1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 */ 60 61 /* 62 * Virtual memory mapping module. 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include <sys/param.h> 69 #include <sys/systm.h> 70 #include <sys/kernel.h> 71 #include <sys/ktr.h> 72 #include <sys/lock.h> 73 #include <sys/mutex.h> 74 #include <sys/proc.h> 75 #include <sys/vmmeter.h> 76 #include <sys/mman.h> 77 #include <sys/vnode.h> 78 #include <sys/resourcevar.h> 79 #include <sys/file.h> 80 #include <sys/sysctl.h> 81 #include <sys/sysent.h> 82 #include <sys/shm.h> 83 84 #include <vm/vm.h> 85 #include <vm/vm_param.h> 86 #include <vm/pmap.h> 87 #include <vm/vm_map.h> 88 #include <vm/vm_page.h> 89 #include <vm/vm_object.h> 90 #include <vm/vm_pager.h> 91 #include <vm/vm_kern.h> 92 #include <vm/vm_extern.h> 93 #include <vm/swap_pager.h> 94 #include <vm/uma.h> 95 96 /* 97 * Virtual memory maps provide for the mapping, protection, 98 * and sharing of virtual memory objects. In addition, 99 * this module provides for an efficient virtual copy of 100 * memory from one map to another. 101 * 102 * Synchronization is required prior to most operations. 103 * 104 * Maps consist of an ordered doubly-linked list of simple 105 * entries; a self-adjusting binary search tree of these 106 * entries is used to speed up lookups. 107 * 108 * Since portions of maps are specified by start/end addresses, 109 * which may not align with existing map entries, all 110 * routines merely "clip" entries to these start/end values. 111 * [That is, an entry is split into two, bordering at a 112 * start or end value.] Note that these clippings may not 113 * always be necessary (as the two resulting entries are then 114 * not changed); however, the clipping is done for convenience. 115 * 116 * As mentioned above, virtual copy operations are performed 117 * by copying VM object references from one map to 118 * another, and then marking both regions as copy-on-write. 119 */ 120 121 static struct mtx map_sleep_mtx; 122 static uma_zone_t mapentzone; 123 static uma_zone_t kmapentzone; 124 static uma_zone_t mapzone; 125 static uma_zone_t vmspace_zone; 126 static struct vm_object kmapentobj; 127 static int vmspace_zinit(void *mem, int size, int flags); 128 static void vmspace_zfini(void *mem, int size); 129 static int vm_map_zinit(void *mem, int ize, int flags); 130 static void vm_map_zfini(void *mem, int size); 131 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, 132 vm_offset_t max); 133 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map); 134 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry); 135 #ifdef INVARIANTS 136 static void vm_map_zdtor(void *mem, int size, void *arg); 137 static void vmspace_zdtor(void *mem, int size, void *arg); 138 #endif 139 140 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \ 141 ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \ 142 !((e)->eflags & MAP_ENTRY_NEEDS_COPY))) 143 144 /* 145 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type 146 * stable. 147 */ 148 #define PROC_VMSPACE_LOCK(p) do { } while (0) 149 #define PROC_VMSPACE_UNLOCK(p) do { } while (0) 150 151 /* 152 * VM_MAP_RANGE_CHECK: [ internal use only ] 153 * 154 * Asserts that the starting and ending region 155 * addresses fall within the valid range of the map. 156 */ 157 #define VM_MAP_RANGE_CHECK(map, start, end) \ 158 { \ 159 if (start < vm_map_min(map)) \ 160 start = vm_map_min(map); \ 161 if (end > vm_map_max(map)) \ 162 end = vm_map_max(map); \ 163 if (start > end) \ 164 start = end; \ 165 } 166 167 /* 168 * vm_map_startup: 169 * 170 * Initialize the vm_map module. Must be called before 171 * any other vm_map routines. 172 * 173 * Map and entry structures are allocated from the general 174 * purpose memory pool with some exceptions: 175 * 176 * - The kernel map and kmem submap are allocated statically. 177 * - Kernel map entries are allocated out of a static pool. 178 * 179 * These restrictions are necessary since malloc() uses the 180 * maps and requires map entries. 181 */ 182 183 void 184 vm_map_startup(void) 185 { 186 mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF); 187 mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL, 188 #ifdef INVARIANTS 189 vm_map_zdtor, 190 #else 191 NULL, 192 #endif 193 vm_map_zinit, vm_map_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 194 uma_prealloc(mapzone, MAX_KMAP); 195 kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry), 196 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 197 UMA_ZONE_MTXCLASS | UMA_ZONE_VM); 198 uma_prealloc(kmapentzone, MAX_KMAPENT); 199 mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry), 200 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 201 } 202 203 static void 204 vmspace_zfini(void *mem, int size) 205 { 206 struct vmspace *vm; 207 208 vm = (struct vmspace *)mem; 209 vm_map_zfini(&vm->vm_map, sizeof(vm->vm_map)); 210 } 211 212 static int 213 vmspace_zinit(void *mem, int size, int flags) 214 { 215 struct vmspace *vm; 216 217 vm = (struct vmspace *)mem; 218 219 vm->vm_map.pmap = NULL; 220 (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags); 221 return (0); 222 } 223 224 static void 225 vm_map_zfini(void *mem, int size) 226 { 227 vm_map_t map; 228 229 map = (vm_map_t)mem; 230 mtx_destroy(&map->system_mtx); 231 sx_destroy(&map->lock); 232 } 233 234 static int 235 vm_map_zinit(void *mem, int size, int flags) 236 { 237 vm_map_t map; 238 239 map = (vm_map_t)mem; 240 map->nentries = 0; 241 map->size = 0; 242 mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK); 243 sx_init(&map->lock, "user map"); 244 return (0); 245 } 246 247 #ifdef INVARIANTS 248 static void 249 vmspace_zdtor(void *mem, int size, void *arg) 250 { 251 struct vmspace *vm; 252 253 vm = (struct vmspace *)mem; 254 255 vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg); 256 } 257 static void 258 vm_map_zdtor(void *mem, int size, void *arg) 259 { 260 vm_map_t map; 261 262 map = (vm_map_t)mem; 263 KASSERT(map->nentries == 0, 264 ("map %p nentries == %d on free.", 265 map, map->nentries)); 266 KASSERT(map->size == 0, 267 ("map %p size == %lu on free.", 268 map, (unsigned long)map->size)); 269 } 270 #endif /* INVARIANTS */ 271 272 /* 273 * Allocate a vmspace structure, including a vm_map and pmap, 274 * and initialize those structures. The refcnt is set to 1. 275 */ 276 struct vmspace * 277 vmspace_alloc(min, max) 278 vm_offset_t min, max; 279 { 280 struct vmspace *vm; 281 282 vm = uma_zalloc(vmspace_zone, M_WAITOK); 283 if (vm->vm_map.pmap == NULL && !pmap_pinit(vmspace_pmap(vm))) { 284 uma_zfree(vmspace_zone, vm); 285 return (NULL); 286 } 287 CTR1(KTR_VM, "vmspace_alloc: %p", vm); 288 _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max); 289 vm->vm_refcnt = 1; 290 vm->vm_shm = NULL; 291 vm->vm_swrss = 0; 292 vm->vm_tsize = 0; 293 vm->vm_dsize = 0; 294 vm->vm_ssize = 0; 295 vm->vm_taddr = 0; 296 vm->vm_daddr = 0; 297 vm->vm_maxsaddr = 0; 298 return (vm); 299 } 300 301 void 302 vm_init2(void) 303 { 304 uma_zone_set_obj(kmapentzone, &kmapentobj, lmin(cnt.v_page_count, 305 (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) / PAGE_SIZE) / 8 + 306 maxproc * 2 + maxfiles); 307 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL, 308 #ifdef INVARIANTS 309 vmspace_zdtor, 310 #else 311 NULL, 312 #endif 313 vmspace_zinit, vmspace_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 314 } 315 316 static inline void 317 vmspace_dofree(struct vmspace *vm) 318 { 319 320 CTR1(KTR_VM, "vmspace_free: %p", vm); 321 322 /* 323 * Make sure any SysV shm is freed, it might not have been in 324 * exit1(). 325 */ 326 shmexit(vm); 327 328 /* 329 * Lock the map, to wait out all other references to it. 330 * Delete all of the mappings and pages they hold, then call 331 * the pmap module to reclaim anything left. 332 */ 333 (void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset, 334 vm->vm_map.max_offset); 335 336 pmap_release(vmspace_pmap(vm)); 337 vm->vm_map.pmap = NULL; 338 uma_zfree(vmspace_zone, vm); 339 } 340 341 void 342 vmspace_free(struct vmspace *vm) 343 { 344 345 if (vm->vm_refcnt == 0) 346 panic("vmspace_free: attempt to free already freed vmspace"); 347 348 if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1) 349 vmspace_dofree(vm); 350 } 351 352 void 353 vmspace_exitfree(struct proc *p) 354 { 355 struct vmspace *vm; 356 357 PROC_VMSPACE_LOCK(p); 358 vm = p->p_vmspace; 359 p->p_vmspace = NULL; 360 PROC_VMSPACE_UNLOCK(p); 361 KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace")); 362 vmspace_free(vm); 363 } 364 365 void 366 vmspace_exit(struct thread *td) 367 { 368 int refcnt; 369 struct vmspace *vm; 370 struct proc *p; 371 372 /* 373 * Release user portion of address space. 374 * This releases references to vnodes, 375 * which could cause I/O if the file has been unlinked. 376 * Need to do this early enough that we can still sleep. 377 * 378 * The last exiting process to reach this point releases as 379 * much of the environment as it can. vmspace_dofree() is the 380 * slower fallback in case another process had a temporary 381 * reference to the vmspace. 382 */ 383 384 p = td->td_proc; 385 vm = p->p_vmspace; 386 atomic_add_int(&vmspace0.vm_refcnt, 1); 387 do { 388 refcnt = vm->vm_refcnt; 389 if (refcnt > 1 && p->p_vmspace != &vmspace0) { 390 /* Switch now since other proc might free vmspace */ 391 PROC_VMSPACE_LOCK(p); 392 p->p_vmspace = &vmspace0; 393 PROC_VMSPACE_UNLOCK(p); 394 pmap_activate(td); 395 } 396 } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1)); 397 if (refcnt == 1) { 398 if (p->p_vmspace != vm) { 399 /* vmspace not yet freed, switch back */ 400 PROC_VMSPACE_LOCK(p); 401 p->p_vmspace = vm; 402 PROC_VMSPACE_UNLOCK(p); 403 pmap_activate(td); 404 } 405 pmap_remove_pages(vmspace_pmap(vm)); 406 /* Switch now since this proc will free vmspace */ 407 PROC_VMSPACE_LOCK(p); 408 p->p_vmspace = &vmspace0; 409 PROC_VMSPACE_UNLOCK(p); 410 pmap_activate(td); 411 vmspace_dofree(vm); 412 } 413 } 414 415 /* Acquire reference to vmspace owned by another process. */ 416 417 struct vmspace * 418 vmspace_acquire_ref(struct proc *p) 419 { 420 struct vmspace *vm; 421 int refcnt; 422 423 PROC_VMSPACE_LOCK(p); 424 vm = p->p_vmspace; 425 if (vm == NULL) { 426 PROC_VMSPACE_UNLOCK(p); 427 return (NULL); 428 } 429 do { 430 refcnt = vm->vm_refcnt; 431 if (refcnt <= 0) { /* Avoid 0->1 transition */ 432 PROC_VMSPACE_UNLOCK(p); 433 return (NULL); 434 } 435 } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1)); 436 if (vm != p->p_vmspace) { 437 PROC_VMSPACE_UNLOCK(p); 438 vmspace_free(vm); 439 return (NULL); 440 } 441 PROC_VMSPACE_UNLOCK(p); 442 return (vm); 443 } 444 445 void 446 _vm_map_lock(vm_map_t map, const char *file, int line) 447 { 448 449 if (map->system_map) 450 _mtx_lock_flags(&map->system_mtx, 0, file, line); 451 else 452 (void)_sx_xlock(&map->lock, 0, file, line); 453 map->timestamp++; 454 } 455 456 static void 457 vm_map_process_deferred(void) 458 { 459 struct thread *td; 460 vm_map_entry_t entry; 461 462 td = curthread; 463 464 while ((entry = td->td_map_def_user) != NULL) { 465 td->td_map_def_user = entry->next; 466 vm_map_entry_deallocate(entry, FALSE); 467 } 468 } 469 470 void 471 _vm_map_unlock(vm_map_t map, const char *file, int line) 472 { 473 474 if (map->system_map) 475 _mtx_unlock_flags(&map->system_mtx, 0, file, line); 476 else { 477 _sx_xunlock(&map->lock, file, line); 478 vm_map_process_deferred(); 479 } 480 } 481 482 void 483 _vm_map_lock_read(vm_map_t map, const char *file, int line) 484 { 485 486 if (map->system_map) 487 _mtx_lock_flags(&map->system_mtx, 0, file, line); 488 else 489 (void)_sx_slock(&map->lock, 0, file, line); 490 } 491 492 void 493 _vm_map_unlock_read(vm_map_t map, const char *file, int line) 494 { 495 496 if (map->system_map) 497 _mtx_unlock_flags(&map->system_mtx, 0, file, line); 498 else { 499 _sx_sunlock(&map->lock, file, line); 500 vm_map_process_deferred(); 501 } 502 } 503 504 int 505 _vm_map_trylock(vm_map_t map, const char *file, int line) 506 { 507 int error; 508 509 error = map->system_map ? 510 !_mtx_trylock(&map->system_mtx, 0, file, line) : 511 !_sx_try_xlock(&map->lock, file, line); 512 if (error == 0) 513 map->timestamp++; 514 return (error == 0); 515 } 516 517 int 518 _vm_map_trylock_read(vm_map_t map, const char *file, int line) 519 { 520 int error; 521 522 error = map->system_map ? 523 !_mtx_trylock(&map->system_mtx, 0, file, line) : 524 !_sx_try_slock(&map->lock, file, line); 525 return (error == 0); 526 } 527 528 /* 529 * _vm_map_lock_upgrade: [ internal use only ] 530 * 531 * Tries to upgrade a read (shared) lock on the specified map to a write 532 * (exclusive) lock. Returns the value "0" if the upgrade succeeds and a 533 * non-zero value if the upgrade fails. If the upgrade fails, the map is 534 * returned without a read or write lock held. 535 * 536 * Requires that the map be read locked. 537 */ 538 int 539 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line) 540 { 541 unsigned int last_timestamp; 542 543 if (map->system_map) { 544 #ifdef INVARIANTS 545 _mtx_assert(&map->system_mtx, MA_OWNED, file, line); 546 #endif 547 } else { 548 if (!_sx_try_upgrade(&map->lock, file, line)) { 549 last_timestamp = map->timestamp; 550 _sx_sunlock(&map->lock, file, line); 551 vm_map_process_deferred(); 552 /* 553 * If the map's timestamp does not change while the 554 * map is unlocked, then the upgrade succeeds. 555 */ 556 (void)_sx_xlock(&map->lock, 0, file, line); 557 if (last_timestamp != map->timestamp) { 558 _sx_xunlock(&map->lock, file, line); 559 return (1); 560 } 561 } 562 } 563 map->timestamp++; 564 return (0); 565 } 566 567 void 568 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line) 569 { 570 571 if (map->system_map) { 572 #ifdef INVARIANTS 573 _mtx_assert(&map->system_mtx, MA_OWNED, file, line); 574 #endif 575 } else 576 _sx_downgrade(&map->lock, file, line); 577 } 578 579 /* 580 * vm_map_locked: 581 * 582 * Returns a non-zero value if the caller holds a write (exclusive) lock 583 * on the specified map and the value "0" otherwise. 