xref: /freebsd/sys/vm/vm_map.c (revision a0dd79dbdf917a8fbe2762d668f05a7c9f682b22)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60 
61 /*
62  *	Virtual memory mapping module.
63  */
64 
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67 
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/kernel.h>
71 #include <sys/ktr.h>
72 #include <sys/lock.h>
73 #include <sys/mutex.h>
74 #include <sys/proc.h>
75 #include <sys/vmmeter.h>
76 #include <sys/mman.h>
77 #include <sys/vnode.h>
78 #include <sys/racct.h>
79 #include <sys/resourcevar.h>
80 #include <sys/file.h>
81 #include <sys/sysctl.h>
82 #include <sys/sysent.h>
83 #include <sys/shm.h>
84 
85 #include <vm/vm.h>
86 #include <vm/vm_param.h>
87 #include <vm/pmap.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_page.h>
90 #include <vm/vm_object.h>
91 #include <vm/vm_pager.h>
92 #include <vm/vm_kern.h>
93 #include <vm/vm_extern.h>
94 #include <vm/swap_pager.h>
95 #include <vm/uma.h>
96 
97 /*
98  *	Virtual memory maps provide for the mapping, protection,
99  *	and sharing of virtual memory objects.  In addition,
100  *	this module provides for an efficient virtual copy of
101  *	memory from one map to another.
102  *
103  *	Synchronization is required prior to most operations.
104  *
105  *	Maps consist of an ordered doubly-linked list of simple
106  *	entries; a self-adjusting binary search tree of these
107  *	entries is used to speed up lookups.
108  *
109  *	Since portions of maps are specified by start/end addresses,
110  *	which may not align with existing map entries, all
111  *	routines merely "clip" entries to these start/end values.
112  *	[That is, an entry is split into two, bordering at a
113  *	start or end value.]  Note that these clippings may not
114  *	always be necessary (as the two resulting entries are then
115  *	not changed); however, the clipping is done for convenience.
116  *
117  *	As mentioned above, virtual copy operations are performed
118  *	by copying VM object references from one map to
119  *	another, and then marking both regions as copy-on-write.
120  */
121 
122 static struct mtx map_sleep_mtx;
123 static uma_zone_t mapentzone;
124 static uma_zone_t kmapentzone;
125 static uma_zone_t mapzone;
126 static uma_zone_t vmspace_zone;
127 static struct vm_object kmapentobj;
128 static int vmspace_zinit(void *mem, int size, int flags);
129 static void vmspace_zfini(void *mem, int size);
130 static int vm_map_zinit(void *mem, int ize, int flags);
131 static void vm_map_zfini(void *mem, int size);
132 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
133     vm_offset_t max);
134 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
135 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
136 #ifdef INVARIANTS
137 static void vm_map_zdtor(void *mem, int size, void *arg);
138 static void vmspace_zdtor(void *mem, int size, void *arg);
139 #endif
140 
141 #define	ENTRY_CHARGED(e) ((e)->cred != NULL || \
142     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
143      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
144 
145 /*
146  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
147  * stable.
148  */
149 #define PROC_VMSPACE_LOCK(p) do { } while (0)
150 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
151 
152 /*
153  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
154  *
155  *	Asserts that the starting and ending region
156  *	addresses fall within the valid range of the map.
157  */
158 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
159 		{					\
160 		if (start < vm_map_min(map))		\
161 			start = vm_map_min(map);	\
162 		if (end > vm_map_max(map))		\
163 			end = vm_map_max(map);		\
164 		if (start > end)			\
165 			start = end;			\
166 		}
167 
168 /*
169  *	vm_map_startup:
170  *
171  *	Initialize the vm_map module.  Must be called before
172  *	any other vm_map routines.
173  *
174  *	Map and entry structures are allocated from the general
175  *	purpose memory pool with some exceptions:
176  *
177  *	- The kernel map and kmem submap are allocated statically.
178  *	- Kernel map entries are allocated out of a static pool.
179  *
180  *	These restrictions are necessary since malloc() uses the
181  *	maps and requires map entries.
182  */
183 
184 void
185 vm_map_startup(void)
186 {
187 	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
188 	mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
189 #ifdef INVARIANTS
190 	    vm_map_zdtor,
191 #else
192 	    NULL,
193 #endif
194 	    vm_map_zinit, vm_map_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
195 	uma_prealloc(mapzone, MAX_KMAP);
196 	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
197 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
198 	    UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
199 	uma_prealloc(kmapentzone, MAX_KMAPENT);
200 	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
201 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
202 }
203 
204 static void
205 vmspace_zfini(void *mem, int size)
206 {
207 	struct vmspace *vm;
208 
209 	vm = (struct vmspace *)mem;
210 	vm_map_zfini(&vm->vm_map, sizeof(vm->vm_map));
211 }
212 
213 static int
214 vmspace_zinit(void *mem, int size, int flags)
215 {
216 	struct vmspace *vm;
217 
218 	vm = (struct vmspace *)mem;
219 
220 	vm->vm_map.pmap = NULL;
221 	(void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
222 	return (0);
223 }
224 
225 static void
226 vm_map_zfini(void *mem, int size)
227 {
228 	vm_map_t map;
229 
230 	map = (vm_map_t)mem;
231 	mtx_destroy(&map->system_mtx);
232 	sx_destroy(&map->lock);
233 }
234 
235 static int
236 vm_map_zinit(void *mem, int size, int flags)
237 {
238 	vm_map_t map;
239 
240 	map = (vm_map_t)mem;
241 	map->nentries = 0;
242 	map->size = 0;
243 	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
244 	sx_init(&map->lock, "user map");
245 	return (0);
246 }
247 
248 #ifdef INVARIANTS
249 static void
250 vmspace_zdtor(void *mem, int size, void *arg)
251 {
252 	struct vmspace *vm;
253 
254 	vm = (struct vmspace *)mem;
255 
256 	vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
257 }
258 static void
259 vm_map_zdtor(void *mem, int size, void *arg)
260 {
261 	vm_map_t map;
262 
263 	map = (vm_map_t)mem;
264 	KASSERT(map->nentries == 0,
265 	    ("map %p nentries == %d on free.",
266 	    map, map->nentries));
267 	KASSERT(map->size == 0,
268 	    ("map %p size == %lu on free.",
269 	    map, (unsigned long)map->size));
270 }
271 #endif	/* INVARIANTS */
272 
273 /*
274  * Allocate a vmspace structure, including a vm_map and pmap,
275  * and initialize those structures.  The refcnt is set to 1.
276  */
277 struct vmspace *
278 vmspace_alloc(min, max)
279 	vm_offset_t min, max;
280 {
281 	struct vmspace *vm;
282 
283 	vm = uma_zalloc(vmspace_zone, M_WAITOK);
284 	if (vm->vm_map.pmap == NULL && !pmap_pinit(vmspace_pmap(vm))) {
285 		uma_zfree(vmspace_zone, vm);
286 		return (NULL);
287 	}
288 	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
289 	_vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
290 	vm->vm_refcnt = 1;
291 	vm->vm_shm = NULL;
292 	vm->vm_swrss = 0;
293 	vm->vm_tsize = 0;
294 	vm->vm_dsize = 0;
295 	vm->vm_ssize = 0;
296 	vm->vm_taddr = 0;
297 	vm->vm_daddr = 0;
298 	vm->vm_maxsaddr = 0;
299 	return (vm);
300 }
301 
302 void
303 vm_init2(void)
304 {
305 	uma_zone_set_obj(kmapentzone, &kmapentobj, lmin(cnt.v_page_count,
306 	    (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) / PAGE_SIZE) / 8 +
307 	     maxproc * 2 + maxfiles);
308 	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
309 #ifdef INVARIANTS
310 	    vmspace_zdtor,
311 #else
312 	    NULL,
313 #endif
314 	    vmspace_zinit, vmspace_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
315 }
316 
317 static void
318 vmspace_container_reset(struct proc *p)
319 {
320 
321 #ifdef RACCT
322 	PROC_LOCK(p);
323 	racct_set(p, RACCT_DATA, 0);
324 	racct_set(p, RACCT_STACK, 0);
325 	racct_set(p, RACCT_RSS, 0);
326 	racct_set(p, RACCT_MEMLOCK, 0);
327 	racct_set(p, RACCT_VMEM, 0);
328 	PROC_UNLOCK(p);
329 #endif
330 }
331 
332 static inline void
333 vmspace_dofree(struct vmspace *vm)
334 {
335 
336 	CTR1(KTR_VM, "vmspace_free: %p", vm);
337 
338 	/*
339 	 * Make sure any SysV shm is freed, it might not have been in
340 	 * exit1().
341 	 */
342 	shmexit(vm);
343 
344 	/*
345 	 * Lock the map, to wait out all other references to it.
346 	 * Delete all of the mappings and pages they hold, then call
347 	 * the pmap module to reclaim anything left.
348 	 */
349 	(void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset,
350 	    vm->vm_map.max_offset);
351 
352 	pmap_release(vmspace_pmap(vm));
353 	vm->vm_map.pmap = NULL;
354 	uma_zfree(vmspace_zone, vm);
355 }
356 
357 void
358 vmspace_free(struct vmspace *vm)
359 {
360 
361 	if (vm->vm_refcnt == 0)
362 		panic("vmspace_free: attempt to free already freed vmspace");
363 
364 	if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
365 		vmspace_dofree(vm);
366 }
367 
368 void
369 vmspace_exitfree(struct proc *p)
370 {
371 	struct vmspace *vm;
372 
373 	PROC_VMSPACE_LOCK(p);
374 	vm = p->p_vmspace;
375 	p->p_vmspace = NULL;
376 	PROC_VMSPACE_UNLOCK(p);
377 	KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
378 	vmspace_free(vm);
379 }
380 
381 void
382 vmspace_exit(struct thread *td)
383 {
384 	int refcnt;
385 	struct vmspace *vm;
386 	struct proc *p;
387 
388 	/*
389 	 * Release user portion of address space.
390 	 * This releases references to vnodes,
391 	 * which could cause I/O if the file has been unlinked.
392 	 * Need to do this early enough that we can still sleep.
393 	 *
394 	 * The last exiting process to reach this point releases as
395 	 * much of the environment as it can. vmspace_dofree() is the
396 	 * slower fallback in case another process had a temporary
397 	 * reference to the vmspace.
398 	 */
399 
400 	p = td->td_proc;
401 	vm = p->p_vmspace;
402 	atomic_add_int(&vmspace0.vm_refcnt, 1);
403 	do {
404 		refcnt = vm->vm_refcnt;
405 		if (refcnt > 1 && p->p_vmspace != &vmspace0) {
406 			/* Switch now since other proc might free vmspace */
407 			PROC_VMSPACE_LOCK(p);
408 			p->p_vmspace = &vmspace0;
409 			PROC_VMSPACE_UNLOCK(p);
410 			pmap_activate(td);
411 		}
412 	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
413 	if (refcnt == 1) {
414 		if (p->p_vmspace != vm) {
415 			/* vmspace not yet freed, switch back */
416 			PROC_VMSPACE_LOCK(p);
417 			p->p_vmspace = vm;
418 			PROC_VMSPACE_UNLOCK(p);
419 			pmap_activate(td);
420 		}
421 		pmap_remove_pages(vmspace_pmap(vm));
422 		/* Switch now since this proc will free vmspace */
423 		PROC_VMSPACE_LOCK(p);
424 		p->p_vmspace = &vmspace0;
425 		PROC_VMSPACE_UNLOCK(p);
426 		pmap_activate(td);
427 		vmspace_dofree(vm);
428 	}
429 	vmspace_container_reset(p);
430 }
431 
432 /* Acquire reference to vmspace owned by another process. */
433 
434 struct vmspace *
435 vmspace_acquire_ref(struct proc *p)
436 {
437 	struct vmspace *vm;
438 	int refcnt;
439 
440 	PROC_VMSPACE_LOCK(p);
441 	vm = p->p_vmspace;
442 	if (vm == NULL) {
443 		PROC_VMSPACE_UNLOCK(p);
444 		return (NULL);
445 	}
446 	do {
447 		refcnt = vm->vm_refcnt;
448 		if (refcnt <= 0) { 	/* Avoid 0->1 transition */
449 			PROC_VMSPACE_UNLOCK(p);
450 			return (NULL);
451 		}
452 	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
453 	if (vm != p->p_vmspace) {
454 		PROC_VMSPACE_UNLOCK(p);
455 		vmspace_free(vm);
456 		return (NULL);
457 	}
458 	PROC_VMSPACE_UNLOCK(p);
459 	return (vm);
460 }
461 
462 void
463 _vm_map_lock(vm_map_t map, const char *file, int line)
464 {
465 
466 	if (map->system_map)
467 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
468 	else
469 		sx_xlock_(&map->lock, file, line);
470 	map->timestamp++;
471 }
472 
473 static void
474 vm_map_process_deferred(void)
475 {
476 	struct thread *td;
477 	vm_map_entry_t entry;
478 
479 	td = curthread;
480 
481 	while ((entry = td->td_map_def_user) != NULL) {
482 		td->td_map_def_user = entry->next;
483 		vm_map_entry_deallocate(entry, FALSE);
484 	}
485 }
486 
487 void
488 _vm_map_unlock(vm_map_t map, const char *file, int line)
489 {
490 
491 	if (map->system_map)
492 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
493 	else {
494 		sx_xunlock_(&map->lock, file, line);
495 		vm_map_process_deferred();
496 	}
497 }
498 
499 void
500 _vm_map_lock_read(vm_map_t map, const char *file, int line)
501 {
502 
503 	if (map->system_map)
504 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
505 	else
506 		sx_slock_(&map->lock, file, line);
507 }
508 
509 void
510 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
511 {
512 
513 	if (map->system_map)
514 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
515 	else {
516 		sx_sunlock_(&map->lock, file, line);
517 		vm_map_process_deferred();
518 	}
519 }
520 
521 int
522 _vm_map_trylock(vm_map_t map, const char *file, int line)
523 {
524 	int error;
525 
526 	error = map->system_map ?
527 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
528 	    !sx_try_xlock_(&map->lock, file, line);
529 	if (error == 0)
530 		map->timestamp++;
531 	return (error == 0);
532 }
533 
534 int
535 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
536 {
537 	int error;
538 
539 	error = map->system_map ?
540 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
541 	    !sx_try_slock_(&map->lock, file, line);
542 	return (error == 0);
543 }
544 
545 /*
546  *	_vm_map_lock_upgrade:	[ internal use only ]
547  *
548  *	Tries to upgrade a read (shared) lock on the specified map to a write
549  *	(exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
550  *	non-zero value if the upgrade fails.  If the upgrade fails, the map is
551  *	returned without a read or write lock held.
552  *
553  *	Requires that the map be read locked.
554  */
555 int
556 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
557 {
558 	unsigned int last_timestamp;
559 
560 	if (map->system_map) {
561 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
562 	} else {
563 		if (!sx_try_upgrade_(&map->lock, file, line)) {
564 			last_timestamp = map->timestamp;
565 			sx_sunlock_(&map->lock, file, line);
566 			vm_map_process_deferred();
567 			/*
568 			 * If the map's timestamp does not change while the
569 			 * map is unlocked, then the upgrade succeeds.
570 			 */
571 			sx_xlock_(&map->lock, file, line);
572 			if (last_timestamp != map->timestamp) {
573 				sx_xunlock_(&map->lock, file, line);
574 				return (1);
575 			}
576 		}
577 	}
578 	map->timestamp++;
579 	return (0);
580 }
581 
582 void
583 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
584 {
585 
586 	if (map->system_map) {
587 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
588 	} else
589 		sx_downgrade_(&map->lock, file, line);
590 }
591 
592 /*
593  *	vm_map_locked:
594  *
595  *	Returns a non-zero value if the caller holds a write (exclusive) lock
596  *	on the specified map and the value "0" otherwise.
597  */
598 int
599 vm_map_locked(vm_map_t map)
600 {
601 
602 	if (map->system_map)
603 		return (mtx_owned(&map->system_mtx));
604 	else
605 		return (sx_xlocked(&map->lock));
606 }
607 
608 #ifdef INVARIANTS
609 static void
610 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
611 {
612 
613 	if (map->system_map)
614 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
615 	else
616 		sx_assert_(&map->lock, SA_XLOCKED, file, line);
617 }
618 
619 #define	VM_MAP_ASSERT_LOCKED(map) \
620     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
621 #else
622 #define	VM_MAP_ASSERT_LOCKED(map)
623 #endif
624 
625 /*
626  *	_vm_map_unlock_and_wait:
627  *
628  *	Atomically releases the lock on the specified map and puts the calling
629  *	thread to sleep.  The calling thread will remain asleep until either
630  *	vm_map_wakeup() is performed on the map or the specified timeout is
631  *	exceeded.
