1 /* 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by the University of 19 * California, Berkeley and its contributors. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 37 * 38 * 39 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 40 * All rights reserved. 41 * 42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 43 * 44 * Permission to use, copy, modify and distribute this software and 45 * its documentation is hereby granted, provided that both the copyright 46 * notice and this permission notice appear in all copies of the 47 * software, derivative works or modified versions, and any portions 48 * thereof, and that both notices appear in supporting documentation. 49 * 50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 53 * 54 * Carnegie Mellon requests users of this software to return to 55 * 56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 57 * School of Computer Science 58 * Carnegie Mellon University 59 * Pittsburgh PA 15213-3890 60 * 61 * any improvements or extensions that they make and grant Carnegie the 62 * rights to redistribute these changes. 63 * 64 * $FreeBSD$ 65 */ 66 67 /* 68 * Virtual memory mapping module. 69 */ 70 71 #include <sys/param.h> 72 #include <sys/systm.h> 73 #include <sys/malloc.h> 74 #include <sys/proc.h> 75 #include <sys/vmmeter.h> 76 #include <sys/mman.h> 77 #include <sys/vnode.h> 78 #include <sys/resourcevar.h> 79 80 #include <vm/vm.h> 81 #include <vm/vm_param.h> 82 #include <vm/vm_prot.h> 83 #include <vm/vm_inherit.h> 84 #include <sys/lock.h> 85 #include <vm/pmap.h> 86 #include <vm/vm_map.h> 87 #include <vm/vm_page.h> 88 #include <vm/vm_object.h> 89 #include <vm/vm_pager.h> 90 #include <vm/vm_kern.h> 91 #include <vm/vm_extern.h> 92 #include <vm/default_pager.h> 93 #include <vm/swap_pager.h> 94 #include <vm/vm_zone.h> 95 96 /* 97 * Virtual memory maps provide for the mapping, protection, 98 * and sharing of virtual memory objects. In addition, 99 * this module provides for an efficient virtual copy of 100 * memory from one map to another. 101 * 102 * Synchronization is required prior to most operations. 103 * 104 * Maps consist of an ordered doubly-linked list of simple 105 * entries; a single hint is used to speed up lookups. 106 * 107 * Since portions of maps are specified by start/end addreses, 108 * which may not align with existing map entries, all 109 * routines merely "clip" entries to these start/end values. 110 * [That is, an entry is split into two, bordering at a 111 * start or end value.] Note that these clippings may not 112 * always be necessary (as the two resulting entries are then 113 * not changed); however, the clipping is done for convenience. 114 * 115 * As mentioned above, virtual copy operations are performed 116 * by copying VM object references from one map to 117 * another, and then marking both regions as copy-on-write. 118 */ 119 120 /* 121 * vm_map_startup: 122 * 123 * Initialize the vm_map module. Must be called before 124 * any other vm_map routines. 125 * 126 * Map and entry structures are allocated from the general 127 * purpose memory pool with some exceptions: 128 * 129 * - The kernel map and kmem submap are allocated statically. 130 * - Kernel map entries are allocated out of a static pool. 131 * 132 * These restrictions are necessary since malloc() uses the 133 * maps and requires map entries. 134 */ 135 136 static struct vm_zone kmapentzone_store, mapentzone_store, mapzone_store; 137 static vm_zone_t mapentzone, kmapentzone, mapzone, vmspace_zone; 138 static struct vm_object kmapentobj, mapentobj, mapobj; 139 140 static struct vm_map_entry map_entry_init[MAX_MAPENT]; 141 static struct vm_map_entry kmap_entry_init[MAX_KMAPENT]; 142 static struct vm_map map_init[MAX_KMAP]; 143 144 static void _vm_map_clip_end __P((vm_map_t, vm_map_entry_t, vm_offset_t)); 145 static void _vm_map_clip_start __P((vm_map_t, vm_map_entry_t, vm_offset_t)); 146 static vm_map_entry_t vm_map_entry_create __P((vm_map_t)); 147 static void vm_map_entry_delete __P((vm_map_t, vm_map_entry_t)); 148 static void vm_map_entry_dispose __P((vm_map_t, vm_map_entry_t)); 149 static void vm_map_entry_unwire __P((vm_map_t, vm_map_entry_t)); 150 static void vm_map_copy_entry __P((vm_map_t, vm_map_t, vm_map_entry_t, 151 vm_map_entry_t)); 152 static void vm_map_split __P((vm_map_entry_t)); 153 154 void 155 vm_map_startup() 156 { 157 mapzone = &mapzone_store; 158 zbootinit(mapzone, "MAP", sizeof (struct vm_map), 159 map_init, MAX_KMAP); 160 kmapentzone = &kmapentzone_store; 161 zbootinit(kmapentzone, "KMAP ENTRY", sizeof (struct vm_map_entry), 162 kmap_entry_init, MAX_KMAPENT); 163 mapentzone = &mapentzone_store; 164 zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry), 165 map_entry_init, MAX_MAPENT); 166 } 167 168 /* 169 * Allocate a vmspace structure, including a vm_map and pmap, 170 * and initialize those structures. The refcnt is set to 1. 171 * The remaining fields must be initialized by the caller. 172 */ 173 struct vmspace * 174 vmspace_alloc(min, max) 175 vm_offset_t min, max; 176 { 177 struct vmspace *vm; 178 179 vm = zalloc(vmspace_zone); 180 vm_map_init(&vm->vm_map, min, max); 181 pmap_pinit(vmspace_pmap(vm)); 182 vm->vm_map.pmap = vmspace_pmap(vm); /* XXX */ 183 vm->vm_refcnt = 1; 184 vm->vm_shm = NULL; 185 return (vm); 186 } 187 188 void 189 vm_init2(void) { 190 zinitna(kmapentzone, &kmapentobj, 191 NULL, 0, cnt.v_page_count / 4, ZONE_INTERRUPT, 1); 192 zinitna(mapentzone, &mapentobj, 193 NULL, 0, 0, 0, 1); 194 zinitna(mapzone, &mapobj, 195 NULL, 0, 0, 0, 1); 196 vmspace_zone = zinit("VMSPACE", sizeof (struct vmspace), 0, 0, 3); 197 pmap_init2(); 198 vm_object_init2(); 199 } 200 201 void 202 vmspace_free(vm) 203 struct vmspace *vm; 204 { 205 206 if (vm->vm_refcnt == 0) 207 panic("vmspace_free: attempt to free already freed vmspace"); 208 209 if (--vm->vm_refcnt == 0) { 210 211 /* 212 * Lock the map, to wait out all other references to it. 213 * Delete all of the mappings and pages they hold, then call 214 * the pmap module to reclaim anything left. 215 */ 216 vm_map_lock(&vm->vm_map); 217 (void) vm_map_delete(&vm->vm_map, vm->vm_map.min_offset, 218 vm->vm_map.max_offset); 219 vm_map_unlock(&vm->vm_map); 220 221 pmap_release(vmspace_pmap(vm)); 222 zfree(vmspace_zone, vm); 223 } 224 } 225 226 /* 227 * vm_map_create: 228 * 229 * Creates and returns a new empty VM map with 230 * the given physical map structure, and having 231 * the given lower and upper address bounds. 232 */ 233 vm_map_t 234 vm_map_create(pmap, min, max) 235 pmap_t pmap; 236 vm_offset_t min, max; 237 { 238 vm_map_t result; 239 240 result = zalloc(mapzone); 241 vm_map_init(result, min, max); 242 result->pmap = pmap; 243 return (result); 244 } 245 246 /* 247 * Initialize an existing vm_map structure 248 * such as that in the vmspace structure. 249 * The pmap is set elsewhere. 250 */ 251 void 252 vm_map_init(map, min, max) 253 struct vm_map *map; 254 vm_offset_t min, max; 255 { 256 map->header.next = map->header.prev = &map->header; 257 map->nentries = 0; 258 map->size = 0; 259 map->system_map = 0; 260 map->min_offset = min; 261 map->max_offset = max; 262 map->first_free = &map->header; 263 map->hint = &map->header; 264 map->timestamp = 0; 265 lockinit(&map->lock, PVM, "thrd_sleep", 0, LK_NOPAUSE); 266 } 267 268 /* 269 * vm_map_entry_dispose: [ internal use only ] 270 * 271 * Inverse of vm_map_entry_create. 272 */ 273 static void 274 vm_map_entry_dispose(map, entry) 275 vm_map_t map; 276 vm_map_entry_t entry; 277 { 278 zfree((map->system_map || !mapentzone) ? kmapentzone : mapentzone, entry); 279 } 280 281 /* 282 * vm_map_entry_create: [ internal use only ] 283 * 284 * Allocates a VM map entry for insertion. 285 * No entry fields are filled in. This routine is 286 */ 287 static vm_map_entry_t 288 vm_map_entry_create(map) 289 vm_map_t map; 290 { 291 return zalloc((map->system_map || !mapentzone) ? kmapentzone : mapentzone); 292 } 293 294 /* 295 * vm_map_entry_{un,}link: 296 * 297 * Insert/remove entries from maps. 298 */ 299 static __inline void 300 vm_map_entry_link(vm_map_t map, 301 vm_map_entry_t after_where, 302 vm_map_entry_t entry) 303 { 304 map->nentries++; 305 entry->prev = after_where; 306 entry->next = after_where->next; 307 entry->next->prev = entry; 308 after_where->next = entry; 309 } 310 311 static __inline void 312 vm_map_entry_unlink(vm_map_t map, 313 vm_map_entry_t entry) 314 { 315 vm_map_entry_t prev = entry->prev; 316 vm_map_entry_t next = entry->next; 317 318 next->prev = prev; 319 prev->next = next; 320 map->nentries--; 321 } 322 323 /* 324 * SAVE_HINT: 325 * 326 * Saves the specified entry as the hint for 327 * future lookups. 328 */ 329 #define SAVE_HINT(map,value) \ 330 (map)->hint = (value); 331 332 /* 333 * vm_map_lookup_entry: [ internal use only ] 334 * 335 * Finds the map entry containing (or 336 * immediately preceding) the specified address 337 * in the given map; the entry is returned 338 * in the "entry" parameter. The boolean 339 * result indicates whether the address is 340 * actually contained in the map. 341 */ 342 boolean_t 343 vm_map_lookup_entry(map, address, entry) 344 vm_map_t map; 345 vm_offset_t address; 346 vm_map_entry_t *entry; /* OUT */ 347 { 348 vm_map_entry_t cur; 349 vm_map_entry_t last; 350 351 /* 352 * Start looking either from the head of the list, or from the hint. 353 */ 354 355 cur = map->hint; 356 357 if (cur == &map->header) 358 cur = cur->next; 359 360 if (address >= cur->start) { 361 /* 362 * Go from hint to end of list. 363 * 364 * But first, make a quick check to see if we are already looking 365 * at the entry we want (which is usually the case). Note also 366 * that we don't need to save the hint here... it is the same 367 * hint (unless we are at the header, in which case the hint 368 * didn't buy us anything anyway). 369 */ 370 last = &map->header; 371 if ((cur != last) && (cur->end > address)) { 372 *entry = cur; 373 return (TRUE); 374 } 375 } else { 376 /* 377 * Go from start to hint, *inclusively* 378 */ 379 last = cur->next; 380 cur = map->header.next; 381 } 382 383 /* 384 * Search linearly 385 */ 386 387 while (cur != last) { 388 if (cur->end > address) { 389 if (address >= cur->start) { 390 /* 391 * Save this lookup for future hints, and 392 * return 393 */ 394 395 *entry = cur; 396 SAVE_HINT(map, cur); 397 return (TRUE); 398 } 399 break; 400 } 401 cur = cur->next; 402 } 403 *entry = cur->prev; 404 SAVE_HINT(map, *entry); 405 return (FALSE); 406 } 407 408 /* 409 * vm_map_insert: 410 * 411 * Inserts the given whole VM object into the target 412 * map at the specified address range. The object's 413 * size should match that of the address range. 