1 /*- 2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * The Mach Operating System project at Carnegie-Mellon University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 */ 60 61 /* 62 * Virtual memory mapping module. 63 */ 64 65 #include <sys/param.h> 66 #include <sys/systm.h> 67 #include <sys/elf.h> 68 #include <sys/kernel.h> 69 #include <sys/ktr.h> 70 #include <sys/lock.h> 71 #include <sys/mutex.h> 72 #include <sys/proc.h> 73 #include <sys/vmmeter.h> 74 #include <sys/mman.h> 75 #include <sys/vnode.h> 76 #include <sys/racct.h> 77 #include <sys/resourcevar.h> 78 #include <sys/rwlock.h> 79 #include <sys/file.h> 80 #include <sys/sysctl.h> 81 #include <sys/sysent.h> 82 #include <sys/shm.h> 83 84 #include <vm/vm.h> 85 #include <vm/vm_param.h> 86 #include <vm/pmap.h> 87 #include <vm/vm_map.h> 88 #include <vm/vm_page.h> 89 #include <vm/vm_pageout.h> 90 #include <vm/vm_object.h> 91 #include <vm/vm_pager.h> 92 #include <vm/vm_radix.h> 93 #include <vm/vm_kern.h> 94 #include <vm/vm_extern.h> 95 #include <vm/vnode_pager.h> 96 #include <vm/swap_pager.h> 97 #include <vm/uma.h> 98 99 /* 100 * Virtual memory maps provide for the mapping, protection, 101 * and sharing of virtual memory objects. In addition, 102 * this module provides for an efficient virtual copy of 103 * memory from one map to another. 104 * 105 * Synchronization is required prior to most operations. 106 * 107 * Maps consist of an ordered doubly-linked list of simple 108 * entries; a self-adjusting binary search tree of these 109 * entries is used to speed up lookups. 110 * 111 * Since portions of maps are specified by start/end addresses, 112 * which may not align with existing map entries, all 113 * routines merely "clip" entries to these start/end values. 114 * [That is, an entry is split into two, bordering at a 115 * start or end value.] Note that these clippings may not 116 * always be necessary (as the two resulting entries are then 117 * not changed); however, the clipping is done for convenience. 118 * 119 * As mentioned above, virtual copy operations are performed 120 * by copying VM object references from one map to 121 * another, and then marking both regions as copy-on-write. 122 */ 123 124 static struct mtx map_sleep_mtx; 125 static uma_zone_t mapentzone; 126 static uma_zone_t kmapentzone; 127 static uma_zone_t vmspace_zone; 128 static int vmspace_zinit(void *mem, int size, int flags); 129 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, 130 vm_offset_t max); 131 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map); 132 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry); 133 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry); 134 static int vm_map_growstack(vm_map_t map, vm_offset_t addr, 135 vm_map_entry_t gap_entry); 136 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 137 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags); 138 #ifdef INVARIANTS 139 static void vmspace_zdtor(void *mem, int size, void *arg); 140 #endif 141 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, 142 vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max, 143 int cow); 144 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry, 145 vm_offset_t failed_addr); 146 147 #define CONTAINS_BITS(set, bits) ((~(set) & (bits)) == 0) 148 149 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \ 150 ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \ 151 !((e)->eflags & MAP_ENTRY_NEEDS_COPY))) 152 153 /* 154 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type 155 * stable. 156 */ 157 #define PROC_VMSPACE_LOCK(p) do { } while (0) 158 #define PROC_VMSPACE_UNLOCK(p) do { } while (0) 159 160 /* 161 * VM_MAP_RANGE_CHECK: [ internal use only ] 162 * 163 * Asserts that the starting and ending region 164 * addresses fall within the valid range of the map. 165 */ 166 #define VM_MAP_RANGE_CHECK(map, start, end) \ 167 { \ 168 if (start < vm_map_min(map)) \ 169 start = vm_map_min(map); \ 170 if (end > vm_map_max(map)) \ 171 end = vm_map_max(map); \ 172 if (start > end) \ 173 start = end; \ 174 } 175 176 #ifndef UMA_USE_DMAP 177 178 /* 179 * Allocate a new slab for kernel map entries. The kernel map may be locked or 180 * unlocked, depending on whether the request is coming from the kernel map or a 181 * submap. This function allocates a virtual address range directly from the 182 * kernel map instead of the kmem_* layer to avoid recursion on the kernel map 183 * lock and also to avoid triggering allocator recursion in the vmem boundary 184 * tag allocator. 185 */ 186 static void * 187 kmapent_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 188 int wait) 189 { 190 vm_offset_t addr; 191 int error, locked; 192 193 *pflag = UMA_SLAB_PRIV; 194 195 if (!(locked = vm_map_locked(kernel_map))) 196 vm_map_lock(kernel_map); 197 addr = vm_map_findspace(kernel_map, vm_map_min(kernel_map), bytes); 198 if (addr + bytes < addr || addr + bytes > vm_map_max(kernel_map)) 199 panic("%s: kernel map is exhausted", __func__); 200 error = vm_map_insert(kernel_map, NULL, 0, addr, addr + bytes, 201 VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT); 202 if (error != KERN_SUCCESS) 203 panic("%s: vm_map_insert() failed: %d", __func__, error); 204 if (!locked) 205 vm_map_unlock(kernel_map); 206 error = kmem_back_domain(domain, kernel_object, addr, bytes, M_NOWAIT | 207 M_USE_RESERVE | (wait & M_ZERO)); 208 if (error == KERN_SUCCESS) { 209 return ((void *)addr); 210 } else { 211 if (!locked) 212 vm_map_lock(kernel_map); 213 vm_map_delete(kernel_map, addr, bytes); 214 if (!locked) 215 vm_map_unlock(kernel_map); 216 return (NULL); 217 } 218 } 219 220 static void 221 kmapent_free(void *item, vm_size_t size, uint8_t pflag) 222 { 223 vm_offset_t addr; 224 int error __diagused; 225 226 if ((pflag & UMA_SLAB_PRIV) == 0) 227 /* XXX leaked */ 228 return; 229 230 addr = (vm_offset_t)item; 231 kmem_unback(kernel_object, addr, size); 232 error = vm_map_remove(kernel_map, addr, addr + size); 233 KASSERT(error == KERN_SUCCESS, 234 ("%s: vm_map_remove failed: %d", __func__, error)); 235 } 236 237 /* 238 * The worst-case upper bound on the number of kernel map entries that may be 239 * created before the zone must be replenished in _vm_map_unlock(). 240 */ 241 #define KMAPENT_RESERVE 1 242 243 #endif /* !UMD_MD_SMALL_ALLOC */ 244 245 /* 246 * vm_map_startup: 247 * 248 * Initialize the vm_map module. Must be called before any other vm_map 249 * routines. 250 * 251 * User map and entry structures are allocated from the general purpose 252 * memory pool. Kernel maps are statically defined. Kernel map entries 253 * require special handling to avoid recursion; see the comments above 254 * kmapent_alloc() and in vm_map_entry_create(). 255 */ 256 void 257 vm_map_startup(void) 258 { 259 mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF); 260 261 /* 262 * Disable the use of per-CPU buckets: map entry allocation is 263 * serialized by the kernel map lock. 264 */ 265 kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry), 266 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 267 UMA_ZONE_VM | UMA_ZONE_NOBUCKET); 268 #ifndef UMA_USE_DMAP 269 /* Reserve an extra map entry for use when replenishing the reserve. */ 270 uma_zone_reserve(kmapentzone, KMAPENT_RESERVE + 1); 271 uma_prealloc(kmapentzone, KMAPENT_RESERVE + 1); 272 uma_zone_set_allocf(kmapentzone, kmapent_alloc); 273 uma_zone_set_freef(kmapentzone, kmapent_free); 274 #endif 275 276 mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry), 277 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 278 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL, 279 #ifdef INVARIANTS 280 vmspace_zdtor, 281 #else 282 NULL, 283 #endif 284 vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 285 } 286 287 static int 288 vmspace_zinit(void *mem, int size, int flags) 289 { 290 struct vmspace *vm; 291 vm_map_t map; 292 293 vm = (struct vmspace *)mem; 294 map = &vm->vm_map; 295 296 memset(map, 0, sizeof(*map)); /* set MAP_SYSTEM_MAP to false */ 297 sx_init(&map->lock, "vm map (user)"); 298 PMAP_LOCK_INIT(vmspace_pmap(vm)); 299 return (0); 300 } 301 302 #ifdef INVARIANTS 303 static void 304 vmspace_zdtor(void *mem, int size, void *arg) 305 { 306 struct vmspace *vm; 307 308 vm = (struct vmspace *)mem; 309 KASSERT(vm->vm_map.nentries == 0, 310 ("vmspace %p nentries == %d on free", vm, vm->vm_map.nentries)); 311 KASSERT(vm->vm_map.size == 0, 312 ("vmspace %p size == %ju on free", vm, (uintmax_t)vm->vm_map.size)); 313 } 314 #endif /* INVARIANTS */ 315 316 /* 317 * Allocate a vmspace structure, including a vm_map and pmap, 318 * and initialize those structures. The refcnt is set to 1. 319 */ 320 struct vmspace * 321 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit) 322 { 323 struct vmspace *vm; 324 325 vm = uma_zalloc(vmspace_zone, M_WAITOK); 326 KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL")); 327 if (!pinit(vmspace_pmap(vm))) { 328 uma_zfree(vmspace_zone, vm); 329 return (NULL); 330 } 331 CTR1(KTR_VM, "vmspace_alloc: %p", vm); 332 _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max); 333 refcount_init(&vm->vm_refcnt, 1); 334 vm->vm_shm = NULL; 335 vm->vm_swrss = 0; 336 vm->vm_tsize = 0; 337 vm->vm_dsize = 0; 338 vm->vm_ssize = 0; 339 vm->vm_taddr = 0; 340 vm->vm_daddr = 0; 341 vm->vm_maxsaddr = 0; 342 return (vm); 343 } 344 345 #ifdef RACCT 346 static void 347 vmspace_container_reset(struct proc *p) 348 { 349 350 PROC_LOCK(p); 351 racct_set(p, RACCT_DATA, 0); 352 racct_set(p, RACCT_STACK, 0); 353 racct_set(p, RACCT_RSS, 0); 354 racct_set(p, RACCT_MEMLOCK, 0); 355 racct_set(p, RACCT_VMEM, 0); 356 PROC_UNLOCK(p); 357 } 358 #endif 359 360 static inline void 361 vmspace_dofree(struct vmspace *vm) 362 { 363 364 CTR1(KTR_VM, "vmspace_free: %p", vm); 365 366 /* 367 * Make sure any SysV shm is freed, it might not have been in 368 * exit1(). 369 */ 370 shmexit(vm); 371 372 /* 373 * Lock the map, to wait out all other references to it. 374 * Delete all of the mappings and pages they hold, then call 375 * the pmap module to reclaim anything left. 376 */ 377 (void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map), 378 vm_map_max(&vm->vm_map)); 379 380 pmap_release(vmspace_pmap(vm)); 381 vm->vm_map.pmap = NULL; 382 uma_zfree(vmspace_zone, vm); 383 } 384 385 void 386 vmspace_free(struct vmspace *vm) 387 { 388 389 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 390 "vmspace_free() called"); 391 392 if (refcount_release(&vm->vm_refcnt)) 393 vmspace_dofree(vm); 394 } 395 396 void 397 vmspace_exitfree(struct proc *p) 398 { 399 struct vmspace *vm; 400 401 PROC_VMSPACE_LOCK(p); 402 vm = p->p_vmspace; 403 p->p_vmspace = NULL; 404 PROC_VMSPACE_UNLOCK(p); 405 KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace")); 406 vmspace_free(vm); 407 } 408 409 void 410 vmspace_exit(struct thread *td) 411 { 412 struct vmspace *vm; 413 struct proc *p; 414 bool released; 415 416 p = td->td_proc; 417 vm = p->p_vmspace; 418 419 /* 420 * Prepare to release the vmspace reference. The thread that releases 421 * the last reference is responsible for tearing down the vmspace. 422 * However, threads not releasing the final reference must switch to the 423 * kernel's vmspace0 before the decrement so that the subsequent pmap 424 * deactivation does not modify a freed vmspace. 425 */ 426 refcount_acquire(&vmspace0.vm_refcnt); 427 if (!(released = refcount_release_if_last(&vm->vm_refcnt))) { 428 if (p->p_vmspace != &vmspace0) { 429 PROC_VMSPACE_LOCK(p); 430 p->p_vmspace = &vmspace0; 431 PROC_VMSPACE_UNLOCK(p); 432 pmap_activate(td); 433 } 434 released = refcount_release(&vm->vm_refcnt); 435 } 436 if (released) { 437 /* 438 * pmap_remove_pages() expects the pmap to be active, so switch 439 * back first if necessary. 440 */ 441 if (p->p_vmspace != vm) { 442 PROC_VMSPACE_LOCK(p); 443 p->p_vmspace = vm; 444 PROC_VMSPACE_UNLOCK(p); 445 pmap_activate(td); 446 } 447 pmap_remove_pages(vmspace_pmap(vm)); 448 PROC_VMSPACE_LOCK(p); 449 p->p_vmspace = &vmspace0; 450 PROC_VMSPACE_UNLOCK(p); 451 pmap_activate(td); 452 vmspace_dofree(vm); 453 } 454 #ifdef RACCT 455 if (racct_enable) 456 vmspace_container_reset(p); 457 #endif 458 } 459 460 /* Acquire reference to vmspace owned by another process. */ 461 462 struct vmspace * 463 vmspace_acquire_ref(struct proc *p) 464 { 465 struct vmspace *vm; 466 467 PROC_VMSPACE_LOCK(p); 468 vm = p->p_vmspace; 469 if (vm == NULL || !refcount_acquire_if_not_zero(&vm->vm_refcnt)) { 470 PROC_VMSPACE_UNLOCK(p); 471 return (NULL); 472 } 473 if (vm != p->p_vmspace) { 474 PROC_VMSPACE_UNLOCK(p); 475 vmspace_free(vm); 476 return (NULL); 477 } 478 PROC_VMSPACE_UNLOCK(p); 479 return (vm); 480 } 481 482 /* 483 * Switch between vmspaces in an AIO kernel process. 484 * 485 * The new vmspace is either the vmspace of a user process obtained 486 * from an active AIO request or the initial vmspace of the AIO kernel 487 * process (when it is idling). Because user processes will block to 488 * drain any active AIO requests before proceeding in exit() or 489 * execve(), the reference count for vmspaces from AIO requests can 490 * never be 0. Similarly, AIO kernel processes hold an extra 491 * reference on their initial vmspace for the life of the process. As 492 * a result, the 'newvm' vmspace always has a non-zero reference 493 * count. This permits an additional reference on 'newvm' to be 494 * acquired via a simple atomic increment rather than the loop in 495 * vmspace_acquire_ref() above. 496 */ 497 void 498 vmspace_switch_aio(struct vmspace *newvm) 499 { 500 struct vmspace *oldvm; 501 502 /* XXX: Need some way to assert that this is an aio daemon. */ 503 504 KASSERT(refcount_load(&newvm->vm_refcnt) > 0, 505 ("vmspace_switch_aio: newvm unreferenced")); 506 507 oldvm = curproc->p_vmspace; 508 if (oldvm == newvm) 509 return; 510 511 /* 512 * Point to the new address space and refer to it. 513 */ 514 curproc->p_vmspace = newvm; 515 refcount_acquire(&newvm->vm_refcnt); 516 517 /* Activate the new mapping. */ 518 pmap_activate(curthread); 519 520 vmspace_free(oldvm); 521 } 522 523 void 524 _vm_map_lock(vm_map_t map, const char *file, int line) 525 { 526 527 if (vm_map_is_system(map)) 528 mtx_lock_flags_(&map->system_mtx, 0, file, line); 529 else 530 sx_xlock_(&map->lock, file, line); 531 map->timestamp++; 532 } 533 534 void 535 vm_map_entry_set_vnode_text(vm_map_entry_t entry, bool add) 536 { 537 vm_object_t object; 538 struct vnode *vp; 539 bool vp_held; 540 541 if ((entry->eflags & MAP_ENTRY_VN_EXEC) == 0) 542 return; 543 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 544 ("Submap with execs")); 545 object = entry->object.vm_object; 546 KASSERT(object != NULL, ("No object for text, entry %p", entry)); 547 if ((object->flags & OBJ_ANON) != 0) 548 object = object->handle; 549 else 550 KASSERT(object->backing_object == NULL, 551 ("non-anon object %p shadows", object)); 552 KASSERT(object != NULL, ("No content object for text, entry %p obj %p", 553 entry, entry->object.vm_object)); 554 555 /* 556 * Mostly, we do not lock the backing object. It is 557 * referenced by the entry we are processing, so it cannot go 558 * away. 559 */ 560 vm_pager_getvp(object, &vp, &vp_held); 561 if (vp != NULL) { 562 if (add) { 563 VOP_SET_TEXT_CHECKED(vp); 564 } else { 565 vn_lock(vp, LK_SHARED | LK_RETRY); 566 VOP_UNSET_TEXT_CHECKED(vp); 567 VOP_UNLOCK(vp); 568 } 569 if (vp_held) 570 vdrop(vp); 571 } 572 } 573 574 /* 575 * Use a different name for this vm_map_entry field when it's use 576 * is not consistent with its use as part of an ordered search tree. 577 */ 578 #define defer_next right 579 580 static void 581 vm_map_process_deferred(void) 582 { 583 struct thread *td; 584 vm_map_entry_t entry, next; 585 vm_object_t object; 586 587 td = curthread; 588 entry = td->td_map_def_user; 589 td->td_map_def_user = NULL; 590 while (entry != NULL) { 591 next = entry->defer_next; 592 MPASS((entry->eflags & (MAP_ENTRY_WRITECNT | 593 MAP_ENTRY_VN_EXEC)) != (MAP_ENTRY_WRITECNT | 594 MAP_ENTRY_VN_EXEC)); 595 if ((entry->eflags & MAP_ENTRY_WRITECNT) != 0) { 596 /* 597 * Decrement the object's writemappings and 598 * possibly the vnode's v_writecount. 599 */ 600 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 601 ("Submap with writecount")); 602 object = entry->object.vm_object; 603 KASSERT(object != NULL, ("No object for writecount")); 604 vm_pager_release_writecount(object, entry->start, 605 entry->end); 606 } 607 vm_map_entry_set_vnode_text(entry, false); 608 vm_map_entry_deallocate(entry, FALSE); 609 entry = next; 610 } 611 } 612 613 #ifdef INVARIANTS 614 static void 615 _vm_map_assert_locked(vm_map_t map, const char *file, int line) 616 { 617 618 if (vm_map_is_system(map)) 619 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 620 else 621 sx_assert_(&map->lock, SA_XLOCKED, file, line); 622 } 623 624 #define VM_MAP_ASSERT_LOCKED(map) \ 625 _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE) 626 627 enum { VMMAP_CHECK_NONE, VMMAP_CHECK_UNLOCK, VMMAP_CHECK_ALL }; 628 #ifdef DIAGNOSTIC 629 static int enable_vmmap_check = VMMAP_CHECK_UNLOCK; 630 #else 631 static int enable_vmmap_check = VMMAP_CHECK_NONE; 632 #endif 633 SYSCTL_INT(_debug, OID_AUTO, vmmap_check, CTLFLAG_RWTUN, 634 &enable_vmmap_check, 0, "Enable vm map consistency checking"); 635 636 static void _vm_map_assert_consistent(vm_map_t map, int check); 637 638 #define VM_MAP_ASSERT_CONSISTENT(map) \ 639 _vm_map_assert_consistent(map, VMMAP_CHECK_ALL) 640 #ifdef DIAGNOSTIC 641 #define VM_MAP_UNLOCK_CONSISTENT(map) do { \ 642 if (map->nupdates > map->nentries) { \ 643 _vm_map_assert_consistent(map, VMMAP_CHECK_UNLOCK); \ 644 map->nupdates = 0; \ 645 } \ 646 } while (0) 647 #else 648 #define VM_MAP_UNLOCK_CONSISTENT(map) 649 #endif 650 #else 651 #define VM_MAP_ASSERT_LOCKED(map) 652 #define VM_MAP_ASSERT_CONSISTENT(map) 653 #define VM_MAP_UNLOCK_CONSISTENT(map) 654 #endif /* INVARIANTS */ 655 656 void 657 _vm_map_unlock(vm_map_t map, const char *file, int line) 658 { 659 660 VM_MAP_UNLOCK_CONSISTENT(map); 661 if (vm_map_is_system(map)) { 662 #ifndef UMA_USE_DMAP 663 if (map == kernel_map && (map->flags & MAP_REPLENISH) != 0) { 664 uma_prealloc(kmapentzone, 1); 665 map->flags &= ~MAP_REPLENISH; 666 } 667 #endif 668 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 669 } else { 670 sx_xunlock_(&map->lock, file, line); 671 vm_map_process_deferred(); 672 } 673 } 674 675 void 676 _vm_map_lock_read(vm_map_t map, const char *file, int line) 677 { 678 679 if (vm_map_is_system(map)) 680 mtx_lock_flags_(&map->system_mtx, 0, file, line); 681 else 682 sx_slock_(&map->lock, file, line); 683 } 684 685 void 686 _vm_map_unlock_read(vm_map_t map, const char *file, int line) 687 { 688 689 if (vm_map_is_system(map)) { 690 KASSERT((map->flags & MAP_REPLENISH) == 0, 691 ("%s: MAP_REPLENISH leaked", __func__)); 692 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 693 } else { 694 sx_sunlock_(&map->lock, file, line); 695 vm_map_process_deferred(); 696 } 697 } 698 699 int 700 _vm_map_trylock(vm_map_t map, const char *file, int line) 701 { 702 int error; 703 704 error = vm_map_is_system(map) ? 705 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 706 !sx_try_xlock_(&map->lock, file, line); 707 if (error == 0) 708 map->timestamp++; 709 return (error == 0); 710 } 711 712 int 713 _vm_map_trylock_read(vm_map_t map, const char *file, int line) 714 { 715 int error; 716 717 error = vm_map_is_system(map) ? 718 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 719 !sx_try_slock_(&map->lock, file, line); 720 return (error == 0); 721 } 722 723 /* 724 * _vm_map_lock_upgrade: [ internal use only ] 725 * 726 * Tries to upgrade a read (shared) lock on the specified map to a write 727 * (exclusive) lock. Returns the value "0" if the upgrade succeeds and a 728 * non-zero value if the upgrade fails. If the upgrade fails, the map is 729 * returned without a read or write lock held. 730 * 731 * Requires that the map be read locked. 732 */ 733 int 734 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line) 735 { 736 unsigned int last_timestamp; 737 738 if (vm_map_is_system(map)) { 739 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 740 } else { 741 if (!sx_try_upgrade_(&map->lock, file, line)) { 742 last_timestamp = map->timestamp; 743 sx_sunlock_(&map->lock, file, line); 744 vm_map_process_deferred(); 745 /* 746 * If the map's timestamp does not change while the 747 * map is unlocked, then the upgrade succeeds. 748 */ 749 sx_xlock_(&map->lock, file, line); 750 if (last_timestamp != map->timestamp) { 751 sx_xunlock_(&map->lock, file, line); 752 return (1); 753 } 754 } 755 } 756 map->timestamp++; 757 return (0); 758 } 759 760 void 761 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line) 762 { 763 764 if (vm_map_is_system(map)) { 765 KASSERT((map->flags & MAP_REPLENISH) == 0, 766 ("%s: MAP_REPLENISH leaked", __func__)); 767 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 768 } else { 769 VM_MAP_UNLOCK_CONSISTENT(map); 770 sx_downgrade_(&map->lock, file, line); 771 } 772 } 773 774 /* 775 * vm_map_locked: 776 * 777 * Returns a non-zero value if the caller holds a write (exclusive) lock 778 * on the specified map and the value "0" otherwise. 