1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 */ 60 61 /* 62 * Virtual memory mapping module. 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include <sys/param.h> 69 #include <sys/systm.h> 70 #include <sys/kernel.h> 71 #include <sys/ktr.h> 72 #include <sys/lock.h> 73 #include <sys/mutex.h> 74 #include <sys/proc.h> 75 #include <sys/vmmeter.h> 76 #include <sys/mman.h> 77 #include <sys/vnode.h> 78 #include <sys/racct.h> 79 #include <sys/resourcevar.h> 80 #include <sys/rwlock.h> 81 #include <sys/file.h> 82 #include <sys/sysctl.h> 83 #include <sys/sysent.h> 84 #include <sys/shm.h> 85 86 #include <vm/vm.h> 87 #include <vm/vm_param.h> 88 #include <vm/pmap.h> 89 #include <vm/vm_map.h> 90 #include <vm/vm_page.h> 91 #include <vm/vm_object.h> 92 #include <vm/vm_pager.h> 93 #include <vm/vm_kern.h> 94 #include <vm/vm_extern.h> 95 #include <vm/vnode_pager.h> 96 #include <vm/swap_pager.h> 97 #include <vm/uma.h> 98 99 /* 100 * Virtual memory maps provide for the mapping, protection, 101 * and sharing of virtual memory objects. In addition, 102 * this module provides for an efficient virtual copy of 103 * memory from one map to another. 104 * 105 * Synchronization is required prior to most operations. 106 * 107 * Maps consist of an ordered doubly-linked list of simple 108 * entries; a self-adjusting binary search tree of these 109 * entries is used to speed up lookups. 110 * 111 * Since portions of maps are specified by start/end addresses, 112 * which may not align with existing map entries, all 113 * routines merely "clip" entries to these start/end values. 114 * [That is, an entry is split into two, bordering at a 115 * start or end value.] Note that these clippings may not 116 * always be necessary (as the two resulting entries are then 117 * not changed); however, the clipping is done for convenience. 118 * 119 * As mentioned above, virtual copy operations are performed 120 * by copying VM object references from one map to 121 * another, and then marking both regions as copy-on-write. 122 */ 123 124 static struct mtx map_sleep_mtx; 125 static uma_zone_t mapentzone; 126 static uma_zone_t kmapentzone; 127 static uma_zone_t mapzone; 128 static uma_zone_t vmspace_zone; 129 static int vmspace_zinit(void *mem, int size, int flags); 130 static void vmspace_zfini(void *mem, int size); 131 static int vm_map_zinit(void *mem, int ize, int flags); 132 static void vm_map_zfini(void *mem, int size); 133 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, 134 vm_offset_t max); 135 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map); 136 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry); 137 #ifdef INVARIANTS 138 static void vm_map_zdtor(void *mem, int size, void *arg); 139 static void vmspace_zdtor(void *mem, int size, void *arg); 140 #endif 141 142 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \ 143 ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \ 144 !((e)->eflags & MAP_ENTRY_NEEDS_COPY))) 145 146 /* 147 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type 148 * stable. 149 */ 150 #define PROC_VMSPACE_LOCK(p) do { } while (0) 151 #define PROC_VMSPACE_UNLOCK(p) do { } while (0) 152 153 /* 154 * VM_MAP_RANGE_CHECK: [ internal use only ] 155 * 156 * Asserts that the starting and ending region 157 * addresses fall within the valid range of the map. 158 */ 159 #define VM_MAP_RANGE_CHECK(map, start, end) \ 160 { \ 161 if (start < vm_map_min(map)) \ 162 start = vm_map_min(map); \ 163 if (end > vm_map_max(map)) \ 164 end = vm_map_max(map); \ 165 if (start > end) \ 166 start = end; \ 167 } 168 169 /* 170 * vm_map_startup: 171 * 172 * Initialize the vm_map module. Must be called before 173 * any other vm_map routines. 174 * 175 * Map and entry structures are allocated from the general 176 * purpose memory pool with some exceptions: 177 * 178 * - The kernel map and kmem submap are allocated statically. 179 * - Kernel map entries are allocated out of a static pool. 180 * 181 * These restrictions are necessary since malloc() uses the 182 * maps and requires map entries. 183 */ 184 185 void 186 vm_map_startup(void) 187 { 188 mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF); 189 mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL, 190 #ifdef INVARIANTS 191 vm_map_zdtor, 192 #else 193 NULL, 194 #endif 195 vm_map_zinit, vm_map_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 196 uma_prealloc(mapzone, MAX_KMAP); 197 kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry), 198 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 199 UMA_ZONE_MTXCLASS | UMA_ZONE_VM); 200 mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry), 201 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 202 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL, 203 #ifdef INVARIANTS 204 vmspace_zdtor, 205 #else 206 NULL, 207 #endif 208 vmspace_zinit, vmspace_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 209 } 210 211 static void 212 vmspace_zfini(void *mem, int size) 213 { 214 struct vmspace *vm; 215 216 vm = (struct vmspace *)mem; 217 vm_map_zfini(&vm->vm_map, sizeof(vm->vm_map)); 218 } 219 220 static int 221 vmspace_zinit(void *mem, int size, int flags) 222 { 223 struct vmspace *vm; 224 225 vm = (struct vmspace *)mem; 226 227 vm->vm_map.pmap = NULL; 228 (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags); 229 return (0); 230 } 231 232 static void 233 vm_map_zfini(void *mem, int size) 234 { 235 vm_map_t map; 236 237 map = (vm_map_t)mem; 238 mtx_destroy(&map->system_mtx); 239 sx_destroy(&map->lock); 240 } 241 242 static int 243 vm_map_zinit(void *mem, int size, int flags) 244 { 245 vm_map_t map; 246 247 map = (vm_map_t)mem; 248 memset(map, 0, sizeof(*map)); 249 mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK); 250 sx_init(&map->lock, "vm map (user)"); 251 return (0); 252 } 253 254 #ifdef INVARIANTS 255 static void 256 vmspace_zdtor(void *mem, int size, void *arg) 257 { 258 struct vmspace *vm; 259 260 vm = (struct vmspace *)mem; 261 262 vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg); 263 } 264 static void 265 vm_map_zdtor(void *mem, int size, void *arg) 266 { 267 vm_map_t map; 268 269 map = (vm_map_t)mem; 270 KASSERT(map->nentries == 0, 271 ("map %p nentries == %d on free.", 272 map, map->nentries)); 273 KASSERT(map->size == 0, 274 ("map %p size == %lu on free.", 275 map, (unsigned long)map->size)); 276 } 277 #endif /* INVARIANTS */ 278 279 /* 280 * Allocate a vmspace structure, including a vm_map and pmap, 281 * and initialize those structures. The refcnt is set to 1. 282 */ 283 struct vmspace * 284 vmspace_alloc(min, max) 285 vm_offset_t min, max; 286 { 287 struct vmspace *vm; 288 289 vm = uma_zalloc(vmspace_zone, M_WAITOK); 290 if (vm->vm_map.pmap == NULL && !pmap_pinit(vmspace_pmap(vm))) { 291 uma_zfree(vmspace_zone, vm); 292 return (NULL); 293 } 294 CTR1(KTR_VM, "vmspace_alloc: %p", vm); 295 _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max); 296 vm->vm_refcnt = 1; 297 vm->vm_shm = NULL; 298 vm->vm_swrss = 0; 299 vm->vm_tsize = 0; 300 vm->vm_dsize = 0; 301 vm->vm_ssize = 0; 302 vm->vm_taddr = 0; 303 vm->vm_daddr = 0; 304 vm->vm_maxsaddr = 0; 305 return (vm); 306 } 307 308 static void 309 vmspace_container_reset(struct proc *p) 310 { 311 312 #ifdef RACCT 313 PROC_LOCK(p); 314 racct_set(p, RACCT_DATA, 0); 315 racct_set(p, RACCT_STACK, 0); 316 racct_set(p, RACCT_RSS, 0); 317 racct_set(p, RACCT_MEMLOCK, 0); 318 racct_set(p, RACCT_VMEM, 0); 319 PROC_UNLOCK(p); 320 #endif 321 } 322 323 static inline void 324 vmspace_dofree(struct vmspace *vm) 325 { 326 327 CTR1(KTR_VM, "vmspace_free: %p", vm); 328 329 /* 330 * Make sure any SysV shm is freed, it might not have been in 331 * exit1(). 332 */ 333 shmexit(vm); 334 335 /* 336 * Lock the map, to wait out all other references to it. 337 * Delete all of the mappings and pages they hold, then call 338 * the pmap module to reclaim anything left. 339 */ 340 (void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset, 341 vm->vm_map.max_offset); 342 343 pmap_release(vmspace_pmap(vm)); 344 vm->vm_map.pmap = NULL; 345 uma_zfree(vmspace_zone, vm); 346 } 347 348 void 349 vmspace_free(struct vmspace *vm) 350 { 351 352 if (vm->vm_refcnt == 0) 353 panic("vmspace_free: attempt to free already freed vmspace"); 354 355 if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1) 356 vmspace_dofree(vm); 357 } 358 359 void 360 vmspace_exitfree(struct proc *p) 361 { 362 struct vmspace *vm; 363 364 PROC_VMSPACE_LOCK(p); 365 vm = p->p_vmspace; 366 p->p_vmspace = NULL; 367 PROC_VMSPACE_UNLOCK(p); 368 KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace")); 369 vmspace_free(vm); 370 } 371 372 void 373 vmspace_exit(struct thread *td) 374 { 375 int refcnt; 376 struct vmspace *vm; 377 struct proc *p; 378 379 /* 380 * Release user portion of address space. 381 * This releases references to vnodes, 382 * which could cause I/O if the file has been unlinked. 383 * Need to do this early enough that we can still sleep. 384 * 385 * The last exiting process to reach this point releases as 386 * much of the environment as it can. vmspace_dofree() is the 387 * slower fallback in case another process had a temporary 388 * reference to the vmspace. 389 */ 390 391 p = td->td_proc; 392 vm = p->p_vmspace; 393 atomic_add_int(&vmspace0.vm_refcnt, 1); 394 do { 395 refcnt = vm->vm_refcnt; 396 if (refcnt > 1 && p->p_vmspace != &vmspace0) { 397 /* Switch now since other proc might free vmspace */ 398 PROC_VMSPACE_LOCK(p); 399 p->p_vmspace = &vmspace0; 400 PROC_VMSPACE_UNLOCK(p); 401 pmap_activate(td); 402 } 403 } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1)); 404 if (refcnt == 1) { 405 if (p->p_vmspace != vm) { 406 /* vmspace not yet freed, switch back */ 407 PROC_VMSPACE_LOCK(p); 408 p->p_vmspace = vm; 409 PROC_VMSPACE_UNLOCK(p); 410 pmap_activate(td); 411 } 412 pmap_remove_pages(vmspace_pmap(vm)); 413 /* Switch now since this proc will free vmspace */ 414 PROC_VMSPACE_LOCK(p); 415 p->p_vmspace = &vmspace0; 416 PROC_VMSPACE_UNLOCK(p); 417 pmap_activate(td); 418 vmspace_dofree(vm); 419 } 420 vmspace_container_reset(p); 421 } 422 423 /* Acquire reference to vmspace owned by another process. */ 424 425 struct vmspace * 426 vmspace_acquire_ref(struct proc *p) 427 { 428 struct vmspace *vm; 429 int refcnt; 430 431 PROC_VMSPACE_LOCK(p); 432 vm = p->p_vmspace; 433 if (vm == NULL) { 434 PROC_VMSPACE_UNLOCK(p); 435 return (NULL); 436 } 437 do { 438 refcnt = vm->vm_refcnt; 439 if (refcnt <= 0) { /* Avoid 0->1 transition */ 440 PROC_VMSPACE_UNLOCK(p); 441 return (NULL); 442 } 443 } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1)); 444 if (vm != p->p_vmspace) { 445 PROC_VMSPACE_UNLOCK(p); 446 vmspace_free(vm); 447 return (NULL); 448 } 449 PROC_VMSPACE_UNLOCK(p); 450 return (vm); 451 } 452 453 void 454 _vm_map_lock(vm_map_t map, const char *file, int line) 455 { 456 457 if (map->system_map) 458 mtx_lock_flags_(&map->system_mtx, 0, file, line); 459 else 460 sx_xlock_(&map->lock, file, line); 461 map->timestamp++; 462 } 463 464 static void 465 vm_map_process_deferred(void) 466 { 467 struct thread *td; 468 vm_map_entry_t entry, next; 469 vm_object_t object; 470 471 td = curthread; 472 entry = td->td_map_def_user; 473 td->td_map_def_user = NULL; 474 while (entry != NULL) { 475 next = entry->next; 476 if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) { 477 /* 478 * Decrement the object's writemappings and 479 * possibly the vnode's v_writecount. 480 */ 481 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 482 ("Submap with writecount")); 483 object = entry->object.vm_object; 484 KASSERT(object != NULL, ("No object for writecount")); 485 vnode_pager_release_writecount(object, entry->start, 486 entry->end); 487 } 488 vm_map_entry_deallocate(entry, FALSE); 489 entry = next; 490 } 491 } 492 493 void 494 _vm_map_unlock(vm_map_t map, const char *file, int line) 495 { 496 497 if (map->system_map) 498 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 499 else { 500 sx_xunlock_(&map->lock, file, line); 501 vm_map_process_deferred(); 502 } 503 } 504 505 void 506 _vm_map_lock_read(vm_map_t map, const char *file, int line) 507 { 508 509 if (map->system_map) 510 mtx_lock_flags_(&map->system_mtx, 0, file, line); 511 else 512 sx_slock_(&map->lock, file, line); 513 } 514 515 void 516 _vm_map_unlock_read(vm_map_t map, const char *file, int line) 517 { 518 519 if (map->system_map) 520 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 521 else { 522 sx_sunlock_(&map->lock, file, line); 523 vm_map_process_deferred(); 524 } 525 } 526 527 int 528 _vm_map_trylock(vm_map_t map, const char *file, int line) 529 { 530 int error; 531 532 error = map->system_map ? 533 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 534 !sx_try_xlock_(&map->lock, file, line); 535 if (error == 0) 536 map->timestamp++; 537 return (error == 0); 538 } 539 540 int 541 _vm_map_trylock_read(vm_map_t map, const char *file, int line) 542 { 543 int error; 544 545 error = map->system_map ? 546 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 547 !sx_try_slock_(&map->lock, file, line); 548 return (error == 0); 549 } 550 551 /* 552 * _vm_map_lock_upgrade: [ internal use only ] 553 * 554 * Tries to upgrade a read (shared) lock on the specified map to a write 555 * (exclusive) lock. Returns the value "0" if the upgrade succeeds and a 556 * non-zero value if the upgrade fails. If the upgrade fails, the map is 557 * returned without a read or write lock held. 558 * 559 * Requires that the map be read locked. 560 */ 561 int 562 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line) 563 { 564 unsigned int last_timestamp; 565 566 if (map->system_map) { 567 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 568 } else { 569 if (!sx_try_upgrade_(&map->lock, file, line)) { 570 last_timestamp = map->timestamp; 571 sx_sunlock_(&map->lock, file, line); 572 vm_map_process_deferred(); 573 /* 574 * If the map's timestamp does not change while the 575 * map is unlocked, then the upgrade succeeds. 576 */ 577 sx_xlock_(&map->lock, file, line); 578 if (last_timestamp != map->timestamp) { 579 sx_xunlock_(&map->lock, file, line); 580 return (1); 581 } 582 } 583 } 584 map->timestamp++; 585 return (0); 586 } 587 588 void 589 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line) 590 { 591 592 if (map->system_map) { 593 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 594 } else 595 sx_downgrade_(&map->lock, file, line); 596 } 597 598 /* 599 * vm_map_locked: 600 * 601 * Returns a non-zero value if the caller holds a write (exclusive) lock 602 * on the specified map and the value "0" otherwise. 603 */ 604 int 605 vm_map_locked(vm_map_t map) 606 { 607 608 if (map->system_map) 609 return (mtx_owned(&map->system_mtx)); 610 else 611 return (sx_xlocked(&map->lock)); 612 } 613 614 #ifdef INVARIANTS 615 static void 616 _vm_map_assert_locked(vm_map_t map, const char *file, int line) 617 { 618 619 if (map->system_map) 620 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 621 else 622 sx_assert_(&map->lock, SA_XLOCKED, file, line); 623 } 624 625 #define VM_MAP_ASSERT_LOCKED(map) \ 626 _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE) 627 #else 628 #define VM_MAP_ASSERT_LOCKED(map) 629 #endif 630 631 /* 632 * _vm_map_unlock_and_wait: 633 * 634 * Atomically releases the lock on the specified map and puts the calling 635 * thread to sleep. The calling thread will remain asleep until either 636 * vm_map_wakeup() is performed on the map or the specified timeout is 637 * exceeded. 