xref: /freebsd/sys/vm/vm_map.c (revision a2f733abcff64628b7771a47089628b7327a88bd)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60 
61 /*
62  *	Virtual memory mapping module.
63  */
64 
65 #include <sys/cdefs.h>
66 #include <sys/param.h>
67 #include <sys/systm.h>
68 #include <sys/elf.h>
69 #include <sys/kernel.h>
70 #include <sys/ktr.h>
71 #include <sys/lock.h>
72 #include <sys/mutex.h>
73 #include <sys/proc.h>
74 #include <sys/vmmeter.h>
75 #include <sys/mman.h>
76 #include <sys/vnode.h>
77 #include <sys/racct.h>
78 #include <sys/resourcevar.h>
79 #include <sys/rwlock.h>
80 #include <sys/file.h>
81 #include <sys/sysctl.h>
82 #include <sys/sysent.h>
83 #include <sys/shm.h>
84 
85 #include <vm/vm.h>
86 #include <vm/vm_param.h>
87 #include <vm/pmap.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_page.h>
90 #include <vm/vm_pageout.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_pager.h>
93 #include <vm/vm_kern.h>
94 #include <vm/vm_extern.h>
95 #include <vm/vnode_pager.h>
96 #include <vm/swap_pager.h>
97 #include <vm/uma.h>
98 
99 /*
100  *	Virtual memory maps provide for the mapping, protection,
101  *	and sharing of virtual memory objects.  In addition,
102  *	this module provides for an efficient virtual copy of
103  *	memory from one map to another.
104  *
105  *	Synchronization is required prior to most operations.
106  *
107  *	Maps consist of an ordered doubly-linked list of simple
108  *	entries; a self-adjusting binary search tree of these
109  *	entries is used to speed up lookups.
110  *
111  *	Since portions of maps are specified by start/end addresses,
112  *	which may not align with existing map entries, all
113  *	routines merely "clip" entries to these start/end values.
114  *	[That is, an entry is split into two, bordering at a
115  *	start or end value.]  Note that these clippings may not
116  *	always be necessary (as the two resulting entries are then
117  *	not changed); however, the clipping is done for convenience.
118  *
119  *	As mentioned above, virtual copy operations are performed
120  *	by copying VM object references from one map to
121  *	another, and then marking both regions as copy-on-write.
122  */
123 
124 static struct mtx map_sleep_mtx;
125 static uma_zone_t mapentzone;
126 static uma_zone_t kmapentzone;
127 static uma_zone_t vmspace_zone;
128 static int vmspace_zinit(void *mem, int size, int flags);
129 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
130     vm_offset_t max);
131 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
132 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
133 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
134 static int vm_map_growstack(vm_map_t map, vm_offset_t addr,
135     vm_map_entry_t gap_entry);
136 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
137     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
138 #ifdef INVARIANTS
139 static void vmspace_zdtor(void *mem, int size, void *arg);
140 #endif
141 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
142     vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
143     int cow);
144 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
145     vm_offset_t failed_addr);
146 
147 #define	CONTAINS_BITS(set, bits)	((~(set) & (bits)) == 0)
148 
149 #define	ENTRY_CHARGED(e) ((e)->cred != NULL || \
150     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
151      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
152 
153 /*
154  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
155  * stable.
156  */
157 #define PROC_VMSPACE_LOCK(p) do { } while (0)
158 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
159 
160 /*
161  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
162  *
163  *	Asserts that the starting and ending region
164  *	addresses fall within the valid range of the map.
165  */
166 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
167 		{					\
168 		if (start < vm_map_min(map))		\
169 			start = vm_map_min(map);	\
170 		if (end > vm_map_max(map))		\
171 			end = vm_map_max(map);		\
172 		if (start > end)			\
173 			start = end;			\
174 		}
175 
176 #ifndef UMA_MD_SMALL_ALLOC
177 
178 /*
179  * Allocate a new slab for kernel map entries.  The kernel map may be locked or
180  * unlocked, depending on whether the request is coming from the kernel map or a
181  * submap.  This function allocates a virtual address range directly from the
182  * kernel map instead of the kmem_* layer to avoid recursion on the kernel map
183  * lock and also to avoid triggering allocator recursion in the vmem boundary
184  * tag allocator.
185  */
186 static void *
187 kmapent_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
188     int wait)
189 {
190 	vm_offset_t addr;
191 	int error, locked;
192 
193 	*pflag = UMA_SLAB_PRIV;
194 
195 	if (!(locked = vm_map_locked(kernel_map)))
196 		vm_map_lock(kernel_map);
197 	addr = vm_map_findspace(kernel_map, vm_map_min(kernel_map), bytes);
198 	if (addr + bytes < addr || addr + bytes > vm_map_max(kernel_map))
199 		panic("%s: kernel map is exhausted", __func__);
200 	error = vm_map_insert(kernel_map, NULL, 0, addr, addr + bytes,
201 	    VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT);
202 	if (error != KERN_SUCCESS)
203 		panic("%s: vm_map_insert() failed: %d", __func__, error);
204 	if (!locked)
205 		vm_map_unlock(kernel_map);
206 	error = kmem_back_domain(domain, kernel_object, addr, bytes, M_NOWAIT |
207 	    M_USE_RESERVE | (wait & M_ZERO));
208 	if (error == KERN_SUCCESS) {
209 		return ((void *)addr);
210 	} else {
211 		if (!locked)
212 			vm_map_lock(kernel_map);
213 		vm_map_delete(kernel_map, addr, bytes);
214 		if (!locked)
215 			vm_map_unlock(kernel_map);
216 		return (NULL);
217 	}
218 }
219 
220 static void
221 kmapent_free(void *item, vm_size_t size, uint8_t pflag)
222 {
223 	vm_offset_t addr;
224 	int error __diagused;
225 
226 	if ((pflag & UMA_SLAB_PRIV) == 0)
227 		/* XXX leaked */
228 		return;
229 
230 	addr = (vm_offset_t)item;
231 	kmem_unback(kernel_object, addr, size);
232 	error = vm_map_remove(kernel_map, addr, addr + size);
233 	KASSERT(error == KERN_SUCCESS,
234 	    ("%s: vm_map_remove failed: %d", __func__, error));
235 }
236 
237 /*
238  * The worst-case upper bound on the number of kernel map entries that may be
239  * created before the zone must be replenished in _vm_map_unlock().
240  */
241 #define	KMAPENT_RESERVE		1
242 
243 #endif /* !UMD_MD_SMALL_ALLOC */
244 
245 /*
246  *	vm_map_startup:
247  *
248  *	Initialize the vm_map module.  Must be called before any other vm_map
249  *	routines.
250  *
251  *	User map and entry structures are allocated from the general purpose
252  *	memory pool.  Kernel maps are statically defined.  Kernel map entries
253  *	require special handling to avoid recursion; see the comments above
254  *	kmapent_alloc() and in vm_map_entry_create().
255  */
256 void
257 vm_map_startup(void)
258 {
259 	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
260 
261 	/*
262 	 * Disable the use of per-CPU buckets: map entry allocation is
263 	 * serialized by the kernel map lock.
264 	 */
265 	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
266 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
267 	    UMA_ZONE_VM | UMA_ZONE_NOBUCKET);
268 #ifndef UMA_MD_SMALL_ALLOC
269 	/* Reserve an extra map entry for use when replenishing the reserve. */
270 	uma_zone_reserve(kmapentzone, KMAPENT_RESERVE + 1);
271 	uma_prealloc(kmapentzone, KMAPENT_RESERVE + 1);
272 	uma_zone_set_allocf(kmapentzone, kmapent_alloc);
273 	uma_zone_set_freef(kmapentzone, kmapent_free);
274 #endif
275 
276 	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
277 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
278 	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
279 #ifdef INVARIANTS
280 	    vmspace_zdtor,
281 #else
282 	    NULL,
283 #endif
284 	    vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
285 }
286 
287 static int
288 vmspace_zinit(void *mem, int size, int flags)
289 {
290 	struct vmspace *vm;
291 	vm_map_t map;
292 
293 	vm = (struct vmspace *)mem;
294 	map = &vm->vm_map;
295 
296 	memset(map, 0, sizeof(*map));
297 	mtx_init(&map->system_mtx, "vm map (system)", NULL,
298 	    MTX_DEF | MTX_DUPOK);
299 	sx_init(&map->lock, "vm map (user)");
300 	PMAP_LOCK_INIT(vmspace_pmap(vm));
301 	return (0);
302 }
303 
304 #ifdef INVARIANTS
305 static void
306 vmspace_zdtor(void *mem, int size, void *arg)
307 {
308 	struct vmspace *vm;
309 
310 	vm = (struct vmspace *)mem;
311 	KASSERT(vm->vm_map.nentries == 0,
312 	    ("vmspace %p nentries == %d on free", vm, vm->vm_map.nentries));
313 	KASSERT(vm->vm_map.size == 0,
314 	    ("vmspace %p size == %ju on free", vm, (uintmax_t)vm->vm_map.size));
315 }
316 #endif	/* INVARIANTS */
317 
318 /*
319  * Allocate a vmspace structure, including a vm_map and pmap,
320  * and initialize those structures.  The refcnt is set to 1.
321  */
322 struct vmspace *
323 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
324 {
325 	struct vmspace *vm;
326 
327 	vm = uma_zalloc(vmspace_zone, M_WAITOK);
328 	KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
329 	if (!pinit(vmspace_pmap(vm))) {
330 		uma_zfree(vmspace_zone, vm);
331 		return (NULL);
332 	}
333 	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
334 	_vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
335 	refcount_init(&vm->vm_refcnt, 1);
336 	vm->vm_shm = NULL;
337 	vm->vm_swrss = 0;
338 	vm->vm_tsize = 0;
339 	vm->vm_dsize = 0;
340 	vm->vm_ssize = 0;
341 	vm->vm_taddr = 0;
342 	vm->vm_daddr = 0;
343 	vm->vm_maxsaddr = 0;
344 	return (vm);
345 }
346 
347 #ifdef RACCT
348 static void
349 vmspace_container_reset(struct proc *p)
350 {
351 
352 	PROC_LOCK(p);
353 	racct_set(p, RACCT_DATA, 0);
354 	racct_set(p, RACCT_STACK, 0);
355 	racct_set(p, RACCT_RSS, 0);
356 	racct_set(p, RACCT_MEMLOCK, 0);
357 	racct_set(p, RACCT_VMEM, 0);
358 	PROC_UNLOCK(p);
359 }
360 #endif
361 
362 static inline void
363 vmspace_dofree(struct vmspace *vm)
364 {
365 
366 	CTR1(KTR_VM, "vmspace_free: %p", vm);
367 
368 	/*
369 	 * Make sure any SysV shm is freed, it might not have been in
370 	 * exit1().
371 	 */
372 	shmexit(vm);
373 
374 	/*
375 	 * Lock the map, to wait out all other references to it.
376 	 * Delete all of the mappings and pages they hold, then call
377 	 * the pmap module to reclaim anything left.
378 	 */
379 	(void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map),
380 	    vm_map_max(&vm->vm_map));
381 
382 	pmap_release(vmspace_pmap(vm));
383 	vm->vm_map.pmap = NULL;
384 	uma_zfree(vmspace_zone, vm);
385 }
386 
387 void
388 vmspace_free(struct vmspace *vm)
389 {
390 
391 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
392 	    "vmspace_free() called");
393 
394 	if (refcount_release(&vm->vm_refcnt))
395 		vmspace_dofree(vm);
396 }
397 
398 void
399 vmspace_exitfree(struct proc *p)
400 {
401 	struct vmspace *vm;
402 
403 	PROC_VMSPACE_LOCK(p);
404 	vm = p->p_vmspace;
405 	p->p_vmspace = NULL;
406 	PROC_VMSPACE_UNLOCK(p);
407 	KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
408 	vmspace_free(vm);
409 }
410 
411 void
412 vmspace_exit(struct thread *td)
413 {
414 	struct vmspace *vm;
415 	struct proc *p;
416 	bool released;
417 
418 	p = td->td_proc;
419 	vm = p->p_vmspace;
420 
421 	/*
422 	 * Prepare to release the vmspace reference.  The thread that releases
423 	 * the last reference is responsible for tearing down the vmspace.
424 	 * However, threads not releasing the final reference must switch to the
425 	 * kernel's vmspace0 before the decrement so that the subsequent pmap
426 	 * deactivation does not modify a freed vmspace.
427 	 */
428 	refcount_acquire(&vmspace0.vm_refcnt);
429 	if (!(released = refcount_release_if_last(&vm->vm_refcnt))) {
430 		if (p->p_vmspace != &vmspace0) {
431 			PROC_VMSPACE_LOCK(p);
432 			p->p_vmspace = &vmspace0;
433 			PROC_VMSPACE_UNLOCK(p);
434 			pmap_activate(td);
435 		}
436 		released = refcount_release(&vm->vm_refcnt);
437 	}
438 	if (released) {
439 		/*
440 		 * pmap_remove_pages() expects the pmap to be active, so switch
441 		 * back first if necessary.
442 		 */
443 		if (p->p_vmspace != vm) {
444 			PROC_VMSPACE_LOCK(p);
445 			p->p_vmspace = vm;
446 			PROC_VMSPACE_UNLOCK(p);
447 			pmap_activate(td);
448 		}
449 		pmap_remove_pages(vmspace_pmap(vm));
450 		PROC_VMSPACE_LOCK(p);
451 		p->p_vmspace = &vmspace0;
452 		PROC_VMSPACE_UNLOCK(p);
453 		pmap_activate(td);
454 		vmspace_dofree(vm);
455 	}
456 #ifdef RACCT
457 	if (racct_enable)
458 		vmspace_container_reset(p);
459 #endif
460 }
461 
462 /* Acquire reference to vmspace owned by another process. */
463 
464 struct vmspace *
465 vmspace_acquire_ref(struct proc *p)
466 {
467 	struct vmspace *vm;
468 
469 	PROC_VMSPACE_LOCK(p);
470 	vm = p->p_vmspace;
471 	if (vm == NULL || !refcount_acquire_if_not_zero(&vm->vm_refcnt)) {
472 		PROC_VMSPACE_UNLOCK(p);
473 		return (NULL);
474 	}
475 	if (vm != p->p_vmspace) {
476 		PROC_VMSPACE_UNLOCK(p);
477 		vmspace_free(vm);
478 		return (NULL);
479 	}
480 	PROC_VMSPACE_UNLOCK(p);
481 	return (vm);
482 }
483 
484 /*
485  * Switch between vmspaces in an AIO kernel process.
486  *
487  * The new vmspace is either the vmspace of a user process obtained
488  * from an active AIO request or the initial vmspace of the AIO kernel
489  * process (when it is idling).  Because user processes will block to
490  * drain any active AIO requests before proceeding in exit() or
491  * execve(), the reference count for vmspaces from AIO requests can
492  * never be 0.  Similarly, AIO kernel processes hold an extra
493  * reference on their initial vmspace for the life of the process.  As
494  * a result, the 'newvm' vmspace always has a non-zero reference
495  * count.  This permits an additional reference on 'newvm' to be
496  * acquired via a simple atomic increment rather than the loop in
497  * vmspace_acquire_ref() above.
498  */
499 void
500 vmspace_switch_aio(struct vmspace *newvm)
501 {
502 	struct vmspace *oldvm;
503 
504 	/* XXX: Need some way to assert that this is an aio daemon. */
505 
506 	KASSERT(refcount_load(&newvm->vm_refcnt) > 0,
507 	    ("vmspace_switch_aio: newvm unreferenced"));
508 
509 	oldvm = curproc->p_vmspace;
510 	if (oldvm == newvm)
511 		return;
512 
513 	/*
514 	 * Point to the new address space and refer to it.
515 	 */
516 	curproc->p_vmspace = newvm;
517 	refcount_acquire(&newvm->vm_refcnt);
518 
519 	/* Activate the new mapping. */
520 	pmap_activate(curthread);
521 
522 	vmspace_free(oldvm);
523 }
524 
525 void
526 _vm_map_lock(vm_map_t map, const char *file, int line)
527 {
528 
529 	if (map->system_map)
530 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
531 	else
532 		sx_xlock_(&map->lock, file, line);
533 	map->timestamp++;
534 }
535 
536 void
537 vm_map_entry_set_vnode_text(vm_map_entry_t entry, bool add)
538 {
539 	vm_object_t object;
540 	struct vnode *vp;
541 	bool vp_held;
542 
543 	if ((entry->eflags & MAP_ENTRY_VN_EXEC) == 0)
544 		return;
545 	KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
546 	    ("Submap with execs"));
547 	object = entry->object.vm_object;
548 	KASSERT(object != NULL, ("No object for text, entry %p", entry));
549 	if ((object->flags & OBJ_ANON) != 0)
550 		object = object->handle;
551 	else
552 		KASSERT(object->backing_object == NULL,
553 		    ("non-anon object %p shadows", object));
554 	KASSERT(object != NULL, ("No content object for text, entry %p obj %p",
555 	    entry, entry->object.vm_object));
556 
557 	/*
558 	 * Mostly, we do not lock the backing object.  It is
559 	 * referenced by the entry we are processing, so it cannot go
560 	 * away.
561 	 */
562 	vm_pager_getvp(object, &vp, &vp_held);
563 	if (vp != NULL) {
564 		if (add) {
565 			VOP_SET_TEXT_CHECKED(vp);
566 		} else {
567 			vn_lock(vp, LK_SHARED | LK_RETRY);
568 			VOP_UNSET_TEXT_CHECKED(vp);
569 			VOP_UNLOCK(vp);
570 		}
571 		if (vp_held)
572 			vdrop(vp);
573 	}
574 }
575 
576 /*
577  * Use a different name for this vm_map_entry field when it's use
578  * is not consistent with its use as part of an ordered search tree.
579  */
580 #define defer_next right
581 
582 static void
583 vm_map_process_deferred(void)
584 {
585 	struct thread *td;
586 	vm_map_entry_t entry, next;
587 	vm_object_t object;
588 
589 	td = curthread;
590 	entry = td->td_map_def_user;
591 	td->td_map_def_user = NULL;
592 	while (entry != NULL) {
593 		next = entry->defer_next;
594 		MPASS((entry->eflags & (MAP_ENTRY_WRITECNT |
595 		    MAP_ENTRY_VN_EXEC)) != (MAP_ENTRY_WRITECNT |
596 		    MAP_ENTRY_VN_EXEC));
597 		if ((entry->eflags & MAP_ENTRY_WRITECNT) != 0) {
598 			/*
599 			 * Decrement the object's writemappings and
600 			 * possibly the vnode's v_writecount.
601 			 */
602 			KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
603 			    ("Submap with writecount"));
604 			object = entry->object.vm_object;
605 			KASSERT(object != NULL, ("No object for writecount"));
606 			vm_pager_release_writecount(object, entry->start,
607 			    entry->end);
608 		}
609 		vm_map_entry_set_vnode_text(entry, false);
610 		vm_map_entry_deallocate(entry, FALSE);
611 		entry = next;
612 	}
613 }
614 
615 #ifdef INVARIANTS
616 static void
617 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
618 {
619 
620 	if (map->system_map)
621 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
622 	else
623 		sx_assert_(&map->lock, SA_XLOCKED, file, line);
624 }
625 
626 #define	VM_MAP_ASSERT_LOCKED(map) \
627     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
628 
629 enum { VMMAP_CHECK_NONE, VMMAP_CHECK_UNLOCK, VMMAP_CHECK_ALL };
630 #ifdef DIAGNOSTIC
631 static int enable_vmmap_check = VMMAP_CHECK_UNLOCK;
632 #else
633 static int enable_vmmap_check = VMMAP_CHECK_NONE;
634 #endif
635 SYSCTL_INT(_debug, OID_AUTO, vmmap_check, CTLFLAG_RWTUN,
636     &enable_vmmap_check, 0, "Enable vm map consistency checking");
637 
638 static void _vm_map_assert_consistent(vm_map_t map, int check);
639 
640 #define VM_MAP_ASSERT_CONSISTENT(map) \
641     _vm_map_assert_consistent(map, VMMAP_CHECK_ALL)
642 #ifdef DIAGNOSTIC
643 #define VM_MAP_UNLOCK_CONSISTENT(map) do {				\
644 	if (map->nupdates > map->nentries) {				\
645 		_vm_map_assert_consistent(map, VMMAP_CHECK_UNLOCK);	\
646 		map->nupdates = 0;					\
647 	}								\
648 } while (0)
649 #else
650 #define VM_MAP_UNLOCK_CONSISTENT(map)
651 #endif
652 #else
653 #define	VM_MAP_ASSERT_LOCKED(map)
654 #define VM_MAP_ASSERT_CONSISTENT(map)
655 #define VM_MAP_UNLOCK_CONSISTENT(map)
656 #endif /* INVARIANTS */
657 
658 void
659 _vm_map_unlock(vm_map_t map, const char *file, int line)
660 {
661 
662 	VM_MAP_UNLOCK_CONSISTENT(map);
663 	if (map->system_map) {
664 #ifndef UMA_MD_SMALL_ALLOC
665 		if (map == kernel_map && (map->flags & MAP_REPLENISH) != 0) {
666 			uma_prealloc(kmapentzone, 1);
667 			map->flags &= ~MAP_REPLENISH;
668 		}
669 #endif
670 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
671 	} else {
672 		sx_xunlock_(&map->lock, file, line);
673 		vm_map_process_deferred();
674 	}
675 }
676 
677 void
678 _vm_map_lock_read(vm_map_t map, const char *file, int line)
679 {
680 
681 	if (map->system_map)
682 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
683 	else
684 		sx_slock_(&map->lock, file, line);
685 }
686 
687 void
688 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
689 {
690 
691 	if (map->system_map) {
692 		KASSERT((map->flags & MAP_REPLENISH) == 0,
693 		    ("%s: MAP_REPLENISH leaked", __func__));
694 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
695 	} else {
696 		sx_sunlock_(&map->lock, file, line);
697 		vm_map_process_deferred();
698 	}
699 }
700 
701 int
702 _vm_map_trylock(vm_map_t map, const char *file, int line)
703 {
704 	int error;
705 
706 	error = map->system_map ?
707 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
708 	    !sx_try_xlock_(&map->lock, file, line);
709 	if (error == 0)
710 		map->timestamp++;
711 	return (error == 0);
712 }
713 
714 int
715 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
716 {
717 	int error;
718 
719 	error = map->system_map ?
720 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
721 	    !sx_try_slock_(&map->lock, file, line);
722 	return (error == 0);
723 }
724 
725 /*
726  *	_vm_map_lock_upgrade:	[ internal use only ]
727  *
728  *	Tries to upgrade a read (shared) lock on the specified map to a write
729  *	(exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
730  *	non-zero value if the upgrade fails.  If the upgrade fails, the map is
731  *	returned without a read or write lock held.
732  *
733  *	Requires that the map be read locked.
734  */
735 int
736 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
737 {
738 	unsigned int last_timestamp;
739 
740 	if (map->system_map) {
741 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
742 	} else {
743 		if (!sx_try_upgrade_(&map->lock, file, line)) {
744 			last_timestamp = map->timestamp;
745 			sx_sunlock_(&map->lock, file, line);
746 			vm_map_process_deferred();
747 			/*
748 			 * If the map's timestamp does not change while the
749 			 * map is unlocked, then the upgrade succeeds.
750 			 */
751 			sx_xlock_(&map->lock, file, line);
752 			if (last_timestamp != map->timestamp) {
753 				sx_xunlock_(&map->lock, file, line);
754 				return (1);
755 			}
756 		}
757 	}
758 	map->timestamp++;
759 	return (0);
760 }
761 
762 void
763 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
764 {
765 
766 	if (map->system_map) {
767 		KASSERT((map->flags & MAP_REPLENISH) == 0,
768 		    ("%s: MAP_REPLENISH leaked", __func__));
769 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
770 	} else {
771 		VM_MAP_UNLOCK_CONSISTENT(map);
772 		sx_downgrade_(&map->lock, file, line);
773 	}
774 }
775 
776 /*
777  *	vm_map_locked:
778  *
779  *	Returns a non-zero value if the caller holds a write (exclusive) lock
780  *	on the specified map and the value "0" otherwise.
781  */
782 int
783 vm_map_locked(vm_map_t map)
784 {
785 
786 	if (map->system_map)
787 		return (mtx_owned(&map->system_mtx));
788 	else
789 		return (sx_xlocked(&map->lock));
790 }
791 
792 /*
793  *	_vm_map_unlock_and_wait:
794  *
795  *	Atomically releases the lock on the specified map and puts the calling
796  *	thread to sleep.  The calling thread will remain asleep until either
797  *	vm_map_wakeup() is performed on the map or the specified timeout is
798  *	exceeded.
799  *
800  *	WARNING!  This function does not perform deferred deallocations of
801  *	objects and map	entries.  Therefore, the calling thread is expected to
802  *	reacquire the map lock after reawakening and later perform an ordinary
803  *	unlock operation, such as vm_map_unlock(), before completing its
804  *	operation on the map.
