xref: /freebsd/sys/vm/vm_map.c (revision af23369a6deaaeb612ab266eb88b8bb8d560c322)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62 
63 /*
64  *	Virtual memory mapping module.
65  */
66 
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/elf.h>
73 #include <sys/kernel.h>
74 #include <sys/ktr.h>
75 #include <sys/lock.h>
76 #include <sys/mutex.h>
77 #include <sys/proc.h>
78 #include <sys/vmmeter.h>
79 #include <sys/mman.h>
80 #include <sys/vnode.h>
81 #include <sys/racct.h>
82 #include <sys/resourcevar.h>
83 #include <sys/rwlock.h>
84 #include <sys/file.h>
85 #include <sys/sysctl.h>
86 #include <sys/sysent.h>
87 #include <sys/shm.h>
88 
89 #include <vm/vm.h>
90 #include <vm/vm_param.h>
91 #include <vm/pmap.h>
92 #include <vm/vm_map.h>
93 #include <vm/vm_page.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/vm_object.h>
96 #include <vm/vm_pager.h>
97 #include <vm/vm_kern.h>
98 #include <vm/vm_extern.h>
99 #include <vm/vnode_pager.h>
100 #include <vm/swap_pager.h>
101 #include <vm/uma.h>
102 
103 /*
104  *	Virtual memory maps provide for the mapping, protection,
105  *	and sharing of virtual memory objects.  In addition,
106  *	this module provides for an efficient virtual copy of
107  *	memory from one map to another.
108  *
109  *	Synchronization is required prior to most operations.
110  *
111  *	Maps consist of an ordered doubly-linked list of simple
112  *	entries; a self-adjusting binary search tree of these
113  *	entries is used to speed up lookups.
114  *
115  *	Since portions of maps are specified by start/end addresses,
116  *	which may not align with existing map entries, all
117  *	routines merely "clip" entries to these start/end values.
118  *	[That is, an entry is split into two, bordering at a
119  *	start or end value.]  Note that these clippings may not
120  *	always be necessary (as the two resulting entries are then
121  *	not changed); however, the clipping is done for convenience.
122  *
123  *	As mentioned above, virtual copy operations are performed
124  *	by copying VM object references from one map to
125  *	another, and then marking both regions as copy-on-write.
126  */
127 
128 static struct mtx map_sleep_mtx;
129 static uma_zone_t mapentzone;
130 static uma_zone_t kmapentzone;
131 static uma_zone_t vmspace_zone;
132 static int vmspace_zinit(void *mem, int size, int flags);
133 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
134     vm_offset_t max);
135 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
136 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
137 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
138 static int vm_map_growstack(vm_map_t map, vm_offset_t addr,
139     vm_map_entry_t gap_entry);
140 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
141     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
142 #ifdef INVARIANTS
143 static void vmspace_zdtor(void *mem, int size, void *arg);
144 #endif
145 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
146     vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
147     int cow);
148 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
149     vm_offset_t failed_addr);
150 
151 #define	ENTRY_CHARGED(e) ((e)->cred != NULL || \
152     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
153      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
154 
155 /*
156  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
157  * stable.
158  */
159 #define PROC_VMSPACE_LOCK(p) do { } while (0)
160 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
161 
162 /*
163  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
164  *
165  *	Asserts that the starting and ending region
166  *	addresses fall within the valid range of the map.
167  */
168 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
169 		{					\
170 		if (start < vm_map_min(map))		\
171 			start = vm_map_min(map);	\
172 		if (end > vm_map_max(map))		\
173 			end = vm_map_max(map);		\
174 		if (start > end)			\
175 			start = end;			\
176 		}
177 
178 #ifndef UMA_MD_SMALL_ALLOC
179 
180 /*
181  * Allocate a new slab for kernel map entries.  The kernel map may be locked or
182  * unlocked, depending on whether the request is coming from the kernel map or a
183  * submap.  This function allocates a virtual address range directly from the
184  * kernel map instead of the kmem_* layer to avoid recursion on the kernel map
185  * lock and also to avoid triggering allocator recursion in the vmem boundary
186  * tag allocator.
187  */
188 static void *
189 kmapent_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
190     int wait)
191 {
192 	vm_offset_t addr;
193 	int error, locked;
194 
195 	*pflag = UMA_SLAB_PRIV;
196 
197 	if (!(locked = vm_map_locked(kernel_map)))
198 		vm_map_lock(kernel_map);
199 	addr = vm_map_findspace(kernel_map, vm_map_min(kernel_map), bytes);
200 	if (addr + bytes < addr || addr + bytes > vm_map_max(kernel_map))
201 		panic("%s: kernel map is exhausted", __func__);
202 	error = vm_map_insert(kernel_map, NULL, 0, addr, addr + bytes,
203 	    VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT);
204 	if (error != KERN_SUCCESS)
205 		panic("%s: vm_map_insert() failed: %d", __func__, error);
206 	if (!locked)
207 		vm_map_unlock(kernel_map);
208 	error = kmem_back_domain(domain, kernel_object, addr, bytes, M_NOWAIT |
209 	    M_USE_RESERVE | (wait & M_ZERO));
210 	if (error == KERN_SUCCESS) {
211 		return ((void *)addr);
212 	} else {
213 		if (!locked)
214 			vm_map_lock(kernel_map);
215 		vm_map_delete(kernel_map, addr, bytes);
216 		if (!locked)
217 			vm_map_unlock(kernel_map);
218 		return (NULL);
219 	}
220 }
221 
222 static void
223 kmapent_free(void *item, vm_size_t size, uint8_t pflag)
224 {
225 	vm_offset_t addr;
226 	int error __diagused;
227 
228 	if ((pflag & UMA_SLAB_PRIV) == 0)
229 		/* XXX leaked */
230 		return;
231 
232 	addr = (vm_offset_t)item;
233 	kmem_unback(kernel_object, addr, size);
234 	error = vm_map_remove(kernel_map, addr, addr + size);
235 	KASSERT(error == KERN_SUCCESS,
236 	    ("%s: vm_map_remove failed: %d", __func__, error));
237 }
238 
239 /*
240  * The worst-case upper bound on the number of kernel map entries that may be
241  * created before the zone must be replenished in _vm_map_unlock().
242  */
243 #define	KMAPENT_RESERVE		1
244 
245 #endif /* !UMD_MD_SMALL_ALLOC */
246 
247 /*
248  *	vm_map_startup:
249  *
250  *	Initialize the vm_map module.  Must be called before any other vm_map
251  *	routines.
252  *
253  *	User map and entry structures are allocated from the general purpose
254  *	memory pool.  Kernel maps are statically defined.  Kernel map entries
255  *	require special handling to avoid recursion; see the comments above
256  *	kmapent_alloc() and in vm_map_entry_create().
257  */
258 void
259 vm_map_startup(void)
260 {
261 	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
262 
263 	/*
264 	 * Disable the use of per-CPU buckets: map entry allocation is
265 	 * serialized by the kernel map lock.
266 	 */
267 	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
268 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
269 	    UMA_ZONE_VM | UMA_ZONE_NOBUCKET);
270 #ifndef UMA_MD_SMALL_ALLOC
271 	/* Reserve an extra map entry for use when replenishing the reserve. */
272 	uma_zone_reserve(kmapentzone, KMAPENT_RESERVE + 1);
273 	uma_prealloc(kmapentzone, KMAPENT_RESERVE + 1);
274 	uma_zone_set_allocf(kmapentzone, kmapent_alloc);
275 	uma_zone_set_freef(kmapentzone, kmapent_free);
276 #endif
277 
278 	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
279 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
280 	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
281 #ifdef INVARIANTS
282 	    vmspace_zdtor,
283 #else
284 	    NULL,
285 #endif
286 	    vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
287 }
288 
289 static int
290 vmspace_zinit(void *mem, int size, int flags)
291 {
292 	struct vmspace *vm;
293 	vm_map_t map;
294 
295 	vm = (struct vmspace *)mem;
296 	map = &vm->vm_map;
297 
298 	memset(map, 0, sizeof(*map));
299 	mtx_init(&map->system_mtx, "vm map (system)", NULL,
300 	    MTX_DEF | MTX_DUPOK);
301 	sx_init(&map->lock, "vm map (user)");
302 	PMAP_LOCK_INIT(vmspace_pmap(vm));
303 	return (0);
304 }
305 
306 #ifdef INVARIANTS
307 static void
308 vmspace_zdtor(void *mem, int size, void *arg)
309 {
310 	struct vmspace *vm;
311 
312 	vm = (struct vmspace *)mem;
313 	KASSERT(vm->vm_map.nentries == 0,
314 	    ("vmspace %p nentries == %d on free", vm, vm->vm_map.nentries));
315 	KASSERT(vm->vm_map.size == 0,
316 	    ("vmspace %p size == %ju on free", vm, (uintmax_t)vm->vm_map.size));
317 }
318 #endif	/* INVARIANTS */
319 
320 /*
321  * Allocate a vmspace structure, including a vm_map and pmap,
322  * and initialize those structures.  The refcnt is set to 1.
323  */
324 struct vmspace *
325 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
326 {
327 	struct vmspace *vm;
328 
329 	vm = uma_zalloc(vmspace_zone, M_WAITOK);
330 	KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
331 	if (!pinit(vmspace_pmap(vm))) {
332 		uma_zfree(vmspace_zone, vm);
333 		return (NULL);
334 	}
335 	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
336 	_vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
337 	refcount_init(&vm->vm_refcnt, 1);
338 	vm->vm_shm = NULL;
339 	vm->vm_swrss = 0;
340 	vm->vm_tsize = 0;
341 	vm->vm_dsize = 0;
342 	vm->vm_ssize = 0;
343 	vm->vm_taddr = 0;
344 	vm->vm_daddr = 0;
345 	vm->vm_maxsaddr = 0;
346 	return (vm);
347 }
348 
349 #ifdef RACCT
350 static void
351 vmspace_container_reset(struct proc *p)
352 {
353 
354 	PROC_LOCK(p);
355 	racct_set(p, RACCT_DATA, 0);
356 	racct_set(p, RACCT_STACK, 0);
357 	racct_set(p, RACCT_RSS, 0);
358 	racct_set(p, RACCT_MEMLOCK, 0);
359 	racct_set(p, RACCT_VMEM, 0);
360 	PROC_UNLOCK(p);
361 }
362 #endif
363 
364 static inline void
365 vmspace_dofree(struct vmspace *vm)
366 {
367 
368 	CTR1(KTR_VM, "vmspace_free: %p", vm);
369 
370 	/*
371 	 * Make sure any SysV shm is freed, it might not have been in
372 	 * exit1().
373 	 */
374 	shmexit(vm);
375 
376 	/*
377 	 * Lock the map, to wait out all other references to it.
378 	 * Delete all of the mappings and pages they hold, then call
379 	 * the pmap module to reclaim anything left.
380 	 */
381 	(void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map),
382 	    vm_map_max(&vm->vm_map));
383 
384 	pmap_release(vmspace_pmap(vm));
385 	vm->vm_map.pmap = NULL;
386 	uma_zfree(vmspace_zone, vm);
387 }
388 
389 void
390 vmspace_free(struct vmspace *vm)
391 {
392 
393 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
394 	    "vmspace_free() called");
395 
396 	if (refcount_release(&vm->vm_refcnt))
397 		vmspace_dofree(vm);
398 }
399 
400 void
401 vmspace_exitfree(struct proc *p)
402 {
403 	struct vmspace *vm;
404 
405 	PROC_VMSPACE_LOCK(p);
406 	vm = p->p_vmspace;
407 	p->p_vmspace = NULL;
408 	PROC_VMSPACE_UNLOCK(p);
409 	KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
410 	vmspace_free(vm);
411 }
412 
413 void
414 vmspace_exit(struct thread *td)
415 {
416 	struct vmspace *vm;
417 	struct proc *p;
418 	bool released;
419 
420 	p = td->td_proc;
421 	vm = p->p_vmspace;
422 
423 	/*
424 	 * Prepare to release the vmspace reference.  The thread that releases
425 	 * the last reference is responsible for tearing down the vmspace.
426 	 * However, threads not releasing the final reference must switch to the
427 	 * kernel's vmspace0 before the decrement so that the subsequent pmap
428 	 * deactivation does not modify a freed vmspace.
429 	 */
430 	refcount_acquire(&vmspace0.vm_refcnt);
431 	if (!(released = refcount_release_if_last(&vm->vm_refcnt))) {
432 		if (p->p_vmspace != &vmspace0) {
433 			PROC_VMSPACE_LOCK(p);
434 			p->p_vmspace = &vmspace0;
435 			PROC_VMSPACE_UNLOCK(p);
436 			pmap_activate(td);
437 		}
438 		released = refcount_release(&vm->vm_refcnt);
439 	}
440 	if (released) {
441 		/*
442 		 * pmap_remove_pages() expects the pmap to be active, so switch
443 		 * back first if necessary.
444 		 */
445 		if (p->p_vmspace != vm) {
446 			PROC_VMSPACE_LOCK(p);
447 			p->p_vmspace = vm;
448 			PROC_VMSPACE_UNLOCK(p);
449 			pmap_activate(td);
450 		}
451 		pmap_remove_pages(vmspace_pmap(vm));
452 		PROC_VMSPACE_LOCK(p);
453 		p->p_vmspace = &vmspace0;
454 		PROC_VMSPACE_UNLOCK(p);
455 		pmap_activate(td);
456 		vmspace_dofree(vm);
457 	}
458 #ifdef RACCT
459 	if (racct_enable)
460 		vmspace_container_reset(p);
461 #endif
462 }
463 
464 /* Acquire reference to vmspace owned by another process. */
465 
466 struct vmspace *
467 vmspace_acquire_ref(struct proc *p)
468 {
469 	struct vmspace *vm;
470 
471 	PROC_VMSPACE_LOCK(p);
472 	vm = p->p_vmspace;
473 	if (vm == NULL || !refcount_acquire_if_not_zero(&vm->vm_refcnt)) {
474 		PROC_VMSPACE_UNLOCK(p);
475 		return (NULL);
476 	}
477 	if (vm != p->p_vmspace) {
478 		PROC_VMSPACE_UNLOCK(p);
479 		vmspace_free(vm);
480 		return (NULL);
481 	}
482 	PROC_VMSPACE_UNLOCK(p);
483 	return (vm);
484 }
485 
486 /*
487  * Switch between vmspaces in an AIO kernel process.
488  *
489  * The new vmspace is either the vmspace of a user process obtained
490  * from an active AIO request or the initial vmspace of the AIO kernel
491  * process (when it is idling).  Because user processes will block to
492  * drain any active AIO requests before proceeding in exit() or
493  * execve(), the reference count for vmspaces from AIO requests can
494  * never be 0.  Similarly, AIO kernel processes hold an extra
495  * reference on their initial vmspace for the life of the process.  As
496  * a result, the 'newvm' vmspace always has a non-zero reference
497  * count.  This permits an additional reference on 'newvm' to be
498  * acquired via a simple atomic increment rather than the loop in
499  * vmspace_acquire_ref() above.
500  */
501 void
502 vmspace_switch_aio(struct vmspace *newvm)
503 {
504 	struct vmspace *oldvm;
505 
506 	/* XXX: Need some way to assert that this is an aio daemon. */
507 
508 	KASSERT(refcount_load(&newvm->vm_refcnt) > 0,
509 	    ("vmspace_switch_aio: newvm unreferenced"));
510 
511 	oldvm = curproc->p_vmspace;
512 	if (oldvm == newvm)
513 		return;
514 
515 	/*
516 	 * Point to the new address space and refer to it.
517 	 */
518 	curproc->p_vmspace = newvm;
519 	refcount_acquire(&newvm->vm_refcnt);
520 
521 	/* Activate the new mapping. */
522 	pmap_activate(curthread);
523 
524 	vmspace_free(oldvm);
525 }
526 
527 void
528 _vm_map_lock(vm_map_t map, const char *file, int line)
529 {
530 
531 	if (map->system_map)
532 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
533 	else
534 		sx_xlock_(&map->lock, file, line);
535 	map->timestamp++;
536 }
537 
538 void
539 vm_map_entry_set_vnode_text(vm_map_entry_t entry, bool add)
540 {
541 	vm_object_t object;
542 	struct vnode *vp;
543 	bool vp_held;
544 
545 	if ((entry->eflags & MAP_ENTRY_VN_EXEC) == 0)
546 		return;
547 	KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
548 	    ("Submap with execs"));
549 	object = entry->object.vm_object;
550 	KASSERT(object != NULL, ("No object for text, entry %p", entry));
551 	if ((object->flags & OBJ_ANON) != 0)
552 		object = object->handle;
553 	else
554 		KASSERT(object->backing_object == NULL,
555 		    ("non-anon object %p shadows", object));
556 	KASSERT(object != NULL, ("No content object for text, entry %p obj %p",
557 	    entry, entry->object.vm_object));
558 
559 	/*
560 	 * Mostly, we do not lock the backing object.  It is
561 	 * referenced by the entry we are processing, so it cannot go
562 	 * away.
563 	 */
564 	vm_pager_getvp(object, &vp, &vp_held);
565 	if (vp != NULL) {
566 		if (add) {
567 			VOP_SET_TEXT_CHECKED(vp);
568 		} else {
569 			vn_lock(vp, LK_SHARED | LK_RETRY);
570 			VOP_UNSET_TEXT_CHECKED(vp);
571 			VOP_UNLOCK(vp);
572 		}
573 		if (vp_held)
574 			vdrop(vp);
575 	}
576 }
577 
578 /*
579  * Use a different name for this vm_map_entry field when it's use
580  * is not consistent with its use as part of an ordered search tree.
581  */
582 #define defer_next right
583 
584 static void
585 vm_map_process_deferred(void)
586 {
587 	struct thread *td;
588 	vm_map_entry_t entry, next;
589 	vm_object_t object;
590 
591 	td = curthread;
592 	entry = td->td_map_def_user;
593 	td->td_map_def_user = NULL;
594 	while (entry != NULL) {
595 		next = entry->defer_next;
596 		MPASS((entry->eflags & (MAP_ENTRY_WRITECNT |
597 		    MAP_ENTRY_VN_EXEC)) != (MAP_ENTRY_WRITECNT |
598 		    MAP_ENTRY_VN_EXEC));
599 		if ((entry->eflags & MAP_ENTRY_WRITECNT) != 0) {
600 			/*
601 			 * Decrement the object's writemappings and
602 			 * possibly the vnode's v_writecount.
603 			 */
604 			KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
605 			    ("Submap with writecount"));
606 			object = entry->object.vm_object;
607 			KASSERT(object != NULL, ("No object for writecount"));
608 			vm_pager_release_writecount(object, entry->start,
609 			    entry->end);
610 		}
611 		vm_map_entry_set_vnode_text(entry, false);
612 		vm_map_entry_deallocate(entry, FALSE);
613 		entry = next;
614 	}
615 }
616 
617 #ifdef INVARIANTS
618 static void
619 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
620 {
621 
622 	if (map->system_map)
623 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
624 	else
625 		sx_assert_(&map->lock, SA_XLOCKED, file, line);
626 }
627 
628 #define	VM_MAP_ASSERT_LOCKED(map) \
629     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
630 
631 enum { VMMAP_CHECK_NONE, VMMAP_CHECK_UNLOCK, VMMAP_CHECK_ALL };
632 #ifdef DIAGNOSTIC
633 static int enable_vmmap_check = VMMAP_CHECK_UNLOCK;
634 #else
635 static int enable_vmmap_check = VMMAP_CHECK_NONE;
636 #endif
637 SYSCTL_INT(_debug, OID_AUTO, vmmap_check, CTLFLAG_RWTUN,
638     &enable_vmmap_check, 0, "Enable vm map consistency checking");
639 
640 static void _vm_map_assert_consistent(vm_map_t map, int check);
641 
642 #define VM_MAP_ASSERT_CONSISTENT(map) \
643     _vm_map_assert_consistent(map, VMMAP_CHECK_ALL)
644 #ifdef DIAGNOSTIC
645 #define VM_MAP_UNLOCK_CONSISTENT(map) do {				\
646 	if (map->nupdates > map->nentries) {				\
647 		_vm_map_assert_consistent(map, VMMAP_CHECK_UNLOCK);	\
648 		map->nupdates = 0;					\
649 	}								\
650 } while (0)
651 #else
652 #define VM_MAP_UNLOCK_CONSISTENT(map)
653 #endif
654 #else
655 #define	VM_MAP_ASSERT_LOCKED(map)
656 #define VM_MAP_ASSERT_CONSISTENT(map)
657 #define VM_MAP_UNLOCK_CONSISTENT(map)
658 #endif /* INVARIANTS */
659 
660 void
661 _vm_map_unlock(vm_map_t map, const char *file, int line)
662 {
663 
664 	VM_MAP_UNLOCK_CONSISTENT(map);
665 	if (map->system_map) {
666 #ifndef UMA_MD_SMALL_ALLOC
667 		if (map == kernel_map && (map->flags & MAP_REPLENISH) != 0) {
668 			uma_prealloc(kmapentzone, 1);
669 			map->flags &= ~MAP_REPLENISH;
670 		}
671 #endif
672 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
673 	} else {
674 		sx_xunlock_(&map->lock, file, line);
675 		vm_map_process_deferred();
676 	}
677 }
678 
679 void
680 _vm_map_lock_read(vm_map_t map, const char *file, int line)
681 {
682 
683 	if (map->system_map)
684 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
685 	else
686 		sx_slock_(&map->lock, file, line);
687 }
688 
689 void
690 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
691 {
692 
693 	if (map->system_map) {
694 		KASSERT((map->flags & MAP_REPLENISH) == 0,
695 		    ("%s: MAP_REPLENISH leaked", __func__));
696 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
697 	} else {
698 		sx_sunlock_(&map->lock, file, line);
699 		vm_map_process_deferred();
700 	}
701 }
702 
703 int
704 _vm_map_trylock(vm_map_t map, const char *file, int line)
705 {
706 	int error;
707 
708 	error = map->system_map ?
709 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
710 	    !sx_try_xlock_(&map->lock, file, line);
711 	if (error == 0)
712 		map->timestamp++;
713 	return (error == 0);
714 }
715 
716 int
717 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
718 {
719 	int error;
720 
721 	error = map->system_map ?
722 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
723 	    !sx_try_slock_(&map->lock, file, line);
724 	return (error == 0);
725 }
726 
727 /*
728  *	_vm_map_lock_upgrade:	[ internal use only ]
729  *
730  *	Tries to upgrade a read (shared) lock on the specified map to a write
731  *	(exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
732  *	non-zero value if the upgrade fails.  If the upgrade fails, the map is
733  *	returned without a read or write lock held.
734  *
735  *	Requires that the map be read locked.
736  */
737 int
738 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
739 {
740 	unsigned int last_timestamp;
741 
742 	if (map->system_map) {
743 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
744 	} else {
745 		if (!sx_try_upgrade_(&map->lock, file, line)) {
746 			last_timestamp = map->timestamp;
747 			sx_sunlock_(&map->lock, file, line);
748 			vm_map_process_deferred();
749 			/*
750 			 * If the map's timestamp does not change while the
751 			 * map is unlocked, then the upgrade succeeds.
752 			 */
753 			sx_xlock_(&map->lock, file, line);
754 			if (last_timestamp != map->timestamp) {
755 				sx_xunlock_(&map->lock, file, line);
756 				return (1);
757 			}
758 		}
759 	}
760 	map->timestamp++;
761 	return (0);
762 }
763 
764 void
765 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
766 {
767 
768 	if (map->system_map) {
769 		KASSERT((map->flags & MAP_REPLENISH) == 0,
770 		    ("%s: MAP_REPLENISH leaked", __func__));
771 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
772 	} else {
773 		VM_MAP_UNLOCK_CONSISTENT(map);
774 		sx_downgrade_(&map->lock, file, line);
775 	}
776 }
777 
778 /*
779  *	vm_map_locked:
780  *
781  *	Returns a non-zero value if the caller holds a write (exclusive) lock
782  *	on the specified map and the value "0" otherwise.
783  */
784 int
785 vm_map_locked(vm_map_t map)
786 {
787 
788 	if (map->system_map)
789 		return (mtx_owned(&map->system_mtx));
790 	else
791 		return (sx_xlocked(&map->lock));
792 }
793 
794 /*
795  *	_vm_map_unlock_and_wait:
796  *
797  *	Atomically releases the lock on the specified map and puts the calling
798  *	thread to sleep.  The calling thread will remain asleep until either
799  *	vm_map_wakeup() is performed on the map or the specified timeout is
800  *	exceeded.