414 * 415 * Requires that the map be locked, and leaves it so. 416 * 417 * If object is non-NULL, ref count must be bumped by caller 418 * prior to making call to account for the new entry. 419 */ 420 int 421 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 422 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, 423 int cow) 424 { 425 vm_map_entry_t new_entry; 426 vm_map_entry_t prev_entry; 427 vm_map_entry_t temp_entry; 428 u_char protoeflags; 429 430 /* 431 * Check that the start and end points are not bogus. 432 */ 433 434 if ((start < map->min_offset) || (end > map->max_offset) || 435 (start >= end)) 436 return (KERN_INVALID_ADDRESS); 437 438 /* 439 * Find the entry prior to the proposed starting address; if it's part 440 * of an existing entry, this range is bogus. 441 */ 442 443 if (vm_map_lookup_entry(map, start, &temp_entry)) 444 return (KERN_NO_SPACE); 445 446 prev_entry = temp_entry; 447 448 /* 449 * Assert that the next entry doesn't overlap the end point. 450 */ 451 452 if ((prev_entry->next != &map->header) && 453 (prev_entry->next->start < end)) 454 return (KERN_NO_SPACE); 455 456 protoeflags = 0; 457 458 if (cow & MAP_COPY_ON_WRITE) 459 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY; 460 461 if (cow & MAP_NOFAULT) { 462 protoeflags |= MAP_ENTRY_NOFAULT; 463 464 KASSERT(object == NULL, 465 ("vm_map_insert: paradoxical MAP_NOFAULT request")); 466 } 467 if (object) { 468 /* 469 * When object is non-NULL, it could be shared with another 470 * process. We have to set or clear OBJ_ONEMAPPING 471 * appropriately. 472 */ 473 if ((object->ref_count > 1) || (object->shadow_count != 0)) { 474 vm_object_clear_flag(object, OBJ_ONEMAPPING); 475 } 476 } 477 else if ((prev_entry != &map->header) && 478 (prev_entry->eflags == protoeflags) && 479 (prev_entry->end == start) && 480 (prev_entry->wired_count == 0) && 481 ((prev_entry->object.vm_object == NULL) || 482 vm_object_coalesce(prev_entry->object.vm_object, 483 OFF_TO_IDX(prev_entry->offset), 484 (vm_size_t)(prev_entry->end - prev_entry->start), 485 (vm_size_t)(end - prev_entry->end)))) { 486 /* 487 * We were able to extend the object. Determine if we 488 * can extend the previous map entry to include the 489 * new range as well. 490 */ 491 if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) && 492 (prev_entry->protection == prot) && 493 (prev_entry->max_protection == max)) { 494 map->size += (end - prev_entry->end); 495 prev_entry->end = end; 496 return (KERN_SUCCESS); 497 } 498 499 /* 500 * If we can extend the object but cannot extend the 501 * map entry, we have to create a new map entry. We 502 * must bump the ref count on the extended object to 503 * account for it. 504 */ 505 object = prev_entry->object.vm_object; 506 offset = prev_entry->offset + 507 (prev_entry->end - prev_entry->start); 508 vm_object_reference(object); 509 } 510 511 /* 512 * NOTE: if conditionals fail, object can be NULL here. This occurs 513 * in things like the buffer map where we manage kva but do not manage 514 * backing objects. 515 */ 516 517 /* 518 * Create a new entry 519 */ 520 521 new_entry = vm_map_entry_create(map); 522 new_entry->start = start; 523 new_entry->end = end; 524 525 new_entry->eflags = protoeflags; 526 new_entry->object.vm_object = object; 527 new_entry->offset = offset; 528 new_entry->avail_ssize = 0; 529 530 new_entry->inheritance = VM_INHERIT_DEFAULT; 531 new_entry->protection = prot; 532 new_entry->max_protection = max; 533 new_entry->wired_count = 0; 534 535 /* 536 * Insert the new entry into the list 537 */ 538 539 vm_map_entry_link(map, prev_entry, new_entry); 540 map->size += new_entry->end - new_entry->start; 541 542 /* 543 * Update the free space hint 544 */ 545 if ((map->first_free == prev_entry) && 546 (prev_entry->end >= new_entry->start)) 547 map->first_free = new_entry; 548 549 if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) 550 pmap_object_init_pt(map->pmap, start, 551 object, OFF_TO_IDX(offset), end - start, 552 cow & MAP_PREFAULT_PARTIAL); 553 554 return (KERN_SUCCESS); 555 } 556 557 /* 558 * Find sufficient space for `length' bytes in the given map, starting at 559 * `start'. The map must be locked. Returns 0 on success, 1 on no space. 560 */ 561 int 562 vm_map_findspace(map, start, length, addr) 563 vm_map_t map; 564 vm_offset_t start; 565 vm_size_t length; 566 vm_offset_t *addr; 567 { 568 vm_map_entry_t entry, next; 569 vm_offset_t end; 570 571 if (start < map->min_offset) 572 start = map->min_offset; 573 if (start > map->max_offset) 574 return (1); 575 576 /* 577 * Look for the first possible address; if there's already something 578 * at this address, we have to start after it. 579 */ 580 if (start == map->min_offset) { 581 if ((entry = map->first_free) != &map->header) 582 start = entry->end; 583 } else { 584 vm_map_entry_t tmp; 585 586 if (vm_map_lookup_entry(map, start, &tmp)) 587 start = tmp->end; 588 entry = tmp; 589 } 590 591 /* 592 * Look through the rest of the map, trying to fit a new region in the 593 * gap between existing regions, or after the very last region. 594 */ 595 for (;; start = (entry = next)->end) { 596 /* 597 * Find the end of the proposed new region. Be sure we didn't 598 * go beyond the end of the map, or wrap around the address; 599 * if so, we lose. Otherwise, if this is the last entry, or 600 * if the proposed new region fits before the next entry, we 601 * win. 602 */ 603 end = start + length; 604 if (end > map->max_offset || end < start) 605 return (1); 606 next = entry->next; 607 if (next == &map->header || next->start >= end) 608 break; 609 } 610 SAVE_HINT(map, entry); 611 *addr = start; 612 if (map == kernel_map) { 613 vm_offset_t ksize; 614 if ((ksize = round_page(start + length)) > kernel_vm_end) { 615 pmap_growkernel(ksize); 616 } 617 } 618 return (0); 619 } 620 621 /* 622 * vm_map_find finds an unallocated region in the target address 623 * map with the given length. The search is defined to be 624 * first-fit from the specified address; the region found is 625 * returned in the same parameter. 626 * 627 * If object is non-NULL, ref count must be bumped by caller 628 * prior to making call to account for the new entry. 629 */ 630 int 631 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 632 vm_offset_t *addr, /* IN/OUT */ 633 vm_size_t length, boolean_t find_space, vm_prot_t prot, 634 vm_prot_t max, int cow) 635 { 636 vm_offset_t start; 637 int result, s = 0; 638 639 start = *addr; 640 641 if (map == kmem_map || map == mb_map) 642 s = splvm(); 643 644 vm_map_lock(map); 645 if (find_space) { 646 if (vm_map_findspace(map, start, length, addr)) { 647 vm_map_unlock(map); 648 if (map == kmem_map || map == mb_map) 649 splx(s); 650 return (KERN_NO_SPACE); 651 } 652 start = *addr; 653 } 654 result = vm_map_insert(map, object, offset, 655 start, start + length, prot, max, cow); 656 vm_map_unlock(map); 657 658 if (map == kmem_map || map == mb_map) 659 splx(s); 660 661 return (result); 662 } 663 664 /* 665 * vm_map_simplify_entry: 666 * 667 * Simplify the given map entry by merging with either neighbor. 668 */ 669 void 670 vm_map_simplify_entry(map, entry) 671 vm_map_t map; 672 vm_map_entry_t entry; 673 { 674 vm_map_entry_t next, prev; 675 vm_size_t prevsize, esize; 676 677 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 678 return; 679 680 prev = entry->prev; 681 if (prev != &map->header) { 682 prevsize = prev->end - prev->start; 683 if ( (prev->end == entry->start) && 684 (prev->object.vm_object == entry->object.vm_object) && 685 (!prev->object.vm_object || 686 (prev->offset + prevsize == entry->offset)) && 687 (prev->eflags == entry->eflags) && 688 (prev->protection == entry->protection) && 689 (prev->max_protection == entry->max_protection) && 690 (prev->inheritance == entry->inheritance) && 691 (prev->wired_count == entry->wired_count)) { 692 if (map->first_free == prev) 693 map->first_free = entry; 694 if (map->hint == prev) 695 map->hint = entry; 696 vm_map_entry_unlink(map, prev); 697 entry->start = prev->start; 698 entry->offset = prev->offset; 699 if (prev->object.vm_object) 700 vm_object_deallocate(prev->object.vm_object); 701 vm_map_entry_dispose(map, prev); 702 } 703 } 704 705 next = entry->next; 706 if (next != &map->header) { 707 esize = entry->end - entry->start; 708 if ((entry->end == next->start) && 709 (next->object.vm_object == entry->object.vm_object) && 710 (!entry->object.vm_object || 711 (entry->offset + esize == next->offset)) && 712 (next->eflags == entry->eflags) && 713 (next->protection == entry->protection) && 714 (next->max_protection == entry->max_protection) && 715 (next->inheritance == entry->inheritance) && 716 (next->wired_count == entry->wired_count)) { 717 if (map->first_free == next) 718 map->first_free = entry; 719 if (map->hint == next) 720 map->hint = entry; 721 vm_map_entry_unlink(map, next); 722 entry->end = next->end; 723 if (next->object.vm_object) 724 vm_object_deallocate(next->object.vm_object); 725 vm_map_entry_dispose(map, next); 726 } 727 } 728 } 729 /* 730 * vm_map_clip_start: [ internal use only ] 731 * 732 * Asserts that the given entry begins at or after 733 * the specified address; if necessary, 734 * it splits the entry into two. 735 */ 736 #define vm_map_clip_start(map, entry, startaddr) \ 737 { \ 738 if (startaddr > entry->start) \ 739 _vm_map_clip_start(map, entry, startaddr); \ 740 } 741 742 /* 743 * This routine is called only when it is known that 744 * the entry must be split. 745 */ 746 static void 747 _vm_map_clip_start(map, entry, start) 748 vm_map_t map; 749 vm_map_entry_t entry; 750 vm_offset_t start; 751 { 752 vm_map_entry_t new_entry; 753 754 /* 755 * Split off the front portion -- note that we must insert the new 756 * entry BEFORE this one, so that this entry has the specified 757 * starting address. 