1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 */ 60 61 /* 62 * Virtual memory mapping module. 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include <sys/param.h> 69 #include <sys/systm.h> 70 #include <sys/ktr.h> 71 #include <sys/lock.h> 72 #include <sys/mutex.h> 73 #include <sys/proc.h> 74 #include <sys/vmmeter.h> 75 #include <sys/mman.h> 76 #include <sys/vnode.h> 77 #include <sys/resourcevar.h> 78 #include <sys/file.h> 79 #include <sys/sysent.h> 80 #include <sys/shm.h> 81 82 #include <vm/vm.h> 83 #include <vm/vm_param.h> 84 #include <vm/pmap.h> 85 #include <vm/vm_map.h> 86 #include <vm/vm_page.h> 87 #include <vm/vm_object.h> 88 #include <vm/vm_pager.h> 89 #include <vm/vm_kern.h> 90 #include <vm/vm_extern.h> 91 #include <vm/swap_pager.h> 92 #include <vm/uma.h> 93 94 /* 95 * Virtual memory maps provide for the mapping, protection, 96 * and sharing of virtual memory objects. In addition, 97 * this module provides for an efficient virtual copy of 98 * memory from one map to another. 99 * 100 * Synchronization is required prior to most operations. 101 * 102 * Maps consist of an ordered doubly-linked list of simple 103 * entries; a self-adjusting binary search tree of these 104 * entries is used to speed up lookups. 105 * 106 * Since portions of maps are specified by start/end addresses, 107 * which may not align with existing map entries, all 108 * routines merely "clip" entries to these start/end values. 109 * [That is, an entry is split into two, bordering at a 110 * start or end value.] Note that these clippings may not 111 * always be necessary (as the two resulting entries are then 112 * not changed); however, the clipping is done for convenience. 113 * 114 * As mentioned above, virtual copy operations are performed 115 * by copying VM object references from one map to 116 * another, and then marking both regions as copy-on-write. 117 */ 118 119 static struct mtx map_sleep_mtx; 120 static uma_zone_t mapentzone; 121 static uma_zone_t kmapentzone; 122 static uma_zone_t mapzone; 123 static uma_zone_t vmspace_zone; 124 static struct vm_object kmapentobj; 125 static int vmspace_zinit(void *mem, int size, int flags); 126 static void vmspace_zfini(void *mem, int size); 127 static int vm_map_zinit(void *mem, int ize, int flags); 128 static void vm_map_zfini(void *mem, int size); 129 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, 130 vm_offset_t max); 131 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry); 132 #ifdef INVARIANTS 133 static void vm_map_zdtor(void *mem, int size, void *arg); 134 static void vmspace_zdtor(void *mem, int size, void *arg); 135 #endif 136 137 #define ENTRY_CHARGED(e) ((e)->uip != NULL || \ 138 ((e)->object.vm_object != NULL && (e)->object.vm_object->uip != NULL && \ 139 !((e)->eflags & MAP_ENTRY_NEEDS_COPY))) 140 141 /* 142 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type 143 * stable. 144 */ 145 #define PROC_VMSPACE_LOCK(p) do { } while (0) 146 #define PROC_VMSPACE_UNLOCK(p) do { } while (0) 147 148 /* 149 * VM_MAP_RANGE_CHECK: [ internal use only ] 150 * 151 * Asserts that the starting and ending region 152 * addresses fall within the valid range of the map. 153 */ 154 #define VM_MAP_RANGE_CHECK(map, start, end) \ 155 { \ 156 if (start < vm_map_min(map)) \ 157 start = vm_map_min(map); \ 158 if (end > vm_map_max(map)) \ 159 end = vm_map_max(map); \ 160 if (start > end) \ 161 start = end; \ 162 } 163 164 /* 165 * vm_map_startup: 166 * 167 * Initialize the vm_map module. Must be called before 168 * any other vm_map routines. 169 * 170 * Map and entry structures are allocated from the general 171 * purpose memory pool with some exceptions: 172 * 173 * - The kernel map and kmem submap are allocated statically. 174 * - Kernel map entries are allocated out of a static pool. 175 * 176 * These restrictions are necessary since malloc() uses the 177 * maps and requires map entries. 178 */ 179 180 void 181 vm_map_startup(void) 182 { 183 mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF); 184 mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL, 185 #ifdef INVARIANTS 186 vm_map_zdtor, 187 #else 188 NULL, 189 #endif 190 vm_map_zinit, vm_map_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 191 uma_prealloc(mapzone, MAX_KMAP); 192 kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry), 193 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 194 UMA_ZONE_MTXCLASS | UMA_ZONE_VM); 195 uma_prealloc(kmapentzone, MAX_KMAPENT); 196 mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry), 197 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 198 } 199 200 static void 201 vmspace_zfini(void *mem, int size) 202 { 203 struct vmspace *vm; 204 205 vm = (struct vmspace *)mem; 206 vm_map_zfini(&vm->vm_map, sizeof(vm->vm_map)); 207 } 208 209 static int 210 vmspace_zinit(void *mem, int size, int flags) 211 { 212 struct vmspace *vm; 213 214 vm = (struct vmspace *)mem; 215 216 vm->vm_map.pmap = NULL; 217 (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags); 218 return (0); 219 } 220 221 static void 222 vm_map_zfini(void *mem, int size) 223 { 224 vm_map_t map; 225 226 map = (vm_map_t)mem; 227 mtx_destroy(&map->system_mtx); 228 sx_destroy(&map->lock); 229 } 230 231 static int 232 vm_map_zinit(void *mem, int size, int flags) 233 { 234 vm_map_t map; 235 236 map = (vm_map_t)mem; 237 map->nentries = 0; 238 map->size = 0; 239 mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK); 240 sx_init(&map->lock, "user map"); 241 return (0); 242 } 243 244 #ifdef INVARIANTS 245 static void 246 vmspace_zdtor(void *mem, int size, void *arg) 247 { 248 struct vmspace *vm; 249 250 vm = (struct vmspace *)mem; 251 252 vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg); 253 } 254 static void 255 vm_map_zdtor(void *mem, int size, void *arg) 256 { 257 vm_map_t map; 258 259 map = (vm_map_t)mem; 260 KASSERT(map->nentries == 0, 261 ("map %p nentries == %d on free.", 262 map, map->nentries)); 263 KASSERT(map->size == 0, 264 ("map %p size == %lu on free.", 265 map, (unsigned long)map->size)); 266 } 267 #endif /* INVARIANTS */ 268 269 /* 270 * Allocate a vmspace structure, including a vm_map and pmap, 271 * and initialize those structures. The refcnt is set to 1. 272 */ 273 struct vmspace * 274 vmspace_alloc(min, max) 275 vm_offset_t min, max; 276 { 277 struct vmspace *vm; 278 279 vm = uma_zalloc(vmspace_zone, M_WAITOK); 280 if (vm->vm_map.pmap == NULL && !pmap_pinit(vmspace_pmap(vm))) { 281 uma_zfree(vmspace_zone, vm); 282 return (NULL); 283 } 284 CTR1(KTR_VM, "vmspace_alloc: %p", vm); 285 _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max); 286 vm->vm_refcnt = 1; 287 vm->vm_shm = NULL; 288 vm->vm_swrss = 0; 289 vm->vm_tsize = 0; 290 vm->vm_dsize = 0; 291 vm->vm_ssize = 0; 292 vm->vm_taddr = 0; 293 vm->vm_daddr = 0; 294 vm->vm_maxsaddr = 0; 295 return (vm); 296 } 297 298 void 299 vm_init2(void) 300 { 301 uma_zone_set_obj(kmapentzone, &kmapentobj, lmin(cnt.v_page_count, 302 (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) / PAGE_SIZE) / 8 + 303 maxproc * 2 + maxfiles); 304 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL, 305 #ifdef INVARIANTS 306 vmspace_zdtor, 307 #else 308 NULL, 309 #endif 310 vmspace_zinit, vmspace_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 311 } 312 313 static inline void 314 vmspace_dofree(struct vmspace *vm) 315 { 316 317 CTR1(KTR_VM, "vmspace_free: %p", vm); 318 319 /* 320 * Make sure any SysV shm is freed, it might not have been in 321 * exit1(). 322 */ 323 shmexit(vm); 324 325 /* 326 * Lock the map, to wait out all other references to it. 327 * Delete all of the mappings and pages they hold, then call 328 * the pmap module to reclaim anything left. 329 */ 330 (void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset, 331 vm->vm_map.max_offset); 332 333 pmap_release(vmspace_pmap(vm)); 334 vm->vm_map.pmap = NULL; 335 uma_zfree(vmspace_zone, vm); 336 } 337 338 void 339 vmspace_free(struct vmspace *vm) 340 { 341 int refcnt; 342 343 if (vm->vm_refcnt == 0) 344 panic("vmspace_free: attempt to free already freed vmspace"); 345 346 do 347 refcnt = vm->vm_refcnt; 348 while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1)); 349 if (refcnt == 1) 350 vmspace_dofree(vm); 351 } 352 353 void 354 vmspace_exitfree(struct proc *p) 355 { 356 struct vmspace *vm; 357 358 PROC_VMSPACE_LOCK(p); 359 vm = p->p_vmspace; 360 p->p_vmspace = NULL; 361 PROC_VMSPACE_UNLOCK(p); 362 KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace")); 363 vmspace_free(vm); 364 } 365 366 void 367 vmspace_exit(struct thread *td) 368 { 369 int refcnt; 370 struct vmspace *vm; 371 struct proc *p; 372 373 /* 374 * Release user portion of address space. 375 * This releases references to vnodes, 376 * which could cause I/O if the file has been unlinked. 377 * Need to do this early enough that we can still sleep. 378 * 379 * The last exiting process to reach this point releases as 380 * much of the environment as it can. vmspace_dofree() is the 381 * slower fallback in case another process had a temporary 382 * reference to the vmspace. 383 */ 384 385 p = td->td_proc; 386 vm = p->p_vmspace; 387 atomic_add_int(&vmspace0.vm_refcnt, 1); 388 do { 389 refcnt = vm->vm_refcnt; 390 if (refcnt > 1 && p->p_vmspace != &vmspace0) { 391 /* Switch now since other proc might free vmspace */ 392 PROC_VMSPACE_LOCK(p); 393 p->p_vmspace = &vmspace0; 394 PROC_VMSPACE_UNLOCK(p); 395 pmap_activate(td); 396 } 397 } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1)); 398 if (refcnt == 1) { 399 if (p->p_vmspace != vm) { 400 /* vmspace not yet freed, switch back */ 401 PROC_VMSPACE_LOCK(p); 402 p->p_vmspace = vm; 403 PROC_VMSPACE_UNLOCK(p); 404 pmap_activate(td); 405 } 406 pmap_remove_pages(vmspace_pmap(vm)); 407 /* Switch now since this proc will free vmspace */ 408 PROC_VMSPACE_LOCK(p); 409 p->p_vmspace = &vmspace0; 410 PROC_VMSPACE_UNLOCK(p); 411 pmap_activate(td); 412 vmspace_dofree(vm); 413 } 414 } 415 416 /* Acquire reference to vmspace owned by another process. */ 417 418 struct vmspace * 419 vmspace_acquire_ref(struct proc *p) 420 { 421 struct vmspace *vm; 422 int refcnt; 423 424 PROC_VMSPACE_LOCK(p); 425 vm = p->p_vmspace; 426 if (vm == NULL) { 427 PROC_VMSPACE_UNLOCK(p); 428 return (NULL); 429 } 430 do { 431 refcnt = vm->vm_refcnt; 432 if (refcnt <= 0) { /* Avoid 0->1 transition */ 433 PROC_VMSPACE_UNLOCK(p); 434 return (NULL); 435 } 436 } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1)); 437 if (vm != p->p_vmspace) { 438 PROC_VMSPACE_UNLOCK(p); 439 vmspace_free(vm); 440 return (NULL); 441 } 442 PROC_VMSPACE_UNLOCK(p); 443 return (vm); 444 } 445 446 void 447 _vm_map_lock(vm_map_t map, const char *file, int line) 448 { 449 450 if (map->system_map) 451 _mtx_lock_flags(&map->system_mtx, 0, file, line); 452 else 453 (void)_sx_xlock(&map->lock, 0, file, line); 454 map->timestamp++; 455 } 456 457 void 458 _vm_map_unlock(vm_map_t map, const char *file, int line) 459 { 460 vm_map_entry_t free_entry, entry; 461 vm_object_t object; 462 463 free_entry = map->deferred_freelist; 464 map->deferred_freelist = NULL; 465 466 if (map->system_map) 467 _mtx_unlock_flags(&map->system_mtx, 0, file, line); 468 else 469 _sx_xunlock(&map->lock, file, line); 470 471 while (free_entry != NULL) { 472 entry = free_entry; 473 free_entry = free_entry->next; 474 475 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 476 object = entry->object.vm_object; 477 vm_object_deallocate(object); 478 } 479 480 vm_map_entry_dispose(map, entry); 481 } 482 } 483 484 void 485 _vm_map_lock_read(vm_map_t map, const char *file, int line) 486 { 487 488 if (map->system_map) 489 _mtx_lock_flags(&map->system_mtx, 0, file, line); 490 else 491 (void)_sx_slock(&map->lock, 0, file, line); 492 } 493 494 void 495 _vm_map_unlock_read(vm_map_t map, const char *file, int line) 496 { 497 498 if (map->system_map) 499 _mtx_unlock_flags(&map->system_mtx, 0, file, line); 500 else 501 _sx_sunlock(&map->lock, file, line); 502 } 503 504 int 505 _vm_map_trylock(vm_map_t map, const char *file, int line) 506 { 507 int error; 508 509 error = map->system_map ? 510 !_mtx_trylock(&map->system_mtx, 0, file, line) : 511 !_sx_try_xlock(&map->lock, file, line); 512 if (error == 0) 513 map->timestamp++; 514 return (error == 0); 515 } 516 517 int 518 _vm_map_trylock_read(vm_map_t map, const char *file, int line) 519 { 520 int error; 521 522 error = map->system_map ? 523 !_mtx_trylock(&map->system_mtx, 0, file, line) : 524 !_sx_try_slock(&map->lock, file, line); 525 return (error == 0); 526 } 527 528 /* 529 * _vm_map_lock_upgrade: [ internal use only ] 530 * 531 * Tries to upgrade a read (shared) lock on the specified map to a write 532 * (exclusive) lock. Returns the value "0" if the upgrade succeeds and a 533 * non-zero value if the upgrade fails. If the upgrade fails, the map is 534 * returned without a read or write lock held. 535 * 536 * Requires that the map be read locked. 537 */ 538 int 539 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line) 540 { 541 unsigned int last_timestamp; 542 543 if (map->system_map) { 544 #ifdef INVARIANTS 545 _mtx_assert(&map->system_mtx, MA_OWNED, file, line); 546 #endif 547 } else { 548 if (!_sx_try_upgrade(&map->lock, file, line)) { 549 last_timestamp = map->timestamp; 550 _sx_sunlock(&map->lock, file, line); 551 /* 552 * If the map's timestamp does not change while the 553 * map is unlocked, then the upgrade succeeds. 554 */ 555 (void)_sx_xlock(&map->lock, 0, file, line); 556 if (last_timestamp != map->timestamp) { 557 _sx_xunlock(&map->lock, file, line); 558 return (1); 559 } 560 } 561 } 562 map->timestamp++; 563 return (0); 564 } 565 566 void 567 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line) 568 { 569 570 if (map->system_map) { 571 #ifdef INVARIANTS 572 _mtx_assert(&map->system_mtx, MA_OWNED, file, line); 573 #endif 574 } else 575 _sx_downgrade(&map->lock, file, line); 576 } 577 578 /* 579 * vm_map_locked: 580 * 581 * Returns a non-zero value if the caller holds a write (exclusive) lock 582 * on the specified map and the value "0" otherwise. 