1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 */ 60 61 /* 62 * Virtual memory mapping module. 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include <sys/param.h> 69 #include <sys/systm.h> 70 #include <sys/kernel.h> 71 #include <sys/ktr.h> 72 #include <sys/lock.h> 73 #include <sys/mutex.h> 74 #include <sys/proc.h> 75 #include <sys/vmmeter.h> 76 #include <sys/mman.h> 77 #include <sys/vnode.h> 78 #include <sys/racct.h> 79 #include <sys/resourcevar.h> 80 #include <sys/rwlock.h> 81 #include <sys/file.h> 82 #include <sys/sysctl.h> 83 #include <sys/sysent.h> 84 #include <sys/shm.h> 85 86 #include <vm/vm.h> 87 #include <vm/vm_param.h> 88 #include <vm/pmap.h> 89 #include <vm/vm_map.h> 90 #include <vm/vm_page.h> 91 #include <vm/vm_object.h> 92 #include <vm/vm_pager.h> 93 #include <vm/vm_kern.h> 94 #include <vm/vm_extern.h> 95 #include <vm/vnode_pager.h> 96 #include <vm/swap_pager.h> 97 #include <vm/uma.h> 98 99 /* 100 * Virtual memory maps provide for the mapping, protection, 101 * and sharing of virtual memory objects. In addition, 102 * this module provides for an efficient virtual copy of 103 * memory from one map to another. 104 * 105 * Synchronization is required prior to most operations. 106 * 107 * Maps consist of an ordered doubly-linked list of simple 108 * entries; a self-adjusting binary search tree of these 109 * entries is used to speed up lookups. 110 * 111 * Since portions of maps are specified by start/end addresses, 112 * which may not align with existing map entries, all 113 * routines merely "clip" entries to these start/end values. 114 * [That is, an entry is split into two, bordering at a 115 * start or end value.] Note that these clippings may not 116 * always be necessary (as the two resulting entries are then 117 * not changed); however, the clipping is done for convenience. 118 * 119 * As mentioned above, virtual copy operations are performed 120 * by copying VM object references from one map to 121 * another, and then marking both regions as copy-on-write. 122 */ 123 124 static struct mtx map_sleep_mtx; 125 static uma_zone_t mapentzone; 126 static uma_zone_t kmapentzone; 127 static uma_zone_t mapzone; 128 static uma_zone_t vmspace_zone; 129 static int vmspace_zinit(void *mem, int size, int flags); 130 static int vm_map_zinit(void *mem, int ize, int flags); 131 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, 132 vm_offset_t max); 133 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map); 134 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry); 135 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry); 136 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 137 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags); 138 #ifdef INVARIANTS 139 static void vm_map_zdtor(void *mem, int size, void *arg); 140 static void vmspace_zdtor(void *mem, int size, void *arg); 141 #endif 142 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, 143 vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max, 144 int cow); 145 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry, 146 vm_offset_t failed_addr); 147 148 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \ 149 ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \ 150 !((e)->eflags & MAP_ENTRY_NEEDS_COPY))) 151 152 /* 153 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type 154 * stable. 155 */ 156 #define PROC_VMSPACE_LOCK(p) do { } while (0) 157 #define PROC_VMSPACE_UNLOCK(p) do { } while (0) 158 159 /* 160 * VM_MAP_RANGE_CHECK: [ internal use only ] 161 * 162 * Asserts that the starting and ending region 163 * addresses fall within the valid range of the map. 164 */ 165 #define VM_MAP_RANGE_CHECK(map, start, end) \ 166 { \ 167 if (start < vm_map_min(map)) \ 168 start = vm_map_min(map); \ 169 if (end > vm_map_max(map)) \ 170 end = vm_map_max(map); \ 171 if (start > end) \ 172 start = end; \ 173 } 174 175 /* 176 * vm_map_startup: 177 * 178 * Initialize the vm_map module. Must be called before 179 * any other vm_map routines. 180 * 181 * Map and entry structures are allocated from the general 182 * purpose memory pool with some exceptions: 183 * 184 * - The kernel map and kmem submap are allocated statically. 185 * - Kernel map entries are allocated out of a static pool. 186 * 187 * These restrictions are necessary since malloc() uses the 188 * maps and requires map entries. 189 */ 190 191 void 192 vm_map_startup(void) 193 { 194 mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF); 195 mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL, 196 #ifdef INVARIANTS 197 vm_map_zdtor, 198 #else 199 NULL, 200 #endif 201 vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 202 uma_prealloc(mapzone, MAX_KMAP); 203 kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry), 204 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 205 UMA_ZONE_MTXCLASS | UMA_ZONE_VM); 206 mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry), 207 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 208 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL, 209 #ifdef INVARIANTS 210 vmspace_zdtor, 211 #else 212 NULL, 213 #endif 214 vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 215 } 216 217 static int 218 vmspace_zinit(void *mem, int size, int flags) 219 { 220 struct vmspace *vm; 221 222 vm = (struct vmspace *)mem; 223 224 vm->vm_map.pmap = NULL; 225 (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags); 226 PMAP_LOCK_INIT(vmspace_pmap(vm)); 227 return (0); 228 } 229 230 static int 231 vm_map_zinit(void *mem, int size, int flags) 232 { 233 vm_map_t map; 234 235 map = (vm_map_t)mem; 236 memset(map, 0, sizeof(*map)); 237 mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK); 238 sx_init(&map->lock, "vm map (user)"); 239 return (0); 240 } 241 242 #ifdef INVARIANTS 243 static void 244 vmspace_zdtor(void *mem, int size, void *arg) 245 { 246 struct vmspace *vm; 247 248 vm = (struct vmspace *)mem; 249 250 vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg); 251 } 252 static void 253 vm_map_zdtor(void *mem, int size, void *arg) 254 { 255 vm_map_t map; 256 257 map = (vm_map_t)mem; 258 KASSERT(map->nentries == 0, 259 ("map %p nentries == %d on free.", 260 map, map->nentries)); 261 KASSERT(map->size == 0, 262 ("map %p size == %lu on free.", 263 map, (unsigned long)map->size)); 264 } 265 #endif /* INVARIANTS */ 266 267 /* 268 * Allocate a vmspace structure, including a vm_map and pmap, 269 * and initialize those structures. The refcnt is set to 1. 270 * 271 * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit(). 272 */ 273 struct vmspace * 274 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit) 275 { 276 struct vmspace *vm; 277 278 vm = uma_zalloc(vmspace_zone, M_WAITOK); 279 280 KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL")); 281 282 if (pinit == NULL) 283 pinit = &pmap_pinit; 284 285 if (!pinit(vmspace_pmap(vm))) { 286 uma_zfree(vmspace_zone, vm); 287 return (NULL); 288 } 289 CTR1(KTR_VM, "vmspace_alloc: %p", vm); 290 _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max); 291 vm->vm_refcnt = 1; 292 vm->vm_shm = NULL; 293 vm->vm_swrss = 0; 294 vm->vm_tsize = 0; 295 vm->vm_dsize = 0; 296 vm->vm_ssize = 0; 297 vm->vm_taddr = 0; 298 vm->vm_daddr = 0; 299 vm->vm_maxsaddr = 0; 300 return (vm); 301 } 302 303 #ifdef RACCT 304 static void 305 vmspace_container_reset(struct proc *p) 306 { 307 308 PROC_LOCK(p); 309 racct_set(p, RACCT_DATA, 0); 310 racct_set(p, RACCT_STACK, 0); 311 racct_set(p, RACCT_RSS, 0); 312 racct_set(p, RACCT_MEMLOCK, 0); 313 racct_set(p, RACCT_VMEM, 0); 314 PROC_UNLOCK(p); 315 } 316 #endif 317 318 static inline void 319 vmspace_dofree(struct vmspace *vm) 320 { 321 322 CTR1(KTR_VM, "vmspace_free: %p", vm); 323 324 /* 325 * Make sure any SysV shm is freed, it might not have been in 326 * exit1(). 327 */ 328 shmexit(vm); 329 330 /* 331 * Lock the map, to wait out all other references to it. 332 * Delete all of the mappings and pages they hold, then call 333 * the pmap module to reclaim anything left. 334 */ 335 (void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset, 336 vm->vm_map.max_offset); 337 338 pmap_release(vmspace_pmap(vm)); 339 vm->vm_map.pmap = NULL; 340 uma_zfree(vmspace_zone, vm); 341 } 342 343 void 344 vmspace_free(struct vmspace *vm) 345 { 346 347 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 348 "vmspace_free() called"); 349 350 if (vm->vm_refcnt == 0) 351 panic("vmspace_free: attempt to free already freed vmspace"); 352 353 if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1) 354 vmspace_dofree(vm); 355 } 356 357 void 358 vmspace_exitfree(struct proc *p) 359 { 360 struct vmspace *vm; 361 362 PROC_VMSPACE_LOCK(p); 363 vm = p->p_vmspace; 364 p->p_vmspace = NULL; 365 PROC_VMSPACE_UNLOCK(p); 366 KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace")); 367 vmspace_free(vm); 368 } 369 370 void 371 vmspace_exit(struct thread *td) 372 { 373 int refcnt; 374 struct vmspace *vm; 375 struct proc *p; 376 377 /* 378 * Release user portion of address space. 379 * This releases references to vnodes, 380 * which could cause I/O if the file has been unlinked. 381 * Need to do this early enough that we can still sleep. 382 * 383 * The last exiting process to reach this point releases as 384 * much of the environment as it can. vmspace_dofree() is the 385 * slower fallback in case another process had a temporary 386 * reference to the vmspace. 387 */ 388 389 p = td->td_proc; 390 vm = p->p_vmspace; 391 atomic_add_int(&vmspace0.vm_refcnt, 1); 392 do { 393 refcnt = vm->vm_refcnt; 394 if (refcnt > 1 && p->p_vmspace != &vmspace0) { 395 /* Switch now since other proc might free vmspace */ 396 PROC_VMSPACE_LOCK(p); 397 p->p_vmspace = &vmspace0; 398 PROC_VMSPACE_UNLOCK(p); 399 pmap_activate(td); 400 } 401 } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1)); 402 if (refcnt == 1) { 403 if (p->p_vmspace != vm) { 404 /* vmspace not yet freed, switch back */ 405 PROC_VMSPACE_LOCK(p); 406 p->p_vmspace = vm; 407 PROC_VMSPACE_UNLOCK(p); 408 pmap_activate(td); 409 } 410 pmap_remove_pages(vmspace_pmap(vm)); 411 /* Switch now since this proc will free vmspace */ 412 PROC_VMSPACE_LOCK(p); 413 p->p_vmspace = &vmspace0; 414 PROC_VMSPACE_UNLOCK(p); 415 pmap_activate(td); 416 vmspace_dofree(vm); 417 } 418 #ifdef RACCT 419 if (racct_enable) 420 vmspace_container_reset(p); 421 #endif 422 } 423 424 /* Acquire reference to vmspace owned by another process. */ 425 426 struct vmspace * 427 vmspace_acquire_ref(struct proc *p) 428 { 429 struct vmspace *vm; 430 int refcnt; 431 432 PROC_VMSPACE_LOCK(p); 433 vm = p->p_vmspace; 434 if (vm == NULL) { 435 PROC_VMSPACE_UNLOCK(p); 436 return (NULL); 437 } 438 do { 439 refcnt = vm->vm_refcnt; 440 if (refcnt <= 0) { /* Avoid 0->1 transition */ 441 PROC_VMSPACE_UNLOCK(p); 442 return (NULL); 443 } 444 } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1)); 445 if (vm != p->p_vmspace) { 446 PROC_VMSPACE_UNLOCK(p); 447 vmspace_free(vm); 448 return (NULL); 449 } 450 PROC_VMSPACE_UNLOCK(p); 451 return (vm); 452 } 453 454 /* 455 * Switch between vmspaces in an AIO kernel process. 456 * 457 * The AIO kernel processes switch to and from a user process's 458 * vmspace while performing an I/O operation on behalf of a user 459 * process. The new vmspace is either the vmspace of a user process 460 * obtained from an active AIO request or the initial vmspace of the 461 * AIO kernel process (when it is idling). Because user processes 462 * will block to drain any active AIO requests before proceeding in 463 * exit() or execve(), the vmspace reference count for these vmspaces 464 * can never be 0. This allows for a much simpler implementation than 465 * the loop in vmspace_acquire_ref() above. Similarly, AIO kernel 466 * processes hold an extra reference on their initial vmspace for the 467 * life of the process so that this guarantee is true for any vmspace 468 * passed as 'newvm'. 469 */ 470 void 471 vmspace_switch_aio(struct vmspace *newvm) 472 { 473 struct vmspace *oldvm; 474 475 /* XXX: Need some way to assert that this is an aio daemon. */ 476 477 KASSERT(newvm->vm_refcnt > 0, 478 ("vmspace_switch_aio: newvm unreferenced")); 479 480 oldvm = curproc->p_vmspace; 481 if (oldvm == newvm) 482 return; 483 484 /* 485 * Point to the new address space and refer to it. 486 */ 487 curproc->p_vmspace = newvm; 488 atomic_add_int(&newvm->vm_refcnt, 1); 489 490 /* Activate the new mapping. */ 491 pmap_activate(curthread); 492 493 /* Remove the daemon's reference to the old address space. */ 494 KASSERT(oldvm->vm_refcnt > 1, 495 ("vmspace_switch_aio: oldvm dropping last reference")); 496 vmspace_free(oldvm); 497 } 498 499 void 500 _vm_map_lock(vm_map_t map, const char *file, int line) 501 { 502 503 if (map->system_map) 504 mtx_lock_flags_(&map->system_mtx, 0, file, line); 505 else 506 sx_xlock_(&map->lock, file, line); 507 map->timestamp++; 508 } 509 510 static void 511 vm_map_process_deferred(void) 512 { 513 struct thread *td; 514 vm_map_entry_t entry, next; 515 vm_object_t object; 516 517 td = curthread; 518 entry = td->td_map_def_user; 519 td->td_map_def_user = NULL; 520 while (entry != NULL) { 521 next = entry->next; 522 if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) { 523 /* 524 * Decrement the object's writemappings and 525 * possibly the vnode's v_writecount. 526 */ 527 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 528 ("Submap with writecount")); 529 object = entry->object.vm_object; 530 KASSERT(object != NULL, ("No object for writecount")); 531 vnode_pager_release_writecount(object, entry->start, 532 entry->end); 533 } 534 vm_map_entry_deallocate(entry, FALSE); 535 entry = next; 536 } 537 } 538 539 void 540 _vm_map_unlock(vm_map_t map, const char *file, int line) 541 { 542 543 if (map->system_map) 544 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 545 else { 546 sx_xunlock_(&map->lock, file, line); 547 vm_map_process_deferred(); 548 } 549 } 550 551 void 552 _vm_map_lock_read(vm_map_t map, const char *file, int line) 553 { 554 555 if (map->system_map) 556 mtx_lock_flags_(&map->system_mtx, 0, file, line); 557 else 558 sx_slock_(&map->lock, file, line); 559 } 560 561 void 562 _vm_map_unlock_read(vm_map_t map, const char *file, int line) 563 { 564 565 if (map->system_map) 566 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 567 else { 568 sx_sunlock_(&map->lock, file, line); 569 vm_map_process_deferred(); 570 } 571 } 572 573 int 574 _vm_map_trylock(vm_map_t map, const char *file, int line) 575 { 576 int error; 577 578 error = map->system_map ? 579 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 580 !sx_try_xlock_(&map->lock, file, line); 581 if (error == 0) 582 map->timestamp++; 583 return (error == 0); 584 } 585 586 int 587 _vm_map_trylock_read(vm_map_t map, const char *file, int line) 588 { 589 int error; 590 591 error = map->system_map ? 592 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 593 !sx_try_slock_(&map->lock, file, line); 594 return (error == 0); 595 } 596 597 /* 598 * _vm_map_lock_upgrade: [ internal use only ] 599 * 600 * Tries to upgrade a read (shared) lock on the specified map to a write 601 * (exclusive) lock. Returns the value "0" if the upgrade succeeds and a 602 * non-zero value if the upgrade fails. If the upgrade fails, the map is 603 * returned without a read or write lock held. 604 * 605 * Requires that the map be read locked. 606 */ 607 int 608 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line) 609 { 610 unsigned int last_timestamp; 611 612 if (map->system_map) { 613 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 614 } else { 615 if (!sx_try_upgrade_(&map->lock, file, line)) { 616 last_timestamp = map->timestamp; 617 sx_sunlock_(&map->lock, file, line); 618 vm_map_process_deferred(); 619 /* 620 * If the map's timestamp does not change while the 621 * map is unlocked, then the upgrade succeeds. 