xref: /freebsd/sys/vm/vm_map.c (revision 9cbf1de7e34a6fced041388fad5d9180cb7705fe)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60 
61 /*
62  *	Virtual memory mapping module.
63  */
64 
65 #include <sys/param.h>
66 #include <sys/systm.h>
67 #include <sys/elf.h>
68 #include <sys/kernel.h>
69 #include <sys/ktr.h>
70 #include <sys/lock.h>
71 #include <sys/mutex.h>
72 #include <sys/proc.h>
73 #include <sys/vmmeter.h>
74 #include <sys/mman.h>
75 #include <sys/vnode.h>
76 #include <sys/racct.h>
77 #include <sys/resourcevar.h>
78 #include <sys/rwlock.h>
79 #include <sys/file.h>
80 #include <sys/sysctl.h>
81 #include <sys/sysent.h>
82 #include <sys/shm.h>
83 
84 #include <vm/vm.h>
85 #include <vm/vm_param.h>
86 #include <vm/pmap.h>
87 #include <vm/vm_map.h>
88 #include <vm/vm_page.h>
89 #include <vm/vm_pageout.h>
90 #include <vm/vm_object.h>
91 #include <vm/vm_pager.h>
92 #include <vm/vm_kern.h>
93 #include <vm/vm_extern.h>
94 #include <vm/vnode_pager.h>
95 #include <vm/swap_pager.h>
96 #include <vm/uma.h>
97 
98 /*
99  *	Virtual memory maps provide for the mapping, protection,
100  *	and sharing of virtual memory objects.  In addition,
101  *	this module provides for an efficient virtual copy of
102  *	memory from one map to another.
103  *
104  *	Synchronization is required prior to most operations.
105  *
106  *	Maps consist of an ordered doubly-linked list of simple
107  *	entries; a self-adjusting binary search tree of these
108  *	entries is used to speed up lookups.
109  *
110  *	Since portions of maps are specified by start/end addresses,
111  *	which may not align with existing map entries, all
112  *	routines merely "clip" entries to these start/end values.
113  *	[That is, an entry is split into two, bordering at a
114  *	start or end value.]  Note that these clippings may not
115  *	always be necessary (as the two resulting entries are then
116  *	not changed); however, the clipping is done for convenience.
117  *
118  *	As mentioned above, virtual copy operations are performed
119  *	by copying VM object references from one map to
120  *	another, and then marking both regions as copy-on-write.
121  */
122 
123 static struct mtx map_sleep_mtx;
124 static uma_zone_t mapentzone;
125 static uma_zone_t kmapentzone;
126 static uma_zone_t vmspace_zone;
127 static int vmspace_zinit(void *mem, int size, int flags);
128 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
129     vm_offset_t max);
130 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
131 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
132 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
133 static int vm_map_growstack(vm_map_t map, vm_offset_t addr,
134     vm_map_entry_t gap_entry);
135 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
136     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
137 #ifdef INVARIANTS
138 static void vmspace_zdtor(void *mem, int size, void *arg);
139 #endif
140 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
141     vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
142     int cow);
143 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
144     vm_offset_t failed_addr);
145 
146 #define	CONTAINS_BITS(set, bits)	((~(set) & (bits)) == 0)
147 
148 #define	ENTRY_CHARGED(e) ((e)->cred != NULL || \
149     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
150      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
151 
152 /*
153  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
154  * stable.
155  */
156 #define PROC_VMSPACE_LOCK(p) do { } while (0)
157 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
158 
159 /*
160  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
161  *
162  *	Asserts that the starting and ending region
163  *	addresses fall within the valid range of the map.
164  */
165 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
166 		{					\
167 		if (start < vm_map_min(map))		\
168 			start = vm_map_min(map);	\
169 		if (end > vm_map_max(map))		\
170 			end = vm_map_max(map);		\
171 		if (start > end)			\
172 			start = end;			\
173 		}
174 
175 #ifndef UMA_USE_DMAP
176 
177 /*
178  * Allocate a new slab for kernel map entries.  The kernel map may be locked or
179  * unlocked, depending on whether the request is coming from the kernel map or a
180  * submap.  This function allocates a virtual address range directly from the
181  * kernel map instead of the kmem_* layer to avoid recursion on the kernel map
182  * lock and also to avoid triggering allocator recursion in the vmem boundary
183  * tag allocator.
184  */
185 static void *
186 kmapent_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
187     int wait)
188 {
189 	vm_offset_t addr;
190 	int error, locked;
191 
192 	*pflag = UMA_SLAB_PRIV;
193 
194 	if (!(locked = vm_map_locked(kernel_map)))
195 		vm_map_lock(kernel_map);
196 	addr = vm_map_findspace(kernel_map, vm_map_min(kernel_map), bytes);
197 	if (addr + bytes < addr || addr + bytes > vm_map_max(kernel_map))
198 		panic("%s: kernel map is exhausted", __func__);
199 	error = vm_map_insert(kernel_map, NULL, 0, addr, addr + bytes,
200 	    VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT);
201 	if (error != KERN_SUCCESS)
202 		panic("%s: vm_map_insert() failed: %d", __func__, error);
203 	if (!locked)
204 		vm_map_unlock(kernel_map);
205 	error = kmem_back_domain(domain, kernel_object, addr, bytes, M_NOWAIT |
206 	    M_USE_RESERVE | (wait & M_ZERO));
207 	if (error == KERN_SUCCESS) {
208 		return ((void *)addr);
209 	} else {
210 		if (!locked)
211 			vm_map_lock(kernel_map);
212 		vm_map_delete(kernel_map, addr, bytes);
213 		if (!locked)
214 			vm_map_unlock(kernel_map);
215 		return (NULL);
216 	}
217 }
218 
219 static void
220 kmapent_free(void *item, vm_size_t size, uint8_t pflag)
221 {
222 	vm_offset_t addr;
223 	int error __diagused;
224 
225 	if ((pflag & UMA_SLAB_PRIV) == 0)
226 		/* XXX leaked */
227 		return;
228 
229 	addr = (vm_offset_t)item;
230 	kmem_unback(kernel_object, addr, size);
231 	error = vm_map_remove(kernel_map, addr, addr + size);
232 	KASSERT(error == KERN_SUCCESS,
233 	    ("%s: vm_map_remove failed: %d", __func__, error));
234 }
235 
236 /*
237  * The worst-case upper bound on the number of kernel map entries that may be
238  * created before the zone must be replenished in _vm_map_unlock().
239  */
240 #define	KMAPENT_RESERVE		1
241 
242 #endif /* !UMD_MD_SMALL_ALLOC */
243 
244 /*
245  *	vm_map_startup:
246  *
247  *	Initialize the vm_map module.  Must be called before any other vm_map
248  *	routines.
249  *
250  *	User map and entry structures are allocated from the general purpose
251  *	memory pool.  Kernel maps are statically defined.  Kernel map entries
252  *	require special handling to avoid recursion; see the comments above
253  *	kmapent_alloc() and in vm_map_entry_create().
254  */
255 void
256 vm_map_startup(void)
257 {
258 	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
259 
260 	/*
261 	 * Disable the use of per-CPU buckets: map entry allocation is
262 	 * serialized by the kernel map lock.
263 	 */
264 	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
265 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
266 	    UMA_ZONE_VM | UMA_ZONE_NOBUCKET);
267 #ifndef UMA_USE_DMAP
268 	/* Reserve an extra map entry for use when replenishing the reserve. */
269 	uma_zone_reserve(kmapentzone, KMAPENT_RESERVE + 1);
270 	uma_prealloc(kmapentzone, KMAPENT_RESERVE + 1);
271 	uma_zone_set_allocf(kmapentzone, kmapent_alloc);
272 	uma_zone_set_freef(kmapentzone, kmapent_free);
273 #endif
274 
275 	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
276 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
277 	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
278 #ifdef INVARIANTS
279 	    vmspace_zdtor,
280 #else
281 	    NULL,
282 #endif
283 	    vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
284 }
285 
286 static int
287 vmspace_zinit(void *mem, int size, int flags)
288 {
289 	struct vmspace *vm;
290 	vm_map_t map;
291 
292 	vm = (struct vmspace *)mem;
293 	map = &vm->vm_map;
294 
295 	memset(map, 0, sizeof(*map));
296 	mtx_init(&map->system_mtx, "vm map (system)", NULL,
297 	    MTX_DEF | MTX_DUPOK);
298 	sx_init(&map->lock, "vm map (user)");
299 	PMAP_LOCK_INIT(vmspace_pmap(vm));
300 	return (0);
301 }
302 
303 #ifdef INVARIANTS
304 static void
305 vmspace_zdtor(void *mem, int size, void *arg)
306 {
307 	struct vmspace *vm;
308 
309 	vm = (struct vmspace *)mem;
310 	KASSERT(vm->vm_map.nentries == 0,
311 	    ("vmspace %p nentries == %d on free", vm, vm->vm_map.nentries));
312 	KASSERT(vm->vm_map.size == 0,
313 	    ("vmspace %p size == %ju on free", vm, (uintmax_t)vm->vm_map.size));
314 }
315 #endif	/* INVARIANTS */
316 
317 /*
318  * Allocate a vmspace structure, including a vm_map and pmap,
319  * and initialize those structures.  The refcnt is set to 1.
320  */
321 struct vmspace *
322 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
323 {
324 	struct vmspace *vm;
325 
326 	vm = uma_zalloc(vmspace_zone, M_WAITOK);
327 	KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
328 	if (!pinit(vmspace_pmap(vm))) {
329 		uma_zfree(vmspace_zone, vm);
330 		return (NULL);
331 	}
332 	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
333 	_vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
334 	refcount_init(&vm->vm_refcnt, 1);
335 	vm->vm_shm = NULL;
336 	vm->vm_swrss = 0;
337 	vm->vm_tsize = 0;
338 	vm->vm_dsize = 0;
339 	vm->vm_ssize = 0;
340 	vm->vm_taddr = 0;
341 	vm->vm_daddr = 0;
342 	vm->vm_maxsaddr = 0;
343 	return (vm);
344 }
345 
346 #ifdef RACCT
347 static void
348 vmspace_container_reset(struct proc *p)
349 {
350 
351 	PROC_LOCK(p);
352 	racct_set(p, RACCT_DATA, 0);
353 	racct_set(p, RACCT_STACK, 0);
354 	racct_set(p, RACCT_RSS, 0);
355 	racct_set(p, RACCT_MEMLOCK, 0);
356 	racct_set(p, RACCT_VMEM, 0);
357 	PROC_UNLOCK(p);
358 }
359 #endif
360 
361 static inline void
362 vmspace_dofree(struct vmspace *vm)
363 {
364 
365 	CTR1(KTR_VM, "vmspace_free: %p", vm);
366 
367 	/*
368 	 * Make sure any SysV shm is freed, it might not have been in
369 	 * exit1().
370 	 */
371 	shmexit(vm);
372 
373 	/*
374 	 * Lock the map, to wait out all other references to it.
375 	 * Delete all of the mappings and pages they hold, then call
376 	 * the pmap module to reclaim anything left.
377 	 */
378 	(void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map),
379 	    vm_map_max(&vm->vm_map));
380 
381 	pmap_release(vmspace_pmap(vm));
382 	vm->vm_map.pmap = NULL;
383 	uma_zfree(vmspace_zone, vm);
384 }
385 
386 void
387 vmspace_free(struct vmspace *vm)
388 {
389 
390 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
391 	    "vmspace_free() called");
392 
393 	if (refcount_release(&vm->vm_refcnt))
394 		vmspace_dofree(vm);
395 }
396 
397 void
398 vmspace_exitfree(struct proc *p)
399 {
400 	struct vmspace *vm;
401 
402 	PROC_VMSPACE_LOCK(p);
403 	vm = p->p_vmspace;
404 	p->p_vmspace = NULL;
405 	PROC_VMSPACE_UNLOCK(p);
406 	KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
407 	vmspace_free(vm);
408 }
409 
410 void
411 vmspace_exit(struct thread *td)
412 {
413 	struct vmspace *vm;
414 	struct proc *p;
415 	bool released;
416 
417 	p = td->td_proc;
418 	vm = p->p_vmspace;
419 
420 	/*
421 	 * Prepare to release the vmspace reference.  The thread that releases
422 	 * the last reference is responsible for tearing down the vmspace.
423 	 * However, threads not releasing the final reference must switch to the
424 	 * kernel's vmspace0 before the decrement so that the subsequent pmap
425 	 * deactivation does not modify a freed vmspace.
426 	 */
427 	refcount_acquire(&vmspace0.vm_refcnt);
428 	if (!(released = refcount_release_if_last(&vm->vm_refcnt))) {
429 		if (p->p_vmspace != &vmspace0) {
430 			PROC_VMSPACE_LOCK(p);
431 			p->p_vmspace = &vmspace0;
432 			PROC_VMSPACE_UNLOCK(p);
433 			pmap_activate(td);
434 		}
435 		released = refcount_release(&vm->vm_refcnt);
436 	}
437 	if (released) {
438 		/*
439 		 * pmap_remove_pages() expects the pmap to be active, so switch
440 		 * back first if necessary.
441 		 */
442 		if (p->p_vmspace != vm) {
443 			PROC_VMSPACE_LOCK(p);
444 			p->p_vmspace = vm;
445 			PROC_VMSPACE_UNLOCK(p);
446 			pmap_activate(td);
447 		}
448 		pmap_remove_pages(vmspace_pmap(vm));
449 		PROC_VMSPACE_LOCK(p);
450 		p->p_vmspace = &vmspace0;
451 		PROC_VMSPACE_UNLOCK(p);
452 		pmap_activate(td);
453 		vmspace_dofree(vm);
454 	}
455 #ifdef RACCT
456 	if (racct_enable)
457 		vmspace_container_reset(p);
458 #endif
459 }
460 
461 /* Acquire reference to vmspace owned by another process. */
462 
463 struct vmspace *
464 vmspace_acquire_ref(struct proc *p)
465 {
466 	struct vmspace *vm;
467 
468 	PROC_VMSPACE_LOCK(p);
469 	vm = p->p_vmspace;
470 	if (vm == NULL || !refcount_acquire_if_not_zero(&vm->vm_refcnt)) {
471 		PROC_VMSPACE_UNLOCK(p);
472 		return (NULL);
473 	}
474 	if (vm != p->p_vmspace) {
475 		PROC_VMSPACE_UNLOCK(p);
476 		vmspace_free(vm);
477 		return (NULL);
478 	}
479 	PROC_VMSPACE_UNLOCK(p);
480 	return (vm);
481 }
482 
483 /*
484  * Switch between vmspaces in an AIO kernel process.
485  *
486  * The new vmspace is either the vmspace of a user process obtained
487  * from an active AIO request or the initial vmspace of the AIO kernel
488  * process (when it is idling).  Because user processes will block to
489  * drain any active AIO requests before proceeding in exit() or
490  * execve(), the reference count for vmspaces from AIO requests can
491  * never be 0.  Similarly, AIO kernel processes hold an extra
492  * reference on their initial vmspace for the life of the process.  As
493  * a result, the 'newvm' vmspace always has a non-zero reference
494  * count.  This permits an additional reference on 'newvm' to be
495  * acquired via a simple atomic increment rather than the loop in
496  * vmspace_acquire_ref() above.
497  */
498 void
499 vmspace_switch_aio(struct vmspace *newvm)
500 {
501 	struct vmspace *oldvm;
502 
503 	/* XXX: Need some way to assert that this is an aio daemon. */
504 
505 	KASSERT(refcount_load(&newvm->vm_refcnt) > 0,
506 	    ("vmspace_switch_aio: newvm unreferenced"));
507 
508 	oldvm = curproc->p_vmspace;
509 	if (oldvm == newvm)
510 		return;
511 
512 	/*
513 	 * Point to the new address space and refer to it.
514 	 */
515 	curproc->p_vmspace = newvm;
516 	refcount_acquire(&newvm->vm_refcnt);
517 
518 	/* Activate the new mapping. */
519 	pmap_activate(curthread);
520 
521 	vmspace_free(oldvm);
522 }
523 
524 void
525 _vm_map_lock(vm_map_t map, const char *file, int line)
526 {
527 
528 	if (map->system_map)
529 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
530 	else
531 		sx_xlock_(&map->lock, file, line);
532 	map->timestamp++;
533 }
534 
535 void
536 vm_map_entry_set_vnode_text(vm_map_entry_t entry, bool add)
537 {
538 	vm_object_t object;
539 	struct vnode *vp;
540 	bool vp_held;
541 
542 	if ((entry->eflags & MAP_ENTRY_VN_EXEC) == 0)
543 		return;
544 	KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
545 	    ("Submap with execs"));
546 	object = entry->object.vm_object;
547 	KASSERT(object != NULL, ("No object for text, entry %p", entry));
548 	if ((object->flags & OBJ_ANON) != 0)
549 		object = object->handle;
550 	else
551 		KASSERT(object->backing_object == NULL,
552 		    ("non-anon object %p shadows", object));
553 	KASSERT(object != NULL, ("No content object for text, entry %p obj %p",
554 	    entry, entry->object.vm_object));
555 
556 	/*
557 	 * Mostly, we do not lock the backing object.  It is
558 	 * referenced by the entry we are processing, so it cannot go
559 	 * away.
