1 /* 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by the University of 19 * California, Berkeley and its contributors. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 37 * 38 * 39 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 40 * All rights reserved. 41 * 42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 43 * 44 * Permission to use, copy, modify and distribute this software and 45 * its documentation is hereby granted, provided that both the copyright 46 * notice and this permission notice appear in all copies of the 47 * software, derivative works or modified versions, and any portions 48 * thereof, and that both notices appear in supporting documentation. 49 * 50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 53 * 54 * Carnegie Mellon requests users of this software to return to 55 * 56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 57 * School of Computer Science 58 * Carnegie Mellon University 59 * Pittsburgh PA 15213-3890 60 * 61 * any improvements or extensions that they make and grant Carnegie the 62 * rights to redistribute these changes. 63 * 64 * $Id: vm_map.c,v 1.134 1998/08/24 08:39:37 dfr Exp $ 65 */ 66 67 /* 68 * Virtual memory mapping module. 69 */ 70 71 #include <sys/param.h> 72 #include <sys/systm.h> 73 #include <sys/malloc.h> 74 #include <sys/proc.h> 75 #include <sys/vmmeter.h> 76 #include <sys/mman.h> 77 #include <sys/vnode.h> 78 79 #include <vm/vm.h> 80 #include <vm/vm_param.h> 81 #include <vm/vm_prot.h> 82 #include <vm/vm_inherit.h> 83 #include <sys/lock.h> 84 #include <vm/pmap.h> 85 #include <vm/vm_map.h> 86 #include <vm/vm_page.h> 87 #include <vm/vm_object.h> 88 #include <vm/vm_pager.h> 89 #include <vm/vm_kern.h> 90 #include <vm/vm_extern.h> 91 #include <vm/default_pager.h> 92 #include <vm/swap_pager.h> 93 #include <vm/vm_zone.h> 94 95 static MALLOC_DEFINE(M_VMMAP, "VM map", "VM map structures"); 96 97 /* 98 * Virtual memory maps provide for the mapping, protection, 99 * and sharing of virtual memory objects. In addition, 100 * this module provides for an efficient virtual copy of 101 * memory from one map to another. 102 * 103 * Synchronization is required prior to most operations. 104 * 105 * Maps consist of an ordered doubly-linked list of simple 106 * entries; a single hint is used to speed up lookups. 107 * 108 * In order to properly represent the sharing of virtual 109 * memory regions among maps, the map structure is bi-level. 110 * Top-level ("address") maps refer to regions of sharable 111 * virtual memory. These regions are implemented as 112 * ("sharing") maps, which then refer to the actual virtual 113 * memory objects. When two address maps "share" memory, 114 * their top-level maps both have references to the same 115 * sharing map. When memory is virtual-copied from one 116 * address map to another, the references in the sharing 117 * maps are actually copied -- no copying occurs at the 118 * virtual memory object level. 119 * 120 * Since portions of maps are specified by start/end addreses, 121 * which may not align with existing map entries, all 122 * routines merely "clip" entries to these start/end values. 123 * [That is, an entry is split into two, bordering at a 124 * start or end value.] Note that these clippings may not 125 * always be necessary (as the two resulting entries are then 126 * not changed); however, the clipping is done for convenience. 127 * No attempt is currently made to "glue back together" two 128 * abutting entries. 129 * 130 * As mentioned above, virtual copy operations are performed 131 * by copying VM object references from one sharing map to 132 * another, and then marking both regions as copy-on-write. 133 * It is important to note that only one writeable reference 134 * to a VM object region exists in any map -- this means that 135 * shadow object creation can be delayed until a write operation 136 * occurs. 137 */ 138 139 /* 140 * vm_map_startup: 141 * 142 * Initialize the vm_map module. Must be called before 143 * any other vm_map routines. 144 * 145 * Map and entry structures are allocated from the general 146 * purpose memory pool with some exceptions: 147 * 148 * - The kernel map and kmem submap are allocated statically. 149 * - Kernel map entries are allocated out of a static pool. 150 * 151 * These restrictions are necessary since malloc() uses the 152 * maps and requires map entries. 153 */ 154 155 extern char kstack[]; 156 extern int inmprotect; 157 158 static struct vm_zone kmapentzone_store, mapentzone_store, mapzone_store; 159 static vm_zone_t mapentzone, kmapentzone, mapzone, vmspace_zone; 160 static struct vm_object kmapentobj, mapentobj, mapobj; 161 #define MAP_ENTRY_INIT 128 162 static struct vm_map_entry map_entry_init[MAX_MAPENT]; 163 static struct vm_map_entry kmap_entry_init[MAX_KMAPENT]; 164 static struct vm_map map_init[MAX_KMAP]; 165 166 static void _vm_map_clip_end __P((vm_map_t, vm_map_entry_t, vm_offset_t)); 167 static void _vm_map_clip_start __P((vm_map_t, vm_map_entry_t, vm_offset_t)); 168 static vm_map_entry_t vm_map_entry_create __P((vm_map_t)); 169 static void vm_map_entry_delete __P((vm_map_t, vm_map_entry_t)); 170 static void vm_map_entry_dispose __P((vm_map_t, vm_map_entry_t)); 171 static void vm_map_entry_unwire __P((vm_map_t, vm_map_entry_t)); 172 static void vm_map_copy_entry __P((vm_map_t, vm_map_t, vm_map_entry_t, 173 vm_map_entry_t)); 174 static void vm_map_split __P((vm_map_entry_t)); 175 176 void 177 vm_map_startup() 178 { 179 mapzone = &mapzone_store; 180 zbootinit(mapzone, "MAP", sizeof (struct vm_map), 181 map_init, MAX_KMAP); 182 kmapentzone = &kmapentzone_store; 183 zbootinit(kmapentzone, "KMAP ENTRY", sizeof (struct vm_map_entry), 184 kmap_entry_init, MAX_KMAPENT); 185 mapentzone = &mapentzone_store; 186 zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry), 187 map_entry_init, MAX_MAPENT); 188 } 189 190 /* 191 * Allocate a vmspace structure, including a vm_map and pmap, 192 * and initialize those structures. The refcnt is set to 1. 193 * The remaining fields must be initialized by the caller. 194 */ 195 struct vmspace * 196 vmspace_alloc(min, max) 197 vm_offset_t min, max; 198 { 199 struct vmspace *vm; 200 201 vm = zalloc(vmspace_zone); 202 bzero(&vm->vm_map, sizeof vm->vm_map); 203 vm_map_init(&vm->vm_map, min, max); 204 pmap_pinit(&vm->vm_pmap); 205 vm->vm_map.pmap = &vm->vm_pmap; /* XXX */ 206 vm->vm_refcnt = 1; 207 vm->vm_shm = NULL; 208 return (vm); 209 } 210 211 void 212 vm_init2(void) { 213 zinitna(kmapentzone, &kmapentobj, 214 NULL, 0, cnt.v_page_count / 4, ZONE_INTERRUPT, 1); 215 zinitna(mapentzone, &mapentobj, 216 NULL, 0, 0, 0, 1); 217 zinitna(mapzone, &mapobj, 218 NULL, 0, 0, 0, 1); 219 vmspace_zone = zinit("VMSPACE", sizeof (struct vmspace), 0, 0, 3); 220 pmap_init2(); 221 vm_object_init2(); 222 } 223 224 void 225 vmspace_free(vm) 226 struct vmspace *vm; 227 { 228 229 if (vm->vm_refcnt == 0) 230 panic("vmspace_free: attempt to free already freed vmspace"); 231 232 if (--vm->vm_refcnt == 0) { 233 234 /* 235 * Lock the map, to wait out all other references to it. 236 * Delete all of the mappings and pages they hold, then call 237 * the pmap module to reclaim anything left. 238 */ 239 vm_map_lock(&vm->vm_map); 240 (void) vm_map_delete(&vm->vm_map, vm->vm_map.min_offset, 241 vm->vm_map.max_offset); 242 vm_map_unlock(&vm->vm_map); 243 244 pmap_release(&vm->vm_pmap); 245 zfree(vmspace_zone, vm); 246 } 247 } 248 249 /* 250 * vm_map_create: 251 * 252 * Creates and returns a new empty VM map with 253 * the given physical map structure, and having 254 * the given lower and upper address bounds. 255 */ 256 vm_map_t 257 vm_map_create(pmap, min, max) 258 pmap_t pmap; 259 vm_offset_t min, max; 260 { 261 vm_map_t result; 262 263 result = zalloc(mapzone); 264 vm_map_init(result, min, max); 265 result->pmap = pmap; 266 return (result); 267 } 268 269 /* 270 * Initialize an existing vm_map structure 271 * such as that in the vmspace structure. 272 * The pmap is set elsewhere. 273 */ 274 void 275 vm_map_init(map, min, max) 276 struct vm_map *map; 277 vm_offset_t min, max; 278 { 279 map->header.next = map->header.prev = &map->header; 280 map->nentries = 0; 281 map->size = 0; 282 map->is_main_map = TRUE; 283 map->system_map = 0; 284 map->min_offset = min; 285 map->max_offset = max; 286 map->first_free = &map->header; 287 map->hint = &map->header; 288 map->timestamp = 0; 289 lockinit(&map->lock, PVM, "thrd_sleep", 0, LK_NOPAUSE); 290 } 291 292 /* 293 * vm_map_entry_dispose: [ internal use only ] 294 * 295 * Inverse of vm_map_entry_create. 296 */ 297 static void 298 vm_map_entry_dispose(map, entry) 299 vm_map_t map; 300 vm_map_entry_t entry; 301 { 302 zfree((map->system_map || !mapentzone) ? kmapentzone : mapentzone, entry); 303 } 304 305 /* 306 * vm_map_entry_create: [ internal use only ] 307 * 308 * Allocates a VM map entry for insertion. 309 * No entry fields are filled in. This routine is 310 */ 311 static vm_map_entry_t 312 vm_map_entry_create(map) 313 vm_map_t map; 314 { 315 return zalloc((map->system_map || !mapentzone) ? kmapentzone : mapentzone); 316 } 317 318 /* 319 * vm_map_entry_{un,}link: 320 * 321 * Insert/remove entries from maps. 322 */ 323 #define vm_map_entry_link(map, after_where, entry) \ 324 { \ 325 (map)->nentries++; \ 326 (map)->timestamp++; \ 327 (entry)->prev = (after_where); \ 328 (entry)->next = (after_where)->next; \ 329 (entry)->prev->next = (entry); \ 330 (entry)->next->prev = (entry); \ 331 } 332 #define vm_map_entry_unlink(map, entry) \ 333 { \ 334 (map)->nentries--; \ 335 (map)->timestamp++; \ 336 (entry)->next->prev = (entry)->prev; \ 337 (entry)->prev->next = (entry)->next; \ 338 } 339 340 /* 341 * SAVE_HINT: 342 * 343 * Saves the specified entry as the hint for 344 * future lookups. 