584 */ 585 int 586 vm_map_locked(vm_map_t map) 587 { 588 589 if (map->system_map) 590 return (mtx_owned(&map->system_mtx)); 591 else 592 return (sx_xlocked(&map->lock)); 593 } 594 595 #ifdef INVARIANTS 596 static void 597 _vm_map_assert_locked(vm_map_t map, const char *file, int line) 598 { 599 600 if (map->system_map) 601 _mtx_assert(&map->system_mtx, MA_OWNED, file, line); 602 else 603 _sx_assert(&map->lock, SA_XLOCKED, file, line); 604 } 605 606 #if 0 607 static void 608 _vm_map_assert_locked_read(vm_map_t map, const char *file, int line) 609 { 610 611 if (map->system_map) 612 _mtx_assert(&map->system_mtx, MA_OWNED, file, line); 613 else 614 _sx_assert(&map->lock, SA_SLOCKED, file, line); 615 } 616 #endif 617 618 #define VM_MAP_ASSERT_LOCKED(map) \ 619 _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE) 620 #define VM_MAP_ASSERT_LOCKED_READ(map) \ 621 _vm_map_assert_locked_read(map, LOCK_FILE, LOCK_LINE) 622 #else 623 #define VM_MAP_ASSERT_LOCKED(map) 624 #define VM_MAP_ASSERT_LOCKED_READ(map) 625 #endif 626 627 /* 628 * _vm_map_unlock_and_wait: 629 * 630 * Atomically releases the lock on the specified map and puts the calling 631 * thread to sleep. The calling thread will remain asleep until either 632 * vm_map_wakeup() is performed on the map or the specified timeout is 633 * exceeded. 634 * 635 * WARNING! This function does not perform deferred deallocations of 636 * objects and map entries. Therefore, the calling thread is expected to 637 * reacquire the map lock after reawakening and later perform an ordinary 638 * unlock operation, such as vm_map_unlock(), before completing its 639 * operation on the map. 640 */ 641 int 642 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line) 643 { 644 645 mtx_lock(&map_sleep_mtx); 646 if (map->system_map) 647 _mtx_unlock_flags(&map->system_mtx, 0, file, line); 648 else 649 _sx_xunlock(&map->lock, file, line); 650 return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps", 651 timo)); 652 } 653 654 /* 655 * vm_map_wakeup: 656 * 657 * Awaken any threads that have slept on the map using 658 * vm_map_unlock_and_wait(). 659 */ 660 void 661 vm_map_wakeup(vm_map_t map) 662 { 663 664 /* 665 * Acquire and release map_sleep_mtx to prevent a wakeup() 666 * from being performed (and lost) between the map unlock 667 * and the msleep() in _vm_map_unlock_and_wait(). 668 */ 669 mtx_lock(&map_sleep_mtx); 670 mtx_unlock(&map_sleep_mtx); 671 wakeup(&map->root); 672 } 673 674 void 675 vm_map_busy(vm_map_t map) 676 { 677 678 VM_MAP_ASSERT_LOCKED(map); 679 map->busy++; 680 } 681 682 void 683 vm_map_unbusy(vm_map_t map) 684 { 685 686 VM_MAP_ASSERT_LOCKED(map); 687 KASSERT(map->busy, ("vm_map_unbusy: not busy")); 688 if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) { 689 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP); 690 wakeup(&map->busy); 691 } 692 } 693 694 void 695 vm_map_wait_busy(vm_map_t map) 696 { 697 698 VM_MAP_ASSERT_LOCKED(map); 699 while (map->busy) { 700 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0); 701 if (map->system_map) 702 msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0); 703 else 704 sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0); 705 } 706 map->timestamp++; 707 } 708 709 long 710 vmspace_resident_count(struct vmspace *vmspace) 711 { 712 return pmap_resident_count(vmspace_pmap(vmspace)); 713 } 714 715 long 716 vmspace_wired_count(struct vmspace *vmspace) 717 { 718 return pmap_wired_count(vmspace_pmap(vmspace)); 719 } 720 721 /* 722 * vm_map_create: 723 * 724 * Creates and returns a new empty VM map with 725 * the given physical map structure, and having 726 * the given lower and upper address bounds. 727 */ 728 vm_map_t 729 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max) 730 { 731 vm_map_t result; 732 733 result = uma_zalloc(mapzone, M_WAITOK); 734 CTR1(KTR_VM, "vm_map_create: %p", result); 735 _vm_map_init(result, pmap, min, max); 736 return (result); 737 } 738 739 /* 740 * Initialize an existing vm_map structure 741 * such as that in the vmspace structure. 742 */ 743 static void 744 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 745 { 746 747 map->header.next = map->header.prev = &map->header; 748 map->needs_wakeup = FALSE; 749 map->system_map = 0; 750 map->pmap = pmap; 751 map->min_offset = min; 752 map->max_offset = max; 753 map->flags = 0; 754 map->root = NULL; 755 map->timestamp = 0; 756 map->busy = 0; 757 } 758 759 void 760 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 761 { 762 763 _vm_map_init(map, pmap, min, max); 764 mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK); 765 sx_init(&map->lock, "user map"); 766 } 767 768 /* 769 * vm_map_entry_dispose: [ internal use only ] 770 * 771 * Inverse of vm_map_entry_create. 772 */ 773 static void 774 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry) 775 { 776 uma_zfree(map->system_map ? kmapentzone : mapentzone, entry); 777 } 778 779 /* 780 * vm_map_entry_create: [ internal use only ] 781 * 782 * Allocates a VM map entry for insertion. 783 * No entry fields are filled in. 784 */ 785 static vm_map_entry_t 786 vm_map_entry_create(vm_map_t map) 787 { 788 vm_map_entry_t new_entry; 789 790 if (map->system_map) 791 new_entry = uma_zalloc(kmapentzone, M_NOWAIT); 792 else 793 new_entry = uma_zalloc(mapentzone, M_WAITOK); 794 if (new_entry == NULL) 795 panic("vm_map_entry_create: kernel resources exhausted"); 796 return (new_entry); 797 } 798 799 /* 800 * vm_map_entry_set_behavior: 801 * 802 * Set the expected access behavior, either normal, random, or 803 * sequential. 804 */ 805 static inline void 806 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior) 807 { 808 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) | 809 (behavior & MAP_ENTRY_BEHAV_MASK); 810 } 811 812 /* 813 * vm_map_entry_set_max_free: 814 * 815 * Set the max_free field in a vm_map_entry. 816 */ 817 static inline void 818 vm_map_entry_set_max_free(vm_map_entry_t entry) 819 { 820 821 entry->max_free = entry->adj_free; 822 if (entry->left != NULL && entry->left->max_free > entry->max_free) 823 entry->max_free = entry->left->max_free; 824 if (entry->right != NULL && entry->right->max_free > entry->max_free) 825 entry->max_free = entry->right->max_free; 826 } 827 828 /* 829 * vm_map_entry_splay: 830 * 831 * The Sleator and Tarjan top-down splay algorithm with the 832 * following variation. Max_free must be computed bottom-up, so 833 * on the downward pass, maintain the left and right spines in 834 * reverse order. Then, make a second pass up each side to fix 835 * the pointers and compute max_free. The time bound is O(log n) 836 * amortized. 837 * 838 * The new root is the vm_map_entry containing "addr", or else an 839 * adjacent entry (lower or higher) if addr is not in the tree. 840 * 841 * The map must be locked, and leaves it so. 842 * 843 * Returns: the new root. 844 */ 845 static vm_map_entry_t 846 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root) 847 { 848 vm_map_entry_t llist, rlist; 849 vm_map_entry_t ltree, rtree; 850 vm_map_entry_t y; 851 852 /* Special case of empty tree. */ 853 if (root == NULL) 854 return (root); 855 856 /* 857 * Pass One: Splay down the tree until we find addr or a NULL 858 * pointer where addr would go. llist and rlist are the two 859 * sides in reverse order (bottom-up), with llist linked by 860 * the right pointer and rlist linked by the left pointer in 861 * the vm_map_entry. Wait until Pass Two to set max_free on 862 * the two spines. 863 */ 864 llist = NULL; 865 rlist = NULL; 866 for (;;) { 867 /* root is never NULL in here. */ 868 if (addr < root->start) { 869 y = root->left; 870 if (y == NULL) 871 break; 872 if (addr < y->start && y->left != NULL) { 873 /* Rotate right and put y on rlist. */ 874 root->left = y->right; 875 y->right = root; 876 vm_map_entry_set_max_free(root); 877 root = y->left; 878 y->left = rlist; 879 rlist = y; 880 } else { 881 /* Put root on rlist. */ 882 root->left = rlist; 883 rlist = root; 884 root = y; 885 } 886 } else if (addr >= root->end) { 887 y = root->right; 888 if (y == NULL) 889 break; 890 if (addr >= y->end && y->right != NULL) { 891 /* Rotate left and put y on llist. */ 892 root->right = y->left; 893 y->left = root; 894 vm_map_entry_set_max_free(root); 895 root = y->right; 896 y->right = llist; 897 llist = y; 898 } else { 899 /* Put root on llist. */ 900 root->right = llist; 901 llist = root; 902 root = y; 903 } 904 } else 905 break; 906 } 907 908 /* 909 * Pass Two: Walk back up the two spines, flip the pointers 910 * and set max_free. The subtrees of the root go at the 911 * bottom of llist and rlist. 912 */ 913 ltree = root->left; 914 while (llist != NULL) { 915 y = llist->right; 916 llist->right = ltree; 917 vm_map_entry_set_max_free(llist); 918 ltree = llist; 919 llist = y; 920 } 921 rtree = root->right; 922 while (rlist != NULL) { 923 y = rlist->left; 924 rlist->left = rtree; 925 vm_map_entry_set_max_free(rlist); 926 rtree = rlist; 927 rlist = y; 928 } 929 930 /* 931 * Final assembly: add ltree and rtree as subtrees of root. 932 */ 933 root->left = ltree; 934 root->right = rtree; 935 vm_map_entry_set_max_free(root); 936 937 return (root); 938 } 939 940 /* 941 * vm_map_entry_{un,}link: 942 * 943 * Insert/remove entries from maps. 944 */ 945 static void 946 vm_map_entry_link(vm_map_t map, 947 vm_map_entry_t after_where, 948 vm_map_entry_t entry) 949 { 950 951 CTR4(KTR_VM, 952 "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map, 953 map->nentries, entry, after_where); 954 VM_MAP_ASSERT_LOCKED(map); 955 map->nentries++; 956 entry->prev = after_where; 957 entry->next = after_where->next; 958 entry->next->prev = entry; 959 after_where->next = entry; 960 961 if (after_where != &map->header) { 962 if (after_where != map->root) 963 vm_map_entry_splay(after_where->start, map->root); 964 entry->right = after_where->right; 965 entry->left = after_where; 966 after_where->right = NULL; 967 after_where->adj_free = entry->start - after_where->end; 968 vm_map_entry_set_max_free(after_where); 969 } else { 970 entry->right = map->root; 971 entry->left = NULL; 972 } 973 entry->adj_free = (entry->next == &map->header ? map->max_offset : 974 entry->next->start) - entry->end; 975 vm_map_entry_set_max_free(entry); 976 map->root = entry; 977 } 978 979 static void 980 vm_map_entry_unlink(vm_map_t map, 981 vm_map_entry_t entry) 982 { 983 vm_map_entry_t next, prev, root; 984 985 VM_MAP_ASSERT_LOCKED(map); 986 if (entry != map->root) 987 vm_map_entry_splay(entry->start, map->root); 988 if (entry->left == NULL) 989 root = entry->right; 990 else { 991 root = vm_map_entry_splay(entry->start, entry->left); 992 root->right = entry->right; 993 root->adj_free = (entry->next == &map->header ? map->max_offset : 994 entry->next->start) - root->end; 995 vm_map_entry_set_max_free(root); 996 } 997 map->root = root; 998 999 prev = entry->prev; 1000 next = entry->next; 1001 next->prev = prev; 1002 prev->next = next; 1003 map->nentries--; 1004 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map, 1005 map->nentries, entry); 1006 } 1007 1008 /* 1009 * vm_map_entry_resize_free: 1010 * 1011 * Recompute the amount of free space following a vm_map_entry 1012 * and propagate that value up the tree. Call this function after 1013 * resizing a map entry in-place, that is, without a call to 1014 * vm_map_entry_link() or _unlink(). 1015 * 1016 * The map must be locked, and leaves it so. 1017 */ 1018 static void 1019 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry) 1020 { 1021 1022 /* 1023 * Using splay trees without parent pointers, propagating 1024 * max_free up the tree is done by moving the entry to the 1025 * root and making the change there. 1026 */ 1027 if (entry != map->root) 1028 map->root = vm_map_entry_splay(entry->start, map->root); 1029 1030 entry->adj_free = (entry->next == &map->header ? map->max_offset : 1031 entry->next->start) - entry->end; 1032 vm_map_entry_set_max_free(entry); 1033 } 1034 1035 /* 1036 * vm_map_lookup_entry: [ internal use only ] 1037 * 1038 * Finds the map entry containing (or 1039 * immediately preceding) the specified address 1040 * in the given map; the entry is returned 1041 * in the "entry" parameter. The boolean 1042 * result indicates whether the address is 1043 * actually contained in the map. 1044 */ 1045 boolean_t 1046 vm_map_lookup_entry( 1047 vm_map_t map, 1048 vm_offset_t address, 1049 vm_map_entry_t *entry) /* OUT */ 1050 { 1051 vm_map_entry_t cur; 1052 boolean_t locked; 1053 1054 /* 1055 * If the map is empty, then the map entry immediately preceding 1056 * "address" is the map's header. 1057 */ 1058 cur = map->root; 1059 if (cur == NULL) 1060 *entry = &map->header; 1061 else if (address >= cur->start && cur->end > address) { 1062 *entry = cur; 1063 return (TRUE); 1064 } else if ((locked = vm_map_locked(map)) || 1065 sx_try_upgrade(&map->lock)) { 1066 /* 1067 * Splay requires a write lock on the map. However, it only 1068 * restructures the binary search tree; it does not otherwise 1069 * change the map. Thus, the map's timestamp need not change 1070 * on a temporary upgrade. 1071 */ 1072 map->root = cur = vm_map_entry_splay(address, cur); 1073 if (!locked) 1074 sx_downgrade(&map->lock); 1075 1076 /* 1077 * If "address" is contained within a map entry, the new root 1078 * is that map entry. Otherwise, the new root is a map entry 1079 * immediately before or after "address". 1080 */ 1081 if (address >= cur->start) { 1082 *entry = cur; 1083 if (cur->end > address) 1084 return (TRUE); 1085 } else 1086 *entry = cur->prev; 1087 } else 1088 /* 1089 * Since the map is only locked for read access, perform a 1090 * standard binary search tree lookup for "address". 1091 */ 1092 for (;;) { 1093 if (address < cur->start) { 1094 if (cur->left == NULL) { 1095 *entry = cur->prev; 1096 break; 1097 } 1098 cur = cur->left; 1099 } else if (cur->end > address) { 1100 *entry = cur; 1101 return (TRUE); 1102 } else { 1103 if (cur->right == NULL) { 1104 *entry = cur; 1105 break; 1106 } 1107 cur = cur->right; 1108 } 1109 } 1110 return (FALSE); 1111 } 1112 1113 /* 1114 * vm_map_insert: 1115 * 1116 * Inserts the given whole VM object into the target 1117 * map at the specified address range. The object's 1118 * size should match that of the address range. 