758 */ 759 760 vm_map_simplify_entry(map, entry); 761 762 /* 763 * If there is no object backing this entry, we might as well create 764 * one now. If we defer it, an object can get created after the map 765 * is clipped, and individual objects will be created for the split-up 766 * map. This is a bit of a hack, but is also about the best place to 767 * put this improvement. 768 */ 769 770 if (entry->object.vm_object == NULL) { 771 vm_object_t object; 772 object = vm_object_allocate(OBJT_DEFAULT, 773 atop(entry->end - entry->start)); 774 entry->object.vm_object = object; 775 entry->offset = 0; 776 } 777 778 new_entry = vm_map_entry_create(map); 779 *new_entry = *entry; 780 781 new_entry->end = start; 782 entry->offset += (start - entry->start); 783 entry->start = start; 784 785 vm_map_entry_link(map, entry->prev, new_entry); 786 787 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 788 vm_object_reference(new_entry->object.vm_object); 789 } 790 } 791 792 /* 793 * vm_map_clip_end: [ internal use only ] 794 * 795 * Asserts that the given entry ends at or before 796 * the specified address; if necessary, 797 * it splits the entry into two. 798 */ 799 800 #define vm_map_clip_end(map, entry, endaddr) \ 801 { \ 802 if (endaddr < entry->end) \ 803 _vm_map_clip_end(map, entry, endaddr); \ 804 } 805 806 /* 807 * This routine is called only when it is known that 808 * the entry must be split. 809 */ 810 static void 811 _vm_map_clip_end(map, entry, end) 812 vm_map_t map; 813 vm_map_entry_t entry; 814 vm_offset_t end; 815 { 816 vm_map_entry_t new_entry; 817 818 /* 819 * If there is no object backing this entry, we might as well create 820 * one now. If we defer it, an object can get created after the map 821 * is clipped, and individual objects will be created for the split-up 822 * map. This is a bit of a hack, but is also about the best place to 823 * put this improvement. 824 */ 825 826 if (entry->object.vm_object == NULL) { 827 vm_object_t object; 828 object = vm_object_allocate(OBJT_DEFAULT, 829 atop(entry->end - entry->start)); 830 entry->object.vm_object = object; 831 entry->offset = 0; 832 } 833 834 /* 835 * Create a new entry and insert it AFTER the specified entry 836 */ 837 838 new_entry = vm_map_entry_create(map); 839 *new_entry = *entry; 840 841 new_entry->start = entry->end = end; 842 new_entry->offset += (end - entry->start); 843 844 vm_map_entry_link(map, entry, new_entry); 845 846 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 847 vm_object_reference(new_entry->object.vm_object); 848 } 849 } 850 851 /* 852 * VM_MAP_RANGE_CHECK: [ internal use only ] 853 * 854 * Asserts that the starting and ending region 855 * addresses fall within the valid range of the map. 856 */ 857 #define VM_MAP_RANGE_CHECK(map, start, end) \ 858 { \ 859 if (start < vm_map_min(map)) \ 860 start = vm_map_min(map); \ 861 if (end > vm_map_max(map)) \ 862 end = vm_map_max(map); \ 863 if (start > end) \ 864 start = end; \ 865 } 866 867 /* 868 * vm_map_submap: [ kernel use only ] 869 * 870 * Mark the given range as handled by a subordinate map. 871 * 872 * This range must have been created with vm_map_find, 873 * and no other operations may have been performed on this 874 * range prior to calling vm_map_submap. 875 * 876 * Only a limited number of operations can be performed 877 * within this rage after calling vm_map_submap: 878 * vm_fault 879 * [Don't try vm_map_copy!] 880 * 881 * To remove a submapping, one must first remove the 882 * range from the superior map, and then destroy the 883 * submap (if desired). [Better yet, don't try it.] 884 */ 885 int 886 vm_map_submap(map, start, end, submap) 887 vm_map_t map; 888 vm_offset_t start; 889 vm_offset_t end; 890 vm_map_t submap; 891 { 892 vm_map_entry_t entry; 893 int result = KERN_INVALID_ARGUMENT; 894 895 vm_map_lock(map); 896 897 VM_MAP_RANGE_CHECK(map, start, end); 898 899 if (vm_map_lookup_entry(map, start, &entry)) { 900 vm_map_clip_start(map, entry, start); 901 } else 902 entry = entry->next; 903 904 vm_map_clip_end(map, entry, end); 905 906 if ((entry->start == start) && (entry->end == end) && 907 ((entry->eflags & MAP_ENTRY_COW) == 0) && 908 (entry->object.vm_object == NULL)) { 909 entry->object.sub_map = submap; 910 entry->eflags |= MAP_ENTRY_IS_SUB_MAP; 911 result = KERN_SUCCESS; 912 } 913 vm_map_unlock(map); 914 915 return (result); 916 } 917 918 /* 919 * vm_map_protect: 920 * 921 * Sets the protection of the specified address 922 * region in the target map. If "set_max" is 923 * specified, the maximum protection is to be set; 924 * otherwise, only the current protection is affected. 925 */ 926 int 927 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 928 vm_prot_t new_prot, boolean_t set_max) 929 { 930 vm_map_entry_t current; 931 vm_map_entry_t entry; 932 933 vm_map_lock(map); 934 935 VM_MAP_RANGE_CHECK(map, start, end); 936 937 if (vm_map_lookup_entry(map, start, &entry)) { 938 vm_map_clip_start(map, entry, start); 939 } else { 940 entry = entry->next; 941 } 942 943 /* 944 * Make a first pass to check for protection violations. 945 */ 946 947 current = entry; 948 while ((current != &map->header) && (current->start < end)) { 949 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 950 vm_map_unlock(map); 951 return (KERN_INVALID_ARGUMENT); 952 } 953 if ((new_prot & current->max_protection) != new_prot) { 954 vm_map_unlock(map); 955 return (KERN_PROTECTION_FAILURE); 956 } 957 current = current->next; 958 } 959 960 /* 961 * Go back and fix up protections. [Note that clipping is not 962 * necessary the second time.] 963 */ 964 965 current = entry; 966 967 while ((current != &map->header) && (current->start < end)) { 968 vm_prot_t old_prot; 969 970 vm_map_clip_end(map, current, end); 971 972 old_prot = current->protection; 973 if (set_max) 974 current->protection = 975 (current->max_protection = new_prot) & 976 old_prot; 977 else 978 current->protection = new_prot; 979 980 /* 981 * Update physical map if necessary. Worry about copy-on-write 982 * here -- CHECK THIS XXX 983 */ 984 985 if (current->protection != old_prot) { 986 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 987 VM_PROT_ALL) 988 989 pmap_protect(map->pmap, current->start, 990 current->end, 991 current->protection & MASK(current)); 992 #undef MASK 993 } 994 995 vm_map_simplify_entry(map, current); 996 997 current = current->next; 998 } 999 1000 vm_map_unlock(map); 1001 return (KERN_SUCCESS); 1002 } 1003 1004 /* 1005 * vm_map_madvise: 1006 * 1007 * This routine traverses a processes map handling the madvise 1008 * system call. Advisories are classified as either those effecting 1009 * the vm_map_entry structure, or those effecting the underlying 1010 * objects. 1011 */ 1012 void 1013 vm_map_madvise(map, start, end, behav) 1014 vm_map_t map; 1015 vm_offset_t start, end; 1016 int behav; 1017 { 1018 vm_map_entry_t current, entry; 1019 int modify_map; 1020 1021 modify_map = (behav == MADV_NORMAL || behav == MADV_SEQUENTIAL || 1022 behav == MADV_RANDOM); 1023 1024 if (modify_map) { 1025 vm_map_lock(map); 1026 } 1027 else 1028 vm_map_lock_read(map); 1029 1030 VM_MAP_RANGE_CHECK(map, start, end); 1031 1032 if (vm_map_lookup_entry(map, start, &entry)) { 1033 if (modify_map) 1034 vm_map_clip_start(map, entry, start); 1035 } else 1036 entry = entry->next; 1037 1038 if (modify_map) { 1039 /* 1040 * madvise behaviors that are implemented in the vm_map_entry. 1041 * 1042 * We clip the vm_map_entry so that behavioral changes are 1043 * limited to the specified address range. 1044 */ 1045 for (current = entry; 1046 (current != &map->header) && (current->start < end); 1047 current = current->next) { 1048 1049 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 1050 continue; 1051 1052 vm_map_clip_end(map, current, end); 1053 1054 switch (behav) { 1055 case MADV_NORMAL: 1056 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL); 1057 break; 1058 case MADV_SEQUENTIAL: 1059 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL); 1060 break; 1061 case MADV_RANDOM: 1062 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM); 1063 break; 1064 default: 1065 break; 1066 } 1067 vm_map_simplify_entry(map, current); 1068 } 1069 vm_map_unlock(map); 1070 } 1071 else { 1072 if (behav == MADV_FREE || behav == MADV_DONTNEED || 1073 behav == MADV_WILLNEED) { 1074 vm_pindex_t pindex; 1075 int count; 1076 1077 /* 1078 * madvise behaviors that are implemented in the underlying 1079 * vm_object. 1080 * 1081 * Since we don't clip the vm_map_entry, we have to clip 1082 * the vm_object pindex and count. 1083 */ 1084 for (current = entry; 1085 (current != &map->header) && (current->start < end); 1086 current = current->next) { 1087 1088 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 1089 continue; 1090 1091 pindex = OFF_TO_IDX(current->offset); 1092 count = atop(current->end - current->start); 1093 1094 if (current->start < start) { 1095 pindex += atop(start - current->start); 1096 count -= atop(start - current->start); 1097 } 1098 if (current->end > end) 1099 count -= atop(current->end - end); 1100 1101 if (count <= 0) 1102 continue; 1103 1104 vm_object_madvise(current->object.vm_object, 1105 pindex, count, behav); 1106 if (behav == MADV_WILLNEED) 1107 pmap_object_init_pt(map->pmap, current->start, 1108 current->object.vm_object, 1109 pindex, (count << PAGE_SHIFT), 1110 0); 1111 } 1112 } 1113 vm_map_unlock_read(map); 1114 } 1115 } 1116 1117 1118 /* 1119 * vm_map_inherit: 1120 * 1121 * Sets the inheritance of the specified address 1122 * range in the target map. Inheritance 1123 * affects how the map will be shared with 1124 * child maps at the time of vm_map_fork. 1125 */ 1126 int 1127 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 1128 vm_inherit_t new_inheritance) 1129 { 1130 vm_map_entry_t entry; 1131 vm_map_entry_t temp_entry; 1132 1133 switch (new_inheritance) { 1134 case VM_INHERIT_NONE: 1135 case VM_INHERIT_COPY: 1136 case VM_INHERIT_SHARE: 1137 break; 1138 default: 1139 return (KERN_INVALID_ARGUMENT); 1140 } 1141 1142 vm_map_lock(map); 1143 1144 VM_MAP_RANGE_CHECK(map, start, end); 1145 1146 if (vm_map_lookup_entry(map, start, &temp_entry)) { 1147 entry = temp_entry; 1148 vm_map_clip_start(map, entry, start); 1149 } else 1150 entry = temp_entry->next; 1151 1152 while ((entry != &map->header) && (entry->start < end)) { 1153 vm_map_clip_end(map, entry, end); 1154 1155 entry->inheritance = new_inheritance; 1156 1157 vm_map_simplify_entry(map, entry); 1158 1159 entry = entry->next; 1160 } 1161 1162 vm_map_unlock(map); 1163 return (KERN_SUCCESS); 1164 } 1165 1166 /* 1167 * Implement the semantics of mlock 1168 */ 1169 int 1170 vm_map_user_pageable(map, start, end, new_pageable) 1171 vm_map_t map; 1172 vm_offset_t start; 1173 vm_offset_t end; 1174 boolean_t new_pageable; 1175 { 1176 vm_map_entry_t entry; 1177 vm_map_entry_t start_entry; 1178 vm_offset_t estart; 1179 int rv; 1180 1181 vm_map_lock(map); 1182 VM_MAP_RANGE_CHECK(map, start, end); 1183 1184 if (vm_map_lookup_entry(map, start, &start_entry) == FALSE) { 1185 vm_map_unlock(map); 1186 return (KERN_INVALID_ADDRESS); 1187 } 1188 1189 if (new_pageable) { 1190 1191 entry = start_entry; 1192 vm_map_clip_start(map, entry, start); 1193 1194 /* 1195 * Now decrement the wiring count for each region. If a region 1196 * becomes completely unwired, unwire its physical pages and 1197 * mappings. 