632  *
633  *	WARNING!  This function does not perform deferred deallocations of
634  *	objects and map	entries.  Therefore, the calling thread is expected to
635  *	reacquire the map lock after reawakening and later perform an ordinary
636  *	unlock operation, such as vm_map_unlock(), before completing its
637  *	operation on the map.
638  */
639 int
640 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
641 {
642 
643 	mtx_lock(&map_sleep_mtx);
644 	if (map->system_map)
645 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
646 	else
647 		sx_xunlock_(&map->lock, file, line);
648 	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
649 	    timo));
650 }
651 
652 /*
653  *	vm_map_wakeup:
654  *
655  *	Awaken any threads that have slept on the map using
656  *	vm_map_unlock_and_wait().
657  */
658 void
659 vm_map_wakeup(vm_map_t map)
660 {
661 
662 	/*
663 	 * Acquire and release map_sleep_mtx to prevent a wakeup()
664 	 * from being performed (and lost) between the map unlock
665 	 * and the msleep() in _vm_map_unlock_and_wait().
666 	 */
667 	mtx_lock(&map_sleep_mtx);
668 	mtx_unlock(&map_sleep_mtx);
669 	wakeup(&map->root);
670 }
671 
672 void
673 vm_map_busy(vm_map_t map)
674 {
675 
676 	VM_MAP_ASSERT_LOCKED(map);
677 	map->busy++;
678 }
679 
680 void
681 vm_map_unbusy(vm_map_t map)
682 {
683 
684 	VM_MAP_ASSERT_LOCKED(map);
685 	KASSERT(map->busy, ("vm_map_unbusy: not busy"));
686 	if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
687 		vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
688 		wakeup(&map->busy);
689 	}
690 }
691 
692 void
693 vm_map_wait_busy(vm_map_t map)
694 {
695 
696 	VM_MAP_ASSERT_LOCKED(map);
697 	while (map->busy) {
698 		vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
699 		if (map->system_map)
700 			msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
701 		else
702 			sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
703 	}
704 	map->timestamp++;
705 }
706 
707 long
708 vmspace_resident_count(struct vmspace *vmspace)
709 {
710 	return pmap_resident_count(vmspace_pmap(vmspace));
711 }
712 
713 long
714 vmspace_wired_count(struct vmspace *vmspace)
715 {
716 	return pmap_wired_count(vmspace_pmap(vmspace));
717 }
718 
719 /*
720  *	vm_map_create:
721  *
722  *	Creates and returns a new empty VM map with
723  *	the given physical map structure, and having
724  *	the given lower and upper address bounds.
725  */
726 vm_map_t
727 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
728 {
729 	vm_map_t result;
730 
731 	result = uma_zalloc(mapzone, M_WAITOK);
732 	CTR1(KTR_VM, "vm_map_create: %p", result);
733 	_vm_map_init(result, pmap, min, max);
734 	return (result);
735 }
736 
737 /*
738  * Initialize an existing vm_map structure
739  * such as that in the vmspace structure.
740  */
741 static void
742 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
743 {
744 
745 	map->header.next = map->header.prev = &map->header;
746 	map->needs_wakeup = FALSE;
747 	map->system_map = 0;
748 	map->pmap = pmap;
749 	map->min_offset = min;
750 	map->max_offset = max;
751 	map->flags = 0;
752 	map->root = NULL;
753 	map->timestamp = 0;
754 	map->busy = 0;
755 }
756 
757 void
758 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
759 {
760 
761 	_vm_map_init(map, pmap, min, max);
762 	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
763 	sx_init(&map->lock, "user map");
764 }
765 
766 /*
767  *	vm_map_entry_dispose:	[ internal use only ]
768  *
769  *	Inverse of vm_map_entry_create.
770  */
771 static void
772 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
773 {
774 	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
775 }
776 
777 /*
778  *	vm_map_entry_create:	[ internal use only ]
779  *
780  *	Allocates a VM map entry for insertion.
781  *	No entry fields are filled in.
782  */
783 static vm_map_entry_t
784 vm_map_entry_create(vm_map_t map)
785 {
786 	vm_map_entry_t new_entry;
787 
788 	if (map->system_map)
789 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
790 	else
791 		new_entry = uma_zalloc(mapentzone, M_WAITOK);
792 	if (new_entry == NULL)
793 		panic("vm_map_entry_create: kernel resources exhausted");
794 	return (new_entry);
795 }
796 
797 /*
798  *	vm_map_entry_set_behavior:
799  *
800  *	Set the expected access behavior, either normal, random, or
801  *	sequential.
802  */
803 static inline void
804 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
805 {
806 	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
807 	    (behavior & MAP_ENTRY_BEHAV_MASK);
808 }
809 
810 /*
811  *	vm_map_entry_set_max_free:
812  *
813  *	Set the max_free field in a vm_map_entry.
814  */
815 static inline void
816 vm_map_entry_set_max_free(vm_map_entry_t entry)
817 {
818 
819 	entry->max_free = entry->adj_free;
820 	if (entry->left != NULL && entry->left->max_free > entry->max_free)
821 		entry->max_free = entry->left->max_free;
822 	if (entry->right != NULL && entry->right->max_free > entry->max_free)
823 		entry->max_free = entry->right->max_free;
824 }
825 
826 /*
827  *	vm_map_entry_splay:
828  *
829  *	The Sleator and Tarjan top-down splay algorithm with the
830  *	following variation.  Max_free must be computed bottom-up, so
831  *	on the downward pass, maintain the left and right spines in
832  *	reverse order.  Then, make a second pass up each side to fix
833  *	the pointers and compute max_free.  The time bound is O(log n)
834  *	amortized.
835  *
836  *	The new root is the vm_map_entry containing "addr", or else an
837  *	adjacent entry (lower or higher) if addr is not in the tree.
838  *
839  *	The map must be locked, and leaves it so.
840  *
841  *	Returns: the new root.
842  */
843 static vm_map_entry_t
844 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
845 {
846 	vm_map_entry_t llist, rlist;
847 	vm_map_entry_t ltree, rtree;
848 	vm_map_entry_t y;
849 
850 	/* Special case of empty tree. */
851 	if (root == NULL)
852 		return (root);
853 
854 	/*
855 	 * Pass One: Splay down the tree until we find addr or a NULL
856 	 * pointer where addr would go.  llist and rlist are the two
857 	 * sides in reverse order (bottom-up), with llist linked by
858 	 * the right pointer and rlist linked by the left pointer in
859 	 * the vm_map_entry.  Wait until Pass Two to set max_free on
860 	 * the two spines.
861 	 */
862 	llist = NULL;
863 	rlist = NULL;
864 	for (;;) {
865 		/* root is never NULL in here. */
866 		if (addr < root->start) {
867 			y = root->left;
868 			if (y == NULL)
869 				break;
870 			if (addr < y->start && y->left != NULL) {
871 				/* Rotate right and put y on rlist. */
872 				root->left = y->right;
873 				y->right = root;
874 				vm_map_entry_set_max_free(root);
875 				root = y->left;
876 				y->left = rlist;
877 				rlist = y;
878 			} else {
879 				/* Put root on rlist. */
880 				root->left = rlist;
881 				rlist = root;
882 				root = y;
883 			}
884 		} else if (addr >= root->end) {
885 			y = root->right;
886 			if (y == NULL)
887 				break;
888 			if (addr >= y->end && y->right != NULL) {
889 				/* Rotate left and put y on llist. */
890 				root->right = y->left;
891 				y->left = root;
892 				vm_map_entry_set_max_free(root);
893 				root = y->right;
894 				y->right = llist;
895 				llist = y;
896 			} else {
897 				/* Put root on llist. */
898 				root->right = llist;
899 				llist = root;
900 				root = y;
901 			}
902 		} else
903 			break;
904 	}
905 
906 	/*
907 	 * Pass Two: Walk back up the two spines, flip the pointers
908 	 * and set max_free.  The subtrees of the root go at the
909 	 * bottom of llist and rlist.
910 	 */
911 	ltree = root->left;
912 	while (llist != NULL) {
913 		y = llist->right;
914 		llist->right = ltree;
915 		vm_map_entry_set_max_free(llist);
916 		ltree = llist;
917 		llist = y;
918 	}
919 	rtree = root->right;
920 	while (rlist != NULL) {
921 		y = rlist->left;
922 		rlist->left = rtree;
923 		vm_map_entry_set_max_free(rlist);
924 		rtree = rlist;
925 		rlist = y;
926 	}
927 
928 	/*
929 	 * Final assembly: add ltree and rtree as subtrees of root.
930 	 */
931 	root->left = ltree;
932 	root->right = rtree;
933 	vm_map_entry_set_max_free(root);
934 
935 	return (root);
936 }
937 
938 /*
939  *	vm_map_entry_{un,}link:
940  *
941  *	Insert/remove entries from maps.
942  */
943 static void
944 vm_map_entry_link(vm_map_t map,
945 		  vm_map_entry_t after_where,
946 		  vm_map_entry_t entry)
947 {
948 
949 	CTR4(KTR_VM,
950 	    "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
951 	    map->nentries, entry, after_where);
952 	VM_MAP_ASSERT_LOCKED(map);
953 	map->nentries++;
954 	entry->prev = after_where;
955 	entry->next = after_where->next;
956 	entry->next->prev = entry;
957 	after_where->next = entry;
958 
959 	if (after_where != &map->header) {
960 		if (after_where != map->root)
961 			vm_map_entry_splay(after_where->start, map->root);
962 		entry->right = after_where->right;
963 		entry->left = after_where;
964 		after_where->right = NULL;
965 		after_where->adj_free = entry->start - after_where->end;
966 		vm_map_entry_set_max_free(after_where);
967 	} else {
968 		entry->right = map->root;
969 		entry->left = NULL;
970 	}
971 	entry->adj_free = (entry->next == &map->header ? map->max_offset :
972 	    entry->next->start) - entry->end;
973 	vm_map_entry_set_max_free(entry);
974 	map->root = entry;
975 }
976 
977 static void
978 vm_map_entry_unlink(vm_map_t map,
979 		    vm_map_entry_t entry)
980 {
981 	vm_map_entry_t next, prev, root;
982 
983 	VM_MAP_ASSERT_LOCKED(map);
984 	if (entry != map->root)
985 		vm_map_entry_splay(entry->start, map->root);
986 	if (entry->left == NULL)
987 		root = entry->right;
988 	else {
989 		root = vm_map_entry_splay(entry->start, entry->left);
990 		root->right = entry->right;
991 		root->adj_free = (entry->next == &map->header ? map->max_offset :
992 		    entry->next->start) - root->end;
993 		vm_map_entry_set_max_free(root);
994 	}
995 	map->root = root;
996 
997 	prev = entry->prev;
998 	next = entry->next;
999 	next->prev = prev;
1000 	prev->next = next;
1001 	map->nentries--;
1002 	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1003 	    map->nentries, entry);
1004 }
1005 
1006 /*
1007  *	vm_map_entry_resize_free:
1008  *
1009  *	Recompute the amount of free space following a vm_map_entry
1010  *	and propagate that value up the tree.  Call this function after
1011  *	resizing a map entry in-place, that is, without a call to
1012  *	vm_map_entry_link() or _unlink().
1013  *
1014  *	The map must be locked, and leaves it so.
1015  */
1016 static void
1017 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
1018 {
1019 
1020 	/*
1021 	 * Using splay trees without parent pointers, propagating
1022 	 * max_free up the tree is done by moving the entry to the
1023 	 * root and making the change there.
1024 	 */
1025 	if (entry != map->root)
1026 		map->root = vm_map_entry_splay(entry->start, map->root);
1027 
1028 	entry->adj_free = (entry->next == &map->header ? map->max_offset :
1029 	    entry->next->start) - entry->end;
1030 	vm_map_entry_set_max_free(entry);
1031 }
1032 
1033 /*
1034  *	vm_map_lookup_entry:	[ internal use only ]
1035  *
1036  *	Finds the map entry containing (or
1037  *	immediately preceding) the specified address
1038  *	in the given map; the entry is returned
1039  *	in the "entry" parameter.  The boolean
1040  *	result indicates whether the address is
1041  *	actually contained in the map.
1042  */
1043 boolean_t
1044 vm_map_lookup_entry(
1045 	vm_map_t map,
1046 	vm_offset_t address,
1047 	vm_map_entry_t *entry)	/* OUT */
1048 {
1049 	vm_map_entry_t cur;
1050 	boolean_t locked;
1051 
1052 	/*
1053 	 * If the map is empty, then the map entry immediately preceding
1054 	 * "address" is the map's header.
1055 	 */
1056 	cur = map->root;
1057 	if (cur == NULL)
1058 		*entry = &map->header;
1059 	else if (address >= cur->start && cur->end > address) {
1060 		*entry = cur;
1061 		return (TRUE);
1062 	} else if ((locked = vm_map_locked(map)) ||
1063 	    sx_try_upgrade(&map->lock)) {
1064 		/*
1065 		 * Splay requires a write lock on the map.  However, it only
1066 		 * restructures the binary search tree; it does not otherwise
1067 		 * change the map.  Thus, the map's timestamp need not change
1068 		 * on a temporary upgrade.
1069 		 */
1070 		map->root = cur = vm_map_entry_splay(address, cur);
1071 		if (!locked)
1072 			sx_downgrade(&map->lock);
1073 
1074 		/*
1075 		 * If "address" is contained within a map entry, the new root
1076 		 * is that map entry.  Otherwise, the new root is a map entry
1077 		 * immediately before or after "address".
1078 		 */
1079 		if (address >= cur->start) {
1080 			*entry = cur;
1081 			if (cur->end > address)
1082 				return (TRUE);
1083 		} else
1084 			*entry = cur->prev;
1085 	} else
1086 		/*
1087 		 * Since the map is only locked for read access, perform a
1088 		 * standard binary search tree lookup for "address".
1089 		 */
1090 		for (;;) {
1091 			if (address < cur->start) {
1092 				if (cur->left == NULL) {
1093 					*entry = cur->prev;
1094 					break;
1095 				}
1096 				cur = cur->left;
1097 			} else if (cur->end > address) {
1098 				*entry = cur;
1099 				return (TRUE);
1100 			} else {
1101 				if (cur->right == NULL) {
1102 					*entry = cur;
1103 					break;
1104 				}
1105 				cur = cur->right;
1106 			}
1107 		}
1108 	return (FALSE);
1109 }
1110 
1111 /*
1112  *	vm_map_insert:
1113  *
1114  *	Inserts the given whole VM object into the target
1115  *	map at the specified address range.  The object's
1116  *	size should match that of the address range.
1117  *
1118  *	Requires that the map be locked, and leaves it so.
1119  *
1120  *	If object is non-NULL, ref count must be bumped by caller
1121  *	prior to making call to account for the new entry.
1122  */
1123 int
1124 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1125 	      vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max,
1126 	      int cow)
1127 {
1128 	vm_map_entry_t new_entry;
1129 	vm_map_entry_t prev_entry;
1130 	vm_map_entry_t temp_entry;
1131 	vm_eflags_t protoeflags;
1132 	struct ucred *cred;
1133 	vm_inherit_t inheritance;
1134 	boolean_t charge_prev_obj;
1135 
1136 	VM_MAP_ASSERT_LOCKED(map);
1137 
1138 	/*
1139 	 * Check that the start and end points are not bogus.
1140 	 */
1141 	if ((start < map->min_offset) || (end > map->max_offset) ||
1142 	    (start >= end))
1143 		return (KERN_INVALID_ADDRESS);
1144 
1145 	/*
1146 	 * Find the entry prior to the proposed starting address; if it's part
1147 	 * of an existing entry, this range is bogus.
1148 	 */
1149 	if (vm_map_lookup_entry(map, start, &temp_entry))
1150 		return (KERN_NO_SPACE);
1151 
1152 	prev_entry = temp_entry;
1153 
1154 	/*
1155 	 * Assert that the next entry doesn't overlap the end point.