1119 * 1120 * Requires that the map be locked, and leaves it so. 1121 * 1122 * If object is non-NULL, ref count must be bumped by caller 1123 * prior to making call to account for the new entry. 1124 */ 1125 int 1126 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1127 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, 1128 int cow) 1129 { 1130 vm_map_entry_t new_entry; 1131 vm_map_entry_t prev_entry; 1132 vm_map_entry_t temp_entry; 1133 vm_eflags_t protoeflags; 1134 struct ucred *cred; 1135 boolean_t charge_prev_obj; 1136 1137 VM_MAP_ASSERT_LOCKED(map); 1138 1139 /* 1140 * Check that the start and end points are not bogus. 1141 */ 1142 if ((start < map->min_offset) || (end > map->max_offset) || 1143 (start >= end)) 1144 return (KERN_INVALID_ADDRESS); 1145 1146 /* 1147 * Find the entry prior to the proposed starting address; if it's part 1148 * of an existing entry, this range is bogus. 1149 */ 1150 if (vm_map_lookup_entry(map, start, &temp_entry)) 1151 return (KERN_NO_SPACE); 1152 1153 prev_entry = temp_entry; 1154 1155 /* 1156 * Assert that the next entry doesn't overlap the end point. 1157 */ 1158 if ((prev_entry->next != &map->header) && 1159 (prev_entry->next->start < end)) 1160 return (KERN_NO_SPACE); 1161 1162 protoeflags = 0; 1163 charge_prev_obj = FALSE; 1164 1165 if (cow & MAP_COPY_ON_WRITE) 1166 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY; 1167 1168 if (cow & MAP_NOFAULT) { 1169 protoeflags |= MAP_ENTRY_NOFAULT; 1170 1171 KASSERT(object == NULL, 1172 ("vm_map_insert: paradoxical MAP_NOFAULT request")); 1173 } 1174 if (cow & MAP_DISABLE_SYNCER) 1175 protoeflags |= MAP_ENTRY_NOSYNC; 1176 if (cow & MAP_DISABLE_COREDUMP) 1177 protoeflags |= MAP_ENTRY_NOCOREDUMP; 1178 1179 cred = NULL; 1180 KASSERT((object != kmem_object && object != kernel_object) || 1181 ((object == kmem_object || object == kernel_object) && 1182 !(protoeflags & MAP_ENTRY_NEEDS_COPY)), 1183 ("kmem or kernel object and cow")); 1184 if (cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT)) 1185 goto charged; 1186 if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) && 1187 ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) { 1188 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start)) 1189 return (KERN_RESOURCE_SHORTAGE); 1190 KASSERT(object == NULL || (protoeflags & MAP_ENTRY_NEEDS_COPY) || 1191 object->cred == NULL, 1192 ("OVERCOMMIT: vm_map_insert o %p", object)); 1193 cred = curthread->td_ucred; 1194 crhold(cred); 1195 if (object == NULL && !(protoeflags & MAP_ENTRY_NEEDS_COPY)) 1196 charge_prev_obj = TRUE; 1197 } 1198 1199 charged: 1200 /* Expand the kernel pmap, if necessary. */ 1201 if (map == kernel_map && end > kernel_vm_end) 1202 pmap_growkernel(end); 1203 if (object != NULL) { 1204 /* 1205 * OBJ_ONEMAPPING must be cleared unless this mapping 1206 * is trivially proven to be the only mapping for any 1207 * of the object's pages. (Object granularity 1208 * reference counting is insufficient to recognize 1209 * aliases with precision.) 1210 */ 1211 VM_OBJECT_LOCK(object); 1212 if (object->ref_count > 1 || object->shadow_count != 0) 1213 vm_object_clear_flag(object, OBJ_ONEMAPPING); 1214 VM_OBJECT_UNLOCK(object); 1215 } 1216 else if ((prev_entry != &map->header) && 1217 (prev_entry->eflags == protoeflags) && 1218 (prev_entry->end == start) && 1219 (prev_entry->wired_count == 0) && 1220 (prev_entry->cred == cred || 1221 (prev_entry->object.vm_object != NULL && 1222 (prev_entry->object.vm_object->cred == cred))) && 1223 vm_object_coalesce(prev_entry->object.vm_object, 1224 prev_entry->offset, 1225 (vm_size_t)(prev_entry->end - prev_entry->start), 1226 (vm_size_t)(end - prev_entry->end), charge_prev_obj)) { 1227 /* 1228 * We were able to extend the object. Determine if we 1229 * can extend the previous map entry to include the 1230 * new range as well. 1231 */ 1232 if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) && 1233 (prev_entry->protection == prot) && 1234 (prev_entry->max_protection == max)) { 1235 map->size += (end - prev_entry->end); 1236 prev_entry->end = end; 1237 vm_map_entry_resize_free(map, prev_entry); 1238 vm_map_simplify_entry(map, prev_entry); 1239 if (cred != NULL) 1240 crfree(cred); 1241 return (KERN_SUCCESS); 1242 } 1243 1244 /* 1245 * If we can extend the object but cannot extend the 1246 * map entry, we have to create a new map entry. We 1247 * must bump the ref count on the extended object to 1248 * account for it. object may be NULL. 1249 */ 1250 object = prev_entry->object.vm_object; 1251 offset = prev_entry->offset + 1252 (prev_entry->end - prev_entry->start); 1253 vm_object_reference(object); 1254 if (cred != NULL && object != NULL && object->cred != NULL && 1255 !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 1256 /* Object already accounts for this uid. */ 1257 crfree(cred); 1258 cred = NULL; 1259 } 1260 } 1261 1262 /* 1263 * NOTE: if conditionals fail, object can be NULL here. This occurs 1264 * in things like the buffer map where we manage kva but do not manage 1265 * backing objects. 1266 */ 1267 1268 /* 1269 * Create a new entry 1270 */ 1271 new_entry = vm_map_entry_create(map); 1272 new_entry->start = start; 1273 new_entry->end = end; 1274 new_entry->cred = NULL; 1275 1276 new_entry->eflags = protoeflags; 1277 new_entry->object.vm_object = object; 1278 new_entry->offset = offset; 1279 new_entry->avail_ssize = 0; 1280 1281 new_entry->inheritance = VM_INHERIT_DEFAULT; 1282 new_entry->protection = prot; 1283 new_entry->max_protection = max; 1284 new_entry->wired_count = 0; 1285 1286 KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry), 1287 ("OVERCOMMIT: vm_map_insert leaks vm_map %p", new_entry)); 1288 new_entry->cred = cred; 1289 1290 /* 1291 * Insert the new entry into the list 1292 */ 1293 vm_map_entry_link(map, prev_entry, new_entry); 1294 map->size += new_entry->end - new_entry->start; 1295 1296 /* 1297 * It may be possible to merge the new entry with the next and/or 1298 * previous entries. However, due to MAP_STACK_* being a hack, a 1299 * panic can result from merging such entries. 1300 */ 1301 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0) 1302 vm_map_simplify_entry(map, new_entry); 1303 1304 if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) { 1305 vm_map_pmap_enter(map, start, prot, 1306 object, OFF_TO_IDX(offset), end - start, 1307 cow & MAP_PREFAULT_PARTIAL); 1308 } 1309 1310 return (KERN_SUCCESS); 1311 } 1312 1313 /* 1314 * vm_map_findspace: 1315 * 1316 * Find the first fit (lowest VM address) for "length" free bytes 1317 * beginning at address >= start in the given map. 1318 * 1319 * In a vm_map_entry, "adj_free" is the amount of free space 1320 * adjacent (higher address) to this entry, and "max_free" is the 1321 * maximum amount of contiguous free space in its subtree. This 1322 * allows finding a free region in one path down the tree, so 1323 * O(log n) amortized with splay trees. 1324 * 1325 * The map must be locked, and leaves it so. 1326 * 1327 * Returns: 0 on success, and starting address in *addr, 1328 * 1 if insufficient space. 1329 */ 1330 int 1331 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length, 1332 vm_offset_t *addr) /* OUT */ 1333 { 1334 vm_map_entry_t entry; 1335 vm_offset_t st; 1336 1337 /* 1338 * Request must fit within min/max VM address and must avoid 1339 * address wrap. 1340 */ 1341 if (start < map->min_offset) 1342 start = map->min_offset; 1343 if (start + length > map->max_offset || start + length < start) 1344 return (1); 1345 1346 /* Empty tree means wide open address space. */ 1347 if (map->root == NULL) { 1348 *addr = start; 1349 return (0); 1350 } 1351 1352 /* 1353 * After splay, if start comes before root node, then there 1354 * must be a gap from start to the root. 1355 */ 1356 map->root = vm_map_entry_splay(start, map->root); 1357 if (start + length <= map->root->start) { 1358 *addr = start; 1359 return (0); 1360 } 1361 1362 /* 1363 * Root is the last node that might begin its gap before 1364 * start, and this is the last comparison where address 1365 * wrap might be a problem. 1366 */ 1367 st = (start > map->root->end) ? start : map->root->end; 1368 if (length <= map->root->end + map->root->adj_free - st) { 1369 *addr = st; 1370 return (0); 1371 } 1372 1373 /* With max_free, can immediately tell if no solution. */ 1374 entry = map->root->right; 1375 if (entry == NULL || length > entry->max_free) 1376 return (1); 1377 1378 /* 1379 * Search the right subtree in the order: left subtree, root, 1380 * right subtree (first fit). The previous splay implies that 1381 * all regions in the right subtree have addresses > start. 1382 */ 1383 while (entry != NULL) { 1384 if (entry->left != NULL && entry->left->max_free >= length) 1385 entry = entry->left; 1386 else if (entry->adj_free >= length) { 1387 *addr = entry->end; 1388 return (0); 1389 } else 1390 entry = entry->right; 1391 } 1392 1393 /* Can't get here, so panic if we do. */ 1394 panic("vm_map_findspace: max_free corrupt"); 1395 } 1396 1397 int 1398 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1399 vm_offset_t start, vm_size_t length, vm_prot_t prot, 1400 vm_prot_t max, int cow) 1401 { 1402 vm_offset_t end; 1403 int result; 1404 1405 end = start + length; 1406 vm_map_lock(map); 1407 VM_MAP_RANGE_CHECK(map, start, end); 1408 (void) vm_map_delete(map, start, end); 1409 result = vm_map_insert(map, object, offset, start, end, prot, 1410 max, cow); 1411 vm_map_unlock(map); 1412 return (result); 1413 } 1414 1415 /* 1416 * vm_map_find finds an unallocated region in the target address 1417 * map with the given length. The search is defined to be 1418 * first-fit from the specified address; the region found is 1419 * returned in the same parameter. 1420 * 1421 * If object is non-NULL, ref count must be bumped by caller 1422 * prior to making call to account for the new entry. 1423 */ 1424 int 1425 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1426 vm_offset_t *addr, /* IN/OUT */ 1427 vm_size_t length, int find_space, vm_prot_t prot, 1428 vm_prot_t max, int cow) 1429 { 1430 vm_offset_t start; 1431 int result; 1432 1433 start = *addr; 1434 vm_map_lock(map); 1435 do { 1436 if (find_space != VMFS_NO_SPACE) { 1437 if (vm_map_findspace(map, start, length, addr)) { 1438 vm_map_unlock(map); 1439 return (KERN_NO_SPACE); 1440 } 1441 switch (find_space) { 1442 case VMFS_ALIGNED_SPACE: 1443 pmap_align_superpage(object, offset, addr, 1444 length); 1445 break; 1446 #ifdef VMFS_TLB_ALIGNED_SPACE 1447 case VMFS_TLB_ALIGNED_SPACE: 1448 pmap_align_tlb(addr); 1449 break; 1450 #endif 1451 default: 1452 break; 1453 } 1454 1455 start = *addr; 1456 } 1457 result = vm_map_insert(map, object, offset, start, start + 1458 length, prot, max, cow); 1459 } while (result == KERN_NO_SPACE && (find_space == VMFS_ALIGNED_SPACE 1460 #ifdef VMFS_TLB_ALIGNED_SPACE 1461 || find_space == VMFS_TLB_ALIGNED_SPACE 1462 #endif 1463 )); 1464 vm_map_unlock(map); 1465 return (result); 1466 } 1467 1468 /* 1469 * vm_map_simplify_entry: 1470 * 1471 * Simplify the given map entry by merging with either neighbor. This 1472 * routine also has the ability to merge with both neighbors. 1473 * 1474 * The map must be locked. 1475 * 1476 * This routine guarentees that the passed entry remains valid (though 1477 * possibly extended). When merging, this routine may delete one or 1478 * both neighbors. 1479 */ 1480 void 1481 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry) 1482 { 1483 vm_map_entry_t next, prev; 1484 vm_size_t prevsize, esize; 1485 1486 if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) 1487 return; 1488 1489 prev = entry->prev; 1490 if (prev != &map->header) { 1491 prevsize = prev->end - prev->start; 1492 if ( (prev->end == entry->start) && 1493 (prev->object.vm_object == entry->object.vm_object) && 1494 (!prev->object.vm_object || 1495 (prev->offset + prevsize == entry->offset)) && 1496 (prev->eflags == entry->eflags) && 1497 (prev->protection == entry->protection) && 1498 (prev->max_protection == entry->max_protection) && 1499 (prev->inheritance == entry->inheritance) && 1500 (prev->wired_count == entry->wired_count) && 1501 (prev->cred == entry->cred)) { 1502 vm_map_entry_unlink(map, prev); 1503 entry->start = prev->start; 1504 entry->offset = prev->offset; 1505 if (entry->prev != &map->header) 1506 vm_map_entry_resize_free(map, entry->prev); 1507 1508 /* 1509 * If the backing object is a vnode object, 1510 * vm_object_deallocate() calls vrele(). 1511 * However, vrele() does not lock the vnode 1512 * because the vnode has additional 1513 * references. Thus, the map lock can be kept 1514 * without causing a lock-order reversal with 1515 * the vnode lock. 1516 */ 1517 if (prev->object.vm_object) 1518 vm_object_deallocate(prev->object.vm_object); 1519 if (prev->cred != NULL) 1520 crfree(prev->cred); 1521 vm_map_entry_dispose(map, prev); 1522 } 1523 } 1524 1525 next = entry->next; 1526 if (next != &map->header) { 1527 esize = entry->end - entry->start; 1528 if ((entry->end == next->start) && 1529 (next->object.vm_object == entry->object.vm_object) && 1530 (!entry->object.vm_object || 1531 (entry->offset + esize == next->offset)) && 1532 (next->eflags == entry->eflags) && 1533 (next->protection == entry->protection) && 1534 (next->max_protection == entry->max_protection) && 1535 (next->inheritance == entry->inheritance) && 1536 (next->wired_count == entry->wired_count) && 1537 (next->cred == entry->cred)) { 1538 vm_map_entry_unlink(map, next); 1539 entry->end = next->end; 1540 vm_map_entry_resize_free(map, entry); 1541 1542 /* 1543 * See comment above. 1544 */ 1545 if (next->object.vm_object) 1546 vm_object_deallocate(next->object.vm_object); 1547 if (next->cred != NULL) 1548 crfree(next->cred); 1549 vm_map_entry_dispose(map, next); 1550 } 1551 } 1552 } 1553 /* 1554 * vm_map_clip_start: [ internal use only ] 1555 * 1556 * Asserts that the given entry begins at or after 1557 * the specified address; if necessary, 1558 * it splits the entry into two. 1559 */ 1560 #define vm_map_clip_start(map, entry, startaddr) \ 1561 { \ 1562 if (startaddr > entry->start) \ 1563 _vm_map_clip_start(map, entry, startaddr); \ 1564 } 1565 1566 /* 1567 * This routine is called only when it is known that 1568 * the entry must be split. 