1198 */ 1199 while ((entry != &map->header) && (entry->start < end)) { 1200 if (entry->eflags & MAP_ENTRY_USER_WIRED) { 1201 vm_map_clip_end(map, entry, end); 1202 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 1203 entry->wired_count--; 1204 if (entry->wired_count == 0) 1205 vm_fault_unwire(map, entry->start, entry->end); 1206 } 1207 vm_map_simplify_entry(map,entry); 1208 entry = entry->next; 1209 } 1210 } else { 1211 1212 entry = start_entry; 1213 1214 while ((entry != &map->header) && (entry->start < end)) { 1215 1216 if (entry->eflags & MAP_ENTRY_USER_WIRED) { 1217 entry = entry->next; 1218 continue; 1219 } 1220 1221 if (entry->wired_count != 0) { 1222 entry->wired_count++; 1223 entry->eflags |= MAP_ENTRY_USER_WIRED; 1224 entry = entry->next; 1225 continue; 1226 } 1227 1228 /* Here on entry being newly wired */ 1229 1230 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1231 int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY; 1232 if (copyflag && ((entry->protection & VM_PROT_WRITE) != 0)) { 1233 1234 vm_object_shadow(&entry->object.vm_object, 1235 &entry->offset, 1236 atop(entry->end - entry->start)); 1237 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 1238 1239 } else if (entry->object.vm_object == NULL) { 1240 1241 entry->object.vm_object = 1242 vm_object_allocate(OBJT_DEFAULT, 1243 atop(entry->end - entry->start)); 1244 entry->offset = (vm_offset_t) 0; 1245 1246 } 1247 } 1248 1249 vm_map_clip_start(map, entry, start); 1250 vm_map_clip_end(map, entry, end); 1251 1252 entry->wired_count++; 1253 entry->eflags |= MAP_ENTRY_USER_WIRED; 1254 estart = entry->start; 1255 1256 /* First we need to allow map modifications */ 1257 vm_map_set_recursive(map); 1258 vm_map_lock_downgrade(map); 1259 map->timestamp++; 1260 1261 rv = vm_fault_user_wire(map, entry->start, entry->end); 1262 if (rv) { 1263 1264 entry->wired_count--; 1265 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 1266 1267 vm_map_clear_recursive(map); 1268 vm_map_unlock(map); 1269 1270 (void) vm_map_user_pageable(map, start, entry->start, TRUE); 1271 return rv; 1272 } 1273 1274 vm_map_clear_recursive(map); 1275 if (vm_map_lock_upgrade(map)) { 1276 vm_map_lock(map); 1277 if (vm_map_lookup_entry(map, estart, &entry) 1278 == FALSE) { 1279 vm_map_unlock(map); 1280 (void) vm_map_user_pageable(map, 1281 start, 1282 estart, 1283 TRUE); 1284 return (KERN_INVALID_ADDRESS); 1285 } 1286 } 1287 vm_map_simplify_entry(map,entry); 1288 } 1289 } 1290 map->timestamp++; 1291 vm_map_unlock(map); 1292 return KERN_SUCCESS; 1293 } 1294 1295 /* 1296 * vm_map_pageable: 1297 * 1298 * Sets the pageability of the specified address 1299 * range in the target map. Regions specified 1300 * as not pageable require locked-down physical 1301 * memory and physical page maps. 1302 * 1303 * The map must not be locked, but a reference 1304 * must remain to the map throughout the call. 1305 */ 1306 int 1307 vm_map_pageable(map, start, end, new_pageable) 1308 vm_map_t map; 1309 vm_offset_t start; 1310 vm_offset_t end; 1311 boolean_t new_pageable; 1312 { 1313 vm_map_entry_t entry; 1314 vm_map_entry_t start_entry; 1315 vm_offset_t failed = 0; 1316 int rv; 1317 1318 vm_map_lock(map); 1319 1320 VM_MAP_RANGE_CHECK(map, start, end); 1321 1322 /* 1323 * Only one pageability change may take place at one time, since 1324 * vm_fault assumes it will be called only once for each 1325 * wiring/unwiring. Therefore, we have to make sure we're actually 1326 * changing the pageability for the entire region. We do so before 1327 * making any changes. 1328 */ 1329 1330 if (vm_map_lookup_entry(map, start, &start_entry) == FALSE) { 1331 vm_map_unlock(map); 1332 return (KERN_INVALID_ADDRESS); 1333 } 1334 entry = start_entry; 1335 1336 /* 1337 * Actions are rather different for wiring and unwiring, so we have 1338 * two separate cases. 1339 */ 1340 1341 if (new_pageable) { 1342 1343 vm_map_clip_start(map, entry, start); 1344 1345 /* 1346 * Unwiring. First ensure that the range to be unwired is 1347 * really wired down and that there are no holes. 1348 */ 1349 while ((entry != &map->header) && (entry->start < end)) { 1350 1351 if (entry->wired_count == 0 || 1352 (entry->end < end && 1353 (entry->next == &map->header || 1354 entry->next->start > entry->end))) { 1355 vm_map_unlock(map); 1356 return (KERN_INVALID_ARGUMENT); 1357 } 1358 entry = entry->next; 1359 } 1360 1361 /* 1362 * Now decrement the wiring count for each region. If a region 1363 * becomes completely unwired, unwire its physical pages and 1364 * mappings. 1365 */ 1366 entry = start_entry; 1367 while ((entry != &map->header) && (entry->start < end)) { 1368 vm_map_clip_end(map, entry, end); 1369 1370 entry->wired_count--; 1371 if (entry->wired_count == 0) 1372 vm_fault_unwire(map, entry->start, entry->end); 1373 1374 vm_map_simplify_entry(map, entry); 1375 1376 entry = entry->next; 1377 } 1378 } else { 1379 /* 1380 * Wiring. We must do this in two passes: 1381 * 1382 * 1. Holding the write lock, we create any shadow or zero-fill 1383 * objects that need to be created. Then we clip each map 1384 * entry to the region to be wired and increment its wiring 1385 * count. We create objects before clipping the map entries 1386 * to avoid object proliferation. 1387 * 1388 * 2. We downgrade to a read lock, and call vm_fault_wire to 1389 * fault in the pages for any newly wired area (wired_count is 1390 * 1). 1391 * 1392 * Downgrading to a read lock for vm_fault_wire avoids a possible 1393 * deadlock with another process that may have faulted on one 1394 * of the pages to be wired (it would mark the page busy, 1395 * blocking us, then in turn block on the map lock that we 1396 * hold). Because of problems in the recursive lock package, 1397 * we cannot upgrade to a write lock in vm_map_lookup. Thus, 1398 * any actions that require the write lock must be done 1399 * beforehand. Because we keep the read lock on the map, the 1400 * copy-on-write status of the entries we modify here cannot 1401 * change. 1402 */ 1403 1404 /* 1405 * Pass 1. 1406 */ 1407 while ((entry != &map->header) && (entry->start < end)) { 1408 if (entry->wired_count == 0) { 1409 1410 /* 1411 * Perform actions of vm_map_lookup that need 1412 * the write lock on the map: create a shadow 1413 * object for a copy-on-write region, or an 1414 * object for a zero-fill region. 1415 * 1416 * We don't have to do this for entries that 1417 * point to sub maps, because we won't 1418 * hold the lock on the sub map. 1419 */ 1420 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1421 int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY; 1422 if (copyflag && 1423 ((entry->protection & VM_PROT_WRITE) != 0)) { 1424 1425 vm_object_shadow(&entry->object.vm_object, 1426 &entry->offset, 1427 atop(entry->end - entry->start)); 1428 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 1429 } else if (entry->object.vm_object == NULL) { 1430 entry->object.vm_object = 1431 vm_object_allocate(OBJT_DEFAULT, 1432 atop(entry->end - entry->start)); 1433 entry->offset = (vm_offset_t) 0; 1434 } 1435 } 1436 } 1437 vm_map_clip_start(map, entry, start); 1438 vm_map_clip_end(map, entry, end); 1439 entry->wired_count++; 1440 1441 /* 1442 * Check for holes 1443 */ 1444 if (entry->end < end && 1445 (entry->next == &map->header || 1446 entry->next->start > entry->end)) { 1447 /* 1448 * Found one. Object creation actions do not 1449 * need to be undone, but the wired counts 1450 * need to be restored. 1451 */ 1452 while (entry != &map->header && entry->end > start) { 1453 entry->wired_count--; 1454 entry = entry->prev; 1455 } 1456 vm_map_unlock(map); 1457 return (KERN_INVALID_ARGUMENT); 1458 } 1459 entry = entry->next; 1460 } 1461 1462 /* 1463 * Pass 2. 1464 */ 1465 1466 /* 1467 * HACK HACK HACK HACK 1468 * 1469 * If we are wiring in the kernel map or a submap of it, 1470 * unlock the map to avoid deadlocks. We trust that the 1471 * kernel is well-behaved, and therefore will not do 1472 * anything destructive to this region of the map while 1473 * we have it unlocked. We cannot trust user processes 1474 * to do the same. 1475 * 1476 * HACK HACK HACK HACK 1477 */ 1478 if (vm_map_pmap(map) == kernel_pmap) { 1479 vm_map_unlock(map); /* trust me ... */ 1480 } else { 1481 vm_map_set_recursive(map); 1482 vm_map_lock_downgrade(map); 1483 } 1484 1485 rv = 0; 1486 entry = start_entry; 1487 while (entry != &map->header && entry->start < end) { 1488 /* 1489 * If vm_fault_wire fails for any page we need to undo 1490 * what has been done. We decrement the wiring count 1491 * for those pages which have not yet been wired (now) 1492 * and unwire those that have (later). 1493 * 1494 * XXX this violates the locking protocol on the map, 1495 * needs to be fixed. 1496 */ 1497 if (rv) 1498 entry->wired_count--; 1499 else if (entry->wired_count == 1) { 1500 rv = vm_fault_wire(map, entry->start, entry->end); 1501 if (rv) { 1502 failed = entry->start; 1503 entry->wired_count--; 1504 } 1505 } 1506 entry = entry->next; 1507 } 1508 1509 if (vm_map_pmap(map) == kernel_pmap) { 1510 vm_map_lock(map); 1511 } else { 1512 vm_map_clear_recursive(map); 1513 } 1514 if (rv) { 1515 vm_map_unlock(map); 1516 (void) vm_map_pageable(map, start, failed, TRUE); 1517 return (rv); 1518 } 1519 vm_map_simplify_entry(map, start_entry); 1520 } 1521 1522 vm_map_unlock(map); 1523 1524 return (KERN_SUCCESS); 1525 } 1526 1527 /* 1528 * vm_map_clean 1529 * 1530 * Push any dirty cached pages in the address range to their pager. 