560 	 */
561 	vm_pager_getvp(object, &vp, &vp_held);
562 	if (vp != NULL) {
563 		if (add) {
564 			VOP_SET_TEXT_CHECKED(vp);
565 		} else {
566 			vn_lock(vp, LK_SHARED | LK_RETRY);
567 			VOP_UNSET_TEXT_CHECKED(vp);
568 			VOP_UNLOCK(vp);
569 		}
570 		if (vp_held)
571 			vdrop(vp);
572 	}
573 }
574 
575 /*
576  * Use a different name for this vm_map_entry field when it's use
577  * is not consistent with its use as part of an ordered search tree.
578  */
579 #define defer_next right
580 
581 static void
582 vm_map_process_deferred(void)
583 {
584 	struct thread *td;
585 	vm_map_entry_t entry, next;
586 	vm_object_t object;
587 
588 	td = curthread;
589 	entry = td->td_map_def_user;
590 	td->td_map_def_user = NULL;
591 	while (entry != NULL) {
592 		next = entry->defer_next;
593 		MPASS((entry->eflags & (MAP_ENTRY_WRITECNT |
594 		    MAP_ENTRY_VN_EXEC)) != (MAP_ENTRY_WRITECNT |
595 		    MAP_ENTRY_VN_EXEC));
596 		if ((entry->eflags & MAP_ENTRY_WRITECNT) != 0) {
597 			/*
598 			 * Decrement the object's writemappings and
599 			 * possibly the vnode's v_writecount.
600 			 */
601 			KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
602 			    ("Submap with writecount"));
603 			object = entry->object.vm_object;
604 			KASSERT(object != NULL, ("No object for writecount"));
605 			vm_pager_release_writecount(object, entry->start,
606 			    entry->end);
607 		}
608 		vm_map_entry_set_vnode_text(entry, false);
609 		vm_map_entry_deallocate(entry, FALSE);
610 		entry = next;
611 	}
612 }
613 
614 #ifdef INVARIANTS
615 static void
616 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
617 {
618 
619 	if (map->system_map)
620 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
621 	else
622 		sx_assert_(&map->lock, SA_XLOCKED, file, line);
623 }
624 
625 #define	VM_MAP_ASSERT_LOCKED(map) \
626     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
627 
628 enum { VMMAP_CHECK_NONE, VMMAP_CHECK_UNLOCK, VMMAP_CHECK_ALL };
629 #ifdef DIAGNOSTIC
630 static int enable_vmmap_check = VMMAP_CHECK_UNLOCK;
631 #else
632 static int enable_vmmap_check = VMMAP_CHECK_NONE;
633 #endif
634 SYSCTL_INT(_debug, OID_AUTO, vmmap_check, CTLFLAG_RWTUN,
635     &enable_vmmap_check, 0, "Enable vm map consistency checking");
636 
637 static void _vm_map_assert_consistent(vm_map_t map, int check);
638 
639 #define VM_MAP_ASSERT_CONSISTENT(map) \
640     _vm_map_assert_consistent(map, VMMAP_CHECK_ALL)
641 #ifdef DIAGNOSTIC
642 #define VM_MAP_UNLOCK_CONSISTENT(map) do {				\
643 	if (map->nupdates > map->nentries) {				\
644 		_vm_map_assert_consistent(map, VMMAP_CHECK_UNLOCK);	\
645 		map->nupdates = 0;					\
646 	}								\
647 } while (0)
648 #else
649 #define VM_MAP_UNLOCK_CONSISTENT(map)
650 #endif
651 #else
652 #define	VM_MAP_ASSERT_LOCKED(map)
653 #define VM_MAP_ASSERT_CONSISTENT(map)
654 #define VM_MAP_UNLOCK_CONSISTENT(map)
655 #endif /* INVARIANTS */
656 
657 void
658 _vm_map_unlock(vm_map_t map, const char *file, int line)
659 {
660 
661 	VM_MAP_UNLOCK_CONSISTENT(map);
662 	if (map->system_map) {
663 #ifndef UMA_USE_DMAP
664 		if (map == kernel_map && (map->flags & MAP_REPLENISH) != 0) {
665 			uma_prealloc(kmapentzone, 1);
666 			map->flags &= ~MAP_REPLENISH;
667 		}
668 #endif
669 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
670 	} else {
671 		sx_xunlock_(&map->lock, file, line);
672 		vm_map_process_deferred();
673 	}
674 }
675 
676 void
677 _vm_map_lock_read(vm_map_t map, const char *file, int line)
678 {
679 
680 	if (map->system_map)
681 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
682 	else
683 		sx_slock_(&map->lock, file, line);
684 }
685 
686 void
687 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
688 {
689 
690 	if (map->system_map) {
691 		KASSERT((map->flags & MAP_REPLENISH) == 0,
692 		    ("%s: MAP_REPLENISH leaked", __func__));
693 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
694 	} else {
695 		sx_sunlock_(&map->lock, file, line);
696 		vm_map_process_deferred();
697 	}
698 }
699 
700 int
701 _vm_map_trylock(vm_map_t map, const char *file, int line)
702 {
703 	int error;
704 
705 	error = map->system_map ?
706 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
707 	    !sx_try_xlock_(&map->lock, file, line);
708 	if (error == 0)
709 		map->timestamp++;
710 	return (error == 0);
711 }
712 
713 int
714 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
715 {
716 	int error;
717 
718 	error = map->system_map ?
719 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
720 	    !sx_try_slock_(&map->lock, file, line);
721 	return (error == 0);
722 }
723 
724 /*
725  *	_vm_map_lock_upgrade:	[ internal use only ]
726  *
727  *	Tries to upgrade a read (shared) lock on the specified map to a write
728  *	(exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
729  *	non-zero value if the upgrade fails.  If the upgrade fails, the map is
730  *	returned without a read or write lock held.
731  *
732  *	Requires that the map be read locked.
733  */
734 int
735 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
736 {
737 	unsigned int last_timestamp;
738 
739 	if (map->system_map) {
740 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
741 	} else {
742 		if (!sx_try_upgrade_(&map->lock, file, line)) {
743 			last_timestamp = map->timestamp;
744 			sx_sunlock_(&map->lock, file, line);
745 			vm_map_process_deferred();
746 			/*
747 			 * If the map's timestamp does not change while the
748 			 * map is unlocked, then the upgrade succeeds.
749 			 */
750 			sx_xlock_(&map->lock, file, line);
751 			if (last_timestamp != map->timestamp) {
752 				sx_xunlock_(&map->lock, file, line);
753 				return (1);
754 			}
755 		}
756 	}
757 	map->timestamp++;
758 	return (0);
759 }
760 
761 void
762 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
763 {
764 
765 	if (map->system_map) {
766 		KASSERT((map->flags & MAP_REPLENISH) == 0,
767 		    ("%s: MAP_REPLENISH leaked", __func__));
768 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
769 	} else {
770 		VM_MAP_UNLOCK_CONSISTENT(map);
771 		sx_downgrade_(&map->lock, file, line);
772 	}
773 }
774 
775 /*
776  *	vm_map_locked:
777  *
778  *	Returns a non-zero value if the caller holds a write (exclusive) lock
779  *	on the specified map and the value "0" otherwise.
780  */
781 int
782 vm_map_locked(vm_map_t map)
783 {
784 
785 	if (map->system_map)
786 		return (mtx_owned(&map->system_mtx));
787 	else
788 		return (sx_xlocked(&map->lock));
789 }
790 
791 /*
792  *	_vm_map_unlock_and_wait:
793  *
794  *	Atomically releases the lock on the specified map and puts the calling
795  *	thread to sleep.  The calling thread will remain asleep until either
796  *	vm_map_wakeup() is performed on the map or the specified timeout is
797  *	exceeded.
798  *
799  *	WARNING!  This function does not perform deferred deallocations of
800  *	objects and map	entries.  Therefore, the calling thread is expected to
801  *	reacquire the map lock after reawakening and later perform an ordinary
802  *	unlock operation, such as vm_map_unlock(), before completing its
803  *	operation on the map.
804  */
805 int
806 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
807 {
808 
809 	VM_MAP_UNLOCK_CONSISTENT(map);
810 	mtx_lock(&map_sleep_mtx);
811 	if (map->system_map) {
812 		KASSERT((map->flags & MAP_REPLENISH) == 0,
813 		    ("%s: MAP_REPLENISH leaked", __func__));
814 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
815 	} else {
816 		sx_xunlock_(&map->lock, file, line);
817 	}
818 	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
819 	    timo));
820 }
821 
822 /*
823  *	vm_map_wakeup:
824  *
825  *	Awaken any threads that have slept on the map using
826  *	vm_map_unlock_and_wait().
827  */
828 void
829 vm_map_wakeup(vm_map_t map)
830 {
831 
832 	/*
833 	 * Acquire and release map_sleep_mtx to prevent a wakeup()
834 	 * from being performed (and lost) between the map unlock
835 	 * and the msleep() in _vm_map_unlock_and_wait().
836 	 */
837 	mtx_lock(&map_sleep_mtx);
838 	mtx_unlock(&map_sleep_mtx);
839 	wakeup(&map->root);
840 }
841 
842 void
843 vm_map_busy(vm_map_t map)
844 {
845 
846 	VM_MAP_ASSERT_LOCKED(map);
847 	map->busy++;
848 }
849 
850 void
851 vm_map_unbusy(vm_map_t map)
852 {
853 
854 	VM_MAP_ASSERT_LOCKED(map);
855 	KASSERT(map->busy, ("vm_map_unbusy: not busy"));
856 	if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
857 		vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
858 		wakeup(&map->busy);
859 	}
860 }
861 
862 void
863 vm_map_wait_busy(vm_map_t map)
864 {
865 
866 	VM_MAP_ASSERT_LOCKED(map);
867 	while (map->busy) {
868 		vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
869 		if (map->system_map)
870 			msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
871 		else
872 			sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
873 	}
874 	map->timestamp++;
875 }
876 
877 long
878 vmspace_resident_count(struct vmspace *vmspace)
879 {
880 	return pmap_resident_count(vmspace_pmap(vmspace));
881 }
882 
883 /*
884  * Initialize an existing vm_map structure
885  * such as that in the vmspace structure.
886  */
887 static void
888 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
889 {
890 
891 	map->header.eflags = MAP_ENTRY_HEADER;
892 	map->needs_wakeup = FALSE;
893 	map->system_map = 0;
894 	map->pmap = pmap;
895 	map->header.end = min;
896 	map->header.start = max;
897 	map->flags = 0;
898 	map->header.left = map->header.right = &map->header;
899 	map->root = NULL;
900 	map->timestamp = 0;
901 	map->busy = 0;
902 	map->anon_loc = 0;
903 #ifdef DIAGNOSTIC
904 	map->nupdates = 0;
905 #endif
906 }
907 
908 void
909 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
910 {
911 
912 	_vm_map_init(map, pmap, min, max);
913 	mtx_init(&map->system_mtx, "vm map (system)", NULL,
914 	    MTX_DEF | MTX_DUPOK);
915 	sx_init(&map->lock, "vm map (user)");
916 }
917 
918 /*
919  *	vm_map_entry_dispose:	[ internal use only ]
920  *
921  *	Inverse of vm_map_entry_create.
922  */
923 static void
924 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
925 {
926 	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
927 }
928 
929 /*
930  *	vm_map_entry_create:	[ internal use only ]
931  *
932  *	Allocates a VM map entry for insertion.
933  *	No entry fields are filled in.
934  */
935 static vm_map_entry_t
936 vm_map_entry_create(vm_map_t map)
937 {
938 	vm_map_entry_t new_entry;
939 
940 #ifndef UMA_USE_DMAP
941 	if (map == kernel_map) {
942 		VM_MAP_ASSERT_LOCKED(map);
943 
944 		/*
945 		 * A new slab of kernel map entries cannot be allocated at this
946 		 * point because the kernel map has not yet been updated to
947 		 * reflect the caller's request.  Therefore, we allocate a new
948 		 * map entry, dipping into the reserve if necessary, and set a
949 		 * flag indicating that the reserve must be replenished before
950 		 * the map is unlocked.
951 		 */
952 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT | M_NOVM);
953 		if (new_entry == NULL) {
954 			new_entry = uma_zalloc(kmapentzone,
955 			    M_NOWAIT | M_NOVM | M_USE_RESERVE);
956 			kernel_map->flags |= MAP_REPLENISH;
957 		}
958 	} else
959 #endif
960 	if (map->system_map) {
961 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
962 	} else {
963 		new_entry = uma_zalloc(mapentzone, M_WAITOK);
964 	}
965 	KASSERT(new_entry != NULL,
966 	    ("vm_map_entry_create: kernel resources exhausted"));
967 	return (new_entry);
968 }
969 
970 /*
971  *	vm_map_entry_set_behavior:
972  *
973  *	Set the expected access behavior, either normal, random, or
974  *	sequential.
975  */
976 static inline void
977 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
978 {
979 	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
980 	    (behavior & MAP_ENTRY_BEHAV_MASK);
981 }
982 
983 /*
984  *	vm_map_entry_max_free_{left,right}:
985  *
986  *	Compute the size of the largest free gap between two entries,
987  *	one the root of a tree and the other the ancestor of that root
988  *	that is the least or greatest ancestor found on the search path.
989  */
990 static inline vm_size_t
991 vm_map_entry_max_free_left(vm_map_entry_t root, vm_map_entry_t left_ancestor)
992 {
993 
994 	return (root->left != left_ancestor ?
995 	    root->left->max_free : root->start - left_ancestor->end);
996 }
997 
998 static inline vm_size_t
999 vm_map_entry_max_free_right(vm_map_entry_t root, vm_map_entry_t right_ancestor)
1000 {
1001 
1002 	return (root->right != right_ancestor ?
1003 	    root->right->max_free : right_ancestor->start - root->end);
1004 }
1005 
1006 /*
1007  *	vm_map_entry_{pred,succ}:
1008  *
1009  *	Find the {predecessor, successor} of the entry by taking one step
1010  *	in the appropriate direction and backtracking as much as necessary.
1011  *	vm_map_entry_succ is defined in vm_map.h.
1012  */
1013 static inline vm_map_entry_t
1014 vm_map_entry_pred(vm_map_entry_t entry)
1015 {
1016 	vm_map_entry_t prior;
1017 
1018 	prior = entry->left;
1019 	if (prior->right->start < entry->start) {
1020 		do
1021 			prior = prior->right;
1022 		while (prior->right != entry);
1023 	}
1024 	return (prior);
1025 }
1026 
1027 static inline vm_size_t
1028 vm_size_max(vm_size_t a, vm_size_t b)
1029 {
1030 
1031 	return (a > b ? a : b);
1032 }
1033 
1034 #define SPLAY_LEFT_STEP(root, y, llist, rlist, test) do {		\
1035 	vm_map_entry_t z;						\
1036 	vm_size_t max_free;						\
1037 									\
1038 	/*								\
1039 	 * Infer root->right->max_free == root->max_free when		\
1040 	 * y->max_free < root->max_free || root->max_free == 0.		\
1041 	 * Otherwise, look right to find it.				\
1042 	 */								\
1043 	y = root->left;							\
1044 	max_free = root->max_free;					\
1045 	KASSERT(max_free == vm_size_max(				\
1046 	    vm_map_entry_max_free_left(root, llist),			\
1047 	    vm_map_entry_max_free_right(root, rlist)),			\
1048 	    ("%s: max_free invariant fails", __func__));		\
1049 	if (max_free - 1 < vm_map_entry_max_free_left(root, llist))	\
1050 		max_free = vm_map_entry_max_free_right(root, rlist);	\
1051 	if (y != llist && (test)) {					\
1052 		/* Rotate right and make y root. */			\
1053 		z = y->right;						\
1054 		if (z != root) {					\
1055 			root->left = z;					\
1056 			y->right = root;				\
1057 			if (max_free < y->max_free)			\
1058 			    root->max_free = max_free =			\
1059 			    vm_size_max(max_free, z->max_free);		\
1060 		} else if (max_free < y->max_free)			\
1061 			root->max_free = max_free =			\
1062 			    vm_size_max(max_free, root->start - y->end);\
1063 		root = y;						\
1064 		y = root->left;						\
1065 	}								\
1066 	/* Copy right->max_free.  Put root on rlist. */			\
1067 	root->max_free = max_free;					\
1068 	KASSERT(max_free == vm_map_entry_max_free_right(root, rlist),	\
1069 	    ("%s: max_free not copied from right", __func__));		\
1070 	root->left = rlist;						\
1071 	rlist = root;							\
1072 	root = y != llist ? y : NULL;					\
1073 } while (0)
1074 
1075 #define SPLAY_RIGHT_STEP(root, y, llist, rlist, test) do {		\
1076 	vm_map_entry_t z;						\
1077 	vm_size_t max_free;						\
1078 									\
1079 	/*								\
1080 	 * Infer root->left->max_free == root->max_free when		\
1081 	 * y->max_free < root->max_free || root->max_free == 0.		\
1082 	 * Otherwise, look left to find it.				\
1083 	 */								\
1084 	y = root->right;						\
1085 	max_free = root->max_free;					\
1086 	KASSERT(max_free == vm_size_max(				\
1087 	    vm_map_entry_max_free_left(root, llist),			\
1088 	    vm_map_entry_max_free_right(root, rlist)),			\
1089 	    ("%s: max_free invariant fails", __func__));		\
1090 	if (max_free - 1 < vm_map_entry_max_free_right(root, rlist))	\
1091 		max_free = vm_map_entry_max_free_left(root, llist);	\
1092 	if (y != rlist && (test)) {					\
1093 		/* Rotate left and make y root. */			\
1094 		z = y->left;						\
1095 		if (z != root) {					\
1096 			root->right = z;				\
1097 			y->left = root;					\
1098 			if (max_free < y->max_free)			\
1099 			    root->max_free = max_free =			\
1100 			    vm_size_max(max_free, z->max_free);		\
1101 		} else if (max_free < y->max_free)			\
1102 			root->max_free = max_free =			\
1103 			    vm_size_max(max_free, y->start - root->end);\
1104 		root = y;						\
1105 		y = root->right;					\
1106 	}								\
1107 	/* Copy left->max_free.  Put root on llist. */			\
1108 	root->max_free = max_free;					\
1109 	KASSERT(max_free == vm_map_entry_max_free_left(root, llist),	\
1110 	    ("%s: max_free not copied from left", __func__));		\
1111 	root->right = llist;						\
1112 	llist = root;							\
1113 	root = y != rlist ? y : NULL;					\
1114 } while (0)
1115 
1116 /*
1117  * Walk down the tree until we find addr or a gap where addr would go, breaking
1118  * off left and right subtrees of nodes less than, or greater than addr.  Treat
1119  * subtrees with root->max_free < length as empty trees.  llist and rlist are
1120  * the two sides in reverse order (bottom-up), with llist linked by the right
1121  * pointer and rlist linked by the left pointer in the vm_map_entry, and both
1122  * lists terminated by &map->header.  This function, and the subsequent call to
1123  * vm_map_splay_merge_{left,right,pred,succ}, rely on the start and end address
1124  * values in &map->header.