622 */ 623 sx_xlock_(&map->lock, file, line); 624 if (last_timestamp != map->timestamp) { 625 sx_xunlock_(&map->lock, file, line); 626 return (1); 627 } 628 } 629 } 630 map->timestamp++; 631 return (0); 632 } 633 634 void 635 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line) 636 { 637 638 if (map->system_map) { 639 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 640 } else 641 sx_downgrade_(&map->lock, file, line); 642 } 643 644 /* 645 * vm_map_locked: 646 * 647 * Returns a non-zero value if the caller holds a write (exclusive) lock 648 * on the specified map and the value "0" otherwise. 649 */ 650 int 651 vm_map_locked(vm_map_t map) 652 { 653 654 if (map->system_map) 655 return (mtx_owned(&map->system_mtx)); 656 else 657 return (sx_xlocked(&map->lock)); 658 } 659 660 #ifdef INVARIANTS 661 static void 662 _vm_map_assert_locked(vm_map_t map, const char *file, int line) 663 { 664 665 if (map->system_map) 666 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 667 else 668 sx_assert_(&map->lock, SA_XLOCKED, file, line); 669 } 670 671 #define VM_MAP_ASSERT_LOCKED(map) \ 672 _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE) 673 #else 674 #define VM_MAP_ASSERT_LOCKED(map) 675 #endif 676 677 /* 678 * _vm_map_unlock_and_wait: 679 * 680 * Atomically releases the lock on the specified map and puts the calling 681 * thread to sleep. The calling thread will remain asleep until either 682 * vm_map_wakeup() is performed on the map or the specified timeout is 683 * exceeded. 684 * 685 * WARNING! This function does not perform deferred deallocations of 686 * objects and map entries. Therefore, the calling thread is expected to 687 * reacquire the map lock after reawakening and later perform an ordinary 688 * unlock operation, such as vm_map_unlock(), before completing its 689 * operation on the map. 690 */ 691 int 692 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line) 693 { 694 695 mtx_lock(&map_sleep_mtx); 696 if (map->system_map) 697 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 698 else 699 sx_xunlock_(&map->lock, file, line); 700 return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps", 701 timo)); 702 } 703 704 /* 705 * vm_map_wakeup: 706 * 707 * Awaken any threads that have slept on the map using 708 * vm_map_unlock_and_wait(). 709 */ 710 void 711 vm_map_wakeup(vm_map_t map) 712 { 713 714 /* 715 * Acquire and release map_sleep_mtx to prevent a wakeup() 716 * from being performed (and lost) between the map unlock 717 * and the msleep() in _vm_map_unlock_and_wait(). 718 */ 719 mtx_lock(&map_sleep_mtx); 720 mtx_unlock(&map_sleep_mtx); 721 wakeup(&map->root); 722 } 723 724 void 725 vm_map_busy(vm_map_t map) 726 { 727 728 VM_MAP_ASSERT_LOCKED(map); 729 map->busy++; 730 } 731 732 void 733 vm_map_unbusy(vm_map_t map) 734 { 735 736 VM_MAP_ASSERT_LOCKED(map); 737 KASSERT(map->busy, ("vm_map_unbusy: not busy")); 738 if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) { 739 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP); 740 wakeup(&map->busy); 741 } 742 } 743 744 void 745 vm_map_wait_busy(vm_map_t map) 746 { 747 748 VM_MAP_ASSERT_LOCKED(map); 749 while (map->busy) { 750 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0); 751 if (map->system_map) 752 msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0); 753 else 754 sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0); 755 } 756 map->timestamp++; 757 } 758 759 long 760 vmspace_resident_count(struct vmspace *vmspace) 761 { 762 return pmap_resident_count(vmspace_pmap(vmspace)); 763 } 764 765 /* 766 * vm_map_create: 767 * 768 * Creates and returns a new empty VM map with 769 * the given physical map structure, and having 770 * the given lower and upper address bounds. 771 */ 772 vm_map_t 773 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max) 774 { 775 vm_map_t result; 776 777 result = uma_zalloc(mapzone, M_WAITOK); 778 CTR1(KTR_VM, "vm_map_create: %p", result); 779 _vm_map_init(result, pmap, min, max); 780 return (result); 781 } 782 783 /* 784 * Initialize an existing vm_map structure 785 * such as that in the vmspace structure. 786 */ 787 static void 788 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 789 { 790 791 map->header.next = map->header.prev = &map->header; 792 map->needs_wakeup = FALSE; 793 map->system_map = 0; 794 map->pmap = pmap; 795 map->min_offset = min; 796 map->max_offset = max; 797 map->flags = 0; 798 map->root = NULL; 799 map->timestamp = 0; 800 map->busy = 0; 801 } 802 803 void 804 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 805 { 806 807 _vm_map_init(map, pmap, min, max); 808 mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK); 809 sx_init(&map->lock, "user map"); 810 } 811 812 /* 813 * vm_map_entry_dispose: [ internal use only ] 814 * 815 * Inverse of vm_map_entry_create. 816 */ 817 static void 818 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry) 819 { 820 uma_zfree(map->system_map ? kmapentzone : mapentzone, entry); 821 } 822 823 /* 824 * vm_map_entry_create: [ internal use only ] 825 * 826 * Allocates a VM map entry for insertion. 827 * No entry fields are filled in. 828 */ 829 static vm_map_entry_t 830 vm_map_entry_create(vm_map_t map) 831 { 832 vm_map_entry_t new_entry; 833 834 if (map->system_map) 835 new_entry = uma_zalloc(kmapentzone, M_NOWAIT); 836 else 837 new_entry = uma_zalloc(mapentzone, M_WAITOK); 838 if (new_entry == NULL) 839 panic("vm_map_entry_create: kernel resources exhausted"); 840 return (new_entry); 841 } 842 843 /* 844 * vm_map_entry_set_behavior: 845 * 846 * Set the expected access behavior, either normal, random, or 847 * sequential. 848 */ 849 static inline void 850 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior) 851 { 852 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) | 853 (behavior & MAP_ENTRY_BEHAV_MASK); 854 } 855 856 /* 857 * vm_map_entry_set_max_free: 858 * 859 * Set the max_free field in a vm_map_entry. 860 */ 861 static inline void 862 vm_map_entry_set_max_free(vm_map_entry_t entry) 863 { 864 865 entry->max_free = entry->adj_free; 866 if (entry->left != NULL && entry->left->max_free > entry->max_free) 867 entry->max_free = entry->left->max_free; 868 if (entry->right != NULL && entry->right->max_free > entry->max_free) 869 entry->max_free = entry->right->max_free; 870 } 871 872 /* 873 * vm_map_entry_splay: 874 * 875 * The Sleator and Tarjan top-down splay algorithm with the 876 * following variation. Max_free must be computed bottom-up, so 877 * on the downward pass, maintain the left and right spines in 878 * reverse order. Then, make a second pass up each side to fix 879 * the pointers and compute max_free. The time bound is O(log n) 880 * amortized. 881 * 882 * The new root is the vm_map_entry containing "addr", or else an 883 * adjacent entry (lower or higher) if addr is not in the tree. 884 * 885 * The map must be locked, and leaves it so. 886 * 887 * Returns: the new root. 888 */ 889 static vm_map_entry_t 890 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root) 891 { 892 vm_map_entry_t llist, rlist; 893 vm_map_entry_t ltree, rtree; 894 vm_map_entry_t y; 895 896 /* Special case of empty tree. */ 897 if (root == NULL) 898 return (root); 899 900 /* 901 * Pass One: Splay down the tree until we find addr or a NULL 902 * pointer where addr would go. llist and rlist are the two 903 * sides in reverse order (bottom-up), with llist linked by 904 * the right pointer and rlist linked by the left pointer in 905 * the vm_map_entry. Wait until Pass Two to set max_free on 906 * the two spines. 907 */ 908 llist = NULL; 909 rlist = NULL; 910 for (;;) { 911 /* root is never NULL in here. */ 912 if (addr < root->start) { 913 y = root->left; 914 if (y == NULL) 915 break; 916 if (addr < y->start && y->left != NULL) { 917 /* Rotate right and put y on rlist. */ 918 root->left = y->right; 919 y->right = root; 920 vm_map_entry_set_max_free(root); 921 root = y->left; 922 y->left = rlist; 923 rlist = y; 924 } else { 925 /* Put root on rlist. */ 926 root->left = rlist; 927 rlist = root; 928 root = y; 929 } 930 } else if (addr >= root->end) { 931 y = root->right; 932 if (y == NULL) 933 break; 934 if (addr >= y->end && y->right != NULL) { 935 /* Rotate left and put y on llist. */ 936 root->right = y->left; 937 y->left = root; 938 vm_map_entry_set_max_free(root); 939 root = y->right; 940 y->right = llist; 941 llist = y; 942 } else { 943 /* Put root on llist. */ 944 root->right = llist; 945 llist = root; 946 root = y; 947 } 948 } else 949 break; 950 } 951 952 /* 953 * Pass Two: Walk back up the two spines, flip the pointers 954 * and set max_free. The subtrees of the root go at the 955 * bottom of llist and rlist. 956 */ 957 ltree = root->left; 958 while (llist != NULL) { 959 y = llist->right; 960 llist->right = ltree; 961 vm_map_entry_set_max_free(llist); 962 ltree = llist; 963 llist = y; 964 } 965 rtree = root->right; 966 while (rlist != NULL) { 967 y = rlist->left; 968 rlist->left = rtree; 969 vm_map_entry_set_max_free(rlist); 970 rtree = rlist; 971 rlist = y; 972 } 973 974 /* 975 * Final assembly: add ltree and rtree as subtrees of root. 976 */ 977 root->left = ltree; 978 root->right = rtree; 979 vm_map_entry_set_max_free(root); 980 981 return (root); 982 } 983 984 /* 985 * vm_map_entry_{un,}link: 986 * 987 * Insert/remove entries from maps. 988 */ 989 static void 990 vm_map_entry_link(vm_map_t map, 991 vm_map_entry_t after_where, 992 vm_map_entry_t entry) 993 { 994 995 CTR4(KTR_VM, 996 "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map, 997 map->nentries, entry, after_where); 998 VM_MAP_ASSERT_LOCKED(map); 999 KASSERT(after_where == &map->header || 1000 after_where->end <= entry->start, 1001 ("vm_map_entry_link: prev end %jx new start %jx overlap", 1002 (uintmax_t)after_where->end, (uintmax_t)entry->start)); 1003 KASSERT(after_where->next == &map->header || 1004 entry->end <= after_where->next->start, 1005 ("vm_map_entry_link: new end %jx next start %jx overlap", 1006 (uintmax_t)entry->end, (uintmax_t)after_where->next->start)); 1007 1008 map->nentries++; 1009 entry->prev = after_where; 1010 entry->next = after_where->next; 1011 entry->next->prev = entry; 1012 after_where->next = entry; 1013 1014 if (after_where != &map->header) { 1015 if (after_where != map->root) 1016 vm_map_entry_splay(after_where->start, map->root); 1017 entry->right = after_where->right; 1018 entry->left = after_where; 1019 after_where->right = NULL; 1020 after_where->adj_free = entry->start - after_where->end; 1021 vm_map_entry_set_max_free(after_where); 1022 } else { 1023 entry->right = map->root; 1024 entry->left = NULL; 1025 } 1026 entry->adj_free = (entry->next == &map->header ? map->max_offset : 1027 entry->next->start) - entry->end; 1028 vm_map_entry_set_max_free(entry); 1029 map->root = entry; 1030 } 1031 1032 static void 1033 vm_map_entry_unlink(vm_map_t map, 1034 vm_map_entry_t entry) 1035 { 1036 vm_map_entry_t next, prev, root; 1037 1038 VM_MAP_ASSERT_LOCKED(map); 1039 if (entry != map->root) 1040 vm_map_entry_splay(entry->start, map->root); 1041 if (entry->left == NULL) 1042 root = entry->right; 1043 else { 1044 root = vm_map_entry_splay(entry->start, entry->left); 1045 root->right = entry->right; 1046 root->adj_free = (entry->next == &map->header ? map->max_offset : 1047 entry->next->start) - root->end; 1048 vm_map_entry_set_max_free(root); 1049 } 1050 map->root = root; 1051 1052 prev = entry->prev; 1053 next = entry->next; 1054 next->prev = prev; 1055 prev->next = next; 1056 map->nentries--; 1057 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map, 1058 map->nentries, entry); 1059 } 1060 1061 /* 1062 * vm_map_entry_resize_free: 1063 * 1064 * Recompute the amount of free space following a vm_map_entry 1065 * and propagate that value up the tree. Call this function after 1066 * resizing a map entry in-place, that is, without a call to 1067 * vm_map_entry_link() or _unlink(). 1068 * 1069 * The map must be locked, and leaves it so. 1070 */ 1071 static void 1072 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry) 1073 { 1074 1075 /* 1076 * Using splay trees without parent pointers, propagating 1077 * max_free up the tree is done by moving the entry to the 1078 * root and making the change there. 1079 */ 1080 if (entry != map->root) 1081 map->root = vm_map_entry_splay(entry->start, map->root); 1082 1083 entry->adj_free = (entry->next == &map->header ? map->max_offset : 1084 entry->next->start) - entry->end; 1085 vm_map_entry_set_max_free(entry); 1086 } 1087 1088 /* 1089 * vm_map_lookup_entry: [ internal use only ] 1090 * 1091 * Finds the map entry containing (or 1092 * immediately preceding) the specified address 1093 * in the given map; the entry is returned 1094 * in the "entry" parameter. The boolean 1095 * result indicates whether the address is 1096 * actually contained in the map. 1097 */ 1098 boolean_t 1099 vm_map_lookup_entry( 1100 vm_map_t map, 1101 vm_offset_t address, 1102 vm_map_entry_t *entry) /* OUT */ 1103 { 1104 vm_map_entry_t cur; 1105 boolean_t locked; 1106 1107 /* 1108 * If the map is empty, then the map entry immediately preceding 1109 * "address" is the map's header. 1110 */ 1111 cur = map->root; 1112 if (cur == NULL) 1113 *entry = &map->header; 1114 else if (address >= cur->start && cur->end > address) { 1115 *entry = cur; 1116 return (TRUE); 1117 } else if ((locked = vm_map_locked(map)) || 1118 sx_try_upgrade(&map->lock)) { 1119 /* 1120 * Splay requires a write lock on the map. However, it only 1121 * restructures the binary search tree; it does not otherwise 1122 * change the map. Thus, the map's timestamp need not change 1123 * on a temporary upgrade. 1124 */ 1125 map->root = cur = vm_map_entry_splay(address, cur); 1126 if (!locked) 1127 sx_downgrade(&map->lock); 1128 1129 /* 1130 * If "address" is contained within a map entry, the new root 1131 * is that map entry. Otherwise, the new root is a map entry 1132 * immediately before or after "address". 1133 */ 1134 if (address >= cur->start) { 1135 *entry = cur; 1136 if (cur->end > address) 1137 return (TRUE); 1138 } else 1139 *entry = cur->prev; 1140 } else 1141 /* 1142 * Since the map is only locked for read access, perform a 1143 * standard binary search tree lookup for "address". 1144 */ 1145 for (;;) { 1146 if (address < cur->start) { 1147 if (cur->left == NULL) { 1148 *entry = cur->prev; 1149 break; 1150 } 1151 cur = cur->left; 1152 } else if (cur->end > address) { 1153 *entry = cur; 1154 return (TRUE); 1155 } else { 1156 if (cur->right == NULL) { 1157 *entry = cur; 1158 break; 1159 } 1160 cur = cur->right; 1161 } 1162 } 1163 return (FALSE); 1164 } 1165 1166 /* 1167 * vm_map_insert: 1168 * 1169 * Inserts the given whole VM object into the target 1170 * map at the specified address range. The object's 1171 * size should match that of the address range. 1172 * 1173 * Requires that the map be locked, and leaves it so. 1174 * 1175 * If object is non-NULL, ref count must be bumped by caller 1176 * prior to making call to account for the new entry. 1177 */ 1178 int 1179 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1180 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow) 1181 { 1182 vm_map_entry_t new_entry, prev_entry, temp_entry; 1183 vm_eflags_t protoeflags; 1184 struct ucred *cred; 1185 vm_inherit_t inheritance; 1186 1187 VM_MAP_ASSERT_LOCKED(map); 1188 KASSERT((object != kmem_object && object != kernel_object) || 1189 (cow & MAP_COPY_ON_WRITE) == 0, 1190 ("vm_map_insert: kmem or kernel object and COW")); 1191 KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0, 1192 ("vm_map_insert: paradoxical MAP_NOFAULT request")); 1193 1194 /* 1195 * Check that the start and end points are not bogus. 1196 */ 1197 if ((start < map->min_offset) || (end > map->max_offset) || 1198 (start >= end)) 1199 return (KERN_INVALID_ADDRESS); 1200 1201 /* 1202 * Find the entry prior to the proposed starting address; if it's part 1203 * of an existing entry, this range is bogus. 