1531 * If syncio is TRUE, dirty pages are written synchronously. 1532 * If invalidate is TRUE, any cached pages are freed as well. 1533 * 1534 * Returns an error if any part of the specified range is not mapped. 1535 */ 1536 int 1537 vm_map_clean(map, start, end, syncio, invalidate) 1538 vm_map_t map; 1539 vm_offset_t start; 1540 vm_offset_t end; 1541 boolean_t syncio; 1542 boolean_t invalidate; 1543 { 1544 vm_map_entry_t current; 1545 vm_map_entry_t entry; 1546 vm_size_t size; 1547 vm_object_t object; 1548 vm_ooffset_t offset; 1549 1550 vm_map_lock_read(map); 1551 VM_MAP_RANGE_CHECK(map, start, end); 1552 if (!vm_map_lookup_entry(map, start, &entry)) { 1553 vm_map_unlock_read(map); 1554 return (KERN_INVALID_ADDRESS); 1555 } 1556 /* 1557 * Make a first pass to check for holes. 1558 */ 1559 for (current = entry; current->start < end; current = current->next) { 1560 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 1561 vm_map_unlock_read(map); 1562 return (KERN_INVALID_ARGUMENT); 1563 } 1564 if (end > current->end && 1565 (current->next == &map->header || 1566 current->end != current->next->start)) { 1567 vm_map_unlock_read(map); 1568 return (KERN_INVALID_ADDRESS); 1569 } 1570 } 1571 1572 if (invalidate) 1573 pmap_remove(vm_map_pmap(map), start, end); 1574 /* 1575 * Make a second pass, cleaning/uncaching pages from the indicated 1576 * objects as we go. 1577 */ 1578 for (current = entry; current->start < end; current = current->next) { 1579 offset = current->offset + (start - current->start); 1580 size = (end <= current->end ? end : current->end) - start; 1581 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 1582 vm_map_t smap; 1583 vm_map_entry_t tentry; 1584 vm_size_t tsize; 1585 1586 smap = current->object.sub_map; 1587 vm_map_lock_read(smap); 1588 (void) vm_map_lookup_entry(smap, offset, &tentry); 1589 tsize = tentry->end - offset; 1590 if (tsize < size) 1591 size = tsize; 1592 object = tentry->object.vm_object; 1593 offset = tentry->offset + (offset - tentry->start); 1594 vm_map_unlock_read(smap); 1595 } else { 1596 object = current->object.vm_object; 1597 } 1598 /* 1599 * Note that there is absolutely no sense in writing out 1600 * anonymous objects, so we track down the vnode object 1601 * to write out. 1602 * We invalidate (remove) all pages from the address space 1603 * anyway, for semantic correctness. 1604 */ 1605 while (object->backing_object) { 1606 object = object->backing_object; 1607 offset += object->backing_object_offset; 1608 if (object->size < OFF_TO_IDX( offset + size)) 1609 size = IDX_TO_OFF(object->size) - offset; 1610 } 1611 if (object && (object->type == OBJT_VNODE)) { 1612 /* 1613 * Flush pages if writing is allowed. XXX should we continue 1614 * on an error? 1615 * 1616 * XXX Doing async I/O and then removing all the pages from 1617 * the object before it completes is probably a very bad 1618 * idea. 1619 */ 1620 if (current->protection & VM_PROT_WRITE) { 1621 int flags; 1622 if (object->type == OBJT_VNODE) 1623 vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY, curproc); 1624 flags = (syncio || invalidate) ? OBJPC_SYNC : 0; 1625 flags |= invalidate ? OBJPC_INVAL : 0; 1626 vm_object_page_clean(object, 1627 OFF_TO_IDX(offset), 1628 OFF_TO_IDX(offset + size + PAGE_MASK), 1629 flags); 1630 if (invalidate) { 1631 vm_object_pip_wait(object, "objmcl"); 1632 vm_object_page_remove(object, 1633 OFF_TO_IDX(offset), 1634 OFF_TO_IDX(offset + size + PAGE_MASK), 1635 FALSE); 1636 } 1637 if (object->type == OBJT_VNODE) 1638 VOP_UNLOCK(object->handle, 0, curproc); 1639 } 1640 } 1641 start += size; 1642 } 1643 1644 vm_map_unlock_read(map); 1645 return (KERN_SUCCESS); 1646 } 1647 1648 /* 1649 * vm_map_entry_unwire: [ internal use only ] 1650 * 1651 * Make the region specified by this entry pageable. 1652 * 1653 * The map in question should be locked. 1654 * [This is the reason for this routine's existence.] 1655 */ 1656 static void 1657 vm_map_entry_unwire(map, entry) 1658 vm_map_t map; 1659 vm_map_entry_t entry; 1660 { 1661 vm_fault_unwire(map, entry->start, entry->end); 1662 entry->wired_count = 0; 1663 } 1664 1665 /* 1666 * vm_map_entry_delete: [ internal use only ] 1667 * 1668 * Deallocate the given entry from the target map. 1669 */ 1670 static void 1671 vm_map_entry_delete(map, entry) 1672 vm_map_t map; 1673 vm_map_entry_t entry; 1674 { 1675 vm_map_entry_unlink(map, entry); 1676 map->size -= entry->end - entry->start; 1677 1678 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1679 vm_object_deallocate(entry->object.vm_object); 1680 } 1681 1682 vm_map_entry_dispose(map, entry); 1683 } 1684 1685 /* 1686 * vm_map_delete: [ internal use only ] 1687 * 1688 * Deallocates the given address range from the target 1689 * map. 1690 */ 1691 int 1692 vm_map_delete(map, start, end) 1693 vm_map_t map; 1694 vm_offset_t start; 1695 vm_offset_t end; 1696 { 1697 vm_object_t object; 1698 vm_map_entry_t entry; 1699 vm_map_entry_t first_entry; 1700 1701 /* 1702 * Find the start of the region, and clip it 1703 */ 1704 1705 if (!vm_map_lookup_entry(map, start, &first_entry)) 1706 entry = first_entry->next; 1707 else { 1708 entry = first_entry; 1709 vm_map_clip_start(map, entry, start); 1710 /* 1711 * Fix the lookup hint now, rather than each time though the 1712 * loop. 1713 */ 1714 SAVE_HINT(map, entry->prev); 1715 } 1716 1717 /* 1718 * Save the free space hint 1719 */ 1720 1721 if (entry == &map->header) { 1722 map->first_free = &map->header; 1723 } else if (map->first_free->start >= start) { 1724 map->first_free = entry->prev; 1725 } 1726 1727 /* 1728 * Step through all entries in this region 1729 */ 1730 1731 while ((entry != &map->header) && (entry->start < end)) { 1732 vm_map_entry_t next; 1733 vm_offset_t s, e; 1734 vm_pindex_t offidxstart, offidxend, count; 1735 1736 vm_map_clip_end(map, entry, end); 1737 1738 s = entry->start; 1739 e = entry->end; 1740 next = entry->next; 1741 1742 offidxstart = OFF_TO_IDX(entry->offset); 1743 count = OFF_TO_IDX(e - s); 1744 object = entry->object.vm_object; 1745 1746 /* 1747 * Unwire before removing addresses from the pmap; otherwise, 1748 * unwiring will put the entries back in the pmap. 1749 */ 1750 if (entry->wired_count != 0) { 1751 vm_map_entry_unwire(map, entry); 1752 } 1753 1754 offidxend = offidxstart + count; 1755 1756 if ((object == kernel_object) || (object == kmem_object)) { 1757 vm_object_page_remove(object, offidxstart, offidxend, FALSE); 1758 } else { 1759 pmap_remove(map->pmap, s, e); 1760 if (object != NULL && 1761 object->ref_count != 1 && 1762 (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING && 1763 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) { 1764 vm_object_collapse(object); 1765 vm_object_page_remove(object, offidxstart, offidxend, FALSE); 1766 if (object->type == OBJT_SWAP) { 1767 swap_pager_freespace(object, offidxstart, count); 1768 } 1769 if (offidxend >= object->size && 1770 offidxstart < object->size) { 1771 object->size = offidxstart; 1772 } 1773 } 1774 } 1775 1776 /* 1777 * Delete the entry (which may delete the object) only after 1778 * removing all pmap entries pointing to its pages. 1779 * (Otherwise, its page frames may be reallocated, and any 1780 * modify bits will be set in the wrong object!) 1781 */ 1782 vm_map_entry_delete(map, entry); 1783 entry = next; 1784 } 1785 return (KERN_SUCCESS); 1786 } 1787 1788 /* 1789 * vm_map_remove: 1790 * 1791 * Remove the given address range from the target map. 1792 * This is the exported form of vm_map_delete. 1793 */ 1794 int 1795 vm_map_remove(map, start, end) 1796 vm_map_t map; 1797 vm_offset_t start; 1798 vm_offset_t end; 1799 { 1800 int result, s = 0; 1801 1802 if (map == kmem_map || map == mb_map) 1803 s = splvm(); 1804 1805 vm_map_lock(map); 1806 VM_MAP_RANGE_CHECK(map, start, end); 1807 result = vm_map_delete(map, start, end); 1808 vm_map_unlock(map); 1809 1810 if (map == kmem_map || map == mb_map) 1811 splx(s); 1812 1813 return (result); 1814 } 1815 1816 /* 1817 * vm_map_check_protection: 1818 * 1819 * Assert that the target map allows the specified 1820 * privilege on the entire address region given. 1821 * The entire region must be allocated. 1822 */ 1823 boolean_t 1824 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 1825 vm_prot_t protection) 1826 { 1827 vm_map_entry_t entry; 1828 vm_map_entry_t tmp_entry; 1829 1830 if (!vm_map_lookup_entry(map, start, &tmp_entry)) { 1831 return (FALSE); 1832 } 1833 entry = tmp_entry; 1834 1835 while (start < end) { 1836 if (entry == &map->header) { 1837 return (FALSE); 1838 } 1839 /* 1840 * No holes allowed! 1841 */ 1842 1843 if (start < entry->start) { 1844 return (FALSE); 1845 } 1846 /* 1847 * Check protection associated with entry. 1848 */ 1849 1850 if ((entry->protection & protection) != protection) { 1851 return (FALSE); 1852 } 1853 /* go to next entry */ 1854 1855 start = entry->end; 1856 entry = entry->next; 1857 } 1858 return (TRUE); 1859 } 1860 1861 /* 1862 * Split the pages in a map entry into a new object. This affords 1863 * easier removal of unused pages, and keeps object inheritance from 1864 * being a negative impact on memory usage. 1865 */ 1866 static void 1867 vm_map_split(entry) 1868 vm_map_entry_t entry; 1869 { 1870 vm_page_t m; 1871 vm_object_t orig_object, new_object, source; 1872 vm_offset_t s, e; 1873 vm_pindex_t offidxstart, offidxend, idx; 1874 vm_size_t size; 1875 vm_ooffset_t offset; 1876 1877 orig_object = entry->object.vm_object; 1878 if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP) 1879 return; 1880 if (orig_object->ref_count <= 1) 1881 return; 1882 1883 offset = entry->offset; 1884 s = entry->start; 1885 e = entry->end; 1886 1887 offidxstart = OFF_TO_IDX(offset); 1888 offidxend = offidxstart + OFF_TO_IDX(e - s); 1889 size = offidxend - offidxstart; 1890 1891 new_object = vm_pager_allocate(orig_object->type, 1892 NULL, IDX_TO_OFF(size), VM_PROT_ALL, 0LL); 1893 if (new_object == NULL) 1894 return; 1895 1896 source = orig_object->backing_object; 1897 if (source != NULL) { 1898 vm_object_reference(source); /* Referenced by new_object */ 1899 TAILQ_INSERT_TAIL(&source->shadow_head, 1900 new_object, shadow_list); 1901 vm_object_clear_flag(source, OBJ_ONEMAPPING); 1902 new_object->backing_object_offset = 1903 orig_object->backing_object_offset + IDX_TO_OFF(offidxstart); 1904 new_object->backing_object = source; 1905 source->shadow_count++; 1906 source->generation++; 1907 } 1908 1909 for (idx = 0; idx < size; idx++) { 1910 vm_page_t m; 1911 1912 retry: 1913 m = vm_page_lookup(orig_object, offidxstart + idx); 1914 if (m == NULL) 1915 continue; 1916 1917 /* 1918 * We must wait for pending I/O to complete before we can 1919 * rename the page. 1920 * 1921 * We do not have to VM_PROT_NONE the page as mappings should 1922 * not be changed by this operation. 