1125  */
1126 static __always_inline vm_map_entry_t
1127 vm_map_splay_split(vm_map_t map, vm_offset_t addr, vm_size_t length,
1128     vm_map_entry_t *llist, vm_map_entry_t *rlist)
1129 {
1130 	vm_map_entry_t left, right, root, y;
1131 
1132 	left = right = &map->header;
1133 	root = map->root;
1134 	while (root != NULL && root->max_free >= length) {
1135 		KASSERT(left->end <= root->start &&
1136 		    root->end <= right->start,
1137 		    ("%s: root not within tree bounds", __func__));
1138 		if (addr < root->start) {
1139 			SPLAY_LEFT_STEP(root, y, left, right,
1140 			    y->max_free >= length && addr < y->start);
1141 		} else if (addr >= root->end) {
1142 			SPLAY_RIGHT_STEP(root, y, left, right,
1143 			    y->max_free >= length && addr >= y->end);
1144 		} else
1145 			break;
1146 	}
1147 	*llist = left;
1148 	*rlist = right;
1149 	return (root);
1150 }
1151 
1152 static __always_inline void
1153 vm_map_splay_findnext(vm_map_entry_t root, vm_map_entry_t *rlist)
1154 {
1155 	vm_map_entry_t hi, right, y;
1156 
1157 	right = *rlist;
1158 	hi = root->right == right ? NULL : root->right;
1159 	if (hi == NULL)
1160 		return;
1161 	do
1162 		SPLAY_LEFT_STEP(hi, y, root, right, true);
1163 	while (hi != NULL);
1164 	*rlist = right;
1165 }
1166 
1167 static __always_inline void
1168 vm_map_splay_findprev(vm_map_entry_t root, vm_map_entry_t *llist)
1169 {
1170 	vm_map_entry_t left, lo, y;
1171 
1172 	left = *llist;
1173 	lo = root->left == left ? NULL : root->left;
1174 	if (lo == NULL)
1175 		return;
1176 	do
1177 		SPLAY_RIGHT_STEP(lo, y, left, root, true);
1178 	while (lo != NULL);
1179 	*llist = left;
1180 }
1181 
1182 static inline void
1183 vm_map_entry_swap(vm_map_entry_t *a, vm_map_entry_t *b)
1184 {
1185 	vm_map_entry_t tmp;
1186 
1187 	tmp = *b;
1188 	*b = *a;
1189 	*a = tmp;
1190 }
1191 
1192 /*
1193  * Walk back up the two spines, flip the pointers and set max_free.  The
1194  * subtrees of the root go at the bottom of llist and rlist.
1195  */
1196 static vm_size_t
1197 vm_map_splay_merge_left_walk(vm_map_entry_t header, vm_map_entry_t root,
1198     vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t llist)
1199 {
1200 	do {
1201 		/*
1202 		 * The max_free values of the children of llist are in
1203 		 * llist->max_free and max_free.  Update with the
1204 		 * max value.
1205 		 */
1206 		llist->max_free = max_free =
1207 		    vm_size_max(llist->max_free, max_free);
1208 		vm_map_entry_swap(&llist->right, &tail);
1209 		vm_map_entry_swap(&tail, &llist);
1210 	} while (llist != header);
1211 	root->left = tail;
1212 	return (max_free);
1213 }
1214 
1215 /*
1216  * When llist is known to be the predecessor of root.
1217  */
1218 static inline vm_size_t
1219 vm_map_splay_merge_pred(vm_map_entry_t header, vm_map_entry_t root,
1220     vm_map_entry_t llist)
1221 {
1222 	vm_size_t max_free;
1223 
1224 	max_free = root->start - llist->end;
1225 	if (llist != header) {
1226 		max_free = vm_map_splay_merge_left_walk(header, root,
1227 		    root, max_free, llist);
1228 	} else {
1229 		root->left = header;
1230 		header->right = root;
1231 	}
1232 	return (max_free);
1233 }
1234 
1235 /*
1236  * When llist may or may not be the predecessor of root.
1237  */
1238 static inline vm_size_t
1239 vm_map_splay_merge_left(vm_map_entry_t header, vm_map_entry_t root,
1240     vm_map_entry_t llist)
1241 {
1242 	vm_size_t max_free;
1243 
1244 	max_free = vm_map_entry_max_free_left(root, llist);
1245 	if (llist != header) {
1246 		max_free = vm_map_splay_merge_left_walk(header, root,
1247 		    root->left == llist ? root : root->left,
1248 		    max_free, llist);
1249 	}
1250 	return (max_free);
1251 }
1252 
1253 static vm_size_t
1254 vm_map_splay_merge_right_walk(vm_map_entry_t header, vm_map_entry_t root,
1255     vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t rlist)
1256 {
1257 	do {
1258 		/*
1259 		 * The max_free values of the children of rlist are in
1260 		 * rlist->max_free and max_free.  Update with the
1261 		 * max value.
1262 		 */
1263 		rlist->max_free = max_free =
1264 		    vm_size_max(rlist->max_free, max_free);
1265 		vm_map_entry_swap(&rlist->left, &tail);
1266 		vm_map_entry_swap(&tail, &rlist);
1267 	} while (rlist != header);
1268 	root->right = tail;
1269 	return (max_free);
1270 }
1271 
1272 /*
1273  * When rlist is known to be the succecessor of root.
1274  */
1275 static inline vm_size_t
1276 vm_map_splay_merge_succ(vm_map_entry_t header, vm_map_entry_t root,
1277     vm_map_entry_t rlist)
1278 {
1279 	vm_size_t max_free;
1280 
1281 	max_free = rlist->start - root->end;
1282 	if (rlist != header) {
1283 		max_free = vm_map_splay_merge_right_walk(header, root,
1284 		    root, max_free, rlist);
1285 	} else {
1286 		root->right = header;
1287 		header->left = root;
1288 	}
1289 	return (max_free);
1290 }
1291 
1292 /*
1293  * When rlist may or may not be the succecessor of root.
1294  */
1295 static inline vm_size_t
1296 vm_map_splay_merge_right(vm_map_entry_t header, vm_map_entry_t root,
1297     vm_map_entry_t rlist)
1298 {
1299 	vm_size_t max_free;
1300 
1301 	max_free = vm_map_entry_max_free_right(root, rlist);
1302 	if (rlist != header) {
1303 		max_free = vm_map_splay_merge_right_walk(header, root,
1304 		    root->right == rlist ? root : root->right,
1305 		    max_free, rlist);
1306 	}
1307 	return (max_free);
1308 }
1309 
1310 /*
1311  *	vm_map_splay:
1312  *
1313  *	The Sleator and Tarjan top-down splay algorithm with the
1314  *	following variation.  Max_free must be computed bottom-up, so
1315  *	on the downward pass, maintain the left and right spines in
1316  *	reverse order.  Then, make a second pass up each side to fix
1317  *	the pointers and compute max_free.  The time bound is O(log n)
1318  *	amortized.
1319  *
1320  *	The tree is threaded, which means that there are no null pointers.
1321  *	When a node has no left child, its left pointer points to its
1322  *	predecessor, which the last ancestor on the search path from the root
1323  *	where the search branched right.  Likewise, when a node has no right
1324  *	child, its right pointer points to its successor.  The map header node
1325  *	is the predecessor of the first map entry, and the successor of the
1326  *	last.
1327  *
1328  *	The new root is the vm_map_entry containing "addr", or else an
1329  *	adjacent entry (lower if possible) if addr is not in the tree.
1330  *
1331  *	The map must be locked, and leaves it so.
1332  *
1333  *	Returns: the new root.
1334  */
1335 static vm_map_entry_t
1336 vm_map_splay(vm_map_t map, vm_offset_t addr)
1337 {
1338 	vm_map_entry_t header, llist, rlist, root;
1339 	vm_size_t max_free_left, max_free_right;
1340 
1341 	header = &map->header;
1342 	root = vm_map_splay_split(map, addr, 0, &llist, &rlist);
1343 	if (root != NULL) {
1344 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1345 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1346 	} else if (llist != header) {
1347 		/*
1348 		 * Recover the greatest node in the left
1349 		 * subtree and make it the root.
1350 		 */
1351 		root = llist;
1352 		llist = root->right;
1353 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1354 		max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1355 	} else if (rlist != header) {
1356 		/*
1357 		 * Recover the least node in the right
1358 		 * subtree and make it the root.
1359 		 */
1360 		root = rlist;
1361 		rlist = root->left;
1362 		max_free_left = vm_map_splay_merge_pred(header, root, llist);
1363 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1364 	} else {
1365 		/* There is no root. */
1366 		return (NULL);
1367 	}
1368 	root->max_free = vm_size_max(max_free_left, max_free_right);
1369 	map->root = root;
1370 	VM_MAP_ASSERT_CONSISTENT(map);
1371 	return (root);
1372 }
1373 
1374 /*
1375  *	vm_map_entry_{un,}link:
1376  *
1377  *	Insert/remove entries from maps.  On linking, if new entry clips
1378  *	existing entry, trim existing entry to avoid overlap, and manage
1379  *	offsets.  On unlinking, merge disappearing entry with neighbor, if
1380  *	called for, and manage offsets.  Callers should not modify fields in
1381  *	entries already mapped.
1382  */
1383 static void
1384 vm_map_entry_link(vm_map_t map, vm_map_entry_t entry)
1385 {
1386 	vm_map_entry_t header, llist, rlist, root;
1387 	vm_size_t max_free_left, max_free_right;
1388 
1389 	CTR3(KTR_VM,
1390 	    "vm_map_entry_link: map %p, nentries %d, entry %p", map,
1391 	    map->nentries, entry);
1392 	VM_MAP_ASSERT_LOCKED(map);
1393 	map->nentries++;
1394 	header = &map->header;
1395 	root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1396 	if (root == NULL) {
1397 		/*
1398 		 * The new entry does not overlap any existing entry in the
1399 		 * map, so it becomes the new root of the map tree.
1400 		 */
1401 		max_free_left = vm_map_splay_merge_pred(header, entry, llist);
1402 		max_free_right = vm_map_splay_merge_succ(header, entry, rlist);
1403 	} else if (entry->start == root->start) {
1404 		/*
1405 		 * The new entry is a clone of root, with only the end field
1406 		 * changed.  The root entry will be shrunk to abut the new
1407 		 * entry, and will be the right child of the new root entry in
1408 		 * the modified map.
1409 		 */
1410 		KASSERT(entry->end < root->end,
1411 		    ("%s: clip_start not within entry", __func__));
1412 		vm_map_splay_findprev(root, &llist);
1413 		if ((root->eflags & (MAP_ENTRY_STACK_GAP_DN |
1414 		    MAP_ENTRY_STACK_GAP_UP)) == 0)
1415 			root->offset += entry->end - root->start;
1416 		root->start = entry->end;
1417 		max_free_left = vm_map_splay_merge_pred(header, entry, llist);
1418 		max_free_right = root->max_free = vm_size_max(
1419 		    vm_map_splay_merge_pred(entry, root, entry),
1420 		    vm_map_splay_merge_right(header, root, rlist));
1421 	} else {
1422 		/*
1423 		 * The new entry is a clone of root, with only the start field
1424 		 * changed.  The root entry will be shrunk to abut the new
1425 		 * entry, and will be the left child of the new root entry in
1426 		 * the modified map.
1427 		 */
1428 		KASSERT(entry->end == root->end,
1429 		    ("%s: clip_start not within entry", __func__));
1430 		vm_map_splay_findnext(root, &rlist);
1431 		if ((entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
1432 		    MAP_ENTRY_STACK_GAP_UP)) == 0)
1433 			entry->offset += entry->start - root->start;
1434 		root->end = entry->start;
1435 		max_free_left = root->max_free = vm_size_max(
1436 		    vm_map_splay_merge_left(header, root, llist),
1437 		    vm_map_splay_merge_succ(entry, root, entry));
1438 		max_free_right = vm_map_splay_merge_succ(header, entry, rlist);
1439 	}
1440 	entry->max_free = vm_size_max(max_free_left, max_free_right);
1441 	map->root = entry;
1442 	VM_MAP_ASSERT_CONSISTENT(map);
1443 }
1444 
1445 enum unlink_merge_type {
1446 	UNLINK_MERGE_NONE,
1447 	UNLINK_MERGE_NEXT
1448 };
1449 
1450 static void
1451 vm_map_entry_unlink(vm_map_t map, vm_map_entry_t entry,
1452     enum unlink_merge_type op)
1453 {
1454 	vm_map_entry_t header, llist, rlist, root;
1455 	vm_size_t max_free_left, max_free_right;
1456 
1457 	VM_MAP_ASSERT_LOCKED(map);
1458 	header = &map->header;
1459 	root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1460 	KASSERT(root != NULL,
1461 	    ("vm_map_entry_unlink: unlink object not mapped"));
1462 
1463 	vm_map_splay_findprev(root, &llist);
1464 	vm_map_splay_findnext(root, &rlist);
1465 	if (op == UNLINK_MERGE_NEXT) {
1466 		rlist->start = root->start;
1467 		MPASS((rlist->eflags & (MAP_ENTRY_STACK_GAP_DN |
1468 		    MAP_ENTRY_STACK_GAP_UP)) == 0);
1469 		rlist->offset = root->offset;
1470 	}
1471 	if (llist != header) {
1472 		root = llist;
1473 		llist = root->right;
1474 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1475 		max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1476 	} else if (rlist != header) {
1477 		root = rlist;
1478 		rlist = root->left;
1479 		max_free_left = vm_map_splay_merge_pred(header, root, llist);
1480 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1481 	} else {
1482 		header->left = header->right = header;
1483 		root = NULL;
1484 	}
1485 	if (root != NULL)
1486 		root->max_free = vm_size_max(max_free_left, max_free_right);
1487 	map->root = root;
1488 	VM_MAP_ASSERT_CONSISTENT(map);
1489 	map->nentries--;
1490 	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1491 	    map->nentries, entry);
1492 }
1493 
1494 /*
1495  *	vm_map_entry_resize:
1496  *
1497  *	Resize a vm_map_entry, recompute the amount of free space that
1498  *	follows it and propagate that value up the tree.
1499  *
1500  *	The map must be locked, and leaves it so.
1501  */
1502 static void
1503 vm_map_entry_resize(vm_map_t map, vm_map_entry_t entry, vm_size_t grow_amount)
1504 {
1505 	vm_map_entry_t header, llist, rlist, root;
1506 
1507 	VM_MAP_ASSERT_LOCKED(map);
1508 	header = &map->header;
1509 	root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1510 	KASSERT(root != NULL, ("%s: resize object not mapped", __func__));
1511 	vm_map_splay_findnext(root, &rlist);
1512 	entry->end += grow_amount;
1513 	root->max_free = vm_size_max(
1514 	    vm_map_splay_merge_left(header, root, llist),
1515 	    vm_map_splay_merge_succ(header, root, rlist));
1516 	map->root = root;
1517 	VM_MAP_ASSERT_CONSISTENT(map);
1518 	CTR4(KTR_VM, "%s: map %p, nentries %d, entry %p",
1519 	    __func__, map, map->nentries, entry);
1520 }
1521 
1522 /*
1523  *	vm_map_lookup_entry:	[ internal use only ]
1524  *
1525  *	Finds the map entry containing (or
1526  *	immediately preceding) the specified address
1527  *	in the given map; the entry is returned
1528  *	in the "entry" parameter.  The boolean
1529  *	result indicates whether the address is
1530  *	actually contained in the map.