345 */ 346 #define SAVE_HINT(map,value) \ 347 (map)->hint = (value); 348 349 /* 350 * vm_map_lookup_entry: [ internal use only ] 351 * 352 * Finds the map entry containing (or 353 * immediately preceding) the specified address 354 * in the given map; the entry is returned 355 * in the "entry" parameter. The boolean 356 * result indicates whether the address is 357 * actually contained in the map. 358 */ 359 boolean_t 360 vm_map_lookup_entry(map, address, entry) 361 vm_map_t map; 362 vm_offset_t address; 363 vm_map_entry_t *entry; /* OUT */ 364 { 365 vm_map_entry_t cur; 366 vm_map_entry_t last; 367 368 /* 369 * Start looking either from the head of the list, or from the hint. 370 */ 371 372 cur = map->hint; 373 374 if (cur == &map->header) 375 cur = cur->next; 376 377 if (address >= cur->start) { 378 /* 379 * Go from hint to end of list. 380 * 381 * But first, make a quick check to see if we are already looking 382 * at the entry we want (which is usually the case). Note also 383 * that we don't need to save the hint here... it is the same 384 * hint (unless we are at the header, in which case the hint 385 * didn't buy us anything anyway). 386 */ 387 last = &map->header; 388 if ((cur != last) && (cur->end > address)) { 389 *entry = cur; 390 return (TRUE); 391 } 392 } else { 393 /* 394 * Go from start to hint, *inclusively* 395 */ 396 last = cur->next; 397 cur = map->header.next; 398 } 399 400 /* 401 * Search linearly 402 */ 403 404 while (cur != last) { 405 if (cur->end > address) { 406 if (address >= cur->start) { 407 /* 408 * Save this lookup for future hints, and 409 * return 410 */ 411 412 *entry = cur; 413 SAVE_HINT(map, cur); 414 return (TRUE); 415 } 416 break; 417 } 418 cur = cur->next; 419 } 420 *entry = cur->prev; 421 SAVE_HINT(map, *entry); 422 return (FALSE); 423 } 424 425 /* 426 * vm_map_insert: 427 * 428 * Inserts the given whole VM object into the target 429 * map at the specified address range. The object's 430 * size should match that of the address range. 431 * 432 * Requires that the map be locked, and leaves it so. 433 */ 434 int 435 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 436 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, 437 int cow) 438 { 439 vm_map_entry_t new_entry; 440 vm_map_entry_t prev_entry; 441 vm_map_entry_t temp_entry; 442 vm_object_t prev_object; 443 u_char protoeflags; 444 445 if ((object != NULL) && (cow & MAP_NOFAULT)) { 446 panic("vm_map_insert: paradoxical MAP_NOFAULT request"); 447 } 448 449 /* 450 * Check that the start and end points are not bogus. 451 */ 452 453 if ((start < map->min_offset) || (end > map->max_offset) || 454 (start >= end)) 455 return (KERN_INVALID_ADDRESS); 456 457 /* 458 * Find the entry prior to the proposed starting address; if it's part 459 * of an existing entry, this range is bogus. 460 */ 461 462 if (vm_map_lookup_entry(map, start, &temp_entry)) 463 return (KERN_NO_SPACE); 464 465 prev_entry = temp_entry; 466 467 /* 468 * Assert that the next entry doesn't overlap the end point. 469 */ 470 471 if ((prev_entry->next != &map->header) && 472 (prev_entry->next->start < end)) 473 return (KERN_NO_SPACE); 474 475 protoeflags = 0; 476 if (cow & MAP_COPY_NEEDED) 477 protoeflags |= MAP_ENTRY_NEEDS_COPY; 478 479 if (cow & MAP_COPY_ON_WRITE) 480 protoeflags |= MAP_ENTRY_COW; 481 482 if (cow & MAP_NOFAULT) 483 protoeflags |= MAP_ENTRY_NOFAULT; 484 485 /* 486 * See if we can avoid creating a new entry by extending one of our 487 * neighbors. Or at least extend the object. 488 */ 489 490 if ((object == NULL) && 491 (prev_entry != &map->header) && 492 (( prev_entry->eflags & (MAP_ENTRY_IS_A_MAP | MAP_ENTRY_IS_SUB_MAP)) == 0) && 493 ((prev_entry->object.vm_object == NULL) || 494 (prev_entry->object.vm_object->type == OBJT_DEFAULT)) && 495 (prev_entry->end == start) && 496 (prev_entry->wired_count == 0)) { 497 498 499 if ((protoeflags == prev_entry->eflags) && 500 ((cow & MAP_NOFAULT) || 501 vm_object_coalesce(prev_entry->object.vm_object, 502 OFF_TO_IDX(prev_entry->offset), 503 (vm_size_t) (prev_entry->end - prev_entry->start), 504 (vm_size_t) (end - prev_entry->end)))) { 505 506 /* 507 * Coalesced the two objects. Can we extend the 508 * previous map entry to include the new range? 509 */ 510 if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) && 511 (prev_entry->protection == prot) && 512 (prev_entry->max_protection == max)) { 513 514 map->size += (end - prev_entry->end); 515 prev_entry->end = end; 516 if ((cow & MAP_NOFAULT) == 0) { 517 prev_object = prev_entry->object.vm_object; 518 default_pager_convert_to_swapq(prev_object); 519 } 520 return (KERN_SUCCESS); 521 } 522 else { 523 object = prev_entry->object.vm_object; 524 offset = prev_entry->offset + (prev_entry->end - 525 prev_entry->start); 526 527 vm_object_reference(object); 528 } 529 } 530 } 531 532 /* 533 * Create a new entry 534 */ 535 536 new_entry = vm_map_entry_create(map); 537 new_entry->start = start; 538 new_entry->end = end; 539 540 new_entry->eflags = protoeflags; 541 new_entry->object.vm_object = object; 542 new_entry->offset = offset; 543 if (object) { 544 if ((object->ref_count > 1) || (object->shadow_count != 0)) { 545 vm_object_clear_flag(object, OBJ_ONEMAPPING); 546 } else { 547 vm_object_set_flag(object, OBJ_ONEMAPPING); 548 } 549 } 550 551 if (map->is_main_map) { 552 new_entry->inheritance = VM_INHERIT_DEFAULT; 553 new_entry->protection = prot; 554 new_entry->max_protection = max; 555 new_entry->wired_count = 0; 556 } 557 /* 558 * Insert the new entry into the list 559 */ 560 561 vm_map_entry_link(map, prev_entry, new_entry); 562 map->size += new_entry->end - new_entry->start; 563 564 /* 565 * Update the free space hint 566 */ 567 if ((map->first_free == prev_entry) && 568 (prev_entry->end >= new_entry->start)) 569 map->first_free = new_entry; 570 571 default_pager_convert_to_swapq(object); 572 return (KERN_SUCCESS); 573 } 574 575 /* 576 * Find sufficient space for `length' bytes in the given map, starting at 577 * `start'. The map must be locked. Returns 0 on success, 1 on no space. 578 */ 579 int 580 vm_map_findspace(map, start, length, addr) 581 vm_map_t map; 582 vm_offset_t start; 583 vm_size_t length; 584 vm_offset_t *addr; 585 { 586 vm_map_entry_t entry, next; 587 vm_offset_t end; 588 589 if (start < map->min_offset) 590 start = map->min_offset; 591 if (start > map->max_offset) 592 return (1); 593 594 /* 595 * Look for the first possible address; if there's already something 596 * at this address, we have to start after it. 597 */ 598 if (start == map->min_offset) { 599 if ((entry = map->first_free) != &map->header) 600 start = entry->end; 601 } else { 602 vm_map_entry_t tmp; 603 604 if (vm_map_lookup_entry(map, start, &tmp)) 605 start = tmp->end; 606 entry = tmp; 607 } 608 609 /* 610 * Look through the rest of the map, trying to fit a new region in the 611 * gap between existing regions, or after the very last region. 612 */ 613 for (;; start = (entry = next)->end) { 614 /* 615 * Find the end of the proposed new region. Be sure we didn't 616 * go beyond the end of the map, or wrap around the address; 617 * if so, we lose. Otherwise, if this is the last entry, or 618 * if the proposed new region fits before the next entry, we 619 * win. 620 */ 621 end = start + length; 622 if (end > map->max_offset || end < start) 623 return (1); 624 next = entry->next; 625 if (next == &map->header || next->start >= end) 626 break; 627 } 628 SAVE_HINT(map, entry); 629 *addr = start; 630 if (map == kernel_map) { 631 vm_offset_t ksize; 632 if ((ksize = round_page(start + length)) > kernel_vm_end) { 633 pmap_growkernel(ksize); 634 } 635 } 636 return (0); 637 } 638 639 /* 640 * vm_map_find finds an unallocated region in the target address 641 * map with the given length. The search is defined to be 642 * first-fit from the specified address; the region found is 643 * returned in the same parameter. 644 * 645 */ 646 int 647 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 648 vm_offset_t *addr, /* IN/OUT */ 649 vm_size_t length, boolean_t find_space, vm_prot_t prot, 650 vm_prot_t max, int cow) 651 { 652 vm_offset_t start; 653 int result, s = 0; 654 655 start = *addr; 656 657 if (map == kmem_map || map == mb_map) 658 s = splvm(); 659 660 vm_map_lock(map); 661 if (find_space) { 662 if (vm_map_findspace(map, start, length, addr)) { 663 vm_map_unlock(map); 664 if (map == kmem_map || map == mb_map) 665 splx(s); 666 return (KERN_NO_SPACE); 667 } 668 start = *addr; 669 } 670 result = vm_map_insert(map, object, offset, 671 start, start + length, prot, max, cow); 672 vm_map_unlock(map); 673 674 if (map == kmem_map || map == mb_map) 675 splx(s); 676 677 return (result); 678 } 679 680 /* 681 * vm_map_simplify_entry: 682 * 683 * Simplify the given map entry by merging with either neighbor. 684 */ 685 void 686 vm_map_simplify_entry(map, entry) 687 vm_map_t map; 688 vm_map_entry_t entry; 689 { 690 vm_map_entry_t next, prev; 691 vm_size_t prevsize, esize; 692 693 if (entry->eflags & (MAP_ENTRY_IS_SUB_MAP|MAP_ENTRY_IS_A_MAP)) 694 return; 695 696 prev = entry->prev; 697 if (prev != &map->header) { 698 prevsize = prev->end - prev->start; 699 if ( (prev->end == entry->start) && 700 (prev->object.vm_object == entry->object.vm_object) && 701 (!prev->object.vm_object || 702 (prev->object.vm_object->behavior == entry->object.vm_object->behavior)) && 703 (!prev->object.vm_object || 704 (prev->offset + prevsize == entry->offset)) && 705 (prev->eflags == entry->eflags) && 706 (prev->protection == entry->protection) && 707 (prev->max_protection == entry->max_protection) && 708 (prev->inheritance == entry->inheritance) && 709 (prev->wired_count == entry->wired_count)) { 710 if (map->first_free == prev) 711 map->first_free = entry; 712 if (map->hint == prev) 713 map->hint = entry; 714 vm_map_entry_unlink(map, prev); 715 entry->start = prev->start; 716 entry->offset = prev->offset; 717 if (prev->object.vm_object) 718 vm_object_deallocate(prev->object.vm_object); 719 vm_map_entry_dispose(map, prev); 720 } 721 } 722 723 next = entry->next; 724 if (next != &map->header) { 725 esize = entry->end - entry->start; 726 if ((entry->end == next->start) && 727 (next->object.vm_object == entry->object.vm_object) && 728 (!next->object.vm_object || 729 (next->object.vm_object->behavior == entry->object.vm_object->behavior)) && 730 (!entry->object.vm_object || 731 (entry->offset + esize == next->offset)) && 732 (next->eflags == entry->eflags) && 733 (next->protection == entry->protection) && 734 (next->max_protection == entry->max_protection) && 735 (next->inheritance == entry->inheritance) && 736 (next->wired_count == entry->wired_count)) { 737 if (map->first_free == next) 738 map->first_free = entry; 739 if (map->hint == next) 740 map->hint = entry; 741 vm_map_entry_unlink(map, next); 742 entry->end = next->end; 743 if (next->object.vm_object) 744 vm_object_deallocate(next->object.vm_object); 745 vm_map_entry_dispose(map, next); 746 } 747 } 748 } 749 /* 750 * vm_map_clip_start: [ internal use only ] 751 * 752 * Asserts that the given entry begins at or after 753 * the specified address; if necessary, 754 * it splits the entry into two. 755 */ 756 #define vm_map_clip_start(map, entry, startaddr) \ 757 { \ 758 if (startaddr > entry->start) \ 759 _vm_map_clip_start(map, entry, startaddr); \ 760 else if (entry->object.vm_object && (entry->object.vm_object->ref_count == 1)) \ 761 vm_object_set_flag(entry->object.vm_object, OBJ_ONEMAPPING); \ 762 } 763 764 /* 765 * This routine is called only when it is known that 766 * the entry must be split. 