1923 */ 1924 if (vm_page_sleep_busy(m, TRUE, "spltwt")) 1925 goto retry; 1926 1927 vm_page_busy(m); 1928 vm_page_rename(m, new_object, idx); 1929 /* page automatically made dirty by rename and cache handled */ 1930 vm_page_busy(m); 1931 } 1932 1933 if (orig_object->type == OBJT_SWAP) { 1934 vm_object_pip_add(orig_object, 1); 1935 /* 1936 * copy orig_object pages into new_object 1937 * and destroy unneeded pages in 1938 * shadow object. 1939 */ 1940 swap_pager_copy(orig_object, new_object, offidxstart, 0); 1941 vm_object_pip_wakeup(orig_object); 1942 } 1943 1944 for (idx = 0; idx < size; idx++) { 1945 m = vm_page_lookup(new_object, idx); 1946 if (m) { 1947 vm_page_wakeup(m); 1948 } 1949 } 1950 1951 entry->object.vm_object = new_object; 1952 entry->offset = 0LL; 1953 vm_object_deallocate(orig_object); 1954 } 1955 1956 /* 1957 * vm_map_copy_entry: 1958 * 1959 * Copies the contents of the source entry to the destination 1960 * entry. The entries *must* be aligned properly. 1961 */ 1962 static void 1963 vm_map_copy_entry(src_map, dst_map, src_entry, dst_entry) 1964 vm_map_t src_map, dst_map; 1965 vm_map_entry_t src_entry, dst_entry; 1966 { 1967 vm_object_t src_object; 1968 1969 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP) 1970 return; 1971 1972 if (src_entry->wired_count == 0) { 1973 1974 /* 1975 * If the source entry is marked needs_copy, it is already 1976 * write-protected. 1977 */ 1978 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) { 1979 pmap_protect(src_map->pmap, 1980 src_entry->start, 1981 src_entry->end, 1982 src_entry->protection & ~VM_PROT_WRITE); 1983 } 1984 1985 /* 1986 * Make a copy of the object. 1987 */ 1988 if ((src_object = src_entry->object.vm_object) != NULL) { 1989 1990 if ((src_object->handle == NULL) && 1991 (src_object->type == OBJT_DEFAULT || 1992 src_object->type == OBJT_SWAP)) { 1993 vm_object_collapse(src_object); 1994 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) { 1995 vm_map_split(src_entry); 1996 src_object = src_entry->object.vm_object; 1997 } 1998 } 1999 2000 vm_object_reference(src_object); 2001 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 2002 dst_entry->object.vm_object = src_object; 2003 src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 2004 dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 2005 dst_entry->offset = src_entry->offset; 2006 } else { 2007 dst_entry->object.vm_object = NULL; 2008 dst_entry->offset = 0; 2009 } 2010 2011 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start, 2012 dst_entry->end - dst_entry->start, src_entry->start); 2013 } else { 2014 /* 2015 * Of course, wired down pages can't be set copy-on-write. 2016 * Cause wired pages to be copied into the new map by 2017 * simulating faults (the new pages are pageable) 2018 */ 2019 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry); 2020 } 2021 } 2022 2023 /* 2024 * vmspace_fork: 2025 * Create a new process vmspace structure and vm_map 2026 * based on those of an existing process. The new map 2027 * is based on the old map, according to the inheritance 2028 * values on the regions in that map. 2029 * 2030 * The source map must not be locked. 2031 */ 2032 struct vmspace * 2033 vmspace_fork(vm1) 2034 struct vmspace *vm1; 2035 { 2036 struct vmspace *vm2; 2037 vm_map_t old_map = &vm1->vm_map; 2038 vm_map_t new_map; 2039 vm_map_entry_t old_entry; 2040 vm_map_entry_t new_entry; 2041 vm_object_t object; 2042 2043 vm_map_lock(old_map); 2044 2045 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset); 2046 bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy, 2047 (caddr_t) (vm1 + 1) - (caddr_t) &vm1->vm_startcopy); 2048 new_map = &vm2->vm_map; /* XXX */ 2049 new_map->timestamp = 1; 2050 2051 old_entry = old_map->header.next; 2052 2053 while (old_entry != &old_map->header) { 2054 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2055 panic("vm_map_fork: encountered a submap"); 2056 2057 switch (old_entry->inheritance) { 2058 case VM_INHERIT_NONE: 2059 break; 2060 2061 case VM_INHERIT_SHARE: 2062 /* 2063 * Clone the entry, creating the shared object if necessary. 2064 */ 2065 object = old_entry->object.vm_object; 2066 if (object == NULL) { 2067 object = vm_object_allocate(OBJT_DEFAULT, 2068 atop(old_entry->end - old_entry->start)); 2069 old_entry->object.vm_object = object; 2070 old_entry->offset = (vm_offset_t) 0; 2071 } 2072 2073 /* 2074 * Add the reference before calling vm_object_shadow 2075 * to insure that a shadow object is created. 2076 */ 2077 vm_object_reference(object); 2078 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 2079 vm_object_shadow(&old_entry->object.vm_object, 2080 &old_entry->offset, 2081 atop(old_entry->end - old_entry->start)); 2082 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 2083 object = old_entry->object.vm_object; 2084 } 2085 vm_object_clear_flag(object, OBJ_ONEMAPPING); 2086 2087 /* 2088 * Clone the entry, referencing the shared object. 2089 */ 2090 new_entry = vm_map_entry_create(new_map); 2091 *new_entry = *old_entry; 2092 new_entry->wired_count = 0; 2093 2094 /* 2095 * Insert the entry into the new map -- we know we're 2096 * inserting at the end of the new map. 2097 */ 2098 2099 vm_map_entry_link(new_map, new_map->header.prev, 2100 new_entry); 2101 2102 /* 2103 * Update the physical map 2104 */ 2105 2106 pmap_copy(new_map->pmap, old_map->pmap, 2107 new_entry->start, 2108 (old_entry->end - old_entry->start), 2109 old_entry->start); 2110 break; 2111 2112 case VM_INHERIT_COPY: 2113 /* 2114 * Clone the entry and link into the map. 2115 */ 2116 new_entry = vm_map_entry_create(new_map); 2117 *new_entry = *old_entry; 2118 new_entry->wired_count = 0; 2119 new_entry->object.vm_object = NULL; 2120 vm_map_entry_link(new_map, new_map->header.prev, 2121 new_entry); 2122 vm_map_copy_entry(old_map, new_map, old_entry, 2123 new_entry); 2124 break; 2125 } 2126 old_entry = old_entry->next; 2127 } 2128 2129 new_map->size = old_map->size; 2130 vm_map_unlock(old_map); 2131 2132 return (vm2); 2133 } 2134 2135 int 2136 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 2137 vm_prot_t prot, vm_prot_t max, int cow) 2138 { 2139 vm_map_entry_t prev_entry; 2140 vm_map_entry_t new_stack_entry; 2141 vm_size_t init_ssize; 2142 int rv; 2143 2144 if (VM_MIN_ADDRESS > 0 && addrbos < VM_MIN_ADDRESS) 2145 return (KERN_NO_SPACE); 2146 2147 if (max_ssize < SGROWSIZ) 2148 init_ssize = max_ssize; 2149 else 2150 init_ssize = SGROWSIZ; 2151 2152 vm_map_lock(map); 2153 2154 /* If addr is already mapped, no go */ 2155 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) { 2156 vm_map_unlock(map); 2157 return (KERN_NO_SPACE); 2158 } 2159 2160 /* If we can't accomodate max_ssize in the current mapping, 2161 * no go. However, we need to be aware that subsequent user 2162 * mappings might map into the space we have reserved for 2163 * stack, and currently this space is not protected. 2164 * 2165 * Hopefully we will at least detect this condition 2166 * when we try to grow the stack. 2167 */ 2168 if ((prev_entry->next != &map->header) && 2169 (prev_entry->next->start < addrbos + max_ssize)) { 2170 vm_map_unlock(map); 2171 return (KERN_NO_SPACE); 2172 } 2173 2174 /* We initially map a stack of only init_ssize. We will 2175 * grow as needed later. Since this is to be a grow 2176 * down stack, we map at the top of the range. 2177 * 2178 * Note: we would normally expect prot and max to be 2179 * VM_PROT_ALL, and cow to be 0. Possibly we should 2180 * eliminate these as input parameters, and just 2181 * pass these values here in the insert call. 2182 */ 2183 rv = vm_map_insert(map, NULL, 0, addrbos + max_ssize - init_ssize, 2184 addrbos + max_ssize, prot, max, cow); 2185 2186 /* Now set the avail_ssize amount */ 2187 if (rv == KERN_SUCCESS){ 2188 if (prev_entry != &map->header) 2189 vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize); 2190 new_stack_entry = prev_entry->next; 2191 if (new_stack_entry->end != addrbos + max_ssize || 2192 new_stack_entry->start != addrbos + max_ssize - init_ssize) 2193 panic ("Bad entry start/end for new stack entry"); 2194 else 2195 new_stack_entry->avail_ssize = max_ssize - init_ssize; 2196 } 2197 2198 vm_map_unlock(map); 2199 return (rv); 2200 } 2201 2202 /* Attempts to grow a vm stack entry. Returns KERN_SUCCESS if the 2203 * desired address is already mapped, or if we successfully grow 2204 * the stack. Also returns KERN_SUCCESS if addr is outside the 2205 * stack range (this is strange, but preserves compatibility with 2206 * the grow function in vm_machdep.c). 2207 */ 2208 int 2209 vm_map_growstack (struct proc *p, vm_offset_t addr) 2210 { 2211 vm_map_entry_t prev_entry; 2212 vm_map_entry_t stack_entry; 2213 vm_map_entry_t new_stack_entry; 2214 struct vmspace *vm = p->p_vmspace; 2215 vm_map_t map = &vm->vm_map; 2216 vm_offset_t end; 2217 int grow_amount; 2218 int rv; 2219 int is_procstack; 2220 Retry: 2221 vm_map_lock_read(map); 2222 2223 /* If addr is already in the entry range, no need to grow.*/ 2224 if (vm_map_lookup_entry(map, addr, &prev_entry)) { 2225 vm_map_unlock_read(map); 2226 return (KERN_SUCCESS); 2227 } 2228 2229 if ((stack_entry = prev_entry->next) == &map->header) { 2230 vm_map_unlock_read(map); 2231 return (KERN_SUCCESS); 2232 } 2233 if (prev_entry == &map->header) 2234 end = stack_entry->start - stack_entry->avail_ssize; 2235 else 2236 end = prev_entry->end; 2237 2238 /* This next test mimics the old grow function in vm_machdep.c. 2239 * It really doesn't quite make sense, but we do it anyway 2240 * for compatibility. 