779 */ 780 int 781 vm_map_locked(vm_map_t map) 782 { 783 784 if (vm_map_is_system(map)) 785 return (mtx_owned(&map->system_mtx)); 786 return (sx_xlocked(&map->lock)); 787 } 788 789 /* 790 * _vm_map_unlock_and_wait: 791 * 792 * Atomically releases the lock on the specified map and puts the calling 793 * thread to sleep. The calling thread will remain asleep until either 794 * vm_map_wakeup() is performed on the map or the specified timeout is 795 * exceeded. 796 * 797 * WARNING! This function does not perform deferred deallocations of 798 * objects and map entries. Therefore, the calling thread is expected to 799 * reacquire the map lock after reawakening and later perform an ordinary 800 * unlock operation, such as vm_map_unlock(), before completing its 801 * operation on the map. 802 */ 803 int 804 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line) 805 { 806 807 VM_MAP_UNLOCK_CONSISTENT(map); 808 mtx_lock(&map_sleep_mtx); 809 if (vm_map_is_system(map)) { 810 KASSERT((map->flags & MAP_REPLENISH) == 0, 811 ("%s: MAP_REPLENISH leaked", __func__)); 812 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 813 } else { 814 sx_xunlock_(&map->lock, file, line); 815 } 816 return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps", 817 timo)); 818 } 819 820 /* 821 * vm_map_wakeup: 822 * 823 * Awaken any threads that have slept on the map using 824 * vm_map_unlock_and_wait(). 825 */ 826 void 827 vm_map_wakeup(vm_map_t map) 828 { 829 830 /* 831 * Acquire and release map_sleep_mtx to prevent a wakeup() 832 * from being performed (and lost) between the map unlock 833 * and the msleep() in _vm_map_unlock_and_wait(). 834 */ 835 mtx_lock(&map_sleep_mtx); 836 mtx_unlock(&map_sleep_mtx); 837 wakeup(&map->root); 838 } 839 840 void 841 vm_map_busy(vm_map_t map) 842 { 843 844 VM_MAP_ASSERT_LOCKED(map); 845 map->busy++; 846 } 847 848 void 849 vm_map_unbusy(vm_map_t map) 850 { 851 852 VM_MAP_ASSERT_LOCKED(map); 853 KASSERT(map->busy, ("vm_map_unbusy: not busy")); 854 if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) { 855 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP); 856 wakeup(&map->busy); 857 } 858 } 859 860 void 861 vm_map_wait_busy(vm_map_t map) 862 { 863 864 VM_MAP_ASSERT_LOCKED(map); 865 while (map->busy) { 866 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0); 867 if (vm_map_is_system(map)) 868 msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0); 869 else 870 sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0); 871 } 872 map->timestamp++; 873 } 874 875 long 876 vmspace_resident_count(struct vmspace *vmspace) 877 { 878 return pmap_resident_count(vmspace_pmap(vmspace)); 879 } 880 881 /* 882 * Initialize an existing vm_map structure 883 * such as that in the vmspace structure. 884 */ 885 static void 886 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 887 { 888 889 map->header.eflags = MAP_ENTRY_HEADER; 890 map->pmap = pmap; 891 map->header.end = min; 892 map->header.start = max; 893 map->flags = 0; 894 map->header.left = map->header.right = &map->header; 895 map->root = NULL; 896 map->timestamp = 0; 897 map->busy = 0; 898 map->anon_loc = 0; 899 #ifdef DIAGNOSTIC 900 map->nupdates = 0; 901 #endif 902 } 903 904 void 905 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 906 { 907 _vm_map_init(map, pmap, min, max); 908 sx_init(&map->lock, "vm map (user)"); 909 } 910 911 void 912 vm_map_init_system(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 913 { 914 _vm_map_init(map, pmap, min, max); 915 vm_map_modflags(map, MAP_SYSTEM_MAP, 0); 916 mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | 917 MTX_DUPOK); 918 } 919 920 /* 921 * vm_map_entry_dispose: [ internal use only ] 922 * 923 * Inverse of vm_map_entry_create. 924 */ 925 static void 926 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry) 927 { 928 uma_zfree(vm_map_is_system(map) ? kmapentzone : mapentzone, entry); 929 } 930 931 /* 932 * vm_map_entry_create: [ internal use only ] 933 * 934 * Allocates a VM map entry for insertion. 935 * No entry fields are filled in. 936 */ 937 static vm_map_entry_t 938 vm_map_entry_create(vm_map_t map) 939 { 940 vm_map_entry_t new_entry; 941 942 #ifndef UMA_USE_DMAP 943 if (map == kernel_map) { 944 VM_MAP_ASSERT_LOCKED(map); 945 946 /* 947 * A new slab of kernel map entries cannot be allocated at this 948 * point because the kernel map has not yet been updated to 949 * reflect the caller's request. Therefore, we allocate a new 950 * map entry, dipping into the reserve if necessary, and set a 951 * flag indicating that the reserve must be replenished before 952 * the map is unlocked. 953 */ 954 new_entry = uma_zalloc(kmapentzone, M_NOWAIT | M_NOVM); 955 if (new_entry == NULL) { 956 new_entry = uma_zalloc(kmapentzone, 957 M_NOWAIT | M_NOVM | M_USE_RESERVE); 958 kernel_map->flags |= MAP_REPLENISH; 959 } 960 } else 961 #endif 962 if (vm_map_is_system(map)) { 963 new_entry = uma_zalloc(kmapentzone, M_NOWAIT); 964 } else { 965 new_entry = uma_zalloc(mapentzone, M_WAITOK); 966 } 967 KASSERT(new_entry != NULL, 968 ("vm_map_entry_create: kernel resources exhausted")); 969 return (new_entry); 970 } 971 972 /* 973 * vm_map_entry_set_behavior: 974 * 975 * Set the expected access behavior, either normal, random, or 976 * sequential. 977 */ 978 static inline void 979 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior) 980 { 981 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) | 982 (behavior & MAP_ENTRY_BEHAV_MASK); 983 } 984 985 /* 986 * vm_map_entry_max_free_{left,right}: 987 * 988 * Compute the size of the largest free gap between two entries, 989 * one the root of a tree and the other the ancestor of that root 990 * that is the least or greatest ancestor found on the search path. 991 */ 992 static inline vm_size_t 993 vm_map_entry_max_free_left(vm_map_entry_t root, vm_map_entry_t left_ancestor) 994 { 995 996 return (root->left != left_ancestor ? 997 root->left->max_free : root->start - left_ancestor->end); 998 } 999 1000 static inline vm_size_t 1001 vm_map_entry_max_free_right(vm_map_entry_t root, vm_map_entry_t right_ancestor) 1002 { 1003 1004 return (root->right != right_ancestor ? 1005 root->right->max_free : right_ancestor->start - root->end); 1006 } 1007 1008 /* 1009 * vm_map_entry_{pred,succ}: 1010 * 1011 * Find the {predecessor, successor} of the entry by taking one step 1012 * in the appropriate direction and backtracking as much as necessary. 1013 * vm_map_entry_succ is defined in vm_map.h. 1014 */ 1015 static inline vm_map_entry_t 1016 vm_map_entry_pred(vm_map_entry_t entry) 1017 { 1018 vm_map_entry_t prior; 1019 1020 prior = entry->left; 1021 if (prior->right->start < entry->start) { 1022 do 1023 prior = prior->right; 1024 while (prior->right != entry); 1025 } 1026 return (prior); 1027 } 1028 1029 static inline vm_size_t 1030 vm_size_max(vm_size_t a, vm_size_t b) 1031 { 1032 1033 return (a > b ? a : b); 1034 } 1035 1036 #define SPLAY_LEFT_STEP(root, y, llist, rlist, test) do { \ 1037 vm_map_entry_t z; \ 1038 vm_size_t max_free; \ 1039 \ 1040 /* \ 1041 * Infer root->right->max_free == root->max_free when \ 1042 * y->max_free < root->max_free || root->max_free == 0. \ 1043 * Otherwise, look right to find it. \ 1044 */ \ 1045 y = root->left; \ 1046 max_free = root->max_free; \ 1047 KASSERT(max_free == vm_size_max( \ 1048 vm_map_entry_max_free_left(root, llist), \ 1049 vm_map_entry_max_free_right(root, rlist)), \ 1050 ("%s: max_free invariant fails", __func__)); \ 1051 if (max_free - 1 < vm_map_entry_max_free_left(root, llist)) \ 1052 max_free = vm_map_entry_max_free_right(root, rlist); \ 1053 if (y != llist && (test)) { \ 1054 /* Rotate right and make y root. */ \ 1055 z = y->right; \ 1056 if (z != root) { \ 1057 root->left = z; \ 1058 y->right = root; \ 1059 if (max_free < y->max_free) \ 1060 root->max_free = max_free = \ 1061 vm_size_max(max_free, z->max_free); \ 1062 } else if (max_free < y->max_free) \ 1063 root->max_free = max_free = \ 1064 vm_size_max(max_free, root->start - y->end);\ 1065 root = y; \ 1066 y = root->left; \ 1067 } \ 1068 /* Copy right->max_free. Put root on rlist. */ \ 1069 root->max_free = max_free; \ 1070 KASSERT(max_free == vm_map_entry_max_free_right(root, rlist), \ 1071 ("%s: max_free not copied from right", __func__)); \ 1072 root->left = rlist; \ 1073 rlist = root; \ 1074 root = y != llist ? y : NULL; \ 1075 } while (0) 1076 1077 #define SPLAY_RIGHT_STEP(root, y, llist, rlist, test) do { \ 1078 vm_map_entry_t z; \ 1079 vm_size_t max_free; \ 1080 \ 1081 /* \ 1082 * Infer root->left->max_free == root->max_free when \ 1083 * y->max_free < root->max_free || root->max_free == 0. \ 1084 * Otherwise, look left to find it. \ 1085 */ \ 1086 y = root->right; \ 1087 max_free = root->max_free; \ 1088 KASSERT(max_free == vm_size_max( \ 1089 vm_map_entry_max_free_left(root, llist), \ 1090 vm_map_entry_max_free_right(root, rlist)), \ 1091 ("%s: max_free invariant fails", __func__)); \ 1092 if (max_free - 1 < vm_map_entry_max_free_right(root, rlist)) \ 1093 max_free = vm_map_entry_max_free_left(root, llist); \ 1094 if (y != rlist && (test)) { \ 1095 /* Rotate left and make y root. */ \ 1096 z = y->left; \ 1097 if (z != root) { \ 1098 root->right = z; \ 1099 y->left = root; \ 1100 if (max_free < y->max_free) \ 1101 root->max_free = max_free = \ 1102 vm_size_max(max_free, z->max_free); \ 1103 } else if (max_free < y->max_free) \ 1104 root->max_free = max_free = \ 1105 vm_size_max(max_free, y->start - root->end);\ 1106 root = y; \ 1107 y = root->right; \ 1108 } \ 1109 /* Copy left->max_free. Put root on llist. */ \ 1110 root->max_free = max_free; \ 1111 KASSERT(max_free == vm_map_entry_max_free_left(root, llist), \ 1112 ("%s: max_free not copied from left", __func__)); \ 1113 root->right = llist; \ 1114 llist = root; \ 1115 root = y != rlist ? y : NULL; \ 1116 } while (0) 1117 1118 /* 1119 * Walk down the tree until we find addr or a gap where addr would go, breaking 1120 * off left and right subtrees of nodes less than, or greater than addr. Treat 1121 * subtrees with root->max_free < length as empty trees. llist and rlist are 1122 * the two sides in reverse order (bottom-up), with llist linked by the right 1123 * pointer and rlist linked by the left pointer in the vm_map_entry, and both 1124 * lists terminated by &map->header. This function, and the subsequent call to 1125 * vm_map_splay_merge_{left,right,pred,succ}, rely on the start and end address 1126 * values in &map->header. 1127 */ 1128 static __always_inline vm_map_entry_t 1129 vm_map_splay_split(vm_map_t map, vm_offset_t addr, vm_size_t length, 1130 vm_map_entry_t *llist, vm_map_entry_t *rlist) 1131 { 1132 vm_map_entry_t left, right, root, y; 1133 1134 left = right = &map->header; 1135 root = map->root; 1136 while (root != NULL && root->max_free >= length) { 1137 KASSERT(left->end <= root->start && 1138 root->end <= right->start, 1139 ("%s: root not within tree bounds", __func__)); 1140 if (addr < root->start) { 1141 SPLAY_LEFT_STEP(root, y, left, right, 1142 y->max_free >= length && addr < y->start); 1143 } else if (addr >= root->end) { 1144 SPLAY_RIGHT_STEP(root, y, left, right, 1145 y->max_free >= length && addr >= y->end); 1146 } else 1147 break; 1148 } 1149 *llist = left; 1150 *rlist = right; 1151 return (root); 1152 } 1153 1154 static __always_inline void 1155 vm_map_splay_findnext(vm_map_entry_t root, vm_map_entry_t *rlist) 1156 { 1157 vm_map_entry_t hi, right, y; 1158 1159 right = *rlist; 1160 hi = root->right == right ? NULL : root->right; 1161 if (hi == NULL) 1162 return; 1163 do 1164 SPLAY_LEFT_STEP(hi, y, root, right, true); 1165 while (hi != NULL); 1166 *rlist = right; 1167 } 1168 1169 static __always_inline void 1170 vm_map_splay_findprev(vm_map_entry_t root, vm_map_entry_t *llist) 1171 { 1172 vm_map_entry_t left, lo, y; 1173 1174 left = *llist; 1175 lo = root->left == left ? NULL : root->left; 1176 if (lo == NULL) 1177 return; 1178 do 1179 SPLAY_RIGHT_STEP(lo, y, left, root, true); 1180 while (lo != NULL); 1181 *llist = left; 1182 } 1183 1184 static inline void 1185 vm_map_entry_swap(vm_map_entry_t *a, vm_map_entry_t *b) 1186 { 1187 vm_map_entry_t tmp; 1188 1189 tmp = *b; 1190 *b = *a; 1191 *a = tmp; 1192 } 1193 1194 /* 1195 * Walk back up the two spines, flip the pointers and set max_free. The 1196 * subtrees of the root go at the bottom of llist and rlist. 1197 */ 1198 static vm_size_t 1199 vm_map_splay_merge_left_walk(vm_map_entry_t header, vm_map_entry_t root, 1200 vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t llist) 1201 { 1202 do { 1203 /* 1204 * The max_free values of the children of llist are in 1205 * llist->max_free and max_free. Update with the 1206 * max value. 1207 */ 1208 llist->max_free = max_free = 1209 vm_size_max(llist->max_free, max_free); 1210 vm_map_entry_swap(&llist->right, &tail); 1211 vm_map_entry_swap(&tail, &llist); 1212 } while (llist != header); 1213 root->left = tail; 1214 return (max_free); 1215 } 1216 1217 /* 1218 * When llist is known to be the predecessor of root. 1219 */ 1220 static inline vm_size_t 1221 vm_map_splay_merge_pred(vm_map_entry_t header, vm_map_entry_t root, 1222 vm_map_entry_t llist) 1223 { 1224 vm_size_t max_free; 1225 1226 max_free = root->start - llist->end; 1227 if (llist != header) { 1228 max_free = vm_map_splay_merge_left_walk(header, root, 1229 root, max_free, llist); 1230 } else { 1231 root->left = header; 1232 header->right = root; 1233 } 1234 return (max_free); 1235 } 1236 1237 /* 1238 * When llist may or may not be the predecessor of root. 1239 */ 1240 static inline vm_size_t 1241 vm_map_splay_merge_left(vm_map_entry_t header, vm_map_entry_t root, 1242 vm_map_entry_t llist) 1243 { 1244 vm_size_t max_free; 1245 1246 max_free = vm_map_entry_max_free_left(root, llist); 1247 if (llist != header) { 1248 max_free = vm_map_splay_merge_left_walk(header, root, 1249 root->left == llist ? root : root->left, 1250 max_free, llist); 1251 } 1252 return (max_free); 1253 } 1254 1255 static vm_size_t 1256 vm_map_splay_merge_right_walk(vm_map_entry_t header, vm_map_entry_t root, 1257 vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t rlist) 1258 { 1259 do { 1260 /* 1261 * The max_free values of the children of rlist are in 1262 * rlist->max_free and max_free. Update with the 1263 * max value. 1264 */ 1265 rlist->max_free = max_free = 1266 vm_size_max(rlist->max_free, max_free); 1267 vm_map_entry_swap(&rlist->left, &tail); 1268 vm_map_entry_swap(&tail, &rlist); 1269 } while (rlist != header); 1270 root->right = tail; 1271 return (max_free); 1272 } 1273 1274 /* 1275 * When rlist is known to be the succecessor of root. 1276 */ 1277 static inline vm_size_t 1278 vm_map_splay_merge_succ(vm_map_entry_t header, vm_map_entry_t root, 1279 vm_map_entry_t rlist) 1280 { 1281 vm_size_t max_free; 1282 1283 max_free = rlist->start - root->end; 1284 if (rlist != header) { 1285 max_free = vm_map_splay_merge_right_walk(header, root, 1286 root, max_free, rlist); 1287 } else { 1288 root->right = header; 1289 header->left = root; 1290 } 1291 return (max_free); 1292 } 1293 1294 /* 1295 * When rlist may or may not be the succecessor of root. 1296 */ 1297 static inline vm_size_t 1298 vm_map_splay_merge_right(vm_map_entry_t header, vm_map_entry_t root, 1299 vm_map_entry_t rlist) 1300 { 1301 vm_size_t max_free; 1302 1303 max_free = vm_map_entry_max_free_right(root, rlist); 1304 if (rlist != header) { 1305 max_free = vm_map_splay_merge_right_walk(header, root, 1306 root->right == rlist ? root : root->right, 1307 max_free, rlist); 1308 } 1309 return (max_free); 1310 } 1311 1312 /* 1313 * vm_map_splay: 1314 * 1315 * The Sleator and Tarjan top-down splay algorithm with the 1316 * following variation. Max_free must be computed bottom-up, so 1317 * on the downward pass, maintain the left and right spines in 1318 * reverse order. Then, make a second pass up each side to fix 1319 * the pointers and compute max_free. The time bound is O(log n) 1320 * amortized. 1321 * 1322 * The tree is threaded, which means that there are no null pointers. 1323 * When a node has no left child, its left pointer points to its 1324 * predecessor, which the last ancestor on the search path from the root 1325 * where the search branched right. Likewise, when a node has no right 1326 * child, its right pointer points to its successor. The map header node 1327 * is the predecessor of the first map entry, and the successor of the 1328 * last. 1329 * 1330 * The new root is the vm_map_entry containing "addr", or else an 1331 * adjacent entry (lower if possible) if addr is not in the tree. 1332 * 1333 * The map must be locked, and leaves it so. 1334 * 1335 * Returns: the new root. 1336 */ 1337 static vm_map_entry_t 1338 vm_map_splay(vm_map_t map, vm_offset_t addr) 1339 { 1340 vm_map_entry_t header, llist, rlist, root; 1341 vm_size_t max_free_left, max_free_right; 1342 1343 header = &map->header; 1344 root = vm_map_splay_split(map, addr, 0, &llist, &rlist); 1345 if (root != NULL) { 1346 max_free_left = vm_map_splay_merge_left(header, root, llist); 1347 max_free_right = vm_map_splay_merge_right(header, root, rlist); 1348 } else if (llist != header) { 1349 /* 1350 * Recover the greatest node in the left 1351 * subtree and make it the root. 1352 */ 1353 root = llist; 1354 llist = root->right; 1355 max_free_left = vm_map_splay_merge_left(header, root, llist); 1356 max_free_right = vm_map_splay_merge_succ(header, root, rlist); 1357 } else if (rlist != header) { 1358 /* 1359 * Recover the least node in the right 1360 * subtree and make it the root. 1361 */ 1362 root = rlist; 1363 rlist = root->left; 1364 max_free_left = vm_map_splay_merge_pred(header, root, llist); 1365 max_free_right = vm_map_splay_merge_right(header, root, rlist); 1366 } else { 1367 /* There is no root. */ 1368 return (NULL); 1369 } 1370 root->max_free = vm_size_max(max_free_left, max_free_right); 1371 map->root = root; 1372 VM_MAP_ASSERT_CONSISTENT(map); 1373 return (root); 1374 } 1375 1376 /* 1377 * vm_map_entry_{un,}link: 1378 * 1379 * Insert/remove entries from maps. On linking, if new entry clips 1380 * existing entry, trim existing entry to avoid overlap, and manage 1381 * offsets. On unlinking, merge disappearing entry with neighbor, if 1382 * called for, and manage offsets. Callers should not modify fields in 1383 * entries already mapped. 