801  *
802  *	WARNING!  This function does not perform deferred deallocations of
803  *	objects and map	entries.  Therefore, the calling thread is expected to
804  *	reacquire the map lock after reawakening and later perform an ordinary
805  *	unlock operation, such as vm_map_unlock(), before completing its
806  *	operation on the map.
807  */
808 int
809 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
810 {
811 
812 	VM_MAP_UNLOCK_CONSISTENT(map);
813 	mtx_lock(&map_sleep_mtx);
814 	if (map->system_map) {
815 		KASSERT((map->flags & MAP_REPLENISH) == 0,
816 		    ("%s: MAP_REPLENISH leaked", __func__));
817 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
818 	} else {
819 		sx_xunlock_(&map->lock, file, line);
820 	}
821 	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
822 	    timo));
823 }
824 
825 /*
826  *	vm_map_wakeup:
827  *
828  *	Awaken any threads that have slept on the map using
829  *	vm_map_unlock_and_wait().
830  */
831 void
832 vm_map_wakeup(vm_map_t map)
833 {
834 
835 	/*
836 	 * Acquire and release map_sleep_mtx to prevent a wakeup()
837 	 * from being performed (and lost) between the map unlock
838 	 * and the msleep() in _vm_map_unlock_and_wait().
839 	 */
840 	mtx_lock(&map_sleep_mtx);
841 	mtx_unlock(&map_sleep_mtx);
842 	wakeup(&map->root);
843 }
844 
845 void
846 vm_map_busy(vm_map_t map)
847 {
848 
849 	VM_MAP_ASSERT_LOCKED(map);
850 	map->busy++;
851 }
852 
853 void
854 vm_map_unbusy(vm_map_t map)
855 {
856 
857 	VM_MAP_ASSERT_LOCKED(map);
858 	KASSERT(map->busy, ("vm_map_unbusy: not busy"));
859 	if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
860 		vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
861 		wakeup(&map->busy);
862 	}
863 }
864 
865 void
866 vm_map_wait_busy(vm_map_t map)
867 {
868 
869 	VM_MAP_ASSERT_LOCKED(map);
870 	while (map->busy) {
871 		vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
872 		if (map->system_map)
873 			msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
874 		else
875 			sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
876 	}
877 	map->timestamp++;
878 }
879 
880 long
881 vmspace_resident_count(struct vmspace *vmspace)
882 {
883 	return pmap_resident_count(vmspace_pmap(vmspace));
884 }
885 
886 /*
887  * Initialize an existing vm_map structure
888  * such as that in the vmspace structure.
889  */
890 static void
891 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
892 {
893 
894 	map->header.eflags = MAP_ENTRY_HEADER;
895 	map->needs_wakeup = FALSE;
896 	map->system_map = 0;
897 	map->pmap = pmap;
898 	map->header.end = min;
899 	map->header.start = max;
900 	map->flags = 0;
901 	map->header.left = map->header.right = &map->header;
902 	map->root = NULL;
903 	map->timestamp = 0;
904 	map->busy = 0;
905 	map->anon_loc = 0;
906 #ifdef DIAGNOSTIC
907 	map->nupdates = 0;
908 #endif
909 }
910 
911 void
912 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
913 {
914 
915 	_vm_map_init(map, pmap, min, max);
916 	mtx_init(&map->system_mtx, "vm map (system)", NULL,
917 	    MTX_DEF | MTX_DUPOK);
918 	sx_init(&map->lock, "vm map (user)");
919 }
920 
921 /*
922  *	vm_map_entry_dispose:	[ internal use only ]
923  *
924  *	Inverse of vm_map_entry_create.
925  */
926 static void
927 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
928 {
929 	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
930 }
931 
932 /*
933  *	vm_map_entry_create:	[ internal use only ]
934  *
935  *	Allocates a VM map entry for insertion.
936  *	No entry fields are filled in.
937  */
938 static vm_map_entry_t
939 vm_map_entry_create(vm_map_t map)
940 {
941 	vm_map_entry_t new_entry;
942 
943 #ifndef UMA_MD_SMALL_ALLOC
944 	if (map == kernel_map) {
945 		VM_MAP_ASSERT_LOCKED(map);
946 
947 		/*
948 		 * A new slab of kernel map entries cannot be allocated at this
949 		 * point because the kernel map has not yet been updated to
950 		 * reflect the caller's request.  Therefore, we allocate a new
951 		 * map entry, dipping into the reserve if necessary, and set a
952 		 * flag indicating that the reserve must be replenished before
953 		 * the map is unlocked.
954 		 */
955 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT | M_NOVM);
956 		if (new_entry == NULL) {
957 			new_entry = uma_zalloc(kmapentzone,
958 			    M_NOWAIT | M_NOVM | M_USE_RESERVE);
959 			kernel_map->flags |= MAP_REPLENISH;
960 		}
961 	} else
962 #endif
963 	if (map->system_map) {
964 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
965 	} else {
966 		new_entry = uma_zalloc(mapentzone, M_WAITOK);
967 	}
968 	KASSERT(new_entry != NULL,
969 	    ("vm_map_entry_create: kernel resources exhausted"));
970 	return (new_entry);
971 }
972 
973 /*
974  *	vm_map_entry_set_behavior:
975  *
976  *	Set the expected access behavior, either normal, random, or
977  *	sequential.
978  */
979 static inline void
980 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
981 {
982 	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
983 	    (behavior & MAP_ENTRY_BEHAV_MASK);
984 }
985 
986 /*
987  *	vm_map_entry_max_free_{left,right}:
988  *
989  *	Compute the size of the largest free gap between two entries,
990  *	one the root of a tree and the other the ancestor of that root
991  *	that is the least or greatest ancestor found on the search path.
992  */
993 static inline vm_size_t
994 vm_map_entry_max_free_left(vm_map_entry_t root, vm_map_entry_t left_ancestor)
995 {
996 
997 	return (root->left != left_ancestor ?
998 	    root->left->max_free : root->start - left_ancestor->end);
999 }
1000 
1001 static inline vm_size_t
1002 vm_map_entry_max_free_right(vm_map_entry_t root, vm_map_entry_t right_ancestor)
1003 {
1004 
1005 	return (root->right != right_ancestor ?
1006 	    root->right->max_free : right_ancestor->start - root->end);
1007 }
1008 
1009 /*
1010  *	vm_map_entry_{pred,succ}:
1011  *
1012  *	Find the {predecessor, successor} of the entry by taking one step
1013  *	in the appropriate direction and backtracking as much as necessary.
1014  *	vm_map_entry_succ is defined in vm_map.h.
1015  */
1016 static inline vm_map_entry_t
1017 vm_map_entry_pred(vm_map_entry_t entry)
1018 {
1019 	vm_map_entry_t prior;
1020 
1021 	prior = entry->left;
1022 	if (prior->right->start < entry->start) {
1023 		do
1024 			prior = prior->right;
1025 		while (prior->right != entry);
1026 	}
1027 	return (prior);
1028 }
1029 
1030 static inline vm_size_t
1031 vm_size_max(vm_size_t a, vm_size_t b)
1032 {
1033 
1034 	return (a > b ? a : b);
1035 }
1036 
1037 #define SPLAY_LEFT_STEP(root, y, llist, rlist, test) do {		\
1038 	vm_map_entry_t z;						\
1039 	vm_size_t max_free;						\
1040 									\
1041 	/*								\
1042 	 * Infer root->right->max_free == root->max_free when		\
1043 	 * y->max_free < root->max_free || root->max_free == 0.		\
1044 	 * Otherwise, look right to find it.				\
1045 	 */								\
1046 	y = root->left;							\
1047 	max_free = root->max_free;					\
1048 	KASSERT(max_free == vm_size_max(				\
1049 	    vm_map_entry_max_free_left(root, llist),			\
1050 	    vm_map_entry_max_free_right(root, rlist)),			\
1051 	    ("%s: max_free invariant fails", __func__));		\
1052 	if (max_free - 1 < vm_map_entry_max_free_left(root, llist))	\
1053 		max_free = vm_map_entry_max_free_right(root, rlist);	\
1054 	if (y != llist && (test)) {					\
1055 		/* Rotate right and make y root. */			\
1056 		z = y->right;						\
1057 		if (z != root) {					\
1058 			root->left = z;					\
1059 			y->right = root;				\
1060 			if (max_free < y->max_free)			\
1061 			    root->max_free = max_free =			\
1062 			    vm_size_max(max_free, z->max_free);		\
1063 		} else if (max_free < y->max_free)			\
1064 			root->max_free = max_free =			\
1065 			    vm_size_max(max_free, root->start - y->end);\
1066 		root = y;						\
1067 		y = root->left;						\
1068 	}								\
1069 	/* Copy right->max_free.  Put root on rlist. */			\
1070 	root->max_free = max_free;					\
1071 	KASSERT(max_free == vm_map_entry_max_free_right(root, rlist),	\
1072 	    ("%s: max_free not copied from right", __func__));		\
1073 	root->left = rlist;						\
1074 	rlist = root;							\
1075 	root = y != llist ? y : NULL;					\
1076 } while (0)
1077 
1078 #define SPLAY_RIGHT_STEP(root, y, llist, rlist, test) do {		\
1079 	vm_map_entry_t z;						\
1080 	vm_size_t max_free;						\
1081 									\
1082 	/*								\
1083 	 * Infer root->left->max_free == root->max_free when		\
1084 	 * y->max_free < root->max_free || root->max_free == 0.		\
1085 	 * Otherwise, look left to find it.				\
1086 	 */								\
1087 	y = root->right;						\
1088 	max_free = root->max_free;					\
1089 	KASSERT(max_free == vm_size_max(				\
1090 	    vm_map_entry_max_free_left(root, llist),			\
1091 	    vm_map_entry_max_free_right(root, rlist)),			\
1092 	    ("%s: max_free invariant fails", __func__));		\
1093 	if (max_free - 1 < vm_map_entry_max_free_right(root, rlist))	\
1094 		max_free = vm_map_entry_max_free_left(root, llist);	\
1095 	if (y != rlist && (test)) {					\
1096 		/* Rotate left and make y root. */			\
1097 		z = y->left;						\
1098 		if (z != root) {					\
1099 			root->right = z;				\
1100 			y->left = root;					\
1101 			if (max_free < y->max_free)			\
1102 			    root->max_free = max_free =			\
1103 			    vm_size_max(max_free, z->max_free);		\
1104 		} else if (max_free < y->max_free)			\
1105 			root->max_free = max_free =			\
1106 			    vm_size_max(max_free, y->start - root->end);\
1107 		root = y;						\
1108 		y = root->right;					\
1109 	}								\
1110 	/* Copy left->max_free.  Put root on llist. */			\
1111 	root->max_free = max_free;					\
1112 	KASSERT(max_free == vm_map_entry_max_free_left(root, llist),	\
1113 	    ("%s: max_free not copied from left", __func__));		\
1114 	root->right = llist;						\
1115 	llist = root;							\
1116 	root = y != rlist ? y : NULL;					\
1117 } while (0)
1118 
1119 /*
1120  * Walk down the tree until we find addr or a gap where addr would go, breaking
1121  * off left and right subtrees of nodes less than, or greater than addr.  Treat
1122  * subtrees with root->max_free < length as empty trees.  llist and rlist are
1123  * the two sides in reverse order (bottom-up), with llist linked by the right
1124  * pointer and rlist linked by the left pointer in the vm_map_entry, and both
1125  * lists terminated by &map->header.  This function, and the subsequent call to
1126  * vm_map_splay_merge_{left,right,pred,succ}, rely on the start and end address
1127  * values in &map->header.
1128  */
1129 static __always_inline vm_map_entry_t
1130 vm_map_splay_split(vm_map_t map, vm_offset_t addr, vm_size_t length,
1131     vm_map_entry_t *llist, vm_map_entry_t *rlist)
1132 {
1133 	vm_map_entry_t left, right, root, y;
1134 
1135 	left = right = &map->header;
1136 	root = map->root;
1137 	while (root != NULL && root->max_free >= length) {
1138 		KASSERT(left->end <= root->start &&
1139 		    root->end <= right->start,
1140 		    ("%s: root not within tree bounds", __func__));
1141 		if (addr < root->start) {
1142 			SPLAY_LEFT_STEP(root, y, left, right,
1143 			    y->max_free >= length && addr < y->start);
1144 		} else if (addr >= root->end) {
1145 			SPLAY_RIGHT_STEP(root, y, left, right,
1146 			    y->max_free >= length && addr >= y->end);
1147 		} else
1148 			break;
1149 	}
1150 	*llist = left;
1151 	*rlist = right;
1152 	return (root);
1153 }
1154 
1155 static __always_inline void
1156 vm_map_splay_findnext(vm_map_entry_t root, vm_map_entry_t *rlist)
1157 {
1158 	vm_map_entry_t hi, right, y;
1159 
1160 	right = *rlist;
1161 	hi = root->right == right ? NULL : root->right;
1162 	if (hi == NULL)
1163 		return;
1164 	do
1165 		SPLAY_LEFT_STEP(hi, y, root, right, true);
1166 	while (hi != NULL);
1167 	*rlist = right;
1168 }
1169 
1170 static __always_inline void
1171 vm_map_splay_findprev(vm_map_entry_t root, vm_map_entry_t *llist)
1172 {
1173 	vm_map_entry_t left, lo, y;
1174 
1175 	left = *llist;
1176 	lo = root->left == left ? NULL : root->left;
1177 	if (lo == NULL)
1178 		return;
1179 	do
1180 		SPLAY_RIGHT_STEP(lo, y, left, root, true);
1181 	while (lo != NULL);
1182 	*llist = left;
1183 }
1184 
1185 static inline void
1186 vm_map_entry_swap(vm_map_entry_t *a, vm_map_entry_t *b)
1187 {
1188 	vm_map_entry_t tmp;
1189 
1190 	tmp = *b;
1191 	*b = *a;
1192 	*a = tmp;
1193 }
1194 
1195 /*
1196  * Walk back up the two spines, flip the pointers and set max_free.  The
1197  * subtrees of the root go at the bottom of llist and rlist.
1198  */
1199 static vm_size_t
1200 vm_map_splay_merge_left_walk(vm_map_entry_t header, vm_map_entry_t root,
1201     vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t llist)
1202 {
1203 	do {
1204 		/*
1205 		 * The max_free values of the children of llist are in
1206 		 * llist->max_free and max_free.  Update with the
1207 		 * max value.
1208 		 */
1209 		llist->max_free = max_free =
1210 		    vm_size_max(llist->max_free, max_free);
1211 		vm_map_entry_swap(&llist->right, &tail);
1212 		vm_map_entry_swap(&tail, &llist);
1213 	} while (llist != header);
1214 	root->left = tail;
1215 	return (max_free);
1216 }
1217 
1218 /*
1219  * When llist is known to be the predecessor of root.
1220  */
1221 static inline vm_size_t
1222 vm_map_splay_merge_pred(vm_map_entry_t header, vm_map_entry_t root,
1223     vm_map_entry_t llist)
1224 {
1225 	vm_size_t max_free;
1226 
1227 	max_free = root->start - llist->end;
1228 	if (llist != header) {
1229 		max_free = vm_map_splay_merge_left_walk(header, root,
1230 		    root, max_free, llist);
1231 	} else {
1232 		root->left = header;
1233 		header->right = root;
1234 	}
1235 	return (max_free);
1236 }
1237 
1238 /*
1239  * When llist may or may not be the predecessor of root.
1240  */
1241 static inline vm_size_t
1242 vm_map_splay_merge_left(vm_map_entry_t header, vm_map_entry_t root,
1243     vm_map_entry_t llist)
1244 {
1245 	vm_size_t max_free;
1246 
1247 	max_free = vm_map_entry_max_free_left(root, llist);
1248 	if (llist != header) {
1249 		max_free = vm_map_splay_merge_left_walk(header, root,
1250 		    root->left == llist ? root : root->left,
1251 		    max_free, llist);
1252 	}
1253 	return (max_free);
1254 }
1255 
1256 static vm_size_t
1257 vm_map_splay_merge_right_walk(vm_map_entry_t header, vm_map_entry_t root,
1258     vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t rlist)
1259 {
1260 	do {
1261 		/*
1262 		 * The max_free values of the children of rlist are in
1263 		 * rlist->max_free and max_free.  Update with the
1264 		 * max value.
1265 		 */
1266 		rlist->max_free = max_free =
1267 		    vm_size_max(rlist->max_free, max_free);
1268 		vm_map_entry_swap(&rlist->left, &tail);
1269 		vm_map_entry_swap(&tail, &rlist);
1270 	} while (rlist != header);
1271 	root->right = tail;
1272 	return (max_free);
1273 }
1274 
1275 /*
1276  * When rlist is known to be the succecessor of root.
1277  */
1278 static inline vm_size_t
1279 vm_map_splay_merge_succ(vm_map_entry_t header, vm_map_entry_t root,
1280     vm_map_entry_t rlist)
1281 {
1282 	vm_size_t max_free;
1283 
1284 	max_free = rlist->start - root->end;
1285 	if (rlist != header) {
1286 		max_free = vm_map_splay_merge_right_walk(header, root,
1287 		    root, max_free, rlist);
1288 	} else {
1289 		root->right = header;
1290 		header->left = root;
1291 	}
1292 	return (max_free);
1293 }
1294 
1295 /*
1296  * When rlist may or may not be the succecessor of root.
1297  */
1298 static inline vm_size_t
1299 vm_map_splay_merge_right(vm_map_entry_t header, vm_map_entry_t root,
1300     vm_map_entry_t rlist)
1301 {
1302 	vm_size_t max_free;
1303 
1304 	max_free = vm_map_entry_max_free_right(root, rlist);
1305 	if (rlist != header) {
1306 		max_free = vm_map_splay_merge_right_walk(header, root,
1307 		    root->right == rlist ? root : root->right,
1308 		    max_free, rlist);
1309 	}
1310 	return (max_free);
1311 }
1312 
1313 /*
1314  *	vm_map_splay:
1315  *
1316  *	The Sleator and Tarjan top-down splay algorithm with the
1317  *	following variation.  Max_free must be computed bottom-up, so
1318  *	on the downward pass, maintain the left and right spines in
1319  *	reverse order.  Then, make a second pass up each side to fix
1320  *	the pointers and compute max_free.  The time bound is O(log n)
1321  *	amortized.
1322  *
1323  *	The tree is threaded, which means that there are no null pointers.
1324  *	When a node has no left child, its left pointer points to its
1325  *	predecessor, which the last ancestor on the search path from the root
1326  *	where the search branched right.  Likewise, when a node has no right
1327  *	child, its right pointer points to its successor.  The map header node
1328  *	is the predecessor of the first map entry, and the successor of the
1329  *	last.
1330  *
1331  *	The new root is the vm_map_entry containing "addr", or else an
1332  *	adjacent entry (lower if possible) if addr is not in the tree.
1333  *
1334  *	The map must be locked, and leaves it so.
1335  *
1336  *	Returns: the new root.
1337  */
1338 static vm_map_entry_t
1339 vm_map_splay(vm_map_t map, vm_offset_t addr)
1340 {
1341 	vm_map_entry_t header, llist, rlist, root;
1342 	vm_size_t max_free_left, max_free_right;
1343 
1344 	header = &map->header;
1345 	root = vm_map_splay_split(map, addr, 0, &llist, &rlist);
1346 	if (root != NULL) {
1347 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1348 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1349 	} else if (llist != header) {
1350 		/*
1351 		 * Recover the greatest node in the left
1352 		 * subtree and make it the root.
1353 		 */
1354 		root = llist;
1355 		llist = root->right;
1356 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1357 		max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1358 	} else if (rlist != header) {
1359 		/*
1360 		 * Recover the least node in the right
1361 		 * subtree and make it the root.
1362 		 */
1363 		root = rlist;
1364 		rlist = root->left;
1365 		max_free_left = vm_map_splay_merge_pred(header, root, llist);
1366 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1367 	} else {
1368 		/* There is no root. */
1369 		return (NULL);
1370 	}
1371 	root->max_free = vm_size_max(max_free_left, max_free_right);
1372 	map->root = root;
1373 	VM_MAP_ASSERT_CONSISTENT(map);
1374 	return (root);
1375 }
1376 
1377 /*
1378  *	vm_map_entry_{un,}link:
1379  *
1380  *	Insert/remove entries from maps.  On linking, if new entry clips
1381  *	existing entry, trim existing entry to avoid overlap, and manage
1382  *	offsets.  On unlinking, merge disappearing entry with neighbor, if
1383  *	called for, and manage offsets.  Callers should not modify fields in
1384  *	entries already mapped.
1385  */
1386 static void
1387 vm_map_entry_link(vm_map_t map, vm_map_entry_t entry)
1388 {
1389 	vm_map_entry_t header, llist, rlist, root;
1390 	vm_size_t max_free_left, max_free_right;
1391 
1392 	CTR3(KTR_VM,
1393 	    "vm_map_entry_link: map %p, nentries %d, entry %p", map,
1394 	    map->nentries, entry);
1395 	VM_MAP_ASSERT_LOCKED(map);
1396 	map->nentries++;
1397 	header = &map->header;
1398 	root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1399 	if (root == NULL) {
1400 		/*
1401 		 * The new entry does not overlap any existing entry in the
1402 		 * map, so it becomes the new root of the map tree.
1403 		 */
1404 		max_free_left = vm_map_splay_merge_pred(header, entry, llist);
1405 		max_free_right = vm_map_splay_merge_succ(header, entry, rlist);
1406 	} else if (entry->start == root->start) {
1407 		/*
1408 		 * The new entry is a clone of root, with only the end field
1409 		 * changed.  The root entry will be shrunk to abut the new
1410 		 * entry, and will be the right child of the new root entry in
1411 		 * the modified map.
1412 		 */
1413 		KASSERT(entry->end < root->end,
1414 		    ("%s: clip_start not within entry", __func__));
1415 		vm_map_splay_findprev(root, &llist);
1416 		root->offset += entry->end - root->start;
1417 		root->start = entry->end;
1418 		max_free_left = vm_map_splay_merge_pred(header, entry, llist);
1419 		max_free_right = root->max_free = vm_size_max(
1420 		    vm_map_splay_merge_pred(entry, root, entry),
1421 		    vm_map_splay_merge_right(header, root, rlist));
1422 	} else {
1423 		/*
1424 		 * The new entry is a clone of root, with only the start field
1425 		 * changed.  The root entry will be shrunk to abut the new
1426 		 * entry, and will be the left child of the new root entry in
1427 		 * the modified map.
1428 		 */
1429 		KASSERT(entry->end == root->end,
1430 		    ("%s: clip_start not within entry", __func__));
1431 		vm_map_splay_findnext(root, &rlist);
1432 		entry->offset += entry->start - root->start;
1433 		root->end = entry->start;
1434 		max_free_left = root->max_free = vm_size_max(
1435 		    vm_map_splay_merge_left(header, root, llist),
1436 		    vm_map_splay_merge_succ(entry, root, entry));
1437 		max_free_right = vm_map_splay_merge_succ(header, entry, rlist);
1438 	}
1439 	entry->max_free = vm_size_max(max_free_left, max_free_right);
1440 	map->root = entry;
1441 	VM_MAP_ASSERT_CONSISTENT(map);
1442 }
1443 
1444 enum unlink_merge_type {
1445 	UNLINK_MERGE_NONE,
1446 	UNLINK_MERGE_NEXT
1447 };
1448 
1449 static void
1450 vm_map_entry_unlink(vm_map_t map, vm_map_entry_t entry,
1451     enum unlink_merge_type op)
1452 {
1453 	vm_map_entry_t header, llist, rlist, root;
1454 	vm_size_t max_free_left, max_free_right;
1455 
1456 	VM_MAP_ASSERT_LOCKED(map);
1457 	header = &map->header;
1458 	root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1459 	KASSERT(root != NULL,
1460 	    ("vm_map_entry_unlink: unlink object not mapped"));
1461 
1462 	vm_map_splay_findprev(root, &llist);
1463 	vm_map_splay_findnext(root, &rlist);
1464 	if (op == UNLINK_MERGE_NEXT) {
1465 		rlist->start = root->start;
1466 		rlist->offset = root->offset;
1467 	}
1468 	if (llist != header) {
1469 		root = llist;
1470 		llist = root->right;
1471 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1472 		max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1473 	} else if (rlist != header) {
1474 		root = rlist;
1475 		rlist = root->left;
1476 		max_free_left = vm_map_splay_merge_pred(header, root, llist);
1477 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1478 	} else {
1479 		header->left = header->right = header;
1480 		root = NULL;
1481 	}
1482 	if (root != NULL)
1483 		root->max_free = vm_size_max(max_free_left, max_free_right);
1484 	map->root = root;
1485 	VM_MAP_ASSERT_CONSISTENT(map);
1486 	map->nentries--;
1487 	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1488 	    map->nentries, entry);
1489 }
1490 
1491 /*
1492  *	vm_map_entry_resize:
1493  *
1494  *	Resize a vm_map_entry, recompute the amount of free space that
1495  *	follows it and propagate that value up the tree.