583 */ 584 int 585 vm_map_locked(vm_map_t map) 586 { 587 588 if (map->system_map) 589 return (mtx_owned(&map->system_mtx)); 590 else 591 return (sx_xlocked(&map->lock)); 592 } 593 594 #ifdef INVARIANTS 595 static void 596 _vm_map_assert_locked(vm_map_t map, const char *file, int line) 597 { 598 599 if (map->system_map) 600 _mtx_assert(&map->system_mtx, MA_OWNED, file, line); 601 else 602 _sx_assert(&map->lock, SA_XLOCKED, file, line); 603 } 604 605 #if 0 606 static void 607 _vm_map_assert_locked_read(vm_map_t map, const char *file, int line) 608 { 609 610 if (map->system_map) 611 _mtx_assert(&map->system_mtx, MA_OWNED, file, line); 612 else 613 _sx_assert(&map->lock, SA_SLOCKED, file, line); 614 } 615 #endif 616 617 #define VM_MAP_ASSERT_LOCKED(map) \ 618 _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE) 619 #define VM_MAP_ASSERT_LOCKED_READ(map) \ 620 _vm_map_assert_locked_read(map, LOCK_FILE, LOCK_LINE) 621 #else 622 #define VM_MAP_ASSERT_LOCKED(map) 623 #define VM_MAP_ASSERT_LOCKED_READ(map) 624 #endif 625 626 /* 627 * vm_map_unlock_and_wait: 628 */ 629 int 630 vm_map_unlock_and_wait(vm_map_t map, int timo) 631 { 632 633 mtx_lock(&map_sleep_mtx); 634 vm_map_unlock(map); 635 return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps", timo)); 636 } 637 638 /* 639 * vm_map_wakeup: 640 */ 641 void 642 vm_map_wakeup(vm_map_t map) 643 { 644 645 /* 646 * Acquire and release map_sleep_mtx to prevent a wakeup() 647 * from being performed (and lost) between the vm_map_unlock() 648 * and the msleep() in vm_map_unlock_and_wait(). 649 */ 650 mtx_lock(&map_sleep_mtx); 651 mtx_unlock(&map_sleep_mtx); 652 wakeup(&map->root); 653 } 654 655 long 656 vmspace_resident_count(struct vmspace *vmspace) 657 { 658 return pmap_resident_count(vmspace_pmap(vmspace)); 659 } 660 661 long 662 vmspace_wired_count(struct vmspace *vmspace) 663 { 664 return pmap_wired_count(vmspace_pmap(vmspace)); 665 } 666 667 /* 668 * vm_map_create: 669 * 670 * Creates and returns a new empty VM map with 671 * the given physical map structure, and having 672 * the given lower and upper address bounds. 673 */ 674 vm_map_t 675 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max) 676 { 677 vm_map_t result; 678 679 result = uma_zalloc(mapzone, M_WAITOK); 680 CTR1(KTR_VM, "vm_map_create: %p", result); 681 _vm_map_init(result, pmap, min, max); 682 return (result); 683 } 684 685 /* 686 * Initialize an existing vm_map structure 687 * such as that in the vmspace structure. 688 */ 689 static void 690 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 691 { 692 693 map->header.next = map->header.prev = &map->header; 694 map->needs_wakeup = FALSE; 695 map->system_map = 0; 696 map->pmap = pmap; 697 map->min_offset = min; 698 map->max_offset = max; 699 map->flags = 0; 700 map->root = NULL; 701 map->timestamp = 0; 702 map->deferred_freelist = NULL; 703 } 704 705 void 706 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 707 { 708 709 _vm_map_init(map, pmap, min, max); 710 mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK); 711 sx_init(&map->lock, "user map"); 712 } 713 714 /* 715 * vm_map_entry_dispose: [ internal use only ] 716 * 717 * Inverse of vm_map_entry_create. 718 */ 719 static void 720 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry) 721 { 722 uma_zfree(map->system_map ? kmapentzone : mapentzone, entry); 723 } 724 725 /* 726 * vm_map_entry_create: [ internal use only ] 727 * 728 * Allocates a VM map entry for insertion. 729 * No entry fields are filled in. 730 */ 731 static vm_map_entry_t 732 vm_map_entry_create(vm_map_t map) 733 { 734 vm_map_entry_t new_entry; 735 736 if (map->system_map) 737 new_entry = uma_zalloc(kmapentzone, M_NOWAIT); 738 else 739 new_entry = uma_zalloc(mapentzone, M_WAITOK); 740 if (new_entry == NULL) 741 panic("vm_map_entry_create: kernel resources exhausted"); 742 return (new_entry); 743 } 744 745 /* 746 * vm_map_entry_set_behavior: 747 * 748 * Set the expected access behavior, either normal, random, or 749 * sequential. 750 */ 751 static inline void 752 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior) 753 { 754 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) | 755 (behavior & MAP_ENTRY_BEHAV_MASK); 756 } 757 758 /* 759 * vm_map_entry_set_max_free: 760 * 761 * Set the max_free field in a vm_map_entry. 762 */ 763 static inline void 764 vm_map_entry_set_max_free(vm_map_entry_t entry) 765 { 766 767 entry->max_free = entry->adj_free; 768 if (entry->left != NULL && entry->left->max_free > entry->max_free) 769 entry->max_free = entry->left->max_free; 770 if (entry->right != NULL && entry->right->max_free > entry->max_free) 771 entry->max_free = entry->right->max_free; 772 } 773 774 /* 775 * vm_map_entry_splay: 776 * 777 * The Sleator and Tarjan top-down splay algorithm with the 778 * following variation. Max_free must be computed bottom-up, so 779 * on the downward pass, maintain the left and right spines in 780 * reverse order. Then, make a second pass up each side to fix 781 * the pointers and compute max_free. The time bound is O(log n) 782 * amortized. 783 * 784 * The new root is the vm_map_entry containing "addr", or else an 785 * adjacent entry (lower or higher) if addr is not in the tree. 786 * 787 * The map must be locked, and leaves it so. 788 * 789 * Returns: the new root. 790 */ 791 static vm_map_entry_t 792 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root) 793 { 794 vm_map_entry_t llist, rlist; 795 vm_map_entry_t ltree, rtree; 796 vm_map_entry_t y; 797 798 /* Special case of empty tree. */ 799 if (root == NULL) 800 return (root); 801 802 /* 803 * Pass One: Splay down the tree until we find addr or a NULL 804 * pointer where addr would go. llist and rlist are the two 805 * sides in reverse order (bottom-up), with llist linked by 806 * the right pointer and rlist linked by the left pointer in 807 * the vm_map_entry. Wait until Pass Two to set max_free on 808 * the two spines. 809 */ 810 llist = NULL; 811 rlist = NULL; 812 for (;;) { 813 /* root is never NULL in here. */ 814 if (addr < root->start) { 815 y = root->left; 816 if (y == NULL) 817 break; 818 if (addr < y->start && y->left != NULL) { 819 /* Rotate right and put y on rlist. */ 820 root->left = y->right; 821 y->right = root; 822 vm_map_entry_set_max_free(root); 823 root = y->left; 824 y->left = rlist; 825 rlist = y; 826 } else { 827 /* Put root on rlist. */ 828 root->left = rlist; 829 rlist = root; 830 root = y; 831 } 832 } else if (addr >= root->end) { 833 y = root->right; 834 if (y == NULL) 835 break; 836 if (addr >= y->end && y->right != NULL) { 837 /* Rotate left and put y on llist. */ 838 root->right = y->left; 839 y->left = root; 840 vm_map_entry_set_max_free(root); 841 root = y->right; 842 y->right = llist; 843 llist = y; 844 } else { 845 /* Put root on llist. */ 846 root->right = llist; 847 llist = root; 848 root = y; 849 } 850 } else 851 break; 852 } 853 854 /* 855 * Pass Two: Walk back up the two spines, flip the pointers 856 * and set max_free. The subtrees of the root go at the 857 * bottom of llist and rlist. 858 */ 859 ltree = root->left; 860 while (llist != NULL) { 861 y = llist->right; 862 llist->right = ltree; 863 vm_map_entry_set_max_free(llist); 864 ltree = llist; 865 llist = y; 866 } 867 rtree = root->right; 868 while (rlist != NULL) { 869 y = rlist->left; 870 rlist->left = rtree; 871 vm_map_entry_set_max_free(rlist); 872 rtree = rlist; 873 rlist = y; 874 } 875 876 /* 877 * Final assembly: add ltree and rtree as subtrees of root. 878 */ 879 root->left = ltree; 880 root->right = rtree; 881 vm_map_entry_set_max_free(root); 882 883 return (root); 884 } 885 886 /* 887 * vm_map_entry_{un,}link: 888 * 889 * Insert/remove entries from maps. 890 */ 891 static void 892 vm_map_entry_link(vm_map_t map, 893 vm_map_entry_t after_where, 894 vm_map_entry_t entry) 895 { 896 897 CTR4(KTR_VM, 898 "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map, 899 map->nentries, entry, after_where); 900 VM_MAP_ASSERT_LOCKED(map); 901 map->nentries++; 902 entry->prev = after_where; 903 entry->next = after_where->next; 904 entry->next->prev = entry; 905 after_where->next = entry; 906 907 if (after_where != &map->header) { 908 if (after_where != map->root) 909 vm_map_entry_splay(after_where->start, map->root); 910 entry->right = after_where->right; 911 entry->left = after_where; 912 after_where->right = NULL; 913 after_where->adj_free = entry->start - after_where->end; 914 vm_map_entry_set_max_free(after_where); 915 } else { 916 entry->right = map->root; 917 entry->left = NULL; 918 } 919 entry->adj_free = (entry->next == &map->header ? map->max_offset : 920 entry->next->start) - entry->end; 921 vm_map_entry_set_max_free(entry); 922 map->root = entry; 923 } 924 925 static void 926 vm_map_entry_unlink(vm_map_t map, 927 vm_map_entry_t entry) 928 { 929 vm_map_entry_t next, prev, root; 930 931 VM_MAP_ASSERT_LOCKED(map); 932 if (entry != map->root) 933 vm_map_entry_splay(entry->start, map->root); 934 if (entry->left == NULL) 935 root = entry->right; 936 else { 937 root = vm_map_entry_splay(entry->start, entry->left); 938 root->right = entry->right; 939 root->adj_free = (entry->next == &map->header ? map->max_offset : 940 entry->next->start) - root->end; 941 vm_map_entry_set_max_free(root); 942 } 943 map->root = root; 944 945 prev = entry->prev; 946 next = entry->next; 947 next->prev = prev; 948 prev->next = next; 949 map->nentries--; 950 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map, 951 map->nentries, entry); 952 } 953 954 /* 955 * vm_map_entry_resize_free: 956 * 957 * Recompute the amount of free space following a vm_map_entry 958 * and propagate that value up the tree. Call this function after 959 * resizing a map entry in-place, that is, without a call to 960 * vm_map_entry_link() or _unlink(). 961 * 962 * The map must be locked, and leaves it so. 963 */ 964 static void 965 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry) 966 { 967 968 /* 969 * Using splay trees without parent pointers, propagating 970 * max_free up the tree is done by moving the entry to the 971 * root and making the change there. 972 */ 973 if (entry != map->root) 974 map->root = vm_map_entry_splay(entry->start, map->root); 975 976 entry->adj_free = (entry->next == &map->header ? map->max_offset : 977 entry->next->start) - entry->end; 978 vm_map_entry_set_max_free(entry); 979 } 980 981 /* 982 * vm_map_lookup_entry: [ internal use only ] 983 * 984 * Finds the map entry containing (or 985 * immediately preceding) the specified address 986 * in the given map; the entry is returned 987 * in the "entry" parameter. The boolean 988 * result indicates whether the address is 989 * actually contained in the map. 990 */ 991 boolean_t 992 vm_map_lookup_entry( 993 vm_map_t map, 994 vm_offset_t address, 995 vm_map_entry_t *entry) /* OUT */ 996 { 997 vm_map_entry_t cur; 998 boolean_t locked; 999 1000 /* 1001 * If the map is empty, then the map entry immediately preceding 1002 * "address" is the map's header. 1003 */ 1004 cur = map->root; 1005 if (cur == NULL) 1006 *entry = &map->header; 1007 else if (address >= cur->start && cur->end > address) { 1008 *entry = cur; 1009 return (TRUE); 1010 } else if ((locked = vm_map_locked(map)) || 1011 sx_try_upgrade(&map->lock)) { 1012 /* 1013 * Splay requires a write lock on the map. However, it only 1014 * restructures the binary search tree; it does not otherwise 1015 * change the map. Thus, the map's timestamp need not change 1016 * on a temporary upgrade. 1017 */ 1018 map->root = cur = vm_map_entry_splay(address, cur); 1019 if (!locked) 1020 sx_downgrade(&map->lock); 1021 1022 /* 1023 * If "address" is contained within a map entry, the new root 1024 * is that map entry. Otherwise, the new root is a map entry 1025 * immediately before or after "address". 1026 */ 1027 if (address >= cur->start) { 1028 *entry = cur; 1029 if (cur->end > address) 1030 return (TRUE); 1031 } else 1032 *entry = cur->prev; 1033 } else 1034 /* 1035 * Since the map is only locked for read access, perform a 1036 * standard binary search tree lookup for "address". 1037 */ 1038 for (;;) { 1039 if (address < cur->start) { 1040 if (cur->left == NULL) { 1041 *entry = cur->prev; 1042 break; 1043 } 1044 cur = cur->left; 1045 } else if (cur->end > address) { 1046 *entry = cur; 1047 return (TRUE); 1048 } else { 1049 if (cur->right == NULL) { 1050 *entry = cur; 1051 break; 1052 } 1053 cur = cur->right; 1054 } 1055 } 1056 return (FALSE); 1057 } 1058 1059 /* 1060 * vm_map_insert: 1061 * 1062 * Inserts the given whole VM object into the target 1063 * map at the specified address range. The object's 1064 * size should match that of the address range. 1065 * 1066 * Requires that the map be locked, and leaves it so. 1067 * 1068 * If object is non-NULL, ref count must be bumped by caller 1069 * prior to making call to account for the new entry. 1070 */ 1071 int 1072 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1073 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, 1074 int cow) 1075 { 1076 vm_map_entry_t new_entry; 1077 vm_map_entry_t prev_entry; 1078 vm_map_entry_t temp_entry; 1079 vm_eflags_t protoeflags; 1080 struct uidinfo *uip; 1081 boolean_t charge_prev_obj; 1082 1083 VM_MAP_ASSERT_LOCKED(map); 1084 1085 /* 1086 * Check that the start and end points are not bogus. 1087 */ 1088 if ((start < map->min_offset) || (end > map->max_offset) || 1089 (start >= end)) 1090 return (KERN_INVALID_ADDRESS); 1091 1092 /* 1093 * Find the entry prior to the proposed starting address; if it's part 1094 * of an existing entry, this range is bogus. 1095 */ 1096 if (vm_map_lookup_entry(map, start, &temp_entry)) 1097 return (KERN_NO_SPACE); 1098 1099 prev_entry = temp_entry; 1100 1101 /* 1102 * Assert that the next entry doesn't overlap the end point. 