1384 */ 1385 static void 1386 vm_map_entry_link(vm_map_t map, vm_map_entry_t entry) 1387 { 1388 vm_map_entry_t header, llist, rlist, root; 1389 vm_size_t max_free_left, max_free_right; 1390 1391 CTR3(KTR_VM, 1392 "vm_map_entry_link: map %p, nentries %d, entry %p", map, 1393 map->nentries, entry); 1394 VM_MAP_ASSERT_LOCKED(map); 1395 map->nentries++; 1396 header = &map->header; 1397 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist); 1398 if (root == NULL) { 1399 /* 1400 * The new entry does not overlap any existing entry in the 1401 * map, so it becomes the new root of the map tree. 1402 */ 1403 max_free_left = vm_map_splay_merge_pred(header, entry, llist); 1404 max_free_right = vm_map_splay_merge_succ(header, entry, rlist); 1405 } else if (entry->start == root->start) { 1406 /* 1407 * The new entry is a clone of root, with only the end field 1408 * changed. The root entry will be shrunk to abut the new 1409 * entry, and will be the right child of the new root entry in 1410 * the modified map. 1411 */ 1412 KASSERT(entry->end < root->end, 1413 ("%s: clip_start not within entry", __func__)); 1414 vm_map_splay_findprev(root, &llist); 1415 if ((root->eflags & MAP_ENTRY_STACK_GAP) == 0) 1416 root->offset += entry->end - root->start; 1417 root->start = entry->end; 1418 max_free_left = vm_map_splay_merge_pred(header, entry, llist); 1419 max_free_right = root->max_free = vm_size_max( 1420 vm_map_splay_merge_pred(entry, root, entry), 1421 vm_map_splay_merge_right(header, root, rlist)); 1422 } else { 1423 /* 1424 * The new entry is a clone of root, with only the start field 1425 * changed. The root entry will be shrunk to abut the new 1426 * entry, and will be the left child of the new root entry in 1427 * the modified map. 1428 */ 1429 KASSERT(entry->end == root->end, 1430 ("%s: clip_start not within entry", __func__)); 1431 vm_map_splay_findnext(root, &rlist); 1432 if ((entry->eflags & MAP_ENTRY_STACK_GAP) == 0) 1433 entry->offset += entry->start - root->start; 1434 root->end = entry->start; 1435 max_free_left = root->max_free = vm_size_max( 1436 vm_map_splay_merge_left(header, root, llist), 1437 vm_map_splay_merge_succ(entry, root, entry)); 1438 max_free_right = vm_map_splay_merge_succ(header, entry, rlist); 1439 } 1440 entry->max_free = vm_size_max(max_free_left, max_free_right); 1441 map->root = entry; 1442 VM_MAP_ASSERT_CONSISTENT(map); 1443 } 1444 1445 enum unlink_merge_type { 1446 UNLINK_MERGE_NONE, 1447 UNLINK_MERGE_NEXT 1448 }; 1449 1450 static void 1451 vm_map_entry_unlink(vm_map_t map, vm_map_entry_t entry, 1452 enum unlink_merge_type op) 1453 { 1454 vm_map_entry_t header, llist, rlist, root; 1455 vm_size_t max_free_left, max_free_right; 1456 1457 VM_MAP_ASSERT_LOCKED(map); 1458 header = &map->header; 1459 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist); 1460 KASSERT(root != NULL, 1461 ("vm_map_entry_unlink: unlink object not mapped")); 1462 1463 vm_map_splay_findprev(root, &llist); 1464 vm_map_splay_findnext(root, &rlist); 1465 if (op == UNLINK_MERGE_NEXT) { 1466 rlist->start = root->start; 1467 MPASS((rlist->eflags & MAP_ENTRY_STACK_GAP) == 0); 1468 rlist->offset = root->offset; 1469 } 1470 if (llist != header) { 1471 root = llist; 1472 llist = root->right; 1473 max_free_left = vm_map_splay_merge_left(header, root, llist); 1474 max_free_right = vm_map_splay_merge_succ(header, root, rlist); 1475 } else if (rlist != header) { 1476 root = rlist; 1477 rlist = root->left; 1478 max_free_left = vm_map_splay_merge_pred(header, root, llist); 1479 max_free_right = vm_map_splay_merge_right(header, root, rlist); 1480 } else { 1481 header->left = header->right = header; 1482 root = NULL; 1483 } 1484 if (root != NULL) 1485 root->max_free = vm_size_max(max_free_left, max_free_right); 1486 map->root = root; 1487 VM_MAP_ASSERT_CONSISTENT(map); 1488 map->nentries--; 1489 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map, 1490 map->nentries, entry); 1491 } 1492 1493 /* 1494 * vm_map_entry_resize: 1495 * 1496 * Resize a vm_map_entry, recompute the amount of free space that 1497 * follows it and propagate that value up the tree. 1498 * 1499 * The map must be locked, and leaves it so. 1500 */ 1501 static void 1502 vm_map_entry_resize(vm_map_t map, vm_map_entry_t entry, vm_size_t grow_amount) 1503 { 1504 vm_map_entry_t header, llist, rlist, root; 1505 1506 VM_MAP_ASSERT_LOCKED(map); 1507 header = &map->header; 1508 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist); 1509 KASSERT(root != NULL, ("%s: resize object not mapped", __func__)); 1510 vm_map_splay_findnext(root, &rlist); 1511 entry->end += grow_amount; 1512 root->max_free = vm_size_max( 1513 vm_map_splay_merge_left(header, root, llist), 1514 vm_map_splay_merge_succ(header, root, rlist)); 1515 map->root = root; 1516 VM_MAP_ASSERT_CONSISTENT(map); 1517 CTR4(KTR_VM, "%s: map %p, nentries %d, entry %p", 1518 __func__, map, map->nentries, entry); 1519 } 1520 1521 /* 1522 * vm_map_lookup_entry: [ internal use only ] 1523 * 1524 * Finds the map entry containing (or 1525 * immediately preceding) the specified address 1526 * in the given map; the entry is returned 1527 * in the "entry" parameter. The boolean 1528 * result indicates whether the address is 1529 * actually contained in the map. 1530 */ 1531 boolean_t 1532 vm_map_lookup_entry( 1533 vm_map_t map, 1534 vm_offset_t address, 1535 vm_map_entry_t *entry) /* OUT */ 1536 { 1537 vm_map_entry_t cur, header, lbound, ubound; 1538 boolean_t locked; 1539 1540 /* 1541 * If the map is empty, then the map entry immediately preceding 1542 * "address" is the map's header. 1543 */ 1544 header = &map->header; 1545 cur = map->root; 1546 if (cur == NULL) { 1547 *entry = header; 1548 return (FALSE); 1549 } 1550 if (address >= cur->start && cur->end > address) { 1551 *entry = cur; 1552 return (TRUE); 1553 } 1554 if ((locked = vm_map_locked(map)) || 1555 sx_try_upgrade(&map->lock)) { 1556 /* 1557 * Splay requires a write lock on the map. However, it only 1558 * restructures the binary search tree; it does not otherwise 1559 * change the map. Thus, the map's timestamp need not change 1560 * on a temporary upgrade. 1561 */ 1562 cur = vm_map_splay(map, address); 1563 if (!locked) { 1564 VM_MAP_UNLOCK_CONSISTENT(map); 1565 sx_downgrade(&map->lock); 1566 } 1567 1568 /* 1569 * If "address" is contained within a map entry, the new root 1570 * is that map entry. Otherwise, the new root is a map entry 1571 * immediately before or after "address". 1572 */ 1573 if (address < cur->start) { 1574 *entry = header; 1575 return (FALSE); 1576 } 1577 *entry = cur; 1578 return (address < cur->end); 1579 } 1580 /* 1581 * Since the map is only locked for read access, perform a 1582 * standard binary search tree lookup for "address". 1583 */ 1584 lbound = ubound = header; 1585 for (;;) { 1586 if (address < cur->start) { 1587 ubound = cur; 1588 cur = cur->left; 1589 if (cur == lbound) 1590 break; 1591 } else if (cur->end <= address) { 1592 lbound = cur; 1593 cur = cur->right; 1594 if (cur == ubound) 1595 break; 1596 } else { 1597 *entry = cur; 1598 return (TRUE); 1599 } 1600 } 1601 *entry = lbound; 1602 return (FALSE); 1603 } 1604 1605 /* 1606 * vm_map_insert1() is identical to vm_map_insert() except that it 1607 * returns the newly inserted map entry in '*res'. In case the new 1608 * entry is coalesced with a neighbor or an existing entry was 1609 * resized, that entry is returned. In any case, the returned entry 1610 * covers the specified address range. 1611 */ 1612 static int 1613 vm_map_insert1(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1614 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow, 1615 vm_map_entry_t *res) 1616 { 1617 vm_map_entry_t new_entry, next_entry, prev_entry; 1618 struct ucred *cred; 1619 vm_eflags_t protoeflags; 1620 vm_inherit_t inheritance; 1621 u_long bdry; 1622 u_int bidx; 1623 int cflags; 1624 1625 VM_MAP_ASSERT_LOCKED(map); 1626 KASSERT(object != kernel_object || 1627 (cow & MAP_COPY_ON_WRITE) == 0, 1628 ("vm_map_insert: kernel object and COW")); 1629 KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0 || 1630 (cow & MAP_SPLIT_BOUNDARY_MASK) != 0, 1631 ("vm_map_insert: paradoxical MAP_NOFAULT request, obj %p cow %#x", 1632 object, cow)); 1633 KASSERT((prot & ~max) == 0, 1634 ("prot %#x is not subset of max_prot %#x", prot, max)); 1635 1636 /* 1637 * Check that the start and end points are not bogus. 1638 */ 1639 if (start == end || !vm_map_range_valid(map, start, end)) 1640 return (KERN_INVALID_ADDRESS); 1641 1642 if ((map->flags & MAP_WXORX) != 0 && (prot & (VM_PROT_WRITE | 1643 VM_PROT_EXECUTE)) == (VM_PROT_WRITE | VM_PROT_EXECUTE)) 1644 return (KERN_PROTECTION_FAILURE); 1645 1646 /* 1647 * Find the entry prior to the proposed starting address; if it's part 1648 * of an existing entry, this range is bogus. 1649 */ 1650 if (vm_map_lookup_entry(map, start, &prev_entry)) 1651 return (KERN_NO_SPACE); 1652 1653 /* 1654 * Assert that the next entry doesn't overlap the end point. 1655 */ 1656 next_entry = vm_map_entry_succ(prev_entry); 1657 if (next_entry->start < end) 1658 return (KERN_NO_SPACE); 1659 1660 if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL || 1661 max != VM_PROT_NONE)) 1662 return (KERN_INVALID_ARGUMENT); 1663 1664 protoeflags = 0; 1665 if (cow & MAP_COPY_ON_WRITE) 1666 protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY; 1667 if (cow & MAP_NOFAULT) 1668 protoeflags |= MAP_ENTRY_NOFAULT; 1669 if (cow & MAP_DISABLE_SYNCER) 1670 protoeflags |= MAP_ENTRY_NOSYNC; 1671 if (cow & MAP_DISABLE_COREDUMP) 1672 protoeflags |= MAP_ENTRY_NOCOREDUMP; 1673 if (cow & MAP_STACK_AREA) 1674 protoeflags |= MAP_ENTRY_GROWS_DOWN; 1675 if (cow & MAP_WRITECOUNT) 1676 protoeflags |= MAP_ENTRY_WRITECNT; 1677 if (cow & MAP_VN_EXEC) 1678 protoeflags |= MAP_ENTRY_VN_EXEC; 1679 if ((cow & MAP_CREATE_GUARD) != 0) 1680 protoeflags |= MAP_ENTRY_GUARD; 1681 if ((cow & MAP_CREATE_STACK_GAP) != 0) 1682 protoeflags |= MAP_ENTRY_STACK_GAP; 1683 if (cow & MAP_INHERIT_SHARE) 1684 inheritance = VM_INHERIT_SHARE; 1685 else 1686 inheritance = VM_INHERIT_DEFAULT; 1687 if ((cow & MAP_SPLIT_BOUNDARY_MASK) != 0) { 1688 /* This magically ignores index 0, for usual page size. */ 1689 bidx = (cow & MAP_SPLIT_BOUNDARY_MASK) >> 1690 MAP_SPLIT_BOUNDARY_SHIFT; 1691 if (bidx >= MAXPAGESIZES) 1692 return (KERN_INVALID_ARGUMENT); 1693 bdry = pagesizes[bidx] - 1; 1694 if ((start & bdry) != 0 || (end & bdry) != 0) 1695 return (KERN_INVALID_ARGUMENT); 1696 protoeflags |= bidx << MAP_ENTRY_SPLIT_BOUNDARY_SHIFT; 1697 } 1698 1699 cred = NULL; 1700 if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0) { 1701 cflags = OBJCO_NO_CHARGE; 1702 } else { 1703 cflags = 0; 1704 if ((cow & MAP_ACC_CHARGED) != 0 || 1705 ((prot & VM_PROT_WRITE) != 0 && 1706 ((protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 || 1707 object == NULL))) { 1708 if ((cow & MAP_ACC_CHARGED) == 0) { 1709 if (!swap_reserve(end - start)) 1710 return (KERN_RESOURCE_SHORTAGE); 1711 1712 /* 1713 * Only inform vm_object_coalesce() 1714 * that the object was charged if 1715 * there is no need for CoW, so the 1716 * swap amount reserved is applicable 1717 * to the prev_entry->object. 1718 */ 1719 if ((protoeflags & MAP_ENTRY_NEEDS_COPY) == 0) 1720 cflags |= OBJCO_CHARGED; 1721 } 1722 KASSERT(object == NULL || 1723 (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 || 1724 object->cred == NULL, 1725 ("overcommit: vm_map_insert o %p", object)); 1726 cred = curthread->td_ucred; 1727 } 1728 } 1729 1730 /* Expand the kernel pmap, if necessary. */ 1731 if (map == kernel_map && end > kernel_vm_end) { 1732 int rv; 1733 1734 rv = pmap_growkernel(end); 1735 if (rv != KERN_SUCCESS) 1736 return (rv); 1737 } 1738 if (object != NULL) { 1739 /* 1740 * OBJ_ONEMAPPING must be cleared unless this mapping 1741 * is trivially proven to be the only mapping for any 1742 * of the object's pages. (Object granularity 1743 * reference counting is insufficient to recognize 1744 * aliases with precision.) 1745 */ 1746 if ((object->flags & OBJ_ANON) != 0) { 1747 VM_OBJECT_WLOCK(object); 1748 if (object->ref_count > 1 || object->shadow_count != 0) 1749 vm_object_clear_flag(object, OBJ_ONEMAPPING); 1750 VM_OBJECT_WUNLOCK(object); 1751 } 1752 } else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) == 1753 protoeflags && 1754 (cow & (MAP_STACK_AREA | MAP_VN_EXEC)) == 0 && 1755 prev_entry->end == start && (prev_entry->cred == cred || 1756 (prev_entry->object.vm_object != NULL && 1757 prev_entry->object.vm_object->cred == cred)) && 1758 vm_object_coalesce(prev_entry->object.vm_object, 1759 prev_entry->offset, 1760 (vm_size_t)(prev_entry->end - prev_entry->start), 1761 (vm_size_t)(end - prev_entry->end), cflags)) { 1762 /* 1763 * We were able to extend the object. Determine if we 1764 * can extend the previous map entry to include the 1765 * new range as well. 1766 */ 1767 if (prev_entry->inheritance == inheritance && 1768 prev_entry->protection == prot && 1769 prev_entry->max_protection == max && 1770 prev_entry->wired_count == 0) { 1771 KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) == 1772 0, ("prev_entry %p has incoherent wiring", 1773 prev_entry)); 1774 if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0) 1775 map->size += end - prev_entry->end; 1776 vm_map_entry_resize(map, prev_entry, 1777 end - prev_entry->end); 1778 *res = vm_map_try_merge_entries(map, prev_entry, 1779 next_entry); 1780 return (KERN_SUCCESS); 1781 } 1782 1783 /* 1784 * If we can extend the object but cannot extend the 1785 * map entry, we have to create a new map entry. We 1786 * must bump the ref count on the extended object to 1787 * account for it. object may be NULL. 1788 */ 1789 object = prev_entry->object.vm_object; 1790 offset = prev_entry->offset + 1791 (prev_entry->end - prev_entry->start); 1792 vm_object_reference(object); 1793 if (cred != NULL && object != NULL && object->cred != NULL && 1794 !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 1795 /* Object already accounts for this uid. */ 1796 cred = NULL; 1797 } 1798 } 1799 if (cred != NULL) 1800 crhold(cred); 1801 1802 /* 1803 * Create a new entry 1804 */ 1805 new_entry = vm_map_entry_create(map); 1806 new_entry->start = start; 1807 new_entry->end = end; 1808 new_entry->cred = NULL; 1809 1810 new_entry->eflags = protoeflags; 1811 new_entry->object.vm_object = object; 1812 new_entry->offset = offset; 1813 1814 new_entry->inheritance = inheritance; 1815 new_entry->protection = prot; 1816 new_entry->max_protection = max; 1817 new_entry->wired_count = 0; 1818 new_entry->wiring_thread = NULL; 1819 new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT; 1820 new_entry->next_read = start; 1821 1822 KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry), 1823 ("overcommit: vm_map_insert leaks vm_map %p", new_entry)); 1824 new_entry->cred = cred; 1825 1826 /* 1827 * Insert the new entry into the list 1828 */ 1829 vm_map_entry_link(map, new_entry); 1830 if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0) 1831 map->size += new_entry->end - new_entry->start; 1832 1833 /* 1834 * Try to coalesce the new entry with both the previous and next 1835 * entries in the list. Previously, we only attempted to coalesce 1836 * with the previous entry when object is NULL. Here, we handle the 1837 * other cases, which are less common. 1838 */ 1839 vm_map_try_merge_entries(map, prev_entry, new_entry); 1840 *res = vm_map_try_merge_entries(map, new_entry, next_entry); 1841 1842 if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) { 1843 vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset), 1844 end - start, cow & MAP_PREFAULT_PARTIAL); 1845 } 1846 1847 return (KERN_SUCCESS); 1848 } 1849 1850 /* 1851 * vm_map_insert: 1852 * 1853 * Inserts the given VM object into the target map at the 1854 * specified address range. 1855 * 1856 * Requires that the map be locked, and leaves it so. 1857 * 1858 * If object is non-NULL, ref count must be bumped by caller 1859 * prior to making call to account for the new entry. 1860 */ 1861 int 1862 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1863 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow) 1864 { 1865 vm_map_entry_t res; 1866 1867 return (vm_map_insert1(map, object, offset, start, end, prot, max, 1868 cow, &res)); 1869 } 1870 1871 /* 1872 * vm_map_findspace: 1873 * 1874 * Find the first fit (lowest VM address) for "length" free bytes 1875 * beginning at address >= start in the given map. 1876 * 1877 * In a vm_map_entry, "max_free" is the maximum amount of 1878 * contiguous free space between an entry in its subtree and a 1879 * neighbor of that entry. This allows finding a free region in 1880 * one path down the tree, so O(log n) amortized with splay 1881 * trees. 1882 * 1883 * The map must be locked, and leaves it so. 1884 * 1885 * Returns: starting address if sufficient space, 1886 * vm_map_max(map)-length+1 if insufficient space. 1887 */ 1888 vm_offset_t 1889 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length) 1890 { 1891 vm_map_entry_t header, llist, rlist, root, y; 1892 vm_size_t left_length, max_free_left, max_free_right; 1893 vm_offset_t gap_end; 1894 1895 VM_MAP_ASSERT_LOCKED(map); 1896 1897 /* 1898 * Request must fit within min/max VM address and must avoid 1899 * address wrap. 1900 */ 1901 start = MAX(start, vm_map_min(map)); 1902 if (start >= vm_map_max(map) || length > vm_map_max(map) - start) 1903 return (vm_map_max(map) - length + 1); 1904 1905 /* Empty tree means wide open address space. */ 1906 if (map->root == NULL) 1907 return (start); 1908 1909 /* 1910 * After splay_split, if start is within an entry, push it to the start 1911 * of the following gap. If rlist is at the end of the gap containing 1912 * start, save the end of that gap in gap_end to see if the gap is big 1913 * enough; otherwise set gap_end to start skip gap-checking and move 1914 * directly to a search of the right subtree. 1915 */ 1916 header = &map->header; 1917 root = vm_map_splay_split(map, start, length, &llist, &rlist); 1918 gap_end = rlist->start; 1919 if (root != NULL) { 1920 start = root->end; 1921 if (root->right != rlist) 1922 gap_end = start; 1923 max_free_left = vm_map_splay_merge_left(header, root, llist); 1924 max_free_right = vm_map_splay_merge_right(header, root, rlist); 1925 } else if (rlist != header) { 1926 root = rlist; 1927 rlist = root->left; 1928 max_free_left = vm_map_splay_merge_pred(header, root, llist); 1929 max_free_right = vm_map_splay_merge_right(header, root, rlist); 1930 } else { 1931 root = llist; 1932 llist = root->right; 1933 max_free_left = vm_map_splay_merge_left(header, root, llist); 1934 max_free_right = vm_map_splay_merge_succ(header, root, rlist); 1935 } 1936 root->max_free = vm_size_max(max_free_left, max_free_right); 1937 map->root = root; 1938 VM_MAP_ASSERT_CONSISTENT(map); 1939 if (length <= gap_end - start) 1940 return (start); 1941 1942 /* With max_free, can immediately tell if no solution. */ 1943 if (root->right == header || length > root->right->max_free) 1944 return (vm_map_max(map) - length + 1); 1945 1946 /* 1947 * Splay for the least large-enough gap in the right subtree. 1948 */ 1949 llist = rlist = header; 1950 for (left_length = 0;; 1951 left_length = vm_map_entry_max_free_left(root, llist)) { 1952 if (length <= left_length) 1953 SPLAY_LEFT_STEP(root, y, llist, rlist, 1954 length <= vm_map_entry_max_free_left(y, llist)); 1955 else 1956 SPLAY_RIGHT_STEP(root, y, llist, rlist, 1957 length > vm_map_entry_max_free_left(y, root)); 1958 if (root == NULL) 1959 break; 1960 } 1961 root = llist; 1962 llist = root->right; 1963 max_free_left = vm_map_splay_merge_left(header, root, llist); 1964 if (rlist == header) { 1965 root->max_free = vm_size_max(max_free_left, 1966 vm_map_splay_merge_succ(header, root, rlist)); 1967 } else { 1968 y = rlist; 1969 rlist = y->left; 1970 y->max_free = vm_size_max( 1971 vm_map_splay_merge_pred(root, y, root), 1972 vm_map_splay_merge_right(header, y, rlist)); 1973 root->max_free = vm_size_max(max_free_left, y->max_free); 1974 } 1975 map->root = root; 1976 VM_MAP_ASSERT_CONSISTENT(map); 1977 return (root->end); 1978 } 1979 1980 int 1981 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1982 vm_offset_t start, vm_size_t length, vm_prot_t prot, 1983 vm_prot_t max, int cow) 1984 { 1985 vm_offset_t end; 1986 int result; 1987 1988 end = start + length; 1989 KASSERT((cow & MAP_STACK_AREA) == 0 || object == NULL, 1990 ("vm_map_fixed: non-NULL backing object for stack")); 1991 vm_map_lock(map); 1992 VM_MAP_RANGE_CHECK(map, start, end); 1993 if ((cow & MAP_CHECK_EXCL) == 0) { 1994 result = vm_map_delete(map, start, end); 1995 if (result != KERN_SUCCESS) 1996 goto out; 1997 } 1998 if ((cow & MAP_STACK_AREA) != 0) { 1999 result = vm_map_stack_locked(map, start, length, sgrowsiz, 2000 prot, max, cow); 2001 } else { 2002 result = vm_map_insert(map, object, offset, start, end, 2003 prot, max, cow); 2004 } 2005 out: 2006 vm_map_unlock(map); 2007 return (result); 2008 } 2009 2010 #if VM_NRESERVLEVEL <= 1 2011 static const int aslr_pages_rnd_64[2] = {0x1000, 0x10}; 2012 static const int aslr_pages_rnd_32[2] = {0x100, 0x4}; 2013 #elif VM_NRESERVLEVEL == 2 2014 static const int aslr_pages_rnd_64[3] = {0x1000, 0x1000, 0x10}; 2015 static const int aslr_pages_rnd_32[3] = {0x100, 0x100, 0x4}; 2016 #else 2017 #error "Unsupported VM_NRESERVLEVEL" 2018 #endif 2019 2020 static int cluster_anon = 1; 2021 SYSCTL_INT(_vm, OID_AUTO, cluster_anon, CTLFLAG_RW, 2022 &cluster_anon, 0, 2023 "Cluster anonymous mappings: 0 = no, 1 = yes if no hint, 2 = always"); 2024 2025 static bool 2026 clustering_anon_allowed(vm_offset_t addr, int cow) 2027 { 2028 2029 switch (cluster_anon) { 2030 case 0: 2031 return (false); 2032 case 1: 2033 return (addr == 0 || (cow & MAP_NO_HINT) != 0); 2034 case 2: 2035 default: 2036 return (true); 2037 } 2038 } 2039 2040 static long aslr_restarts; 2041 SYSCTL_LONG(_vm, OID_AUTO, aslr_restarts, CTLFLAG_RD, 2042 &aslr_restarts, 0, 2043 "Number of aslr failures"); 2044 2045 /* 2046 * Searches for the specified amount of free space in the given map with the 2047 * specified alignment. Performs an address-ordered, first-fit search from 2048 * the given address "*addr", with an optional upper bound "max_addr". If the 2049 * parameter "alignment" is zero, then the alignment is computed from the 2050 * given (object, offset) pair so as to enable the greatest possible use of 2051 * superpage mappings. Returns KERN_SUCCESS and the address of the free space 2052 * in "*addr" if successful. Otherwise, returns KERN_NO_SPACE. 2053 * 2054 * The map must be locked. Initially, there must be at least "length" bytes 2055 * of free space at the given address. 2056 */ 2057 static int 2058 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 2059 vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr, 2060 vm_offset_t alignment) 2061 { 2062 vm_offset_t aligned_addr, free_addr; 2063 2064 VM_MAP_ASSERT_LOCKED(map); 2065 free_addr = *addr; 2066 KASSERT(free_addr == vm_map_findspace(map, free_addr, length), 2067 ("caller failed to provide space %#jx at address %p", 2068 (uintmax_t)length, (void *)free_addr)); 2069 for (;;) { 2070 /* 2071 * At the start of every iteration, the free space at address 2072 * "*addr" is at least "length" bytes. 