1496  *
1497  *	The map must be locked, and leaves it so.
1498  */
1499 static void
1500 vm_map_entry_resize(vm_map_t map, vm_map_entry_t entry, vm_size_t grow_amount)
1501 {
1502 	vm_map_entry_t header, llist, rlist, root;
1503 
1504 	VM_MAP_ASSERT_LOCKED(map);
1505 	header = &map->header;
1506 	root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1507 	KASSERT(root != NULL, ("%s: resize object not mapped", __func__));
1508 	vm_map_splay_findnext(root, &rlist);
1509 	entry->end += grow_amount;
1510 	root->max_free = vm_size_max(
1511 	    vm_map_splay_merge_left(header, root, llist),
1512 	    vm_map_splay_merge_succ(header, root, rlist));
1513 	map->root = root;
1514 	VM_MAP_ASSERT_CONSISTENT(map);
1515 	CTR4(KTR_VM, "%s: map %p, nentries %d, entry %p",
1516 	    __func__, map, map->nentries, entry);
1517 }
1518 
1519 /*
1520  *	vm_map_lookup_entry:	[ internal use only ]
1521  *
1522  *	Finds the map entry containing (or
1523  *	immediately preceding) the specified address
1524  *	in the given map; the entry is returned
1525  *	in the "entry" parameter.  The boolean
1526  *	result indicates whether the address is
1527  *	actually contained in the map.
1528  */
1529 boolean_t
1530 vm_map_lookup_entry(
1531 	vm_map_t map,
1532 	vm_offset_t address,
1533 	vm_map_entry_t *entry)	/* OUT */
1534 {
1535 	vm_map_entry_t cur, header, lbound, ubound;
1536 	boolean_t locked;
1537 
1538 	/*
1539 	 * If the map is empty, then the map entry immediately preceding
1540 	 * "address" is the map's header.
1541 	 */
1542 	header = &map->header;
1543 	cur = map->root;
1544 	if (cur == NULL) {
1545 		*entry = header;
1546 		return (FALSE);
1547 	}
1548 	if (address >= cur->start && cur->end > address) {
1549 		*entry = cur;
1550 		return (TRUE);
1551 	}
1552 	if ((locked = vm_map_locked(map)) ||
1553 	    sx_try_upgrade(&map->lock)) {
1554 		/*
1555 		 * Splay requires a write lock on the map.  However, it only
1556 		 * restructures the binary search tree; it does not otherwise
1557 		 * change the map.  Thus, the map's timestamp need not change
1558 		 * on a temporary upgrade.
1559 		 */
1560 		cur = vm_map_splay(map, address);
1561 		if (!locked) {
1562 			VM_MAP_UNLOCK_CONSISTENT(map);
1563 			sx_downgrade(&map->lock);
1564 		}
1565 
1566 		/*
1567 		 * If "address" is contained within a map entry, the new root
1568 		 * is that map entry.  Otherwise, the new root is a map entry
1569 		 * immediately before or after "address".
1570 		 */
1571 		if (address < cur->start) {
1572 			*entry = header;
1573 			return (FALSE);
1574 		}
1575 		*entry = cur;
1576 		return (address < cur->end);
1577 	}
1578 	/*
1579 	 * Since the map is only locked for read access, perform a
1580 	 * standard binary search tree lookup for "address".
1581 	 */
1582 	lbound = ubound = header;
1583 	for (;;) {
1584 		if (address < cur->start) {
1585 			ubound = cur;
1586 			cur = cur->left;
1587 			if (cur == lbound)
1588 				break;
1589 		} else if (cur->end <= address) {
1590 			lbound = cur;
1591 			cur = cur->right;
1592 			if (cur == ubound)
1593 				break;
1594 		} else {
1595 			*entry = cur;
1596 			return (TRUE);
1597 		}
1598 	}
1599 	*entry = lbound;
1600 	return (FALSE);
1601 }
1602 
1603 /*
1604  *	vm_map_insert:
1605  *
1606  *	Inserts the given whole VM object into the target
1607  *	map at the specified address range.  The object's
1608  *	size should match that of the address range.
1609  *
1610  *	Requires that the map be locked, and leaves it so.
1611  *
1612  *	If object is non-NULL, ref count must be bumped by caller
1613  *	prior to making call to account for the new entry.
1614  */
1615 int
1616 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1617     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1618 {
1619 	vm_map_entry_t new_entry, next_entry, prev_entry;
1620 	struct ucred *cred;
1621 	vm_eflags_t protoeflags;
1622 	vm_inherit_t inheritance;
1623 	u_long bdry;
1624 	u_int bidx;
1625 
1626 	VM_MAP_ASSERT_LOCKED(map);
1627 	KASSERT(object != kernel_object ||
1628 	    (cow & MAP_COPY_ON_WRITE) == 0,
1629 	    ("vm_map_insert: kernel object and COW"));
1630 	KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0 ||
1631 	    (cow & MAP_SPLIT_BOUNDARY_MASK) != 0,
1632 	    ("vm_map_insert: paradoxical MAP_NOFAULT request, obj %p cow %#x",
1633 	    object, cow));
1634 	KASSERT((prot & ~max) == 0,
1635 	    ("prot %#x is not subset of max_prot %#x", prot, max));
1636 
1637 	/*
1638 	 * Check that the start and end points are not bogus.
1639 	 */
1640 	if (start == end || !vm_map_range_valid(map, start, end))
1641 		return (KERN_INVALID_ADDRESS);
1642 
1643 	if ((map->flags & MAP_WXORX) != 0 && (prot & (VM_PROT_WRITE |
1644 	    VM_PROT_EXECUTE)) == (VM_PROT_WRITE | VM_PROT_EXECUTE))
1645 		return (KERN_PROTECTION_FAILURE);
1646 
1647 	/*
1648 	 * Find the entry prior to the proposed starting address; if it's part
1649 	 * of an existing entry, this range is bogus.
1650 	 */
1651 	if (vm_map_lookup_entry(map, start, &prev_entry))
1652 		return (KERN_NO_SPACE);
1653 
1654 	/*
1655 	 * Assert that the next entry doesn't overlap the end point.
1656 	 */
1657 	next_entry = vm_map_entry_succ(prev_entry);
1658 	if (next_entry->start < end)
1659 		return (KERN_NO_SPACE);
1660 
1661 	if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL ||
1662 	    max != VM_PROT_NONE))
1663 		return (KERN_INVALID_ARGUMENT);
1664 
1665 	protoeflags = 0;
1666 	if (cow & MAP_COPY_ON_WRITE)
1667 		protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1668 	if (cow & MAP_NOFAULT)
1669 		protoeflags |= MAP_ENTRY_NOFAULT;
1670 	if (cow & MAP_DISABLE_SYNCER)
1671 		protoeflags |= MAP_ENTRY_NOSYNC;
1672 	if (cow & MAP_DISABLE_COREDUMP)
1673 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1674 	if (cow & MAP_STACK_GROWS_DOWN)
1675 		protoeflags |= MAP_ENTRY_GROWS_DOWN;
1676 	if (cow & MAP_STACK_GROWS_UP)
1677 		protoeflags |= MAP_ENTRY_GROWS_UP;
1678 	if (cow & MAP_WRITECOUNT)
1679 		protoeflags |= MAP_ENTRY_WRITECNT;
1680 	if (cow & MAP_VN_EXEC)
1681 		protoeflags |= MAP_ENTRY_VN_EXEC;
1682 	if ((cow & MAP_CREATE_GUARD) != 0)
1683 		protoeflags |= MAP_ENTRY_GUARD;
1684 	if ((cow & MAP_CREATE_STACK_GAP_DN) != 0)
1685 		protoeflags |= MAP_ENTRY_STACK_GAP_DN;
1686 	if ((cow & MAP_CREATE_STACK_GAP_UP) != 0)
1687 		protoeflags |= MAP_ENTRY_STACK_GAP_UP;
1688 	if (cow & MAP_INHERIT_SHARE)
1689 		inheritance = VM_INHERIT_SHARE;
1690 	else
1691 		inheritance = VM_INHERIT_DEFAULT;
1692 	if ((cow & MAP_SPLIT_BOUNDARY_MASK) != 0) {
1693 		/* This magically ignores index 0, for usual page size. */
1694 		bidx = (cow & MAP_SPLIT_BOUNDARY_MASK) >>
1695 		    MAP_SPLIT_BOUNDARY_SHIFT;
1696 		if (bidx >= MAXPAGESIZES)
1697 			return (KERN_INVALID_ARGUMENT);
1698 		bdry = pagesizes[bidx] - 1;
1699 		if ((start & bdry) != 0 || (end & bdry) != 0)
1700 			return (KERN_INVALID_ARGUMENT);
1701 		protoeflags |= bidx << MAP_ENTRY_SPLIT_BOUNDARY_SHIFT;
1702 	}
1703 
1704 	cred = NULL;
1705 	if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0)
1706 		goto charged;
1707 	if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1708 	    ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1709 		if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1710 			return (KERN_RESOURCE_SHORTAGE);
1711 		KASSERT(object == NULL ||
1712 		    (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
1713 		    object->cred == NULL,
1714 		    ("overcommit: vm_map_insert o %p", object));
1715 		cred = curthread->td_ucred;
1716 	}
1717 
1718 charged:
1719 	/* Expand the kernel pmap, if necessary. */
1720 	if (map == kernel_map && end > kernel_vm_end)
1721 		pmap_growkernel(end);
1722 	if (object != NULL) {
1723 		/*
1724 		 * OBJ_ONEMAPPING must be cleared unless this mapping
1725 		 * is trivially proven to be the only mapping for any
1726 		 * of the object's pages.  (Object granularity
1727 		 * reference counting is insufficient to recognize
1728 		 * aliases with precision.)
1729 		 */
1730 		if ((object->flags & OBJ_ANON) != 0) {
1731 			VM_OBJECT_WLOCK(object);
1732 			if (object->ref_count > 1 || object->shadow_count != 0)
1733 				vm_object_clear_flag(object, OBJ_ONEMAPPING);
1734 			VM_OBJECT_WUNLOCK(object);
1735 		}
1736 	} else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) ==
1737 	    protoeflags &&
1738 	    (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP |
1739 	    MAP_VN_EXEC)) == 0 &&
1740 	    prev_entry->end == start && (prev_entry->cred == cred ||
1741 	    (prev_entry->object.vm_object != NULL &&
1742 	    prev_entry->object.vm_object->cred == cred)) &&
1743 	    vm_object_coalesce(prev_entry->object.vm_object,
1744 	    prev_entry->offset,
1745 	    (vm_size_t)(prev_entry->end - prev_entry->start),
1746 	    (vm_size_t)(end - prev_entry->end), cred != NULL &&
1747 	    (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1748 		/*
1749 		 * We were able to extend the object.  Determine if we
1750 		 * can extend the previous map entry to include the
1751 		 * new range as well.
1752 		 */
1753 		if (prev_entry->inheritance == inheritance &&
1754 		    prev_entry->protection == prot &&
1755 		    prev_entry->max_protection == max &&
1756 		    prev_entry->wired_count == 0) {
1757 			KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) ==
1758 			    0, ("prev_entry %p has incoherent wiring",
1759 			    prev_entry));
1760 			if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0)
1761 				map->size += end - prev_entry->end;
1762 			vm_map_entry_resize(map, prev_entry,
1763 			    end - prev_entry->end);
1764 			vm_map_try_merge_entries(map, prev_entry, next_entry);
1765 			return (KERN_SUCCESS);
1766 		}
1767 
1768 		/*
1769 		 * If we can extend the object but cannot extend the
1770 		 * map entry, we have to create a new map entry.  We
1771 		 * must bump the ref count on the extended object to
1772 		 * account for it.  object may be NULL.
1773 		 */
1774 		object = prev_entry->object.vm_object;
1775 		offset = prev_entry->offset +
1776 		    (prev_entry->end - prev_entry->start);
1777 		vm_object_reference(object);
1778 		if (cred != NULL && object != NULL && object->cred != NULL &&
1779 		    !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1780 			/* Object already accounts for this uid. */
1781 			cred = NULL;
1782 		}
1783 	}
1784 	if (cred != NULL)
1785 		crhold(cred);
1786 
1787 	/*
1788 	 * Create a new entry
1789 	 */
1790 	new_entry = vm_map_entry_create(map);
1791 	new_entry->start = start;
1792 	new_entry->end = end;
1793 	new_entry->cred = NULL;
1794 
1795 	new_entry->eflags = protoeflags;
1796 	new_entry->object.vm_object = object;
1797 	new_entry->offset = offset;
1798 
1799 	new_entry->inheritance = inheritance;
1800 	new_entry->protection = prot;
1801 	new_entry->max_protection = max;
1802 	new_entry->wired_count = 0;
1803 	new_entry->wiring_thread = NULL;
1804 	new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1805 	new_entry->next_read = start;
1806 
1807 	KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1808 	    ("overcommit: vm_map_insert leaks vm_map %p", new_entry));
1809 	new_entry->cred = cred;
1810 
1811 	/*
1812 	 * Insert the new entry into the list
1813 	 */
1814 	vm_map_entry_link(map, new_entry);
1815 	if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0)
1816 		map->size += new_entry->end - new_entry->start;
1817 
1818 	/*
1819 	 * Try to coalesce the new entry with both the previous and next
1820 	 * entries in the list.  Previously, we only attempted to coalesce
1821 	 * with the previous entry when object is NULL.  Here, we handle the
1822 	 * other cases, which are less common.
1823 	 */
1824 	vm_map_try_merge_entries(map, prev_entry, new_entry);
1825 	vm_map_try_merge_entries(map, new_entry, next_entry);
1826 
1827 	if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) {
1828 		vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset),
1829 		    end - start, cow & MAP_PREFAULT_PARTIAL);
1830 	}
1831 
1832 	return (KERN_SUCCESS);
1833 }
1834 
1835 /*
1836  *	vm_map_findspace:
1837  *
1838  *	Find the first fit (lowest VM address) for "length" free bytes
1839  *	beginning at address >= start in the given map.
1840  *
1841  *	In a vm_map_entry, "max_free" is the maximum amount of
1842  *	contiguous free space between an entry in its subtree and a
1843  *	neighbor of that entry.  This allows finding a free region in
1844  *	one path down the tree, so O(log n) amortized with splay
1845  *	trees.
1846  *
1847  *	The map must be locked, and leaves it so.
1848  *
1849  *	Returns: starting address if sufficient space,
1850  *		 vm_map_max(map)-length+1 if insufficient space.
1851  */
1852 vm_offset_t
1853 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length)
1854 {
1855 	vm_map_entry_t header, llist, rlist, root, y;
1856 	vm_size_t left_length, max_free_left, max_free_right;
1857 	vm_offset_t gap_end;
1858 
1859 	VM_MAP_ASSERT_LOCKED(map);
1860 
1861 	/*
1862 	 * Request must fit within min/max VM address and must avoid
1863 	 * address wrap.
1864 	 */
1865 	start = MAX(start, vm_map_min(map));
1866 	if (start >= vm_map_max(map) || length > vm_map_max(map) - start)
1867 		return (vm_map_max(map) - length + 1);
1868 
1869 	/* Empty tree means wide open address space. */
1870 	if (map->root == NULL)
1871 		return (start);
1872 
1873 	/*
1874 	 * After splay_split, if start is within an entry, push it to the start
1875 	 * of the following gap.  If rlist is at the end of the gap containing
1876 	 * start, save the end of that gap in gap_end to see if the gap is big
1877 	 * enough; otherwise set gap_end to start skip gap-checking and move
1878 	 * directly to a search of the right subtree.
1879 	 */
1880 	header = &map->header;
1881 	root = vm_map_splay_split(map, start, length, &llist, &rlist);
1882 	gap_end = rlist->start;
1883 	if (root != NULL) {
1884 		start = root->end;
1885 		if (root->right != rlist)
1886 			gap_end = start;
1887 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1888 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1889 	} else if (rlist != header) {
1890 		root = rlist;
1891 		rlist = root->left;
1892 		max_free_left = vm_map_splay_merge_pred(header, root, llist);
1893 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1894 	} else {
1895 		root = llist;
1896 		llist = root->right;
1897 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1898 		max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1899 	}
1900 	root->max_free = vm_size_max(max_free_left, max_free_right);
1901 	map->root = root;
1902 	VM_MAP_ASSERT_CONSISTENT(map);
1903 	if (length <= gap_end - start)
1904 		return (start);
1905 
1906 	/* With max_free, can immediately tell if no solution. */
1907 	if (root->right == header || length > root->right->max_free)
1908 		return (vm_map_max(map) - length + 1);
1909 
1910 	/*
1911 	 * Splay for the least large-enough gap in the right subtree.
1912 	 */
1913 	llist = rlist = header;
1914 	for (left_length = 0;;
1915 	    left_length = vm_map_entry_max_free_left(root, llist)) {
1916 		if (length <= left_length)
1917 			SPLAY_LEFT_STEP(root, y, llist, rlist,
1918 			    length <= vm_map_entry_max_free_left(y, llist));
1919 		else
1920 			SPLAY_RIGHT_STEP(root, y, llist, rlist,
1921 			    length > vm_map_entry_max_free_left(y, root));
1922 		if (root == NULL)
1923 			break;
1924 	}
1925 	root = llist;
1926 	llist = root->right;
1927 	max_free_left = vm_map_splay_merge_left(header, root, llist);
1928 	if (rlist == header) {
1929 		root->max_free = vm_size_max(max_free_left,
1930 		    vm_map_splay_merge_succ(header, root, rlist));
1931 	} else {
1932 		y = rlist;
1933 		rlist = y->left;
1934 		y->max_free = vm_size_max(
1935 		    vm_map_splay_merge_pred(root, y, root),
1936 		    vm_map_splay_merge_right(header, y, rlist));
1937 		root->max_free = vm_size_max(max_free_left, y->max_free);
1938 	}
1939 	map->root = root;
1940 	VM_MAP_ASSERT_CONSISTENT(map);
1941 	return (root->end);
1942 }
1943 
1944 int
1945 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1946     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1947     vm_prot_t max, int cow)
1948 {
1949 	vm_offset_t end;
1950 	int result;
1951 
1952 	end = start + length;
1953 	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1954 	    object == NULL,
1955 	    ("vm_map_fixed: non-NULL backing object for stack"));
1956 	vm_map_lock(map);
1957 	VM_MAP_RANGE_CHECK(map, start, end);
1958 	if ((cow & MAP_CHECK_EXCL) == 0) {
1959 		result = vm_map_delete(map, start, end);
1960 		if (result != KERN_SUCCESS)
1961 			goto out;
1962 	}
1963 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1964 		result = vm_map_stack_locked(map, start, length, sgrowsiz,
1965 		    prot, max, cow);
1966 	} else {
1967 		result = vm_map_insert(map, object, offset, start, end,
1968 		    prot, max, cow);
1969 	}
1970 out:
1971 	vm_map_unlock(map);
1972 	return (result);
1973 }
1974 
1975 static const int aslr_pages_rnd_64[2] = {0x1000, 0x10};
1976 static const int aslr_pages_rnd_32[2] = {0x100, 0x4};
1977 
1978 static int cluster_anon = 1;
1979 SYSCTL_INT(_vm, OID_AUTO, cluster_anon, CTLFLAG_RW,
1980     &cluster_anon, 0,
1981     "Cluster anonymous mappings: 0 = no, 1 = yes if no hint, 2 = always");
1982 
1983 static bool
1984 clustering_anon_allowed(vm_offset_t addr)
1985 {
1986 
1987 	switch (cluster_anon) {
1988 	case 0:
1989 		return (false);
1990 	case 1:
1991 		return (addr == 0);
1992 	case 2:
1993 	default:
1994 		return (true);
1995 	}
1996 }
1997 
1998 static long aslr_restarts;
1999 SYSCTL_LONG(_vm, OID_AUTO, aslr_restarts, CTLFLAG_RD,
2000     &aslr_restarts, 0,
2001     "Number of aslr failures");
2002 
2003 /*
2004  * Searches for the specified amount of free space in the given map with the
2005  * specified alignment.  Performs an address-ordered, first-fit search from
2006  * the given address "*addr", with an optional upper bound "max_addr".  If the
2007  * parameter "alignment" is zero, then the alignment is computed from the
2008  * given (object, offset) pair so as to enable the greatest possible use of
2009  * superpage mappings.  Returns KERN_SUCCESS and the address of the free space
2010  * in "*addr" if successful.  Otherwise, returns KERN_NO_SPACE.
2011  *
2012  * The map must be locked.  Initially, there must be at least "length" bytes
2013  * of free space at the given address.
2014  */
2015 static int
2016 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2017     vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr,
2018     vm_offset_t alignment)
2019 {
2020 	vm_offset_t aligned_addr, free_addr;
2021 
2022 	VM_MAP_ASSERT_LOCKED(map);
2023 	free_addr = *addr;
2024 	KASSERT(free_addr == vm_map_findspace(map, free_addr, length),
2025 	    ("caller failed to provide space %#jx at address %p",
2026 	     (uintmax_t)length, (void *)free_addr));
2027 	for (;;) {
2028 		/*
2029 		 * At the start of every iteration, the free space at address
2030 		 * "*addr" is at least "length" bytes.
2031 		 */
2032 		if (alignment == 0)
2033 			pmap_align_superpage(object, offset, addr, length);
2034 		else
2035 			*addr = roundup2(*addr, alignment);
2036 		aligned_addr = *addr;
2037 		if (aligned_addr == free_addr) {
2038 			/*
2039 			 * Alignment did not change "*addr", so "*addr" must
2040 			 * still provide sufficient free space.
2041 			 */
2042 			return (KERN_SUCCESS);
2043 		}
2044 
2045 		/*
2046 		 * Test for address wrap on "*addr".  A wrapped "*addr" could
2047 		 * be a valid address, in which case vm_map_findspace() cannot
2048 		 * be relied upon to fail.
2049 		 */
2050 		if (aligned_addr < free_addr)
2051 			return (KERN_NO_SPACE);
2052 		*addr = vm_map_findspace(map, aligned_addr, length);
2053 		if (*addr + length > vm_map_max(map) ||
2054 		    (max_addr != 0 && *addr + length > max_addr))
2055 			return (KERN_NO_SPACE);
2056 		free_addr = *addr;
2057 		if (free_addr == aligned_addr) {
2058 			/*
2059 			 * If a successful call to vm_map_findspace() did not
2060 			 * change "*addr", then "*addr" must still be aligned
2061 			 * and provide sufficient free space.
2062 			 */
2063 			return (KERN_SUCCESS);
2064 		}
2065 	}
2066 }
2067 
2068 int
2069 vm_map_find_aligned(vm_map_t map, vm_offset_t *addr, vm_size_t length,
2070     vm_offset_t max_addr, vm_offset_t alignment)
2071 {
2072 	/* XXXKIB ASLR eh ? */
2073 	*addr = vm_map_findspace(map, *addr, length);
2074 	if (*addr + length > vm_map_max(map) ||
2075 	    (max_addr != 0 && *addr + length > max_addr))
2076 		return (KERN_NO_SPACE);
2077 	return (vm_map_alignspace(map, NULL, 0, addr, length, max_addr,
2078 	    alignment));
2079 }
2080 
2081 /*
2082  *	vm_map_find finds an unallocated region in the target address
2083  *	map with the given length.  The search is defined to be
2084  *	first-fit from the specified address; the region found is
2085  *	returned in the same parameter.
2086  *
2087  *	If object is non-NULL, ref count must be bumped by caller
2088  *	prior to making call to account for the new entry.