805  */
806 int
807 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
808 {
809 
810 	VM_MAP_UNLOCK_CONSISTENT(map);
811 	mtx_lock(&map_sleep_mtx);
812 	if (map->system_map) {
813 		KASSERT((map->flags & MAP_REPLENISH) == 0,
814 		    ("%s: MAP_REPLENISH leaked", __func__));
815 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
816 	} else {
817 		sx_xunlock_(&map->lock, file, line);
818 	}
819 	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
820 	    timo));
821 }
822 
823 /*
824  *	vm_map_wakeup:
825  *
826  *	Awaken any threads that have slept on the map using
827  *	vm_map_unlock_and_wait().
828  */
829 void
830 vm_map_wakeup(vm_map_t map)
831 {
832 
833 	/*
834 	 * Acquire and release map_sleep_mtx to prevent a wakeup()
835 	 * from being performed (and lost) between the map unlock
836 	 * and the msleep() in _vm_map_unlock_and_wait().
837 	 */
838 	mtx_lock(&map_sleep_mtx);
839 	mtx_unlock(&map_sleep_mtx);
840 	wakeup(&map->root);
841 }
842 
843 void
844 vm_map_busy(vm_map_t map)
845 {
846 
847 	VM_MAP_ASSERT_LOCKED(map);
848 	map->busy++;
849 }
850 
851 void
852 vm_map_unbusy(vm_map_t map)
853 {
854 
855 	VM_MAP_ASSERT_LOCKED(map);
856 	KASSERT(map->busy, ("vm_map_unbusy: not busy"));
857 	if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
858 		vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
859 		wakeup(&map->busy);
860 	}
861 }
862 
863 void
864 vm_map_wait_busy(vm_map_t map)
865 {
866 
867 	VM_MAP_ASSERT_LOCKED(map);
868 	while (map->busy) {
869 		vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
870 		if (map->system_map)
871 			msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
872 		else
873 			sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
874 	}
875 	map->timestamp++;
876 }
877 
878 long
879 vmspace_resident_count(struct vmspace *vmspace)
880 {
881 	return pmap_resident_count(vmspace_pmap(vmspace));
882 }
883 
884 /*
885  * Initialize an existing vm_map structure
886  * such as that in the vmspace structure.
887  */
888 static void
889 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
890 {
891 
892 	map->header.eflags = MAP_ENTRY_HEADER;
893 	map->needs_wakeup = FALSE;
894 	map->system_map = 0;
895 	map->pmap = pmap;
896 	map->header.end = min;
897 	map->header.start = max;
898 	map->flags = 0;
899 	map->header.left = map->header.right = &map->header;
900 	map->root = NULL;
901 	map->timestamp = 0;
902 	map->busy = 0;
903 	map->anon_loc = 0;
904 #ifdef DIAGNOSTIC
905 	map->nupdates = 0;
906 #endif
907 }
908 
909 void
910 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
911 {
912 
913 	_vm_map_init(map, pmap, min, max);
914 	mtx_init(&map->system_mtx, "vm map (system)", NULL,
915 	    MTX_DEF | MTX_DUPOK);
916 	sx_init(&map->lock, "vm map (user)");
917 }
918 
919 /*
920  *	vm_map_entry_dispose:	[ internal use only ]
921  *
922  *	Inverse of vm_map_entry_create.
923  */
924 static void
925 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
926 {
927 	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
928 }
929 
930 /*
931  *	vm_map_entry_create:	[ internal use only ]
932  *
933  *	Allocates a VM map entry for insertion.
934  *	No entry fields are filled in.
935  */
936 static vm_map_entry_t
937 vm_map_entry_create(vm_map_t map)
938 {
939 	vm_map_entry_t new_entry;
940 
941 #ifndef UMA_MD_SMALL_ALLOC
942 	if (map == kernel_map) {
943 		VM_MAP_ASSERT_LOCKED(map);
944 
945 		/*
946 		 * A new slab of kernel map entries cannot be allocated at this
947 		 * point because the kernel map has not yet been updated to
948 		 * reflect the caller's request.  Therefore, we allocate a new
949 		 * map entry, dipping into the reserve if necessary, and set a
950 		 * flag indicating that the reserve must be replenished before
951 		 * the map is unlocked.
952 		 */
953 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT | M_NOVM);
954 		if (new_entry == NULL) {
955 			new_entry = uma_zalloc(kmapentzone,
956 			    M_NOWAIT | M_NOVM | M_USE_RESERVE);
957 			kernel_map->flags |= MAP_REPLENISH;
958 		}
959 	} else
960 #endif
961 	if (map->system_map) {
962 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
963 	} else {
964 		new_entry = uma_zalloc(mapentzone, M_WAITOK);
965 	}
966 	KASSERT(new_entry != NULL,
967 	    ("vm_map_entry_create: kernel resources exhausted"));
968 	return (new_entry);
969 }
970 
971 /*
972  *	vm_map_entry_set_behavior:
973  *
974  *	Set the expected access behavior, either normal, random, or
975  *	sequential.
976  */
977 static inline void
978 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
979 {
980 	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
981 	    (behavior & MAP_ENTRY_BEHAV_MASK);
982 }
983 
984 /*
985  *	vm_map_entry_max_free_{left,right}:
986  *
987  *	Compute the size of the largest free gap between two entries,
988  *	one the root of a tree and the other the ancestor of that root
989  *	that is the least or greatest ancestor found on the search path.
990  */
991 static inline vm_size_t
992 vm_map_entry_max_free_left(vm_map_entry_t root, vm_map_entry_t left_ancestor)
993 {
994 
995 	return (root->left != left_ancestor ?
996 	    root->left->max_free : root->start - left_ancestor->end);
997 }
998 
999 static inline vm_size_t
1000 vm_map_entry_max_free_right(vm_map_entry_t root, vm_map_entry_t right_ancestor)
1001 {
1002 
1003 	return (root->right != right_ancestor ?
1004 	    root->right->max_free : right_ancestor->start - root->end);
1005 }
1006 
1007 /*
1008  *	vm_map_entry_{pred,succ}:
1009  *
1010  *	Find the {predecessor, successor} of the entry by taking one step
1011  *	in the appropriate direction and backtracking as much as necessary.
1012  *	vm_map_entry_succ is defined in vm_map.h.
1013  */
1014 static inline vm_map_entry_t
1015 vm_map_entry_pred(vm_map_entry_t entry)
1016 {
1017 	vm_map_entry_t prior;
1018 
1019 	prior = entry->left;
1020 	if (prior->right->start < entry->start) {
1021 		do
1022 			prior = prior->right;
1023 		while (prior->right != entry);
1024 	}
1025 	return (prior);
1026 }
1027 
1028 static inline vm_size_t
1029 vm_size_max(vm_size_t a, vm_size_t b)
1030 {
1031 
1032 	return (a > b ? a : b);
1033 }
1034 
1035 #define SPLAY_LEFT_STEP(root, y, llist, rlist, test) do {		\
1036 	vm_map_entry_t z;						\
1037 	vm_size_t max_free;						\
1038 									\
1039 	/*								\
1040 	 * Infer root->right->max_free == root->max_free when		\
1041 	 * y->max_free < root->max_free || root->max_free == 0.		\
1042 	 * Otherwise, look right to find it.				\
1043 	 */								\
1044 	y = root->left;							\
1045 	max_free = root->max_free;					\
1046 	KASSERT(max_free == vm_size_max(				\
1047 	    vm_map_entry_max_free_left(root, llist),			\
1048 	    vm_map_entry_max_free_right(root, rlist)),			\
1049 	    ("%s: max_free invariant fails", __func__));		\
1050 	if (max_free - 1 < vm_map_entry_max_free_left(root, llist))	\
1051 		max_free = vm_map_entry_max_free_right(root, rlist);	\
1052 	if (y != llist && (test)) {					\
1053 		/* Rotate right and make y root. */			\
1054 		z = y->right;						\
1055 		if (z != root) {					\
1056 			root->left = z;					\
1057 			y->right = root;				\
1058 			if (max_free < y->max_free)			\
1059 			    root->max_free = max_free =			\
1060 			    vm_size_max(max_free, z->max_free);		\
1061 		} else if (max_free < y->max_free)			\
1062 			root->max_free = max_free =			\
1063 			    vm_size_max(max_free, root->start - y->end);\
1064 		root = y;						\
1065 		y = root->left;						\
1066 	}								\
1067 	/* Copy right->max_free.  Put root on rlist. */			\
1068 	root->max_free = max_free;					\
1069 	KASSERT(max_free == vm_map_entry_max_free_right(root, rlist),	\
1070 	    ("%s: max_free not copied from right", __func__));		\
1071 	root->left = rlist;						\
1072 	rlist = root;							\
1073 	root = y != llist ? y : NULL;					\
1074 } while (0)
1075 
1076 #define SPLAY_RIGHT_STEP(root, y, llist, rlist, test) do {		\
1077 	vm_map_entry_t z;						\
1078 	vm_size_t max_free;						\
1079 									\
1080 	/*								\
1081 	 * Infer root->left->max_free == root->max_free when		\
1082 	 * y->max_free < root->max_free || root->max_free == 0.		\
1083 	 * Otherwise, look left to find it.				\
1084 	 */								\
1085 	y = root->right;						\
1086 	max_free = root->max_free;					\
1087 	KASSERT(max_free == vm_size_max(				\
1088 	    vm_map_entry_max_free_left(root, llist),			\
1089 	    vm_map_entry_max_free_right(root, rlist)),			\
1090 	    ("%s: max_free invariant fails", __func__));		\
1091 	if (max_free - 1 < vm_map_entry_max_free_right(root, rlist))	\
1092 		max_free = vm_map_entry_max_free_left(root, llist);	\
1093 	if (y != rlist && (test)) {					\
1094 		/* Rotate left and make y root. */			\
1095 		z = y->left;						\
1096 		if (z != root) {					\
1097 			root->right = z;				\
1098 			y->left = root;					\
1099 			if (max_free < y->max_free)			\
1100 			    root->max_free = max_free =			\
1101 			    vm_size_max(max_free, z->max_free);		\
1102 		} else if (max_free < y->max_free)			\
1103 			root->max_free = max_free =			\
1104 			    vm_size_max(max_free, y->start - root->end);\
1105 		root = y;						\
1106 		y = root->right;					\
1107 	}								\
1108 	/* Copy left->max_free.  Put root on llist. */			\
1109 	root->max_free = max_free;					\
1110 	KASSERT(max_free == vm_map_entry_max_free_left(root, llist),	\
1111 	    ("%s: max_free not copied from left", __func__));		\
1112 	root->right = llist;						\
1113 	llist = root;							\
1114 	root = y != rlist ? y : NULL;					\
1115 } while (0)
1116 
1117 /*
1118  * Walk down the tree until we find addr or a gap where addr would go, breaking
1119  * off left and right subtrees of nodes less than, or greater than addr.  Treat
1120  * subtrees with root->max_free < length as empty trees.  llist and rlist are
1121  * the two sides in reverse order (bottom-up), with llist linked by the right
1122  * pointer and rlist linked by the left pointer in the vm_map_entry, and both
1123  * lists terminated by &map->header.  This function, and the subsequent call to
1124  * vm_map_splay_merge_{left,right,pred,succ}, rely on the start and end address
1125  * values in &map->header.
1126  */
1127 static __always_inline vm_map_entry_t
1128 vm_map_splay_split(vm_map_t map, vm_offset_t addr, vm_size_t length,
1129     vm_map_entry_t *llist, vm_map_entry_t *rlist)
1130 {
1131 	vm_map_entry_t left, right, root, y;
1132 
1133 	left = right = &map->header;
1134 	root = map->root;
1135 	while (root != NULL && root->max_free >= length) {
1136 		KASSERT(left->end <= root->start &&
1137 		    root->end <= right->start,
1138 		    ("%s: root not within tree bounds", __func__));
1139 		if (addr < root->start) {
1140 			SPLAY_LEFT_STEP(root, y, left, right,
1141 			    y->max_free >= length && addr < y->start);
1142 		} else if (addr >= root->end) {
1143 			SPLAY_RIGHT_STEP(root, y, left, right,
1144 			    y->max_free >= length && addr >= y->end);
1145 		} else
1146 			break;
1147 	}
1148 	*llist = left;
1149 	*rlist = right;
1150 	return (root);
1151 }
1152 
1153 static __always_inline void
1154 vm_map_splay_findnext(vm_map_entry_t root, vm_map_entry_t *rlist)
1155 {
1156 	vm_map_entry_t hi, right, y;
1157 
1158 	right = *rlist;
1159 	hi = root->right == right ? NULL : root->right;
1160 	if (hi == NULL)
1161 		return;
1162 	do
1163 		SPLAY_LEFT_STEP(hi, y, root, right, true);
1164 	while (hi != NULL);
1165 	*rlist = right;
1166 }
1167 
1168 static __always_inline void
1169 vm_map_splay_findprev(vm_map_entry_t root, vm_map_entry_t *llist)
1170 {
1171 	vm_map_entry_t left, lo, y;
1172 
1173 	left = *llist;
1174 	lo = root->left == left ? NULL : root->left;
1175 	if (lo == NULL)
1176 		return;
1177 	do
1178 		SPLAY_RIGHT_STEP(lo, y, left, root, true);
1179 	while (lo != NULL);
1180 	*llist = left;
1181 }
1182 
1183 static inline void
1184 vm_map_entry_swap(vm_map_entry_t *a, vm_map_entry_t *b)
1185 {
1186 	vm_map_entry_t tmp;
1187 
1188 	tmp = *b;
1189 	*b = *a;
1190 	*a = tmp;
1191 }
1192 
1193 /*
1194  * Walk back up the two spines, flip the pointers and set max_free.  The
1195  * subtrees of the root go at the bottom of llist and rlist.
1196  */
1197 static vm_size_t
1198 vm_map_splay_merge_left_walk(vm_map_entry_t header, vm_map_entry_t root,
1199     vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t llist)
1200 {
1201 	do {
1202 		/*
1203 		 * The max_free values of the children of llist are in
1204 		 * llist->max_free and max_free.  Update with the
1205 		 * max value.
1206 		 */
1207 		llist->max_free = max_free =
1208 		    vm_size_max(llist->max_free, max_free);
1209 		vm_map_entry_swap(&llist->right, &tail);
1210 		vm_map_entry_swap(&tail, &llist);
1211 	} while (llist != header);
1212 	root->left = tail;
1213 	return (max_free);
1214 }
1215 
1216 /*
1217  * When llist is known to be the predecessor of root.
1218  */
1219 static inline vm_size_t
1220 vm_map_splay_merge_pred(vm_map_entry_t header, vm_map_entry_t root,
1221     vm_map_entry_t llist)
1222 {
1223 	vm_size_t max_free;
1224 
1225 	max_free = root->start - llist->end;
1226 	if (llist != header) {
1227 		max_free = vm_map_splay_merge_left_walk(header, root,
1228 		    root, max_free, llist);
1229 	} else {
1230 		root->left = header;
1231 		header->right = root;
1232 	}
1233 	return (max_free);
1234 }
1235 
1236 /*
1237  * When llist may or may not be the predecessor of root.
1238  */
1239 static inline vm_size_t
1240 vm_map_splay_merge_left(vm_map_entry_t header, vm_map_entry_t root,
1241     vm_map_entry_t llist)
1242 {
1243 	vm_size_t max_free;
1244 
1245 	max_free = vm_map_entry_max_free_left(root, llist);
1246 	if (llist != header) {
1247 		max_free = vm_map_splay_merge_left_walk(header, root,
1248 		    root->left == llist ? root : root->left,
1249 		    max_free, llist);
1250 	}
1251 	return (max_free);
1252 }
1253 
1254 static vm_size_t
1255 vm_map_splay_merge_right_walk(vm_map_entry_t header, vm_map_entry_t root,
1256     vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t rlist)
1257 {
1258 	do {
1259 		/*
1260 		 * The max_free values of the children of rlist are in
1261 		 * rlist->max_free and max_free.  Update with the
1262 		 * max value.
1263 		 */
1264 		rlist->max_free = max_free =
1265 		    vm_size_max(rlist->max_free, max_free);
1266 		vm_map_entry_swap(&rlist->left, &tail);
1267 		vm_map_entry_swap(&tail, &rlist);
1268 	} while (rlist != header);
1269 	root->right = tail;
1270 	return (max_free);
1271 }
1272 
1273 /*
1274  * When rlist is known to be the succecessor of root.
1275  */
1276 static inline vm_size_t
1277 vm_map_splay_merge_succ(vm_map_entry_t header, vm_map_entry_t root,
1278     vm_map_entry_t rlist)
1279 {
1280 	vm_size_t max_free;
1281 
1282 	max_free = rlist->start - root->end;
1283 	if (rlist != header) {
1284 		max_free = vm_map_splay_merge_right_walk(header, root,
1285 		    root, max_free, rlist);
1286 	} else {
1287 		root->right = header;
1288 		header->left = root;
1289 	}
1290 	return (max_free);
1291 }
1292 
1293 /*
1294  * When rlist may or may not be the succecessor of root.
1295  */
1296 static inline vm_size_t
1297 vm_map_splay_merge_right(vm_map_entry_t header, vm_map_entry_t root,
1298     vm_map_entry_t rlist)
1299 {
1300 	vm_size_t max_free;
1301 
1302 	max_free = vm_map_entry_max_free_right(root, rlist);
1303 	if (rlist != header) {
1304 		max_free = vm_map_splay_merge_right_walk(header, root,
1305 		    root->right == rlist ? root : root->right,
1306 		    max_free, rlist);
1307 	}
1308 	return (max_free);
1309 }
1310 
1311 /*
1312  *	vm_map_splay:
1313  *
1314  *	The Sleator and Tarjan top-down splay algorithm with the
1315  *	following variation.  Max_free must be computed bottom-up, so
1316  *	on the downward pass, maintain the left and right spines in
1317  *	reverse order.  Then, make a second pass up each side to fix
1318  *	the pointers and compute max_free.  The time bound is O(log n)
1319  *	amortized.
1320  *
1321  *	The tree is threaded, which means that there are no null pointers.
1322  *	When a node has no left child, its left pointer points to its
1323  *	predecessor, which the last ancestor on the search path from the root
1324  *	where the search branched right.  Likewise, when a node has no right
1325  *	child, its right pointer points to its successor.  The map header node
1326  *	is the predecessor of the first map entry, and the successor of the
1327  *	last.
1328  *
1329  *	The new root is the vm_map_entry containing "addr", or else an
1330  *	adjacent entry (lower if possible) if addr is not in the tree.
1331  *
1332  *	The map must be locked, and leaves it so.
1333  *
1334  *	Returns: the new root.
1335  */
1336 static vm_map_entry_t
1337 vm_map_splay(vm_map_t map, vm_offset_t addr)
1338 {
1339 	vm_map_entry_t header, llist, rlist, root;
1340 	vm_size_t max_free_left, max_free_right;
1341 
1342 	header = &map->header;
1343 	root = vm_map_splay_split(map, addr, 0, &llist, &rlist);
1344 	if (root != NULL) {
1345 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1346 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1347 	} else if (llist != header) {
1348 		/*
1349 		 * Recover the greatest node in the left
1350 		 * subtree and make it the root.
1351 		 */
1352 		root = llist;
1353 		llist = root->right;
1354 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1355 		max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1356 	} else if (rlist != header) {
1357 		/*
1358 		 * Recover the least node in the right
1359 		 * subtree and make it the root.
1360 		 */
1361 		root = rlist;
1362 		rlist = root->left;
1363 		max_free_left = vm_map_splay_merge_pred(header, root, llist);
1364 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1365 	} else {
1366 		/* There is no root. */
1367 		return (NULL);
1368 	}
1369 	root->max_free = vm_size_max(max_free_left, max_free_right);
1370 	map->root = root;
1371 	VM_MAP_ASSERT_CONSISTENT(map);
1372 	return (root);
1373 }
1374 
1375 /*
1376  *	vm_map_entry_{un,}link:
1377  *
1378  *	Insert/remove entries from maps.  On linking, if new entry clips
1379  *	existing entry, trim existing entry to avoid overlap, and manage
1380  *	offsets.  On unlinking, merge disappearing entry with neighbor, if
1381  *	called for, and manage offsets.  Callers should not modify fields in
1382  *	entries already mapped.
1383  */
1384 static void
1385 vm_map_entry_link(vm_map_t map, vm_map_entry_t entry)
1386 {
1387 	vm_map_entry_t header, llist, rlist, root;
1388 	vm_size_t max_free_left, max_free_right;
1389 
1390 	CTR3(KTR_VM,
1391 	    "vm_map_entry_link: map %p, nentries %d, entry %p", map,
1392 	    map->nentries, entry);
1393 	VM_MAP_ASSERT_LOCKED(map);
1394 	map->nentries++;
1395 	header = &map->header;
1396 	root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1397 	if (root == NULL) {
1398 		/*
1399 		 * The new entry does not overlap any existing entry in the
1400 		 * map, so it becomes the new root of the map tree.
1401 		 */
1402 		max_free_left = vm_map_splay_merge_pred(header, entry, llist);
1403 		max_free_right = vm_map_splay_merge_succ(header, entry, rlist);
1404 	} else if (entry->start == root->start) {
1405 		/*
1406 		 * The new entry is a clone of root, with only the end field
1407 		 * changed.  The root entry will be shrunk to abut the new
1408 		 * entry, and will be the right child of the new root entry in
1409 		 * the modified map.
1410 		 */
1411 		KASSERT(entry->end < root->end,
1412 		    ("%s: clip_start not within entry", __func__));
1413 		vm_map_splay_findprev(root, &llist);
1414 		if ((root->eflags & (MAP_ENTRY_STACK_GAP_DN |
1415 		    MAP_ENTRY_STACK_GAP_UP)) == 0)
1416 			root->offset += entry->end - root->start;
1417 		root->start = entry->end;
1418 		max_free_left = vm_map_splay_merge_pred(header, entry, llist);
1419 		max_free_right = root->max_free = vm_size_max(
1420 		    vm_map_splay_merge_pred(entry, root, entry),
1421 		    vm_map_splay_merge_right(header, root, rlist));
1422 	} else {
1423 		/*
1424 		 * The new entry is a clone of root, with only the start field
1425 		 * changed.  The root entry will be shrunk to abut the new
1426 		 * entry, and will be the left child of the new root entry in
1427 		 * the modified map.
1428 		 */
1429 		KASSERT(entry->end == root->end,
1430 		    ("%s: clip_start not within entry", __func__));
1431 		vm_map_splay_findnext(root, &rlist);
1432 		if ((entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
1433 		    MAP_ENTRY_STACK_GAP_UP)) == 0)
1434 			entry->offset += entry->start - root->start;
1435 		root->end = entry->start;
1436 		max_free_left = root->max_free = vm_size_max(
1437 		    vm_map_splay_merge_left(header, root, llist),
1438 		    vm_map_splay_merge_succ(entry, root, entry));
1439 		max_free_right = vm_map_splay_merge_succ(header, entry, rlist);
1440 	}
1441 	entry->max_free = vm_size_max(max_free_left, max_free_right);
1442 	map->root = entry;
1443 	VM_MAP_ASSERT_CONSISTENT(map);
1444 }
1445 
1446 enum unlink_merge_type {
1447 	UNLINK_MERGE_NONE,
1448 	UNLINK_MERGE_NEXT
1449 };
1450 
1451 static void
1452 vm_map_entry_unlink(vm_map_t map, vm_map_entry_t entry,
1453     enum unlink_merge_type op)
1454 {
1455 	vm_map_entry_t header, llist, rlist, root;
1456 	vm_size_t max_free_left, max_free_right;
1457 
1458 	VM_MAP_ASSERT_LOCKED(map);
1459 	header = &map->header;
1460 	root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1461 	KASSERT(root != NULL,
1462 	    ("vm_map_entry_unlink: unlink object not mapped"));
1463 
1464 	vm_map_splay_findprev(root, &llist);
1465 	vm_map_splay_findnext(root, &rlist);
1466 	if (op == UNLINK_MERGE_NEXT) {
1467 		rlist->start = root->start;
1468 		MPASS((rlist->eflags & (MAP_ENTRY_STACK_GAP_DN |
1469 		    MAP_ENTRY_STACK_GAP_UP)) == 0);
1470 		rlist->offset = root->offset;
1471 	}
1472 	if (llist != header) {
1473 		root = llist;
1474 		llist = root->right;
1475 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1476 		max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1477 	} else if (rlist != header) {
1478 		root = rlist;
1479 		rlist = root->left;
1480 		max_free_left = vm_map_splay_merge_pred(header, root, llist);
1481 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1482 	} else {
1483 		header->left = header->right = header;
1484 		root = NULL;
1485 	}
1486 	if (root != NULL)
1487 		root->max_free = vm_size_max(max_free_left, max_free_right);
1488 	map->root = root;
1489 	VM_MAP_ASSERT_CONSISTENT(map);
1490 	map->nentries--;
1491 	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1492 	    map->nentries, entry);
1493 }
1494 
1495 /*
1496  *	vm_map_entry_resize:
1497  *
1498  *	Resize a vm_map_entry, recompute the amount of free space that
1499  *	follows it and propagate that value up the tree.