1103 */ 1104 if ((prev_entry->next != &map->header) && 1105 (prev_entry->next->start < end)) 1106 return (KERN_NO_SPACE); 1107 1108 protoeflags = 0; 1109 charge_prev_obj = FALSE; 1110 1111 if (cow & MAP_COPY_ON_WRITE) 1112 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY; 1113 1114 if (cow & MAP_NOFAULT) { 1115 protoeflags |= MAP_ENTRY_NOFAULT; 1116 1117 KASSERT(object == NULL, 1118 ("vm_map_insert: paradoxical MAP_NOFAULT request")); 1119 } 1120 if (cow & MAP_DISABLE_SYNCER) 1121 protoeflags |= MAP_ENTRY_NOSYNC; 1122 if (cow & MAP_DISABLE_COREDUMP) 1123 protoeflags |= MAP_ENTRY_NOCOREDUMP; 1124 1125 uip = NULL; 1126 KASSERT((object != kmem_object && object != kernel_object) || 1127 ((object == kmem_object || object == kernel_object) && 1128 !(protoeflags & MAP_ENTRY_NEEDS_COPY)), 1129 ("kmem or kernel object and cow")); 1130 if (cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT)) 1131 goto charged; 1132 if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) && 1133 ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) { 1134 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start)) 1135 return (KERN_RESOURCE_SHORTAGE); 1136 KASSERT(object == NULL || (protoeflags & MAP_ENTRY_NEEDS_COPY) || 1137 object->uip == NULL, 1138 ("OVERCOMMIT: vm_map_insert o %p", object)); 1139 uip = curthread->td_ucred->cr_ruidinfo; 1140 uihold(uip); 1141 if (object == NULL && !(protoeflags & MAP_ENTRY_NEEDS_COPY)) 1142 charge_prev_obj = TRUE; 1143 } 1144 1145 charged: 1146 if (object != NULL) { 1147 /* 1148 * OBJ_ONEMAPPING must be cleared unless this mapping 1149 * is trivially proven to be the only mapping for any 1150 * of the object's pages. (Object granularity 1151 * reference counting is insufficient to recognize 1152 * aliases with precision.) 1153 */ 1154 VM_OBJECT_LOCK(object); 1155 if (object->ref_count > 1 || object->shadow_count != 0) 1156 vm_object_clear_flag(object, OBJ_ONEMAPPING); 1157 VM_OBJECT_UNLOCK(object); 1158 } 1159 else if ((prev_entry != &map->header) && 1160 (prev_entry->eflags == protoeflags) && 1161 (prev_entry->end == start) && 1162 (prev_entry->wired_count == 0) && 1163 (prev_entry->uip == uip || 1164 (prev_entry->object.vm_object != NULL && 1165 (prev_entry->object.vm_object->uip == uip))) && 1166 vm_object_coalesce(prev_entry->object.vm_object, 1167 prev_entry->offset, 1168 (vm_size_t)(prev_entry->end - prev_entry->start), 1169 (vm_size_t)(end - prev_entry->end), charge_prev_obj)) { 1170 /* 1171 * We were able to extend the object. Determine if we 1172 * can extend the previous map entry to include the 1173 * new range as well. 1174 */ 1175 if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) && 1176 (prev_entry->protection == prot) && 1177 (prev_entry->max_protection == max)) { 1178 map->size += (end - prev_entry->end); 1179 prev_entry->end = end; 1180 vm_map_entry_resize_free(map, prev_entry); 1181 vm_map_simplify_entry(map, prev_entry); 1182 if (uip != NULL) 1183 uifree(uip); 1184 return (KERN_SUCCESS); 1185 } 1186 1187 /* 1188 * If we can extend the object but cannot extend the 1189 * map entry, we have to create a new map entry. We 1190 * must bump the ref count on the extended object to 1191 * account for it. object may be NULL. 1192 */ 1193 object = prev_entry->object.vm_object; 1194 offset = prev_entry->offset + 1195 (prev_entry->end - prev_entry->start); 1196 vm_object_reference(object); 1197 if (uip != NULL && object != NULL && object->uip != NULL && 1198 !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 1199 /* Object already accounts for this uid. */ 1200 uifree(uip); 1201 uip = NULL; 1202 } 1203 } 1204 1205 /* 1206 * NOTE: if conditionals fail, object can be NULL here. This occurs 1207 * in things like the buffer map where we manage kva but do not manage 1208 * backing objects. 1209 */ 1210 1211 /* 1212 * Create a new entry 1213 */ 1214 new_entry = vm_map_entry_create(map); 1215 new_entry->start = start; 1216 new_entry->end = end; 1217 new_entry->uip = NULL; 1218 1219 new_entry->eflags = protoeflags; 1220 new_entry->object.vm_object = object; 1221 new_entry->offset = offset; 1222 new_entry->avail_ssize = 0; 1223 1224 new_entry->inheritance = VM_INHERIT_DEFAULT; 1225 new_entry->protection = prot; 1226 new_entry->max_protection = max; 1227 new_entry->wired_count = 0; 1228 1229 KASSERT(uip == NULL || !ENTRY_CHARGED(new_entry), 1230 ("OVERCOMMIT: vm_map_insert leaks vm_map %p", new_entry)); 1231 new_entry->uip = uip; 1232 1233 /* 1234 * Insert the new entry into the list 1235 */ 1236 vm_map_entry_link(map, prev_entry, new_entry); 1237 map->size += new_entry->end - new_entry->start; 1238 1239 #if 0 1240 /* 1241 * Temporarily removed to avoid MAP_STACK panic, due to 1242 * MAP_STACK being a huge hack. Will be added back in 1243 * when MAP_STACK (and the user stack mapping) is fixed. 1244 */ 1245 /* 1246 * It may be possible to simplify the entry 1247 */ 1248 vm_map_simplify_entry(map, new_entry); 1249 #endif 1250 1251 if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) { 1252 vm_map_pmap_enter(map, start, prot, 1253 object, OFF_TO_IDX(offset), end - start, 1254 cow & MAP_PREFAULT_PARTIAL); 1255 } 1256 1257 return (KERN_SUCCESS); 1258 } 1259 1260 /* 1261 * vm_map_findspace: 1262 * 1263 * Find the first fit (lowest VM address) for "length" free bytes 1264 * beginning at address >= start in the given map. 1265 * 1266 * In a vm_map_entry, "adj_free" is the amount of free space 1267 * adjacent (higher address) to this entry, and "max_free" is the 1268 * maximum amount of contiguous free space in its subtree. This 1269 * allows finding a free region in one path down the tree, so 1270 * O(log n) amortized with splay trees. 1271 * 1272 * The map must be locked, and leaves it so. 1273 * 1274 * Returns: 0 on success, and starting address in *addr, 1275 * 1 if insufficient space. 1276 */ 1277 int 1278 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length, 1279 vm_offset_t *addr) /* OUT */ 1280 { 1281 vm_map_entry_t entry; 1282 vm_offset_t end, st; 1283 1284 /* 1285 * Request must fit within min/max VM address and must avoid 1286 * address wrap. 1287 */ 1288 if (start < map->min_offset) 1289 start = map->min_offset; 1290 if (start + length > map->max_offset || start + length < start) 1291 return (1); 1292 1293 /* Empty tree means wide open address space. */ 1294 if (map->root == NULL) { 1295 *addr = start; 1296 goto found; 1297 } 1298 1299 /* 1300 * After splay, if start comes before root node, then there 1301 * must be a gap from start to the root. 1302 */ 1303 map->root = vm_map_entry_splay(start, map->root); 1304 if (start + length <= map->root->start) { 1305 *addr = start; 1306 goto found; 1307 } 1308 1309 /* 1310 * Root is the last node that might begin its gap before 1311 * start, and this is the last comparison where address 1312 * wrap might be a problem. 1313 */ 1314 st = (start > map->root->end) ? start : map->root->end; 1315 if (length <= map->root->end + map->root->adj_free - st) { 1316 *addr = st; 1317 goto found; 1318 } 1319 1320 /* With max_free, can immediately tell if no solution. */ 1321 entry = map->root->right; 1322 if (entry == NULL || length > entry->max_free) 1323 return (1); 1324 1325 /* 1326 * Search the right subtree in the order: left subtree, root, 1327 * right subtree (first fit). The previous splay implies that 1328 * all regions in the right subtree have addresses > start. 1329 */ 1330 while (entry != NULL) { 1331 if (entry->left != NULL && entry->left->max_free >= length) 1332 entry = entry->left; 1333 else if (entry->adj_free >= length) { 1334 *addr = entry->end; 1335 goto found; 1336 } else 1337 entry = entry->right; 1338 } 1339 1340 /* Can't get here, so panic if we do. */ 1341 panic("vm_map_findspace: max_free corrupt"); 1342 1343 found: 1344 /* Expand the kernel pmap, if necessary. */ 1345 if (map == kernel_map) { 1346 end = round_page(*addr + length); 1347 if (end > kernel_vm_end) 1348 pmap_growkernel(end); 1349 } 1350 return (0); 1351 } 1352 1353 int 1354 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1355 vm_offset_t start, vm_size_t length, vm_prot_t prot, 1356 vm_prot_t max, int cow) 1357 { 1358 vm_offset_t end; 1359 int result; 1360 1361 end = start + length; 1362 vm_map_lock(map); 1363 VM_MAP_RANGE_CHECK(map, start, end); 1364 (void) vm_map_delete(map, start, end); 1365 result = vm_map_insert(map, object, offset, start, end, prot, 1366 max, cow); 1367 vm_map_unlock(map); 1368 return (result); 1369 } 1370 1371 /* 1372 * vm_map_find finds an unallocated region in the target address 1373 * map with the given length. The search is defined to be 1374 * first-fit from the specified address; the region found is 1375 * returned in the same parameter. 1376 * 1377 * If object is non-NULL, ref count must be bumped by caller 1378 * prior to making call to account for the new entry. 1379 */ 1380 int 1381 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1382 vm_offset_t *addr, /* IN/OUT */ 1383 vm_size_t length, int find_space, vm_prot_t prot, 1384 vm_prot_t max, int cow) 1385 { 1386 vm_offset_t start; 1387 int result; 1388 1389 start = *addr; 1390 vm_map_lock(map); 1391 do { 1392 if (find_space != VMFS_NO_SPACE) { 1393 if (vm_map_findspace(map, start, length, addr)) { 1394 vm_map_unlock(map); 1395 return (KERN_NO_SPACE); 1396 } 1397 if (find_space == VMFS_ALIGNED_SPACE) 1398 pmap_align_superpage(object, offset, addr, 1399 length); 1400 start = *addr; 1401 } 1402 result = vm_map_insert(map, object, offset, start, start + 1403 length, prot, max, cow); 1404 } while (result == KERN_NO_SPACE && find_space == VMFS_ALIGNED_SPACE); 1405 vm_map_unlock(map); 1406 return (result); 1407 } 1408 1409 /* 1410 * vm_map_simplify_entry: 1411 * 1412 * Simplify the given map entry by merging with either neighbor. This 1413 * routine also has the ability to merge with both neighbors. 1414 * 1415 * The map must be locked. 1416 * 1417 * This routine guarentees that the passed entry remains valid (though 1418 * possibly extended). When merging, this routine may delete one or 1419 * both neighbors. 1420 */ 1421 void 1422 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry) 1423 { 1424 vm_map_entry_t next, prev; 1425 vm_size_t prevsize, esize; 1426 1427 if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) 1428 return; 1429 1430 prev = entry->prev; 1431 if (prev != &map->header) { 1432 prevsize = prev->end - prev->start; 1433 if ( (prev->end == entry->start) && 1434 (prev->object.vm_object == entry->object.vm_object) && 1435 (!prev->object.vm_object || 1436 (prev->offset + prevsize == entry->offset)) && 1437 (prev->eflags == entry->eflags) && 1438 (prev->protection == entry->protection) && 1439 (prev->max_protection == entry->max_protection) && 1440 (prev->inheritance == entry->inheritance) && 1441 (prev->wired_count == entry->wired_count) && 1442 (prev->uip == entry->uip)) { 1443 vm_map_entry_unlink(map, prev); 1444 entry->start = prev->start; 1445 entry->offset = prev->offset; 1446 if (entry->prev != &map->header) 1447 vm_map_entry_resize_free(map, entry->prev); 1448 1449 /* 1450 * If the backing object is a vnode object, 1451 * vm_object_deallocate() calls vrele(). 1452 * However, vrele() does not lock the vnode 1453 * because the vnode has additional 1454 * references. Thus, the map lock can be kept 1455 * without causing a lock-order reversal with 1456 * the vnode lock. 1457 */ 1458 if (prev->object.vm_object) 1459 vm_object_deallocate(prev->object.vm_object); 1460 if (prev->uip != NULL) 1461 uifree(prev->uip); 1462 vm_map_entry_dispose(map, prev); 1463 } 1464 } 1465 1466 next = entry->next; 1467 if (next != &map->header) { 1468 esize = entry->end - entry->start; 1469 if ((entry->end == next->start) && 1470 (next->object.vm_object == entry->object.vm_object) && 1471 (!entry->object.vm_object || 1472 (entry->offset + esize == next->offset)) && 1473 (next->eflags == entry->eflags) && 1474 (next->protection == entry->protection) && 1475 (next->max_protection == entry->max_protection) && 1476 (next->inheritance == entry->inheritance) && 1477 (next->wired_count == entry->wired_count) && 1478 (next->uip == entry->uip)) { 1479 vm_map_entry_unlink(map, next); 1480 entry->end = next->end; 1481 vm_map_entry_resize_free(map, entry); 1482 1483 /* 1484 * See comment above. 1485 */ 1486 if (next->object.vm_object) 1487 vm_object_deallocate(next->object.vm_object); 1488 if (next->uip != NULL) 1489 uifree(next->uip); 1490 vm_map_entry_dispose(map, next); 1491 } 1492 } 1493 } 1494 /* 1495 * vm_map_clip_start: [ internal use only ] 1496 * 1497 * Asserts that the given entry begins at or after 1498 * the specified address; if necessary, 1499 * it splits the entry into two. 1500 */ 1501 #define vm_map_clip_start(map, entry, startaddr) \ 1502 { \ 1503 if (startaddr > entry->start) \ 1504 _vm_map_clip_start(map, entry, startaddr); \ 1505 } 1506 1507 /* 1508 * This routine is called only when it is known that 1509 * the entry must be split. 1510 */ 1511 static void 1512 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start) 1513 { 1514 vm_map_entry_t new_entry; 1515 1516 VM_MAP_ASSERT_LOCKED(map); 1517 1518 /* 1519 * Split off the front portion -- note that we must insert the new 1520 * entry BEFORE this one, so that this entry has the specified 1521 * starting address. 1522 */ 1523 vm_map_simplify_entry(map, entry); 1524 1525 /* 1526 * If there is no object backing this entry, we might as well create 1527 * one now. If we defer it, an object can get created after the map 1528 * is clipped, and individual objects will be created for the split-up 1529 * map. This is a bit of a hack, but is also about the best place to 1530 * put this improvement. 