1204 */ 1205 if (vm_map_lookup_entry(map, start, &temp_entry)) 1206 return (KERN_NO_SPACE); 1207 1208 prev_entry = temp_entry; 1209 1210 /* 1211 * Assert that the next entry doesn't overlap the end point. 1212 */ 1213 if ((prev_entry->next != &map->header) && 1214 (prev_entry->next->start < end)) 1215 return (KERN_NO_SPACE); 1216 1217 protoeflags = 0; 1218 if (cow & MAP_COPY_ON_WRITE) 1219 protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY; 1220 if (cow & MAP_NOFAULT) 1221 protoeflags |= MAP_ENTRY_NOFAULT; 1222 if (cow & MAP_DISABLE_SYNCER) 1223 protoeflags |= MAP_ENTRY_NOSYNC; 1224 if (cow & MAP_DISABLE_COREDUMP) 1225 protoeflags |= MAP_ENTRY_NOCOREDUMP; 1226 if (cow & MAP_STACK_GROWS_DOWN) 1227 protoeflags |= MAP_ENTRY_GROWS_DOWN; 1228 if (cow & MAP_STACK_GROWS_UP) 1229 protoeflags |= MAP_ENTRY_GROWS_UP; 1230 if (cow & MAP_VN_WRITECOUNT) 1231 protoeflags |= MAP_ENTRY_VN_WRITECNT; 1232 if (cow & MAP_INHERIT_SHARE) 1233 inheritance = VM_INHERIT_SHARE; 1234 else 1235 inheritance = VM_INHERIT_DEFAULT; 1236 1237 cred = NULL; 1238 if (cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT)) 1239 goto charged; 1240 if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) && 1241 ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) { 1242 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start)) 1243 return (KERN_RESOURCE_SHORTAGE); 1244 KASSERT(object == NULL || (protoeflags & MAP_ENTRY_NEEDS_COPY) || 1245 object->cred == NULL, 1246 ("OVERCOMMIT: vm_map_insert o %p", object)); 1247 cred = curthread->td_ucred; 1248 } 1249 1250 charged: 1251 /* Expand the kernel pmap, if necessary. */ 1252 if (map == kernel_map && end > kernel_vm_end) 1253 pmap_growkernel(end); 1254 if (object != NULL) { 1255 /* 1256 * OBJ_ONEMAPPING must be cleared unless this mapping 1257 * is trivially proven to be the only mapping for any 1258 * of the object's pages. (Object granularity 1259 * reference counting is insufficient to recognize 1260 * aliases with precision.) 1261 */ 1262 VM_OBJECT_WLOCK(object); 1263 if (object->ref_count > 1 || object->shadow_count != 0) 1264 vm_object_clear_flag(object, OBJ_ONEMAPPING); 1265 VM_OBJECT_WUNLOCK(object); 1266 } 1267 else if ((prev_entry != &map->header) && 1268 (prev_entry->eflags == protoeflags) && 1269 (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 && 1270 (prev_entry->end == start) && 1271 (prev_entry->wired_count == 0) && 1272 (prev_entry->cred == cred || 1273 (prev_entry->object.vm_object != NULL && 1274 (prev_entry->object.vm_object->cred == cred))) && 1275 vm_object_coalesce(prev_entry->object.vm_object, 1276 prev_entry->offset, 1277 (vm_size_t)(prev_entry->end - prev_entry->start), 1278 (vm_size_t)(end - prev_entry->end), cred != NULL && 1279 (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) { 1280 /* 1281 * We were able to extend the object. Determine if we 1282 * can extend the previous map entry to include the 1283 * new range as well. 1284 */ 1285 if ((prev_entry->inheritance == inheritance) && 1286 (prev_entry->protection == prot) && 1287 (prev_entry->max_protection == max)) { 1288 map->size += (end - prev_entry->end); 1289 prev_entry->end = end; 1290 vm_map_entry_resize_free(map, prev_entry); 1291 vm_map_simplify_entry(map, prev_entry); 1292 return (KERN_SUCCESS); 1293 } 1294 1295 /* 1296 * If we can extend the object but cannot extend the 1297 * map entry, we have to create a new map entry. We 1298 * must bump the ref count on the extended object to 1299 * account for it. object may be NULL. 1300 */ 1301 object = prev_entry->object.vm_object; 1302 offset = prev_entry->offset + 1303 (prev_entry->end - prev_entry->start); 1304 vm_object_reference(object); 1305 if (cred != NULL && object != NULL && object->cred != NULL && 1306 !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 1307 /* Object already accounts for this uid. */ 1308 cred = NULL; 1309 } 1310 } 1311 if (cred != NULL) 1312 crhold(cred); 1313 1314 /* 1315 * Create a new entry 1316 */ 1317 new_entry = vm_map_entry_create(map); 1318 new_entry->start = start; 1319 new_entry->end = end; 1320 new_entry->cred = NULL; 1321 1322 new_entry->eflags = protoeflags; 1323 new_entry->object.vm_object = object; 1324 new_entry->offset = offset; 1325 new_entry->avail_ssize = 0; 1326 1327 new_entry->inheritance = inheritance; 1328 new_entry->protection = prot; 1329 new_entry->max_protection = max; 1330 new_entry->wired_count = 0; 1331 new_entry->wiring_thread = NULL; 1332 new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT; 1333 new_entry->next_read = start; 1334 1335 KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry), 1336 ("OVERCOMMIT: vm_map_insert leaks vm_map %p", new_entry)); 1337 new_entry->cred = cred; 1338 1339 /* 1340 * Insert the new entry into the list 1341 */ 1342 vm_map_entry_link(map, prev_entry, new_entry); 1343 map->size += new_entry->end - new_entry->start; 1344 1345 /* 1346 * Try to coalesce the new entry with both the previous and next 1347 * entries in the list. Previously, we only attempted to coalesce 1348 * with the previous entry when object is NULL. Here, we handle the 1349 * other cases, which are less common. 1350 */ 1351 vm_map_simplify_entry(map, new_entry); 1352 1353 if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) { 1354 vm_map_pmap_enter(map, start, prot, 1355 object, OFF_TO_IDX(offset), end - start, 1356 cow & MAP_PREFAULT_PARTIAL); 1357 } 1358 1359 return (KERN_SUCCESS); 1360 } 1361 1362 /* 1363 * vm_map_findspace: 1364 * 1365 * Find the first fit (lowest VM address) for "length" free bytes 1366 * beginning at address >= start in the given map. 1367 * 1368 * In a vm_map_entry, "adj_free" is the amount of free space 1369 * adjacent (higher address) to this entry, and "max_free" is the 1370 * maximum amount of contiguous free space in its subtree. This 1371 * allows finding a free region in one path down the tree, so 1372 * O(log n) amortized with splay trees. 1373 * 1374 * The map must be locked, and leaves it so. 1375 * 1376 * Returns: 0 on success, and starting address in *addr, 1377 * 1 if insufficient space. 1378 */ 1379 int 1380 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length, 1381 vm_offset_t *addr) /* OUT */ 1382 { 1383 vm_map_entry_t entry; 1384 vm_offset_t st; 1385 1386 /* 1387 * Request must fit within min/max VM address and must avoid 1388 * address wrap. 1389 */ 1390 if (start < map->min_offset) 1391 start = map->min_offset; 1392 if (start + length > map->max_offset || start + length < start) 1393 return (1); 1394 1395 /* Empty tree means wide open address space. */ 1396 if (map->root == NULL) { 1397 *addr = start; 1398 return (0); 1399 } 1400 1401 /* 1402 * After splay, if start comes before root node, then there 1403 * must be a gap from start to the root. 1404 */ 1405 map->root = vm_map_entry_splay(start, map->root); 1406 if (start + length <= map->root->start) { 1407 *addr = start; 1408 return (0); 1409 } 1410 1411 /* 1412 * Root is the last node that might begin its gap before 1413 * start, and this is the last comparison where address 1414 * wrap might be a problem. 1415 */ 1416 st = (start > map->root->end) ? start : map->root->end; 1417 if (length <= map->root->end + map->root->adj_free - st) { 1418 *addr = st; 1419 return (0); 1420 } 1421 1422 /* With max_free, can immediately tell if no solution. */ 1423 entry = map->root->right; 1424 if (entry == NULL || length > entry->max_free) 1425 return (1); 1426 1427 /* 1428 * Search the right subtree in the order: left subtree, root, 1429 * right subtree (first fit). The previous splay implies that 1430 * all regions in the right subtree have addresses > start. 1431 */ 1432 while (entry != NULL) { 1433 if (entry->left != NULL && entry->left->max_free >= length) 1434 entry = entry->left; 1435 else if (entry->adj_free >= length) { 1436 *addr = entry->end; 1437 return (0); 1438 } else 1439 entry = entry->right; 1440 } 1441 1442 /* Can't get here, so panic if we do. */ 1443 panic("vm_map_findspace: max_free corrupt"); 1444 } 1445 1446 int 1447 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1448 vm_offset_t start, vm_size_t length, vm_prot_t prot, 1449 vm_prot_t max, int cow) 1450 { 1451 vm_offset_t end; 1452 int result; 1453 1454 end = start + length; 1455 KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 || 1456 object == NULL, 1457 ("vm_map_fixed: non-NULL backing object for stack")); 1458 vm_map_lock(map); 1459 VM_MAP_RANGE_CHECK(map, start, end); 1460 if ((cow & MAP_CHECK_EXCL) == 0) 1461 vm_map_delete(map, start, end); 1462 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) { 1463 result = vm_map_stack_locked(map, start, length, sgrowsiz, 1464 prot, max, cow); 1465 } else { 1466 result = vm_map_insert(map, object, offset, start, end, 1467 prot, max, cow); 1468 } 1469 vm_map_unlock(map); 1470 return (result); 1471 } 1472 1473 /* 1474 * vm_map_find finds an unallocated region in the target address 1475 * map with the given length. The search is defined to be 1476 * first-fit from the specified address; the region found is 1477 * returned in the same parameter. 1478 * 1479 * If object is non-NULL, ref count must be bumped by caller 1480 * prior to making call to account for the new entry. 1481 */ 1482 int 1483 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1484 vm_offset_t *addr, /* IN/OUT */ 1485 vm_size_t length, vm_offset_t max_addr, int find_space, 1486 vm_prot_t prot, vm_prot_t max, int cow) 1487 { 1488 vm_offset_t alignment, initial_addr, start; 1489 int result; 1490 1491 KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 || 1492 object == NULL, 1493 ("vm_map_find: non-NULL backing object for stack")); 1494 if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL || 1495 (object->flags & OBJ_COLORED) == 0)) 1496 find_space = VMFS_ANY_SPACE; 1497 if (find_space >> 8 != 0) { 1498 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags")); 1499 alignment = (vm_offset_t)1 << (find_space >> 8); 1500 } else 1501 alignment = 0; 1502 initial_addr = *addr; 1503 again: 1504 start = initial_addr; 1505 vm_map_lock(map); 1506 do { 1507 if (find_space != VMFS_NO_SPACE) { 1508 if (vm_map_findspace(map, start, length, addr) || 1509 (max_addr != 0 && *addr + length > max_addr)) { 1510 vm_map_unlock(map); 1511 if (find_space == VMFS_OPTIMAL_SPACE) { 1512 find_space = VMFS_ANY_SPACE; 1513 goto again; 1514 } 1515 return (KERN_NO_SPACE); 1516 } 1517 switch (find_space) { 1518 case VMFS_SUPER_SPACE: 1519 case VMFS_OPTIMAL_SPACE: 1520 pmap_align_superpage(object, offset, addr, 1521 length); 1522 break; 1523 case VMFS_ANY_SPACE: 1524 break; 1525 default: 1526 if ((*addr & (alignment - 1)) != 0) { 1527 *addr &= ~(alignment - 1); 1528 *addr += alignment; 1529 } 1530 break; 1531 } 1532 1533 start = *addr; 1534 } 1535 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) { 1536 result = vm_map_stack_locked(map, start, length, 1537 sgrowsiz, prot, max, cow); 1538 } else { 1539 result = vm_map_insert(map, object, offset, start, 1540 start + length, prot, max, cow); 1541 } 1542 } while (result == KERN_NO_SPACE && find_space != VMFS_NO_SPACE && 1543 find_space != VMFS_ANY_SPACE); 1544 vm_map_unlock(map); 1545 return (result); 1546 } 1547 1548 /* 1549 * vm_map_simplify_entry: 1550 * 1551 * Simplify the given map entry by merging with either neighbor. This 1552 * routine also has the ability to merge with both neighbors. 1553 * 1554 * The map must be locked. 1555 * 1556 * This routine guarantees that the passed entry remains valid (though 1557 * possibly extended). When merging, this routine may delete one or 1558 * both neighbors. 1559 */ 1560 void 1561 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry) 1562 { 1563 vm_map_entry_t next, prev; 1564 vm_size_t prevsize, esize; 1565 1566 if ((entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | 1567 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) != 0) 1568 return; 1569 1570 prev = entry->prev; 1571 if (prev != &map->header) { 1572 prevsize = prev->end - prev->start; 1573 if ( (prev->end == entry->start) && 1574 (prev->object.vm_object == entry->object.vm_object) && 1575 (!prev->object.vm_object || 1576 (prev->offset + prevsize == entry->offset)) && 1577 (prev->eflags == entry->eflags) && 1578 (prev->protection == entry->protection) && 1579 (prev->max_protection == entry->max_protection) && 1580 (prev->inheritance == entry->inheritance) && 1581 (prev->wired_count == entry->wired_count) && 1582 (prev->cred == entry->cred)) { 1583 vm_map_entry_unlink(map, prev); 1584 entry->start = prev->start; 1585 entry->offset = prev->offset; 1586 if (entry->prev != &map->header) 1587 vm_map_entry_resize_free(map, entry->prev); 1588 1589 /* 1590 * If the backing object is a vnode object, 1591 * vm_object_deallocate() calls vrele(). 1592 * However, vrele() does not lock the vnode 1593 * because the vnode has additional 1594 * references. Thus, the map lock can be kept 1595 * without causing a lock-order reversal with 1596 * the vnode lock. 1597 * 1598 * Since we count the number of virtual page 1599 * mappings in object->un_pager.vnp.writemappings, 1600 * the writemappings value should not be adjusted 1601 * when the entry is disposed of. 1602 */ 1603 if (prev->object.vm_object) 1604 vm_object_deallocate(prev->object.vm_object); 1605 if (prev->cred != NULL) 1606 crfree(prev->cred); 1607 vm_map_entry_dispose(map, prev); 1608 } 1609 } 1610 1611 next = entry->next; 1612 if (next != &map->header) { 1613 esize = entry->end - entry->start; 1614 if ((entry->end == next->start) && 1615 (next->object.vm_object == entry->object.vm_object) && 1616 (!entry->object.vm_object || 1617 (entry->offset + esize == next->offset)) && 1618 (next->eflags == entry->eflags) && 1619 (next->protection == entry->protection) && 1620 (next->max_protection == entry->max_protection) && 1621 (next->inheritance == entry->inheritance) && 1622 (next->wired_count == entry->wired_count) && 1623 (next->cred == entry->cred)) { 1624 vm_map_entry_unlink(map, next); 1625 entry->end = next->end; 1626 vm_map_entry_resize_free(map, entry); 1627 1628 /* 1629 * See comment above. 1630 */ 1631 if (next->object.vm_object) 1632 vm_object_deallocate(next->object.vm_object); 1633 if (next->cred != NULL) 1634 crfree(next->cred); 1635 vm_map_entry_dispose(map, next); 1636 } 1637 } 1638 } 1639 /* 1640 * vm_map_clip_start: [ internal use only ] 1641 * 1642 * Asserts that the given entry begins at or after 1643 * the specified address; if necessary, 1644 * it splits the entry into two. 1645 */ 1646 #define vm_map_clip_start(map, entry, startaddr) \ 1647 { \ 1648 if (startaddr > entry->start) \ 1649 _vm_map_clip_start(map, entry, startaddr); \ 1650 } 1651 1652 /* 1653 * This routine is called only when it is known that 1654 * the entry must be split. 1655 */ 1656 static void 1657 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start) 1658 { 1659 vm_map_entry_t new_entry; 1660 1661 VM_MAP_ASSERT_LOCKED(map); 1662 1663 /* 1664 * Split off the front portion -- note that we must insert the new 1665 * entry BEFORE this one, so that this entry has the specified 1666 * starting address. 1667 */ 1668 vm_map_simplify_entry(map, entry); 1669 1670 /* 1671 * If there is no object backing this entry, we might as well create 1672 * one now. If we defer it, an object can get created after the map 1673 * is clipped, and individual objects will be created for the split-up 1674 * map. This is a bit of a hack, but is also about the best place to 1675 * put this improvement. 