1500  *
1501  *	The map must be locked, and leaves it so.
1502  */
1503 static void
1504 vm_map_entry_resize(vm_map_t map, vm_map_entry_t entry, vm_size_t grow_amount)
1505 {
1506 	vm_map_entry_t header, llist, rlist, root;
1507 
1508 	VM_MAP_ASSERT_LOCKED(map);
1509 	header = &map->header;
1510 	root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1511 	KASSERT(root != NULL, ("%s: resize object not mapped", __func__));
1512 	vm_map_splay_findnext(root, &rlist);
1513 	entry->end += grow_amount;
1514 	root->max_free = vm_size_max(
1515 	    vm_map_splay_merge_left(header, root, llist),
1516 	    vm_map_splay_merge_succ(header, root, rlist));
1517 	map->root = root;
1518 	VM_MAP_ASSERT_CONSISTENT(map);
1519 	CTR4(KTR_VM, "%s: map %p, nentries %d, entry %p",
1520 	    __func__, map, map->nentries, entry);
1521 }
1522 
1523 /*
1524  *	vm_map_lookup_entry:	[ internal use only ]
1525  *
1526  *	Finds the map entry containing (or
1527  *	immediately preceding) the specified address
1528  *	in the given map; the entry is returned
1529  *	in the "entry" parameter.  The boolean
1530  *	result indicates whether the address is
1531  *	actually contained in the map.
1532  */
1533 boolean_t
1534 vm_map_lookup_entry(
1535 	vm_map_t map,
1536 	vm_offset_t address,
1537 	vm_map_entry_t *entry)	/* OUT */
1538 {
1539 	vm_map_entry_t cur, header, lbound, ubound;
1540 	boolean_t locked;
1541 
1542 	/*
1543 	 * If the map is empty, then the map entry immediately preceding
1544 	 * "address" is the map's header.
1545 	 */
1546 	header = &map->header;
1547 	cur = map->root;
1548 	if (cur == NULL) {
1549 		*entry = header;
1550 		return (FALSE);
1551 	}
1552 	if (address >= cur->start && cur->end > address) {
1553 		*entry = cur;
1554 		return (TRUE);
1555 	}
1556 	if ((locked = vm_map_locked(map)) ||
1557 	    sx_try_upgrade(&map->lock)) {
1558 		/*
1559 		 * Splay requires a write lock on the map.  However, it only
1560 		 * restructures the binary search tree; it does not otherwise
1561 		 * change the map.  Thus, the map's timestamp need not change
1562 		 * on a temporary upgrade.
1563 		 */
1564 		cur = vm_map_splay(map, address);
1565 		if (!locked) {
1566 			VM_MAP_UNLOCK_CONSISTENT(map);
1567 			sx_downgrade(&map->lock);
1568 		}
1569 
1570 		/*
1571 		 * If "address" is contained within a map entry, the new root
1572 		 * is that map entry.  Otherwise, the new root is a map entry
1573 		 * immediately before or after "address".
1574 		 */
1575 		if (address < cur->start) {
1576 			*entry = header;
1577 			return (FALSE);
1578 		}
1579 		*entry = cur;
1580 		return (address < cur->end);
1581 	}
1582 	/*
1583 	 * Since the map is only locked for read access, perform a
1584 	 * standard binary search tree lookup for "address".
1585 	 */
1586 	lbound = ubound = header;
1587 	for (;;) {
1588 		if (address < cur->start) {
1589 			ubound = cur;
1590 			cur = cur->left;
1591 			if (cur == lbound)
1592 				break;
1593 		} else if (cur->end <= address) {
1594 			lbound = cur;
1595 			cur = cur->right;
1596 			if (cur == ubound)
1597 				break;
1598 		} else {
1599 			*entry = cur;
1600 			return (TRUE);
1601 		}
1602 	}
1603 	*entry = lbound;
1604 	return (FALSE);
1605 }
1606 
1607 /*
1608  * vm_map_insert1() is identical to vm_map_insert() except that it
1609  * returns the newly inserted map entry in '*res'.  In case the new
1610  * entry is coalesced with a neighbor or an existing entry was
1611  * resized, that entry is returned.  In any case, the returned entry
1612  * covers the specified address range.
1613  */
1614 static int
1615 vm_map_insert1(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1616     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow,
1617     vm_map_entry_t *res)
1618 {
1619 	vm_map_entry_t new_entry, next_entry, prev_entry;
1620 	struct ucred *cred;
1621 	vm_eflags_t protoeflags;
1622 	vm_inherit_t inheritance;
1623 	u_long bdry;
1624 	u_int bidx;
1625 
1626 	VM_MAP_ASSERT_LOCKED(map);
1627 	KASSERT(object != kernel_object ||
1628 	    (cow & MAP_COPY_ON_WRITE) == 0,
1629 	    ("vm_map_insert: kernel object and COW"));
1630 	KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0 ||
1631 	    (cow & MAP_SPLIT_BOUNDARY_MASK) != 0,
1632 	    ("vm_map_insert: paradoxical MAP_NOFAULT request, obj %p cow %#x",
1633 	    object, cow));
1634 	KASSERT((prot & ~max) == 0,
1635 	    ("prot %#x is not subset of max_prot %#x", prot, max));
1636 
1637 	/*
1638 	 * Check that the start and end points are not bogus.
1639 	 */
1640 	if (start == end || !vm_map_range_valid(map, start, end))
1641 		return (KERN_INVALID_ADDRESS);
1642 
1643 	if ((map->flags & MAP_WXORX) != 0 && (prot & (VM_PROT_WRITE |
1644 	    VM_PROT_EXECUTE)) == (VM_PROT_WRITE | VM_PROT_EXECUTE))
1645 		return (KERN_PROTECTION_FAILURE);
1646 
1647 	/*
1648 	 * Find the entry prior to the proposed starting address; if it's part
1649 	 * of an existing entry, this range is bogus.
1650 	 */
1651 	if (vm_map_lookup_entry(map, start, &prev_entry))
1652 		return (KERN_NO_SPACE);
1653 
1654 	/*
1655 	 * Assert that the next entry doesn't overlap the end point.
1656 	 */
1657 	next_entry = vm_map_entry_succ(prev_entry);
1658 	if (next_entry->start < end)
1659 		return (KERN_NO_SPACE);
1660 
1661 	if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL ||
1662 	    max != VM_PROT_NONE))
1663 		return (KERN_INVALID_ARGUMENT);
1664 
1665 	protoeflags = 0;
1666 	if (cow & MAP_COPY_ON_WRITE)
1667 		protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1668 	if (cow & MAP_NOFAULT)
1669 		protoeflags |= MAP_ENTRY_NOFAULT;
1670 	if (cow & MAP_DISABLE_SYNCER)
1671 		protoeflags |= MAP_ENTRY_NOSYNC;
1672 	if (cow & MAP_DISABLE_COREDUMP)
1673 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1674 	if (cow & MAP_STACK_GROWS_DOWN)
1675 		protoeflags |= MAP_ENTRY_GROWS_DOWN;
1676 	if (cow & MAP_STACK_GROWS_UP)
1677 		protoeflags |= MAP_ENTRY_GROWS_UP;
1678 	if (cow & MAP_WRITECOUNT)
1679 		protoeflags |= MAP_ENTRY_WRITECNT;
1680 	if (cow & MAP_VN_EXEC)
1681 		protoeflags |= MAP_ENTRY_VN_EXEC;
1682 	if ((cow & MAP_CREATE_GUARD) != 0)
1683 		protoeflags |= MAP_ENTRY_GUARD;
1684 	if ((cow & MAP_CREATE_STACK_GAP_DN) != 0)
1685 		protoeflags |= MAP_ENTRY_STACK_GAP_DN;
1686 	if ((cow & MAP_CREATE_STACK_GAP_UP) != 0)
1687 		protoeflags |= MAP_ENTRY_STACK_GAP_UP;
1688 	if (cow & MAP_INHERIT_SHARE)
1689 		inheritance = VM_INHERIT_SHARE;
1690 	else
1691 		inheritance = VM_INHERIT_DEFAULT;
1692 	if ((cow & MAP_SPLIT_BOUNDARY_MASK) != 0) {
1693 		/* This magically ignores index 0, for usual page size. */
1694 		bidx = (cow & MAP_SPLIT_BOUNDARY_MASK) >>
1695 		    MAP_SPLIT_BOUNDARY_SHIFT;
1696 		if (bidx >= MAXPAGESIZES)
1697 			return (KERN_INVALID_ARGUMENT);
1698 		bdry = pagesizes[bidx] - 1;
1699 		if ((start & bdry) != 0 || (end & bdry) != 0)
1700 			return (KERN_INVALID_ARGUMENT);
1701 		protoeflags |= bidx << MAP_ENTRY_SPLIT_BOUNDARY_SHIFT;
1702 	}
1703 
1704 	cred = NULL;
1705 	if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0)
1706 		goto charged;
1707 	if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1708 	    ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1709 		if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1710 			return (KERN_RESOURCE_SHORTAGE);
1711 		KASSERT(object == NULL ||
1712 		    (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
1713 		    object->cred == NULL,
1714 		    ("overcommit: vm_map_insert o %p", object));
1715 		cred = curthread->td_ucred;
1716 	}
1717 
1718 charged:
1719 	/* Expand the kernel pmap, if necessary. */
1720 	if (map == kernel_map && end > kernel_vm_end)
1721 		pmap_growkernel(end);
1722 	if (object != NULL) {
1723 		/*
1724 		 * OBJ_ONEMAPPING must be cleared unless this mapping
1725 		 * is trivially proven to be the only mapping for any
1726 		 * of the object's pages.  (Object granularity
1727 		 * reference counting is insufficient to recognize
1728 		 * aliases with precision.)
1729 		 */
1730 		if ((object->flags & OBJ_ANON) != 0) {
1731 			VM_OBJECT_WLOCK(object);
1732 			if (object->ref_count > 1 || object->shadow_count != 0)
1733 				vm_object_clear_flag(object, OBJ_ONEMAPPING);
1734 			VM_OBJECT_WUNLOCK(object);
1735 		}
1736 	} else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) ==
1737 	    protoeflags &&
1738 	    (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP |
1739 	    MAP_VN_EXEC)) == 0 &&
1740 	    prev_entry->end == start && (prev_entry->cred == cred ||
1741 	    (prev_entry->object.vm_object != NULL &&
1742 	    prev_entry->object.vm_object->cred == cred)) &&
1743 	    vm_object_coalesce(prev_entry->object.vm_object,
1744 	    prev_entry->offset,
1745 	    (vm_size_t)(prev_entry->end - prev_entry->start),
1746 	    (vm_size_t)(end - prev_entry->end), cred != NULL &&
1747 	    (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1748 		/*
1749 		 * We were able to extend the object.  Determine if we
1750 		 * can extend the previous map entry to include the
1751 		 * new range as well.
1752 		 */
1753 		if (prev_entry->inheritance == inheritance &&
1754 		    prev_entry->protection == prot &&
1755 		    prev_entry->max_protection == max &&
1756 		    prev_entry->wired_count == 0) {
1757 			KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) ==
1758 			    0, ("prev_entry %p has incoherent wiring",
1759 			    prev_entry));
1760 			if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0)
1761 				map->size += end - prev_entry->end;
1762 			vm_map_entry_resize(map, prev_entry,
1763 			    end - prev_entry->end);
1764 			*res = vm_map_try_merge_entries(map, prev_entry,
1765 			    next_entry);
1766 			return (KERN_SUCCESS);
1767 		}
1768 
1769 		/*
1770 		 * If we can extend the object but cannot extend the
1771 		 * map entry, we have to create a new map entry.  We
1772 		 * must bump the ref count on the extended object to
1773 		 * account for it.  object may be NULL.
1774 		 */
1775 		object = prev_entry->object.vm_object;
1776 		offset = prev_entry->offset +
1777 		    (prev_entry->end - prev_entry->start);
1778 		vm_object_reference(object);
1779 		if (cred != NULL && object != NULL && object->cred != NULL &&
1780 		    !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1781 			/* Object already accounts for this uid. */
1782 			cred = NULL;
1783 		}
1784 	}
1785 	if (cred != NULL)
1786 		crhold(cred);
1787 
1788 	/*
1789 	 * Create a new entry
1790 	 */
1791 	new_entry = vm_map_entry_create(map);
1792 	new_entry->start = start;
1793 	new_entry->end = end;
1794 	new_entry->cred = NULL;
1795 
1796 	new_entry->eflags = protoeflags;
1797 	new_entry->object.vm_object = object;
1798 	new_entry->offset = offset;
1799 
1800 	new_entry->inheritance = inheritance;
1801 	new_entry->protection = prot;
1802 	new_entry->max_protection = max;
1803 	new_entry->wired_count = 0;
1804 	new_entry->wiring_thread = NULL;
1805 	new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1806 	new_entry->next_read = start;
1807 
1808 	KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1809 	    ("overcommit: vm_map_insert leaks vm_map %p", new_entry));
1810 	new_entry->cred = cred;
1811 
1812 	/*
1813 	 * Insert the new entry into the list
1814 	 */
1815 	vm_map_entry_link(map, new_entry);
1816 	if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0)
1817 		map->size += new_entry->end - new_entry->start;
1818 
1819 	/*
1820 	 * Try to coalesce the new entry with both the previous and next
1821 	 * entries in the list.  Previously, we only attempted to coalesce
1822 	 * with the previous entry when object is NULL.  Here, we handle the
1823 	 * other cases, which are less common.
1824 	 */
1825 	vm_map_try_merge_entries(map, prev_entry, new_entry);
1826 	*res = vm_map_try_merge_entries(map, new_entry, next_entry);
1827 
1828 	if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) {
1829 		vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset),
1830 		    end - start, cow & MAP_PREFAULT_PARTIAL);
1831 	}
1832 
1833 	return (KERN_SUCCESS);
1834 }
1835 
1836 /*
1837  *	vm_map_insert:
1838  *
1839  *	Inserts the given VM object into the target map at the
1840  *	specified address range.
1841  *
1842  *	Requires that the map be locked, and leaves it so.
1843  *
1844  *	If object is non-NULL, ref count must be bumped by caller
1845  *	prior to making call to account for the new entry.
1846  */
1847 int
1848 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1849     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1850 {
1851 	vm_map_entry_t res;
1852 
1853 	return (vm_map_insert1(map, object, offset, start, end, prot, max,
1854 	    cow, &res));
1855 }
1856 
1857 /*
1858  *	vm_map_findspace:
1859  *
1860  *	Find the first fit (lowest VM address) for "length" free bytes
1861  *	beginning at address >= start in the given map.
1862  *
1863  *	In a vm_map_entry, "max_free" is the maximum amount of
1864  *	contiguous free space between an entry in its subtree and a
1865  *	neighbor of that entry.  This allows finding a free region in
1866  *	one path down the tree, so O(log n) amortized with splay
1867  *	trees.
1868  *
1869  *	The map must be locked, and leaves it so.
1870  *
1871  *	Returns: starting address if sufficient space,
1872  *		 vm_map_max(map)-length+1 if insufficient space.
1873  */
1874 vm_offset_t
1875 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length)
1876 {
1877 	vm_map_entry_t header, llist, rlist, root, y;
1878 	vm_size_t left_length, max_free_left, max_free_right;
1879 	vm_offset_t gap_end;
1880 
1881 	VM_MAP_ASSERT_LOCKED(map);
1882 
1883 	/*
1884 	 * Request must fit within min/max VM address and must avoid
1885 	 * address wrap.
1886 	 */
1887 	start = MAX(start, vm_map_min(map));
1888 	if (start >= vm_map_max(map) || length > vm_map_max(map) - start)
1889 		return (vm_map_max(map) - length + 1);
1890 
1891 	/* Empty tree means wide open address space. */
1892 	if (map->root == NULL)
1893 		return (start);
1894 
1895 	/*
1896 	 * After splay_split, if start is within an entry, push it to the start
1897 	 * of the following gap.  If rlist is at the end of the gap containing
1898 	 * start, save the end of that gap in gap_end to see if the gap is big
1899 	 * enough; otherwise set gap_end to start skip gap-checking and move
1900 	 * directly to a search of the right subtree.
1901 	 */
1902 	header = &map->header;
1903 	root = vm_map_splay_split(map, start, length, &llist, &rlist);
1904 	gap_end = rlist->start;
1905 	if (root != NULL) {
1906 		start = root->end;
1907 		if (root->right != rlist)
1908 			gap_end = start;
1909 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1910 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1911 	} else if (rlist != header) {
1912 		root = rlist;
1913 		rlist = root->left;
1914 		max_free_left = vm_map_splay_merge_pred(header, root, llist);
1915 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1916 	} else {
1917 		root = llist;
1918 		llist = root->right;
1919 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1920 		max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1921 	}
1922 	root->max_free = vm_size_max(max_free_left, max_free_right);
1923 	map->root = root;
1924 	VM_MAP_ASSERT_CONSISTENT(map);
1925 	if (length <= gap_end - start)
1926 		return (start);
1927 
1928 	/* With max_free, can immediately tell if no solution. */
1929 	if (root->right == header || length > root->right->max_free)
1930 		return (vm_map_max(map) - length + 1);
1931 
1932 	/*
1933 	 * Splay for the least large-enough gap in the right subtree.
1934 	 */
1935 	llist = rlist = header;
1936 	for (left_length = 0;;
1937 	    left_length = vm_map_entry_max_free_left(root, llist)) {
1938 		if (length <= left_length)
1939 			SPLAY_LEFT_STEP(root, y, llist, rlist,
1940 			    length <= vm_map_entry_max_free_left(y, llist));
1941 		else
1942 			SPLAY_RIGHT_STEP(root, y, llist, rlist,
1943 			    length > vm_map_entry_max_free_left(y, root));
1944 		if (root == NULL)
1945 			break;
1946 	}
1947 	root = llist;
1948 	llist = root->right;
1949 	max_free_left = vm_map_splay_merge_left(header, root, llist);
1950 	if (rlist == header) {
1951 		root->max_free = vm_size_max(max_free_left,
1952 		    vm_map_splay_merge_succ(header, root, rlist));
1953 	} else {
1954 		y = rlist;
1955 		rlist = y->left;
1956 		y->max_free = vm_size_max(
1957 		    vm_map_splay_merge_pred(root, y, root),
1958 		    vm_map_splay_merge_right(header, y, rlist));
1959 		root->max_free = vm_size_max(max_free_left, y->max_free);
1960 	}
1961 	map->root = root;
1962 	VM_MAP_ASSERT_CONSISTENT(map);
1963 	return (root->end);
1964 }
1965 
1966 int
1967 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1968     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1969     vm_prot_t max, int cow)
1970 {
1971 	vm_offset_t end;
1972 	int result;
1973 
1974 	end = start + length;
1975 	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1976 	    object == NULL,
1977 	    ("vm_map_fixed: non-NULL backing object for stack"));
1978 	vm_map_lock(map);
1979 	VM_MAP_RANGE_CHECK(map, start, end);
1980 	if ((cow & MAP_CHECK_EXCL) == 0) {
1981 		result = vm_map_delete(map, start, end);
1982 		if (result != KERN_SUCCESS)
1983 			goto out;
1984 	}
1985 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1986 		result = vm_map_stack_locked(map, start, length, sgrowsiz,
1987 		    prot, max, cow);
1988 	} else {
1989 		result = vm_map_insert(map, object, offset, start, end,
1990 		    prot, max, cow);
1991 	}
1992 out:
1993 	vm_map_unlock(map);
1994 	return (result);
1995 }
1996 
1997 static const int aslr_pages_rnd_64[2] = {0x1000, 0x10};
1998 static const int aslr_pages_rnd_32[2] = {0x100, 0x4};
1999 
2000 static int cluster_anon = 1;
2001 SYSCTL_INT(_vm, OID_AUTO, cluster_anon, CTLFLAG_RW,
2002     &cluster_anon, 0,
2003     "Cluster anonymous mappings: 0 = no, 1 = yes if no hint, 2 = always");
2004 
2005 static bool
2006 clustering_anon_allowed(vm_offset_t addr, int cow)
2007 {
2008 
2009 	switch (cluster_anon) {
2010 	case 0:
2011 		return (false);
2012 	case 1:
2013 		return (addr == 0 || (cow & MAP_NO_HINT) != 0);
2014 	case 2:
2015 	default:
2016 		return (true);
2017 	}
2018 }
2019 
2020 static long aslr_restarts;
2021 SYSCTL_LONG(_vm, OID_AUTO, aslr_restarts, CTLFLAG_RD,
2022     &aslr_restarts, 0,
2023     "Number of aslr failures");
2024 
2025 /*
2026  * Searches for the specified amount of free space in the given map with the
2027  * specified alignment.  Performs an address-ordered, first-fit search from
2028  * the given address "*addr", with an optional upper bound "max_addr".  If the
2029  * parameter "alignment" is zero, then the alignment is computed from the
2030  * given (object, offset) pair so as to enable the greatest possible use of
2031  * superpage mappings.  Returns KERN_SUCCESS and the address of the free space
2032  * in "*addr" if successful.  Otherwise, returns KERN_NO_SPACE.
2033  *
2034  * The map must be locked.  Initially, there must be at least "length" bytes
2035  * of free space at the given address.
2036  */
2037 static int
2038 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2039     vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr,
2040     vm_offset_t alignment)
2041 {
2042 	vm_offset_t aligned_addr, free_addr;
2043 
2044 	VM_MAP_ASSERT_LOCKED(map);
2045 	free_addr = *addr;
2046 	KASSERT(free_addr == vm_map_findspace(map, free_addr, length),
2047 	    ("caller failed to provide space %#jx at address %p",
2048 	     (uintmax_t)length, (void *)free_addr));
2049 	for (;;) {
2050 		/*
2051 		 * At the start of every iteration, the free space at address
2052 		 * "*addr" is at least "length" bytes.
2053 		 */
2054 		if (alignment == 0)
2055 			pmap_align_superpage(object, offset, addr, length);
2056 		else
2057 			*addr = roundup2(*addr, alignment);
2058 		aligned_addr = *addr;
2059 		if (aligned_addr == free_addr) {
2060 			/*
2061 			 * Alignment did not change "*addr", so "*addr" must
2062 			 * still provide sufficient free space.
2063 			 */
2064 			return (KERN_SUCCESS);
2065 		}
2066 
2067 		/*
2068 		 * Test for address wrap on "*addr".  A wrapped "*addr" could
2069 		 * be a valid address, in which case vm_map_findspace() cannot
2070 		 * be relied upon to fail.
2071 		 */
2072 		if (aligned_addr < free_addr)
2073 			return (KERN_NO_SPACE);
2074 		*addr = vm_map_findspace(map, aligned_addr, length);
2075 		if (*addr + length > vm_map_max(map) ||
2076 		    (max_addr != 0 && *addr + length > max_addr))
2077 			return (KERN_NO_SPACE);
2078 		free_addr = *addr;
2079 		if (free_addr == aligned_addr) {
2080 			/*
2081 			 * If a successful call to vm_map_findspace() did not
2082 			 * change "*addr", then "*addr" must still be aligned
2083 			 * and provide sufficient free space.
2084 			 */
2085 			return (KERN_SUCCESS);
2086 		}
2087 	}
2088 }
2089 
2090 int
2091 vm_map_find_aligned(vm_map_t map, vm_offset_t *addr, vm_size_t length,
2092     vm_offset_t max_addr, vm_offset_t alignment)
2093 {
2094 	/* XXXKIB ASLR eh ? */
2095 	*addr = vm_map_findspace(map, *addr, length);
2096 	if (*addr + length > vm_map_max(map) ||
2097 	    (max_addr != 0 && *addr + length > max_addr))
2098 		return (KERN_NO_SPACE);
2099 	return (vm_map_alignspace(map, NULL, 0, addr, length, max_addr,
2100 	    alignment));
2101 }
2102 
2103 /*
2104  *	vm_map_find finds an unallocated region in the target address
2105  *	map with the given length.  The search is defined to be
2106  *	first-fit from the specified address; the region found is
2107  *	returned in the same parameter.
2108  *
2109  *	If object is non-NULL, ref count must be bumped by caller
2110  *	prior to making call to account for the new entry.