1569 */ 1570 static void 1571 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start) 1572 { 1573 vm_map_entry_t new_entry; 1574 1575 VM_MAP_ASSERT_LOCKED(map); 1576 1577 /* 1578 * Split off the front portion -- note that we must insert the new 1579 * entry BEFORE this one, so that this entry has the specified 1580 * starting address. 1581 */ 1582 vm_map_simplify_entry(map, entry); 1583 1584 /* 1585 * If there is no object backing this entry, we might as well create 1586 * one now. If we defer it, an object can get created after the map 1587 * is clipped, and individual objects will be created for the split-up 1588 * map. This is a bit of a hack, but is also about the best place to 1589 * put this improvement. 1590 */ 1591 if (entry->object.vm_object == NULL && !map->system_map) { 1592 vm_object_t object; 1593 object = vm_object_allocate(OBJT_DEFAULT, 1594 atop(entry->end - entry->start)); 1595 entry->object.vm_object = object; 1596 entry->offset = 0; 1597 if (entry->cred != NULL) { 1598 object->cred = entry->cred; 1599 object->charge = entry->end - entry->start; 1600 entry->cred = NULL; 1601 } 1602 } else if (entry->object.vm_object != NULL && 1603 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 1604 entry->cred != NULL) { 1605 VM_OBJECT_LOCK(entry->object.vm_object); 1606 KASSERT(entry->object.vm_object->cred == NULL, 1607 ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry)); 1608 entry->object.vm_object->cred = entry->cred; 1609 entry->object.vm_object->charge = entry->end - entry->start; 1610 VM_OBJECT_UNLOCK(entry->object.vm_object); 1611 entry->cred = NULL; 1612 } 1613 1614 new_entry = vm_map_entry_create(map); 1615 *new_entry = *entry; 1616 1617 new_entry->end = start; 1618 entry->offset += (start - entry->start); 1619 entry->start = start; 1620 if (new_entry->cred != NULL) 1621 crhold(entry->cred); 1622 1623 vm_map_entry_link(map, entry->prev, new_entry); 1624 1625 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1626 vm_object_reference(new_entry->object.vm_object); 1627 } 1628 } 1629 1630 /* 1631 * vm_map_clip_end: [ internal use only ] 1632 * 1633 * Asserts that the given entry ends at or before 1634 * the specified address; if necessary, 1635 * it splits the entry into two. 1636 */ 1637 #define vm_map_clip_end(map, entry, endaddr) \ 1638 { \ 1639 if ((endaddr) < (entry->end)) \ 1640 _vm_map_clip_end((map), (entry), (endaddr)); \ 1641 } 1642 1643 /* 1644 * This routine is called only when it is known that 1645 * the entry must be split. 1646 */ 1647 static void 1648 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end) 1649 { 1650 vm_map_entry_t new_entry; 1651 1652 VM_MAP_ASSERT_LOCKED(map); 1653 1654 /* 1655 * If there is no object backing this entry, we might as well create 1656 * one now. If we defer it, an object can get created after the map 1657 * is clipped, and individual objects will be created for the split-up 1658 * map. This is a bit of a hack, but is also about the best place to 1659 * put this improvement. 1660 */ 1661 if (entry->object.vm_object == NULL && !map->system_map) { 1662 vm_object_t object; 1663 object = vm_object_allocate(OBJT_DEFAULT, 1664 atop(entry->end - entry->start)); 1665 entry->object.vm_object = object; 1666 entry->offset = 0; 1667 if (entry->cred != NULL) { 1668 object->cred = entry->cred; 1669 object->charge = entry->end - entry->start; 1670 entry->cred = NULL; 1671 } 1672 } else if (entry->object.vm_object != NULL && 1673 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 1674 entry->cred != NULL) { 1675 VM_OBJECT_LOCK(entry->object.vm_object); 1676 KASSERT(entry->object.vm_object->cred == NULL, 1677 ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry)); 1678 entry->object.vm_object->cred = entry->cred; 1679 entry->object.vm_object->charge = entry->end - entry->start; 1680 VM_OBJECT_UNLOCK(entry->object.vm_object); 1681 entry->cred = NULL; 1682 } 1683 1684 /* 1685 * Create a new entry and insert it AFTER the specified entry 1686 */ 1687 new_entry = vm_map_entry_create(map); 1688 *new_entry = *entry; 1689 1690 new_entry->start = entry->end = end; 1691 new_entry->offset += (end - entry->start); 1692 if (new_entry->cred != NULL) 1693 crhold(entry->cred); 1694 1695 vm_map_entry_link(map, entry, new_entry); 1696 1697 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1698 vm_object_reference(new_entry->object.vm_object); 1699 } 1700 } 1701 1702 /* 1703 * vm_map_submap: [ kernel use only ] 1704 * 1705 * Mark the given range as handled by a subordinate map. 1706 * 1707 * This range must have been created with vm_map_find, 1708 * and no other operations may have been performed on this 1709 * range prior to calling vm_map_submap. 1710 * 1711 * Only a limited number of operations can be performed 1712 * within this rage after calling vm_map_submap: 1713 * vm_fault 1714 * [Don't try vm_map_copy!] 1715 * 1716 * To remove a submapping, one must first remove the 1717 * range from the superior map, and then destroy the 1718 * submap (if desired). [Better yet, don't try it.] 1719 */ 1720 int 1721 vm_map_submap( 1722 vm_map_t map, 1723 vm_offset_t start, 1724 vm_offset_t end, 1725 vm_map_t submap) 1726 { 1727 vm_map_entry_t entry; 1728 int result = KERN_INVALID_ARGUMENT; 1729 1730 vm_map_lock(map); 1731 1732 VM_MAP_RANGE_CHECK(map, start, end); 1733 1734 if (vm_map_lookup_entry(map, start, &entry)) { 1735 vm_map_clip_start(map, entry, start); 1736 } else 1737 entry = entry->next; 1738 1739 vm_map_clip_end(map, entry, end); 1740 1741 if ((entry->start == start) && (entry->end == end) && 1742 ((entry->eflags & MAP_ENTRY_COW) == 0) && 1743 (entry->object.vm_object == NULL)) { 1744 entry->object.sub_map = submap; 1745 entry->eflags |= MAP_ENTRY_IS_SUB_MAP; 1746 result = KERN_SUCCESS; 1747 } 1748 vm_map_unlock(map); 1749 1750 return (result); 1751 } 1752 1753 /* 1754 * The maximum number of pages to map 1755 */ 1756 #define MAX_INIT_PT 96 1757 1758 /* 1759 * vm_map_pmap_enter: 1760 * 1761 * Preload read-only mappings for the given object's resident pages into 1762 * the given map. This eliminates the soft faults on process startup and 1763 * immediately after an mmap(2). Because these are speculative mappings, 1764 * cached pages are not reactivated and mapped. 1765 */ 1766 void 1767 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 1768 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags) 1769 { 1770 vm_offset_t start; 1771 vm_page_t p, p_start; 1772 vm_pindex_t psize, tmpidx; 1773 1774 if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL) 1775 return; 1776 VM_OBJECT_LOCK(object); 1777 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 1778 pmap_object_init_pt(map->pmap, addr, object, pindex, size); 1779 goto unlock_return; 1780 } 1781 1782 psize = atop(size); 1783 1784 if ((flags & MAP_PREFAULT_PARTIAL) && psize > MAX_INIT_PT && 1785 object->resident_page_count > MAX_INIT_PT) 1786 goto unlock_return; 1787 1788 if (psize + pindex > object->size) { 1789 if (object->size < pindex) 1790 goto unlock_return; 1791 psize = object->size - pindex; 1792 } 1793 1794 start = 0; 1795 p_start = NULL; 1796 1797 p = vm_page_find_least(object, pindex); 1798 /* 1799 * Assert: the variable p is either (1) the page with the 1800 * least pindex greater than or equal to the parameter pindex 1801 * or (2) NULL. 1802 */ 1803 for (; 1804 p != NULL && (tmpidx = p->pindex - pindex) < psize; 1805 p = TAILQ_NEXT(p, listq)) { 1806 /* 1807 * don't allow an madvise to blow away our really 1808 * free pages allocating pv entries. 1809 */ 1810 if ((flags & MAP_PREFAULT_MADVISE) && 1811 cnt.v_free_count < cnt.v_free_reserved) { 1812 psize = tmpidx; 1813 break; 1814 } 1815 if (p->valid == VM_PAGE_BITS_ALL) { 1816 if (p_start == NULL) { 1817 start = addr + ptoa(tmpidx); 1818 p_start = p; 1819 } 1820 } else if (p_start != NULL) { 1821 pmap_enter_object(map->pmap, start, addr + 1822 ptoa(tmpidx), p_start, prot); 1823 p_start = NULL; 1824 } 1825 } 1826 if (p_start != NULL) 1827 pmap_enter_object(map->pmap, start, addr + ptoa(psize), 1828 p_start, prot); 1829 unlock_return: 1830 VM_OBJECT_UNLOCK(object); 1831 } 1832 1833 /* 1834 * vm_map_protect: 1835 * 1836 * Sets the protection of the specified address 1837 * region in the target map. If "set_max" is 1838 * specified, the maximum protection is to be set; 1839 * otherwise, only the current protection is affected. 1840 */ 1841 int 1842 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 1843 vm_prot_t new_prot, boolean_t set_max) 1844 { 1845 vm_map_entry_t current, entry; 1846 vm_object_t obj; 1847 struct ucred *cred; 1848 vm_prot_t old_prot; 1849 1850 vm_map_lock(map); 1851 1852 VM_MAP_RANGE_CHECK(map, start, end); 1853 1854 if (vm_map_lookup_entry(map, start, &entry)) { 1855 vm_map_clip_start(map, entry, start); 1856 } else { 1857 entry = entry->next; 1858 } 1859 1860 /* 1861 * Make a first pass to check for protection violations. 1862 */ 1863 current = entry; 1864 while ((current != &map->header) && (current->start < end)) { 1865 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 1866 vm_map_unlock(map); 1867 return (KERN_INVALID_ARGUMENT); 1868 } 1869 if ((new_prot & current->max_protection) != new_prot) { 1870 vm_map_unlock(map); 1871 return (KERN_PROTECTION_FAILURE); 1872 } 1873 current = current->next; 1874 } 1875 1876 1877 /* 1878 * Do an accounting pass for private read-only mappings that 1879 * now will do cow due to allowed write (e.g. debugger sets 1880 * breakpoint on text segment) 1881 */ 1882 for (current = entry; (current != &map->header) && 1883 (current->start < end); current = current->next) { 1884 1885 vm_map_clip_end(map, current, end); 1886 1887 if (set_max || 1888 ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 || 1889 ENTRY_CHARGED(current)) { 1890 continue; 1891 } 1892 1893 cred = curthread->td_ucred; 1894 obj = current->object.vm_object; 1895 1896 if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) { 1897 if (!swap_reserve(current->end - current->start)) { 1898 vm_map_unlock(map); 1899 return (KERN_RESOURCE_SHORTAGE); 1900 } 1901 crhold(cred); 1902 current->cred = cred; 1903 continue; 1904 } 1905 1906 VM_OBJECT_LOCK(obj); 1907 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) { 1908 VM_OBJECT_UNLOCK(obj); 1909 continue; 1910 } 1911 1912 /* 1913 * Charge for the whole object allocation now, since 1914 * we cannot distinguish between non-charged and 1915 * charged clipped mapping of the same object later. 1916 */ 1917 KASSERT(obj->charge == 0, 1918 ("vm_map_protect: object %p overcharged\n", obj)); 1919 if (!swap_reserve(ptoa(obj->size))) { 1920 VM_OBJECT_UNLOCK(obj); 1921 vm_map_unlock(map); 1922 return (KERN_RESOURCE_SHORTAGE); 1923 } 1924 1925 crhold(cred); 1926 obj->cred = cred; 1927 obj->charge = ptoa(obj->size); 1928 VM_OBJECT_UNLOCK(obj); 1929 } 1930 1931 /* 1932 * Go back and fix up protections. [Note that clipping is not 1933 * necessary the second time.] 1934 */ 1935 current = entry; 1936 while ((current != &map->header) && (current->start < end)) { 1937 old_prot = current->protection; 1938 1939 if (set_max) 1940 current->protection = 1941 (current->max_protection = new_prot) & 1942 old_prot; 1943 else 1944 current->protection = new_prot; 1945 1946 if ((current->eflags & (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED)) 1947 == (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED) && 1948 (current->protection & VM_PROT_WRITE) != 0 && 1949 (old_prot & VM_PROT_WRITE) == 0) { 1950 vm_fault_copy_entry(map, map, current, current, NULL); 1951 } 1952 1953 /* 1954 * When restricting access, update the physical map. Worry 1955 * about copy-on-write here. 1956 */ 1957 if ((old_prot & ~current->protection) != 0) { 1958 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 1959 VM_PROT_ALL) 1960 pmap_protect(map->pmap, current->start, 1961 current->end, 1962 current->protection & MASK(current)); 1963 #undef MASK 1964 } 1965 vm_map_simplify_entry(map, current); 1966 current = current->next; 1967 } 1968 vm_map_unlock(map); 1969 return (KERN_SUCCESS); 1970 } 1971 1972 /* 1973 * vm_map_madvise: 1974 * 1975 * This routine traverses a processes map handling the madvise 1976 * system call. Advisories are classified as either those effecting 1977 * the vm_map_entry structure, or those effecting the underlying 1978 * objects. 1979 */ 1980 int 1981 vm_map_madvise( 1982 vm_map_t map, 1983 vm_offset_t start, 1984 vm_offset_t end, 1985 int behav) 1986 { 1987 vm_map_entry_t current, entry; 1988 int modify_map = 0; 1989 1990 /* 1991 * Some madvise calls directly modify the vm_map_entry, in which case 1992 * we need to use an exclusive lock on the map and we need to perform 1993 * various clipping operations. Otherwise we only need a read-lock 1994 * on the map. 1995 */ 1996 switch(behav) { 1997 case MADV_NORMAL: 1998 case MADV_SEQUENTIAL: 1999 case MADV_RANDOM: 2000 case MADV_NOSYNC: 2001 case MADV_AUTOSYNC: 2002 case MADV_NOCORE: 2003 case MADV_CORE: 2004 modify_map = 1; 2005 vm_map_lock(map); 2006 break; 2007 case MADV_WILLNEED: 2008 case MADV_DONTNEED: 2009 case MADV_FREE: 2010 vm_map_lock_read(map); 2011 break; 2012 default: 2013 return (KERN_INVALID_ARGUMENT); 2014 } 2015 2016 /* 2017 * Locate starting entry and clip if necessary. 2018 */ 2019 VM_MAP_RANGE_CHECK(map, start, end); 2020 2021 if (vm_map_lookup_entry(map, start, &entry)) { 2022 if (modify_map) 2023 vm_map_clip_start(map, entry, start); 2024 } else { 2025 entry = entry->next; 2026 } 2027 2028 if (modify_map) { 2029 /* 2030 * madvise behaviors that are implemented in the vm_map_entry. 2031 * 2032 * We clip the vm_map_entry so that behavioral changes are 2033 * limited to the specified address range. 