638 * 639 * WARNING! This function does not perform deferred deallocations of 640 * objects and map entries. Therefore, the calling thread is expected to 641 * reacquire the map lock after reawakening and later perform an ordinary 642 * unlock operation, such as vm_map_unlock(), before completing its 643 * operation on the map. 644 */ 645 int 646 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line) 647 { 648 649 mtx_lock(&map_sleep_mtx); 650 if (map->system_map) 651 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 652 else 653 sx_xunlock_(&map->lock, file, line); 654 return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps", 655 timo)); 656 } 657 658 /* 659 * vm_map_wakeup: 660 * 661 * Awaken any threads that have slept on the map using 662 * vm_map_unlock_and_wait(). 663 */ 664 void 665 vm_map_wakeup(vm_map_t map) 666 { 667 668 /* 669 * Acquire and release map_sleep_mtx to prevent a wakeup() 670 * from being performed (and lost) between the map unlock 671 * and the msleep() in _vm_map_unlock_and_wait(). 672 */ 673 mtx_lock(&map_sleep_mtx); 674 mtx_unlock(&map_sleep_mtx); 675 wakeup(&map->root); 676 } 677 678 void 679 vm_map_busy(vm_map_t map) 680 { 681 682 VM_MAP_ASSERT_LOCKED(map); 683 map->busy++; 684 } 685 686 void 687 vm_map_unbusy(vm_map_t map) 688 { 689 690 VM_MAP_ASSERT_LOCKED(map); 691 KASSERT(map->busy, ("vm_map_unbusy: not busy")); 692 if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) { 693 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP); 694 wakeup(&map->busy); 695 } 696 } 697 698 void 699 vm_map_wait_busy(vm_map_t map) 700 { 701 702 VM_MAP_ASSERT_LOCKED(map); 703 while (map->busy) { 704 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0); 705 if (map->system_map) 706 msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0); 707 else 708 sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0); 709 } 710 map->timestamp++; 711 } 712 713 long 714 vmspace_resident_count(struct vmspace *vmspace) 715 { 716 return pmap_resident_count(vmspace_pmap(vmspace)); 717 } 718 719 /* 720 * vm_map_create: 721 * 722 * Creates and returns a new empty VM map with 723 * the given physical map structure, and having 724 * the given lower and upper address bounds. 725 */ 726 vm_map_t 727 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max) 728 { 729 vm_map_t result; 730 731 result = uma_zalloc(mapzone, M_WAITOK); 732 CTR1(KTR_VM, "vm_map_create: %p", result); 733 _vm_map_init(result, pmap, min, max); 734 return (result); 735 } 736 737 /* 738 * Initialize an existing vm_map structure 739 * such as that in the vmspace structure. 740 */ 741 static void 742 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 743 { 744 745 map->header.next = map->header.prev = &map->header; 746 map->needs_wakeup = FALSE; 747 map->system_map = 0; 748 map->pmap = pmap; 749 map->min_offset = min; 750 map->max_offset = max; 751 map->flags = 0; 752 map->root = NULL; 753 map->timestamp = 0; 754 map->busy = 0; 755 } 756 757 void 758 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 759 { 760 761 _vm_map_init(map, pmap, min, max); 762 mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK); 763 sx_init(&map->lock, "user map"); 764 } 765 766 /* 767 * vm_map_entry_dispose: [ internal use only ] 768 * 769 * Inverse of vm_map_entry_create. 770 */ 771 static void 772 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry) 773 { 774 uma_zfree(map->system_map ? kmapentzone : mapentzone, entry); 775 } 776 777 /* 778 * vm_map_entry_create: [ internal use only ] 779 * 780 * Allocates a VM map entry for insertion. 781 * No entry fields are filled in. 782 */ 783 static vm_map_entry_t 784 vm_map_entry_create(vm_map_t map) 785 { 786 vm_map_entry_t new_entry; 787 788 if (map->system_map) 789 new_entry = uma_zalloc(kmapentzone, M_NOWAIT); 790 else 791 new_entry = uma_zalloc(mapentzone, M_WAITOK); 792 if (new_entry == NULL) 793 panic("vm_map_entry_create: kernel resources exhausted"); 794 return (new_entry); 795 } 796 797 /* 798 * vm_map_entry_set_behavior: 799 * 800 * Set the expected access behavior, either normal, random, or 801 * sequential. 802 */ 803 static inline void 804 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior) 805 { 806 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) | 807 (behavior & MAP_ENTRY_BEHAV_MASK); 808 } 809 810 /* 811 * vm_map_entry_set_max_free: 812 * 813 * Set the max_free field in a vm_map_entry. 814 */ 815 static inline void 816 vm_map_entry_set_max_free(vm_map_entry_t entry) 817 { 818 819 entry->max_free = entry->adj_free; 820 if (entry->left != NULL && entry->left->max_free > entry->max_free) 821 entry->max_free = entry->left->max_free; 822 if (entry->right != NULL && entry->right->max_free > entry->max_free) 823 entry->max_free = entry->right->max_free; 824 } 825 826 /* 827 * vm_map_entry_splay: 828 * 829 * The Sleator and Tarjan top-down splay algorithm with the 830 * following variation. Max_free must be computed bottom-up, so 831 * on the downward pass, maintain the left and right spines in 832 * reverse order. Then, make a second pass up each side to fix 833 * the pointers and compute max_free. The time bound is O(log n) 834 * amortized. 835 * 836 * The new root is the vm_map_entry containing "addr", or else an 837 * adjacent entry (lower or higher) if addr is not in the tree. 838 * 839 * The map must be locked, and leaves it so. 840 * 841 * Returns: the new root. 842 */ 843 static vm_map_entry_t 844 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root) 845 { 846 vm_map_entry_t llist, rlist; 847 vm_map_entry_t ltree, rtree; 848 vm_map_entry_t y; 849 850 /* Special case of empty tree. */ 851 if (root == NULL) 852 return (root); 853 854 /* 855 * Pass One: Splay down the tree until we find addr or a NULL 856 * pointer where addr would go. llist and rlist are the two 857 * sides in reverse order (bottom-up), with llist linked by 858 * the right pointer and rlist linked by the left pointer in 859 * the vm_map_entry. Wait until Pass Two to set max_free on 860 * the two spines. 861 */ 862 llist = NULL; 863 rlist = NULL; 864 for (;;) { 865 /* root is never NULL in here. */ 866 if (addr < root->start) { 867 y = root->left; 868 if (y == NULL) 869 break; 870 if (addr < y->start && y->left != NULL) { 871 /* Rotate right and put y on rlist. */ 872 root->left = y->right; 873 y->right = root; 874 vm_map_entry_set_max_free(root); 875 root = y->left; 876 y->left = rlist; 877 rlist = y; 878 } else { 879 /* Put root on rlist. */ 880 root->left = rlist; 881 rlist = root; 882 root = y; 883 } 884 } else if (addr >= root->end) { 885 y = root->right; 886 if (y == NULL) 887 break; 888 if (addr >= y->end && y->right != NULL) { 889 /* Rotate left and put y on llist. */ 890 root->right = y->left; 891 y->left = root; 892 vm_map_entry_set_max_free(root); 893 root = y->right; 894 y->right = llist; 895 llist = y; 896 } else { 897 /* Put root on llist. */ 898 root->right = llist; 899 llist = root; 900 root = y; 901 } 902 } else 903 break; 904 } 905 906 /* 907 * Pass Two: Walk back up the two spines, flip the pointers 908 * and set max_free. The subtrees of the root go at the 909 * bottom of llist and rlist. 910 */ 911 ltree = root->left; 912 while (llist != NULL) { 913 y = llist->right; 914 llist->right = ltree; 915 vm_map_entry_set_max_free(llist); 916 ltree = llist; 917 llist = y; 918 } 919 rtree = root->right; 920 while (rlist != NULL) { 921 y = rlist->left; 922 rlist->left = rtree; 923 vm_map_entry_set_max_free(rlist); 924 rtree = rlist; 925 rlist = y; 926 } 927 928 /* 929 * Final assembly: add ltree and rtree as subtrees of root. 930 */ 931 root->left = ltree; 932 root->right = rtree; 933 vm_map_entry_set_max_free(root); 934 935 return (root); 936 } 937 938 /* 939 * vm_map_entry_{un,}link: 940 * 941 * Insert/remove entries from maps. 942 */ 943 static void 944 vm_map_entry_link(vm_map_t map, 945 vm_map_entry_t after_where, 946 vm_map_entry_t entry) 947 { 948 949 CTR4(KTR_VM, 950 "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map, 951 map->nentries, entry, after_where); 952 VM_MAP_ASSERT_LOCKED(map); 953 map->nentries++; 954 entry->prev = after_where; 955 entry->next = after_where->next; 956 entry->next->prev = entry; 957 after_where->next = entry; 958 959 if (after_where != &map->header) { 960 if (after_where != map->root) 961 vm_map_entry_splay(after_where->start, map->root); 962 entry->right = after_where->right; 963 entry->left = after_where; 964 after_where->right = NULL; 965 after_where->adj_free = entry->start - after_where->end; 966 vm_map_entry_set_max_free(after_where); 967 } else { 968 entry->right = map->root; 969 entry->left = NULL; 970 } 971 entry->adj_free = (entry->next == &map->header ? map->max_offset : 972 entry->next->start) - entry->end; 973 vm_map_entry_set_max_free(entry); 974 map->root = entry; 975 } 976 977 static void 978 vm_map_entry_unlink(vm_map_t map, 979 vm_map_entry_t entry) 980 { 981 vm_map_entry_t next, prev, root; 982 983 VM_MAP_ASSERT_LOCKED(map); 984 if (entry != map->root) 985 vm_map_entry_splay(entry->start, map->root); 986 if (entry->left == NULL) 987 root = entry->right; 988 else { 989 root = vm_map_entry_splay(entry->start, entry->left); 990 root->right = entry->right; 991 root->adj_free = (entry->next == &map->header ? map->max_offset : 992 entry->next->start) - root->end; 993 vm_map_entry_set_max_free(root); 994 } 995 map->root = root; 996 997 prev = entry->prev; 998 next = entry->next; 999 next->prev = prev; 1000 prev->next = next; 1001 map->nentries--; 1002 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map, 1003 map->nentries, entry); 1004 } 1005 1006 /* 1007 * vm_map_entry_resize_free: 1008 * 1009 * Recompute the amount of free space following a vm_map_entry 1010 * and propagate that value up the tree. Call this function after 1011 * resizing a map entry in-place, that is, without a call to 1012 * vm_map_entry_link() or _unlink(). 1013 * 1014 * The map must be locked, and leaves it so. 1015 */ 1016 static void 1017 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry) 1018 { 1019 1020 /* 1021 * Using splay trees without parent pointers, propagating 1022 * max_free up the tree is done by moving the entry to the 1023 * root and making the change there. 1024 */ 1025 if (entry != map->root) 1026 map->root = vm_map_entry_splay(entry->start, map->root); 1027 1028 entry->adj_free = (entry->next == &map->header ? map->max_offset : 1029 entry->next->start) - entry->end; 1030 vm_map_entry_set_max_free(entry); 1031 } 1032 1033 /* 1034 * vm_map_lookup_entry: [ internal use only ] 1035 * 1036 * Finds the map entry containing (or 1037 * immediately preceding) the specified address 1038 * in the given map; the entry is returned 1039 * in the "entry" parameter. The boolean 1040 * result indicates whether the address is 1041 * actually contained in the map. 1042 */ 1043 boolean_t 1044 vm_map_lookup_entry( 1045 vm_map_t map, 1046 vm_offset_t address, 1047 vm_map_entry_t *entry) /* OUT */ 1048 { 1049 vm_map_entry_t cur; 1050 boolean_t locked; 1051 1052 /* 1053 * If the map is empty, then the map entry immediately preceding 1054 * "address" is the map's header. 1055 */ 1056 cur = map->root; 1057 if (cur == NULL) 1058 *entry = &map->header; 1059 else if (address >= cur->start && cur->end > address) { 1060 *entry = cur; 1061 return (TRUE); 1062 } else if ((locked = vm_map_locked(map)) || 1063 sx_try_upgrade(&map->lock)) { 1064 /* 1065 * Splay requires a write lock on the map. However, it only 1066 * restructures the binary search tree; it does not otherwise 1067 * change the map. Thus, the map's timestamp need not change 1068 * on a temporary upgrade. 1069 */ 1070 map->root = cur = vm_map_entry_splay(address, cur); 1071 if (!locked) 1072 sx_downgrade(&map->lock); 1073 1074 /* 1075 * If "address" is contained within a map entry, the new root 1076 * is that map entry. Otherwise, the new root is a map entry 1077 * immediately before or after "address". 1078 */ 1079 if (address >= cur->start) { 1080 *entry = cur; 1081 if (cur->end > address) 1082 return (TRUE); 1083 } else 1084 *entry = cur->prev; 1085 } else 1086 /* 1087 * Since the map is only locked for read access, perform a 1088 * standard binary search tree lookup for "address". 1089 */ 1090 for (;;) { 1091 if (address < cur->start) { 1092 if (cur->left == NULL) { 1093 *entry = cur->prev; 1094 break; 1095 } 1096 cur = cur->left; 1097 } else if (cur->end > address) { 1098 *entry = cur; 1099 return (TRUE); 1100 } else { 1101 if (cur->right == NULL) { 1102 *entry = cur; 1103 break; 1104 } 1105 cur = cur->right; 1106 } 1107 } 1108 return (FALSE); 1109 } 1110 1111 /* 1112 * vm_map_insert: 1113 * 1114 * Inserts the given whole VM object into the target 1115 * map at the specified address range. The object's 1116 * size should match that of the address range. 1117 * 1118 * Requires that the map be locked, and leaves it so. 1119 * 1120 * If object is non-NULL, ref count must be bumped by caller 1121 * prior to making call to account for the new entry. 1122 */ 1123 int 1124 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1125 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, 1126 int cow) 1127 { 1128 vm_map_entry_t new_entry; 1129 vm_map_entry_t prev_entry; 1130 vm_map_entry_t temp_entry; 1131 vm_eflags_t protoeflags; 1132 struct ucred *cred; 1133 vm_inherit_t inheritance; 1134 boolean_t charge_prev_obj; 1135 1136 VM_MAP_ASSERT_LOCKED(map); 1137 1138 /* 1139 * Check that the start and end points are not bogus. 1140 */ 1141 if ((start < map->min_offset) || (end > map->max_offset) || 1142 (start >= end)) 1143 return (KERN_INVALID_ADDRESS); 1144 1145 /* 1146 * Find the entry prior to the proposed starting address; if it's part 1147 * of an existing entry, this range is bogus. 1148 */ 1149 if (vm_map_lookup_entry(map, start, &temp_entry)) 1150 return (KERN_NO_SPACE); 1151 1152 prev_entry = temp_entry; 1153 1154 /* 1155 * Assert that the next entry doesn't overlap the end point. 1156 */ 1157 if ((prev_entry->next != &map->header) && 1158 (prev_entry->next->start < end)) 1159 return (KERN_NO_SPACE); 1160 1161 protoeflags = 0; 1162 charge_prev_obj = FALSE; 1163 1164 if (cow & MAP_COPY_ON_WRITE) 1165 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY; 1166 1167 if (cow & MAP_NOFAULT) { 1168 protoeflags |= MAP_ENTRY_NOFAULT; 1169 1170 KASSERT(object == NULL, 1171 ("vm_map_insert: paradoxical MAP_NOFAULT request")); 1172 } 1173 if (cow & MAP_DISABLE_SYNCER) 1174 protoeflags |= MAP_ENTRY_NOSYNC; 1175 if (cow & MAP_DISABLE_COREDUMP) 1176 protoeflags |= MAP_ENTRY_NOCOREDUMP; 1177 if (cow & MAP_VN_WRITECOUNT) 1178 protoeflags |= MAP_ENTRY_VN_WRITECNT; 1179 if (cow & MAP_INHERIT_SHARE) 1180 inheritance = VM_INHERIT_SHARE; 1181 else 1182 inheritance = VM_INHERIT_DEFAULT; 1183 1184 cred = NULL; 1185 KASSERT((object != kmem_object && object != kernel_object) || 1186 ((object == kmem_object || object == kernel_object) && 1187 !