1156 	 */
1157 	if ((prev_entry->next != &map->header) &&
1158 	    (prev_entry->next->start < end))
1159 		return (KERN_NO_SPACE);
1160 
1161 	protoeflags = 0;
1162 	charge_prev_obj = FALSE;
1163 
1164 	if (cow & MAP_COPY_ON_WRITE)
1165 		protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
1166 
1167 	if (cow & MAP_NOFAULT) {
1168 		protoeflags |= MAP_ENTRY_NOFAULT;
1169 
1170 		KASSERT(object == NULL,
1171 			("vm_map_insert: paradoxical MAP_NOFAULT request"));
1172 	}
1173 	if (cow & MAP_DISABLE_SYNCER)
1174 		protoeflags |= MAP_ENTRY_NOSYNC;
1175 	if (cow & MAP_DISABLE_COREDUMP)
1176 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1177 	if (cow & MAP_INHERIT_SHARE)
1178 		inheritance = VM_INHERIT_SHARE;
1179 	else
1180 		inheritance = VM_INHERIT_DEFAULT;
1181 
1182 	cred = NULL;
1183 	KASSERT((object != kmem_object && object != kernel_object) ||
1184 	    ((object == kmem_object || object == kernel_object) &&
1185 		!(protoeflags & MAP_ENTRY_NEEDS_COPY)),
1186 	    ("kmem or kernel object and cow"));
1187 	if (cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT))
1188 		goto charged;
1189 	if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1190 	    ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1191 		if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1192 			return (KERN_RESOURCE_SHORTAGE);
1193 		KASSERT(object == NULL || (protoeflags & MAP_ENTRY_NEEDS_COPY) ||
1194 		    object->cred == NULL,
1195 		    ("OVERCOMMIT: vm_map_insert o %p", object));
1196 		cred = curthread->td_ucred;
1197 		crhold(cred);
1198 		if (object == NULL && !(protoeflags & MAP_ENTRY_NEEDS_COPY))
1199 			charge_prev_obj = TRUE;
1200 	}
1201 
1202 charged:
1203 	/* Expand the kernel pmap, if necessary. */
1204 	if (map == kernel_map && end > kernel_vm_end)
1205 		pmap_growkernel(end);
1206 	if (object != NULL) {
1207 		/*
1208 		 * OBJ_ONEMAPPING must be cleared unless this mapping
1209 		 * is trivially proven to be the only mapping for any
1210 		 * of the object's pages.  (Object granularity
1211 		 * reference counting is insufficient to recognize
1212 		 * aliases with precision.)
1213 		 */
1214 		VM_OBJECT_LOCK(object);
1215 		if (object->ref_count > 1 || object->shadow_count != 0)
1216 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
1217 		VM_OBJECT_UNLOCK(object);
1218 	}
1219 	else if ((prev_entry != &map->header) &&
1220 		 (prev_entry->eflags == protoeflags) &&
1221 		 (prev_entry->end == start) &&
1222 		 (prev_entry->wired_count == 0) &&
1223 		 (prev_entry->cred == cred ||
1224 		  (prev_entry->object.vm_object != NULL &&
1225 		   (prev_entry->object.vm_object->cred == cred))) &&
1226 		   vm_object_coalesce(prev_entry->object.vm_object,
1227 		       prev_entry->offset,
1228 		       (vm_size_t)(prev_entry->end - prev_entry->start),
1229 		       (vm_size_t)(end - prev_entry->end), charge_prev_obj)) {
1230 		/*
1231 		 * We were able to extend the object.  Determine if we
1232 		 * can extend the previous map entry to include the
1233 		 * new range as well.
1234 		 */
1235 		if ((prev_entry->inheritance == inheritance) &&
1236 		    (prev_entry->protection == prot) &&
1237 		    (prev_entry->max_protection == max)) {
1238 			map->size += (end - prev_entry->end);
1239 			prev_entry->end = end;
1240 			vm_map_entry_resize_free(map, prev_entry);
1241 			vm_map_simplify_entry(map, prev_entry);
1242 			if (cred != NULL)
1243 				crfree(cred);
1244 			return (KERN_SUCCESS);
1245 		}
1246 
1247 		/*
1248 		 * If we can extend the object but cannot extend the
1249 		 * map entry, we have to create a new map entry.  We
1250 		 * must bump the ref count on the extended object to
1251 		 * account for it.  object may be NULL.
1252 		 */
1253 		object = prev_entry->object.vm_object;
1254 		offset = prev_entry->offset +
1255 			(prev_entry->end - prev_entry->start);
1256 		vm_object_reference(object);
1257 		if (cred != NULL && object != NULL && object->cred != NULL &&
1258 		    !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1259 			/* Object already accounts for this uid. */
1260 			crfree(cred);
1261 			cred = NULL;
1262 		}
1263 	}
1264 
1265 	/*
1266 	 * NOTE: if conditionals fail, object can be NULL here.  This occurs
1267 	 * in things like the buffer map where we manage kva but do not manage
1268 	 * backing objects.
1269 	 */
1270 
1271 	/*
1272 	 * Create a new entry
1273 	 */
1274 	new_entry = vm_map_entry_create(map);
1275 	new_entry->start = start;
1276 	new_entry->end = end;
1277 	new_entry->cred = NULL;
1278 
1279 	new_entry->eflags = protoeflags;
1280 	new_entry->object.vm_object = object;
1281 	new_entry->offset = offset;
1282 	new_entry->avail_ssize = 0;
1283 
1284 	new_entry->inheritance = inheritance;
1285 	new_entry->protection = prot;
1286 	new_entry->max_protection = max;
1287 	new_entry->wired_count = 0;
1288 
1289 	KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1290 	    ("OVERCOMMIT: vm_map_insert leaks vm_map %p", new_entry));
1291 	new_entry->cred = cred;
1292 
1293 	/*
1294 	 * Insert the new entry into the list
1295 	 */
1296 	vm_map_entry_link(map, prev_entry, new_entry);
1297 	map->size += new_entry->end - new_entry->start;
1298 
1299 	/*
1300 	 * It may be possible to merge the new entry with the next and/or
1301 	 * previous entries.  However, due to MAP_STACK_* being a hack, a
1302 	 * panic can result from merging such entries.
1303 	 */
1304 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0)
1305 		vm_map_simplify_entry(map, new_entry);
1306 
1307 	if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
1308 		vm_map_pmap_enter(map, start, prot,
1309 				    object, OFF_TO_IDX(offset), end - start,
1310 				    cow & MAP_PREFAULT_PARTIAL);
1311 	}
1312 
1313 	return (KERN_SUCCESS);
1314 }
1315 
1316 /*
1317  *	vm_map_findspace:
1318  *
1319  *	Find the first fit (lowest VM address) for "length" free bytes
1320  *	beginning at address >= start in the given map.
1321  *
1322  *	In a vm_map_entry, "adj_free" is the amount of free space
1323  *	adjacent (higher address) to this entry, and "max_free" is the
1324  *	maximum amount of contiguous free space in its subtree.  This
1325  *	allows finding a free region in one path down the tree, so
1326  *	O(log n) amortized with splay trees.
1327  *
1328  *	The map must be locked, and leaves it so.
1329  *
1330  *	Returns: 0 on success, and starting address in *addr,
1331  *		 1 if insufficient space.
1332  */
1333 int
1334 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1335     vm_offset_t *addr)	/* OUT */
1336 {
1337 	vm_map_entry_t entry;
1338 	vm_offset_t st;
1339 
1340 	/*
1341 	 * Request must fit within min/max VM address and must avoid
1342 	 * address wrap.
1343 	 */
1344 	if (start < map->min_offset)
1345 		start = map->min_offset;
1346 	if (start + length > map->max_offset || start + length < start)
1347 		return (1);
1348 
1349 	/* Empty tree means wide open address space. */
1350 	if (map->root == NULL) {
1351 		*addr = start;
1352 		return (0);
1353 	}
1354 
1355 	/*
1356 	 * After splay, if start comes before root node, then there
1357 	 * must be a gap from start to the root.
1358 	 */
1359 	map->root = vm_map_entry_splay(start, map->root);
1360 	if (start + length <= map->root->start) {
1361 		*addr = start;
1362 		return (0);
1363 	}
1364 
1365 	/*
1366 	 * Root is the last node that might begin its gap before
1367 	 * start, and this is the last comparison where address
1368 	 * wrap might be a problem.
1369 	 */
1370 	st = (start > map->root->end) ? start : map->root->end;
1371 	if (length <= map->root->end + map->root->adj_free - st) {
1372 		*addr = st;
1373 		return (0);
1374 	}
1375 
1376 	/* With max_free, can immediately tell if no solution. */
1377 	entry = map->root->right;
1378 	if (entry == NULL || length > entry->max_free)
1379 		return (1);
1380 
1381 	/*
1382 	 * Search the right subtree in the order: left subtree, root,
1383 	 * right subtree (first fit).  The previous splay implies that
1384 	 * all regions in the right subtree have addresses > start.
1385 	 */
1386 	while (entry != NULL) {
1387 		if (entry->left != NULL && entry->left->max_free >= length)
1388 			entry = entry->left;
1389 		else if (entry->adj_free >= length) {
1390 			*addr = entry->end;
1391 			return (0);
1392 		} else
1393 			entry = entry->right;
1394 	}
1395 
1396 	/* Can't get here, so panic if we do. */
1397 	panic("vm_map_findspace: max_free corrupt");
1398 }
1399 
1400 int
1401 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1402     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1403     vm_prot_t max, int cow)
1404 {
1405 	vm_offset_t end;
1406 	int result;
1407 
1408 	end = start + length;
1409 	vm_map_lock(map);
1410 	VM_MAP_RANGE_CHECK(map, start, end);
1411 	(void) vm_map_delete(map, start, end);
1412 	result = vm_map_insert(map, object, offset, start, end, prot,
1413 	    max, cow);
1414 	vm_map_unlock(map);
1415 	return (result);
1416 }
1417 
1418 /*
1419  *	vm_map_find finds an unallocated region in the target address
1420  *	map with the given length.  The search is defined to be
1421  *	first-fit from the specified address; the region found is
1422  *	returned in the same parameter.
1423  *
1424  *	If object is non-NULL, ref count must be bumped by caller
1425  *	prior to making call to account for the new entry.
1426  */
1427 int
1428 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1429 	    vm_offset_t *addr,	/* IN/OUT */
1430 	    vm_size_t length, int find_space, vm_prot_t prot,
1431 	    vm_prot_t max, int cow)
1432 {
1433 	vm_offset_t start;
1434 	int result;
1435 
1436 	start = *addr;
1437 	vm_map_lock(map);
1438 	do {
1439 		if (find_space != VMFS_NO_SPACE) {
1440 			if (vm_map_findspace(map, start, length, addr)) {
1441 				vm_map_unlock(map);
1442 				return (KERN_NO_SPACE);
1443 			}
1444 			switch (find_space) {
1445 			case VMFS_ALIGNED_SPACE:
1446 				pmap_align_superpage(object, offset, addr,
1447 				    length);
1448 				break;
1449 #ifdef VMFS_TLB_ALIGNED_SPACE
1450 			case VMFS_TLB_ALIGNED_SPACE:
1451 				pmap_align_tlb(addr);
1452 				break;
1453 #endif
1454 			default:
1455 				break;
1456 			}
1457 
1458 			start = *addr;
1459 		}
1460 		result = vm_map_insert(map, object, offset, start, start +
1461 		    length, prot, max, cow);
1462 	} while (result == KERN_NO_SPACE && (find_space == VMFS_ALIGNED_SPACE
1463 #ifdef VMFS_TLB_ALIGNED_SPACE
1464 	    || find_space == VMFS_TLB_ALIGNED_SPACE
1465 #endif
1466 	    ));
1467 	vm_map_unlock(map);
1468 	return (result);
1469 }
1470 
1471 /*
1472  *	vm_map_simplify_entry:
1473  *
1474  *	Simplify the given map entry by merging with either neighbor.  This
1475  *	routine also has the ability to merge with both neighbors.
1476  *
1477  *	The map must be locked.
1478  *
1479  *	This routine guarentees that the passed entry remains valid (though
1480  *	possibly extended).  When merging, this routine may delete one or
1481  *	both neighbors.
1482  */
1483 void
1484 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1485 {
1486 	vm_map_entry_t next, prev;
1487 	vm_size_t prevsize, esize;
1488 
1489 	if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP))
1490 		return;
1491 
1492 	prev = entry->prev;
1493 	if (prev != &map->header) {
1494 		prevsize = prev->end - prev->start;
1495 		if ( (prev->end == entry->start) &&
1496 		     (prev->object.vm_object == entry->object.vm_object) &&
1497 		     (!prev->object.vm_object ||
1498 			(prev->offset + prevsize == entry->offset)) &&
1499 		     (prev->eflags == entry->eflags) &&
1500 		     (prev->protection == entry->protection) &&
1501 		     (prev->max_protection == entry->max_protection) &&
1502 		     (prev->inheritance == entry->inheritance) &&
1503 		     (prev->wired_count == entry->wired_count) &&
1504 		     (prev->cred == entry->cred)) {
1505 			vm_map_entry_unlink(map, prev);
1506 			entry->start = prev->start;
1507 			entry->offset = prev->offset;
1508 			if (entry->prev != &map->header)
1509 				vm_map_entry_resize_free(map, entry->prev);
1510 
1511 			/*
1512 			 * If the backing object is a vnode object,
1513 			 * vm_object_deallocate() calls vrele().
1514 			 * However, vrele() does not lock the vnode
1515 			 * because the vnode has additional
1516 			 * references.  Thus, the map lock can be kept
1517 			 * without causing a lock-order reversal with
1518 			 * the vnode lock.
1519 			 */
1520 			if (prev->object.vm_object)
1521 				vm_object_deallocate(prev->object.vm_object);
1522 			if (prev->cred != NULL)
1523 				crfree(prev->cred);
1524 			vm_map_entry_dispose(map, prev);
1525 		}
1526 	}
1527 
1528 	next = entry->next;
1529 	if (next != &map->header) {
1530 		esize = entry->end - entry->start;
1531 		if ((entry->end == next->start) &&
1532 		    (next->object.vm_object == entry->object.vm_object) &&
1533 		     (!entry->object.vm_object ||
1534 			(entry->offset + esize == next->offset)) &&
1535 		    (next->eflags == entry->eflags) &&
1536 		    (next->protection == entry->protection) &&
1537 		    (next->max_protection == entry->max_protection) &&
1538 		    (next->inheritance == entry->inheritance) &&
1539 		    (next->wired_count == entry->wired_count) &&
1540 		    (next->cred == entry->cred)) {
1541 			vm_map_entry_unlink(map, next);
1542 			entry->end = next->end;
1543 			vm_map_entry_resize_free(map, entry);
1544 
1545 			/*
1546 			 * See comment above.
1547 			 */
1548 			if (next->object.vm_object)
1549 				vm_object_deallocate(next->object.vm_object);
1550 			if (next->cred != NULL)
1551 				crfree(next->cred);
1552 			vm_map_entry_dispose(map, next);
1553 		}
1554 	}
1555 }
1556 /*
1557  *	vm_map_clip_start:	[ internal use only ]
1558  *
1559  *	Asserts that the given entry begins at or after
1560  *	the specified address; if necessary,
1561  *	it splits the entry into two.
1562  */
1563 #define vm_map_clip_start(map, entry, startaddr) \
1564 { \
1565 	if (startaddr > entry->start) \
1566 		_vm_map_clip_start(map, entry, startaddr); \
1567 }
1568 
1569 /*
1570  *	This routine is called only when it is known that
1571  *	the entry must be split.
1572  */
1573 static void
1574 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1575 {
1576 	vm_map_entry_t new_entry;
1577 
1578 	VM_MAP_ASSERT_LOCKED(map);
1579 
1580 	/*
1581 	 * Split off the front portion -- note that we must insert the new
1582 	 * entry BEFORE this one, so that this entry has the specified
1583 	 * starting address.
1584 	 */
1585 	vm_map_simplify_entry(map, entry);
1586 
1587 	/*
1588 	 * If there is no object backing this entry, we might as well create
1589 	 * one now.  If we defer it, an object can get created after the map
1590 	 * is clipped, and individual objects will be created for the split-up
1591 	 * map.  This is a bit of a hack, but is also about the best place to
1592 	 * put this improvement.
1593 	 */
1594 	if (entry->object.vm_object == NULL && !map->system_map) {
1595 		vm_object_t object;
1596 		object = vm_object_allocate(OBJT_DEFAULT,
1597 				atop(entry->end - entry->start));
1598 		entry->object.vm_object = object;
1599 		entry->offset = 0;
1600 		if (entry->cred != NULL) {
1601 			object->cred = entry->cred;
1602 			object->charge = entry->end - entry->start;
1603 			entry->cred = NULL;
1604 		}
1605 	} else if (entry->object.vm_object != NULL &&
1606 		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1607 		   entry->cred != NULL) {
1608 		VM_OBJECT_LOCK(entry->object.vm_object);
1609 		KASSERT(entry->object.vm_object->cred == NULL,
1610 		    ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
1611 		entry->object.vm_object->cred = entry->cred;
1612 		entry->object.vm_object->charge = entry->end - entry->start;
1613 		VM_OBJECT_UNLOCK(entry->object.vm_object);
1614 		entry->cred = NULL;
1615 	}
1616 
1617 	new_entry = vm_map_entry_create(map);
1618 	*new_entry = *entry;
1619 
1620 	new_entry->end = start;
1621 	entry->offset += (start - entry->start);
1622 	entry->start = start;
1623 	if (new_entry->cred != NULL)
1624 		crhold(entry->cred);
1625 
1626 	vm_map_entry_link(map, entry->prev, new_entry);
1627 
1628 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1629 		vm_object_reference(new_entry->object.vm_object);
1630 	}
1631 }
1632 
1633 /*
1634  *	vm_map_clip_end:	[ internal use only ]
1635  *
1636  *	Asserts that the given entry ends at or before
1637  *	the specified address; if necessary,
1638  *	it splits the entry into two.