2034 */ 2035 for (current = entry; 2036 (current != &map->header) && (current->start < end); 2037 current = current->next 2038 ) { 2039 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2040 continue; 2041 2042 vm_map_clip_end(map, current, end); 2043 2044 switch (behav) { 2045 case MADV_NORMAL: 2046 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL); 2047 break; 2048 case MADV_SEQUENTIAL: 2049 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL); 2050 break; 2051 case MADV_RANDOM: 2052 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM); 2053 break; 2054 case MADV_NOSYNC: 2055 current->eflags |= MAP_ENTRY_NOSYNC; 2056 break; 2057 case MADV_AUTOSYNC: 2058 current->eflags &= ~MAP_ENTRY_NOSYNC; 2059 break; 2060 case MADV_NOCORE: 2061 current->eflags |= MAP_ENTRY_NOCOREDUMP; 2062 break; 2063 case MADV_CORE: 2064 current->eflags &= ~MAP_ENTRY_NOCOREDUMP; 2065 break; 2066 default: 2067 break; 2068 } 2069 vm_map_simplify_entry(map, current); 2070 } 2071 vm_map_unlock(map); 2072 } else { 2073 vm_pindex_t pindex; 2074 int count; 2075 2076 /* 2077 * madvise behaviors that are implemented in the underlying 2078 * vm_object. 2079 * 2080 * Since we don't clip the vm_map_entry, we have to clip 2081 * the vm_object pindex and count. 2082 */ 2083 for (current = entry; 2084 (current != &map->header) && (current->start < end); 2085 current = current->next 2086 ) { 2087 vm_offset_t useStart; 2088 2089 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2090 continue; 2091 2092 pindex = OFF_TO_IDX(current->offset); 2093 count = atop(current->end - current->start); 2094 useStart = current->start; 2095 2096 if (current->start < start) { 2097 pindex += atop(start - current->start); 2098 count -= atop(start - current->start); 2099 useStart = start; 2100 } 2101 if (current->end > end) 2102 count -= atop(current->end - end); 2103 2104 if (count <= 0) 2105 continue; 2106 2107 vm_object_madvise(current->object.vm_object, 2108 pindex, count, behav); 2109 if (behav == MADV_WILLNEED) { 2110 vm_map_pmap_enter(map, 2111 useStart, 2112 current->protection, 2113 current->object.vm_object, 2114 pindex, 2115 (count << PAGE_SHIFT), 2116 MAP_PREFAULT_MADVISE 2117 ); 2118 } 2119 } 2120 vm_map_unlock_read(map); 2121 } 2122 return (0); 2123 } 2124 2125 2126 /* 2127 * vm_map_inherit: 2128 * 2129 * Sets the inheritance of the specified address 2130 * range in the target map. Inheritance 2131 * affects how the map will be shared with 2132 * child maps at the time of vmspace_fork. 2133 */ 2134 int 2135 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 2136 vm_inherit_t new_inheritance) 2137 { 2138 vm_map_entry_t entry; 2139 vm_map_entry_t temp_entry; 2140 2141 switch (new_inheritance) { 2142 case VM_INHERIT_NONE: 2143 case VM_INHERIT_COPY: 2144 case VM_INHERIT_SHARE: 2145 break; 2146 default: 2147 return (KERN_INVALID_ARGUMENT); 2148 } 2149 vm_map_lock(map); 2150 VM_MAP_RANGE_CHECK(map, start, end); 2151 if (vm_map_lookup_entry(map, start, &temp_entry)) { 2152 entry = temp_entry; 2153 vm_map_clip_start(map, entry, start); 2154 } else 2155 entry = temp_entry->next; 2156 while ((entry != &map->header) && (entry->start < end)) { 2157 vm_map_clip_end(map, entry, end); 2158 entry->inheritance = new_inheritance; 2159 vm_map_simplify_entry(map, entry); 2160 entry = entry->next; 2161 } 2162 vm_map_unlock(map); 2163 return (KERN_SUCCESS); 2164 } 2165 2166 /* 2167 * vm_map_unwire: 2168 * 2169 * Implements both kernel and user unwiring. 2170 */ 2171 int 2172 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2173 int flags) 2174 { 2175 vm_map_entry_t entry, first_entry, tmp_entry; 2176 vm_offset_t saved_start; 2177 unsigned int last_timestamp; 2178 int rv; 2179 boolean_t need_wakeup, result, user_unwire; 2180 2181 user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 2182 vm_map_lock(map); 2183 VM_MAP_RANGE_CHECK(map, start, end); 2184 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2185 if (flags & VM_MAP_WIRE_HOLESOK) 2186 first_entry = first_entry->next; 2187 else { 2188 vm_map_unlock(map); 2189 return (KERN_INVALID_ADDRESS); 2190 } 2191 } 2192 last_timestamp = map->timestamp; 2193 entry = first_entry; 2194 while (entry != &map->header && entry->start < end) { 2195 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2196 /* 2197 * We have not yet clipped the entry. 2198 */ 2199 saved_start = (start >= entry->start) ? start : 2200 entry->start; 2201 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2202 if (vm_map_unlock_and_wait(map, 0)) { 2203 /* 2204 * Allow interruption of user unwiring? 2205 */ 2206 } 2207 vm_map_lock(map); 2208 if (last_timestamp+1 != map->timestamp) { 2209 /* 2210 * Look again for the entry because the map was 2211 * modified while it was unlocked. 2212 * Specifically, the entry may have been 2213 * clipped, merged, or deleted. 2214 */ 2215 if (!vm_map_lookup_entry(map, saved_start, 2216 &tmp_entry)) { 2217 if (flags & VM_MAP_WIRE_HOLESOK) 2218 tmp_entry = tmp_entry->next; 2219 else { 2220 if (saved_start == start) { 2221 /* 2222 * First_entry has been deleted. 2223 */ 2224 vm_map_unlock(map); 2225 return (KERN_INVALID_ADDRESS); 2226 } 2227 end = saved_start; 2228 rv = KERN_INVALID_ADDRESS; 2229 goto done; 2230 } 2231 } 2232 if (entry == first_entry) 2233 first_entry = tmp_entry; 2234 else 2235 first_entry = NULL; 2236 entry = tmp_entry; 2237 } 2238 last_timestamp = map->timestamp; 2239 continue; 2240 } 2241 vm_map_clip_start(map, entry, start); 2242 vm_map_clip_end(map, entry, end); 2243 /* 2244 * Mark the entry in case the map lock is released. (See 2245 * above.) 2246 */ 2247 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 2248 /* 2249 * Check the map for holes in the specified region. 2250 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 2251 */ 2252 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) && 2253 (entry->end < end && (entry->next == &map->header || 2254 entry->next->start > entry->end))) { 2255 end = entry->end; 2256 rv = KERN_INVALID_ADDRESS; 2257 goto done; 2258 } 2259 /* 2260 * If system unwiring, require that the entry is system wired. 2261 */ 2262 if (!user_unwire && 2263 vm_map_entry_system_wired_count(entry) == 0) { 2264 end = entry->end; 2265 rv = KERN_INVALID_ARGUMENT; 2266 goto done; 2267 } 2268 entry = entry->next; 2269 } 2270 rv = KERN_SUCCESS; 2271 done: 2272 need_wakeup = FALSE; 2273 if (first_entry == NULL) { 2274 result = vm_map_lookup_entry(map, start, &first_entry); 2275 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 2276 first_entry = first_entry->next; 2277 else 2278 KASSERT(result, ("vm_map_unwire: lookup failed")); 2279 } 2280 entry = first_entry; 2281 while (entry != &map->header && entry->start < end) { 2282 if (rv == KERN_SUCCESS && (!user_unwire || 2283 (entry->eflags & MAP_ENTRY_USER_WIRED))) { 2284 if (user_unwire) 2285 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2286 entry->wired_count--; 2287 if (entry->wired_count == 0) { 2288 /* 2289 * Retain the map lock. 2290 */ 2291 vm_fault_unwire(map, entry->start, entry->end, 2292 entry->object.vm_object != NULL && 2293 (entry->object.vm_object->type == OBJT_DEVICE || 2294 entry->object.vm_object->type == OBJT_SG)); 2295 } 2296 } 2297 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, 2298 ("vm_map_unwire: in-transition flag missing")); 2299 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 2300 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 2301 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 2302 need_wakeup = TRUE; 2303 } 2304 vm_map_simplify_entry(map, entry); 2305 entry = entry->next; 2306 } 2307 vm_map_unlock(map); 2308 if (need_wakeup) 2309 vm_map_wakeup(map); 2310 return (rv); 2311 } 2312 2313 /* 2314 * vm_map_wire: 2315 * 2316 * Implements both kernel and user wiring. 2317 */ 2318 int 2319 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2320 int flags) 2321 { 2322 vm_map_entry_t entry, first_entry, tmp_entry; 2323 vm_offset_t saved_end, saved_start; 2324 unsigned int last_timestamp; 2325 int rv; 2326 boolean_t fictitious, need_wakeup, result, user_wire; 2327 vm_prot_t prot; 2328 2329 prot = 0; 2330 if (flags & VM_MAP_WIRE_WRITE) 2331 prot |= VM_PROT_WRITE; 2332 user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 2333 vm_map_lock(map); 2334 VM_MAP_RANGE_CHECK(map, start, end); 2335 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2336 if (flags & VM_MAP_WIRE_HOLESOK) 2337 first_entry = first_entry->next; 2338 else { 2339 vm_map_unlock(map); 2340 return (KERN_INVALID_ADDRESS); 2341 } 2342 } 2343 last_timestamp = map->timestamp; 2344 entry = first_entry; 2345 while (entry != &map->header && entry->start < end) { 2346 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2347 /* 2348 * We have not yet clipped the entry. 2349 */ 2350 saved_start = (start >= entry->start) ? start : 2351 entry->start; 2352 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2353 if (vm_map_unlock_and_wait(map, 0)) { 2354 /* 2355 * Allow interruption of user wiring? 2356 */ 2357 } 2358 vm_map_lock(map); 2359 if (last_timestamp + 1 != map->timestamp) { 2360 /* 2361 * Look again for the entry because the map was 2362 * modified while it was unlocked. 2363 * Specifically, the entry may have been 2364 * clipped, merged, or deleted. 2365 */ 2366 if (!vm_map_lookup_entry(map, saved_start, 2367 &tmp_entry)) { 2368 if (flags & VM_MAP_WIRE_HOLESOK) 2369 tmp_entry = tmp_entry->next; 2370 else { 2371 if (saved_start == start) { 2372 /* 2373 * first_entry has been deleted. 2374 */ 2375 vm_map_unlock(map); 2376 return (KERN_INVALID_ADDRESS); 2377 } 2378 end = saved_start; 2379 rv = KERN_INVALID_ADDRESS; 2380 goto done; 2381 } 2382 } 2383 if (entry == first_entry) 2384 first_entry = tmp_entry; 2385 else 2386 first_entry = NULL; 2387 entry = tmp_entry; 2388 } 2389 last_timestamp = map->timestamp; 2390 continue; 2391 } 2392 vm_map_clip_start(map, entry, start); 2393 vm_map_clip_end(map, entry, end); 2394 /* 2395 * Mark the entry in case the map lock is released. (See 2396 * above.) 2397 */ 2398 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 2399 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 2400 || (entry->protection & prot) != prot) { 2401 entry->eflags |= MAP_ENTRY_WIRE_SKIPPED; 2402 if ((flags & VM_MAP_WIRE_HOLESOK) == 0) { 2403 end = entry->end; 2404 rv = KERN_INVALID_ADDRESS; 2405 goto done; 2406 } 2407 goto next_entry; 2408 } 2409 if (entry->wired_count == 0) { 2410 entry->wired_count++; 2411 saved_start = entry->start; 2412 saved_end = entry->end; 2413 fictitious = entry->object.vm_object != NULL && 2414 (entry->object.vm_object->type == OBJT_DEVICE || 2415 entry->object.vm_object->type == OBJT_SG); 2416 /* 2417 * Release the map lock, relying on the in-transition 2418 * mark. Mark the map busy for fork. 2419 */ 2420 vm_map_busy(map); 2421 vm_map_unlock(map); 2422 rv = vm_fault_wire(map, saved_start, saved_end, 2423 fictitious); 2424 vm_map_lock(map); 2425 vm_map_unbusy(map); 2426 if (last_timestamp + 1 != map->timestamp) { 2427 /* 2428 * Look again for the entry because the map was 2429 * modified while it was unlocked. The entry 2430 * may have been clipped, but NOT merged or 2431 * deleted. 2432 */ 2433 result = vm_map_lookup_entry(map, saved_start, 2434 &tmp_entry); 2435 KASSERT(result, ("vm_map_wire: lookup failed")); 2436 if (entry == first_entry) 2437 first_entry = tmp_entry; 2438 else 2439 first_entry = NULL; 2440 entry = tmp_entry; 2441 while (entry->end < saved_end) { 2442 if (rv != KERN_SUCCESS) { 2443 KASSERT(entry->wired_count == 1, 2444 ("vm_map_wire: bad count")); 2445 entry->wired_count = -1; 2446 } 2447 entry = entry->next; 2448 } 2449 } 2450 last_timestamp = map->timestamp; 2451 if (rv != KERN_SUCCESS) { 2452 KASSERT(entry->wired_count == 1, 2453 ("vm_map_wire: bad count")); 2454 /* 2455 * Assign an out-of-range value to represent 2456 * the failure to wire this entry. 2457 */ 2458 entry->wired_count = -1; 2459 end = entry->end; 2460 goto done; 2461 } 2462 } else if (!user_wire || 2463 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 2464 entry->wired_count++; 2465 } 2466 /* 2467 * Check the map for holes in the specified region. 2468 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 2469 */ 2470 next_entry: 2471 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) && 2472 (entry->end < end && (entry->next == &map->header || 2473 entry->next->start > entry->end))) { 2474 end = entry->end; 2475 rv = KERN_INVALID_ADDRESS; 2476 goto done; 2477 } 2478 entry = entry->next; 2479 } 2480 rv = KERN_SUCCESS; 2481 done: 2482 need_wakeup = FALSE; 2483 if (first_entry == NULL) { 2484 result = vm_map_lookup_entry(map, start, &first_entry); 2485 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 2486 first_entry = first_entry->next; 2487 else 2488 KASSERT(result, ("vm_map_wire: lookup failed")); 2489 } 2490 entry = first_entry; 2491 while (entry != &map->header && entry->start < end) { 2492 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) 2493 goto next_entry_done; 2494 if (rv == KERN_SUCCESS) { 2495 if (user_wire) 2496 entry->eflags |= MAP_ENTRY_USER_WIRED; 2497 } else if (entry->wired_count == -1) { 2498 /* 2499 * Wiring failed on this entry. Thus, unwiring is 2500 * unnecessary. 2501 */ 2502 entry->wired_count = 0; 2503 } else { 2504 if (!user_wire || 2505 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) 2506 entry->wired_count--; 2507 if (entry->wired_count == 0) { 2508 /* 2509 * Retain the map lock. 2510 */ 2511 vm_fault_unwire(map, entry->start, entry->end, 2512 entry->object.vm_object != NULL && 2513 (entry->object.vm_object->type == OBJT_DEVICE || 2514 entry->object.vm_object->type == OBJT_SG)); 2515 } 2516 } 2517 next_entry_done: 2518 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, 2519 ("vm_map_wire: in-transition flag missing")); 2520 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION|MAP_ENTRY_WIRE_SKIPPED); 2521 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 2522 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 2523 need_wakeup = TRUE; 2524 } 2525 vm_map_simplify_entry(map, entry); 2526 entry = entry->next; 2527 } 2528 vm_map_unlock(map); 2529 if (need_wakeup) 2530 vm_map_wakeup(map); 2531 return (rv); 2532 } 2533 2534 /* 2535 * vm_map_sync 2536 * 2537 * Push any dirty cached pages in the address range to their pager. 2538 * If syncio is TRUE, dirty pages are written synchronously. 2539 * If invalidate is TRUE, any cached pages are freed as well. 2540 * 2541 * If the size of the region from start to end is zero, we are 2542 * supposed to flush all modified pages within the region containing 2543 * start. Unfortunately, a region can be split or coalesced with 2544 * neighboring regions, making it difficult to determine what the 2545 * original region was. Therefore, we approximate this requirement by 2546 * flushing the current region containing start. 