(protoeflags & MAP_ENTRY_NEEDS_COPY)), 1188 ("kmem or kernel object and cow")); 1189 if (cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT)) 1190 goto charged; 1191 if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) && 1192 ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) { 1193 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start)) 1194 return (KERN_RESOURCE_SHORTAGE); 1195 KASSERT(object == NULL || (protoeflags & MAP_ENTRY_NEEDS_COPY) || 1196 object->cred == NULL, 1197 ("OVERCOMMIT: vm_map_insert o %p", object)); 1198 cred = curthread->td_ucred; 1199 crhold(cred); 1200 if (object == NULL && !(protoeflags & MAP_ENTRY_NEEDS_COPY)) 1201 charge_prev_obj = TRUE; 1202 } 1203 1204 charged: 1205 /* Expand the kernel pmap, if necessary. */ 1206 if (map == kernel_map && end > kernel_vm_end) 1207 pmap_growkernel(end); 1208 if (object != NULL) { 1209 /* 1210 * OBJ_ONEMAPPING must be cleared unless this mapping 1211 * is trivially proven to be the only mapping for any 1212 * of the object's pages. (Object granularity 1213 * reference counting is insufficient to recognize 1214 * aliases with precision.) 1215 */ 1216 VM_OBJECT_WLOCK(object); 1217 if (object->ref_count > 1 || object->shadow_count != 0) 1218 vm_object_clear_flag(object, OBJ_ONEMAPPING); 1219 VM_OBJECT_WUNLOCK(object); 1220 } 1221 else if ((prev_entry != &map->header) && 1222 (prev_entry->eflags == protoeflags) && 1223 (prev_entry->end == start) && 1224 (prev_entry->wired_count == 0) && 1225 (prev_entry->cred == cred || 1226 (prev_entry->object.vm_object != NULL && 1227 (prev_entry->object.vm_object->cred == cred))) && 1228 vm_object_coalesce(prev_entry->object.vm_object, 1229 prev_entry->offset, 1230 (vm_size_t)(prev_entry->end - prev_entry->start), 1231 (vm_size_t)(end - prev_entry->end), charge_prev_obj)) { 1232 /* 1233 * We were able to extend the object. Determine if we 1234 * can extend the previous map entry to include the 1235 * new range as well. 1236 */ 1237 if ((prev_entry->inheritance == inheritance) && 1238 (prev_entry->protection == prot) && 1239 (prev_entry->max_protection == max)) { 1240 map->size += (end - prev_entry->end); 1241 prev_entry->end = end; 1242 vm_map_entry_resize_free(map, prev_entry); 1243 vm_map_simplify_entry(map, prev_entry); 1244 if (cred != NULL) 1245 crfree(cred); 1246 return (KERN_SUCCESS); 1247 } 1248 1249 /* 1250 * If we can extend the object but cannot extend the 1251 * map entry, we have to create a new map entry. We 1252 * must bump the ref count on the extended object to 1253 * account for it. object may be NULL. 1254 */ 1255 object = prev_entry->object.vm_object; 1256 offset = prev_entry->offset + 1257 (prev_entry->end - prev_entry->start); 1258 vm_object_reference(object); 1259 if (cred != NULL && object != NULL && object->cred != NULL && 1260 !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 1261 /* Object already accounts for this uid. */ 1262 crfree(cred); 1263 cred = NULL; 1264 } 1265 } 1266 1267 /* 1268 * NOTE: if conditionals fail, object can be NULL here. This occurs 1269 * in things like the buffer map where we manage kva but do not manage 1270 * backing objects. 1271 */ 1272 1273 /* 1274 * Create a new entry 1275 */ 1276 new_entry = vm_map_entry_create(map); 1277 new_entry->start = start; 1278 new_entry->end = end; 1279 new_entry->cred = NULL; 1280 1281 new_entry->eflags = protoeflags; 1282 new_entry->object.vm_object = object; 1283 new_entry->offset = offset; 1284 new_entry->avail_ssize = 0; 1285 1286 new_entry->inheritance = inheritance; 1287 new_entry->protection = prot; 1288 new_entry->max_protection = max; 1289 new_entry->wired_count = 0; 1290 new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT; 1291 new_entry->next_read = OFF_TO_IDX(offset); 1292 1293 KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry), 1294 ("OVERCOMMIT: vm_map_insert leaks vm_map %p", new_entry)); 1295 new_entry->cred = cred; 1296 1297 /* 1298 * Insert the new entry into the list 1299 */ 1300 vm_map_entry_link(map, prev_entry, new_entry); 1301 map->size += new_entry->end - new_entry->start; 1302 1303 /* 1304 * It may be possible to merge the new entry with the next and/or 1305 * previous entries. However, due to MAP_STACK_* being a hack, a 1306 * panic can result from merging such entries. 1307 */ 1308 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0) 1309 vm_map_simplify_entry(map, new_entry); 1310 1311 if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) { 1312 vm_map_pmap_enter(map, start, prot, 1313 object, OFF_TO_IDX(offset), end - start, 1314 cow & MAP_PREFAULT_PARTIAL); 1315 } 1316 1317 return (KERN_SUCCESS); 1318 } 1319 1320 /* 1321 * vm_map_findspace: 1322 * 1323 * Find the first fit (lowest VM address) for "length" free bytes 1324 * beginning at address >= start in the given map. 1325 * 1326 * In a vm_map_entry, "adj_free" is the amount of free space 1327 * adjacent (higher address) to this entry, and "max_free" is the 1328 * maximum amount of contiguous free space in its subtree. This 1329 * allows finding a free region in one path down the tree, so 1330 * O(log n) amortized with splay trees. 1331 * 1332 * The map must be locked, and leaves it so. 1333 * 1334 * Returns: 0 on success, and starting address in *addr, 1335 * 1 if insufficient space. 1336 */ 1337 int 1338 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length, 1339 vm_offset_t *addr) /* OUT */ 1340 { 1341 vm_map_entry_t entry; 1342 vm_offset_t st; 1343 1344 /* 1345 * Request must fit within min/max VM address and must avoid 1346 * address wrap. 1347 */ 1348 if (start < map->min_offset) 1349 start = map->min_offset; 1350 if (start + length > map->max_offset || start + length < start) 1351 return (1); 1352 1353 /* Empty tree means wide open address space. */ 1354 if (map->root == NULL) { 1355 *addr = start; 1356 return (0); 1357 } 1358 1359 /* 1360 * After splay, if start comes before root node, then there 1361 * must be a gap from start to the root. 1362 */ 1363 map->root = vm_map_entry_splay(start, map->root); 1364 if (start + length <= map->root->start) { 1365 *addr = start; 1366 return (0); 1367 } 1368 1369 /* 1370 * Root is the last node that might begin its gap before 1371 * start, and this is the last comparison where address 1372 * wrap might be a problem. 1373 */ 1374 st = (start > map->root->end) ? start : map->root->end; 1375 if (length <= map->root->end + map->root->adj_free - st) { 1376 *addr = st; 1377 return (0); 1378 } 1379 1380 /* With max_free, can immediately tell if no solution. */ 1381 entry = map->root->right; 1382 if (entry == NULL || length > entry->max_free) 1383 return (1); 1384 1385 /* 1386 * Search the right subtree in the order: left subtree, root, 1387 * right subtree (first fit). The previous splay implies that 1388 * all regions in the right subtree have addresses > start. 1389 */ 1390 while (entry != NULL) { 1391 if (entry->left != NULL && entry->left->max_free >= length) 1392 entry = entry->left; 1393 else if (entry->adj_free >= length) { 1394 *addr = entry->end; 1395 return (0); 1396 } else 1397 entry = entry->right; 1398 } 1399 1400 /* Can't get here, so panic if we do. */ 1401 panic("vm_map_findspace: max_free corrupt"); 1402 } 1403 1404 int 1405 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1406 vm_offset_t start, vm_size_t length, vm_prot_t prot, 1407 vm_prot_t max, int cow) 1408 { 1409 vm_offset_t end; 1410 int result; 1411 1412 end = start + length; 1413 vm_map_lock(map); 1414 VM_MAP_RANGE_CHECK(map, start, end); 1415 (void) vm_map_delete(map, start, end); 1416 result = vm_map_insert(map, object, offset, start, end, prot, 1417 max, cow); 1418 vm_map_unlock(map); 1419 return (result); 1420 } 1421 1422 /* 1423 * vm_map_find finds an unallocated region in the target address 1424 * map with the given length. The search is defined to be 1425 * first-fit from the specified address; the region found is 1426 * returned in the same parameter. 1427 * 1428 * If object is non-NULL, ref count must be bumped by caller 1429 * prior to making call to account for the new entry. 1430 */ 1431 int 1432 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1433 vm_offset_t *addr, /* IN/OUT */ 1434 vm_size_t length, int find_space, vm_prot_t prot, 1435 vm_prot_t max, int cow) 1436 { 1437 vm_offset_t start, initial_addr; 1438 int result; 1439 1440 if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL || 1441 (object->flags & OBJ_COLORED) == 0)) 1442 find_space = VMFS_ANY_SPACE; 1443 initial_addr = *addr; 1444 again: 1445 start = initial_addr; 1446 vm_map_lock(map); 1447 do { 1448 if (find_space != VMFS_NO_SPACE) { 1449 if (vm_map_findspace(map, start, length, addr)) { 1450 vm_map_unlock(map); 1451 if (find_space == VMFS_OPTIMAL_SPACE) { 1452 find_space = VMFS_ANY_SPACE; 1453 goto again; 1454 } 1455 return (KERN_NO_SPACE); 1456 } 1457 switch (find_space) { 1458 case VMFS_ALIGNED_SPACE: 1459 case VMFS_OPTIMAL_SPACE: 1460 pmap_align_superpage(object, offset, addr, 1461 length); 1462 break; 1463 default: 1464 break; 1465 } 1466 1467 start = *addr; 1468 } 1469 result = vm_map_insert(map, object, offset, start, start + 1470 length, prot, max, cow); 1471 } while (result == KERN_NO_SPACE && (find_space == VMFS_ALIGNED_SPACE || 1472 find_space == VMFS_OPTIMAL_SPACE)); 1473 vm_map_unlock(map); 1474 return (result); 1475 } 1476 1477 /* 1478 * vm_map_simplify_entry: 1479 * 1480 * Simplify the given map entry by merging with either neighbor. This 1481 * routine also has the ability to merge with both neighbors. 1482 * 1483 * The map must be locked. 1484 * 1485 * This routine guarentees that the passed entry remains valid (though 1486 * possibly extended). When merging, this routine may delete one or 1487 * both neighbors. 1488 */ 1489 void 1490 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry) 1491 { 1492 vm_map_entry_t next, prev; 1493 vm_size_t prevsize, esize; 1494 1495 if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) 1496 return; 1497 1498 prev = entry->prev; 1499 if (prev != &map->header) { 1500 prevsize = prev->end - prev->start; 1501 if ( (prev->end == entry->start) && 1502 (prev->object.vm_object == entry->object.vm_object) && 1503 (!prev->object.vm_object || 1504 (prev->offset + prevsize == entry->offset)) && 1505 (prev->eflags == entry->eflags) && 1506 (prev->protection == entry->protection) && 1507 (prev->max_protection == entry->max_protection) && 1508 (prev->inheritance == entry->inheritance) && 1509 (prev->wired_count == entry->wired_count) && 1510 (prev->cred == entry->cred)) { 1511 vm_map_entry_unlink(map, prev); 1512 entry->start = prev->start; 1513 entry->offset = prev->offset; 1514 if (entry->prev != &map->header) 1515 vm_map_entry_resize_free(map, entry->prev); 1516 1517 /* 1518 * If the backing object is a vnode object, 1519 * vm_object_deallocate() calls vrele(). 1520 * However, vrele() does not lock the vnode 1521 * because the vnode has additional 1522 * references. Thus, the map lock can be kept 1523 * without causing a lock-order reversal with 1524 * the vnode lock. 1525 * 1526 * Since we count the number of virtual page 1527 * mappings in object->un_pager.vnp.writemappings, 1528 * the writemappings value should not be adjusted 1529 * when the entry is disposed of. 1530 */ 1531 if (prev->object.vm_object) 1532 vm_object_deallocate(prev->object.vm_object); 1533 if (prev->cred != NULL) 1534 crfree(prev->cred); 1535 vm_map_entry_dispose(map, prev); 1536 } 1537 } 1538 1539 next = entry->next; 1540 if (next != &map->header) { 1541 esize = entry->end - entry->start; 1542 if ((entry->end == next->start) && 1543 (next->object.vm_object == entry->object.vm_object) && 1544 (!entry->object.vm_object || 1545 (entry->offset + esize == next->offset)) && 1546 (next->eflags == entry->eflags) && 1547 (next->protection == entry->protection) && 1548 (next->max_protection == entry->max_protection) && 1549 (next->inheritance == entry->inheritance) && 1550 (next->wired_count == entry->wired_count) && 1551 (next->cred == entry->cred)) { 1552 vm_map_entry_unlink(map, next); 1553 entry->end = next->end; 1554 vm_map_entry_resize_free(map, entry); 1555 1556 /* 1557 * See comment above. 1558 */ 1559 if (next->object.vm_object) 1560 vm_object_deallocate(next->object.vm_object); 1561 if (next->cred != NULL) 1562 crfree(next->cred); 1563 vm_map_entry_dispose(map, next); 1564 } 1565 } 1566 } 1567 /* 1568 * vm_map_clip_start: [ internal use only ] 1569 * 1570 * Asserts that the given entry begins at or after 1571 * the specified address; if necessary, 1572 * it splits the entry into two. 1573 */ 1574 #define vm_map_clip_start(map, entry, startaddr) \ 1575 { \ 1576 if (startaddr > entry->start) \ 1577 _vm_map_clip_start(map, entry, startaddr); \ 1578 } 1579 1580 /* 1581 * This routine is called only when it is known that 1582 * the entry must be split. 1583 */ 1584 static void 1585 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start) 1586 { 1587 vm_map_entry_t new_entry; 1588 1589 VM_MAP_ASSERT_LOCKED(map); 1590 1591 /* 1592 * Split off the front portion -- note that we must insert the new 1593 * entry BEFORE this one, so that this entry has the specified 1594 * starting address. 1595 */ 1596 vm_map_simplify_entry(map, entry); 1597 1598 /* 1599 * If there is no object backing this entry, we might as well create 1600 * one now. If we defer it, an object can get created after the map 1601 * is clipped, and individual objects will be created for the split-up 1602 * map. This is a bit of a hack, but is also about the best place to 1603 * put this improvement. 1604 */ 1605 if (entry->object.vm_object == NULL && !map->system_map) { 1606 vm_object_t object; 1607 object = vm_object_allocate(OBJT_DEFAULT, 1608 atop(entry->end - entry->start)); 1609 entry->object.vm_object = object; 1610 entry->offset = 0; 1611 if (entry->cred != NULL) { 1612 object->cred = entry->cred; 1613 object->charge = entry->end - entry->start; 1614 entry->cred = NULL; 1615 } 1616 } else if (entry->object.vm_object != NULL && 1617 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 1618 entry->cred != NULL) { 1619 VM_OBJECT_WLOCK(entry->object.vm_object); 1620 KASSERT(entry->object.vm_object->cred == NULL, 1621 ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry)); 1622 entry->object.vm_object->cred = entry->cred; 1623 entry->object.vm_object->charge = entry->end - entry->start; 1624 VM_OBJECT_WUNLOCK(entry->object.vm_object); 1625 entry->cred = NULL; 1626 } 1627 1628 new_entry = vm_map_entry_create(map); 1629 *new_entry = *entry; 1630 1631 new_entry->end = start; 1632 entry->offset += (start - entry->start); 1633 entry->start = start; 1634 if (new_entry->cred != NULL) 1635 crhold(entry->cred); 1636 1637 vm_map_entry_link(map, entry->prev, new_entry); 1638 1639 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1640 vm_object_reference(new_entry->object.vm_object); 1641 /* 1642 * The object->un_pager.vnp.writemappings for the 1643 * object of MAP_ENTRY_VN_WRITECNT type entry shall be 1644 * kept as is here. The virtual pages are 1645 * re-distributed among the clipped entries, so the sum is 1646 * left the same. 1647 */ 1648 } 1649 } 1650 1651 /* 1652 * vm_map_clip_end: [ internal use only ] 1653 * 1654 * Asserts that the given entry ends at or before 1655 * the specified address; if necessary, 1656 * it splits the entry into two. 1657 */ 1658 #define vm_map_clip_end(map, entry, endaddr) \ 1659 { \ 1660 if ((endaddr) < (entry->end)) \ 1661 _vm_map_clip_end((map), (entry), (endaddr)); \ 1662 } 1663 1664 /* 1665 * This routine is called only when it is known that 1666 * the entry must be split. 