1639  */
1640 #define vm_map_clip_end(map, entry, endaddr) \
1641 { \
1642 	if ((endaddr) < (entry->end)) \
1643 		_vm_map_clip_end((map), (entry), (endaddr)); \
1644 }
1645 
1646 /*
1647  *	This routine is called only when it is known that
1648  *	the entry must be split.
1649  */
1650 static void
1651 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1652 {
1653 	vm_map_entry_t new_entry;
1654 
1655 	VM_MAP_ASSERT_LOCKED(map);
1656 
1657 	/*
1658 	 * If there is no object backing this entry, we might as well create
1659 	 * one now.  If we defer it, an object can get created after the map
1660 	 * is clipped, and individual objects will be created for the split-up
1661 	 * map.  This is a bit of a hack, but is also about the best place to
1662 	 * put this improvement.
1663 	 */
1664 	if (entry->object.vm_object == NULL && !map->system_map) {
1665 		vm_object_t object;
1666 		object = vm_object_allocate(OBJT_DEFAULT,
1667 				atop(entry->end - entry->start));
1668 		entry->object.vm_object = object;
1669 		entry->offset = 0;
1670 		if (entry->cred != NULL) {
1671 			object->cred = entry->cred;
1672 			object->charge = entry->end - entry->start;
1673 			entry->cred = NULL;
1674 		}
1675 	} else if (entry->object.vm_object != NULL &&
1676 		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1677 		   entry->cred != NULL) {
1678 		VM_OBJECT_LOCK(entry->object.vm_object);
1679 		KASSERT(entry->object.vm_object->cred == NULL,
1680 		    ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
1681 		entry->object.vm_object->cred = entry->cred;
1682 		entry->object.vm_object->charge = entry->end - entry->start;
1683 		VM_OBJECT_UNLOCK(entry->object.vm_object);
1684 		entry->cred = NULL;
1685 	}
1686 
1687 	/*
1688 	 * Create a new entry and insert it AFTER the specified entry
1689 	 */
1690 	new_entry = vm_map_entry_create(map);
1691 	*new_entry = *entry;
1692 
1693 	new_entry->start = entry->end = end;
1694 	new_entry->offset += (end - entry->start);
1695 	if (new_entry->cred != NULL)
1696 		crhold(entry->cred);
1697 
1698 	vm_map_entry_link(map, entry, new_entry);
1699 
1700 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1701 		vm_object_reference(new_entry->object.vm_object);
1702 	}
1703 }
1704 
1705 /*
1706  *	vm_map_submap:		[ kernel use only ]
1707  *
1708  *	Mark the given range as handled by a subordinate map.
1709  *
1710  *	This range must have been created with vm_map_find,
1711  *	and no other operations may have been performed on this
1712  *	range prior to calling vm_map_submap.
1713  *
1714  *	Only a limited number of operations can be performed
1715  *	within this rage after calling vm_map_submap:
1716  *		vm_fault
1717  *	[Don't try vm_map_copy!]
1718  *
1719  *	To remove a submapping, one must first remove the
1720  *	range from the superior map, and then destroy the
1721  *	submap (if desired).  [Better yet, don't try it.]
1722  */
1723 int
1724 vm_map_submap(
1725 	vm_map_t map,
1726 	vm_offset_t start,
1727 	vm_offset_t end,
1728 	vm_map_t submap)
1729 {
1730 	vm_map_entry_t entry;
1731 	int result = KERN_INVALID_ARGUMENT;
1732 
1733 	vm_map_lock(map);
1734 
1735 	VM_MAP_RANGE_CHECK(map, start, end);
1736 
1737 	if (vm_map_lookup_entry(map, start, &entry)) {
1738 		vm_map_clip_start(map, entry, start);
1739 	} else
1740 		entry = entry->next;
1741 
1742 	vm_map_clip_end(map, entry, end);
1743 
1744 	if ((entry->start == start) && (entry->end == end) &&
1745 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1746 	    (entry->object.vm_object == NULL)) {
1747 		entry->object.sub_map = submap;
1748 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1749 		result = KERN_SUCCESS;
1750 	}
1751 	vm_map_unlock(map);
1752 
1753 	return (result);
1754 }
1755 
1756 /*
1757  * The maximum number of pages to map
1758  */
1759 #define	MAX_INIT_PT	96
1760 
1761 /*
1762  *	vm_map_pmap_enter:
1763  *
1764  *	Preload read-only mappings for the given object's resident pages into
1765  *	the given map.  This eliminates the soft faults on process startup and
1766  *	immediately after an mmap(2).  Because these are speculative mappings,
1767  *	cached pages are not reactivated and mapped.
1768  */
1769 void
1770 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
1771     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
1772 {
1773 	vm_offset_t start;
1774 	vm_page_t p, p_start;
1775 	vm_pindex_t psize, tmpidx;
1776 
1777 	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
1778 		return;
1779 	VM_OBJECT_LOCK(object);
1780 	if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1781 		pmap_object_init_pt(map->pmap, addr, object, pindex, size);
1782 		goto unlock_return;
1783 	}
1784 
1785 	psize = atop(size);
1786 
1787 	if ((flags & MAP_PREFAULT_PARTIAL) && psize > MAX_INIT_PT &&
1788 	    object->resident_page_count > MAX_INIT_PT)
1789 		goto unlock_return;
1790 
1791 	if (psize + pindex > object->size) {
1792 		if (object->size < pindex)
1793 			goto unlock_return;
1794 		psize = object->size - pindex;
1795 	}
1796 
1797 	start = 0;
1798 	p_start = NULL;
1799 
1800 	p = vm_page_find_least(object, pindex);
1801 	/*
1802 	 * Assert: the variable p is either (1) the page with the
1803 	 * least pindex greater than or equal to the parameter pindex
1804 	 * or (2) NULL.
1805 	 */
1806 	for (;
1807 	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
1808 	     p = TAILQ_NEXT(p, listq)) {
1809 		/*
1810 		 * don't allow an madvise to blow away our really
1811 		 * free pages allocating pv entries.
1812 		 */
1813 		if ((flags & MAP_PREFAULT_MADVISE) &&
1814 		    cnt.v_free_count < cnt.v_free_reserved) {
1815 			psize = tmpidx;
1816 			break;
1817 		}
1818 		if (p->valid == VM_PAGE_BITS_ALL) {
1819 			if (p_start == NULL) {
1820 				start = addr + ptoa(tmpidx);
1821 				p_start = p;
1822 			}
1823 		} else if (p_start != NULL) {
1824 			pmap_enter_object(map->pmap, start, addr +
1825 			    ptoa(tmpidx), p_start, prot);
1826 			p_start = NULL;
1827 		}
1828 	}
1829 	if (p_start != NULL)
1830 		pmap_enter_object(map->pmap, start, addr + ptoa(psize),
1831 		    p_start, prot);
1832 unlock_return:
1833 	VM_OBJECT_UNLOCK(object);
1834 }
1835 
1836 /*
1837  *	vm_map_protect:
1838  *
1839  *	Sets the protection of the specified address
1840  *	region in the target map.  If "set_max" is
1841  *	specified, the maximum protection is to be set;
1842  *	otherwise, only the current protection is affected.
1843  */
1844 int
1845 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1846 	       vm_prot_t new_prot, boolean_t set_max)
1847 {
1848 	vm_map_entry_t current, entry;
1849 	vm_object_t obj;
1850 	struct ucred *cred;
1851 	vm_prot_t old_prot;
1852 
1853 	vm_map_lock(map);
1854 
1855 	VM_MAP_RANGE_CHECK(map, start, end);
1856 
1857 	if (vm_map_lookup_entry(map, start, &entry)) {
1858 		vm_map_clip_start(map, entry, start);
1859 	} else {
1860 		entry = entry->next;
1861 	}
1862 
1863 	/*
1864 	 * Make a first pass to check for protection violations.
1865 	 */
1866 	current = entry;
1867 	while ((current != &map->header) && (current->start < end)) {
1868 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1869 			vm_map_unlock(map);
1870 			return (KERN_INVALID_ARGUMENT);
1871 		}
1872 		if ((new_prot & current->max_protection) != new_prot) {
1873 			vm_map_unlock(map);
1874 			return (KERN_PROTECTION_FAILURE);
1875 		}
1876 		current = current->next;
1877 	}
1878 
1879 
1880 	/*
1881 	 * Do an accounting pass for private read-only mappings that
1882 	 * now will do cow due to allowed write (e.g. debugger sets
1883 	 * breakpoint on text segment)
1884 	 */
1885 	for (current = entry; (current != &map->header) &&
1886 	     (current->start < end); current = current->next) {
1887 
1888 		vm_map_clip_end(map, current, end);
1889 
1890 		if (set_max ||
1891 		    ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
1892 		    ENTRY_CHARGED(current)) {
1893 			continue;
1894 		}
1895 
1896 		cred = curthread->td_ucred;
1897 		obj = current->object.vm_object;
1898 
1899 		if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
1900 			if (!swap_reserve(current->end - current->start)) {
1901 				vm_map_unlock(map);
1902 				return (KERN_RESOURCE_SHORTAGE);
1903 			}
1904 			crhold(cred);
1905 			current->cred = cred;
1906 			continue;
1907 		}
1908 
1909 		VM_OBJECT_LOCK(obj);
1910 		if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
1911 			VM_OBJECT_UNLOCK(obj);
1912 			continue;
1913 		}
1914 
1915 		/*
1916 		 * Charge for the whole object allocation now, since
1917 		 * we cannot distinguish between non-charged and
1918 		 * charged clipped mapping of the same object later.
1919 		 */
1920 		KASSERT(obj->charge == 0,
1921 		    ("vm_map_protect: object %p overcharged\n", obj));
1922 		if (!swap_reserve(ptoa(obj->size))) {
1923 			VM_OBJECT_UNLOCK(obj);
1924 			vm_map_unlock(map);
1925 			return (KERN_RESOURCE_SHORTAGE);
1926 		}
1927 
1928 		crhold(cred);
1929 		obj->cred = cred;
1930 		obj->charge = ptoa(obj->size);
1931 		VM_OBJECT_UNLOCK(obj);
1932 	}
1933 
1934 	/*
1935 	 * Go back and fix up protections. [Note that clipping is not
1936 	 * necessary the second time.]
1937 	 */
1938 	current = entry;
1939 	while ((current != &map->header) && (current->start < end)) {
1940 		old_prot = current->protection;
1941 
1942 		if (set_max)
1943 			current->protection =
1944 			    (current->max_protection = new_prot) &
1945 			    old_prot;
1946 		else
1947 			current->protection = new_prot;
1948 
1949 		if ((current->eflags & (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED))
1950 		     == (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED) &&
1951 		    (current->protection & VM_PROT_WRITE) != 0 &&
1952 		    (old_prot & VM_PROT_WRITE) == 0) {
1953 			vm_fault_copy_entry(map, map, current, current, NULL);
1954 		}
1955 
1956 		/*
1957 		 * When restricting access, update the physical map.  Worry
1958 		 * about copy-on-write here.
1959 		 */
1960 		if ((old_prot & ~current->protection) != 0) {
1961 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1962 							VM_PROT_ALL)
1963 			pmap_protect(map->pmap, current->start,
1964 			    current->end,
1965 			    current->protection & MASK(current));
1966 #undef	MASK
1967 		}
1968 		vm_map_simplify_entry(map, current);
1969 		current = current->next;
1970 	}
1971 	vm_map_unlock(map);
1972 	return (KERN_SUCCESS);
1973 }
1974 
1975 /*
1976  *	vm_map_madvise:
1977  *
1978  *	This routine traverses a processes map handling the madvise
1979  *	system call.  Advisories are classified as either those effecting
1980  *	the vm_map_entry structure, or those effecting the underlying
1981  *	objects.
1982  */
1983 int
1984 vm_map_madvise(
1985 	vm_map_t map,
1986 	vm_offset_t start,
1987 	vm_offset_t end,
1988 	int behav)
1989 {
1990 	vm_map_entry_t current, entry;
1991 	int modify_map = 0;
1992 
1993 	/*
1994 	 * Some madvise calls directly modify the vm_map_entry, in which case
1995 	 * we need to use an exclusive lock on the map and we need to perform
1996 	 * various clipping operations.  Otherwise we only need a read-lock
1997 	 * on the map.
1998 	 */
1999 	switch(behav) {
2000 	case MADV_NORMAL:
2001 	case MADV_SEQUENTIAL:
2002 	case MADV_RANDOM:
2003 	case MADV_NOSYNC:
2004 	case MADV_AUTOSYNC:
2005 	case MADV_NOCORE:
2006 	case MADV_CORE:
2007 		modify_map = 1;
2008 		vm_map_lock(map);
2009 		break;
2010 	case MADV_WILLNEED:
2011 	case MADV_DONTNEED:
2012 	case MADV_FREE:
2013 		vm_map_lock_read(map);
2014 		break;
2015 	default:
2016 		return (KERN_INVALID_ARGUMENT);
2017 	}
2018 
2019 	/*
2020 	 * Locate starting entry and clip if necessary.
2021 	 */
2022 	VM_MAP_RANGE_CHECK(map, start, end);
2023 
2024 	if (vm_map_lookup_entry(map, start, &entry)) {
2025 		if (modify_map)
2026 			vm_map_clip_start(map, entry, start);
2027 	} else {
2028 		entry = entry->next;
2029 	}
2030 
2031 	if (modify_map) {
2032 		/*
2033 		 * madvise behaviors that are implemented in the vm_map_entry.
2034 		 *
2035 		 * We clip the vm_map_entry so that behavioral changes are
2036 		 * limited to the specified address range.
2037 		 */
2038 		for (current = entry;
2039 		     (current != &map->header) && (current->start < end);
2040 		     current = current->next
2041 		) {
2042 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2043 				continue;
2044 
2045 			vm_map_clip_end(map, current, end);
2046 
2047 			switch (behav) {
2048 			case MADV_NORMAL:
2049 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2050 				break;
2051 			case MADV_SEQUENTIAL:
2052 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2053 				break;
2054 			case MADV_RANDOM:
2055 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2056 				break;
2057 			case MADV_NOSYNC:
2058 				current->eflags |= MAP_ENTRY_NOSYNC;
2059 				break;
2060 			case MADV_AUTOSYNC:
2061 				current->eflags &= ~MAP_ENTRY_NOSYNC;
2062 				break;
2063 			case MADV_NOCORE:
2064 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
2065 				break;
2066 			case MADV_CORE:
2067 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2068 				break;
2069 			default:
2070 				break;
2071 			}
2072 			vm_map_simplify_entry(map, current);
2073 		}
2074 		vm_map_unlock(map);
2075 	} else {
2076 		vm_pindex_t pindex;
2077 		int count;
2078 
2079 		/*
2080 		 * madvise behaviors that are implemented in the underlying
2081 		 * vm_object.
2082 		 *
2083 		 * Since we don't clip the vm_map_entry, we have to clip
2084 		 * the vm_object pindex and count.
2085 		 */
2086 		for (current = entry;
2087 		     (current != &map->header) && (current->start < end);
2088 		     current = current->next
2089 		) {
2090 			vm_offset_t useStart;
2091 
2092 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2093 				continue;
2094 
2095 			pindex = OFF_TO_IDX(current->offset);
2096 			count = atop(current->end - current->start);
2097 			useStart = current->start;
2098 
2099 			if (current->start < start) {
2100 				pindex += atop(start - current->start);
2101 				count -= atop(start - current->start);
2102 				useStart = start;
2103 			}
2104 			if (current->end > end)
2105 				count -= atop(current->end - end);
2106 
2107 			if (count <= 0)
2108 				continue;
2109 
2110 			vm_object_madvise(current->object.vm_object,
2111 					  pindex, count, behav);
2112 			if (behav == MADV_WILLNEED) {
2113 				vm_map_pmap_enter(map,
2114 				    useStart,
2115 				    current->protection,
2116 				    current->object.vm_object,
2117 				    pindex,
2118 				    (count << PAGE_SHIFT),
2119 				    MAP_PREFAULT_MADVISE
2120 				);
2121 			}
2122 		}
2123 		vm_map_unlock_read(map);
2124 	}
2125 	return (0);
2126 }
2127 
2128 
2129 /*
2130  *	vm_map_inherit:
2131  *
2132  *	Sets the inheritance of the specified address
2133  *	range in the target map.  Inheritance
2134  *	affects how the map will be shared with
2135  *	child maps at the time of vmspace_fork.