2547 * 2548 * Returns an error if any part of the specified range is not mapped. 2549 */ 2550 int 2551 vm_map_sync( 2552 vm_map_t map, 2553 vm_offset_t start, 2554 vm_offset_t end, 2555 boolean_t syncio, 2556 boolean_t invalidate) 2557 { 2558 vm_map_entry_t current; 2559 vm_map_entry_t entry; 2560 vm_size_t size; 2561 vm_object_t object; 2562 vm_ooffset_t offset; 2563 unsigned int last_timestamp; 2564 2565 vm_map_lock_read(map); 2566 VM_MAP_RANGE_CHECK(map, start, end); 2567 if (!vm_map_lookup_entry(map, start, &entry)) { 2568 vm_map_unlock_read(map); 2569 return (KERN_INVALID_ADDRESS); 2570 } else if (start == end) { 2571 start = entry->start; 2572 end = entry->end; 2573 } 2574 /* 2575 * Make a first pass to check for user-wired memory and holes. 2576 */ 2577 for (current = entry; current != &map->header && current->start < end; 2578 current = current->next) { 2579 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) { 2580 vm_map_unlock_read(map); 2581 return (KERN_INVALID_ARGUMENT); 2582 } 2583 if (end > current->end && 2584 (current->next == &map->header || 2585 current->end != current->next->start)) { 2586 vm_map_unlock_read(map); 2587 return (KERN_INVALID_ADDRESS); 2588 } 2589 } 2590 2591 if (invalidate) 2592 pmap_remove(map->pmap, start, end); 2593 2594 /* 2595 * Make a second pass, cleaning/uncaching pages from the indicated 2596 * objects as we go. 2597 */ 2598 for (current = entry; current != &map->header && current->start < end;) { 2599 offset = current->offset + (start - current->start); 2600 size = (end <= current->end ? end : current->end) - start; 2601 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 2602 vm_map_t smap; 2603 vm_map_entry_t tentry; 2604 vm_size_t tsize; 2605 2606 smap = current->object.sub_map; 2607 vm_map_lock_read(smap); 2608 (void) vm_map_lookup_entry(smap, offset, &tentry); 2609 tsize = tentry->end - offset; 2610 if (tsize < size) 2611 size = tsize; 2612 object = tentry->object.vm_object; 2613 offset = tentry->offset + (offset - tentry->start); 2614 vm_map_unlock_read(smap); 2615 } else { 2616 object = current->object.vm_object; 2617 } 2618 vm_object_reference(object); 2619 last_timestamp = map->timestamp; 2620 vm_map_unlock_read(map); 2621 vm_object_sync(object, offset, size, syncio, invalidate); 2622 start += size; 2623 vm_object_deallocate(object); 2624 vm_map_lock_read(map); 2625 if (last_timestamp == map->timestamp || 2626 !vm_map_lookup_entry(map, start, ¤t)) 2627 current = current->next; 2628 } 2629 2630 vm_map_unlock_read(map); 2631 return (KERN_SUCCESS); 2632 } 2633 2634 /* 2635 * vm_map_entry_unwire: [ internal use only ] 2636 * 2637 * Make the region specified by this entry pageable. 2638 * 2639 * The map in question should be locked. 2640 * [This is the reason for this routine's existence.] 2641 */ 2642 static void 2643 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 2644 { 2645 vm_fault_unwire(map, entry->start, entry->end, 2646 entry->object.vm_object != NULL && 2647 (entry->object.vm_object->type == OBJT_DEVICE || 2648 entry->object.vm_object->type == OBJT_SG)); 2649 entry->wired_count = 0; 2650 } 2651 2652 static void 2653 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map) 2654 { 2655 2656 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) 2657 vm_object_deallocate(entry->object.vm_object); 2658 uma_zfree(system_map ? kmapentzone : mapentzone, entry); 2659 } 2660 2661 /* 2662 * vm_map_entry_delete: [ internal use only ] 2663 * 2664 * Deallocate the given entry from the target map. 2665 */ 2666 static void 2667 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry) 2668 { 2669 vm_object_t object; 2670 vm_pindex_t offidxstart, offidxend, count, size1; 2671 vm_ooffset_t size; 2672 2673 vm_map_entry_unlink(map, entry); 2674 object = entry->object.vm_object; 2675 size = entry->end - entry->start; 2676 map->size -= size; 2677 2678 if (entry->cred != NULL) { 2679 swap_release_by_cred(size, entry->cred); 2680 crfree(entry->cred); 2681 } 2682 2683 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 && 2684 (object != NULL)) { 2685 KASSERT(entry->cred == NULL || object->cred == NULL || 2686 (entry->eflags & MAP_ENTRY_NEEDS_COPY), 2687 ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry)); 2688 count = OFF_TO_IDX(size); 2689 offidxstart = OFF_TO_IDX(entry->offset); 2690 offidxend = offidxstart + count; 2691 VM_OBJECT_LOCK(object); 2692 if (object->ref_count != 1 && 2693 ((object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING || 2694 object == kernel_object || object == kmem_object)) { 2695 vm_object_collapse(object); 2696 vm_object_page_remove(object, offidxstart, offidxend, FALSE); 2697 if (object->type == OBJT_SWAP) 2698 swap_pager_freespace(object, offidxstart, count); 2699 if (offidxend >= object->size && 2700 offidxstart < object->size) { 2701 size1 = object->size; 2702 object->size = offidxstart; 2703 if (object->cred != NULL) { 2704 size1 -= object->size; 2705 KASSERT(object->charge >= ptoa(size1), 2706 ("vm_map_entry_delete: object->charge < 0")); 2707 swap_release_by_cred(ptoa(size1), object->cred); 2708 object->charge -= ptoa(size1); 2709 } 2710 } 2711 } 2712 VM_OBJECT_UNLOCK(object); 2713 } else 2714 entry->object.vm_object = NULL; 2715 if (map->system_map) 2716 vm_map_entry_deallocate(entry, TRUE); 2717 else { 2718 entry->next = curthread->td_map_def_user; 2719 curthread->td_map_def_user = entry; 2720 } 2721 } 2722 2723 /* 2724 * vm_map_delete: [ internal use only ] 2725 * 2726 * Deallocates the given address range from the target 2727 * map. 2728 */ 2729 int 2730 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end) 2731 { 2732 vm_map_entry_t entry; 2733 vm_map_entry_t first_entry; 2734 2735 VM_MAP_ASSERT_LOCKED(map); 2736 2737 /* 2738 * Find the start of the region, and clip it 2739 */ 2740 if (!vm_map_lookup_entry(map, start, &first_entry)) 2741 entry = first_entry->next; 2742 else { 2743 entry = first_entry; 2744 vm_map_clip_start(map, entry, start); 2745 } 2746 2747 /* 2748 * Step through all entries in this region 2749 */ 2750 while ((entry != &map->header) && (entry->start < end)) { 2751 vm_map_entry_t next; 2752 2753 /* 2754 * Wait for wiring or unwiring of an entry to complete. 2755 * Also wait for any system wirings to disappear on 2756 * user maps. 2757 */ 2758 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 || 2759 (vm_map_pmap(map) != kernel_pmap && 2760 vm_map_entry_system_wired_count(entry) != 0)) { 2761 unsigned int last_timestamp; 2762 vm_offset_t saved_start; 2763 vm_map_entry_t tmp_entry; 2764 2765 saved_start = entry->start; 2766 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2767 last_timestamp = map->timestamp; 2768 (void) vm_map_unlock_and_wait(map, 0); 2769 vm_map_lock(map); 2770 if (last_timestamp + 1 != map->timestamp) { 2771 /* 2772 * Look again for the entry because the map was 2773 * modified while it was unlocked. 2774 * Specifically, the entry may have been 2775 * clipped, merged, or deleted. 2776 */ 2777 if (!vm_map_lookup_entry(map, saved_start, 2778 &tmp_entry)) 2779 entry = tmp_entry->next; 2780 else { 2781 entry = tmp_entry; 2782 vm_map_clip_start(map, entry, 2783 saved_start); 2784 } 2785 } 2786 continue; 2787 } 2788 vm_map_clip_end(map, entry, end); 2789 2790 next = entry->next; 2791 2792 /* 2793 * Unwire before removing addresses from the pmap; otherwise, 2794 * unwiring will put the entries back in the pmap. 2795 */ 2796 if (entry->wired_count != 0) { 2797 vm_map_entry_unwire(map, entry); 2798 } 2799 2800 pmap_remove(map->pmap, entry->start, entry->end); 2801 2802 /* 2803 * Delete the entry only after removing all pmap 2804 * entries pointing to its pages. (Otherwise, its 2805 * page frames may be reallocated, and any modify bits 2806 * will be set in the wrong object!) 2807 */ 2808 vm_map_entry_delete(map, entry); 2809 entry = next; 2810 } 2811 return (KERN_SUCCESS); 2812 } 2813 2814 /* 2815 * vm_map_remove: 2816 * 2817 * Remove the given address range from the target map. 2818 * This is the exported form of vm_map_delete. 2819 */ 2820 int 2821 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 2822 { 2823 int result; 2824 2825 vm_map_lock(map); 2826 VM_MAP_RANGE_CHECK(map, start, end); 2827 result = vm_map_delete(map, start, end); 2828 vm_map_unlock(map); 2829 return (result); 2830 } 2831 2832 /* 2833 * vm_map_check_protection: 2834 * 2835 * Assert that the target map allows the specified privilege on the 2836 * entire address region given. The entire region must be allocated. 2837 * 2838 * WARNING! This code does not and should not check whether the 2839 * contents of the region is accessible. For example a smaller file 2840 * might be mapped into a larger address space. 2841 * 2842 * NOTE! This code is also called by munmap(). 2843 * 2844 * The map must be locked. A read lock is sufficient. 2845 */ 2846 boolean_t 2847 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 2848 vm_prot_t protection) 2849 { 2850 vm_map_entry_t entry; 2851 vm_map_entry_t tmp_entry; 2852 2853 if (!vm_map_lookup_entry(map, start, &tmp_entry)) 2854 return (FALSE); 2855 entry = tmp_entry; 2856 2857 while (start < end) { 2858 if (entry == &map->header) 2859 return (FALSE); 2860 /* 2861 * No holes allowed! 2862 */ 2863 if (start < entry->start) 2864 return (FALSE); 2865 /* 2866 * Check protection associated with entry. 2867 */ 2868 if ((entry->protection & protection) != protection) 2869 return (FALSE); 2870 /* go to next entry */ 2871 start = entry->end; 2872 entry = entry->next; 2873 } 2874 return (TRUE); 2875 } 2876 2877 /* 2878 * vm_map_copy_entry: 2879 * 2880 * Copies the contents of the source entry to the destination 2881 * entry. The entries *must* be aligned properly. 2882 */ 2883 static void 2884 vm_map_copy_entry( 2885 vm_map_t src_map, 2886 vm_map_t dst_map, 2887 vm_map_entry_t src_entry, 2888 vm_map_entry_t dst_entry, 2889 vm_ooffset_t *fork_charge) 2890 { 2891 vm_object_t src_object; 2892 vm_offset_t size; 2893 struct ucred *cred; 2894 int charged; 2895 2896 VM_MAP_ASSERT_LOCKED(dst_map); 2897 2898 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP) 2899 return; 2900 2901 if (src_entry->wired_count == 0) { 2902 2903 /* 2904 * If the source entry is marked needs_copy, it is already 2905 * write-protected. 2906 */ 2907 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) { 2908 pmap_protect(src_map->pmap, 2909 src_entry->start, 2910 src_entry->end, 2911 src_entry->protection & ~VM_PROT_WRITE); 2912 } 2913 2914 /* 2915 * Make a copy of the object. 2916 */ 2917 size = src_entry->end - src_entry->start; 2918 if ((src_object = src_entry->object.vm_object) != NULL) { 2919 VM_OBJECT_LOCK(src_object); 2920 charged = ENTRY_CHARGED(src_entry); 2921 if ((src_object->handle == NULL) && 2922 (src_object->type == OBJT_DEFAULT || 2923 src_object->type == OBJT_SWAP)) { 2924 vm_object_collapse(src_object); 2925 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) { 2926 vm_object_split(src_entry); 2927 src_object = src_entry->object.vm_object; 2928 } 2929 } 2930 vm_object_reference_locked(src_object); 2931 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 2932 if (src_entry->cred != NULL && 2933 !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 2934 KASSERT(src_object->cred == NULL, 2935 ("OVERCOMMIT: vm_map_copy_entry: cred %p", 2936 src_object)); 2937 src_object->cred = src_entry->cred; 2938 src_object->charge = size; 2939 } 2940 VM_OBJECT_UNLOCK(src_object); 2941 dst_entry->object.vm_object = src_object; 2942 if (charged) { 2943 cred = curthread->td_ucred; 2944 crhold(cred); 2945 dst_entry->cred = cred; 2946 *fork_charge += size; 2947 if (!(src_entry->eflags & 2948 MAP_ENTRY_NEEDS_COPY)) { 2949 crhold(cred); 2950 src_entry->cred = cred; 2951 *fork_charge += size; 2952 } 2953 } 2954 src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 2955 dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 2956 dst_entry->offset = src_entry->offset; 2957 } else { 2958 dst_entry->object.vm_object = NULL; 2959 dst_entry->offset = 0; 2960 if (src_entry->cred != NULL) { 2961 dst_entry->cred = curthread->td_ucred; 2962 crhold(dst_entry->cred); 2963 *fork_charge += size; 2964 } 2965 } 2966 2967 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start, 2968 dst_entry->end - dst_entry->start, src_entry->start); 2969 } else { 2970 /* 2971 * Of course, wired down pages can't be set copy-on-write. 2972 * Cause wired pages to be copied into the new map by 2973 * simulating faults (the new pages are pageable) 2974 */ 2975 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry, 2976 fork_charge); 2977 } 2978 } 2979 2980 /* 2981 * vmspace_map_entry_forked: 2982 * Update the newly-forked vmspace each time a map entry is inherited 2983 * or copied. The values for vm_dsize and vm_tsize are approximate 2984 * (and mostly-obsolete ideas in the face of mmap(2) et al.) 2985 */ 2986 static void 2987 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2, 2988 vm_map_entry_t entry) 2989 { 2990 vm_size_t entrysize; 2991 vm_offset_t newend; 2992 2993 entrysize = entry->end - entry->start; 2994 vm2->vm_map.size += entrysize; 2995 if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) { 2996 vm2->vm_ssize += btoc(entrysize); 2997 } else if (entry->start >= (vm_offset_t)vm1->vm_daddr && 2998 entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) { 2999 newend = MIN(entry->end, 3000 (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)); 3001 vm2->vm_dsize += btoc(newend - entry->start); 3002 } else if (entry->start >= (vm_offset_t)vm1->vm_taddr && 3003 entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) { 3004 newend = MIN(entry->end, 3005 (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)); 3006 vm2->vm_tsize += btoc(newend - entry->start); 3007 } 3008 } 3009 3010 /* 3011 * vmspace_fork: 3012 * Create a new process vmspace structure and vm_map 3013 * based on those of an existing process. The new map 3014 * is based on the old map, according to the inheritance 3015 * values on the regions in that map. 3016 * 3017 * XXX It might be worth coalescing the entries added to the new vmspace. 