1531 */ 1532 if (entry->object.vm_object == NULL && !map->system_map) { 1533 vm_object_t object; 1534 object = vm_object_allocate(OBJT_DEFAULT, 1535 atop(entry->end - entry->start)); 1536 entry->object.vm_object = object; 1537 entry->offset = 0; 1538 if (entry->uip != NULL) { 1539 object->uip = entry->uip; 1540 object->charge = entry->end - entry->start; 1541 entry->uip = NULL; 1542 } 1543 } else if (entry->object.vm_object != NULL && 1544 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 1545 entry->uip != NULL) { 1546 VM_OBJECT_LOCK(entry->object.vm_object); 1547 KASSERT(entry->object.vm_object->uip == NULL, 1548 ("OVERCOMMIT: vm_entry_clip_start: both uip e %p", entry)); 1549 entry->object.vm_object->uip = entry->uip; 1550 entry->object.vm_object->charge = entry->end - entry->start; 1551 VM_OBJECT_UNLOCK(entry->object.vm_object); 1552 entry->uip = NULL; 1553 } 1554 1555 new_entry = vm_map_entry_create(map); 1556 *new_entry = *entry; 1557 1558 new_entry->end = start; 1559 entry->offset += (start - entry->start); 1560 entry->start = start; 1561 if (new_entry->uip != NULL) 1562 uihold(entry->uip); 1563 1564 vm_map_entry_link(map, entry->prev, new_entry); 1565 1566 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1567 vm_object_reference(new_entry->object.vm_object); 1568 } 1569 } 1570 1571 /* 1572 * vm_map_clip_end: [ internal use only ] 1573 * 1574 * Asserts that the given entry ends at or before 1575 * the specified address; if necessary, 1576 * it splits the entry into two. 1577 */ 1578 #define vm_map_clip_end(map, entry, endaddr) \ 1579 { \ 1580 if ((endaddr) < (entry->end)) \ 1581 _vm_map_clip_end((map), (entry), (endaddr)); \ 1582 } 1583 1584 /* 1585 * This routine is called only when it is known that 1586 * the entry must be split. 1587 */ 1588 static void 1589 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end) 1590 { 1591 vm_map_entry_t new_entry; 1592 1593 VM_MAP_ASSERT_LOCKED(map); 1594 1595 /* 1596 * If there is no object backing this entry, we might as well create 1597 * one now. If we defer it, an object can get created after the map 1598 * is clipped, and individual objects will be created for the split-up 1599 * map. This is a bit of a hack, but is also about the best place to 1600 * put this improvement. 1601 */ 1602 if (entry->object.vm_object == NULL && !map->system_map) { 1603 vm_object_t object; 1604 object = vm_object_allocate(OBJT_DEFAULT, 1605 atop(entry->end - entry->start)); 1606 entry->object.vm_object = object; 1607 entry->offset = 0; 1608 if (entry->uip != NULL) { 1609 object->uip = entry->uip; 1610 object->charge = entry->end - entry->start; 1611 entry->uip = NULL; 1612 } 1613 } else if (entry->object.vm_object != NULL && 1614 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 1615 entry->uip != NULL) { 1616 VM_OBJECT_LOCK(entry->object.vm_object); 1617 KASSERT(entry->object.vm_object->uip == NULL, 1618 ("OVERCOMMIT: vm_entry_clip_end: both uip e %p", entry)); 1619 entry->object.vm_object->uip = entry->uip; 1620 entry->object.vm_object->charge = entry->end - entry->start; 1621 VM_OBJECT_UNLOCK(entry->object.vm_object); 1622 entry->uip = NULL; 1623 } 1624 1625 /* 1626 * Create a new entry and insert it AFTER the specified entry 1627 */ 1628 new_entry = vm_map_entry_create(map); 1629 *new_entry = *entry; 1630 1631 new_entry->start = entry->end = end; 1632 new_entry->offset += (end - entry->start); 1633 if (new_entry->uip != NULL) 1634 uihold(entry->uip); 1635 1636 vm_map_entry_link(map, entry, new_entry); 1637 1638 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1639 vm_object_reference(new_entry->object.vm_object); 1640 } 1641 } 1642 1643 /* 1644 * vm_map_submap: [ kernel use only ] 1645 * 1646 * Mark the given range as handled by a subordinate map. 1647 * 1648 * This range must have been created with vm_map_find, 1649 * and no other operations may have been performed on this 1650 * range prior to calling vm_map_submap. 1651 * 1652 * Only a limited number of operations can be performed 1653 * within this rage after calling vm_map_submap: 1654 * vm_fault 1655 * [Don't try vm_map_copy!] 1656 * 1657 * To remove a submapping, one must first remove the 1658 * range from the superior map, and then destroy the 1659 * submap (if desired). [Better yet, don't try it.] 1660 */ 1661 int 1662 vm_map_submap( 1663 vm_map_t map, 1664 vm_offset_t start, 1665 vm_offset_t end, 1666 vm_map_t submap) 1667 { 1668 vm_map_entry_t entry; 1669 int result = KERN_INVALID_ARGUMENT; 1670 1671 vm_map_lock(map); 1672 1673 VM_MAP_RANGE_CHECK(map, start, end); 1674 1675 if (vm_map_lookup_entry(map, start, &entry)) { 1676 vm_map_clip_start(map, entry, start); 1677 } else 1678 entry = entry->next; 1679 1680 vm_map_clip_end(map, entry, end); 1681 1682 if ((entry->start == start) && (entry->end == end) && 1683 ((entry->eflags & MAP_ENTRY_COW) == 0) && 1684 (entry->object.vm_object == NULL)) { 1685 entry->object.sub_map = submap; 1686 entry->eflags |= MAP_ENTRY_IS_SUB_MAP; 1687 result = KERN_SUCCESS; 1688 } 1689 vm_map_unlock(map); 1690 1691 return (result); 1692 } 1693 1694 /* 1695 * The maximum number of pages to map 1696 */ 1697 #define MAX_INIT_PT 96 1698 1699 /* 1700 * vm_map_pmap_enter: 1701 * 1702 * Preload read-only mappings for the given object's resident pages into 1703 * the given map. This eliminates the soft faults on process startup and 1704 * immediately after an mmap(2). Because these are speculative mappings, 1705 * cached pages are not reactivated and mapped. 1706 */ 1707 void 1708 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 1709 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags) 1710 { 1711 vm_offset_t start; 1712 vm_page_t p, p_start; 1713 vm_pindex_t psize, tmpidx; 1714 boolean_t are_queues_locked; 1715 1716 if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL) 1717 return; 1718 VM_OBJECT_LOCK(object); 1719 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 1720 pmap_object_init_pt(map->pmap, addr, object, pindex, size); 1721 goto unlock_return; 1722 } 1723 1724 psize = atop(size); 1725 1726 if ((flags & MAP_PREFAULT_PARTIAL) && psize > MAX_INIT_PT && 1727 object->resident_page_count > MAX_INIT_PT) 1728 goto unlock_return; 1729 1730 if (psize + pindex > object->size) { 1731 if (object->size < pindex) 1732 goto unlock_return; 1733 psize = object->size - pindex; 1734 } 1735 1736 are_queues_locked = FALSE; 1737 start = 0; 1738 p_start = NULL; 1739 1740 if ((p = TAILQ_FIRST(&object->memq)) != NULL) { 1741 if (p->pindex < pindex) { 1742 p = vm_page_splay(pindex, object->root); 1743 if ((object->root = p)->pindex < pindex) 1744 p = TAILQ_NEXT(p, listq); 1745 } 1746 } 1747 /* 1748 * Assert: the variable p is either (1) the page with the 1749 * least pindex greater than or equal to the parameter pindex 1750 * or (2) NULL. 1751 */ 1752 for (; 1753 p != NULL && (tmpidx = p->pindex - pindex) < psize; 1754 p = TAILQ_NEXT(p, listq)) { 1755 /* 1756 * don't allow an madvise to blow away our really 1757 * free pages allocating pv entries. 1758 */ 1759 if ((flags & MAP_PREFAULT_MADVISE) && 1760 cnt.v_free_count < cnt.v_free_reserved) { 1761 psize = tmpidx; 1762 break; 1763 } 1764 if (p->valid == VM_PAGE_BITS_ALL) { 1765 if (p_start == NULL) { 1766 start = addr + ptoa(tmpidx); 1767 p_start = p; 1768 } 1769 } else if (p_start != NULL) { 1770 if (!are_queues_locked) { 1771 are_queues_locked = TRUE; 1772 vm_page_lock_queues(); 1773 } 1774 pmap_enter_object(map->pmap, start, addr + 1775 ptoa(tmpidx), p_start, prot); 1776 p_start = NULL; 1777 } 1778 } 1779 if (p_start != NULL) { 1780 if (!are_queues_locked) { 1781 are_queues_locked = TRUE; 1782 vm_page_lock_queues(); 1783 } 1784 pmap_enter_object(map->pmap, start, addr + ptoa(psize), 1785 p_start, prot); 1786 } 1787 if (are_queues_locked) 1788 vm_page_unlock_queues(); 1789 unlock_return: 1790 VM_OBJECT_UNLOCK(object); 1791 } 1792 1793 /* 1794 * vm_map_protect: 1795 * 1796 * Sets the protection of the specified address 1797 * region in the target map. If "set_max" is 1798 * specified, the maximum protection is to be set; 1799 * otherwise, only the current protection is affected. 1800 */ 1801 int 1802 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 1803 vm_prot_t new_prot, boolean_t set_max) 1804 { 1805 vm_map_entry_t current, entry; 1806 vm_object_t obj; 1807 struct uidinfo *uip; 1808 vm_prot_t old_prot; 1809 1810 vm_map_lock(map); 1811 1812 VM_MAP_RANGE_CHECK(map, start, end); 1813 1814 if (vm_map_lookup_entry(map, start, &entry)) { 1815 vm_map_clip_start(map, entry, start); 1816 } else { 1817 entry = entry->next; 1818 } 1819 1820 /* 1821 * Make a first pass to check for protection violations. 1822 */ 1823 current = entry; 1824 while ((current != &map->header) && (current->start < end)) { 1825 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 1826 vm_map_unlock(map); 1827 return (KERN_INVALID_ARGUMENT); 1828 } 1829 if ((new_prot & current->max_protection) != new_prot) { 1830 vm_map_unlock(map); 1831 return (KERN_PROTECTION_FAILURE); 1832 } 1833 current = current->next; 1834 } 1835 1836 1837 /* 1838 * Do an accounting pass for private read-only mappings that 1839 * now will do cow due to allowed write (e.g. debugger sets 1840 * breakpoint on text segment) 1841 */ 1842 for (current = entry; (current != &map->header) && 1843 (current->start < end); current = current->next) { 1844 1845 vm_map_clip_end(map, current, end); 1846 1847 if (set_max || 1848 ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 || 1849 ENTRY_CHARGED(current)) { 1850 continue; 1851 } 1852 1853 uip = curthread->td_ucred->cr_ruidinfo; 1854 obj = current->object.vm_object; 1855 1856 if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) { 1857 if (!swap_reserve(current->end - current->start)) { 1858 vm_map_unlock(map); 1859 return (KERN_RESOURCE_SHORTAGE); 1860 } 1861 uihold(uip); 1862 current->uip = uip; 1863 continue; 1864 } 1865 1866 VM_OBJECT_LOCK(obj); 1867 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) { 1868 VM_OBJECT_UNLOCK(obj); 1869 continue; 1870 } 1871 1872 /* 1873 * Charge for the whole object allocation now, since 1874 * we cannot distinguish between non-charged and 1875 * charged clipped mapping of the same object later. 1876 */ 1877 KASSERT(obj->charge == 0, 1878 ("vm_map_protect: object %p overcharged\n", obj)); 1879 if (!swap_reserve(ptoa(obj->size))) { 1880 VM_OBJECT_UNLOCK(obj); 1881 vm_map_unlock(map); 1882 return (KERN_RESOURCE_SHORTAGE); 1883 } 1884 1885 uihold(uip); 1886 obj->uip = uip; 1887 obj->charge = ptoa(obj->size); 1888 VM_OBJECT_UNLOCK(obj); 1889 } 1890 1891 /* 1892 * Go back and fix up protections. [Note that clipping is not 1893 * necessary the second time.] 1894 */ 1895 current = entry; 1896 while ((current != &map->header) && (current->start < end)) { 1897 old_prot = current->protection; 1898 1899 if (set_max) 1900 current->protection = 1901 (current->max_protection = new_prot) & 1902 old_prot; 1903 else 1904 current->protection = new_prot; 1905 1906 if ((current->eflags & (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED)) 1907 == (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED) && 1908 (current->protection & VM_PROT_WRITE) != 0 && 1909 (old_prot & VM_PROT_WRITE) == 0) { 1910 vm_fault_copy_entry(map, map, current, current, NULL); 1911 } 1912 1913 /* 1914 * When restricting access, update the physical map. Worry 1915 * about copy-on-write here. 1916 */ 1917 if ((old_prot & ~current->protection) != 0) { 1918 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 1919 VM_PROT_ALL) 1920 pmap_protect(map->pmap, current->start, 1921 current->end, 1922 current->protection & MASK(current)); 1923 #undef MASK 1924 } 1925 vm_map_simplify_entry(map, current); 1926 current = current->next; 1927 } 1928 vm_map_unlock(map); 1929 return (KERN_SUCCESS); 1930 } 1931 1932 /* 1933 * vm_map_madvise: 1934 * 1935 * This routine traverses a processes map handling the madvise 1936 * system call. Advisories are classified as either those effecting 1937 * the vm_map_entry structure, or those effecting the underlying 1938 * objects. 1939 */ 1940 int 1941 vm_map_madvise( 1942 vm_map_t map, 1943 vm_offset_t start, 1944 vm_offset_t end, 1945 int behav) 1946 { 1947 vm_map_entry_t current, entry; 1948 int modify_map = 0; 1949 1950 /* 1951 * Some madvise calls directly modify the vm_map_entry, in which case 1952 * we need to use an exclusive lock on the map and we need to perform 1953 * various clipping operations. Otherwise we only need a read-lock 1954 * on the map. 1955 */ 1956 switch(behav) { 1957 case MADV_NORMAL: 1958 case MADV_SEQUENTIAL: 1959 case MADV_RANDOM: 1960 case MADV_NOSYNC: 1961 case MADV_AUTOSYNC: 1962 case MADV_NOCORE: 1963 case MADV_CORE: 1964 modify_map = 1; 1965 vm_map_lock(map); 1966 break; 1967 case MADV_WILLNEED: 1968 case MADV_DONTNEED: 1969 case MADV_FREE: 1970 vm_map_lock_read(map); 1971 break; 1972 default: 1973 return (KERN_INVALID_ARGUMENT); 1974 } 1975 1976 /* 1977 * Locate starting entry and clip if necessary. 1978 */ 1979 VM_MAP_RANGE_CHECK(map, start, end); 1980 1981 if (vm_map_lookup_entry(map, start, &entry)) { 1982 if (modify_map) 1983 vm_map_clip_start(map, entry, start); 1984 } else { 1985 entry = entry->next; 1986 } 1987 1988 if (modify_map) { 1989 /* 1990 * madvise behaviors that are implemented in the vm_map_entry. 1991 * 1992 * We clip the vm_map_entry so that behavioral changes are 1993 * limited to the specified address range. 1994 */ 1995 for (current = entry; 1996 (current != &map->header) && (current->start < end); 1997 current = current->next 1998 ) { 1999 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2000 continue; 2001 2002 vm_map_clip_end(map, current, end); 2003 2004 switch (behav) { 2005 case MADV_NORMAL: 2006 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL); 2007 break; 2008 case MADV_SEQUENTIAL: 2009 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL); 2010 break; 2011 case MADV_RANDOM: 2012 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM); 2013 break; 2014 case MADV_NOSYNC: 2015 current->eflags |= MAP_ENTRY_NOSYNC; 2016 break; 2017 case MADV_AUTOSYNC: 2018 current->eflags &= ~MAP_ENTRY_NOSYNC; 2019 break; 2020 case MADV_NOCORE: 2021 current->eflags |= MAP_ENTRY_NOCOREDUMP; 2022 break; 2023 case MADV_CORE: 2024 current->eflags &= ~MAP_ENTRY_NOCOREDUMP; 2025 break; 2026 default: 2027 break; 2028 } 2029 vm_map_simplify_entry(map, current); 2030 } 2031 vm_map_unlock(map); 2032 } else { 2033 vm_pindex_t pindex; 2034 int count; 2035 2036 /* 2037 * madvise behaviors that are implemented in the underlying 2038 * vm_object. 