2073 */ 2074 if (alignment == 0) 2075 pmap_align_superpage(object, offset, addr, length); 2076 else 2077 *addr = roundup2(*addr, alignment); 2078 aligned_addr = *addr; 2079 if (aligned_addr == free_addr) { 2080 /* 2081 * Alignment did not change "*addr", so "*addr" must 2082 * still provide sufficient free space. 2083 */ 2084 return (KERN_SUCCESS); 2085 } 2086 2087 /* 2088 * Test for address wrap on "*addr". A wrapped "*addr" could 2089 * be a valid address, in which case vm_map_findspace() cannot 2090 * be relied upon to fail. 2091 */ 2092 if (aligned_addr < free_addr) 2093 return (KERN_NO_SPACE); 2094 *addr = vm_map_findspace(map, aligned_addr, length); 2095 if (*addr + length > vm_map_max(map) || 2096 (max_addr != 0 && *addr + length > max_addr)) 2097 return (KERN_NO_SPACE); 2098 free_addr = *addr; 2099 if (free_addr == aligned_addr) { 2100 /* 2101 * If a successful call to vm_map_findspace() did not 2102 * change "*addr", then "*addr" must still be aligned 2103 * and provide sufficient free space. 2104 */ 2105 return (KERN_SUCCESS); 2106 } 2107 } 2108 } 2109 2110 int 2111 vm_map_find_aligned(vm_map_t map, vm_offset_t *addr, vm_size_t length, 2112 vm_offset_t max_addr, vm_offset_t alignment) 2113 { 2114 /* XXXKIB ASLR eh ? */ 2115 *addr = vm_map_findspace(map, *addr, length); 2116 if (*addr + length > vm_map_max(map) || 2117 (max_addr != 0 && *addr + length > max_addr)) 2118 return (KERN_NO_SPACE); 2119 return (vm_map_alignspace(map, NULL, 0, addr, length, max_addr, 2120 alignment)); 2121 } 2122 2123 /* 2124 * vm_map_find finds an unallocated region in the target address 2125 * map with the given length. The search is defined to be 2126 * first-fit from the specified address; the region found is 2127 * returned in the same parameter. 2128 * 2129 * If object is non-NULL, ref count must be bumped by caller 2130 * prior to making call to account for the new entry. 2131 */ 2132 int 2133 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 2134 vm_offset_t *addr, /* IN/OUT */ 2135 vm_size_t length, vm_offset_t max_addr, int find_space, 2136 vm_prot_t prot, vm_prot_t max, int cow) 2137 { 2138 int rv; 2139 2140 vm_map_lock(map); 2141 rv = vm_map_find_locked(map, object, offset, addr, length, max_addr, 2142 find_space, prot, max, cow); 2143 vm_map_unlock(map); 2144 return (rv); 2145 } 2146 2147 int 2148 vm_map_find_locked(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 2149 vm_offset_t *addr, /* IN/OUT */ 2150 vm_size_t length, vm_offset_t max_addr, int find_space, 2151 vm_prot_t prot, vm_prot_t max, int cow) 2152 { 2153 vm_offset_t alignment, curr_min_addr, min_addr; 2154 int gap, pidx, rv, try; 2155 bool cluster, en_aslr, update_anon; 2156 2157 KASSERT((cow & MAP_STACK_AREA) == 0 || object == NULL, 2158 ("non-NULL backing object for stack")); 2159 MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE && 2160 (cow & MAP_STACK_AREA) == 0)); 2161 if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL || 2162 (object->flags & OBJ_COLORED) == 0)) 2163 find_space = VMFS_ANY_SPACE; 2164 if (find_space >> 8 != 0) { 2165 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags")); 2166 alignment = (vm_offset_t)1 << (find_space >> 8); 2167 } else 2168 alignment = 0; 2169 en_aslr = (map->flags & MAP_ASLR) != 0; 2170 update_anon = cluster = clustering_anon_allowed(*addr, cow) && 2171 (map->flags & MAP_IS_SUB_MAP) == 0 && max_addr == 0 && 2172 find_space != VMFS_NO_SPACE && object == NULL && 2173 (cow & (MAP_INHERIT_SHARE | MAP_STACK_AREA)) == 0 && 2174 prot != PROT_NONE; 2175 curr_min_addr = min_addr = *addr; 2176 if (en_aslr && min_addr == 0 && !cluster && 2177 find_space != VMFS_NO_SPACE && 2178 (map->flags & MAP_ASLR_IGNSTART) != 0) 2179 curr_min_addr = min_addr = vm_map_min(map); 2180 try = 0; 2181 if (cluster) { 2182 curr_min_addr = map->anon_loc; 2183 if (curr_min_addr == 0) 2184 cluster = false; 2185 } 2186 if (find_space != VMFS_NO_SPACE) { 2187 KASSERT(find_space == VMFS_ANY_SPACE || 2188 find_space == VMFS_OPTIMAL_SPACE || 2189 find_space == VMFS_SUPER_SPACE || 2190 alignment != 0, ("unexpected VMFS flag")); 2191 again: 2192 /* 2193 * When creating an anonymous mapping, try clustering 2194 * with an existing anonymous mapping first. 2195 * 2196 * We make up to two attempts to find address space 2197 * for a given find_space value. The first attempt may 2198 * apply randomization or may cluster with an existing 2199 * anonymous mapping. If this first attempt fails, 2200 * perform a first-fit search of the available address 2201 * space. 2202 * 2203 * If all tries failed, and find_space is 2204 * VMFS_OPTIMAL_SPACE, fallback to VMFS_ANY_SPACE. 2205 * Again enable clustering and randomization. 2206 */ 2207 try++; 2208 MPASS(try <= 2); 2209 2210 if (try == 2) { 2211 /* 2212 * Second try: we failed either to find a 2213 * suitable region for randomizing the 2214 * allocation, or to cluster with an existing 2215 * mapping. Retry with free run. 2216 */ 2217 curr_min_addr = (map->flags & MAP_ASLR_IGNSTART) != 0 ? 2218 vm_map_min(map) : min_addr; 2219 atomic_add_long(&aslr_restarts, 1); 2220 } 2221 2222 if (try == 1 && en_aslr && !cluster) { 2223 /* 2224 * Find space for allocation, including 2225 * gap needed for later randomization. 2226 */ 2227 pidx = 0; 2228 #if VM_NRESERVLEVEL > 0 2229 if ((find_space == VMFS_SUPER_SPACE || 2230 find_space == VMFS_OPTIMAL_SPACE) && 2231 pagesizes[VM_NRESERVLEVEL] != 0) { 2232 /* 2233 * Do not pointlessly increase the space that 2234 * is requested from vm_map_findspace(). 2235 * pmap_align_superpage() will only change a 2236 * mapping's alignment if that mapping is at 2237 * least a superpage in size. 2238 */ 2239 pidx = VM_NRESERVLEVEL; 2240 while (pidx > 0 && length < pagesizes[pidx]) 2241 pidx--; 2242 } 2243 #endif 2244 gap = vm_map_max(map) > MAP_32BIT_MAX_ADDR && 2245 (max_addr == 0 || max_addr > MAP_32BIT_MAX_ADDR) ? 2246 aslr_pages_rnd_64[pidx] : aslr_pages_rnd_32[pidx]; 2247 *addr = vm_map_findspace(map, curr_min_addr, 2248 length + gap * pagesizes[pidx]); 2249 if (*addr + length + gap * pagesizes[pidx] > 2250 vm_map_max(map)) 2251 goto again; 2252 /* And randomize the start address. */ 2253 *addr += (arc4random() % gap) * pagesizes[pidx]; 2254 if (max_addr != 0 && *addr + length > max_addr) 2255 goto again; 2256 } else { 2257 *addr = vm_map_findspace(map, curr_min_addr, length); 2258 if (*addr + length > vm_map_max(map) || 2259 (max_addr != 0 && *addr + length > max_addr)) { 2260 if (cluster) { 2261 cluster = false; 2262 MPASS(try == 1); 2263 goto again; 2264 } 2265 return (KERN_NO_SPACE); 2266 } 2267 } 2268 2269 if (find_space != VMFS_ANY_SPACE && 2270 (rv = vm_map_alignspace(map, object, offset, addr, length, 2271 max_addr, alignment)) != KERN_SUCCESS) { 2272 if (find_space == VMFS_OPTIMAL_SPACE) { 2273 find_space = VMFS_ANY_SPACE; 2274 curr_min_addr = min_addr; 2275 cluster = update_anon; 2276 try = 0; 2277 goto again; 2278 } 2279 return (rv); 2280 } 2281 } else if ((cow & MAP_REMAP) != 0) { 2282 if (!vm_map_range_valid(map, *addr, *addr + length)) 2283 return (KERN_INVALID_ADDRESS); 2284 rv = vm_map_delete(map, *addr, *addr + length); 2285 if (rv != KERN_SUCCESS) 2286 return (rv); 2287 } 2288 if ((cow & MAP_STACK_AREA) != 0) { 2289 rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot, 2290 max, cow); 2291 } else { 2292 rv = vm_map_insert(map, object, offset, *addr, *addr + length, 2293 prot, max, cow); 2294 } 2295 2296 /* 2297 * Update the starting address for clustered anonymous memory mappings 2298 * if a starting address was not previously defined or an ASLR restart 2299 * placed an anonymous memory mapping at a lower address. 2300 */ 2301 if (update_anon && rv == KERN_SUCCESS && (map->anon_loc == 0 || 2302 *addr < map->anon_loc)) 2303 map->anon_loc = *addr; 2304 return (rv); 2305 } 2306 2307 /* 2308 * vm_map_find_min() is a variant of vm_map_find() that takes an 2309 * additional parameter ("default_addr") and treats the given address 2310 * ("*addr") differently. Specifically, it treats "*addr" as a hint 2311 * and not as the minimum address where the mapping is created. 2312 * 2313 * This function works in two phases. First, it tries to 2314 * allocate above the hint. If that fails and the hint is 2315 * greater than "default_addr", it performs a second pass, replacing 2316 * the hint with "default_addr" as the minimum address for the 2317 * allocation. 2318 */ 2319 int 2320 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 2321 vm_offset_t *addr, vm_size_t length, vm_offset_t default_addr, 2322 vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max, 2323 int cow) 2324 { 2325 vm_offset_t hint; 2326 int rv; 2327 2328 hint = *addr; 2329 if (hint == 0) { 2330 cow |= MAP_NO_HINT; 2331 *addr = hint = default_addr; 2332 } 2333 for (;;) { 2334 rv = vm_map_find(map, object, offset, addr, length, max_addr, 2335 find_space, prot, max, cow); 2336 if (rv == KERN_SUCCESS || default_addr >= hint) 2337 return (rv); 2338 *addr = hint = default_addr; 2339 } 2340 } 2341 2342 /* 2343 * A map entry with any of the following flags set must not be merged with 2344 * another entry. 2345 */ 2346 #define MAP_ENTRY_NOMERGE_MASK (MAP_ENTRY_GROWS_DOWN | \ 2347 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP | MAP_ENTRY_VN_EXEC | \ 2348 MAP_ENTRY_STACK_GAP) 2349 2350 static bool 2351 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry) 2352 { 2353 2354 KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 || 2355 (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0, 2356 ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable", 2357 prev, entry)); 2358 return (prev->end == entry->start && 2359 prev->object.vm_object == entry->object.vm_object && 2360 (prev->object.vm_object == NULL || 2361 prev->offset + (prev->end - prev->start) == entry->offset) && 2362 prev->eflags == entry->eflags && 2363 prev->protection == entry->protection && 2364 prev->max_protection == entry->max_protection && 2365 prev->inheritance == entry->inheritance && 2366 prev->wired_count == entry->wired_count && 2367 prev->cred == entry->cred); 2368 } 2369 2370 static void 2371 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry) 2372 { 2373 2374 /* 2375 * If the backing object is a vnode object, vm_object_deallocate() 2376 * calls vrele(). However, vrele() does not lock the vnode because 2377 * the vnode has additional references. Thus, the map lock can be 2378 * kept without causing a lock-order reversal with the vnode lock. 2379 * 2380 * Since we count the number of virtual page mappings in 2381 * object->un_pager.vnp.writemappings, the writemappings value 2382 * should not be adjusted when the entry is disposed of. 2383 */ 2384 if (entry->object.vm_object != NULL) 2385 vm_object_deallocate(entry->object.vm_object); 2386 if (entry->cred != NULL) 2387 crfree(entry->cred); 2388 vm_map_entry_dispose(map, entry); 2389 } 2390 2391 /* 2392 * vm_map_try_merge_entries: 2393 * 2394 * Compare two map entries that represent consecutive ranges. If 2395 * the entries can be merged, expand the range of the second to 2396 * cover the range of the first and delete the first. Then return 2397 * the map entry that includes the first range. 2398 * 2399 * The map must be locked. 2400 */ 2401 vm_map_entry_t 2402 vm_map_try_merge_entries(vm_map_t map, vm_map_entry_t prev_entry, 2403 vm_map_entry_t entry) 2404 { 2405 2406 VM_MAP_ASSERT_LOCKED(map); 2407 if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 && 2408 vm_map_mergeable_neighbors(prev_entry, entry)) { 2409 vm_map_entry_unlink(map, prev_entry, UNLINK_MERGE_NEXT); 2410 vm_map_merged_neighbor_dispose(map, prev_entry); 2411 return (entry); 2412 } 2413 return (prev_entry); 2414 } 2415 2416 /* 2417 * vm_map_entry_back: 2418 * 2419 * Allocate an object to back a map entry. 2420 */ 2421 static inline void 2422 vm_map_entry_back(vm_map_entry_t entry) 2423 { 2424 vm_object_t object; 2425 2426 KASSERT(entry->object.vm_object == NULL, 2427 ("map entry %p has backing object", entry)); 2428 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 2429 ("map entry %p is a submap", entry)); 2430 object = vm_object_allocate_anon(atop(entry->end - entry->start), NULL, 2431 entry->cred); 2432 entry->object.vm_object = object; 2433 entry->offset = 0; 2434 entry->cred = NULL; 2435 } 2436 2437 /* 2438 * vm_map_entry_charge_object 2439 * 2440 * If there is no object backing this entry, create one. Otherwise, if 2441 * the entry has cred, give it to the backing object. 2442 */ 2443 static inline void 2444 vm_map_entry_charge_object(vm_map_t map, vm_map_entry_t entry) 2445 { 2446 vm_object_t object; 2447 2448 VM_MAP_ASSERT_LOCKED(map); 2449 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 2450 ("map entry %p is a submap", entry)); 2451 object = entry->object.vm_object; 2452 if (object == NULL && !vm_map_is_system(map) && 2453 (entry->eflags & MAP_ENTRY_GUARD) == 0) 2454 vm_map_entry_back(entry); 2455 else if (object != NULL && 2456 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 2457 entry->cred != NULL) { 2458 VM_OBJECT_WLOCK(object); 2459 KASSERT(object->cred == NULL, 2460 ("OVERCOMMIT: %s: both cred e %p", __func__, entry)); 2461 object->cred = entry->cred; 2462 if (entry->end - entry->start < ptoa(object->size)) { 2463 swap_reserve_force_by_cred(ptoa(object->size) - 2464 entry->end + entry->start, object->cred); 2465 } 2466 VM_OBJECT_WUNLOCK(entry->object.vm_object); 2467 entry->cred = NULL; 2468 } 2469 } 2470 2471 /* 2472 * vm_map_entry_clone 2473 * 2474 * Create a duplicate map entry for clipping. 2475 */ 2476 static vm_map_entry_t 2477 vm_map_entry_clone(vm_map_t map, vm_map_entry_t entry) 2478 { 2479 vm_map_entry_t new_entry; 2480 2481 VM_MAP_ASSERT_LOCKED(map); 2482 2483 /* 2484 * Create a backing object now, if none exists, so that more individual 2485 * objects won't be created after the map entry is split. 2486 */ 2487 vm_map_entry_charge_object(map, entry); 2488 2489 /* Clone the entry. */ 2490 new_entry = vm_map_entry_create(map); 2491 *new_entry = *entry; 2492 if (new_entry->cred != NULL) 2493 crhold(entry->cred); 2494 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 2495 vm_object_reference(new_entry->object.vm_object); 2496 vm_map_entry_set_vnode_text(new_entry, true); 2497 /* 2498 * The object->un_pager.vnp.writemappings for the object of 2499 * MAP_ENTRY_WRITECNT type entry shall be kept as is here. The 2500 * virtual pages are re-distributed among the clipped entries, 2501 * so the sum is left the same. 2502 */ 2503 } 2504 return (new_entry); 2505 } 2506 2507 /* 2508 * vm_map_clip_start: [ internal use only ] 2509 * 2510 * Asserts that the given entry begins at or after 2511 * the specified address; if necessary, 2512 * it splits the entry into two. 2513 */ 2514 static int 2515 vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t startaddr) 2516 { 2517 vm_map_entry_t new_entry; 2518 int bdry_idx; 2519 2520 if (!vm_map_is_system(map)) 2521 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2522 "%s: map %p entry %p start 0x%jx", __func__, map, entry, 2523 (uintmax_t)startaddr); 2524 2525 if (startaddr <= entry->start) 2526 return (KERN_SUCCESS); 2527 2528 VM_MAP_ASSERT_LOCKED(map); 2529 KASSERT(entry->end > startaddr && entry->start < startaddr, 2530 ("%s: invalid clip of entry %p", __func__, entry)); 2531 2532 bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry); 2533 if (bdry_idx != 0) { 2534 if ((startaddr & (pagesizes[bdry_idx] - 1)) != 0) 2535 return (KERN_INVALID_ARGUMENT); 2536 } 2537 2538 new_entry = vm_map_entry_clone(map, entry); 2539 2540 /* 2541 * Split off the front portion. Insert the new entry BEFORE this one, 2542 * so that this entry has the specified starting address. 2543 */ 2544 new_entry->end = startaddr; 2545 vm_map_entry_link(map, new_entry); 2546 return (KERN_SUCCESS); 2547 } 2548 2549 /* 2550 * vm_map_lookup_clip_start: 2551 * 2552 * Find the entry at or just after 'start', and clip it if 'start' is in 2553 * the interior of the entry. Return entry after 'start', and in 2554 * prev_entry set the entry before 'start'. 2555 */ 2556 static int 2557 vm_map_lookup_clip_start(vm_map_t map, vm_offset_t start, 2558 vm_map_entry_t *res_entry, vm_map_entry_t *prev_entry) 2559 { 2560 vm_map_entry_t entry; 2561 int rv; 2562 2563 if (!vm_map_is_system(map)) 2564 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2565 "%s: map %p start 0x%jx prev %p", __func__, map, 2566 (uintmax_t)start, prev_entry); 2567 2568 if (vm_map_lookup_entry(map, start, prev_entry)) { 2569 entry = *prev_entry; 2570 rv = vm_map_clip_start(map, entry, start); 2571 if (rv != KERN_SUCCESS) 2572 return (rv); 2573 *prev_entry = vm_map_entry_pred(entry); 2574 } else 2575 entry = vm_map_entry_succ(*prev_entry); 2576 *res_entry = entry; 2577 return (KERN_SUCCESS); 2578 } 2579 2580 /* 2581 * vm_map_clip_end: [ internal use only ] 2582 * 2583 * Asserts that the given entry ends at or before 2584 * the specified address; if necessary, 2585 * it splits the entry into two. 2586 */ 2587 static int 2588 vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t endaddr) 2589 { 2590 vm_map_entry_t new_entry; 2591 int bdry_idx; 2592 2593 if (!vm_map_is_system(map)) 2594 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2595 "%s: map %p entry %p end 0x%jx", __func__, map, entry, 2596 (uintmax_t)endaddr); 2597 2598 if (endaddr >= entry->end) 2599 return (KERN_SUCCESS); 2600 2601 VM_MAP_ASSERT_LOCKED(map); 2602 KASSERT(entry->start < endaddr && entry->end > endaddr, 2603 ("%s: invalid clip of entry %p", __func__, entry)); 2604 2605 bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry); 2606 if (bdry_idx != 0) { 2607 if ((endaddr & (pagesizes[bdry_idx] - 1)) != 0) 2608 return (KERN_INVALID_ARGUMENT); 2609 } 2610 2611 new_entry = vm_map_entry_clone(map, entry); 2612 2613 /* 2614 * Split off the back portion. Insert the new entry AFTER this one, 2615 * so that this entry has the specified ending address. 2616 */ 2617 new_entry->start = endaddr; 2618 vm_map_entry_link(map, new_entry); 2619 2620 return (KERN_SUCCESS); 2621 } 2622 2623 /* 2624 * vm_map_submap: [ kernel use only ] 2625 * 2626 * Mark the given range as handled by a subordinate map. 2627 * 2628 * This range must have been created with vm_map_find, 2629 * and no other operations may have been performed on this 2630 * range prior to calling vm_map_submap. 2631 * 2632 * Only a limited number of operations can be performed 2633 * within this rage after calling vm_map_submap: 2634 * vm_fault 2635 * [Don't try vm_map_copy!] 2636 * 2637 * To remove a submapping, one must first remove the 2638 * range from the superior map, and then destroy the 2639 * submap (if desired). [Better yet, don't try it.] 2640 */ 2641 int 2642 vm_map_submap( 2643 vm_map_t map, 2644 vm_offset_t start, 2645 vm_offset_t end, 2646 vm_map_t submap) 2647 { 2648 vm_map_entry_t entry; 2649 int result; 2650 2651 result = KERN_INVALID_ARGUMENT; 2652 2653 vm_map_lock(submap); 2654 submap->flags |= MAP_IS_SUB_MAP; 2655 vm_map_unlock(submap); 2656 2657 vm_map_lock(map); 2658 VM_MAP_RANGE_CHECK(map, start, end); 2659 if (vm_map_lookup_entry(map, start, &entry) && entry->end >= end && 2660 (entry->eflags & MAP_ENTRY_COW) == 0 && 2661 entry->object.vm_object == NULL) { 2662 result = vm_map_clip_start(map, entry, start); 2663 if (result != KERN_SUCCESS) 2664 goto unlock; 2665 result = vm_map_clip_end(map, entry, end); 2666 if (result != KERN_SUCCESS) 2667 goto unlock; 2668 entry->object.sub_map = submap; 2669 entry->eflags |= MAP_ENTRY_IS_SUB_MAP; 2670 result = KERN_SUCCESS; 2671 } 2672 unlock: 2673 vm_map_unlock(map); 2674 2675 if (result != KERN_SUCCESS) { 2676 vm_map_lock(submap); 2677 submap->flags &= ~MAP_IS_SUB_MAP; 2678 vm_map_unlock(submap); 2679 } 2680 return (result); 2681 } 2682 2683 /* 2684 * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified 2685 */ 2686 #define MAX_INIT_PT 96 2687 2688 /* 2689 * vm_map_pmap_enter: 2690 * 2691 * Preload the specified map's pmap with mappings to the specified 2692 * object's memory-resident pages. No further physical pages are 2693 * allocated, and no further virtual pages are retrieved from secondary 2694 * storage. If the specified flags include MAP_PREFAULT_PARTIAL, then a 2695 * limited number of page mappings are created at the low-end of the 2696 * specified address range. (For this purpose, a superpage mapping 2697 * counts as one page mapping.) Otherwise, all resident pages within 2698 * the specified address range are mapped. 