_map; 5042 vm_map_unlock_read(old_map); 5043 goto RetryLookup; 5044 } 5045 5046 /* 5047 * Check whether this task is allowed to have this page. 5048 */ 5049 prot = entry->protection; 5050 if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) { 5051 fault_typea &= ~VM_PROT_FAULT_LOOKUP; 5052 if (prot == VM_PROT_NONE && map != kernel_map && 5053 (entry->eflags & MAP_ENTRY_GUARD) != 0 && 5054 (entry->eflags & (MAP_ENTRY_STACK_GAP_DN | 5055 MAP_ENTRY_STACK_GAP_UP)) != 0 && 5056 vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS) 5057 goto RetryLookupLocked; 5058 } 5059 fault_type = fault_typea & VM_PROT_ALL; 5060 if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) { 5061 vm_map_unlock_read(map); 5062 return (KERN_PROTECTION_FAILURE); 5063 } 5064 KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags & 5065 (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) != 5066 (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY), 5067 ("entry %p flags %x", entry, entry->eflags)); 5068 if ((fault_typea & VM_PROT_COPY) != 0 && 5069 (entry->max_protection & VM_PROT_WRITE) == 0 && 5070 (entry->eflags & MAP_ENTRY_COW) == 0) { 5071 vm_map_unlock_read(map); 5072 return (KERN_PROTECTION_FAILURE); 5073 } 5074 5075 /* 5076 * If this page is not pageable, we have to get it for all possible 5077 * accesses. 5078 */ 5079 *wired = (entry->wired_count != 0); 5080 if (*wired) 5081 fault_type = entry->protection; 5082 size = entry->end - entry->start; 5083 5084 /* 5085 * If the entry was copy-on-write, we either ... 5086 */ 5087 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 5088 /* 5089 * If we want to write the page, we may as well handle that 5090 * now since we've got the map locked. 5091 * 5092 * If we don't need to write the page, we just demote the 5093 * permissions allowed. 5094 */ 5095 if ((fault_type & VM_PROT_WRITE) != 0 || 5096 (fault_typea & VM_PROT_COPY) != 0) { 5097 /* 5098 * Make a new object, and place it in the object 5099 * chain. Note that no new references have appeared 5100 * -- one just moved from the map to the new 5101 * object. 5102 */ 5103 if (vm_map_lock_upgrade(map)) 5104 goto RetryLookup; 5105 5106 if (entry->cred == NULL) { 5107 /* 5108 * The debugger owner is charged for 5109 * the memory. 5110 */ 5111 cred = curthread->td_ucred; 5112 crhold(cred); 5113 if (!swap_reserve_by_cred(size, cred)) { 5114 crfree(cred); 5115 vm_map_unlock(map); 5116 return (KERN_RESOURCE_SHORTAGE); 5117 } 5118 entry->cred = cred; 5119 } 5120 eobject = entry->object.vm_object; 5121 vm_object_shadow(&entry->object.vm_object, 5122 &entry->offset, size, entry->cred, false); 5123 if (eobject == entry->object.vm_object) { 5124 /* 5125 * The object was not shadowed. 5126 */ 5127 swap_release_by_cred(size, entry->cred); 5128 crfree(entry->cred); 5129 } 5130 entry->cred = NULL; 5131 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 5132 5133 vm_map_lock_downgrade(map); 5134 } else { 5135 /* 5136 * We're attempting to read a copy-on-write page -- 5137 * don't allow writes. 5138 */ 5139 prot &= ~VM_PROT_WRITE; 5140 } 5141 } 5142 5143 /* 5144 * Create an object if necessary. 5145 */ 5146 if (entry->object.vm_object == NULL && !map->system_map) { 5147 if (vm_map_lock_upgrade(map)) 5148 goto RetryLookup; 5149 entry->object.vm_object = vm_object_allocate_anon(atop(size), 5150 NULL, entry->cred, size); 5151 entry->offset = 0; 5152 entry->cred = NULL; 5153 vm_map_lock_downgrade(map); 5154 } 5155 5156 /* 5157 * Return the object/offset from this entry. If the entry was 5158 * copy-on-write or empty, it has been fixed up. 5159 */ 5160 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 5161 *object = entry->object.vm_object; 5162 5163 *out_prot = prot; 5164 return (KERN_SUCCESS); 5165 } 5166 5167 /* 5168 * vm_map_lookup_locked: 5169 * 5170 * Lookup the faulting address. A version of vm_map_lookup that returns 5171 * KERN_FAILURE instead of blocking on map lock or memory allocation. 