2089  */
2090 int
2091 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2092 	    vm_offset_t *addr,	/* IN/OUT */
2093 	    vm_size_t length, vm_offset_t max_addr, int find_space,
2094 	    vm_prot_t prot, vm_prot_t max, int cow)
2095 {
2096 	vm_offset_t alignment, curr_min_addr, min_addr;
2097 	int gap, pidx, rv, try;
2098 	bool cluster, en_aslr, update_anon;
2099 
2100 	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
2101 	    object == NULL,
2102 	    ("vm_map_find: non-NULL backing object for stack"));
2103 	MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE &&
2104 	    (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0));
2105 	if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
2106 	    (object->flags & OBJ_COLORED) == 0))
2107 		find_space = VMFS_ANY_SPACE;
2108 	if (find_space >> 8 != 0) {
2109 		KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
2110 		alignment = (vm_offset_t)1 << (find_space >> 8);
2111 	} else
2112 		alignment = 0;
2113 	en_aslr = (map->flags & MAP_ASLR) != 0;
2114 	update_anon = cluster = clustering_anon_allowed(*addr) &&
2115 	    (map->flags & MAP_IS_SUB_MAP) == 0 && max_addr == 0 &&
2116 	    find_space != VMFS_NO_SPACE && object == NULL &&
2117 	    (cow & (MAP_INHERIT_SHARE | MAP_STACK_GROWS_UP |
2118 	    MAP_STACK_GROWS_DOWN)) == 0 && prot != PROT_NONE;
2119 	curr_min_addr = min_addr = *addr;
2120 	if (en_aslr && min_addr == 0 && !cluster &&
2121 	    find_space != VMFS_NO_SPACE &&
2122 	    (map->flags & MAP_ASLR_IGNSTART) != 0)
2123 		curr_min_addr = min_addr = vm_map_min(map);
2124 	try = 0;
2125 	vm_map_lock(map);
2126 	if (cluster) {
2127 		curr_min_addr = map->anon_loc;
2128 		if (curr_min_addr == 0)
2129 			cluster = false;
2130 	}
2131 	if (find_space != VMFS_NO_SPACE) {
2132 		KASSERT(find_space == VMFS_ANY_SPACE ||
2133 		    find_space == VMFS_OPTIMAL_SPACE ||
2134 		    find_space == VMFS_SUPER_SPACE ||
2135 		    alignment != 0, ("unexpected VMFS flag"));
2136 again:
2137 		/*
2138 		 * When creating an anonymous mapping, try clustering
2139 		 * with an existing anonymous mapping first.
2140 		 *
2141 		 * We make up to two attempts to find address space
2142 		 * for a given find_space value. The first attempt may
2143 		 * apply randomization or may cluster with an existing
2144 		 * anonymous mapping. If this first attempt fails,
2145 		 * perform a first-fit search of the available address
2146 		 * space.
2147 		 *
2148 		 * If all tries failed, and find_space is
2149 		 * VMFS_OPTIMAL_SPACE, fallback to VMFS_ANY_SPACE.
2150 		 * Again enable clustering and randomization.
2151 		 */
2152 		try++;
2153 		MPASS(try <= 2);
2154 
2155 		if (try == 2) {
2156 			/*
2157 			 * Second try: we failed either to find a
2158 			 * suitable region for randomizing the
2159 			 * allocation, or to cluster with an existing
2160 			 * mapping.  Retry with free run.
2161 			 */
2162 			curr_min_addr = (map->flags & MAP_ASLR_IGNSTART) != 0 ?
2163 			    vm_map_min(map) : min_addr;
2164 			atomic_add_long(&aslr_restarts, 1);
2165 		}
2166 
2167 		if (try == 1 && en_aslr && !cluster) {
2168 			/*
2169 			 * Find space for allocation, including
2170 			 * gap needed for later randomization.
2171 			 */
2172 			pidx = MAXPAGESIZES > 1 && pagesizes[1] != 0 &&
2173 			    (find_space == VMFS_SUPER_SPACE || find_space ==
2174 			    VMFS_OPTIMAL_SPACE) ? 1 : 0;
2175 			gap = vm_map_max(map) > MAP_32BIT_MAX_ADDR &&
2176 			    (max_addr == 0 || max_addr > MAP_32BIT_MAX_ADDR) ?
2177 			    aslr_pages_rnd_64[pidx] : aslr_pages_rnd_32[pidx];
2178 			*addr = vm_map_findspace(map, curr_min_addr,
2179 			    length + gap * pagesizes[pidx]);
2180 			if (*addr + length + gap * pagesizes[pidx] >
2181 			    vm_map_max(map))
2182 				goto again;
2183 			/* And randomize the start address. */
2184 			*addr += (arc4random() % gap) * pagesizes[pidx];
2185 			if (max_addr != 0 && *addr + length > max_addr)
2186 				goto again;
2187 		} else {
2188 			*addr = vm_map_findspace(map, curr_min_addr, length);
2189 			if (*addr + length > vm_map_max(map) ||
2190 			    (max_addr != 0 && *addr + length > max_addr)) {
2191 				if (cluster) {
2192 					cluster = false;
2193 					MPASS(try == 1);
2194 					goto again;
2195 				}
2196 				rv = KERN_NO_SPACE;
2197 				goto done;
2198 			}
2199 		}
2200 
2201 		if (find_space != VMFS_ANY_SPACE &&
2202 		    (rv = vm_map_alignspace(map, object, offset, addr, length,
2203 		    max_addr, alignment)) != KERN_SUCCESS) {
2204 			if (find_space == VMFS_OPTIMAL_SPACE) {
2205 				find_space = VMFS_ANY_SPACE;
2206 				curr_min_addr = min_addr;
2207 				cluster = update_anon;
2208 				try = 0;
2209 				goto again;
2210 			}
2211 			goto done;
2212 		}
2213 	} else if ((cow & MAP_REMAP) != 0) {
2214 		if (!vm_map_range_valid(map, *addr, *addr + length)) {
2215 			rv = KERN_INVALID_ADDRESS;
2216 			goto done;
2217 		}
2218 		rv = vm_map_delete(map, *addr, *addr + length);
2219 		if (rv != KERN_SUCCESS)
2220 			goto done;
2221 	}
2222 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
2223 		rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot,
2224 		    max, cow);
2225 	} else {
2226 		rv = vm_map_insert(map, object, offset, *addr, *addr + length,
2227 		    prot, max, cow);
2228 	}
2229 	if (rv == KERN_SUCCESS && update_anon)
2230 		map->anon_loc = *addr + length;
2231 done:
2232 	vm_map_unlock(map);
2233 	return (rv);
2234 }
2235 
2236 /*
2237  *	vm_map_find_min() is a variant of vm_map_find() that takes an
2238  *	additional parameter (min_addr) and treats the given address
2239  *	(*addr) differently.  Specifically, it treats *addr as a hint
2240  *	and not as the minimum address where the mapping is created.
2241  *
2242  *	This function works in two phases.  First, it tries to
2243  *	allocate above the hint.  If that fails and the hint is
2244  *	greater than min_addr, it performs a second pass, replacing
2245  *	the hint with min_addr as the minimum address for the
2246  *	allocation.
2247  */
2248 int
2249 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2250     vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr,
2251     vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max,
2252     int cow)
2253 {
2254 	vm_offset_t hint;
2255 	int rv;
2256 
2257 	hint = *addr;
2258 	for (;;) {
2259 		rv = vm_map_find(map, object, offset, addr, length, max_addr,
2260 		    find_space, prot, max, cow);
2261 		if (rv == KERN_SUCCESS || min_addr >= hint)
2262 			return (rv);
2263 		*addr = hint = min_addr;
2264 	}
2265 }
2266 
2267 /*
2268  * A map entry with any of the following flags set must not be merged with
2269  * another entry.
2270  */
2271 #define	MAP_ENTRY_NOMERGE_MASK	(MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | \
2272 	    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP | MAP_ENTRY_VN_EXEC)
2273 
2274 static bool
2275 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry)
2276 {
2277 
2278 	KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 ||
2279 	    (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0,
2280 	    ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable",
2281 	    prev, entry));
2282 	return (prev->end == entry->start &&
2283 	    prev->object.vm_object == entry->object.vm_object &&
2284 	    (prev->object.vm_object == NULL ||
2285 	    prev->offset + (prev->end - prev->start) == entry->offset) &&
2286 	    prev->eflags == entry->eflags &&
2287 	    prev->protection == entry->protection &&
2288 	    prev->max_protection == entry->max_protection &&
2289 	    prev->inheritance == entry->inheritance &&
2290 	    prev->wired_count == entry->wired_count &&
2291 	    prev->cred == entry->cred);
2292 }
2293 
2294 static void
2295 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry)
2296 {
2297 
2298 	/*
2299 	 * If the backing object is a vnode object, vm_object_deallocate()
2300 	 * calls vrele().  However, vrele() does not lock the vnode because
2301 	 * the vnode has additional references.  Thus, the map lock can be
2302 	 * kept without causing a lock-order reversal with the vnode lock.
2303 	 *
2304 	 * Since we count the number of virtual page mappings in
2305 	 * object->un_pager.vnp.writemappings, the writemappings value
2306 	 * should not be adjusted when the entry is disposed of.
2307 	 */
2308 	if (entry->object.vm_object != NULL)
2309 		vm_object_deallocate(entry->object.vm_object);
2310 	if (entry->cred != NULL)
2311 		crfree(entry->cred);
2312 	vm_map_entry_dispose(map, entry);
2313 }
2314 
2315 /*
2316  *	vm_map_try_merge_entries:
2317  *
2318  *	Compare the given map entry to its predecessor, and merge its precessor
2319  *	into it if possible.  The entry remains valid, and may be extended.
2320  *	The predecessor may be deleted.
2321  *
2322  *	The map must be locked.
2323  */
2324 void
2325 vm_map_try_merge_entries(vm_map_t map, vm_map_entry_t prev_entry,
2326     vm_map_entry_t entry)
2327 {
2328 
2329 	VM_MAP_ASSERT_LOCKED(map);
2330 	if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 &&
2331 	    vm_map_mergeable_neighbors(prev_entry, entry)) {
2332 		vm_map_entry_unlink(map, prev_entry, UNLINK_MERGE_NEXT);
2333 		vm_map_merged_neighbor_dispose(map, prev_entry);
2334 	}
2335 }
2336 
2337 /*
2338  *	vm_map_entry_back:
2339  *
2340  *	Allocate an object to back a map entry.
2341  */
2342 static inline void
2343 vm_map_entry_back(vm_map_entry_t entry)
2344 {
2345 	vm_object_t object;
2346 
2347 	KASSERT(entry->object.vm_object == NULL,
2348 	    ("map entry %p has backing object", entry));
2349 	KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
2350 	    ("map entry %p is a submap", entry));
2351 	object = vm_object_allocate_anon(atop(entry->end - entry->start), NULL,
2352 	    entry->cred, entry->end - entry->start);
2353 	entry->object.vm_object = object;
2354 	entry->offset = 0;
2355 	entry->cred = NULL;
2356 }
2357 
2358 /*
2359  *	vm_map_entry_charge_object
2360  *
2361  *	If there is no object backing this entry, create one.  Otherwise, if
2362  *	the entry has cred, give it to the backing object.
2363  */
2364 static inline void
2365 vm_map_entry_charge_object(vm_map_t map, vm_map_entry_t entry)
2366 {
2367 
2368 	VM_MAP_ASSERT_LOCKED(map);
2369 	KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
2370 	    ("map entry %p is a submap", entry));
2371 	if (entry->object.vm_object == NULL && !map->system_map &&
2372 	    (entry->eflags & MAP_ENTRY_GUARD) == 0)
2373 		vm_map_entry_back(entry);
2374 	else if (entry->object.vm_object != NULL &&
2375 	    ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
2376 	    entry->cred != NULL) {
2377 		VM_OBJECT_WLOCK(entry->object.vm_object);
2378 		KASSERT(entry->object.vm_object->cred == NULL,
2379 		    ("OVERCOMMIT: %s: both cred e %p", __func__, entry));
2380 		entry->object.vm_object->cred = entry->cred;
2381 		entry->object.vm_object->charge = entry->end - entry->start;
2382 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
2383 		entry->cred = NULL;
2384 	}
2385 }
2386 
2387 /*
2388  *	vm_map_entry_clone
2389  *
2390  *	Create a duplicate map entry for clipping.
2391  */
2392 static vm_map_entry_t
2393 vm_map_entry_clone(vm_map_t map, vm_map_entry_t entry)
2394 {
2395 	vm_map_entry_t new_entry;
2396 
2397 	VM_MAP_ASSERT_LOCKED(map);
2398 
2399 	/*
2400 	 * Create a backing object now, if none exists, so that more individual
2401 	 * objects won't be created after the map entry is split.
2402 	 */
2403 	vm_map_entry_charge_object(map, entry);
2404 
2405 	/* Clone the entry. */
2406 	new_entry = vm_map_entry_create(map);
2407 	*new_entry = *entry;
2408 	if (new_entry->cred != NULL)
2409 		crhold(entry->cred);
2410 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2411 		vm_object_reference(new_entry->object.vm_object);
2412 		vm_map_entry_set_vnode_text(new_entry, true);
2413 		/*
2414 		 * The object->un_pager.vnp.writemappings for the object of
2415 		 * MAP_ENTRY_WRITECNT type entry shall be kept as is here.  The
2416 		 * virtual pages are re-distributed among the clipped entries,
2417 		 * so the sum is left the same.
2418 		 */
2419 	}
2420 	return (new_entry);
2421 }
2422 
2423 /*
2424  *	vm_map_clip_start:	[ internal use only ]
2425  *
2426  *	Asserts that the given entry begins at or after
2427  *	the specified address; if necessary,
2428  *	it splits the entry into two.
2429  */
2430 static int
2431 vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t startaddr)
2432 {
2433 	vm_map_entry_t new_entry;
2434 	int bdry_idx;
2435 
2436 	if (!map->system_map)
2437 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2438 		    "%s: map %p entry %p start 0x%jx", __func__, map, entry,
2439 		    (uintmax_t)startaddr);
2440 
2441 	if (startaddr <= entry->start)
2442 		return (KERN_SUCCESS);
2443 
2444 	VM_MAP_ASSERT_LOCKED(map);
2445 	KASSERT(entry->end > startaddr && entry->start < startaddr,
2446 	    ("%s: invalid clip of entry %p", __func__, entry));
2447 
2448 	bdry_idx = (entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) >>
2449 	    MAP_ENTRY_SPLIT_BOUNDARY_SHIFT;
2450 	if (bdry_idx != 0) {
2451 		if ((startaddr & (pagesizes[bdry_idx] - 1)) != 0)
2452 			return (KERN_INVALID_ARGUMENT);
2453 	}
2454 
2455 	new_entry = vm_map_entry_clone(map, entry);
2456 
2457 	/*
2458 	 * Split off the front portion.  Insert the new entry BEFORE this one,
2459 	 * so that this entry has the specified starting address.
2460 	 */
2461 	new_entry->end = startaddr;
2462 	vm_map_entry_link(map, new_entry);
2463 	return (KERN_SUCCESS);
2464 }
2465 
2466 /*
2467  *	vm_map_lookup_clip_start:
2468  *
2469  *	Find the entry at or just after 'start', and clip it if 'start' is in
2470  *	the interior of the entry.  Return entry after 'start', and in
2471  *	prev_entry set the entry before 'start'.
2472  */
2473 static int
2474 vm_map_lookup_clip_start(vm_map_t map, vm_offset_t start,
2475     vm_map_entry_t *res_entry, vm_map_entry_t *prev_entry)
2476 {
2477 	vm_map_entry_t entry;
2478 	int rv;
2479 
2480 	if (!map->system_map)
2481 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2482 		    "%s: map %p start 0x%jx prev %p", __func__, map,
2483 		    (uintmax_t)start, prev_entry);
2484 
2485 	if (vm_map_lookup_entry(map, start, prev_entry)) {
2486 		entry = *prev_entry;
2487 		rv = vm_map_clip_start(map, entry, start);
2488 		if (rv != KERN_SUCCESS)
2489 			return (rv);
2490 		*prev_entry = vm_map_entry_pred(entry);
2491 	} else
2492 		entry = vm_map_entry_succ(*prev_entry);
2493 	*res_entry = entry;
2494 	return (KERN_SUCCESS);
2495 }
2496 
2497 /*
2498  *	vm_map_clip_end:	[ internal use only ]
2499  *
2500  *	Asserts that the given entry ends at or before
2501  *	the specified address; if necessary,
2502  *	it splits the entry into two.
2503  */
2504 static int
2505 vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t endaddr)
2506 {
2507 	vm_map_entry_t new_entry;
2508 	int bdry_idx;
2509 
2510 	if (!map->system_map)
2511 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2512 		    "%s: map %p entry %p end 0x%jx", __func__, map, entry,
2513 		    (uintmax_t)endaddr);
2514 
2515 	if (endaddr >= entry->end)
2516 		return (KERN_SUCCESS);
2517 
2518 	VM_MAP_ASSERT_LOCKED(map);
2519 	KASSERT(entry->start < endaddr && entry->end > endaddr,
2520 	    ("%s: invalid clip of entry %p", __func__, entry));
2521 
2522 	bdry_idx = (entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) >>
2523 	    MAP_ENTRY_SPLIT_BOUNDARY_SHIFT;
2524 	if (bdry_idx != 0) {
2525 		if ((endaddr & (pagesizes[bdry_idx] - 1)) != 0)
2526 			return (KERN_INVALID_ARGUMENT);
2527 	}
2528 
2529 	new_entry = vm_map_entry_clone(map, entry);
2530 
2531 	/*
2532 	 * Split off the back portion.  Insert the new entry AFTER this one,
2533 	 * so that this entry has the specified ending address.
2534 	 */
2535 	new_entry->start = endaddr;
2536 	vm_map_entry_link(map, new_entry);
2537 
2538 	return (KERN_SUCCESS);
2539 }
2540 
2541 /*
2542  *	vm_map_submap:		[ kernel use only ]
2543  *
2544  *	Mark the given range as handled by a subordinate map.
2545  *
2546  *	This range must have been created with vm_map_find,
2547  *	and no other operations may have been performed on this
2548  *	range prior to calling vm_map_submap.
2549  *
2550  *	Only a limited number of operations can be performed
2551  *	within this rage after calling vm_map_submap:
2552  *		vm_fault
2553  *	[Don't try vm_map_copy!]
2554  *
2555  *	To remove a submapping, one must first remove the
2556  *	range from the superior map, and then destroy the
2557  *	submap (if desired).  [Better yet, don't try it.]
2558  */
2559 int
2560 vm_map_submap(
2561 	vm_map_t map,
2562 	vm_offset_t start,
2563 	vm_offset_t end,
2564 	vm_map_t submap)
2565 {
2566 	vm_map_entry_t entry;
2567 	int result;
2568 
2569 	result = KERN_INVALID_ARGUMENT;
2570 
2571 	vm_map_lock(submap);
2572 	submap->flags |= MAP_IS_SUB_MAP;
2573 	vm_map_unlock(submap);
2574 
2575 	vm_map_lock(map);
2576 	VM_MAP_RANGE_CHECK(map, start, end);
2577 	if (vm_map_lookup_entry(map, start, &entry) && entry->end >= end &&
2578 	    (entry->eflags & MAP_ENTRY_COW) == 0 &&
2579 	    entry->object.vm_object == NULL) {
2580 		result = vm_map_clip_start(map, entry, start);
2581 		if (result != KERN_SUCCESS)
2582 			goto unlock;
2583 		result = vm_map_clip_end(map, entry, end);
2584 		if (result != KERN_SUCCESS)
2585 			goto unlock;
2586 		entry->object.sub_map = submap;
2587 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
2588 		result = KERN_SUCCESS;
2589 	}
2590 unlock:
2591 	vm_map_unlock(map);
2592 
2593 	if (result != KERN_SUCCESS) {
2594 		vm_map_lock(submap);
2595 		submap->flags &= ~MAP_IS_SUB_MAP;
2596 		vm_map_unlock(submap);
2597 	}
2598 	return (result);
2599 }
2600 
2601 /*
2602  * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
2603  */
2604 #define	MAX_INIT_PT	96
2605 
2606 /*
2607  *	vm_map_pmap_enter:
2608  *
2609  *	Preload the specified map's pmap with mappings to the specified
2610  *	object's memory-resident pages.  No further physical pages are
2611  *	allocated, and no further virtual pages are retrieved from secondary
2612  *	storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
2613  *	limited number of page mappings are created at the low-end of the
2614  *	specified address range.  (For this purpose, a superpage mapping
2615  *	counts as one page mapping.)  Otherwise, all resident pages within
2616  *	the specified address range are mapped.
2617  */
2618 static void
2619 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
2620     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
2621 {
2622 	vm_offset_t start;
2623 	vm_page_t p, p_start;
2624 	vm_pindex_t mask, psize, threshold, tmpidx;
2625 
2626 	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
2627 		return;
2628 	if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2629 		VM_OBJECT_WLOCK(object);
2630 		if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2631 			pmap_object_init_pt(map->pmap, addr, object, pindex,
2632 			    size);
2633 			VM_OBJECT_WUNLOCK(object);
2634 			return;
2635 		}
2636 		VM_OBJECT_LOCK_DOWNGRADE(object);
2637 	} else
2638 		VM_OBJECT_RLOCK(object);
2639 
2640 	psize = atop(size);
2641 	if (psize + pindex > object->size) {
2642 		if (pindex >= object->size) {
2643 			VM_OBJECT_RUNLOCK(object);
2644 			return;
2645 		}
2646 		psize = object->size - pindex;
2647 	}
2648 
2649 	start = 0;
2650 	p_start = NULL;
2651 	threshold = MAX_INIT_PT;
2652 
2653 	p = vm_page_find_least(object, pindex);
2654 	/*
2655 	 * Assert: the variable p is either (1) the page with the
2656 	 * least pindex greater than or equal to the parameter pindex
2657 	 * or (2) NULL.
2658 	 */
2659 	for (;
2660 	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
2661 	     p = TAILQ_NEXT(p, listq)) {
2662 		/*
2663 		 * don't allow an madvise to blow away our really
2664 		 * free pages allocating pv entries.
2665 		 */
2666 		if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
2667 		    vm_page_count_severe()) ||
2668 		    ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
2669 		    tmpidx >= threshold)) {
2670 			psize = tmpidx;
2671 			break;
2672 		}
2673 		if (vm_page_all_valid(p)) {
2674 			if (p_start == NULL) {
2675 				start = addr + ptoa(tmpidx);
2676 				p_start = p;
2677 			}
2678 			/* Jump ahead if a superpage mapping is possible. */
2679 			if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
2680 			    (pagesizes[p->psind] - 1)) == 0) {
2681 				mask = atop(pagesizes[p->psind]) - 1;
2682 				if (tmpidx + mask < psize &&
2683 				    vm_page_ps_test(p, PS_ALL_VALID, NULL)) {
2684 					p += mask;
2685 					threshold += mask;
2686 				}
2687 			}
2688 		} else if (p_start != NULL) {
2689 			pmap_enter_object(map->pmap, start, addr +
2690 			    ptoa(tmpidx), p_start, prot);
2691 			p_start = NULL;
2692 		}
2693 	}
2694 	if (p_start != NULL)
2695 		pmap_enter_object(map->pmap, start, addr + ptoa(psize),
2696 		    p_start, prot);
2697 	VM_OBJECT_RUNLOCK(object);
2698 }
2699 
2700 /*
2701  *	vm_map_protect:
2702  *
2703  *	Sets the protection and/or the maximum protection of the
2704  *	specified address region in the target map.