2699 */ 2700 static void 2701 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 2702 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags) 2703 { 2704 struct pctrie_iter pages; 2705 vm_offset_t start; 2706 vm_page_t p, p_start; 2707 vm_pindex_t jump, mask, psize, threshold, tmpidx; 2708 int psind; 2709 2710 if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL) 2711 return; 2712 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 2713 VM_OBJECT_WLOCK(object); 2714 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 2715 pmap_object_init_pt(map->pmap, addr, object, pindex, 2716 size); 2717 VM_OBJECT_WUNLOCK(object); 2718 return; 2719 } 2720 VM_OBJECT_LOCK_DOWNGRADE(object); 2721 } else 2722 VM_OBJECT_RLOCK(object); 2723 2724 psize = atop(size); 2725 if (psize + pindex > object->size) { 2726 if (pindex >= object->size) { 2727 VM_OBJECT_RUNLOCK(object); 2728 return; 2729 } 2730 psize = object->size - pindex; 2731 } 2732 2733 start = 0; 2734 p_start = NULL; 2735 threshold = MAX_INIT_PT; 2736 2737 vm_page_iter_limit_init(&pages, object, pindex + psize); 2738 for (p = vm_radix_iter_lookup_ge(&pages, pindex); p != NULL; 2739 p = vm_radix_iter_jump(&pages, jump)) { 2740 /* 2741 * don't allow an madvise to blow away our really 2742 * free pages allocating pv entries. 2743 */ 2744 tmpidx = p->pindex - pindex; 2745 if (((flags & MAP_PREFAULT_MADVISE) != 0 && 2746 vm_page_count_severe()) || 2747 ((flags & MAP_PREFAULT_PARTIAL) != 0 && 2748 tmpidx >= threshold)) { 2749 psize = tmpidx; 2750 break; 2751 } 2752 jump = 1; 2753 if (vm_page_all_valid(p)) { 2754 if (p_start == NULL) { 2755 start = addr + ptoa(tmpidx); 2756 p_start = p; 2757 } 2758 /* Jump ahead if a superpage mapping is possible. */ 2759 for (psind = p->psind; psind > 0; psind--) { 2760 if (((addr + ptoa(tmpidx)) & 2761 (pagesizes[psind] - 1)) == 0) { 2762 mask = atop(pagesizes[psind]) - 1; 2763 if (tmpidx + mask < psize && 2764 vm_page_ps_test(p, psind, 2765 PS_ALL_VALID, NULL)) { 2766 jump += mask; 2767 threshold += mask; 2768 break; 2769 } 2770 } 2771 } 2772 } else if (p_start != NULL) { 2773 pmap_enter_object(map->pmap, start, addr + 2774 ptoa(tmpidx), p_start, prot); 2775 p_start = NULL; 2776 } 2777 } 2778 if (p_start != NULL) 2779 pmap_enter_object(map->pmap, start, addr + ptoa(psize), 2780 p_start, prot); 2781 VM_OBJECT_RUNLOCK(object); 2782 } 2783 2784 static void 2785 vm_map_protect_guard(vm_map_entry_t entry, vm_prot_t new_prot, 2786 vm_prot_t new_maxprot, int flags) 2787 { 2788 vm_prot_t old_prot; 2789 2790 MPASS((entry->eflags & MAP_ENTRY_GUARD) != 0); 2791 if ((entry->eflags & MAP_ENTRY_STACK_GAP) == 0) 2792 return; 2793 2794 old_prot = PROT_EXTRACT(entry->offset); 2795 if ((flags & VM_MAP_PROTECT_SET_MAXPROT) != 0) { 2796 entry->offset = PROT_MAX(new_maxprot) | 2797 (new_maxprot & old_prot); 2798 } 2799 if ((flags & VM_MAP_PROTECT_SET_PROT) != 0) { 2800 entry->offset = new_prot | PROT_MAX( 2801 PROT_MAX_EXTRACT(entry->offset)); 2802 } 2803 } 2804 2805 /* 2806 * vm_map_protect: 2807 * 2808 * Sets the protection and/or the maximum protection of the 2809 * specified address region in the target map. 2810 */ 2811 int 2812 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 2813 vm_prot_t new_prot, vm_prot_t new_maxprot, int flags) 2814 { 2815 vm_map_entry_t entry, first_entry, in_tran, prev_entry; 2816 vm_object_t obj; 2817 struct ucred *cred; 2818 vm_offset_t orig_start; 2819 vm_prot_t check_prot, max_prot, old_prot; 2820 int rv; 2821 2822 if (start == end) 2823 return (KERN_SUCCESS); 2824 2825 if (CONTAINS_BITS(flags, VM_MAP_PROTECT_SET_PROT | 2826 VM_MAP_PROTECT_SET_MAXPROT) && 2827 !CONTAINS_BITS(new_maxprot, new_prot)) 2828 return (KERN_OUT_OF_BOUNDS); 2829 2830 orig_start = start; 2831 again: 2832 in_tran = NULL; 2833 start = orig_start; 2834 vm_map_lock(map); 2835 2836 if ((map->flags & MAP_WXORX) != 0 && 2837 (flags & VM_MAP_PROTECT_SET_PROT) != 0 && 2838 CONTAINS_BITS(new_prot, VM_PROT_WRITE | VM_PROT_EXECUTE)) { 2839 vm_map_unlock(map); 2840 return (KERN_PROTECTION_FAILURE); 2841 } 2842 2843 /* 2844 * Ensure that we are not concurrently wiring pages. vm_map_wire() may 2845 * need to fault pages into the map and will drop the map lock while 2846 * doing so, and the VM object may end up in an inconsistent state if we 2847 * update the protection on the map entry in between faults. 2848 */ 2849 vm_map_wait_busy(map); 2850 2851 VM_MAP_RANGE_CHECK(map, start, end); 2852 2853 if (!vm_map_lookup_entry(map, start, &first_entry)) 2854 first_entry = vm_map_entry_succ(first_entry); 2855 2856 if ((flags & VM_MAP_PROTECT_GROWSDOWN) != 0 && 2857 (first_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0) { 2858 /* 2859 * Handle Linux's PROT_GROWSDOWN flag. 2860 * It means that protection is applied down to the 2861 * whole stack, including the specified range of the 2862 * mapped region, and the grow down region (AKA 2863 * guard). 2864 */ 2865 while (!CONTAINS_BITS(first_entry->eflags, 2866 MAP_ENTRY_GUARD | MAP_ENTRY_STACK_GAP) && 2867 first_entry != vm_map_entry_first(map)) 2868 first_entry = vm_map_entry_pred(first_entry); 2869 start = first_entry->start; 2870 } 2871 2872 /* 2873 * Make a first pass to check for protection violations. 2874 */ 2875 check_prot = 0; 2876 if ((flags & VM_MAP_PROTECT_SET_PROT) != 0) 2877 check_prot |= new_prot; 2878 if ((flags & VM_MAP_PROTECT_SET_MAXPROT) != 0) 2879 check_prot |= new_maxprot; 2880 for (entry = first_entry; entry->start < end; 2881 entry = vm_map_entry_succ(entry)) { 2882 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) { 2883 vm_map_unlock(map); 2884 return (KERN_INVALID_ARGUMENT); 2885 } 2886 if ((entry->eflags & (MAP_ENTRY_GUARD | 2887 MAP_ENTRY_STACK_GAP)) == MAP_ENTRY_GUARD) 2888 continue; 2889 max_prot = (entry->eflags & MAP_ENTRY_STACK_GAP) != 0 ? 2890 PROT_MAX_EXTRACT(entry->offset) : entry->max_protection; 2891 if (!CONTAINS_BITS(max_prot, check_prot)) { 2892 vm_map_unlock(map); 2893 return (KERN_PROTECTION_FAILURE); 2894 } 2895 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0) 2896 in_tran = entry; 2897 } 2898 2899 /* 2900 * Postpone the operation until all in-transition map entries have 2901 * stabilized. An in-transition entry might already have its pages 2902 * wired and wired_count incremented, but not yet have its 2903 * MAP_ENTRY_USER_WIRED flag set. In which case, we would fail to call 2904 * vm_fault_copy_entry() in the final loop below. 2905 */ 2906 if (in_tran != NULL) { 2907 in_tran->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2908 vm_map_unlock_and_wait(map, 0); 2909 goto again; 2910 } 2911 2912 /* 2913 * Before changing the protections, try to reserve swap space for any 2914 * private (i.e., copy-on-write) mappings that are transitioning from 2915 * read-only to read/write access. If a reservation fails, break out 2916 * of this loop early and let the next loop simplify the entries, since 2917 * some may now be mergeable. 2918 */ 2919 rv = vm_map_clip_start(map, first_entry, start); 2920 if (rv != KERN_SUCCESS) { 2921 vm_map_unlock(map); 2922 return (rv); 2923 } 2924 for (entry = first_entry; entry->start < end; 2925 entry = vm_map_entry_succ(entry)) { 2926 rv = vm_map_clip_end(map, entry, end); 2927 if (rv != KERN_SUCCESS) { 2928 vm_map_unlock(map); 2929 return (rv); 2930 } 2931 2932 if ((flags & VM_MAP_PROTECT_SET_PROT) == 0 || 2933 ((new_prot & ~entry->protection) & VM_PROT_WRITE) == 0 || 2934 ENTRY_CHARGED(entry) || 2935 (entry->eflags & MAP_ENTRY_GUARD) != 0) 2936 continue; 2937 2938 cred = curthread->td_ucred; 2939 obj = entry->object.vm_object; 2940 2941 if (obj == NULL || 2942 (entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0) { 2943 if (!swap_reserve(entry->end - entry->start)) { 2944 rv = KERN_RESOURCE_SHORTAGE; 2945 end = entry->end; 2946 break; 2947 } 2948 crhold(cred); 2949 entry->cred = cred; 2950 continue; 2951 } 2952 2953 VM_OBJECT_WLOCK(obj); 2954 if ((obj->flags & OBJ_SWAP) == 0) { 2955 VM_OBJECT_WUNLOCK(obj); 2956 continue; 2957 } 2958 2959 /* 2960 * Charge for the whole object allocation now, since 2961 * we cannot distinguish between non-charged and 2962 * charged clipped mapping of the same object later. 2963 */ 2964 KASSERT(obj->cred == NULL, 2965 ("vm_map_protect: object %p overcharged (entry %p)", 2966 obj, entry)); 2967 if (!swap_reserve(ptoa(obj->size))) { 2968 VM_OBJECT_WUNLOCK(obj); 2969 rv = KERN_RESOURCE_SHORTAGE; 2970 end = entry->end; 2971 break; 2972 } 2973 2974 crhold(cred); 2975 obj->cred = cred; 2976 VM_OBJECT_WUNLOCK(obj); 2977 } 2978 2979 /* 2980 * If enough swap space was available, go back and fix up protections. 2981 * Otherwise, just simplify entries, since some may have been modified. 2982 * [Note that clipping is not necessary the second time.] 2983 */ 2984 for (prev_entry = vm_map_entry_pred(first_entry), entry = first_entry; 2985 entry->start < end; 2986 vm_map_try_merge_entries(map, prev_entry, entry), 2987 prev_entry = entry, entry = vm_map_entry_succ(entry)) { 2988 if (rv != KERN_SUCCESS) 2989 continue; 2990 2991 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) { 2992 vm_map_protect_guard(entry, new_prot, new_maxprot, 2993 flags); 2994 continue; 2995 } 2996 2997 old_prot = entry->protection; 2998 2999 if ((flags & VM_MAP_PROTECT_SET_MAXPROT) != 0) { 3000 entry->max_protection = new_maxprot; 3001 entry->protection = new_maxprot & old_prot; 3002 } 3003 if ((flags & VM_MAP_PROTECT_SET_PROT) != 0) 3004 entry->protection = new_prot; 3005 3006 /* 3007 * For user wired map entries, the normal lazy evaluation of 3008 * write access upgrades through soft page faults is 3009 * undesirable. Instead, immediately copy any pages that are 3010 * copy-on-write and enable write access in the physical map. 3011 */ 3012 if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0 && 3013 (entry->protection & VM_PROT_WRITE) != 0 && 3014 (old_prot & VM_PROT_WRITE) == 0) 3015 vm_fault_copy_entry(map, map, entry, entry, NULL); 3016 3017 /* 3018 * When restricting access, update the physical map. Worry 3019 * about copy-on-write here. 3020 */ 3021 if ((old_prot & ~entry->protection) != 0) { 3022 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 3023 VM_PROT_ALL) 3024 pmap_protect(map->pmap, entry->start, 3025 entry->end, 3026 entry->protection & MASK(entry)); 3027 #undef MASK 3028 } 3029 } 3030 vm_map_try_merge_entries(map, prev_entry, entry); 3031 vm_map_unlock(map); 3032 return (rv); 3033 } 3034 3035 /* 3036 * vm_map_madvise: 3037 * 3038 * This routine traverses a processes map handling the madvise 3039 * system call. Advisories are classified as either those effecting 3040 * the vm_map_entry structure, or those effecting the underlying 3041 * objects. 3042 */ 3043 int 3044 vm_map_madvise( 3045 vm_map_t map, 3046 vm_offset_t start, 3047 vm_offset_t end, 3048 int behav) 3049 { 3050 vm_map_entry_t entry, prev_entry; 3051 int rv; 3052 bool modify_map; 3053 3054 /* 3055 * Some madvise calls directly modify the vm_map_entry, in which case 3056 * we need to use an exclusive lock on the map and we need to perform 3057 * various clipping operations. Otherwise we only need a read-lock 3058 * on the map. 3059 */ 3060 switch(behav) { 3061 case MADV_NORMAL: 3062 case MADV_SEQUENTIAL: 3063 case MADV_RANDOM: 3064 case MADV_NOSYNC: 3065 case MADV_AUTOSYNC: 3066 case MADV_NOCORE: 3067 case MADV_CORE: 3068 if (start == end) 3069 return (0); 3070 modify_map = true; 3071 vm_map_lock(map); 3072 break; 3073 case MADV_WILLNEED: 3074 case MADV_DONTNEED: 3075 case MADV_FREE: 3076 if (start == end) 3077 return (0); 3078 modify_map = false; 3079 vm_map_lock_read(map); 3080 break; 3081 default: 3082 return (EINVAL); 3083 } 3084 3085 /* 3086 * Locate starting entry and clip if necessary. 3087 */ 3088 VM_MAP_RANGE_CHECK(map, start, end); 3089 3090 if (modify_map) { 3091 /* 3092 * madvise behaviors that are implemented in the vm_map_entry. 3093 * 3094 * We clip the vm_map_entry so that behavioral changes are 3095 * limited to the specified address range. 3096 */ 3097 rv = vm_map_lookup_clip_start(map, start, &entry, &prev_entry); 3098 if (rv != KERN_SUCCESS) { 3099 vm_map_unlock(map); 3100 return (vm_mmap_to_errno(rv)); 3101 } 3102 3103 for (; entry->start < end; prev_entry = entry, 3104 entry = vm_map_entry_succ(entry)) { 3105 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) 3106 continue; 3107 3108 rv = vm_map_clip_end(map, entry, end); 3109 if (rv != KERN_SUCCESS) { 3110 vm_map_unlock(map); 3111 return (vm_mmap_to_errno(rv)); 3112 } 3113 3114 switch (behav) { 3115 case MADV_NORMAL: 3116 vm_map_entry_set_behavior(entry, 3117 MAP_ENTRY_BEHAV_NORMAL); 3118 break; 3119 case MADV_SEQUENTIAL: 3120 vm_map_entry_set_behavior(entry, 3121 MAP_ENTRY_BEHAV_SEQUENTIAL); 3122 break; 3123 case MADV_RANDOM: 3124 vm_map_entry_set_behavior(entry, 3125 MAP_ENTRY_BEHAV_RANDOM); 3126 break; 3127 case MADV_NOSYNC: 3128 entry->eflags |= MAP_ENTRY_NOSYNC; 3129 break; 3130 case MADV_AUTOSYNC: 3131 entry->eflags &= ~MAP_ENTRY_NOSYNC; 3132 break; 3133 case MADV_NOCORE: 3134 entry->eflags |= MAP_ENTRY_NOCOREDUMP; 3135 break; 3136 case MADV_CORE: 3137 entry->eflags &= ~MAP_ENTRY_NOCOREDUMP; 3138 break; 3139 default: 3140 break; 3141 } 3142 vm_map_try_merge_entries(map, prev_entry, entry); 3143 } 3144 vm_map_try_merge_entries(map, prev_entry, entry); 3145 vm_map_unlock(map); 3146 } else { 3147 vm_pindex_t pstart, pend; 3148 3149 /* 3150 * madvise behaviors that are implemented in the underlying 3151 * vm_object. 3152 * 3153 * Since we don't clip the vm_map_entry, we have to clip 3154 * the vm_object pindex and count. 3155 */ 3156 if (!vm_map_lookup_entry(map, start, &entry)) 3157 entry = vm_map_entry_succ(entry); 3158 for (; entry->start < end; 3159 entry = vm_map_entry_succ(entry)) { 3160 vm_offset_t useEnd, useStart; 3161 3162 if ((entry->eflags & (MAP_ENTRY_IS_SUB_MAP | 3163 MAP_ENTRY_GUARD)) != 0) 3164 continue; 3165 3166 /* 3167 * MADV_FREE would otherwise rewind time to 3168 * the creation of the shadow object. Because 3169 * we hold the VM map read-locked, neither the 3170 * entry's object nor the presence of a 3171 * backing object can change. 3172 */ 3173 if (behav == MADV_FREE && 3174 entry->object.vm_object != NULL && 3175 entry->object.vm_object->backing_object != NULL) 3176 continue; 3177 3178 pstart = OFF_TO_IDX(entry->offset); 3179 pend = pstart + atop(entry->end - entry->start); 3180 useStart = entry->start; 3181 useEnd = entry->end; 3182 3183 if (entry->start < start) { 3184 pstart += atop(start - entry->start); 3185 useStart = start; 3186 } 3187 if (entry->end > end) { 3188 pend -= atop(entry->end - end); 3189 useEnd = end; 3190 } 3191 3192 if (pstart >= pend) 3193 continue; 3194 3195 /* 3196 * Perform the pmap_advise() before clearing 3197 * PGA_REFERENCED in vm_page_advise(). Otherwise, a 3198 * concurrent pmap operation, such as pmap_remove(), 3199 * could clear a reference in the pmap and set 3200 * PGA_REFERENCED on the page before the pmap_advise() 3201 * had completed. Consequently, the page would appear 3202 * referenced based upon an old reference that 3203 * occurred before this pmap_advise() ran. 3204 */ 3205 if (behav == MADV_DONTNEED || behav == MADV_FREE) 3206 pmap_advise(map->pmap, useStart, useEnd, 3207 behav); 3208 3209 vm_object_madvise(entry->object.vm_object, pstart, 3210 pend, behav); 3211 3212 /* 3213 * Pre-populate paging structures in the 3214 * WILLNEED case. For wired entries, the 3215 * paging structures are already populated. 3216 */ 3217 if (behav == MADV_WILLNEED && 3218 entry->wired_count == 0) { 3219 vm_map_pmap_enter(map, 3220 useStart, 3221 entry->protection, 3222 entry->object.vm_object, 3223 pstart, 3224 ptoa(pend - pstart), 3225 MAP_PREFAULT_MADVISE 3226 ); 3227 } 3228 } 3229 vm_map_unlock_read(map); 3230 } 3231 return (0); 3232 } 3233 3234 /* 3235 * vm_map_inherit: 3236 * 3237 * Sets the inheritance of the specified address 3238 * range in the target map. Inheritance 3239 * affects how the map will be shared with 3240 * child maps at the time of vmspace_fork. 3241 */ 3242 int 3243 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 3244 vm_inherit_t new_inheritance) 3245 { 3246 vm_map_entry_t entry, lentry, prev_entry, start_entry; 3247 int rv; 3248 3249 switch (new_inheritance) { 3250 case VM_INHERIT_NONE: 3251 case VM_INHERIT_COPY: 3252 case VM_INHERIT_SHARE: 3253 case VM_INHERIT_ZERO: 3254 break; 3255 default: 3256 return (KERN_INVALID_ARGUMENT); 3257 } 3258 if (start == end) 3259 return (KERN_SUCCESS); 3260 vm_map_lock(map); 3261 VM_MAP_RANGE_CHECK(map, start, end); 3262 rv = vm_map_lookup_clip_start(map, start, &start_entry, &prev_entry); 3263 if (rv != KERN_SUCCESS) 3264 goto unlock; 3265 if (vm_map_lookup_entry(map, end - 1, &lentry)) { 3266 rv = vm_map_clip_end(map, lentry, end); 3267 if (rv != KERN_SUCCESS) 3268 goto unlock; 3269 } 3270 if (new_inheritance == VM_INHERIT_COPY) { 3271 for (entry = start_entry; entry->start < end; 3272 prev_entry = entry, entry = vm_map_entry_succ(entry)) { 3273 if ((entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) 3274 != 0) { 3275 rv = KERN_INVALID_ARGUMENT; 3276 goto unlock; 3277 } 3278 } 3279 } 3280 for (entry = start_entry; entry->start < end; prev_entry = entry, 3281 entry = vm_map_entry_succ(entry)) { 3282 KASSERT(entry->end <= end, ("non-clipped entry %p end %jx %jx", 3283 entry, (uintmax_t)entry->end, (uintmax_t)end)); 3284 if ((entry->eflags & MAP_ENTRY_GUARD) == 0 || 3285 new_inheritance != VM_INHERIT_ZERO) 3286 entry->inheritance = new_inheritance; 3287 vm_map_try_merge_entries(map, prev_entry, entry); 3288 } 3289 vm_map_try_merge_entries(map, prev_entry, entry); 3290 unlock: 3291 vm_map_unlock(map); 3292 return (rv); 3293 } 3294 3295 /* 3296 * vm_map_entry_in_transition: 3297 * 3298 * Release the map lock, and sleep until the entry is no longer in 3299 * transition. Awake and acquire the map lock. If the map changed while 3300 * another held the lock, lookup a possibly-changed entry at or after the 3301 * 'start' position of the old entry. 3302 */ 3303 static vm_map_entry_t 3304 vm_map_entry_in_transition(vm_map_t map, vm_offset_t in_start, 3305 vm_offset_t *io_end, bool holes_ok, vm_map_entry_t in_entry) 3306 { 3307 vm_map_entry_t entry; 3308 vm_offset_t start; 3309 u_int last_timestamp; 3310 3311 VM_MAP_ASSERT_LOCKED(map); 3312 KASSERT((in_entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 3313 ("not in-tranition map entry %p", in_entry)); 3314 /* 3315 * We have not yet clipped the entry. 3316 */ 3317 start = MAX(in_start, in_entry->start); 3318 in_entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 3319 last_timestamp = map->timestamp; 3320 if (vm_map_unlock_and_wait(map, 0)) { 3321 /* 3322 * Allow interruption of user wiring/unwiring? 3323 */ 3324 } 3325 vm_map_lock(map); 3326 if (last_timestamp + 1 == map->timestamp) 3327 return (in_entry); 3328 3329 /* 3330 * Look again for the entry because the map was modified while it was 3331 * unlocked. Specifically, the entry may have been clipped, merged, or 3332 * deleted. 3333 */ 3334 if (!vm_map_lookup_entry(map, start, &entry)) { 3335 if (!holes_ok) { 3336 *io_end = start; 3337 return (NULL); 3338 } 3339 entry = vm_map_entry_succ(entry); 3340 } 3341 return (entry); 3342 } 3343 3344 /* 3345 * vm_map_unwire: 3346 * 3347 * Implements both kernel and user unwiring. 3348 */ 3349 int 3350 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end, 3351 int flags) 3352 { 3353 vm_map_entry_t entry, first_entry, next_entry, prev_entry; 3354 int rv; 3355 bool holes_ok, need_wakeup, user_unwire; 3356 3357 if (start == end) 3358 return (KERN_SUCCESS); 3359 holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0; 3360 user_unwire = (flags & VM_MAP_WIRE_USER) != 0; 3361 vm_map_lock(map); 3362 VM_MAP_RANGE_CHECK(map, start, end); 3363 if (!vm_map_lookup_entry(map, start, &first_entry)) { 3364 if (holes_ok) 3365 first_entry = vm_map_entry_succ(first_entry); 3366 else { 3367 vm_map_unlock(map); 3368 return (KERN_INVALID_ADDRESS); 3369 } 3370 } 3371 rv = KERN_SUCCESS; 3372 for (entry = first_entry; entry->start < end; entry = next_entry) { 3373 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 3374 /* 3375 * We have not yet clipped the entry. 3376 */ 3377 next_entry = vm_map_entry_in_transition(map, start, 3378 &end, holes_ok, entry); 3379 if (next_entry == NULL) { 3380 if (entry == first_entry) { 3381 vm_map_unlock(map); 3382 return (KERN_INVALID_ADDRESS); 3383 } 3384 rv = KERN_INVALID_ADDRESS; 3385 break; 3386 } 3387 first_entry = (entry == first_entry) ? 3388 next_entry : NULL; 3389 continue; 3390 } 3391 rv = vm_map_clip_start(map, entry, start); 3392 if (rv != KERN_SUCCESS) 3393 break; 3394 rv = vm_map_clip_end(map, entry, end); 3395 if (rv != KERN_SUCCESS) 3396 break; 3397 3398 /* 3399 * Mark the entry in case the map lock is released. (See 3400 * above.) 