1667 */ 1668 static void 1669 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end) 1670 { 1671 vm_map_entry_t new_entry; 1672 1673 VM_MAP_ASSERT_LOCKED(map); 1674 1675 /* 1676 * If there is no object backing this entry, we might as well create 1677 * one now. If we defer it, an object can get created after the map 1678 * is clipped, and individual objects will be created for the split-up 1679 * map. This is a bit of a hack, but is also about the best place to 1680 * put this improvement. 1681 */ 1682 if (entry->object.vm_object == NULL && !map->system_map) { 1683 vm_object_t object; 1684 object = vm_object_allocate(OBJT_DEFAULT, 1685 atop(entry->end - entry->start)); 1686 entry->object.vm_object = object; 1687 entry->offset = 0; 1688 if (entry->cred != NULL) { 1689 object->cred = entry->cred; 1690 object->charge = entry->end - entry->start; 1691 entry->cred = NULL; 1692 } 1693 } else if (entry->object.vm_object != NULL && 1694 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 1695 entry->cred != NULL) { 1696 VM_OBJECT_WLOCK(entry->object.vm_object); 1697 KASSERT(entry->object.vm_object->cred == NULL, 1698 ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry)); 1699 entry->object.vm_object->cred = entry->cred; 1700 entry->object.vm_object->charge = entry->end - entry->start; 1701 VM_OBJECT_WUNLOCK(entry->object.vm_object); 1702 entry->cred = NULL; 1703 } 1704 1705 /* 1706 * Create a new entry and insert it AFTER the specified entry 1707 */ 1708 new_entry = vm_map_entry_create(map); 1709 *new_entry = *entry; 1710 1711 new_entry->start = entry->end = end; 1712 new_entry->offset += (end - entry->start); 1713 if (new_entry->cred != NULL) 1714 crhold(entry->cred); 1715 1716 vm_map_entry_link(map, entry, new_entry); 1717 1718 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1719 vm_object_reference(new_entry->object.vm_object); 1720 } 1721 } 1722 1723 /* 1724 * vm_map_submap: [ kernel use only ] 1725 * 1726 * Mark the given range as handled by a subordinate map. 1727 * 1728 * This range must have been created with vm_map_find, 1729 * and no other operations may have been performed on this 1730 * range prior to calling vm_map_submap. 1731 * 1732 * Only a limited number of operations can be performed 1733 * within this rage after calling vm_map_submap: 1734 * vm_fault 1735 * [Don't try vm_map_copy!] 1736 * 1737 * To remove a submapping, one must first remove the 1738 * range from the superior map, and then destroy the 1739 * submap (if desired). [Better yet, don't try it.] 1740 */ 1741 int 1742 vm_map_submap( 1743 vm_map_t map, 1744 vm_offset_t start, 1745 vm_offset_t end, 1746 vm_map_t submap) 1747 { 1748 vm_map_entry_t entry; 1749 int result = KERN_INVALID_ARGUMENT; 1750 1751 vm_map_lock(map); 1752 1753 VM_MAP_RANGE_CHECK(map, start, end); 1754 1755 if (vm_map_lookup_entry(map, start, &entry)) { 1756 vm_map_clip_start(map, entry, start); 1757 } else 1758 entry = entry->next; 1759 1760 vm_map_clip_end(map, entry, end); 1761 1762 if ((entry->start == start) && (entry->end == end) && 1763 ((entry->eflags & MAP_ENTRY_COW) == 0) && 1764 (entry->object.vm_object == NULL)) { 1765 entry->object.sub_map = submap; 1766 entry->eflags |= MAP_ENTRY_IS_SUB_MAP; 1767 result = KERN_SUCCESS; 1768 } 1769 vm_map_unlock(map); 1770 1771 return (result); 1772 } 1773 1774 /* 1775 * The maximum number of pages to map 1776 */ 1777 #define MAX_INIT_PT 96 1778 1779 /* 1780 * vm_map_pmap_enter: 1781 * 1782 * Preload read-only mappings for the specified object's resident pages 1783 * into the target map. If "flags" is MAP_PREFAULT_PARTIAL, then only 1784 * the resident pages within the address range [addr, addr + ulmin(size, 1785 * ptoa(MAX_INIT_PT))) are mapped. Otherwise, all resident pages within 1786 * the specified address range are mapped. This eliminates many soft 1787 * faults on process startup and immediately after an mmap(2). Because 1788 * these are speculative mappings, cached pages are not reactivated and 1789 * mapped. 1790 */ 1791 void 1792 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 1793 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags) 1794 { 1795 vm_offset_t start; 1796 vm_page_t p, p_start; 1797 vm_pindex_t psize, tmpidx; 1798 1799 if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL) 1800 return; 1801 VM_OBJECT_RLOCK(object); 1802 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 1803 VM_OBJECT_RUNLOCK(object); 1804 VM_OBJECT_WLOCK(object); 1805 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 1806 pmap_object_init_pt(map->pmap, addr, object, pindex, 1807 size); 1808 VM_OBJECT_WUNLOCK(object); 1809 return; 1810 } 1811 VM_OBJECT_LOCK_DOWNGRADE(object); 1812 } 1813 1814 psize = atop(size); 1815 if (psize > MAX_INIT_PT && (flags & MAP_PREFAULT_PARTIAL) != 0) 1816 psize = MAX_INIT_PT; 1817 if (psize + pindex > object->size) { 1818 if (object->size < pindex) { 1819 VM_OBJECT_RUNLOCK(object); 1820 return; 1821 } 1822 psize = object->size - pindex; 1823 } 1824 1825 start = 0; 1826 p_start = NULL; 1827 1828 p = vm_page_find_least(object, pindex); 1829 /* 1830 * Assert: the variable p is either (1) the page with the 1831 * least pindex greater than or equal to the parameter pindex 1832 * or (2) NULL. 1833 */ 1834 for (; 1835 p != NULL && (tmpidx = p->pindex - pindex) < psize; 1836 p = TAILQ_NEXT(p, listq)) { 1837 /* 1838 * don't allow an madvise to blow away our really 1839 * free pages allocating pv entries. 1840 */ 1841 if ((flags & MAP_PREFAULT_MADVISE) && 1842 cnt.v_free_count < cnt.v_free_reserved) { 1843 psize = tmpidx; 1844 break; 1845 } 1846 if (p->valid == VM_PAGE_BITS_ALL) { 1847 if (p_start == NULL) { 1848 start = addr + ptoa(tmpidx); 1849 p_start = p; 1850 } 1851 } else if (p_start != NULL) { 1852 pmap_enter_object(map->pmap, start, addr + 1853 ptoa(tmpidx), p_start, prot); 1854 p_start = NULL; 1855 } 1856 } 1857 if (p_start != NULL) 1858 pmap_enter_object(map->pmap, start, addr + ptoa(psize), 1859 p_start, prot); 1860 VM_OBJECT_RUNLOCK(object); 1861 } 1862 1863 /* 1864 * vm_map_protect: 1865 * 1866 * Sets the protection of the specified address 1867 * region in the target map. If "set_max" is 1868 * specified, the maximum protection is to be set; 1869 * otherwise, only the current protection is affected. 1870 */ 1871 int 1872 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 1873 vm_prot_t new_prot, boolean_t set_max) 1874 { 1875 vm_map_entry_t current, entry; 1876 vm_object_t obj; 1877 struct ucred *cred; 1878 vm_prot_t old_prot; 1879 1880 vm_map_lock(map); 1881 1882 VM_MAP_RANGE_CHECK(map, start, end); 1883 1884 if (vm_map_lookup_entry(map, start, &entry)) { 1885 vm_map_clip_start(map, entry, start); 1886 } else { 1887 entry = entry->next; 1888 } 1889 1890 /* 1891 * Make a first pass to check for protection violations. 1892 */ 1893 current = entry; 1894 while ((current != &map->header) && (current->start < end)) { 1895 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 1896 vm_map_unlock(map); 1897 return (KERN_INVALID_ARGUMENT); 1898 } 1899 if ((new_prot & current->max_protection) != new_prot) { 1900 vm_map_unlock(map); 1901 return (KERN_PROTECTION_FAILURE); 1902 } 1903 current = current->next; 1904 } 1905 1906 1907 /* 1908 * Do an accounting pass for private read-only mappings that 1909 * now will do cow due to allowed write (e.g. debugger sets 1910 * breakpoint on text segment) 1911 */ 1912 for (current = entry; (current != &map->header) && 1913 (current->start < end); current = current->next) { 1914 1915 vm_map_clip_end(map, current, end); 1916 1917 if (set_max || 1918 ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 || 1919 ENTRY_CHARGED(current)) { 1920 continue; 1921 } 1922 1923 cred = curthread->td_ucred; 1924 obj = current->object.vm_object; 1925 1926 if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) { 1927 if (!swap_reserve(current->end - current->start)) { 1928 vm_map_unlock(map); 1929 return (KERN_RESOURCE_SHORTAGE); 1930 } 1931 crhold(cred); 1932 current->cred = cred; 1933 continue; 1934 } 1935 1936 VM_OBJECT_WLOCK(obj); 1937 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) { 1938 VM_OBJECT_WUNLOCK(obj); 1939 continue; 1940 } 1941 1942 /* 1943 * Charge for the whole object allocation now, since 1944 * we cannot distinguish between non-charged and 1945 * charged clipped mapping of the same object later. 1946 */ 1947 KASSERT(obj->charge == 0, 1948 ("vm_map_protect: object %p overcharged\n", obj)); 1949 if (!swap_reserve(ptoa(obj->size))) { 1950 VM_OBJECT_WUNLOCK(obj); 1951 vm_map_unlock(map); 1952 return (KERN_RESOURCE_SHORTAGE); 1953 } 1954 1955 crhold(cred); 1956 obj->cred = cred; 1957 obj->charge = ptoa(obj->size); 1958 VM_OBJECT_WUNLOCK(obj); 1959 } 1960 1961 /* 1962 * Go back and fix up protections. [Note that clipping is not 1963 * necessary the second time.] 1964 */ 1965 current = entry; 1966 while ((current != &map->header) && (current->start < end)) { 1967 old_prot = current->protection; 1968 1969 if (set_max) 1970 current->protection = 1971 (current->max_protection = new_prot) & 1972 old_prot; 1973 else 1974 current->protection = new_prot; 1975 1976 if ((current->eflags & (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED)) 1977 == (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED) && 1978 (current->protection & VM_PROT_WRITE) != 0 && 1979 (old_prot & VM_PROT_WRITE) == 0) { 1980 vm_fault_copy_entry(map, map, current, current, NULL); 1981 } 1982 1983 /* 1984 * When restricting access, update the physical map. Worry 1985 * about copy-on-write here. 1986 */ 1987 if ((old_prot & ~current->protection) != 0) { 1988 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 1989 VM_PROT_ALL) 1990 pmap_protect(map->pmap, current->start, 1991 current->end, 1992 current->protection & MASK(current)); 1993 #undef MASK 1994 } 1995 vm_map_simplify_entry(map, current); 1996 current = current->next; 1997 } 1998 vm_map_unlock(map); 1999 return (KERN_SUCCESS); 2000 } 2001 2002 /* 2003 * vm_map_madvise: 2004 * 2005 * This routine traverses a processes map handling the madvise 2006 * system call. Advisories are classified as either those effecting 2007 * the vm_map_entry structure, or those effecting the underlying 2008 * objects. 2009 */ 2010 int 2011 vm_map_madvise( 2012 vm_map_t map, 2013 vm_offset_t start, 2014 vm_offset_t end, 2015 int behav) 2016 { 2017 vm_map_entry_t current, entry; 2018 int modify_map = 0; 2019 2020 /* 2021 * Some madvise calls directly modify the vm_map_entry, in which case 2022 * we need to use an exclusive lock on the map and we need to perform 2023 * various clipping operations. Otherwise we only need a read-lock 2024 * on the map. 2025 */ 2026 switch(behav) { 2027 case MADV_NORMAL: 2028 case MADV_SEQUENTIAL: 2029 case MADV_RANDOM: 2030 case MADV_NOSYNC: 2031 case MADV_AUTOSYNC: 2032 case MADV_NOCORE: 2033 case MADV_CORE: 2034 modify_map = 1; 2035 vm_map_lock(map); 2036 break; 2037 case MADV_WILLNEED: 2038 case MADV_DONTNEED: 2039 case MADV_FREE: 2040 vm_map_lock_read(map); 2041 break; 2042 default: 2043 return (KERN_INVALID_ARGUMENT); 2044 } 2045 2046 /* 2047 * Locate starting entry and clip if necessary. 2048 */ 2049 VM_MAP_RANGE_CHECK(map, start, end); 2050 2051 if (vm_map_lookup_entry(map, start, &entry)) { 2052 if (modify_map) 2053 vm_map_clip_start(map, entry, start); 2054 } else { 2055 entry = entry->next; 2056 } 2057 2058 if (modify_map) { 2059 /* 2060 * madvise behaviors that are implemented in the vm_map_entry. 2061 * 2062 * We clip the vm_map_entry so that behavioral changes are 2063 * limited to the specified address range. 2064 */ 2065 for (current = entry; 2066 (current != &map->header) && (current->start < end); 2067 current = current->next 2068 ) { 2069 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2070 continue; 2071 2072 vm_map_clip_end(map, current, end); 2073 2074 switch (behav) { 2075 case MADV_NORMAL: 2076 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL); 2077 break; 2078 case MADV_SEQUENTIAL: 2079 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL); 2080 break; 2081 case MADV_RANDOM: 2082 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM); 2083 break; 2084 case MADV_NOSYNC: 2085 current->eflags |= MAP_ENTRY_NOSYNC; 2086 break; 2087 case MADV_AUTOSYNC: 2088 current->eflags &= ~MAP_ENTRY_NOSYNC; 2089 break; 2090 case MADV_NOCORE: 2091 current->eflags |= MAP_ENTRY_NOCOREDUMP; 2092 break; 2093 case MADV_CORE: 2094 current->eflags &= ~MAP_ENTRY_NOCOREDUMP; 2095 break; 2096 default: 2097 break; 2098 } 2099 vm_map_simplify_entry(map, current); 2100 } 2101 vm_map_unlock(map); 2102 } else { 2103 vm_pindex_t pstart, pend; 2104 2105 /* 2106 * madvise behaviors that are implemented in the underlying 2107 * vm_object. 2108 * 2109 * Since we don't clip the vm_map_entry, we have to clip 2110 * the vm_object pindex and count. 2111 */ 2112 for (current = entry; 2113 (current != &map->header) && (current->start < end); 2114 current = current->next 2115 ) { 2116 vm_offset_t useStart; 2117 2118 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2119 continue; 2120 2121 pstart = OFF_TO_IDX(current->offset); 2122 pend = pstart + atop(current->end - current->start); 2123 useStart = current->start; 2124 2125 if (current->start < start) { 2126 pstart += atop(start - current->start); 2127 useStart = start; 2128 } 2129 if (current->end > end) 2130 pend -= atop(current->end - end); 2131 2132 if (pstart >= pend) 2133 continue; 2134 2135 vm_object_madvise(current->object.vm_object, pstart, 2136 pend, behav); 2137 if (behav == MADV_WILLNEED) { 2138 vm_map_pmap_enter(map, 2139 useStart, 2140 current->protection, 2141 current->object.vm_object, 2142 pstart, 2143 ptoa(pend - pstart), 2144 MAP_PREFAULT_MADVISE 2145 ); 2146 } 2147 } 2148 vm_map_unlock_read(map); 2149 } 2150 return (0); 2151 } 2152 2153 2154 /* 2155 * vm_map_inherit: 2156 * 2157 * Sets the inheritance of the specified address 2158 * range in the target map. Inheritance 2159 * affects how the map will be shared with 2160 * child maps at the time of vmspace_fork. 2161 */ 2162 int 2163 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 2164 vm_inherit_t new_inheritance) 2165 { 2166 vm_map_entry_t entry; 2167 vm_map_entry_t temp_entry; 2168 2169 switch (new_inheritance) { 2170 case VM_INHERIT_NONE: 2171 case VM_INHERIT_COPY: 2172 case VM_INHERIT_SHARE: 2173 break; 2174 default: 2175 return (KERN_INVALID_ARGUMENT); 2176 } 2177 vm_map_lock(map); 2178 VM_MAP_RANGE_CHECK(map, start, end); 2179 if (vm_map_lookup_entry(map, start, &temp_entry)) { 2180 entry = temp_entry; 2181 vm_map_clip_start(map, entry, start); 2182 } else 2183 entry = temp_entry->next; 2184 while ((entry != &map->header) && (entry->start < end)) { 2185 vm_map_clip_end(map, entry, end); 2186 entry->inheritance = new_inheritance; 2187 vm_map_simplify_entry(map, entry); 2188 entry = entry->next; 2189 } 2190 vm_map_unlock(map); 2191 return (KERN_SUCCESS); 2192 } 2193 2194 /* 2195 * vm_map_unwire: 2196 * 2197 * Implements both kernel and user unwiring. 