2705  */
2706 int
2707 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
2708     vm_prot_t new_prot, vm_prot_t new_maxprot, int flags)
2709 {
2710 	vm_map_entry_t entry, first_entry, in_tran, prev_entry;
2711 	vm_object_t obj;
2712 	struct ucred *cred;
2713 	vm_prot_t old_prot;
2714 	int rv;
2715 
2716 	if (start == end)
2717 		return (KERN_SUCCESS);
2718 
2719 	if ((flags & (VM_MAP_PROTECT_SET_PROT | VM_MAP_PROTECT_SET_MAXPROT)) ==
2720 	    (VM_MAP_PROTECT_SET_PROT | VM_MAP_PROTECT_SET_MAXPROT) &&
2721 	    (new_prot & new_maxprot) != new_prot)
2722 		return (KERN_OUT_OF_BOUNDS);
2723 
2724 again:
2725 	in_tran = NULL;
2726 	vm_map_lock(map);
2727 
2728 	if ((map->flags & MAP_WXORX) != 0 &&
2729 	    (flags & VM_MAP_PROTECT_SET_PROT) != 0 &&
2730 	    (new_prot & (VM_PROT_WRITE | VM_PROT_EXECUTE)) == (VM_PROT_WRITE |
2731 	    VM_PROT_EXECUTE)) {
2732 		vm_map_unlock(map);
2733 		return (KERN_PROTECTION_FAILURE);
2734 	}
2735 
2736 	/*
2737 	 * Ensure that we are not concurrently wiring pages.  vm_map_wire() may
2738 	 * need to fault pages into the map and will drop the map lock while
2739 	 * doing so, and the VM object may end up in an inconsistent state if we
2740 	 * update the protection on the map entry in between faults.
2741 	 */
2742 	vm_map_wait_busy(map);
2743 
2744 	VM_MAP_RANGE_CHECK(map, start, end);
2745 
2746 	if (!vm_map_lookup_entry(map, start, &first_entry))
2747 		first_entry = vm_map_entry_succ(first_entry);
2748 
2749 	/*
2750 	 * Make a first pass to check for protection violations.
2751 	 */
2752 	for (entry = first_entry; entry->start < end;
2753 	    entry = vm_map_entry_succ(entry)) {
2754 		if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
2755 			continue;
2756 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) {
2757 			vm_map_unlock(map);
2758 			return (KERN_INVALID_ARGUMENT);
2759 		}
2760 		if ((flags & VM_MAP_PROTECT_SET_PROT) == 0)
2761 			new_prot = entry->protection;
2762 		if ((flags & VM_MAP_PROTECT_SET_MAXPROT) == 0)
2763 			new_maxprot = entry->max_protection;
2764 		if ((new_prot & entry->max_protection) != new_prot ||
2765 		    (new_maxprot & entry->max_protection) != new_maxprot) {
2766 			vm_map_unlock(map);
2767 			return (KERN_PROTECTION_FAILURE);
2768 		}
2769 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0)
2770 			in_tran = entry;
2771 	}
2772 
2773 	/*
2774 	 * Postpone the operation until all in-transition map entries have
2775 	 * stabilized.  An in-transition entry might already have its pages
2776 	 * wired and wired_count incremented, but not yet have its
2777 	 * MAP_ENTRY_USER_WIRED flag set.  In which case, we would fail to call
2778 	 * vm_fault_copy_entry() in the final loop below.
2779 	 */
2780 	if (in_tran != NULL) {
2781 		in_tran->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2782 		vm_map_unlock_and_wait(map, 0);
2783 		goto again;
2784 	}
2785 
2786 	/*
2787 	 * Before changing the protections, try to reserve swap space for any
2788 	 * private (i.e., copy-on-write) mappings that are transitioning from
2789 	 * read-only to read/write access.  If a reservation fails, break out
2790 	 * of this loop early and let the next loop simplify the entries, since
2791 	 * some may now be mergeable.
2792 	 */
2793 	rv = vm_map_clip_start(map, first_entry, start);
2794 	if (rv != KERN_SUCCESS) {
2795 		vm_map_unlock(map);
2796 		return (rv);
2797 	}
2798 	for (entry = first_entry; entry->start < end;
2799 	    entry = vm_map_entry_succ(entry)) {
2800 		rv = vm_map_clip_end(map, entry, end);
2801 		if (rv != KERN_SUCCESS) {
2802 			vm_map_unlock(map);
2803 			return (rv);
2804 		}
2805 
2806 		if ((flags & VM_MAP_PROTECT_SET_PROT) == 0 ||
2807 		    ((new_prot & ~entry->protection) & VM_PROT_WRITE) == 0 ||
2808 		    ENTRY_CHARGED(entry) ||
2809 		    (entry->eflags & MAP_ENTRY_GUARD) != 0)
2810 			continue;
2811 
2812 		cred = curthread->td_ucred;
2813 		obj = entry->object.vm_object;
2814 
2815 		if (obj == NULL ||
2816 		    (entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0) {
2817 			if (!swap_reserve(entry->end - entry->start)) {
2818 				rv = KERN_RESOURCE_SHORTAGE;
2819 				end = entry->end;
2820 				break;
2821 			}
2822 			crhold(cred);
2823 			entry->cred = cred;
2824 			continue;
2825 		}
2826 
2827 		VM_OBJECT_WLOCK(obj);
2828 		if ((obj->flags & OBJ_SWAP) == 0) {
2829 			VM_OBJECT_WUNLOCK(obj);
2830 			continue;
2831 		}
2832 
2833 		/*
2834 		 * Charge for the whole object allocation now, since
2835 		 * we cannot distinguish between non-charged and
2836 		 * charged clipped mapping of the same object later.
2837 		 */
2838 		KASSERT(obj->charge == 0,
2839 		    ("vm_map_protect: object %p overcharged (entry %p)",
2840 		    obj, entry));
2841 		if (!swap_reserve(ptoa(obj->size))) {
2842 			VM_OBJECT_WUNLOCK(obj);
2843 			rv = KERN_RESOURCE_SHORTAGE;
2844 			end = entry->end;
2845 			break;
2846 		}
2847 
2848 		crhold(cred);
2849 		obj->cred = cred;
2850 		obj->charge = ptoa(obj->size);
2851 		VM_OBJECT_WUNLOCK(obj);
2852 	}
2853 
2854 	/*
2855 	 * If enough swap space was available, go back and fix up protections.
2856 	 * Otherwise, just simplify entries, since some may have been modified.
2857 	 * [Note that clipping is not necessary the second time.]
2858 	 */
2859 	for (prev_entry = vm_map_entry_pred(first_entry), entry = first_entry;
2860 	    entry->start < end;
2861 	    vm_map_try_merge_entries(map, prev_entry, entry),
2862 	    prev_entry = entry, entry = vm_map_entry_succ(entry)) {
2863 		if (rv != KERN_SUCCESS ||
2864 		    (entry->eflags & MAP_ENTRY_GUARD) != 0)
2865 			continue;
2866 
2867 		old_prot = entry->protection;
2868 
2869 		if ((flags & VM_MAP_PROTECT_SET_MAXPROT) != 0) {
2870 			entry->max_protection = new_maxprot;
2871 			entry->protection = new_maxprot & old_prot;
2872 		}
2873 		if ((flags & VM_MAP_PROTECT_SET_PROT) != 0)
2874 			entry->protection = new_prot;
2875 
2876 		/*
2877 		 * For user wired map entries, the normal lazy evaluation of
2878 		 * write access upgrades through soft page faults is
2879 		 * undesirable.  Instead, immediately copy any pages that are
2880 		 * copy-on-write and enable write access in the physical map.
2881 		 */
2882 		if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2883 		    (entry->protection & VM_PROT_WRITE) != 0 &&
2884 		    (old_prot & VM_PROT_WRITE) == 0)
2885 			vm_fault_copy_entry(map, map, entry, entry, NULL);
2886 
2887 		/*
2888 		 * When restricting access, update the physical map.  Worry
2889 		 * about copy-on-write here.
2890 		 */
2891 		if ((old_prot & ~entry->protection) != 0) {
2892 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2893 							VM_PROT_ALL)
2894 			pmap_protect(map->pmap, entry->start,
2895 			    entry->end,
2896 			    entry->protection & MASK(entry));
2897 #undef	MASK
2898 		}
2899 	}
2900 	vm_map_try_merge_entries(map, prev_entry, entry);
2901 	vm_map_unlock(map);
2902 	return (rv);
2903 }
2904 
2905 /*
2906  *	vm_map_madvise:
2907  *
2908  *	This routine traverses a processes map handling the madvise
2909  *	system call.  Advisories are classified as either those effecting
2910  *	the vm_map_entry structure, or those effecting the underlying
2911  *	objects.
2912  */
2913 int
2914 vm_map_madvise(
2915 	vm_map_t map,
2916 	vm_offset_t start,
2917 	vm_offset_t end,
2918 	int behav)
2919 {
2920 	vm_map_entry_t entry, prev_entry;
2921 	int rv;
2922 	bool modify_map;
2923 
2924 	/*
2925 	 * Some madvise calls directly modify the vm_map_entry, in which case
2926 	 * we need to use an exclusive lock on the map and we need to perform
2927 	 * various clipping operations.  Otherwise we only need a read-lock
2928 	 * on the map.
2929 	 */
2930 	switch(behav) {
2931 	case MADV_NORMAL:
2932 	case MADV_SEQUENTIAL:
2933 	case MADV_RANDOM:
2934 	case MADV_NOSYNC:
2935 	case MADV_AUTOSYNC:
2936 	case MADV_NOCORE:
2937 	case MADV_CORE:
2938 		if (start == end)
2939 			return (0);
2940 		modify_map = true;
2941 		vm_map_lock(map);
2942 		break;
2943 	case MADV_WILLNEED:
2944 	case MADV_DONTNEED:
2945 	case MADV_FREE:
2946 		if (start == end)
2947 			return (0);
2948 		modify_map = false;
2949 		vm_map_lock_read(map);
2950 		break;
2951 	default:
2952 		return (EINVAL);
2953 	}
2954 
2955 	/*
2956 	 * Locate starting entry and clip if necessary.
2957 	 */
2958 	VM_MAP_RANGE_CHECK(map, start, end);
2959 
2960 	if (modify_map) {
2961 		/*
2962 		 * madvise behaviors that are implemented in the vm_map_entry.
2963 		 *
2964 		 * We clip the vm_map_entry so that behavioral changes are
2965 		 * limited to the specified address range.
2966 		 */
2967 		rv = vm_map_lookup_clip_start(map, start, &entry, &prev_entry);
2968 		if (rv != KERN_SUCCESS) {
2969 			vm_map_unlock(map);
2970 			return (vm_mmap_to_errno(rv));
2971 		}
2972 
2973 		for (; entry->start < end; prev_entry = entry,
2974 		    entry = vm_map_entry_succ(entry)) {
2975 			if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
2976 				continue;
2977 
2978 			rv = vm_map_clip_end(map, entry, end);
2979 			if (rv != KERN_SUCCESS) {
2980 				vm_map_unlock(map);
2981 				return (vm_mmap_to_errno(rv));
2982 			}
2983 
2984 			switch (behav) {
2985 			case MADV_NORMAL:
2986 				vm_map_entry_set_behavior(entry,
2987 				    MAP_ENTRY_BEHAV_NORMAL);
2988 				break;
2989 			case MADV_SEQUENTIAL:
2990 				vm_map_entry_set_behavior(entry,
2991 				    MAP_ENTRY_BEHAV_SEQUENTIAL);
2992 				break;
2993 			case MADV_RANDOM:
2994 				vm_map_entry_set_behavior(entry,
2995 				    MAP_ENTRY_BEHAV_RANDOM);
2996 				break;
2997 			case MADV_NOSYNC:
2998 				entry->eflags |= MAP_ENTRY_NOSYNC;
2999 				break;
3000 			case MADV_AUTOSYNC:
3001 				entry->eflags &= ~MAP_ENTRY_NOSYNC;
3002 				break;
3003 			case MADV_NOCORE:
3004 				entry->eflags |= MAP_ENTRY_NOCOREDUMP;
3005 				break;
3006 			case MADV_CORE:
3007 				entry->eflags &= ~MAP_ENTRY_NOCOREDUMP;
3008 				break;
3009 			default:
3010 				break;
3011 			}
3012 			vm_map_try_merge_entries(map, prev_entry, entry);
3013 		}
3014 		vm_map_try_merge_entries(map, prev_entry, entry);
3015 		vm_map_unlock(map);
3016 	} else {
3017 		vm_pindex_t pstart, pend;
3018 
3019 		/*
3020 		 * madvise behaviors that are implemented in the underlying
3021 		 * vm_object.
3022 		 *
3023 		 * Since we don't clip the vm_map_entry, we have to clip
3024 		 * the vm_object pindex and count.
3025 		 */
3026 		if (!vm_map_lookup_entry(map, start, &entry))
3027 			entry = vm_map_entry_succ(entry);
3028 		for (; entry->start < end;
3029 		    entry = vm_map_entry_succ(entry)) {
3030 			vm_offset_t useEnd, useStart;
3031 
3032 			if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
3033 				continue;
3034 
3035 			/*
3036 			 * MADV_FREE would otherwise rewind time to
3037 			 * the creation of the shadow object.  Because
3038 			 * we hold the VM map read-locked, neither the
3039 			 * entry's object nor the presence of a
3040 			 * backing object can change.
3041 			 */
3042 			if (behav == MADV_FREE &&
3043 			    entry->object.vm_object != NULL &&
3044 			    entry->object.vm_object->backing_object != NULL)
3045 				continue;
3046 
3047 			pstart = OFF_TO_IDX(entry->offset);
3048 			pend = pstart + atop(entry->end - entry->start);
3049 			useStart = entry->start;
3050 			useEnd = entry->end;
3051 
3052 			if (entry->start < start) {
3053 				pstart += atop(start - entry->start);
3054 				useStart = start;
3055 			}
3056 			if (entry->end > end) {
3057 				pend -= atop(entry->end - end);
3058 				useEnd = end;
3059 			}
3060 
3061 			if (pstart >= pend)
3062 				continue;
3063 
3064 			/*
3065 			 * Perform the pmap_advise() before clearing
3066 			 * PGA_REFERENCED in vm_page_advise().  Otherwise, a
3067 			 * concurrent pmap operation, such as pmap_remove(),
3068 			 * could clear a reference in the pmap and set
3069 			 * PGA_REFERENCED on the page before the pmap_advise()
3070 			 * had completed.  Consequently, the page would appear
3071 			 * referenced based upon an old reference that
3072 			 * occurred before this pmap_advise() ran.
3073 			 */
3074 			if (behav == MADV_DONTNEED || behav == MADV_FREE)
3075 				pmap_advise(map->pmap, useStart, useEnd,
3076 				    behav);
3077 
3078 			vm_object_madvise(entry->object.vm_object, pstart,
3079 			    pend, behav);
3080 
3081 			/*
3082 			 * Pre-populate paging structures in the
3083 			 * WILLNEED case.  For wired entries, the
3084 			 * paging structures are already populated.
3085 			 */
3086 			if (behav == MADV_WILLNEED &&
3087 			    entry->wired_count == 0) {
3088 				vm_map_pmap_enter(map,
3089 				    useStart,
3090 				    entry->protection,
3091 				    entry->object.vm_object,
3092 				    pstart,
3093 				    ptoa(pend - pstart),
3094 				    MAP_PREFAULT_MADVISE
3095 				);
3096 			}
3097 		}
3098 		vm_map_unlock_read(map);
3099 	}
3100 	return (0);
3101 }
3102 
3103 /*
3104  *	vm_map_inherit:
3105  *
3106  *	Sets the inheritance of the specified address
3107  *	range in the target map.  Inheritance
3108  *	affects how the map will be shared with
3109  *	child maps at the time of vmspace_fork.
3110  */
3111 int
3112 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
3113 	       vm_inherit_t new_inheritance)
3114 {
3115 	vm_map_entry_t entry, lentry, prev_entry, start_entry;
3116 	int rv;
3117 
3118 	switch (new_inheritance) {
3119 	case VM_INHERIT_NONE:
3120 	case VM_INHERIT_COPY:
3121 	case VM_INHERIT_SHARE:
3122 	case VM_INHERIT_ZERO:
3123 		break;
3124 	default:
3125 		return (KERN_INVALID_ARGUMENT);
3126 	}
3127 	if (start == end)
3128 		return (KERN_SUCCESS);
3129 	vm_map_lock(map);
3130 	VM_MAP_RANGE_CHECK(map, start, end);
3131 	rv = vm_map_lookup_clip_start(map, start, &start_entry, &prev_entry);
3132 	if (rv != KERN_SUCCESS)
3133 		goto unlock;
3134 	if (vm_map_lookup_entry(map, end - 1, &lentry)) {
3135 		rv = vm_map_clip_end(map, lentry, end);
3136 		if (rv != KERN_SUCCESS)
3137 			goto unlock;
3138 	}
3139 	if (new_inheritance == VM_INHERIT_COPY) {
3140 		for (entry = start_entry; entry->start < end;
3141 		    prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3142 			if ((entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK)
3143 			    != 0) {
3144 				rv = KERN_INVALID_ARGUMENT;
3145 				goto unlock;
3146 			}
3147 		}
3148 	}
3149 	for (entry = start_entry; entry->start < end; prev_entry = entry,
3150 	    entry = vm_map_entry_succ(entry)) {
3151 		KASSERT(entry->end <= end, ("non-clipped entry %p end %jx %jx",
3152 		    entry, (uintmax_t)entry->end, (uintmax_t)end));
3153 		if ((entry->eflags & MAP_ENTRY_GUARD) == 0 ||
3154 		    new_inheritance != VM_INHERIT_ZERO)
3155 			entry->inheritance = new_inheritance;
3156 		vm_map_try_merge_entries(map, prev_entry, entry);
3157 	}
3158 	vm_map_try_merge_entries(map, prev_entry, entry);
3159 unlock:
3160 	vm_map_unlock(map);
3161 	return (rv);
3162 }
3163 
3164 /*
3165  *	vm_map_entry_in_transition:
3166  *
3167  *	Release the map lock, and sleep until the entry is no longer in
3168  *	transition.  Awake and acquire the map lock.  If the map changed while
3169  *	another held the lock, lookup a possibly-changed entry at or after the
3170  *	'start' position of the old entry.
3171  */
3172 static vm_map_entry_t
3173 vm_map_entry_in_transition(vm_map_t map, vm_offset_t in_start,
3174     vm_offset_t *io_end, bool holes_ok, vm_map_entry_t in_entry)
3175 {
3176 	vm_map_entry_t entry;
3177 	vm_offset_t start;
3178 	u_int last_timestamp;
3179 
3180 	VM_MAP_ASSERT_LOCKED(map);
3181 	KASSERT((in_entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3182 	    ("not in-tranition map entry %p", in_entry));
3183 	/*
3184 	 * We have not yet clipped the entry.
3185 	 */
3186 	start = MAX(in_start, in_entry->start);
3187 	in_entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3188 	last_timestamp = map->timestamp;
3189 	if (vm_map_unlock_and_wait(map, 0)) {
3190 		/*
3191 		 * Allow interruption of user wiring/unwiring?
3192 		 */
3193 	}
3194 	vm_map_lock(map);
3195 	if (last_timestamp + 1 == map->timestamp)
3196 		return (in_entry);
3197 
3198 	/*
3199 	 * Look again for the entry because the map was modified while it was
3200 	 * unlocked.  Specifically, the entry may have been clipped, merged, or
3201 	 * deleted.
3202 	 */
3203 	if (!vm_map_lookup_entry(map, start, &entry)) {
3204 		if (!holes_ok) {
3205 			*io_end = start;
3206 			return (NULL);
3207 		}
3208 		entry = vm_map_entry_succ(entry);
3209 	}
3210 	return (entry);
3211 }
3212 
3213 /*
3214  *	vm_map_unwire:
3215  *
3216  *	Implements both kernel and user unwiring.
3217  */
3218 int
3219 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
3220     int flags)
3221 {
3222 	vm_map_entry_t entry, first_entry, next_entry, prev_entry;
3223 	int rv;
3224 	bool holes_ok, need_wakeup, user_unwire;
3225 
3226 	if (start == end)
3227 		return (KERN_SUCCESS);
3228 	holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0;
3229 	user_unwire = (flags & VM_MAP_WIRE_USER) != 0;
3230 	vm_map_lock(map);
3231 	VM_MAP_RANGE_CHECK(map, start, end);
3232 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
3233 		if (holes_ok)
3234 			first_entry = vm_map_entry_succ(first_entry);
3235 		else {
3236 			vm_map_unlock(map);
3237 			return (KERN_INVALID_ADDRESS);
3238 		}
3239 	}
3240 	rv = KERN_SUCCESS;
3241 	for (entry = first_entry; entry->start < end; entry = next_entry) {
3242 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
3243 			/*
3244 			 * We have not yet clipped the entry.
3245 			 */
3246 			next_entry = vm_map_entry_in_transition(map, start,
3247 			    &end, holes_ok, entry);
3248 			if (next_entry == NULL) {
3249 				if (entry == first_entry) {
3250 					vm_map_unlock(map);
3251 					return (KERN_INVALID_ADDRESS);
3252 				}
3253 				rv = KERN_INVALID_ADDRESS;
3254 				break;
3255 			}
3256 			first_entry = (entry == first_entry) ?
3257 			    next_entry : NULL;
3258 			continue;
3259 		}
3260 		rv = vm_map_clip_start(map, entry, start);
3261 		if (rv != KERN_SUCCESS)
3262 			break;
3263 		rv = vm_map_clip_end(map, entry, end);
3264 		if (rv != KERN_SUCCESS)
3265 			break;
3266 
3267 		/*
3268 		 * Mark the entry in case the map lock is released.  (See
3269 		 * above.)
3270 		 */
3271 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
3272 		    entry->wiring_thread == NULL,
3273 		    ("owned map entry %p", entry));
3274 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
3275 		entry->wiring_thread = curthread;
3276 		next_entry = vm_map_entry_succ(entry);
3277 		/*
3278 		 * Check the map for holes in the specified region.
3279 		 * If holes_ok, skip this check.
3280 		 */
3281 		if (!holes_ok &&
3282 		    entry->end < end && next_entry->start > entry->end) {
3283 			end = entry->end;
3284 			rv = KERN_INVALID_ADDRESS;
3285 			break;
3286 		}
3287 		/*
3288 		 * If system unwiring, require that the entry is system wired.
3289 		 */
3290 		if (!user_unwire &&
3291 		    vm_map_entry_system_wired_count(entry) == 0) {
3292 			end = entry->end;
3293 			rv = KERN_INVALID_ARGUMENT;
3294 			break;
3295 		}
3296 	}
3297 	need_wakeup = false;
3298 	if (first_entry == NULL &&
3299 	    !vm_map_lookup_entry(map, start, &first_entry)) {
3300 		KASSERT(holes_ok, ("vm_map_unwire: lookup failed"));
3301 		prev_entry = first_entry;
3302 		entry = vm_map_entry_succ(first_entry);
3303 	} else {
3304 		prev_entry = vm_map_entry_pred(first_entry);
3305 		entry = first_entry;
3306 	}
3307 	for (; entry->start < end;
3308 	    prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3309 		/*
3310 		 * If holes_ok was specified, an empty
3311 		 * space in the unwired region could have been mapped
3312 		 * while the map lock was dropped for draining
3313 		 * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
3314 		 * could be simultaneously wiring this new mapping
3315 		 * entry.  Detect these cases and skip any entries
3316 		 * marked as in transition by us.
3317 		 */
3318 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
3319 		    entry->wiring_thread != curthread) {
3320 			KASSERT(holes_ok,
3321 			    ("vm_map_unwire: !HOLESOK and new/changed entry"));
3322 			continue;
3323 		}
3324 
3325 		if (rv == KERN_SUCCESS && (!user_unwire ||
3326 		    (entry->eflags & MAP_ENTRY_USER_WIRED))) {
3327 			if (entry->wired_count == 1)
3328 				vm_map_entry_unwire(map, entry);
3329 			else
3330 				entry->wired_count--;
3331 			if (user_unwire)
3332 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3333 		}
3334 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3335 		    ("vm_map_unwire: in-transition flag missing %p", entry));
3336 		KASSERT(entry->wiring_thread == curthread,
3337 		    ("vm_map_unwire: alien wire %p", entry));
3338 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
3339 		entry->wiring_thread = NULL;
3340 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3341 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3342 			need_wakeup = true;
3343 		}
3344 		vm_map_try_merge_entries(map, prev_entry, entry);
3345 	}
3346 	vm_map_try_merge_entries(map, prev_entry, entry);
3347 	vm_map_unlock(map);
3348 	if (need_wakeup)
3349 		vm_map_wakeup(map);
3350 	return (rv);
3351 }
3352 
3353 static void
3354 vm_map_wire_user_count_sub(u_long npages)
3355 {
3356 
3357 	atomic_subtract_long(&vm_user_wire_count, npages);
3358 }
3359 
3360 static bool
3361 vm_map_wire_user_count_add(u_long npages)
3362 {
3363 	u_long wired;
3364 
3365 	wired = vm_user_wire_count;
3366 	do {
3367 		if (npages + wired > vm_page_max_user_wired)
3368 			return (false);
3369 	} while (!atomic_fcmpset_long(&vm_user_wire_count, &wired,
3370 	    npages + wired));
3371 
3372 	return (true);
3373 }
3374 
3375 /*
3376  *	vm_map_wire_entry_failure:
3377  *
3378  *	Handle a wiring failure on the given entry.