2241 * 2242 * If not growable stack, return success. This signals the 2243 * caller to proceed as he would normally with normal vm. 2244 */ 2245 if (stack_entry->avail_ssize < 1 || 2246 addr >= stack_entry->start || 2247 addr < stack_entry->start - stack_entry->avail_ssize) { 2248 vm_map_unlock_read(map); 2249 return (KERN_SUCCESS); 2250 } 2251 2252 /* Find the minimum grow amount */ 2253 grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE); 2254 if (grow_amount > stack_entry->avail_ssize) { 2255 vm_map_unlock_read(map); 2256 return (KERN_NO_SPACE); 2257 } 2258 2259 /* If there is no longer enough space between the entries 2260 * nogo, and adjust the available space. Note: this 2261 * should only happen if the user has mapped into the 2262 * stack area after the stack was created, and is 2263 * probably an error. 2264 * 2265 * This also effectively destroys any guard page the user 2266 * might have intended by limiting the stack size. 2267 */ 2268 if (grow_amount > stack_entry->start - end) { 2269 if (vm_map_lock_upgrade(map)) 2270 goto Retry; 2271 2272 stack_entry->avail_ssize = stack_entry->start - end; 2273 2274 vm_map_unlock(map); 2275 return (KERN_NO_SPACE); 2276 } 2277 2278 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr; 2279 2280 /* If this is the main process stack, see if we're over the 2281 * stack limit. 2282 */ 2283 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > 2284 p->p_rlimit[RLIMIT_STACK].rlim_cur)) { 2285 vm_map_unlock_read(map); 2286 return (KERN_NO_SPACE); 2287 } 2288 2289 /* Round up the grow amount modulo SGROWSIZ */ 2290 grow_amount = roundup (grow_amount, SGROWSIZ); 2291 if (grow_amount > stack_entry->avail_ssize) { 2292 grow_amount = stack_entry->avail_ssize; 2293 } 2294 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > 2295 p->p_rlimit[RLIMIT_STACK].rlim_cur)) { 2296 grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur - 2297 ctob(vm->vm_ssize); 2298 } 2299 2300 if (vm_map_lock_upgrade(map)) 2301 goto Retry; 2302 2303 /* Get the preliminary new entry start value */ 2304 addr = stack_entry->start - grow_amount; 2305 2306 /* If this puts us into the previous entry, cut back our growth 2307 * to the available space. Also, see the note above. 2308 */ 2309 if (addr < end) { 2310 stack_entry->avail_ssize = stack_entry->start - end; 2311 addr = end; 2312 } 2313 2314 rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start, 2315 VM_PROT_ALL, 2316 VM_PROT_ALL, 2317 0); 2318 2319 /* Adjust the available stack space by the amount we grew. */ 2320 if (rv == KERN_SUCCESS) { 2321 if (prev_entry != &map->header) 2322 vm_map_clip_end(map, prev_entry, addr); 2323 new_stack_entry = prev_entry->next; 2324 if (new_stack_entry->end != stack_entry->start || 2325 new_stack_entry->start != addr) 2326 panic ("Bad stack grow start/end in new stack entry"); 2327 else { 2328 new_stack_entry->avail_ssize = stack_entry->avail_ssize - 2329 (new_stack_entry->end - 2330 new_stack_entry->start); 2331 if (is_procstack) 2332 vm->vm_ssize += btoc(new_stack_entry->end - 2333 new_stack_entry->start); 2334 } 2335 } 2336 2337 vm_map_unlock(map); 2338 return (rv); 2339 2340 } 2341 2342 /* 2343 * Unshare the specified VM space for exec. If other processes are 2344 * mapped to it, then create a new one. The new vmspace is null. 2345 */ 2346 2347 void 2348 vmspace_exec(struct proc *p) { 2349 struct vmspace *oldvmspace = p->p_vmspace; 2350 struct vmspace *newvmspace; 2351 vm_map_t map = &p->p_vmspace->vm_map; 2352 2353 newvmspace = vmspace_alloc(map->min_offset, map->max_offset); 2354 bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy, 2355 (caddr_t) (newvmspace + 1) - (caddr_t) &newvmspace->vm_startcopy); 2356 /* 2357 * This code is written like this for prototype purposes. The 2358 * goal is to avoid running down the vmspace here, but let the 2359 * other process's that are still using the vmspace to finally 2360 * run it down. Even though there is little or no chance of blocking 2361 * here, it is a good idea to keep this form for future mods. 2362 */ 2363 vmspace_free(oldvmspace); 2364 p->p_vmspace = newvmspace; 2365 pmap_pinit2(vmspace_pmap(newvmspace)); 2366 if (p == curproc) 2367 pmap_activate(p); 2368 } 2369 2370 /* 2371 * Unshare the specified VM space for forcing COW. This 2372 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 2373 */ 2374 2375 void 2376 vmspace_unshare(struct proc *p) { 2377 struct vmspace *oldvmspace = p->p_vmspace; 2378 struct vmspace *newvmspace; 2379 2380 if (oldvmspace->vm_refcnt == 1) 2381 return; 2382 newvmspace = vmspace_fork(oldvmspace); 2383 vmspace_free(oldvmspace); 2384 p->p_vmspace = newvmspace; 2385 pmap_pinit2(vmspace_pmap(newvmspace)); 2386 if (p == curproc) 2387 pmap_activate(p); 2388 } 2389 2390 2391 /* 2392 * vm_map_lookup: 2393 * 2394 * Finds the VM object, offset, and 2395 * protection for a given virtual address in the 2396 * specified map, assuming a page fault of the 2397 * type specified. 2398 * 2399 * Leaves the map in question locked for read; return 2400 * values are guaranteed until a vm_map_lookup_done 2401 * call is performed. Note that the map argument 2402 * is in/out; the returned map must be used in 2403 * the call to vm_map_lookup_done. 2404 * 2405 * A handle (out_entry) is returned for use in 2406 * vm_map_lookup_done, to make that fast. 2407 * 2408 * If a lookup is requested with "write protection" 2409 * specified, the map may be changed to perform virtual 2410 * copying operations, although the data referenced will 2411 * remain the same. 2412 */ 2413 int 2414 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 2415 vm_offset_t vaddr, 2416 vm_prot_t fault_typea, 2417 vm_map_entry_t *out_entry, /* OUT */ 2418 vm_object_t *object, /* OUT */ 2419 vm_pindex_t *pindex, /* OUT */ 2420 vm_prot_t *out_prot, /* OUT */ 2421 boolean_t *wired) /* OUT */ 2422 { 2423 vm_map_entry_t entry; 2424 vm_map_t map = *var_map; 2425 vm_prot_t prot; 2426 vm_prot_t fault_type = fault_typea; 2427 2428 RetryLookup:; 2429 2430 /* 2431 * Lookup the faulting address. 2432 */ 2433 2434 vm_map_lock_read(map); 2435 2436 #define RETURN(why) \ 2437 { \ 2438 vm_map_unlock_read(map); \ 2439 return(why); \ 2440 } 2441 2442 /* 2443 * If the map has an interesting hint, try it before calling full 2444 * blown lookup routine. 2445 */ 2446 2447 entry = map->hint; 2448 2449 *out_entry = entry; 2450 2451 if ((entry == &map->header) || 2452 (vaddr < entry->start) || (vaddr >= entry->end)) { 2453 vm_map_entry_t tmp_entry; 2454 2455 /* 2456 * Entry was either not a valid hint, or the vaddr was not 2457 * contained in the entry, so do a full lookup. 2458 */ 2459 if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) 2460 RETURN(KERN_INVALID_ADDRESS); 2461 2462 entry = tmp_entry; 2463 *out_entry = entry; 2464 } 2465 2466 /* 2467 * Handle submaps. 2468 */ 2469 2470 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 2471 vm_map_t old_map = map; 2472 2473 *var_map = map = entry->object.sub_map; 2474 vm_map_unlock_read(old_map); 2475 goto RetryLookup; 2476 } 2477 2478 /* 2479 * Check whether this task is allowed to have this page. 2480 * Note the special case for MAP_ENTRY_COW 2481 * pages with an override. This is to implement a forced 2482 * COW for debuggers. 2483 */ 2484 2485 if (fault_type & VM_PROT_OVERRIDE_WRITE) 2486 prot = entry->max_protection; 2487 else 2488 prot = entry->protection; 2489 2490 fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE); 2491 if ((fault_type & prot) != fault_type) { 2492 RETURN(KERN_PROTECTION_FAILURE); 2493 } 2494 2495 if (entry->wired_count && (fault_type & VM_PROT_WRITE) && 2496 (entry->eflags & MAP_ENTRY_COW) && 2497 (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) { 2498 RETURN(KERN_PROTECTION_FAILURE); 2499 } 2500 2501 /* 2502 * If this page is not pageable, we have to get it for all possible 2503 * accesses. 2504 */ 2505 2506 *wired = (entry->wired_count != 0); 2507 if (*wired) 2508 prot = fault_type = entry->protection; 2509 2510 /* 2511 * If the entry was copy-on-write, we either ... 2512 */ 2513 2514 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 2515 /* 2516 * If we want to write the page, we may as well handle that 2517 * now since we've got the map locked. 2518 * 2519 * If we don't need to write the page, we just demote the 2520 * permissions allowed. 2521 */ 2522 2523 if (fault_type & VM_PROT_WRITE) { 2524 /* 2525 * Make a new object, and place it in the object 2526 * chain. Note that no new references have appeared 2527 * -- one just moved from the map to the new 2528 * object. 2529 */ 2530 2531 if (vm_map_lock_upgrade(map)) 2532 goto RetryLookup; 2533 2534 vm_object_shadow( 2535 &entry->object.vm_object, 2536 &entry->offset, 2537 atop(entry->end - entry->start)); 2538 2539 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 2540 vm_map_lock_downgrade(map); 2541 } else { 2542 /* 2543 * We're attempting to read a copy-on-write page -- 2544 * don't allow writes. 2545 */ 2546 2547 prot &= ~VM_PROT_WRITE; 2548 } 2549 } 2550 2551 /* 2552 * Create an object if necessary. 2553 */ 2554 if (entry->object.vm_object == NULL) { 2555 if (vm_map_lock_upgrade(map)) 2556 goto RetryLookup; 2557 2558 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT, 2559 atop(entry->end - entry->start)); 2560 entry->offset = 0; 2561 vm_map_lock_downgrade(map); 2562 } 2563 2564 /* 2565 * Return the object/offset from this entry. If the entry was 2566 * copy-on-write or empty, it has been fixed up. 2567 */ 2568 2569 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 2570 *object = entry->object.vm_object; 2571 2572 /* 2573 * Return whether this is the only map sharing this data. 2574 */ 2575 2576 *out_prot = prot; 2577 return (KERN_SUCCESS); 2578 2579 #undef RETURN 2580 } 2581 2582 /* 2583 * vm_map_lookup_done: 2584 * 2585 * Releases locks acquired by a vm_map_lookup 2586 * (according to the handle returned by that lookup). 2587 */ 2588 2589 void 2590 vm_map_lookup_done(map, entry) 2591 vm_map_t map; 2592 vm_map_entry_t entry; 2593 { 2594 /* 2595 * Unlock the main-level map 2596 */ 2597 2598 vm_map_unlock_read(map); 2599 } 2600 2601 /* 2602 * Implement uiomove with VM operations. This handles (and collateral changes) 2603 * support every combination of source object modification, and COW type 2604 * operations. 