2111  */
2112 int
2113 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2114 	    vm_offset_t *addr,	/* IN/OUT */
2115 	    vm_size_t length, vm_offset_t max_addr, int find_space,
2116 	    vm_prot_t prot, vm_prot_t max, int cow)
2117 {
2118 	vm_offset_t alignment, curr_min_addr, min_addr;
2119 	int gap, pidx, rv, try;
2120 	bool cluster, en_aslr, update_anon;
2121 
2122 	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
2123 	    object == NULL,
2124 	    ("vm_map_find: non-NULL backing object for stack"));
2125 	MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE &&
2126 	    (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0));
2127 	if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
2128 	    (object->flags & OBJ_COLORED) == 0))
2129 		find_space = VMFS_ANY_SPACE;
2130 	if (find_space >> 8 != 0) {
2131 		KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
2132 		alignment = (vm_offset_t)1 << (find_space >> 8);
2133 	} else
2134 		alignment = 0;
2135 	en_aslr = (map->flags & MAP_ASLR) != 0;
2136 	update_anon = cluster = clustering_anon_allowed(*addr, cow) &&
2137 	    (map->flags & MAP_IS_SUB_MAP) == 0 && max_addr == 0 &&
2138 	    find_space != VMFS_NO_SPACE && object == NULL &&
2139 	    (cow & (MAP_INHERIT_SHARE | MAP_STACK_GROWS_UP |
2140 	    MAP_STACK_GROWS_DOWN)) == 0 && prot != PROT_NONE;
2141 	curr_min_addr = min_addr = *addr;
2142 	if (en_aslr && min_addr == 0 && !cluster &&
2143 	    find_space != VMFS_NO_SPACE &&
2144 	    (map->flags & MAP_ASLR_IGNSTART) != 0)
2145 		curr_min_addr = min_addr = vm_map_min(map);
2146 	try = 0;
2147 	vm_map_lock(map);
2148 	if (cluster) {
2149 		curr_min_addr = map->anon_loc;
2150 		if (curr_min_addr == 0)
2151 			cluster = false;
2152 	}
2153 	if (find_space != VMFS_NO_SPACE) {
2154 		KASSERT(find_space == VMFS_ANY_SPACE ||
2155 		    find_space == VMFS_OPTIMAL_SPACE ||
2156 		    find_space == VMFS_SUPER_SPACE ||
2157 		    alignment != 0, ("unexpected VMFS flag"));
2158 again:
2159 		/*
2160 		 * When creating an anonymous mapping, try clustering
2161 		 * with an existing anonymous mapping first.
2162 		 *
2163 		 * We make up to two attempts to find address space
2164 		 * for a given find_space value. The first attempt may
2165 		 * apply randomization or may cluster with an existing
2166 		 * anonymous mapping. If this first attempt fails,
2167 		 * perform a first-fit search of the available address
2168 		 * space.
2169 		 *
2170 		 * If all tries failed, and find_space is
2171 		 * VMFS_OPTIMAL_SPACE, fallback to VMFS_ANY_SPACE.
2172 		 * Again enable clustering and randomization.
2173 		 */
2174 		try++;
2175 		MPASS(try <= 2);
2176 
2177 		if (try == 2) {
2178 			/*
2179 			 * Second try: we failed either to find a
2180 			 * suitable region for randomizing the
2181 			 * allocation, or to cluster with an existing
2182 			 * mapping.  Retry with free run.
2183 			 */
2184 			curr_min_addr = (map->flags & MAP_ASLR_IGNSTART) != 0 ?
2185 			    vm_map_min(map) : min_addr;
2186 			atomic_add_long(&aslr_restarts, 1);
2187 		}
2188 
2189 		if (try == 1 && en_aslr && !cluster) {
2190 			/*
2191 			 * Find space for allocation, including
2192 			 * gap needed for later randomization.
2193 			 */
2194 			pidx = MAXPAGESIZES > 1 && pagesizes[1] != 0 &&
2195 			    (find_space == VMFS_SUPER_SPACE || find_space ==
2196 			    VMFS_OPTIMAL_SPACE) ? 1 : 0;
2197 			gap = vm_map_max(map) > MAP_32BIT_MAX_ADDR &&
2198 			    (max_addr == 0 || max_addr > MAP_32BIT_MAX_ADDR) ?
2199 			    aslr_pages_rnd_64[pidx] : aslr_pages_rnd_32[pidx];
2200 			*addr = vm_map_findspace(map, curr_min_addr,
2201 			    length + gap * pagesizes[pidx]);
2202 			if (*addr + length + gap * pagesizes[pidx] >
2203 			    vm_map_max(map))
2204 				goto again;
2205 			/* And randomize the start address. */
2206 			*addr += (arc4random() % gap) * pagesizes[pidx];
2207 			if (max_addr != 0 && *addr + length > max_addr)
2208 				goto again;
2209 		} else {
2210 			*addr = vm_map_findspace(map, curr_min_addr, length);
2211 			if (*addr + length > vm_map_max(map) ||
2212 			    (max_addr != 0 && *addr + length > max_addr)) {
2213 				if (cluster) {
2214 					cluster = false;
2215 					MPASS(try == 1);
2216 					goto again;
2217 				}
2218 				rv = KERN_NO_SPACE;
2219 				goto done;
2220 			}
2221 		}
2222 
2223 		if (find_space != VMFS_ANY_SPACE &&
2224 		    (rv = vm_map_alignspace(map, object, offset, addr, length,
2225 		    max_addr, alignment)) != KERN_SUCCESS) {
2226 			if (find_space == VMFS_OPTIMAL_SPACE) {
2227 				find_space = VMFS_ANY_SPACE;
2228 				curr_min_addr = min_addr;
2229 				cluster = update_anon;
2230 				try = 0;
2231 				goto again;
2232 			}
2233 			goto done;
2234 		}
2235 	} else if ((cow & MAP_REMAP) != 0) {
2236 		if (!vm_map_range_valid(map, *addr, *addr + length)) {
2237 			rv = KERN_INVALID_ADDRESS;
2238 			goto done;
2239 		}
2240 		rv = vm_map_delete(map, *addr, *addr + length);
2241 		if (rv != KERN_SUCCESS)
2242 			goto done;
2243 	}
2244 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
2245 		rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot,
2246 		    max, cow);
2247 	} else {
2248 		rv = vm_map_insert(map, object, offset, *addr, *addr + length,
2249 		    prot, max, cow);
2250 	}
2251 	if (rv == KERN_SUCCESS && update_anon)
2252 		map->anon_loc = *addr + length;
2253 done:
2254 	vm_map_unlock(map);
2255 	return (rv);
2256 }
2257 
2258 /*
2259  *	vm_map_find_min() is a variant of vm_map_find() that takes an
2260  *	additional parameter ("default_addr") and treats the given address
2261  *	("*addr") differently.  Specifically, it treats "*addr" as a hint
2262  *	and not as the minimum address where the mapping is created.
2263  *
2264  *	This function works in two phases.  First, it tries to
2265  *	allocate above the hint.  If that fails and the hint is
2266  *	greater than "default_addr", it performs a second pass, replacing
2267  *	the hint with "default_addr" as the minimum address for the
2268  *	allocation.
2269  */
2270 int
2271 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2272     vm_offset_t *addr, vm_size_t length, vm_offset_t default_addr,
2273     vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max,
2274     int cow)
2275 {
2276 	vm_offset_t hint;
2277 	int rv;
2278 
2279 	hint = *addr;
2280 	if (hint == 0) {
2281 		cow |= MAP_NO_HINT;
2282 		*addr = hint = default_addr;
2283 	}
2284 	for (;;) {
2285 		rv = vm_map_find(map, object, offset, addr, length, max_addr,
2286 		    find_space, prot, max, cow);
2287 		if (rv == KERN_SUCCESS || default_addr >= hint)
2288 			return (rv);
2289 		*addr = hint = default_addr;
2290 	}
2291 }
2292 
2293 /*
2294  * A map entry with any of the following flags set must not be merged with
2295  * another entry.
2296  */
2297 #define	MAP_ENTRY_NOMERGE_MASK	(MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | \
2298     MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP | MAP_ENTRY_VN_EXEC | \
2299     MAP_ENTRY_STACK_GAP_UP | MAP_ENTRY_STACK_GAP_DN)
2300 
2301 static bool
2302 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry)
2303 {
2304 
2305 	KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 ||
2306 	    (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0,
2307 	    ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable",
2308 	    prev, entry));
2309 	return (prev->end == entry->start &&
2310 	    prev->object.vm_object == entry->object.vm_object &&
2311 	    (prev->object.vm_object == NULL ||
2312 	    prev->offset + (prev->end - prev->start) == entry->offset) &&
2313 	    prev->eflags == entry->eflags &&
2314 	    prev->protection == entry->protection &&
2315 	    prev->max_protection == entry->max_protection &&
2316 	    prev->inheritance == entry->inheritance &&
2317 	    prev->wired_count == entry->wired_count &&
2318 	    prev->cred == entry->cred);
2319 }
2320 
2321 static void
2322 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry)
2323 {
2324 
2325 	/*
2326 	 * If the backing object is a vnode object, vm_object_deallocate()
2327 	 * calls vrele().  However, vrele() does not lock the vnode because
2328 	 * the vnode has additional references.  Thus, the map lock can be
2329 	 * kept without causing a lock-order reversal with the vnode lock.
2330 	 *
2331 	 * Since we count the number of virtual page mappings in
2332 	 * object->un_pager.vnp.writemappings, the writemappings value
2333 	 * should not be adjusted when the entry is disposed of.
2334 	 */
2335 	if (entry->object.vm_object != NULL)
2336 		vm_object_deallocate(entry->object.vm_object);
2337 	if (entry->cred != NULL)
2338 		crfree(entry->cred);
2339 	vm_map_entry_dispose(map, entry);
2340 }
2341 
2342 /*
2343  *	vm_map_try_merge_entries:
2344  *
2345  *	Compare two map entries that represent consecutive ranges. If
2346  *	the entries can be merged, expand the range of the second to
2347  *	cover the range of the first and delete the first. Then return
2348  *	the map entry that includes the first range.
2349  *
2350  *	The map must be locked.
2351  */
2352 vm_map_entry_t
2353 vm_map_try_merge_entries(vm_map_t map, vm_map_entry_t prev_entry,
2354     vm_map_entry_t entry)
2355 {
2356 
2357 	VM_MAP_ASSERT_LOCKED(map);
2358 	if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 &&
2359 	    vm_map_mergeable_neighbors(prev_entry, entry)) {
2360 		vm_map_entry_unlink(map, prev_entry, UNLINK_MERGE_NEXT);
2361 		vm_map_merged_neighbor_dispose(map, prev_entry);
2362 		return (entry);
2363 	}
2364 	return (prev_entry);
2365 }
2366 
2367 /*
2368  *	vm_map_entry_back:
2369  *
2370  *	Allocate an object to back a map entry.
2371  */
2372 static inline void
2373 vm_map_entry_back(vm_map_entry_t entry)
2374 {
2375 	vm_object_t object;
2376 
2377 	KASSERT(entry->object.vm_object == NULL,
2378 	    ("map entry %p has backing object", entry));
2379 	KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
2380 	    ("map entry %p is a submap", entry));
2381 	object = vm_object_allocate_anon(atop(entry->end - entry->start), NULL,
2382 	    entry->cred, entry->end - entry->start);
2383 	entry->object.vm_object = object;
2384 	entry->offset = 0;
2385 	entry->cred = NULL;
2386 }
2387 
2388 /*
2389  *	vm_map_entry_charge_object
2390  *
2391  *	If there is no object backing this entry, create one.  Otherwise, if
2392  *	the entry has cred, give it to the backing object.
2393  */
2394 static inline void
2395 vm_map_entry_charge_object(vm_map_t map, vm_map_entry_t entry)
2396 {
2397 
2398 	VM_MAP_ASSERT_LOCKED(map);
2399 	KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
2400 	    ("map entry %p is a submap", entry));
2401 	if (entry->object.vm_object == NULL && !map->system_map &&
2402 	    (entry->eflags & MAP_ENTRY_GUARD) == 0)
2403 		vm_map_entry_back(entry);
2404 	else if (entry->object.vm_object != NULL &&
2405 	    ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
2406 	    entry->cred != NULL) {
2407 		VM_OBJECT_WLOCK(entry->object.vm_object);
2408 		KASSERT(entry->object.vm_object->cred == NULL,
2409 		    ("OVERCOMMIT: %s: both cred e %p", __func__, entry));
2410 		entry->object.vm_object->cred = entry->cred;
2411 		entry->object.vm_object->charge = entry->end - entry->start;
2412 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
2413 		entry->cred = NULL;
2414 	}
2415 }
2416 
2417 /*
2418  *	vm_map_entry_clone
2419  *
2420  *	Create a duplicate map entry for clipping.
2421  */
2422 static vm_map_entry_t
2423 vm_map_entry_clone(vm_map_t map, vm_map_entry_t entry)
2424 {
2425 	vm_map_entry_t new_entry;
2426 
2427 	VM_MAP_ASSERT_LOCKED(map);
2428 
2429 	/*
2430 	 * Create a backing object now, if none exists, so that more individual
2431 	 * objects won't be created after the map entry is split.
2432 	 */
2433 	vm_map_entry_charge_object(map, entry);
2434 
2435 	/* Clone the entry. */
2436 	new_entry = vm_map_entry_create(map);
2437 	*new_entry = *entry;
2438 	if (new_entry->cred != NULL)
2439 		crhold(entry->cred);
2440 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2441 		vm_object_reference(new_entry->object.vm_object);
2442 		vm_map_entry_set_vnode_text(new_entry, true);
2443 		/*
2444 		 * The object->un_pager.vnp.writemappings for the object of
2445 		 * MAP_ENTRY_WRITECNT type entry shall be kept as is here.  The
2446 		 * virtual pages are re-distributed among the clipped entries,
2447 		 * so the sum is left the same.
2448 		 */
2449 	}
2450 	return (new_entry);
2451 }
2452 
2453 /*
2454  *	vm_map_clip_start:	[ internal use only ]
2455  *
2456  *	Asserts that the given entry begins at or after
2457  *	the specified address; if necessary,
2458  *	it splits the entry into two.
2459  */
2460 static int
2461 vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t startaddr)
2462 {
2463 	vm_map_entry_t new_entry;
2464 	int bdry_idx;
2465 
2466 	if (!map->system_map)
2467 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2468 		    "%s: map %p entry %p start 0x%jx", __func__, map, entry,
2469 		    (uintmax_t)startaddr);
2470 
2471 	if (startaddr <= entry->start)
2472 		return (KERN_SUCCESS);
2473 
2474 	VM_MAP_ASSERT_LOCKED(map);
2475 	KASSERT(entry->end > startaddr && entry->start < startaddr,
2476 	    ("%s: invalid clip of entry %p", __func__, entry));
2477 
2478 	bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry);
2479 	if (bdry_idx != 0) {
2480 		if ((startaddr & (pagesizes[bdry_idx] - 1)) != 0)
2481 			return (KERN_INVALID_ARGUMENT);
2482 	}
2483 
2484 	new_entry = vm_map_entry_clone(map, entry);
2485 
2486 	/*
2487 	 * Split off the front portion.  Insert the new entry BEFORE this one,
2488 	 * so that this entry has the specified starting address.
2489 	 */
2490 	new_entry->end = startaddr;
2491 	vm_map_entry_link(map, new_entry);
2492 	return (KERN_SUCCESS);
2493 }
2494 
2495 /*
2496  *	vm_map_lookup_clip_start:
2497  *
2498  *	Find the entry at or just after 'start', and clip it if 'start' is in
2499  *	the interior of the entry.  Return entry after 'start', and in
2500  *	prev_entry set the entry before 'start'.
2501  */
2502 static int
2503 vm_map_lookup_clip_start(vm_map_t map, vm_offset_t start,
2504     vm_map_entry_t *res_entry, vm_map_entry_t *prev_entry)
2505 {
2506 	vm_map_entry_t entry;
2507 	int rv;
2508 
2509 	if (!map->system_map)
2510 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2511 		    "%s: map %p start 0x%jx prev %p", __func__, map,
2512 		    (uintmax_t)start, prev_entry);
2513 
2514 	if (vm_map_lookup_entry(map, start, prev_entry)) {
2515 		entry = *prev_entry;
2516 		rv = vm_map_clip_start(map, entry, start);
2517 		if (rv != KERN_SUCCESS)
2518 			return (rv);
2519 		*prev_entry = vm_map_entry_pred(entry);
2520 	} else
2521 		entry = vm_map_entry_succ(*prev_entry);
2522 	*res_entry = entry;
2523 	return (KERN_SUCCESS);
2524 }
2525 
2526 /*
2527  *	vm_map_clip_end:	[ internal use only ]
2528  *
2529  *	Asserts that the given entry ends at or before
2530  *	the specified address; if necessary,
2531  *	it splits the entry into two.
2532  */
2533 static int
2534 vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t endaddr)
2535 {
2536 	vm_map_entry_t new_entry;
2537 	int bdry_idx;
2538 
2539 	if (!map->system_map)
2540 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2541 		    "%s: map %p entry %p end 0x%jx", __func__, map, entry,
2542 		    (uintmax_t)endaddr);
2543 
2544 	if (endaddr >= entry->end)
2545 		return (KERN_SUCCESS);
2546 
2547 	VM_MAP_ASSERT_LOCKED(map);
2548 	KASSERT(entry->start < endaddr && entry->end > endaddr,
2549 	    ("%s: invalid clip of entry %p", __func__, entry));
2550 
2551 	bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry);
2552 	if (bdry_idx != 0) {
2553 		if ((endaddr & (pagesizes[bdry_idx] - 1)) != 0)
2554 			return (KERN_INVALID_ARGUMENT);
2555 	}
2556 
2557 	new_entry = vm_map_entry_clone(map, entry);
2558 
2559 	/*
2560 	 * Split off the back portion.  Insert the new entry AFTER this one,
2561 	 * so that this entry has the specified ending address.
2562 	 */
2563 	new_entry->start = endaddr;
2564 	vm_map_entry_link(map, new_entry);
2565 
2566 	return (KERN_SUCCESS);
2567 }
2568 
2569 /*
2570  *	vm_map_submap:		[ kernel use only ]
2571  *
2572  *	Mark the given range as handled by a subordinate map.
2573  *
2574  *	This range must have been created with vm_map_find,
2575  *	and no other operations may have been performed on this
2576  *	range prior to calling vm_map_submap.
2577  *
2578  *	Only a limited number of operations can be performed
2579  *	within this rage after calling vm_map_submap:
2580  *		vm_fault
2581  *	[Don't try vm_map_copy!]
2582  *
2583  *	To remove a submapping, one must first remove the
2584  *	range from the superior map, and then destroy the
2585  *	submap (if desired).  [Better yet, don't try it.]
2586  */
2587 int
2588 vm_map_submap(
2589 	vm_map_t map,
2590 	vm_offset_t start,
2591 	vm_offset_t end,
2592 	vm_map_t submap)
2593 {
2594 	vm_map_entry_t entry;
2595 	int result;
2596 
2597 	result = KERN_INVALID_ARGUMENT;
2598 
2599 	vm_map_lock(submap);
2600 	submap->flags |= MAP_IS_SUB_MAP;
2601 	vm_map_unlock(submap);
2602 
2603 	vm_map_lock(map);
2604 	VM_MAP_RANGE_CHECK(map, start, end);
2605 	if (vm_map_lookup_entry(map, start, &entry) && entry->end >= end &&
2606 	    (entry->eflags & MAP_ENTRY_COW) == 0 &&
2607 	    entry->object.vm_object == NULL) {
2608 		result = vm_map_clip_start(map, entry, start);
2609 		if (result != KERN_SUCCESS)
2610 			goto unlock;
2611 		result = vm_map_clip_end(map, entry, end);
2612 		if (result != KERN_SUCCESS)
2613 			goto unlock;
2614 		entry->object.sub_map = submap;
2615 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
2616 		result = KERN_SUCCESS;
2617 	}
2618 unlock:
2619 	vm_map_unlock(map);
2620 
2621 	if (result != KERN_SUCCESS) {
2622 		vm_map_lock(submap);
2623 		submap->flags &= ~MAP_IS_SUB_MAP;
2624 		vm_map_unlock(submap);
2625 	}
2626 	return (result);
2627 }
2628 
2629 /*
2630  * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
2631  */
2632 #define	MAX_INIT_PT	96
2633 
2634 /*
2635  *	vm_map_pmap_enter:
2636  *
2637  *	Preload the specified map's pmap with mappings to the specified
2638  *	object's memory-resident pages.  No further physical pages are
2639  *	allocated, and no further virtual pages are retrieved from secondary
2640  *	storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
2641  *	limited number of page mappings are created at the low-end of the
2642  *	specified address range.  (For this purpose, a superpage mapping
2643  *	counts as one page mapping.)  Otherwise, all resident pages within
2644  *	the specified address range are mapped.
2645  */
2646 static void
2647 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
2648     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
2649 {
2650 	vm_offset_t start;
2651 	vm_page_t p, p_start;
2652 	vm_pindex_t mask, psize, threshold, tmpidx;
2653 
2654 	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
2655 		return;
2656 	if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2657 		VM_OBJECT_WLOCK(object);
2658 		if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2659 			pmap_object_init_pt(map->pmap, addr, object, pindex,
2660 			    size);
2661 			VM_OBJECT_WUNLOCK(object);
2662 			return;
2663 		}
2664 		VM_OBJECT_LOCK_DOWNGRADE(object);
2665 	} else
2666 		VM_OBJECT_RLOCK(object);
2667 
2668 	psize = atop(size);
2669 	if (psize + pindex > object->size) {
2670 		if (pindex >= object->size) {
2671 			VM_OBJECT_RUNLOCK(object);
2672 			return;
2673 		}
2674 		psize = object->size - pindex;
2675 	}
2676 
2677 	start = 0;
2678 	p_start = NULL;
2679 	threshold = MAX_INIT_PT;
2680 
2681 	p = vm_page_find_least(object, pindex);
2682 	/*
2683 	 * Assert: the variable p is either (1) the page with the
2684 	 * least pindex greater than or equal to the parameter pindex
2685 	 * or (2) NULL.
2686 	 */
2687 	for (;
2688 	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
2689 	     p = TAILQ_NEXT(p, listq)) {
2690 		/*
2691 		 * don't allow an madvise to blow away our really
2692 		 * free pages allocating pv entries.
2693 		 */
2694 		if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
2695 		    vm_page_count_severe()) ||
2696 		    ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
2697 		    tmpidx >= threshold)) {
2698 			psize = tmpidx;
2699 			break;
2700 		}
2701 		if (vm_page_all_valid(p)) {
2702 			if (p_start == NULL) {
2703 				start = addr + ptoa(tmpidx);
2704 				p_start = p;
2705 			}
2706 			/* Jump ahead if a superpage mapping is possible. */
2707 			if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
2708 			    (pagesizes[p->psind] - 1)) == 0) {
2709 				mask = atop(pagesizes[p->psind]) - 1;
2710 				if (tmpidx + mask < psize &&
2711 				    vm_page_ps_test(p, PS_ALL_VALID, NULL)) {
2712 					p += mask;
2713 					threshold += mask;
2714 				}
2715 			}
2716 		} else if (p_start != NULL) {
2717 			pmap_enter_object(map->pmap, start, addr +
2718 			    ptoa(tmpidx), p_start, prot);
2719 			p_start = NULL;
2720 		}
2721 	}
2722 	if (p_start != NULL)
2723 		pmap_enter_object(map->pmap, start, addr + ptoa(psize),
2724 		    p_start, prot);
2725 	VM_OBJECT_RUNLOCK(object);
2726 }
2727 
2728 static void
2729 vm_map_protect_guard(vm_map_entry_t entry, vm_prot_t new_prot,
2730     vm_prot_t new_maxprot, int flags)
2731 {
2732 	vm_prot_t old_prot;
2733 
2734 	MPASS((entry->eflags & MAP_ENTRY_GUARD) != 0);
2735 	if ((entry->eflags & (MAP_ENTRY_STACK_GAP_UP |
2736 	    MAP_ENTRY_STACK_GAP_DN)) == 0)
2737 		return;
2738 
2739 	old_prot = PROT_EXTRACT(entry->offset);
2740 	if ((flags & VM_MAP_PROTECT_SET_MAXPROT) != 0) {
2741 		entry->offset = PROT_MAX(new_maxprot) |
2742 		    (new_maxprot & old_prot);
2743 	}
2744 	if ((flags & VM_MAP_PROTECT_SET_PROT) != 0) {
2745 		entry->offset = new_prot | PROT_MAX(
2746 		    PROT_MAX_EXTRACT(entry->offset));
2747 	}
2748 }
2749 
2750 /*
2751  *	vm_map_protect:
2752  *
2753  *	Sets the protection and/or the maximum protection of the
2754  *	specified address region in the target map.