767 */ 768 static void 769 _vm_map_clip_start(map, entry, start) 770 vm_map_t map; 771 vm_map_entry_t entry; 772 vm_offset_t start; 773 { 774 vm_map_entry_t new_entry; 775 776 /* 777 * Split off the front portion -- note that we must insert the new 778 * entry BEFORE this one, so that this entry has the specified 779 * starting address. 780 */ 781 782 vm_map_simplify_entry(map, entry); 783 784 /* 785 * If there is no object backing this entry, we might as well create 786 * one now. If we defer it, an object can get created after the map 787 * is clipped, and individual objects will be created for the split-up 788 * map. This is a bit of a hack, but is also about the best place to 789 * put this improvement. 790 */ 791 792 if (entry->object.vm_object == NULL) { 793 vm_object_t object; 794 object = vm_object_allocate(OBJT_DEFAULT, 795 atop(entry->end - entry->start)); 796 entry->object.vm_object = object; 797 entry->offset = 0; 798 } 799 800 new_entry = vm_map_entry_create(map); 801 *new_entry = *entry; 802 803 new_entry->end = start; 804 entry->offset += (start - entry->start); 805 entry->start = start; 806 807 vm_map_entry_link(map, entry->prev, new_entry); 808 809 if ((entry->eflags & (MAP_ENTRY_IS_A_MAP|MAP_ENTRY_IS_SUB_MAP)) == 0) { 810 if (new_entry->object.vm_object->ref_count == 1) 811 vm_object_set_flag(new_entry->object.vm_object, 812 OBJ_ONEMAPPING); 813 vm_object_reference(new_entry->object.vm_object); 814 } 815 } 816 817 /* 818 * vm_map_clip_end: [ internal use only ] 819 * 820 * Asserts that the given entry ends at or before 821 * the specified address; if necessary, 822 * it splits the entry into two. 823 */ 824 825 #define vm_map_clip_end(map, entry, endaddr) \ 826 { \ 827 if (endaddr < entry->end) \ 828 _vm_map_clip_end(map, entry, endaddr); \ 829 else if (entry->object.vm_object && (entry->object.vm_object->ref_count == 1)) \ 830 vm_object_set_flag(entry->object.vm_object, OBJ_ONEMAPPING); \ 831 } 832 833 /* 834 * This routine is called only when it is known that 835 * the entry must be split. 836 */ 837 static void 838 _vm_map_clip_end(map, entry, end) 839 vm_map_t map; 840 vm_map_entry_t entry; 841 vm_offset_t end; 842 { 843 vm_map_entry_t new_entry; 844 845 /* 846 * If there is no object backing this entry, we might as well create 847 * one now. If we defer it, an object can get created after the map 848 * is clipped, and individual objects will be created for the split-up 849 * map. This is a bit of a hack, but is also about the best place to 850 * put this improvement. 851 */ 852 853 if (entry->object.vm_object == NULL) { 854 vm_object_t object; 855 object = vm_object_allocate(OBJT_DEFAULT, 856 atop(entry->end - entry->start)); 857 entry->object.vm_object = object; 858 entry->offset = 0; 859 } 860 861 /* 862 * Create a new entry and insert it AFTER the specified entry 863 */ 864 865 new_entry = vm_map_entry_create(map); 866 *new_entry = *entry; 867 868 new_entry->start = entry->end = end; 869 new_entry->offset += (end - entry->start); 870 871 vm_map_entry_link(map, entry, new_entry); 872 873 if ((entry->eflags & (MAP_ENTRY_IS_A_MAP|MAP_ENTRY_IS_SUB_MAP)) == 0) { 874 if (new_entry->object.vm_object->ref_count == 1) 875 vm_object_set_flag(new_entry->object.vm_object, 876 OBJ_ONEMAPPING); 877 vm_object_reference(new_entry->object.vm_object); 878 } 879 } 880 881 /* 882 * VM_MAP_RANGE_CHECK: [ internal use only ] 883 * 884 * Asserts that the starting and ending region 885 * addresses fall within the valid range of the map. 886 */ 887 #define VM_MAP_RANGE_CHECK(map, start, end) \ 888 { \ 889 if (start < vm_map_min(map)) \ 890 start = vm_map_min(map); \ 891 if (end > vm_map_max(map)) \ 892 end = vm_map_max(map); \ 893 if (start > end) \ 894 start = end; \ 895 } 896 897 /* 898 * vm_map_submap: [ kernel use only ] 899 * 900 * Mark the given range as handled by a subordinate map. 901 * 902 * This range must have been created with vm_map_find, 903 * and no other operations may have been performed on this 904 * range prior to calling vm_map_submap. 905 * 906 * Only a limited number of operations can be performed 907 * within this rage after calling vm_map_submap: 908 * vm_fault 909 * [Don't try vm_map_copy!] 910 * 911 * To remove a submapping, one must first remove the 912 * range from the superior map, and then destroy the 913 * submap (if desired). [Better yet, don't try it.] 914 */ 915 int 916 vm_map_submap(map, start, end, submap) 917 vm_map_t map; 918 vm_offset_t start; 919 vm_offset_t end; 920 vm_map_t submap; 921 { 922 vm_map_entry_t entry; 923 int result = KERN_INVALID_ARGUMENT; 924 925 vm_map_lock(map); 926 927 VM_MAP_RANGE_CHECK(map, start, end); 928 929 if (vm_map_lookup_entry(map, start, &entry)) { 930 vm_map_clip_start(map, entry, start); 931 } else 932 entry = entry->next; 933 934 vm_map_clip_end(map, entry, end); 935 936 if ((entry->start == start) && (entry->end == end) && 937 ((entry->eflags & (MAP_ENTRY_IS_A_MAP|MAP_ENTRY_COW)) == 0) && 938 (entry->object.vm_object == NULL)) { 939 entry->object.sub_map = submap; 940 entry->eflags |= MAP_ENTRY_IS_SUB_MAP; 941 result = KERN_SUCCESS; 942 } 943 vm_map_unlock(map); 944 945 return (result); 946 } 947 948 /* 949 * vm_map_protect: 950 * 951 * Sets the protection of the specified address 952 * region in the target map. If "set_max" is 953 * specified, the maximum protection is to be set; 954 * otherwise, only the current protection is affected. 955 */ 956 int 957 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 958 vm_prot_t new_prot, boolean_t set_max) 959 { 960 vm_map_entry_t current; 961 vm_map_entry_t entry; 962 963 vm_map_lock(map); 964 965 VM_MAP_RANGE_CHECK(map, start, end); 966 967 if (vm_map_lookup_entry(map, start, &entry)) { 968 vm_map_clip_start(map, entry, start); 969 } else { 970 entry = entry->next; 971 } 972 973 /* 974 * Make a first pass to check for protection violations. 975 */ 976 977 current = entry; 978 while ((current != &map->header) && (current->start < end)) { 979 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 980 vm_map_unlock(map); 981 return (KERN_INVALID_ARGUMENT); 982 } 983 if ((new_prot & current->max_protection) != new_prot) { 984 vm_map_unlock(map); 985 return (KERN_PROTECTION_FAILURE); 986 } 987 current = current->next; 988 } 989 990 /* 991 * Go back and fix up protections. [Note that clipping is not 992 * necessary the second time.] 993 */ 994 995 current = entry; 996 997 while ((current != &map->header) && (current->start < end)) { 998 vm_prot_t old_prot; 999 1000 vm_map_clip_end(map, current, end); 1001 1002 old_prot = current->protection; 1003 if (set_max) 1004 current->protection = 1005 (current->max_protection = new_prot) & 1006 old_prot; 1007 else 1008 current->protection = new_prot; 1009 1010 /* 1011 * Update physical map if necessary. Worry about copy-on-write 1012 * here -- CHECK THIS XXX 1013 */ 1014 1015 if (current->protection != old_prot) { 1016 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 1017 VM_PROT_ALL) 1018 1019 if (current->eflags & MAP_ENTRY_IS_A_MAP) { 1020 vm_map_entry_t share_entry; 1021 vm_offset_t share_end; 1022 1023 vm_map_lock(current->object.share_map); 1024 (void) vm_map_lookup_entry( 1025 current->object.share_map, 1026 current->offset, 1027 &share_entry); 1028 share_end = current->offset + 1029 (current->end - current->start); 1030 while ((share_entry != 1031 ¤t->object.share_map->header) && 1032 (share_entry->start < share_end)) { 1033 1034 pmap_protect(map->pmap, 1035 (qmax(share_entry->start, 1036 current->offset) - 1037 current->offset + 1038 current->start), 1039 min(share_entry->end, 1040 share_end) - 1041 current->offset + 1042 current->start, 1043 current->protection & 1044 MASK(share_entry)); 1045 1046 share_entry = share_entry->next; 1047 } 1048 vm_map_unlock(current->object.share_map); 1049 } else 1050 pmap_protect(map->pmap, current->start, 1051 current->end, 1052 current->protection & MASK(entry)); 1053 #undef MASK 1054 } 1055 1056 vm_map_simplify_entry(map, current); 1057 1058 current = current->next; 1059 } 1060 1061 map->timestamp++; 1062 vm_map_unlock(map); 1063 return (KERN_SUCCESS); 1064 } 1065 1066 /* 1067 * vm_map_madvise: 1068 * 1069 * This routine traverses a processes map handling the madvise 1070 * system call. 1071 */ 1072 void 1073 vm_map_madvise(map, pmap, start, end, advise) 1074 vm_map_t map; 1075 pmap_t pmap; 1076 vm_offset_t start, end; 1077 int advise; 1078 { 1079 vm_map_entry_t current; 1080 vm_map_entry_t entry; 1081 1082 vm_map_lock(map); 1083 1084 VM_MAP_RANGE_CHECK(map, start, end); 1085 1086 if (vm_map_lookup_entry(map, start, &entry)) { 1087 vm_map_clip_start(map, entry, start); 1088 } else 1089 entry = entry->next; 1090 1091 for(current = entry; 1092 (current != &map->header) && (current->start < end); 1093 current = current->next) { 1094 vm_size_t size; 1095 1096 if (current->eflags & (MAP_ENTRY_IS_A_MAP|MAP_ENTRY_IS_SUB_MAP)) { 1097 continue; 1098 } 1099 1100 vm_map_clip_end(map, current, end); 1101 size = current->end - current->start; 1102 1103 /* 1104 * Create an object if needed 1105 */ 1106 if (current->object.vm_object == NULL) { 1107 vm_object_t object; 1108 if ((advise == MADV_FREE) || (advise == MADV_DONTNEED)) 1109 continue; 1110 object = vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(size)); 1111 current->object.vm_object = object; 1112 current->offset = 0; 1113 } 1114 1115 switch (advise) { 1116 case MADV_NORMAL: 1117 current->object.vm_object->behavior = OBJ_NORMAL; 1118 break; 1119 case MADV_SEQUENTIAL: 1120 current->object.vm_object->behavior = OBJ_SEQUENTIAL; 1121 break; 1122 case MADV_RANDOM: 1123 current->object.vm_object->behavior = OBJ_RANDOM; 1124 break; 1125 /* 1126 * Right now, we could handle DONTNEED and WILLNEED with common code. 1127 * They are mostly the same, except for the potential async reads (NYI). 