2605 */ 2606 int 2607 vm_uiomove(mapa, srcobject, cp, cnta, uaddra, npages) 2608 vm_map_t mapa; 2609 vm_object_t srcobject; 2610 off_t cp; 2611 int cnta; 2612 vm_offset_t uaddra; 2613 int *npages; 2614 { 2615 vm_map_t map; 2616 vm_object_t first_object, oldobject, object; 2617 vm_map_entry_t entry; 2618 vm_prot_t prot; 2619 boolean_t wired; 2620 int tcnt, rv; 2621 vm_offset_t uaddr, start, end, tend; 2622 vm_pindex_t first_pindex, osize, oindex; 2623 off_t ooffset; 2624 int cnt; 2625 2626 if (npages) 2627 *npages = 0; 2628 2629 cnt = cnta; 2630 uaddr = uaddra; 2631 2632 while (cnt > 0) { 2633 map = mapa; 2634 2635 if ((vm_map_lookup(&map, uaddr, 2636 VM_PROT_READ, &entry, &first_object, 2637 &first_pindex, &prot, &wired)) != KERN_SUCCESS) { 2638 return EFAULT; 2639 } 2640 2641 vm_map_clip_start(map, entry, uaddr); 2642 2643 tcnt = cnt; 2644 tend = uaddr + tcnt; 2645 if (tend > entry->end) { 2646 tcnt = entry->end - uaddr; 2647 tend = entry->end; 2648 } 2649 2650 vm_map_clip_end(map, entry, tend); 2651 2652 start = entry->start; 2653 end = entry->end; 2654 2655 osize = atop(tcnt); 2656 2657 oindex = OFF_TO_IDX(cp); 2658 if (npages) { 2659 vm_pindex_t idx; 2660 for (idx = 0; idx < osize; idx++) { 2661 vm_page_t m; 2662 if ((m = vm_page_lookup(srcobject, oindex + idx)) == NULL) { 2663 vm_map_lookup_done(map, entry); 2664 return 0; 2665 } 2666 /* 2667 * disallow busy or invalid pages, but allow 2668 * m->busy pages if they are entirely valid. 2669 */ 2670 if ((m->flags & PG_BUSY) || 2671 ((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL)) { 2672 vm_map_lookup_done(map, entry); 2673 return 0; 2674 } 2675 } 2676 } 2677 2678 /* 2679 * If we are changing an existing map entry, just redirect 2680 * the object, and change mappings. 2681 */ 2682 if ((first_object->type == OBJT_VNODE) && 2683 ((oldobject = entry->object.vm_object) == first_object)) { 2684 2685 if ((entry->offset != cp) || (oldobject != srcobject)) { 2686 /* 2687 * Remove old window into the file 2688 */ 2689 pmap_remove (map->pmap, uaddr, tend); 2690 2691 /* 2692 * Force copy on write for mmaped regions 2693 */ 2694 vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize); 2695 2696 /* 2697 * Point the object appropriately 2698 */ 2699 if (oldobject != srcobject) { 2700 2701 /* 2702 * Set the object optimization hint flag 2703 */ 2704 vm_object_set_flag(srcobject, OBJ_OPT); 2705 vm_object_reference(srcobject); 2706 entry->object.vm_object = srcobject; 2707 2708 if (oldobject) { 2709 vm_object_deallocate(oldobject); 2710 } 2711 } 2712 2713 entry->offset = cp; 2714 map->timestamp++; 2715 } else { 2716 pmap_remove (map->pmap, uaddr, tend); 2717 } 2718 2719 } else if ((first_object->ref_count == 1) && 2720 (first_object->size == osize) && 2721 ((first_object->type == OBJT_DEFAULT) || 2722 (first_object->type == OBJT_SWAP)) ) { 2723 2724 oldobject = first_object->backing_object; 2725 2726 if ((first_object->backing_object_offset != cp) || 2727 (oldobject != srcobject)) { 2728 /* 2729 * Remove old window into the file 2730 */ 2731 pmap_remove (map->pmap, uaddr, tend); 2732 2733 /* 2734 * Remove unneeded old pages 2735 */ 2736 vm_object_page_remove(first_object, 0, 0, 0); 2737 2738 /* 2739 * Invalidate swap space 2740 */ 2741 if (first_object->type == OBJT_SWAP) { 2742 swap_pager_freespace(first_object, 2743 0, 2744 first_object->size); 2745 } 2746 2747 /* 2748 * Force copy on write for mmaped regions 2749 */ 2750 vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize); 2751 2752 /* 2753 * Point the object appropriately 2754 */ 2755 if (oldobject != srcobject) { 2756 2757 /* 2758 * Set the object optimization hint flag 2759 */ 2760 vm_object_set_flag(srcobject, OBJ_OPT); 2761 vm_object_reference(srcobject); 2762 2763 if (oldobject) { 2764 TAILQ_REMOVE(&oldobject->shadow_head, 2765 first_object, shadow_list); 2766 oldobject->shadow_count--; 2767 vm_object_deallocate(oldobject); 2768 } 2769 2770 TAILQ_INSERT_TAIL(&srcobject->shadow_head, 2771 first_object, shadow_list); 2772 srcobject->shadow_count++; 2773 2774 first_object->backing_object = srcobject; 2775 } 2776 first_object->backing_object_offset = cp; 2777 map->timestamp++; 2778 } else { 2779 pmap_remove (map->pmap, uaddr, tend); 2780 } 2781 /* 2782 * Otherwise, we have to do a logical mmap. 2783 */ 2784 } else { 2785 2786 vm_object_set_flag(srcobject, OBJ_OPT); 2787 vm_object_reference(srcobject); 2788 2789 pmap_remove (map->pmap, uaddr, tend); 2790 2791 vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize); 2792 vm_map_lock_upgrade(map); 2793 2794 if (entry == &map->header) { 2795 map->first_free = &map->header; 2796 } else if (map->first_free->start >= start) { 2797 map->first_free = entry->prev; 2798 } 2799 2800 SAVE_HINT(map, entry->prev); 2801 vm_map_entry_delete(map, entry); 2802 2803 object = srcobject; 2804 ooffset = cp; 2805 2806 rv = vm_map_insert(map, object, ooffset, start, tend, 2807 VM_PROT_ALL, VM_PROT_ALL, MAP_COPY_ON_WRITE); 2808 2809 if (rv != KERN_SUCCESS) 2810 panic("vm_uiomove: could not insert new entry: %d", rv); 2811 } 2812 2813 /* 2814 * Map the window directly, if it is already in memory 2815 */ 2816 pmap_object_init_pt(map->pmap, uaddr, 2817 srcobject, oindex, tcnt, 0); 2818 2819 map->timestamp++; 2820 vm_map_unlock(map); 2821 2822 cnt -= tcnt; 2823 uaddr += tcnt; 2824 cp += tcnt; 2825 if (npages) 2826 *npages += osize; 2827 } 2828 return 0; 2829 } 2830 2831 /* 2832 * Performs the copy_on_write operations necessary to allow the virtual copies 2833 * into user space to work. This has to be called for write(2) system calls 2834 * from other processes, file unlinking, and file size shrinkage. 2835 */ 2836 void 2837 vm_freeze_copyopts(object, froma, toa) 2838 vm_object_t object; 2839 vm_pindex_t froma, toa; 2840 { 2841 int rv; 2842 vm_object_t robject; 2843 vm_pindex_t idx; 2844 2845 if ((object == NULL) || 2846 ((object->flags & OBJ_OPT) == 0)) 2847 return; 2848 2849 if (object->shadow_count > object->ref_count) 2850 panic("vm_freeze_copyopts: sc > rc"); 2851 2852 while((robject = TAILQ_FIRST(&object->shadow_head)) != NULL) { 2853 vm_pindex_t bo_pindex; 2854 vm_page_t m_in, m_out; 2855 2856 bo_pindex = OFF_TO_IDX(robject->backing_object_offset); 2857 2858 vm_object_reference(robject); 2859 2860 vm_object_pip_wait(robject, "objfrz"); 2861 2862 if (robject->ref_count == 1) { 2863 vm_object_deallocate(robject); 2864 continue; 2865 } 2866 2867 vm_object_pip_add(robject, 1); 2868 2869 for (idx = 0; idx < robject->size; idx++) { 2870 2871 m_out = vm_page_grab(robject, idx, 2872 VM_ALLOC_NORMAL | VM_ALLOC_RETRY); 2873 2874 if (m_out->valid == 0) { 2875 m_in = vm_page_grab(object, bo_pindex + idx, 2876 VM_ALLOC_NORMAL | VM_ALLOC_RETRY); 2877 if (m_in->valid == 0) { 2878 rv = vm_pager_get_pages(object, &m_in, 1, 0); 2879 if (rv != VM_PAGER_OK) { 2880 printf("vm_freeze_copyopts: cannot read page from file: %lx\n", (long)m_in->pindex); 2881 continue; 2882 } 2883 vm_page_deactivate(m_in); 2884 } 2885 2886 vm_page_protect(m_in, VM_PROT_NONE); 2887 pmap_copy_page(VM_PAGE_TO_PHYS(m_in), VM_PAGE_TO_PHYS(m_out)); 2888 m_out->valid = m_in->valid; 2889 vm_page_dirty(m_out); 2890 vm_page_activate(m_out); 2891 vm_page_wakeup(m_in); 2892 } 2893 vm_page_wakeup(m_out); 2894 } 2895 2896 object->shadow_count--; 2897 object->ref_count--; 2898 TAILQ_REMOVE(&object->shadow_head, robject, shadow_list); 2899 robject->backing_object = NULL; 2900 robject->backing_object_offset = 0; 2901 2902 vm_object_pip_wakeup(robject); 2903 vm_object_deallocate(robject); 2904 } 2905 2906 vm_object_clear_flag(object, OBJ_OPT); 2907 } 2908 2909 #include "opt_ddb.h" 2910 #ifdef DDB 2911 #include <sys/kernel.h> 2912 2913 #include <ddb/ddb.h> 2914 2915 /* 2916 * vm_map_print: [ debug ] 2917 */ 2918 DB_SHOW_COMMAND(map, vm_map_print) 2919 { 2920 static int nlines; 2921 /* XXX convert args. */ 2922 vm_map_t map = (vm_map_t)addr; 2923 boolean_t full = have_addr; 2924 2925 vm_map_entry_t entry; 2926 2927 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 2928 (void *)map, 2929 (void *)map->pmap, map->nentries, map->timestamp); 2930 nlines++; 2931 2932 if (!full && db_indent) 2933 return; 2934 2935 db_indent += 2; 2936 for (entry = map->header.next; entry != &map->header; 2937 entry = entry->next) { 2938 db_iprintf("map entry %p: start=%p, end=%p\n", 2939 (void *)entry, (void *)entry->start, (void *)entry->end); 2940 nlines++; 2941 { 2942 static char *inheritance_name[4] = 2943 {"share", "copy", "none", "donate_copy"}; 2944 2945 db_iprintf(" prot=%x/%x/%s", 2946 entry->protection, 2947 entry->max_protection, 2948 inheritance_name[(int)(unsigned char)entry->inheritance]); 2949 if (entry->wired_count != 0) 2950 db_printf(", wired"); 2951 } 2952 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 2953 /* XXX no %qd in kernel. Truncate entry->offset. */ 2954 db_printf(", share=%p, offset=0x%lx\n", 2955 (void *)entry->object.sub_map, 2956 (long)entry->offset); 2957 nlines++; 2958 if ((entry->prev == &map->header) || 2959 (entry->prev->object.sub_map != 2960 entry->object.sub_map)) { 2961 db_indent += 2; 2962 vm_map_print((db_expr_t)(intptr_t) 2963 entry->object.sub_map, 2964 full, 0, (char *)0); 2965 db_indent -= 2; 2966 } 2967 } else { 2968 /* XXX no %qd in kernel. Truncate entry->offset. */ 2969 db_printf(", object=%p, offset=0x%lx", 2970 (void *)entry->object.vm_object, 2971 (long)entry->offset); 2972 if (entry->eflags & MAP_ENTRY_COW) 2973 db_printf(", copy (%s)", 2974 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 2975 db_printf("\n"); 2976 nlines++; 2977 2978 if ((entry->prev == &map->header) || 2979 (entry->prev->object.vm_object != 2980 entry->object.vm_object)) { 2981 db_indent += 2; 2982 vm_object_print((db_expr_t)(intptr_t) 2983 entry->object.vm_object, 2984 full, 0, (char *)0); 2985 nlines += 4; 2986 db_indent -= 2; 2987 } 2988 } 2989 } 2990 db_indent -= 2; 2991 if (db_indent == 0) 2992 nlines = 0; 2993 } 2994 2995 2996 DB_SHOW_COMMAND(procvm, procvm) 2997 { 2998 struct proc *p; 2999 3000 if (have_addr) { 3001 p = (struct proc *) addr; 3002 } else { 3003 p = curproc; 3004 } 3005 3006 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 3007 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 3008 (void *)vmspace_pmap(p->p_vmspace)); 3009 3010 vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL); 3011 } 3012 3013 #endif /* DDB */ 3014