1531  */
1532 boolean_t
1533 vm_map_lookup_entry(
1534 	vm_map_t map,
1535 	vm_offset_t address,
1536 	vm_map_entry_t *entry)	/* OUT */
1537 {
1538 	vm_map_entry_t cur, header, lbound, ubound;
1539 	boolean_t locked;
1540 
1541 	/*
1542 	 * If the map is empty, then the map entry immediately preceding
1543 	 * "address" is the map's header.
1544 	 */
1545 	header = &map->header;
1546 	cur = map->root;
1547 	if (cur == NULL) {
1548 		*entry = header;
1549 		return (FALSE);
1550 	}
1551 	if (address >= cur->start && cur->end > address) {
1552 		*entry = cur;
1553 		return (TRUE);
1554 	}
1555 	if ((locked = vm_map_locked(map)) ||
1556 	    sx_try_upgrade(&map->lock)) {
1557 		/*
1558 		 * Splay requires a write lock on the map.  However, it only
1559 		 * restructures the binary search tree; it does not otherwise
1560 		 * change the map.  Thus, the map's timestamp need not change
1561 		 * on a temporary upgrade.
1562 		 */
1563 		cur = vm_map_splay(map, address);
1564 		if (!locked) {
1565 			VM_MAP_UNLOCK_CONSISTENT(map);
1566 			sx_downgrade(&map->lock);
1567 		}
1568 
1569 		/*
1570 		 * If "address" is contained within a map entry, the new root
1571 		 * is that map entry.  Otherwise, the new root is a map entry
1572 		 * immediately before or after "address".
1573 		 */
1574 		if (address < cur->start) {
1575 			*entry = header;
1576 			return (FALSE);
1577 		}
1578 		*entry = cur;
1579 		return (address < cur->end);
1580 	}
1581 	/*
1582 	 * Since the map is only locked for read access, perform a
1583 	 * standard binary search tree lookup for "address".
1584 	 */
1585 	lbound = ubound = header;
1586 	for (;;) {
1587 		if (address < cur->start) {
1588 			ubound = cur;
1589 			cur = cur->left;
1590 			if (cur == lbound)
1591 				break;
1592 		} else if (cur->end <= address) {
1593 			lbound = cur;
1594 			cur = cur->right;
1595 			if (cur == ubound)
1596 				break;
1597 		} else {
1598 			*entry = cur;
1599 			return (TRUE);
1600 		}
1601 	}
1602 	*entry = lbound;
1603 	return (FALSE);
1604 }
1605 
1606 /*
1607  * vm_map_insert1() is identical to vm_map_insert() except that it
1608  * returns the newly inserted map entry in '*res'.  In case the new
1609  * entry is coalesced with a neighbor or an existing entry was
1610  * resized, that entry is returned.  In any case, the returned entry
1611  * covers the specified address range.
1612  */
1613 static int
1614 vm_map_insert1(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1615     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow,
1616     vm_map_entry_t *res)
1617 {
1618 	vm_map_entry_t new_entry, next_entry, prev_entry;
1619 	struct ucred *cred;
1620 	vm_eflags_t protoeflags;
1621 	vm_inherit_t inheritance;
1622 	u_long bdry;
1623 	u_int bidx;
1624 
1625 	VM_MAP_ASSERT_LOCKED(map);
1626 	KASSERT(object != kernel_object ||
1627 	    (cow & MAP_COPY_ON_WRITE) == 0,
1628 	    ("vm_map_insert: kernel object and COW"));
1629 	KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0 ||
1630 	    (cow & MAP_SPLIT_BOUNDARY_MASK) != 0,
1631 	    ("vm_map_insert: paradoxical MAP_NOFAULT request, obj %p cow %#x",
1632 	    object, cow));
1633 	KASSERT((prot & ~max) == 0,
1634 	    ("prot %#x is not subset of max_prot %#x", prot, max));
1635 
1636 	/*
1637 	 * Check that the start and end points are not bogus.
1638 	 */
1639 	if (start == end || !vm_map_range_valid(map, start, end))
1640 		return (KERN_INVALID_ADDRESS);
1641 
1642 	if ((map->flags & MAP_WXORX) != 0 && (prot & (VM_PROT_WRITE |
1643 	    VM_PROT_EXECUTE)) == (VM_PROT_WRITE | VM_PROT_EXECUTE))
1644 		return (KERN_PROTECTION_FAILURE);
1645 
1646 	/*
1647 	 * Find the entry prior to the proposed starting address; if it's part
1648 	 * of an existing entry, this range is bogus.
1649 	 */
1650 	if (vm_map_lookup_entry(map, start, &prev_entry))
1651 		return (KERN_NO_SPACE);
1652 
1653 	/*
1654 	 * Assert that the next entry doesn't overlap the end point.
1655 	 */
1656 	next_entry = vm_map_entry_succ(prev_entry);
1657 	if (next_entry->start < end)
1658 		return (KERN_NO_SPACE);
1659 
1660 	if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL ||
1661 	    max != VM_PROT_NONE))
1662 		return (KERN_INVALID_ARGUMENT);
1663 
1664 	protoeflags = 0;
1665 	if (cow & MAP_COPY_ON_WRITE)
1666 		protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1667 	if (cow & MAP_NOFAULT)
1668 		protoeflags |= MAP_ENTRY_NOFAULT;
1669 	if (cow & MAP_DISABLE_SYNCER)
1670 		protoeflags |= MAP_ENTRY_NOSYNC;
1671 	if (cow & MAP_DISABLE_COREDUMP)
1672 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1673 	if (cow & MAP_STACK_GROWS_DOWN)
1674 		protoeflags |= MAP_ENTRY_GROWS_DOWN;
1675 	if (cow & MAP_STACK_GROWS_UP)
1676 		protoeflags |= MAP_ENTRY_GROWS_UP;
1677 	if (cow & MAP_WRITECOUNT)
1678 		protoeflags |= MAP_ENTRY_WRITECNT;
1679 	if (cow & MAP_VN_EXEC)
1680 		protoeflags |= MAP_ENTRY_VN_EXEC;
1681 	if ((cow & MAP_CREATE_GUARD) != 0)
1682 		protoeflags |= MAP_ENTRY_GUARD;
1683 	if ((cow & MAP_CREATE_STACK_GAP_DN) != 0)
1684 		protoeflags |= MAP_ENTRY_STACK_GAP_DN;
1685 	if ((cow & MAP_CREATE_STACK_GAP_UP) != 0)
1686 		protoeflags |= MAP_ENTRY_STACK_GAP_UP;
1687 	if (cow & MAP_INHERIT_SHARE)
1688 		inheritance = VM_INHERIT_SHARE;
1689 	else
1690 		inheritance = VM_INHERIT_DEFAULT;
1691 	if ((cow & MAP_SPLIT_BOUNDARY_MASK) != 0) {
1692 		/* This magically ignores index 0, for usual page size. */
1693 		bidx = (cow & MAP_SPLIT_BOUNDARY_MASK) >>
1694 		    MAP_SPLIT_BOUNDARY_SHIFT;
1695 		if (bidx >= MAXPAGESIZES)
1696 			return (KERN_INVALID_ARGUMENT);
1697 		bdry = pagesizes[bidx] - 1;
1698 		if ((start & bdry) != 0 || (end & bdry) != 0)
1699 			return (KERN_INVALID_ARGUMENT);
1700 		protoeflags |= bidx << MAP_ENTRY_SPLIT_BOUNDARY_SHIFT;
1701 	}
1702 
1703 	cred = NULL;
1704 	if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0)
1705 		goto charged;
1706 	if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1707 	    ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1708 		if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1709 			return (KERN_RESOURCE_SHORTAGE);
1710 		KASSERT(object == NULL ||
1711 		    (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
1712 		    object->cred == NULL,
1713 		    ("overcommit: vm_map_insert o %p", object));
1714 		cred = curthread->td_ucred;
1715 	}
1716 
1717 charged:
1718 	/* Expand the kernel pmap, if necessary. */
1719 	if (map == kernel_map && end > kernel_vm_end)
1720 		pmap_growkernel(end);
1721 	if (object != NULL) {
1722 		/*
1723 		 * OBJ_ONEMAPPING must be cleared unless this mapping
1724 		 * is trivially proven to be the only mapping for any
1725 		 * of the object's pages.  (Object granularity
1726 		 * reference counting is insufficient to recognize
1727 		 * aliases with precision.)
1728 		 */
1729 		if ((object->flags & OBJ_ANON) != 0) {
1730 			VM_OBJECT_WLOCK(object);
1731 			if (object->ref_count > 1 || object->shadow_count != 0)
1732 				vm_object_clear_flag(object, OBJ_ONEMAPPING);
1733 			VM_OBJECT_WUNLOCK(object);
1734 		}
1735 	} else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) ==
1736 	    protoeflags &&
1737 	    (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP |
1738 	    MAP_VN_EXEC)) == 0 &&
1739 	    prev_entry->end == start && (prev_entry->cred == cred ||
1740 	    (prev_entry->object.vm_object != NULL &&
1741 	    prev_entry->object.vm_object->cred == cred)) &&
1742 	    vm_object_coalesce(prev_entry->object.vm_object,
1743 	    prev_entry->offset,
1744 	    (vm_size_t)(prev_entry->end - prev_entry->start),
1745 	    (vm_size_t)(end - prev_entry->end), cred != NULL &&
1746 	    (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1747 		/*
1748 		 * We were able to extend the object.  Determine if we
1749 		 * can extend the previous map entry to include the
1750 		 * new range as well.
1751 		 */
1752 		if (prev_entry->inheritance == inheritance &&
1753 		    prev_entry->protection == prot &&
1754 		    prev_entry->max_protection == max &&
1755 		    prev_entry->wired_count == 0) {
1756 			KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) ==
1757 			    0, ("prev_entry %p has incoherent wiring",
1758 			    prev_entry));
1759 			if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0)
1760 				map->size += end - prev_entry->end;
1761 			vm_map_entry_resize(map, prev_entry,
1762 			    end - prev_entry->end);
1763 			*res = vm_map_try_merge_entries(map, prev_entry,
1764 			    next_entry);
1765 			return (KERN_SUCCESS);
1766 		}
1767 
1768 		/*
1769 		 * If we can extend the object but cannot extend the
1770 		 * map entry, we have to create a new map entry.  We
1771 		 * must bump the ref count on the extended object to
1772 		 * account for it.  object may be NULL.
1773 		 */
1774 		object = prev_entry->object.vm_object;
1775 		offset = prev_entry->offset +
1776 		    (prev_entry->end - prev_entry->start);
1777 		vm_object_reference(object);
1778 		if (cred != NULL && object != NULL && object->cred != NULL &&
1779 		    !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1780 			/* Object already accounts for this uid. */
1781 			cred = NULL;
1782 		}
1783 	}
1784 	if (cred != NULL)
1785 		crhold(cred);
1786 
1787 	/*
1788 	 * Create a new entry
1789 	 */
1790 	new_entry = vm_map_entry_create(map);
1791 	new_entry->start = start;
1792 	new_entry->end = end;
1793 	new_entry->cred = NULL;
1794 
1795 	new_entry->eflags = protoeflags;
1796 	new_entry->object.vm_object = object;
1797 	new_entry->offset = offset;
1798 
1799 	new_entry->inheritance = inheritance;
1800 	new_entry->protection = prot;
1801 	new_entry->max_protection = max;
1802 	new_entry->wired_count = 0;
1803 	new_entry->wiring_thread = NULL;
1804 	new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1805 	new_entry->next_read = start;
1806 
1807 	KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1808 	    ("overcommit: vm_map_insert leaks vm_map %p", new_entry));
1809 	new_entry->cred = cred;
1810 
1811 	/*
1812 	 * Insert the new entry into the list
1813 	 */
1814 	vm_map_entry_link(map, new_entry);
1815 	if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0)
1816 		map->size += new_entry->end - new_entry->start;
1817 
1818 	/*
1819 	 * Try to coalesce the new entry with both the previous and next
1820 	 * entries in the list.  Previously, we only attempted to coalesce
1821 	 * with the previous entry when object is NULL.  Here, we handle the
1822 	 * other cases, which are less common.
1823 	 */
1824 	vm_map_try_merge_entries(map, prev_entry, new_entry);
1825 	*res = vm_map_try_merge_entries(map, new_entry, next_entry);
1826 
1827 	if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) {
1828 		vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset),
1829 		    end - start, cow & MAP_PREFAULT_PARTIAL);
1830 	}
1831 
1832 	return (KERN_SUCCESS);
1833 }
1834 
1835 /*
1836  *	vm_map_insert:
1837  *
1838  *	Inserts the given VM object into the target map at the
1839  *	specified address range.
1840  *
1841  *	Requires that the map be locked, and leaves it so.
1842  *
1843  *	If object is non-NULL, ref count must be bumped by caller
1844  *	prior to making call to account for the new entry.
1845  */
1846 int
1847 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1848     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1849 {
1850 	vm_map_entry_t res;
1851 
1852 	return (vm_map_insert1(map, object, offset, start, end, prot, max,
1853 	    cow, &res));
1854 }
1855 
1856 /*
1857  *	vm_map_findspace:
1858  *
1859  *	Find the first fit (lowest VM address) for "length" free bytes
1860  *	beginning at address >= start in the given map.
1861  *
1862  *	In a vm_map_entry, "max_free" is the maximum amount of
1863  *	contiguous free space between an entry in its subtree and a
1864  *	neighbor of that entry.  This allows finding a free region in
1865  *	one path down the tree, so O(log n) amortized with splay
1866  *	trees.
1867  *
1868  *	The map must be locked, and leaves it so.
1869  *
1870  *	Returns: starting address if sufficient space,
1871  *		 vm_map_max(map)-length+1 if insufficient space.
1872  */
1873 vm_offset_t
1874 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length)
1875 {
1876 	vm_map_entry_t header, llist, rlist, root, y;
1877 	vm_size_t left_length, max_free_left, max_free_right;
1878 	vm_offset_t gap_end;
1879 
1880 	VM_MAP_ASSERT_LOCKED(map);
1881 
1882 	/*
1883 	 * Request must fit within min/max VM address and must avoid
1884 	 * address wrap.
1885 	 */
1886 	start = MAX(start, vm_map_min(map));
1887 	if (start >= vm_map_max(map) || length > vm_map_max(map) - start)
1888 		return (vm_map_max(map) - length + 1);
1889 
1890 	/* Empty tree means wide open address space. */
1891 	if (map->root == NULL)
1892 		return (start);
1893 
1894 	/*
1895 	 * After splay_split, if start is within an entry, push it to the start
1896 	 * of the following gap.  If rlist is at the end of the gap containing
1897 	 * start, save the end of that gap in gap_end to see if the gap is big
1898 	 * enough; otherwise set gap_end to start skip gap-checking and move
1899 	 * directly to a search of the right subtree.
1900 	 */
1901 	header = &map->header;
1902 	root = vm_map_splay_split(map, start, length, &llist, &rlist);
1903 	gap_end = rlist->start;
1904 	if (root != NULL) {
1905 		start = root->end;
1906 		if (root->right != rlist)
1907 			gap_end = start;
1908 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1909 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1910 	} else if (rlist != header) {
1911 		root = rlist;
1912 		rlist = root->left;
1913 		max_free_left = vm_map_splay_merge_pred(header, root, llist);
1914 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1915 	} else {
1916 		root = llist;
1917 		llist = root->right;
1918 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1919 		max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1920 	}
1921 	root->max_free = vm_size_max(max_free_left, max_free_right);
1922 	map->root = root;
1923 	VM_MAP_ASSERT_CONSISTENT(map);
1924 	if (length <= gap_end - start)
1925 		return (start);
1926 
1927 	/* With max_free, can immediately tell if no solution. */
1928 	if (root->right == header || length > root->right->max_free)
1929 		return (vm_map_max(map) - length + 1);
1930 
1931 	/*
1932 	 * Splay for the least large-enough gap in the right subtree.