2039 * 2040 * Since we don't clip the vm_map_entry, we have to clip 2041 * the vm_object pindex and count. 2042 */ 2043 for (current = entry; 2044 (current != &map->header) && (current->start < end); 2045 current = current->next 2046 ) { 2047 vm_offset_t useStart; 2048 2049 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2050 continue; 2051 2052 pindex = OFF_TO_IDX(current->offset); 2053 count = atop(current->end - current->start); 2054 useStart = current->start; 2055 2056 if (current->start < start) { 2057 pindex += atop(start - current->start); 2058 count -= atop(start - current->start); 2059 useStart = start; 2060 } 2061 if (current->end > end) 2062 count -= atop(current->end - end); 2063 2064 if (count <= 0) 2065 continue; 2066 2067 vm_object_madvise(current->object.vm_object, 2068 pindex, count, behav); 2069 if (behav == MADV_WILLNEED) { 2070 vm_map_pmap_enter(map, 2071 useStart, 2072 current->protection, 2073 current->object.vm_object, 2074 pindex, 2075 (count << PAGE_SHIFT), 2076 MAP_PREFAULT_MADVISE 2077 ); 2078 } 2079 } 2080 vm_map_unlock_read(map); 2081 } 2082 return (0); 2083 } 2084 2085 2086 /* 2087 * vm_map_inherit: 2088 * 2089 * Sets the inheritance of the specified address 2090 * range in the target map. Inheritance 2091 * affects how the map will be shared with 2092 * child maps at the time of vmspace_fork. 2093 */ 2094 int 2095 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 2096 vm_inherit_t new_inheritance) 2097 { 2098 vm_map_entry_t entry; 2099 vm_map_entry_t temp_entry; 2100 2101 switch (new_inheritance) { 2102 case VM_INHERIT_NONE: 2103 case VM_INHERIT_COPY: 2104 case VM_INHERIT_SHARE: 2105 break; 2106 default: 2107 return (KERN_INVALID_ARGUMENT); 2108 } 2109 vm_map_lock(map); 2110 VM_MAP_RANGE_CHECK(map, start, end); 2111 if (vm_map_lookup_entry(map, start, &temp_entry)) { 2112 entry = temp_entry; 2113 vm_map_clip_start(map, entry, start); 2114 } else 2115 entry = temp_entry->next; 2116 while ((entry != &map->header) && (entry->start < end)) { 2117 vm_map_clip_end(map, entry, end); 2118 entry->inheritance = new_inheritance; 2119 vm_map_simplify_entry(map, entry); 2120 entry = entry->next; 2121 } 2122 vm_map_unlock(map); 2123 return (KERN_SUCCESS); 2124 } 2125 2126 /* 2127 * vm_map_unwire: 2128 * 2129 * Implements both kernel and user unwiring. 2130 */ 2131 int 2132 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2133 int flags) 2134 { 2135 vm_map_entry_t entry, first_entry, tmp_entry; 2136 vm_offset_t saved_start; 2137 unsigned int last_timestamp; 2138 int rv; 2139 boolean_t need_wakeup, result, user_unwire; 2140 2141 user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 2142 vm_map_lock(map); 2143 VM_MAP_RANGE_CHECK(map, start, end); 2144 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2145 if (flags & VM_MAP_WIRE_HOLESOK) 2146 first_entry = first_entry->next; 2147 else { 2148 vm_map_unlock(map); 2149 return (KERN_INVALID_ADDRESS); 2150 } 2151 } 2152 last_timestamp = map->timestamp; 2153 entry = first_entry; 2154 while (entry != &map->header && entry->start < end) { 2155 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2156 /* 2157 * We have not yet clipped the entry. 2158 */ 2159 saved_start = (start >= entry->start) ? start : 2160 entry->start; 2161 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2162 if (vm_map_unlock_and_wait(map, 0)) { 2163 /* 2164 * Allow interruption of user unwiring? 2165 */ 2166 } 2167 vm_map_lock(map); 2168 if (last_timestamp+1 != map->timestamp) { 2169 /* 2170 * Look again for the entry because the map was 2171 * modified while it was unlocked. 2172 * Specifically, the entry may have been 2173 * clipped, merged, or deleted. 2174 */ 2175 if (!vm_map_lookup_entry(map, saved_start, 2176 &tmp_entry)) { 2177 if (flags & VM_MAP_WIRE_HOLESOK) 2178 tmp_entry = tmp_entry->next; 2179 else { 2180 if (saved_start == start) { 2181 /* 2182 * First_entry has been deleted. 2183 */ 2184 vm_map_unlock(map); 2185 return (KERN_INVALID_ADDRESS); 2186 } 2187 end = saved_start; 2188 rv = KERN_INVALID_ADDRESS; 2189 goto done; 2190 } 2191 } 2192 if (entry == first_entry) 2193 first_entry = tmp_entry; 2194 else 2195 first_entry = NULL; 2196 entry = tmp_entry; 2197 } 2198 last_timestamp = map->timestamp; 2199 continue; 2200 } 2201 vm_map_clip_start(map, entry, start); 2202 vm_map_clip_end(map, entry, end); 2203 /* 2204 * Mark the entry in case the map lock is released. (See 2205 * above.) 2206 */ 2207 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 2208 /* 2209 * Check the map for holes in the specified region. 2210 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 2211 */ 2212 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) && 2213 (entry->end < end && (entry->next == &map->header || 2214 entry->next->start > entry->end))) { 2215 end = entry->end; 2216 rv = KERN_INVALID_ADDRESS; 2217 goto done; 2218 } 2219 /* 2220 * If system unwiring, require that the entry is system wired. 2221 */ 2222 if (!user_unwire && 2223 vm_map_entry_system_wired_count(entry) == 0) { 2224 end = entry->end; 2225 rv = KERN_INVALID_ARGUMENT; 2226 goto done; 2227 } 2228 entry = entry->next; 2229 } 2230 rv = KERN_SUCCESS; 2231 done: 2232 need_wakeup = FALSE; 2233 if (first_entry == NULL) { 2234 result = vm_map_lookup_entry(map, start, &first_entry); 2235 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 2236 first_entry = first_entry->next; 2237 else 2238 KASSERT(result, ("vm_map_unwire: lookup failed")); 2239 } 2240 entry = first_entry; 2241 while (entry != &map->header && entry->start < end) { 2242 if (rv == KERN_SUCCESS && (!user_unwire || 2243 (entry->eflags & MAP_ENTRY_USER_WIRED))) { 2244 if (user_unwire) 2245 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2246 entry->wired_count--; 2247 if (entry->wired_count == 0) { 2248 /* 2249 * Retain the map lock. 2250 */ 2251 vm_fault_unwire(map, entry->start, entry->end, 2252 entry->object.vm_object != NULL && 2253 (entry->object.vm_object->type == OBJT_DEVICE || 2254 entry->object.vm_object->type == OBJT_SG)); 2255 } 2256 } 2257 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, 2258 ("vm_map_unwire: in-transition flag missing")); 2259 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 2260 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 2261 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 2262 need_wakeup = TRUE; 2263 } 2264 vm_map_simplify_entry(map, entry); 2265 entry = entry->next; 2266 } 2267 vm_map_unlock(map); 2268 if (need_wakeup) 2269 vm_map_wakeup(map); 2270 return (rv); 2271 } 2272 2273 /* 2274 * vm_map_wire: 2275 * 2276 * Implements both kernel and user wiring. 2277 */ 2278 int 2279 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2280 int flags) 2281 { 2282 vm_map_entry_t entry, first_entry, tmp_entry; 2283 vm_offset_t saved_end, saved_start; 2284 unsigned int last_timestamp; 2285 int rv; 2286 boolean_t fictitious, need_wakeup, result, user_wire; 2287 2288 user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 2289 vm_map_lock(map); 2290 VM_MAP_RANGE_CHECK(map, start, end); 2291 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2292 if (flags & VM_MAP_WIRE_HOLESOK) 2293 first_entry = first_entry->next; 2294 else { 2295 vm_map_unlock(map); 2296 return (KERN_INVALID_ADDRESS); 2297 } 2298 } 2299 last_timestamp = map->timestamp; 2300 entry = first_entry; 2301 while (entry != &map->header && entry->start < end) { 2302 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2303 /* 2304 * We have not yet clipped the entry. 2305 */ 2306 saved_start = (start >= entry->start) ? start : 2307 entry->start; 2308 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2309 if (vm_map_unlock_and_wait(map, 0)) { 2310 /* 2311 * Allow interruption of user wiring? 2312 */ 2313 } 2314 vm_map_lock(map); 2315 if (last_timestamp + 1 != map->timestamp) { 2316 /* 2317 * Look again for the entry because the map was 2318 * modified while it was unlocked. 2319 * Specifically, the entry may have been 2320 * clipped, merged, or deleted. 2321 */ 2322 if (!vm_map_lookup_entry(map, saved_start, 2323 &tmp_entry)) { 2324 if (flags & VM_MAP_WIRE_HOLESOK) 2325 tmp_entry = tmp_entry->next; 2326 else { 2327 if (saved_start == start) { 2328 /* 2329 * first_entry has been deleted. 2330 */ 2331 vm_map_unlock(map); 2332 return (KERN_INVALID_ADDRESS); 2333 } 2334 end = saved_start; 2335 rv = KERN_INVALID_ADDRESS; 2336 goto done; 2337 } 2338 } 2339 if (entry == first_entry) 2340 first_entry = tmp_entry; 2341 else 2342 first_entry = NULL; 2343 entry = tmp_entry; 2344 } 2345 last_timestamp = map->timestamp; 2346 continue; 2347 } 2348 vm_map_clip_start(map, entry, start); 2349 vm_map_clip_end(map, entry, end); 2350 /* 2351 * Mark the entry in case the map lock is released. (See 2352 * above.) 2353 */ 2354 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 2355 /* 2356 * 2357 */ 2358 if (entry->wired_count == 0) { 2359 if ((entry->protection & (VM_PROT_READ|VM_PROT_EXECUTE)) 2360 == 0) { 2361 entry->eflags |= MAP_ENTRY_WIRE_SKIPPED; 2362 if ((flags & VM_MAP_WIRE_HOLESOK) == 0) { 2363 end = entry->end; 2364 rv = KERN_INVALID_ADDRESS; 2365 goto done; 2366 } 2367 goto next_entry; 2368 } 2369 entry->wired_count++; 2370 saved_start = entry->start; 2371 saved_end = entry->end; 2372 fictitious = entry->object.vm_object != NULL && 2373 (entry->object.vm_object->type == OBJT_DEVICE || 2374 entry->object.vm_object->type == OBJT_SG); 2375 /* 2376 * Release the map lock, relying on the in-transition 2377 * mark. 2378 */ 2379 vm_map_unlock(map); 2380 rv = vm_fault_wire(map, saved_start, saved_end, 2381 fictitious); 2382 vm_map_lock(map); 2383 if (last_timestamp + 1 != map->timestamp) { 2384 /* 2385 * Look again for the entry because the map was 2386 * modified while it was unlocked. The entry 2387 * may have been clipped, but NOT merged or 2388 * deleted. 2389 */ 2390 result = vm_map_lookup_entry(map, saved_start, 2391 &tmp_entry); 2392 KASSERT(result, ("vm_map_wire: lookup failed")); 2393 if (entry == first_entry) 2394 first_entry = tmp_entry; 2395 else 2396 first_entry = NULL; 2397 entry = tmp_entry; 2398 while (entry->end < saved_end) { 2399 if (rv != KERN_SUCCESS) { 2400 KASSERT(entry->wired_count == 1, 2401 ("vm_map_wire: bad count")); 2402 entry->wired_count = -1; 2403 } 2404 entry = entry->next; 2405 } 2406 } 2407 last_timestamp = map->timestamp; 2408 if (rv != KERN_SUCCESS) { 2409 KASSERT(entry->wired_count == 1, 2410 ("vm_map_wire: bad count")); 2411 /* 2412 * Assign an out-of-range value to represent 2413 * the failure to wire this entry. 2414 */ 2415 entry->wired_count = -1; 2416 end = entry->end; 2417 goto done; 2418 } 2419 } else if (!user_wire || 2420 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 2421 entry->wired_count++; 2422 } 2423 /* 2424 * Check the map for holes in the specified region. 2425 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 2426 */ 2427 next_entry: 2428 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) && 2429 (entry->end < end && (entry->next == &map->header || 2430 entry->next->start > entry->end))) { 2431 end = entry->end; 2432 rv = KERN_INVALID_ADDRESS; 2433 goto done; 2434 } 2435 entry = entry->next; 2436 } 2437 rv = KERN_SUCCESS; 2438 done: 2439 need_wakeup = FALSE; 2440 if (first_entry == NULL) { 2441 result = vm_map_lookup_entry(map, start, &first_entry); 2442 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 2443 first_entry = first_entry->next; 2444 else 2445 KASSERT(result, ("vm_map_wire: lookup failed")); 2446 } 2447 entry = first_entry; 2448 while (entry != &map->header && entry->start < end) { 2449 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) 2450 goto next_entry_done; 2451 if (rv == KERN_SUCCESS) { 2452 if (user_wire) 2453 entry->eflags |= MAP_ENTRY_USER_WIRED; 2454 } else if (entry->wired_count == -1) { 2455 /* 2456 * Wiring failed on this entry. Thus, unwiring is 2457 * unnecessary. 2458 */ 2459 entry->wired_count = 0; 2460 } else { 2461 if (!user_wire || 2462 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) 2463 entry->wired_count--; 2464 if (entry->wired_count == 0) { 2465 /* 2466 * Retain the map lock. 2467 */ 2468 vm_fault_unwire(map, entry->start, entry->end, 2469 entry->object.vm_object != NULL && 2470 (entry->object.vm_object->type == OBJT_DEVICE || 2471 entry->object.vm_object->type == OBJT_SG)); 2472 } 2473 } 2474 next_entry_done: 2475 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, 2476 ("vm_map_wire: in-transition flag missing")); 2477 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION|MAP_ENTRY_WIRE_SKIPPED); 2478 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 2479 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 2480 need_wakeup = TRUE; 2481 } 2482 vm_map_simplify_entry(map, entry); 2483 entry = entry->next; 2484 } 2485 vm_map_unlock(map); 2486 if (need_wakeup) 2487 vm_map_wakeup(map); 2488 return (rv); 2489 } 2490 2491 /* 2492 * vm_map_sync 2493 * 2494 * Push any dirty cached pages in the address range to their pager. 2495 * If syncio is TRUE, dirty pages are written synchronously. 2496 * If invalidate is TRUE, any cached pages are freed as well. 2497 * 2498 * If the size of the region from start to end is zero, we are 2499 * supposed to flush all modified pages within the region containing 2500 * start. Unfortunately, a region can be split or coalesced with 2501 * neighboring regions, making it difficult to determine what the 2502 * original region was. Therefore, we approximate this requirement by 2503 * flushing the current region containing start. 