3401 */ 3402 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 3403 entry->wiring_thread == NULL, 3404 ("owned map entry %p", entry)); 3405 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 3406 entry->wiring_thread = curthread; 3407 next_entry = vm_map_entry_succ(entry); 3408 /* 3409 * Check the map for holes in the specified region. 3410 * If holes_ok, skip this check. 3411 */ 3412 if (!holes_ok && 3413 entry->end < end && next_entry->start > entry->end) { 3414 end = entry->end; 3415 rv = KERN_INVALID_ADDRESS; 3416 break; 3417 } 3418 /* 3419 * If system unwiring, require that the entry is system wired. 3420 */ 3421 if (!user_unwire && 3422 vm_map_entry_system_wired_count(entry) == 0) { 3423 end = entry->end; 3424 rv = KERN_INVALID_ARGUMENT; 3425 break; 3426 } 3427 } 3428 need_wakeup = false; 3429 if (first_entry == NULL && 3430 !vm_map_lookup_entry(map, start, &first_entry)) { 3431 KASSERT(holes_ok, ("vm_map_unwire: lookup failed")); 3432 prev_entry = first_entry; 3433 entry = vm_map_entry_succ(first_entry); 3434 } else { 3435 prev_entry = vm_map_entry_pred(first_entry); 3436 entry = first_entry; 3437 } 3438 for (; entry->start < end; 3439 prev_entry = entry, entry = vm_map_entry_succ(entry)) { 3440 /* 3441 * If holes_ok was specified, an empty 3442 * space in the unwired region could have been mapped 3443 * while the map lock was dropped for draining 3444 * MAP_ENTRY_IN_TRANSITION. Moreover, another thread 3445 * could be simultaneously wiring this new mapping 3446 * entry. Detect these cases and skip any entries 3447 * marked as in transition by us. 3448 */ 3449 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 3450 entry->wiring_thread != curthread) { 3451 KASSERT(holes_ok, 3452 ("vm_map_unwire: !HOLESOK and new/changed entry")); 3453 continue; 3454 } 3455 3456 if (rv == KERN_SUCCESS && (!user_unwire || 3457 (entry->eflags & MAP_ENTRY_USER_WIRED))) { 3458 if (entry->wired_count == 1) 3459 vm_map_entry_unwire(map, entry); 3460 else 3461 entry->wired_count--; 3462 if (user_unwire) 3463 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 3464 } 3465 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 3466 ("vm_map_unwire: in-transition flag missing %p", entry)); 3467 KASSERT(entry->wiring_thread == curthread, 3468 ("vm_map_unwire: alien wire %p", entry)); 3469 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 3470 entry->wiring_thread = NULL; 3471 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 3472 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 3473 need_wakeup = true; 3474 } 3475 vm_map_try_merge_entries(map, prev_entry, entry); 3476 } 3477 vm_map_try_merge_entries(map, prev_entry, entry); 3478 vm_map_unlock(map); 3479 if (need_wakeup) 3480 vm_map_wakeup(map); 3481 return (rv); 3482 } 3483 3484 static void 3485 vm_map_wire_user_count_sub(u_long npages) 3486 { 3487 3488 atomic_subtract_long(&vm_user_wire_count, npages); 3489 } 3490 3491 static bool 3492 vm_map_wire_user_count_add(u_long npages) 3493 { 3494 u_long wired; 3495 3496 wired = vm_user_wire_count; 3497 do { 3498 if (npages + wired > vm_page_max_user_wired) 3499 return (false); 3500 } while (!atomic_fcmpset_long(&vm_user_wire_count, &wired, 3501 npages + wired)); 3502 3503 return (true); 3504 } 3505 3506 /* 3507 * vm_map_wire_entry_failure: 3508 * 3509 * Handle a wiring failure on the given entry. 3510 * 3511 * The map should be locked. 3512 */ 3513 static void 3514 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry, 3515 vm_offset_t failed_addr) 3516 { 3517 3518 VM_MAP_ASSERT_LOCKED(map); 3519 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 && 3520 entry->wired_count == 1, 3521 ("vm_map_wire_entry_failure: entry %p isn't being wired", entry)); 3522 KASSERT(failed_addr < entry->end, 3523 ("vm_map_wire_entry_failure: entry %p was fully wired", entry)); 3524 3525 /* 3526 * If any pages at the start of this entry were successfully wired, 3527 * then unwire them. 3528 */ 3529 if (failed_addr > entry->start) { 3530 pmap_unwire(map->pmap, entry->start, failed_addr); 3531 vm_object_unwire(entry->object.vm_object, entry->offset, 3532 failed_addr - entry->start, PQ_ACTIVE); 3533 } 3534 3535 /* 3536 * Assign an out-of-range value to represent the failure to wire this 3537 * entry. 3538 */ 3539 entry->wired_count = -1; 3540 } 3541 3542 int 3543 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags) 3544 { 3545 int rv; 3546 3547 vm_map_lock(map); 3548 rv = vm_map_wire_locked(map, start, end, flags); 3549 vm_map_unlock(map); 3550 return (rv); 3551 } 3552 3553 /* 3554 * vm_map_wire_locked: 3555 * 3556 * Implements both kernel and user wiring. Returns with the map locked, 3557 * the map lock may be dropped. 3558 */ 3559 int 3560 vm_map_wire_locked(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags) 3561 { 3562 vm_map_entry_t entry, first_entry, next_entry, prev_entry; 3563 vm_offset_t faddr, saved_end, saved_start; 3564 u_long incr, npages; 3565 u_int bidx, last_timestamp; 3566 int rv; 3567 bool holes_ok, need_wakeup, user_wire; 3568 vm_prot_t prot; 3569 3570 VM_MAP_ASSERT_LOCKED(map); 3571 3572 if (start == end) 3573 return (KERN_SUCCESS); 3574 prot = 0; 3575 if (flags & VM_MAP_WIRE_WRITE) 3576 prot |= VM_PROT_WRITE; 3577 holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0; 3578 user_wire = (flags & VM_MAP_WIRE_USER) != 0; 3579 VM_MAP_RANGE_CHECK(map, start, end); 3580 if (!vm_map_lookup_entry(map, start, &first_entry)) { 3581 if (holes_ok) 3582 first_entry = vm_map_entry_succ(first_entry); 3583 else 3584 return (KERN_INVALID_ADDRESS); 3585 } 3586 for (entry = first_entry; entry->start < end; entry = next_entry) { 3587 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 3588 /* 3589 * We have not yet clipped the entry. 3590 */ 3591 next_entry = vm_map_entry_in_transition(map, start, 3592 &end, holes_ok, entry); 3593 if (next_entry == NULL) { 3594 if (entry == first_entry) 3595 return (KERN_INVALID_ADDRESS); 3596 rv = KERN_INVALID_ADDRESS; 3597 goto done; 3598 } 3599 first_entry = (entry == first_entry) ? 3600 next_entry : NULL; 3601 continue; 3602 } 3603 rv = vm_map_clip_start(map, entry, start); 3604 if (rv != KERN_SUCCESS) 3605 goto done; 3606 rv = vm_map_clip_end(map, entry, end); 3607 if (rv != KERN_SUCCESS) 3608 goto done; 3609 3610 /* 3611 * Mark the entry in case the map lock is released. (See 3612 * above.) 3613 */ 3614 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 3615 entry->wiring_thread == NULL, 3616 ("owned map entry %p", entry)); 3617 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 3618 entry->wiring_thread = curthread; 3619 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 3620 || (entry->protection & prot) != prot) { 3621 entry->eflags |= MAP_ENTRY_WIRE_SKIPPED; 3622 if (!holes_ok) { 3623 end = entry->end; 3624 rv = KERN_INVALID_ADDRESS; 3625 goto done; 3626 } 3627 } else if (entry->wired_count == 0) { 3628 entry->wired_count++; 3629 3630 npages = atop(entry->end - entry->start); 3631 if (user_wire && !vm_map_wire_user_count_add(npages)) { 3632 vm_map_wire_entry_failure(map, entry, 3633 entry->start); 3634 end = entry->end; 3635 rv = KERN_RESOURCE_SHORTAGE; 3636 goto done; 3637 } 3638 3639 /* 3640 * Release the map lock, relying on the in-transition 3641 * mark. Mark the map busy for fork. 3642 */ 3643 saved_start = entry->start; 3644 saved_end = entry->end; 3645 last_timestamp = map->timestamp; 3646 bidx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry); 3647 incr = pagesizes[bidx]; 3648 vm_map_busy(map); 3649 vm_map_unlock(map); 3650 3651 for (faddr = saved_start; faddr < saved_end; 3652 faddr += incr) { 3653 /* 3654 * Simulate a fault to get the page and enter 3655 * it into the physical map. 3656 */ 3657 rv = vm_fault(map, faddr, VM_PROT_NONE, 3658 VM_FAULT_WIRE, NULL); 3659 if (rv != KERN_SUCCESS) 3660 break; 3661 } 3662 vm_map_lock(map); 3663 vm_map_unbusy(map); 3664 if (last_timestamp + 1 != map->timestamp) { 3665 /* 3666 * Look again for the entry because the map was 3667 * modified while it was unlocked. The entry 3668 * may have been clipped, but NOT merged or 3669 * deleted. 3670 */ 3671 if (!vm_map_lookup_entry(map, saved_start, 3672 &next_entry)) 3673 KASSERT(false, 3674 ("vm_map_wire: lookup failed")); 3675 first_entry = (entry == first_entry) ? 3676 next_entry : NULL; 3677 for (entry = next_entry; entry->end < saved_end; 3678 entry = vm_map_entry_succ(entry)) { 3679 /* 3680 * In case of failure, handle entries 3681 * that were not fully wired here; 3682 * fully wired entries are handled 3683 * later. 3684 */ 3685 if (rv != KERN_SUCCESS && 3686 faddr < entry->end) 3687 vm_map_wire_entry_failure(map, 3688 entry, faddr); 3689 } 3690 } 3691 if (rv != KERN_SUCCESS) { 3692 vm_map_wire_entry_failure(map, entry, faddr); 3693 if (user_wire) 3694 vm_map_wire_user_count_sub(npages); 3695 end = entry->end; 3696 goto done; 3697 } 3698 } else if (!user_wire || 3699 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 3700 entry->wired_count++; 3701 } 3702 /* 3703 * Check the map for holes in the specified region. 3704 * If holes_ok was specified, skip this check. 3705 */ 3706 next_entry = vm_map_entry_succ(entry); 3707 if (!holes_ok && 3708 entry->end < end && next_entry->start > entry->end) { 3709 end = entry->end; 3710 rv = KERN_INVALID_ADDRESS; 3711 goto done; 3712 } 3713 } 3714 rv = KERN_SUCCESS; 3715 done: 3716 need_wakeup = false; 3717 if (first_entry == NULL && 3718 !vm_map_lookup_entry(map, start, &first_entry)) { 3719 KASSERT(holes_ok, ("vm_map_wire: lookup failed")); 3720 prev_entry = first_entry; 3721 entry = vm_map_entry_succ(first_entry); 3722 } else { 3723 prev_entry = vm_map_entry_pred(first_entry); 3724 entry = first_entry; 3725 } 3726 for (; entry->start < end; 3727 prev_entry = entry, entry = vm_map_entry_succ(entry)) { 3728 /* 3729 * If holes_ok was specified, an empty 3730 * space in the unwired region could have been mapped 3731 * while the map lock was dropped for faulting in the 3732 * pages or draining MAP_ENTRY_IN_TRANSITION. 3733 * Moreover, another thread could be simultaneously 3734 * wiring this new mapping entry. Detect these cases 3735 * and skip any entries marked as in transition not by us. 3736 * 3737 * Another way to get an entry not marked with 3738 * MAP_ENTRY_IN_TRANSITION is after failed clipping, 3739 * which set rv to KERN_INVALID_ARGUMENT. 3740 */ 3741 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 3742 entry->wiring_thread != curthread) { 3743 KASSERT(holes_ok || rv == KERN_INVALID_ARGUMENT, 3744 ("vm_map_wire: !HOLESOK and new/changed entry")); 3745 continue; 3746 } 3747 3748 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) { 3749 /* do nothing */ 3750 } else if (rv == KERN_SUCCESS) { 3751 if (user_wire) 3752 entry->eflags |= MAP_ENTRY_USER_WIRED; 3753 } else if (entry->wired_count == -1) { 3754 /* 3755 * Wiring failed on this entry. Thus, unwiring is 3756 * unnecessary. 3757 */ 3758 entry->wired_count = 0; 3759 } else if (!user_wire || 3760 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 3761 /* 3762 * Undo the wiring. Wiring succeeded on this entry 3763 * but failed on a later entry. 3764 */ 3765 if (entry->wired_count == 1) { 3766 vm_map_entry_unwire(map, entry); 3767 if (user_wire) 3768 vm_map_wire_user_count_sub( 3769 atop(entry->end - entry->start)); 3770 } else 3771 entry->wired_count--; 3772 } 3773 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 3774 ("vm_map_wire: in-transition flag missing %p", entry)); 3775 KASSERT(entry->wiring_thread == curthread, 3776 ("vm_map_wire: alien wire %p", entry)); 3777 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION | 3778 MAP_ENTRY_WIRE_SKIPPED); 3779 entry->wiring_thread = NULL; 3780 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 3781 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 3782 need_wakeup = true; 3783 } 3784 vm_map_try_merge_entries(map, prev_entry, entry); 3785 } 3786 vm_map_try_merge_entries(map, prev_entry, entry); 3787 if (need_wakeup) 3788 vm_map_wakeup(map); 3789 return (rv); 3790 } 3791 3792 /* 3793 * vm_map_sync 3794 * 3795 * Push any dirty cached pages in the address range to their pager. 3796 * If syncio is TRUE, dirty pages are written synchronously. 3797 * If invalidate is TRUE, any cached pages are freed as well. 3798 * 3799 * If the size of the region from start to end is zero, we are 3800 * supposed to flush all modified pages within the region containing 3801 * start. Unfortunately, a region can be split or coalesced with 3802 * neighboring regions, making it difficult to determine what the 3803 * original region was. Therefore, we approximate this requirement by 3804 * flushing the current region containing start. 3805 * 3806 * Returns an error if any part of the specified range is not mapped. 3807 */ 3808 int 3809 vm_map_sync( 3810 vm_map_t map, 3811 vm_offset_t start, 3812 vm_offset_t end, 3813 boolean_t syncio, 3814 boolean_t invalidate) 3815 { 3816 vm_map_entry_t entry, first_entry, next_entry; 3817 vm_size_t size; 3818 vm_object_t object; 3819 vm_ooffset_t offset; 3820 unsigned int last_timestamp; 3821 int bdry_idx; 3822 boolean_t failed; 3823 3824 vm_map_lock_read(map); 3825 VM_MAP_RANGE_CHECK(map, start, end); 3826 if (!vm_map_lookup_entry(map, start, &first_entry)) { 3827 vm_map_unlock_read(map); 3828 return (KERN_INVALID_ADDRESS); 3829 } else if (start == end) { 3830 start = first_entry->start; 3831 end = first_entry->end; 3832 } 3833 3834 /* 3835 * Make a first pass to check for user-wired memory, holes, 3836 * and partial invalidation of largepage mappings. 3837 */ 3838 for (entry = first_entry; entry->start < end; entry = next_entry) { 3839 if (invalidate) { 3840 if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0) { 3841 vm_map_unlock_read(map); 3842 return (KERN_INVALID_ARGUMENT); 3843 } 3844 bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry); 3845 if (bdry_idx != 0 && 3846 ((start & (pagesizes[bdry_idx] - 1)) != 0 || 3847 (end & (pagesizes[bdry_idx] - 1)) != 0)) { 3848 vm_map_unlock_read(map); 3849 return (KERN_INVALID_ARGUMENT); 3850 } 3851 } 3852 next_entry = vm_map_entry_succ(entry); 3853 if (end > entry->end && 3854 entry->end != next_entry->start) { 3855 vm_map_unlock_read(map); 3856 return (KERN_INVALID_ADDRESS); 3857 } 3858 } 3859 3860 if (invalidate) 3861 pmap_remove(map->pmap, start, end); 3862 failed = FALSE; 3863 3864 /* 3865 * Make a second pass, cleaning/uncaching pages from the indicated 3866 * objects as we go. 3867 */ 3868 for (entry = first_entry; entry->start < end;) { 3869 offset = entry->offset + (start - entry->start); 3870 size = (end <= entry->end ? end : entry->end) - start; 3871 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) { 3872 vm_map_t smap; 3873 vm_map_entry_t tentry; 3874 vm_size_t tsize; 3875 3876 smap = entry->object.sub_map; 3877 vm_map_lock_read(smap); 3878 (void) vm_map_lookup_entry(smap, offset, &tentry); 3879 tsize = tentry->end - offset; 3880 if (tsize < size) 3881 size = tsize; 3882 object = tentry->object.vm_object; 3883 offset = tentry->offset + (offset - tentry->start); 3884 vm_map_unlock_read(smap); 3885 } else { 3886 object = entry->object.vm_object; 3887 } 3888 vm_object_reference(object); 3889 last_timestamp = map->timestamp; 3890 vm_map_unlock_read(map); 3891 if (!vm_object_sync(object, offset, size, syncio, invalidate)) 3892 failed = TRUE; 3893 start += size; 3894 vm_object_deallocate(object); 3895 vm_map_lock_read(map); 3896 if (last_timestamp == map->timestamp || 3897 !vm_map_lookup_entry(map, start, &entry)) 3898 entry = vm_map_entry_succ(entry); 3899 } 3900 3901 vm_map_unlock_read(map); 3902 return (failed ? KERN_FAILURE : KERN_SUCCESS); 3903 } 3904 3905 /* 3906 * vm_map_entry_unwire: [ internal use only ] 3907 * 3908 * Make the region specified by this entry pageable. 3909 * 3910 * The map in question should be locked. 3911 * [This is the reason for this routine's existence.] 3912 */ 3913 static void 3914 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 3915 { 3916 vm_size_t size; 3917 3918 VM_MAP_ASSERT_LOCKED(map); 3919 KASSERT(entry->wired_count > 0, 3920 ("vm_map_entry_unwire: entry %p isn't wired", entry)); 3921 3922 size = entry->end - entry->start; 3923 if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0) 3924 vm_map_wire_user_count_sub(atop(size)); 3925 pmap_unwire(map->pmap, entry->start, entry->end); 3926 vm_object_unwire(entry->object.vm_object, entry->offset, size, 3927 PQ_ACTIVE); 3928 entry->wired_count = 0; 3929 } 3930 3931 static void 3932 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map) 3933 { 3934 3935 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) 3936 vm_object_deallocate(entry->object.vm_object); 3937 uma_zfree(system_map ? kmapentzone : mapentzone, entry); 3938 } 3939 3940 /* 3941 * vm_map_entry_delete: [ internal use only ] 3942 * 3943 * Deallocate the given entry from the target map. 3944 */ 3945 static void 3946 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry) 3947 { 3948 vm_object_t object; 3949 vm_pindex_t offidxstart, offidxend, oldsize; 3950 vm_size_t size; 3951 3952 vm_map_entry_unlink(map, entry, UNLINK_MERGE_NONE); 3953 object = entry->object.vm_object; 3954 3955 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) { 3956 MPASS(entry->cred == NULL); 3957 MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0); 3958 MPASS(object == NULL); 3959 vm_map_entry_deallocate(entry, vm_map_is_system(map)); 3960 return; 3961 } 3962 3963 size = entry->end - entry->start; 3964 map->size -= size; 3965 3966 if (entry->cred != NULL) { 3967 swap_release_by_cred(size, entry->cred); 3968 crfree(entry->cred); 3969 } 3970 3971 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || object == NULL) { 3972 entry->object.vm_object = NULL; 3973 } else if ((object->flags & OBJ_ANON) != 0 || 3974 object == kernel_object) { 3975 KASSERT(entry->cred == NULL || object->cred == NULL || 3976 (entry->eflags & MAP_ENTRY_NEEDS_COPY), 3977 ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry)); 3978 offidxstart = OFF_TO_IDX(entry->offset); 3979 offidxend = offidxstart + atop(size); 3980 VM_OBJECT_WLOCK(object); 3981 if (object->ref_count != 1 && 3982 ((object->flags & OBJ_ONEMAPPING) != 0 || 3983 object == kernel_object)) { 3984 vm_object_collapse(object); 3985 3986 /* 3987 * The option OBJPR_NOTMAPPED can be passed here 3988 * because vm_map_delete() already performed 3989 * pmap_remove() on the only mapping to this range 3990 * of pages. 3991 */ 3992 vm_object_page_remove(object, offidxstart, offidxend, 3993 OBJPR_NOTMAPPED); 3994 if (offidxend >= object->size && 3995 offidxstart < object->size) { 3996 oldsize = object->size; 3997 object->size = offidxstart; 3998 if (object->cred != NULL) { 3999 swap_release_by_cred(ptoa(oldsize - 4000 object->size), object->cred); 4001 } 4002 } 4003 } 4004 VM_OBJECT_WUNLOCK(object); 4005 } 4006 if (vm_map_is_system(map)) 4007 vm_map_entry_deallocate(entry, TRUE); 4008 else { 4009 entry->defer_next = curthread->td_map_def_user; 4010 curthread->td_map_def_user = entry; 4011 } 4012 } 4013 4014 /* 4015 * vm_map_delete: [ internal use only ] 4016 * 4017 * Deallocates the given address range from the target 4018 * map. 4019 */ 4020 int 4021 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end) 4022 { 4023 vm_map_entry_t entry, next_entry, scratch_entry; 4024 int rv; 4025 4026 VM_MAP_ASSERT_LOCKED(map); 4027 4028 if (start == end) 4029 return (KERN_SUCCESS); 4030 4031 /* 4032 * Find the start of the region, and clip it. 4033 * Step through all entries in this region. 4034 */ 4035 rv = vm_map_lookup_clip_start(map, start, &entry, &scratch_entry); 4036 if (rv != KERN_SUCCESS) 4037 return (rv); 4038 for (; entry->start < end; entry = next_entry) { 4039 /* 4040 * Wait for wiring or unwiring of an entry to complete. 4041 * Also wait for any system wirings to disappear on 4042 * user maps. 4043 */ 4044 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 || 4045 (vm_map_pmap(map) != kernel_pmap && 4046 vm_map_entry_system_wired_count(entry) != 0)) { 4047 unsigned int last_timestamp; 4048 vm_offset_t saved_start; 4049 4050 saved_start = entry->start; 4051 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 4052 last_timestamp = map->timestamp; 4053 (void) vm_map_unlock_and_wait(map, 0); 4054 vm_map_lock(map); 4055 if (last_timestamp + 1 != map->timestamp) { 4056 /* 4057 * Look again for the entry because the map was 4058 * modified while it was unlocked. 4059 * Specifically, the entry may have been 4060 * clipped, merged, or deleted. 4061 */ 4062 rv = vm_map_lookup_clip_start(map, saved_start, 4063 &next_entry, &scratch_entry); 4064 if (rv != KERN_SUCCESS) 4065 break; 4066 } else 4067 next_entry = entry; 4068 continue; 4069 } 4070 4071 /* XXXKIB or delete to the upper superpage boundary ? */ 4072 rv = vm_map_clip_end(map, entry, end); 4073 if (rv != KERN_SUCCESS) 4074 break; 4075 next_entry = vm_map_entry_succ(entry); 4076 4077 /* 4078 * Unwire before removing addresses from the pmap; otherwise, 4079 * unwiring will put the entries back in the pmap. 4080 */ 4081 if (entry->wired_count != 0) 4082 vm_map_entry_unwire(map, entry); 4083 4084 /* 4085 * Remove mappings for the pages, but only if the 4086 * mappings could exist. For instance, it does not 4087 * make sense to call pmap_remove() for guard entries. 