3379  *
3380  *	The map should be locked.
3381  */
3382 static void
3383 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
3384     vm_offset_t failed_addr)
3385 {
3386 
3387 	VM_MAP_ASSERT_LOCKED(map);
3388 	KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
3389 	    entry->wired_count == 1,
3390 	    ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
3391 	KASSERT(failed_addr < entry->end,
3392 	    ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
3393 
3394 	/*
3395 	 * If any pages at the start of this entry were successfully wired,
3396 	 * then unwire them.
3397 	 */
3398 	if (failed_addr > entry->start) {
3399 		pmap_unwire(map->pmap, entry->start, failed_addr);
3400 		vm_object_unwire(entry->object.vm_object, entry->offset,
3401 		    failed_addr - entry->start, PQ_ACTIVE);
3402 	}
3403 
3404 	/*
3405 	 * Assign an out-of-range value to represent the failure to wire this
3406 	 * entry.
3407 	 */
3408 	entry->wired_count = -1;
3409 }
3410 
3411 int
3412 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3413 {
3414 	int rv;
3415 
3416 	vm_map_lock(map);
3417 	rv = vm_map_wire_locked(map, start, end, flags);
3418 	vm_map_unlock(map);
3419 	return (rv);
3420 }
3421 
3422 /*
3423  *	vm_map_wire_locked:
3424  *
3425  *	Implements both kernel and user wiring.  Returns with the map locked,
3426  *	the map lock may be dropped.
3427  */
3428 int
3429 vm_map_wire_locked(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3430 {
3431 	vm_map_entry_t entry, first_entry, next_entry, prev_entry;
3432 	vm_offset_t faddr, saved_end, saved_start;
3433 	u_long incr, npages;
3434 	u_int bidx, last_timestamp;
3435 	int rv;
3436 	bool holes_ok, need_wakeup, user_wire;
3437 	vm_prot_t prot;
3438 
3439 	VM_MAP_ASSERT_LOCKED(map);
3440 
3441 	if (start == end)
3442 		return (KERN_SUCCESS);
3443 	prot = 0;
3444 	if (flags & VM_MAP_WIRE_WRITE)
3445 		prot |= VM_PROT_WRITE;
3446 	holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0;
3447 	user_wire = (flags & VM_MAP_WIRE_USER) != 0;
3448 	VM_MAP_RANGE_CHECK(map, start, end);
3449 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
3450 		if (holes_ok)
3451 			first_entry = vm_map_entry_succ(first_entry);
3452 		else
3453 			return (KERN_INVALID_ADDRESS);
3454 	}
3455 	for (entry = first_entry; entry->start < end; entry = next_entry) {
3456 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
3457 			/*
3458 			 * We have not yet clipped the entry.
3459 			 */
3460 			next_entry = vm_map_entry_in_transition(map, start,
3461 			    &end, holes_ok, entry);
3462 			if (next_entry == NULL) {
3463 				if (entry == first_entry)
3464 					return (KERN_INVALID_ADDRESS);
3465 				rv = KERN_INVALID_ADDRESS;
3466 				goto done;
3467 			}
3468 			first_entry = (entry == first_entry) ?
3469 			    next_entry : NULL;
3470 			continue;
3471 		}
3472 		rv = vm_map_clip_start(map, entry, start);
3473 		if (rv != KERN_SUCCESS)
3474 			goto done;
3475 		rv = vm_map_clip_end(map, entry, end);
3476 		if (rv != KERN_SUCCESS)
3477 			goto done;
3478 
3479 		/*
3480 		 * Mark the entry in case the map lock is released.  (See
3481 		 * above.)
3482 		 */
3483 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
3484 		    entry->wiring_thread == NULL,
3485 		    ("owned map entry %p", entry));
3486 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
3487 		entry->wiring_thread = curthread;
3488 		if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
3489 		    || (entry->protection & prot) != prot) {
3490 			entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
3491 			if (!holes_ok) {
3492 				end = entry->end;
3493 				rv = KERN_INVALID_ADDRESS;
3494 				goto done;
3495 			}
3496 		} else if (entry->wired_count == 0) {
3497 			entry->wired_count++;
3498 
3499 			npages = atop(entry->end - entry->start);
3500 			if (user_wire && !vm_map_wire_user_count_add(npages)) {
3501 				vm_map_wire_entry_failure(map, entry,
3502 				    entry->start);
3503 				end = entry->end;
3504 				rv = KERN_RESOURCE_SHORTAGE;
3505 				goto done;
3506 			}
3507 
3508 			/*
3509 			 * Release the map lock, relying on the in-transition
3510 			 * mark.  Mark the map busy for fork.
3511 			 */
3512 			saved_start = entry->start;
3513 			saved_end = entry->end;
3514 			last_timestamp = map->timestamp;
3515 			bidx = (entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK)
3516 			    >> MAP_ENTRY_SPLIT_BOUNDARY_SHIFT;
3517 			incr =  pagesizes[bidx];
3518 			vm_map_busy(map);
3519 			vm_map_unlock(map);
3520 
3521 			for (faddr = saved_start; faddr < saved_end;
3522 			    faddr += incr) {
3523 				/*
3524 				 * Simulate a fault to get the page and enter
3525 				 * it into the physical map.
3526 				 */
3527 				rv = vm_fault(map, faddr, VM_PROT_NONE,
3528 				    VM_FAULT_WIRE, NULL);
3529 				if (rv != KERN_SUCCESS)
3530 					break;
3531 			}
3532 			vm_map_lock(map);
3533 			vm_map_unbusy(map);
3534 			if (last_timestamp + 1 != map->timestamp) {
3535 				/*
3536 				 * Look again for the entry because the map was
3537 				 * modified while it was unlocked.  The entry
3538 				 * may have been clipped, but NOT merged or
3539 				 * deleted.
3540 				 */
3541 				if (!vm_map_lookup_entry(map, saved_start,
3542 				    &next_entry))
3543 					KASSERT(false,
3544 					    ("vm_map_wire: lookup failed"));
3545 				first_entry = (entry == first_entry) ?
3546 				    next_entry : NULL;
3547 				for (entry = next_entry; entry->end < saved_end;
3548 				    entry = vm_map_entry_succ(entry)) {
3549 					/*
3550 					 * In case of failure, handle entries
3551 					 * that were not fully wired here;
3552 					 * fully wired entries are handled
3553 					 * later.
3554 					 */
3555 					if (rv != KERN_SUCCESS &&
3556 					    faddr < entry->end)
3557 						vm_map_wire_entry_failure(map,
3558 						    entry, faddr);
3559 				}
3560 			}
3561 			if (rv != KERN_SUCCESS) {
3562 				vm_map_wire_entry_failure(map, entry, faddr);
3563 				if (user_wire)
3564 					vm_map_wire_user_count_sub(npages);
3565 				end = entry->end;
3566 				goto done;
3567 			}
3568 		} else if (!user_wire ||
3569 			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3570 			entry->wired_count++;
3571 		}
3572 		/*
3573 		 * Check the map for holes in the specified region.
3574 		 * If holes_ok was specified, skip this check.
3575 		 */
3576 		next_entry = vm_map_entry_succ(entry);
3577 		if (!holes_ok &&
3578 		    entry->end < end && next_entry->start > entry->end) {
3579 			end = entry->end;
3580 			rv = KERN_INVALID_ADDRESS;
3581 			goto done;
3582 		}
3583 	}
3584 	rv = KERN_SUCCESS;
3585 done:
3586 	need_wakeup = false;
3587 	if (first_entry == NULL &&
3588 	    !vm_map_lookup_entry(map, start, &first_entry)) {
3589 		KASSERT(holes_ok, ("vm_map_wire: lookup failed"));
3590 		prev_entry = first_entry;
3591 		entry = vm_map_entry_succ(first_entry);
3592 	} else {
3593 		prev_entry = vm_map_entry_pred(first_entry);
3594 		entry = first_entry;
3595 	}
3596 	for (; entry->start < end;
3597 	    prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3598 		/*
3599 		 * If holes_ok was specified, an empty
3600 		 * space in the unwired region could have been mapped
3601 		 * while the map lock was dropped for faulting in the
3602 		 * pages or draining MAP_ENTRY_IN_TRANSITION.
3603 		 * Moreover, another thread could be simultaneously
3604 		 * wiring this new mapping entry.  Detect these cases
3605 		 * and skip any entries marked as in transition not by us.
3606 		 *
3607 		 * Another way to get an entry not marked with
3608 		 * MAP_ENTRY_IN_TRANSITION is after failed clipping,
3609 		 * which set rv to KERN_INVALID_ARGUMENT.
3610 		 */
3611 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
3612 		    entry->wiring_thread != curthread) {
3613 			KASSERT(holes_ok || rv == KERN_INVALID_ARGUMENT,
3614 			    ("vm_map_wire: !HOLESOK and new/changed entry"));
3615 			continue;
3616 		}
3617 
3618 		if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) {
3619 			/* do nothing */
3620 		} else if (rv == KERN_SUCCESS) {
3621 			if (user_wire)
3622 				entry->eflags |= MAP_ENTRY_USER_WIRED;
3623 		} else if (entry->wired_count == -1) {
3624 			/*
3625 			 * Wiring failed on this entry.  Thus, unwiring is
3626 			 * unnecessary.
3627 			 */
3628 			entry->wired_count = 0;
3629 		} else if (!user_wire ||
3630 		    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3631 			/*
3632 			 * Undo the wiring.  Wiring succeeded on this entry
3633 			 * but failed on a later entry.
3634 			 */
3635 			if (entry->wired_count == 1) {
3636 				vm_map_entry_unwire(map, entry);
3637 				if (user_wire)
3638 					vm_map_wire_user_count_sub(
3639 					    atop(entry->end - entry->start));
3640 			} else
3641 				entry->wired_count--;
3642 		}
3643 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3644 		    ("vm_map_wire: in-transition flag missing %p", entry));
3645 		KASSERT(entry->wiring_thread == curthread,
3646 		    ("vm_map_wire: alien wire %p", entry));
3647 		entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
3648 		    MAP_ENTRY_WIRE_SKIPPED);
3649 		entry->wiring_thread = NULL;
3650 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3651 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3652 			need_wakeup = true;
3653 		}
3654 		vm_map_try_merge_entries(map, prev_entry, entry);
3655 	}
3656 	vm_map_try_merge_entries(map, prev_entry, entry);
3657 	if (need_wakeup)
3658 		vm_map_wakeup(map);
3659 	return (rv);
3660 }
3661 
3662 /*
3663  * vm_map_sync
3664  *
3665  * Push any dirty cached pages in the address range to their pager.
3666  * If syncio is TRUE, dirty pages are written synchronously.
3667  * If invalidate is TRUE, any cached pages are freed as well.
3668  *
3669  * If the size of the region from start to end is zero, we are
3670  * supposed to flush all modified pages within the region containing
3671  * start.  Unfortunately, a region can be split or coalesced with
3672  * neighboring regions, making it difficult to determine what the
3673  * original region was.  Therefore, we approximate this requirement by
3674  * flushing the current region containing start.
3675  *
3676  * Returns an error if any part of the specified range is not mapped.
3677  */
3678 int
3679 vm_map_sync(
3680 	vm_map_t map,
3681 	vm_offset_t start,
3682 	vm_offset_t end,
3683 	boolean_t syncio,
3684 	boolean_t invalidate)
3685 {
3686 	vm_map_entry_t entry, first_entry, next_entry;
3687 	vm_size_t size;
3688 	vm_object_t object;
3689 	vm_ooffset_t offset;
3690 	unsigned int last_timestamp;
3691 	int bdry_idx;
3692 	boolean_t failed;
3693 
3694 	vm_map_lock_read(map);
3695 	VM_MAP_RANGE_CHECK(map, start, end);
3696 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
3697 		vm_map_unlock_read(map);
3698 		return (KERN_INVALID_ADDRESS);
3699 	} else if (start == end) {
3700 		start = first_entry->start;
3701 		end = first_entry->end;
3702 	}
3703 
3704 	/*
3705 	 * Make a first pass to check for user-wired memory, holes,
3706 	 * and partial invalidation of largepage mappings.
3707 	 */
3708 	for (entry = first_entry; entry->start < end; entry = next_entry) {
3709 		if (invalidate) {
3710 			if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0) {
3711 				vm_map_unlock_read(map);
3712 				return (KERN_INVALID_ARGUMENT);
3713 			}
3714 			bdry_idx = (entry->eflags &
3715 			    MAP_ENTRY_SPLIT_BOUNDARY_MASK) >>
3716 			    MAP_ENTRY_SPLIT_BOUNDARY_SHIFT;
3717 			if (bdry_idx != 0 &&
3718 			    ((start & (pagesizes[bdry_idx] - 1)) != 0 ||
3719 			    (end & (pagesizes[bdry_idx] - 1)) != 0)) {
3720 				vm_map_unlock_read(map);
3721 				return (KERN_INVALID_ARGUMENT);
3722 			}
3723 		}
3724 		next_entry = vm_map_entry_succ(entry);
3725 		if (end > entry->end &&
3726 		    entry->end != next_entry->start) {
3727 			vm_map_unlock_read(map);
3728 			return (KERN_INVALID_ADDRESS);
3729 		}
3730 	}
3731 
3732 	if (invalidate)
3733 		pmap_remove(map->pmap, start, end);
3734 	failed = FALSE;
3735 
3736 	/*
3737 	 * Make a second pass, cleaning/uncaching pages from the indicated
3738 	 * objects as we go.
3739 	 */
3740 	for (entry = first_entry; entry->start < end;) {
3741 		offset = entry->offset + (start - entry->start);
3742 		size = (end <= entry->end ? end : entry->end) - start;
3743 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) {
3744 			vm_map_t smap;
3745 			vm_map_entry_t tentry;
3746 			vm_size_t tsize;
3747 
3748 			smap = entry->object.sub_map;
3749 			vm_map_lock_read(smap);
3750 			(void) vm_map_lookup_entry(smap, offset, &tentry);
3751 			tsize = tentry->end - offset;
3752 			if (tsize < size)
3753 				size = tsize;
3754 			object = tentry->object.vm_object;
3755 			offset = tentry->offset + (offset - tentry->start);
3756 			vm_map_unlock_read(smap);
3757 		} else {
3758 			object = entry->object.vm_object;
3759 		}
3760 		vm_object_reference(object);
3761 		last_timestamp = map->timestamp;
3762 		vm_map_unlock_read(map);
3763 		if (!vm_object_sync(object, offset, size, syncio, invalidate))
3764 			failed = TRUE;
3765 		start += size;
3766 		vm_object_deallocate(object);
3767 		vm_map_lock_read(map);
3768 		if (last_timestamp == map->timestamp ||
3769 		    !vm_map_lookup_entry(map, start, &entry))
3770 			entry = vm_map_entry_succ(entry);
3771 	}
3772 
3773 	vm_map_unlock_read(map);
3774 	return (failed ? KERN_FAILURE : KERN_SUCCESS);
3775 }
3776 
3777 /*
3778  *	vm_map_entry_unwire:	[ internal use only ]
3779  *
3780  *	Make the region specified by this entry pageable.
3781  *
3782  *	The map in question should be locked.
3783  *	[This is the reason for this routine's existence.]
3784  */
3785 static void
3786 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
3787 {
3788 	vm_size_t size;
3789 
3790 	VM_MAP_ASSERT_LOCKED(map);
3791 	KASSERT(entry->wired_count > 0,
3792 	    ("vm_map_entry_unwire: entry %p isn't wired", entry));
3793 
3794 	size = entry->end - entry->start;
3795 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0)
3796 		vm_map_wire_user_count_sub(atop(size));
3797 	pmap_unwire(map->pmap, entry->start, entry->end);
3798 	vm_object_unwire(entry->object.vm_object, entry->offset, size,
3799 	    PQ_ACTIVE);
3800 	entry->wired_count = 0;
3801 }
3802 
3803 static void
3804 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
3805 {
3806 
3807 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
3808 		vm_object_deallocate(entry->object.vm_object);
3809 	uma_zfree(system_map ? kmapentzone : mapentzone, entry);
3810 }
3811 
3812 /*
3813  *	vm_map_entry_delete:	[ internal use only ]
3814  *
3815  *	Deallocate the given entry from the target map.
3816  */
3817 static void
3818 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
3819 {
3820 	vm_object_t object;
3821 	vm_pindex_t offidxstart, offidxend, size1;
3822 	vm_size_t size;
3823 
3824 	vm_map_entry_unlink(map, entry, UNLINK_MERGE_NONE);
3825 	object = entry->object.vm_object;
3826 
3827 	if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
3828 		MPASS(entry->cred == NULL);
3829 		MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0);
3830 		MPASS(object == NULL);
3831 		vm_map_entry_deallocate(entry, map->system_map);
3832 		return;
3833 	}
3834 
3835 	size = entry->end - entry->start;
3836 	map->size -= size;
3837 
3838 	if (entry->cred != NULL) {
3839 		swap_release_by_cred(size, entry->cred);
3840 		crfree(entry->cred);
3841 	}
3842 
3843 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || object == NULL) {
3844 		entry->object.vm_object = NULL;
3845 	} else if ((object->flags & OBJ_ANON) != 0 ||
3846 	    object == kernel_object) {
3847 		KASSERT(entry->cred == NULL || object->cred == NULL ||
3848 		    (entry->eflags & MAP_ENTRY_NEEDS_COPY),
3849 		    ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
3850 		offidxstart = OFF_TO_IDX(entry->offset);
3851 		offidxend = offidxstart + atop(size);
3852 		VM_OBJECT_WLOCK(object);
3853 		if (object->ref_count != 1 &&
3854 		    ((object->flags & OBJ_ONEMAPPING) != 0 ||
3855 		    object == kernel_object)) {
3856 			vm_object_collapse(object);
3857 
3858 			/*
3859 			 * The option OBJPR_NOTMAPPED can be passed here
3860 			 * because vm_map_delete() already performed
3861 			 * pmap_remove() on the only mapping to this range
3862 			 * of pages.
3863 			 */
3864 			vm_object_page_remove(object, offidxstart, offidxend,
3865 			    OBJPR_NOTMAPPED);
3866 			if (offidxend >= object->size &&
3867 			    offidxstart < object->size) {
3868 				size1 = object->size;
3869 				object->size = offidxstart;
3870 				if (object->cred != NULL) {
3871 					size1 -= object->size;
3872 					KASSERT(object->charge >= ptoa(size1),
3873 					    ("object %p charge < 0", object));
3874 					swap_release_by_cred(ptoa(size1),
3875 					    object->cred);
3876 					object->charge -= ptoa(size1);
3877 				}
3878 			}
3879 		}
3880 		VM_OBJECT_WUNLOCK(object);
3881 	}
3882 	if (map->system_map)
3883 		vm_map_entry_deallocate(entry, TRUE);
3884 	else {
3885 		entry->defer_next = curthread->td_map_def_user;
3886 		curthread->td_map_def_user = entry;
3887 	}
3888 }
3889 
3890 /*
3891  *	vm_map_delete:	[ internal use only ]
3892  *
3893  *	Deallocates the given address range from the target
3894  *	map.
3895  */
3896 int
3897 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
3898 {
3899 	vm_map_entry_t entry, next_entry, scratch_entry;
3900 	int rv;
3901 
3902 	VM_MAP_ASSERT_LOCKED(map);
3903 
3904 	if (start == end)
3905 		return (KERN_SUCCESS);
3906 
3907 	/*
3908 	 * Find the start of the region, and clip it.
3909 	 * Step through all entries in this region.
3910 	 */
3911 	rv = vm_map_lookup_clip_start(map, start, &entry, &scratch_entry);
3912 	if (rv != KERN_SUCCESS)
3913 		return (rv);
3914 	for (; entry->start < end; entry = next_entry) {
3915 		/*
3916 		 * Wait for wiring or unwiring of an entry to complete.
3917 		 * Also wait for any system wirings to disappear on
3918 		 * user maps.
3919 		 */
3920 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
3921 		    (vm_map_pmap(map) != kernel_pmap &&
3922 		    vm_map_entry_system_wired_count(entry) != 0)) {
3923 			unsigned int last_timestamp;
3924 			vm_offset_t saved_start;
3925 
3926 			saved_start = entry->start;
3927 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3928 			last_timestamp = map->timestamp;
3929 			(void) vm_map_unlock_and_wait(map, 0);
3930 			vm_map_lock(map);
3931 			if (last_timestamp + 1 != map->timestamp) {
3932 				/*
3933 				 * Look again for the entry because the map was
3934 				 * modified while it was unlocked.
3935 				 * Specifically, the entry may have been
3936 				 * clipped, merged, or deleted.
3937 				 */
3938 				rv = vm_map_lookup_clip_start(map, saved_start,
3939 				    &next_entry, &scratch_entry);
3940 				if (rv != KERN_SUCCESS)
3941 					break;
3942 			} else
3943 				next_entry = entry;
3944 			continue;
3945 		}
3946 
3947 		/* XXXKIB or delete to the upper superpage boundary ? */
3948 		rv = vm_map_clip_end(map, entry, end);
3949 		if (rv != KERN_SUCCESS)
3950 			break;
3951 		next_entry = vm_map_entry_succ(entry);
3952 
3953 		/*
3954 		 * Unwire before removing addresses from the pmap; otherwise,
3955 		 * unwiring will put the entries back in the pmap.
3956 		 */
3957 		if (entry->wired_count != 0)
3958 			vm_map_entry_unwire(map, entry);
3959 
3960 		/*
3961 		 * Remove mappings for the pages, but only if the
3962 		 * mappings could exist.  For instance, it does not
3963 		 * make sense to call pmap_remove() for guard entries.
3964 		 */
3965 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 ||
3966 		    entry->object.vm_object != NULL)
3967 			pmap_remove(map->pmap, entry->start, entry->end);
3968 
3969 		if (entry->end == map->anon_loc)
3970 			map->anon_loc = entry->start;
3971 
3972 		/*
3973 		 * Delete the entry only after removing all pmap
3974 		 * entries pointing to its pages.  (Otherwise, its
3975 		 * page frames may be reallocated, and any modify bits
3976 		 * will be set in the wrong object!)
3977 		 */
3978 		vm_map_entry_delete(map, entry);
3979 	}
3980 	return (rv);
3981 }
3982 
3983 /*
3984  *	vm_map_remove:
3985  *
3986  *	Remove the given address range from the target map.
3987  *	This is the exported form of vm_map_delete.
3988  */
3989 int
3990 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3991 {
3992 	int result;
3993 
3994 	vm_map_lock(map);
3995 	VM_MAP_RANGE_CHECK(map, start, end);
3996 	result = vm_map_delete(map, start, end);
3997 	vm_map_unlock(map);
3998 	return (result);
3999 }
4000 
4001 /*
4002  *	vm_map_check_protection:
4003  *
4004  *	Assert that the target map allows the specified privilege on the
4005  *	entire address region given.  The entire region must be allocated.
4006  *
4007  *	WARNING!  This code does not and should not check whether the
4008  *	contents of the region is accessible.  For example a smaller file
4009  *	might be mapped into a larger address space.
4010  *
4011  *	NOTE!  This code is also called by munmap().
4012  *
4013  *	The map must be locked.  A read lock is sufficient.
4014  */
4015 boolean_t
4016 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
4017 			vm_prot_t protection)
4018 {
4019 	vm_map_entry_t entry;
4020 	vm_map_entry_t tmp_entry;
4021 
4022 	if (!vm_map_lookup_entry(map, start, &tmp_entry))
4023 		return (FALSE);
4024 	entry = tmp_entry;
4025 
4026 	while (start < end) {
4027 		/*
4028 		 * No holes allowed!
4029 		 */
4030 		if (start < entry->start)
4031 			return (FALSE);
4032 		/*
4033 		 * Check protection associated with entry.