1676 */ 1677 if (entry->object.vm_object == NULL && !map->system_map) { 1678 vm_object_t object; 1679 object = vm_object_allocate(OBJT_DEFAULT, 1680 atop(entry->end - entry->start)); 1681 entry->object.vm_object = object; 1682 entry->offset = 0; 1683 if (entry->cred != NULL) { 1684 object->cred = entry->cred; 1685 object->charge = entry->end - entry->start; 1686 entry->cred = NULL; 1687 } 1688 } else if (entry->object.vm_object != NULL && 1689 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 1690 entry->cred != NULL) { 1691 VM_OBJECT_WLOCK(entry->object.vm_object); 1692 KASSERT(entry->object.vm_object->cred == NULL, 1693 ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry)); 1694 entry->object.vm_object->cred = entry->cred; 1695 entry->object.vm_object->charge = entry->end - entry->start; 1696 VM_OBJECT_WUNLOCK(entry->object.vm_object); 1697 entry->cred = NULL; 1698 } 1699 1700 new_entry = vm_map_entry_create(map); 1701 *new_entry = *entry; 1702 1703 new_entry->end = start; 1704 entry->offset += (start - entry->start); 1705 entry->start = start; 1706 if (new_entry->cred != NULL) 1707 crhold(entry->cred); 1708 1709 vm_map_entry_link(map, entry->prev, new_entry); 1710 1711 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1712 vm_object_reference(new_entry->object.vm_object); 1713 /* 1714 * The object->un_pager.vnp.writemappings for the 1715 * object of MAP_ENTRY_VN_WRITECNT type entry shall be 1716 * kept as is here. The virtual pages are 1717 * re-distributed among the clipped entries, so the sum is 1718 * left the same. 1719 */ 1720 } 1721 } 1722 1723 /* 1724 * vm_map_clip_end: [ internal use only ] 1725 * 1726 * Asserts that the given entry ends at or before 1727 * the specified address; if necessary, 1728 * it splits the entry into two. 1729 */ 1730 #define vm_map_clip_end(map, entry, endaddr) \ 1731 { \ 1732 if ((endaddr) < (entry->end)) \ 1733 _vm_map_clip_end((map), (entry), (endaddr)); \ 1734 } 1735 1736 /* 1737 * This routine is called only when it is known that 1738 * the entry must be split. 1739 */ 1740 static void 1741 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end) 1742 { 1743 vm_map_entry_t new_entry; 1744 1745 VM_MAP_ASSERT_LOCKED(map); 1746 1747 /* 1748 * If there is no object backing this entry, we might as well create 1749 * one now. If we defer it, an object can get created after the map 1750 * is clipped, and individual objects will be created for the split-up 1751 * map. This is a bit of a hack, but is also about the best place to 1752 * put this improvement. 1753 */ 1754 if (entry->object.vm_object == NULL && !map->system_map) { 1755 vm_object_t object; 1756 object = vm_object_allocate(OBJT_DEFAULT, 1757 atop(entry->end - entry->start)); 1758 entry->object.vm_object = object; 1759 entry->offset = 0; 1760 if (entry->cred != NULL) { 1761 object->cred = entry->cred; 1762 object->charge = entry->end - entry->start; 1763 entry->cred = NULL; 1764 } 1765 } else if (entry->object.vm_object != NULL && 1766 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 1767 entry->cred != NULL) { 1768 VM_OBJECT_WLOCK(entry->object.vm_object); 1769 KASSERT(entry->object.vm_object->cred == NULL, 1770 ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry)); 1771 entry->object.vm_object->cred = entry->cred; 1772 entry->object.vm_object->charge = entry->end - entry->start; 1773 VM_OBJECT_WUNLOCK(entry->object.vm_object); 1774 entry->cred = NULL; 1775 } 1776 1777 /* 1778 * Create a new entry and insert it AFTER the specified entry 1779 */ 1780 new_entry = vm_map_entry_create(map); 1781 *new_entry = *entry; 1782 1783 new_entry->start = entry->end = end; 1784 new_entry->offset += (end - entry->start); 1785 if (new_entry->cred != NULL) 1786 crhold(entry->cred); 1787 1788 vm_map_entry_link(map, entry, new_entry); 1789 1790 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1791 vm_object_reference(new_entry->object.vm_object); 1792 } 1793 } 1794 1795 /* 1796 * vm_map_submap: [ kernel use only ] 1797 * 1798 * Mark the given range as handled by a subordinate map. 1799 * 1800 * This range must have been created with vm_map_find, 1801 * and no other operations may have been performed on this 1802 * range prior to calling vm_map_submap. 1803 * 1804 * Only a limited number of operations can be performed 1805 * within this rage after calling vm_map_submap: 1806 * vm_fault 1807 * [Don't try vm_map_copy!] 1808 * 1809 * To remove a submapping, one must first remove the 1810 * range from the superior map, and then destroy the 1811 * submap (if desired). [Better yet, don't try it.] 1812 */ 1813 int 1814 vm_map_submap( 1815 vm_map_t map, 1816 vm_offset_t start, 1817 vm_offset_t end, 1818 vm_map_t submap) 1819 { 1820 vm_map_entry_t entry; 1821 int result = KERN_INVALID_ARGUMENT; 1822 1823 vm_map_lock(map); 1824 1825 VM_MAP_RANGE_CHECK(map, start, end); 1826 1827 if (vm_map_lookup_entry(map, start, &entry)) { 1828 vm_map_clip_start(map, entry, start); 1829 } else 1830 entry = entry->next; 1831 1832 vm_map_clip_end(map, entry, end); 1833 1834 if ((entry->start == start) && (entry->end == end) && 1835 ((entry->eflags & MAP_ENTRY_COW) == 0) && 1836 (entry->object.vm_object == NULL)) { 1837 entry->object.sub_map = submap; 1838 entry->eflags |= MAP_ENTRY_IS_SUB_MAP; 1839 result = KERN_SUCCESS; 1840 } 1841 vm_map_unlock(map); 1842 1843 return (result); 1844 } 1845 1846 /* 1847 * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified 1848 */ 1849 #define MAX_INIT_PT 96 1850 1851 /* 1852 * vm_map_pmap_enter: 1853 * 1854 * Preload the specified map's pmap with mappings to the specified 1855 * object's memory-resident pages. No further physical pages are 1856 * allocated, and no further virtual pages are retrieved from secondary 1857 * storage. If the specified flags include MAP_PREFAULT_PARTIAL, then a 1858 * limited number of page mappings are created at the low-end of the 1859 * specified address range. (For this purpose, a superpage mapping 1860 * counts as one page mapping.) Otherwise, all resident pages within 1861 * the specified address range are mapped. 1862 */ 1863 static void 1864 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 1865 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags) 1866 { 1867 vm_offset_t start; 1868 vm_page_t p, p_start; 1869 vm_pindex_t mask, psize, threshold, tmpidx; 1870 1871 if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL) 1872 return; 1873 VM_OBJECT_RLOCK(object); 1874 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 1875 VM_OBJECT_RUNLOCK(object); 1876 VM_OBJECT_WLOCK(object); 1877 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 1878 pmap_object_init_pt(map->pmap, addr, object, pindex, 1879 size); 1880 VM_OBJECT_WUNLOCK(object); 1881 return; 1882 } 1883 VM_OBJECT_LOCK_DOWNGRADE(object); 1884 } 1885 1886 psize = atop(size); 1887 if (psize + pindex > object->size) { 1888 if (object->size < pindex) { 1889 VM_OBJECT_RUNLOCK(object); 1890 return; 1891 } 1892 psize = object->size - pindex; 1893 } 1894 1895 start = 0; 1896 p_start = NULL; 1897 threshold = MAX_INIT_PT; 1898 1899 p = vm_page_find_least(object, pindex); 1900 /* 1901 * Assert: the variable p is either (1) the page with the 1902 * least pindex greater than or equal to the parameter pindex 1903 * or (2) NULL. 1904 */ 1905 for (; 1906 p != NULL && (tmpidx = p->pindex - pindex) < psize; 1907 p = TAILQ_NEXT(p, listq)) { 1908 /* 1909 * don't allow an madvise to blow away our really 1910 * free pages allocating pv entries. 1911 */ 1912 if (((flags & MAP_PREFAULT_MADVISE) != 0 && 1913 vm_cnt.v_free_count < vm_cnt.v_free_reserved) || 1914 ((flags & MAP_PREFAULT_PARTIAL) != 0 && 1915 tmpidx >= threshold)) { 1916 psize = tmpidx; 1917 break; 1918 } 1919 if (p->valid == VM_PAGE_BITS_ALL) { 1920 if (p_start == NULL) { 1921 start = addr + ptoa(tmpidx); 1922 p_start = p; 1923 } 1924 /* Jump ahead if a superpage mapping is possible. */ 1925 if (p->psind > 0 && ((addr + ptoa(tmpidx)) & 1926 (pagesizes[p->psind] - 1)) == 0) { 1927 mask = atop(pagesizes[p->psind]) - 1; 1928 if (tmpidx + mask < psize && 1929 vm_page_ps_is_valid(p)) { 1930 p += mask; 1931 threshold += mask; 1932 } 1933 } 1934 } else if (p_start != NULL) { 1935 pmap_enter_object(map->pmap, start, addr + 1936 ptoa(tmpidx), p_start, prot); 1937 p_start = NULL; 1938 } 1939 } 1940 if (p_start != NULL) 1941 pmap_enter_object(map->pmap, start, addr + ptoa(psize), 1942 p_start, prot); 1943 VM_OBJECT_RUNLOCK(object); 1944 } 1945 1946 /* 1947 * vm_map_protect: 1948 * 1949 * Sets the protection of the specified address 1950 * region in the target map. If "set_max" is 1951 * specified, the maximum protection is to be set; 1952 * otherwise, only the current protection is affected. 1953 */ 1954 int 1955 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 1956 vm_prot_t new_prot, boolean_t set_max) 1957 { 1958 vm_map_entry_t current, entry; 1959 vm_object_t obj; 1960 struct ucred *cred; 1961 vm_prot_t old_prot; 1962 1963 if (start == end) 1964 return (KERN_SUCCESS); 1965 1966 vm_map_lock(map); 1967 1968 VM_MAP_RANGE_CHECK(map, start, end); 1969 1970 if (vm_map_lookup_entry(map, start, &entry)) { 1971 vm_map_clip_start(map, entry, start); 1972 } else { 1973 entry = entry->next; 1974 } 1975 1976 /* 1977 * Make a first pass to check for protection violations. 1978 */ 1979 current = entry; 1980 while ((current != &map->header) && (current->start < end)) { 1981 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 1982 vm_map_unlock(map); 1983 return (KERN_INVALID_ARGUMENT); 1984 } 1985 if ((new_prot & current->max_protection) != new_prot) { 1986 vm_map_unlock(map); 1987 return (KERN_PROTECTION_FAILURE); 1988 } 1989 current = current->next; 1990 } 1991 1992 1993 /* 1994 * Do an accounting pass for private read-only mappings that 1995 * now will do cow due to allowed write (e.g. debugger sets 1996 * breakpoint on text segment) 1997 */ 1998 for (current = entry; (current != &map->header) && 1999 (current->start < end); current = current->next) { 2000 2001 vm_map_clip_end(map, current, end); 2002 2003 if (set_max || 2004 ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 || 2005 ENTRY_CHARGED(current)) { 2006 continue; 2007 } 2008 2009 cred = curthread->td_ucred; 2010 obj = current->object.vm_object; 2011 2012 if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) { 2013 if (!swap_reserve(current->end - current->start)) { 2014 vm_map_unlock(map); 2015 return (KERN_RESOURCE_SHORTAGE); 2016 } 2017 crhold(cred); 2018 current->cred = cred; 2019 continue; 2020 } 2021 2022 VM_OBJECT_WLOCK(obj); 2023 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) { 2024 VM_OBJECT_WUNLOCK(obj); 2025 continue; 2026 } 2027 2028 /* 2029 * Charge for the whole object allocation now, since 2030 * we cannot distinguish between non-charged and 2031 * charged clipped mapping of the same object later. 2032 */ 2033 KASSERT(obj->charge == 0, 2034 ("vm_map_protect: object %p overcharged (entry %p)", 2035 obj, current)); 2036 if (!swap_reserve(ptoa(obj->size))) { 2037 VM_OBJECT_WUNLOCK(obj); 2038 vm_map_unlock(map); 2039 return (KERN_RESOURCE_SHORTAGE); 2040 } 2041 2042 crhold(cred); 2043 obj->cred = cred; 2044 obj->charge = ptoa(obj->size); 2045 VM_OBJECT_WUNLOCK(obj); 2046 } 2047 2048 /* 2049 * Go back and fix up protections. [Note that clipping is not 2050 * necessary the second time.] 2051 */ 2052 current = entry; 2053 while ((current != &map->header) && (current->start < end)) { 2054 old_prot = current->protection; 2055 2056 if (set_max) 2057 current->protection = 2058 (current->max_protection = new_prot) & 2059 old_prot; 2060 else 2061 current->protection = new_prot; 2062 2063 /* 2064 * For user wired map entries, the normal lazy evaluation of 2065 * write access upgrades through soft page faults is 2066 * undesirable. Instead, immediately copy any pages that are 2067 * copy-on-write and enable write access in the physical map. 2068 */ 2069 if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 && 2070 (current->protection & VM_PROT_WRITE) != 0 && 2071 (old_prot & VM_PROT_WRITE) == 0) 2072 vm_fault_copy_entry(map, map, current, current, NULL); 2073 2074 /* 2075 * When restricting access, update the physical map. Worry 2076 * about copy-on-write here. 2077 */ 2078 if ((old_prot & ~current->protection) != 0) { 2079 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 2080 VM_PROT_ALL) 2081 pmap_protect(map->pmap, current->start, 2082 current->end, 2083 current->protection & MASK(current)); 2084 #undef MASK 2085 } 2086 vm_map_simplify_entry(map, current); 2087 current = current->next; 2088 } 2089 vm_map_unlock(map); 2090 return (KERN_SUCCESS); 2091 } 2092 2093 /* 2094 * vm_map_madvise: 2095 * 2096 * This routine traverses a processes map handling the madvise 2097 * system call. Advisories are classified as either those effecting 2098 * the vm_map_entry structure, or those effecting the underlying 2099 * objects. 2100 */ 2101 int 2102 vm_map_madvise( 2103 vm_map_t map, 2104 vm_offset_t start, 2105 vm_offset_t end, 2106 int behav) 2107 { 2108 vm_map_entry_t current, entry; 2109 int modify_map = 0; 2110 2111 /* 2112 * Some madvise calls directly modify the vm_map_entry, in which case 2113 * we need to use an exclusive lock on the map and we need to perform 2114 * various clipping operations. Otherwise we only need a read-lock 2115 * on the map. 2116 */ 2117 switch(behav) { 2118 case MADV_NORMAL: 2119 case MADV_SEQUENTIAL: 2120 case MADV_RANDOM: 2121 case MADV_NOSYNC: 2122 case MADV_AUTOSYNC: 2123 case MADV_NOCORE: 2124 case MADV_CORE: 2125 if (start == end) 2126 return (KERN_SUCCESS); 2127 modify_map = 1; 2128 vm_map_lock(map); 2129 break; 2130 case MADV_WILLNEED: 2131 case MADV_DONTNEED: 2132 case MADV_FREE: 2133 if (start == end) 2134 return (KERN_SUCCESS); 2135 vm_map_lock_read(map); 2136 break; 2137 default: 2138 return (KERN_INVALID_ARGUMENT); 2139 } 2140 2141 /* 2142 * Locate starting entry and clip if necessary. 2143 */ 2144 VM_MAP_RANGE_CHECK(map, start, end); 2145 2146 if (vm_map_lookup_entry(map, start, &entry)) { 2147 if (modify_map) 2148 vm_map_clip_start(map, entry, start); 2149 } else { 2150 entry = entry->next; 2151 } 2152 2153 if (modify_map) { 2154 /* 2155 * madvise behaviors that are implemented in the vm_map_entry. 2156 * 2157 * We clip the vm_map_entry so that behavioral changes are 2158 * limited to the specified address range. 2159 */ 2160 for (current = entry; 2161 (current != &map->header) && (current->start < end); 2162 current = current->next 2163 ) { 2164 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2165 continue; 2166 2167 vm_map_clip_end(map, current, end); 2168 2169 switch (behav) { 2170 case MADV_NORMAL: 2171 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL); 2172 break; 2173 case MADV_SEQUENTIAL: 2174 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL); 2175 break; 2176 case MADV_RANDOM: 2177 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM); 2178 break; 2179 case MADV_NOSYNC: 2180 current->eflags |= MAP_ENTRY_NOSYNC; 2181 break; 2182 case MADV_AUTOSYNC: 2183 current->eflags &= ~MAP_ENTRY_NOSYNC; 2184 break; 2185 case MADV_NOCORE: 2186 current->eflags |= MAP_ENTRY_NOCOREDUMP; 2187 break; 2188 case MADV_CORE: 2189 current->eflags &= ~MAP_ENTRY_NOCOREDUMP; 2190 break; 2191 default: 2192 break; 2193 } 2194 vm_map_simplify_entry(map, current); 2195 } 2196 vm_map_unlock(map); 2197 } else { 2198 vm_pindex_t pstart, pend; 2199 2200 /* 2201 * madvise behaviors that are implemented in the underlying 2202 * vm_object. 2203 * 2204 * Since we don't clip the vm_map_entry, we have to clip 2205 * the vm_object pindex and count. 2206 */ 2207 for (current = entry; 2208 (current != &map->header) && (current->start < end); 2209 current = current->next 2210 ) { 2211 vm_offset_t useEnd, useStart; 2212 2213 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2214 continue; 2215 2216 pstart = OFF_TO_IDX(current->offset); 2217 pend = pstart + atop(current->end - current->start); 2218 useStart = current->start; 2219 useEnd = current->end; 2220 2221 if (current->start < start) { 2222 pstart += atop(start - current->start); 2223 useStart = start; 2224 } 2225 if (current->end > end) { 2226 pend -= atop(current->end - end); 2227 useEnd = end; 2228 } 2229 2230 if (pstart >= pend) 2231 continue; 2232 2233 /* 2234 * Perform the pmap_advise() before clearing 2235 * PGA_REFERENCED in vm_page_advise(). Otherwise, a 2236 * concurrent pmap operation, such as pmap_remove(), 2237 * could clear a reference in the pmap and set 2238 * PGA_REFERENCED on the page before the pmap_advise() 2239 * had completed. Consequently, the page would appear 2240 * referenced based upon an old reference that 2241 * occurred before this pmap_advise() ran. 2242 */ 2243 if (behav == MADV_DONTNEED || behav == MADV_FREE) 2244 pmap_advise(map->pmap, useStart, useEnd, 2245 behav); 2246 2247 vm_object_madvise(current->object.vm_object, pstart, 2248 pend, behav); 2249 2250 /* 2251 * Pre-populate paging structures in the 2252 * WILLNEED case. For wired entries, the 2253 * paging structures are already populated. 