2198 */ 2199 int 2200 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2201 int flags) 2202 { 2203 vm_map_entry_t entry, first_entry, tmp_entry; 2204 vm_offset_t saved_start; 2205 unsigned int last_timestamp; 2206 int rv; 2207 boolean_t need_wakeup, result, user_unwire; 2208 2209 user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 2210 vm_map_lock(map); 2211 VM_MAP_RANGE_CHECK(map, start, end); 2212 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2213 if (flags & VM_MAP_WIRE_HOLESOK) 2214 first_entry = first_entry->next; 2215 else { 2216 vm_map_unlock(map); 2217 return (KERN_INVALID_ADDRESS); 2218 } 2219 } 2220 last_timestamp = map->timestamp; 2221 entry = first_entry; 2222 while (entry != &map->header && entry->start < end) { 2223 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2224 /* 2225 * We have not yet clipped the entry. 2226 */ 2227 saved_start = (start >= entry->start) ? start : 2228 entry->start; 2229 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2230 if (vm_map_unlock_and_wait(map, 0)) { 2231 /* 2232 * Allow interruption of user unwiring? 2233 */ 2234 } 2235 vm_map_lock(map); 2236 if (last_timestamp+1 != map->timestamp) { 2237 /* 2238 * Look again for the entry because the map was 2239 * modified while it was unlocked. 2240 * Specifically, the entry may have been 2241 * clipped, merged, or deleted. 2242 */ 2243 if (!vm_map_lookup_entry(map, saved_start, 2244 &tmp_entry)) { 2245 if (flags & VM_MAP_WIRE_HOLESOK) 2246 tmp_entry = tmp_entry->next; 2247 else { 2248 if (saved_start == start) { 2249 /* 2250 * First_entry has been deleted. 2251 */ 2252 vm_map_unlock(map); 2253 return (KERN_INVALID_ADDRESS); 2254 } 2255 end = saved_start; 2256 rv = KERN_INVALID_ADDRESS; 2257 goto done; 2258 } 2259 } 2260 if (entry == first_entry) 2261 first_entry = tmp_entry; 2262 else 2263 first_entry = NULL; 2264 entry = tmp_entry; 2265 } 2266 last_timestamp = map->timestamp; 2267 continue; 2268 } 2269 vm_map_clip_start(map, entry, start); 2270 vm_map_clip_end(map, entry, end); 2271 /* 2272 * Mark the entry in case the map lock is released. (See 2273 * above.) 2274 */ 2275 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 2276 entry->wiring_thread = curthread; 2277 /* 2278 * Check the map for holes in the specified region. 2279 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 2280 */ 2281 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) && 2282 (entry->end < end && (entry->next == &map->header || 2283 entry->next->start > entry->end))) { 2284 end = entry->end; 2285 rv = KERN_INVALID_ADDRESS; 2286 goto done; 2287 } 2288 /* 2289 * If system unwiring, require that the entry is system wired. 2290 */ 2291 if (!user_unwire && 2292 vm_map_entry_system_wired_count(entry) == 0) { 2293 end = entry->end; 2294 rv = KERN_INVALID_ARGUMENT; 2295 goto done; 2296 } 2297 entry = entry->next; 2298 } 2299 rv = KERN_SUCCESS; 2300 done: 2301 need_wakeup = FALSE; 2302 if (first_entry == NULL) { 2303 result = vm_map_lookup_entry(map, start, &first_entry); 2304 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 2305 first_entry = first_entry->next; 2306 else 2307 KASSERT(result, ("vm_map_unwire: lookup failed")); 2308 } 2309 for (entry = first_entry; entry != &map->header && entry->start < end; 2310 entry = entry->next) { 2311 /* 2312 * If VM_MAP_WIRE_HOLESOK was specified, an empty 2313 * space in the unwired region could have been mapped 2314 * while the map lock was dropped for draining 2315 * MAP_ENTRY_IN_TRANSITION. Moreover, another thread 2316 * could be simultaneously wiring this new mapping 2317 * entry. Detect these cases and skip any entries 2318 * marked as in transition by us. 2319 */ 2320 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 2321 entry->wiring_thread != curthread) { 2322 KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0, 2323 ("vm_map_unwire: !HOLESOK and new/changed entry")); 2324 continue; 2325 } 2326 2327 if (rv == KERN_SUCCESS && (!user_unwire || 2328 (entry->eflags & MAP_ENTRY_USER_WIRED))) { 2329 if (user_unwire) 2330 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2331 entry->wired_count--; 2332 if (entry->wired_count == 0) { 2333 /* 2334 * Retain the map lock. 2335 */ 2336 vm_fault_unwire(map, entry->start, entry->end, 2337 entry->object.vm_object != NULL && 2338 (entry->object.vm_object->flags & 2339 OBJ_FICTITIOUS) != 0); 2340 } 2341 } 2342 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 2343 ("vm_map_unwire: in-transition flag missing")); 2344 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 2345 entry->wiring_thread = NULL; 2346 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 2347 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 2348 need_wakeup = TRUE; 2349 } 2350 vm_map_simplify_entry(map, entry); 2351 } 2352 vm_map_unlock(map); 2353 if (need_wakeup) 2354 vm_map_wakeup(map); 2355 return (rv); 2356 } 2357 2358 /* 2359 * vm_map_wire: 2360 * 2361 * Implements both kernel and user wiring. 2362 */ 2363 int 2364 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2365 int flags) 2366 { 2367 vm_map_entry_t entry, first_entry, tmp_entry; 2368 vm_offset_t saved_end, saved_start; 2369 unsigned int last_timestamp; 2370 int rv; 2371 boolean_t fictitious, need_wakeup, result, user_wire; 2372 vm_prot_t prot; 2373 2374 prot = 0; 2375 if (flags & VM_MAP_WIRE_WRITE) 2376 prot |= VM_PROT_WRITE; 2377 user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 2378 vm_map_lock(map); 2379 VM_MAP_RANGE_CHECK(map, start, end); 2380 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2381 if (flags & VM_MAP_WIRE_HOLESOK) 2382 first_entry = first_entry->next; 2383 else { 2384 vm_map_unlock(map); 2385 return (KERN_INVALID_ADDRESS); 2386 } 2387 } 2388 last_timestamp = map->timestamp; 2389 entry = first_entry; 2390 while (entry != &map->header && entry->start < end) { 2391 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2392 /* 2393 * We have not yet clipped the entry. 2394 */ 2395 saved_start = (start >= entry->start) ? start : 2396 entry->start; 2397 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2398 if (vm_map_unlock_and_wait(map, 0)) { 2399 /* 2400 * Allow interruption of user wiring? 2401 */ 2402 } 2403 vm_map_lock(map); 2404 if (last_timestamp + 1 != map->timestamp) { 2405 /* 2406 * Look again for the entry because the map was 2407 * modified while it was unlocked. 2408 * Specifically, the entry may have been 2409 * clipped, merged, or deleted. 2410 */ 2411 if (!vm_map_lookup_entry(map, saved_start, 2412 &tmp_entry)) { 2413 if (flags & VM_MAP_WIRE_HOLESOK) 2414 tmp_entry = tmp_entry->next; 2415 else { 2416 if (saved_start == start) { 2417 /* 2418 * first_entry has been deleted. 2419 */ 2420 vm_map_unlock(map); 2421 return (KERN_INVALID_ADDRESS); 2422 } 2423 end = saved_start; 2424 rv = KERN_INVALID_ADDRESS; 2425 goto done; 2426 } 2427 } 2428 if (entry == first_entry) 2429 first_entry = tmp_entry; 2430 else 2431 first_entry = NULL; 2432 entry = tmp_entry; 2433 } 2434 last_timestamp = map->timestamp; 2435 continue; 2436 } 2437 vm_map_clip_start(map, entry, start); 2438 vm_map_clip_end(map, entry, end); 2439 /* 2440 * Mark the entry in case the map lock is released. (See 2441 * above.) 2442 */ 2443 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 2444 entry->wiring_thread = curthread; 2445 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 2446 || (entry->protection & prot) != prot) { 2447 entry->eflags |= MAP_ENTRY_WIRE_SKIPPED; 2448 if ((flags & VM_MAP_WIRE_HOLESOK) == 0) { 2449 end = entry->end; 2450 rv = KERN_INVALID_ADDRESS; 2451 goto done; 2452 } 2453 goto next_entry; 2454 } 2455 if (entry->wired_count == 0) { 2456 entry->wired_count++; 2457 saved_start = entry->start; 2458 saved_end = entry->end; 2459 fictitious = entry->object.vm_object != NULL && 2460 (entry->object.vm_object->flags & 2461 OBJ_FICTITIOUS) != 0; 2462 /* 2463 * Release the map lock, relying on the in-transition 2464 * mark. Mark the map busy for fork. 2465 */ 2466 vm_map_busy(map); 2467 vm_map_unlock(map); 2468 rv = vm_fault_wire(map, saved_start, saved_end, 2469 fictitious); 2470 vm_map_lock(map); 2471 vm_map_unbusy(map); 2472 if (last_timestamp + 1 != map->timestamp) { 2473 /* 2474 * Look again for the entry because the map was 2475 * modified while it was unlocked. The entry 2476 * may have been clipped, but NOT merged or 2477 * deleted. 2478 */ 2479 result = vm_map_lookup_entry(map, saved_start, 2480 &tmp_entry); 2481 KASSERT(result, ("vm_map_wire: lookup failed")); 2482 if (entry == first_entry) 2483 first_entry = tmp_entry; 2484 else 2485 first_entry = NULL; 2486 entry = tmp_entry; 2487 while (entry->end < saved_end) { 2488 if (rv != KERN_SUCCESS) { 2489 KASSERT(entry->wired_count == 1, 2490 ("vm_map_wire: bad count")); 2491 entry->wired_count = -1; 2492 } 2493 entry = entry->next; 2494 } 2495 } 2496 last_timestamp = map->timestamp; 2497 if (rv != KERN_SUCCESS) { 2498 KASSERT(entry->wired_count == 1, 2499 ("vm_map_wire: bad count")); 2500 /* 2501 * Assign an out-of-range value to represent 2502 * the failure to wire this entry. 2503 */ 2504 entry->wired_count = -1; 2505 end = entry->end; 2506 goto done; 2507 } 2508 } else if (!user_wire || 2509 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 2510 entry->wired_count++; 2511 } 2512 /* 2513 * Check the map for holes in the specified region. 2514 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 2515 */ 2516 next_entry: 2517 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) && 2518 (entry->end < end && (entry->next == &map->header || 2519 entry->next->start > entry->end))) { 2520 end = entry->end; 2521 rv = KERN_INVALID_ADDRESS; 2522 goto done; 2523 } 2524 entry = entry->next; 2525 } 2526 rv = KERN_SUCCESS; 2527 done: 2528 need_wakeup = FALSE; 2529 if (first_entry == NULL) { 2530 result = vm_map_lookup_entry(map, start, &first_entry); 2531 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 2532 first_entry = first_entry->next; 2533 else 2534 KASSERT(result, ("vm_map_wire: lookup failed")); 2535 } 2536 for (entry = first_entry; entry != &map->header && entry->start < end; 2537 entry = entry->next) { 2538 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) 2539 goto next_entry_done; 2540 2541 /* 2542 * If VM_MAP_WIRE_HOLESOK was specified, an empty 2543 * space in the unwired region could have been mapped 2544 * while the map lock was dropped for faulting in the 2545 * pages or draining MAP_ENTRY_IN_TRANSITION. 2546 * Moreover, another thread could be simultaneously 2547 * wiring this new mapping entry. Detect these cases 2548 * and skip any entries marked as in transition by us. 2549 */ 2550 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 2551 entry->wiring_thread != curthread) { 2552 KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0, 2553 ("vm_map_wire: !HOLESOK and new/changed entry")); 2554 continue; 2555 } 2556 2557 if (rv == KERN_SUCCESS) { 2558 if (user_wire) 2559 entry->eflags |= MAP_ENTRY_USER_WIRED; 2560 } else if (entry->wired_count == -1) { 2561 /* 2562 * Wiring failed on this entry. Thus, unwiring is 2563 * unnecessary. 2564 */ 2565 entry->wired_count = 0; 2566 } else { 2567 if (!user_wire || 2568 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) 2569 entry->wired_count--; 2570 if (entry->wired_count == 0) { 2571 /* 2572 * Retain the map lock. 2573 */ 2574 vm_fault_unwire(map, entry->start, entry->end, 2575 entry->object.vm_object != NULL && 2576 (entry->object.vm_object->flags & 2577 OBJ_FICTITIOUS) != 0); 2578 } 2579 } 2580 next_entry_done: 2581 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 2582 ("vm_map_wire: in-transition flag missing %p", entry)); 2583 KASSERT(entry->wiring_thread == curthread, 2584 ("vm_map_wire: alien wire %p", entry)); 2585 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION | 2586 MAP_ENTRY_WIRE_SKIPPED); 2587 entry->wiring_thread = NULL; 2588 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 2589 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 2590 need_wakeup = TRUE; 2591 } 2592 vm_map_simplify_entry(map, entry); 2593 } 2594 vm_map_unlock(map); 2595 if (need_wakeup) 2596 vm_map_wakeup(map); 2597 return (rv); 2598 } 2599 2600 /* 2601 * vm_map_sync 2602 * 2603 * Push any dirty cached pages in the address range to their pager. 2604 * If syncio is TRUE, dirty pages are written synchronously. 2605 * If invalidate is TRUE, any cached pages are freed as well. 2606 * 2607 * If the size of the region from start to end is zero, we are 2608 * supposed to flush all modified pages within the region containing 2609 * start. Unfortunately, a region can be split or coalesced with 2610 * neighboring regions, making it difficult to determine what the 2611 * original region was. Therefore, we approximate this requirement by 2612 * flushing the current region containing start. 2613 * 2614 * Returns an error if any part of the specified range is not mapped. 2615 */ 2616 int 2617 vm_map_sync( 2618 vm_map_t map, 2619 vm_offset_t start, 2620 vm_offset_t end, 2621 boolean_t syncio, 2622 boolean_t invalidate) 2623 { 2624 vm_map_entry_t current; 2625 vm_map_entry_t entry; 2626 vm_size_t size; 2627 vm_object_t object; 2628 vm_ooffset_t offset; 2629 unsigned int last_timestamp; 2630 boolean_t failed; 2631 2632 vm_map_lock_read(map); 2633 VM_MAP_RANGE_CHECK(map, start, end); 2634 if (!vm_map_lookup_entry(map, start, &entry)) { 2635 vm_map_unlock_read(map); 2636 return (KERN_INVALID_ADDRESS); 2637 } else if (start == end) { 2638 start = entry->start; 2639 end = entry->end; 2640 } 2641 /* 2642 * Make a first pass to check for user-wired memory and holes. 