1933 	 */
1934 	llist = rlist = header;
1935 	for (left_length = 0;;
1936 	    left_length = vm_map_entry_max_free_left(root, llist)) {
1937 		if (length <= left_length)
1938 			SPLAY_LEFT_STEP(root, y, llist, rlist,
1939 			    length <= vm_map_entry_max_free_left(y, llist));
1940 		else
1941 			SPLAY_RIGHT_STEP(root, y, llist, rlist,
1942 			    length > vm_map_entry_max_free_left(y, root));
1943 		if (root == NULL)
1944 			break;
1945 	}
1946 	root = llist;
1947 	llist = root->right;
1948 	max_free_left = vm_map_splay_merge_left(header, root, llist);
1949 	if (rlist == header) {
1950 		root->max_free = vm_size_max(max_free_left,
1951 		    vm_map_splay_merge_succ(header, root, rlist));
1952 	} else {
1953 		y = rlist;
1954 		rlist = y->left;
1955 		y->max_free = vm_size_max(
1956 		    vm_map_splay_merge_pred(root, y, root),
1957 		    vm_map_splay_merge_right(header, y, rlist));
1958 		root->max_free = vm_size_max(max_free_left, y->max_free);
1959 	}
1960 	map->root = root;
1961 	VM_MAP_ASSERT_CONSISTENT(map);
1962 	return (root->end);
1963 }
1964 
1965 int
1966 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1967     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1968     vm_prot_t max, int cow)
1969 {
1970 	vm_offset_t end;
1971 	int result;
1972 
1973 	end = start + length;
1974 	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1975 	    object == NULL,
1976 	    ("vm_map_fixed: non-NULL backing object for stack"));
1977 	vm_map_lock(map);
1978 	VM_MAP_RANGE_CHECK(map, start, end);
1979 	if ((cow & MAP_CHECK_EXCL) == 0) {
1980 		result = vm_map_delete(map, start, end);
1981 		if (result != KERN_SUCCESS)
1982 			goto out;
1983 	}
1984 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1985 		result = vm_map_stack_locked(map, start, length, sgrowsiz,
1986 		    prot, max, cow);
1987 	} else {
1988 		result = vm_map_insert(map, object, offset, start, end,
1989 		    prot, max, cow);
1990 	}
1991 out:
1992 	vm_map_unlock(map);
1993 	return (result);
1994 }
1995 
1996 static const int aslr_pages_rnd_64[2] = {0x1000, 0x10};
1997 static const int aslr_pages_rnd_32[2] = {0x100, 0x4};
1998 
1999 static int cluster_anon = 1;
2000 SYSCTL_INT(_vm, OID_AUTO, cluster_anon, CTLFLAG_RW,
2001     &cluster_anon, 0,
2002     "Cluster anonymous mappings: 0 = no, 1 = yes if no hint, 2 = always");
2003 
2004 static bool
2005 clustering_anon_allowed(vm_offset_t addr, int cow)
2006 {
2007 
2008 	switch (cluster_anon) {
2009 	case 0:
2010 		return (false);
2011 	case 1:
2012 		return (addr == 0 || (cow & MAP_NO_HINT) != 0);
2013 	case 2:
2014 	default:
2015 		return (true);
2016 	}
2017 }
2018 
2019 static long aslr_restarts;
2020 SYSCTL_LONG(_vm, OID_AUTO, aslr_restarts, CTLFLAG_RD,
2021     &aslr_restarts, 0,
2022     "Number of aslr failures");
2023 
2024 /*
2025  * Searches for the specified amount of free space in the given map with the
2026  * specified alignment.  Performs an address-ordered, first-fit search from
2027  * the given address "*addr", with an optional upper bound "max_addr".  If the
2028  * parameter "alignment" is zero, then the alignment is computed from the
2029  * given (object, offset) pair so as to enable the greatest possible use of
2030  * superpage mappings.  Returns KERN_SUCCESS and the address of the free space
2031  * in "*addr" if successful.  Otherwise, returns KERN_NO_SPACE.
2032  *
2033  * The map must be locked.  Initially, there must be at least "length" bytes
2034  * of free space at the given address.
2035  */
2036 static int
2037 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2038     vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr,
2039     vm_offset_t alignment)
2040 {
2041 	vm_offset_t aligned_addr, free_addr;
2042 
2043 	VM_MAP_ASSERT_LOCKED(map);
2044 	free_addr = *addr;
2045 	KASSERT(free_addr == vm_map_findspace(map, free_addr, length),
2046 	    ("caller failed to provide space %#jx at address %p",
2047 	     (uintmax_t)length, (void *)free_addr));
2048 	for (;;) {
2049 		/*
2050 		 * At the start of every iteration, the free space at address
2051 		 * "*addr" is at least "length" bytes.
2052 		 */
2053 		if (alignment == 0)
2054 			pmap_align_superpage(object, offset, addr, length);
2055 		else
2056 			*addr = roundup2(*addr, alignment);
2057 		aligned_addr = *addr;
2058 		if (aligned_addr == free_addr) {
2059 			/*
2060 			 * Alignment did not change "*addr", so "*addr" must
2061 			 * still provide sufficient free space.
2062 			 */
2063 			return (KERN_SUCCESS);
2064 		}
2065 
2066 		/*
2067 		 * Test for address wrap on "*addr".  A wrapped "*addr" could
2068 		 * be a valid address, in which case vm_map_findspace() cannot
2069 		 * be relied upon to fail.
2070 		 */
2071 		if (aligned_addr < free_addr)
2072 			return (KERN_NO_SPACE);
2073 		*addr = vm_map_findspace(map, aligned_addr, length);
2074 		if (*addr + length > vm_map_max(map) ||
2075 		    (max_addr != 0 && *addr + length > max_addr))
2076 			return (KERN_NO_SPACE);
2077 		free_addr = *addr;
2078 		if (free_addr == aligned_addr) {
2079 			/*
2080 			 * If a successful call to vm_map_findspace() did not
2081 			 * change "*addr", then "*addr" must still be aligned
2082 			 * and provide sufficient free space.
2083 			 */
2084 			return (KERN_SUCCESS);
2085 		}
2086 	}
2087 }
2088 
2089 int
2090 vm_map_find_aligned(vm_map_t map, vm_offset_t *addr, vm_size_t length,
2091     vm_offset_t max_addr, vm_offset_t alignment)
2092 {
2093 	/* XXXKIB ASLR eh ? */
2094 	*addr = vm_map_findspace(map, *addr, length);
2095 	if (*addr + length > vm_map_max(map) ||
2096 	    (max_addr != 0 && *addr + length > max_addr))
2097 		return (KERN_NO_SPACE);
2098 	return (vm_map_alignspace(map, NULL, 0, addr, length, max_addr,
2099 	    alignment));
2100 }
2101 
2102 /*
2103  *	vm_map_find finds an unallocated region in the target address
2104  *	map with the given length.  The search is defined to be
2105  *	first-fit from the specified address; the region found is
2106  *	returned in the same parameter.
2107  *
2108  *	If object is non-NULL, ref count must be bumped by caller
2109  *	prior to making call to account for the new entry.
2110  */
2111 int
2112 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2113 	    vm_offset_t *addr,	/* IN/OUT */
2114 	    vm_size_t length, vm_offset_t max_addr, int find_space,
2115 	    vm_prot_t prot, vm_prot_t max, int cow)
2116 {
2117 	vm_offset_t alignment, curr_min_addr, min_addr;
2118 	int gap, pidx, rv, try;
2119 	bool cluster, en_aslr, update_anon;
2120 
2121 	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
2122 	    object == NULL,
2123 	    ("vm_map_find: non-NULL backing object for stack"));
2124 	MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE &&
2125 	    (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0));
2126 	if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
2127 	    (object->flags & OBJ_COLORED) == 0))
2128 		find_space = VMFS_ANY_SPACE;
2129 	if (find_space >> 8 != 0) {
2130 		KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
2131 		alignment = (vm_offset_t)1 << (find_space >> 8);
2132 	} else
2133 		alignment = 0;
2134 	en_aslr = (map->flags & MAP_ASLR) != 0;
2135 	update_anon = cluster = clustering_anon_allowed(*addr, cow) &&
2136 	    (map->flags & MAP_IS_SUB_MAP) == 0 && max_addr == 0 &&
2137 	    find_space != VMFS_NO_SPACE && object == NULL &&
2138 	    (cow & (MAP_INHERIT_SHARE | MAP_STACK_GROWS_UP |
2139 	    MAP_STACK_GROWS_DOWN)) == 0 && prot != PROT_NONE;
2140 	curr_min_addr = min_addr = *addr;
2141 	if (en_aslr && min_addr == 0 && !cluster &&
2142 	    find_space != VMFS_NO_SPACE &&
2143 	    (map->flags & MAP_ASLR_IGNSTART) != 0)
2144 		curr_min_addr = min_addr = vm_map_min(map);
2145 	try = 0;
2146 	vm_map_lock(map);
2147 	if (cluster) {
2148 		curr_min_addr = map->anon_loc;
2149 		if (curr_min_addr == 0)
2150 			cluster = false;
2151 	}
2152 	if (find_space != VMFS_NO_SPACE) {
2153 		KASSERT(find_space == VMFS_ANY_SPACE ||
2154 		    find_space == VMFS_OPTIMAL_SPACE ||
2155 		    find_space == VMFS_SUPER_SPACE ||
2156 		    alignment != 0, ("unexpected VMFS flag"));
2157 again:
2158 		/*
2159 		 * When creating an anonymous mapping, try clustering
2160 		 * with an existing anonymous mapping first.
2161 		 *
2162 		 * We make up to two attempts to find address space
2163 		 * for a given find_space value. The first attempt may
2164 		 * apply randomization or may cluster with an existing
2165 		 * anonymous mapping. If this first attempt fails,
2166 		 * perform a first-fit search of the available address
2167 		 * space.
2168 		 *
2169 		 * If all tries failed, and find_space is
2170 		 * VMFS_OPTIMAL_SPACE, fallback to VMFS_ANY_SPACE.
2171 		 * Again enable clustering and randomization.
2172 		 */
2173 		try++;
2174 		MPASS(try <= 2);
2175 
2176 		if (try == 2) {
2177 			/*
2178 			 * Second try: we failed either to find a
2179 			 * suitable region for randomizing the
2180 			 * allocation, or to cluster with an existing
2181 			 * mapping.  Retry with free run.
2182 			 */
2183 			curr_min_addr = (map->flags & MAP_ASLR_IGNSTART) != 0 ?
2184 			    vm_map_min(map) : min_addr;
2185 			atomic_add_long(&aslr_restarts, 1);
2186 		}
2187 
2188 		if (try == 1 && en_aslr && !cluster) {
2189 			/*
2190 			 * Find space for allocation, including
2191 			 * gap needed for later randomization.
2192 			 */
2193 			pidx = MAXPAGESIZES > 1 && pagesizes[1] != 0 &&
2194 			    (find_space == VMFS_SUPER_SPACE || find_space ==
2195 			    VMFS_OPTIMAL_SPACE) ? 1 : 0;
2196 			gap = vm_map_max(map) > MAP_32BIT_MAX_ADDR &&
2197 			    (max_addr == 0 || max_addr > MAP_32BIT_MAX_ADDR) ?
2198 			    aslr_pages_rnd_64[pidx] : aslr_pages_rnd_32[pidx];
2199 			*addr = vm_map_findspace(map, curr_min_addr,
2200 			    length + gap * pagesizes[pidx]);
2201 			if (*addr + length + gap * pagesizes[pidx] >
2202 			    vm_map_max(map))
2203 				goto again;
2204 			/* And randomize the start address. */
2205 			*addr += (arc4random() % gap) * pagesizes[pidx];
2206 			if (max_addr != 0 && *addr + length > max_addr)
2207 				goto again;
2208 		} else {
2209 			*addr = vm_map_findspace(map, curr_min_addr, length);
2210 			if (*addr + length > vm_map_max(map) ||
2211 			    (max_addr != 0 && *addr + length > max_addr)) {
2212 				if (cluster) {
2213 					cluster = false;
2214 					MPASS(try == 1);
2215 					goto again;
2216 				}
2217 				rv = KERN_NO_SPACE;
2218 				goto done;
2219 			}
2220 		}
2221 
2222 		if (find_space != VMFS_ANY_SPACE &&
2223 		    (rv = vm_map_alignspace(map, object, offset, addr, length,
2224 		    max_addr, alignment)) != KERN_SUCCESS) {
2225 			if (find_space == VMFS_OPTIMAL_SPACE) {
2226 				find_space = VMFS_ANY_SPACE;
2227 				curr_min_addr = min_addr;
2228 				cluster = update_anon;
2229 				try = 0;
2230 				goto again;
2231 			}
2232 			goto done;
2233 		}
2234 	} else if ((cow & MAP_REMAP) != 0) {
2235 		if (!vm_map_range_valid(map, *addr, *addr + length)) {
2236 			rv = KERN_INVALID_ADDRESS;
2237 			goto done;
2238 		}
2239 		rv = vm_map_delete(map, *addr, *addr + length);
2240 		if (rv != KERN_SUCCESS)
2241 			goto done;
2242 	}
2243 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
2244 		rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot,
2245 		    max, cow);
2246 	} else {
2247 		rv = vm_map_insert(map, object, offset, *addr, *addr + length,
2248 		    prot, max, cow);
2249 	}
2250 
2251 	/*
2252 	 * Update the starting address for clustered anonymous memory mappings
2253 	 * if a starting address was not previously defined or an ASLR restart
2254 	 * placed an anonymous memory mapping at a lower address.
2255 	 */
2256 	if (update_anon && rv == KERN_SUCCESS && (map->anon_loc == 0 ||
2257 	    *addr < map->anon_loc))
2258 		map->anon_loc = *addr;
2259 done:
2260 	vm_map_unlock(map);
2261 	return (rv);
2262 }
2263 
2264 /*
2265  *	vm_map_find_min() is a variant of vm_map_find() that takes an
2266  *	additional parameter ("default_addr") and treats the given address
2267  *	("*addr") differently.  Specifically, it treats "*addr" as a hint
2268  *	and not as the minimum address where the mapping is created.
2269  *
2270  *	This function works in two phases.  First, it tries to
2271  *	allocate above the hint.  If that fails and the hint is
2272  *	greater than "default_addr", it performs a second pass, replacing
2273  *	the hint with "default_addr" as the minimum address for the
2274  *	allocation.
2275  */
2276 int
2277 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2278     vm_offset_t *addr, vm_size_t length, vm_offset_t default_addr,
2279     vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max,
2280     int cow)
2281 {
2282 	vm_offset_t hint;
2283 	int rv;
2284 
2285 	hint = *addr;
2286 	if (hint == 0) {
2287 		cow |= MAP_NO_HINT;
2288 		*addr = hint = default_addr;
2289 	}
2290 	for (;;) {
2291 		rv = vm_map_find(map, object, offset, addr, length, max_addr,
2292 		    find_space, prot, max, cow);
2293 		if (rv == KERN_SUCCESS || default_addr >= hint)
2294 			return (rv);
2295 		*addr = hint = default_addr;
2296 	}
2297 }
2298 
2299 /*
2300  * A map entry with any of the following flags set must not be merged with
2301  * another entry.
2302  */
2303 #define	MAP_ENTRY_NOMERGE_MASK	(MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | \
2304     MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP | MAP_ENTRY_VN_EXEC | \
2305     MAP_ENTRY_STACK_GAP_UP | MAP_ENTRY_STACK_GAP_DN)
2306 
2307 static bool
2308 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry)
2309 {
2310 
2311 	KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 ||
2312 	    (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0,
2313 	    ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable",
2314 	    prev, entry));
2315 	return (prev->end == entry->start &&
2316 	    prev->object.vm_object == entry->object.vm_object &&
2317 	    (prev->object.vm_object == NULL ||
2318 	    prev->offset + (prev->end - prev->start) == entry->offset) &&
2319 	    prev->eflags == entry->eflags &&
2320 	    prev->protection == entry->protection &&
2321 	    prev->max_protection == entry->max_protection &&
2322 	    prev->inheritance == entry->inheritance &&
2323 	    prev->wired_count == entry->wired_count &&
2324 	    prev->cred == entry->cred);
2325 }
2326 
2327 static void
2328 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry)
2329 {
2330 
2331 	/*
2332 	 * If the backing object is a vnode object, vm_object_deallocate()
2333 	 * calls vrele().  However, vrele() does not lock the vnode because
2334 	 * the vnode has additional references.  Thus, the map lock can be
2335 	 * kept without causing a lock-order reversal with the vnode lock.
2336 	 *
2337 	 * Since we count the number of virtual page mappings in
2338 	 * object->un_pager.vnp.writemappings, the writemappings value
2339 	 * should not be adjusted when the entry is disposed of.
2340 	 */
2341 	if (entry->object.vm_object != NULL)
2342 		vm_object_deallocate(entry->object.vm_object);
2343 	if (entry->cred != NULL)
2344 		crfree(entry->cred);
2345 	vm_map_entry_dispose(map, entry);
2346 }
2347 
2348 /*
2349  *	vm_map_try_merge_entries:
2350  *
2351  *	Compare two map entries that represent consecutive ranges. If
2352  *	the entries can be merged, expand the range of the second to
2353  *	cover the range of the first and delete the first. Then return
2354  *	the map entry that includes the first range.
2355  *
2356  *	The map must be locked.
2357  */
2358 vm_map_entry_t
2359 vm_map_try_merge_entries(vm_map_t map, vm_map_entry_t prev_entry,
2360     vm_map_entry_t entry)
2361 {
2362 
2363 	VM_MAP_ASSERT_LOCKED(map);
2364 	if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 &&
2365 	    vm_map_mergeable_neighbors(prev_entry, entry)) {
2366 		vm_map_entry_unlink(map, prev_entry, UNLINK_MERGE_NEXT);
2367 		vm_map_merged_neighbor_dispose(map, prev_entry);
2368 		return (entry);
2369 	}
2370 	return (prev_entry);
2371 }
2372 
2373 /*
2374  *	vm_map_entry_back:
2375  *
2376  *	Allocate an object to back a map entry.
2377  */
2378 static inline void
2379 vm_map_entry_back(vm_map_entry_t entry)
2380 {
2381 	vm_object_t object;
2382 
2383 	KASSERT(entry->object.vm_object == NULL,
2384 	    ("map entry %p has backing object", entry));
2385 	KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
2386 	    ("map entry %p is a submap", entry));
2387 	object = vm_object_allocate_anon(atop(entry->end - entry->start), NULL,
2388 	    entry->cred, entry->end - entry->start);
2389 	entry->object.vm_object = object;
2390 	entry->offset = 0;
2391 	entry->cred = NULL;
2392 }
2393 
2394 /*
2395  *	vm_map_entry_charge_object
2396  *
2397  *	If there is no object backing this entry, create one.  Otherwise, if
2398  *	the entry has cred, give it to the backing object.