2254 */ 2255 if (behav == MADV_WILLNEED && 2256 current->wired_count == 0) { 2257 vm_map_pmap_enter(map, 2258 useStart, 2259 current->protection, 2260 current->object.vm_object, 2261 pstart, 2262 ptoa(pend - pstart), 2263 MAP_PREFAULT_MADVISE 2264 ); 2265 } 2266 } 2267 vm_map_unlock_read(map); 2268 } 2269 return (0); 2270 } 2271 2272 2273 /* 2274 * vm_map_inherit: 2275 * 2276 * Sets the inheritance of the specified address 2277 * range in the target map. Inheritance 2278 * affects how the map will be shared with 2279 * child maps at the time of vmspace_fork. 2280 */ 2281 int 2282 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 2283 vm_inherit_t new_inheritance) 2284 { 2285 vm_map_entry_t entry; 2286 vm_map_entry_t temp_entry; 2287 2288 switch (new_inheritance) { 2289 case VM_INHERIT_NONE: 2290 case VM_INHERIT_COPY: 2291 case VM_INHERIT_SHARE: 2292 break; 2293 default: 2294 return (KERN_INVALID_ARGUMENT); 2295 } 2296 if (start == end) 2297 return (KERN_SUCCESS); 2298 vm_map_lock(map); 2299 VM_MAP_RANGE_CHECK(map, start, end); 2300 if (vm_map_lookup_entry(map, start, &temp_entry)) { 2301 entry = temp_entry; 2302 vm_map_clip_start(map, entry, start); 2303 } else 2304 entry = temp_entry->next; 2305 while ((entry != &map->header) && (entry->start < end)) { 2306 vm_map_clip_end(map, entry, end); 2307 entry->inheritance = new_inheritance; 2308 vm_map_simplify_entry(map, entry); 2309 entry = entry->next; 2310 } 2311 vm_map_unlock(map); 2312 return (KERN_SUCCESS); 2313 } 2314 2315 /* 2316 * vm_map_unwire: 2317 * 2318 * Implements both kernel and user unwiring. 2319 */ 2320 int 2321 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2322 int flags) 2323 { 2324 vm_map_entry_t entry, first_entry, tmp_entry; 2325 vm_offset_t saved_start; 2326 unsigned int last_timestamp; 2327 int rv; 2328 boolean_t need_wakeup, result, user_unwire; 2329 2330 if (start == end) 2331 return (KERN_SUCCESS); 2332 user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 2333 vm_map_lock(map); 2334 VM_MAP_RANGE_CHECK(map, start, end); 2335 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2336 if (flags & VM_MAP_WIRE_HOLESOK) 2337 first_entry = first_entry->next; 2338 else { 2339 vm_map_unlock(map); 2340 return (KERN_INVALID_ADDRESS); 2341 } 2342 } 2343 last_timestamp = map->timestamp; 2344 entry = first_entry; 2345 while (entry != &map->header && entry->start < end) { 2346 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2347 /* 2348 * We have not yet clipped the entry. 2349 */ 2350 saved_start = (start >= entry->start) ? start : 2351 entry->start; 2352 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2353 if (vm_map_unlock_and_wait(map, 0)) { 2354 /* 2355 * Allow interruption of user unwiring? 2356 */ 2357 } 2358 vm_map_lock(map); 2359 if (last_timestamp+1 != map->timestamp) { 2360 /* 2361 * Look again for the entry because the map was 2362 * modified while it was unlocked. 2363 * Specifically, the entry may have been 2364 * clipped, merged, or deleted. 2365 */ 2366 if (!vm_map_lookup_entry(map, saved_start, 2367 &tmp_entry)) { 2368 if (flags & VM_MAP_WIRE_HOLESOK) 2369 tmp_entry = tmp_entry->next; 2370 else { 2371 if (saved_start == start) { 2372 /* 2373 * First_entry has been deleted. 2374 */ 2375 vm_map_unlock(map); 2376 return (KERN_INVALID_ADDRESS); 2377 } 2378 end = saved_start; 2379 rv = KERN_INVALID_ADDRESS; 2380 goto done; 2381 } 2382 } 2383 if (entry == first_entry) 2384 first_entry = tmp_entry; 2385 else 2386 first_entry = NULL; 2387 entry = tmp_entry; 2388 } 2389 last_timestamp = map->timestamp; 2390 continue; 2391 } 2392 vm_map_clip_start(map, entry, start); 2393 vm_map_clip_end(map, entry, end); 2394 /* 2395 * Mark the entry in case the map lock is released. (See 2396 * above.) 2397 */ 2398 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 2399 entry->wiring_thread == NULL, 2400 ("owned map entry %p", entry)); 2401 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 2402 entry->wiring_thread = curthread; 2403 /* 2404 * Check the map for holes in the specified region. 2405 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 2406 */ 2407 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) && 2408 (entry->end < end && (entry->next == &map->header || 2409 entry->next->start > entry->end))) { 2410 end = entry->end; 2411 rv = KERN_INVALID_ADDRESS; 2412 goto done; 2413 } 2414 /* 2415 * If system unwiring, require that the entry is system wired. 2416 */ 2417 if (!user_unwire && 2418 vm_map_entry_system_wired_count(entry) == 0) { 2419 end = entry->end; 2420 rv = KERN_INVALID_ARGUMENT; 2421 goto done; 2422 } 2423 entry = entry->next; 2424 } 2425 rv = KERN_SUCCESS; 2426 done: 2427 need_wakeup = FALSE; 2428 if (first_entry == NULL) { 2429 result = vm_map_lookup_entry(map, start, &first_entry); 2430 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 2431 first_entry = first_entry->next; 2432 else 2433 KASSERT(result, ("vm_map_unwire: lookup failed")); 2434 } 2435 for (entry = first_entry; entry != &map->header && entry->start < end; 2436 entry = entry->next) { 2437 /* 2438 * If VM_MAP_WIRE_HOLESOK was specified, an empty 2439 * space in the unwired region could have been mapped 2440 * while the map lock was dropped for draining 2441 * MAP_ENTRY_IN_TRANSITION. Moreover, another thread 2442 * could be simultaneously wiring this new mapping 2443 * entry. Detect these cases and skip any entries 2444 * marked as in transition by us. 2445 */ 2446 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 2447 entry->wiring_thread != curthread) { 2448 KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0, 2449 ("vm_map_unwire: !HOLESOK and new/changed entry")); 2450 continue; 2451 } 2452 2453 if (rv == KERN_SUCCESS && (!user_unwire || 2454 (entry->eflags & MAP_ENTRY_USER_WIRED))) { 2455 if (user_unwire) 2456 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2457 if (entry->wired_count == 1) 2458 vm_map_entry_unwire(map, entry); 2459 else 2460 entry->wired_count--; 2461 } 2462 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 2463 ("vm_map_unwire: in-transition flag missing %p", entry)); 2464 KASSERT(entry->wiring_thread == curthread, 2465 ("vm_map_unwire: alien wire %p", entry)); 2466 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 2467 entry->wiring_thread = NULL; 2468 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 2469 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 2470 need_wakeup = TRUE; 2471 } 2472 vm_map_simplify_entry(map, entry); 2473 } 2474 vm_map_unlock(map); 2475 if (need_wakeup) 2476 vm_map_wakeup(map); 2477 return (rv); 2478 } 2479 2480 /* 2481 * vm_map_wire_entry_failure: 2482 * 2483 * Handle a wiring failure on the given entry. 2484 * 2485 * The map should be locked. 2486 */ 2487 static void 2488 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry, 2489 vm_offset_t failed_addr) 2490 { 2491 2492 VM_MAP_ASSERT_LOCKED(map); 2493 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 && 2494 entry->wired_count == 1, 2495 ("vm_map_wire_entry_failure: entry %p isn't being wired", entry)); 2496 KASSERT(failed_addr < entry->end, 2497 ("vm_map_wire_entry_failure: entry %p was fully wired", entry)); 2498 2499 /* 2500 * If any pages at the start of this entry were successfully wired, 2501 * then unwire them. 2502 */ 2503 if (failed_addr > entry->start) { 2504 pmap_unwire(map->pmap, entry->start, failed_addr); 2505 vm_object_unwire(entry->object.vm_object, entry->offset, 2506 failed_addr - entry->start, PQ_ACTIVE); 2507 } 2508 2509 /* 2510 * Assign an out-of-range value to represent the failure to wire this 2511 * entry. 2512 */ 2513 entry->wired_count = -1; 2514 } 2515 2516 /* 2517 * vm_map_wire: 2518 * 2519 * Implements both kernel and user wiring. 2520 */ 2521 int 2522 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2523 int flags) 2524 { 2525 vm_map_entry_t entry, first_entry, tmp_entry; 2526 vm_offset_t faddr, saved_end, saved_start; 2527 unsigned int last_timestamp; 2528 int rv; 2529 boolean_t need_wakeup, result, user_wire; 2530 vm_prot_t prot; 2531 2532 if (start == end) 2533 return (KERN_SUCCESS); 2534 prot = 0; 2535 if (flags & VM_MAP_WIRE_WRITE) 2536 prot |= VM_PROT_WRITE; 2537 user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 2538 vm_map_lock(map); 2539 VM_MAP_RANGE_CHECK(map, start, end); 2540 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2541 if (flags & VM_MAP_WIRE_HOLESOK) 2542 first_entry = first_entry->next; 2543 else { 2544 vm_map_unlock(map); 2545 return (KERN_INVALID_ADDRESS); 2546 } 2547 } 2548 last_timestamp = map->timestamp; 2549 entry = first_entry; 2550 while (entry != &map->header && entry->start < end) { 2551 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2552 /* 2553 * We have not yet clipped the entry. 2554 */ 2555 saved_start = (start >= entry->start) ? start : 2556 entry->start; 2557 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2558 if (vm_map_unlock_and_wait(map, 0)) { 2559 /* 2560 * Allow interruption of user wiring? 2561 */ 2562 } 2563 vm_map_lock(map); 2564 if (last_timestamp + 1 != map->timestamp) { 2565 /* 2566 * Look again for the entry because the map was 2567 * modified while it was unlocked. 2568 * Specifically, the entry may have been 2569 * clipped, merged, or deleted. 2570 */ 2571 if (!vm_map_lookup_entry(map, saved_start, 2572 &tmp_entry)) { 2573 if (flags & VM_MAP_WIRE_HOLESOK) 2574 tmp_entry = tmp_entry->next; 2575 else { 2576 if (saved_start == start) { 2577 /* 2578 * first_entry has been deleted. 2579 */ 2580 vm_map_unlock(map); 2581 return (KERN_INVALID_ADDRESS); 2582 } 2583 end = saved_start; 2584 rv = KERN_INVALID_ADDRESS; 2585 goto done; 2586 } 2587 } 2588 if (entry == first_entry) 2589 first_entry = tmp_entry; 2590 else 2591 first_entry = NULL; 2592 entry = tmp_entry; 2593 } 2594 last_timestamp = map->timestamp; 2595 continue; 2596 } 2597 vm_map_clip_start(map, entry, start); 2598 vm_map_clip_end(map, entry, end); 2599 /* 2600 * Mark the entry in case the map lock is released. (See 2601 * above.) 2602 */ 2603 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 2604 entry->wiring_thread == NULL, 2605 ("owned map entry %p", entry)); 2606 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 2607 entry->wiring_thread = curthread; 2608 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 2609 || (entry->protection & prot) != prot) { 2610 entry->eflags |= MAP_ENTRY_WIRE_SKIPPED; 2611 if ((flags & VM_MAP_WIRE_HOLESOK) == 0) { 2612 end = entry->end; 2613 rv = KERN_INVALID_ADDRESS; 2614 goto done; 2615 } 2616 goto next_entry; 2617 } 2618 if (entry->wired_count == 0) { 2619 entry->wired_count++; 2620 saved_start = entry->start; 2621 saved_end = entry->end; 2622 2623 /* 2624 * Release the map lock, relying on the in-transition 2625 * mark. Mark the map busy for fork. 2626 */ 2627 vm_map_busy(map); 2628 vm_map_unlock(map); 2629 2630 faddr = saved_start; 2631 do { 2632 /* 2633 * Simulate a fault to get the page and enter 2634 * it into the physical map. 2635 */ 2636 if ((rv = vm_fault(map, faddr, VM_PROT_NONE, 2637 VM_FAULT_WIRE)) != KERN_SUCCESS) 2638 break; 2639 } while ((faddr += PAGE_SIZE) < saved_end); 2640 vm_map_lock(map); 2641 vm_map_unbusy(map); 2642 if (last_timestamp + 1 != map->timestamp) { 2643 /* 2644 * Look again for the entry because the map was 2645 * modified while it was unlocked. The entry 2646 * may have been clipped, but NOT merged or 2647 * deleted. 2648 */ 2649 result = vm_map_lookup_entry(map, saved_start, 2650 &tmp_entry); 2651 KASSERT(result, ("vm_map_wire: lookup failed")); 2652 if (entry == first_entry) 2653 first_entry = tmp_entry; 2654 else 2655 first_entry = NULL; 2656 entry = tmp_entry; 2657 while (entry->end < saved_end) { 2658 /* 2659 * In case of failure, handle entries 2660 * that were not fully wired here; 2661 * fully wired entries are handled 2662 * later. 2663 */ 2664 if (rv != KERN_SUCCESS && 2665 faddr < entry->end) 2666 vm_map_wire_entry_failure(map, 2667 entry, faddr); 2668 entry = entry->next; 2669 } 2670 } 2671 last_timestamp = map->timestamp; 2672 if (rv != KERN_SUCCESS) { 2673 vm_map_wire_entry_failure(map, entry, faddr); 2674 end = entry->end; 2675 goto done; 2676 } 2677 } else if (!user_wire || 2678 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 2679 entry->wired_count++; 2680 } 2681 /* 2682 * Check the map for holes in the specified region. 2683 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 2684 */ 2685 next_entry: 2686 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) && 2687 (entry->end < end && (entry->next == &map->header || 2688 entry->next->start > entry->end))) { 2689 end = entry->end; 2690 rv = KERN_INVALID_ADDRESS; 2691 goto done; 2692 } 2693 entry = entry->next; 2694 } 2695 rv = KERN_SUCCESS; 2696 done: 2697 need_wakeup = FALSE; 2698 if (first_entry == NULL) { 2699 result = vm_map_lookup_entry(map, start, &first_entry); 2700 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 2701 first_entry = first_entry->next; 2702 else 2703 KASSERT(result, ("vm_map_wire: lookup failed")); 2704 } 2705 for (entry = first_entry; entry != &map->header && entry->start < end; 2706 entry = entry->next) { 2707 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) 2708 goto next_entry_done; 2709 2710 /* 2711 * If VM_MAP_WIRE_HOLESOK was specified, an empty 2712 * space in the unwired region could have been mapped 2713 * while the map lock was dropped for faulting in the 2714 * pages or draining MAP_ENTRY_IN_TRANSITION. 2715 * Moreover, another thread could be simultaneously 2716 * wiring this new mapping entry. Detect these cases 2717 * and skip any entries marked as in transition by us. 2718 */ 2719 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 2720 entry->wiring_thread != curthread) { 2721 KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0, 2722 ("vm_map_wire: !HOLESOK and new/changed entry")); 2723 continue; 2724 } 2725 2726 if (rv == KERN_SUCCESS) { 2727 if (user_wire) 2728 entry->eflags |= MAP_ENTRY_USER_WIRED; 2729 } else if (entry->wired_count == -1) { 2730 /* 2731 * Wiring failed on this entry. Thus, unwiring is 2732 * unnecessary. 2733 */ 2734 entry->wired_count = 0; 2735 } else if (!user_wire || 2736 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 2737 /* 2738 * Undo the wiring. Wiring succeeded on this entry 2739 * but failed on a later entry. 2740 */ 2741 if (entry->wired_count == 1) 2742 vm_map_entry_unwire(map, entry); 2743 else 2744 entry->wired_count--; 2745 } 2746 next_entry_done: 2747 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 2748 ("vm_map_wire: in-transition flag missing %p", entry)); 2749 KASSERT(entry->wiring_thread == curthread, 2750 ("vm_map_wire: alien wire %p", entry)); 2751 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION | 2752 MAP_ENTRY_WIRE_SKIPPED); 2753 entry->wiring_thread = NULL; 2754 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 2755 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 2756 need_wakeup = TRUE; 2757 } 2758 vm_map_simplify_entry(map, entry); 2759 } 2760 vm_map_unlock(map); 2761 if (need_wakeup) 2762 vm_map_wakeup(map); 2763 return (rv); 2764 } 2765 2766 /* 2767 * vm_map_sync 2768 * 2769 * Push any dirty cached pages in the address range to their pager. 2770 * If syncio is TRUE, dirty pages are written synchronously. 