2643 */ 2644 for (current = entry; current != &map->header && current->start < end; 2645 current = current->next) { 2646 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) { 2647 vm_map_unlock_read(map); 2648 return (KERN_INVALID_ARGUMENT); 2649 } 2650 if (end > current->end && 2651 (current->next == &map->header || 2652 current->end != current->next->start)) { 2653 vm_map_unlock_read(map); 2654 return (KERN_INVALID_ADDRESS); 2655 } 2656 } 2657 2658 if (invalidate) 2659 pmap_remove(map->pmap, start, end); 2660 failed = FALSE; 2661 2662 /* 2663 * Make a second pass, cleaning/uncaching pages from the indicated 2664 * objects as we go. 2665 */ 2666 for (current = entry; current != &map->header && current->start < end;) { 2667 offset = current->offset + (start - current->start); 2668 size = (end <= current->end ? end : current->end) - start; 2669 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 2670 vm_map_t smap; 2671 vm_map_entry_t tentry; 2672 vm_size_t tsize; 2673 2674 smap = current->object.sub_map; 2675 vm_map_lock_read(smap); 2676 (void) vm_map_lookup_entry(smap, offset, &tentry); 2677 tsize = tentry->end - offset; 2678 if (tsize < size) 2679 size = tsize; 2680 object = tentry->object.vm_object; 2681 offset = tentry->offset + (offset - tentry->start); 2682 vm_map_unlock_read(smap); 2683 } else { 2684 object = current->object.vm_object; 2685 } 2686 vm_object_reference(object); 2687 last_timestamp = map->timestamp; 2688 vm_map_unlock_read(map); 2689 if (!vm_object_sync(object, offset, size, syncio, invalidate)) 2690 failed = TRUE; 2691 start += size; 2692 vm_object_deallocate(object); 2693 vm_map_lock_read(map); 2694 if (last_timestamp == map->timestamp || 2695 !vm_map_lookup_entry(map, start, ¤t)) 2696 current = current->next; 2697 } 2698 2699 vm_map_unlock_read(map); 2700 return (failed ? KERN_FAILURE : KERN_SUCCESS); 2701 } 2702 2703 /* 2704 * vm_map_entry_unwire: [ internal use only ] 2705 * 2706 * Make the region specified by this entry pageable. 2707 * 2708 * The map in question should be locked. 2709 * [This is the reason for this routine's existence.] 2710 */ 2711 static void 2712 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 2713 { 2714 vm_fault_unwire(map, entry->start, entry->end, 2715 entry->object.vm_object != NULL && 2716 (entry->object.vm_object->flags & OBJ_FICTITIOUS) != 0); 2717 entry->wired_count = 0; 2718 } 2719 2720 static void 2721 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map) 2722 { 2723 2724 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) 2725 vm_object_deallocate(entry->object.vm_object); 2726 uma_zfree(system_map ? kmapentzone : mapentzone, entry); 2727 } 2728 2729 /* 2730 * vm_map_entry_delete: [ internal use only ] 2731 * 2732 * Deallocate the given entry from the target map. 2733 */ 2734 static void 2735 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry) 2736 { 2737 vm_object_t object; 2738 vm_pindex_t offidxstart, offidxend, count, size1; 2739 vm_ooffset_t size; 2740 2741 vm_map_entry_unlink(map, entry); 2742 object = entry->object.vm_object; 2743 size = entry->end - entry->start; 2744 map->size -= size; 2745 2746 if (entry->cred != NULL) { 2747 swap_release_by_cred(size, entry->cred); 2748 crfree(entry->cred); 2749 } 2750 2751 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 && 2752 (object != NULL)) { 2753 KASSERT(entry->cred == NULL || object->cred == NULL || 2754 (entry->eflags & MAP_ENTRY_NEEDS_COPY), 2755 ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry)); 2756 count = OFF_TO_IDX(size); 2757 offidxstart = OFF_TO_IDX(entry->offset); 2758 offidxend = offidxstart + count; 2759 VM_OBJECT_WLOCK(object); 2760 if (object->ref_count != 1 && 2761 ((object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING || 2762 object == kernel_object || object == kmem_object)) { 2763 vm_object_collapse(object); 2764 2765 /* 2766 * The option OBJPR_NOTMAPPED can be passed here 2767 * because vm_map_delete() already performed 2768 * pmap_remove() on the only mapping to this range 2769 * of pages. 2770 */ 2771 vm_object_page_remove(object, offidxstart, offidxend, 2772 OBJPR_NOTMAPPED); 2773 if (object->type == OBJT_SWAP) 2774 swap_pager_freespace(object, offidxstart, count); 2775 if (offidxend >= object->size && 2776 offidxstart < object->size) { 2777 size1 = object->size; 2778 object->size = offidxstart; 2779 if (object->cred != NULL) { 2780 size1 -= object->size; 2781 KASSERT(object->charge >= ptoa(size1), 2782 ("vm_map_entry_delete: object->charge < 0")); 2783 swap_release_by_cred(ptoa(size1), object->cred); 2784 object->charge -= ptoa(size1); 2785 } 2786 } 2787 } 2788 VM_OBJECT_WUNLOCK(object); 2789 } else 2790 entry->object.vm_object = NULL; 2791 if (map->system_map) 2792 vm_map_entry_deallocate(entry, TRUE); 2793 else { 2794 entry->next = curthread->td_map_def_user; 2795 curthread->td_map_def_user = entry; 2796 } 2797 } 2798 2799 /* 2800 * vm_map_delete: [ internal use only ] 2801 * 2802 * Deallocates the given address range from the target 2803 * map. 2804 */ 2805 int 2806 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end) 2807 { 2808 vm_map_entry_t entry; 2809 vm_map_entry_t first_entry; 2810 2811 VM_MAP_ASSERT_LOCKED(map); 2812 2813 /* 2814 * Find the start of the region, and clip it 2815 */ 2816 if (!vm_map_lookup_entry(map, start, &first_entry)) 2817 entry = first_entry->next; 2818 else { 2819 entry = first_entry; 2820 vm_map_clip_start(map, entry, start); 2821 } 2822 2823 /* 2824 * Step through all entries in this region 2825 */ 2826 while ((entry != &map->header) && (entry->start < end)) { 2827 vm_map_entry_t next; 2828 2829 /* 2830 * Wait for wiring or unwiring of an entry to complete. 2831 * Also wait for any system wirings to disappear on 2832 * user maps. 2833 */ 2834 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 || 2835 (vm_map_pmap(map) != kernel_pmap && 2836 vm_map_entry_system_wired_count(entry) != 0)) { 2837 unsigned int last_timestamp; 2838 vm_offset_t saved_start; 2839 vm_map_entry_t tmp_entry; 2840 2841 saved_start = entry->start; 2842 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2843 last_timestamp = map->timestamp; 2844 (void) vm_map_unlock_and_wait(map, 0); 2845 vm_map_lock(map); 2846 if (last_timestamp + 1 != map->timestamp) { 2847 /* 2848 * Look again for the entry because the map was 2849 * modified while it was unlocked. 2850 * Specifically, the entry may have been 2851 * clipped, merged, or deleted. 2852 */ 2853 if (!vm_map_lookup_entry(map, saved_start, 2854 &tmp_entry)) 2855 entry = tmp_entry->next; 2856 else { 2857 entry = tmp_entry; 2858 vm_map_clip_start(map, entry, 2859 saved_start); 2860 } 2861 } 2862 continue; 2863 } 2864 vm_map_clip_end(map, entry, end); 2865 2866 next = entry->next; 2867 2868 /* 2869 * Unwire before removing addresses from the pmap; otherwise, 2870 * unwiring will put the entries back in the pmap. 2871 */ 2872 if (entry->wired_count != 0) { 2873 vm_map_entry_unwire(map, entry); 2874 } 2875 2876 pmap_remove(map->pmap, entry->start, entry->end); 2877 2878 /* 2879 * Delete the entry only after removing all pmap 2880 * entries pointing to its pages. (Otherwise, its 2881 * page frames may be reallocated, and any modify bits 2882 * will be set in the wrong object!) 2883 */ 2884 vm_map_entry_delete(map, entry); 2885 entry = next; 2886 } 2887 return (KERN_SUCCESS); 2888 } 2889 2890 /* 2891 * vm_map_remove: 2892 * 2893 * Remove the given address range from the target map. 2894 * This is the exported form of vm_map_delete. 2895 */ 2896 int 2897 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 2898 { 2899 int result; 2900 2901 vm_map_lock(map); 2902 VM_MAP_RANGE_CHECK(map, start, end); 2903 result = vm_map_delete(map, start, end); 2904 vm_map_unlock(map); 2905 return (result); 2906 } 2907 2908 /* 2909 * vm_map_check_protection: 2910 * 2911 * Assert that the target map allows the specified privilege on the 2912 * entire address region given. The entire region must be allocated. 2913 * 2914 * WARNING! This code does not and should not check whether the 2915 * contents of the region is accessible. For example a smaller file 2916 * might be mapped into a larger address space. 2917 * 2918 * NOTE! This code is also called by munmap(). 2919 * 2920 * The map must be locked. A read lock is sufficient. 2921 */ 2922 boolean_t 2923 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 2924 vm_prot_t protection) 2925 { 2926 vm_map_entry_t entry; 2927 vm_map_entry_t tmp_entry; 2928 2929 if (!vm_map_lookup_entry(map, start, &tmp_entry)) 2930 return (FALSE); 2931 entry = tmp_entry; 2932 2933 while (start < end) { 2934 if (entry == &map->header) 2935 return (FALSE); 2936 /* 2937 * No holes allowed! 2938 */ 2939 if (start < entry->start) 2940 return (FALSE); 2941 /* 2942 * Check protection associated with entry. 2943 */ 2944 if ((entry->protection & protection) != protection) 2945 return (FALSE); 2946 /* go to next entry */ 2947 start = entry->end; 2948 entry = entry->next; 2949 } 2950 return (TRUE); 2951 } 2952 2953 /* 2954 * vm_map_copy_entry: 2955 * 2956 * Copies the contents of the source entry to the destination 2957 * entry. The entries *must* be aligned properly. 2958 */ 2959 static void 2960 vm_map_copy_entry( 2961 vm_map_t src_map, 2962 vm_map_t dst_map, 2963 vm_map_entry_t src_entry, 2964 vm_map_entry_t dst_entry, 2965 vm_ooffset_t *fork_charge) 2966 { 2967 vm_object_t src_object; 2968 vm_map_entry_t fake_entry; 2969 vm_offset_t size; 2970 struct ucred *cred; 2971 int charged; 2972 2973 VM_MAP_ASSERT_LOCKED(dst_map); 2974 2975 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP) 2976 return; 2977 2978 if (src_entry->wired_count == 0) { 2979 2980 /* 2981 * If the source entry is marked needs_copy, it is already 2982 * write-protected. 2983 */ 2984 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) { 2985 pmap_protect(src_map->pmap, 2986 src_entry->start, 2987 src_entry->end, 2988 src_entry->protection & ~VM_PROT_WRITE); 2989 } 2990 2991 /* 2992 * Make a copy of the object. 2993 */ 2994 size = src_entry->end - src_entry->start; 2995 if ((src_object = src_entry->object.vm_object) != NULL) { 2996 VM_OBJECT_WLOCK(src_object); 2997 charged = ENTRY_CHARGED(src_entry); 2998 if ((src_object->handle == NULL) && 2999 (src_object->type == OBJT_DEFAULT || 3000 src_object->type == OBJT_SWAP)) { 3001 vm_object_collapse(src_object); 3002 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) { 3003 vm_object_split(src_entry); 3004 src_object = src_entry->object.vm_object; 3005 } 3006 } 3007 vm_object_reference_locked(src_object); 3008 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 3009 if (src_entry->cred != NULL && 3010 !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 3011 KASSERT(src_object->cred == NULL, 3012 ("OVERCOMMIT: vm_map_copy_entry: cred %p", 3013 src_object)); 3014 src_object->cred = src_entry->cred; 3015 src_object->charge = size; 3016 } 3017 VM_OBJECT_WUNLOCK(src_object); 3018 dst_entry->object.vm_object = src_object; 3019 if (charged) { 3020 cred = curthread->td_ucred; 3021 crhold(cred); 3022 dst_entry->cred = cred; 3023 *fork_charge += size; 3024 if (!(src_entry->eflags & 3025 MAP_ENTRY_NEEDS_COPY)) { 3026 crhold(cred); 3027 src_entry->cred = cred; 3028 *fork_charge += size; 3029 } 3030 } 3031 src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 3032 dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 3033 dst_entry->offset = src_entry->offset; 3034 if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) { 3035 /* 3036 * MAP_ENTRY_VN_WRITECNT cannot 3037 * indicate write reference from 3038 * src_entry, since the entry is 3039 * marked as needs copy. Allocate a 3040 * fake entry that is used to 3041 * decrement object->un_pager.vnp.writecount 3042 * at the appropriate time. Attach 3043 * fake_entry to the deferred list. 3044 */ 3045 fake_entry = vm_map_entry_create(dst_map); 3046 fake_entry->eflags = MAP_ENTRY_VN_WRITECNT; 3047 src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT; 3048 vm_object_reference(src_object); 3049 fake_entry->object.vm_object = src_object; 3050 fake_entry->start = src_entry->start; 3051 fake_entry->end = src_entry->end; 3052 fake_entry->next = curthread->td_map_def_user; 3053 curthread->td_map_def_user = fake_entry; 3054 } 3055 } else { 3056 dst_entry->object.vm_object = NULL; 3057 dst_entry->offset = 0; 3058 if (src_entry->cred != NULL) { 3059 dst_entry->cred = curthread->td_ucred; 3060 crhold(dst_entry->cred); 3061 *fork_charge += size; 3062 } 3063 } 3064 3065 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start, 3066 dst_entry->end - dst_entry->start, src_entry->start); 3067 } else { 3068 /* 3069 * Of course, wired down pages can't be set copy-on-write. 3070 * Cause wired pages to be copied into the new map by 3071 * simulating faults (the new pages are pageable) 3072 */ 3073 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry, 3074 fork_charge); 3075 } 3076 } 3077 3078 /* 3079 * vmspace_map_entry_forked: 3080 * Update the newly-forked vmspace each time a map entry is inherited 3081 * or copied. The values for vm_dsize and vm_tsize are approximate 3082 * (and mostly-obsolete ideas in the face of mmap(2) et al.) 3083 */ 3084 static void 3085 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2, 3086 vm_map_entry_t entry) 3087 { 3088 vm_size_t entrysize; 3089 vm_offset_t newend; 3090 3091 entrysize = entry->end - entry->start; 3092 vm2->vm_map.size += entrysize; 3093 if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) { 3094 vm2->vm_ssize += btoc(entrysize); 3095 } else if (entry->start >= (vm_offset_t)vm1->vm_daddr && 3096 entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) { 3097 newend = MIN(entry->end, 3098 (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)); 3099 vm2->vm_dsize += btoc(newend - entry->start); 3100 } else if (entry->start >= (vm_offset_t)vm1->vm_taddr && 3101 entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) { 3102 newend = MIN(entry->end, 3103 (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)); 3104 vm2->vm_tsize += btoc(newend - entry->start); 3105 } 3106 } 3107 3108 /* 3109 * vmspace_fork: 3110 * Create a new process vmspace structure and vm_map 3111 * based on those of an existing process. The new map 3112 * is based on the old map, according to the inheritance 3113 * values on the regions in that map. 3114 * 3115 * XXX It might be worth coalescing the entries added to the new vmspace. 3116 * 3117 * The source map must not be locked. 3118 */ 3119 struct vmspace * 3120 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge) 3121 { 3122 struct vmspace *vm2; 3123 vm_map_t new_map, old_map; 3124 vm_map_entry_t new_entry, old_entry; 3125 vm_object_t object; 3126 int locked; 3127 3128 old_map = &vm1->vm_map; 3129 /* Copy immutable fields of vm1 to vm2. */ 3130 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset); 3131 if (vm2 == NULL) 3132 return (NULL); 3133 vm2->vm_taddr = vm1->vm_taddr; 3134 vm2->vm_daddr = vm1->vm_daddr; 3135 vm2->vm_maxsaddr = vm1->vm_maxsaddr; 3136 vm_map_lock(old_map); 3137 if (old_map->busy) 3138 vm_map_wait_busy(old_map); 3139 new_map = &vm2->vm_map; 3140 locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */ 3141 KASSERT(locked, ("vmspace_fork: lock failed")); 3142 3143 old_entry = old_map->header.next; 3144 3145 while (old_entry != &old_map->header) { 3146 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) 3147 panic("vm_map_fork: encountered a submap"); 3148 3149 switch (old_entry->inheritance) { 3150 case VM_INHERIT_NONE: 3151 break; 3152 3153 case VM_INHERIT_SHARE: 3154 /* 3155 * Clone the entry, creating the shared object if necessary. 