1128 */ 1129 case MADV_FREE: 1130 case MADV_DONTNEED: 1131 { 1132 vm_pindex_t pindex; 1133 int count; 1134 pindex = OFF_TO_IDX(current->offset); 1135 count = OFF_TO_IDX(size); 1136 /* 1137 * MADV_DONTNEED removes the page from all 1138 * pmaps, so pmap_remove is not necessary. 1139 */ 1140 vm_object_madvise(current->object.vm_object, 1141 pindex, count, advise); 1142 } 1143 break; 1144 1145 case MADV_WILLNEED: 1146 { 1147 vm_pindex_t pindex; 1148 int count; 1149 pindex = OFF_TO_IDX(current->offset); 1150 count = OFF_TO_IDX(size); 1151 vm_object_madvise(current->object.vm_object, 1152 pindex, count, advise); 1153 pmap_object_init_pt(pmap, current->start, 1154 current->object.vm_object, pindex, 1155 (count << PAGE_SHIFT), 0); 1156 } 1157 break; 1158 1159 default: 1160 break; 1161 } 1162 } 1163 1164 map->timestamp++; 1165 vm_map_simplify_entry(map, entry); 1166 vm_map_unlock(map); 1167 return; 1168 } 1169 1170 1171 /* 1172 * vm_map_inherit: 1173 * 1174 * Sets the inheritance of the specified address 1175 * range in the target map. Inheritance 1176 * affects how the map will be shared with 1177 * child maps at the time of vm_map_fork. 1178 */ 1179 int 1180 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 1181 vm_inherit_t new_inheritance) 1182 { 1183 vm_map_entry_t entry; 1184 vm_map_entry_t temp_entry; 1185 1186 switch (new_inheritance) { 1187 case VM_INHERIT_NONE: 1188 case VM_INHERIT_COPY: 1189 case VM_INHERIT_SHARE: 1190 break; 1191 default: 1192 return (KERN_INVALID_ARGUMENT); 1193 } 1194 1195 vm_map_lock(map); 1196 1197 VM_MAP_RANGE_CHECK(map, start, end); 1198 1199 if (vm_map_lookup_entry(map, start, &temp_entry)) { 1200 entry = temp_entry; 1201 vm_map_clip_start(map, entry, start); 1202 } else 1203 entry = temp_entry->next; 1204 1205 while ((entry != &map->header) && (entry->start < end)) { 1206 vm_map_clip_end(map, entry, end); 1207 1208 entry->inheritance = new_inheritance; 1209 1210 entry = entry->next; 1211 } 1212 1213 vm_map_simplify_entry(map, temp_entry); 1214 map->timestamp++; 1215 vm_map_unlock(map); 1216 return (KERN_SUCCESS); 1217 } 1218 1219 /* 1220 * Implement the semantics of mlock 1221 */ 1222 int 1223 vm_map_user_pageable(map, start, end, new_pageable) 1224 vm_map_t map; 1225 vm_offset_t start; 1226 vm_offset_t end; 1227 boolean_t new_pageable; 1228 { 1229 vm_map_entry_t entry; 1230 vm_map_entry_t start_entry; 1231 vm_offset_t estart; 1232 int rv; 1233 1234 vm_map_lock(map); 1235 VM_MAP_RANGE_CHECK(map, start, end); 1236 1237 if (vm_map_lookup_entry(map, start, &start_entry) == FALSE) { 1238 vm_map_unlock(map); 1239 return (KERN_INVALID_ADDRESS); 1240 } 1241 1242 if (new_pageable) { 1243 1244 entry = start_entry; 1245 vm_map_clip_start(map, entry, start); 1246 1247 /* 1248 * Now decrement the wiring count for each region. If a region 1249 * becomes completely unwired, unwire its physical pages and 1250 * mappings. 1251 */ 1252 vm_map_set_recursive(map); 1253 1254 entry = start_entry; 1255 while ((entry != &map->header) && (entry->start < end)) { 1256 if (entry->eflags & MAP_ENTRY_USER_WIRED) { 1257 vm_map_clip_end(map, entry, end); 1258 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 1259 entry->wired_count--; 1260 if (entry->wired_count == 0) 1261 vm_fault_unwire(map, entry->start, entry->end); 1262 } 1263 vm_map_simplify_entry(map,entry); 1264 entry = entry->next; 1265 } 1266 vm_map_clear_recursive(map); 1267 } else { 1268 1269 entry = start_entry; 1270 1271 while ((entry != &map->header) && (entry->start < end)) { 1272 1273 if (entry->eflags & MAP_ENTRY_USER_WIRED) { 1274 entry = entry->next; 1275 continue; 1276 } 1277 1278 if (entry->wired_count != 0) { 1279 entry->wired_count++; 1280 entry->eflags |= MAP_ENTRY_USER_WIRED; 1281 entry = entry->next; 1282 continue; 1283 } 1284 1285 /* Here on entry being newly wired */ 1286 1287 if ((entry->eflags & (MAP_ENTRY_IS_A_MAP|MAP_ENTRY_IS_SUB_MAP)) == 0) { 1288 int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY; 1289 if (copyflag && ((entry->protection & VM_PROT_WRITE) != 0)) { 1290 1291 vm_object_shadow(&entry->object.vm_object, 1292 &entry->offset, 1293 atop(entry->end - entry->start)); 1294 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 1295 1296 } else if (entry->object.vm_object == NULL) { 1297 1298 entry->object.vm_object = 1299 vm_object_allocate(OBJT_DEFAULT, 1300 atop(entry->end - entry->start)); 1301 entry->offset = (vm_offset_t) 0; 1302 1303 } 1304 default_pager_convert_to_swapq(entry->object.vm_object); 1305 } 1306 1307 vm_map_clip_start(map, entry, start); 1308 vm_map_clip_end(map, entry, end); 1309 1310 entry->wired_count++; 1311 entry->eflags |= MAP_ENTRY_USER_WIRED; 1312 estart = entry->start; 1313 1314 /* First we need to allow map modifications */ 1315 vm_map_set_recursive(map); 1316 vm_map_lock_downgrade(map); 1317 map->timestamp++; 1318 1319 rv = vm_fault_user_wire(map, entry->start, entry->end); 1320 if (rv) { 1321 1322 entry->wired_count--; 1323 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 1324 1325 vm_map_clear_recursive(map); 1326 vm_map_unlock(map); 1327 1328 (void) vm_map_user_pageable(map, start, entry->start, TRUE); 1329 return rv; 1330 } 1331 1332 vm_map_clear_recursive(map); 1333 if (vm_map_lock_upgrade(map)) { 1334 vm_map_lock(map); 1335 if (vm_map_lookup_entry(map, estart, &entry) 1336 == FALSE) { 1337 vm_map_unlock(map); 1338 (void) vm_map_user_pageable(map, 1339 start, 1340 estart, 1341 TRUE); 1342 return (KERN_INVALID_ADDRESS); 1343 } 1344 } 1345 vm_map_simplify_entry(map,entry); 1346 } 1347 } 1348 map->timestamp++; 1349 vm_map_unlock(map); 1350 return KERN_SUCCESS; 1351 } 1352 1353 /* 1354 * vm_map_pageable: 1355 * 1356 * Sets the pageability of the specified address 1357 * range in the target map. Regions specified 1358 * as not pageable require locked-down physical 1359 * memory and physical page maps. 1360 * 1361 * The map must not be locked, but a reference 1362 * must remain to the map throughout the call. 1363 */ 1364 int 1365 vm_map_pageable(map, start, end, new_pageable) 1366 vm_map_t map; 1367 vm_offset_t start; 1368 vm_offset_t end; 1369 boolean_t new_pageable; 1370 { 1371 vm_map_entry_t entry; 1372 vm_map_entry_t start_entry; 1373 vm_offset_t failed = 0; 1374 int rv; 1375 1376 vm_map_lock(map); 1377 1378 VM_MAP_RANGE_CHECK(map, start, end); 1379 1380 /* 1381 * Only one pageability change may take place at one time, since 1382 * vm_fault assumes it will be called only once for each 1383 * wiring/unwiring. Therefore, we have to make sure we're actually 1384 * changing the pageability for the entire region. We do so before 1385 * making any changes. 1386 */ 1387 1388 if (vm_map_lookup_entry(map, start, &start_entry) == FALSE) { 1389 vm_map_unlock(map); 1390 return (KERN_INVALID_ADDRESS); 1391 } 1392 entry = start_entry; 1393 1394 /* 1395 * Actions are rather different for wiring and unwiring, so we have 1396 * two separate cases. 1397 */ 1398 1399 if (new_pageable) { 1400 1401 vm_map_clip_start(map, entry, start); 1402 1403 /* 1404 * Unwiring. First ensure that the range to be unwired is 1405 * really wired down and that there are no holes. 1406 */ 1407 while ((entry != &map->header) && (entry->start < end)) { 1408 1409 if (entry->wired_count == 0 || 1410 (entry->end < end && 1411 (entry->next == &map->header || 1412 entry->next->start > entry->end))) { 1413 vm_map_unlock(map); 1414 return (KERN_INVALID_ARGUMENT); 1415 } 1416 entry = entry->next; 1417 } 1418 1419 /* 1420 * Now decrement the wiring count for each region. If a region 1421 * becomes completely unwired, unwire its physical pages and 1422 * mappings. 1423 */ 1424 vm_map_set_recursive(map); 1425 1426 entry = start_entry; 1427 while ((entry != &map->header) && (entry->start < end)) { 1428 vm_map_clip_end(map, entry, end); 1429 1430 entry->wired_count--; 1431 if (entry->wired_count == 0) 1432 vm_fault_unwire(map, entry->start, entry->end); 1433 1434 entry = entry->next; 1435 } 1436 vm_map_simplify_entry(map, start_entry); 1437 vm_map_clear_recursive(map); 1438 } else { 1439 /* 1440 * Wiring. We must do this in two passes: 1441 * 1442 * 1. Holding the write lock, we create any shadow or zero-fill 1443 * objects that need to be created. Then we clip each map 1444 * entry to the region to be wired and increment its wiring 1445 * count. We create objects before clipping the map entries 1446 * to avoid object proliferation. 1447 * 1448 * 2. We downgrade to a read lock, and call vm_fault_wire to 1449 * fault in the pages for any newly wired area (wired_count is 1450 * 1). 1451 * 1452 * Downgrading to a read lock for vm_fault_wire avoids a possible 1453 * deadlock with another process that may have faulted on one 1454 * of the pages to be wired (it would mark the page busy, 1455 * blocking us, then in turn block on the map lock that we 1456 * hold). Because of problems in the recursive lock package, 1457 * we cannot upgrade to a write lock in vm_map_lookup. Thus, 1458 * any actions that require the write lock must be done 1459 * beforehand. Because we keep the read lock on the map, the 1460 * copy-on-write status of the entries we modify here cannot 1461 * change. 