2136  */
2137 int
2138 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2139 	       vm_inherit_t new_inheritance)
2140 {
2141 	vm_map_entry_t entry;
2142 	vm_map_entry_t temp_entry;
2143 
2144 	switch (new_inheritance) {
2145 	case VM_INHERIT_NONE:
2146 	case VM_INHERIT_COPY:
2147 	case VM_INHERIT_SHARE:
2148 		break;
2149 	default:
2150 		return (KERN_INVALID_ARGUMENT);
2151 	}
2152 	vm_map_lock(map);
2153 	VM_MAP_RANGE_CHECK(map, start, end);
2154 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
2155 		entry = temp_entry;
2156 		vm_map_clip_start(map, entry, start);
2157 	} else
2158 		entry = temp_entry->next;
2159 	while ((entry != &map->header) && (entry->start < end)) {
2160 		vm_map_clip_end(map, entry, end);
2161 		entry->inheritance = new_inheritance;
2162 		vm_map_simplify_entry(map, entry);
2163 		entry = entry->next;
2164 	}
2165 	vm_map_unlock(map);
2166 	return (KERN_SUCCESS);
2167 }
2168 
2169 /*
2170  *	vm_map_unwire:
2171  *
2172  *	Implements both kernel and user unwiring.
2173  */
2174 int
2175 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2176     int flags)
2177 {
2178 	vm_map_entry_t entry, first_entry, tmp_entry;
2179 	vm_offset_t saved_start;
2180 	unsigned int last_timestamp;
2181 	int rv;
2182 	boolean_t need_wakeup, result, user_unwire;
2183 
2184 	user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2185 	vm_map_lock(map);
2186 	VM_MAP_RANGE_CHECK(map, start, end);
2187 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2188 		if (flags & VM_MAP_WIRE_HOLESOK)
2189 			first_entry = first_entry->next;
2190 		else {
2191 			vm_map_unlock(map);
2192 			return (KERN_INVALID_ADDRESS);
2193 		}
2194 	}
2195 	last_timestamp = map->timestamp;
2196 	entry = first_entry;
2197 	while (entry != &map->header && entry->start < end) {
2198 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2199 			/*
2200 			 * We have not yet clipped the entry.
2201 			 */
2202 			saved_start = (start >= entry->start) ? start :
2203 			    entry->start;
2204 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2205 			if (vm_map_unlock_and_wait(map, 0)) {
2206 				/*
2207 				 * Allow interruption of user unwiring?
2208 				 */
2209 			}
2210 			vm_map_lock(map);
2211 			if (last_timestamp+1 != map->timestamp) {
2212 				/*
2213 				 * Look again for the entry because the map was
2214 				 * modified while it was unlocked.
2215 				 * Specifically, the entry may have been
2216 				 * clipped, merged, or deleted.
2217 				 */
2218 				if (!vm_map_lookup_entry(map, saved_start,
2219 				    &tmp_entry)) {
2220 					if (flags & VM_MAP_WIRE_HOLESOK)
2221 						tmp_entry = tmp_entry->next;
2222 					else {
2223 						if (saved_start == start) {
2224 							/*
2225 							 * First_entry has been deleted.
2226 							 */
2227 							vm_map_unlock(map);
2228 							return (KERN_INVALID_ADDRESS);
2229 						}
2230 						end = saved_start;
2231 						rv = KERN_INVALID_ADDRESS;
2232 						goto done;
2233 					}
2234 				}
2235 				if (entry == first_entry)
2236 					first_entry = tmp_entry;
2237 				else
2238 					first_entry = NULL;
2239 				entry = tmp_entry;
2240 			}
2241 			last_timestamp = map->timestamp;
2242 			continue;
2243 		}
2244 		vm_map_clip_start(map, entry, start);
2245 		vm_map_clip_end(map, entry, end);
2246 		/*
2247 		 * Mark the entry in case the map lock is released.  (See
2248 		 * above.)
2249 		 */
2250 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2251 		/*
2252 		 * Check the map for holes in the specified region.
2253 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2254 		 */
2255 		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2256 		    (entry->end < end && (entry->next == &map->header ||
2257 		    entry->next->start > entry->end))) {
2258 			end = entry->end;
2259 			rv = KERN_INVALID_ADDRESS;
2260 			goto done;
2261 		}
2262 		/*
2263 		 * If system unwiring, require that the entry is system wired.
2264 		 */
2265 		if (!user_unwire &&
2266 		    vm_map_entry_system_wired_count(entry) == 0) {
2267 			end = entry->end;
2268 			rv = KERN_INVALID_ARGUMENT;
2269 			goto done;
2270 		}
2271 		entry = entry->next;
2272 	}
2273 	rv = KERN_SUCCESS;
2274 done:
2275 	need_wakeup = FALSE;
2276 	if (first_entry == NULL) {
2277 		result = vm_map_lookup_entry(map, start, &first_entry);
2278 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2279 			first_entry = first_entry->next;
2280 		else
2281 			KASSERT(result, ("vm_map_unwire: lookup failed"));
2282 	}
2283 	entry = first_entry;
2284 	while (entry != &map->header && entry->start < end) {
2285 		if (rv == KERN_SUCCESS && (!user_unwire ||
2286 		    (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2287 			if (user_unwire)
2288 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2289 			entry->wired_count--;
2290 			if (entry->wired_count == 0) {
2291 				/*
2292 				 * Retain the map lock.
2293 				 */
2294 				vm_fault_unwire(map, entry->start, entry->end,
2295 				    entry->object.vm_object != NULL &&
2296 				    (entry->object.vm_object->type == OBJT_DEVICE ||
2297 				    entry->object.vm_object->type == OBJT_SG));
2298 			}
2299 		}
2300 		KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
2301 			("vm_map_unwire: in-transition flag missing"));
2302 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2303 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2304 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2305 			need_wakeup = TRUE;
2306 		}
2307 		vm_map_simplify_entry(map, entry);
2308 		entry = entry->next;
2309 	}
2310 	vm_map_unlock(map);
2311 	if (need_wakeup)
2312 		vm_map_wakeup(map);
2313 	return (rv);
2314 }
2315 
2316 /*
2317  *	vm_map_wire:
2318  *
2319  *	Implements both kernel and user wiring.
2320  */
2321 int
2322 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2323     int flags)
2324 {
2325 	vm_map_entry_t entry, first_entry, tmp_entry;
2326 	vm_offset_t saved_end, saved_start;
2327 	unsigned int last_timestamp;
2328 	int rv;
2329 	boolean_t fictitious, need_wakeup, result, user_wire;
2330 	vm_prot_t prot;
2331 
2332 	prot = 0;
2333 	if (flags & VM_MAP_WIRE_WRITE)
2334 		prot |= VM_PROT_WRITE;
2335 	user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2336 	vm_map_lock(map);
2337 	VM_MAP_RANGE_CHECK(map, start, end);
2338 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2339 		if (flags & VM_MAP_WIRE_HOLESOK)
2340 			first_entry = first_entry->next;
2341 		else {
2342 			vm_map_unlock(map);
2343 			return (KERN_INVALID_ADDRESS);
2344 		}
2345 	}
2346 	last_timestamp = map->timestamp;
2347 	entry = first_entry;
2348 	while (entry != &map->header && entry->start < end) {
2349 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2350 			/*
2351 			 * We have not yet clipped the entry.
2352 			 */
2353 			saved_start = (start >= entry->start) ? start :
2354 			    entry->start;
2355 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2356 			if (vm_map_unlock_and_wait(map, 0)) {
2357 				/*
2358 				 * Allow interruption of user wiring?
2359 				 */
2360 			}
2361 			vm_map_lock(map);
2362 			if (last_timestamp + 1 != map->timestamp) {
2363 				/*
2364 				 * Look again for the entry because the map was
2365 				 * modified while it was unlocked.
2366 				 * Specifically, the entry may have been
2367 				 * clipped, merged, or deleted.
2368 				 */
2369 				if (!vm_map_lookup_entry(map, saved_start,
2370 				    &tmp_entry)) {
2371 					if (flags & VM_MAP_WIRE_HOLESOK)
2372 						tmp_entry = tmp_entry->next;
2373 					else {
2374 						if (saved_start == start) {
2375 							/*
2376 							 * first_entry has been deleted.
2377 							 */
2378 							vm_map_unlock(map);
2379 							return (KERN_INVALID_ADDRESS);
2380 						}
2381 						end = saved_start;
2382 						rv = KERN_INVALID_ADDRESS;
2383 						goto done;
2384 					}
2385 				}
2386 				if (entry == first_entry)
2387 					first_entry = tmp_entry;
2388 				else
2389 					first_entry = NULL;
2390 				entry = tmp_entry;
2391 			}
2392 			last_timestamp = map->timestamp;
2393 			continue;
2394 		}
2395 		vm_map_clip_start(map, entry, start);
2396 		vm_map_clip_end(map, entry, end);
2397 		/*
2398 		 * Mark the entry in case the map lock is released.  (See
2399 		 * above.)
2400 		 */
2401 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2402 		if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
2403 		    || (entry->protection & prot) != prot) {
2404 			entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
2405 			if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
2406 				end = entry->end;
2407 				rv = KERN_INVALID_ADDRESS;
2408 				goto done;
2409 			}
2410 			goto next_entry;
2411 		}
2412 		if (entry->wired_count == 0) {
2413 			entry->wired_count++;
2414 			saved_start = entry->start;
2415 			saved_end = entry->end;
2416 			fictitious = entry->object.vm_object != NULL &&
2417 			    (entry->object.vm_object->type == OBJT_DEVICE ||
2418 			    entry->object.vm_object->type == OBJT_SG);
2419 			/*
2420 			 * Release the map lock, relying on the in-transition
2421 			 * mark.  Mark the map busy for fork.
2422 			 */
2423 			vm_map_busy(map);
2424 			vm_map_unlock(map);
2425 			rv = vm_fault_wire(map, saved_start, saved_end,
2426 			    fictitious);
2427 			vm_map_lock(map);
2428 			vm_map_unbusy(map);
2429 			if (last_timestamp + 1 != map->timestamp) {
2430 				/*
2431 				 * Look again for the entry because the map was
2432 				 * modified while it was unlocked.  The entry
2433 				 * may have been clipped, but NOT merged or
2434 				 * deleted.
2435 				 */
2436 				result = vm_map_lookup_entry(map, saved_start,
2437 				    &tmp_entry);
2438 				KASSERT(result, ("vm_map_wire: lookup failed"));
2439 				if (entry == first_entry)
2440 					first_entry = tmp_entry;
2441 				else
2442 					first_entry = NULL;
2443 				entry = tmp_entry;
2444 				while (entry->end < saved_end) {
2445 					if (rv != KERN_SUCCESS) {
2446 						KASSERT(entry->wired_count == 1,
2447 						    ("vm_map_wire: bad count"));
2448 						entry->wired_count = -1;
2449 					}
2450 					entry = entry->next;
2451 				}
2452 			}
2453 			last_timestamp = map->timestamp;
2454 			if (rv != KERN_SUCCESS) {
2455 				KASSERT(entry->wired_count == 1,
2456 				    ("vm_map_wire: bad count"));
2457 				/*
2458 				 * Assign an out-of-range value to represent
2459 				 * the failure to wire this entry.
2460 				 */
2461 				entry->wired_count = -1;
2462 				end = entry->end;
2463 				goto done;
2464 			}
2465 		} else if (!user_wire ||
2466 			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2467 			entry->wired_count++;
2468 		}
2469 		/*
2470 		 * Check the map for holes in the specified region.
2471 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2472 		 */
2473 	next_entry:
2474 		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2475 		    (entry->end < end && (entry->next == &map->header ||
2476 		    entry->next->start > entry->end))) {
2477 			end = entry->end;
2478 			rv = KERN_INVALID_ADDRESS;
2479 			goto done;
2480 		}
2481 		entry = entry->next;
2482 	}
2483 	rv = KERN_SUCCESS;
2484 done:
2485 	need_wakeup = FALSE;
2486 	if (first_entry == NULL) {
2487 		result = vm_map_lookup_entry(map, start, &first_entry);
2488 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2489 			first_entry = first_entry->next;
2490 		else
2491 			KASSERT(result, ("vm_map_wire: lookup failed"));
2492 	}
2493 	entry = first_entry;
2494 	while (entry != &map->header && entry->start < end) {
2495 		if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
2496 			goto next_entry_done;
2497 		if (rv == KERN_SUCCESS) {
2498 			if (user_wire)
2499 				entry->eflags |= MAP_ENTRY_USER_WIRED;
2500 		} else if (entry->wired_count == -1) {
2501 			/*
2502 			 * Wiring failed on this entry.  Thus, unwiring is
2503 			 * unnecessary.
2504 			 */
2505 			entry->wired_count = 0;
2506 		} else {
2507 			if (!user_wire ||
2508 			    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0)
2509 				entry->wired_count--;
2510 			if (entry->wired_count == 0) {
2511 				/*
2512 				 * Retain the map lock.
2513 				 */
2514 				vm_fault_unwire(map, entry->start, entry->end,
2515 				    entry->object.vm_object != NULL &&
2516 				    (entry->object.vm_object->type == OBJT_DEVICE ||
2517 				    entry->object.vm_object->type == OBJT_SG));
2518 			}
2519 		}
2520 	next_entry_done:
2521 		KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
2522 			("vm_map_wire: in-transition flag missing"));
2523 		entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION|MAP_ENTRY_WIRE_SKIPPED);
2524 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2525 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2526 			need_wakeup = TRUE;
2527 		}
2528 		vm_map_simplify_entry(map, entry);
2529 		entry = entry->next;
2530 	}
2531 	vm_map_unlock(map);
2532 	if (need_wakeup)
2533 		vm_map_wakeup(map);
2534 	return (rv);
2535 }
2536 
2537 /*
2538  * vm_map_sync
2539  *
2540  * Push any dirty cached pages in the address range to their pager.
2541  * If syncio is TRUE, dirty pages are written synchronously.
2542  * If invalidate is TRUE, any cached pages are freed as well.
2543  *
2544  * If the size of the region from start to end is zero, we are
2545  * supposed to flush all modified pages within the region containing
2546  * start.  Unfortunately, a region can be split or coalesced with
2547  * neighboring regions, making it difficult to determine what the
2548  * original region was.  Therefore, we approximate this requirement by
2549  * flushing the current region containing start.
2550  *
2551  * Returns an error if any part of the specified range is not mapped.
2552  */
2553 int
2554 vm_map_sync(
2555 	vm_map_t map,
2556 	vm_offset_t start,
2557 	vm_offset_t end,
2558 	boolean_t syncio,
2559 	boolean_t invalidate)
2560 {
2561 	vm_map_entry_t current;
2562 	vm_map_entry_t entry;
2563 	vm_size_t size;
2564 	vm_object_t object;
2565 	vm_ooffset_t offset;
2566 	unsigned int last_timestamp;
2567 
2568 	vm_map_lock_read(map);
2569 	VM_MAP_RANGE_CHECK(map, start, end);
2570 	if (!vm_map_lookup_entry(map, start, &entry)) {
2571 		vm_map_unlock_read(map);
2572 		return (KERN_INVALID_ADDRESS);
2573 	} else if (start == end) {
2574 		start = entry->start;
2575 		end = entry->end;
2576 	}
2577 	/*
2578 	 * Make a first pass to check for user-wired memory and holes.
2579 	 */
2580 	for (current = entry; current != &map->header && current->start < end;
2581 	    current = current->next) {
2582 		if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
2583 			vm_map_unlock_read(map);
2584 			return (KERN_INVALID_ARGUMENT);
2585 		}
2586 		if (end > current->end &&
2587 		    (current->next == &map->header ||
2588 			current->end != current->next->start)) {
2589 			vm_map_unlock_read(map);
2590 			return (KERN_INVALID_ADDRESS);
2591 		}
2592 	}
2593 
2594 	if (invalidate)
2595 		pmap_remove(map->pmap, start, end);
2596 
2597 	/*
2598 	 * Make a second pass, cleaning/uncaching pages from the indicated
2599 	 * objects as we go.