4088 */ 4089 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || 4090 entry->object.vm_object != NULL) 4091 pmap_map_delete(map->pmap, entry->start, entry->end); 4092 4093 /* 4094 * Delete the entry only after removing all pmap 4095 * entries pointing to its pages. (Otherwise, its 4096 * page frames may be reallocated, and any modify bits 4097 * will be set in the wrong object!) 4098 */ 4099 vm_map_entry_delete(map, entry); 4100 } 4101 return (rv); 4102 } 4103 4104 /* 4105 * vm_map_remove: 4106 * 4107 * Remove the given address range from the target map. 4108 * This is the exported form of vm_map_delete. 4109 */ 4110 int 4111 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 4112 { 4113 int result; 4114 4115 vm_map_lock(map); 4116 VM_MAP_RANGE_CHECK(map, start, end); 4117 result = vm_map_delete(map, start, end); 4118 vm_map_unlock(map); 4119 return (result); 4120 } 4121 4122 /* 4123 * vm_map_check_protection: 4124 * 4125 * Assert that the target map allows the specified privilege on the 4126 * entire address region given. The entire region must be allocated. 4127 * 4128 * WARNING! This code does not and should not check whether the 4129 * contents of the region is accessible. For example a smaller file 4130 * might be mapped into a larger address space. 4131 * 4132 * NOTE! This code is also called by munmap(). 4133 * 4134 * The map must be locked. A read lock is sufficient. 4135 */ 4136 boolean_t 4137 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 4138 vm_prot_t protection) 4139 { 4140 vm_map_entry_t entry; 4141 vm_map_entry_t tmp_entry; 4142 4143 if (!vm_map_lookup_entry(map, start, &tmp_entry)) 4144 return (FALSE); 4145 entry = tmp_entry; 4146 4147 while (start < end) { 4148 /* 4149 * No holes allowed! 4150 */ 4151 if (start < entry->start) 4152 return (FALSE); 4153 /* 4154 * Check protection associated with entry. 4155 */ 4156 if ((entry->protection & protection) != protection) 4157 return (FALSE); 4158 /* go to next entry */ 4159 start = entry->end; 4160 entry = vm_map_entry_succ(entry); 4161 } 4162 return (TRUE); 4163 } 4164 4165 /* 4166 * 4167 * vm_map_copy_swap_object: 4168 * 4169 * Copies a swap-backed object from an existing map entry to a 4170 * new one. Carries forward the swap charge. May change the 4171 * src object on return. 4172 */ 4173 static void 4174 vm_map_copy_swap_object(vm_map_entry_t src_entry, vm_map_entry_t dst_entry, 4175 vm_offset_t size, vm_ooffset_t *fork_charge) 4176 { 4177 vm_object_t src_object; 4178 struct ucred *cred; 4179 int charged; 4180 4181 src_object = src_entry->object.vm_object; 4182 charged = ENTRY_CHARGED(src_entry); 4183 if ((src_object->flags & OBJ_ANON) != 0) { 4184 VM_OBJECT_WLOCK(src_object); 4185 vm_object_collapse(src_object); 4186 if ((src_object->flags & OBJ_ONEMAPPING) != 0) { 4187 vm_object_split(src_entry); 4188 src_object = src_entry->object.vm_object; 4189 } 4190 vm_object_reference_locked(src_object); 4191 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 4192 VM_OBJECT_WUNLOCK(src_object); 4193 } else 4194 vm_object_reference(src_object); 4195 if (src_entry->cred != NULL && 4196 !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 4197 KASSERT(src_object->cred == NULL, 4198 ("OVERCOMMIT: vm_map_copy_anon_entry: cred %p", 4199 src_object)); 4200 src_object->cred = src_entry->cred; 4201 *fork_charge += ptoa(src_object->size) - size; 4202 } 4203 dst_entry->object.vm_object = src_object; 4204 if (charged) { 4205 cred = curthread->td_ucred; 4206 crhold(cred); 4207 dst_entry->cred = cred; 4208 *fork_charge += size; 4209 if (!(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 4210 crhold(cred); 4211 src_entry->cred = cred; 4212 *fork_charge += size; 4213 } 4214 } 4215 } 4216 4217 /* 4218 * vm_map_copy_entry: 4219 * 4220 * Copies the contents of the source entry to the destination 4221 * entry. The entries *must* be aligned properly. 4222 */ 4223 static void 4224 vm_map_copy_entry( 4225 vm_map_t src_map, 4226 vm_map_t dst_map, 4227 vm_map_entry_t src_entry, 4228 vm_map_entry_t dst_entry, 4229 vm_ooffset_t *fork_charge) 4230 { 4231 vm_object_t src_object; 4232 vm_map_entry_t fake_entry; 4233 vm_offset_t size; 4234 4235 VM_MAP_ASSERT_LOCKED(dst_map); 4236 4237 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP) 4238 return; 4239 4240 if (src_entry->wired_count == 0 || 4241 (src_entry->protection & VM_PROT_WRITE) == 0) { 4242 /* 4243 * If the source entry is marked needs_copy, it is already 4244 * write-protected. 4245 */ 4246 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 && 4247 (src_entry->protection & VM_PROT_WRITE) != 0) { 4248 pmap_protect(src_map->pmap, 4249 src_entry->start, 4250 src_entry->end, 4251 src_entry->protection & ~VM_PROT_WRITE); 4252 } 4253 4254 /* 4255 * Make a copy of the object. 4256 */ 4257 size = src_entry->end - src_entry->start; 4258 if ((src_object = src_entry->object.vm_object) != NULL) { 4259 if ((src_object->flags & OBJ_SWAP) != 0) { 4260 vm_map_copy_swap_object(src_entry, dst_entry, 4261 size, fork_charge); 4262 /* May have split/collapsed, reload obj. */ 4263 src_object = src_entry->object.vm_object; 4264 } else { 4265 vm_object_reference(src_object); 4266 dst_entry->object.vm_object = src_object; 4267 } 4268 src_entry->eflags |= MAP_ENTRY_COW | 4269 MAP_ENTRY_NEEDS_COPY; 4270 dst_entry->eflags |= MAP_ENTRY_COW | 4271 MAP_ENTRY_NEEDS_COPY; 4272 dst_entry->offset = src_entry->offset; 4273 if (src_entry->eflags & MAP_ENTRY_WRITECNT) { 4274 /* 4275 * MAP_ENTRY_WRITECNT cannot 4276 * indicate write reference from 4277 * src_entry, since the entry is 4278 * marked as needs copy. Allocate a 4279 * fake entry that is used to 4280 * decrement object->un_pager writecount 4281 * at the appropriate time. Attach 4282 * fake_entry to the deferred list. 4283 */ 4284 fake_entry = vm_map_entry_create(dst_map); 4285 fake_entry->eflags = MAP_ENTRY_WRITECNT; 4286 src_entry->eflags &= ~MAP_ENTRY_WRITECNT; 4287 vm_object_reference(src_object); 4288 fake_entry->object.vm_object = src_object; 4289 fake_entry->start = src_entry->start; 4290 fake_entry->end = src_entry->end; 4291 fake_entry->defer_next = 4292 curthread->td_map_def_user; 4293 curthread->td_map_def_user = fake_entry; 4294 } 4295 4296 pmap_copy(dst_map->pmap, src_map->pmap, 4297 dst_entry->start, dst_entry->end - dst_entry->start, 4298 src_entry->start); 4299 } else { 4300 dst_entry->object.vm_object = NULL; 4301 if ((dst_entry->eflags & MAP_ENTRY_GUARD) == 0) 4302 dst_entry->offset = 0; 4303 if (src_entry->cred != NULL) { 4304 dst_entry->cred = curthread->td_ucred; 4305 crhold(dst_entry->cred); 4306 *fork_charge += size; 4307 } 4308 } 4309 } else { 4310 /* 4311 * We don't want to make writeable wired pages copy-on-write. 4312 * Immediately copy these pages into the new map by simulating 4313 * page faults. The new pages are pageable. 4314 */ 4315 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry, 4316 fork_charge); 4317 } 4318 } 4319 4320 /* 4321 * vmspace_map_entry_forked: 4322 * Update the newly-forked vmspace each time a map entry is inherited 4323 * or copied. The values for vm_dsize and vm_tsize are approximate 4324 * (and mostly-obsolete ideas in the face of mmap(2) et al.) 4325 */ 4326 static void 4327 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2, 4328 vm_map_entry_t entry) 4329 { 4330 vm_size_t entrysize; 4331 vm_offset_t newend; 4332 4333 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) 4334 return; 4335 entrysize = entry->end - entry->start; 4336 vm2->vm_map.size += entrysize; 4337 if ((entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0) { 4338 vm2->vm_ssize += btoc(entrysize); 4339 } else if (entry->start >= (vm_offset_t)vm1->vm_daddr && 4340 entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) { 4341 newend = MIN(entry->end, 4342 (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)); 4343 vm2->vm_dsize += btoc(newend - entry->start); 4344 } else if (entry->start >= (vm_offset_t)vm1->vm_taddr && 4345 entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) { 4346 newend = MIN(entry->end, 4347 (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)); 4348 vm2->vm_tsize += btoc(newend - entry->start); 4349 } 4350 } 4351 4352 /* 4353 * vmspace_fork: 4354 * Create a new process vmspace structure and vm_map 4355 * based on those of an existing process. The new map 4356 * is based on the old map, according to the inheritance 4357 * values on the regions in that map. 4358 * 4359 * XXX It might be worth coalescing the entries added to the new vmspace. 4360 * 4361 * The source map must not be locked. 4362 */ 4363 struct vmspace * 4364 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge) 4365 { 4366 struct vmspace *vm2; 4367 vm_map_t new_map, old_map; 4368 vm_map_entry_t new_entry, old_entry; 4369 vm_object_t object; 4370 int error, locked __diagused; 4371 vm_inherit_t inh; 4372 4373 old_map = &vm1->vm_map; 4374 /* Copy immutable fields of vm1 to vm2. */ 4375 vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map), 4376 pmap_pinit); 4377 if (vm2 == NULL) 4378 return (NULL); 4379 4380 vm2->vm_taddr = vm1->vm_taddr; 4381 vm2->vm_daddr = vm1->vm_daddr; 4382 vm2->vm_maxsaddr = vm1->vm_maxsaddr; 4383 vm2->vm_stacktop = vm1->vm_stacktop; 4384 vm2->vm_shp_base = vm1->vm_shp_base; 4385 vm_map_lock(old_map); 4386 if (old_map->busy) 4387 vm_map_wait_busy(old_map); 4388 new_map = &vm2->vm_map; 4389 locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */ 4390 KASSERT(locked, ("vmspace_fork: lock failed")); 4391 4392 error = pmap_vmspace_copy(new_map->pmap, old_map->pmap); 4393 if (error != 0) { 4394 sx_xunlock(&old_map->lock); 4395 sx_xunlock(&new_map->lock); 4396 vm_map_process_deferred(); 4397 vmspace_free(vm2); 4398 return (NULL); 4399 } 4400 4401 new_map->anon_loc = old_map->anon_loc; 4402 new_map->flags |= old_map->flags & (MAP_ASLR | MAP_ASLR_IGNSTART | 4403 MAP_ASLR_STACK | MAP_WXORX); 4404 4405 VM_MAP_ENTRY_FOREACH(old_entry, old_map) { 4406 if ((old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) 4407 panic("vm_map_fork: encountered a submap"); 4408 4409 inh = old_entry->inheritance; 4410 if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 && 4411 inh != VM_INHERIT_NONE) 4412 inh = VM_INHERIT_COPY; 4413 4414 switch (inh) { 4415 case VM_INHERIT_NONE: 4416 break; 4417 4418 case VM_INHERIT_SHARE: 4419 /* 4420 * Clone the entry, creating the shared object if 4421 * necessary. 4422 */ 4423 object = old_entry->object.vm_object; 4424 if (object == NULL) { 4425 vm_map_entry_back(old_entry); 4426 object = old_entry->object.vm_object; 4427 } 4428 4429 /* 4430 * Add the reference before calling vm_object_shadow 4431 * to insure that a shadow object is created. 4432 */ 4433 vm_object_reference(object); 4434 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 4435 vm_object_shadow(&old_entry->object.vm_object, 4436 &old_entry->offset, 4437 old_entry->end - old_entry->start, 4438 old_entry->cred, 4439 /* Transfer the second reference too. */ 4440 true); 4441 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 4442 old_entry->cred = NULL; 4443 4444 /* 4445 * As in vm_map_merged_neighbor_dispose(), 4446 * the vnode lock will not be acquired in 4447 * this call to vm_object_deallocate(). 4448 */ 4449 vm_object_deallocate(object); 4450 object = old_entry->object.vm_object; 4451 } else { 4452 VM_OBJECT_WLOCK(object); 4453 vm_object_clear_flag(object, OBJ_ONEMAPPING); 4454 if (old_entry->cred != NULL) { 4455 KASSERT(object->cred == NULL, 4456 ("vmspace_fork both cred")); 4457 object->cred = old_entry->cred; 4458 *fork_charge += old_entry->end - 4459 old_entry->start; 4460 old_entry->cred = NULL; 4461 } 4462 4463 /* 4464 * Assert the correct state of the vnode 4465 * v_writecount while the object is locked, to 4466 * not relock it later for the assertion 4467 * correctness. 4468 */ 4469 if (old_entry->eflags & MAP_ENTRY_WRITECNT && 4470 object->type == OBJT_VNODE) { 4471 KASSERT(((struct vnode *)object-> 4472 handle)->v_writecount > 0, 4473 ("vmspace_fork: v_writecount %p", 4474 object)); 4475 KASSERT(object->un_pager.vnp. 4476 writemappings > 0, 4477 ("vmspace_fork: vnp.writecount %p", 4478 object)); 4479 } 4480 VM_OBJECT_WUNLOCK(object); 4481 } 4482 4483 /* 4484 * Clone the entry, referencing the shared object. 4485 */ 4486 new_entry = vm_map_entry_create(new_map); 4487 *new_entry = *old_entry; 4488 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 4489 MAP_ENTRY_IN_TRANSITION); 4490 new_entry->wiring_thread = NULL; 4491 new_entry->wired_count = 0; 4492 if (new_entry->eflags & MAP_ENTRY_WRITECNT) { 4493 vm_pager_update_writecount(object, 4494 new_entry->start, new_entry->end); 4495 } 4496 vm_map_entry_set_vnode_text(new_entry, true); 4497 4498 /* 4499 * Insert the entry into the new map -- we know we're 4500 * inserting at the end of the new map. 4501 */ 4502 vm_map_entry_link(new_map, new_entry); 4503 vmspace_map_entry_forked(vm1, vm2, new_entry); 4504 4505 /* 4506 * Update the physical map 4507 */ 4508 pmap_copy(new_map->pmap, old_map->pmap, 4509 new_entry->start, 4510 (old_entry->end - old_entry->start), 4511 old_entry->start); 4512 break; 4513 4514 case VM_INHERIT_COPY: 4515 /* 4516 * Clone the entry and link into the map. 4517 */ 4518 new_entry = vm_map_entry_create(new_map); 4519 *new_entry = *old_entry; 4520 /* 4521 * Copied entry is COW over the old object. 4522 */ 4523 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 4524 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_WRITECNT); 4525 new_entry->wiring_thread = NULL; 4526 new_entry->wired_count = 0; 4527 new_entry->object.vm_object = NULL; 4528 new_entry->cred = NULL; 4529 vm_map_entry_link(new_map, new_entry); 4530 vmspace_map_entry_forked(vm1, vm2, new_entry); 4531 vm_map_copy_entry(old_map, new_map, old_entry, 4532 new_entry, fork_charge); 4533 vm_map_entry_set_vnode_text(new_entry, true); 4534 break; 4535 4536 case VM_INHERIT_ZERO: 4537 /* 4538 * Create a new anonymous mapping entry modelled from 4539 * the old one. 4540 */ 4541 new_entry = vm_map_entry_create(new_map); 4542 memset(new_entry, 0, sizeof(*new_entry)); 4543 4544 new_entry->start = old_entry->start; 4545 new_entry->end = old_entry->end; 4546 new_entry->eflags = old_entry->eflags & 4547 ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION | 4548 MAP_ENTRY_WRITECNT | MAP_ENTRY_VN_EXEC | 4549 MAP_ENTRY_SPLIT_BOUNDARY_MASK); 4550 new_entry->protection = old_entry->protection; 4551 new_entry->max_protection = old_entry->max_protection; 4552 new_entry->inheritance = VM_INHERIT_ZERO; 4553 4554 vm_map_entry_link(new_map, new_entry); 4555 vmspace_map_entry_forked(vm1, vm2, new_entry); 4556 4557 new_entry->cred = curthread->td_ucred; 4558 crhold(new_entry->cred); 4559 *fork_charge += (new_entry->end - new_entry->start); 4560 4561 break; 4562 } 4563 } 4564 /* 4565 * Use inlined vm_map_unlock() to postpone handling the deferred 4566 * map entries, which cannot be done until both old_map and 4567 * new_map locks are released. 4568 */ 4569 sx_xunlock(&old_map->lock); 4570 sx_xunlock(&new_map->lock); 4571 vm_map_process_deferred(); 4572 4573 return (vm2); 4574 } 4575 4576 /* 4577 * Create a process's stack for exec_new_vmspace(). This function is never 4578 * asked to wire the newly created stack. 4579 */ 4580 int 4581 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 4582 vm_prot_t prot, vm_prot_t max, int cow) 4583 { 4584 vm_size_t growsize, init_ssize; 4585 rlim_t vmemlim; 4586 int rv; 4587 4588 MPASS((map->flags & MAP_WIREFUTURE) == 0); 4589 growsize = sgrowsiz; 4590 init_ssize = (max_ssize < growsize) ? max_ssize : growsize; 4591 vm_map_lock(map); 4592 vmemlim = lim_cur(curthread, RLIMIT_VMEM); 4593 /* If we would blow our VMEM resource limit, no go */ 4594 if (map->size + init_ssize > vmemlim) { 4595 rv = KERN_NO_SPACE; 4596 goto out; 4597 } 4598 rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot, 4599 max, cow); 4600 out: 4601 vm_map_unlock(map); 4602 return (rv); 4603 } 4604 4605 static int stack_guard_page = 1; 4606 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN, 4607 &stack_guard_page, 0, 4608 "Specifies the number of guard pages for a stack that grows"); 4609 4610 static int 4611 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 4612 vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow) 4613 { 4614 vm_map_entry_t gap_entry, new_entry, prev_entry; 4615 vm_offset_t bot, gap_bot, gap_top, top; 4616 vm_size_t init_ssize, sgp; 4617 int rv; 4618 4619 KASSERT((cow & MAP_STACK_AREA) != 0, 4620 ("New mapping is not a stack")); 4621 4622 if (max_ssize == 0 || 4623 !vm_map_range_valid(map, addrbos, addrbos + max_ssize)) 4624 return (KERN_INVALID_ADDRESS); 4625 sgp = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 || 4626 (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 : 4627 (vm_size_t)stack_guard_page * PAGE_SIZE; 4628 if (sgp >= max_ssize) 4629 return (KERN_INVALID_ARGUMENT); 4630 4631 init_ssize = growsize; 4632 if (max_ssize < init_ssize + sgp) 4633 init_ssize = max_ssize - sgp; 4634 4635 /* If addr is already mapped, no go */ 4636 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) 4637 return (KERN_NO_SPACE); 4638 4639 /* 4640 * If we can't accommodate max_ssize in the current mapping, no go. 4641 */ 4642 if (vm_map_entry_succ(prev_entry)->start < addrbos + max_ssize) 4643 return (KERN_NO_SPACE); 4644 4645 /* 4646 * We initially map a stack of only init_ssize, at the top of 4647 * the range. We will grow as needed later. 4648 * 4649 * Note: we would normally expect prot and max to be VM_PROT_ALL, 4650 * and cow to be 0. Possibly we should eliminate these as input 4651 * parameters, and just pass these values here in the insert call. 4652 */ 4653 bot = addrbos + max_ssize - init_ssize; 4654 top = bot + init_ssize; 4655 gap_bot = addrbos; 4656 gap_top = bot; 4657 rv = vm_map_insert1(map, NULL, 0, bot, top, prot, max, cow, 4658 &new_entry); 4659 if (rv != KERN_SUCCESS) 4660 return (rv); 4661 KASSERT(new_entry->end == top || new_entry->start == bot, 4662 ("Bad entry start/end for new stack entry")); 4663 KASSERT((new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0, 4664 ("new entry lacks MAP_ENTRY_GROWS_DOWN")); 4665 if (gap_bot == gap_top) 4666 return (KERN_SUCCESS); 4667 rv = vm_map_insert1(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE, 4668 VM_PROT_NONE, MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP, 4669 &gap_entry); 4670 if (rv == KERN_SUCCESS) { 4671 KASSERT((gap_entry->eflags & MAP_ENTRY_GUARD) != 0, 4672 ("entry %p not gap %#x", gap_entry, gap_entry->eflags)); 4673 KASSERT((gap_entry->eflags & MAP_ENTRY_STACK_GAP) != 0, 4674 ("entry %p not stack gap %#x", gap_entry, 4675 gap_entry->eflags)); 4676 4677 /* 4678 * Gap can never successfully handle a fault, so 4679 * read-ahead logic is never used for it. Re-use 4680 * next_read of the gap entry to store 4681 * stack_guard_page for vm_map_growstack(). 4682 * Similarly, since a gap cannot have a backing object, 4683 * store the original stack protections in the 4684 * object offset. 4685 */ 4686 gap_entry->next_read = sgp; 4687 gap_entry->offset = prot | PROT_MAX(max); 4688 } else { 4689 (void)vm_map_delete(map, bot, top); 4690 } 4691 return (rv); 4692 } 4693 4694 /* 4695 * Attempts to grow a vm stack entry. Returns KERN_SUCCESS if we 4696 * successfully grow the stack. 4697 */ 4698 static int 4699 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry) 4700 { 4701 vm_map_entry_t stack_entry; 4702 struct proc *p; 4703 struct vmspace *vm; 4704 vm_offset_t gap_end, gap_start, grow_start; 4705 vm_size_t grow_amount, guard, max_grow, sgp; 4706 vm_prot_t prot, max; 4707 rlim_t lmemlim, stacklim, vmemlim; 4708 int rv, rv1 __diagused; 4709 bool gap_deleted, is_procstack; 4710 #ifdef notyet 4711 uint64_t limit; 4712 #endif 4713 #ifdef RACCT 4714 int error __diagused; 4715 #endif 4716 4717 p = curproc; 4718 vm = p->p_vmspace; 4719 4720 /* 4721 * Disallow stack growth when the access is performed by a 4722 * debugger or AIO daemon. The reason is that the wrong 4723 * resource limits are applied. 