1462 */ 1463 1464 /* 1465 * Pass 1. 1466 */ 1467 while ((entry != &map->header) && (entry->start < end)) { 1468 if (entry->wired_count == 0) { 1469 1470 /* 1471 * Perform actions of vm_map_lookup that need 1472 * the write lock on the map: create a shadow 1473 * object for a copy-on-write region, or an 1474 * object for a zero-fill region. 1475 * 1476 * We don't have to do this for entries that 1477 * point to sharing maps, because we won't 1478 * hold the lock on the sharing map. 1479 */ 1480 if ((entry->eflags & (MAP_ENTRY_IS_A_MAP|MAP_ENTRY_IS_SUB_MAP)) == 0) { 1481 int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY; 1482 if (copyflag && 1483 ((entry->protection & VM_PROT_WRITE) != 0)) { 1484 1485 vm_object_shadow(&entry->object.vm_object, 1486 &entry->offset, 1487 atop(entry->end - entry->start)); 1488 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 1489 } else if (entry->object.vm_object == NULL) { 1490 entry->object.vm_object = 1491 vm_object_allocate(OBJT_DEFAULT, 1492 atop(entry->end - entry->start)); 1493 entry->offset = (vm_offset_t) 0; 1494 } 1495 default_pager_convert_to_swapq(entry->object.vm_object); 1496 } 1497 } 1498 vm_map_clip_start(map, entry, start); 1499 vm_map_clip_end(map, entry, end); 1500 entry->wired_count++; 1501 1502 /* 1503 * Check for holes 1504 */ 1505 if (entry->end < end && 1506 (entry->next == &map->header || 1507 entry->next->start > entry->end)) { 1508 /* 1509 * Found one. Object creation actions do not 1510 * need to be undone, but the wired counts 1511 * need to be restored. 1512 */ 1513 while (entry != &map->header && entry->end > start) { 1514 entry->wired_count--; 1515 entry = entry->prev; 1516 } 1517 map->timestamp++; 1518 vm_map_unlock(map); 1519 return (KERN_INVALID_ARGUMENT); 1520 } 1521 entry = entry->next; 1522 } 1523 1524 /* 1525 * Pass 2. 1526 */ 1527 1528 /* 1529 * HACK HACK HACK HACK 1530 * 1531 * If we are wiring in the kernel map or a submap of it, 1532 * unlock the map to avoid deadlocks. We trust that the 1533 * kernel is well-behaved, and therefore will not do 1534 * anything destructive to this region of the map while 1535 * we have it unlocked. We cannot trust user processes 1536 * to do the same. 1537 * 1538 * HACK HACK HACK HACK 1539 */ 1540 if (vm_map_pmap(map) == kernel_pmap) { 1541 vm_map_unlock(map); /* trust me ... */ 1542 } else { 1543 vm_map_set_recursive(map); 1544 vm_map_lock_downgrade(map); 1545 } 1546 1547 rv = 0; 1548 entry = start_entry; 1549 while (entry != &map->header && entry->start < end) { 1550 /* 1551 * If vm_fault_wire fails for any page we need to undo 1552 * what has been done. We decrement the wiring count 1553 * for those pages which have not yet been wired (now) 1554 * and unwire those that have (later). 1555 * 1556 * XXX this violates the locking protocol on the map, 1557 * needs to be fixed. 1558 */ 1559 if (rv) 1560 entry->wired_count--; 1561 else if (entry->wired_count == 1) { 1562 rv = vm_fault_wire(map, entry->start, entry->end); 1563 if (rv) { 1564 failed = entry->start; 1565 entry->wired_count--; 1566 } 1567 } 1568 entry = entry->next; 1569 } 1570 1571 if (vm_map_pmap(map) == kernel_pmap) { 1572 vm_map_lock(map); 1573 } else { 1574 vm_map_clear_recursive(map); 1575 } 1576 if (rv) { 1577 vm_map_unlock(map); 1578 (void) vm_map_pageable(map, start, failed, TRUE); 1579 return (rv); 1580 } 1581 vm_map_simplify_entry(map, start_entry); 1582 } 1583 1584 vm_map_unlock(map); 1585 1586 map->timestamp++; 1587 return (KERN_SUCCESS); 1588 } 1589 1590 /* 1591 * vm_map_clean 1592 * 1593 * Push any dirty cached pages in the address range to their pager. 1594 * If syncio is TRUE, dirty pages are written synchronously. 1595 * If invalidate is TRUE, any cached pages are freed as well. 1596 * 1597 * Returns an error if any part of the specified range is not mapped. 1598 */ 1599 int 1600 vm_map_clean(map, start, end, syncio, invalidate) 1601 vm_map_t map; 1602 vm_offset_t start; 1603 vm_offset_t end; 1604 boolean_t syncio; 1605 boolean_t invalidate; 1606 { 1607 vm_map_entry_t current; 1608 vm_map_entry_t entry; 1609 vm_size_t size; 1610 vm_object_t object; 1611 vm_ooffset_t offset; 1612 1613 vm_map_lock_read(map); 1614 VM_MAP_RANGE_CHECK(map, start, end); 1615 if (!vm_map_lookup_entry(map, start, &entry)) { 1616 vm_map_unlock_read(map); 1617 return (KERN_INVALID_ADDRESS); 1618 } 1619 /* 1620 * Make a first pass to check for holes. 1621 */ 1622 for (current = entry; current->start < end; current = current->next) { 1623 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 1624 vm_map_unlock_read(map); 1625 return (KERN_INVALID_ARGUMENT); 1626 } 1627 if (end > current->end && 1628 (current->next == &map->header || 1629 current->end != current->next->start)) { 1630 vm_map_unlock_read(map); 1631 return (KERN_INVALID_ADDRESS); 1632 } 1633 } 1634 1635 if (invalidate) 1636 pmap_remove(vm_map_pmap(map), start, end); 1637 /* 1638 * Make a second pass, cleaning/uncaching pages from the indicated 1639 * objects as we go. 1640 */ 1641 for (current = entry; current->start < end; current = current->next) { 1642 offset = current->offset + (start - current->start); 1643 size = (end <= current->end ? end : current->end) - start; 1644 if (current->eflags & (MAP_ENTRY_IS_A_MAP|MAP_ENTRY_IS_SUB_MAP)) { 1645 vm_map_t smap; 1646 vm_map_entry_t tentry; 1647 vm_size_t tsize; 1648 1649 smap = current->object.share_map; 1650 vm_map_lock_read(smap); 1651 (void) vm_map_lookup_entry(smap, offset, &tentry); 1652 tsize = tentry->end - offset; 1653 if (tsize < size) 1654 size = tsize; 1655 object = tentry->object.vm_object; 1656 offset = tentry->offset + (offset - tentry->start); 1657 vm_map_unlock_read(smap); 1658 } else { 1659 object = current->object.vm_object; 1660 } 1661 /* 1662 * Note that there is absolutely no sense in writing out 1663 * anonymous objects, so we track down the vnode object 1664 * to write out. 1665 * We invalidate (remove) all pages from the address space 1666 * anyway, for semantic correctness. 1667 */ 1668 while (object->backing_object) { 1669 object = object->backing_object; 1670 offset += object->backing_object_offset; 1671 if (object->size < OFF_TO_IDX( offset + size)) 1672 size = IDX_TO_OFF(object->size) - offset; 1673 } 1674 if (object && (object->type == OBJT_VNODE)) { 1675 /* 1676 * Flush pages if writing is allowed. XXX should we continue 1677 * on an error? 1678 * 1679 * XXX Doing async I/O and then removing all the pages from 1680 * the object before it completes is probably a very bad 1681 * idea. 1682 */ 1683 if (current->protection & VM_PROT_WRITE) { 1684 int flags; 1685 if (object->type == OBJT_VNODE) 1686 vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY, curproc); 1687 flags = (syncio || invalidate) ? OBJPC_SYNC : 0; 1688 flags |= invalidate ? OBJPC_INVAL : 0; 1689 vm_object_page_clean(object, 1690 OFF_TO_IDX(offset), 1691 OFF_TO_IDX(offset + size + PAGE_MASK), 1692 flags); 1693 if (invalidate) { 1694 vm_object_pip_wait(object, "objmcl"); 1695 vm_object_page_remove(object, 1696 OFF_TO_IDX(offset), 1697 OFF_TO_IDX(offset + size + PAGE_MASK), 1698 FALSE); 1699 } 1700 if (object->type == OBJT_VNODE) 1701 VOP_UNLOCK(object->handle, 0, curproc); 1702 } 1703 } 1704 start += size; 1705 } 1706 1707 vm_map_unlock_read(map); 1708 return (KERN_SUCCESS); 1709 } 1710 1711 /* 1712 * vm_map_entry_unwire: [ internal use only ] 1713 * 1714 * Make the region specified by this entry pageable. 1715 * 1716 * The map in question should be locked. 1717 * [This is the reason for this routine's existence.] 1718 */ 1719 static void 1720 vm_map_entry_unwire(map, entry) 1721 vm_map_t map; 1722 vm_map_entry_t entry; 1723 { 1724 vm_fault_unwire(map, entry->start, entry->end); 1725 entry->wired_count = 0; 1726 } 1727 1728 /* 1729 * vm_map_entry_delete: [ internal use only ] 1730 * 1731 * Deallocate the given entry from the target map. 1732 */ 1733 static void 1734 vm_map_entry_delete(map, entry) 1735 vm_map_t map; 1736 vm_map_entry_t entry; 1737 { 1738 vm_map_entry_unlink(map, entry); 1739 map->size -= entry->end - entry->start; 1740 1741 if ((entry->eflags & (MAP_ENTRY_IS_A_MAP|MAP_ENTRY_IS_SUB_MAP)) == 0) { 1742 vm_object_deallocate(entry->object.vm_object); 1743 } 1744 1745 vm_map_entry_dispose(map, entry); 1746 } 1747 1748 /* 1749 * vm_map_delete: [ internal use only ] 1750 * 1751 * Deallocates the given address range from the target 1752 * map. 1753 * 1754 * When called with a sharing map, removes pages from 1755 * that region from all physical maps. 1756 */ 1757 int 1758 vm_map_delete(map, start, end) 1759 vm_map_t map; 1760 vm_offset_t start; 1761 vm_offset_t end; 1762 { 1763 vm_object_t object; 1764 vm_map_entry_t entry; 1765 vm_map_entry_t first_entry; 1766 1767 /* 1768 * Find the start of the region, and clip it 1769 */ 1770 1771 if (!vm_map_lookup_entry(map, start, &first_entry)) { 1772 entry = first_entry->next; 1773 object = entry->object.vm_object; 1774 if (object && (object->ref_count == 1) && (object->shadow_count == 0)) 1775 vm_object_set_flag(object, OBJ_ONEMAPPING); 1776 } else { 1777 entry = first_entry; 1778 vm_map_clip_start(map, entry, start); 1779 /* 1780 * Fix the lookup hint now, rather than each time though the 1781 * loop. 1782 */ 1783 SAVE_HINT(map, entry->prev); 1784 } 1785 1786 /* 1787 * Save the free space hint 1788 */ 1789 1790 if (entry == &map->header) { 1791 map->first_free = &map->header; 1792 } else if (map->first_free->start >= start) { 1793 map->first_free = entry->prev; 1794 } 1795 1796 /* 1797 * Step through all entries in this region 1798 */ 1799 1800 while ((entry != &map->header) && (entry->start < end)) { 1801 vm_map_entry_t next; 1802 vm_offset_t s, e; 1803 vm_pindex_t offidxstart, offidxend, count; 1804 1805 vm_map_clip_end(map, entry, end); 1806 1807 s = entry->start; 1808 e = entry->end; 1809 next = entry->next; 1810 1811 offidxstart = OFF_TO_IDX(entry->offset); 1812 count = OFF_TO_IDX(e - s); 1813 object = entry->object.vm_object; 1814 1815 /* 1816 * Unwire before removing addresses from the pmap; otherwise, 1817 * unwiring will put the entries back in the pmap. 1818 */ 1819 if (entry->wired_count != 0) { 1820 vm_map_entry_unwire(map, entry); 1821 } 1822 1823 offidxend = offidxstart + count; 1824 /* 1825 * If this is a sharing map, we must remove *all* references 1826 * to this data, since we can't find all of the physical maps 1827 * which are sharing it. 1828 */ 1829 1830 if ((object == kernel_object) || (object == kmem_object)) { 1831 vm_object_page_remove(object, offidxstart, offidxend, FALSE); 1832 } else if (!map->is_main_map) { 1833 vm_object_pmap_remove(object, offidxstart, offidxend); 1834 } else { 1835 pmap_remove(map->pmap, s, e); 1836 if (object && 1837 ((object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) && 1838 ((object->type == OBJT_SWAP) || (object->type == OBJT_DEFAULT))) { 1839 vm_object_collapse(object); 1840 vm_object_page_remove(object, offidxstart, offidxend, FALSE); 1841 if (object->type == OBJT_SWAP) { 1842 swap_pager_freespace(object, offidxstart, count); 1843 } 1844 1845 if ((offidxend >= object->size) && 1846 (offidxstart < object->size)) { 1847 object->size = offidxstart; 1848 } 1849 } 1850 } 1851 1852 /* 1853 * Delete the entry (which may delete the object) only after 1854 * removing all pmap entries pointing to its pages. 