4034 		 */
4035 		if ((entry->protection & protection) != protection)
4036 			return (FALSE);
4037 		/* go to next entry */
4038 		start = entry->end;
4039 		entry = vm_map_entry_succ(entry);
4040 	}
4041 	return (TRUE);
4042 }
4043 
4044 /*
4045  *
4046  *	vm_map_copy_swap_object:
4047  *
4048  *	Copies a swap-backed object from an existing map entry to a
4049  *	new one.  Carries forward the swap charge.  May change the
4050  *	src object on return.
4051  */
4052 static void
4053 vm_map_copy_swap_object(vm_map_entry_t src_entry, vm_map_entry_t dst_entry,
4054     vm_offset_t size, vm_ooffset_t *fork_charge)
4055 {
4056 	vm_object_t src_object;
4057 	struct ucred *cred;
4058 	int charged;
4059 
4060 	src_object = src_entry->object.vm_object;
4061 	charged = ENTRY_CHARGED(src_entry);
4062 	if ((src_object->flags & OBJ_ANON) != 0) {
4063 		VM_OBJECT_WLOCK(src_object);
4064 		vm_object_collapse(src_object);
4065 		if ((src_object->flags & OBJ_ONEMAPPING) != 0) {
4066 			vm_object_split(src_entry);
4067 			src_object = src_entry->object.vm_object;
4068 		}
4069 		vm_object_reference_locked(src_object);
4070 		vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
4071 		VM_OBJECT_WUNLOCK(src_object);
4072 	} else
4073 		vm_object_reference(src_object);
4074 	if (src_entry->cred != NULL &&
4075 	    !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
4076 		KASSERT(src_object->cred == NULL,
4077 		    ("OVERCOMMIT: vm_map_copy_anon_entry: cred %p",
4078 		     src_object));
4079 		src_object->cred = src_entry->cred;
4080 		src_object->charge = size;
4081 	}
4082 	dst_entry->object.vm_object = src_object;
4083 	if (charged) {
4084 		cred = curthread->td_ucred;
4085 		crhold(cred);
4086 		dst_entry->cred = cred;
4087 		*fork_charge += size;
4088 		if (!(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
4089 			crhold(cred);
4090 			src_entry->cred = cred;
4091 			*fork_charge += size;
4092 		}
4093 	}
4094 }
4095 
4096 /*
4097  *	vm_map_copy_entry:
4098  *
4099  *	Copies the contents of the source entry to the destination
4100  *	entry.  The entries *must* be aligned properly.
4101  */
4102 static void
4103 vm_map_copy_entry(
4104 	vm_map_t src_map,
4105 	vm_map_t dst_map,
4106 	vm_map_entry_t src_entry,
4107 	vm_map_entry_t dst_entry,
4108 	vm_ooffset_t *fork_charge)
4109 {
4110 	vm_object_t src_object;
4111 	vm_map_entry_t fake_entry;
4112 	vm_offset_t size;
4113 
4114 	VM_MAP_ASSERT_LOCKED(dst_map);
4115 
4116 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
4117 		return;
4118 
4119 	if (src_entry->wired_count == 0 ||
4120 	    (src_entry->protection & VM_PROT_WRITE) == 0) {
4121 		/*
4122 		 * If the source entry is marked needs_copy, it is already
4123 		 * write-protected.
4124 		 */
4125 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
4126 		    (src_entry->protection & VM_PROT_WRITE) != 0) {
4127 			pmap_protect(src_map->pmap,
4128 			    src_entry->start,
4129 			    src_entry->end,
4130 			    src_entry->protection & ~VM_PROT_WRITE);
4131 		}
4132 
4133 		/*
4134 		 * Make a copy of the object.
4135 		 */
4136 		size = src_entry->end - src_entry->start;
4137 		if ((src_object = src_entry->object.vm_object) != NULL) {
4138 			if ((src_object->flags & OBJ_SWAP) != 0) {
4139 				vm_map_copy_swap_object(src_entry, dst_entry,
4140 				    size, fork_charge);
4141 				/* May have split/collapsed, reload obj. */
4142 				src_object = src_entry->object.vm_object;
4143 			} else {
4144 				vm_object_reference(src_object);
4145 				dst_entry->object.vm_object = src_object;
4146 			}
4147 			src_entry->eflags |= MAP_ENTRY_COW |
4148 			    MAP_ENTRY_NEEDS_COPY;
4149 			dst_entry->eflags |= MAP_ENTRY_COW |
4150 			    MAP_ENTRY_NEEDS_COPY;
4151 			dst_entry->offset = src_entry->offset;
4152 			if (src_entry->eflags & MAP_ENTRY_WRITECNT) {
4153 				/*
4154 				 * MAP_ENTRY_WRITECNT cannot
4155 				 * indicate write reference from
4156 				 * src_entry, since the entry is
4157 				 * marked as needs copy.  Allocate a
4158 				 * fake entry that is used to
4159 				 * decrement object->un_pager writecount
4160 				 * at the appropriate time.  Attach
4161 				 * fake_entry to the deferred list.
4162 				 */
4163 				fake_entry = vm_map_entry_create(dst_map);
4164 				fake_entry->eflags = MAP_ENTRY_WRITECNT;
4165 				src_entry->eflags &= ~MAP_ENTRY_WRITECNT;
4166 				vm_object_reference(src_object);
4167 				fake_entry->object.vm_object = src_object;
4168 				fake_entry->start = src_entry->start;
4169 				fake_entry->end = src_entry->end;
4170 				fake_entry->defer_next =
4171 				    curthread->td_map_def_user;
4172 				curthread->td_map_def_user = fake_entry;
4173 			}
4174 
4175 			pmap_copy(dst_map->pmap, src_map->pmap,
4176 			    dst_entry->start, dst_entry->end - dst_entry->start,
4177 			    src_entry->start);
4178 		} else {
4179 			dst_entry->object.vm_object = NULL;
4180 			dst_entry->offset = 0;
4181 			if (src_entry->cred != NULL) {
4182 				dst_entry->cred = curthread->td_ucred;
4183 				crhold(dst_entry->cred);
4184 				*fork_charge += size;
4185 			}
4186 		}
4187 	} else {
4188 		/*
4189 		 * We don't want to make writeable wired pages copy-on-write.
4190 		 * Immediately copy these pages into the new map by simulating
4191 		 * page faults.  The new pages are pageable.
4192 		 */
4193 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
4194 		    fork_charge);
4195 	}
4196 }
4197 
4198 /*
4199  * vmspace_map_entry_forked:
4200  * Update the newly-forked vmspace each time a map entry is inherited
4201  * or copied.  The values for vm_dsize and vm_tsize are approximate
4202  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
4203  */
4204 static void
4205 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
4206     vm_map_entry_t entry)
4207 {
4208 	vm_size_t entrysize;
4209 	vm_offset_t newend;
4210 
4211 	if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
4212 		return;
4213 	entrysize = entry->end - entry->start;
4214 	vm2->vm_map.size += entrysize;
4215 	if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
4216 		vm2->vm_ssize += btoc(entrysize);
4217 	} else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
4218 	    entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
4219 		newend = MIN(entry->end,
4220 		    (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
4221 		vm2->vm_dsize += btoc(newend - entry->start);
4222 	} else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
4223 	    entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
4224 		newend = MIN(entry->end,
4225 		    (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
4226 		vm2->vm_tsize += btoc(newend - entry->start);
4227 	}
4228 }
4229 
4230 /*
4231  * vmspace_fork:
4232  * Create a new process vmspace structure and vm_map
4233  * based on those of an existing process.  The new map
4234  * is based on the old map, according to the inheritance
4235  * values on the regions in that map.
4236  *
4237  * XXX It might be worth coalescing the entries added to the new vmspace.
4238  *
4239  * The source map must not be locked.
4240  */
4241 struct vmspace *
4242 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
4243 {
4244 	struct vmspace *vm2;
4245 	vm_map_t new_map, old_map;
4246 	vm_map_entry_t new_entry, old_entry;
4247 	vm_object_t object;
4248 	int error, locked __diagused;
4249 	vm_inherit_t inh;
4250 
4251 	old_map = &vm1->vm_map;
4252 	/* Copy immutable fields of vm1 to vm2. */
4253 	vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map),
4254 	    pmap_pinit);
4255 	if (vm2 == NULL)
4256 		return (NULL);
4257 
4258 	vm2->vm_taddr = vm1->vm_taddr;
4259 	vm2->vm_daddr = vm1->vm_daddr;
4260 	vm2->vm_maxsaddr = vm1->vm_maxsaddr;
4261 	vm2->vm_stacktop = vm1->vm_stacktop;
4262 	vm2->vm_shp_base = vm1->vm_shp_base;
4263 	vm_map_lock(old_map);
4264 	if (old_map->busy)
4265 		vm_map_wait_busy(old_map);
4266 	new_map = &vm2->vm_map;
4267 	locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
4268 	KASSERT(locked, ("vmspace_fork: lock failed"));
4269 
4270 	error = pmap_vmspace_copy(new_map->pmap, old_map->pmap);
4271 	if (error != 0) {
4272 		sx_xunlock(&old_map->lock);
4273 		sx_xunlock(&new_map->lock);
4274 		vm_map_process_deferred();
4275 		vmspace_free(vm2);
4276 		return (NULL);
4277 	}
4278 
4279 	new_map->anon_loc = old_map->anon_loc;
4280 	new_map->flags |= old_map->flags & (MAP_ASLR | MAP_ASLR_IGNSTART |
4281 	    MAP_ASLR_STACK | MAP_WXORX);
4282 
4283 	VM_MAP_ENTRY_FOREACH(old_entry, old_map) {
4284 		if ((old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
4285 			panic("vm_map_fork: encountered a submap");
4286 
4287 		inh = old_entry->inheritance;
4288 		if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4289 		    inh != VM_INHERIT_NONE)
4290 			inh = VM_INHERIT_COPY;
4291 
4292 		switch (inh) {
4293 		case VM_INHERIT_NONE:
4294 			break;
4295 
4296 		case VM_INHERIT_SHARE:
4297 			/*
4298 			 * Clone the entry, creating the shared object if
4299 			 * necessary.
4300 			 */
4301 			object = old_entry->object.vm_object;
4302 			if (object == NULL) {
4303 				vm_map_entry_back(old_entry);
4304 				object = old_entry->object.vm_object;
4305 			}
4306 
4307 			/*
4308 			 * Add the reference before calling vm_object_shadow
4309 			 * to insure that a shadow object is created.
4310 			 */
4311 			vm_object_reference(object);
4312 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4313 				vm_object_shadow(&old_entry->object.vm_object,
4314 				    &old_entry->offset,
4315 				    old_entry->end - old_entry->start,
4316 				    old_entry->cred,
4317 				    /* Transfer the second reference too. */
4318 				    true);
4319 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4320 				old_entry->cred = NULL;
4321 
4322 				/*
4323 				 * As in vm_map_merged_neighbor_dispose(),
4324 				 * the vnode lock will not be acquired in
4325 				 * this call to vm_object_deallocate().
4326 				 */
4327 				vm_object_deallocate(object);
4328 				object = old_entry->object.vm_object;
4329 			} else {
4330 				VM_OBJECT_WLOCK(object);
4331 				vm_object_clear_flag(object, OBJ_ONEMAPPING);
4332 				if (old_entry->cred != NULL) {
4333 					KASSERT(object->cred == NULL,
4334 					    ("vmspace_fork both cred"));
4335 					object->cred = old_entry->cred;
4336 					object->charge = old_entry->end -
4337 					    old_entry->start;
4338 					old_entry->cred = NULL;
4339 				}
4340 
4341 				/*
4342 				 * Assert the correct state of the vnode
4343 				 * v_writecount while the object is locked, to
4344 				 * not relock it later for the assertion
4345 				 * correctness.
4346 				 */
4347 				if (old_entry->eflags & MAP_ENTRY_WRITECNT &&
4348 				    object->type == OBJT_VNODE) {
4349 					KASSERT(((struct vnode *)object->
4350 					    handle)->v_writecount > 0,
4351 					    ("vmspace_fork: v_writecount %p",
4352 					    object));
4353 					KASSERT(object->un_pager.vnp.
4354 					    writemappings > 0,
4355 					    ("vmspace_fork: vnp.writecount %p",
4356 					    object));
4357 				}
4358 				VM_OBJECT_WUNLOCK(object);
4359 			}
4360 
4361 			/*
4362 			 * Clone the entry, referencing the shared object.
4363 			 */
4364 			new_entry = vm_map_entry_create(new_map);
4365 			*new_entry = *old_entry;
4366 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
4367 			    MAP_ENTRY_IN_TRANSITION);
4368 			new_entry->wiring_thread = NULL;
4369 			new_entry->wired_count = 0;
4370 			if (new_entry->eflags & MAP_ENTRY_WRITECNT) {
4371 				vm_pager_update_writecount(object,
4372 				    new_entry->start, new_entry->end);
4373 			}
4374 			vm_map_entry_set_vnode_text(new_entry, true);
4375 
4376 			/*
4377 			 * Insert the entry into the new map -- we know we're
4378 			 * inserting at the end of the new map.
4379 			 */
4380 			vm_map_entry_link(new_map, new_entry);
4381 			vmspace_map_entry_forked(vm1, vm2, new_entry);
4382 
4383 			/*
4384 			 * Update the physical map
4385 			 */
4386 			pmap_copy(new_map->pmap, old_map->pmap,
4387 			    new_entry->start,
4388 			    (old_entry->end - old_entry->start),
4389 			    old_entry->start);
4390 			break;
4391 
4392 		case VM_INHERIT_COPY:
4393 			/*
4394 			 * Clone the entry and link into the map.
4395 			 */
4396 			new_entry = vm_map_entry_create(new_map);
4397 			*new_entry = *old_entry;
4398 			/*
4399 			 * Copied entry is COW over the old object.
4400 			 */
4401 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
4402 			    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_WRITECNT);
4403 			new_entry->wiring_thread = NULL;
4404 			new_entry->wired_count = 0;
4405 			new_entry->object.vm_object = NULL;
4406 			new_entry->cred = NULL;
4407 			vm_map_entry_link(new_map, new_entry);
4408 			vmspace_map_entry_forked(vm1, vm2, new_entry);
4409 			vm_map_copy_entry(old_map, new_map, old_entry,
4410 			    new_entry, fork_charge);
4411 			vm_map_entry_set_vnode_text(new_entry, true);
4412 			break;
4413 
4414 		case VM_INHERIT_ZERO:
4415 			/*
4416 			 * Create a new anonymous mapping entry modelled from
4417 			 * the old one.
4418 			 */
4419 			new_entry = vm_map_entry_create(new_map);
4420 			memset(new_entry, 0, sizeof(*new_entry));
4421 
4422 			new_entry->start = old_entry->start;
4423 			new_entry->end = old_entry->end;
4424 			new_entry->eflags = old_entry->eflags &
4425 			    ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION |
4426 			    MAP_ENTRY_WRITECNT | MAP_ENTRY_VN_EXEC |
4427 			    MAP_ENTRY_SPLIT_BOUNDARY_MASK);
4428 			new_entry->protection = old_entry->protection;
4429 			new_entry->max_protection = old_entry->max_protection;
4430 			new_entry->inheritance = VM_INHERIT_ZERO;
4431 
4432 			vm_map_entry_link(new_map, new_entry);
4433 			vmspace_map_entry_forked(vm1, vm2, new_entry);
4434 
4435 			new_entry->cred = curthread->td_ucred;
4436 			crhold(new_entry->cred);
4437 			*fork_charge += (new_entry->end - new_entry->start);
4438 
4439 			break;
4440 		}
4441 	}
4442 	/*
4443 	 * Use inlined vm_map_unlock() to postpone handling the deferred
4444 	 * map entries, which cannot be done until both old_map and
4445 	 * new_map locks are released.
4446 	 */
4447 	sx_xunlock(&old_map->lock);
4448 	sx_xunlock(&new_map->lock);
4449 	vm_map_process_deferred();
4450 
4451 	return (vm2);
4452 }
4453 
4454 /*
4455  * Create a process's stack for exec_new_vmspace().  This function is never
4456  * asked to wire the newly created stack.
4457  */
4458 int
4459 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4460     vm_prot_t prot, vm_prot_t max, int cow)
4461 {
4462 	vm_size_t growsize, init_ssize;
4463 	rlim_t vmemlim;
4464 	int rv;
4465 
4466 	MPASS((map->flags & MAP_WIREFUTURE) == 0);
4467 	growsize = sgrowsiz;
4468 	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
4469 	vm_map_lock(map);
4470 	vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4471 	/* If we would blow our VMEM resource limit, no go */
4472 	if (map->size + init_ssize > vmemlim) {
4473 		rv = KERN_NO_SPACE;
4474 		goto out;
4475 	}
4476 	rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
4477 	    max, cow);
4478 out:
4479 	vm_map_unlock(map);
4480 	return (rv);
4481 }
4482 
4483 static int stack_guard_page = 1;
4484 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
4485     &stack_guard_page, 0,
4486     "Specifies the number of guard pages for a stack that grows");
4487 
4488 static int
4489 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4490     vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
4491 {
4492 	vm_map_entry_t new_entry, prev_entry;
4493 	vm_offset_t bot, gap_bot, gap_top, top;
4494 	vm_size_t init_ssize, sgp;
4495 	int orient, rv;
4496 
4497 	/*
4498 	 * The stack orientation is piggybacked with the cow argument.
4499 	 * Extract it into orient and mask the cow argument so that we
4500 	 * don't pass it around further.
4501 	 */
4502 	orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP);
4503 	KASSERT(orient != 0, ("No stack grow direction"));
4504 	KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP),
4505 	    ("bi-dir stack"));
4506 
4507 	if (max_ssize == 0 ||
4508 	    !vm_map_range_valid(map, addrbos, addrbos + max_ssize))
4509 		return (KERN_INVALID_ADDRESS);
4510 	sgp = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ||
4511 	    (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 :
4512 	    (vm_size_t)stack_guard_page * PAGE_SIZE;
4513 	if (sgp >= max_ssize)
4514 		return (KERN_INVALID_ARGUMENT);
4515 
4516 	init_ssize = growsize;
4517 	if (max_ssize < init_ssize + sgp)
4518 		init_ssize = max_ssize - sgp;
4519 
4520 	/* If addr is already mapped, no go */
4521 	if (vm_map_lookup_entry(map, addrbos, &prev_entry))
4522 		return (KERN_NO_SPACE);
4523 
4524 	/*
4525 	 * If we can't accommodate max_ssize in the current mapping, no go.
4526 	 */
4527 	if (vm_map_entry_succ(prev_entry)->start < addrbos + max_ssize)
4528 		return (KERN_NO_SPACE);
4529 
4530 	/*
4531 	 * We initially map a stack of only init_ssize.  We will grow as
4532 	 * needed later.  Depending on the orientation of the stack (i.e.
4533 	 * the grow direction) we either map at the top of the range, the
4534 	 * bottom of the range or in the middle.
4535 	 *
4536 	 * Note: we would normally expect prot and max to be VM_PROT_ALL,
4537 	 * and cow to be 0.  Possibly we should eliminate these as input
4538 	 * parameters, and just pass these values here in the insert call.
4539 	 */
4540 	if (orient == MAP_STACK_GROWS_DOWN) {
4541 		bot = addrbos + max_ssize - init_ssize;
4542 		top = bot + init_ssize;
4543 		gap_bot = addrbos;
4544 		gap_top = bot;
4545 	} else /* if (orient == MAP_STACK_GROWS_UP) */ {
4546 		bot = addrbos;
4547 		top = bot + init_ssize;
4548 		gap_bot = top;
4549 		gap_top = addrbos + max_ssize;
4550 	}
4551 	rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
4552 	if (rv != KERN_SUCCESS)
4553 		return (rv);
4554 	new_entry = vm_map_entry_succ(prev_entry);
4555 	KASSERT(new_entry->end == top || new_entry->start == bot,
4556 	    ("Bad entry start/end for new stack entry"));
4557 	KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
4558 	    (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
4559 	    ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
4560 	KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
4561 	    (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
4562 	    ("new entry lacks MAP_ENTRY_GROWS_UP"));
4563 	if (gap_bot == gap_top)
4564 		return (KERN_SUCCESS);
4565 	rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE,
4566 	    VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ?
4567 	    MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP));
4568 	if (rv == KERN_SUCCESS) {
4569 		/*
4570 		 * Gap can never successfully handle a fault, so
4571 		 * read-ahead logic is never used for it.  Re-use
4572 		 * next_read of the gap entry to store
4573 		 * stack_guard_page for vm_map_growstack().
4574 		 */
4575 		if (orient == MAP_STACK_GROWS_DOWN)
4576 			vm_map_entry_pred(new_entry)->next_read = sgp;
4577 		else
4578 			vm_map_entry_succ(new_entry)->next_read = sgp;
4579 	} else {
4580 		(void)vm_map_delete(map, bot, top);
4581 	}
4582 	return (rv);
4583 }
4584 
4585 /*
4586  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if we
4587  * successfully grow the stack.
4588  */
4589 static int
4590 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry)
4591 {
4592 	vm_map_entry_t stack_entry;
4593 	struct proc *p;
4594 	struct vmspace *vm;
4595 	struct ucred *cred;
4596 	vm_offset_t gap_end, gap_start, grow_start;
4597 	vm_size_t grow_amount, guard, max_grow;
4598 	rlim_t lmemlim, stacklim, vmemlim;
4599 	int rv, rv1 __diagused;
4600 	bool gap_deleted, grow_down, is_procstack;
4601 #ifdef notyet
4602 	uint64_t limit;
4603 #endif
4604 #ifdef RACCT
4605 	int error __diagused;
4606 #endif
4607 
4608 	p = curproc;
4609 	vm = p->p_vmspace;
4610 
4611 	/*
4612 	 * Disallow stack growth when the access is performed by a
4613 	 * debugger or AIO daemon.  The reason is that the wrong
4614 	 * resource limits are applied.
4615 	 */
4616 	if (p != initproc && (map != &p->p_vmspace->vm_map ||
4617 	    p->p_textvp == NULL))
4618 		return (KERN_FAILURE);
4619 
4620 	MPASS(!map->system_map);
4621 
4622 	lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
4623 	stacklim = lim_cur(curthread, RLIMIT_STACK);
4624 	vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4625 retry:
4626 	/* If addr is not in a hole for a stack grow area, no need to grow. */
4627 	if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry))
4628 		return (KERN_FAILURE);
4629 	if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0)
4630 		return (KERN_SUCCESS);
4631 	if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) {
4632 		stack_entry = vm_map_entry_succ(gap_entry);
4633 		if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 ||
4634 		    stack_entry->start != gap_entry->end)
4635 			return (KERN_FAILURE);
4636 		grow_amount = round_page(stack_entry->start - addr);
4637 		grow_down = true;
4638 	} else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) {
4639 		stack_entry = vm_map_entry_pred(gap_entry);
4640 		if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 ||
4641 		    stack_entry->end != gap_entry->start)
4642 			return (KERN_FAILURE);
4643 		grow_amount = round_page(addr + 1 - stack_entry->end);
4644 		grow_down = false;
4645 	} else {
4646 		return (KERN_FAILURE);
4647 	}
4648 	guard = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ||
4649 	    (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 :
4650 	    gap_entry->next_read;
4651 	max_grow = gap_entry->end - gap_entry->start;
4652 	if (guard > max_grow)
4653 		return (KERN_NO_SPACE);
4654 	max_grow -= guard;
4655 	if (grow_amount > max_grow)
4656 		return (KERN_NO_SPACE);
4657 
4658 	/*
4659 	 * If this is the main process stack, see if we're over the stack
4660 	 * limit.