2600 	 */
2601 	for (current = entry; current != &map->header && current->start < end;) {
2602 		offset = current->offset + (start - current->start);
2603 		size = (end <= current->end ? end : current->end) - start;
2604 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2605 			vm_map_t smap;
2606 			vm_map_entry_t tentry;
2607 			vm_size_t tsize;
2608 
2609 			smap = current->object.sub_map;
2610 			vm_map_lock_read(smap);
2611 			(void) vm_map_lookup_entry(smap, offset, &tentry);
2612 			tsize = tentry->end - offset;
2613 			if (tsize < size)
2614 				size = tsize;
2615 			object = tentry->object.vm_object;
2616 			offset = tentry->offset + (offset - tentry->start);
2617 			vm_map_unlock_read(smap);
2618 		} else {
2619 			object = current->object.vm_object;
2620 		}
2621 		vm_object_reference(object);
2622 		last_timestamp = map->timestamp;
2623 		vm_map_unlock_read(map);
2624 		vm_object_sync(object, offset, size, syncio, invalidate);
2625 		start += size;
2626 		vm_object_deallocate(object);
2627 		vm_map_lock_read(map);
2628 		if (last_timestamp == map->timestamp ||
2629 		    !vm_map_lookup_entry(map, start, &current))
2630 			current = current->next;
2631 	}
2632 
2633 	vm_map_unlock_read(map);
2634 	return (KERN_SUCCESS);
2635 }
2636 
2637 /*
2638  *	vm_map_entry_unwire:	[ internal use only ]
2639  *
2640  *	Make the region specified by this entry pageable.
2641  *
2642  *	The map in question should be locked.
2643  *	[This is the reason for this routine's existence.]
2644  */
2645 static void
2646 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2647 {
2648 	vm_fault_unwire(map, entry->start, entry->end,
2649 	    entry->object.vm_object != NULL &&
2650 	    (entry->object.vm_object->type == OBJT_DEVICE ||
2651 	    entry->object.vm_object->type == OBJT_SG));
2652 	entry->wired_count = 0;
2653 }
2654 
2655 static void
2656 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
2657 {
2658 
2659 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
2660 		vm_object_deallocate(entry->object.vm_object);
2661 	uma_zfree(system_map ? kmapentzone : mapentzone, entry);
2662 }
2663 
2664 /*
2665  *	vm_map_entry_delete:	[ internal use only ]
2666  *
2667  *	Deallocate the given entry from the target map.
2668  */
2669 static void
2670 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
2671 {
2672 	vm_object_t object;
2673 	vm_pindex_t offidxstart, offidxend, count, size1;
2674 	vm_ooffset_t size;
2675 
2676 	vm_map_entry_unlink(map, entry);
2677 	object = entry->object.vm_object;
2678 	size = entry->end - entry->start;
2679 	map->size -= size;
2680 
2681 	if (entry->cred != NULL) {
2682 		swap_release_by_cred(size, entry->cred);
2683 		crfree(entry->cred);
2684 	}
2685 
2686 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2687 	    (object != NULL)) {
2688 		KASSERT(entry->cred == NULL || object->cred == NULL ||
2689 		    (entry->eflags & MAP_ENTRY_NEEDS_COPY),
2690 		    ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
2691 		count = OFF_TO_IDX(size);
2692 		offidxstart = OFF_TO_IDX(entry->offset);
2693 		offidxend = offidxstart + count;
2694 		VM_OBJECT_LOCK(object);
2695 		if (object->ref_count != 1 &&
2696 		    ((object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
2697 		    object == kernel_object || object == kmem_object)) {
2698 			vm_object_collapse(object);
2699 
2700 			/*
2701 			 * The option OBJPR_NOTMAPPED can be passed here
2702 			 * because vm_map_delete() already performed
2703 			 * pmap_remove() on the only mapping to this range
2704 			 * of pages.
2705 			 */
2706 			vm_object_page_remove(object, offidxstart, offidxend,
2707 			    OBJPR_NOTMAPPED);
2708 			if (object->type == OBJT_SWAP)
2709 				swap_pager_freespace(object, offidxstart, count);
2710 			if (offidxend >= object->size &&
2711 			    offidxstart < object->size) {
2712 				size1 = object->size;
2713 				object->size = offidxstart;
2714 				if (object->cred != NULL) {
2715 					size1 -= object->size;
2716 					KASSERT(object->charge >= ptoa(size1),
2717 					    ("vm_map_entry_delete: object->charge < 0"));
2718 					swap_release_by_cred(ptoa(size1), object->cred);
2719 					object->charge -= ptoa(size1);
2720 				}
2721 			}
2722 		}
2723 		VM_OBJECT_UNLOCK(object);
2724 	} else
2725 		entry->object.vm_object = NULL;
2726 	if (map->system_map)
2727 		vm_map_entry_deallocate(entry, TRUE);
2728 	else {
2729 		entry->next = curthread->td_map_def_user;
2730 		curthread->td_map_def_user = entry;
2731 	}
2732 }
2733 
2734 /*
2735  *	vm_map_delete:	[ internal use only ]
2736  *
2737  *	Deallocates the given address range from the target
2738  *	map.
2739  */
2740 int
2741 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
2742 {
2743 	vm_map_entry_t entry;
2744 	vm_map_entry_t first_entry;
2745 
2746 	VM_MAP_ASSERT_LOCKED(map);
2747 
2748 	/*
2749 	 * Find the start of the region, and clip it
2750 	 */
2751 	if (!vm_map_lookup_entry(map, start, &first_entry))
2752 		entry = first_entry->next;
2753 	else {
2754 		entry = first_entry;
2755 		vm_map_clip_start(map, entry, start);
2756 	}
2757 
2758 	/*
2759 	 * Step through all entries in this region
2760 	 */
2761 	while ((entry != &map->header) && (entry->start < end)) {
2762 		vm_map_entry_t next;
2763 
2764 		/*
2765 		 * Wait for wiring or unwiring of an entry to complete.
2766 		 * Also wait for any system wirings to disappear on
2767 		 * user maps.
2768 		 */
2769 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
2770 		    (vm_map_pmap(map) != kernel_pmap &&
2771 		    vm_map_entry_system_wired_count(entry) != 0)) {
2772 			unsigned int last_timestamp;
2773 			vm_offset_t saved_start;
2774 			vm_map_entry_t tmp_entry;
2775 
2776 			saved_start = entry->start;
2777 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2778 			last_timestamp = map->timestamp;
2779 			(void) vm_map_unlock_and_wait(map, 0);
2780 			vm_map_lock(map);
2781 			if (last_timestamp + 1 != map->timestamp) {
2782 				/*
2783 				 * Look again for the entry because the map was
2784 				 * modified while it was unlocked.
2785 				 * Specifically, the entry may have been
2786 				 * clipped, merged, or deleted.
2787 				 */
2788 				if (!vm_map_lookup_entry(map, saved_start,
2789 							 &tmp_entry))
2790 					entry = tmp_entry->next;
2791 				else {
2792 					entry = tmp_entry;
2793 					vm_map_clip_start(map, entry,
2794 							  saved_start);
2795 				}
2796 			}
2797 			continue;
2798 		}
2799 		vm_map_clip_end(map, entry, end);
2800 
2801 		next = entry->next;
2802 
2803 		/*
2804 		 * Unwire before removing addresses from the pmap; otherwise,
2805 		 * unwiring will put the entries back in the pmap.
2806 		 */
2807 		if (entry->wired_count != 0) {
2808 			vm_map_entry_unwire(map, entry);
2809 		}
2810 
2811 		pmap_remove(map->pmap, entry->start, entry->end);
2812 
2813 		/*
2814 		 * Delete the entry only after removing all pmap
2815 		 * entries pointing to its pages.  (Otherwise, its
2816 		 * page frames may be reallocated, and any modify bits
2817 		 * will be set in the wrong object!)
2818 		 */
2819 		vm_map_entry_delete(map, entry);
2820 		entry = next;
2821 	}
2822 	return (KERN_SUCCESS);
2823 }
2824 
2825 /*
2826  *	vm_map_remove:
2827  *
2828  *	Remove the given address range from the target map.
2829  *	This is the exported form of vm_map_delete.
2830  */
2831 int
2832 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2833 {
2834 	int result;
2835 
2836 	vm_map_lock(map);
2837 	VM_MAP_RANGE_CHECK(map, start, end);
2838 	result = vm_map_delete(map, start, end);
2839 	vm_map_unlock(map);
2840 	return (result);
2841 }
2842 
2843 /*
2844  *	vm_map_check_protection:
2845  *
2846  *	Assert that the target map allows the specified privilege on the
2847  *	entire address region given.  The entire region must be allocated.
2848  *
2849  *	WARNING!  This code does not and should not check whether the
2850  *	contents of the region is accessible.  For example a smaller file
2851  *	might be mapped into a larger address space.
2852  *
2853  *	NOTE!  This code is also called by munmap().
2854  *
2855  *	The map must be locked.  A read lock is sufficient.
2856  */
2857 boolean_t
2858 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2859 			vm_prot_t protection)
2860 {
2861 	vm_map_entry_t entry;
2862 	vm_map_entry_t tmp_entry;
2863 
2864 	if (!vm_map_lookup_entry(map, start, &tmp_entry))
2865 		return (FALSE);
2866 	entry = tmp_entry;
2867 
2868 	while (start < end) {
2869 		if (entry == &map->header)
2870 			return (FALSE);
2871 		/*
2872 		 * No holes allowed!
2873 		 */
2874 		if (start < entry->start)
2875 			return (FALSE);
2876 		/*
2877 		 * Check protection associated with entry.
2878 		 */
2879 		if ((entry->protection & protection) != protection)
2880 			return (FALSE);
2881 		/* go to next entry */
2882 		start = entry->end;
2883 		entry = entry->next;
2884 	}
2885 	return (TRUE);
2886 }
2887 
2888 /*
2889  *	vm_map_copy_entry:
2890  *
2891  *	Copies the contents of the source entry to the destination
2892  *	entry.  The entries *must* be aligned properly.
2893  */
2894 static void
2895 vm_map_copy_entry(
2896 	vm_map_t src_map,
2897 	vm_map_t dst_map,
2898 	vm_map_entry_t src_entry,
2899 	vm_map_entry_t dst_entry,
2900 	vm_ooffset_t *fork_charge)
2901 {
2902 	vm_object_t src_object;
2903 	vm_offset_t size;
2904 	struct ucred *cred;
2905 	int charged;
2906 
2907 	VM_MAP_ASSERT_LOCKED(dst_map);
2908 
2909 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
2910 		return;
2911 
2912 	if (src_entry->wired_count == 0) {
2913 
2914 		/*
2915 		 * If the source entry is marked needs_copy, it is already
2916 		 * write-protected.
2917 		 */
2918 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2919 			pmap_protect(src_map->pmap,
2920 			    src_entry->start,
2921 			    src_entry->end,
2922 			    src_entry->protection & ~VM_PROT_WRITE);
2923 		}
2924 
2925 		/*
2926 		 * Make a copy of the object.
2927 		 */
2928 		size = src_entry->end - src_entry->start;
2929 		if ((src_object = src_entry->object.vm_object) != NULL) {
2930 			VM_OBJECT_LOCK(src_object);
2931 			charged = ENTRY_CHARGED(src_entry);
2932 			if ((src_object->handle == NULL) &&
2933 				(src_object->type == OBJT_DEFAULT ||
2934 				 src_object->type == OBJT_SWAP)) {
2935 				vm_object_collapse(src_object);
2936 				if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
2937 					vm_object_split(src_entry);
2938 					src_object = src_entry->object.vm_object;
2939 				}
2940 			}
2941 			vm_object_reference_locked(src_object);
2942 			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
2943 			if (src_entry->cred != NULL &&
2944 			    !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
2945 				KASSERT(src_object->cred == NULL,
2946 				    ("OVERCOMMIT: vm_map_copy_entry: cred %p",
2947 				     src_object));
2948 				src_object->cred = src_entry->cred;
2949 				src_object->charge = size;
2950 			}
2951 			VM_OBJECT_UNLOCK(src_object);
2952 			dst_entry->object.vm_object = src_object;
2953 			if (charged) {
2954 				cred = curthread->td_ucred;
2955 				crhold(cred);
2956 				dst_entry->cred = cred;
2957 				*fork_charge += size;
2958 				if (!(src_entry->eflags &
2959 				      MAP_ENTRY_NEEDS_COPY)) {
2960 					crhold(cred);
2961 					src_entry->cred = cred;
2962 					*fork_charge += size;
2963 				}
2964 			}
2965 			src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2966 			dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2967 			dst_entry->offset = src_entry->offset;
2968 		} else {
2969 			dst_entry->object.vm_object = NULL;
2970 			dst_entry->offset = 0;
2971 			if (src_entry->cred != NULL) {
2972 				dst_entry->cred = curthread->td_ucred;
2973 				crhold(dst_entry->cred);
2974 				*fork_charge += size;
2975 			}
2976 		}
2977 
2978 		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
2979 		    dst_entry->end - dst_entry->start, src_entry->start);
2980 	} else {
2981 		/*
2982 		 * Of course, wired down pages can't be set copy-on-write.
2983 		 * Cause wired pages to be copied into the new map by
2984 		 * simulating faults (the new pages are pageable)
2985 		 */
2986 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
2987 		    fork_charge);
2988 	}
2989 }
2990 
2991 /*
2992  * vmspace_map_entry_forked:
2993  * Update the newly-forked vmspace each time a map entry is inherited
2994  * or copied.  The values for vm_dsize and vm_tsize are approximate
2995  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
2996  */
2997 static void
2998 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
2999     vm_map_entry_t entry)
3000 {
3001 	vm_size_t entrysize;
3002 	vm_offset_t newend;
3003 
3004 	entrysize = entry->end - entry->start;
3005 	vm2->vm_map.size += entrysize;
3006 	if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3007 		vm2->vm_ssize += btoc(entrysize);
3008 	} else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3009 	    entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3010 		newend = MIN(entry->end,
3011 		    (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3012 		vm2->vm_dsize += btoc(newend - entry->start);
3013 	} else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3014 	    entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3015 		newend = MIN(entry->end,
3016 		    (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3017 		vm2->vm_tsize += btoc(newend - entry->start);
3018 	}
3019 }
3020 
3021 /*
3022  * vmspace_fork:
3023  * Create a new process vmspace structure and vm_map
3024  * based on those of an existing process.  The new map
3025  * is based on the old map, according to the inheritance
3026  * values on the regions in that map.
3027  *
3028  * XXX It might be worth coalescing the entries added to the new vmspace.
3029  *
3030  * The source map must not be locked.
3031  */
3032 struct vmspace *
3033 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3034 {
3035 	struct vmspace *vm2;
3036 	vm_map_t old_map = &vm1->vm_map;
3037 	vm_map_t new_map;
3038 	vm_map_entry_t old_entry;
3039 	vm_map_entry_t new_entry;
3040 	vm_object_t object;
3041 	int locked;
3042 
3043 	vm_map_lock(old_map);
3044 	if (old_map->busy)
3045 		vm_map_wait_busy(old_map);
3046 	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
3047 	if (vm2 == NULL)
3048 		goto unlock_and_return;
3049 	vm2->vm_taddr = vm1->vm_taddr;
3050 	vm2->vm_daddr = vm1->vm_daddr;
3051 	vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3052 	new_map = &vm2->vm_map;	/* XXX */
3053 	locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3054 	KASSERT(locked, ("vmspace_fork: lock failed"));
3055 	new_map->timestamp = 1;
3056 
3057 	old_entry = old_map->header.next;
3058 
3059 	while (old_entry != &old_map->header) {
3060 		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3061 			panic("vm_map_fork: encountered a submap");
3062 
3063 		switch (old_entry->inheritance) {
3064 		case VM_INHERIT_NONE:
3065 			break;
3066 
3067 		case VM_INHERIT_SHARE:
3068 			/*
3069 			 * Clone the entry, creating the shared object if necessary.
3070 			 */
3071 			object = old_entry->object.vm_object;
3072 			if (object == NULL) {
3073 				object = vm_object_allocate(OBJT_DEFAULT,
3074 					atop(old_entry->end - old_entry->start));
3075 				old_entry->object.vm_object = object;
3076 				old_entry->offset = 0;
3077 				if (old_entry->cred != NULL) {
3078 					object->cred = old_entry->cred;
3079 					object->charge = old_entry->end -
3080 					    old_entry->start;
3081 					old_entry->cred = NULL;
3082 				}
3083 			}
3084 
3085 			/*
3086 			 * Add the reference before calling vm_object_shadow
3087 			 * to insure that a shadow object is created.