2399  */
2400 static inline void
2401 vm_map_entry_charge_object(vm_map_t map, vm_map_entry_t entry)
2402 {
2403 
2404 	VM_MAP_ASSERT_LOCKED(map);
2405 	KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
2406 	    ("map entry %p is a submap", entry));
2407 	if (entry->object.vm_object == NULL && !map->system_map &&
2408 	    (entry->eflags & MAP_ENTRY_GUARD) == 0)
2409 		vm_map_entry_back(entry);
2410 	else if (entry->object.vm_object != NULL &&
2411 	    ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
2412 	    entry->cred != NULL) {
2413 		VM_OBJECT_WLOCK(entry->object.vm_object);
2414 		KASSERT(entry->object.vm_object->cred == NULL,
2415 		    ("OVERCOMMIT: %s: both cred e %p", __func__, entry));
2416 		entry->object.vm_object->cred = entry->cred;
2417 		entry->object.vm_object->charge = entry->end - entry->start;
2418 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
2419 		entry->cred = NULL;
2420 	}
2421 }
2422 
2423 /*
2424  *	vm_map_entry_clone
2425  *
2426  *	Create a duplicate map entry for clipping.
2427  */
2428 static vm_map_entry_t
2429 vm_map_entry_clone(vm_map_t map, vm_map_entry_t entry)
2430 {
2431 	vm_map_entry_t new_entry;
2432 
2433 	VM_MAP_ASSERT_LOCKED(map);
2434 
2435 	/*
2436 	 * Create a backing object now, if none exists, so that more individual
2437 	 * objects won't be created after the map entry is split.
2438 	 */
2439 	vm_map_entry_charge_object(map, entry);
2440 
2441 	/* Clone the entry. */
2442 	new_entry = vm_map_entry_create(map);
2443 	*new_entry = *entry;
2444 	if (new_entry->cred != NULL)
2445 		crhold(entry->cred);
2446 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2447 		vm_object_reference(new_entry->object.vm_object);
2448 		vm_map_entry_set_vnode_text(new_entry, true);
2449 		/*
2450 		 * The object->un_pager.vnp.writemappings for the object of
2451 		 * MAP_ENTRY_WRITECNT type entry shall be kept as is here.  The
2452 		 * virtual pages are re-distributed among the clipped entries,
2453 		 * so the sum is left the same.
2454 		 */
2455 	}
2456 	return (new_entry);
2457 }
2458 
2459 /*
2460  *	vm_map_clip_start:	[ internal use only ]
2461  *
2462  *	Asserts that the given entry begins at or after
2463  *	the specified address; if necessary,
2464  *	it splits the entry into two.
2465  */
2466 static int
2467 vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t startaddr)
2468 {
2469 	vm_map_entry_t new_entry;
2470 	int bdry_idx;
2471 
2472 	if (!map->system_map)
2473 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2474 		    "%s: map %p entry %p start 0x%jx", __func__, map, entry,
2475 		    (uintmax_t)startaddr);
2476 
2477 	if (startaddr <= entry->start)
2478 		return (KERN_SUCCESS);
2479 
2480 	VM_MAP_ASSERT_LOCKED(map);
2481 	KASSERT(entry->end > startaddr && entry->start < startaddr,
2482 	    ("%s: invalid clip of entry %p", __func__, entry));
2483 
2484 	bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry);
2485 	if (bdry_idx != 0) {
2486 		if ((startaddr & (pagesizes[bdry_idx] - 1)) != 0)
2487 			return (KERN_INVALID_ARGUMENT);
2488 	}
2489 
2490 	new_entry = vm_map_entry_clone(map, entry);
2491 
2492 	/*
2493 	 * Split off the front portion.  Insert the new entry BEFORE this one,
2494 	 * so that this entry has the specified starting address.
2495 	 */
2496 	new_entry->end = startaddr;
2497 	vm_map_entry_link(map, new_entry);
2498 	return (KERN_SUCCESS);
2499 }
2500 
2501 /*
2502  *	vm_map_lookup_clip_start:
2503  *
2504  *	Find the entry at or just after 'start', and clip it if 'start' is in
2505  *	the interior of the entry.  Return entry after 'start', and in
2506  *	prev_entry set the entry before 'start'.
2507  */
2508 static int
2509 vm_map_lookup_clip_start(vm_map_t map, vm_offset_t start,
2510     vm_map_entry_t *res_entry, vm_map_entry_t *prev_entry)
2511 {
2512 	vm_map_entry_t entry;
2513 	int rv;
2514 
2515 	if (!map->system_map)
2516 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2517 		    "%s: map %p start 0x%jx prev %p", __func__, map,
2518 		    (uintmax_t)start, prev_entry);
2519 
2520 	if (vm_map_lookup_entry(map, start, prev_entry)) {
2521 		entry = *prev_entry;
2522 		rv = vm_map_clip_start(map, entry, start);
2523 		if (rv != KERN_SUCCESS)
2524 			return (rv);
2525 		*prev_entry = vm_map_entry_pred(entry);
2526 	} else
2527 		entry = vm_map_entry_succ(*prev_entry);
2528 	*res_entry = entry;
2529 	return (KERN_SUCCESS);
2530 }
2531 
2532 /*
2533  *	vm_map_clip_end:	[ internal use only ]
2534  *
2535  *	Asserts that the given entry ends at or before
2536  *	the specified address; if necessary,
2537  *	it splits the entry into two.
2538  */
2539 static int
2540 vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t endaddr)
2541 {
2542 	vm_map_entry_t new_entry;
2543 	int bdry_idx;
2544 
2545 	if (!map->system_map)
2546 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2547 		    "%s: map %p entry %p end 0x%jx", __func__, map, entry,
2548 		    (uintmax_t)endaddr);
2549 
2550 	if (endaddr >= entry->end)
2551 		return (KERN_SUCCESS);
2552 
2553 	VM_MAP_ASSERT_LOCKED(map);
2554 	KASSERT(entry->start < endaddr && entry->end > endaddr,
2555 	    ("%s: invalid clip of entry %p", __func__, entry));
2556 
2557 	bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry);
2558 	if (bdry_idx != 0) {
2559 		if ((endaddr & (pagesizes[bdry_idx] - 1)) != 0)
2560 			return (KERN_INVALID_ARGUMENT);
2561 	}
2562 
2563 	new_entry = vm_map_entry_clone(map, entry);
2564 
2565 	/*
2566 	 * Split off the back portion.  Insert the new entry AFTER this one,
2567 	 * so that this entry has the specified ending address.
2568 	 */
2569 	new_entry->start = endaddr;
2570 	vm_map_entry_link(map, new_entry);
2571 
2572 	return (KERN_SUCCESS);
2573 }
2574 
2575 /*
2576  *	vm_map_submap:		[ kernel use only ]
2577  *
2578  *	Mark the given range as handled by a subordinate map.
2579  *
2580  *	This range must have been created with vm_map_find,
2581  *	and no other operations may have been performed on this
2582  *	range prior to calling vm_map_submap.
2583  *
2584  *	Only a limited number of operations can be performed
2585  *	within this rage after calling vm_map_submap:
2586  *		vm_fault
2587  *	[Don't try vm_map_copy!]
2588  *
2589  *	To remove a submapping, one must first remove the
2590  *	range from the superior map, and then destroy the
2591  *	submap (if desired).  [Better yet, don't try it.]
2592  */
2593 int
2594 vm_map_submap(
2595 	vm_map_t map,
2596 	vm_offset_t start,
2597 	vm_offset_t end,
2598 	vm_map_t submap)
2599 {
2600 	vm_map_entry_t entry;
2601 	int result;
2602 
2603 	result = KERN_INVALID_ARGUMENT;
2604 
2605 	vm_map_lock(submap);
2606 	submap->flags |= MAP_IS_SUB_MAP;
2607 	vm_map_unlock(submap);
2608 
2609 	vm_map_lock(map);
2610 	VM_MAP_RANGE_CHECK(map, start, end);
2611 	if (vm_map_lookup_entry(map, start, &entry) && entry->end >= end &&
2612 	    (entry->eflags & MAP_ENTRY_COW) == 0 &&
2613 	    entry->object.vm_object == NULL) {
2614 		result = vm_map_clip_start(map, entry, start);
2615 		if (result != KERN_SUCCESS)
2616 			goto unlock;
2617 		result = vm_map_clip_end(map, entry, end);
2618 		if (result != KERN_SUCCESS)
2619 			goto unlock;
2620 		entry->object.sub_map = submap;
2621 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
2622 		result = KERN_SUCCESS;
2623 	}
2624 unlock:
2625 	vm_map_unlock(map);
2626 
2627 	if (result != KERN_SUCCESS) {
2628 		vm_map_lock(submap);
2629 		submap->flags &= ~MAP_IS_SUB_MAP;
2630 		vm_map_unlock(submap);
2631 	}
2632 	return (result);
2633 }
2634 
2635 /*
2636  * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
2637  */
2638 #define	MAX_INIT_PT	96
2639 
2640 /*
2641  *	vm_map_pmap_enter:
2642  *
2643  *	Preload the specified map's pmap with mappings to the specified
2644  *	object's memory-resident pages.  No further physical pages are
2645  *	allocated, and no further virtual pages are retrieved from secondary
2646  *	storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
2647  *	limited number of page mappings are created at the low-end of the
2648  *	specified address range.  (For this purpose, a superpage mapping
2649  *	counts as one page mapping.)  Otherwise, all resident pages within
2650  *	the specified address range are mapped.
2651  */
2652 static void
2653 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
2654     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
2655 {
2656 	vm_offset_t start;
2657 	vm_page_t p, p_start;
2658 	vm_pindex_t mask, psize, threshold, tmpidx;
2659 
2660 	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
2661 		return;
2662 	if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2663 		VM_OBJECT_WLOCK(object);
2664 		if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2665 			pmap_object_init_pt(map->pmap, addr, object, pindex,
2666 			    size);
2667 			VM_OBJECT_WUNLOCK(object);
2668 			return;
2669 		}
2670 		VM_OBJECT_LOCK_DOWNGRADE(object);
2671 	} else
2672 		VM_OBJECT_RLOCK(object);
2673 
2674 	psize = atop(size);
2675 	if (psize + pindex > object->size) {
2676 		if (pindex >= object->size) {
2677 			VM_OBJECT_RUNLOCK(object);
2678 			return;
2679 		}
2680 		psize = object->size - pindex;
2681 	}
2682 
2683 	start = 0;
2684 	p_start = NULL;
2685 	threshold = MAX_INIT_PT;
2686 
2687 	p = vm_page_find_least(object, pindex);
2688 	/*
2689 	 * Assert: the variable p is either (1) the page with the
2690 	 * least pindex greater than or equal to the parameter pindex
2691 	 * or (2) NULL.
2692 	 */
2693 	for (;
2694 	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
2695 	     p = TAILQ_NEXT(p, listq)) {
2696 		/*
2697 		 * don't allow an madvise to blow away our really
2698 		 * free pages allocating pv entries.
2699 		 */
2700 		if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
2701 		    vm_page_count_severe()) ||
2702 		    ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
2703 		    tmpidx >= threshold)) {
2704 			psize = tmpidx;
2705 			break;
2706 		}
2707 		if (vm_page_all_valid(p)) {
2708 			if (p_start == NULL) {
2709 				start = addr + ptoa(tmpidx);
2710 				p_start = p;
2711 			}
2712 			/* Jump ahead if a superpage mapping is possible. */
2713 			if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
2714 			    (pagesizes[p->psind] - 1)) == 0) {
2715 				mask = atop(pagesizes[p->psind]) - 1;
2716 				if (tmpidx + mask < psize &&
2717 				    vm_page_ps_test(p, PS_ALL_VALID, NULL)) {
2718 					p += mask;
2719 					threshold += mask;
2720 				}
2721 			}
2722 		} else if (p_start != NULL) {
2723 			pmap_enter_object(map->pmap, start, addr +
2724 			    ptoa(tmpidx), p_start, prot);
2725 			p_start = NULL;
2726 		}
2727 	}
2728 	if (p_start != NULL)
2729 		pmap_enter_object(map->pmap, start, addr + ptoa(psize),
2730 		    p_start, prot);
2731 	VM_OBJECT_RUNLOCK(object);
2732 }
2733 
2734 static void
2735 vm_map_protect_guard(vm_map_entry_t entry, vm_prot_t new_prot,
2736     vm_prot_t new_maxprot, int flags)
2737 {
2738 	vm_prot_t old_prot;
2739 
2740 	MPASS((entry->eflags & MAP_ENTRY_GUARD) != 0);
2741 	if ((entry->eflags & (MAP_ENTRY_STACK_GAP_UP |
2742 	    MAP_ENTRY_STACK_GAP_DN)) == 0)
2743 		return;
2744 
2745 	old_prot = PROT_EXTRACT(entry->offset);
2746 	if ((flags & VM_MAP_PROTECT_SET_MAXPROT) != 0) {
2747 		entry->offset = PROT_MAX(new_maxprot) |
2748 		    (new_maxprot & old_prot);
2749 	}
2750 	if ((flags & VM_MAP_PROTECT_SET_PROT) != 0) {
2751 		entry->offset = new_prot | PROT_MAX(
2752 		    PROT_MAX_EXTRACT(entry->offset));
2753 	}
2754 }
2755 
2756 /*
2757  *	vm_map_protect:
2758  *
2759  *	Sets the protection and/or the maximum protection of the
2760  *	specified address region in the target map.
2761  */
2762 int
2763 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
2764     vm_prot_t new_prot, vm_prot_t new_maxprot, int flags)
2765 {
2766 	vm_map_entry_t entry, first_entry, in_tran, prev_entry;
2767 	vm_object_t obj;
2768 	struct ucred *cred;
2769 	vm_offset_t orig_start;
2770 	vm_prot_t check_prot, max_prot, old_prot;
2771 	int rv;
2772 
2773 	if (start == end)
2774 		return (KERN_SUCCESS);
2775 
2776 	if (CONTAINS_BITS(flags, VM_MAP_PROTECT_SET_PROT |
2777 	    VM_MAP_PROTECT_SET_MAXPROT) &&
2778 	    !CONTAINS_BITS(new_maxprot, new_prot))
2779 		return (KERN_OUT_OF_BOUNDS);
2780 
2781 	orig_start = start;
2782 again:
2783 	in_tran = NULL;
2784 	start = orig_start;
2785 	vm_map_lock(map);
2786 
2787 	if ((map->flags & MAP_WXORX) != 0 &&
2788 	    (flags & VM_MAP_PROTECT_SET_PROT) != 0 &&
2789 	    CONTAINS_BITS(new_prot, VM_PROT_WRITE | VM_PROT_EXECUTE)) {
2790 		vm_map_unlock(map);
2791 		return (KERN_PROTECTION_FAILURE);
2792 	}
2793 
2794 	/*
2795 	 * Ensure that we are not concurrently wiring pages.  vm_map_wire() may
2796 	 * need to fault pages into the map and will drop the map lock while
2797 	 * doing so, and the VM object may end up in an inconsistent state if we
2798 	 * update the protection on the map entry in between faults.
2799 	 */
2800 	vm_map_wait_busy(map);
2801 
2802 	VM_MAP_RANGE_CHECK(map, start, end);
2803 
2804 	if (!vm_map_lookup_entry(map, start, &first_entry))
2805 		first_entry = vm_map_entry_succ(first_entry);
2806 
2807 	if ((flags & VM_MAP_PROTECT_GROWSDOWN) != 0 &&
2808 	    (first_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0) {
2809 		/*
2810 		 * Handle Linux's PROT_GROWSDOWN flag.
2811 		 * It means that protection is applied down to the
2812 		 * whole stack, including the specified range of the
2813 		 * mapped region, and the grow down region (AKA
2814 		 * guard).
2815 		 */
2816 		while (!CONTAINS_BITS(first_entry->eflags,
2817 		    MAP_ENTRY_GUARD | MAP_ENTRY_STACK_GAP_DN) &&
2818 		    first_entry != vm_map_entry_first(map))
2819 			first_entry = vm_map_entry_pred(first_entry);
2820 		start = first_entry->start;
2821 	}
2822 
2823 	/*
2824 	 * Make a first pass to check for protection violations.
2825 	 */
2826 	check_prot = 0;
2827 	if ((flags & VM_MAP_PROTECT_SET_PROT) != 0)
2828 		check_prot |= new_prot;
2829 	if ((flags & VM_MAP_PROTECT_SET_MAXPROT) != 0)
2830 		check_prot |= new_maxprot;
2831 	for (entry = first_entry; entry->start < end;
2832 	    entry = vm_map_entry_succ(entry)) {
2833 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) {
2834 			vm_map_unlock(map);
2835 			return (KERN_INVALID_ARGUMENT);
2836 		}
2837 		if ((entry->eflags & (MAP_ENTRY_GUARD |
2838 		    MAP_ENTRY_STACK_GAP_DN | MAP_ENTRY_STACK_GAP_UP)) ==
2839 		    MAP_ENTRY_GUARD)
2840 			continue;
2841 		max_prot = (entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
2842 		    MAP_ENTRY_STACK_GAP_UP)) != 0 ?
2843 		    PROT_MAX_EXTRACT(entry->offset) : entry->max_protection;
2844 		if (!CONTAINS_BITS(max_prot, check_prot)) {
2845 			vm_map_unlock(map);
2846 			return (KERN_PROTECTION_FAILURE);
2847 		}
2848 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0)
2849 			in_tran = entry;
2850 	}
2851 
2852 	/*
2853 	 * Postpone the operation until all in-transition map entries have
2854 	 * stabilized.  An in-transition entry might already have its pages
2855 	 * wired and wired_count incremented, but not yet have its
2856 	 * MAP_ENTRY_USER_WIRED flag set.  In which case, we would fail to call
2857 	 * vm_fault_copy_entry() in the final loop below.