2755  */
2756 int
2757 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
2758     vm_prot_t new_prot, vm_prot_t new_maxprot, int flags)
2759 {
2760 	vm_map_entry_t entry, first_entry, in_tran, prev_entry;
2761 	vm_object_t obj;
2762 	struct ucred *cred;
2763 	vm_offset_t orig_start;
2764 	vm_prot_t check_prot, max_prot, old_prot;
2765 	int rv;
2766 
2767 	if (start == end)
2768 		return (KERN_SUCCESS);
2769 
2770 	if (CONTAINS_BITS(flags, VM_MAP_PROTECT_SET_PROT |
2771 	    VM_MAP_PROTECT_SET_MAXPROT) &&
2772 	    !CONTAINS_BITS(new_maxprot, new_prot))
2773 		return (KERN_OUT_OF_BOUNDS);
2774 
2775 	orig_start = start;
2776 again:
2777 	in_tran = NULL;
2778 	start = orig_start;
2779 	vm_map_lock(map);
2780 
2781 	if ((map->flags & MAP_WXORX) != 0 &&
2782 	    (flags & VM_MAP_PROTECT_SET_PROT) != 0 &&
2783 	    CONTAINS_BITS(new_prot, VM_PROT_WRITE | VM_PROT_EXECUTE)) {
2784 		vm_map_unlock(map);
2785 		return (KERN_PROTECTION_FAILURE);
2786 	}
2787 
2788 	/*
2789 	 * Ensure that we are not concurrently wiring pages.  vm_map_wire() may
2790 	 * need to fault pages into the map and will drop the map lock while
2791 	 * doing so, and the VM object may end up in an inconsistent state if we
2792 	 * update the protection on the map entry in between faults.
2793 	 */
2794 	vm_map_wait_busy(map);
2795 
2796 	VM_MAP_RANGE_CHECK(map, start, end);
2797 
2798 	if (!vm_map_lookup_entry(map, start, &first_entry))
2799 		first_entry = vm_map_entry_succ(first_entry);
2800 
2801 	if ((flags & VM_MAP_PROTECT_GROWSDOWN) != 0 &&
2802 	    (first_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0) {
2803 		/*
2804 		 * Handle Linux's PROT_GROWSDOWN flag.
2805 		 * It means that protection is applied down to the
2806 		 * whole stack, including the specified range of the
2807 		 * mapped region, and the grow down region (AKA
2808 		 * guard).
2809 		 */
2810 		while (!CONTAINS_BITS(first_entry->eflags,
2811 		    MAP_ENTRY_GUARD | MAP_ENTRY_STACK_GAP_DN) &&
2812 		    first_entry != vm_map_entry_first(map))
2813 			first_entry = vm_map_entry_pred(first_entry);
2814 		start = first_entry->start;
2815 	}
2816 
2817 	/*
2818 	 * Make a first pass to check for protection violations.
2819 	 */
2820 	check_prot = 0;
2821 	if ((flags & VM_MAP_PROTECT_SET_PROT) != 0)
2822 		check_prot |= new_prot;
2823 	if ((flags & VM_MAP_PROTECT_SET_MAXPROT) != 0)
2824 		check_prot |= new_maxprot;
2825 	for (entry = first_entry; entry->start < end;
2826 	    entry = vm_map_entry_succ(entry)) {
2827 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) {
2828 			vm_map_unlock(map);
2829 			return (KERN_INVALID_ARGUMENT);
2830 		}
2831 		if ((entry->eflags & (MAP_ENTRY_GUARD |
2832 		    MAP_ENTRY_STACK_GAP_DN | MAP_ENTRY_STACK_GAP_UP)) ==
2833 		    MAP_ENTRY_GUARD)
2834 			continue;
2835 		max_prot = (entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
2836 		    MAP_ENTRY_STACK_GAP_UP)) != 0 ?
2837 		    PROT_MAX_EXTRACT(entry->offset) : entry->max_protection;
2838 		if (!CONTAINS_BITS(max_prot, check_prot)) {
2839 			vm_map_unlock(map);
2840 			return (KERN_PROTECTION_FAILURE);
2841 		}
2842 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0)
2843 			in_tran = entry;
2844 	}
2845 
2846 	/*
2847 	 * Postpone the operation until all in-transition map entries have
2848 	 * stabilized.  An in-transition entry might already have its pages
2849 	 * wired and wired_count incremented, but not yet have its
2850 	 * MAP_ENTRY_USER_WIRED flag set.  In which case, we would fail to call
2851 	 * vm_fault_copy_entry() in the final loop below.
2852 	 */
2853 	if (in_tran != NULL) {
2854 		in_tran->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2855 		vm_map_unlock_and_wait(map, 0);
2856 		goto again;
2857 	}
2858 
2859 	/*
2860 	 * Before changing the protections, try to reserve swap space for any
2861 	 * private (i.e., copy-on-write) mappings that are transitioning from
2862 	 * read-only to read/write access.  If a reservation fails, break out
2863 	 * of this loop early and let the next loop simplify the entries, since
2864 	 * some may now be mergeable.
2865 	 */
2866 	rv = vm_map_clip_start(map, first_entry, start);
2867 	if (rv != KERN_SUCCESS) {
2868 		vm_map_unlock(map);
2869 		return (rv);
2870 	}
2871 	for (entry = first_entry; entry->start < end;
2872 	    entry = vm_map_entry_succ(entry)) {
2873 		rv = vm_map_clip_end(map, entry, end);
2874 		if (rv != KERN_SUCCESS) {
2875 			vm_map_unlock(map);
2876 			return (rv);
2877 		}
2878 
2879 		if ((flags & VM_MAP_PROTECT_SET_PROT) == 0 ||
2880 		    ((new_prot & ~entry->protection) & VM_PROT_WRITE) == 0 ||
2881 		    ENTRY_CHARGED(entry) ||
2882 		    (entry->eflags & MAP_ENTRY_GUARD) != 0)
2883 			continue;
2884 
2885 		cred = curthread->td_ucred;
2886 		obj = entry->object.vm_object;
2887 
2888 		if (obj == NULL ||
2889 		    (entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0) {
2890 			if (!swap_reserve(entry->end - entry->start)) {
2891 				rv = KERN_RESOURCE_SHORTAGE;
2892 				end = entry->end;
2893 				break;
2894 			}
2895 			crhold(cred);
2896 			entry->cred = cred;
2897 			continue;
2898 		}
2899 
2900 		VM_OBJECT_WLOCK(obj);
2901 		if ((obj->flags & OBJ_SWAP) == 0) {
2902 			VM_OBJECT_WUNLOCK(obj);
2903 			continue;
2904 		}
2905 
2906 		/*
2907 		 * Charge for the whole object allocation now, since
2908 		 * we cannot distinguish between non-charged and
2909 		 * charged clipped mapping of the same object later.
2910 		 */
2911 		KASSERT(obj->charge == 0,
2912 		    ("vm_map_protect: object %p overcharged (entry %p)",
2913 		    obj, entry));
2914 		if (!swap_reserve(ptoa(obj->size))) {
2915 			VM_OBJECT_WUNLOCK(obj);
2916 			rv = KERN_RESOURCE_SHORTAGE;
2917 			end = entry->end;
2918 			break;
2919 		}
2920 
2921 		crhold(cred);
2922 		obj->cred = cred;
2923 		obj->charge = ptoa(obj->size);
2924 		VM_OBJECT_WUNLOCK(obj);
2925 	}
2926 
2927 	/*
2928 	 * If enough swap space was available, go back and fix up protections.
2929 	 * Otherwise, just simplify entries, since some may have been modified.
2930 	 * [Note that clipping is not necessary the second time.]
2931 	 */
2932 	for (prev_entry = vm_map_entry_pred(first_entry), entry = first_entry;
2933 	    entry->start < end;
2934 	    vm_map_try_merge_entries(map, prev_entry, entry),
2935 	    prev_entry = entry, entry = vm_map_entry_succ(entry)) {
2936 		if (rv != KERN_SUCCESS)
2937 			continue;
2938 
2939 		if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
2940 			vm_map_protect_guard(entry, new_prot, new_maxprot,
2941 			    flags);
2942 			continue;
2943 		}
2944 
2945 		old_prot = entry->protection;
2946 
2947 		if ((flags & VM_MAP_PROTECT_SET_MAXPROT) != 0) {
2948 			entry->max_protection = new_maxprot;
2949 			entry->protection = new_maxprot & old_prot;
2950 		}
2951 		if ((flags & VM_MAP_PROTECT_SET_PROT) != 0)
2952 			entry->protection = new_prot;
2953 
2954 		/*
2955 		 * For user wired map entries, the normal lazy evaluation of
2956 		 * write access upgrades through soft page faults is
2957 		 * undesirable.  Instead, immediately copy any pages that are
2958 		 * copy-on-write and enable write access in the physical map.
2959 		 */
2960 		if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2961 		    (entry->protection & VM_PROT_WRITE) != 0 &&
2962 		    (old_prot & VM_PROT_WRITE) == 0)
2963 			vm_fault_copy_entry(map, map, entry, entry, NULL);
2964 
2965 		/*
2966 		 * When restricting access, update the physical map.  Worry
2967 		 * about copy-on-write here.
2968 		 */
2969 		if ((old_prot & ~entry->protection) != 0) {
2970 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2971 							VM_PROT_ALL)
2972 			pmap_protect(map->pmap, entry->start,
2973 			    entry->end,
2974 			    entry->protection & MASK(entry));
2975 #undef	MASK
2976 		}
2977 	}
2978 	vm_map_try_merge_entries(map, prev_entry, entry);
2979 	vm_map_unlock(map);
2980 	return (rv);
2981 }
2982 
2983 /*
2984  *	vm_map_madvise:
2985  *
2986  *	This routine traverses a processes map handling the madvise
2987  *	system call.  Advisories are classified as either those effecting
2988  *	the vm_map_entry structure, or those effecting the underlying
2989  *	objects.
2990  */
2991 int
2992 vm_map_madvise(
2993 	vm_map_t map,
2994 	vm_offset_t start,
2995 	vm_offset_t end,
2996 	int behav)
2997 {
2998 	vm_map_entry_t entry, prev_entry;
2999 	int rv;
3000 	bool modify_map;
3001 
3002 	/*
3003 	 * Some madvise calls directly modify the vm_map_entry, in which case
3004 	 * we need to use an exclusive lock on the map and we need to perform
3005 	 * various clipping operations.  Otherwise we only need a read-lock
3006 	 * on the map.
3007 	 */
3008 	switch(behav) {
3009 	case MADV_NORMAL:
3010 	case MADV_SEQUENTIAL:
3011 	case MADV_RANDOM:
3012 	case MADV_NOSYNC:
3013 	case MADV_AUTOSYNC:
3014 	case MADV_NOCORE:
3015 	case MADV_CORE:
3016 		if (start == end)
3017 			return (0);
3018 		modify_map = true;
3019 		vm_map_lock(map);
3020 		break;
3021 	case MADV_WILLNEED:
3022 	case MADV_DONTNEED:
3023 	case MADV_FREE:
3024 		if (start == end)
3025 			return (0);
3026 		modify_map = false;
3027 		vm_map_lock_read(map);
3028 		break;
3029 	default:
3030 		return (EINVAL);
3031 	}
3032 
3033 	/*
3034 	 * Locate starting entry and clip if necessary.
3035 	 */
3036 	VM_MAP_RANGE_CHECK(map, start, end);
3037 
3038 	if (modify_map) {
3039 		/*
3040 		 * madvise behaviors that are implemented in the vm_map_entry.
3041 		 *
3042 		 * We clip the vm_map_entry so that behavioral changes are
3043 		 * limited to the specified address range.
3044 		 */
3045 		rv = vm_map_lookup_clip_start(map, start, &entry, &prev_entry);
3046 		if (rv != KERN_SUCCESS) {
3047 			vm_map_unlock(map);
3048 			return (vm_mmap_to_errno(rv));
3049 		}
3050 
3051 		for (; entry->start < end; prev_entry = entry,
3052 		    entry = vm_map_entry_succ(entry)) {
3053 			if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
3054 				continue;
3055 
3056 			rv = vm_map_clip_end(map, entry, end);
3057 			if (rv != KERN_SUCCESS) {
3058 				vm_map_unlock(map);
3059 				return (vm_mmap_to_errno(rv));
3060 			}
3061 
3062 			switch (behav) {
3063 			case MADV_NORMAL:
3064 				vm_map_entry_set_behavior(entry,
3065 				    MAP_ENTRY_BEHAV_NORMAL);
3066 				break;
3067 			case MADV_SEQUENTIAL:
3068 				vm_map_entry_set_behavior(entry,
3069 				    MAP_ENTRY_BEHAV_SEQUENTIAL);
3070 				break;
3071 			case MADV_RANDOM:
3072 				vm_map_entry_set_behavior(entry,
3073 				    MAP_ENTRY_BEHAV_RANDOM);
3074 				break;
3075 			case MADV_NOSYNC:
3076 				entry->eflags |= MAP_ENTRY_NOSYNC;
3077 				break;
3078 			case MADV_AUTOSYNC:
3079 				entry->eflags &= ~MAP_ENTRY_NOSYNC;
3080 				break;
3081 			case MADV_NOCORE:
3082 				entry->eflags |= MAP_ENTRY_NOCOREDUMP;
3083 				break;
3084 			case MADV_CORE:
3085 				entry->eflags &= ~MAP_ENTRY_NOCOREDUMP;
3086 				break;
3087 			default:
3088 				break;
3089 			}
3090 			vm_map_try_merge_entries(map, prev_entry, entry);
3091 		}
3092 		vm_map_try_merge_entries(map, prev_entry, entry);
3093 		vm_map_unlock(map);
3094 	} else {
3095 		vm_pindex_t pstart, pend;
3096 
3097 		/*
3098 		 * madvise behaviors that are implemented in the underlying
3099 		 * vm_object.
3100 		 *
3101 		 * Since we don't clip the vm_map_entry, we have to clip
3102 		 * the vm_object pindex and count.
3103 		 */
3104 		if (!vm_map_lookup_entry(map, start, &entry))
3105 			entry = vm_map_entry_succ(entry);
3106 		for (; entry->start < end;
3107 		    entry = vm_map_entry_succ(entry)) {
3108 			vm_offset_t useEnd, useStart;
3109 
3110 			if ((entry->eflags & (MAP_ENTRY_IS_SUB_MAP |
3111 			    MAP_ENTRY_GUARD)) != 0)
3112 				continue;
3113 
3114 			/*
3115 			 * MADV_FREE would otherwise rewind time to
3116 			 * the creation of the shadow object.  Because
3117 			 * we hold the VM map read-locked, neither the
3118 			 * entry's object nor the presence of a
3119 			 * backing object can change.
3120 			 */
3121 			if (behav == MADV_FREE &&
3122 			    entry->object.vm_object != NULL &&
3123 			    entry->object.vm_object->backing_object != NULL)
3124 				continue;
3125 
3126 			pstart = OFF_TO_IDX(entry->offset);
3127 			pend = pstart + atop(entry->end - entry->start);
3128 			useStart = entry->start;
3129 			useEnd = entry->end;
3130 
3131 			if (entry->start < start) {
3132 				pstart += atop(start - entry->start);
3133 				useStart = start;
3134 			}
3135 			if (entry->end > end) {
3136 				pend -= atop(entry->end - end);
3137 				useEnd = end;
3138 			}
3139 
3140 			if (pstart >= pend)
3141 				continue;
3142 
3143 			/*
3144 			 * Perform the pmap_advise() before clearing
3145 			 * PGA_REFERENCED in vm_page_advise().  Otherwise, a
3146 			 * concurrent pmap operation, such as pmap_remove(),
3147 			 * could clear a reference in the pmap and set
3148 			 * PGA_REFERENCED on the page before the pmap_advise()
3149 			 * had completed.  Consequently, the page would appear
3150 			 * referenced based upon an old reference that
3151 			 * occurred before this pmap_advise() ran.
3152 			 */
3153 			if (behav == MADV_DONTNEED || behav == MADV_FREE)
3154 				pmap_advise(map->pmap, useStart, useEnd,
3155 				    behav);
3156 
3157 			vm_object_madvise(entry->object.vm_object, pstart,
3158 			    pend, behav);
3159 
3160 			/*
3161 			 * Pre-populate paging structures in the
3162 			 * WILLNEED case.  For wired entries, the
3163 			 * paging structures are already populated.
3164 			 */
3165 			if (behav == MADV_WILLNEED &&
3166 			    entry->wired_count == 0) {
3167 				vm_map_pmap_enter(map,
3168 				    useStart,
3169 				    entry->protection,
3170 				    entry->object.vm_object,
3171 				    pstart,
3172 				    ptoa(pend - pstart),
3173 				    MAP_PREFAULT_MADVISE
3174 				);
3175 			}
3176 		}
3177 		vm_map_unlock_read(map);
3178 	}
3179 	return (0);
3180 }
3181 
3182 /*
3183  *	vm_map_inherit:
3184  *
3185  *	Sets the inheritance of the specified address
3186  *	range in the target map.  Inheritance
3187  *	affects how the map will be shared with
3188  *	child maps at the time of vmspace_fork.
3189  */
3190 int
3191 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
3192 	       vm_inherit_t new_inheritance)
3193 {
3194 	vm_map_entry_t entry, lentry, prev_entry, start_entry;
3195 	int rv;
3196 
3197 	switch (new_inheritance) {
3198 	case VM_INHERIT_NONE:
3199 	case VM_INHERIT_COPY:
3200 	case VM_INHERIT_SHARE:
3201 	case VM_INHERIT_ZERO:
3202 		break;
3203 	default:
3204 		return (KERN_INVALID_ARGUMENT);
3205 	}
3206 	if (start == end)
3207 		return (KERN_SUCCESS);
3208 	vm_map_lock(map);
3209 	VM_MAP_RANGE_CHECK(map, start, end);
3210 	rv = vm_map_lookup_clip_start(map, start, &start_entry, &prev_entry);
3211 	if (rv != KERN_SUCCESS)
3212 		goto unlock;
3213 	if (vm_map_lookup_entry(map, end - 1, &lentry)) {
3214 		rv = vm_map_clip_end(map, lentry, end);
3215 		if (rv != KERN_SUCCESS)
3216 			goto unlock;
3217 	}
3218 	if (new_inheritance == VM_INHERIT_COPY) {
3219 		for (entry = start_entry; entry->start < end;
3220 		    prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3221 			if ((entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK)
3222 			    != 0) {
3223 				rv = KERN_INVALID_ARGUMENT;
3224 				goto unlock;
3225 			}
3226 		}
3227 	}
3228 	for (entry = start_entry; entry->start < end; prev_entry = entry,
3229 	    entry = vm_map_entry_succ(entry)) {
3230 		KASSERT(entry->end <= end, ("non-clipped entry %p end %jx %jx",
3231 		    entry, (uintmax_t)entry->end, (uintmax_t)end));
3232 		if ((entry->eflags & MAP_ENTRY_GUARD) == 0 ||
3233 		    new_inheritance != VM_INHERIT_ZERO)
3234 			entry->inheritance = new_inheritance;
3235 		vm_map_try_merge_entries(map, prev_entry, entry);
3236 	}
3237 	vm_map_try_merge_entries(map, prev_entry, entry);
3238 unlock:
3239 	vm_map_unlock(map);
3240 	return (rv);
3241 }
3242 
3243 /*
3244  *	vm_map_entry_in_transition:
3245  *
3246  *	Release the map lock, and sleep until the entry is no longer in
3247  *	transition.  Awake and acquire the map lock.  If the map changed while
3248  *	another held the lock, lookup a possibly-changed entry at or after the
3249  *	'start' position of the old entry.
3250  */
3251 static vm_map_entry_t
3252 vm_map_entry_in_transition(vm_map_t map, vm_offset_t in_start,
3253     vm_offset_t *io_end, bool holes_ok, vm_map_entry_t in_entry)
3254 {
3255 	vm_map_entry_t entry;
3256 	vm_offset_t start;
3257 	u_int last_timestamp;
3258 
3259 	VM_MAP_ASSERT_LOCKED(map);
3260 	KASSERT((in_entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3261 	    ("not in-tranition map entry %p", in_entry));
3262 	/*
3263 	 * We have not yet clipped the entry.
3264 	 */
3265 	start = MAX(in_start, in_entry->start);
3266 	in_entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3267 	last_timestamp = map->timestamp;
3268 	if (vm_map_unlock_and_wait(map, 0)) {
3269 		/*
3270 		 * Allow interruption of user wiring/unwiring?
3271 		 */
3272 	}
3273 	vm_map_lock(map);
3274 	if (last_timestamp + 1 == map->timestamp)
3275 		return (in_entry);
3276 
3277 	/*
3278 	 * Look again for the entry because the map was modified while it was
3279 	 * unlocked.  Specifically, the entry may have been clipped, merged, or
3280 	 * deleted.
3281 	 */
3282 	if (!vm_map_lookup_entry(map, start, &entry)) {
3283 		if (!holes_ok) {
3284 			*io_end = start;
3285 			return (NULL);
3286 		}
3287 		entry = vm_map_entry_succ(entry);
3288 	}
3289 	return (entry);
3290 }
3291 
3292 /*
3293  *	vm_map_unwire:
3294  *
3295  *	Implements both kernel and user unwiring.
3296  */
3297 int
3298 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
3299     int flags)
3300 {
3301 	vm_map_entry_t entry, first_entry, next_entry, prev_entry;
3302 	int rv;
3303 	bool holes_ok, need_wakeup, user_unwire;
3304 
3305 	if (start == end)
3306 		return (KERN_SUCCESS);
3307 	holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0;
3308 	user_unwire = (flags & VM_MAP_WIRE_USER) != 0;
3309 	vm_map_lock(map);
3310 	VM_MAP_RANGE_CHECK(map, start, end);
3311 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
3312 		if (holes_ok)
3313 			first_entry = vm_map_entry_succ(first_entry);
3314 		else {
3315 			vm_map_unlock(map);
3316 			return (KERN_INVALID_ADDRESS);
3317 		}
3318 	}
3319 	rv = KERN_SUCCESS;
3320 	for (entry = first_entry; entry->start < end; entry = next_entry) {
3321 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
3322 			/*
3323 			 * We have not yet clipped the entry.
3324 			 */
3325 			next_entry = vm_map_entry_in_transition(map, start,
3326 			    &end, holes_ok, entry);
3327 			if (next_entry == NULL) {
3328 				if (entry == first_entry) {
3329 					vm_map_unlock(map);
3330 					return (KERN_INVALID_ADDRESS);
3331 				}
3332 				rv = KERN_INVALID_ADDRESS;
3333 				break;
3334 			}
3335 			first_entry = (entry == first_entry) ?
3336 			    next_entry : NULL;
3337 			continue;
3338 		}
3339 		rv = vm_map_clip_start(map, entry, start);
3340 		if (rv != KERN_SUCCESS)
3341 			break;
3342 		rv = vm_map_clip_end(map, entry, end);
3343 		if (rv != KERN_SUCCESS)
3344 			break;
3345 
3346 		/*
3347 		 * Mark the entry in case the map lock is released.  (See
3348 		 * above.)
3349 		 */
3350 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
3351 		    entry->wiring_thread == NULL,
3352 		    ("owned map entry %p", entry));
3353 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
3354 		entry->wiring_thread = curthread;
3355 		next_entry = vm_map_entry_succ(entry);
3356 		/*
3357 		 * Check the map for holes in the specified region.
3358 		 * If holes_ok, skip this check.
3359 		 */
3360 		if (!holes_ok &&
3361 		    entry->end < end && next_entry->start > entry->end) {
3362 			end = entry->end;
3363 			rv = KERN_INVALID_ADDRESS;
3364 			break;
3365 		}
3366 		/*
3367 		 * If system unwiring, require that the entry is system wired.
3368 		 */
3369 		if (!user_unwire &&
3370 		    vm_map_entry_system_wired_count(entry) == 0) {
3371 			end = entry->end;
3372 			rv = KERN_INVALID_ARGUMENT;
3373 			break;
3374 		}
3375 	}
3376 	need_wakeup = false;
3377 	if (first_entry == NULL &&
3378 	    !vm_map_lookup_entry(map, start, &first_entry)) {
3379 		KASSERT(holes_ok, ("vm_map_unwire: lookup failed"));
3380 		prev_entry = first_entry;
3381 		entry = vm_map_entry_succ(first_entry);
3382 	} else {
3383 		prev_entry = vm_map_entry_pred(first_entry);
3384 		entry = first_entry;
3385 	}
3386 	for (; entry->start < end;
3387 	    prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3388 		/*
3389 		 * If holes_ok was specified, an empty
3390 		 * space in the unwired region could have been mapped
3391 		 * while the map lock was dropped for draining
3392 		 * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
3393 		 * could be simultaneously wiring this new mapping
3394 		 * entry.  Detect these cases and skip any entries
3395 		 * marked as in transition by us.