2771 * If invalidate is TRUE, any cached pages are freed as well. 2772 * 2773 * If the size of the region from start to end is zero, we are 2774 * supposed to flush all modified pages within the region containing 2775 * start. Unfortunately, a region can be split or coalesced with 2776 * neighboring regions, making it difficult to determine what the 2777 * original region was. Therefore, we approximate this requirement by 2778 * flushing the current region containing start. 2779 * 2780 * Returns an error if any part of the specified range is not mapped. 2781 */ 2782 int 2783 vm_map_sync( 2784 vm_map_t map, 2785 vm_offset_t start, 2786 vm_offset_t end, 2787 boolean_t syncio, 2788 boolean_t invalidate) 2789 { 2790 vm_map_entry_t current; 2791 vm_map_entry_t entry; 2792 vm_size_t size; 2793 vm_object_t object; 2794 vm_ooffset_t offset; 2795 unsigned int last_timestamp; 2796 boolean_t failed; 2797 2798 vm_map_lock_read(map); 2799 VM_MAP_RANGE_CHECK(map, start, end); 2800 if (!vm_map_lookup_entry(map, start, &entry)) { 2801 vm_map_unlock_read(map); 2802 return (KERN_INVALID_ADDRESS); 2803 } else if (start == end) { 2804 start = entry->start; 2805 end = entry->end; 2806 } 2807 /* 2808 * Make a first pass to check for user-wired memory and holes. 2809 */ 2810 for (current = entry; current != &map->header && current->start < end; 2811 current = current->next) { 2812 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) { 2813 vm_map_unlock_read(map); 2814 return (KERN_INVALID_ARGUMENT); 2815 } 2816 if (end > current->end && 2817 (current->next == &map->header || 2818 current->end != current->next->start)) { 2819 vm_map_unlock_read(map); 2820 return (KERN_INVALID_ADDRESS); 2821 } 2822 } 2823 2824 if (invalidate) 2825 pmap_remove(map->pmap, start, end); 2826 failed = FALSE; 2827 2828 /* 2829 * Make a second pass, cleaning/uncaching pages from the indicated 2830 * objects as we go. 2831 */ 2832 for (current = entry; current != &map->header && current->start < end;) { 2833 offset = current->offset + (start - current->start); 2834 size = (end <= current->end ? end : current->end) - start; 2835 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 2836 vm_map_t smap; 2837 vm_map_entry_t tentry; 2838 vm_size_t tsize; 2839 2840 smap = current->object.sub_map; 2841 vm_map_lock_read(smap); 2842 (void) vm_map_lookup_entry(smap, offset, &tentry); 2843 tsize = tentry->end - offset; 2844 if (tsize < size) 2845 size = tsize; 2846 object = tentry->object.vm_object; 2847 offset = tentry->offset + (offset - tentry->start); 2848 vm_map_unlock_read(smap); 2849 } else { 2850 object = current->object.vm_object; 2851 } 2852 vm_object_reference(object); 2853 last_timestamp = map->timestamp; 2854 vm_map_unlock_read(map); 2855 if (!vm_object_sync(object, offset, size, syncio, invalidate)) 2856 failed = TRUE; 2857 start += size; 2858 vm_object_deallocate(object); 2859 vm_map_lock_read(map); 2860 if (last_timestamp == map->timestamp || 2861 !vm_map_lookup_entry(map, start, ¤t)) 2862 current = current->next; 2863 } 2864 2865 vm_map_unlock_read(map); 2866 return (failed ? KERN_FAILURE : KERN_SUCCESS); 2867 } 2868 2869 /* 2870 * vm_map_entry_unwire: [ internal use only ] 2871 * 2872 * Make the region specified by this entry pageable. 2873 * 2874 * The map in question should be locked. 2875 * [This is the reason for this routine's existence.] 2876 */ 2877 static void 2878 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 2879 { 2880 2881 VM_MAP_ASSERT_LOCKED(map); 2882 KASSERT(entry->wired_count > 0, 2883 ("vm_map_entry_unwire: entry %p isn't wired", entry)); 2884 pmap_unwire(map->pmap, entry->start, entry->end); 2885 vm_object_unwire(entry->object.vm_object, entry->offset, entry->end - 2886 entry->start, PQ_ACTIVE); 2887 entry->wired_count = 0; 2888 } 2889 2890 static void 2891 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map) 2892 { 2893 2894 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) 2895 vm_object_deallocate(entry->object.vm_object); 2896 uma_zfree(system_map ? kmapentzone : mapentzone, entry); 2897 } 2898 2899 /* 2900 * vm_map_entry_delete: [ internal use only ] 2901 * 2902 * Deallocate the given entry from the target map. 2903 */ 2904 static void 2905 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry) 2906 { 2907 vm_object_t object; 2908 vm_pindex_t offidxstart, offidxend, count, size1; 2909 vm_ooffset_t size; 2910 2911 vm_map_entry_unlink(map, entry); 2912 object = entry->object.vm_object; 2913 size = entry->end - entry->start; 2914 map->size -= size; 2915 2916 if (entry->cred != NULL) { 2917 swap_release_by_cred(size, entry->cred); 2918 crfree(entry->cred); 2919 } 2920 2921 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 && 2922 (object != NULL)) { 2923 KASSERT(entry->cred == NULL || object->cred == NULL || 2924 (entry->eflags & MAP_ENTRY_NEEDS_COPY), 2925 ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry)); 2926 count = OFF_TO_IDX(size); 2927 offidxstart = OFF_TO_IDX(entry->offset); 2928 offidxend = offidxstart + count; 2929 VM_OBJECT_WLOCK(object); 2930 if (object->ref_count != 1 && 2931 ((object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING || 2932 object == kernel_object || object == kmem_object)) { 2933 vm_object_collapse(object); 2934 2935 /* 2936 * The option OBJPR_NOTMAPPED can be passed here 2937 * because vm_map_delete() already performed 2938 * pmap_remove() on the only mapping to this range 2939 * of pages. 2940 */ 2941 vm_object_page_remove(object, offidxstart, offidxend, 2942 OBJPR_NOTMAPPED); 2943 if (object->type == OBJT_SWAP) 2944 swap_pager_freespace(object, offidxstart, count); 2945 if (offidxend >= object->size && 2946 offidxstart < object->size) { 2947 size1 = object->size; 2948 object->size = offidxstart; 2949 if (object->cred != NULL) { 2950 size1 -= object->size; 2951 KASSERT(object->charge >= ptoa(size1), 2952 ("vm_map_entry_delete: object->charge < 0")); 2953 swap_release_by_cred(ptoa(size1), object->cred); 2954 object->charge -= ptoa(size1); 2955 } 2956 } 2957 } 2958 VM_OBJECT_WUNLOCK(object); 2959 } else 2960 entry->object.vm_object = NULL; 2961 if (map->system_map) 2962 vm_map_entry_deallocate(entry, TRUE); 2963 else { 2964 entry->next = curthread->td_map_def_user; 2965 curthread->td_map_def_user = entry; 2966 } 2967 } 2968 2969 /* 2970 * vm_map_delete: [ internal use only ] 2971 * 2972 * Deallocates the given address range from the target 2973 * map. 2974 */ 2975 int 2976 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end) 2977 { 2978 vm_map_entry_t entry; 2979 vm_map_entry_t first_entry; 2980 2981 VM_MAP_ASSERT_LOCKED(map); 2982 if (start == end) 2983 return (KERN_SUCCESS); 2984 2985 /* 2986 * Find the start of the region, and clip it 2987 */ 2988 if (!vm_map_lookup_entry(map, start, &first_entry)) 2989 entry = first_entry->next; 2990 else { 2991 entry = first_entry; 2992 vm_map_clip_start(map, entry, start); 2993 } 2994 2995 /* 2996 * Step through all entries in this region 2997 */ 2998 while ((entry != &map->header) && (entry->start < end)) { 2999 vm_map_entry_t next; 3000 3001 /* 3002 * Wait for wiring or unwiring of an entry to complete. 3003 * Also wait for any system wirings to disappear on 3004 * user maps. 3005 */ 3006 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 || 3007 (vm_map_pmap(map) != kernel_pmap && 3008 vm_map_entry_system_wired_count(entry) != 0)) { 3009 unsigned int last_timestamp; 3010 vm_offset_t saved_start; 3011 vm_map_entry_t tmp_entry; 3012 3013 saved_start = entry->start; 3014 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 3015 last_timestamp = map->timestamp; 3016 (void) vm_map_unlock_and_wait(map, 0); 3017 vm_map_lock(map); 3018 if (last_timestamp + 1 != map->timestamp) { 3019 /* 3020 * Look again for the entry because the map was 3021 * modified while it was unlocked. 3022 * Specifically, the entry may have been 3023 * clipped, merged, or deleted. 3024 */ 3025 if (!vm_map_lookup_entry(map, saved_start, 3026 &tmp_entry)) 3027 entry = tmp_entry->next; 3028 else { 3029 entry = tmp_entry; 3030 vm_map_clip_start(map, entry, 3031 saved_start); 3032 } 3033 } 3034 continue; 3035 } 3036 vm_map_clip_end(map, entry, end); 3037 3038 next = entry->next; 3039 3040 /* 3041 * Unwire before removing addresses from the pmap; otherwise, 3042 * unwiring will put the entries back in the pmap. 3043 */ 3044 if (entry->wired_count != 0) { 3045 vm_map_entry_unwire(map, entry); 3046 } 3047 3048 pmap_remove(map->pmap, entry->start, entry->end); 3049 3050 /* 3051 * Delete the entry only after removing all pmap 3052 * entries pointing to its pages. (Otherwise, its 3053 * page frames may be reallocated, and any modify bits 3054 * will be set in the wrong object!) 3055 */ 3056 vm_map_entry_delete(map, entry); 3057 entry = next; 3058 } 3059 return (KERN_SUCCESS); 3060 } 3061 3062 /* 3063 * vm_map_remove: 3064 * 3065 * Remove the given address range from the target map. 3066 * This is the exported form of vm_map_delete. 3067 */ 3068 int 3069 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 3070 { 3071 int result; 3072 3073 vm_map_lock(map); 3074 VM_MAP_RANGE_CHECK(map, start, end); 3075 result = vm_map_delete(map, start, end); 3076 vm_map_unlock(map); 3077 return (result); 3078 } 3079 3080 /* 3081 * vm_map_check_protection: 3082 * 3083 * Assert that the target map allows the specified privilege on the 3084 * entire address region given. The entire region must be allocated. 3085 * 3086 * WARNING! This code does not and should not check whether the 3087 * contents of the region is accessible. For example a smaller file 3088 * might be mapped into a larger address space. 3089 * 3090 * NOTE! This code is also called by munmap(). 3091 * 3092 * The map must be locked. A read lock is sufficient. 3093 */ 3094 boolean_t 3095 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 3096 vm_prot_t protection) 3097 { 3098 vm_map_entry_t entry; 3099 vm_map_entry_t tmp_entry; 3100 3101 if (!vm_map_lookup_entry(map, start, &tmp_entry)) 3102 return (FALSE); 3103 entry = tmp_entry; 3104 3105 while (start < end) { 3106 if (entry == &map->header) 3107 return (FALSE); 3108 /* 3109 * No holes allowed! 3110 */ 3111 if (start < entry->start) 3112 return (FALSE); 3113 /* 3114 * Check protection associated with entry. 3115 */ 3116 if ((entry->protection & protection) != protection) 3117 return (FALSE); 3118 /* go to next entry */ 3119 start = entry->end; 3120 entry = entry->next; 3121 } 3122 return (TRUE); 3123 } 3124 3125 /* 3126 * vm_map_copy_entry: 3127 * 3128 * Copies the contents of the source entry to the destination 3129 * entry. The entries *must* be aligned properly. 3130 */ 3131 static void 3132 vm_map_copy_entry( 3133 vm_map_t src_map, 3134 vm_map_t dst_map, 3135 vm_map_entry_t src_entry, 3136 vm_map_entry_t dst_entry, 3137 vm_ooffset_t *fork_charge) 3138 { 3139 vm_object_t src_object; 3140 vm_map_entry_t fake_entry; 3141 vm_offset_t size; 3142 struct ucred *cred; 3143 int charged; 3144 3145 VM_MAP_ASSERT_LOCKED(dst_map); 3146 3147 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP) 3148 return; 3149 3150 if (src_entry->wired_count == 0 || 3151 (src_entry->protection & VM_PROT_WRITE) == 0) { 3152 /* 3153 * If the source entry is marked needs_copy, it is already 3154 * write-protected. 3155 */ 3156 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 && 3157 (src_entry->protection & VM_PROT_WRITE) != 0) { 3158 pmap_protect(src_map->pmap, 3159 src_entry->start, 3160 src_entry->end, 3161 src_entry->protection & ~VM_PROT_WRITE); 3162 } 3163 3164 /* 3165 * Make a copy of the object. 3166 */ 3167 size = src_entry->end - src_entry->start; 3168 if ((src_object = src_entry->object.vm_object) != NULL) { 3169 VM_OBJECT_WLOCK(src_object); 3170 charged = ENTRY_CHARGED(src_entry); 3171 if ((src_object->handle == NULL) && 3172 (src_object->type == OBJT_DEFAULT || 3173 src_object->type == OBJT_SWAP)) { 3174 vm_object_collapse(src_object); 3175 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) { 3176 vm_object_split(src_entry); 3177 src_object = src_entry->object.vm_object; 3178 } 3179 } 3180 vm_object_reference_locked(src_object); 3181 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 3182 if (src_entry->cred != NULL && 3183 !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 3184 KASSERT(src_object->cred == NULL, 3185 ("OVERCOMMIT: vm_map_copy_entry: cred %p", 3186 src_object)); 3187 src_object->cred = src_entry->cred; 3188 src_object->charge = size; 3189 } 3190 VM_OBJECT_WUNLOCK(src_object); 3191 dst_entry->object.vm_object = src_object; 3192 if (charged) { 3193 cred = curthread->td_ucred; 3194 crhold(cred); 3195 dst_entry->cred = cred; 3196 *fork_charge += size; 3197 if (!(src_entry->eflags & 3198 MAP_ENTRY_NEEDS_COPY)) { 3199 crhold(cred); 3200 src_entry->cred = cred; 3201 *fork_charge += size; 3202 } 3203 } 3204 src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 3205 dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 3206 dst_entry->offset = src_entry->offset; 3207 if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) { 3208 /* 3209 * MAP_ENTRY_VN_WRITECNT cannot 3210 * indicate write reference from 3211 * src_entry, since the entry is 3212 * marked as needs copy. Allocate a 3213 * fake entry that is used to 3214 * decrement object->un_pager.vnp.writecount 3215 * at the appropriate time. Attach 3216 * fake_entry to the deferred list. 3217 */ 3218 fake_entry = vm_map_entry_create(dst_map); 3219 fake_entry->eflags = MAP_ENTRY_VN_WRITECNT; 3220 src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT; 3221 vm_object_reference(src_object); 3222 fake_entry->object.vm_object = src_object; 3223 fake_entry->start = src_entry->start; 3224 fake_entry->end = src_entry->end; 3225 fake_entry->next = curthread->td_map_def_user; 3226 curthread->td_map_def_user = fake_entry; 3227 } 3228 } else { 3229 dst_entry->object.vm_object = NULL; 3230 dst_entry->offset = 0; 3231 if (src_entry->cred != NULL) { 3232 dst_entry->cred = curthread->td_ucred; 3233 crhold(dst_entry->cred); 3234 *fork_charge += size; 3235 } 3236 } 3237 3238 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start, 3239 dst_entry->end - dst_entry->start, src_entry->start); 3240 } else { 3241 /* 3242 * We don't want to make writeable wired pages copy-on-write. 3243 * Immediately copy these pages into the new map by simulating 3244 * page faults. The new pages are pageable. 3245 */ 3246 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry, 3247 fork_charge); 3248 } 3249 } 3250 3251 /* 3252 * vmspace_map_entry_forked: 3253 * Update the newly-forked vmspace each time a map entry is inherited 3254 * or copied. The values for vm_dsize and vm_tsize are approximate 3255 * (and mostly-obsolete ideas in the face of mmap(2) et al.) 3256 */ 3257 static void 3258 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2, 3259 vm_map_entry_t entry) 3260 { 3261 vm_size_t entrysize; 3262 vm_offset_t newend; 3263 3264 entrysize = entry->end - entry->start; 3265 vm2->vm_map.size += entrysize; 3266 if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) { 3267 vm2->vm_ssize += btoc(entrysize); 3268 } else if (entry->start >= (vm_offset_t)vm1->vm_daddr && 3269 entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) { 3270 newend = MIN(entry->end, 3271 (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)); 3272 vm2->vm_dsize += btoc(newend - entry->start); 3273 } else if (entry->start >= (vm_offset_t)vm1->vm_taddr && 3274 entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) { 3275 newend = MIN(entry->end, 3276 (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)); 3277 vm2->vm_tsize += btoc(newend - entry->start); 3278 } 3279 } 3280 3281 /* 3282 * vmspace_fork: 3283 * Create a new process vmspace structure and vm_map 3284 * based on those of an existing process. The new map 3285 * is based on the old map, according to the inheritance 3286 * values on the regions in that map. 3287 * 3288 * XXX It might be worth coalescing the entries added to the new vmspace. 