2504 * 2505 * Returns an error if any part of the specified range is not mapped. 2506 */ 2507 int 2508 vm_map_sync( 2509 vm_map_t map, 2510 vm_offset_t start, 2511 vm_offset_t end, 2512 boolean_t syncio, 2513 boolean_t invalidate) 2514 { 2515 vm_map_entry_t current; 2516 vm_map_entry_t entry; 2517 vm_size_t size; 2518 vm_object_t object; 2519 vm_ooffset_t offset; 2520 unsigned int last_timestamp; 2521 2522 vm_map_lock_read(map); 2523 VM_MAP_RANGE_CHECK(map, start, end); 2524 if (!vm_map_lookup_entry(map, start, &entry)) { 2525 vm_map_unlock_read(map); 2526 return (KERN_INVALID_ADDRESS); 2527 } else if (start == end) { 2528 start = entry->start; 2529 end = entry->end; 2530 } 2531 /* 2532 * Make a first pass to check for user-wired memory and holes. 2533 */ 2534 for (current = entry; current != &map->header && current->start < end; 2535 current = current->next) { 2536 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) { 2537 vm_map_unlock_read(map); 2538 return (KERN_INVALID_ARGUMENT); 2539 } 2540 if (end > current->end && 2541 (current->next == &map->header || 2542 current->end != current->next->start)) { 2543 vm_map_unlock_read(map); 2544 return (KERN_INVALID_ADDRESS); 2545 } 2546 } 2547 2548 if (invalidate) 2549 pmap_remove(map->pmap, start, end); 2550 2551 /* 2552 * Make a second pass, cleaning/uncaching pages from the indicated 2553 * objects as we go. 2554 */ 2555 for (current = entry; current != &map->header && current->start < end;) { 2556 offset = current->offset + (start - current->start); 2557 size = (end <= current->end ? end : current->end) - start; 2558 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 2559 vm_map_t smap; 2560 vm_map_entry_t tentry; 2561 vm_size_t tsize; 2562 2563 smap = current->object.sub_map; 2564 vm_map_lock_read(smap); 2565 (void) vm_map_lookup_entry(smap, offset, &tentry); 2566 tsize = tentry->end - offset; 2567 if (tsize < size) 2568 size = tsize; 2569 object = tentry->object.vm_object; 2570 offset = tentry->offset + (offset - tentry->start); 2571 vm_map_unlock_read(smap); 2572 } else { 2573 object = current->object.vm_object; 2574 } 2575 vm_object_reference(object); 2576 last_timestamp = map->timestamp; 2577 vm_map_unlock_read(map); 2578 vm_object_sync(object, offset, size, syncio, invalidate); 2579 start += size; 2580 vm_object_deallocate(object); 2581 vm_map_lock_read(map); 2582 if (last_timestamp == map->timestamp || 2583 !vm_map_lookup_entry(map, start, ¤t)) 2584 current = current->next; 2585 } 2586 2587 vm_map_unlock_read(map); 2588 return (KERN_SUCCESS); 2589 } 2590 2591 /* 2592 * vm_map_entry_unwire: [ internal use only ] 2593 * 2594 * Make the region specified by this entry pageable. 2595 * 2596 * The map in question should be locked. 2597 * [This is the reason for this routine's existence.] 2598 */ 2599 static void 2600 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 2601 { 2602 vm_fault_unwire(map, entry->start, entry->end, 2603 entry->object.vm_object != NULL && 2604 (entry->object.vm_object->type == OBJT_DEVICE || 2605 entry->object.vm_object->type == OBJT_SG)); 2606 entry->wired_count = 0; 2607 } 2608 2609 /* 2610 * vm_map_entry_delete: [ internal use only ] 2611 * 2612 * Deallocate the given entry from the target map. 2613 */ 2614 static void 2615 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry) 2616 { 2617 vm_object_t object; 2618 vm_pindex_t offidxstart, offidxend, count, size1; 2619 vm_ooffset_t size; 2620 2621 vm_map_entry_unlink(map, entry); 2622 object = entry->object.vm_object; 2623 size = entry->end - entry->start; 2624 map->size -= size; 2625 2626 if (entry->uip != NULL) { 2627 swap_release_by_uid(size, entry->uip); 2628 uifree(entry->uip); 2629 } 2630 2631 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 && 2632 (object != NULL)) { 2633 KASSERT(entry->uip == NULL || object->uip == NULL || 2634 (entry->eflags & MAP_ENTRY_NEEDS_COPY), 2635 ("OVERCOMMIT vm_map_entry_delete: both uip %p", entry)); 2636 count = OFF_TO_IDX(size); 2637 offidxstart = OFF_TO_IDX(entry->offset); 2638 offidxend = offidxstart + count; 2639 VM_OBJECT_LOCK(object); 2640 if (object->ref_count != 1 && 2641 ((object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING || 2642 object == kernel_object || object == kmem_object)) { 2643 vm_object_collapse(object); 2644 vm_object_page_remove(object, offidxstart, offidxend, FALSE); 2645 if (object->type == OBJT_SWAP) 2646 swap_pager_freespace(object, offidxstart, count); 2647 if (offidxend >= object->size && 2648 offidxstart < object->size) { 2649 size1 = object->size; 2650 object->size = offidxstart; 2651 if (object->uip != NULL) { 2652 size1 -= object->size; 2653 KASSERT(object->charge >= ptoa(size1), 2654 ("vm_map_entry_delete: object->charge < 0")); 2655 swap_release_by_uid(ptoa(size1), object->uip); 2656 object->charge -= ptoa(size1); 2657 } 2658 } 2659 } 2660 VM_OBJECT_UNLOCK(object); 2661 } else 2662 entry->object.vm_object = NULL; 2663 } 2664 2665 /* 2666 * vm_map_delete: [ internal use only ] 2667 * 2668 * Deallocates the given address range from the target 2669 * map. 2670 */ 2671 int 2672 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end) 2673 { 2674 vm_map_entry_t entry; 2675 vm_map_entry_t first_entry; 2676 2677 VM_MAP_ASSERT_LOCKED(map); 2678 2679 /* 2680 * Find the start of the region, and clip it 2681 */ 2682 if (!vm_map_lookup_entry(map, start, &first_entry)) 2683 entry = first_entry->next; 2684 else { 2685 entry = first_entry; 2686 vm_map_clip_start(map, entry, start); 2687 } 2688 2689 /* 2690 * Step through all entries in this region 2691 */ 2692 while ((entry != &map->header) && (entry->start < end)) { 2693 vm_map_entry_t next; 2694 2695 /* 2696 * Wait for wiring or unwiring of an entry to complete. 2697 * Also wait for any system wirings to disappear on 2698 * user maps. 2699 */ 2700 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 || 2701 (vm_map_pmap(map) != kernel_pmap && 2702 vm_map_entry_system_wired_count(entry) != 0)) { 2703 unsigned int last_timestamp; 2704 vm_offset_t saved_start; 2705 vm_map_entry_t tmp_entry; 2706 2707 saved_start = entry->start; 2708 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2709 last_timestamp = map->timestamp; 2710 (void) vm_map_unlock_and_wait(map, 0); 2711 vm_map_lock(map); 2712 if (last_timestamp + 1 != map->timestamp) { 2713 /* 2714 * Look again for the entry because the map was 2715 * modified while it was unlocked. 2716 * Specifically, the entry may have been 2717 * clipped, merged, or deleted. 2718 */ 2719 if (!vm_map_lookup_entry(map, saved_start, 2720 &tmp_entry)) 2721 entry = tmp_entry->next; 2722 else { 2723 entry = tmp_entry; 2724 vm_map_clip_start(map, entry, 2725 saved_start); 2726 } 2727 } 2728 continue; 2729 } 2730 vm_map_clip_end(map, entry, end); 2731 2732 next = entry->next; 2733 2734 /* 2735 * Unwire before removing addresses from the pmap; otherwise, 2736 * unwiring will put the entries back in the pmap. 2737 */ 2738 if (entry->wired_count != 0) { 2739 vm_map_entry_unwire(map, entry); 2740 } 2741 2742 pmap_remove(map->pmap, entry->start, entry->end); 2743 2744 /* 2745 * Delete the entry only after removing all pmap 2746 * entries pointing to its pages. (Otherwise, its 2747 * page frames may be reallocated, and any modify bits 2748 * will be set in the wrong object!) 2749 */ 2750 vm_map_entry_delete(map, entry); 2751 entry->next = map->deferred_freelist; 2752 map->deferred_freelist = entry; 2753 entry = next; 2754 } 2755 return (KERN_SUCCESS); 2756 } 2757 2758 /* 2759 * vm_map_remove: 2760 * 2761 * Remove the given address range from the target map. 2762 * This is the exported form of vm_map_delete. 2763 */ 2764 int 2765 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 2766 { 2767 int result; 2768 2769 vm_map_lock(map); 2770 VM_MAP_RANGE_CHECK(map, start, end); 2771 result = vm_map_delete(map, start, end); 2772 vm_map_unlock(map); 2773 return (result); 2774 } 2775 2776 /* 2777 * vm_map_check_protection: 2778 * 2779 * Assert that the target map allows the specified privilege on the 2780 * entire address region given. The entire region must be allocated. 2781 * 2782 * WARNING! This code does not and should not check whether the 2783 * contents of the region is accessible. For example a smaller file 2784 * might be mapped into a larger address space. 2785 * 2786 * NOTE! This code is also called by munmap(). 2787 * 2788 * The map must be locked. A read lock is sufficient. 2789 */ 2790 boolean_t 2791 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 2792 vm_prot_t protection) 2793 { 2794 vm_map_entry_t entry; 2795 vm_map_entry_t tmp_entry; 2796 2797 if (!vm_map_lookup_entry(map, start, &tmp_entry)) 2798 return (FALSE); 2799 entry = tmp_entry; 2800 2801 while (start < end) { 2802 if (entry == &map->header) 2803 return (FALSE); 2804 /* 2805 * No holes allowed! 2806 */ 2807 if (start < entry->start) 2808 return (FALSE); 2809 /* 2810 * Check protection associated with entry. 2811 */ 2812 if ((entry->protection & protection) != protection) 2813 return (FALSE); 2814 /* go to next entry */ 2815 start = entry->end; 2816 entry = entry->next; 2817 } 2818 return (TRUE); 2819 } 2820 2821 /* 2822 * vm_map_copy_entry: 2823 * 2824 * Copies the contents of the source entry to the destination 2825 * entry. The entries *must* be aligned properly. 2826 */ 2827 static void 2828 vm_map_copy_entry( 2829 vm_map_t src_map, 2830 vm_map_t dst_map, 2831 vm_map_entry_t src_entry, 2832 vm_map_entry_t dst_entry, 2833 vm_ooffset_t *fork_charge) 2834 { 2835 vm_object_t src_object; 2836 vm_offset_t size; 2837 struct uidinfo *uip; 2838 int charged; 2839 2840 VM_MAP_ASSERT_LOCKED(dst_map); 2841 2842 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP) 2843 return; 2844 2845 if (src_entry->wired_count == 0) { 2846 2847 /* 2848 * If the source entry is marked needs_copy, it is already 2849 * write-protected. 2850 */ 2851 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) { 2852 pmap_protect(src_map->pmap, 2853 src_entry->start, 2854 src_entry->end, 2855 src_entry->protection & ~VM_PROT_WRITE); 2856 } 2857 2858 /* 2859 * Make a copy of the object. 2860 */ 2861 size = src_entry->end - src_entry->start; 2862 if ((src_object = src_entry->object.vm_object) != NULL) { 2863 VM_OBJECT_LOCK(src_object); 2864 charged = ENTRY_CHARGED(src_entry); 2865 if ((src_object->handle == NULL) && 2866 (src_object->type == OBJT_DEFAULT || 2867 src_object->type == OBJT_SWAP)) { 2868 vm_object_collapse(src_object); 2869 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) { 2870 vm_object_split(src_entry); 2871 src_object = src_entry->object.vm_object; 2872 } 2873 } 2874 vm_object_reference_locked(src_object); 2875 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 2876 if (src_entry->uip != NULL && 2877 !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 2878 KASSERT(src_object->uip == NULL, 2879 ("OVERCOMMIT: vm_map_copy_entry: uip %p", 2880 src_object)); 2881 src_object->uip = src_entry->uip; 2882 src_object->charge = size; 2883 } 2884 VM_OBJECT_UNLOCK(src_object); 2885 dst_entry->object.vm_object = src_object; 2886 if (charged) { 2887 uip = curthread->td_ucred->cr_ruidinfo; 2888 uihold(uip); 2889 dst_entry->uip = uip; 2890 *fork_charge += size; 2891 if (!(src_entry->eflags & 2892 MAP_ENTRY_NEEDS_COPY)) { 2893 uihold(uip); 2894 src_entry->uip = uip; 2895 *fork_charge += size; 2896 } 2897 } 2898 src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 2899 dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 2900 dst_entry->offset = src_entry->offset; 2901 } else { 2902 dst_entry->object.vm_object = NULL; 2903 dst_entry->offset = 0; 2904 if (src_entry->uip != NULL) { 2905 dst_entry->uip = curthread->td_ucred->cr_ruidinfo; 2906 uihold(dst_entry->uip); 2907 *fork_charge += size; 2908 } 2909 } 2910 2911 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start, 2912 dst_entry->end - dst_entry->start, src_entry->start); 2913 } else { 2914 /* 2915 * Of course, wired down pages can't be set copy-on-write. 2916 * Cause wired pages to be copied into the new map by 2917 * simulating faults (the new pages are pageable) 2918 */ 2919 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry, 2920 fork_charge); 2921 } 2922 } 2923 2924 /* 2925 * vmspace_map_entry_forked: 2926 * Update the newly-forked vmspace each time a map entry is inherited 2927 * or copied. The values for vm_dsize and vm_tsize are approximate 2928 * (and mostly-obsolete ideas in the face of mmap(2) et al.) 2929 */ 2930 static void 2931 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2, 2932 vm_map_entry_t entry) 2933 { 2934 vm_size_t entrysize; 2935 vm_offset_t newend; 2936 2937 entrysize = entry->end - entry->start; 2938 vm2->vm_map.size += entrysize; 2939 if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) { 2940 vm2->vm_ssize += btoc(entrysize); 2941 } else if (entry->start >= (vm_offset_t)vm1->vm_daddr && 2942 entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) { 2943 newend = MIN(entry->end, 2944 (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)); 2945 vm2->vm_dsize += btoc(newend - entry->start); 2946 } else if (entry->start >= (vm_offset_t)vm1->vm_taddr && 2947 entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) { 2948 newend = MIN(entry->end, 2949 (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)); 2950 vm2->vm_tsize += btoc(newend - entry->start); 2951 } 2952 } 2953 2954 /* 2955 * vmspace_fork: 2956 * Create a new process vmspace structure and vm_map 2957 * based on those of an existing process. The new map 2958 * is based on the old map, according to the inheritance 2959 * values on the regions in that map. 2960 * 2961 * XXX It might be worth coalescing the entries added to the new vmspace. 2962 * 2963 * The source map must not be locked. 