3396 		 */
3397 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
3398 		    entry->wiring_thread != curthread) {
3399 			KASSERT(holes_ok,
3400 			    ("vm_map_unwire: !HOLESOK and new/changed entry"));
3401 			continue;
3402 		}
3403 
3404 		if (rv == KERN_SUCCESS && (!user_unwire ||
3405 		    (entry->eflags & MAP_ENTRY_USER_WIRED))) {
3406 			if (entry->wired_count == 1)
3407 				vm_map_entry_unwire(map, entry);
3408 			else
3409 				entry->wired_count--;
3410 			if (user_unwire)
3411 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3412 		}
3413 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3414 		    ("vm_map_unwire: in-transition flag missing %p", entry));
3415 		KASSERT(entry->wiring_thread == curthread,
3416 		    ("vm_map_unwire: alien wire %p", entry));
3417 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
3418 		entry->wiring_thread = NULL;
3419 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3420 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3421 			need_wakeup = true;
3422 		}
3423 		vm_map_try_merge_entries(map, prev_entry, entry);
3424 	}
3425 	vm_map_try_merge_entries(map, prev_entry, entry);
3426 	vm_map_unlock(map);
3427 	if (need_wakeup)
3428 		vm_map_wakeup(map);
3429 	return (rv);
3430 }
3431 
3432 static void
3433 vm_map_wire_user_count_sub(u_long npages)
3434 {
3435 
3436 	atomic_subtract_long(&vm_user_wire_count, npages);
3437 }
3438 
3439 static bool
3440 vm_map_wire_user_count_add(u_long npages)
3441 {
3442 	u_long wired;
3443 
3444 	wired = vm_user_wire_count;
3445 	do {
3446 		if (npages + wired > vm_page_max_user_wired)
3447 			return (false);
3448 	} while (!atomic_fcmpset_long(&vm_user_wire_count, &wired,
3449 	    npages + wired));
3450 
3451 	return (true);
3452 }
3453 
3454 /*
3455  *	vm_map_wire_entry_failure:
3456  *
3457  *	Handle a wiring failure on the given entry.
3458  *
3459  *	The map should be locked.
3460  */
3461 static void
3462 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
3463     vm_offset_t failed_addr)
3464 {
3465 
3466 	VM_MAP_ASSERT_LOCKED(map);
3467 	KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
3468 	    entry->wired_count == 1,
3469 	    ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
3470 	KASSERT(failed_addr < entry->end,
3471 	    ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
3472 
3473 	/*
3474 	 * If any pages at the start of this entry were successfully wired,
3475 	 * then unwire them.
3476 	 */
3477 	if (failed_addr > entry->start) {
3478 		pmap_unwire(map->pmap, entry->start, failed_addr);
3479 		vm_object_unwire(entry->object.vm_object, entry->offset,
3480 		    failed_addr - entry->start, PQ_ACTIVE);
3481 	}
3482 
3483 	/*
3484 	 * Assign an out-of-range value to represent the failure to wire this
3485 	 * entry.
3486 	 */
3487 	entry->wired_count = -1;
3488 }
3489 
3490 int
3491 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3492 {
3493 	int rv;
3494 
3495 	vm_map_lock(map);
3496 	rv = vm_map_wire_locked(map, start, end, flags);
3497 	vm_map_unlock(map);
3498 	return (rv);
3499 }
3500 
3501 /*
3502  *	vm_map_wire_locked:
3503  *
3504  *	Implements both kernel and user wiring.  Returns with the map locked,
3505  *	the map lock may be dropped.
3506  */
3507 int
3508 vm_map_wire_locked(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3509 {
3510 	vm_map_entry_t entry, first_entry, next_entry, prev_entry;
3511 	vm_offset_t faddr, saved_end, saved_start;
3512 	u_long incr, npages;
3513 	u_int bidx, last_timestamp;
3514 	int rv;
3515 	bool holes_ok, need_wakeup, user_wire;
3516 	vm_prot_t prot;
3517 
3518 	VM_MAP_ASSERT_LOCKED(map);
3519 
3520 	if (start == end)
3521 		return (KERN_SUCCESS);
3522 	prot = 0;
3523 	if (flags & VM_MAP_WIRE_WRITE)
3524 		prot |= VM_PROT_WRITE;
3525 	holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0;
3526 	user_wire = (flags & VM_MAP_WIRE_USER) != 0;
3527 	VM_MAP_RANGE_CHECK(map, start, end);
3528 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
3529 		if (holes_ok)
3530 			first_entry = vm_map_entry_succ(first_entry);
3531 		else
3532 			return (KERN_INVALID_ADDRESS);
3533 	}
3534 	for (entry = first_entry; entry->start < end; entry = next_entry) {
3535 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
3536 			/*
3537 			 * We have not yet clipped the entry.
3538 			 */
3539 			next_entry = vm_map_entry_in_transition(map, start,
3540 			    &end, holes_ok, entry);
3541 			if (next_entry == NULL) {
3542 				if (entry == first_entry)
3543 					return (KERN_INVALID_ADDRESS);
3544 				rv = KERN_INVALID_ADDRESS;
3545 				goto done;
3546 			}
3547 			first_entry = (entry == first_entry) ?
3548 			    next_entry : NULL;
3549 			continue;
3550 		}
3551 		rv = vm_map_clip_start(map, entry, start);
3552 		if (rv != KERN_SUCCESS)
3553 			goto done;
3554 		rv = vm_map_clip_end(map, entry, end);
3555 		if (rv != KERN_SUCCESS)
3556 			goto done;
3557 
3558 		/*
3559 		 * Mark the entry in case the map lock is released.  (See
3560 		 * above.)
3561 		 */
3562 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
3563 		    entry->wiring_thread == NULL,
3564 		    ("owned map entry %p", entry));
3565 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
3566 		entry->wiring_thread = curthread;
3567 		if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
3568 		    || (entry->protection & prot) != prot) {
3569 			entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
3570 			if (!holes_ok) {
3571 				end = entry->end;
3572 				rv = KERN_INVALID_ADDRESS;
3573 				goto done;
3574 			}
3575 		} else if (entry->wired_count == 0) {
3576 			entry->wired_count++;
3577 
3578 			npages = atop(entry->end - entry->start);
3579 			if (user_wire && !vm_map_wire_user_count_add(npages)) {
3580 				vm_map_wire_entry_failure(map, entry,
3581 				    entry->start);
3582 				end = entry->end;
3583 				rv = KERN_RESOURCE_SHORTAGE;
3584 				goto done;
3585 			}
3586 
3587 			/*
3588 			 * Release the map lock, relying on the in-transition
3589 			 * mark.  Mark the map busy for fork.
3590 			 */
3591 			saved_start = entry->start;
3592 			saved_end = entry->end;
3593 			last_timestamp = map->timestamp;
3594 			bidx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry);
3595 			incr =  pagesizes[bidx];
3596 			vm_map_busy(map);
3597 			vm_map_unlock(map);
3598 
3599 			for (faddr = saved_start; faddr < saved_end;
3600 			    faddr += incr) {
3601 				/*
3602 				 * Simulate a fault to get the page and enter
3603 				 * it into the physical map.
3604 				 */
3605 				rv = vm_fault(map, faddr, VM_PROT_NONE,
3606 				    VM_FAULT_WIRE, NULL);
3607 				if (rv != KERN_SUCCESS)
3608 					break;
3609 			}
3610 			vm_map_lock(map);
3611 			vm_map_unbusy(map);
3612 			if (last_timestamp + 1 != map->timestamp) {
3613 				/*
3614 				 * Look again for the entry because the map was
3615 				 * modified while it was unlocked.  The entry
3616 				 * may have been clipped, but NOT merged or
3617 				 * deleted.
3618 				 */
3619 				if (!vm_map_lookup_entry(map, saved_start,
3620 				    &next_entry))
3621 					KASSERT(false,
3622 					    ("vm_map_wire: lookup failed"));
3623 				first_entry = (entry == first_entry) ?
3624 				    next_entry : NULL;
3625 				for (entry = next_entry; entry->end < saved_end;
3626 				    entry = vm_map_entry_succ(entry)) {
3627 					/*
3628 					 * In case of failure, handle entries
3629 					 * that were not fully wired here;
3630 					 * fully wired entries are handled
3631 					 * later.
3632 					 */
3633 					if (rv != KERN_SUCCESS &&
3634 					    faddr < entry->end)
3635 						vm_map_wire_entry_failure(map,
3636 						    entry, faddr);
3637 				}
3638 			}
3639 			if (rv != KERN_SUCCESS) {
3640 				vm_map_wire_entry_failure(map, entry, faddr);
3641 				if (user_wire)
3642 					vm_map_wire_user_count_sub(npages);
3643 				end = entry->end;
3644 				goto done;
3645 			}
3646 		} else if (!user_wire ||
3647 			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3648 			entry->wired_count++;
3649 		}
3650 		/*
3651 		 * Check the map for holes in the specified region.
3652 		 * If holes_ok was specified, skip this check.
3653 		 */
3654 		next_entry = vm_map_entry_succ(entry);
3655 		if (!holes_ok &&
3656 		    entry->end < end && next_entry->start > entry->end) {
3657 			end = entry->end;
3658 			rv = KERN_INVALID_ADDRESS;
3659 			goto done;
3660 		}
3661 	}
3662 	rv = KERN_SUCCESS;
3663 done:
3664 	need_wakeup = false;
3665 	if (first_entry == NULL &&
3666 	    !vm_map_lookup_entry(map, start, &first_entry)) {
3667 		KASSERT(holes_ok, ("vm_map_wire: lookup failed"));
3668 		prev_entry = first_entry;
3669 		entry = vm_map_entry_succ(first_entry);
3670 	} else {
3671 		prev_entry = vm_map_entry_pred(first_entry);
3672 		entry = first_entry;
3673 	}
3674 	for (; entry->start < end;
3675 	    prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3676 		/*
3677 		 * If holes_ok was specified, an empty
3678 		 * space in the unwired region could have been mapped
3679 		 * while the map lock was dropped for faulting in the
3680 		 * pages or draining MAP_ENTRY_IN_TRANSITION.
3681 		 * Moreover, another thread could be simultaneously
3682 		 * wiring this new mapping entry.  Detect these cases
3683 		 * and skip any entries marked as in transition not by us.
3684 		 *
3685 		 * Another way to get an entry not marked with
3686 		 * MAP_ENTRY_IN_TRANSITION is after failed clipping,
3687 		 * which set rv to KERN_INVALID_ARGUMENT.
3688 		 */
3689 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
3690 		    entry->wiring_thread != curthread) {
3691 			KASSERT(holes_ok || rv == KERN_INVALID_ARGUMENT,
3692 			    ("vm_map_wire: !HOLESOK and new/changed entry"));
3693 			continue;
3694 		}
3695 
3696 		if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) {
3697 			/* do nothing */
3698 		} else if (rv == KERN_SUCCESS) {
3699 			if (user_wire)
3700 				entry->eflags |= MAP_ENTRY_USER_WIRED;
3701 		} else if (entry->wired_count == -1) {
3702 			/*
3703 			 * Wiring failed on this entry.  Thus, unwiring is
3704 			 * unnecessary.
3705 			 */
3706 			entry->wired_count = 0;
3707 		} else if (!user_wire ||
3708 		    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3709 			/*
3710 			 * Undo the wiring.  Wiring succeeded on this entry
3711 			 * but failed on a later entry.
3712 			 */
3713 			if (entry->wired_count == 1) {
3714 				vm_map_entry_unwire(map, entry);
3715 				if (user_wire)
3716 					vm_map_wire_user_count_sub(
3717 					    atop(entry->end - entry->start));
3718 			} else
3719 				entry->wired_count--;
3720 		}
3721 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3722 		    ("vm_map_wire: in-transition flag missing %p", entry));
3723 		KASSERT(entry->wiring_thread == curthread,
3724 		    ("vm_map_wire: alien wire %p", entry));
3725 		entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
3726 		    MAP_ENTRY_WIRE_SKIPPED);
3727 		entry->wiring_thread = NULL;
3728 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3729 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3730 			need_wakeup = true;
3731 		}
3732 		vm_map_try_merge_entries(map, prev_entry, entry);
3733 	}
3734 	vm_map_try_merge_entries(map, prev_entry, entry);
3735 	if (need_wakeup)
3736 		vm_map_wakeup(map);
3737 	return (rv);
3738 }
3739 
3740 /*
3741  * vm_map_sync
3742  *
3743  * Push any dirty cached pages in the address range to their pager.
3744  * If syncio is TRUE, dirty pages are written synchronously.
3745  * If invalidate is TRUE, any cached pages are freed as well.
3746  *
3747  * If the size of the region from start to end is zero, we are
3748  * supposed to flush all modified pages within the region containing
3749  * start.  Unfortunately, a region can be split or coalesced with
3750  * neighboring regions, making it difficult to determine what the
3751  * original region was.  Therefore, we approximate this requirement by
3752  * flushing the current region containing start.
3753  *
3754  * Returns an error if any part of the specified range is not mapped.
3755  */
3756 int
3757 vm_map_sync(
3758 	vm_map_t map,
3759 	vm_offset_t start,
3760 	vm_offset_t end,
3761 	boolean_t syncio,
3762 	boolean_t invalidate)
3763 {
3764 	vm_map_entry_t entry, first_entry, next_entry;
3765 	vm_size_t size;
3766 	vm_object_t object;
3767 	vm_ooffset_t offset;
3768 	unsigned int last_timestamp;
3769 	int bdry_idx;
3770 	boolean_t failed;
3771 
3772 	vm_map_lock_read(map);
3773 	VM_MAP_RANGE_CHECK(map, start, end);
3774 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
3775 		vm_map_unlock_read(map);
3776 		return (KERN_INVALID_ADDRESS);
3777 	} else if (start == end) {
3778 		start = first_entry->start;
3779 		end = first_entry->end;
3780 	}
3781 
3782 	/*
3783 	 * Make a first pass to check for user-wired memory, holes,
3784 	 * and partial invalidation of largepage mappings.
3785 	 */
3786 	for (entry = first_entry; entry->start < end; entry = next_entry) {
3787 		if (invalidate) {
3788 			if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0) {
3789 				vm_map_unlock_read(map);
3790 				return (KERN_INVALID_ARGUMENT);
3791 			}
3792 			bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry);
3793 			if (bdry_idx != 0 &&
3794 			    ((start & (pagesizes[bdry_idx] - 1)) != 0 ||
3795 			    (end & (pagesizes[bdry_idx] - 1)) != 0)) {
3796 				vm_map_unlock_read(map);
3797 				return (KERN_INVALID_ARGUMENT);
3798 			}
3799 		}
3800 		next_entry = vm_map_entry_succ(entry);
3801 		if (end > entry->end &&
3802 		    entry->end != next_entry->start) {
3803 			vm_map_unlock_read(map);
3804 			return (KERN_INVALID_ADDRESS);
3805 		}
3806 	}
3807 
3808 	if (invalidate)
3809 		pmap_remove(map->pmap, start, end);
3810 	failed = FALSE;
3811 
3812 	/*
3813 	 * Make a second pass, cleaning/uncaching pages from the indicated
3814 	 * objects as we go.
3815 	 */
3816 	for (entry = first_entry; entry->start < end;) {
3817 		offset = entry->offset + (start - entry->start);
3818 		size = (end <= entry->end ? end : entry->end) - start;
3819 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) {
3820 			vm_map_t smap;
3821 			vm_map_entry_t tentry;
3822 			vm_size_t tsize;
3823 
3824 			smap = entry->object.sub_map;
3825 			vm_map_lock_read(smap);
3826 			(void) vm_map_lookup_entry(smap, offset, &tentry);
3827 			tsize = tentry->end - offset;
3828 			if (tsize < size)
3829 				size = tsize;
3830 			object = tentry->object.vm_object;
3831 			offset = tentry->offset + (offset - tentry->start);
3832 			vm_map_unlock_read(smap);
3833 		} else {
3834 			object = entry->object.vm_object;
3835 		}
3836 		vm_object_reference(object);
3837 		last_timestamp = map->timestamp;
3838 		vm_map_unlock_read(map);
3839 		if (!vm_object_sync(object, offset, size, syncio, invalidate))
3840 			failed = TRUE;
3841 		start += size;
3842 		vm_object_deallocate(object);
3843 		vm_map_lock_read(map);
3844 		if (last_timestamp == map->timestamp ||
3845 		    !vm_map_lookup_entry(map, start, &entry))
3846 			entry = vm_map_entry_succ(entry);
3847 	}
3848 
3849 	vm_map_unlock_read(map);
3850 	return (failed ? KERN_FAILURE : KERN_SUCCESS);
3851 }
3852 
3853 /*
3854  *	vm_map_entry_unwire:	[ internal use only ]
3855  *
3856  *	Make the region specified by this entry pageable.
3857  *
3858  *	The map in question should be locked.
3859  *	[This is the reason for this routine's existence.]
3860  */
3861 static void
3862 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
3863 {
3864 	vm_size_t size;
3865 
3866 	VM_MAP_ASSERT_LOCKED(map);
3867 	KASSERT(entry->wired_count > 0,
3868 	    ("vm_map_entry_unwire: entry %p isn't wired", entry));
3869 
3870 	size = entry->end - entry->start;
3871 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0)
3872 		vm_map_wire_user_count_sub(atop(size));
3873 	pmap_unwire(map->pmap, entry->start, entry->end);
3874 	vm_object_unwire(entry->object.vm_object, entry->offset, size,
3875 	    PQ_ACTIVE);
3876 	entry->wired_count = 0;
3877 }
3878 
3879 static void
3880 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
3881 {
3882 
3883 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
3884 		vm_object_deallocate(entry->object.vm_object);
3885 	uma_zfree(system_map ? kmapentzone : mapentzone, entry);
3886 }
3887 
3888 /*
3889  *	vm_map_entry_delete:	[ internal use only ]
3890  *
3891  *	Deallocate the given entry from the target map.
3892  */
3893 static void
3894 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
3895 {
3896 	vm_object_t object;
3897 	vm_pindex_t offidxstart, offidxend, size1;
3898 	vm_size_t size;
3899 
3900 	vm_map_entry_unlink(map, entry, UNLINK_MERGE_NONE);
3901 	object = entry->object.vm_object;
3902 
3903 	if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
3904 		MPASS(entry->cred == NULL);
3905 		MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0);
3906 		MPASS(object == NULL);
3907 		vm_map_entry_deallocate(entry, map->system_map);
3908 		return;
3909 	}
3910 
3911 	size = entry->end - entry->start;
3912 	map->size -= size;
3913 
3914 	if (entry->cred != NULL) {
3915 		swap_release_by_cred(size, entry->cred);
3916 		crfree(entry->cred);
3917 	}
3918 
3919 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || object == NULL) {
3920 		entry->object.vm_object = NULL;
3921 	} else if ((object->flags & OBJ_ANON) != 0 ||
3922 	    object == kernel_object) {
3923 		KASSERT(entry->cred == NULL || object->cred == NULL ||
3924 		    (entry->eflags & MAP_ENTRY_NEEDS_COPY),
3925 		    ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
3926 		offidxstart = OFF_TO_IDX(entry->offset);
3927 		offidxend = offidxstart + atop(size);
3928 		VM_OBJECT_WLOCK(object);
3929 		if (object->ref_count != 1 &&
3930 		    ((object->flags & OBJ_ONEMAPPING) != 0 ||
3931 		    object == kernel_object)) {
3932 			vm_object_collapse(object);
3933 
3934 			/*
3935 			 * The option OBJPR_NOTMAPPED can be passed here
3936 			 * because vm_map_delete() already performed
3937 			 * pmap_remove() on the only mapping to this range
3938 			 * of pages.
3939 			 */
3940 			vm_object_page_remove(object, offidxstart, offidxend,
3941 			    OBJPR_NOTMAPPED);
3942 			if (offidxend >= object->size &&
3943 			    offidxstart < object->size) {
3944 				size1 = object->size;
3945 				object->size = offidxstart;
3946 				if (object->cred != NULL) {
3947 					size1 -= object->size;
3948 					KASSERT(object->charge >= ptoa(size1),
3949 					    ("object %p charge < 0", object));
3950 					swap_release_by_cred(ptoa(size1),
3951 					    object->cred);
3952 					object->charge -= ptoa(size1);
3953 				}
3954 			}
3955 		}
3956 		VM_OBJECT_WUNLOCK(object);
3957 	}
3958 	if (map->system_map)
3959 		vm_map_entry_deallocate(entry, TRUE);
3960 	else {
3961 		entry->defer_next = curthread->td_map_def_user;
3962 		curthread->td_map_def_user = entry;
3963 	}
3964 }
3965 
3966 /*
3967  *	vm_map_delete:	[ internal use only ]
3968  *
3969  *	Deallocates the given address range from the target
3970  *	map.
3971  */
3972 int
3973 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
3974 {
3975 	vm_map_entry_t entry, next_entry, scratch_entry;
3976 	int rv;
3977 
3978 	VM_MAP_ASSERT_LOCKED(map);
3979 
3980 	if (start == end)
3981 		return (KERN_SUCCESS);
3982 
3983 	/*
3984 	 * Find the start of the region, and clip it.
3985 	 * Step through all entries in this region.
3986 	 */
3987 	rv = vm_map_lookup_clip_start(map, start, &entry, &scratch_entry);
3988 	if (rv != KERN_SUCCESS)
3989 		return (rv);
3990 	for (; entry->start < end; entry = next_entry) {
3991 		/*
3992 		 * Wait for wiring or unwiring of an entry to complete.
3993 		 * Also wait for any system wirings to disappear on
3994 		 * user maps.
3995 		 */
3996 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
3997 		    (vm_map_pmap(map) != kernel_pmap &&
3998 		    vm_map_entry_system_wired_count(entry) != 0)) {
3999 			unsigned int last_timestamp;
4000 			vm_offset_t saved_start;
4001 
4002 			saved_start = entry->start;
4003 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
4004 			last_timestamp = map->timestamp;
4005 			(void) vm_map_unlock_and_wait(map, 0);
4006 			vm_map_lock(map);
4007 			if (last_timestamp + 1 != map->timestamp) {
4008 				/*
4009 				 * Look again for the entry because the map was
4010 				 * modified while it was unlocked.
4011 				 * Specifically, the entry may have been
4012 				 * clipped, merged, or deleted.
4013 				 */
4014 				rv = vm_map_lookup_clip_start(map, saved_start,
4015 				    &next_entry, &scratch_entry);
4016 				if (rv != KERN_SUCCESS)
4017 					break;
4018 			} else
4019 				next_entry = entry;
4020 			continue;
4021 		}
4022 
4023 		/* XXXKIB or delete to the upper superpage boundary ? */
4024 		rv = vm_map_clip_end(map, entry, end);
4025 		if (rv != KERN_SUCCESS)
4026 			break;
4027 		next_entry = vm_map_entry_succ(entry);
4028 
4029 		/*
4030 		 * Unwire before removing addresses from the pmap; otherwise,
4031 		 * unwiring will put the entries back in the pmap.
4032 		 */
4033 		if (entry->wired_count != 0)
4034 			vm_map_entry_unwire(map, entry);
4035 
4036 		/*
4037 		 * Remove mappings for the pages, but only if the
4038 		 * mappings could exist.  For instance, it does not
4039 		 * make sense to call pmap_remove() for guard entries.
4040 		 */
4041 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 ||
4042 		    entry->object.vm_object != NULL)
4043 			pmap_map_delete(map->pmap, entry->start, entry->end);
4044 
4045 		if (entry->end == map->anon_loc)
4046 			map->anon_loc = entry->start;
4047 
4048 		/*
4049 		 * Delete the entry only after removing all pmap
4050 		 * entries pointing to its pages.  (Otherwise, its
4051 		 * page frames may be reallocated, and any modify bits
4052 		 * will be set in the wrong object!)
4053 		 */
4054 		vm_map_entry_delete(map, entry);
4055 	}
4056 	return (rv);
4057 }
4058 
4059 /*
4060  *	vm_map_remove:
4061  *
4062  *	Remove the given address range from the target map.
4063  *	This is the exported form of vm_map_delete.
4064  */
4065 int
4066 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
4067 {
4068 	int result;
4069 
4070 	vm_map_lock(map);
4071 	VM_MAP_RANGE_CHECK(map, start, end);
4072 	result = vm_map_delete(map, start, end);
4073 	vm_map_unlock(map);
4074 	return (result);
4075 }
4076 
4077 /*
4078  *	vm_map_check_protection:
4079  *
4080  *	Assert that the target map allows the specified privilege on the
4081  *	entire address region given.  The entire region must be allocated.
4082  *
4083  *	WARNING!  This code does not and should not check whether the
4084  *	contents of the region is accessible.  For example a smaller file
4085  *	might be mapped into a larger address space.
4086  *
4087  *	NOTE!  This code is also called by munmap().
4088  *
4089  *	The map must be locked.  A read lock is sufficient.
4090  */
4091 boolean_t
4092 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
4093 			vm_prot_t protection)
4094 {
4095 	vm_map_entry_t entry;
4096 	vm_map_entry_t tmp_entry;
4097 
4098 	if (!vm_map_lookup_entry(map, start, &tmp_entry))
4099 		return (FALSE);
4100 	entry = tmp_entry;
4101 
4102 	while (start < end) {
4103 		/*
4104 		 * No holes allowed!
4105 		 */
4106 		if (start < entry->start)
4107 			return (FALSE);
4108 		/*
4109 		 * Check protection associated with entry.