1855 * (Otherwise, its page frames may be reallocated, and any 1856 * modify bits will be set in the wrong object!) 1857 */ 1858 vm_map_entry_delete(map, entry); 1859 entry = next; 1860 } 1861 return (KERN_SUCCESS); 1862 } 1863 1864 /* 1865 * vm_map_remove: 1866 * 1867 * Remove the given address range from the target map. 1868 * This is the exported form of vm_map_delete. 1869 */ 1870 int 1871 vm_map_remove(map, start, end) 1872 vm_map_t map; 1873 vm_offset_t start; 1874 vm_offset_t end; 1875 { 1876 int result, s = 0; 1877 1878 if (map == kmem_map || map == mb_map) 1879 s = splvm(); 1880 1881 vm_map_lock(map); 1882 VM_MAP_RANGE_CHECK(map, start, end); 1883 result = vm_map_delete(map, start, end); 1884 vm_map_unlock(map); 1885 1886 if (map == kmem_map || map == mb_map) 1887 splx(s); 1888 1889 return (result); 1890 } 1891 1892 /* 1893 * vm_map_check_protection: 1894 * 1895 * Assert that the target map allows the specified 1896 * privilege on the entire address region given. 1897 * The entire region must be allocated. 1898 */ 1899 boolean_t 1900 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 1901 vm_prot_t protection) 1902 { 1903 vm_map_entry_t entry; 1904 vm_map_entry_t tmp_entry; 1905 1906 if (!vm_map_lookup_entry(map, start, &tmp_entry)) { 1907 return (FALSE); 1908 } 1909 entry = tmp_entry; 1910 1911 while (start < end) { 1912 if (entry == &map->header) { 1913 return (FALSE); 1914 } 1915 /* 1916 * No holes allowed! 1917 */ 1918 1919 if (start < entry->start) { 1920 return (FALSE); 1921 } 1922 /* 1923 * Check protection associated with entry. 1924 */ 1925 1926 if ((entry->protection & protection) != protection) { 1927 return (FALSE); 1928 } 1929 /* go to next entry */ 1930 1931 start = entry->end; 1932 entry = entry->next; 1933 } 1934 return (TRUE); 1935 } 1936 1937 /* 1938 * Split the pages in a map entry into a new object. This affords 1939 * easier removal of unused pages, and keeps object inheritance from 1940 * being a negative impact on memory usage. 1941 */ 1942 static void 1943 vm_map_split(entry) 1944 vm_map_entry_t entry; 1945 { 1946 vm_page_t m; 1947 vm_object_t orig_object, new_object, source; 1948 vm_offset_t s, e; 1949 vm_pindex_t offidxstart, offidxend, idx; 1950 vm_size_t size; 1951 vm_ooffset_t offset; 1952 1953 orig_object = entry->object.vm_object; 1954 if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP) 1955 return; 1956 if (orig_object->ref_count <= 1) 1957 return; 1958 1959 offset = entry->offset; 1960 s = entry->start; 1961 e = entry->end; 1962 1963 offidxstart = OFF_TO_IDX(offset); 1964 offidxend = offidxstart + OFF_TO_IDX(e - s); 1965 size = offidxend - offidxstart; 1966 1967 new_object = vm_pager_allocate(orig_object->type, 1968 NULL, size, VM_PROT_ALL, 0LL); 1969 if (new_object == NULL) 1970 return; 1971 1972 source = orig_object->backing_object; 1973 if (source != NULL) { 1974 vm_object_reference(source); /* Referenced by new_object */ 1975 TAILQ_INSERT_TAIL(&source->shadow_head, 1976 new_object, shadow_list); 1977 vm_object_clear_flag(source, OBJ_ONEMAPPING); 1978 new_object->backing_object_offset = 1979 orig_object->backing_object_offset + offidxstart; 1980 new_object->backing_object = source; 1981 source->shadow_count++; 1982 source->generation++; 1983 } 1984 1985 for (idx = 0; idx < size; idx++) { 1986 vm_page_t m; 1987 1988 retry: 1989 m = vm_page_lookup(orig_object, offidxstart + idx); 1990 if (m == NULL) 1991 continue; 1992 if (m->flags & PG_BUSY) { 1993 vm_page_flag_set(m, PG_WANTED); 1994 tsleep(m, PVM, "spltwt", 0); 1995 goto retry; 1996 } 1997 1998 vm_page_busy(m); 1999 vm_page_protect(m, VM_PROT_NONE); 2000 vm_page_rename(m, new_object, idx); 2001 m->dirty = VM_PAGE_BITS_ALL; 2002 vm_page_busy(m); 2003 } 2004 2005 if (orig_object->type == OBJT_SWAP) { 2006 vm_object_pip_add(orig_object, 1); 2007 /* 2008 * copy orig_object pages into new_object 2009 * and destroy unneeded pages in 2010 * shadow object. 2011 */ 2012 swap_pager_copy(orig_object, OFF_TO_IDX(orig_object->paging_offset), 2013 new_object, OFF_TO_IDX(new_object->paging_offset), 2014 offidxstart, 0); 2015 vm_object_pip_wakeup(orig_object); 2016 } 2017 2018 for (idx = 0; idx < size; idx++) { 2019 m = vm_page_lookup(new_object, idx); 2020 if (m) { 2021 vm_page_wakeup(m); 2022 } 2023 } 2024 2025 entry->object.vm_object = new_object; 2026 entry->offset = 0LL; 2027 vm_object_deallocate(orig_object); 2028 } 2029 2030 /* 2031 * vm_map_copy_entry: 2032 * 2033 * Copies the contents of the source entry to the destination 2034 * entry. The entries *must* be aligned properly. 2035 */ 2036 static void 2037 vm_map_copy_entry(src_map, dst_map, src_entry, dst_entry) 2038 vm_map_t src_map, dst_map; 2039 vm_map_entry_t src_entry, dst_entry; 2040 { 2041 vm_object_t src_object; 2042 2043 if ((dst_entry->eflags|src_entry->eflags) & 2044 (MAP_ENTRY_IS_A_MAP|MAP_ENTRY_IS_SUB_MAP)) 2045 return; 2046 2047 if (src_entry->wired_count == 0) { 2048 2049 /* 2050 * If the source entry is marked needs_copy, it is already 2051 * write-protected. 2052 */ 2053 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) { 2054 pmap_protect(src_map->pmap, 2055 src_entry->start, 2056 src_entry->end, 2057 src_entry->protection & ~VM_PROT_WRITE); 2058 } 2059 2060 /* 2061 * Make a copy of the object. 2062 */ 2063 if (src_object = src_entry->object.vm_object) { 2064 2065 if ((src_object->handle == NULL) && 2066 (src_object->type == OBJT_DEFAULT || 2067 src_object->type == OBJT_SWAP)) { 2068 vm_object_collapse(src_object); 2069 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) { 2070 vm_map_split(src_entry); 2071 src_map->timestamp++; 2072 src_object = src_entry->object.vm_object; 2073 } 2074 } 2075 2076 vm_object_reference(src_object); 2077 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 2078 dst_entry->object.vm_object = src_object; 2079 src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 2080 dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 2081 dst_entry->offset = src_entry->offset; 2082 } else { 2083 dst_entry->object.vm_object = NULL; 2084 dst_entry->offset = 0; 2085 } 2086 2087 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start, 2088 dst_entry->end - dst_entry->start, src_entry->start); 2089 } else { 2090 /* 2091 * Of course, wired down pages can't be set copy-on-write. 2092 * Cause wired pages to be copied into the new map by 2093 * simulating faults (the new pages are pageable) 2094 */ 2095 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry); 2096 } 2097 } 2098 2099 /* 2100 * vmspace_fork: 2101 * Create a new process vmspace structure and vm_map 2102 * based on those of an existing process. The new map 2103 * is based on the old map, according to the inheritance 2104 * values on the regions in that map. 2105 * 2106 * The source map must not be locked. 2107 */ 2108 struct vmspace * 2109 vmspace_fork(vm1) 2110 struct vmspace *vm1; 2111 { 2112 struct vmspace *vm2; 2113 vm_map_t old_map = &vm1->vm_map; 2114 vm_map_t new_map; 2115 vm_map_entry_t old_entry; 2116 vm_map_entry_t new_entry; 2117 pmap_t new_pmap; 2118 vm_object_t object; 2119 2120 vm_map_lock(old_map); 2121 2122 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset); 2123 bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy, 2124 (caddr_t) (vm1 + 1) - (caddr_t) &vm1->vm_startcopy); 2125 new_pmap = &vm2->vm_pmap; /* XXX */ 2126 new_map = &vm2->vm_map; /* XXX */ 2127 new_map->timestamp = 1; 2128 2129 old_entry = old_map->header.next; 2130 2131 while (old_entry != &old_map->header) { 2132 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2133 panic("vm_map_fork: encountered a submap"); 2134 2135 switch (old_entry->inheritance) { 2136 case VM_INHERIT_NONE: 2137 break; 2138 2139 case VM_INHERIT_SHARE: 2140 /* 2141 * Clone the entry, creating the shared object if necessary. 