4661 	 */
4662 	is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr &&
4663 	    addr < (vm_offset_t)vm->vm_stacktop;
4664 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim))
4665 		return (KERN_NO_SPACE);
4666 
4667 #ifdef RACCT
4668 	if (racct_enable) {
4669 		PROC_LOCK(p);
4670 		if (is_procstack && racct_set(p, RACCT_STACK,
4671 		    ctob(vm->vm_ssize) + grow_amount)) {
4672 			PROC_UNLOCK(p);
4673 			return (KERN_NO_SPACE);
4674 		}
4675 		PROC_UNLOCK(p);
4676 	}
4677 #endif
4678 
4679 	grow_amount = roundup(grow_amount, sgrowsiz);
4680 	if (grow_amount > max_grow)
4681 		grow_amount = max_grow;
4682 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
4683 		grow_amount = trunc_page((vm_size_t)stacklim) -
4684 		    ctob(vm->vm_ssize);
4685 	}
4686 
4687 #ifdef notyet
4688 	PROC_LOCK(p);
4689 	limit = racct_get_available(p, RACCT_STACK);
4690 	PROC_UNLOCK(p);
4691 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
4692 		grow_amount = limit - ctob(vm->vm_ssize);
4693 #endif
4694 
4695 	if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) {
4696 		if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
4697 			rv = KERN_NO_SPACE;
4698 			goto out;
4699 		}
4700 #ifdef RACCT
4701 		if (racct_enable) {
4702 			PROC_LOCK(p);
4703 			if (racct_set(p, RACCT_MEMLOCK,
4704 			    ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
4705 				PROC_UNLOCK(p);
4706 				rv = KERN_NO_SPACE;
4707 				goto out;
4708 			}
4709 			PROC_UNLOCK(p);
4710 		}
4711 #endif
4712 	}
4713 
4714 	/* If we would blow our VMEM resource limit, no go */
4715 	if (map->size + grow_amount > vmemlim) {
4716 		rv = KERN_NO_SPACE;
4717 		goto out;
4718 	}
4719 #ifdef RACCT
4720 	if (racct_enable) {
4721 		PROC_LOCK(p);
4722 		if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
4723 			PROC_UNLOCK(p);
4724 			rv = KERN_NO_SPACE;
4725 			goto out;
4726 		}
4727 		PROC_UNLOCK(p);
4728 	}
4729 #endif
4730 
4731 	if (vm_map_lock_upgrade(map)) {
4732 		gap_entry = NULL;
4733 		vm_map_lock_read(map);
4734 		goto retry;
4735 	}
4736 
4737 	if (grow_down) {
4738 		grow_start = gap_entry->end - grow_amount;
4739 		if (gap_entry->start + grow_amount == gap_entry->end) {
4740 			gap_start = gap_entry->start;
4741 			gap_end = gap_entry->end;
4742 			vm_map_entry_delete(map, gap_entry);
4743 			gap_deleted = true;
4744 		} else {
4745 			MPASS(gap_entry->start < gap_entry->end - grow_amount);
4746 			vm_map_entry_resize(map, gap_entry, -grow_amount);
4747 			gap_deleted = false;
4748 		}
4749 		rv = vm_map_insert(map, NULL, 0, grow_start,
4750 		    grow_start + grow_amount,
4751 		    stack_entry->protection, stack_entry->max_protection,
4752 		    MAP_STACK_GROWS_DOWN);
4753 		if (rv != KERN_SUCCESS) {
4754 			if (gap_deleted) {
4755 				rv1 = vm_map_insert(map, NULL, 0, gap_start,
4756 				    gap_end, VM_PROT_NONE, VM_PROT_NONE,
4757 				    MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN);
4758 				MPASS(rv1 == KERN_SUCCESS);
4759 			} else
4760 				vm_map_entry_resize(map, gap_entry,
4761 				    grow_amount);
4762 		}
4763 	} else {
4764 		grow_start = stack_entry->end;
4765 		cred = stack_entry->cred;
4766 		if (cred == NULL && stack_entry->object.vm_object != NULL)
4767 			cred = stack_entry->object.vm_object->cred;
4768 		if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
4769 			rv = KERN_NO_SPACE;
4770 		/* Grow the underlying object if applicable. */
4771 		else if (stack_entry->object.vm_object == NULL ||
4772 		    vm_object_coalesce(stack_entry->object.vm_object,
4773 		    stack_entry->offset,
4774 		    (vm_size_t)(stack_entry->end - stack_entry->start),
4775 		    grow_amount, cred != NULL)) {
4776 			if (gap_entry->start + grow_amount == gap_entry->end) {
4777 				vm_map_entry_delete(map, gap_entry);
4778 				vm_map_entry_resize(map, stack_entry,
4779 				    grow_amount);
4780 			} else {
4781 				gap_entry->start += grow_amount;
4782 				stack_entry->end += grow_amount;
4783 			}
4784 			map->size += grow_amount;
4785 			rv = KERN_SUCCESS;
4786 		} else
4787 			rv = KERN_FAILURE;
4788 	}
4789 	if (rv == KERN_SUCCESS && is_procstack)
4790 		vm->vm_ssize += btoc(grow_amount);
4791 
4792 	/*
4793 	 * Heed the MAP_WIREFUTURE flag if it was set for this process.
4794 	 */
4795 	if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) {
4796 		rv = vm_map_wire_locked(map, grow_start,
4797 		    grow_start + grow_amount,
4798 		    VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
4799 	}
4800 	vm_map_lock_downgrade(map);
4801 
4802 out:
4803 #ifdef RACCT
4804 	if (racct_enable && rv != KERN_SUCCESS) {
4805 		PROC_LOCK(p);
4806 		error = racct_set(p, RACCT_VMEM, map->size);
4807 		KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
4808 		if (!old_mlock) {
4809 			error = racct_set(p, RACCT_MEMLOCK,
4810 			    ptoa(pmap_wired_count(map->pmap)));
4811 			KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
4812 		}
4813 	    	error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
4814 		KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
4815 		PROC_UNLOCK(p);
4816 	}
4817 #endif
4818 
4819 	return (rv);
4820 }
4821 
4822 /*
4823  * Unshare the specified VM space for exec.  If other processes are
4824  * mapped to it, then create a new one.  The new vmspace is null.
4825  */
4826 int
4827 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
4828 {
4829 	struct vmspace *oldvmspace = p->p_vmspace;
4830 	struct vmspace *newvmspace;
4831 
4832 	KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
4833 	    ("vmspace_exec recursed"));
4834 	newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit);
4835 	if (newvmspace == NULL)
4836 		return (ENOMEM);
4837 	newvmspace->vm_swrss = oldvmspace->vm_swrss;
4838 	/*
4839 	 * This code is written like this for prototype purposes.  The
4840 	 * goal is to avoid running down the vmspace here, but let the
4841 	 * other process's that are still using the vmspace to finally
4842 	 * run it down.  Even though there is little or no chance of blocking
4843 	 * here, it is a good idea to keep this form for future mods.
4844 	 */
4845 	PROC_VMSPACE_LOCK(p);
4846 	p->p_vmspace = newvmspace;
4847 	PROC_VMSPACE_UNLOCK(p);
4848 	if (p == curthread->td_proc)
4849 		pmap_activate(curthread);
4850 	curthread->td_pflags |= TDP_EXECVMSPC;
4851 	return (0);
4852 }
4853 
4854 /*
4855  * Unshare the specified VM space for forcing COW.  This
4856  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
4857  */
4858 int
4859 vmspace_unshare(struct proc *p)
4860 {
4861 	struct vmspace *oldvmspace = p->p_vmspace;
4862 	struct vmspace *newvmspace;
4863 	vm_ooffset_t fork_charge;
4864 
4865 	/*
4866 	 * The caller is responsible for ensuring that the reference count
4867 	 * cannot concurrently transition 1 -> 2.
4868 	 */
4869 	if (refcount_load(&oldvmspace->vm_refcnt) == 1)
4870 		return (0);
4871 	fork_charge = 0;
4872 	newvmspace = vmspace_fork(oldvmspace, &fork_charge);
4873 	if (newvmspace == NULL)
4874 		return (ENOMEM);
4875 	if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
4876 		vmspace_free(newvmspace);
4877 		return (ENOMEM);
4878 	}
4879 	PROC_VMSPACE_LOCK(p);
4880 	p->p_vmspace = newvmspace;
4881 	PROC_VMSPACE_UNLOCK(p);
4882 	if (p == curthread->td_proc)
4883 		pmap_activate(curthread);
4884 	vmspace_free(oldvmspace);
4885 	return (0);
4886 }
4887 
4888 /*
4889  *	vm_map_lookup:
4890  *
4891  *	Finds the VM object, offset, and
4892  *	protection for a given virtual address in the
4893  *	specified map, assuming a page fault of the
4894  *	type specified.
4895  *
4896  *	Leaves the map in question locked for read; return
4897  *	values are guaranteed until a vm_map_lookup_done
4898  *	call is performed.  Note that the map argument
4899  *	is in/out; the returned map must be used in
4900  *	the call to vm_map_lookup_done.
4901  *
4902  *	A handle (out_entry) is returned for use in
4903  *	vm_map_lookup_done, to make that fast.
4904  *
4905  *	If a lookup is requested with "write protection"
4906  *	specified, the map may be changed to perform virtual
4907  *	copying operations, although the data referenced will
4908  *	remain the same.
4909  */
4910 int
4911 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
4912 	      vm_offset_t vaddr,
4913 	      vm_prot_t fault_typea,
4914 	      vm_map_entry_t *out_entry,	/* OUT */
4915 	      vm_object_t *object,		/* OUT */
4916 	      vm_pindex_t *pindex,		/* OUT */
4917 	      vm_prot_t *out_prot,		/* OUT */
4918 	      boolean_t *wired)			/* OUT */
4919 {
4920 	vm_map_entry_t entry;
4921 	vm_map_t map = *var_map;
4922 	vm_prot_t prot;
4923 	vm_prot_t fault_type;
4924 	vm_object_t eobject;
4925 	vm_size_t size;
4926 	struct ucred *cred;
4927 
4928 RetryLookup:
4929 
4930 	vm_map_lock_read(map);
4931 
4932 RetryLookupLocked:
4933 	/*
4934 	 * Lookup the faulting address.
4935 	 */
4936 	if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
4937 		vm_map_unlock_read(map);
4938 		return (KERN_INVALID_ADDRESS);
4939 	}
4940 
4941 	entry = *out_entry;
4942 
4943 	/*
4944 	 * Handle submaps.
4945 	 */
4946 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4947 		vm_map_t old_map = map;
4948 
4949 		*var_map = map = entry->object.sub_map;
4950 		vm_map_unlock_read(old_map);
4951 		goto RetryLookup;
4952 	}
4953 
4954 	/*
4955 	 * Check whether this task is allowed to have this page.
4956 	 */
4957 	prot = entry->protection;
4958 	if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) {
4959 		fault_typea &= ~VM_PROT_FAULT_LOOKUP;
4960 		if (prot == VM_PROT_NONE && map != kernel_map &&
4961 		    (entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4962 		    (entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
4963 		    MAP_ENTRY_STACK_GAP_UP)) != 0 &&
4964 		    vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS)
4965 			goto RetryLookupLocked;
4966 	}
4967 	fault_type = fault_typea & VM_PROT_ALL;
4968 	if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
4969 		vm_map_unlock_read(map);
4970 		return (KERN_PROTECTION_FAILURE);
4971 	}
4972 	KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
4973 	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
4974 	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
4975 	    ("entry %p flags %x", entry, entry->eflags));
4976 	if ((fault_typea & VM_PROT_COPY) != 0 &&
4977 	    (entry->max_protection & VM_PROT_WRITE) == 0 &&
4978 	    (entry->eflags & MAP_ENTRY_COW) == 0) {
4979 		vm_map_unlock_read(map);
4980 		return (KERN_PROTECTION_FAILURE);
4981 	}
4982 
4983 	/*
4984 	 * If this page is not pageable, we have to get it for all possible
4985 	 * accesses.
4986 	 */
4987 	*wired = (entry->wired_count != 0);
4988 	if (*wired)
4989 		fault_type = entry->protection;
4990 	size = entry->end - entry->start;
4991 
4992 	/*
4993 	 * If the entry was copy-on-write, we either ...
4994 	 */
4995 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4996 		/*
4997 		 * If we want to write the page, we may as well handle that
4998 		 * now since we've got the map locked.
4999 		 *
5000 		 * If we don't need to write the page, we just demote the
5001 		 * permissions allowed.
5002 		 */
5003 		if ((fault_type & VM_PROT_WRITE) != 0 ||
5004 		    (fault_typea & VM_PROT_COPY) != 0) {
5005 			/*
5006 			 * Make a new object, and place it in the object
5007 			 * chain.  Note that no new references have appeared
5008 			 * -- one just moved from the map to the new
5009 			 * object.
5010 			 */
5011 			if (vm_map_lock_upgrade(map))
5012 				goto RetryLookup;
5013 
5014 			if (entry->cred == NULL) {
5015 				/*
5016 				 * The debugger owner is charged for
5017 				 * the memory.
5018 				 */
5019 				cred = curthread->td_ucred;
5020 				crhold(cred);
5021 				if (!swap_reserve_by_cred(size, cred)) {
5022 					crfree(cred);
5023 					vm_map_unlock(map);
5024 					return (KERN_RESOURCE_SHORTAGE);
5025 				}
5026 				entry->cred = cred;
5027 			}
5028 			eobject = entry->object.vm_object;
5029 			vm_object_shadow(&entry->object.vm_object,
5030 			    &entry->offset, size, entry->cred, false);
5031 			if (eobject == entry->object.vm_object) {
5032 				/*
5033 				 * The object was not shadowed.
5034 				 */
5035 				swap_release_by_cred(size, entry->cred);
5036 				crfree(entry->cred);
5037 			}
5038 			entry->cred = NULL;
5039 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
5040 
5041 			vm_map_lock_downgrade(map);
5042 		} else {
5043 			/*
5044 			 * We're attempting to read a copy-on-write page --
5045 			 * don't allow writes.
5046 			 */
5047 			prot &= ~VM_PROT_WRITE;
5048 		}
5049 	}
5050 
5051 	/*
5052 	 * Create an object if necessary.
5053 	 */
5054 	if (entry->object.vm_object == NULL && !map->system_map) {
5055 		if (vm_map_lock_upgrade(map))
5056 			goto RetryLookup;
5057 		entry->object.vm_object = vm_object_allocate_anon(atop(size),
5058 		    NULL, entry->cred, size);
5059 		entry->offset = 0;
5060 		entry->cred = NULL;
5061 		vm_map_lock_downgrade(map);
5062 	}
5063 
5064 	/*
5065 	 * Return the object/offset from this entry.  If the entry was
5066 	 * copy-on-write or empty, it has been fixed up.
5067 	 */
5068 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
5069 	*object = entry->object.vm_object;
5070 
5071 	*out_prot = prot;
5072 	return (KERN_SUCCESS);
5073 }
5074 
5075 /*
5076  *	vm_map_lookup_locked:
5077  *
5078  *	Lookup the faulting address.  A version of vm_map_lookup that returns
5079  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
5080  */
5081 int
5082 vm_map_lookup_locked(vm_map_t *var_map,		/* IN/OUT */
5083 		     vm_offset_t vaddr,
5084 		     vm_prot_t fault_typea,
5085 		     vm_map_entry_t *out_entry,	/* OUT */
5086 		     vm_object_t *object,	/* OUT */
5087 		     vm_pindex_t *pindex,	/* OUT */
5088 		     vm_prot_t *out_prot,	/* OUT */
5089 		     boolean_t *wired)		/* OUT */
5090 {
5091 	vm_map_entry_t entry;
5092 	vm_map_t map = *var_map;
5093 	vm_prot_t prot;
5094 	vm_prot_t fault_type = fault_typea;
5095 
5096 	/*
5097 	 * Lookup the faulting address.
5098 	 */
5099 	if (!vm_map_lookup_entry(map, vaddr, out_entry))
5100 		return (KERN_INVALID_ADDRESS);
5101 
5102 	entry = *out_entry;
5103 
5104 	/*
5105 	 * Fail if the entry refers to a submap.
5106 	 */
5107 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
5108 		return (KERN_FAILURE);
5109 
5110 	/*
5111 	 * Check whether this task is allowed to have this page.
5112 	 */
5113 	prot = entry->protection;
5114 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
5115 	if ((fault_type & prot) != fault_type)
5116 		return (KERN_PROTECTION_FAILURE);
5117 
5118 	/*
5119 	 * If this page is not pageable, we have to get it for all possible
5120 	 * accesses.
5121 	 */
5122 	*wired = (entry->wired_count != 0);
5123 	if (*wired)
5124 		fault_type = entry->protection;
5125 
5126 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
5127 		/*
5128 		 * Fail if the entry was copy-on-write for a write fault.
5129 		 */
5130 		if (fault_type & VM_PROT_WRITE)
5131 			return (KERN_FAILURE);
5132 		/*
5133 		 * We're attempting to read a copy-on-write page --
5134 		 * don't allow writes.
5135 		 */
5136 		prot &= ~VM_PROT_WRITE;
5137 	}
5138 
5139 	/*
5140 	 * Fail if an object should be created.
5141 	 */
5142 	if (entry->object.vm_object == NULL && !map->system_map)
5143 		return (KERN_FAILURE);
5144 
5145 	/*
5146 	 * Return the object/offset from this entry.  If the entry was
5147 	 * copy-on-write or empty, it has been fixed up.
5148 	 */
5149 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
5150 	*object = entry->object.vm_object;
5151 
5152 	*out_prot = prot;
5153 	return (KERN_SUCCESS);
5154 }
5155 
5156 /*
5157  *	vm_map_lookup_done:
5158  *
5159  *	Releases locks acquired by a vm_map_lookup
5160  *	(according to the handle returned by that lookup).
5161  */
5162 void
5163 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
5164 {
5165 	/*
5166 	 * Unlock the main-level map
5167 	 */
5168 	vm_map_unlock_read(map);
5169 }
5170 
5171 vm_offset_t
5172 vm_map_max_KBI(const struct vm_map *map)
5173 {
5174 
5175 	return (vm_map_max(map));
5176 }
5177 
5178 vm_offset_t
5179 vm_map_min_KBI(const struct vm_map *map)
5180 {
5181 
5182 	return (vm_map_min(map));
5183 }
5184 
5185 pmap_t
5186 vm_map_pmap_KBI(vm_map_t map)
5187 {
5188 
5189 	return (map->pmap);
5190 }
5191 
5192 bool
5193 vm_map_range_valid_KBI(vm_map_t map, vm_offset_t start, vm_offset_t end)
5194 {
5195 
5196 	return (vm_map_range_valid(map, start, end));
5197 }
5198 
5199 #ifdef INVARIANTS
5200 static void
5201 _vm_map_assert_consistent(vm_map_t map, int check)
5202 {
5203 	vm_map_entry_t entry, prev;
5204 	vm_map_entry_t cur, header, lbound, ubound;
5205 	vm_size_t max_left, max_right;
5206 
5207 #ifdef DIAGNOSTIC
5208 	++map->nupdates;
5209 #endif
5210 	if (enable_vmmap_check != check)
5211 		return;
5212 
5213 	header = prev = &map->header;
5214 	VM_MAP_ENTRY_FOREACH(entry, map) {
5215 		KASSERT(prev->end <= entry->start,
5216 		    ("map %p prev->end = %jx, start = %jx", map,
5217 		    (uintmax_t)prev->end, (uintmax_t)entry->start));
5218 		KASSERT(entry->start < entry->end,
5219 		    ("map %p start = %jx, end = %jx", map,
5220 		    (uintmax_t)entry->start, (uintmax_t)entry->end));
5221 		KASSERT(entry->left == header ||
5222 		    entry->left->start < entry->start,
5223 		    ("map %p left->start = %jx, start = %jx", map,
5224 		    (uintmax_t)entry->left->start, (uintmax_t)entry->start));
5225 		KASSERT(entry->right == header ||
5226 		    entry->start < entry->right->start,
5227 		    ("map %p start = %jx, right->start = %jx", map,
5228 		    (uintmax_t)entry->start, (uintmax_t)entry->right->start));
5229 		cur = map->root;
5230 		lbound = ubound = header;
5231 		for (;;) {
5232 			if (entry->start < cur->start) {
5233 				ubound = cur;
5234 				cur = cur->left;
5235 				KASSERT(cur != lbound,
5236 				    ("map %p cannot find %jx",
5237 				    map, (uintmax_t)entry->start));
5238 			} else if (cur->end <= entry->start) {
5239 				lbound = cur;
5240 				cur = cur->right;
5241 				KASSERT(cur != ubound,
5242 				    ("map %p cannot find %jx",
5243 				    map, (uintmax_t)entry->start));
5244 			} else {
5245 				KASSERT(cur == entry,
5246 				    ("map %p cannot find %jx",
5247 				    map, (uintmax_t)entry->start));
5248 				break;
5249 			}
5250 		}
5251 		max_left = vm_map_entry_max_free_left(entry, lbound);
5252 		max_right = vm_map_entry_max_free_right(entry, ubound);
5253 		KASSERT(entry->max_free == vm_size_max(max_left, max_right),
5254 		    ("map %p max = %jx, max_left = %jx, max_right = %jx", map,
5255 		    (uintmax_t)entry->max_free,
5256 		    (uintmax_t)max_left, (uintmax_t)max_right));
5257 		prev = entry;
5258 	}
5259 	KASSERT(prev->end <= entry->start,
5260 	    ("map %p prev->end = %jx, start = %jx", map,
5261 	    (uintmax_t)prev->end, (uintmax_t)entry->start));
5262 }
5263 #endif
5264 
5265 #include "opt_ddb.h"
5266 #ifdef DDB
5267 #include <sys/kernel.h>
5268 
5269 #include <ddb/ddb.h>
5270 
5271 static void
5272 vm_map_print(vm_map_t map)
5273 {
5274 	vm_map_entry_t entry, prev;
5275 
5276 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
5277 	    (void *)map,
5278 	    (void *)map->pmap, map->nentries, map->timestamp);
5279 
5280 	db_indent += 2;
5281 	prev = &map->header;
5282 	VM_MAP_ENTRY_FOREACH(entry, map) {
5283 		db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n",
5284 		    (void *)entry, (void *)entry->start, (void *)entry->end,
5285 		    entry->eflags);
5286 		{
5287 			static const char * const inheritance_name[4] =
5288 			{"share", "copy", "none", "donate_copy"};
5289 
5290 			db_iprintf(" prot=%x/%x/%s",
5291 			    entry->protection,
5292 			    entry->max_protection,
5293 			    inheritance_name[(int)(unsigned char)
5294 			    entry->inheritance]);
5295 			if (entry->wired_count != 0)
5296 				db_printf(", wired");
5297 		}
5298 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
5299 			db_printf(", share=%p, offset=0x%jx\n",
5300 			    (void *)entry->object.sub_map,
5301 			    (uintmax_t)entry->offset);
5302 			if (prev == &map->header ||
5303 			    prev->object.sub_map !=
5304 				entry->object.sub_map) {
5305 				db_indent += 2;
5306 				vm_map_print((vm_map_t)entry->object.sub_map);
5307 				db_indent -= 2;
5308 			}
5309 		} else {
5310 			if (entry->cred != NULL)
5311 				db_printf(", ruid %d", entry->cred->cr_ruid);
5312 			db_printf(", object=%p, offset=0x%jx",
5313 			    (void *)entry->object.vm_object,
5314 			    (uintmax_t)entry->offset);
5315 			if (entry->object.vm_object && entry->object.vm_object->cred)
5316 				db_printf(", obj ruid %d charge %jx",
5317 				    entry->object.vm_object->cred->cr_ruid,
5318 				    (uintmax_t)entry->object.vm_object->charge);
5319 			if (entry->eflags & MAP_ENTRY_COW)
5320 				db_printf(", copy (%s)",
5321 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
5322 			db_printf("\n");
5323 
5324 			if (prev == &map->header ||
5325 			    prev->object.vm_object !=
5326 				entry->object.vm_object) {
5327 				db_indent += 2;
5328 				vm_object_print((db_expr_t)(intptr_t)
5329 						entry->object.vm_object,
5330 						0, 0, (char *)0);
5331 				db_indent -= 2;
5332 			}
5333 		}
5334 		prev = entry;
5335 	}
5336 	db_indent -= 2;
5337 }
5338 
5339 DB_SHOW_COMMAND(map, map)
5340 {
5341 
5342 	if (!have_addr) {
5343 		db_printf("usage: show map <addr>\n");
5344 		return;
5345 	}
5346 	vm_map_print((vm_map_t)addr);
5347 }
5348 
5349 DB_SHOW_COMMAND(procvm, procvm)
5350 {
5351 	struct proc *p;
5352 
5353 	if (have_addr) {
5354 		p = db_lookup_proc(addr);
5355 	} else {
5356 		p = curproc;
5357 	}
5358 
5359 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
5360 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
5361 	    (void *)vmspace_pmap(p->p_vmspace));
5362 
5363 	vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
5364 }
5365 
5366 #endif /* DDB */
5367