3156 */ 3157 object = old_entry->object.vm_object; 3158 if (object == NULL) { 3159 object = vm_object_allocate(OBJT_DEFAULT, 3160 atop(old_entry->end - old_entry->start)); 3161 old_entry->object.vm_object = object; 3162 old_entry->offset = 0; 3163 if (old_entry->cred != NULL) { 3164 object->cred = old_entry->cred; 3165 object->charge = old_entry->end - 3166 old_entry->start; 3167 old_entry->cred = NULL; 3168 } 3169 } 3170 3171 /* 3172 * Add the reference before calling vm_object_shadow 3173 * to insure that a shadow object is created. 3174 */ 3175 vm_object_reference(object); 3176 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3177 vm_object_shadow(&old_entry->object.vm_object, 3178 &old_entry->offset, 3179 old_entry->end - old_entry->start); 3180 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 3181 /* Transfer the second reference too. */ 3182 vm_object_reference( 3183 old_entry->object.vm_object); 3184 3185 /* 3186 * As in vm_map_simplify_entry(), the 3187 * vnode lock will not be acquired in 3188 * this call to vm_object_deallocate(). 3189 */ 3190 vm_object_deallocate(object); 3191 object = old_entry->object.vm_object; 3192 } 3193 VM_OBJECT_WLOCK(object); 3194 vm_object_clear_flag(object, OBJ_ONEMAPPING); 3195 if (old_entry->cred != NULL) { 3196 KASSERT(object->cred == NULL, ("vmspace_fork both cred")); 3197 object->cred = old_entry->cred; 3198 object->charge = old_entry->end - old_entry->start; 3199 old_entry->cred = NULL; 3200 } 3201 3202 /* 3203 * Assert the correct state of the vnode 3204 * v_writecount while the object is locked, to 3205 * not relock it later for the assertion 3206 * correctness. 3207 */ 3208 if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT && 3209 object->type == OBJT_VNODE) { 3210 KASSERT(((struct vnode *)object->handle)-> 3211 v_writecount > 0, 3212 ("vmspace_fork: v_writecount %p", object)); 3213 KASSERT(object->un_pager.vnp.writemappings > 0, 3214 ("vmspace_fork: vnp.writecount %p", 3215 object)); 3216 } 3217 VM_OBJECT_WUNLOCK(object); 3218 3219 /* 3220 * Clone the entry, referencing the shared object. 3221 */ 3222 new_entry = vm_map_entry_create(new_map); 3223 *new_entry = *old_entry; 3224 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 3225 MAP_ENTRY_IN_TRANSITION); 3226 new_entry->wiring_thread = NULL; 3227 new_entry->wired_count = 0; 3228 if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) { 3229 vnode_pager_update_writecount(object, 3230 new_entry->start, new_entry->end); 3231 } 3232 3233 /* 3234 * Insert the entry into the new map -- we know we're 3235 * inserting at the end of the new map. 3236 */ 3237 vm_map_entry_link(new_map, new_map->header.prev, 3238 new_entry); 3239 vmspace_map_entry_forked(vm1, vm2, new_entry); 3240 3241 /* 3242 * Update the physical map 3243 */ 3244 pmap_copy(new_map->pmap, old_map->pmap, 3245 new_entry->start, 3246 (old_entry->end - old_entry->start), 3247 old_entry->start); 3248 break; 3249 3250 case VM_INHERIT_COPY: 3251 /* 3252 * Clone the entry and link into the map. 3253 */ 3254 new_entry = vm_map_entry_create(new_map); 3255 *new_entry = *old_entry; 3256 /* 3257 * Copied entry is COW over the old object. 3258 */ 3259 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 3260 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT); 3261 new_entry->wiring_thread = NULL; 3262 new_entry->wired_count = 0; 3263 new_entry->object.vm_object = NULL; 3264 new_entry->cred = NULL; 3265 vm_map_entry_link(new_map, new_map->header.prev, 3266 new_entry); 3267 vmspace_map_entry_forked(vm1, vm2, new_entry); 3268 vm_map_copy_entry(old_map, new_map, old_entry, 3269 new_entry, fork_charge); 3270 break; 3271 } 3272 old_entry = old_entry->next; 3273 } 3274 /* 3275 * Use inlined vm_map_unlock() to postpone handling the deferred 3276 * map entries, which cannot be done until both old_map and 3277 * new_map locks are released. 3278 */ 3279 sx_xunlock(&old_map->lock); 3280 sx_xunlock(&new_map->lock); 3281 vm_map_process_deferred(); 3282 3283 return (vm2); 3284 } 3285 3286 int 3287 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 3288 vm_prot_t prot, vm_prot_t max, int cow) 3289 { 3290 vm_map_entry_t new_entry, prev_entry; 3291 vm_offset_t bot, top; 3292 vm_size_t growsize, init_ssize; 3293 int orient, rv; 3294 rlim_t lmemlim, vmemlim; 3295 3296 /* 3297 * The stack orientation is piggybacked with the cow argument. 3298 * Extract it into orient and mask the cow argument so that we 3299 * don't pass it around further. 3300 * NOTE: We explicitly allow bi-directional stacks. 3301 */ 3302 orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP); 3303 cow &= ~orient; 3304 KASSERT(orient != 0, ("No stack grow direction")); 3305 3306 if (addrbos < vm_map_min(map) || 3307 addrbos > vm_map_max(map) || 3308 addrbos + max_ssize < addrbos) 3309 return (KERN_NO_SPACE); 3310 3311 growsize = sgrowsiz; 3312 init_ssize = (max_ssize < growsize) ? max_ssize : growsize; 3313 3314 PROC_LOCK(curproc); 3315 lmemlim = lim_cur(curproc, RLIMIT_MEMLOCK); 3316 vmemlim = lim_cur(curproc, RLIMIT_VMEM); 3317 PROC_UNLOCK(curproc); 3318 3319 vm_map_lock(map); 3320 3321 /* If addr is already mapped, no go */ 3322 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) { 3323 vm_map_unlock(map); 3324 return (KERN_NO_SPACE); 3325 } 3326 3327 if (!old_mlock && map->flags & MAP_WIREFUTURE) { 3328 if (ptoa(pmap_wired_count(map->pmap)) + init_ssize > lmemlim) { 3329 vm_map_unlock(map); 3330 return (KERN_NO_SPACE); 3331 } 3332 } 3333 3334 /* If we would blow our VMEM resource limit, no go */ 3335 if (map->size + init_ssize > vmemlim) { 3336 vm_map_unlock(map); 3337 return (KERN_NO_SPACE); 3338 } 3339 3340 /* 3341 * If we can't accomodate max_ssize in the current mapping, no go. 3342 * However, we need to be aware that subsequent user mappings might 3343 * map into the space we have reserved for stack, and currently this 3344 * space is not protected. 3345 * 3346 * Hopefully we will at least detect this condition when we try to 3347 * grow the stack. 3348 */ 3349 if ((prev_entry->next != &map->header) && 3350 (prev_entry->next->start < addrbos + max_ssize)) { 3351 vm_map_unlock(map); 3352 return (KERN_NO_SPACE); 3353 } 3354 3355 /* 3356 * We initially map a stack of only init_ssize. We will grow as 3357 * needed later. Depending on the orientation of the stack (i.e. 3358 * the grow direction) we either map at the top of the range, the 3359 * bottom of the range or in the middle. 3360 * 3361 * Note: we would normally expect prot and max to be VM_PROT_ALL, 3362 * and cow to be 0. Possibly we should eliminate these as input 3363 * parameters, and just pass these values here in the insert call. 3364 */ 3365 if (orient == MAP_STACK_GROWS_DOWN) 3366 bot = addrbos + max_ssize - init_ssize; 3367 else if (orient == MAP_STACK_GROWS_UP) 3368 bot = addrbos; 3369 else 3370 bot = round_page(addrbos + max_ssize/2 - init_ssize/2); 3371 top = bot + init_ssize; 3372 rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow); 3373 3374 /* Now set the avail_ssize amount. */ 3375 if (rv == KERN_SUCCESS) { 3376 if (prev_entry != &map->header) 3377 vm_map_clip_end(map, prev_entry, bot); 3378 new_entry = prev_entry->next; 3379 if (new_entry->end != top || new_entry->start != bot) 3380 panic("Bad entry start/end for new stack entry"); 3381 3382 new_entry->avail_ssize = max_ssize - init_ssize; 3383 if (orient & MAP_STACK_GROWS_DOWN) 3384 new_entry->eflags |= MAP_ENTRY_GROWS_DOWN; 3385 if (orient & MAP_STACK_GROWS_UP) 3386 new_entry->eflags |= MAP_ENTRY_GROWS_UP; 3387 } 3388 3389 vm_map_unlock(map); 3390 return (rv); 3391 } 3392 3393 static int stack_guard_page = 0; 3394 TUNABLE_INT("security.bsd.stack_guard_page", &stack_guard_page); 3395 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RW, 3396 &stack_guard_page, 0, 3397 "Insert stack guard page ahead of the growable segments."); 3398 3399 /* Attempts to grow a vm stack entry. Returns KERN_SUCCESS if the 3400 * desired address is already mapped, or if we successfully grow 3401 * the stack. Also returns KERN_SUCCESS if addr is outside the 3402 * stack range (this is strange, but preserves compatibility with 3403 * the grow function in vm_machdep.c). 3404 */ 3405 int 3406 vm_map_growstack(struct proc *p, vm_offset_t addr) 3407 { 3408 vm_map_entry_t next_entry, prev_entry; 3409 vm_map_entry_t new_entry, stack_entry; 3410 struct vmspace *vm = p->p_vmspace; 3411 vm_map_t map = &vm->vm_map; 3412 vm_offset_t end; 3413 vm_size_t growsize; 3414 size_t grow_amount, max_grow; 3415 rlim_t lmemlim, stacklim, vmemlim; 3416 int is_procstack, rv; 3417 struct ucred *cred; 3418 #ifdef notyet 3419 uint64_t limit; 3420 #endif 3421 #ifdef RACCT 3422 int error; 3423 #endif 3424 3425 Retry: 3426 PROC_LOCK(p); 3427 lmemlim = lim_cur(p, RLIMIT_MEMLOCK); 3428 stacklim = lim_cur(p, RLIMIT_STACK); 3429 vmemlim = lim_cur(p, RLIMIT_VMEM); 3430 PROC_UNLOCK(p); 3431 3432 vm_map_lock_read(map); 3433 3434 /* If addr is already in the entry range, no need to grow.*/ 3435 if (vm_map_lookup_entry(map, addr, &prev_entry)) { 3436 vm_map_unlock_read(map); 3437 return (KERN_SUCCESS); 3438 } 3439 3440 next_entry = prev_entry->next; 3441 if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) { 3442 /* 3443 * This entry does not grow upwards. Since the address lies 3444 * beyond this entry, the next entry (if one exists) has to 3445 * be a downward growable entry. The entry list header is 3446 * never a growable entry, so it suffices to check the flags. 3447 */ 3448 if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) { 3449 vm_map_unlock_read(map); 3450 return (KERN_SUCCESS); 3451 } 3452 stack_entry = next_entry; 3453 } else { 3454 /* 3455 * This entry grows upward. If the next entry does not at 3456 * least grow downwards, this is the entry we need to grow. 3457 * otherwise we have two possible choices and we have to 3458 * select one. 3459 */ 3460 if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) { 3461 /* 3462 * We have two choices; grow the entry closest to 3463 * the address to minimize the amount of growth. 3464 */ 3465 if (addr - prev_entry->end <= next_entry->start - addr) 3466 stack_entry = prev_entry; 3467 else 3468 stack_entry = next_entry; 3469 } else 3470 stack_entry = prev_entry; 3471 } 3472 3473 if (stack_entry == next_entry) { 3474 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo")); 3475 KASSERT(addr < stack_entry->start, ("foo")); 3476 end = (prev_entry != &map->header) ? prev_entry->end : 3477 stack_entry->start - stack_entry->avail_ssize; 3478 grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE); 3479 max_grow = stack_entry->start - end; 3480 } else { 3481 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo")); 3482 KASSERT(addr >= stack_entry->end, ("foo")); 3483 end = (next_entry != &map->header) ? next_entry->start : 3484 stack_entry->end + stack_entry->avail_ssize; 3485 grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE); 3486 max_grow = end - stack_entry->end; 3487 } 3488 3489 if (grow_amount > stack_entry->avail_ssize) { 3490 vm_map_unlock_read(map); 3491 return (KERN_NO_SPACE); 3492 } 3493 3494 /* 3495 * If there is no longer enough space between the entries nogo, and 3496 * adjust the available space. Note: this should only happen if the 3497 * user has mapped into the stack area after the stack was created, 3498 * and is probably an error. 3499 * 3500 * This also effectively destroys any guard page the user might have 3501 * intended by limiting the stack size. 3502 */ 3503 if (grow_amount + (stack_guard_page ? PAGE_SIZE : 0) > max_grow) { 3504 if (vm_map_lock_upgrade(map)) 3505 goto Retry; 3506 3507 stack_entry->avail_ssize = max_grow; 3508 3509 vm_map_unlock(map); 3510 return (KERN_NO_SPACE); 3511 } 3512 3513 is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr) ? 1 : 0; 3514 3515 /* 3516 * If this is the main process stack, see if we're over the stack 3517 * limit. 3518 */ 3519 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 3520 vm_map_unlock_read(map); 3521 return (KERN_NO_SPACE); 3522 } 3523 #ifdef RACCT 3524 PROC_LOCK(p); 3525 if (is_procstack && 3526 racct_set(p, RACCT_STACK, ctob(vm->vm_ssize) + grow_amount)) { 3527 PROC_UNLOCK(p); 3528 vm_map_unlock_read(map); 3529 return (KERN_NO_SPACE); 3530 } 3531 PROC_UNLOCK(p); 3532 #endif 3533 3534 /* Round up the grow amount modulo sgrowsiz */ 3535 growsize = sgrowsiz; 3536 grow_amount = roundup(grow_amount, growsize); 3537 if (grow_amount > stack_entry->avail_ssize) 3538 grow_amount = stack_entry->avail_ssize; 3539 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 3540 grow_amount = trunc_page((vm_size_t)stacklim) - 3541 ctob(vm->vm_ssize); 3542 } 3543 #ifdef notyet 3544 PROC_LOCK(p); 3545 limit = racct_get_available(p, RACCT_STACK); 3546 PROC_UNLOCK(p); 3547 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit)) 3548 grow_amount = limit - ctob(vm->vm_ssize); 3549 #endif 3550 if (!old_mlock && map->flags & MAP_WIREFUTURE) { 3551 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) { 3552 vm_map_unlock_read(map); 3553 rv = KERN_NO_SPACE; 3554 goto out; 3555 } 3556 #ifdef RACCT 3557 PROC_LOCK(p); 3558 if (racct_set(p, RACCT_MEMLOCK, 3559 ptoa(pmap_wired_count(map->pmap)) + grow_amount)) { 3560 PROC_UNLOCK(p); 3561 vm_map_unlock_read(map); 3562 rv = KERN_NO_SPACE; 3563 goto out; 3564 } 3565 PROC_UNLOCK(p); 3566 #endif 3567 } 3568 /* If we would blow our VMEM resource limit, no go */ 3569 if (map->size + grow_amount > vmemlim) { 3570 vm_map_unlock_read(map); 3571 rv = KERN_NO_SPACE; 3572 goto out; 3573 } 3574 #ifdef RACCT 3575 PROC_LOCK(p); 3576 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) { 3577 PROC_UNLOCK(p); 3578 vm_map_unlock_read(map); 3579 rv = KERN_NO_SPACE; 3580 goto out; 3581 } 3582 PROC_UNLOCK(p); 3583 #endif 3584 3585 if (vm_map_lock_upgrade(map)) 3586 goto Retry; 3587 3588 if (stack_entry == next_entry) { 3589 /* 3590 * Growing downward. 3591 */ 3592 /* Get the preliminary new entry start value */ 3593 addr = stack_entry->start - grow_amount; 3594 3595 /* 3596 * If this puts us into the previous entry, cut back our 3597 * growth to the available space. Also, see the note above. 3598 */ 3599 if (addr < end) { 3600 stack_entry->avail_ssize = max_grow; 3601 addr = end; 3602 if (stack_guard_page) 3603 addr += PAGE_SIZE; 3604 } 3605 3606 rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start, 3607 next_entry->protection, next_entry->max_protection, 0); 3608 3609 /* Adjust the available stack space by the amount we grew. */ 3610 if (rv == KERN_SUCCESS) { 3611 if (prev_entry != &map->header) 3612 vm_map_clip_end(map, prev_entry, addr); 3613 new_entry = prev_entry->next; 3614 KASSERT(new_entry == stack_entry->prev, ("foo")); 3615 KASSERT(new_entry->end == stack_entry->start, ("foo")); 3616 KASSERT(new_entry->start == addr, ("foo")); 3617 grow_amount = new_entry->end - new_entry->start; 3618 new_entry->avail_ssize = stack_entry->avail_ssize - 3619 grow_amount; 3620 stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN; 3621 new_entry->eflags |= MAP_ENTRY_GROWS_DOWN; 3622 } 3623 } else { 3624 /* 3625 * Growing upward. 3626 */ 3627 addr = stack_entry->end + grow_amount; 3628 3629 /* 3630 * If this puts us into the next entry, cut back our growth 3631 * to the available space. Also, see the note above. 