4110 		 */
4111 		if ((entry->protection & protection) != protection)
4112 			return (FALSE);
4113 		/* go to next entry */
4114 		start = entry->end;
4115 		entry = vm_map_entry_succ(entry);
4116 	}
4117 	return (TRUE);
4118 }
4119 
4120 /*
4121  *
4122  *	vm_map_copy_swap_object:
4123  *
4124  *	Copies a swap-backed object from an existing map entry to a
4125  *	new one.  Carries forward the swap charge.  May change the
4126  *	src object on return.
4127  */
4128 static void
4129 vm_map_copy_swap_object(vm_map_entry_t src_entry, vm_map_entry_t dst_entry,
4130     vm_offset_t size, vm_ooffset_t *fork_charge)
4131 {
4132 	vm_object_t src_object;
4133 	struct ucred *cred;
4134 	int charged;
4135 
4136 	src_object = src_entry->object.vm_object;
4137 	charged = ENTRY_CHARGED(src_entry);
4138 	if ((src_object->flags & OBJ_ANON) != 0) {
4139 		VM_OBJECT_WLOCK(src_object);
4140 		vm_object_collapse(src_object);
4141 		if ((src_object->flags & OBJ_ONEMAPPING) != 0) {
4142 			vm_object_split(src_entry);
4143 			src_object = src_entry->object.vm_object;
4144 		}
4145 		vm_object_reference_locked(src_object);
4146 		vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
4147 		VM_OBJECT_WUNLOCK(src_object);
4148 	} else
4149 		vm_object_reference(src_object);
4150 	if (src_entry->cred != NULL &&
4151 	    !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
4152 		KASSERT(src_object->cred == NULL,
4153 		    ("OVERCOMMIT: vm_map_copy_anon_entry: cred %p",
4154 		     src_object));
4155 		src_object->cred = src_entry->cred;
4156 		src_object->charge = size;
4157 	}
4158 	dst_entry->object.vm_object = src_object;
4159 	if (charged) {
4160 		cred = curthread->td_ucred;
4161 		crhold(cred);
4162 		dst_entry->cred = cred;
4163 		*fork_charge += size;
4164 		if (!(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
4165 			crhold(cred);
4166 			src_entry->cred = cred;
4167 			*fork_charge += size;
4168 		}
4169 	}
4170 }
4171 
4172 /*
4173  *	vm_map_copy_entry:
4174  *
4175  *	Copies the contents of the source entry to the destination
4176  *	entry.  The entries *must* be aligned properly.
4177  */
4178 static void
4179 vm_map_copy_entry(
4180 	vm_map_t src_map,
4181 	vm_map_t dst_map,
4182 	vm_map_entry_t src_entry,
4183 	vm_map_entry_t dst_entry,
4184 	vm_ooffset_t *fork_charge)
4185 {
4186 	vm_object_t src_object;
4187 	vm_map_entry_t fake_entry;
4188 	vm_offset_t size;
4189 
4190 	VM_MAP_ASSERT_LOCKED(dst_map);
4191 
4192 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
4193 		return;
4194 
4195 	if (src_entry->wired_count == 0 ||
4196 	    (src_entry->protection & VM_PROT_WRITE) == 0) {
4197 		/*
4198 		 * If the source entry is marked needs_copy, it is already
4199 		 * write-protected.
4200 		 */
4201 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
4202 		    (src_entry->protection & VM_PROT_WRITE) != 0) {
4203 			pmap_protect(src_map->pmap,
4204 			    src_entry->start,
4205 			    src_entry->end,
4206 			    src_entry->protection & ~VM_PROT_WRITE);
4207 		}
4208 
4209 		/*
4210 		 * Make a copy of the object.
4211 		 */
4212 		size = src_entry->end - src_entry->start;
4213 		if ((src_object = src_entry->object.vm_object) != NULL) {
4214 			if ((src_object->flags & OBJ_SWAP) != 0) {
4215 				vm_map_copy_swap_object(src_entry, dst_entry,
4216 				    size, fork_charge);
4217 				/* May have split/collapsed, reload obj. */
4218 				src_object = src_entry->object.vm_object;
4219 			} else {
4220 				vm_object_reference(src_object);
4221 				dst_entry->object.vm_object = src_object;
4222 			}
4223 			src_entry->eflags |= MAP_ENTRY_COW |
4224 			    MAP_ENTRY_NEEDS_COPY;
4225 			dst_entry->eflags |= MAP_ENTRY_COW |
4226 			    MAP_ENTRY_NEEDS_COPY;
4227 			dst_entry->offset = src_entry->offset;
4228 			if (src_entry->eflags & MAP_ENTRY_WRITECNT) {
4229 				/*
4230 				 * MAP_ENTRY_WRITECNT cannot
4231 				 * indicate write reference from
4232 				 * src_entry, since the entry is
4233 				 * marked as needs copy.  Allocate a
4234 				 * fake entry that is used to
4235 				 * decrement object->un_pager writecount
4236 				 * at the appropriate time.  Attach
4237 				 * fake_entry to the deferred list.
4238 				 */
4239 				fake_entry = vm_map_entry_create(dst_map);
4240 				fake_entry->eflags = MAP_ENTRY_WRITECNT;
4241 				src_entry->eflags &= ~MAP_ENTRY_WRITECNT;
4242 				vm_object_reference(src_object);
4243 				fake_entry->object.vm_object = src_object;
4244 				fake_entry->start = src_entry->start;
4245 				fake_entry->end = src_entry->end;
4246 				fake_entry->defer_next =
4247 				    curthread->td_map_def_user;
4248 				curthread->td_map_def_user = fake_entry;
4249 			}
4250 
4251 			pmap_copy(dst_map->pmap, src_map->pmap,
4252 			    dst_entry->start, dst_entry->end - dst_entry->start,
4253 			    src_entry->start);
4254 		} else {
4255 			dst_entry->object.vm_object = NULL;
4256 			if ((dst_entry->eflags & MAP_ENTRY_GUARD) == 0)
4257 				dst_entry->offset = 0;
4258 			if (src_entry->cred != NULL) {
4259 				dst_entry->cred = curthread->td_ucred;
4260 				crhold(dst_entry->cred);
4261 				*fork_charge += size;
4262 			}
4263 		}
4264 	} else {
4265 		/*
4266 		 * We don't want to make writeable wired pages copy-on-write.
4267 		 * Immediately copy these pages into the new map by simulating
4268 		 * page faults.  The new pages are pageable.
4269 		 */
4270 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
4271 		    fork_charge);
4272 	}
4273 }
4274 
4275 /*
4276  * vmspace_map_entry_forked:
4277  * Update the newly-forked vmspace each time a map entry is inherited
4278  * or copied.  The values for vm_dsize and vm_tsize are approximate
4279  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
4280  */
4281 static void
4282 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
4283     vm_map_entry_t entry)
4284 {
4285 	vm_size_t entrysize;
4286 	vm_offset_t newend;
4287 
4288 	if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
4289 		return;
4290 	entrysize = entry->end - entry->start;
4291 	vm2->vm_map.size += entrysize;
4292 	if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
4293 		vm2->vm_ssize += btoc(entrysize);
4294 	} else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
4295 	    entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
4296 		newend = MIN(entry->end,
4297 		    (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
4298 		vm2->vm_dsize += btoc(newend - entry->start);
4299 	} else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
4300 	    entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
4301 		newend = MIN(entry->end,
4302 		    (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
4303 		vm2->vm_tsize += btoc(newend - entry->start);
4304 	}
4305 }
4306 
4307 /*
4308  * vmspace_fork:
4309  * Create a new process vmspace structure and vm_map
4310  * based on those of an existing process.  The new map
4311  * is based on the old map, according to the inheritance
4312  * values on the regions in that map.
4313  *
4314  * XXX It might be worth coalescing the entries added to the new vmspace.
4315  *
4316  * The source map must not be locked.
4317  */
4318 struct vmspace *
4319 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
4320 {
4321 	struct vmspace *vm2;
4322 	vm_map_t new_map, old_map;
4323 	vm_map_entry_t new_entry, old_entry;
4324 	vm_object_t object;
4325 	int error, locked __diagused;
4326 	vm_inherit_t inh;
4327 
4328 	old_map = &vm1->vm_map;
4329 	/* Copy immutable fields of vm1 to vm2. */
4330 	vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map),
4331 	    pmap_pinit);
4332 	if (vm2 == NULL)
4333 		return (NULL);
4334 
4335 	vm2->vm_taddr = vm1->vm_taddr;
4336 	vm2->vm_daddr = vm1->vm_daddr;
4337 	vm2->vm_maxsaddr = vm1->vm_maxsaddr;
4338 	vm2->vm_stacktop = vm1->vm_stacktop;
4339 	vm2->vm_shp_base = vm1->vm_shp_base;
4340 	vm_map_lock(old_map);
4341 	if (old_map->busy)
4342 		vm_map_wait_busy(old_map);
4343 	new_map = &vm2->vm_map;
4344 	locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
4345 	KASSERT(locked, ("vmspace_fork: lock failed"));
4346 
4347 	error = pmap_vmspace_copy(new_map->pmap, old_map->pmap);
4348 	if (error != 0) {
4349 		sx_xunlock(&old_map->lock);
4350 		sx_xunlock(&new_map->lock);
4351 		vm_map_process_deferred();
4352 		vmspace_free(vm2);
4353 		return (NULL);
4354 	}
4355 
4356 	new_map->anon_loc = old_map->anon_loc;
4357 	new_map->flags |= old_map->flags & (MAP_ASLR | MAP_ASLR_IGNSTART |
4358 	    MAP_ASLR_STACK | MAP_WXORX);
4359 
4360 	VM_MAP_ENTRY_FOREACH(old_entry, old_map) {
4361 		if ((old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
4362 			panic("vm_map_fork: encountered a submap");
4363 
4364 		inh = old_entry->inheritance;
4365 		if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4366 		    inh != VM_INHERIT_NONE)
4367 			inh = VM_INHERIT_COPY;
4368 
4369 		switch (inh) {
4370 		case VM_INHERIT_NONE:
4371 			break;
4372 
4373 		case VM_INHERIT_SHARE:
4374 			/*
4375 			 * Clone the entry, creating the shared object if
4376 			 * necessary.
4377 			 */
4378 			object = old_entry->object.vm_object;
4379 			if (object == NULL) {
4380 				vm_map_entry_back(old_entry);
4381 				object = old_entry->object.vm_object;
4382 			}
4383 
4384 			/*
4385 			 * Add the reference before calling vm_object_shadow
4386 			 * to insure that a shadow object is created.
4387 			 */
4388 			vm_object_reference(object);
4389 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4390 				vm_object_shadow(&old_entry->object.vm_object,
4391 				    &old_entry->offset,
4392 				    old_entry->end - old_entry->start,
4393 				    old_entry->cred,
4394 				    /* Transfer the second reference too. */
4395 				    true);
4396 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4397 				old_entry->cred = NULL;
4398 
4399 				/*
4400 				 * As in vm_map_merged_neighbor_dispose(),
4401 				 * the vnode lock will not be acquired in
4402 				 * this call to vm_object_deallocate().
4403 				 */
4404 				vm_object_deallocate(object);
4405 				object = old_entry->object.vm_object;
4406 			} else {
4407 				VM_OBJECT_WLOCK(object);
4408 				vm_object_clear_flag(object, OBJ_ONEMAPPING);
4409 				if (old_entry->cred != NULL) {
4410 					KASSERT(object->cred == NULL,
4411 					    ("vmspace_fork both cred"));
4412 					object->cred = old_entry->cred;
4413 					object->charge = old_entry->end -
4414 					    old_entry->start;
4415 					old_entry->cred = NULL;
4416 				}
4417 
4418 				/*
4419 				 * Assert the correct state of the vnode
4420 				 * v_writecount while the object is locked, to
4421 				 * not relock it later for the assertion
4422 				 * correctness.
4423 				 */
4424 				if (old_entry->eflags & MAP_ENTRY_WRITECNT &&
4425 				    object->type == OBJT_VNODE) {
4426 					KASSERT(((struct vnode *)object->
4427 					    handle)->v_writecount > 0,
4428 					    ("vmspace_fork: v_writecount %p",
4429 					    object));
4430 					KASSERT(object->un_pager.vnp.
4431 					    writemappings > 0,
4432 					    ("vmspace_fork: vnp.writecount %p",
4433 					    object));
4434 				}
4435 				VM_OBJECT_WUNLOCK(object);
4436 			}
4437 
4438 			/*
4439 			 * Clone the entry, referencing the shared object.
4440 			 */
4441 			new_entry = vm_map_entry_create(new_map);
4442 			*new_entry = *old_entry;
4443 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
4444 			    MAP_ENTRY_IN_TRANSITION);
4445 			new_entry->wiring_thread = NULL;
4446 			new_entry->wired_count = 0;
4447 			if (new_entry->eflags & MAP_ENTRY_WRITECNT) {
4448 				vm_pager_update_writecount(object,
4449 				    new_entry->start, new_entry->end);
4450 			}
4451 			vm_map_entry_set_vnode_text(new_entry, true);
4452 
4453 			/*
4454 			 * Insert the entry into the new map -- we know we're
4455 			 * inserting at the end of the new map.
4456 			 */
4457 			vm_map_entry_link(new_map, new_entry);
4458 			vmspace_map_entry_forked(vm1, vm2, new_entry);
4459 
4460 			/*
4461 			 * Update the physical map
4462 			 */
4463 			pmap_copy(new_map->pmap, old_map->pmap,
4464 			    new_entry->start,
4465 			    (old_entry->end - old_entry->start),
4466 			    old_entry->start);
4467 			break;
4468 
4469 		case VM_INHERIT_COPY:
4470 			/*
4471 			 * Clone the entry and link into the map.
4472 			 */
4473 			new_entry = vm_map_entry_create(new_map);
4474 			*new_entry = *old_entry;
4475 			/*
4476 			 * Copied entry is COW over the old object.
4477 			 */
4478 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
4479 			    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_WRITECNT);
4480 			new_entry->wiring_thread = NULL;
4481 			new_entry->wired_count = 0;
4482 			new_entry->object.vm_object = NULL;
4483 			new_entry->cred = NULL;
4484 			vm_map_entry_link(new_map, new_entry);
4485 			vmspace_map_entry_forked(vm1, vm2, new_entry);
4486 			vm_map_copy_entry(old_map, new_map, old_entry,
4487 			    new_entry, fork_charge);
4488 			vm_map_entry_set_vnode_text(new_entry, true);
4489 			break;
4490 
4491 		case VM_INHERIT_ZERO:
4492 			/*
4493 			 * Create a new anonymous mapping entry modelled from
4494 			 * the old one.
4495 			 */
4496 			new_entry = vm_map_entry_create(new_map);
4497 			memset(new_entry, 0, sizeof(*new_entry));
4498 
4499 			new_entry->start = old_entry->start;
4500 			new_entry->end = old_entry->end;
4501 			new_entry->eflags = old_entry->eflags &
4502 			    ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION |
4503 			    MAP_ENTRY_WRITECNT | MAP_ENTRY_VN_EXEC |
4504 			    MAP_ENTRY_SPLIT_BOUNDARY_MASK);
4505 			new_entry->protection = old_entry->protection;
4506 			new_entry->max_protection = old_entry->max_protection;
4507 			new_entry->inheritance = VM_INHERIT_ZERO;
4508 
4509 			vm_map_entry_link(new_map, new_entry);
4510 			vmspace_map_entry_forked(vm1, vm2, new_entry);
4511 
4512 			new_entry->cred = curthread->td_ucred;
4513 			crhold(new_entry->cred);
4514 			*fork_charge += (new_entry->end - new_entry->start);
4515 
4516 			break;
4517 		}
4518 	}
4519 	/*
4520 	 * Use inlined vm_map_unlock() to postpone handling the deferred
4521 	 * map entries, which cannot be done until both old_map and
4522 	 * new_map locks are released.
4523 	 */
4524 	sx_xunlock(&old_map->lock);
4525 	sx_xunlock(&new_map->lock);
4526 	vm_map_process_deferred();
4527 
4528 	return (vm2);
4529 }
4530 
4531 /*
4532  * Create a process's stack for exec_new_vmspace().  This function is never
4533  * asked to wire the newly created stack.
4534  */
4535 int
4536 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4537     vm_prot_t prot, vm_prot_t max, int cow)
4538 {
4539 	vm_size_t growsize, init_ssize;
4540 	rlim_t vmemlim;
4541 	int rv;
4542 
4543 	MPASS((map->flags & MAP_WIREFUTURE) == 0);
4544 	growsize = sgrowsiz;
4545 	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
4546 	vm_map_lock(map);
4547 	vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4548 	/* If we would blow our VMEM resource limit, no go */
4549 	if (map->size + init_ssize > vmemlim) {
4550 		rv = KERN_NO_SPACE;
4551 		goto out;
4552 	}
4553 	rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
4554 	    max, cow);
4555 out:
4556 	vm_map_unlock(map);
4557 	return (rv);
4558 }
4559 
4560 static int stack_guard_page = 1;
4561 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
4562     &stack_guard_page, 0,
4563     "Specifies the number of guard pages for a stack that grows");
4564 
4565 static int
4566 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4567     vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
4568 {
4569 	vm_map_entry_t gap_entry, new_entry, prev_entry;
4570 	vm_offset_t bot, gap_bot, gap_top, top;
4571 	vm_size_t init_ssize, sgp;
4572 	int orient, rv;
4573 
4574 	/*
4575 	 * The stack orientation is piggybacked with the cow argument.
4576 	 * Extract it into orient and mask the cow argument so that we
4577 	 * don't pass it around further.
4578 	 */
4579 	orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP);
4580 	KASSERT(orient != 0, ("No stack grow direction"));
4581 	KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP),
4582 	    ("bi-dir stack"));
4583 
4584 	if (max_ssize == 0 ||
4585 	    !vm_map_range_valid(map, addrbos, addrbos + max_ssize))
4586 		return (KERN_INVALID_ADDRESS);
4587 	sgp = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ||
4588 	    (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 :
4589 	    (vm_size_t)stack_guard_page * PAGE_SIZE;
4590 	if (sgp >= max_ssize)
4591 		return (KERN_INVALID_ARGUMENT);
4592 
4593 	init_ssize = growsize;
4594 	if (max_ssize < init_ssize + sgp)
4595 		init_ssize = max_ssize - sgp;
4596 
4597 	/* If addr is already mapped, no go */
4598 	if (vm_map_lookup_entry(map, addrbos, &prev_entry))
4599 		return (KERN_NO_SPACE);
4600 
4601 	/*
4602 	 * If we can't accommodate max_ssize in the current mapping, no go.
4603 	 */
4604 	if (vm_map_entry_succ(prev_entry)->start < addrbos + max_ssize)
4605 		return (KERN_NO_SPACE);
4606 
4607 	/*
4608 	 * We initially map a stack of only init_ssize.  We will grow as
4609 	 * needed later.  Depending on the orientation of the stack (i.e.
4610 	 * the grow direction) we either map at the top of the range, the
4611 	 * bottom of the range or in the middle.
4612 	 *
4613 	 * Note: we would normally expect prot and max to be VM_PROT_ALL,
4614 	 * and cow to be 0.  Possibly we should eliminate these as input
4615 	 * parameters, and just pass these values here in the insert call.
4616 	 */
4617 	if (orient == MAP_STACK_GROWS_DOWN) {
4618 		bot = addrbos + max_ssize - init_ssize;
4619 		top = bot + init_ssize;
4620 		gap_bot = addrbos;
4621 		gap_top = bot;
4622 	} else /* if (orient == MAP_STACK_GROWS_UP) */ {
4623 		bot = addrbos;
4624 		top = bot + init_ssize;
4625 		gap_bot = top;
4626 		gap_top = addrbos + max_ssize;
4627 	}
4628 	rv = vm_map_insert1(map, NULL, 0, bot, top, prot, max, cow,
4629 	    &new_entry);
4630 	if (rv != KERN_SUCCESS)
4631 		return (rv);
4632 	KASSERT(new_entry->end == top || new_entry->start == bot,
4633 	    ("Bad entry start/end for new stack entry"));
4634 	KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
4635 	    (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
4636 	    ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
4637 	KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
4638 	    (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
4639 	    ("new entry lacks MAP_ENTRY_GROWS_UP"));
4640 	if (gap_bot == gap_top)
4641 		return (KERN_SUCCESS);
4642 	rv = vm_map_insert1(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE,
4643 	    VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ?
4644 	    MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP), &gap_entry);
4645 	if (rv == KERN_SUCCESS) {
4646 		KASSERT((gap_entry->eflags & MAP_ENTRY_GUARD) != 0,
4647 		    ("entry %p not gap %#x", gap_entry, gap_entry->eflags));
4648 		KASSERT((gap_entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
4649 		    MAP_ENTRY_STACK_GAP_UP)) != 0,
4650 		    ("entry %p not stack gap %#x", gap_entry,
4651 		    gap_entry->eflags));
4652 
4653 		/*
4654 		 * Gap can never successfully handle a fault, so
4655 		 * read-ahead logic is never used for it.  Re-use
4656 		 * next_read of the gap entry to store
4657 		 * stack_guard_page for vm_map_growstack().
4658 		 * Similarly, since a gap cannot have a backing object,
4659 		 * store the original stack protections in the
4660 		 * object offset.
4661 		 */
4662 		gap_entry->next_read = sgp;
4663 		gap_entry->offset = prot | PROT_MAX(max);
4664 	} else {
4665 		(void)vm_map_delete(map, bot, top);
4666 	}
4667 	return (rv);
4668 }
4669 
4670 /*
4671  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if we
4672  * successfully grow the stack.
4673  */
4674 static int
4675 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry)
4676 {
4677 	vm_map_entry_t stack_entry;
4678 	struct proc *p;
4679 	struct vmspace *vm;
4680 	struct ucred *cred;
4681 	vm_offset_t gap_end, gap_start, grow_start;
4682 	vm_size_t grow_amount, guard, max_grow, sgp;
4683 	vm_prot_t prot, max;
4684 	rlim_t lmemlim, stacklim, vmemlim;
4685 	int rv, rv1 __diagused;
4686 	bool gap_deleted, grow_down, is_procstack;
4687 #ifdef notyet
4688 	uint64_t limit;
4689 #endif
4690 #ifdef RACCT
4691 	int error __diagused;
4692 #endif
4693 
4694 	p = curproc;
4695 	vm = p->p_vmspace;
4696 
4697 	/*
4698 	 * Disallow stack growth when the access is performed by a
4699 	 * debugger or AIO daemon.  The reason is that the wrong
4700 	 * resource limits are applied.
4701 	 */
4702 	if (p != initproc && (map != &p->p_vmspace->vm_map ||
4703 	    p->p_textvp == NULL))
4704 		return (KERN_FAILURE);
4705 
4706 	MPASS(!map->system_map);
4707 
4708 	lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
4709 	stacklim = lim_cur(curthread, RLIMIT_STACK);
4710 	vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4711 retry:
4712 	/* If addr is not in a hole for a stack grow area, no need to grow. */
4713 	if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry))
4714 		return (KERN_FAILURE);
4715 	if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0)
4716 		return (KERN_SUCCESS);
4717 	if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) {
4718 		stack_entry = vm_map_entry_succ(gap_entry);
4719 		if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 ||
4720 		    stack_entry->start != gap_entry->end)
4721 			return (KERN_FAILURE);
4722 		grow_amount = round_page(stack_entry->start - addr);
4723 		grow_down = true;
4724 	} else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) {
4725 		stack_entry = vm_map_entry_pred(gap_entry);
4726 		if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 ||
4727 		    stack_entry->end != gap_entry->start)
4728 			return (KERN_FAILURE);
4729 		grow_amount = round_page(addr + 1 - stack_entry->end);
4730 		grow_down = false;
4731 	} else {
4732 		return (KERN_FAILURE);
4733 	}
4734 	guard = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ||
4735 	    (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 :
4736 	    gap_entry->next_read;
4737 	max_grow = gap_entry->end - gap_entry->start;
4738 	if (guard > max_grow)
4739 		return (KERN_NO_SPACE);
4740 	max_grow -= guard;
4741 	if (grow_amount > max_grow)
4742 		return (KERN_NO_SPACE);
4743 
4744 	/*
4745 	 * If this is the main process stack, see if we're over the stack
4746 	 * limit.