4724 */ 4725 if (p != initproc && (map != &p->p_vmspace->vm_map || 4726 p->p_textvp == NULL)) 4727 return (KERN_FAILURE); 4728 4729 MPASS(!vm_map_is_system(map)); 4730 4731 lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK); 4732 stacklim = lim_cur(curthread, RLIMIT_STACK); 4733 vmemlim = lim_cur(curthread, RLIMIT_VMEM); 4734 retry: 4735 /* If addr is not in a hole for a stack grow area, no need to grow. */ 4736 if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry)) 4737 return (KERN_FAILURE); 4738 if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0) 4739 return (KERN_SUCCESS); 4740 if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP) != 0) { 4741 stack_entry = vm_map_entry_succ(gap_entry); 4742 if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 || 4743 stack_entry->start != gap_entry->end) 4744 return (KERN_FAILURE); 4745 grow_amount = round_page(stack_entry->start - addr); 4746 } else { 4747 return (KERN_FAILURE); 4748 } 4749 guard = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 || 4750 (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 : 4751 gap_entry->next_read; 4752 max_grow = gap_entry->end - gap_entry->start; 4753 if (guard > max_grow) 4754 return (KERN_NO_SPACE); 4755 max_grow -= guard; 4756 if (grow_amount > max_grow) 4757 return (KERN_NO_SPACE); 4758 4759 /* 4760 * If this is the main process stack, see if we're over the stack 4761 * limit. 4762 */ 4763 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr && 4764 addr < (vm_offset_t)vm->vm_stacktop; 4765 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) 4766 return (KERN_NO_SPACE); 4767 4768 #ifdef RACCT 4769 if (racct_enable) { 4770 PROC_LOCK(p); 4771 if (is_procstack && racct_set(p, RACCT_STACK, 4772 ctob(vm->vm_ssize) + grow_amount)) { 4773 PROC_UNLOCK(p); 4774 return (KERN_NO_SPACE); 4775 } 4776 PROC_UNLOCK(p); 4777 } 4778 #endif 4779 4780 grow_amount = roundup(grow_amount, sgrowsiz); 4781 if (grow_amount > max_grow) 4782 grow_amount = max_grow; 4783 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 4784 grow_amount = trunc_page((vm_size_t)stacklim) - 4785 ctob(vm->vm_ssize); 4786 } 4787 4788 #ifdef notyet 4789 PROC_LOCK(p); 4790 limit = racct_get_available(p, RACCT_STACK); 4791 PROC_UNLOCK(p); 4792 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit)) 4793 grow_amount = limit - ctob(vm->vm_ssize); 4794 #endif 4795 4796 if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) { 4797 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) { 4798 rv = KERN_NO_SPACE; 4799 goto out; 4800 } 4801 #ifdef RACCT 4802 if (racct_enable) { 4803 PROC_LOCK(p); 4804 if (racct_set(p, RACCT_MEMLOCK, 4805 ptoa(pmap_wired_count(map->pmap)) + grow_amount)) { 4806 PROC_UNLOCK(p); 4807 rv = KERN_NO_SPACE; 4808 goto out; 4809 } 4810 PROC_UNLOCK(p); 4811 } 4812 #endif 4813 } 4814 4815 /* If we would blow our VMEM resource limit, no go */ 4816 if (map->size + grow_amount > vmemlim) { 4817 rv = KERN_NO_SPACE; 4818 goto out; 4819 } 4820 #ifdef RACCT 4821 if (racct_enable) { 4822 PROC_LOCK(p); 4823 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) { 4824 PROC_UNLOCK(p); 4825 rv = KERN_NO_SPACE; 4826 goto out; 4827 } 4828 PROC_UNLOCK(p); 4829 } 4830 #endif 4831 4832 if (vm_map_lock_upgrade(map)) { 4833 gap_entry = NULL; 4834 vm_map_lock_read(map); 4835 goto retry; 4836 } 4837 4838 /* 4839 * The gap_entry "offset" field is overloaded. See 4840 * vm_map_stack_locked(). 4841 */ 4842 prot = PROT_EXTRACT(gap_entry->offset); 4843 max = PROT_MAX_EXTRACT(gap_entry->offset); 4844 sgp = gap_entry->next_read; 4845 4846 grow_start = gap_entry->end - grow_amount; 4847 if (gap_entry->start + grow_amount == gap_entry->end) { 4848 gap_start = gap_entry->start; 4849 gap_end = gap_entry->end; 4850 vm_map_entry_delete(map, gap_entry); 4851 gap_deleted = true; 4852 } else { 4853 MPASS(gap_entry->start < gap_entry->end - grow_amount); 4854 vm_map_entry_resize(map, gap_entry, -grow_amount); 4855 gap_deleted = false; 4856 } 4857 rv = vm_map_insert(map, NULL, 0, grow_start, 4858 grow_start + grow_amount, prot, max, MAP_STACK_AREA); 4859 if (rv != KERN_SUCCESS) { 4860 if (gap_deleted) { 4861 rv1 = vm_map_insert1(map, NULL, 0, gap_start, 4862 gap_end, VM_PROT_NONE, VM_PROT_NONE, 4863 MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP, 4864 &gap_entry); 4865 MPASS(rv1 == KERN_SUCCESS); 4866 gap_entry->next_read = sgp; 4867 gap_entry->offset = prot | PROT_MAX(max); 4868 } else { 4869 vm_map_entry_resize(map, gap_entry, 4870 grow_amount); 4871 } 4872 } 4873 if (rv == KERN_SUCCESS && is_procstack) 4874 vm->vm_ssize += btoc(grow_amount); 4875 4876 /* 4877 * Heed the MAP_WIREFUTURE flag if it was set for this process. 4878 */ 4879 if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) { 4880 rv = vm_map_wire_locked(map, grow_start, 4881 grow_start + grow_amount, 4882 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 4883 } 4884 vm_map_lock_downgrade(map); 4885 4886 out: 4887 #ifdef RACCT 4888 if (racct_enable && rv != KERN_SUCCESS) { 4889 PROC_LOCK(p); 4890 error = racct_set(p, RACCT_VMEM, map->size); 4891 KASSERT(error == 0, ("decreasing RACCT_VMEM failed")); 4892 if (!old_mlock) { 4893 error = racct_set(p, RACCT_MEMLOCK, 4894 ptoa(pmap_wired_count(map->pmap))); 4895 KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed")); 4896 } 4897 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize)); 4898 KASSERT(error == 0, ("decreasing RACCT_STACK failed")); 4899 PROC_UNLOCK(p); 4900 } 4901 #endif 4902 4903 return (rv); 4904 } 4905 4906 /* 4907 * Unshare the specified VM space for exec. If other processes are 4908 * mapped to it, then create a new one. The new vmspace is null. 4909 */ 4910 int 4911 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser) 4912 { 4913 struct vmspace *oldvmspace = p->p_vmspace; 4914 struct vmspace *newvmspace; 4915 4916 KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0, 4917 ("vmspace_exec recursed")); 4918 newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit); 4919 if (newvmspace == NULL) 4920 return (ENOMEM); 4921 newvmspace->vm_swrss = oldvmspace->vm_swrss; 4922 /* 4923 * This code is written like this for prototype purposes. The 4924 * goal is to avoid running down the vmspace here, but let the 4925 * other process's that are still using the vmspace to finally 4926 * run it down. Even though there is little or no chance of blocking 4927 * here, it is a good idea to keep this form for future mods. 4928 */ 4929 PROC_VMSPACE_LOCK(p); 4930 p->p_vmspace = newvmspace; 4931 PROC_VMSPACE_UNLOCK(p); 4932 if (p == curthread->td_proc) 4933 pmap_activate(curthread); 4934 curthread->td_pflags |= TDP_EXECVMSPC; 4935 return (0); 4936 } 4937 4938 /* 4939 * Unshare the specified VM space for forcing COW. This 4940 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 4941 */ 4942 int 4943 vmspace_unshare(struct proc *p) 4944 { 4945 struct vmspace *oldvmspace = p->p_vmspace; 4946 struct vmspace *newvmspace; 4947 vm_ooffset_t fork_charge; 4948 4949 /* 4950 * The caller is responsible for ensuring that the reference count 4951 * cannot concurrently transition 1 -> 2. 4952 */ 4953 if (refcount_load(&oldvmspace->vm_refcnt) == 1) 4954 return (0); 4955 fork_charge = 0; 4956 newvmspace = vmspace_fork(oldvmspace, &fork_charge); 4957 if (newvmspace == NULL) 4958 return (ENOMEM); 4959 if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) { 4960 /* 4961 * The swap reservation failed. The accounting from 4962 * the entries of the copied newvmspace will be 4963 * subtracted in vmspace_free(), so force the 4964 * reservation there. 4965 */ 4966 swap_reserve_force_by_cred(fork_charge, p->p_ucred); 4967 vmspace_free(newvmspace); 4968 return (ENOMEM); 4969 } 4970 PROC_VMSPACE_LOCK(p); 4971 p->p_vmspace = newvmspace; 4972 PROC_VMSPACE_UNLOCK(p); 4973 if (p == curthread->td_proc) 4974 pmap_activate(curthread); 4975 vmspace_free(oldvmspace); 4976 return (0); 4977 } 4978 4979 /* 4980 * vm_map_lookup: 4981 * 4982 * Finds the VM object, offset, and 4983 * protection for a given virtual address in the 4984 * specified map, assuming a page fault of the 4985 * type specified. 4986 * 4987 * Leaves the map in question locked for read; return 4988 * values are guaranteed until a vm_map_lookup_done 4989 * call is performed. Note that the map argument 4990 * is in/out; the returned map must be used in 4991 * the call to vm_map_lookup_done. 4992 * 4993 * A handle (out_entry) is returned for use in 4994 * vm_map_lookup_done, to make that fast. 4995 * 4996 * If a lookup is requested with "write protection" 4997 * specified, the map may be changed to perform virtual 4998 * copying operations, although the data referenced will 4999 * remain the same. 5000 */ 5001 int 5002 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 5003 vm_offset_t vaddr, 5004 vm_prot_t fault_typea, 5005 vm_map_entry_t *out_entry, /* OUT */ 5006 vm_object_t *object, /* OUT */ 5007 vm_pindex_t *pindex, /* OUT */ 5008 vm_prot_t *out_prot, /* OUT */ 5009 boolean_t *wired) /* OUT */ 5010 { 5011 vm_map_entry_t entry; 5012 vm_map_t map = *var_map; 5013 vm_prot_t prot; 5014 vm_prot_t fault_type; 5015 vm_object_t eobject; 5016 vm_size_t size; 5017 struct ucred *cred; 5018 5019 RetryLookup: 5020 5021 vm_map_lock_read(map); 5022 5023 RetryLookupLocked: 5024 /* 5025 * Lookup the faulting address. 5026 */ 5027 if (!vm_map_lookup_entry(map, vaddr, out_entry)) { 5028 vm_map_unlock_read(map); 5029 return (KERN_INVALID_ADDRESS); 5030 } 5031 5032 entry = *out_entry; 5033 5034 /* 5035 * Handle submaps. 5036 */ 5037 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 5038 vm_map_t old_map = map; 5039 5040 *var_map = map = entry->object.sub_map; 5041 vm_map_unlock_read(old_map); 5042 goto RetryLookup; 5043 } 5044 5045 /* 5046 * Check whether this task is allowed to have this page. 5047 */ 5048 prot = entry->protection; 5049 if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) { 5050 fault_typea &= ~VM_PROT_FAULT_LOOKUP; 5051 if (prot == VM_PROT_NONE && map != kernel_map && 5052 (entry->eflags & MAP_ENTRY_GUARD) != 0 && 5053 (entry->eflags & MAP_ENTRY_STACK_GAP) != 0 && 5054 vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS) 5055 goto RetryLookupLocked; 5056 } 5057 fault_type = fault_typea & VM_PROT_ALL; 5058 if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) { 5059 vm_map_unlock_read(map); 5060 return (KERN_PROTECTION_FAILURE); 5061 } 5062 KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags & 5063 (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) != 5064 (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY), 5065 ("entry %p flags %x", entry, entry->eflags)); 5066 if ((fault_typea & VM_PROT_COPY) != 0 && 5067 (entry->max_protection & VM_PROT_WRITE) == 0 && 5068 (entry->eflags & MAP_ENTRY_COW) == 0) { 5069 vm_map_unlock_read(map); 5070 return (KERN_PROTECTION_FAILURE); 5071 } 5072 5073 /* 5074 * If this page is not pageable, we have to get it for all possible 5075 * accesses. 5076 */ 5077 *wired = (entry->wired_count != 0); 5078 if (*wired) 5079 fault_type = entry->protection; 5080 size = entry->end - entry->start; 5081 5082 /* 5083 * If the entry was copy-on-write, we either ... 5084 */ 5085 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 5086 /* 5087 * If we want to write the page, we may as well handle that 5088 * now since we've got the map locked. 5089 * 5090 * If we don't need to write the page, we just demote the 5091 * permissions allowed. 5092 */ 5093 if ((fault_type & VM_PROT_WRITE) != 0 || 5094 (fault_typea & VM_PROT_COPY) != 0) { 5095 /* 5096 * Make a new object, and place it in the object 5097 * chain. Note that no new references have appeared 5098 * -- one just moved from the map to the new 5099 * object. 5100 */ 5101 if (vm_map_lock_upgrade(map)) 5102 goto RetryLookup; 5103 5104 if (entry->cred == NULL) { 5105 /* 5106 * The debugger owner is charged for 5107 * the memory. 5108 */ 5109 cred = curthread->td_ucred; 5110 crhold(cred); 5111 if (!swap_reserve_by_cred(size, cred)) { 5112 crfree(cred); 5113 vm_map_unlock(map); 5114 return (KERN_RESOURCE_SHORTAGE); 5115 } 5116 entry->cred = cred; 5117 } 5118 eobject = entry->object.vm_object; 5119 vm_object_shadow(&entry->object.vm_object, 5120 &entry->offset, size, entry->cred, false); 5121 if (eobject == entry->object.vm_object) { 5122 /* 5123 * The object was not shadowed. 5124 */ 5125 swap_release_by_cred(size, entry->cred); 5126 crfree(entry->cred); 5127 } 5128 entry->cred = NULL; 5129 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 5130 5131 vm_map_lock_downgrade(map); 5132 } else { 5133 /* 5134 * We're attempting to read a copy-on-write page -- 5135 * don't allow writes. 5136 */ 5137 prot &= ~VM_PROT_WRITE; 5138 } 5139 } 5140 5141 /* 5142 * Create an object if necessary. 5143 */ 5144 if (entry->object.vm_object == NULL && !vm_map_is_system(map)) { 5145 if (vm_map_lock_upgrade(map)) 5146 goto RetryLookup; 5147 entry->object.vm_object = vm_object_allocate_anon(atop(size), 5148 NULL, entry->cred); 5149 entry->offset = 0; 5150 entry->cred = NULL; 5151 vm_map_lock_downgrade(map); 5152 } 5153 5154 /* 5155 * Return the object/offset from this entry. If the entry was 5156 * copy-on-write or empty, it has been fixed up. 5157 */ 5158 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 5159 *object = entry->object.vm_object; 5160 5161 *out_prot = prot; 5162 return (KERN_SUCCESS); 5163 } 5164 5165 /* 5166 * vm_map_lookup_locked: 5167 * 5168 * Lookup the faulting address. A version of vm_map_lookup that returns 5169 * KERN_FAILURE instead of blocking on map lock or memory allocation. 5170 */ 5171 int 5172 vm_map_lookup_locked(vm_map_t *var_map, /* IN/OUT */ 5173 vm_offset_t vaddr, 5174 vm_prot_t fault_typea, 5175 vm_map_entry_t *out_entry, /* OUT */ 5176 vm_object_t *object, /* OUT */ 5177 vm_pindex_t *pindex, /* OUT */ 5178 vm_prot_t *out_prot, /* OUT */ 5179 boolean_t *wired) /* OUT */ 5180 { 5181 vm_map_entry_t entry; 5182 vm_map_t map = *var_map; 5183 vm_prot_t prot; 5184 vm_prot_t fault_type = fault_typea; 5185 5186 /* 5187 * Lookup the faulting address. 5188 */ 5189 if (!vm_map_lookup_entry(map, vaddr, out_entry)) 5190 return (KERN_INVALID_ADDRESS); 5191 5192 entry = *out_entry; 5193 5194 /* 5195 * Fail if the entry refers to a submap. 5196 */ 5197 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 5198 return (KERN_FAILURE); 5199 5200 /* 5201 * Check whether this task is allowed to have this page. 5202 */ 5203 prot = entry->protection; 5204 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; 5205 if ((fault_type & prot) != fault_type) 5206 return (KERN_PROTECTION_FAILURE); 5207 5208 /* 5209 * If this page is not pageable, we have to get it for all possible 5210 * accesses. 5211 */ 5212 *wired = (entry->wired_count != 0); 5213 if (*wired) 5214 fault_type = entry->protection; 5215 5216 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 5217 /* 5218 * Fail if the entry was copy-on-write for a write fault. 5219 */ 5220 if (fault_type & VM_PROT_WRITE) 5221 return (KERN_FAILURE); 5222 /* 5223 * We're attempting to read a copy-on-write page -- 5224 * don't allow writes. 5225 */ 5226 prot &= ~VM_PROT_WRITE; 5227 } 5228 5229 /* 5230 * Fail if an object should be created. 5231 */ 5232 if (entry->object.vm_object == NULL && !vm_map_is_system(map)) 5233 return (KERN_FAILURE); 5234 5235 /* 5236 * Return the object/offset from this entry. If the entry was 5237 * copy-on-write or empty, it has been fixed up. 5238 */ 5239 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 5240 *object = entry->object.vm_object; 5241 5242 *out_prot = prot; 5243 return (KERN_SUCCESS); 5244 } 5245 5246 /* 5247 * vm_map_lookup_done: 5248 * 5249 * Releases locks acquired by a vm_map_lookup 5250 * (according to the handle returned by that lookup). 5251 */ 5252 void 5253 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry) 5254 { 5255 /* 5256 * Unlock the main-level map 5257 */ 5258 vm_map_unlock_read(map); 5259 } 5260 5261 vm_offset_t 5262 vm_map_max_KBI(const struct vm_map *map) 5263 { 5264 5265 return (vm_map_max(map)); 5266 } 5267 5268 vm_offset_t 5269 vm_map_min_KBI(const struct vm_map *map) 5270 { 5271 5272 return (vm_map_min(map)); 5273 } 5274 5275 pmap_t 5276 vm_map_pmap_KBI(vm_map_t map) 5277 { 5278 5279 return (map->pmap); 5280 } 5281 5282 bool 5283 vm_map_range_valid_KBI(vm_map_t map, vm_offset_t start, vm_offset_t end) 5284 { 5285 5286 return (vm_map_range_valid(map, start, end)); 5287 } 5288 5289 #ifdef INVARIANTS 5290 static void 5291 _vm_map_assert_consistent(vm_map_t map, int check) 5292 { 5293 vm_map_entry_t entry, prev; 5294 vm_map_entry_t cur, header, lbound, ubound; 5295 vm_size_t max_left, max_right; 5296 5297 #ifdef DIAGNOSTIC 5298 ++map->nupdates; 5299 #endif 5300 if (enable_vmmap_check != check) 5301 return; 5302 5303 header = prev = &map->header; 5304 VM_MAP_ENTRY_FOREACH(entry, map) { 5305 KASSERT(prev->end <= entry->start, 5306 ("map %p prev->end = %jx, start = %jx", map, 5307 (uintmax_t)prev->end, (uintmax_t)entry->start)); 5308 KASSERT(entry->start < entry->end, 5309 ("map %p start = %jx, end = %jx", map, 5310 (uintmax_t)entry->start, (uintmax_t)entry->end)); 5311 KASSERT(entry->left == header || 5312 entry->left->start < entry->start, 5313 ("map %p left->start = %jx, start = %jx", map, 5314 (uintmax_t)entry->left->start, (uintmax_t)entry->start)); 5315 KASSERT(entry->right == header || 5316 entry->start < entry->right->start, 5317 ("map %p start = %jx, right->start = %jx", map, 5318 (uintmax_t)entry->start, (uintmax_t)entry->right->start)); 5319 cur = map->root; 5320 lbound = ubound = header; 5321 for (;;) { 5322 if (entry->start < cur->start) { 5323 ubound = cur; 5324 cur = cur->left; 5325 KASSERT(cur != lbound, 5326 ("map %p cannot find %jx", 5327 map, (uintmax_t)entry->start)); 5328 } else if (cur->end <= entry->start) { 5329 lbound = cur; 5330 cur = cur->right; 5331 KASSERT(cur != ubound, 5332 ("map %p cannot find %jx", 5333 map, (uintmax_t)entry->start)); 5334 } else { 5335 KASSERT(cur == entry, 5336 ("map %p cannot find %jx", 5337 map, (uintmax_t)entry->start)); 5338 break; 5339 } 5340 } 5341 max_left = vm_map_entry_max_free_left(entry, lbound); 5342 max_right = vm_map_entry_max_free_right(entry, ubound); 5343 KASSERT(entry->max_free == vm_size_max(max_left, max_right), 5344 ("map %p max = %jx, max_left = %jx, max_right = %jx", map, 5345 (uintmax_t)entry->max_free, 5346 (uintmax_t)max_left, (uintmax_t)max_right)); 5347 prev = entry; 5348 } 5349 KASSERT(prev->end <= entry->start, 5350 ("map %p prev->end = %jx, start = %jx", map, 5351 (uintmax_t)prev->end, (uintmax_t)entry->start)); 5352 } 5353 #endif 5354 5355 #include "opt_ddb.h" 5356 #ifdef DDB 5357 #include <sys/kernel.h> 5358 5359 #include <ddb/ddb.h> 5360 5361 static void 5362 vm_map_print(vm_map_t map) 5363 { 5364 vm_map_entry_t entry, prev; 5365 5366 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 5367 (void *)map, 5368 (void *)map->pmap, map->nentries, map->timestamp); 5369 5370 db_indent += 2; 5371 prev = &map->header; 5372 VM_MAP_ENTRY_FOREACH(entry, map) { 5373 db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n", 5374 (void *)entry, (void *)entry->start, (void *)entry->end, 5375 entry->eflags); 5376 { 5377 static const char * const inheritance_name[4] = 5378 {"share", "copy", "none", "donate_copy"}; 5379 5380 db_iprintf(" prot=%x/%x/%s", 5381 entry->protection, 5382 entry->max_protection, 5383 inheritance_name[(int)(unsigned char) 5384 entry->inheritance]); 5385 if (entry->wired_count != 0) 5386 db_printf(", wired"); 5387 } 5388 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 5389 db_printf(", share=%p, offset=0x%jx\n", 5390 (void *)entry->object.sub_map, 5391 (uintmax_t)entry->offset); 5392 if (prev == &map->header || 5393 prev->object.sub_map != 5394 entry->object.sub_map) { 5395 db_indent += 2; 5396 vm_map_print((vm_map_t)entry->object.sub_map); 5397 db_indent -= 2; 5398 } 5399 } else { 5400 if (entry->cred != NULL) 5401 db_printf(", ruid %d", entry->cred->cr_ruid); 5402 db_printf(", object=%p, offset=0x%jx", 5403 (void *)entry->object.vm_object, 5404 (uintmax_t)entry->offset); 5405 if (entry->object.vm_object && entry->object.vm_object->cred) 5406 db_printf(", obj ruid %d ", 5407 entry->object.vm_object->cred->cr_ruid); 5408 if (entry->eflags & MAP_ENTRY_COW) 5409 db_printf(", copy (%s)", 5410 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 5411 db_printf("\n"); 5412 5413 if (prev == &map->header || 5414 prev->object.vm_object != 5415 entry->object.vm_object) { 5416 db_indent += 2; 5417 vm_object_print((db_expr_t)(intptr_t) 5418 entry->object.vm_object, 5419 0, 0, (char *)0); 5420 db_indent -= 2; 5421 } 5422 } 5423 prev = entry; 5424 } 5425 db_indent -= 2; 5426 } 5427 5428 DB_SHOW_COMMAND(map, map) 5429 { 5430 5431 if (!have_addr) { 5432 db_printf("usage: show map <addr>\n"); 5433 return; 5434 } 5435 vm_map_print((vm_map_t)addr); 5436 } 5437 5438 DB_SHOW_COMMAND(procvm, procvm) 5439 { 5440 struct proc *p; 5441 5442 if (have_addr) { 5443 p = db_lookup_proc(addr); 5444 } else { 5445 p = curproc; 5446 } 5447 5448 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 5449 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 5450 (void *)vmspace_pmap(p->p_vmspace)); 5451 5452 vm_map_print((vm_map_t)&p->p_vmspace->vm_map); 5453 } 5454 5455 #endif /* DDB */ 5456