3632 */ 3633 if (addr > end) { 3634 stack_entry->avail_ssize = end - stack_entry->end; 3635 addr = end; 3636 if (stack_guard_page) 3637 addr -= PAGE_SIZE; 3638 } 3639 3640 grow_amount = addr - stack_entry->end; 3641 cred = stack_entry->cred; 3642 if (cred == NULL && stack_entry->object.vm_object != NULL) 3643 cred = stack_entry->object.vm_object->cred; 3644 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred)) 3645 rv = KERN_NO_SPACE; 3646 /* Grow the underlying object if applicable. */ 3647 else if (stack_entry->object.vm_object == NULL || 3648 vm_object_coalesce(stack_entry->object.vm_object, 3649 stack_entry->offset, 3650 (vm_size_t)(stack_entry->end - stack_entry->start), 3651 (vm_size_t)grow_amount, cred != NULL)) { 3652 map->size += (addr - stack_entry->end); 3653 /* Update the current entry. */ 3654 stack_entry->end = addr; 3655 stack_entry->avail_ssize -= grow_amount; 3656 vm_map_entry_resize_free(map, stack_entry); 3657 rv = KERN_SUCCESS; 3658 3659 if (next_entry != &map->header) 3660 vm_map_clip_start(map, next_entry, addr); 3661 } else 3662 rv = KERN_FAILURE; 3663 } 3664 3665 if (rv == KERN_SUCCESS && is_procstack) 3666 vm->vm_ssize += btoc(grow_amount); 3667 3668 vm_map_unlock(map); 3669 3670 /* 3671 * Heed the MAP_WIREFUTURE flag if it was set for this process. 3672 */ 3673 if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) { 3674 vm_map_wire(map, 3675 (stack_entry == next_entry) ? addr : addr - grow_amount, 3676 (stack_entry == next_entry) ? stack_entry->start : addr, 3677 (p->p_flag & P_SYSTEM) 3678 ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES 3679 : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES); 3680 } 3681 3682 out: 3683 #ifdef RACCT 3684 if (rv != KERN_SUCCESS) { 3685 PROC_LOCK(p); 3686 error = racct_set(p, RACCT_VMEM, map->size); 3687 KASSERT(error == 0, ("decreasing RACCT_VMEM failed")); 3688 if (!old_mlock) { 3689 error = racct_set(p, RACCT_MEMLOCK, 3690 ptoa(pmap_wired_count(map->pmap))); 3691 KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed")); 3692 } 3693 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize)); 3694 KASSERT(error == 0, ("decreasing RACCT_STACK failed")); 3695 PROC_UNLOCK(p); 3696 } 3697 #endif 3698 3699 return (rv); 3700 } 3701 3702 /* 3703 * Unshare the specified VM space for exec. If other processes are 3704 * mapped to it, then create a new one. The new vmspace is null. 3705 */ 3706 int 3707 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser) 3708 { 3709 struct vmspace *oldvmspace = p->p_vmspace; 3710 struct vmspace *newvmspace; 3711 3712 newvmspace = vmspace_alloc(minuser, maxuser); 3713 if (newvmspace == NULL) 3714 return (ENOMEM); 3715 newvmspace->vm_swrss = oldvmspace->vm_swrss; 3716 /* 3717 * This code is written like this for prototype purposes. The 3718 * goal is to avoid running down the vmspace here, but let the 3719 * other process's that are still using the vmspace to finally 3720 * run it down. Even though there is little or no chance of blocking 3721 * here, it is a good idea to keep this form for future mods. 3722 */ 3723 PROC_VMSPACE_LOCK(p); 3724 p->p_vmspace = newvmspace; 3725 PROC_VMSPACE_UNLOCK(p); 3726 if (p == curthread->td_proc) 3727 pmap_activate(curthread); 3728 vmspace_free(oldvmspace); 3729 return (0); 3730 } 3731 3732 /* 3733 * Unshare the specified VM space for forcing COW. This 3734 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 3735 */ 3736 int 3737 vmspace_unshare(struct proc *p) 3738 { 3739 struct vmspace *oldvmspace = p->p_vmspace; 3740 struct vmspace *newvmspace; 3741 vm_ooffset_t fork_charge; 3742 3743 if (oldvmspace->vm_refcnt == 1) 3744 return (0); 3745 fork_charge = 0; 3746 newvmspace = vmspace_fork(oldvmspace, &fork_charge); 3747 if (newvmspace == NULL) 3748 return (ENOMEM); 3749 if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) { 3750 vmspace_free(newvmspace); 3751 return (ENOMEM); 3752 } 3753 PROC_VMSPACE_LOCK(p); 3754 p->p_vmspace = newvmspace; 3755 PROC_VMSPACE_UNLOCK(p); 3756 if (p == curthread->td_proc) 3757 pmap_activate(curthread); 3758 vmspace_free(oldvmspace); 3759 return (0); 3760 } 3761 3762 /* 3763 * vm_map_lookup: 3764 * 3765 * Finds the VM object, offset, and 3766 * protection for a given virtual address in the 3767 * specified map, assuming a page fault of the 3768 * type specified. 3769 * 3770 * Leaves the map in question locked for read; return 3771 * values are guaranteed until a vm_map_lookup_done 3772 * call is performed. Note that the map argument 3773 * is in/out; the returned map must be used in 3774 * the call to vm_map_lookup_done. 3775 * 3776 * A handle (out_entry) is returned for use in 3777 * vm_map_lookup_done, to make that fast. 3778 * 3779 * If a lookup is requested with "write protection" 3780 * specified, the map may be changed to perform virtual 3781 * copying operations, although the data referenced will 3782 * remain the same. 3783 */ 3784 int 3785 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 3786 vm_offset_t vaddr, 3787 vm_prot_t fault_typea, 3788 vm_map_entry_t *out_entry, /* OUT */ 3789 vm_object_t *object, /* OUT */ 3790 vm_pindex_t *pindex, /* OUT */ 3791 vm_prot_t *out_prot, /* OUT */ 3792 boolean_t *wired) /* OUT */ 3793 { 3794 vm_map_entry_t entry; 3795 vm_map_t map = *var_map; 3796 vm_prot_t prot; 3797 vm_prot_t fault_type = fault_typea; 3798 vm_object_t eobject; 3799 vm_size_t size; 3800 struct ucred *cred; 3801 3802 RetryLookup:; 3803 3804 vm_map_lock_read(map); 3805 3806 /* 3807 * Lookup the faulting address. 3808 */ 3809 if (!vm_map_lookup_entry(map, vaddr, out_entry)) { 3810 vm_map_unlock_read(map); 3811 return (KERN_INVALID_ADDRESS); 3812 } 3813 3814 entry = *out_entry; 3815 3816 /* 3817 * Handle submaps. 3818 */ 3819 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 3820 vm_map_t old_map = map; 3821 3822 *var_map = map = entry->object.sub_map; 3823 vm_map_unlock_read(old_map); 3824 goto RetryLookup; 3825 } 3826 3827 /* 3828 * Check whether this task is allowed to have this page. 3829 */ 3830 prot = entry->protection; 3831 fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE); 3832 if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) { 3833 vm_map_unlock_read(map); 3834 return (KERN_PROTECTION_FAILURE); 3835 } 3836 if ((entry->eflags & MAP_ENTRY_USER_WIRED) && 3837 (entry->eflags & MAP_ENTRY_COW) && 3838 (fault_type & VM_PROT_WRITE)) { 3839 vm_map_unlock_read(map); 3840 return (KERN_PROTECTION_FAILURE); 3841 } 3842 if ((fault_typea & VM_PROT_COPY) != 0 && 3843 (entry->max_protection & VM_PROT_WRITE) == 0 && 3844 (entry->eflags & MAP_ENTRY_COW) == 0) { 3845 vm_map_unlock_read(map); 3846 return (KERN_PROTECTION_FAILURE); 3847 } 3848 3849 /* 3850 * If this page is not pageable, we have to get it for all possible 3851 * accesses. 3852 */ 3853 *wired = (entry->wired_count != 0); 3854 if (*wired) 3855 fault_type = entry->protection; 3856 size = entry->end - entry->start; 3857 /* 3858 * If the entry was copy-on-write, we either ... 3859 */ 3860 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3861 /* 3862 * If we want to write the page, we may as well handle that 3863 * now since we've got the map locked. 3864 * 3865 * If we don't need to write the page, we just demote the 3866 * permissions allowed. 3867 */ 3868 if ((fault_type & VM_PROT_WRITE) != 0 || 3869 (fault_typea & VM_PROT_COPY) != 0) { 3870 /* 3871 * Make a new object, and place it in the object 3872 * chain. Note that no new references have appeared 3873 * -- one just moved from the map to the new 3874 * object. 3875 */ 3876 if (vm_map_lock_upgrade(map)) 3877 goto RetryLookup; 3878 3879 if (entry->cred == NULL) { 3880 /* 3881 * The debugger owner is charged for 3882 * the memory. 3883 */ 3884 cred = curthread->td_ucred; 3885 crhold(cred); 3886 if (!swap_reserve_by_cred(size, cred)) { 3887 crfree(cred); 3888 vm_map_unlock(map); 3889 return (KERN_RESOURCE_SHORTAGE); 3890 } 3891 entry->cred = cred; 3892 } 3893 vm_object_shadow(&entry->object.vm_object, 3894 &entry->offset, size); 3895 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 3896 eobject = entry->object.vm_object; 3897 if (eobject->cred != NULL) { 3898 /* 3899 * The object was not shadowed. 3900 */ 3901 swap_release_by_cred(size, entry->cred); 3902 crfree(entry->cred); 3903 entry->cred = NULL; 3904 } else if (entry->cred != NULL) { 3905 VM_OBJECT_WLOCK(eobject); 3906 eobject->cred = entry->cred; 3907 eobject->charge = size; 3908 VM_OBJECT_WUNLOCK(eobject); 3909 entry->cred = NULL; 3910 } 3911 3912 vm_map_lock_downgrade(map); 3913 } else { 3914 /* 3915 * We're attempting to read a copy-on-write page -- 3916 * don't allow writes. 3917 */ 3918 prot &= ~VM_PROT_WRITE; 3919 } 3920 } 3921 3922 /* 3923 * Create an object if necessary. 3924 */ 3925 if (entry->object.vm_object == NULL && 3926 !map->system_map) { 3927 if (vm_map_lock_upgrade(map)) 3928 goto RetryLookup; 3929 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT, 3930 atop(size)); 3931 entry->offset = 0; 3932 if (entry->cred != NULL) { 3933 VM_OBJECT_WLOCK(entry->object.vm_object); 3934 entry->object.vm_object->cred = entry->cred; 3935 entry->object.vm_object->charge = size; 3936 VM_OBJECT_WUNLOCK(entry->object.vm_object); 3937 entry->cred = NULL; 3938 } 3939 vm_map_lock_downgrade(map); 3940 } 3941 3942 /* 3943 * Return the object/offset from this entry. If the entry was 3944 * copy-on-write or empty, it has been fixed up. 3945 */ 3946 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 3947 *object = entry->object.vm_object; 3948 3949 *out_prot = prot; 3950 return (KERN_SUCCESS); 3951 } 3952 3953 /* 3954 * vm_map_lookup_locked: 3955 * 3956 * Lookup the faulting address. A version of vm_map_lookup that returns 3957 * KERN_FAILURE instead of blocking on map lock or memory allocation. 3958 */ 3959 int 3960 vm_map_lookup_locked(vm_map_t *var_map, /* IN/OUT */ 3961 vm_offset_t vaddr, 3962 vm_prot_t fault_typea, 3963 vm_map_entry_t *out_entry, /* OUT */ 3964 vm_object_t *object, /* OUT */ 3965 vm_pindex_t *pindex, /* OUT */ 3966 vm_prot_t *out_prot, /* OUT */ 3967 boolean_t *wired) /* OUT */ 3968 { 3969 vm_map_entry_t entry; 3970 vm_map_t map = *var_map; 3971 vm_prot_t prot; 3972 vm_prot_t fault_type = fault_typea; 3973 3974 /* 3975 * Lookup the faulting address. 3976 */ 3977 if (!vm_map_lookup_entry(map, vaddr, out_entry)) 3978 return (KERN_INVALID_ADDRESS); 3979 3980 entry = *out_entry; 3981 3982 /* 3983 * Fail if the entry refers to a submap. 3984 */ 3985 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 3986 return (KERN_FAILURE); 3987 3988 /* 3989 * Check whether this task is allowed to have this page. 3990 */ 3991 prot = entry->protection; 3992 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; 3993 if ((fault_type & prot) != fault_type) 3994 return (KERN_PROTECTION_FAILURE); 3995 if ((entry->eflags & MAP_ENTRY_USER_WIRED) && 3996 (entry->eflags & MAP_ENTRY_COW) && 3997 (fault_type & VM_PROT_WRITE)) 3998 return (KERN_PROTECTION_FAILURE); 3999 4000 /* 4001 * If this page is not pageable, we have to get it for all possible 4002 * accesses. 4003 */ 4004 *wired = (entry->wired_count != 0); 4005 if (*wired) 4006 fault_type = entry->protection; 4007 4008 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 4009 /* 4010 * Fail if the entry was copy-on-write for a write fault. 4011 */ 4012 if (fault_type & VM_PROT_WRITE) 4013 return (KERN_FAILURE); 4014 /* 4015 * We're attempting to read a copy-on-write page -- 4016 * don't allow writes. 4017 */ 4018 prot &= ~VM_PROT_WRITE; 4019 } 4020 4021 /* 4022 * Fail if an object should be created. 4023 */ 4024 if (entry->object.vm_object == NULL && !map->system_map) 4025 return (KERN_FAILURE); 4026 4027 /* 4028 * Return the object/offset from this entry. If the entry was 4029 * copy-on-write or empty, it has been fixed up. 4030 */ 4031 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 4032 *object = entry->object.vm_object; 4033 4034 *out_prot = prot; 4035 return (KERN_SUCCESS); 4036 } 4037 4038 /* 4039 * vm_map_lookup_done: 4040 * 4041 * Releases locks acquired by a vm_map_lookup 4042 * (according to the handle returned by that lookup). 4043 */ 4044 void 4045 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry) 4046 { 4047 /* 4048 * Unlock the main-level map 4049 */ 4050 vm_map_unlock_read(map); 4051 } 4052 4053 #include "opt_ddb.h" 4054 #ifdef DDB 4055 #include <sys/kernel.h> 4056 4057 #include <ddb/ddb.h> 4058 4059 static void 4060 vm_map_print(vm_map_t map) 4061 { 4062 vm_map_entry_t entry; 4063 4064 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 4065 (void *)map, 4066 (void *)map->pmap, map->nentries, map->timestamp); 4067 4068 db_indent += 2; 4069 for (entry = map->header.next; entry != &map->header; 4070 entry = entry->next) { 4071 db_iprintf("map entry %p: start=%p, end=%p\n", 4072 (void *)entry, (void *)entry->start, (void *)entry->end); 4073 { 4074 static char *inheritance_name[4] = 4075 {"share", "copy", "none", "donate_copy"}; 4076 4077 db_iprintf(" prot=%x/%x/%s", 4078 entry->protection, 4079 entry->max_protection, 4080 inheritance_name[(int)(unsigned char)entry->inheritance]); 4081 if (entry->wired_count != 0) 4082 db_printf(", wired"); 4083 } 4084 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 4085 db_printf(", share=%p, offset=0x%jx\n", 4086 (void *)entry->object.sub_map, 4087 (uintmax_t)entry->offset); 4088 if ((entry->prev == &map->header) || 4089 (entry->prev->object.sub_map != 4090 entry->object.sub_map)) { 4091 db_indent += 2; 4092 vm_map_print((vm_map_t)entry->object.sub_map); 4093 db_indent -= 2; 4094 } 4095 } else { 4096 if (entry->cred != NULL) 4097 db_printf(", ruid %d", entry->cred->cr_ruid); 4098 db_printf(", object=%p, offset=0x%jx", 4099 (void *)entry->object.vm_object, 4100 (uintmax_t)entry->offset); 4101 if (entry->object.vm_object && entry->object.vm_object->cred) 4102 db_printf(", obj ruid %d charge %jx", 4103 entry->object.vm_object->cred->cr_ruid, 4104 (uintmax_t)entry->object.vm_object->charge); 4105 if (entry->eflags & MAP_ENTRY_COW) 4106 db_printf(", copy (%s)", 4107 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 4108 db_printf("\n"); 4109 4110 if ((entry->prev == &map->header) || 4111 (entry->prev->object.vm_object != 4112 entry->object.vm_object)) { 4113 db_indent += 2; 4114 vm_object_print((db_expr_t)(intptr_t) 4115 entry->object.vm_object, 4116 1, 0, (char *)0); 4117 db_indent -= 2; 4118 } 4119 } 4120 } 4121 db_indent -= 2; 4122 } 4123 4124 DB_SHOW_COMMAND(map, map) 4125 { 4126 4127 if (!have_addr) { 4128 db_printf("usage: show map <addr>\n"); 4129 return; 4130 } 4131 vm_map_print((vm_map_t)addr); 4132 } 4133 4134 DB_SHOW_COMMAND(procvm, procvm) 4135 { 4136 struct proc *p; 4137 4138 if (have_addr) { 4139 p = (struct proc *) addr; 4140 } else { 4141 p = curproc; 4142 } 4143 4144 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 4145 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 4146 (void *)vmspace_pmap(p->p_vmspace)); 4147 4148 vm_map_print((vm_map_t)&p->p_vmspace->vm_map); 4149 } 4150 4151 #endif /* DDB */ 4152