2858 	 */
2859 	if (in_tran != NULL) {
2860 		in_tran->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2861 		vm_map_unlock_and_wait(map, 0);
2862 		goto again;
2863 	}
2864 
2865 	/*
2866 	 * Before changing the protections, try to reserve swap space for any
2867 	 * private (i.e., copy-on-write) mappings that are transitioning from
2868 	 * read-only to read/write access.  If a reservation fails, break out
2869 	 * of this loop early and let the next loop simplify the entries, since
2870 	 * some may now be mergeable.
2871 	 */
2872 	rv = vm_map_clip_start(map, first_entry, start);
2873 	if (rv != KERN_SUCCESS) {
2874 		vm_map_unlock(map);
2875 		return (rv);
2876 	}
2877 	for (entry = first_entry; entry->start < end;
2878 	    entry = vm_map_entry_succ(entry)) {
2879 		rv = vm_map_clip_end(map, entry, end);
2880 		if (rv != KERN_SUCCESS) {
2881 			vm_map_unlock(map);
2882 			return (rv);
2883 		}
2884 
2885 		if ((flags & VM_MAP_PROTECT_SET_PROT) == 0 ||
2886 		    ((new_prot & ~entry->protection) & VM_PROT_WRITE) == 0 ||
2887 		    ENTRY_CHARGED(entry) ||
2888 		    (entry->eflags & MAP_ENTRY_GUARD) != 0)
2889 			continue;
2890 
2891 		cred = curthread->td_ucred;
2892 		obj = entry->object.vm_object;
2893 
2894 		if (obj == NULL ||
2895 		    (entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0) {
2896 			if (!swap_reserve(entry->end - entry->start)) {
2897 				rv = KERN_RESOURCE_SHORTAGE;
2898 				end = entry->end;
2899 				break;
2900 			}
2901 			crhold(cred);
2902 			entry->cred = cred;
2903 			continue;
2904 		}
2905 
2906 		VM_OBJECT_WLOCK(obj);
2907 		if ((obj->flags & OBJ_SWAP) == 0) {
2908 			VM_OBJECT_WUNLOCK(obj);
2909 			continue;
2910 		}
2911 
2912 		/*
2913 		 * Charge for the whole object allocation now, since
2914 		 * we cannot distinguish between non-charged and
2915 		 * charged clipped mapping of the same object later.
2916 		 */
2917 		KASSERT(obj->charge == 0,
2918 		    ("vm_map_protect: object %p overcharged (entry %p)",
2919 		    obj, entry));
2920 		if (!swap_reserve(ptoa(obj->size))) {
2921 			VM_OBJECT_WUNLOCK(obj);
2922 			rv = KERN_RESOURCE_SHORTAGE;
2923 			end = entry->end;
2924 			break;
2925 		}
2926 
2927 		crhold(cred);
2928 		obj->cred = cred;
2929 		obj->charge = ptoa(obj->size);
2930 		VM_OBJECT_WUNLOCK(obj);
2931 	}
2932 
2933 	/*
2934 	 * If enough swap space was available, go back and fix up protections.
2935 	 * Otherwise, just simplify entries, since some may have been modified.
2936 	 * [Note that clipping is not necessary the second time.]
2937 	 */
2938 	for (prev_entry = vm_map_entry_pred(first_entry), entry = first_entry;
2939 	    entry->start < end;
2940 	    vm_map_try_merge_entries(map, prev_entry, entry),
2941 	    prev_entry = entry, entry = vm_map_entry_succ(entry)) {
2942 		if (rv != KERN_SUCCESS)
2943 			continue;
2944 
2945 		if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
2946 			vm_map_protect_guard(entry, new_prot, new_maxprot,
2947 			    flags);
2948 			continue;
2949 		}
2950 
2951 		old_prot = entry->protection;
2952 
2953 		if ((flags & VM_MAP_PROTECT_SET_MAXPROT) != 0) {
2954 			entry->max_protection = new_maxprot;
2955 			entry->protection = new_maxprot & old_prot;
2956 		}
2957 		if ((flags & VM_MAP_PROTECT_SET_PROT) != 0)
2958 			entry->protection = new_prot;
2959 
2960 		/*
2961 		 * For user wired map entries, the normal lazy evaluation of
2962 		 * write access upgrades through soft page faults is
2963 		 * undesirable.  Instead, immediately copy any pages that are
2964 		 * copy-on-write and enable write access in the physical map.
2965 		 */
2966 		if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2967 		    (entry->protection & VM_PROT_WRITE) != 0 &&
2968 		    (old_prot & VM_PROT_WRITE) == 0)
2969 			vm_fault_copy_entry(map, map, entry, entry, NULL);
2970 
2971 		/*
2972 		 * When restricting access, update the physical map.  Worry
2973 		 * about copy-on-write here.
2974 		 */
2975 		if ((old_prot & ~entry->protection) != 0) {
2976 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2977 							VM_PROT_ALL)
2978 			pmap_protect(map->pmap, entry->start,
2979 			    entry->end,
2980 			    entry->protection & MASK(entry));
2981 #undef	MASK
2982 		}
2983 	}
2984 	vm_map_try_merge_entries(map, prev_entry, entry);
2985 	vm_map_unlock(map);
2986 	return (rv);
2987 }
2988 
2989 /*
2990  *	vm_map_madvise:
2991  *
2992  *	This routine traverses a processes map handling the madvise
2993  *	system call.  Advisories are classified as either those effecting
2994  *	the vm_map_entry structure, or those effecting the underlying
2995  *	objects.
2996  */
2997 int
2998 vm_map_madvise(
2999 	vm_map_t map,
3000 	vm_offset_t start,
3001 	vm_offset_t end,
3002 	int behav)
3003 {
3004 	vm_map_entry_t entry, prev_entry;
3005 	int rv;
3006 	bool modify_map;
3007 
3008 	/*
3009 	 * Some madvise calls directly modify the vm_map_entry, in which case
3010 	 * we need to use an exclusive lock on the map and we need to perform
3011 	 * various clipping operations.  Otherwise we only need a read-lock
3012 	 * on the map.
3013 	 */
3014 	switch(behav) {
3015 	case MADV_NORMAL:
3016 	case MADV_SEQUENTIAL:
3017 	case MADV_RANDOM:
3018 	case MADV_NOSYNC:
3019 	case MADV_AUTOSYNC:
3020 	case MADV_NOCORE:
3021 	case MADV_CORE:
3022 		if (start == end)
3023 			return (0);
3024 		modify_map = true;
3025 		vm_map_lock(map);
3026 		break;
3027 	case MADV_WILLNEED:
3028 	case MADV_DONTNEED:
3029 	case MADV_FREE:
3030 		if (start == end)
3031 			return (0);
3032 		modify_map = false;
3033 		vm_map_lock_read(map);
3034 		break;
3035 	default:
3036 		return (EINVAL);
3037 	}
3038 
3039 	/*
3040 	 * Locate starting entry and clip if necessary.
3041 	 */
3042 	VM_MAP_RANGE_CHECK(map, start, end);
3043 
3044 	if (modify_map) {
3045 		/*
3046 		 * madvise behaviors that are implemented in the vm_map_entry.
3047 		 *
3048 		 * We clip the vm_map_entry so that behavioral changes are
3049 		 * limited to the specified address range.
3050 		 */
3051 		rv = vm_map_lookup_clip_start(map, start, &entry, &prev_entry);
3052 		if (rv != KERN_SUCCESS) {
3053 			vm_map_unlock(map);
3054 			return (vm_mmap_to_errno(rv));
3055 		}
3056 
3057 		for (; entry->start < end; prev_entry = entry,
3058 		    entry = vm_map_entry_succ(entry)) {
3059 			if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
3060 				continue;
3061 
3062 			rv = vm_map_clip_end(map, entry, end);
3063 			if (rv != KERN_SUCCESS) {
3064 				vm_map_unlock(map);
3065 				return (vm_mmap_to_errno(rv));
3066 			}
3067 
3068 			switch (behav) {
3069 			case MADV_NORMAL:
3070 				vm_map_entry_set_behavior(entry,
3071 				    MAP_ENTRY_BEHAV_NORMAL);
3072 				break;
3073 			case MADV_SEQUENTIAL:
3074 				vm_map_entry_set_behavior(entry,
3075 				    MAP_ENTRY_BEHAV_SEQUENTIAL);
3076 				break;
3077 			case MADV_RANDOM:
3078 				vm_map_entry_set_behavior(entry,
3079 				    MAP_ENTRY_BEHAV_RANDOM);
3080 				break;
3081 			case MADV_NOSYNC:
3082 				entry->eflags |= MAP_ENTRY_NOSYNC;
3083 				break;
3084 			case MADV_AUTOSYNC:
3085 				entry->eflags &= ~MAP_ENTRY_NOSYNC;
3086 				break;
3087 			case MADV_NOCORE:
3088 				entry->eflags |= MAP_ENTRY_NOCOREDUMP;
3089 				break;
3090 			case MADV_CORE:
3091 				entry->eflags &= ~MAP_ENTRY_NOCOREDUMP;
3092 				break;
3093 			default:
3094 				break;
3095 			}
3096 			vm_map_try_merge_entries(map, prev_entry, entry);
3097 		}
3098 		vm_map_try_merge_entries(map, prev_entry, entry);
3099 		vm_map_unlock(map);
3100 	} else {
3101 		vm_pindex_t pstart, pend;
3102 
3103 		/*
3104 		 * madvise behaviors that are implemented in the underlying
3105 		 * vm_object.
3106 		 *
3107 		 * Since we don't clip the vm_map_entry, we have to clip
3108 		 * the vm_object pindex and count.
3109 		 */
3110 		if (!vm_map_lookup_entry(map, start, &entry))
3111 			entry = vm_map_entry_succ(entry);
3112 		for (; entry->start < end;
3113 		    entry = vm_map_entry_succ(entry)) {
3114 			vm_offset_t useEnd, useStart;
3115 
3116 			if ((entry->eflags & (MAP_ENTRY_IS_SUB_MAP |
3117 			    MAP_ENTRY_GUARD)) != 0)
3118 				continue;
3119 
3120 			/*
3121 			 * MADV_FREE would otherwise rewind time to
3122 			 * the creation of the shadow object.  Because
3123 			 * we hold the VM map read-locked, neither the
3124 			 * entry's object nor the presence of a
3125 			 * backing object can change.
3126 			 */
3127 			if (behav == MADV_FREE &&
3128 			    entry->object.vm_object != NULL &&
3129 			    entry->object.vm_object->backing_object != NULL)
3130 				continue;
3131 
3132 			pstart = OFF_TO_IDX(entry->offset);
3133 			pend = pstart + atop(entry->end - entry->start);
3134 			useStart = entry->start;
3135 			useEnd = entry->end;
3136 
3137 			if (entry->start < start) {
3138 				pstart += atop(start - entry->start);
3139 				useStart = start;
3140 			}
3141 			if (entry->end > end) {
3142 				pend -= atop(entry->end - end);
3143 				useEnd = end;
3144 			}
3145 
3146 			if (pstart >= pend)
3147 				continue;
3148 
3149 			/*
3150 			 * Perform the pmap_advise() before clearing
3151 			 * PGA_REFERENCED in vm_page_advise().  Otherwise, a
3152 			 * concurrent pmap operation, such as pmap_remove(),
3153 			 * could clear a reference in the pmap and set
3154 			 * PGA_REFERENCED on the page before the pmap_advise()
3155 			 * had completed.  Consequently, the page would appear
3156 			 * referenced based upon an old reference that
3157 			 * occurred before this pmap_advise() ran.
3158 			 */
3159 			if (behav == MADV_DONTNEED || behav == MADV_FREE)
3160 				pmap_advise(map->pmap, useStart, useEnd,
3161 				    behav);
3162 
3163 			vm_object_madvise(entry->object.vm_object, pstart,
3164 			    pend, behav);
3165 
3166 			/*
3167 			 * Pre-populate paging structures in the
3168 			 * WILLNEED case.  For wired entries, the
3169 			 * paging structures are already populated.
3170 			 */
3171 			if (behav == MADV_WILLNEED &&
3172 			    entry->wired_count == 0) {
3173 				vm_map_pmap_enter(map,
3174 				    useStart,
3175 				    entry->protection,
3176 				    entry->object.vm_object,
3177 				    pstart,
3178 				    ptoa(pend - pstart),
3179 				    MAP_PREFAULT_MADVISE
3180 				);
3181 			}
3182 		}
3183 		vm_map_unlock_read(map);
3184 	}
3185 	return (0);
3186 }
3187 
3188 /*
3189  *	vm_map_inherit:
3190  *
3191  *	Sets the inheritance of the specified address
3192  *	range in the target map.  Inheritance
3193  *	affects how the map will be shared with
3194  *	child maps at the time of vmspace_fork.
3195  */
3196 int
3197 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
3198 	       vm_inherit_t new_inheritance)
3199 {
3200 	vm_map_entry_t entry, lentry, prev_entry, start_entry;
3201 	int rv;
3202 
3203 	switch (new_inheritance) {
3204 	case VM_INHERIT_NONE:
3205 	case VM_INHERIT_COPY:
3206 	case VM_INHERIT_SHARE:
3207 	case VM_INHERIT_ZERO:
3208 		break;
3209 	default:
3210 		return (KERN_INVALID_ARGUMENT);
3211 	}
3212 	if (start == end)
3213 		return (KERN_SUCCESS);
3214 	vm_map_lock(map);
3215 	VM_MAP_RANGE_CHECK(map, start, end);
3216 	rv = vm_map_lookup_clip_start(map, start, &start_entry, &prev_entry);
3217 	if (rv != KERN_SUCCESS)
3218 		goto unlock;
3219 	if (vm_map_lookup_entry(map, end - 1, &lentry)) {
3220 		rv = vm_map_clip_end(map, lentry, end);
3221 		if (rv != KERN_SUCCESS)
3222 			goto unlock;
3223 	}
3224 	if (new_inheritance == VM_INHERIT_COPY) {
3225 		for (entry = start_entry; entry->start < end;
3226 		    prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3227 			if ((entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK)
3228 			    != 0) {
3229 				rv = KERN_INVALID_ARGUMENT;
3230 				goto unlock;
3231 			}
3232 		}
3233 	}
3234 	for (entry = start_entry; entry->start < end; prev_entry = entry,
3235 	    entry = vm_map_entry_succ(entry)) {
3236 		KASSERT(entry->end <= end, ("non-clipped entry %p end %jx %jx",
3237 		    entry, (uintmax_t)entry->end, (uintmax_t)end));
3238 		if ((entry->eflags & MAP_ENTRY_GUARD) == 0 ||
3239 		    new_inheritance != VM_INHERIT_ZERO)
3240 			entry->inheritance = new_inheritance;
3241 		vm_map_try_merge_entries(map, prev_entry, entry);
3242 	}
3243 	vm_map_try_merge_entries(map, prev_entry, entry);
3244 unlock:
3245 	vm_map_unlock(map);
3246 	return (rv);
3247 }
3248 
3249 /*
3250  *	vm_map_entry_in_transition:
3251  *
3252  *	Release the map lock, and sleep until the entry is no longer in
3253  *	transition.  Awake and acquire the map lock.  If the map changed while
3254  *	another held the lock, lookup a possibly-changed entry at or after the
3255  *	'start' position of the old entry.
3256  */
3257 static vm_map_entry_t
3258 vm_map_entry_in_transition(vm_map_t map, vm_offset_t in_start,
3259     vm_offset_t *io_end, bool holes_ok, vm_map_entry_t in_entry)
3260 {
3261 	vm_map_entry_t entry;
3262 	vm_offset_t start;
3263 	u_int last_timestamp;
3264 
3265 	VM_MAP_ASSERT_LOCKED(map);
3266 	KASSERT((in_entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3267 	    ("not in-tranition map entry %p", in_entry));
3268 	/*
3269 	 * We have not yet clipped the entry.
3270 	 */
3271 	start = MAX(in_start, in_entry->start);
3272 	in_entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3273 	last_timestamp = map->timestamp;
3274 	if (vm_map_unlock_and_wait(map, 0)) {
3275 		/*
3276 		 * Allow interruption of user wiring/unwiring?
3277 		 */
3278 	}
3279 	vm_map_lock(map);
3280 	if (last_timestamp + 1 == map->timestamp)
3281 		return (in_entry);
3282 
3283 	/*
3284 	 * Look again for the entry because the map was modified while it was
3285 	 * unlocked.  Specifically, the entry may have been clipped, merged, or
3286 	 * deleted.
3287 	 */
3288 	if (!vm_map_lookup_entry(map, start, &entry)) {
3289 		if (!holes_ok) {
3290 			*io_end = start;
3291 			return (NULL);
3292 		}
3293 		entry = vm_map_entry_succ(entry);
3294 	}
3295 	return (entry);
3296 }
3297 
3298 /*
3299  *	vm_map_unwire:
3300  *
3301  *	Implements both kernel and user unwiring.