2964 */ 2965 struct vmspace * 2966 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge) 2967 { 2968 struct vmspace *vm2; 2969 vm_map_t old_map = &vm1->vm_map; 2970 vm_map_t new_map; 2971 vm_map_entry_t old_entry; 2972 vm_map_entry_t new_entry; 2973 vm_object_t object; 2974 int locked; 2975 2976 vm_map_lock(old_map); 2977 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset); 2978 if (vm2 == NULL) 2979 goto unlock_and_return; 2980 vm2->vm_taddr = vm1->vm_taddr; 2981 vm2->vm_daddr = vm1->vm_daddr; 2982 vm2->vm_maxsaddr = vm1->vm_maxsaddr; 2983 new_map = &vm2->vm_map; /* XXX */ 2984 locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */ 2985 KASSERT(locked, ("vmspace_fork: lock failed")); 2986 new_map->timestamp = 1; 2987 2988 old_entry = old_map->header.next; 2989 2990 while (old_entry != &old_map->header) { 2991 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2992 panic("vm_map_fork: encountered a submap"); 2993 2994 switch (old_entry->inheritance) { 2995 case VM_INHERIT_NONE: 2996 break; 2997 2998 case VM_INHERIT_SHARE: 2999 /* 3000 * Clone the entry, creating the shared object if necessary. 3001 */ 3002 object = old_entry->object.vm_object; 3003 if (object == NULL) { 3004 object = vm_object_allocate(OBJT_DEFAULT, 3005 atop(old_entry->end - old_entry->start)); 3006 old_entry->object.vm_object = object; 3007 old_entry->offset = 0; 3008 if (old_entry->uip != NULL) { 3009 object->uip = old_entry->uip; 3010 object->charge = old_entry->end - 3011 old_entry->start; 3012 old_entry->uip = NULL; 3013 } 3014 } 3015 3016 /* 3017 * Add the reference before calling vm_object_shadow 3018 * to insure that a shadow object is created. 3019 */ 3020 vm_object_reference(object); 3021 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3022 vm_object_shadow(&old_entry->object.vm_object, 3023 &old_entry->offset, 3024 atop(old_entry->end - old_entry->start)); 3025 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 3026 /* Transfer the second reference too. */ 3027 vm_object_reference( 3028 old_entry->object.vm_object); 3029 3030 /* 3031 * As in vm_map_simplify_entry(), the 3032 * vnode lock will not be acquired in 3033 * this call to vm_object_deallocate(). 3034 */ 3035 vm_object_deallocate(object); 3036 object = old_entry->object.vm_object; 3037 } 3038 VM_OBJECT_LOCK(object); 3039 vm_object_clear_flag(object, OBJ_ONEMAPPING); 3040 if (old_entry->uip != NULL) { 3041 KASSERT(object->uip == NULL, ("vmspace_fork both uip")); 3042 object->uip = old_entry->uip; 3043 object->charge = old_entry->end - old_entry->start; 3044 old_entry->uip = NULL; 3045 } 3046 VM_OBJECT_UNLOCK(object); 3047 3048 /* 3049 * Clone the entry, referencing the shared object. 3050 */ 3051 new_entry = vm_map_entry_create(new_map); 3052 *new_entry = *old_entry; 3053 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 3054 MAP_ENTRY_IN_TRANSITION); 3055 new_entry->wired_count = 0; 3056 3057 /* 3058 * Insert the entry into the new map -- we know we're 3059 * inserting at the end of the new map. 3060 */ 3061 vm_map_entry_link(new_map, new_map->header.prev, 3062 new_entry); 3063 vmspace_map_entry_forked(vm1, vm2, new_entry); 3064 3065 /* 3066 * Update the physical map 3067 */ 3068 pmap_copy(new_map->pmap, old_map->pmap, 3069 new_entry->start, 3070 (old_entry->end - old_entry->start), 3071 old_entry->start); 3072 break; 3073 3074 case VM_INHERIT_COPY: 3075 /* 3076 * Clone the entry and link into the map. 3077 */ 3078 new_entry = vm_map_entry_create(new_map); 3079 *new_entry = *old_entry; 3080 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 3081 MAP_ENTRY_IN_TRANSITION); 3082 new_entry->wired_count = 0; 3083 new_entry->object.vm_object = NULL; 3084 new_entry->uip = NULL; 3085 vm_map_entry_link(new_map, new_map->header.prev, 3086 new_entry); 3087 vmspace_map_entry_forked(vm1, vm2, new_entry); 3088 vm_map_copy_entry(old_map, new_map, old_entry, 3089 new_entry, fork_charge); 3090 break; 3091 } 3092 old_entry = old_entry->next; 3093 } 3094 unlock_and_return: 3095 vm_map_unlock(old_map); 3096 if (vm2 != NULL) 3097 vm_map_unlock(new_map); 3098 3099 return (vm2); 3100 } 3101 3102 int 3103 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 3104 vm_prot_t prot, vm_prot_t max, int cow) 3105 { 3106 vm_map_entry_t new_entry, prev_entry; 3107 vm_offset_t bot, top; 3108 vm_size_t init_ssize; 3109 int orient, rv; 3110 rlim_t vmemlim; 3111 3112 /* 3113 * The stack orientation is piggybacked with the cow argument. 3114 * Extract it into orient and mask the cow argument so that we 3115 * don't pass it around further. 3116 * NOTE: We explicitly allow bi-directional stacks. 3117 */ 3118 orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP); 3119 cow &= ~orient; 3120 KASSERT(orient != 0, ("No stack grow direction")); 3121 3122 if (addrbos < vm_map_min(map) || 3123 addrbos > vm_map_max(map) || 3124 addrbos + max_ssize < addrbos) 3125 return (KERN_NO_SPACE); 3126 3127 init_ssize = (max_ssize < sgrowsiz) ? max_ssize : sgrowsiz; 3128 3129 PROC_LOCK(curthread->td_proc); 3130 vmemlim = lim_cur(curthread->td_proc, RLIMIT_VMEM); 3131 PROC_UNLOCK(curthread->td_proc); 3132 3133 vm_map_lock(map); 3134 3135 /* If addr is already mapped, no go */ 3136 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) { 3137 vm_map_unlock(map); 3138 return (KERN_NO_SPACE); 3139 } 3140 3141 /* If we would blow our VMEM resource limit, no go */ 3142 if (map->size + init_ssize > vmemlim) { 3143 vm_map_unlock(map); 3144 return (KERN_NO_SPACE); 3145 } 3146 3147 /* 3148 * If we can't accomodate max_ssize in the current mapping, no go. 3149 * However, we need to be aware that subsequent user mappings might 3150 * map into the space we have reserved for stack, and currently this 3151 * space is not protected. 3152 * 3153 * Hopefully we will at least detect this condition when we try to 3154 * grow the stack. 3155 */ 3156 if ((prev_entry->next != &map->header) && 3157 (prev_entry->next->start < addrbos + max_ssize)) { 3158 vm_map_unlock(map); 3159 return (KERN_NO_SPACE); 3160 } 3161 3162 /* 3163 * We initially map a stack of only init_ssize. We will grow as 3164 * needed later. Depending on the orientation of the stack (i.e. 3165 * the grow direction) we either map at the top of the range, the 3166 * bottom of the range or in the middle. 3167 * 3168 * Note: we would normally expect prot and max to be VM_PROT_ALL, 3169 * and cow to be 0. Possibly we should eliminate these as input 3170 * parameters, and just pass these values here in the insert call. 3171 */ 3172 if (orient == MAP_STACK_GROWS_DOWN) 3173 bot = addrbos + max_ssize - init_ssize; 3174 else if (orient == MAP_STACK_GROWS_UP) 3175 bot = addrbos; 3176 else 3177 bot = round_page(addrbos + max_ssize/2 - init_ssize/2); 3178 top = bot + init_ssize; 3179 rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow); 3180 3181 /* Now set the avail_ssize amount. */ 3182 if (rv == KERN_SUCCESS) { 3183 if (prev_entry != &map->header) 3184 vm_map_clip_end(map, prev_entry, bot); 3185 new_entry = prev_entry->next; 3186 if (new_entry->end != top || new_entry->start != bot) 3187 panic("Bad entry start/end for new stack entry"); 3188 3189 new_entry->avail_ssize = max_ssize - init_ssize; 3190 if (orient & MAP_STACK_GROWS_DOWN) 3191 new_entry->eflags |= MAP_ENTRY_GROWS_DOWN; 3192 if (orient & MAP_STACK_GROWS_UP) 3193 new_entry->eflags |= MAP_ENTRY_GROWS_UP; 3194 } 3195 3196 vm_map_unlock(map); 3197 return (rv); 3198 } 3199 3200 /* Attempts to grow a vm stack entry. Returns KERN_SUCCESS if the 3201 * desired address is already mapped, or if we successfully grow 3202 * the stack. Also returns KERN_SUCCESS if addr is outside the 3203 * stack range (this is strange, but preserves compatibility with 3204 * the grow function in vm_machdep.c). 3205 */ 3206 int 3207 vm_map_growstack(struct proc *p, vm_offset_t addr) 3208 { 3209 vm_map_entry_t next_entry, prev_entry; 3210 vm_map_entry_t new_entry, stack_entry; 3211 struct vmspace *vm = p->p_vmspace; 3212 vm_map_t map = &vm->vm_map; 3213 vm_offset_t end; 3214 size_t grow_amount, max_grow; 3215 rlim_t stacklim, vmemlim; 3216 int is_procstack, rv; 3217 struct uidinfo *uip; 3218 3219 Retry: 3220 PROC_LOCK(p); 3221 stacklim = lim_cur(p, RLIMIT_STACK); 3222 vmemlim = lim_cur(p, RLIMIT_VMEM); 3223 PROC_UNLOCK(p); 3224 3225 vm_map_lock_read(map); 3226 3227 /* If addr is already in the entry range, no need to grow.*/ 3228 if (vm_map_lookup_entry(map, addr, &prev_entry)) { 3229 vm_map_unlock_read(map); 3230 return (KERN_SUCCESS); 3231 } 3232 3233 next_entry = prev_entry->next; 3234 if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) { 3235 /* 3236 * This entry does not grow upwards. Since the address lies 3237 * beyond this entry, the next entry (if one exists) has to 3238 * be a downward growable entry. The entry list header is 3239 * never a growable entry, so it suffices to check the flags. 3240 */ 3241 if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) { 3242 vm_map_unlock_read(map); 3243 return (KERN_SUCCESS); 3244 } 3245 stack_entry = next_entry; 3246 } else { 3247 /* 3248 * This entry grows upward. If the next entry does not at 3249 * least grow downwards, this is the entry we need to grow. 3250 * otherwise we have two possible choices and we have to 3251 * select one. 3252 */ 3253 if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) { 3254 /* 3255 * We have two choices; grow the entry closest to 3256 * the address to minimize the amount of growth. 3257 */ 3258 if (addr - prev_entry->end <= next_entry->start - addr) 3259 stack_entry = prev_entry; 3260 else 3261 stack_entry = next_entry; 3262 } else 3263 stack_entry = prev_entry; 3264 } 3265 3266 if (stack_entry == next_entry) { 3267 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo")); 3268 KASSERT(addr < stack_entry->start, ("foo")); 3269 end = (prev_entry != &map->header) ? prev_entry->end : 3270 stack_entry->start - stack_entry->avail_ssize; 3271 grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE); 3272 max_grow = stack_entry->start - end; 3273 } else { 3274 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo")); 3275 KASSERT(addr >= stack_entry->end, ("foo")); 3276 end = (next_entry != &map->header) ? next_entry->start : 3277 stack_entry->end + stack_entry->avail_ssize; 3278 grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE); 3279 max_grow = end - stack_entry->end; 3280 } 3281 3282 if (grow_amount > stack_entry->avail_ssize) { 3283 vm_map_unlock_read(map); 3284 return (KERN_NO_SPACE); 3285 } 3286 3287 /* 3288 * If there is no longer enough space between the entries nogo, and 3289 * adjust the available space. Note: this should only happen if the 3290 * user has mapped into the stack area after the stack was created, 3291 * and is probably an error. 3292 * 3293 * This also effectively destroys any guard page the user might have 3294 * intended by limiting the stack size. 3295 */ 3296 if (grow_amount > max_grow) { 3297 if (vm_map_lock_upgrade(map)) 3298 goto Retry; 3299 3300 stack_entry->avail_ssize = max_grow; 3301 3302 vm_map_unlock(map); 3303 return (KERN_NO_SPACE); 3304 } 3305 3306 is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr) ? 1 : 0; 3307 3308 /* 3309 * If this is the main process stack, see if we're over the stack 3310 * limit. 3311 */ 3312 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 3313 vm_map_unlock_read(map); 3314 return (KERN_NO_SPACE); 3315 } 3316 3317 /* Round up the grow amount modulo SGROWSIZ */ 3318 grow_amount = roundup (grow_amount, sgrowsiz); 3319 if (grow_amount > stack_entry->avail_ssize) 3320 grow_amount = stack_entry->avail_ssize; 3321 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 3322 grow_amount = stacklim - ctob(vm->vm_ssize); 3323 } 3324 3325 /* If we would blow our VMEM resource limit, no go */ 3326 if (map->size + grow_amount > vmemlim) { 3327 vm_map_unlock_read(map); 3328 return (KERN_NO_SPACE); 3329 } 3330 3331 if (vm_map_lock_upgrade(map)) 3332 goto Retry; 3333 3334 if (stack_entry == next_entry) { 3335 /* 3336 * Growing downward. 3337 */ 3338 /* Get the preliminary new entry start value */ 3339 addr = stack_entry->start - grow_amount; 3340 3341 /* 3342 * If this puts us into the previous entry, cut back our 3343 * growth to the available space. Also, see the note above. 3344 */ 3345 if (addr < end) { 3346 stack_entry->avail_ssize = max_grow; 3347 addr = end; 3348 } 3349 3350 rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start, 3351 p->p_sysent->sv_stackprot, VM_PROT_ALL, 0); 3352 3353 /* Adjust the available stack space by the amount we grew. */ 3354 if (rv == KERN_SUCCESS) { 3355 if (prev_entry != &map->header) 3356 vm_map_clip_end(map, prev_entry, addr); 3357 new_entry = prev_entry->next; 3358 KASSERT(new_entry == stack_entry->prev, ("foo")); 3359 KASSERT(new_entry->end == stack_entry->start, ("foo")); 3360 KASSERT(new_entry->start == addr, ("foo")); 3361 grow_amount = new_entry->end - new_entry->start; 3362 new_entry->avail_ssize = stack_entry->avail_ssize - 3363 grow_amount; 3364 stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN; 3365 new_entry->eflags |= MAP_ENTRY_GROWS_DOWN; 3366 } 3367 } else { 3368 /* 3369 * Growing upward. 3370 */ 3371 addr = stack_entry->end + grow_amount; 3372 3373 /* 3374 * If this puts us into the next entry, cut back our growth 3375 * to the available space. Also, see the note above. 