3289 * 3290 * The source map must not be locked. 3291 */ 3292 struct vmspace * 3293 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge) 3294 { 3295 struct vmspace *vm2; 3296 vm_map_t new_map, old_map; 3297 vm_map_entry_t new_entry, old_entry; 3298 vm_object_t object; 3299 int locked; 3300 3301 old_map = &vm1->vm_map; 3302 /* Copy immutable fields of vm1 to vm2. */ 3303 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset, NULL); 3304 if (vm2 == NULL) 3305 return (NULL); 3306 vm2->vm_taddr = vm1->vm_taddr; 3307 vm2->vm_daddr = vm1->vm_daddr; 3308 vm2->vm_maxsaddr = vm1->vm_maxsaddr; 3309 vm_map_lock(old_map); 3310 if (old_map->busy) 3311 vm_map_wait_busy(old_map); 3312 new_map = &vm2->vm_map; 3313 locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */ 3314 KASSERT(locked, ("vmspace_fork: lock failed")); 3315 3316 old_entry = old_map->header.next; 3317 3318 while (old_entry != &old_map->header) { 3319 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) 3320 panic("vm_map_fork: encountered a submap"); 3321 3322 switch (old_entry->inheritance) { 3323 case VM_INHERIT_NONE: 3324 break; 3325 3326 case VM_INHERIT_SHARE: 3327 /* 3328 * Clone the entry, creating the shared object if necessary. 3329 */ 3330 object = old_entry->object.vm_object; 3331 if (object == NULL) { 3332 object = vm_object_allocate(OBJT_DEFAULT, 3333 atop(old_entry->end - old_entry->start)); 3334 old_entry->object.vm_object = object; 3335 old_entry->offset = 0; 3336 if (old_entry->cred != NULL) { 3337 object->cred = old_entry->cred; 3338 object->charge = old_entry->end - 3339 old_entry->start; 3340 old_entry->cred = NULL; 3341 } 3342 } 3343 3344 /* 3345 * Add the reference before calling vm_object_shadow 3346 * to insure that a shadow object is created. 3347 */ 3348 vm_object_reference(object); 3349 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3350 vm_object_shadow(&old_entry->object.vm_object, 3351 &old_entry->offset, 3352 old_entry->end - old_entry->start); 3353 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 3354 /* Transfer the second reference too. */ 3355 vm_object_reference( 3356 old_entry->object.vm_object); 3357 3358 /* 3359 * As in vm_map_simplify_entry(), the 3360 * vnode lock will not be acquired in 3361 * this call to vm_object_deallocate(). 3362 */ 3363 vm_object_deallocate(object); 3364 object = old_entry->object.vm_object; 3365 } 3366 VM_OBJECT_WLOCK(object); 3367 vm_object_clear_flag(object, OBJ_ONEMAPPING); 3368 if (old_entry->cred != NULL) { 3369 KASSERT(object->cred == NULL, ("vmspace_fork both cred")); 3370 object->cred = old_entry->cred; 3371 object->charge = old_entry->end - old_entry->start; 3372 old_entry->cred = NULL; 3373 } 3374 3375 /* 3376 * Assert the correct state of the vnode 3377 * v_writecount while the object is locked, to 3378 * not relock it later for the assertion 3379 * correctness. 3380 */ 3381 if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT && 3382 object->type == OBJT_VNODE) { 3383 KASSERT(((struct vnode *)object->handle)-> 3384 v_writecount > 0, 3385 ("vmspace_fork: v_writecount %p", object)); 3386 KASSERT(object->un_pager.vnp.writemappings > 0, 3387 ("vmspace_fork: vnp.writecount %p", 3388 object)); 3389 } 3390 VM_OBJECT_WUNLOCK(object); 3391 3392 /* 3393 * Clone the entry, referencing the shared object. 3394 */ 3395 new_entry = vm_map_entry_create(new_map); 3396 *new_entry = *old_entry; 3397 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 3398 MAP_ENTRY_IN_TRANSITION); 3399 new_entry->wiring_thread = NULL; 3400 new_entry->wired_count = 0; 3401 if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) { 3402 vnode_pager_update_writecount(object, 3403 new_entry->start, new_entry->end); 3404 } 3405 3406 /* 3407 * Insert the entry into the new map -- we know we're 3408 * inserting at the end of the new map. 3409 */ 3410 vm_map_entry_link(new_map, new_map->header.prev, 3411 new_entry); 3412 vmspace_map_entry_forked(vm1, vm2, new_entry); 3413 3414 /* 3415 * Update the physical map 3416 */ 3417 pmap_copy(new_map->pmap, old_map->pmap, 3418 new_entry->start, 3419 (old_entry->end - old_entry->start), 3420 old_entry->start); 3421 break; 3422 3423 case VM_INHERIT_COPY: 3424 /* 3425 * Clone the entry and link into the map. 3426 */ 3427 new_entry = vm_map_entry_create(new_map); 3428 *new_entry = *old_entry; 3429 /* 3430 * Copied entry is COW over the old object. 3431 */ 3432 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 3433 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT); 3434 new_entry->wiring_thread = NULL; 3435 new_entry->wired_count = 0; 3436 new_entry->object.vm_object = NULL; 3437 new_entry->cred = NULL; 3438 vm_map_entry_link(new_map, new_map->header.prev, 3439 new_entry); 3440 vmspace_map_entry_forked(vm1, vm2, new_entry); 3441 vm_map_copy_entry(old_map, new_map, old_entry, 3442 new_entry, fork_charge); 3443 break; 3444 } 3445 old_entry = old_entry->next; 3446 } 3447 /* 3448 * Use inlined vm_map_unlock() to postpone handling the deferred 3449 * map entries, which cannot be done until both old_map and 3450 * new_map locks are released. 3451 */ 3452 sx_xunlock(&old_map->lock); 3453 sx_xunlock(&new_map->lock); 3454 vm_map_process_deferred(); 3455 3456 return (vm2); 3457 } 3458 3459 int 3460 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 3461 vm_prot_t prot, vm_prot_t max, int cow) 3462 { 3463 vm_size_t growsize, init_ssize; 3464 rlim_t lmemlim, vmemlim; 3465 int rv; 3466 3467 growsize = sgrowsiz; 3468 init_ssize = (max_ssize < growsize) ? max_ssize : growsize; 3469 vm_map_lock(map); 3470 lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK); 3471 vmemlim = lim_cur(curthread, RLIMIT_VMEM); 3472 if (!old_mlock && map->flags & MAP_WIREFUTURE) { 3473 if (ptoa(pmap_wired_count(map->pmap)) + init_ssize > lmemlim) { 3474 rv = KERN_NO_SPACE; 3475 goto out; 3476 } 3477 } 3478 /* If we would blow our VMEM resource limit, no go */ 3479 if (map->size + init_ssize > vmemlim) { 3480 rv = KERN_NO_SPACE; 3481 goto out; 3482 } 3483 rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot, 3484 max, cow); 3485 out: 3486 vm_map_unlock(map); 3487 return (rv); 3488 } 3489 3490 static int 3491 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 3492 vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow) 3493 { 3494 vm_map_entry_t new_entry, prev_entry; 3495 vm_offset_t bot, top; 3496 vm_size_t init_ssize; 3497 int orient, rv; 3498 3499 /* 3500 * The stack orientation is piggybacked with the cow argument. 3501 * Extract it into orient and mask the cow argument so that we 3502 * don't pass it around further. 3503 * NOTE: We explicitly allow bi-directional stacks. 3504 */ 3505 orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP); 3506 KASSERT(orient != 0, ("No stack grow direction")); 3507 3508 if (addrbos < vm_map_min(map) || 3509 addrbos > vm_map_max(map) || 3510 addrbos + max_ssize < addrbos) 3511 return (KERN_NO_SPACE); 3512 3513 init_ssize = (max_ssize < growsize) ? max_ssize : growsize; 3514 3515 /* If addr is already mapped, no go */ 3516 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) 3517 return (KERN_NO_SPACE); 3518 3519 /* 3520 * If we can't accommodate max_ssize in the current mapping, no go. 3521 * However, we need to be aware that subsequent user mappings might 3522 * map into the space we have reserved for stack, and currently this 3523 * space is not protected. 3524 * 3525 * Hopefully we will at least detect this condition when we try to 3526 * grow the stack. 3527 */ 3528 if ((prev_entry->next != &map->header) && 3529 (prev_entry->next->start < addrbos + max_ssize)) 3530 return (KERN_NO_SPACE); 3531 3532 /* 3533 * We initially map a stack of only init_ssize. We will grow as 3534 * needed later. Depending on the orientation of the stack (i.e. 3535 * the grow direction) we either map at the top of the range, the 3536 * bottom of the range or in the middle. 3537 * 3538 * Note: we would normally expect prot and max to be VM_PROT_ALL, 3539 * and cow to be 0. Possibly we should eliminate these as input 3540 * parameters, and just pass these values here in the insert call. 3541 */ 3542 if (orient == MAP_STACK_GROWS_DOWN) 3543 bot = addrbos + max_ssize - init_ssize; 3544 else if (orient == MAP_STACK_GROWS_UP) 3545 bot = addrbos; 3546 else 3547 bot = round_page(addrbos + max_ssize/2 - init_ssize/2); 3548 top = bot + init_ssize; 3549 rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow); 3550 3551 /* Now set the avail_ssize amount. */ 3552 if (rv == KERN_SUCCESS) { 3553 new_entry = prev_entry->next; 3554 if (new_entry->end != top || new_entry->start != bot) 3555 panic("Bad entry start/end for new stack entry"); 3556 3557 new_entry->avail_ssize = max_ssize - init_ssize; 3558 KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 || 3559 (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0, 3560 ("new entry lacks MAP_ENTRY_GROWS_DOWN")); 3561 KASSERT((orient & MAP_STACK_GROWS_UP) == 0 || 3562 (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0, 3563 ("new entry lacks MAP_ENTRY_GROWS_UP")); 3564 } 3565 3566 return (rv); 3567 } 3568 3569 static int stack_guard_page = 0; 3570 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN, 3571 &stack_guard_page, 0, 3572 "Insert stack guard page ahead of the growable segments."); 3573 3574 /* Attempts to grow a vm stack entry. Returns KERN_SUCCESS if the 3575 * desired address is already mapped, or if we successfully grow 3576 * the stack. Also returns KERN_SUCCESS if addr is outside the 3577 * stack range (this is strange, but preserves compatibility with 3578 * the grow function in vm_machdep.c). 3579 */ 3580 int 3581 vm_map_growstack(struct proc *p, vm_offset_t addr) 3582 { 3583 vm_map_entry_t next_entry, prev_entry; 3584 vm_map_entry_t new_entry, stack_entry; 3585 struct vmspace *vm = p->p_vmspace; 3586 vm_map_t map = &vm->vm_map; 3587 vm_offset_t end; 3588 vm_size_t growsize; 3589 size_t grow_amount, max_grow; 3590 rlim_t lmemlim, stacklim, vmemlim; 3591 int is_procstack, rv; 3592 struct ucred *cred; 3593 #ifdef notyet 3594 uint64_t limit; 3595 #endif 3596 #ifdef RACCT 3597 int error; 3598 #endif 3599 3600 lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK); 3601 stacklim = lim_cur(curthread, RLIMIT_STACK); 3602 vmemlim = lim_cur(curthread, RLIMIT_VMEM); 3603 Retry: 3604 3605 vm_map_lock_read(map); 3606 3607 /* If addr is already in the entry range, no need to grow.*/ 3608 if (vm_map_lookup_entry(map, addr, &prev_entry)) { 3609 vm_map_unlock_read(map); 3610 return (KERN_SUCCESS); 3611 } 3612 3613 next_entry = prev_entry->next; 3614 if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) { 3615 /* 3616 * This entry does not grow upwards. Since the address lies 3617 * beyond this entry, the next entry (if one exists) has to 3618 * be a downward growable entry. The entry list header is 3619 * never a growable entry, so it suffices to check the flags. 3620 */ 3621 if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) { 3622 vm_map_unlock_read(map); 3623 return (KERN_SUCCESS); 3624 } 3625 stack_entry = next_entry; 3626 } else { 3627 /* 3628 * This entry grows upward. If the next entry does not at 3629 * least grow downwards, this is the entry we need to grow. 3630 * otherwise we have two possible choices and we have to 3631 * select one. 3632 */ 3633 if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) { 3634 /* 3635 * We have two choices; grow the entry closest to 3636 * the address to minimize the amount of growth. 3637 */ 3638 if (addr - prev_entry->end <= next_entry->start - addr) 3639 stack_entry = prev_entry; 3640 else 3641 stack_entry = next_entry; 3642 } else 3643 stack_entry = prev_entry; 3644 } 3645 3646 if (stack_entry == next_entry) { 3647 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo")); 3648 KASSERT(addr < stack_entry->start, ("foo")); 3649 end = (prev_entry != &map->header) ? prev_entry->end : 3650 stack_entry->start - stack_entry->avail_ssize; 3651 grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE); 3652 max_grow = stack_entry->start - end; 3653 } else { 3654 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo")); 3655 KASSERT(addr >= stack_entry->end, ("foo")); 3656 end = (next_entry != &map->header) ? next_entry->start : 3657 stack_entry->end + stack_entry->avail_ssize; 3658 grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE); 3659 max_grow = end - stack_entry->end; 3660 } 3661 3662 if (grow_amount > stack_entry->avail_ssize) { 3663 vm_map_unlock_read(map); 3664 return (KERN_NO_SPACE); 3665 } 3666 3667 /* 3668 * If there is no longer enough space between the entries nogo, and 3669 * adjust the available space. Note: this should only happen if the 3670 * user has mapped into the stack area after the stack was created, 3671 * and is probably an error. 3672 * 3673 * This also effectively destroys any guard page the user might have 3674 * intended by limiting the stack size. 3675 */ 3676 if (grow_amount + (stack_guard_page ? PAGE_SIZE : 0) > max_grow) { 3677 if (vm_map_lock_upgrade(map)) 3678 goto Retry; 3679 3680 stack_entry->avail_ssize = max_grow; 3681 3682 vm_map_unlock(map); 3683 return (KERN_NO_SPACE); 3684 } 3685 3686 is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr && 3687 addr < (vm_offset_t)p->p_sysent->sv_usrstack) ? 1 : 0; 3688 3689 /* 3690 * If this is the main process stack, see if we're over the stack 3691 * limit. 3692 */ 3693 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 3694 vm_map_unlock_read(map); 3695 return (KERN_NO_SPACE); 3696 } 3697 #ifdef RACCT 3698 if (racct_enable) { 3699 PROC_LOCK(p); 3700 if (is_procstack && racct_set(p, RACCT_STACK, 3701 ctob(vm->vm_ssize) + grow_amount)) { 3702 PROC_UNLOCK(p); 3703 vm_map_unlock_read(map); 3704 return (KERN_NO_SPACE); 3705 } 3706 PROC_UNLOCK(p); 3707 } 3708 #endif 3709 3710 /* Round up the grow amount modulo sgrowsiz */ 3711 growsize = sgrowsiz; 3712 grow_amount = roundup(grow_amount, growsize); 3713 if (grow_amount > stack_entry->avail_ssize) 3714 grow_amount = stack_entry->avail_ssize; 3715 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 3716 grow_amount = trunc_page((vm_size_t)stacklim) - 3717 ctob(vm->vm_ssize); 3718 } 3719 #ifdef notyet 3720 PROC_LOCK(p); 3721 limit = racct_get_available(p, RACCT_STACK); 3722 PROC_UNLOCK(p); 3723 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit)) 3724 grow_amount = limit - ctob(vm->vm_ssize); 3725 #endif 3726 if (!old_mlock && map->flags & MAP_WIREFUTURE) { 3727 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) { 3728 vm_map_unlock_read(map); 3729 rv = KERN_NO_SPACE; 3730 goto out; 3731 } 3732 #ifdef RACCT 3733 if (racct_enable) { 3734 PROC_LOCK(p); 3735 if (racct_set(p, RACCT_MEMLOCK, 3736 ptoa(pmap_wired_count(map->pmap)) + grow_amount)) { 3737 PROC_UNLOCK(p); 3738 vm_map_unlock_read(map); 3739 rv = KERN_NO_SPACE; 3740 goto out; 3741 } 3742 PROC_UNLOCK(p); 3743 } 3744 #endif 3745 } 3746 /* If we would blow our VMEM resource limit, no go */ 3747 if (map->size + grow_amount > vmemlim) { 3748 vm_map_unlock_read(map); 3749 rv = KERN_NO_SPACE; 3750 goto out; 3751 } 3752 #ifdef RACCT 3753 if (racct_enable) { 3754 PROC_LOCK(p); 3755 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) { 3756 PROC_UNLOCK(p); 3757 vm_map_unlock_read(map); 3758 rv = KERN_NO_SPACE; 3759 goto out; 3760 } 3761 PROC_UNLOCK(p); 3762 } 3763 #endif 3764 3765 if (vm_map_lock_upgrade(map)) 3766 goto Retry; 3767 3768 if (stack_entry == next_entry) { 3769 /* 3770 * Growing downward. 3771 */ 3772 /* Get the preliminary new entry start value */ 3773 addr = stack_entry->start - grow_amount; 3774 3775 /* 3776 * If this puts us into the previous entry, cut back our 3777 * growth to the available space. Also, see the note above. 