4747 	 */
4748 	is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr &&
4749 	    addr < (vm_offset_t)vm->vm_stacktop;
4750 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim))
4751 		return (KERN_NO_SPACE);
4752 
4753 #ifdef RACCT
4754 	if (racct_enable) {
4755 		PROC_LOCK(p);
4756 		if (is_procstack && racct_set(p, RACCT_STACK,
4757 		    ctob(vm->vm_ssize) + grow_amount)) {
4758 			PROC_UNLOCK(p);
4759 			return (KERN_NO_SPACE);
4760 		}
4761 		PROC_UNLOCK(p);
4762 	}
4763 #endif
4764 
4765 	grow_amount = roundup(grow_amount, sgrowsiz);
4766 	if (grow_amount > max_grow)
4767 		grow_amount = max_grow;
4768 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
4769 		grow_amount = trunc_page((vm_size_t)stacklim) -
4770 		    ctob(vm->vm_ssize);
4771 	}
4772 
4773 #ifdef notyet
4774 	PROC_LOCK(p);
4775 	limit = racct_get_available(p, RACCT_STACK);
4776 	PROC_UNLOCK(p);
4777 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
4778 		grow_amount = limit - ctob(vm->vm_ssize);
4779 #endif
4780 
4781 	if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) {
4782 		if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
4783 			rv = KERN_NO_SPACE;
4784 			goto out;
4785 		}
4786 #ifdef RACCT
4787 		if (racct_enable) {
4788 			PROC_LOCK(p);
4789 			if (racct_set(p, RACCT_MEMLOCK,
4790 			    ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
4791 				PROC_UNLOCK(p);
4792 				rv = KERN_NO_SPACE;
4793 				goto out;
4794 			}
4795 			PROC_UNLOCK(p);
4796 		}
4797 #endif
4798 	}
4799 
4800 	/* If we would blow our VMEM resource limit, no go */
4801 	if (map->size + grow_amount > vmemlim) {
4802 		rv = KERN_NO_SPACE;
4803 		goto out;
4804 	}
4805 #ifdef RACCT
4806 	if (racct_enable) {
4807 		PROC_LOCK(p);
4808 		if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
4809 			PROC_UNLOCK(p);
4810 			rv = KERN_NO_SPACE;
4811 			goto out;
4812 		}
4813 		PROC_UNLOCK(p);
4814 	}
4815 #endif
4816 
4817 	if (vm_map_lock_upgrade(map)) {
4818 		gap_entry = NULL;
4819 		vm_map_lock_read(map);
4820 		goto retry;
4821 	}
4822 
4823 	if (grow_down) {
4824 		/*
4825 		 * The gap_entry "offset" field is overloaded.  See
4826 		 * vm_map_stack_locked().
4827 		 */
4828 		prot = PROT_EXTRACT(gap_entry->offset);
4829 		max = PROT_MAX_EXTRACT(gap_entry->offset);
4830 		sgp = gap_entry->next_read;
4831 
4832 		grow_start = gap_entry->end - grow_amount;
4833 		if (gap_entry->start + grow_amount == gap_entry->end) {
4834 			gap_start = gap_entry->start;
4835 			gap_end = gap_entry->end;
4836 			vm_map_entry_delete(map, gap_entry);
4837 			gap_deleted = true;
4838 		} else {
4839 			MPASS(gap_entry->start < gap_entry->end - grow_amount);
4840 			vm_map_entry_resize(map, gap_entry, -grow_amount);
4841 			gap_deleted = false;
4842 		}
4843 		rv = vm_map_insert(map, NULL, 0, grow_start,
4844 		    grow_start + grow_amount, prot, max, MAP_STACK_GROWS_DOWN);
4845 		if (rv != KERN_SUCCESS) {
4846 			if (gap_deleted) {
4847 				rv1 = vm_map_insert1(map, NULL, 0, gap_start,
4848 				    gap_end, VM_PROT_NONE, VM_PROT_NONE,
4849 				    MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN,
4850 				    &gap_entry);
4851 				MPASS(rv1 == KERN_SUCCESS);
4852 				gap_entry->next_read = sgp;
4853 				gap_entry->offset = prot | PROT_MAX(max);
4854 			} else
4855 				vm_map_entry_resize(map, gap_entry,
4856 				    grow_amount);
4857 		}
4858 	} else {
4859 		grow_start = stack_entry->end;
4860 		cred = stack_entry->cred;
4861 		if (cred == NULL && stack_entry->object.vm_object != NULL)
4862 			cred = stack_entry->object.vm_object->cred;
4863 		if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
4864 			rv = KERN_NO_SPACE;
4865 		/* Grow the underlying object if applicable. */
4866 		else if (stack_entry->object.vm_object == NULL ||
4867 		    vm_object_coalesce(stack_entry->object.vm_object,
4868 		    stack_entry->offset,
4869 		    (vm_size_t)(stack_entry->end - stack_entry->start),
4870 		    grow_amount, cred != NULL)) {
4871 			if (gap_entry->start + grow_amount == gap_entry->end) {
4872 				vm_map_entry_delete(map, gap_entry);
4873 				vm_map_entry_resize(map, stack_entry,
4874 				    grow_amount);
4875 			} else {
4876 				gap_entry->start += grow_amount;
4877 				stack_entry->end += grow_amount;
4878 			}
4879 			map->size += grow_amount;
4880 			rv = KERN_SUCCESS;
4881 		} else
4882 			rv = KERN_FAILURE;
4883 	}
4884 	if (rv == KERN_SUCCESS && is_procstack)
4885 		vm->vm_ssize += btoc(grow_amount);
4886 
4887 	/*
4888 	 * Heed the MAP_WIREFUTURE flag if it was set for this process.
4889 	 */
4890 	if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) {
4891 		rv = vm_map_wire_locked(map, grow_start,
4892 		    grow_start + grow_amount,
4893 		    VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
4894 	}
4895 	vm_map_lock_downgrade(map);
4896 
4897 out:
4898 #ifdef RACCT
4899 	if (racct_enable && rv != KERN_SUCCESS) {
4900 		PROC_LOCK(p);
4901 		error = racct_set(p, RACCT_VMEM, map->size);
4902 		KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
4903 		if (!old_mlock) {
4904 			error = racct_set(p, RACCT_MEMLOCK,
4905 			    ptoa(pmap_wired_count(map->pmap)));
4906 			KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
4907 		}
4908 	    	error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
4909 		KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
4910 		PROC_UNLOCK(p);
4911 	}
4912 #endif
4913 
4914 	return (rv);
4915 }
4916 
4917 /*
4918  * Unshare the specified VM space for exec.  If other processes are
4919  * mapped to it, then create a new one.  The new vmspace is null.
4920  */
4921 int
4922 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
4923 {
4924 	struct vmspace *oldvmspace = p->p_vmspace;
4925 	struct vmspace *newvmspace;
4926 
4927 	KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
4928 	    ("vmspace_exec recursed"));
4929 	newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit);
4930 	if (newvmspace == NULL)
4931 		return (ENOMEM);
4932 	newvmspace->vm_swrss = oldvmspace->vm_swrss;
4933 	/*
4934 	 * This code is written like this for prototype purposes.  The
4935 	 * goal is to avoid running down the vmspace here, but let the
4936 	 * other process's that are still using the vmspace to finally
4937 	 * run it down.  Even though there is little or no chance of blocking
4938 	 * here, it is a good idea to keep this form for future mods.
4939 	 */
4940 	PROC_VMSPACE_LOCK(p);
4941 	p->p_vmspace = newvmspace;
4942 	PROC_VMSPACE_UNLOCK(p);
4943 	if (p == curthread->td_proc)
4944 		pmap_activate(curthread);
4945 	curthread->td_pflags |= TDP_EXECVMSPC;
4946 	return (0);
4947 }
4948 
4949 /*
4950  * Unshare the specified VM space for forcing COW.  This
4951  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
4952  */
4953 int
4954 vmspace_unshare(struct proc *p)
4955 {
4956 	struct vmspace *oldvmspace = p->p_vmspace;
4957 	struct vmspace *newvmspace;
4958 	vm_ooffset_t fork_charge;
4959 
4960 	/*
4961 	 * The caller is responsible for ensuring that the reference count
4962 	 * cannot concurrently transition 1 -> 2.
4963 	 */
4964 	if (refcount_load(&oldvmspace->vm_refcnt) == 1)
4965 		return (0);
4966 	fork_charge = 0;
4967 	newvmspace = vmspace_fork(oldvmspace, &fork_charge);
4968 	if (newvmspace == NULL)
4969 		return (ENOMEM);
4970 	if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
4971 		vmspace_free(newvmspace);
4972 		return (ENOMEM);
4973 	}
4974 	PROC_VMSPACE_LOCK(p);
4975 	p->p_vmspace = newvmspace;
4976 	PROC_VMSPACE_UNLOCK(p);
4977 	if (p == curthread->td_proc)
4978 		pmap_activate(curthread);
4979 	vmspace_free(oldvmspace);
4980 	return (0);
4981 }
4982 
4983 /*
4984  *	vm_map_lookup:
4985  *
4986  *	Finds the VM object, offset, and
4987  *	protection for a given virtual address in the
4988  *	specified map, assuming a page fault of the
4989  *	type specified.
4990  *
4991  *	Leaves the map in question locked for read; return
4992  *	values are guaranteed until a vm_map_lookup_done
4993  *	call is performed.  Note that the map argument
4994  *	is in/out; the returned map must be used in
4995  *	the call to vm_map_lookup_done.
4996  *
4997  *	A handle (out_entry) is returned for use in
4998  *	vm_map_lookup_done, to make that fast.
4999  *
5000  *	If a lookup is requested with "write protection"
5001  *	specified, the map may be changed to perform virtual
5002  *	copying operations, although the data referenced will
5003  *	remain the same.
5004  */
5005 int
5006 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
5007 	      vm_offset_t vaddr,
5008 	      vm_prot_t fault_typea,
5009 	      vm_map_entry_t *out_entry,	/* OUT */
5010 	      vm_object_t *object,		/* OUT */
5011 	      vm_pindex_t *pindex,		/* OUT */
5012 	      vm_prot_t *out_prot,		/* OUT */
5013 	      boolean_t *wired)			/* OUT */
5014 {
5015 	vm_map_entry_t entry;
5016 	vm_map_t map = *var_map;
5017 	vm_prot_t prot;
5018 	vm_prot_t fault_type;
5019 	vm_object_t eobject;
5020 	vm_size_t size;
5021 	struct ucred *cred;
5022 
5023 RetryLookup:
5024 
5025 	vm_map_lock_read(map);
5026 
5027 RetryLookupLocked:
5028 	/*
5029 	 * Lookup the faulting address.
5030 	 */
5031 	if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
5032 		vm_map_unlock_read(map);
5033 		return (KERN_INVALID_ADDRESS);
5034 	}
5035 
5036 	entry = *out_entry;
5037 
5038 	/*
5039 	 * Handle submaps.
5040 	 */
5041 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
5042 		vm_map_t old_map = map;
5043 
5044 		*var_map = map = entry->object.sub_map;
5045 		vm_map_unlock_read(old_map);
5046 		goto RetryLookup;
5047 	}
5048 
5049 	/*
5050 	 * Check whether this task is allowed to have this page.
5051 	 */
5052 	prot = entry->protection;
5053 	if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) {
5054 		fault_typea &= ~VM_PROT_FAULT_LOOKUP;
5055 		if (prot == VM_PROT_NONE && map != kernel_map &&
5056 		    (entry->eflags & MAP_ENTRY_GUARD) != 0 &&
5057 		    (entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
5058 		    MAP_ENTRY_STACK_GAP_UP)) != 0 &&
5059 		    vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS)
5060 			goto RetryLookupLocked;
5061 	}
5062 	fault_type = fault_typea & VM_PROT_ALL;
5063 	if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
5064 		vm_map_unlock_read(map);
5065 		return (KERN_PROTECTION_FAILURE);
5066 	}
5067 	KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
5068 	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
5069 	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
5070 	    ("entry %p flags %x", entry, entry->eflags));
5071 	if ((fault_typea & VM_PROT_COPY) != 0 &&
5072 	    (entry->max_protection & VM_PROT_WRITE) == 0 &&
5073 	    (entry->eflags & MAP_ENTRY_COW) == 0) {
5074 		vm_map_unlock_read(map);
5075 		return (KERN_PROTECTION_FAILURE);
5076 	}
5077 
5078 	/*
5079 	 * If this page is not pageable, we have to get it for all possible
5080 	 * accesses.
5081 	 */
5082 	*wired = (entry->wired_count != 0);
5083 	if (*wired)
5084 		fault_type = entry->protection;
5085 	size = entry->end - entry->start;
5086 
5087 	/*
5088 	 * If the entry was copy-on-write, we either ...
5089 	 */
5090 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
5091 		/*
5092 		 * If we want to write the page, we may as well handle that
5093 		 * now since we've got the map locked.
5094 		 *
5095 		 * If we don't need to write the page, we just demote the
5096 		 * permissions allowed.
5097 		 */
5098 		if ((fault_type & VM_PROT_WRITE) != 0 ||
5099 		    (fault_typea & VM_PROT_COPY) != 0) {
5100 			/*
5101 			 * Make a new object, and place it in the object
5102 			 * chain.  Note that no new references have appeared
5103 			 * -- one just moved from the map to the new
5104 			 * object.
5105 			 */
5106 			if (vm_map_lock_upgrade(map))
5107 				goto RetryLookup;
5108 
5109 			if (entry->cred == NULL) {
5110 				/*
5111 				 * The debugger owner is charged for
5112 				 * the memory.
5113 				 */
5114 				cred = curthread->td_ucred;
5115 				crhold(cred);
5116 				if (!swap_reserve_by_cred(size, cred)) {
5117 					crfree(cred);
5118 					vm_map_unlock(map);
5119 					return (KERN_RESOURCE_SHORTAGE);
5120 				}
5121 				entry->cred = cred;
5122 			}
5123 			eobject = entry->object.vm_object;
5124 			vm_object_shadow(&entry->object.vm_object,
5125 			    &entry->offset, size, entry->cred, false);
5126 			if (eobject == entry->object.vm_object) {
5127 				/*
5128 				 * The object was not shadowed.
5129 				 */
5130 				swap_release_by_cred(size, entry->cred);
5131 				crfree(entry->cred);
5132 			}
5133 			entry->cred = NULL;
5134 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
5135 
5136 			vm_map_lock_downgrade(map);
5137 		} else {
5138 			/*
5139 			 * We're attempting to read a copy-on-write page --
5140 			 * don't allow writes.
5141 			 */
5142 			prot &= ~VM_PROT_WRITE;
5143 		}
5144 	}
5145 
5146 	/*
5147 	 * Create an object if necessary.
5148 	 */
5149 	if (entry->object.vm_object == NULL && !map->system_map) {
5150 		if (vm_map_lock_upgrade(map))
5151 			goto RetryLookup;
5152 		entry->object.vm_object = vm_object_allocate_anon(atop(size),
5153 		    NULL, entry->cred, size);
5154 		entry->offset = 0;
5155 		entry->cred = NULL;
5156 		vm_map_lock_downgrade(map);
5157 	}
5158 
5159 	/*
5160 	 * Return the object/offset from this entry.  If the entry was
5161 	 * copy-on-write or empty, it has been fixed up.
5162 	 */
5163 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
5164 	*object = entry->object.vm_object;
5165 
5166 	*out_prot = prot;
5167 	return (KERN_SUCCESS);
5168 }
5169 
5170 /*
5171  *	vm_map_lookup_locked:
5172  *
5173  *	Lookup the faulting address.  A version of vm_map_lookup that returns
5174  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
5175  */
5176 int
5177 vm_map_lookup_locked(vm_map_t *var_map,		/* IN/OUT */
5178 		     vm_offset_t vaddr,
5179 		     vm_prot_t fault_typea,
5180 		     vm_map_entry_t *out_entry,	/* OUT */
5181 		     vm_object_t *object,	/* OUT */
5182 		     vm_pindex_t *pindex,	/* OUT */
5183 		     vm_prot_t *out_prot,	/* OUT */
5184 		     boolean_t *wired)		/* OUT */
5185 {
5186 	vm_map_entry_t entry;
5187 	vm_map_t map = *var_map;
5188 	vm_prot_t prot;
5189 	vm_prot_t fault_type = fault_typea;
5190 
5191 	/*
5192 	 * Lookup the faulting address.
5193 	 */
5194 	if (!vm_map_lookup_entry(map, vaddr, out_entry))
5195 		return (KERN_INVALID_ADDRESS);
5196 
5197 	entry = *out_entry;
5198 
5199 	/*
5200 	 * Fail if the entry refers to a submap.
5201 	 */
5202 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
5203 		return (KERN_FAILURE);
5204 
5205 	/*
5206 	 * Check whether this task is allowed to have this page.
5207 	 */
5208 	prot = entry->protection;
5209 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
5210 	if ((fault_type & prot) != fault_type)
5211 		return (KERN_PROTECTION_FAILURE);
5212 
5213 	/*
5214 	 * If this page is not pageable, we have to get it for all possible
5215 	 * accesses.
5216 	 */
5217 	*wired = (entry->wired_count != 0);
5218 	if (*wired)
5219 		fault_type = entry->protection;
5220 
5221 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
5222 		/*
5223 		 * Fail if the entry was copy-on-write for a write fault.
5224 		 */
5225 		if (fault_type & VM_PROT_WRITE)
5226 			return (KERN_FAILURE);
5227 		/*
5228 		 * We're attempting to read a copy-on-write page --
5229 		 * don't allow writes.
5230 		 */
5231 		prot &= ~VM_PROT_WRITE;
5232 	}
5233 
5234 	/*
5235 	 * Fail if an object should be created.
5236 	 */
5237 	if (entry->object.vm_object == NULL && !map->system_map)
5238 		return (KERN_FAILURE);
5239 
5240 	/*
5241 	 * Return the object/offset from this entry.  If the entry was
5242 	 * copy-on-write or empty, it has been fixed up.
5243 	 */
5244 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
5245 	*object = entry->object.vm_object;
5246 
5247 	*out_prot = prot;
5248 	return (KERN_SUCCESS);
5249 }
5250 
5251 /*
5252  *	vm_map_lookup_done:
5253  *
5254  *	Releases locks acquired by a vm_map_lookup
5255  *	(according to the handle returned by that lookup).
5256  */
5257 void
5258 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
5259 {
5260 	/*
5261 	 * Unlock the main-level map
5262 	 */
5263 	vm_map_unlock_read(map);
5264 }
5265 
5266 vm_offset_t
5267 vm_map_max_KBI(const struct vm_map *map)
5268 {
5269 
5270 	return (vm_map_max(map));
5271 }
5272 
5273 vm_offset_t
5274 vm_map_min_KBI(const struct vm_map *map)
5275 {
5276 
5277 	return (vm_map_min(map));
5278 }
5279 
5280 pmap_t
5281 vm_map_pmap_KBI(vm_map_t map)
5282 {
5283 
5284 	return (map->pmap);
5285 }
5286 
5287 bool
5288 vm_map_range_valid_KBI(vm_map_t map, vm_offset_t start, vm_offset_t end)
5289 {
5290 
5291 	return (vm_map_range_valid(map, start, end));
5292 }
5293 
5294 #ifdef INVARIANTS
5295 static void
5296 _vm_map_assert_consistent(vm_map_t map, int check)
5297 {
5298 	vm_map_entry_t entry, prev;
5299 	vm_map_entry_t cur, header, lbound, ubound;
5300 	vm_size_t max_left, max_right;
5301 
5302 #ifdef DIAGNOSTIC
5303 	++map->nupdates;
5304 #endif
5305 	if (enable_vmmap_check != check)
5306 		return;
5307 
5308 	header = prev = &map->header;
5309 	VM_MAP_ENTRY_FOREACH(entry, map) {
5310 		KASSERT(prev->end <= entry->start,
5311 		    ("map %p prev->end = %jx, start = %jx", map,
5312 		    (uintmax_t)prev->end, (uintmax_t)entry->start));
5313 		KASSERT(entry->start < entry->end,
5314 		    ("map %p start = %jx, end = %jx", map,
5315 		    (uintmax_t)entry->start, (uintmax_t)entry->end));
5316 		KASSERT(entry->left == header ||
5317 		    entry->left->start < entry->start,
5318 		    ("map %p left->start = %jx, start = %jx", map,
5319 		    (uintmax_t)entry->left->start, (uintmax_t)entry->start));
5320 		KASSERT(entry->right == header ||
5321 		    entry->start < entry->right->start,
5322 		    ("map %p start = %jx, right->start = %jx", map,
5323 		    (uintmax_t)entry->start, (uintmax_t)entry->right->start));
5324 		cur = map->root;
5325 		lbound = ubound = header;
5326 		for (;;) {
5327 			if (entry->start < cur->start) {
5328 				ubound = cur;
5329 				cur = cur->left;
5330 				KASSERT(cur != lbound,
5331 				    ("map %p cannot find %jx",
5332 				    map, (uintmax_t)entry->start));
5333 			} else if (cur->end <= entry->start) {
5334 				lbound = cur;
5335 				cur = cur->right;
5336 				KASSERT(cur != ubound,
5337 				    ("map %p cannot find %jx",
5338 				    map, (uintmax_t)entry->start));
5339 			} else {
5340 				KASSERT(cur == entry,
5341 				    ("map %p cannot find %jx",
5342 				    map, (uintmax_t)entry->start));
5343 				break;
5344 			}
5345 		}
5346 		max_left = vm_map_entry_max_free_left(entry, lbound);
5347 		max_right = vm_map_entry_max_free_right(entry, ubound);
5348 		KASSERT(entry->max_free == vm_size_max(max_left, max_right),
5349 		    ("map %p max = %jx, max_left = %jx, max_right = %jx", map,
5350 		    (uintmax_t)entry->max_free,
5351 		    (uintmax_t)max_left, (uintmax_t)max_right));
5352 		prev = entry;
5353 	}
5354 	KASSERT(prev->end <= entry->start,
5355 	    ("map %p prev->end = %jx, start = %jx", map,
5356 	    (uintmax_t)prev->end, (uintmax_t)entry->start));
5357 }
5358 #endif
5359 
5360 #include "opt_ddb.h"
5361 #ifdef DDB
5362 #include <sys/kernel.h>
5363 
5364 #include <ddb/ddb.h>
5365 
5366 static void
5367 vm_map_print(vm_map_t map)
5368 {
5369 	vm_map_entry_t entry, prev;
5370 
5371 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
5372 	    (void *)map,
5373 	    (void *)map->pmap, map->nentries, map->timestamp);
5374 
5375 	db_indent += 2;
5376 	prev = &map->header;
5377 	VM_MAP_ENTRY_FOREACH(entry, map) {
5378 		db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n",
5379 		    (void *)entry, (void *)entry->start, (void *)entry->end,
5380 		    entry->eflags);
5381 		{
5382 			static const char * const inheritance_name[4] =
5383 			{"share", "copy", "none", "donate_copy"};
5384 
5385 			db_iprintf(" prot=%x/%x/%s",
5386 			    entry->protection,
5387 			    entry->max_protection,
5388 			    inheritance_name[(int)(unsigned char)
5389 			    entry->inheritance]);
5390 			if (entry->wired_count != 0)
5391 				db_printf(", wired");
5392 		}
5393 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
5394 			db_printf(", share=%p, offset=0x%jx\n",
5395 			    (void *)entry->object.sub_map,
5396 			    (uintmax_t)entry->offset);
5397 			if (prev == &map->header ||
5398 			    prev->object.sub_map !=
5399 				entry->object.sub_map) {
5400 				db_indent += 2;
5401 				vm_map_print((vm_map_t)entry->object.sub_map);
5402 				db_indent -= 2;
5403 			}
5404 		} else {
5405 			if (entry->cred != NULL)
5406 				db_printf(", ruid %d", entry->cred->cr_ruid);
5407 			db_printf(", object=%p, offset=0x%jx",
5408 			    (void *)entry->object.vm_object,
5409 			    (uintmax_t)entry->offset);
5410 			if (entry->object.vm_object && entry->object.vm_object->cred)
5411 				db_printf(", obj ruid %d charge %jx",
5412 				    entry->object.vm_object->cred->cr_ruid,
5413 				    (uintmax_t)entry->object.vm_object->charge);
5414 			if (entry->eflags & MAP_ENTRY_COW)
5415 				db_printf(", copy (%s)",
5416 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
5417 			db_printf("\n");
5418 
5419 			if (prev == &map->header ||
5420 			    prev->object.vm_object !=
5421 				entry->object.vm_object) {
5422 				db_indent += 2;
5423 				vm_object_print((db_expr_t)(intptr_t)
5424 						entry->object.vm_object,
5425 						0, 0, (char *)0);
5426 				db_indent -= 2;
5427 			}
5428 		}
5429 		prev = entry;
5430 	}
5431 	db_indent -= 2;
5432 }
5433 
5434 DB_SHOW_COMMAND(map, map)
5435 {
5436 
5437 	if (!have_addr) {
5438 		db_printf("usage: show map <addr>\n");
5439 		return;
5440 	}
5441 	vm_map_print((vm_map_t)addr);
5442 }
5443 
5444 DB_SHOW_COMMAND(procvm, procvm)
5445 {
5446 	struct proc *p;
5447 
5448 	if (have_addr) {
5449 		p = db_lookup_proc(addr);
5450 	} else {
5451 		p = curproc;
5452 	}
5453 
5454 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
5455 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
5456 	    (void *)vmspace_pmap(p->p_vmspace));
5457 
5458 	vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
5459 }
5460 
5461 #endif /* DDB */
5462