3088 			 */
3089 			vm_object_reference(object);
3090 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3091 				vm_object_shadow(&old_entry->object.vm_object,
3092 				    &old_entry->offset,
3093 				    old_entry->end - old_entry->start);
3094 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3095 				/* Transfer the second reference too. */
3096 				vm_object_reference(
3097 				    old_entry->object.vm_object);
3098 
3099 				/*
3100 				 * As in vm_map_simplify_entry(), the
3101 				 * vnode lock will not be acquired in
3102 				 * this call to vm_object_deallocate().
3103 				 */
3104 				vm_object_deallocate(object);
3105 				object = old_entry->object.vm_object;
3106 			}
3107 			VM_OBJECT_LOCK(object);
3108 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
3109 			if (old_entry->cred != NULL) {
3110 				KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3111 				object->cred = old_entry->cred;
3112 				object->charge = old_entry->end - old_entry->start;
3113 				old_entry->cred = NULL;
3114 			}
3115 			VM_OBJECT_UNLOCK(object);
3116 
3117 			/*
3118 			 * Clone the entry, referencing the shared object.
3119 			 */
3120 			new_entry = vm_map_entry_create(new_map);
3121 			*new_entry = *old_entry;
3122 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3123 			    MAP_ENTRY_IN_TRANSITION);
3124 			new_entry->wired_count = 0;
3125 
3126 			/*
3127 			 * Insert the entry into the new map -- we know we're
3128 			 * inserting at the end of the new map.
3129 			 */
3130 			vm_map_entry_link(new_map, new_map->header.prev,
3131 			    new_entry);
3132 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3133 
3134 			/*
3135 			 * Update the physical map
3136 			 */
3137 			pmap_copy(new_map->pmap, old_map->pmap,
3138 			    new_entry->start,
3139 			    (old_entry->end - old_entry->start),
3140 			    old_entry->start);
3141 			break;
3142 
3143 		case VM_INHERIT_COPY:
3144 			/*
3145 			 * Clone the entry and link into the map.
3146 			 */
3147 			new_entry = vm_map_entry_create(new_map);
3148 			*new_entry = *old_entry;
3149 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3150 			    MAP_ENTRY_IN_TRANSITION);
3151 			new_entry->wired_count = 0;
3152 			new_entry->object.vm_object = NULL;
3153 			new_entry->cred = NULL;
3154 			vm_map_entry_link(new_map, new_map->header.prev,
3155 			    new_entry);
3156 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3157 			vm_map_copy_entry(old_map, new_map, old_entry,
3158 			    new_entry, fork_charge);
3159 			break;
3160 		}
3161 		old_entry = old_entry->next;
3162 	}
3163 unlock_and_return:
3164 	vm_map_unlock(old_map);
3165 	if (vm2 != NULL)
3166 		vm_map_unlock(new_map);
3167 
3168 	return (vm2);
3169 }
3170 
3171 int
3172 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3173     vm_prot_t prot, vm_prot_t max, int cow)
3174 {
3175 	vm_map_entry_t new_entry, prev_entry;
3176 	vm_offset_t bot, top;
3177 	vm_size_t init_ssize;
3178 	int orient, rv;
3179 	rlim_t vmemlim;
3180 
3181 	/*
3182 	 * The stack orientation is piggybacked with the cow argument.
3183 	 * Extract it into orient and mask the cow argument so that we
3184 	 * don't pass it around further.
3185 	 * NOTE: We explicitly allow bi-directional stacks.
3186 	 */
3187 	orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP);
3188 	cow &= ~orient;
3189 	KASSERT(orient != 0, ("No stack grow direction"));
3190 
3191 	if (addrbos < vm_map_min(map) ||
3192 	    addrbos > vm_map_max(map) ||
3193 	    addrbos + max_ssize < addrbos)
3194 		return (KERN_NO_SPACE);
3195 
3196 	init_ssize = (max_ssize < sgrowsiz) ? max_ssize : sgrowsiz;
3197 
3198 	PROC_LOCK(curthread->td_proc);
3199 	vmemlim = lim_cur(curthread->td_proc, RLIMIT_VMEM);
3200 	PROC_UNLOCK(curthread->td_proc);
3201 
3202 	vm_map_lock(map);
3203 
3204 	/* If addr is already mapped, no go */
3205 	if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
3206 		vm_map_unlock(map);
3207 		return (KERN_NO_SPACE);
3208 	}
3209 
3210 	/* If we would blow our VMEM resource limit, no go */
3211 	if (map->size + init_ssize > vmemlim) {
3212 		vm_map_unlock(map);
3213 		return (KERN_NO_SPACE);
3214 	}
3215 
3216 	/*
3217 	 * If we can't accomodate max_ssize in the current mapping, no go.
3218 	 * However, we need to be aware that subsequent user mappings might
3219 	 * map into the space we have reserved for stack, and currently this
3220 	 * space is not protected.
3221 	 *
3222 	 * Hopefully we will at least detect this condition when we try to
3223 	 * grow the stack.
3224 	 */
3225 	if ((prev_entry->next != &map->header) &&
3226 	    (prev_entry->next->start < addrbos + max_ssize)) {
3227 		vm_map_unlock(map);
3228 		return (KERN_NO_SPACE);
3229 	}
3230 
3231 	/*
3232 	 * We initially map a stack of only init_ssize.  We will grow as
3233 	 * needed later.  Depending on the orientation of the stack (i.e.
3234 	 * the grow direction) we either map at the top of the range, the
3235 	 * bottom of the range or in the middle.
3236 	 *
3237 	 * Note: we would normally expect prot and max to be VM_PROT_ALL,
3238 	 * and cow to be 0.  Possibly we should eliminate these as input
3239 	 * parameters, and just pass these values here in the insert call.
3240 	 */
3241 	if (orient == MAP_STACK_GROWS_DOWN)
3242 		bot = addrbos + max_ssize - init_ssize;
3243 	else if (orient == MAP_STACK_GROWS_UP)
3244 		bot = addrbos;
3245 	else
3246 		bot = round_page(addrbos + max_ssize/2 - init_ssize/2);
3247 	top = bot + init_ssize;
3248 	rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
3249 
3250 	/* Now set the avail_ssize amount. */
3251 	if (rv == KERN_SUCCESS) {
3252 		if (prev_entry != &map->header)
3253 			vm_map_clip_end(map, prev_entry, bot);
3254 		new_entry = prev_entry->next;
3255 		if (new_entry->end != top || new_entry->start != bot)
3256 			panic("Bad entry start/end for new stack entry");
3257 
3258 		new_entry->avail_ssize = max_ssize - init_ssize;
3259 		if (orient & MAP_STACK_GROWS_DOWN)
3260 			new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
3261 		if (orient & MAP_STACK_GROWS_UP)
3262 			new_entry->eflags |= MAP_ENTRY_GROWS_UP;
3263 	}
3264 
3265 	vm_map_unlock(map);
3266 	return (rv);
3267 }
3268 
3269 static int stack_guard_page = 0;
3270 TUNABLE_INT("security.bsd.stack_guard_page", &stack_guard_page);
3271 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RW,
3272     &stack_guard_page, 0,
3273     "Insert stack guard page ahead of the growable segments.");
3274 
3275 /* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
3276  * desired address is already mapped, or if we successfully grow
3277  * the stack.  Also returns KERN_SUCCESS if addr is outside the
3278  * stack range (this is strange, but preserves compatibility with
3279  * the grow function in vm_machdep.c).
3280  */
3281 int
3282 vm_map_growstack(struct proc *p, vm_offset_t addr)
3283 {
3284 	vm_map_entry_t next_entry, prev_entry;
3285 	vm_map_entry_t new_entry, stack_entry;
3286 	struct vmspace *vm = p->p_vmspace;
3287 	vm_map_t map = &vm->vm_map;
3288 	vm_offset_t end;
3289 	size_t grow_amount, max_grow;
3290 	rlim_t stacklim, vmemlim;
3291 	int is_procstack, rv;
3292 	struct ucred *cred;
3293 #ifdef notyet
3294 	uint64_t limit;
3295 #endif
3296 #ifdef RACCT
3297 	int error;
3298 #endif
3299 
3300 Retry:
3301 	PROC_LOCK(p);
3302 	stacklim = lim_cur(p, RLIMIT_STACK);
3303 	vmemlim = lim_cur(p, RLIMIT_VMEM);
3304 	PROC_UNLOCK(p);
3305 
3306 	vm_map_lock_read(map);
3307 
3308 	/* If addr is already in the entry range, no need to grow.*/
3309 	if (vm_map_lookup_entry(map, addr, &prev_entry)) {
3310 		vm_map_unlock_read(map);
3311 		return (KERN_SUCCESS);
3312 	}
3313 
3314 	next_entry = prev_entry->next;
3315 	if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) {
3316 		/*
3317 		 * This entry does not grow upwards. Since the address lies
3318 		 * beyond this entry, the next entry (if one exists) has to
3319 		 * be a downward growable entry. The entry list header is
3320 		 * never a growable entry, so it suffices to check the flags.
3321 		 */
3322 		if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) {
3323 			vm_map_unlock_read(map);
3324 			return (KERN_SUCCESS);
3325 		}
3326 		stack_entry = next_entry;
3327 	} else {
3328 		/*
3329 		 * This entry grows upward. If the next entry does not at
3330 		 * least grow downwards, this is the entry we need to grow.
3331 		 * otherwise we have two possible choices and we have to
3332 		 * select one.
3333 		 */
3334 		if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) {
3335 			/*
3336 			 * We have two choices; grow the entry closest to
3337 			 * the address to minimize the amount of growth.
3338 			 */
3339 			if (addr - prev_entry->end <= next_entry->start - addr)
3340 				stack_entry = prev_entry;
3341 			else
3342 				stack_entry = next_entry;
3343 		} else
3344 			stack_entry = prev_entry;
3345 	}
3346 
3347 	if (stack_entry == next_entry) {
3348 		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo"));
3349 		KASSERT(addr < stack_entry->start, ("foo"));
3350 		end = (prev_entry != &map->header) ? prev_entry->end :
3351 		    stack_entry->start - stack_entry->avail_ssize;
3352 		grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE);
3353 		max_grow = stack_entry->start - end;
3354 	} else {
3355 		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo"));
3356 		KASSERT(addr >= stack_entry->end, ("foo"));
3357 		end = (next_entry != &map->header) ? next_entry->start :
3358 		    stack_entry->end + stack_entry->avail_ssize;
3359 		grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE);
3360 		max_grow = end - stack_entry->end;
3361 	}
3362 
3363 	if (grow_amount > stack_entry->avail_ssize) {
3364 		vm_map_unlock_read(map);
3365 		return (KERN_NO_SPACE);
3366 	}
3367 
3368 	/*
3369 	 * If there is no longer enough space between the entries nogo, and
3370 	 * adjust the available space.  Note: this  should only happen if the
3371 	 * user has mapped into the stack area after the stack was created,
3372 	 * and is probably an error.
3373 	 *
3374 	 * This also effectively destroys any guard page the user might have
3375 	 * intended by limiting the stack size.
3376 	 */
3377 	if (grow_amount + (stack_guard_page ? PAGE_SIZE : 0) > max_grow) {
3378 		if (vm_map_lock_upgrade(map))
3379 			goto Retry;
3380 
3381 		stack_entry->avail_ssize = max_grow;
3382 
3383 		vm_map_unlock(map);
3384 		return (KERN_NO_SPACE);
3385 	}
3386 
3387 	is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr) ? 1 : 0;
3388 
3389 	/*
3390 	 * If this is the main process stack, see if we're over the stack
3391 	 * limit.
3392 	 */
3393 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3394 		vm_map_unlock_read(map);
3395 		return (KERN_NO_SPACE);
3396 	}
3397 #ifdef RACCT
3398 	PROC_LOCK(p);
3399 	if (is_procstack &&
3400 	    racct_set(p, RACCT_STACK, ctob(vm->vm_ssize) + grow_amount)) {
3401 		PROC_UNLOCK(p);
3402 		vm_map_unlock_read(map);
3403 		return (KERN_NO_SPACE);
3404 	}
3405 	PROC_UNLOCK(p);
3406 #endif
3407 
3408 	/* Round up the grow amount modulo SGROWSIZ */
3409 	grow_amount = roundup (grow_amount, sgrowsiz);
3410 	if (grow_amount > stack_entry->avail_ssize)
3411 		grow_amount = stack_entry->avail_ssize;
3412 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3413 		grow_amount = trunc_page((vm_size_t)stacklim) -
3414 		    ctob(vm->vm_ssize);
3415 	}
3416 #ifdef notyet
3417 	PROC_LOCK(p);
3418 	limit = racct_get_available(p, RACCT_STACK);
3419 	PROC_UNLOCK(p);
3420 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
3421 		grow_amount = limit - ctob(vm->vm_ssize);
3422 #endif
3423 
3424 	/* If we would blow our VMEM resource limit, no go */
3425 	if (map->size + grow_amount > vmemlim) {
3426 		vm_map_unlock_read(map);
3427 		rv = KERN_NO_SPACE;
3428 		goto out;
3429 	}
3430 #ifdef RACCT
3431 	PROC_LOCK(p);
3432 	if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
3433 		PROC_UNLOCK(p);
3434 		vm_map_unlock_read(map);
3435 		rv = KERN_NO_SPACE;
3436 		goto out;
3437 	}
3438 	PROC_UNLOCK(p);
3439 #endif
3440 
3441 	if (vm_map_lock_upgrade(map))
3442 		goto Retry;
3443 
3444 	if (stack_entry == next_entry) {
3445 		/*
3446 		 * Growing downward.
3447 		 */
3448 		/* Get the preliminary new entry start value */
3449 		addr = stack_entry->start - grow_amount;
3450 
3451 		/*
3452 		 * If this puts us into the previous entry, cut back our
3453 		 * growth to the available space. Also, see the note above.
3454 		 */
3455 		if (addr < end) {
3456 			stack_entry->avail_ssize = max_grow;
3457 			addr = end;
3458 			if (stack_guard_page)
3459 				addr += PAGE_SIZE;
3460 		}
3461 
3462 		rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start,
3463 		    p->p_sysent->sv_stackprot, VM_PROT_ALL, 0);
3464 
3465 		/* Adjust the available stack space by the amount we grew. */
3466 		if (rv == KERN_SUCCESS) {
3467 			if (prev_entry != &map->header)
3468 				vm_map_clip_end(map, prev_entry, addr);
3469 			new_entry = prev_entry->next;
3470 			KASSERT(new_entry == stack_entry->prev, ("foo"));
3471 			KASSERT(new_entry->end == stack_entry->start, ("foo"));
3472 			KASSERT(new_entry->start == addr, ("foo"));
3473 			grow_amount = new_entry->end - new_entry->start;
3474 			new_entry->avail_ssize = stack_entry->avail_ssize -
3475 			    grow_amount;
3476 			stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN;
3477 			new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
3478 		}
3479 	} else {
3480 		/*
3481 		 * Growing upward.
3482 		 */
3483 		addr = stack_entry->end + grow_amount;
3484 
3485 		/*
3486 		 * If this puts us into the next entry, cut back our growth
3487 		 * to the available space. Also, see the note above.
3488 		 */
3489 		if (addr > end) {
3490 			stack_entry->avail_ssize = end - stack_entry->end;
3491 			addr = end;
3492 			if (stack_guard_page)
3493 				addr -= PAGE_SIZE;
3494 		}
3495 
3496 		grow_amount = addr - stack_entry->end;
3497 		cred = stack_entry->cred;
3498 		if (cred == NULL && stack_entry->object.vm_object != NULL)
3499 			cred = stack_entry->object.vm_object->cred;
3500 		if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
3501 			rv = KERN_NO_SPACE;
3502 		/* Grow the underlying object if applicable. */
3503 		else if (stack_entry->object.vm_object == NULL ||
3504 			 vm_object_coalesce(stack_entry->object.vm_object,
3505 			 stack_entry->offset,
3506 			 (vm_size_t)(stack_entry->end - stack_entry->start),
3507 			 (vm_size_t)grow_amount, cred != NULL)) {
3508 			map->size += (addr - stack_entry->end);
3509 			/* Update the current entry. */
3510 			stack_entry->end = addr;
3511 			stack_entry->avail_ssize -= grow_amount;
3512 			vm_map_entry_resize_free(map, stack_entry);
3513 			rv = KERN_SUCCESS;
3514 
3515 			if (next_entry != &map->header)
3516 				vm_map_clip_start(map, next_entry, addr);
3517 		} else
3518 			rv = KERN_FAILURE;
3519 	}
3520 
3521 	if (rv == KERN_SUCCESS && is_procstack)
3522 		vm->vm_ssize += btoc(grow_amount);
3523 
3524 	vm_map_unlock(map);
3525 
3526 	/*
3527 	 * Heed the MAP_WIREFUTURE flag if it was set for this process.