5172 */ 5173 int 5174 vm_map_lookup_locked(vm_map_t *var_map, /* IN/OUT */ 5175 vm_offset_t vaddr, 5176 vm_prot_t fault_typea, 5177 vm_map_entry_t *out_entry, /* OUT */ 5178 vm_object_t *object, /* OUT */ 5179 vm_pindex_t *pindex, /* OUT */ 5180 vm_prot_t *out_prot, /* OUT */ 5181 boolean_t *wired) /* OUT */ 5182 { 5183 vm_map_entry_t entry; 5184 vm_map_t map = *var_map; 5185 vm_prot_t prot; 5186 vm_prot_t fault_type = fault_typea; 5187 5188 /* 5189 * Lookup the faulting address. 5190 */ 5191 if (!vm_map_lookup_entry(map, vaddr, out_entry)) 5192 return (KERN_INVALID_ADDRESS); 5193 5194 entry = *out_entry; 5195 5196 /* 5197 * Fail if the entry refers to a submap. 5198 */ 5199 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 5200 return (KERN_FAILURE); 5201 5202 /* 5203 * Check whether this task is allowed to have this page. 5204 */ 5205 prot = entry->protection; 5206 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; 5207 if ((fault_type & prot) != fault_type) 5208 return (KERN_PROTECTION_FAILURE); 5209 5210 /* 5211 * If this page is not pageable, we have to get it for all possible 5212 * accesses. 5213 */ 5214 *wired = (entry->wired_count != 0); 5215 if (*wired) 5216 fault_type = entry->protection; 5217 5218 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 5219 /* 5220 * Fail if the entry was copy-on-write for a write fault. 5221 */ 5222 if (fault_type & VM_PROT_WRITE) 5223 return (KERN_FAILURE); 5224 /* 5225 * We're attempting to read a copy-on-write page -- 5226 * don't allow writes. 5227 */ 5228 prot &= ~VM_PROT_WRITE; 5229 } 5230 5231 /* 5232 * Fail if an object should be created. 5233 */ 5234 if (entry->object.vm_object == NULL && !map->system_map) 5235 return (KERN_FAILURE); 5236 5237 /* 5238 * Return the object/offset from this entry. If the entry was 5239 * copy-on-write or empty, it has been fixed up. 5240 */ 5241 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 5242 *object = entry->object.vm_object; 5243 5244 *out_prot = prot; 5245 return (KERN_SUCCESS); 5246 } 5247 5248 /* 5249 * vm_map_lookup_done: 5250 * 5251 * Releases locks acquired by a vm_map_lookup 5252 * (according to the handle returned by that lookup). 5253 */ 5254 void 5255 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry) 5256 { 5257 /* 5258 * Unlock the main-level map 5259 */ 5260 vm_map_unlock_read(map); 5261 } 5262 5263 vm_offset_t 5264 vm_map_max_KBI(const struct vm_map *map) 5265 { 5266 5267 return (vm_map_max(map)); 5268 } 5269 5270 vm_offset_t 5271 vm_map_min_KBI(const struct vm_map *map) 5272 { 5273 5274 return (vm_map_min(map)); 5275 } 5276 5277 pmap_t 5278 vm_map_pmap_KBI(vm_map_t map) 5279 { 5280 5281 return (map->pmap); 5282 } 5283 5284 bool 5285 vm_map_range_valid_KBI(vm_map_t map, vm_offset_t start, vm_offset_t end) 5286 { 5287 5288 return (vm_map_range_valid(map, start, end)); 5289 } 5290 5291 #ifdef INVARIANTS 5292 static void 5293 _vm_map_assert_consistent(vm_map_t map, int check) 5294 { 5295 vm_map_entry_t entry, prev; 5296 vm_map_entry_t cur, header, lbound, ubound; 5297 vm_size_t max_left, max_right; 5298 5299 #ifdef DIAGNOSTIC 5300 ++map->nupdates; 5301 #endif 5302 if (enable_vmmap_check != check) 5303 return; 5304 5305 header = prev = &map->header; 5306 VM_MAP_ENTRY_FOREACH(entry, map) { 5307 KASSERT(prev->end <= entry->start, 5308 ("map %p prev->end = %jx, start = %jx", map, 5309 (uintmax_t)prev->end, (uintmax_t)entry->start)); 5310 KASSERT(entry->start < entry->end, 5311 ("map %p start = %jx, end = %jx", map, 5312 (uintmax_t)entry->start, (uintmax_t)entry->end)); 5313 KASSERT(entry->left == header || 5314 entry->left->start < entry->start, 5315 ("map %p left->start = %jx, start = %jx", map, 5316 (uintmax_t)entry->left->start, (uintmax_t)entry->start)); 5317 KASSERT(entry->right == header || 5318 entry->start < entry->right->start, 5319 ("map %p start = %jx, right->start = %jx", map, 