3376 */ 3377 if (addr > end) { 3378 stack_entry->avail_ssize = end - stack_entry->end; 3379 addr = end; 3380 } 3381 3382 grow_amount = addr - stack_entry->end; 3383 uip = stack_entry->uip; 3384 if (uip == NULL && stack_entry->object.vm_object != NULL) 3385 uip = stack_entry->object.vm_object->uip; 3386 if (uip != NULL && !swap_reserve_by_uid(grow_amount, uip)) 3387 rv = KERN_NO_SPACE; 3388 /* Grow the underlying object if applicable. */ 3389 else if (stack_entry->object.vm_object == NULL || 3390 vm_object_coalesce(stack_entry->object.vm_object, 3391 stack_entry->offset, 3392 (vm_size_t)(stack_entry->end - stack_entry->start), 3393 (vm_size_t)grow_amount, uip != NULL)) { 3394 map->size += (addr - stack_entry->end); 3395 /* Update the current entry. */ 3396 stack_entry->end = addr; 3397 stack_entry->avail_ssize -= grow_amount; 3398 vm_map_entry_resize_free(map, stack_entry); 3399 rv = KERN_SUCCESS; 3400 3401 if (next_entry != &map->header) 3402 vm_map_clip_start(map, next_entry, addr); 3403 } else 3404 rv = KERN_FAILURE; 3405 } 3406 3407 if (rv == KERN_SUCCESS && is_procstack) 3408 vm->vm_ssize += btoc(grow_amount); 3409 3410 vm_map_unlock(map); 3411 3412 /* 3413 * Heed the MAP_WIREFUTURE flag if it was set for this process. 3414 */ 3415 if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) { 3416 vm_map_wire(map, 3417 (stack_entry == next_entry) ? addr : addr - grow_amount, 3418 (stack_entry == next_entry) ? stack_entry->start : addr, 3419 (p->p_flag & P_SYSTEM) 3420 ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES 3421 : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES); 3422 } 3423 3424 return (rv); 3425 } 3426 3427 /* 3428 * Unshare the specified VM space for exec. If other processes are 3429 * mapped to it, then create a new one. The new vmspace is null. 3430 */ 3431 int 3432 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser) 3433 { 3434 struct vmspace *oldvmspace = p->p_vmspace; 3435 struct vmspace *newvmspace; 3436 3437 newvmspace = vmspace_alloc(minuser, maxuser); 3438 if (newvmspace == NULL) 3439 return (ENOMEM); 3440 newvmspace->vm_swrss = oldvmspace->vm_swrss; 3441 /* 3442 * This code is written like this for prototype purposes. The 3443 * goal is to avoid running down the vmspace here, but let the 3444 * other process's that are still using the vmspace to finally 3445 * run it down. Even though there is little or no chance of blocking 3446 * here, it is a good idea to keep this form for future mods. 3447 */ 3448 PROC_VMSPACE_LOCK(p); 3449 p->p_vmspace = newvmspace; 3450 PROC_VMSPACE_UNLOCK(p); 3451 if (p == curthread->td_proc) 3452 pmap_activate(curthread); 3453 vmspace_free(oldvmspace); 3454 return (0); 3455 } 3456 3457 /* 3458 * Unshare the specified VM space for forcing COW. This 3459 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 3460 */ 3461 int 3462 vmspace_unshare(struct proc *p) 3463 { 3464 struct vmspace *oldvmspace = p->p_vmspace; 3465 struct vmspace *newvmspace; 3466 vm_ooffset_t fork_charge; 3467 3468 if (oldvmspace->vm_refcnt == 1) 3469 return (0); 3470 fork_charge = 0; 3471 newvmspace = vmspace_fork(oldvmspace, &fork_charge); 3472 if (newvmspace == NULL) 3473 return (ENOMEM); 3474 if (!swap_reserve_by_uid(fork_charge, p->p_ucred->cr_ruidinfo)) { 3475 vmspace_free(newvmspace); 3476 return (ENOMEM); 3477 } 3478 PROC_VMSPACE_LOCK(p); 3479 p->p_vmspace = newvmspace; 3480 PROC_VMSPACE_UNLOCK(p); 3481 if (p == curthread->td_proc) 3482 pmap_activate(curthread); 3483 vmspace_free(oldvmspace); 3484 return (0); 3485 } 3486 3487 /* 3488 * vm_map_lookup: 3489 * 3490 * Finds the VM object, offset, and 3491 * protection for a given virtual address in the 3492 * specified map, assuming a page fault of the 3493 * type specified. 3494 * 3495 * Leaves the map in question locked for read; return 3496 * values are guaranteed until a vm_map_lookup_done 3497 * call is performed. Note that the map argument 3498 * is in/out; the returned map must be used in 3499 * the call to vm_map_lookup_done. 3500 * 3501 * A handle (out_entry) is returned for use in 3502 * vm_map_lookup_done, to make that fast. 3503 * 3504 * If a lookup is requested with "write protection" 3505 * specified, the map may be changed to perform virtual 3506 * copying operations, although the data referenced will 3507 * remain the same. 3508 */ 3509 int 3510 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 3511 vm_offset_t vaddr, 3512 vm_prot_t fault_typea, 3513 vm_map_entry_t *out_entry, /* OUT */ 3514 vm_object_t *object, /* OUT */ 3515 vm_pindex_t *pindex, /* OUT */ 3516 vm_prot_t *out_prot, /* OUT */ 3517 boolean_t *wired) /* OUT */ 3518 { 3519 vm_map_entry_t entry; 3520 vm_map_t map = *var_map; 3521 vm_prot_t prot; 3522 vm_prot_t fault_type = fault_typea; 3523 vm_object_t eobject; 3524 struct uidinfo *uip; 3525 vm_ooffset_t size; 3526 3527 RetryLookup:; 3528 3529 vm_map_lock_read(map); 3530 3531 /* 3532 * Lookup the faulting address. 3533 */ 3534 if (!vm_map_lookup_entry(map, vaddr, out_entry)) { 3535 vm_map_unlock_read(map); 3536 return (KERN_INVALID_ADDRESS); 3537 } 3538 3539 entry = *out_entry; 3540 3541 /* 3542 * Handle submaps. 3543 */ 3544 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 3545 vm_map_t old_map = map; 3546 3547 *var_map = map = entry->object.sub_map; 3548 vm_map_unlock_read(old_map); 3549 goto RetryLookup; 3550 } 3551 3552 /* 3553 * Check whether this task is allowed to have this page. 3554 */ 3555 prot = entry->protection; 3556 fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE); 3557 if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) { 3558 vm_map_unlock_read(map); 3559 return (KERN_PROTECTION_FAILURE); 3560 } 3561 if ((entry->eflags & MAP_ENTRY_USER_WIRED) && 3562 (entry->eflags & MAP_ENTRY_COW) && 3563 (fault_type & VM_PROT_WRITE)) { 3564 vm_map_unlock_read(map); 3565 return (KERN_PROTECTION_FAILURE); 3566 } 3567 3568 /* 3569 * If this page is not pageable, we have to get it for all possible 3570 * accesses. 3571 */ 3572 *wired = (entry->wired_count != 0); 3573 if (*wired) 3574 fault_type = entry->protection; 3575 size = entry->end - entry->start; 3576 /* 3577 * If the entry was copy-on-write, we either ... 3578 */ 3579 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3580 /* 3581 * If we want to write the page, we may as well handle that 3582 * now since we've got the map locked. 3583 * 3584 * If we don't need to write the page, we just demote the 3585 * permissions allowed. 3586 */ 3587 if ((fault_type & VM_PROT_WRITE) != 0 || 3588 (fault_typea & VM_PROT_COPY) != 0) { 3589 /* 3590 * Make a new object, and place it in the object 3591 * chain. Note that no new references have appeared 3592 * -- one just moved from the map to the new 3593 * object. 3594 */ 3595 if (vm_map_lock_upgrade(map)) 3596 goto RetryLookup; 3597 3598 if (entry->uip == NULL) { 3599 /* 3600 * The debugger owner is charged for 3601 * the memory. 3602 */ 3603 uip = curthread->td_ucred->cr_ruidinfo; 3604 uihold(uip); 3605 if (!swap_reserve_by_uid(size, uip)) { 3606 uifree(uip); 3607 vm_map_unlock(map); 3608 return (KERN_RESOURCE_SHORTAGE); 3609 } 3610 entry->uip = uip; 3611 } 3612 vm_object_shadow( 3613 &entry->object.vm_object, 3614 &entry->offset, 3615 atop(size)); 3616 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 3617 eobject = entry->object.vm_object; 3618 if (eobject->uip != NULL) { 3619 /* 3620 * The object was not shadowed. 3621 */ 3622 swap_release_by_uid(size, entry->uip); 3623 uifree(entry->uip); 3624 entry->uip = NULL; 3625 } else if (entry->uip != NULL) { 3626 VM_OBJECT_LOCK(eobject); 3627 eobject->uip = entry->uip; 3628 eobject->charge = size; 3629 VM_OBJECT_UNLOCK(eobject); 3630 entry->uip = NULL; 3631 } 3632 3633 vm_map_lock_downgrade(map); 3634 } else { 3635 /* 3636 * We're attempting to read a copy-on-write page -- 3637 * don't allow writes. 3638 */ 3639 prot &= ~VM_PROT_WRITE; 3640 } 3641 } 3642 3643 /* 3644 * Create an object if necessary. 3645 */ 3646 if (entry->object.vm_object == NULL && 3647 !map->system_map) { 3648 if (vm_map_lock_upgrade(map)) 3649 goto RetryLookup; 3650 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT, 3651 atop(size)); 3652 entry->offset = 0; 3653 if (entry->uip != NULL) { 3654 VM_OBJECT_LOCK(entry->object.vm_object); 3655 entry->object.vm_object->uip = entry->uip; 3656 entry->object.vm_object->charge = size; 3657 VM_OBJECT_UNLOCK(entry->object.vm_object); 3658 entry->uip = NULL; 3659 } 3660 vm_map_lock_downgrade(map); 3661 } 3662 3663 /* 3664 * Return the object/offset from this entry. If the entry was 3665 * copy-on-write or empty, it has been fixed up. 3666 */ 3667 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 3668 *object = entry->object.vm_object; 3669 3670 *out_prot = prot; 3671 return (KERN_SUCCESS); 3672 } 3673 3674 /* 3675 * vm_map_lookup_locked: 3676 * 3677 * Lookup the faulting address. A version of vm_map_lookup that returns 3678 * KERN_FAILURE instead of blocking on map lock or memory allocation. 3679 */ 3680 int 3681 vm_map_lookup_locked(vm_map_t *var_map, /* IN/OUT */ 3682 vm_offset_t vaddr, 3683 vm_prot_t fault_typea, 3684 vm_map_entry_t *out_entry, /* OUT */ 3685 vm_object_t *object, /* OUT */ 3686 vm_pindex_t *pindex, /* OUT */ 3687 vm_prot_t *out_prot, /* OUT */ 3688 boolean_t *wired) /* OUT */ 3689 { 3690 vm_map_entry_t entry; 3691 vm_map_t map = *var_map; 3692 vm_prot_t prot; 3693 vm_prot_t fault_type = fault_typea; 3694 3695 /* 3696 * Lookup the faulting address. 3697 */ 3698 if (!vm_map_lookup_entry(map, vaddr, out_entry)) 3699 return (KERN_INVALID_ADDRESS); 3700 3701 entry = *out_entry; 3702 3703 /* 3704 * Fail if the entry refers to a submap. 3705 */ 3706 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 3707 return (KERN_FAILURE); 3708 3709 /* 3710 * Check whether this task is allowed to have this page. 3711 */ 3712 prot = entry->protection; 3713 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; 3714 if ((fault_type & prot) != fault_type) 3715 return (KERN_PROTECTION_FAILURE); 3716 if ((entry->eflags & MAP_ENTRY_USER_WIRED) && 3717 (entry->eflags & MAP_ENTRY_COW) && 3718 (fault_type & VM_PROT_WRITE)) 3719 return (KERN_PROTECTION_FAILURE); 3720 3721 /* 3722 * If this page is not pageable, we have to get it for all possible 3723 * accesses. 3724 */ 3725 *wired = (entry->wired_count != 0); 3726 if (*wired) 3727 fault_type = entry->protection; 3728 3729 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3730 /* 3731 * Fail if the entry was copy-on-write for a write fault. 3732 */ 3733 if (fault_type & VM_PROT_WRITE) 3734 return (KERN_FAILURE); 3735 /* 3736 * We're attempting to read a copy-on-write page -- 3737 * don't allow writes. 3738 */ 3739 prot &= ~VM_PROT_WRITE; 3740 } 3741 3742 /* 3743 * Fail if an object should be created. 3744 */ 3745 if (entry->object.vm_object == NULL && !map->system_map) 3746 return (KERN_FAILURE); 3747 3748 /* 3749 * Return the object/offset from this entry. If the entry was 3750 * copy-on-write or empty, it has been fixed up. 3751 */ 3752 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 3753 *object = entry->object.vm_object; 3754 3755 *out_prot = prot; 3756 return (KERN_SUCCESS); 3757 } 3758 3759 /* 3760 * vm_map_lookup_done: 3761 * 3762 * Releases locks acquired by a vm_map_lookup 3763 * (according to the handle returned by that lookup). 3764 */ 3765 void 3766 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry) 3767 { 3768 /* 3769 * Unlock the main-level map 3770 */ 3771 vm_map_unlock_read(map); 3772 } 3773 3774 #include "opt_ddb.h" 3775 #ifdef DDB 3776 #include <sys/kernel.h> 3777 3778 #include <ddb/ddb.h> 3779 3780 /* 3781 * vm_map_print: [ debug ] 3782 */ 3783 DB_SHOW_COMMAND(map, vm_map_print) 3784 { 3785 static int nlines; 3786 /* XXX convert args. */ 3787 vm_map_t map = (vm_map_t)addr; 3788 boolean_t full = have_addr; 3789 3790 vm_map_entry_t entry; 3791 3792 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 3793 (void *)map, 3794 (void *)map->pmap, map->nentries, map->timestamp); 3795 nlines++; 3796 3797 if (!full && db_indent) 3798 return; 3799 3800 db_indent += 2; 3801 for (entry = map->header.next; entry != &map->header; 3802 entry = entry->next) { 3803 db_iprintf("map entry %p: start=%p, end=%p\n", 3804 (void *)entry, (void *)entry->start, (void *)entry->end); 3805 nlines++; 3806 { 3807 static char *inheritance_name[4] = 3808 {"share", "copy", "none", "donate_copy"}; 3809 3810 db_iprintf(" prot=%x/%x/%s", 3811 entry->protection, 3812 entry->max_protection, 3813 inheritance_name[(int)(unsigned char)entry->inheritance]); 3814 if (entry->wired_count != 0) 3815 db_printf(", wired"); 3816 } 3817 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 3818 db_printf(", share=%p, offset=0x%jx\n", 3819 (void *)entry->object.sub_map, 3820 (uintmax_t)entry->offset); 3821 nlines++; 3822 if ((entry->prev == &map->header) || 3823 (entry->prev->object.sub_map != 3824 entry->object.sub_map)) { 3825 db_indent += 2; 3826 vm_map_print((db_expr_t)(intptr_t) 3827 entry->object.sub_map, 3828 full, 0, (char *)0); 3829 db_indent -= 2; 3830 } 3831 } else { 3832 if (entry->uip != NULL) 3833 db_printf(", uip %d", entry->uip->ui_uid); 3834 db_printf(", object=%p, offset=0x%jx", 3835 (void *)entry->object.vm_object, 3836 (uintmax_t)entry->offset); 3837 if (entry->object.vm_object && entry->object.vm_object->uip) 3838 db_printf(", obj uip %d charge %jx", 3839 entry->object.vm_object->uip->ui_uid, 3840 (uintmax_t)entry->object.vm_object->charge); 3841 if (entry->eflags & MAP_ENTRY_COW) 3842 db_printf(", copy (%s)", 3843 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 3844 db_printf("\n"); 3845 nlines++; 3846 3847 if ((entry->prev == &map->header) || 3848 (entry->prev->object.vm_object != 3849 entry->object.vm_object)) { 3850 db_indent += 2; 3851 vm_object_print((db_expr_t)(intptr_t) 3852 entry->object.vm_object, 3853 full, 0, (char *)0); 3854 nlines += 4; 3855 db_indent -= 2; 3856 } 3857 } 3858 } 3859 db_indent -= 2; 3860 if (db_indent == 0) 3861 nlines = 0; 3862 } 3863 3864 3865 DB_SHOW_COMMAND(procvm, procvm) 3866 { 3867 struct proc *p; 3868 3869 if (have_addr) { 3870 p = (struct proc *) addr; 3871 } else { 3872 p = curproc; 3873 } 3874 3875 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 3876 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 3877 (void *)vmspace_pmap(p->p_vmspace)); 3878 3879 vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL); 3880 } 3881 3882 #endif /* DDB */ 3883