3018 * 3019 * The source map must not be locked. 3020 */ 3021 struct vmspace * 3022 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge) 3023 { 3024 struct vmspace *vm2; 3025 vm_map_t old_map = &vm1->vm_map; 3026 vm_map_t new_map; 3027 vm_map_entry_t old_entry; 3028 vm_map_entry_t new_entry; 3029 vm_object_t object; 3030 int locked; 3031 3032 vm_map_lock(old_map); 3033 if (old_map->busy) 3034 vm_map_wait_busy(old_map); 3035 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset); 3036 if (vm2 == NULL) 3037 goto unlock_and_return; 3038 vm2->vm_taddr = vm1->vm_taddr; 3039 vm2->vm_daddr = vm1->vm_daddr; 3040 vm2->vm_maxsaddr = vm1->vm_maxsaddr; 3041 new_map = &vm2->vm_map; /* XXX */ 3042 locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */ 3043 KASSERT(locked, ("vmspace_fork: lock failed")); 3044 new_map->timestamp = 1; 3045 3046 old_entry = old_map->header.next; 3047 3048 while (old_entry != &old_map->header) { 3049 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) 3050 panic("vm_map_fork: encountered a submap"); 3051 3052 switch (old_entry->inheritance) { 3053 case VM_INHERIT_NONE: 3054 break; 3055 3056 case VM_INHERIT_SHARE: 3057 /* 3058 * Clone the entry, creating the shared object if necessary. 3059 */ 3060 object = old_entry->object.vm_object; 3061 if (object == NULL) { 3062 object = vm_object_allocate(OBJT_DEFAULT, 3063 atop(old_entry->end - old_entry->start)); 3064 old_entry->object.vm_object = object; 3065 old_entry->offset = 0; 3066 if (old_entry->cred != NULL) { 3067 object->cred = old_entry->cred; 3068 object->charge = old_entry->end - 3069 old_entry->start; 3070 old_entry->cred = NULL; 3071 } 3072 } 3073 3074 /* 3075 * Add the reference before calling vm_object_shadow 3076 * to insure that a shadow object is created. 3077 */ 3078 vm_object_reference(object); 3079 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3080 vm_object_shadow(&old_entry->object.vm_object, 3081 &old_entry->offset, 3082 old_entry->end - old_entry->start); 3083 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 3084 /* Transfer the second reference too. */ 3085 vm_object_reference( 3086 old_entry->object.vm_object); 3087 3088 /* 3089 * As in vm_map_simplify_entry(), the 3090 * vnode lock will not be acquired in 3091 * this call to vm_object_deallocate(). 3092 */ 3093 vm_object_deallocate(object); 3094 object = old_entry->object.vm_object; 3095 } 3096 VM_OBJECT_LOCK(object); 3097 vm_object_clear_flag(object, OBJ_ONEMAPPING); 3098 if (old_entry->cred != NULL) { 3099 KASSERT(object->cred == NULL, ("vmspace_fork both cred")); 3100 object->cred = old_entry->cred; 3101 object->charge = old_entry->end - old_entry->start; 3102 old_entry->cred = NULL; 3103 } 3104 VM_OBJECT_UNLOCK(object); 3105 3106 /* 3107 * Clone the entry, referencing the shared object. 3108 */ 3109 new_entry = vm_map_entry_create(new_map); 3110 *new_entry = *old_entry; 3111 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 3112 MAP_ENTRY_IN_TRANSITION); 3113 new_entry->wired_count = 0; 3114 3115 /* 3116 * Insert the entry into the new map -- we know we're 3117 * inserting at the end of the new map. 3118 */ 3119 vm_map_entry_link(new_map, new_map->header.prev, 3120 new_entry); 3121 vmspace_map_entry_forked(vm1, vm2, new_entry); 3122 3123 /* 3124 * Update the physical map 3125 */ 3126 pmap_copy(new_map->pmap, old_map->pmap, 3127 new_entry->start, 3128 (old_entry->end - old_entry->start), 3129 old_entry->start); 3130 break; 3131 3132 case VM_INHERIT_COPY: 3133 /* 3134 * Clone the entry and link into the map. 3135 */ 3136 new_entry = vm_map_entry_create(new_map); 3137 *new_entry = *old_entry; 3138 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 3139 MAP_ENTRY_IN_TRANSITION); 3140 new_entry->wired_count = 0; 3141 new_entry->object.vm_object = NULL; 3142 new_entry->cred = NULL; 3143 vm_map_entry_link(new_map, new_map->header.prev, 3144 new_entry); 3145 vmspace_map_entry_forked(vm1, vm2, new_entry); 3146 vm_map_copy_entry(old_map, new_map, old_entry, 3147 new_entry, fork_charge); 3148 break; 3149 } 3150 old_entry = old_entry->next; 3151 } 3152 unlock_and_return: 3153 vm_map_unlock(old_map); 3154 if (vm2 != NULL) 3155 vm_map_unlock(new_map); 3156 3157 return (vm2); 3158 } 3159 3160 int 3161 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 3162 vm_prot_t prot, vm_prot_t max, int cow) 3163 { 3164 vm_map_entry_t new_entry, prev_entry; 3165 vm_offset_t bot, top; 3166 vm_size_t init_ssize; 3167 int orient, rv; 3168 rlim_t vmemlim; 3169 3170 /* 3171 * The stack orientation is piggybacked with the cow argument. 3172 * Extract it into orient and mask the cow argument so that we 3173 * don't pass it around further. 3174 * NOTE: We explicitly allow bi-directional stacks. 3175 */ 3176 orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP); 3177 cow &= ~orient; 3178 KASSERT(orient != 0, ("No stack grow direction")); 3179 3180 if (addrbos < vm_map_min(map) || 3181 addrbos > vm_map_max(map) || 3182 addrbos + max_ssize < addrbos) 3183 return (KERN_NO_SPACE); 3184 3185 init_ssize = (max_ssize < sgrowsiz) ? max_ssize : sgrowsiz; 3186 3187 PROC_LOCK(curthread->td_proc); 3188 vmemlim = lim_cur(curthread->td_proc, RLIMIT_VMEM); 3189 PROC_UNLOCK(curthread->td_proc); 3190 3191 vm_map_lock(map); 3192 3193 /* If addr is already mapped, no go */ 3194 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) { 3195 vm_map_unlock(map); 3196 return (KERN_NO_SPACE); 3197 } 3198 3199 /* If we would blow our VMEM resource limit, no go */ 3200 if (map->size + init_ssize > vmemlim) { 3201 vm_map_unlock(map); 3202 return (KERN_NO_SPACE); 3203 } 3204 3205 /* 3206 * If we can't accomodate max_ssize in the current mapping, no go. 3207 * However, we need to be aware that subsequent user mappings might 3208 * map into the space we have reserved for stack, and currently this 3209 * space is not protected. 3210 * 3211 * Hopefully we will at least detect this condition when we try to 3212 * grow the stack. 3213 */ 3214 if ((prev_entry->next != &map->header) && 3215 (prev_entry->next->start < addrbos + max_ssize)) { 3216 vm_map_unlock(map); 3217 return (KERN_NO_SPACE); 3218 } 3219 3220 /* 3221 * We initially map a stack of only init_ssize. We will grow as 3222 * needed later. Depending on the orientation of the stack (i.e. 3223 * the grow direction) we either map at the top of the range, the 3224 * bottom of the range or in the middle. 3225 * 3226 * Note: we would normally expect prot and max to be VM_PROT_ALL, 3227 * and cow to be 0. Possibly we should eliminate these as input 3228 * parameters, and just pass these values here in the insert call. 3229 */ 3230 if (orient == MAP_STACK_GROWS_DOWN) 3231 bot = addrbos + max_ssize - init_ssize; 3232 else if (orient == MAP_STACK_GROWS_UP) 3233 bot = addrbos; 3234 else 3235 bot = round_page(addrbos + max_ssize/2 - init_ssize/2); 3236 top = bot + init_ssize; 3237 rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow); 3238 3239 /* Now set the avail_ssize amount. */ 3240 if (rv == KERN_SUCCESS) { 3241 if (prev_entry != &map->header) 3242 vm_map_clip_end(map, prev_entry, bot); 3243 new_entry = prev_entry->next; 3244 if (new_entry->end != top || new_entry->start != bot) 3245 panic("Bad entry start/end for new stack entry"); 3246 3247 new_entry->avail_ssize = max_ssize - init_ssize; 3248 if (orient & MAP_STACK_GROWS_DOWN) 3249 new_entry->eflags |= MAP_ENTRY_GROWS_DOWN; 3250 if (orient & MAP_STACK_GROWS_UP) 3251 new_entry->eflags |= MAP_ENTRY_GROWS_UP; 3252 } 3253 3254 vm_map_unlock(map); 3255 return (rv); 3256 } 3257 3258 static int stack_guard_page = 0; 3259 TUNABLE_INT("security.bsd.stack_guard_page", &stack_guard_page); 3260 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RW, 3261 &stack_guard_page, 0, 3262 "Insert stack guard page ahead of the growable segments."); 3263 3264 /* Attempts to grow a vm stack entry. Returns KERN_SUCCESS if the 3265 * desired address is already mapped, or if we successfully grow 3266 * the stack. Also returns KERN_SUCCESS if addr is outside the 3267 * stack range (this is strange, but preserves compatibility with 3268 * the grow function in vm_machdep.c). 3269 */ 3270 int 3271 vm_map_growstack(struct proc *p, vm_offset_t addr) 3272 { 3273 vm_map_entry_t next_entry, prev_entry; 3274 vm_map_entry_t new_entry, stack_entry; 3275 struct vmspace *vm = p->p_vmspace; 3276 vm_map_t map = &vm->vm_map; 3277 vm_offset_t end; 3278 size_t grow_amount, max_grow; 3279 rlim_t stacklim, vmemlim; 3280 int is_procstack, rv; 3281 struct ucred *cred; 3282 3283 Retry: 3284 PROC_LOCK(p); 3285 stacklim = lim_cur(p, RLIMIT_STACK); 3286 vmemlim = lim_cur(p, RLIMIT_VMEM); 3287 PROC_UNLOCK(p); 3288 3289 vm_map_lock_read(map); 3290 3291 /* If addr is already in the entry range, no need to grow.*/ 3292 if (vm_map_lookup_entry(map, addr, &prev_entry)) { 3293 vm_map_unlock_read(map); 3294 return (KERN_SUCCESS); 3295 } 3296 3297 next_entry = prev_entry->next; 3298 if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) { 3299 /* 3300 * This entry does not grow upwards. Since the address lies 3301 * beyond this entry, the next entry (if one exists) has to 3302 * be a downward growable entry. The entry list header is 3303 * never a growable entry, so it suffices to check the flags. 3304 */ 3305 if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) { 3306 vm_map_unlock_read(map); 3307 return (KERN_SUCCESS); 3308 } 3309 stack_entry = next_entry; 3310 } else { 3311 /* 3312 * This entry grows upward. If the next entry does not at 3313 * least grow downwards, this is the entry we need to grow. 3314 * otherwise we have two possible choices and we have to 3315 * select one. 3316 */ 3317 if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) { 3318 /* 3319 * We have two choices; grow the entry closest to 3320 * the address to minimize the amount of growth. 3321 */ 3322 if (addr - prev_entry->end <= next_entry->start - addr) 3323 stack_entry = prev_entry; 3324 else 3325 stack_entry = next_entry; 3326 } else 3327 stack_entry = prev_entry; 3328 } 3329 3330 if (stack_entry == next_entry) { 3331 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo")); 3332 KASSERT(addr < stack_entry->start, ("foo")); 3333 end = (prev_entry != &map->header) ? prev_entry->end : 3334 stack_entry->start - stack_entry->avail_ssize; 3335 grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE); 3336 max_grow = stack_entry->start - end; 3337 } else { 3338 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo")); 3339 KASSERT(addr >= stack_entry->end, ("foo")); 3340 end = (next_entry != &map->header) ? next_entry->start : 3341 stack_entry->end + stack_entry->avail_ssize; 3342 grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE); 3343 max_grow = end - stack_entry->end; 3344 } 3345 3346 if (grow_amount > stack_entry->avail_ssize) { 3347 vm_map_unlock_read(map); 3348 return (KERN_NO_SPACE); 3349 } 3350 3351 /* 3352 * If there is no longer enough space between the entries nogo, and 3353 * adjust the available space. Note: this should only happen if the 3354 * user has mapped into the stack area after the stack was created, 3355 * and is probably an error. 3356 * 3357 * This also effectively destroys any guard page the user might have 3358 * intended by limiting the stack size. 3359 */ 3360 if (grow_amount + (stack_guard_page ? PAGE_SIZE : 0) > max_grow) { 3361 if (vm_map_lock_upgrade(map)) 3362 goto Retry; 3363 3364 stack_entry->avail_ssize = max_grow; 3365 3366 vm_map_unlock(map); 3367 return (KERN_NO_SPACE); 3368 } 3369 3370 is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr) ? 1 : 0; 3371 3372 /* 3373 * If this is the main process stack, see if we're over the stack 3374 * limit. 3375 */ 3376 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 3377 vm_map_unlock_read(map); 3378 return (KERN_NO_SPACE); 3379 } 3380 3381 /* Round up the grow amount modulo SGROWSIZ */ 3382 grow_amount = roundup (grow_amount, sgrowsiz); 3383 if (grow_amount > stack_entry->avail_ssize) 3384 grow_amount = stack_entry->avail_ssize; 3385 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 3386 grow_amount = trunc_page((vm_size_t)stacklim) - 3387 ctob(vm->vm_ssize); 3388 } 3389 3390 /* If we would blow our VMEM resource limit, no go */ 3391 if (map->size + grow_amount > vmemlim) { 3392 vm_map_unlock_read(map); 3393 return (KERN_NO_SPACE); 3394 } 3395 3396 if (vm_map_lock_upgrade(map)) 3397 goto Retry; 3398 3399 if (stack_entry == next_entry) { 3400 /* 3401 * Growing downward. 3402 */ 3403 /* Get the preliminary new entry start value */ 3404 addr = stack_entry->start - grow_amount; 3405 3406 /* 3407 * If this puts us into the previous entry, cut back our 3408 * growth to the available space. Also, see the note above. 3409 */ 3410 if (addr < end) { 3411 stack_entry->avail_ssize = max_grow; 3412 addr = end; 3413 if (stack_guard_page) 3414 addr += PAGE_SIZE; 3415 } 3416 3417 rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start, 3418 p->p_sysent->sv_stackprot, VM_PROT_ALL, 0); 3419 3420 /* Adjust the available stack space by the amount we grew. */ 3421 if (rv == KERN_SUCCESS) { 3422 if (prev_entry != &map->header) 3423 vm_map_clip_end(map, prev_entry, addr); 3424 new_entry = prev_entry->next; 3425 KASSERT(new_entry == stack_entry->prev, ("foo")); 3426 KASSERT(new_entry->end == stack_entry->start, ("foo")); 3427 KASSERT(new_entry->start == addr, ("foo")); 3428 grow_amount = new_entry->end - new_entry->start; 3429 new_entry->avail_ssize = stack_entry->avail_ssize - 3430 grow_amount; 3431 stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN; 3432 new_entry->eflags |= MAP_ENTRY_GROWS_DOWN; 3433 } 3434 } else { 3435 /* 3436 * Growing upward. 3437 */ 3438 addr = stack_entry->end + grow_amount; 3439 3440 /* 3441 * If this puts us into the next entry, cut back our growth 3442 * to the available space. Also, see the note above. 