2142 */ 2143 object = old_entry->object.vm_object; 2144 if (object == NULL) { 2145 object = vm_object_allocate(OBJT_DEFAULT, 2146 atop(old_entry->end - old_entry->start)); 2147 old_entry->object.vm_object = object; 2148 old_entry->offset = (vm_offset_t) 0; 2149 } else if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 2150 vm_object_shadow(&old_entry->object.vm_object, 2151 &old_entry->offset, 2152 atop(old_entry->end - old_entry->start)); 2153 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 2154 object = old_entry->object.vm_object; 2155 } 2156 vm_object_clear_flag(object, OBJ_ONEMAPPING); 2157 2158 /* 2159 * Clone the entry, referencing the sharing map. 2160 */ 2161 new_entry = vm_map_entry_create(new_map); 2162 *new_entry = *old_entry; 2163 new_entry->wired_count = 0; 2164 vm_object_reference(object); 2165 2166 /* 2167 * Insert the entry into the new map -- we know we're 2168 * inserting at the end of the new map. 2169 */ 2170 2171 vm_map_entry_link(new_map, new_map->header.prev, 2172 new_entry); 2173 2174 /* 2175 * Update the physical map 2176 */ 2177 2178 pmap_copy(new_map->pmap, old_map->pmap, 2179 new_entry->start, 2180 (old_entry->end - old_entry->start), 2181 old_entry->start); 2182 break; 2183 2184 case VM_INHERIT_COPY: 2185 /* 2186 * Clone the entry and link into the map. 2187 */ 2188 new_entry = vm_map_entry_create(new_map); 2189 *new_entry = *old_entry; 2190 new_entry->wired_count = 0; 2191 new_entry->object.vm_object = NULL; 2192 new_entry->eflags &= ~MAP_ENTRY_IS_A_MAP; 2193 vm_map_entry_link(new_map, new_map->header.prev, 2194 new_entry); 2195 vm_map_copy_entry(old_map, new_map, old_entry, 2196 new_entry); 2197 break; 2198 } 2199 old_entry = old_entry->next; 2200 } 2201 2202 new_map->size = old_map->size; 2203 vm_map_unlock(old_map); 2204 old_map->timestamp++; 2205 2206 return (vm2); 2207 } 2208 2209 /* 2210 * Unshare the specified VM space for exec. If other processes are 2211 * mapped to it, then create a new one. The new vmspace is null. 2212 */ 2213 2214 void 2215 vmspace_exec(struct proc *p) { 2216 struct vmspace *oldvmspace = p->p_vmspace; 2217 struct vmspace *newvmspace; 2218 vm_map_t map = &p->p_vmspace->vm_map; 2219 2220 newvmspace = vmspace_alloc(map->min_offset, map->max_offset); 2221 bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy, 2222 (caddr_t) (newvmspace + 1) - (caddr_t) &newvmspace->vm_startcopy); 2223 /* 2224 * This code is written like this for prototype purposes. The 2225 * goal is to avoid running down the vmspace here, but let the 2226 * other process's that are still using the vmspace to finally 2227 * run it down. Even though there is little or no chance of blocking 2228 * here, it is a good idea to keep this form for future mods. 2229 */ 2230 vmspace_free(oldvmspace); 2231 p->p_vmspace = newvmspace; 2232 if (p == curproc) 2233 pmap_activate(p); 2234 } 2235 2236 /* 2237 * Unshare the specified VM space for forcing COW. This 2238 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 2239 */ 2240 2241 void 2242 vmspace_unshare(struct proc *p) { 2243 struct vmspace *oldvmspace = p->p_vmspace; 2244 struct vmspace *newvmspace; 2245 2246 if (oldvmspace->vm_refcnt == 1) 2247 return; 2248 newvmspace = vmspace_fork(oldvmspace); 2249 vmspace_free(oldvmspace); 2250 p->p_vmspace = newvmspace; 2251 if (p == curproc) 2252 pmap_activate(p); 2253 } 2254 2255 2256 /* 2257 * vm_map_lookup: 2258 * 2259 * Finds the VM object, offset, and 2260 * protection for a given virtual address in the 2261 * specified map, assuming a page fault of the 2262 * type specified. 2263 * 2264 * Leaves the map in question locked for read; return 2265 * values are guaranteed until a vm_map_lookup_done 2266 * call is performed. Note that the map argument 2267 * is in/out; the returned map must be used in 2268 * the call to vm_map_lookup_done. 2269 * 2270 * A handle (out_entry) is returned for use in 2271 * vm_map_lookup_done, to make that fast. 2272 * 2273 * If a lookup is requested with "write protection" 2274 * specified, the map may be changed to perform virtual 2275 * copying operations, although the data referenced will 2276 * remain the same. 2277 */ 2278 int 2279 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 2280 vm_offset_t vaddr, 2281 vm_prot_t fault_typea, 2282 vm_map_entry_t *out_entry, /* OUT */ 2283 vm_object_t *object, /* OUT */ 2284 vm_pindex_t *pindex, /* OUT */ 2285 vm_prot_t *out_prot, /* OUT */ 2286 boolean_t *wired) /* OUT */ 2287 { 2288 vm_map_t share_map; 2289 vm_offset_t share_offset; 2290 vm_map_entry_t entry; 2291 vm_map_t map = *var_map; 2292 vm_prot_t prot; 2293 boolean_t su; 2294 vm_prot_t fault_type = fault_typea; 2295 2296 RetryLookup:; 2297 2298 /* 2299 * Lookup the faulting address. 2300 */ 2301 2302 vm_map_lock_read(map); 2303 2304 #define RETURN(why) \ 2305 { \ 2306 vm_map_unlock_read(map); \ 2307 return(why); \ 2308 } 2309 2310 /* 2311 * If the map has an interesting hint, try it before calling full 2312 * blown lookup routine. 2313 */ 2314 2315 entry = map->hint; 2316 2317 *out_entry = entry; 2318 2319 if ((entry == &map->header) || 2320 (vaddr < entry->start) || (vaddr >= entry->end)) { 2321 vm_map_entry_t tmp_entry; 2322 2323 /* 2324 * Entry was either not a valid hint, or the vaddr was not 2325 * contained in the entry, so do a full lookup. 2326 */ 2327 if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) 2328 RETURN(KERN_INVALID_ADDRESS); 2329 2330 entry = tmp_entry; 2331 *out_entry = entry; 2332 } 2333 2334 /* 2335 * Handle submaps. 2336 */ 2337 2338 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 2339 vm_map_t old_map = map; 2340 2341 *var_map = map = entry->object.sub_map; 2342 vm_map_unlock_read(old_map); 2343 goto RetryLookup; 2344 } 2345 2346 /* 2347 * Check whether this task is allowed to have this page. 2348 * Note the special case for MAP_ENTRY_COW 2349 * pages with an override. This is to implement a forced 2350 * COW for debuggers. 2351 */ 2352 2353 if (fault_type & VM_PROT_OVERRIDE_WRITE) 2354 prot = entry->max_protection; 2355 else 2356 prot = entry->protection; 2357 2358 fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE); 2359 if ((fault_type & prot) != fault_type) { 2360 RETURN(KERN_PROTECTION_FAILURE); 2361 } 2362 2363 if (entry->wired_count && (fault_type & VM_PROT_WRITE) && 2364 (entry->eflags & MAP_ENTRY_COW) && 2365 (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) { 2366 RETURN(KERN_PROTECTION_FAILURE); 2367 } 2368 2369 /* 2370 * If this page is not pageable, we have to get it for all possible 2371 * accesses. 2372 */ 2373 2374 *wired = (entry->wired_count != 0); 2375 if (*wired) 2376 prot = fault_type = entry->protection; 2377 2378 /* 2379 * If we don't already have a VM object, track it down. 2380 */ 2381 2382 su = (entry->eflags & MAP_ENTRY_IS_A_MAP) == 0; 2383 if (su) { 2384 share_map = map; 2385 share_offset = vaddr; 2386 } else { 2387 vm_map_entry_t share_entry; 2388 2389 /* 2390 * Compute the sharing map, and offset into it. 2391 */ 2392 2393 share_map = entry->object.share_map; 2394 share_offset = (vaddr - entry->start) + entry->offset; 2395 2396 /* 2397 * Look for the backing store object and offset 2398 */ 2399 2400 vm_map_lock_read(share_map); 2401 2402 if (!vm_map_lookup_entry(share_map, share_offset, 2403 &share_entry)) { 2404 vm_map_unlock_read(share_map); 2405 RETURN(KERN_INVALID_ADDRESS); 2406 } 2407 entry = share_entry; 2408 } 2409 2410 /* 2411 * If the entry was copy-on-write, we either ... 2412 */ 2413 2414 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 2415 /* 2416 * If we want to write the page, we may as well handle that 2417 * now since we've got the sharing map locked. 2418 * 2419 * If we don't need to write the page, we just demote the 2420 * permissions allowed. 2421 */ 2422 2423 if (fault_type & VM_PROT_WRITE) { 2424 /* 2425 * Make a new object, and place it in the object 2426 * chain. Note that no new references have appeared 2427 * -- one just moved from the share map to the new 2428 * object. 2429 */ 2430 2431 if (vm_map_lock_upgrade(share_map)) { 2432 if (share_map != map) 2433 vm_map_unlock_read(map); 2434 2435 goto RetryLookup; 2436 } 2437 vm_object_shadow( 2438 &entry->object.vm_object, 2439 &entry->offset, 2440 atop(entry->end - entry->start)); 2441 2442 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 2443 vm_map_lock_downgrade(share_map); 2444 } else { 2445 /* 2446 * We're attempting to read a copy-on-write page -- 2447 * don't allow writes. 2448 */ 2449 2450 prot &= ~VM_PROT_WRITE; 2451 } 2452 } 2453 2454 /* 2455 * Create an object if necessary. 2456 */ 2457 if (entry->object.vm_object == NULL) { 2458 2459 if (vm_map_lock_upgrade(share_map)) { 2460 if (share_map != map) 2461 vm_map_unlock_read(map); 2462 goto RetryLookup; 2463 } 2464 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT, 2465 atop(entry->end - entry->start)); 2466 entry->offset = 0; 2467 vm_map_lock_downgrade(share_map); 2468 } 2469 2470 if (entry->object.vm_object->type == OBJT_DEFAULT) 2471 default_pager_convert_to_swapq(entry->object.vm_object); 2472 /* 2473 * Return the object/offset from this entry. If the entry was 2474 * copy-on-write or empty, it has been fixed up. 2475 */ 2476 2477 *pindex = OFF_TO_IDX((share_offset - entry->start) + entry->offset); 2478 *object = entry->object.vm_object; 2479 2480 /* 2481 * Return whether this is the only map sharing this data. 2482 */ 2483 2484 *out_prot = prot; 2485 return (KERN_SUCCESS); 2486 2487 #undef RETURN 2488 } 2489 2490 /* 2491 * vm_map_lookup_done: 2492 * 2493 * Releases locks acquired by a vm_map_lookup 2494 * (according to the handle returned by that lookup). 2495 */ 2496 2497 void 2498 vm_map_lookup_done(map, entry) 2499 vm_map_t map; 2500 vm_map_entry_t entry; 2501 { 2502 /* 2503 * If this entry references a map, unlock it first. 2504 */ 2505 2506 if (entry->eflags & MAP_ENTRY_IS_A_MAP) 2507 vm_map_unlock_read(entry->object.share_map); 2508 2509 /* 2510 * Unlock the main-level map 2511 */ 2512 2513 vm_map_unlock_read(map); 2514 } 2515 2516 /* 2517 * Implement uiomove with VM operations. This handles (and collateral changes) 2518 * support every combination of source object modification, and COW type 2519 * operations. 