3778 */ 3779 if (addr < end) { 3780 stack_entry->avail_ssize = max_grow; 3781 addr = end; 3782 if (stack_guard_page) 3783 addr += PAGE_SIZE; 3784 } 3785 3786 rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start, 3787 next_entry->protection, next_entry->max_protection, 3788 MAP_STACK_GROWS_DOWN); 3789 3790 /* Adjust the available stack space by the amount we grew. */ 3791 if (rv == KERN_SUCCESS) { 3792 new_entry = prev_entry->next; 3793 KASSERT(new_entry == stack_entry->prev, ("foo")); 3794 KASSERT(new_entry->end == stack_entry->start, ("foo")); 3795 KASSERT(new_entry->start == addr, ("foo")); 3796 KASSERT((new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 3797 0, ("new entry lacks MAP_ENTRY_GROWS_DOWN")); 3798 grow_amount = new_entry->end - new_entry->start; 3799 new_entry->avail_ssize = stack_entry->avail_ssize - 3800 grow_amount; 3801 stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN; 3802 } 3803 } else { 3804 /* 3805 * Growing upward. 3806 */ 3807 addr = stack_entry->end + grow_amount; 3808 3809 /* 3810 * If this puts us into the next entry, cut back our growth 3811 * to the available space. Also, see the note above. 3812 */ 3813 if (addr > end) { 3814 stack_entry->avail_ssize = end - stack_entry->end; 3815 addr = end; 3816 if (stack_guard_page) 3817 addr -= PAGE_SIZE; 3818 } 3819 3820 grow_amount = addr - stack_entry->end; 3821 cred = stack_entry->cred; 3822 if (cred == NULL && stack_entry->object.vm_object != NULL) 3823 cred = stack_entry->object.vm_object->cred; 3824 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred)) 3825 rv = KERN_NO_SPACE; 3826 /* Grow the underlying object if applicable. */ 3827 else if (stack_entry->object.vm_object == NULL || 3828 vm_object_coalesce(stack_entry->object.vm_object, 3829 stack_entry->offset, 3830 (vm_size_t)(stack_entry->end - stack_entry->start), 3831 (vm_size_t)grow_amount, cred != NULL)) { 3832 map->size += (addr - stack_entry->end); 3833 /* Update the current entry. */ 3834 stack_entry->end = addr; 3835 stack_entry->avail_ssize -= grow_amount; 3836 vm_map_entry_resize_free(map, stack_entry); 3837 rv = KERN_SUCCESS; 3838 } else 3839 rv = KERN_FAILURE; 3840 } 3841 3842 if (rv == KERN_SUCCESS && is_procstack) 3843 vm->vm_ssize += btoc(grow_amount); 3844 3845 vm_map_unlock(map); 3846 3847 /* 3848 * Heed the MAP_WIREFUTURE flag if it was set for this process. 3849 */ 3850 if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) { 3851 vm_map_wire(map, 3852 (stack_entry == next_entry) ? addr : addr - grow_amount, 3853 (stack_entry == next_entry) ? stack_entry->start : addr, 3854 (p->p_flag & P_SYSTEM) 3855 ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES 3856 : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES); 3857 } 3858 3859 out: 3860 #ifdef RACCT 3861 if (racct_enable && rv != KERN_SUCCESS) { 3862 PROC_LOCK(p); 3863 error = racct_set(p, RACCT_VMEM, map->size); 3864 KASSERT(error == 0, ("decreasing RACCT_VMEM failed")); 3865 if (!old_mlock) { 3866 error = racct_set(p, RACCT_MEMLOCK, 3867 ptoa(pmap_wired_count(map->pmap))); 3868 KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed")); 3869 } 3870 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize)); 3871 KASSERT(error == 0, ("decreasing RACCT_STACK failed")); 3872 PROC_UNLOCK(p); 3873 } 3874 #endif 3875 3876 return (rv); 3877 } 3878 3879 /* 3880 * Unshare the specified VM space for exec. If other processes are 3881 * mapped to it, then create a new one. The new vmspace is null. 3882 */ 3883 int 3884 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser) 3885 { 3886 struct vmspace *oldvmspace = p->p_vmspace; 3887 struct vmspace *newvmspace; 3888 3889 KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0, 3890 ("vmspace_exec recursed")); 3891 newvmspace = vmspace_alloc(minuser, maxuser, NULL); 3892 if (newvmspace == NULL) 3893 return (ENOMEM); 3894 newvmspace->vm_swrss = oldvmspace->vm_swrss; 3895 /* 3896 * This code is written like this for prototype purposes. The 3897 * goal is to avoid running down the vmspace here, but let the 3898 * other process's that are still using the vmspace to finally 3899 * run it down. Even though there is little or no chance of blocking 3900 * here, it is a good idea to keep this form for future mods. 3901 */ 3902 PROC_VMSPACE_LOCK(p); 3903 p->p_vmspace = newvmspace; 3904 PROC_VMSPACE_UNLOCK(p); 3905 if (p == curthread->td_proc) 3906 pmap_activate(curthread); 3907 curthread->td_pflags |= TDP_EXECVMSPC; 3908 return (0); 3909 } 3910 3911 /* 3912 * Unshare the specified VM space for forcing COW. This 3913 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 3914 */ 3915 int 3916 vmspace_unshare(struct proc *p) 3917 { 3918 struct vmspace *oldvmspace = p->p_vmspace; 3919 struct vmspace *newvmspace; 3920 vm_ooffset_t fork_charge; 3921 3922 if (oldvmspace->vm_refcnt == 1) 3923 return (0); 3924 fork_charge = 0; 3925 newvmspace = vmspace_fork(oldvmspace, &fork_charge); 3926 if (newvmspace == NULL) 3927 return (ENOMEM); 3928 if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) { 3929 vmspace_free(newvmspace); 3930 return (ENOMEM); 3931 } 3932 PROC_VMSPACE_LOCK(p); 3933 p->p_vmspace = newvmspace; 3934 PROC_VMSPACE_UNLOCK(p); 3935 if (p == curthread->td_proc) 3936 pmap_activate(curthread); 3937 vmspace_free(oldvmspace); 3938 return (0); 3939 } 3940 3941 /* 3942 * vm_map_lookup: 3943 * 3944 * Finds the VM object, offset, and 3945 * protection for a given virtual address in the 3946 * specified map, assuming a page fault of the 3947 * type specified. 3948 * 3949 * Leaves the map in question locked for read; return 3950 * values are guaranteed until a vm_map_lookup_done 3951 * call is performed. Note that the map argument 3952 * is in/out; the returned map must be used in 3953 * the call to vm_map_lookup_done. 3954 * 3955 * A handle (out_entry) is returned for use in 3956 * vm_map_lookup_done, to make that fast. 3957 * 3958 * If a lookup is requested with "write protection" 3959 * specified, the map may be changed to perform virtual 3960 * copying operations, although the data referenced will 3961 * remain the same. 3962 */ 3963 int 3964 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 3965 vm_offset_t vaddr, 3966 vm_prot_t fault_typea, 3967 vm_map_entry_t *out_entry, /* OUT */ 3968 vm_object_t *object, /* OUT */ 3969 vm_pindex_t *pindex, /* OUT */ 3970 vm_prot_t *out_prot, /* OUT */ 3971 boolean_t *wired) /* OUT */ 3972 { 3973 vm_map_entry_t entry; 3974 vm_map_t map = *var_map; 3975 vm_prot_t prot; 3976 vm_prot_t fault_type = fault_typea; 3977 vm_object_t eobject; 3978 vm_size_t size; 3979 struct ucred *cred; 3980 3981 RetryLookup:; 3982 3983 vm_map_lock_read(map); 3984 3985 /* 3986 * Lookup the faulting address. 3987 */ 3988 if (!vm_map_lookup_entry(map, vaddr, out_entry)) { 3989 vm_map_unlock_read(map); 3990 return (KERN_INVALID_ADDRESS); 3991 } 3992 3993 entry = *out_entry; 3994 3995 /* 3996 * Handle submaps. 3997 */ 3998 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 3999 vm_map_t old_map = map; 4000 4001 *var_map = map = entry->object.sub_map; 4002 vm_map_unlock_read(old_map); 4003 goto RetryLookup; 4004 } 4005 4006 /* 4007 * Check whether this task is allowed to have this page. 4008 */ 4009 prot = entry->protection; 4010 fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE); 4011 if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) { 4012 vm_map_unlock_read(map); 4013 return (KERN_PROTECTION_FAILURE); 4014 } 4015 KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags & 4016 (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) != 4017 (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY), 4018 ("entry %p flags %x", entry, entry->eflags)); 4019 if ((fault_typea & VM_PROT_COPY) != 0 && 4020 (entry->max_protection & VM_PROT_WRITE) == 0 && 4021 (entry->eflags & MAP_ENTRY_COW) == 0) { 4022 vm_map_unlock_read(map); 4023 return (KERN_PROTECTION_FAILURE); 4024 } 4025 4026 /* 4027 * If this page is not pageable, we have to get it for all possible 4028 * accesses. 4029 */ 4030 *wired = (entry->wired_count != 0); 4031 if (*wired) 4032 fault_type = entry->protection; 4033 size = entry->end - entry->start; 4034 /* 4035 * If the entry was copy-on-write, we either ... 4036 */ 4037 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 4038 /* 4039 * If we want to write the page, we may as well handle that 4040 * now since we've got the map locked. 4041 * 4042 * If we don't need to write the page, we just demote the 4043 * permissions allowed. 4044 */ 4045 if ((fault_type & VM_PROT_WRITE) != 0 || 4046 (fault_typea & VM_PROT_COPY) != 0) { 4047 /* 4048 * Make a new object, and place it in the object 4049 * chain. Note that no new references have appeared 4050 * -- one just moved from the map to the new 4051 * object. 4052 */ 4053 if (vm_map_lock_upgrade(map)) 4054 goto RetryLookup; 4055 4056 if (entry->cred == NULL) { 4057 /* 4058 * The debugger owner is charged for 4059 * the memory. 4060 */ 4061 cred = curthread->td_ucred; 4062 crhold(cred); 4063 if (!swap_reserve_by_cred(size, cred)) { 4064 crfree(cred); 4065 vm_map_unlock(map); 4066 return (KERN_RESOURCE_SHORTAGE); 4067 } 4068 entry->cred = cred; 4069 } 4070 vm_object_shadow(&entry->object.vm_object, 4071 &entry->offset, size); 4072 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 4073 eobject = entry->object.vm_object; 4074 if (eobject->cred != NULL) { 4075 /* 4076 * The object was not shadowed. 4077 */ 4078 swap_release_by_cred(size, entry->cred); 4079 crfree(entry->cred); 4080 entry->cred = NULL; 4081 } else if (entry->cred != NULL) { 4082 VM_OBJECT_WLOCK(eobject); 4083 eobject->cred = entry->cred; 4084 eobject->charge = size; 4085 VM_OBJECT_WUNLOCK(eobject); 4086 entry->cred = NULL; 4087 } 4088 4089 vm_map_lock_downgrade(map); 4090 } else { 4091 /* 4092 * We're attempting to read a copy-on-write page -- 4093 * don't allow writes. 4094 */ 4095 prot &= ~VM_PROT_WRITE; 4096 } 4097 } 4098 4099 /* 4100 * Create an object if necessary. 4101 */ 4102 if (entry->object.vm_object == NULL && 4103 !map->system_map) { 4104 if (vm_map_lock_upgrade(map)) 4105 goto RetryLookup; 4106 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT, 4107 atop(size)); 4108 entry->offset = 0; 4109 if (entry->cred != NULL) { 4110 VM_OBJECT_WLOCK(entry->object.vm_object); 4111 entry->object.vm_object->cred = entry->cred; 4112 entry->object.vm_object->charge = size; 4113 VM_OBJECT_WUNLOCK(entry->object.vm_object); 4114 entry->cred = NULL; 4115 } 4116 vm_map_lock_downgrade(map); 4117 } 4118 4119 /* 4120 * Return the object/offset from this entry. If the entry was 4121 * copy-on-write or empty, it has been fixed up. 4122 */ 4123 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 4124 *object = entry->object.vm_object; 4125 4126 *out_prot = prot; 4127 return (KERN_SUCCESS); 4128 } 4129 4130 /* 4131 * vm_map_lookup_locked: 4132 * 4133 * Lookup the faulting address. A version of vm_map_lookup that returns 4134 * KERN_FAILURE instead of blocking on map lock or memory allocation. 4135 */ 4136 int 4137 vm_map_lookup_locked(vm_map_t *var_map, /* IN/OUT */ 4138 vm_offset_t vaddr, 4139 vm_prot_t fault_typea, 4140 vm_map_entry_t *out_entry, /* OUT */ 4141 vm_object_t *object, /* OUT */ 4142 vm_pindex_t *pindex, /* OUT */ 4143 vm_prot_t *out_prot, /* OUT */ 4144 boolean_t *wired) /* OUT */ 4145 { 4146 vm_map_entry_t entry; 4147 vm_map_t map = *var_map; 4148 vm_prot_t prot; 4149 vm_prot_t fault_type = fault_typea; 4150 4151 /* 4152 * Lookup the faulting address. 4153 */ 4154 if (!vm_map_lookup_entry(map, vaddr, out_entry)) 4155 return (KERN_INVALID_ADDRESS); 4156 4157 entry = *out_entry; 4158 4159 /* 4160 * Fail if the entry refers to a submap. 4161 */ 4162 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 4163 return (KERN_FAILURE); 4164 4165 /* 4166 * Check whether this task is allowed to have this page. 4167 */ 4168 prot = entry->protection; 4169 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; 4170 if ((fault_type & prot) != fault_type) 4171 return (KERN_PROTECTION_FAILURE); 4172 4173 /* 4174 * If this page is not pageable, we have to get it for all possible 4175 * accesses. 4176 */ 4177 *wired = (entry->wired_count != 0); 4178 if (*wired) 4179 fault_type = entry->protection; 4180 4181 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 4182 /* 4183 * Fail if the entry was copy-on-write for a write fault. 4184 */ 4185 if (fault_type & VM_PROT_WRITE) 4186 return (KERN_FAILURE); 4187 /* 4188 * We're attempting to read a copy-on-write page -- 4189 * don't allow writes. 4190 */ 4191 prot &= ~VM_PROT_WRITE; 4192 } 4193 4194 /* 4195 * Fail if an object should be created. 4196 */ 4197 if (entry->object.vm_object == NULL && !map->system_map) 4198 return (KERN_FAILURE); 4199 4200 /* 4201 * Return the object/offset from this entry. If the entry was 4202 * copy-on-write or empty, it has been fixed up. 4203 */ 4204 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 4205 *object = entry->object.vm_object; 4206 4207 *out_prot = prot; 4208 return (KERN_SUCCESS); 4209 } 4210 4211 /* 4212 * vm_map_lookup_done: 4213 * 4214 * Releases locks acquired by a vm_map_lookup 4215 * (according to the handle returned by that lookup). 4216 */ 4217 void 4218 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry) 4219 { 4220 /* 4221 * Unlock the main-level map 4222 */ 4223 vm_map_unlock_read(map); 4224 } 4225 4226 #include "opt_ddb.h" 4227 #ifdef DDB 4228 #include <sys/kernel.h> 4229 4230 #include <ddb/ddb.h> 4231 4232 static void 4233 vm_map_print(vm_map_t map) 4234 { 4235 vm_map_entry_t entry; 4236 4237 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 4238 (void *)map, 4239 (void *)map->pmap, map->nentries, map->timestamp); 4240 4241 db_indent += 2; 4242 for (entry = map->header.next; entry != &map->header; 4243 entry = entry->next) { 4244 db_iprintf("map entry %p: start=%p, end=%p\n", 4245 (void *)entry, (void *)entry->start, (void *)entry->end); 4246 { 4247 static char *inheritance_name[4] = 4248 {"share", "copy", "none", "donate_copy"}; 4249 4250 db_iprintf(" prot=%x/%x/%s", 4251 entry->protection, 4252 entry->max_protection, 4253 inheritance_name[(int)(unsigned char)entry->inheritance]); 4254 if (entry->wired_count != 0) 4255 db_printf(", wired"); 4256 } 4257 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 4258 db_printf(", share=%p, offset=0x%jx\n", 4259 (void *)entry->object.sub_map, 4260 (uintmax_t)entry->offset); 4261 if ((entry->prev == &map->header) || 4262 (entry->prev->object.sub_map != 4263 entry->object.sub_map)) { 4264 db_indent += 2; 4265 vm_map_print((vm_map_t)entry->object.sub_map); 4266 db_indent -= 2; 4267 } 4268 } else { 4269 if (entry->cred != NULL) 4270 db_printf(", ruid %d", entry->cred->cr_ruid); 4271 db_printf(", object=%p, offset=0x%jx", 4272 (void *)entry->object.vm_object, 4273 (uintmax_t)entry->offset); 4274 if (entry->object.vm_object && entry->object.vm_object->cred) 4275 db_printf(", obj ruid %d charge %jx", 4276 entry->object.vm_object->cred->cr_ruid, 4277 (uintmax_t)entry->object.vm_object->charge); 4278 if (entry->eflags & MAP_ENTRY_COW) 4279 db_printf(", copy (%s)", 4280 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 4281 db_printf("\n"); 4282 4283 if ((entry->prev == &map->header) || 4284 (entry->prev->object.vm_object != 4285 entry->object.vm_object)) { 4286 db_indent += 2; 4287 vm_object_print((db_expr_t)(intptr_t) 4288 entry->object.vm_object, 4289 0, 0, (char *)0); 4290 db_indent -= 2; 4291 } 4292 } 4293 } 4294 db_indent -= 2; 4295 } 4296 4297 DB_SHOW_COMMAND(map, map) 4298 { 4299 4300 if (!have_addr) { 4301 db_printf("usage: show map <addr>\n"); 4302 return; 4303 } 4304 vm_map_print((vm_map_t)addr); 4305 } 4306 4307 DB_SHOW_COMMAND(procvm, procvm) 4308 { 4309 struct proc *p; 4310 4311 if (have_addr) { 4312 p = db_lookup_proc(addr); 4313 } else { 4314 p = curproc; 4315 } 4316 4317 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 4318 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 4319 (void *)vmspace_pmap(p->p_vmspace)); 4320 4321 vm_map_print((vm_map_t)&p->p_vmspace->vm_map); 4322 } 4323 4324 #endif /* DDB */ 4325