3443 */ 3444 if (addr > end) { 3445 stack_entry->avail_ssize = end - stack_entry->end; 3446 addr = end; 3447 if (stack_guard_page) 3448 addr -= PAGE_SIZE; 3449 } 3450 3451 grow_amount = addr - stack_entry->end; 3452 cred = stack_entry->cred; 3453 if (cred == NULL && stack_entry->object.vm_object != NULL) 3454 cred = stack_entry->object.vm_object->cred; 3455 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred)) 3456 rv = KERN_NO_SPACE; 3457 /* Grow the underlying object if applicable. */ 3458 else if (stack_entry->object.vm_object == NULL || 3459 vm_object_coalesce(stack_entry->object.vm_object, 3460 stack_entry->offset, 3461 (vm_size_t)(stack_entry->end - stack_entry->start), 3462 (vm_size_t)grow_amount, cred != NULL)) { 3463 map->size += (addr - stack_entry->end); 3464 /* Update the current entry. */ 3465 stack_entry->end = addr; 3466 stack_entry->avail_ssize -= grow_amount; 3467 vm_map_entry_resize_free(map, stack_entry); 3468 rv = KERN_SUCCESS; 3469 3470 if (next_entry != &map->header) 3471 vm_map_clip_start(map, next_entry, addr); 3472 } else 3473 rv = KERN_FAILURE; 3474 } 3475 3476 if (rv == KERN_SUCCESS && is_procstack) 3477 vm->vm_ssize += btoc(grow_amount); 3478 3479 vm_map_unlock(map); 3480 3481 /* 3482 * Heed the MAP_WIREFUTURE flag if it was set for this process. 3483 */ 3484 if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) { 3485 vm_map_wire(map, 3486 (stack_entry == next_entry) ? addr : addr - grow_amount, 3487 (stack_entry == next_entry) ? stack_entry->start : addr, 3488 (p->p_flag & P_SYSTEM) 3489 ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES 3490 : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES); 3491 } 3492 3493 return (rv); 3494 } 3495 3496 /* 3497 * Unshare the specified VM space for exec. If other processes are 3498 * mapped to it, then create a new one. The new vmspace is null. 3499 */ 3500 int 3501 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser) 3502 { 3503 struct vmspace *oldvmspace = p->p_vmspace; 3504 struct vmspace *newvmspace; 3505 3506 newvmspace = vmspace_alloc(minuser, maxuser); 3507 if (newvmspace == NULL) 3508 return (ENOMEM); 3509 newvmspace->vm_swrss = oldvmspace->vm_swrss; 3510 /* 3511 * This code is written like this for prototype purposes. The 3512 * goal is to avoid running down the vmspace here, but let the 3513 * other process's that are still using the vmspace to finally 3514 * run it down. Even though there is little or no chance of blocking 3515 * here, it is a good idea to keep this form for future mods. 3516 */ 3517 PROC_VMSPACE_LOCK(p); 3518 p->p_vmspace = newvmspace; 3519 PROC_VMSPACE_UNLOCK(p); 3520 if (p == curthread->td_proc) 3521 pmap_activate(curthread); 3522 vmspace_free(oldvmspace); 3523 return (0); 3524 } 3525 3526 /* 3527 * Unshare the specified VM space for forcing COW. This 3528 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 3529 */ 3530 int 3531 vmspace_unshare(struct proc *p) 3532 { 3533 struct vmspace *oldvmspace = p->p_vmspace; 3534 struct vmspace *newvmspace; 3535 vm_ooffset_t fork_charge; 3536 3537 if (oldvmspace->vm_refcnt == 1) 3538 return (0); 3539 fork_charge = 0; 3540 newvmspace = vmspace_fork(oldvmspace, &fork_charge); 3541 if (newvmspace == NULL) 3542 return (ENOMEM); 3543 if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) { 3544 vmspace_free(newvmspace); 3545 return (ENOMEM); 3546 } 3547 PROC_VMSPACE_LOCK(p); 3548 p->p_vmspace = newvmspace; 3549 PROC_VMSPACE_UNLOCK(p); 3550 if (p == curthread->td_proc) 3551 pmap_activate(curthread); 3552 vmspace_free(oldvmspace); 3553 return (0); 3554 } 3555 3556 /* 3557 * vm_map_lookup: 3558 * 3559 * Finds the VM object, offset, and 3560 * protection for a given virtual address in the 3561 * specified map, assuming a page fault of the 3562 * type specified. 3563 * 3564 * Leaves the map in question locked for read; return 3565 * values are guaranteed until a vm_map_lookup_done 3566 * call is performed. Note that the map argument 3567 * is in/out; the returned map must be used in 3568 * the call to vm_map_lookup_done. 3569 * 3570 * A handle (out_entry) is returned for use in 3571 * vm_map_lookup_done, to make that fast. 3572 * 3573 * If a lookup is requested with "write protection" 3574 * specified, the map may be changed to perform virtual 3575 * copying operations, although the data referenced will 3576 * remain the same. 3577 */ 3578 int 3579 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 3580 vm_offset_t vaddr, 3581 vm_prot_t fault_typea, 3582 vm_map_entry_t *out_entry, /* OUT */ 3583 vm_object_t *object, /* OUT */ 3584 vm_pindex_t *pindex, /* OUT */ 3585 vm_prot_t *out_prot, /* OUT */ 3586 boolean_t *wired) /* OUT */ 3587 { 3588 vm_map_entry_t entry; 3589 vm_map_t map = *var_map; 3590 vm_prot_t prot; 3591 vm_prot_t fault_type = fault_typea; 3592 vm_object_t eobject; 3593 vm_size_t size; 3594 struct ucred *cred; 3595 3596 RetryLookup:; 3597 3598 vm_map_lock_read(map); 3599 3600 /* 3601 * Lookup the faulting address. 3602 */ 3603 if (!vm_map_lookup_entry(map, vaddr, out_entry)) { 3604 vm_map_unlock_read(map); 3605 return (KERN_INVALID_ADDRESS); 3606 } 3607 3608 entry = *out_entry; 3609 3610 /* 3611 * Handle submaps. 3612 */ 3613 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 3614 vm_map_t old_map = map; 3615 3616 *var_map = map = entry->object.sub_map; 3617 vm_map_unlock_read(old_map); 3618 goto RetryLookup; 3619 } 3620 3621 /* 3622 * Check whether this task is allowed to have this page. 3623 */ 3624 prot = entry->protection; 3625 fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE); 3626 if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) { 3627 vm_map_unlock_read(map); 3628 return (KERN_PROTECTION_FAILURE); 3629 } 3630 if ((entry->eflags & MAP_ENTRY_USER_WIRED) && 3631 (entry->eflags & MAP_ENTRY_COW) && 3632 (fault_type & VM_PROT_WRITE)) { 3633 vm_map_unlock_read(map); 3634 return (KERN_PROTECTION_FAILURE); 3635 } 3636 3637 /* 3638 * If this page is not pageable, we have to get it for all possible 3639 * accesses. 3640 */ 3641 *wired = (entry->wired_count != 0); 3642 if (*wired) 3643 fault_type = entry->protection; 3644 size = entry->end - entry->start; 3645 /* 3646 * If the entry was copy-on-write, we either ... 3647 */ 3648 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3649 /* 3650 * If we want to write the page, we may as well handle that 3651 * now since we've got the map locked. 3652 * 3653 * If we don't need to write the page, we just demote the 3654 * permissions allowed. 3655 */ 3656 if ((fault_type & VM_PROT_WRITE) != 0 || 3657 (fault_typea & VM_PROT_COPY) != 0) { 3658 /* 3659 * Make a new object, and place it in the object 3660 * chain. Note that no new references have appeared 3661 * -- one just moved from the map to the new 3662 * object. 3663 */ 3664 if (vm_map_lock_upgrade(map)) 3665 goto RetryLookup; 3666 3667 if (entry->cred == NULL) { 3668 /* 3669 * The debugger owner is charged for 3670 * the memory. 3671 */ 3672 cred = curthread->td_ucred; 3673 crhold(cred); 3674 if (!swap_reserve_by_cred(size, cred)) { 3675 crfree(cred); 3676 vm_map_unlock(map); 3677 return (KERN_RESOURCE_SHORTAGE); 3678 } 3679 entry->cred = cred; 3680 } 3681 vm_object_shadow(&entry->object.vm_object, 3682 &entry->offset, size); 3683 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 3684 eobject = entry->object.vm_object; 3685 if (eobject->cred != NULL) { 3686 /* 3687 * The object was not shadowed. 3688 */ 3689 swap_release_by_cred(size, entry->cred); 3690 crfree(entry->cred); 3691 entry->cred = NULL; 3692 } else if (entry->cred != NULL) { 3693 VM_OBJECT_LOCK(eobject); 3694 eobject->cred = entry->cred; 3695 eobject->charge = size; 3696 VM_OBJECT_UNLOCK(eobject); 3697 entry->cred = NULL; 3698 } 3699 3700 vm_map_lock_downgrade(map); 3701 } else { 3702 /* 3703 * We're attempting to read a copy-on-write page -- 3704 * don't allow writes. 3705 */ 3706 prot &= ~VM_PROT_WRITE; 3707 } 3708 } 3709 3710 /* 3711 * Create an object if necessary. 3712 */ 3713 if (entry->object.vm_object == NULL && 3714 !map->system_map) { 3715 if (vm_map_lock_upgrade(map)) 3716 goto RetryLookup; 3717 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT, 3718 atop(size)); 3719 entry->offset = 0; 3720 if (entry->cred != NULL) { 3721 VM_OBJECT_LOCK(entry->object.vm_object); 3722 entry->object.vm_object->cred = entry->cred; 3723 entry->object.vm_object->charge = size; 3724 VM_OBJECT_UNLOCK(entry->object.vm_object); 3725 entry->cred = NULL; 3726 } 3727 vm_map_lock_downgrade(map); 3728 } 3729 3730 /* 3731 * Return the object/offset from this entry. If the entry was 3732 * copy-on-write or empty, it has been fixed up. 3733 */ 3734 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 3735 *object = entry->object.vm_object; 3736 3737 *out_prot = prot; 3738 return (KERN_SUCCESS); 3739 } 3740 3741 /* 3742 * vm_map_lookup_locked: 3743 * 3744 * Lookup the faulting address. A version of vm_map_lookup that returns 3745 * KERN_FAILURE instead of blocking on map lock or memory allocation. 3746 */ 3747 int 3748 vm_map_lookup_locked(vm_map_t *var_map, /* IN/OUT */ 3749 vm_offset_t vaddr, 3750 vm_prot_t fault_typea, 3751 vm_map_entry_t *out_entry, /* OUT */ 3752 vm_object_t *object, /* OUT */ 3753 vm_pindex_t *pindex, /* OUT */ 3754 vm_prot_t *out_prot, /* OUT */ 3755 boolean_t *wired) /* OUT */ 3756 { 3757 vm_map_entry_t entry; 3758 vm_map_t map = *var_map; 3759 vm_prot_t prot; 3760 vm_prot_t fault_type = fault_typea; 3761 3762 /* 3763 * Lookup the faulting address. 3764 */ 3765 if (!vm_map_lookup_entry(map, vaddr, out_entry)) 3766 return (KERN_INVALID_ADDRESS); 3767 3768 entry = *out_entry; 3769 3770 /* 3771 * Fail if the entry refers to a submap. 3772 */ 3773 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 3774 return (KERN_FAILURE); 3775 3776 /* 3777 * Check whether this task is allowed to have this page. 3778 */ 3779 prot = entry->protection; 3780 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; 3781 if ((fault_type & prot) != fault_type) 3782 return (KERN_PROTECTION_FAILURE); 3783 if ((entry->eflags & MAP_ENTRY_USER_WIRED) && 3784 (entry->eflags & MAP_ENTRY_COW) && 3785 (fault_type & VM_PROT_WRITE)) 3786 return (KERN_PROTECTION_FAILURE); 3787 3788 /* 3789 * If this page is not pageable, we have to get it for all possible 3790 * accesses. 3791 */ 3792 *wired = (entry->wired_count != 0); 3793 if (*wired) 3794 fault_type = entry->protection; 3795 3796 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3797 /* 3798 * Fail if the entry was copy-on-write for a write fault. 3799 */ 3800 if (fault_type & VM_PROT_WRITE) 3801 return (KERN_FAILURE); 3802 /* 3803 * We're attempting to read a copy-on-write page -- 3804 * don't allow writes. 3805 */ 3806 prot &= ~VM_PROT_WRITE; 3807 } 3808 3809 /* 3810 * Fail if an object should be created. 3811 */ 3812 if (entry->object.vm_object == NULL && !map->system_map) 3813 return (KERN_FAILURE); 3814 3815 /* 3816 * Return the object/offset from this entry. If the entry was 3817 * copy-on-write or empty, it has been fixed up. 3818 */ 3819 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 3820 *object = entry->object.vm_object; 3821 3822 *out_prot = prot; 3823 return (KERN_SUCCESS); 3824 } 3825 3826 /* 3827 * vm_map_lookup_done: 3828 * 3829 * Releases locks acquired by a vm_map_lookup 3830 * (according to the handle returned by that lookup). 3831 */ 3832 void 3833 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry) 3834 { 3835 /* 3836 * Unlock the main-level map 3837 */ 3838 vm_map_unlock_read(map); 3839 } 3840 3841 #include "opt_ddb.h" 3842 #ifdef DDB 3843 #include <sys/kernel.h> 3844 3845 #include <ddb/ddb.h> 3846 3847 /* 3848 * vm_map_print: [ debug ] 3849 */ 3850 DB_SHOW_COMMAND(map, vm_map_print) 3851 { 3852 static int nlines; 3853 /* XXX convert args. */ 3854 vm_map_t map = (vm_map_t)addr; 3855 boolean_t full = have_addr; 3856 3857 vm_map_entry_t entry; 3858 3859 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 3860 (void *)map, 3861 (void *)map->pmap, map->nentries, map->timestamp); 3862 nlines++; 3863 3864 if (!full && db_indent) 3865 return; 3866 3867 db_indent += 2; 3868 for (entry = map->header.next; entry != &map->header; 3869 entry = entry->next) { 3870 db_iprintf("map entry %p: start=%p, end=%p\n", 3871 (void *)entry, (void *)entry->start, (void *)entry->end); 3872 nlines++; 3873 { 3874 static char *inheritance_name[4] = 3875 {"share", "copy", "none", "donate_copy"}; 3876 3877 db_iprintf(" prot=%x/%x/%s", 3878 entry->protection, 3879 entry->max_protection, 3880 inheritance_name[(int)(unsigned char)entry->inheritance]); 3881 if (entry->wired_count != 0) 3882 db_printf(", wired"); 3883 } 3884 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 3885 db_printf(", share=%p, offset=0x%jx\n", 3886 (void *)entry->object.sub_map, 3887 (uintmax_t)entry->offset); 3888 nlines++; 3889 if ((entry->prev == &map->header) || 3890 (entry->prev->object.sub_map != 3891 entry->object.sub_map)) { 3892 db_indent += 2; 3893 vm_map_print((db_expr_t)(intptr_t) 3894 entry->object.sub_map, 3895 full, 0, (char *)0); 3896 db_indent -= 2; 3897 } 3898 } else { 3899 if (entry->cred != NULL) 3900 db_printf(", ruid %d", entry->cred->cr_ruid); 3901 db_printf(", object=%p, offset=0x%jx", 3902 (void *)entry->object.vm_object, 3903 (uintmax_t)entry->offset); 3904 if (entry->object.vm_object && entry->object.vm_object->cred) 3905 db_printf(", obj ruid %d charge %jx", 3906 entry->object.vm_object->cred->cr_ruid, 3907 (uintmax_t)entry->object.vm_object->charge); 3908 if (entry->eflags & MAP_ENTRY_COW) 3909 db_printf(", copy (%s)", 3910 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 3911 db_printf("\n"); 3912 nlines++; 3913 3914 if ((entry->prev == &map->header) || 3915 (entry->prev->object.vm_object != 3916 entry->object.vm_object)) { 3917 db_indent += 2; 3918 vm_object_print((db_expr_t)(intptr_t) 3919 entry->object.vm_object, 3920 full, 0, (char *)0); 3921 nlines += 4; 3922 db_indent -= 2; 3923 } 3924 } 3925 } 3926 db_indent -= 2; 3927 if (db_indent == 0) 3928 nlines = 0; 3929 } 3930 3931 3932 DB_SHOW_COMMAND(procvm, procvm) 3933 { 3934 struct proc *p; 3935 3936 if (have_addr) { 3937 p = (struct proc *) addr; 3938 } else { 3939 p = curproc; 3940 } 3941 3942 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 3943 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 3944 (void *)vmspace_pmap(p->p_vmspace)); 3945 3946 vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL); 3947 } 3948 3949 #endif /* DDB */ 3950