2520 */ 2521 int 2522 vm_uiomove(mapa, srcobject, cp, cnta, uaddra, npages) 2523 vm_map_t mapa; 2524 vm_object_t srcobject; 2525 off_t cp; 2526 int cnta; 2527 vm_offset_t uaddra; 2528 int *npages; 2529 { 2530 vm_map_t map; 2531 vm_object_t first_object, oldobject, object; 2532 vm_map_entry_t entry; 2533 vm_prot_t prot; 2534 boolean_t wired; 2535 int tcnt, rv; 2536 vm_offset_t uaddr, start, end, tend; 2537 vm_pindex_t first_pindex, osize, oindex; 2538 off_t ooffset; 2539 int cnt; 2540 2541 if (npages) 2542 *npages = 0; 2543 2544 cnt = cnta; 2545 uaddr = uaddra; 2546 2547 while (cnt > 0) { 2548 map = mapa; 2549 2550 if ((vm_map_lookup(&map, uaddr, 2551 VM_PROT_READ, &entry, &first_object, 2552 &first_pindex, &prot, &wired)) != KERN_SUCCESS) { 2553 return EFAULT; 2554 } 2555 2556 vm_map_clip_start(map, entry, uaddr); 2557 2558 tcnt = cnt; 2559 tend = uaddr + tcnt; 2560 if (tend > entry->end) { 2561 tcnt = entry->end - uaddr; 2562 tend = entry->end; 2563 } 2564 2565 vm_map_clip_end(map, entry, tend); 2566 2567 start = entry->start; 2568 end = entry->end; 2569 2570 osize = atop(tcnt); 2571 2572 oindex = OFF_TO_IDX(cp); 2573 if (npages) { 2574 vm_pindex_t idx; 2575 for (idx = 0; idx < osize; idx++) { 2576 vm_page_t m; 2577 if ((m = vm_page_lookup(srcobject, oindex + idx)) == NULL) { 2578 vm_map_lookup_done(map, entry); 2579 return 0; 2580 } 2581 if ((m->flags & PG_BUSY) || 2582 ((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL)) { 2583 vm_map_lookup_done(map, entry); 2584 return 0; 2585 } 2586 } 2587 } 2588 2589 /* 2590 * If we are changing an existing map entry, just redirect 2591 * the object, and change mappings. 2592 */ 2593 if ((first_object->type == OBJT_VNODE) && 2594 ((oldobject = entry->object.vm_object) == first_object)) { 2595 2596 if ((entry->offset != cp) || (oldobject != srcobject)) { 2597 /* 2598 * Remove old window into the file 2599 */ 2600 pmap_remove (map->pmap, uaddr, tend); 2601 2602 /* 2603 * Force copy on write for mmaped regions 2604 */ 2605 vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize); 2606 2607 /* 2608 * Point the object appropriately 2609 */ 2610 if (oldobject != srcobject) { 2611 2612 /* 2613 * Set the object optimization hint flag 2614 */ 2615 vm_object_set_flag(srcobject, OBJ_OPT); 2616 vm_object_reference(srcobject); 2617 entry->object.vm_object = srcobject; 2618 2619 if (oldobject) { 2620 vm_object_deallocate(oldobject); 2621 } 2622 } 2623 2624 entry->offset = cp; 2625 map->timestamp++; 2626 } else { 2627 pmap_remove (map->pmap, uaddr, tend); 2628 } 2629 2630 } else if ((first_object->ref_count == 1) && 2631 (first_object->size == osize) && 2632 ((first_object->type == OBJT_DEFAULT) || 2633 (first_object->type == OBJT_SWAP)) ) { 2634 2635 oldobject = first_object->backing_object; 2636 2637 if ((first_object->backing_object_offset != cp) || 2638 (oldobject != srcobject)) { 2639 /* 2640 * Remove old window into the file 2641 */ 2642 pmap_remove (map->pmap, uaddr, tend); 2643 2644 /* 2645 * Remove unneeded old pages 2646 */ 2647 if (first_object->resident_page_count) { 2648 vm_object_page_remove (first_object, 0, 0, 0); 2649 } 2650 2651 /* 2652 * Invalidate swap space 2653 */ 2654 if (first_object->type == OBJT_SWAP) { 2655 swap_pager_freespace(first_object, 2656 OFF_TO_IDX(first_object->paging_offset), 2657 first_object->size); 2658 } 2659 2660 /* 2661 * Force copy on write for mmaped regions 2662 */ 2663 vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize); 2664 2665 /* 2666 * Point the object appropriately 2667 */ 2668 if (oldobject != srcobject) { 2669 2670 /* 2671 * Set the object optimization hint flag 2672 */ 2673 vm_object_set_flag(srcobject, OBJ_OPT); 2674 vm_object_reference(srcobject); 2675 2676 if (oldobject) { 2677 TAILQ_REMOVE(&oldobject->shadow_head, 2678 first_object, shadow_list); 2679 oldobject->shadow_count--; 2680 vm_object_deallocate(oldobject); 2681 } 2682 2683 TAILQ_INSERT_TAIL(&srcobject->shadow_head, 2684 first_object, shadow_list); 2685 srcobject->shadow_count++; 2686 2687 first_object->backing_object = srcobject; 2688 } 2689 first_object->backing_object_offset = cp; 2690 map->timestamp++; 2691 } else { 2692 pmap_remove (map->pmap, uaddr, tend); 2693 } 2694 /* 2695 * Otherwise, we have to do a logical mmap. 2696 */ 2697 } else { 2698 2699 vm_object_set_flag(srcobject, OBJ_OPT); 2700 vm_object_reference(srcobject); 2701 2702 pmap_remove (map->pmap, uaddr, tend); 2703 2704 vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize); 2705 vm_map_lock_upgrade(map); 2706 2707 if (entry == &map->header) { 2708 map->first_free = &map->header; 2709 } else if (map->first_free->start >= start) { 2710 map->first_free = entry->prev; 2711 } 2712 2713 SAVE_HINT(map, entry->prev); 2714 vm_map_entry_delete(map, entry); 2715 2716 object = srcobject; 2717 ooffset = cp; 2718 #if 0 2719 vm_object_shadow(&object, &ooffset, osize); 2720 #endif 2721 2722 rv = vm_map_insert(map, object, ooffset, start, tend, 2723 VM_PROT_ALL, VM_PROT_ALL, MAP_COPY_ON_WRITE|MAP_COPY_NEEDED); 2724 2725 if (rv != KERN_SUCCESS) 2726 panic("vm_uiomove: could not insert new entry: %d", rv); 2727 } 2728 2729 /* 2730 * Map the window directly, if it is already in memory 2731 */ 2732 pmap_object_init_pt(map->pmap, uaddr, 2733 srcobject, oindex, tcnt, 0); 2734 2735 map->timestamp++; 2736 vm_map_unlock(map); 2737 2738 cnt -= tcnt; 2739 uaddr += tcnt; 2740 cp += tcnt; 2741 if (npages) 2742 *npages += osize; 2743 } 2744 return 0; 2745 } 2746 2747 /* 2748 * Performs the copy_on_write operations necessary to allow the virtual copies 2749 * into user space to work. This has to be called for write(2) system calls 2750 * from other processes, file unlinking, and file size shrinkage. 2751 */ 2752 void 2753 vm_freeze_copyopts(object, froma, toa) 2754 vm_object_t object; 2755 vm_pindex_t froma, toa; 2756 { 2757 int s, rv; 2758 vm_object_t robject, robjectn; 2759 vm_pindex_t idx, from, to; 2760 2761 if ((object == NULL) || 2762 ((object->flags & OBJ_OPT) == 0)) 2763 return; 2764 2765 if (object->shadow_count > object->ref_count) 2766 panic("vm_freeze_copyopts: sc > rc"); 2767 2768 while( robject = TAILQ_FIRST(&object->shadow_head)) { 2769 vm_pindex_t bo_pindex; 2770 vm_page_t m_in, m_out; 2771 2772 bo_pindex = OFF_TO_IDX(robject->backing_object_offset); 2773 2774 vm_object_reference(robject); 2775 2776 vm_object_pip_wait(robject, "objfrz"); 2777 2778 if (robject->ref_count == 1) { 2779 vm_object_deallocate(robject); 2780 continue; 2781 } 2782 2783 vm_object_pip_add(robject, 1); 2784 2785 for (idx = 0; idx < robject->size; idx++) { 2786 2787 m_outretry: 2788 m_out = vm_page_grab(robject, idx, 2789 VM_ALLOC_NORMAL | VM_ALLOC_RETRY); 2790 2791 if (m_out->valid == 0) { 2792 m_inretry: 2793 m_in = vm_page_grab(object, bo_pindex + idx, 2794 VM_ALLOC_NORMAL | VM_ALLOC_RETRY); 2795 if (m_in->valid == 0) { 2796 rv = vm_pager_get_pages(object, &m_in, 1, 0); 2797 if (rv != VM_PAGER_OK) { 2798 printf("vm_freeze_copyopts: cannot read page from file: %x\n", m_in->pindex); 2799 continue; 2800 } 2801 vm_page_deactivate(m_in); 2802 } 2803 2804 vm_page_protect(m_in, VM_PROT_NONE); 2805 pmap_copy_page(VM_PAGE_TO_PHYS(m_in), VM_PAGE_TO_PHYS(m_out)); 2806 m_out->valid = m_in->valid; 2807 m_out->dirty = VM_PAGE_BITS_ALL; 2808 2809 vm_page_activate(m_out); 2810 2811 vm_page_wakeup(m_in); 2812 } 2813 vm_page_wakeup(m_out); 2814 } 2815 2816 object->shadow_count--; 2817 object->ref_count--; 2818 TAILQ_REMOVE(&object->shadow_head, robject, shadow_list); 2819 robject->backing_object = NULL; 2820 robject->backing_object_offset = 0; 2821 2822 vm_object_pip_wakeup(robject); 2823 vm_object_deallocate(robject); 2824 } 2825 2826 vm_object_clear_flag(object, OBJ_OPT); 2827 } 2828 2829 #include "opt_ddb.h" 2830 #ifdef DDB 2831 #include <sys/kernel.h> 2832 2833 #include <ddb/ddb.h> 2834 2835 /* 2836 * vm_map_print: [ debug ] 2837 */ 2838 DB_SHOW_COMMAND(map, vm_map_print) 2839 { 2840 static int nlines; 2841 /* XXX convert args. */ 2842 vm_map_t map = (vm_map_t)addr; 2843 boolean_t full = have_addr; 2844 2845 vm_map_entry_t entry; 2846 2847 db_iprintf("%s map %p: pmap=%p, nentries=%d, version=%u\n", 2848 (map->is_main_map ? "Task" : "Share"), (void *)map, 2849 (void *)map->pmap, map->nentries, map->timestamp); 2850 nlines++; 2851 2852 if (!full && db_indent) 2853 return; 2854 2855 db_indent += 2; 2856 for (entry = map->header.next; entry != &map->header; 2857 entry = entry->next) { 2858 #if 0 2859 if (nlines > 18) { 2860 db_printf("--More--"); 2861 cngetc(); 2862 db_printf("\r"); 2863 nlines = 0; 2864 } 2865 #endif 2866 2867 db_iprintf("map entry %p: start=%p, end=%p\n", 2868 (void *)entry, (void *)entry->start, (void *)entry->end); 2869 nlines++; 2870 if (map->is_main_map) { 2871 static char *inheritance_name[4] = 2872 {"share", "copy", "none", "donate_copy"}; 2873 2874 db_iprintf(" prot=%x/%x/%s", 2875 entry->protection, 2876 entry->max_protection, 2877 inheritance_name[entry->inheritance]); 2878 if (entry->wired_count != 0) 2879 db_printf(", wired"); 2880 } 2881 if (entry->eflags & (MAP_ENTRY_IS_A_MAP|MAP_ENTRY_IS_SUB_MAP)) { 2882 /* XXX no %qd in kernel. Truncate entry->offset. */ 2883 db_printf(", share=%p, offset=0x%lx\n", 2884 (void *)entry->object.share_map, 2885 (long)entry->offset); 2886 nlines++; 2887 if ((entry->prev == &map->header) || 2888 ((entry->prev->eflags & MAP_ENTRY_IS_A_MAP) == 0) || 2889 (entry->prev->object.share_map != 2890 entry->object.share_map)) { 2891 db_indent += 2; 2892 vm_map_print((db_expr_t)(intptr_t) 2893 entry->object.share_map, 2894 full, 0, (char *)0); 2895 db_indent -= 2; 2896 } 2897 } else { 2898 /* XXX no %qd in kernel. Truncate entry->offset. */ 2899 db_printf(", object=%p, offset=0x%lx", 2900 (void *)entry->object.vm_object, 2901 (long)entry->offset); 2902 if (entry->eflags & MAP_ENTRY_COW) 2903 db_printf(", copy (%s)", 2904 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 2905 db_printf("\n"); 2906 nlines++; 2907 2908 if ((entry->prev == &map->header) || 2909 (entry->prev->eflags & MAP_ENTRY_IS_A_MAP) || 2910 (entry->prev->object.vm_object != 2911 entry->object.vm_object)) { 2912 db_indent += 2; 2913 vm_object_print((db_expr_t)(intptr_t) 2914 entry->object.vm_object, 2915 full, 0, (char *)0); 2916 nlines += 4; 2917 db_indent -= 2; 2918 } 2919 } 2920 } 2921 db_indent -= 2; 2922 if (db_indent == 0) 2923 nlines = 0; 2924 } 2925 2926 2927 DB_SHOW_COMMAND(procvm, procvm) 2928 { 2929 struct proc *p; 2930 2931 if (have_addr) { 2932 p = (struct proc *) addr; 2933 } else { 2934 p = curproc; 2935 } 2936 2937 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 2938 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 2939 (void *)&p->p_vmspace->vm_pmap); 2940 2941 vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL); 2942 } 2943 2944 #endif /* DDB */ 2945