3528 	 */
3529 	if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) {
3530 		vm_map_wire(map,
3531 		    (stack_entry == next_entry) ? addr : addr - grow_amount,
3532 		    (stack_entry == next_entry) ? stack_entry->start : addr,
3533 		    (p->p_flag & P_SYSTEM)
3534 		    ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES
3535 		    : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES);
3536 	}
3537 
3538 out:
3539 #ifdef RACCT
3540 	if (rv != KERN_SUCCESS) {
3541 		PROC_LOCK(p);
3542 		error = racct_set(p, RACCT_VMEM, map->size);
3543 		KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
3544 	    	error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
3545 		KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
3546 		PROC_UNLOCK(p);
3547 	}
3548 #endif
3549 
3550 	return (rv);
3551 }
3552 
3553 /*
3554  * Unshare the specified VM space for exec.  If other processes are
3555  * mapped to it, then create a new one.  The new vmspace is null.
3556  */
3557 int
3558 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
3559 {
3560 	struct vmspace *oldvmspace = p->p_vmspace;
3561 	struct vmspace *newvmspace;
3562 
3563 	newvmspace = vmspace_alloc(minuser, maxuser);
3564 	if (newvmspace == NULL)
3565 		return (ENOMEM);
3566 	newvmspace->vm_swrss = oldvmspace->vm_swrss;
3567 	/*
3568 	 * This code is written like this for prototype purposes.  The
3569 	 * goal is to avoid running down the vmspace here, but let the
3570 	 * other process's that are still using the vmspace to finally
3571 	 * run it down.  Even though there is little or no chance of blocking
3572 	 * here, it is a good idea to keep this form for future mods.
3573 	 */
3574 	PROC_VMSPACE_LOCK(p);
3575 	p->p_vmspace = newvmspace;
3576 	PROC_VMSPACE_UNLOCK(p);
3577 	if (p == curthread->td_proc)
3578 		pmap_activate(curthread);
3579 	vmspace_free(oldvmspace);
3580 	return (0);
3581 }
3582 
3583 /*
3584  * Unshare the specified VM space for forcing COW.  This
3585  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3586  */
3587 int
3588 vmspace_unshare(struct proc *p)
3589 {
3590 	struct vmspace *oldvmspace = p->p_vmspace;
3591 	struct vmspace *newvmspace;
3592 	vm_ooffset_t fork_charge;
3593 
3594 	if (oldvmspace->vm_refcnt == 1)
3595 		return (0);
3596 	fork_charge = 0;
3597 	newvmspace = vmspace_fork(oldvmspace, &fork_charge);
3598 	if (newvmspace == NULL)
3599 		return (ENOMEM);
3600 	if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
3601 		vmspace_free(newvmspace);
3602 		return (ENOMEM);
3603 	}
3604 	PROC_VMSPACE_LOCK(p);
3605 	p->p_vmspace = newvmspace;
3606 	PROC_VMSPACE_UNLOCK(p);
3607 	if (p == curthread->td_proc)
3608 		pmap_activate(curthread);
3609 	vmspace_free(oldvmspace);
3610 	return (0);
3611 }
3612 
3613 /*
3614  *	vm_map_lookup:
3615  *
3616  *	Finds the VM object, offset, and
3617  *	protection for a given virtual address in the
3618  *	specified map, assuming a page fault of the
3619  *	type specified.
3620  *
3621  *	Leaves the map in question locked for read; return
3622  *	values are guaranteed until a vm_map_lookup_done
3623  *	call is performed.  Note that the map argument
3624  *	is in/out; the returned map must be used in
3625  *	the call to vm_map_lookup_done.
3626  *
3627  *	A handle (out_entry) is returned for use in
3628  *	vm_map_lookup_done, to make that fast.
3629  *
3630  *	If a lookup is requested with "write protection"
3631  *	specified, the map may be changed to perform virtual
3632  *	copying operations, although the data referenced will
3633  *	remain the same.
3634  */
3635 int
3636 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
3637 	      vm_offset_t vaddr,
3638 	      vm_prot_t fault_typea,
3639 	      vm_map_entry_t *out_entry,	/* OUT */
3640 	      vm_object_t *object,		/* OUT */
3641 	      vm_pindex_t *pindex,		/* OUT */
3642 	      vm_prot_t *out_prot,		/* OUT */
3643 	      boolean_t *wired)			/* OUT */
3644 {
3645 	vm_map_entry_t entry;
3646 	vm_map_t map = *var_map;
3647 	vm_prot_t prot;
3648 	vm_prot_t fault_type = fault_typea;
3649 	vm_object_t eobject;
3650 	vm_size_t size;
3651 	struct ucred *cred;
3652 
3653 RetryLookup:;
3654 
3655 	vm_map_lock_read(map);
3656 
3657 	/*
3658 	 * Lookup the faulting address.
3659 	 */
3660 	if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
3661 		vm_map_unlock_read(map);
3662 		return (KERN_INVALID_ADDRESS);
3663 	}
3664 
3665 	entry = *out_entry;
3666 
3667 	/*
3668 	 * Handle submaps.
3669 	 */
3670 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3671 		vm_map_t old_map = map;
3672 
3673 		*var_map = map = entry->object.sub_map;
3674 		vm_map_unlock_read(old_map);
3675 		goto RetryLookup;
3676 	}
3677 
3678 	/*
3679 	 * Check whether this task is allowed to have this page.
3680 	 */
3681 	prot = entry->protection;
3682 	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3683 	if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
3684 		vm_map_unlock_read(map);
3685 		return (KERN_PROTECTION_FAILURE);
3686 	}
3687 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3688 	    (entry->eflags & MAP_ENTRY_COW) &&
3689 	    (fault_type & VM_PROT_WRITE)) {
3690 		vm_map_unlock_read(map);
3691 		return (KERN_PROTECTION_FAILURE);
3692 	}
3693 
3694 	/*
3695 	 * If this page is not pageable, we have to get it for all possible
3696 	 * accesses.
3697 	 */
3698 	*wired = (entry->wired_count != 0);
3699 	if (*wired)
3700 		fault_type = entry->protection;
3701 	size = entry->end - entry->start;
3702 	/*
3703 	 * If the entry was copy-on-write, we either ...
3704 	 */
3705 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3706 		/*
3707 		 * If we want to write the page, we may as well handle that
3708 		 * now since we've got the map locked.
3709 		 *
3710 		 * If we don't need to write the page, we just demote the
3711 		 * permissions allowed.
3712 		 */
3713 		if ((fault_type & VM_PROT_WRITE) != 0 ||
3714 		    (fault_typea & VM_PROT_COPY) != 0) {
3715 			/*
3716 			 * Make a new object, and place it in the object
3717 			 * chain.  Note that no new references have appeared
3718 			 * -- one just moved from the map to the new
3719 			 * object.
3720 			 */
3721 			if (vm_map_lock_upgrade(map))
3722 				goto RetryLookup;
3723 
3724 			if (entry->cred == NULL) {
3725 				/*
3726 				 * The debugger owner is charged for
3727 				 * the memory.
3728 				 */
3729 				cred = curthread->td_ucred;
3730 				crhold(cred);
3731 				if (!swap_reserve_by_cred(size, cred)) {
3732 					crfree(cred);
3733 					vm_map_unlock(map);
3734 					return (KERN_RESOURCE_SHORTAGE);
3735 				}
3736 				entry->cred = cred;
3737 			}
3738 			vm_object_shadow(&entry->object.vm_object,
3739 			    &entry->offset, size);
3740 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3741 			eobject = entry->object.vm_object;
3742 			if (eobject->cred != NULL) {
3743 				/*
3744 				 * The object was not shadowed.
3745 				 */
3746 				swap_release_by_cred(size, entry->cred);
3747 				crfree(entry->cred);
3748 				entry->cred = NULL;
3749 			} else if (entry->cred != NULL) {
3750 				VM_OBJECT_LOCK(eobject);
3751 				eobject->cred = entry->cred;
3752 				eobject->charge = size;
3753 				VM_OBJECT_UNLOCK(eobject);
3754 				entry->cred = NULL;
3755 			}
3756 
3757 			vm_map_lock_downgrade(map);
3758 		} else {
3759 			/*
3760 			 * We're attempting to read a copy-on-write page --
3761 			 * don't allow writes.
3762 			 */
3763 			prot &= ~VM_PROT_WRITE;
3764 		}
3765 	}
3766 
3767 	/*
3768 	 * Create an object if necessary.
3769 	 */
3770 	if (entry->object.vm_object == NULL &&
3771 	    !map->system_map) {
3772 		if (vm_map_lock_upgrade(map))
3773 			goto RetryLookup;
3774 		entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
3775 		    atop(size));
3776 		entry->offset = 0;
3777 		if (entry->cred != NULL) {
3778 			VM_OBJECT_LOCK(entry->object.vm_object);
3779 			entry->object.vm_object->cred = entry->cred;
3780 			entry->object.vm_object->charge = size;
3781 			VM_OBJECT_UNLOCK(entry->object.vm_object);
3782 			entry->cred = NULL;
3783 		}
3784 		vm_map_lock_downgrade(map);
3785 	}
3786 
3787 	/*
3788 	 * Return the object/offset from this entry.  If the entry was
3789 	 * copy-on-write or empty, it has been fixed up.
3790 	 */
3791 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3792 	*object = entry->object.vm_object;
3793 
3794 	*out_prot = prot;
3795 	return (KERN_SUCCESS);
3796 }
3797 
3798 /*
3799  *	vm_map_lookup_locked:
3800  *
3801  *	Lookup the faulting address.  A version of vm_map_lookup that returns
3802  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
3803  */
3804 int
3805 vm_map_lookup_locked(vm_map_t *var_map,		/* IN/OUT */
3806 		     vm_offset_t vaddr,
3807 		     vm_prot_t fault_typea,
3808 		     vm_map_entry_t *out_entry,	/* OUT */
3809 		     vm_object_t *object,	/* OUT */
3810 		     vm_pindex_t *pindex,	/* OUT */
3811 		     vm_prot_t *out_prot,	/* OUT */
3812 		     boolean_t *wired)		/* OUT */
3813 {
3814 	vm_map_entry_t entry;
3815 	vm_map_t map = *var_map;
3816 	vm_prot_t prot;
3817 	vm_prot_t fault_type = fault_typea;
3818 
3819 	/*
3820 	 * Lookup the faulting address.
3821 	 */
3822 	if (!vm_map_lookup_entry(map, vaddr, out_entry))
3823 		return (KERN_INVALID_ADDRESS);
3824 
3825 	entry = *out_entry;
3826 
3827 	/*
3828 	 * Fail if the entry refers to a submap.
3829 	 */
3830 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3831 		return (KERN_FAILURE);
3832 
3833 	/*
3834 	 * Check whether this task is allowed to have this page.
3835 	 */
3836 	prot = entry->protection;
3837 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
3838 	if ((fault_type & prot) != fault_type)
3839 		return (KERN_PROTECTION_FAILURE);
3840 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3841 	    (entry->eflags & MAP_ENTRY_COW) &&
3842 	    (fault_type & VM_PROT_WRITE))
3843 		return (KERN_PROTECTION_FAILURE);
3844 
3845 	/*
3846 	 * If this page is not pageable, we have to get it for all possible
3847 	 * accesses.
3848 	 */
3849 	*wired = (entry->wired_count != 0);
3850 	if (*wired)
3851 		fault_type = entry->protection;
3852 
3853 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3854 		/*
3855 		 * Fail if the entry was copy-on-write for a write fault.
3856 		 */
3857 		if (fault_type & VM_PROT_WRITE)
3858 			return (KERN_FAILURE);
3859 		/*
3860 		 * We're attempting to read a copy-on-write page --
3861 		 * don't allow writes.
3862 		 */
3863 		prot &= ~VM_PROT_WRITE;
3864 	}
3865 
3866 	/*
3867 	 * Fail if an object should be created.
3868 	 */
3869 	if (entry->object.vm_object == NULL && !map->system_map)
3870 		return (KERN_FAILURE);
3871 
3872 	/*
3873 	 * Return the object/offset from this entry.  If the entry was
3874 	 * copy-on-write or empty, it has been fixed up.
3875 	 */
3876 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3877 	*object = entry->object.vm_object;
3878 
3879 	*out_prot = prot;
3880 	return (KERN_SUCCESS);
3881 }
3882 
3883 /*
3884  *	vm_map_lookup_done:
3885  *
3886  *	Releases locks acquired by a vm_map_lookup
3887  *	(according to the handle returned by that lookup).
3888  */
3889 void
3890 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
3891 {
3892 	/*
3893 	 * Unlock the main-level map
3894 	 */
3895 	vm_map_unlock_read(map);
3896 }
3897 
3898 #include "opt_ddb.h"
3899 #ifdef DDB
3900 #include <sys/kernel.h>
3901 
3902 #include <ddb/ddb.h>
3903 
3904 /*
3905  *	vm_map_print:	[ debug ]
3906  */
3907 DB_SHOW_COMMAND(map, vm_map_print)
3908 {
3909 	static int nlines;
3910 	/* XXX convert args. */
3911 	vm_map_t map = (vm_map_t)addr;
3912 	boolean_t full = have_addr;
3913 
3914 	vm_map_entry_t entry;
3915 
3916 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
3917 	    (void *)map,
3918 	    (void *)map->pmap, map->nentries, map->timestamp);
3919 	nlines++;
3920 
3921 	if (!full && db_indent)
3922 		return;
3923 
3924 	db_indent += 2;
3925 	for (entry = map->header.next; entry != &map->header;
3926 	    entry = entry->next) {
3927 		db_iprintf("map entry %p: start=%p, end=%p\n",
3928 		    (void *)entry, (void *)entry->start, (void *)entry->end);
3929 		nlines++;
3930 		{
3931 			static char *inheritance_name[4] =
3932 			{"share", "copy", "none", "donate_copy"};
3933 
3934 			db_iprintf(" prot=%x/%x/%s",
3935 			    entry->protection,
3936 			    entry->max_protection,
3937 			    inheritance_name[(int)(unsigned char)entry->inheritance]);
3938 			if (entry->wired_count != 0)
3939 				db_printf(", wired");
3940 		}
3941 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3942 			db_printf(", share=%p, offset=0x%jx\n",
3943 			    (void *)entry->object.sub_map,
3944 			    (uintmax_t)entry->offset);
3945 			nlines++;
3946 			if ((entry->prev == &map->header) ||
3947 			    (entry->prev->object.sub_map !=
3948 				entry->object.sub_map)) {
3949 				db_indent += 2;
3950 				vm_map_print((db_expr_t)(intptr_t)
3951 					     entry->object.sub_map,
3952 					     full, 0, (char *)0);
3953 				db_indent -= 2;
3954 			}
3955 		} else {
3956 			if (entry->cred != NULL)
3957 				db_printf(", ruid %d", entry->cred->cr_ruid);
3958 			db_printf(", object=%p, offset=0x%jx",
3959 			    (void *)entry->object.vm_object,
3960 			    (uintmax_t)entry->offset);
3961 			if (entry->object.vm_object && entry->object.vm_object->cred)
3962 				db_printf(", obj ruid %d charge %jx",
3963 				    entry->object.vm_object->cred->cr_ruid,
3964 				    (uintmax_t)entry->object.vm_object->charge);
3965 			if (entry->eflags & MAP_ENTRY_COW)
3966 				db_printf(", copy (%s)",
3967 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
3968 			db_printf("\n");
3969 			nlines++;
3970 
3971 			if ((entry->prev == &map->header) ||
3972 			    (entry->prev->object.vm_object !=
3973 				entry->object.vm_object)) {
3974 				db_indent += 2;
3975 				vm_object_print((db_expr_t)(intptr_t)
3976 						entry->object.vm_object,
3977 						full, 0, (char *)0);
3978 				nlines += 4;
3979 				db_indent -= 2;
3980 			}
3981 		}
3982 	}
3983 	db_indent -= 2;
3984 	if (db_indent == 0)
3985 		nlines = 0;
3986 }
3987 
3988 
3989 DB_SHOW_COMMAND(procvm, procvm)
3990 {
3991 	struct proc *p;
3992 
3993 	if (have_addr) {
3994 		p = (struct proc *) addr;
3995 	} else {
3996 		p = curproc;
3997 	}
3998 
3999 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4000 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4001 	    (void *)vmspace_pmap(p->p_vmspace));
4002 
4003 	vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
4004 }
4005 
4006 #endif /* DDB */
4007