5320 (uintmax_t)entry->start, (uintmax_t)entry->right->start)); 5321 cur = map->root; 5322 lbound = ubound = header; 5323 for (;;) { 5324 if (entry->start < cur->start) { 5325 ubound = cur; 5326 cur = cur->left; 5327 KASSERT(cur != lbound, 5328 ("map %p cannot find %jx", 5329 map, (uintmax_t)entry->start)); 5330 } else if (cur->end <= entry->start) { 5331 lbound = cur; 5332 cur = cur->right; 5333 KASSERT(cur != ubound, 5334 ("map %p cannot find %jx", 5335 map, (uintmax_t)entry->start)); 5336 } else { 5337 KASSERT(cur == entry, 5338 ("map %p cannot find %jx", 5339 map, (uintmax_t)entry->start)); 5340 break; 5341 } 5342 } 5343 max_left = vm_map_entry_max_free_left(entry, lbound); 5344 max_right = vm_map_entry_max_free_right(entry, ubound); 5345 KASSERT(entry->max_free == vm_size_max(max_left, max_right), 5346 ("map %p max = %jx, max_left = %jx, max_right = %jx", map, 5347 (uintmax_t)entry->max_free, 5348 (uintmax_t)max_left, (uintmax_t)max_right)); 5349 prev = entry; 5350 } 5351 KASSERT(prev->end <= entry->start, 5352 ("map %p prev->end = %jx, start = %jx", map, 5353 (uintmax_t)prev->end, (uintmax_t)entry->start)); 5354 } 5355 #endif 5356 5357 #include "opt_ddb.h" 5358 #ifdef DDB 5359 #include <sys/kernel.h> 5360 5361 #include <ddb/ddb.h> 5362 5363 static void 5364 vm_map_print(vm_map_t map) 5365 { 5366 vm_map_entry_t entry, prev; 5367 5368 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 5369 (void *)map, 5370 (void *)map->pmap, map->nentries, map->timestamp); 5371 5372 db_indent += 2; 5373 prev = &map->header; 5374 VM_MAP_ENTRY_FOREACH(entry, map) { 5375 db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n", 5376 (void *)entry, (void *)entry->start, (void *)entry->end, 5377 entry->eflags); 5378 { 5379 static const char * const inheritance_name[4] = 5380 {"share", "copy", "none", "donate_copy"}; 5381 5382 db_iprintf(" prot=%x/%x/%s", 5383 entry->protection, 5384 entry->max_protection, 5385 inheritance_name[(int)(unsigned char) 5386 entry->inheritance]); 5387 if (entry->wired_count != 0) 5388 db_printf(", wired"); 5389 } 5390 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 5391 db_printf(", share=%p, offset=0x%jx\n", 5392 (void *)entry->object.sub_map, 5393 (uintmax_t)entry->offset); 5394 if (prev == &map->header || 5395 prev->object.sub_map != 5396 entry->object.sub_map) { 5397 db_indent += 2; 5398 vm_map_print((vm_map_t)entry->object.sub_map); 5399 db_indent -= 2; 5400 } 5401 } else { 5402 if (entry->cred != NULL) 5403 db_printf(", ruid %d", entry->cred->cr_ruid); 5404 db_printf(", object=%p, offset=0x%jx", 5405 (void *)entry->object.vm_object, 5406 (uintmax_t)entry->offset); 5407 if (entry->object.vm_object && entry->object.vm_object->cred) 5408 db_printf(", obj ruid %d charge %jx", 5409 entry->object.vm_object->cred->cr_ruid, 5410 (uintmax_t)entry->object.vm_object->charge); 5411 if (entry->eflags & MAP_ENTRY_COW) 5412 db_printf(", copy (%s)", 5413 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 5414 db_printf("\n"); 5415 5416 if (prev == &map->header || 5417 prev->object.vm_object != 5418 entry->object.vm_object) { 5419 db_indent += 2; 5420 vm_object_print((db_expr_t)(intptr_t) 5421 entry->object.vm_object, 5422 0, 0, (char *)0); 5423 db_indent -= 2; 5424 } 5425 } 5426 prev = entry; 5427 } 5428 db_indent -= 2; 5429 } 5430 5431 DB_SHOW_COMMAND(map, map) 5432 { 5433 5434 if (!have_addr) { 5435 db_printf("usage: show map <addr>\n"); 5436 return; 5437 } 5438 vm_map_print((vm_map_t)addr); 5439 } 5440 5441 DB_SHOW_COMMAND(procvm, procvm) 5442 { 5443 struct proc *p; 5444 5445 if (have_addr) { 5446 p = db_lookup_proc(addr); 5447 } else { 5448 p = curproc; 5449 } 5450 5451 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 5452 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 5453 (void *)vmspace_pmap(p->p_vmspace)); 5454 5455 vm_map_print((vm_map_t)&p->p_vmspace->vm_map); 5456 } 5457 5458 #endif /* DDB */ 5459