3302  */
3303 int
3304 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
3305     int flags)
3306 {
3307 	vm_map_entry_t entry, first_entry, next_entry, prev_entry;
3308 	int rv;
3309 	bool holes_ok, need_wakeup, user_unwire;
3310 
3311 	if (start == end)
3312 		return (KERN_SUCCESS);
3313 	holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0;
3314 	user_unwire = (flags & VM_MAP_WIRE_USER) != 0;
3315 	vm_map_lock(map);
3316 	VM_MAP_RANGE_CHECK(map, start, end);
3317 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
3318 		if (holes_ok)
3319 			first_entry = vm_map_entry_succ(first_entry);
3320 		else {
3321 			vm_map_unlock(map);
3322 			return (KERN_INVALID_ADDRESS);
3323 		}
3324 	}
3325 	rv = KERN_SUCCESS;
3326 	for (entry = first_entry; entry->start < end; entry = next_entry) {
3327 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
3328 			/*
3329 			 * We have not yet clipped the entry.
3330 			 */
3331 			next_entry = vm_map_entry_in_transition(map, start,
3332 			    &end, holes_ok, entry);
3333 			if (next_entry == NULL) {
3334 				if (entry == first_entry) {
3335 					vm_map_unlock(map);
3336 					return (KERN_INVALID_ADDRESS);
3337 				}
3338 				rv = KERN_INVALID_ADDRESS;
3339 				break;
3340 			}
3341 			first_entry = (entry == first_entry) ?
3342 			    next_entry : NULL;
3343 			continue;
3344 		}
3345 		rv = vm_map_clip_start(map, entry, start);
3346 		if (rv != KERN_SUCCESS)
3347 			break;
3348 		rv = vm_map_clip_end(map, entry, end);
3349 		if (rv != KERN_SUCCESS)
3350 			break;
3351 
3352 		/*
3353 		 * Mark the entry in case the map lock is released.  (See
3354 		 * above.)
3355 		 */
3356 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
3357 		    entry->wiring_thread == NULL,
3358 		    ("owned map entry %p", entry));
3359 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
3360 		entry->wiring_thread = curthread;
3361 		next_entry = vm_map_entry_succ(entry);
3362 		/*
3363 		 * Check the map for holes in the specified region.
3364 		 * If holes_ok, skip this check.
3365 		 */
3366 		if (!holes_ok &&
3367 		    entry->end < end && next_entry->start > entry->end) {
3368 			end = entry->end;
3369 			rv = KERN_INVALID_ADDRESS;
3370 			break;
3371 		}
3372 		/*
3373 		 * If system unwiring, require that the entry is system wired.
3374 		 */
3375 		if (!user_unwire &&
3376 		    vm_map_entry_system_wired_count(entry) == 0) {
3377 			end = entry->end;
3378 			rv = KERN_INVALID_ARGUMENT;
3379 			break;
3380 		}
3381 	}
3382 	need_wakeup = false;
3383 	if (first_entry == NULL &&
3384 	    !vm_map_lookup_entry(map, start, &first_entry)) {
3385 		KASSERT(holes_ok, ("vm_map_unwire: lookup failed"));
3386 		prev_entry = first_entry;
3387 		entry = vm_map_entry_succ(first_entry);
3388 	} else {
3389 		prev_entry = vm_map_entry_pred(first_entry);
3390 		entry = first_entry;
3391 	}
3392 	for (; entry->start < end;
3393 	    prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3394 		/*
3395 		 * If holes_ok was specified, an empty
3396 		 * space in the unwired region could have been mapped
3397 		 * while the map lock was dropped for draining
3398 		 * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
3399 		 * could be simultaneously wiring this new mapping
3400 		 * entry.  Detect these cases and skip any entries
3401 		 * marked as in transition by us.
3402 		 */
3403 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
3404 		    entry->wiring_thread != curthread) {
3405 			KASSERT(holes_ok,
3406 			    ("vm_map_unwire: !HOLESOK and new/changed entry"));
3407 			continue;
3408 		}
3409 
3410 		if (rv == KERN_SUCCESS && (!user_unwire ||
3411 		    (entry->eflags & MAP_ENTRY_USER_WIRED))) {
3412 			if (entry->wired_count == 1)
3413 				vm_map_entry_unwire(map, entry);
3414 			else
3415 				entry->wired_count--;
3416 			if (user_unwire)
3417 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3418 		}
3419 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3420 		    ("vm_map_unwire: in-transition flag missing %p", entry));
3421 		KASSERT(entry->wiring_thread == curthread,
3422 		    ("vm_map_unwire: alien wire %p", entry));
3423 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
3424 		entry->wiring_thread = NULL;
3425 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3426 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3427 			need_wakeup = true;
3428 		}
3429 		vm_map_try_merge_entries(map, prev_entry, entry);
3430 	}
3431 	vm_map_try_merge_entries(map, prev_entry, entry);
3432 	vm_map_unlock(map);
3433 	if (need_wakeup)
3434 		vm_map_wakeup(map);
3435 	return (rv);
3436 }
3437 
3438 static void
3439 vm_map_wire_user_count_sub(u_long npages)
3440 {
3441 
3442 	atomic_subtract_long(&vm_user_wire_count, npages);
3443 }
3444 
3445 static bool
3446 vm_map_wire_user_count_add(u_long npages)
3447 {
3448 	u_long wired;
3449 
3450 	wired = vm_user_wire_count;
3451 	do {
3452 		if (npages + wired > vm_page_max_user_wired)
3453 			return (false);
3454 	} while (!atomic_fcmpset_long(&vm_user_wire_count, &wired,
3455 	    npages + wired));
3456 
3457 	return (true);
3458 }
3459 
3460 /*
3461  *	vm_map_wire_entry_failure:
3462  *
3463  *	Handle a wiring failure on the given entry.
3464  *
3465  *	The map should be locked.
3466  */
3467 static void
3468 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
3469     vm_offset_t failed_addr)
3470 {
3471 
3472 	VM_MAP_ASSERT_LOCKED(map);
3473 	KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
3474 	    entry->wired_count == 1,
3475 	    ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
3476 	KASSERT(failed_addr < entry->end,
3477 	    ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
3478 
3479 	/*
3480 	 * If any pages at the start of this entry were successfully wired,
3481 	 * then unwire them.
3482 	 */
3483 	if (failed_addr > entry->start) {
3484 		pmap_unwire(map->pmap, entry->start, failed_addr);
3485 		vm_object_unwire(entry->object.vm_object, entry->offset,
3486 		    failed_addr - entry->start, PQ_ACTIVE);
3487 	}
3488 
3489 	/*
3490 	 * Assign an out-of-range value to represent the failure to wire this
3491 	 * entry.
3492 	 */
3493 	entry->wired_count = -1;
3494 }
3495 
3496 int
3497 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3498 {
3499 	int rv;
3500 
3501 	vm_map_lock(map);
3502 	rv = vm_map_wire_locked(map, start, end, flags);
3503 	vm_map_unlock(map);
3504 	return (rv);
3505 }
3506 
3507 /*
3508  *	vm_map_wire_locked:
3509  *
3510  *	Implements both kernel and user wiring.  Returns with the map locked,
3511  *	the map lock may be dropped.
3512  */
3513 int
3514 vm_map_wire_locked(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3515 {
3516 	vm_map_entry_t entry, first_entry, next_entry, prev_entry;
3517 	vm_offset_t faddr, saved_end, saved_start;
3518 	u_long incr, npages;
3519 	u_int bidx, last_timestamp;
3520 	int rv;
3521 	bool holes_ok, need_wakeup, user_wire;
3522 	vm_prot_t prot;
3523 
3524 	VM_MAP_ASSERT_LOCKED(map);
3525 
3526 	if (start == end)
3527 		return (KERN_SUCCESS);
3528 	prot = 0;
3529 	if (flags & VM_MAP_WIRE_WRITE)
3530 		prot |= VM_PROT_WRITE;
3531 	holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0;
3532 	user_wire = (flags & VM_MAP_WIRE_USER) != 0;
3533 	VM_MAP_RANGE_CHECK(map, start, end);
3534 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
3535 		if (holes_ok)
3536 			first_entry = vm_map_entry_succ(first_entry);
3537 		else
3538 			return (KERN_INVALID_ADDRESS);
3539 	}
3540 	for (entry = first_entry; entry->start < end; entry = next_entry) {
3541 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
3542 			/*
3543 			 * We have not yet clipped the entry.
3544 			 */
3545 			next_entry = vm_map_entry_in_transition(map, start,
3546 			    &end, holes_ok, entry);
3547 			if (next_entry == NULL) {
3548 				if (entry == first_entry)
3549 					return (KERN_INVALID_ADDRESS);
3550 				rv = KERN_INVALID_ADDRESS;
3551 				goto done;
3552 			}
3553 			first_entry = (entry == first_entry) ?
3554 			    next_entry : NULL;
3555 			continue;
3556 		}
3557 		rv = vm_map_clip_start(map, entry, start);
3558 		if (rv != KERN_SUCCESS)
3559 			goto done;
3560 		rv = vm_map_clip_end(map, entry, end);
3561 		if (rv != KERN_SUCCESS)
3562 			goto done;
3563 
3564 		/*
3565 		 * Mark the entry in case the map lock is released.  (See
3566 		 * above.)
3567 		 */
3568 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
3569 		    entry->wiring_thread == NULL,
3570 		    ("owned map entry %p", entry));
3571 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
3572 		entry->wiring_thread = curthread;
3573 		if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
3574 		    || (entry->protection & prot) != prot) {
3575 			entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
3576 			if (!holes_ok) {
3577 				end = entry->end;
3578 				rv = KERN_INVALID_ADDRESS;
3579 				goto done;
3580 			}
3581 		} else if (entry->wired_count == 0) {
3582 			entry->wired_count++;
3583 
3584 			npages = atop(entry->end - entry->start);
3585 			if (user_wire && !vm_map_wire_user_count_add(npages)) {
3586 				vm_map_wire_entry_failure(map, entry,
3587 				    entry->start);
3588 				end = entry->end;
3589 				rv = KERN_RESOURCE_SHORTAGE;
3590 				goto done;
3591 			}
3592 
3593 			/*
3594 			 * Release the map lock, relying on the in-transition
3595 			 * mark.  Mark the map busy for fork.
3596 			 */
3597 			saved_start = entry->start;
3598 			saved_end = entry->end;
3599 			last_timestamp = map->timestamp;
3600 			bidx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry);
3601 			incr =  pagesizes[bidx];
3602 			vm_map_busy(map);
3603 			vm_map_unlock(map);
3604 
3605 			for (faddr = saved_start; faddr < saved_end;
3606 			    faddr += incr) {
3607 				/*
3608 				 * Simulate a fault to get the page and enter
3609 				 * it into the physical map.
3610 				 */
3611 				rv = vm_fault(map, faddr, VM_PROT_NONE,
3612 				    VM_FAULT_WIRE, NULL);
3613 				if (rv != KERN_SUCCESS)
3614 					break;
3615 			}
3616 			vm_map_lock(map);
3617 			vm_map_unbusy(map);
3618 			if (last_timestamp + 1 != map->timestamp) {
3619 				/*
3620 				 * Look again for the entry because the map was
3621 				 * modified while it was unlocked.  The entry
3622 				 * may have been clipped, but NOT merged or
3623 				 * deleted.
3624 				 */
3625 				if (!vm_map_lookup_entry(map, saved_start,
3626 				    &next_entry))
3627 					KASSERT(false,
3628 					    ("vm_map_wire: lookup failed"));
3629 				first_entry = (entry == first_entry) ?
3630 				    next_entry : NULL;
3631 				for (entry = next_entry; entry->end < saved_end;
3632 				    entry = vm_map_entry_succ(entry)) {
3633 					/*
3634 					 * In case of failure, handle entries
3635 					 * that were not fully wired here;
3636 					 * fully wired entries are handled
3637 					 * later.
3638 					 */
3639 					if (rv != KERN_SUCCESS &&
3640 					    faddr < entry->end)
3641 						vm_map_wire_entry_failure(map,
3642 						    entry, faddr);
3643 				}
3644 			}
3645 			if (rv != KERN_SUCCESS) {
3646 				vm_map_wire_entry_failure(map, entry, faddr);
3647 				if (user_wire)
3648 					vm_map_wire_user_count_sub(npages);
3649 				end = entry->end;
3650 				goto done;
3651 			}
3652 		} else if (!user_wire ||
3653 			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3654 			entry->wired_count++;
3655 		}
3656 		/*
3657 		 * Check the map for holes in the specified region.
3658 		 * If holes_ok was specified, skip this check.
3659 		 */
3660 		next_entry = vm_map_entry_succ(entry);
3661 		if (!holes_ok &&
3662 		    entry->end < end && next_entry->start > entry->end) {
3663 			end = entry->end;
3664 			rv = KERN_INVALID_ADDRESS;
3665 			goto done;
3666 		}
3667 	}
3668 	rv = KERN_SUCCESS;
3669 done:
3670 	need_wakeup = false;
3671 	if (first_entry == NULL &&
3672 	    !vm_map_lookup_entry(map, start, &first_entry)) {
3673 		KASSERT(holes_ok, ("vm_map_wire: lookup failed"));
3674 		prev_entry = first_entry;
3675 		entry = vm_map_entry_succ(first_entry);
3676 	} else {
3677 		prev_entry = vm_map_entry_pred(first_entry);
3678 		entry = first_entry;
3679 	}
3680 	for (; entry->start < end;
3681 	    prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3682 		/*
3683 		 * If holes_ok was specified, an empty
3684 		 * space in the unwired region could have been mapped
3685 		 * while the map lock was dropped for faulting in the
3686 		 * pages or draining MAP_ENTRY_IN_TRANSITION.
3687 		 * Moreover, another thread could be simultaneously
3688 		 * wiring this new mapping entry.  Detect these cases
3689 		 * and skip any entries marked as in transition not by us.
3690 		 *
3691 		 * Another way to get an entry not marked with
3692 		 * MAP_ENTRY_IN_TRANSITION is after failed clipping,
3693 		 * which set rv to KERN_INVALID_ARGUMENT.
3694 		 */
3695 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
3696 		    entry->wiring_thread != curthread) {
3697 			KASSERT(holes_ok || rv == KERN_INVALID_ARGUMENT,
3698 			    ("vm_map_wire: !HOLESOK and new/changed entry"));
3699 			continue;
3700 		}
3701 
3702 		if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) {
3703 			/* do nothing */
3704 		} else if (rv == KERN_SUCCESS) {
3705 			if (user_wire)
3706 				entry->eflags |= MAP_ENTRY_USER_WIRED;
3707 		} else if (entry->wired_count == -1) {
3708 			/*
3709 			 * Wiring failed on this entry.  Thus, unwiring is
3710 			 * unnecessary.
3711 			 */
3712 			entry->wired_count = 0;
3713 		} else if (!user_wire ||
3714 		    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3715 			/*
3716 			 * Undo the wiring.  Wiring succeeded on this entry
3717 			 * but failed on a later entry.
3718 			 */
3719 			if (entry->wired_count == 1) {
3720 				vm_map_entry_unwire(map, entry);
3721 				if (user_wire)
3722 					vm_map_wire_user_count_sub(
3723 					    atop(entry->end - entry->start));
3724 			} else
3725 				entry->wired_count--;
3726 		}
3727 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3728 		    ("vm_map_wire: in-transition flag missing %p", entry));
3729 		KASSERT(entry->wiring_thread == curthread,
3730 		    ("vm_map_wire: alien wire %p", entry));
3731 		entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
3732 		    MAP_ENTRY_WIRE_SKIPPED);
3733 		entry->wiring_thread = NULL;
3734 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3735 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3736 			need_wakeup = true;
3737 		}
3738 		vm_map_try_merge_entries(map, prev_entry, entry);
3739 	}
3740 	vm_map_try_merge_entries(map, prev_entry, entry);
3741 	if (need_wakeup)
3742 		vm_map_wakeup(map);
3743 	return (rv);
3744 }
3745 
3746 /*
3747  * vm_map_sync
3748  *
3749  * Push any dirty cached pages in the address range to their pager.
3750  * If syncio is TRUE, dirty pages are written synchronously.
3751  * If invalidate is TRUE, any cached pages are freed as well.
3752  *
3753  * If the size of the region from start to end is zero, we are
3754  * supposed to flush all modified pages within the region containing
3755  * start.  Unfortunately, a region can be split or coalesced with
3756  * neighboring regions, making it difficult to determine what the
3757  * original region was.  Therefore, we approximate this requirement by
3758  * flushing the current region containing start.
3759  *
3760  * Returns an error if any part of the specified range is not mapped.
3761  */
3762 int
3763 vm_map_sync(
3764 	vm_map_t map,
3765 	vm_offset_t start,
3766 	vm_offset_t end,
3767 	boolean_t syncio,
3768 	boolean_t invalidate)
3769 {
3770 	vm_map_entry_t entry, first_entry, next_entry;
3771 	vm_size_t size;
3772 	vm_object_t object;
3773 	vm_ooffset_t offset;
3774 	unsigned int last_timestamp;
3775 	int bdry_idx;
3776 	boolean_t failed;
3777 
3778 	vm_map_lock_read(map);
3779 	VM_MAP_RANGE_CHECK(map, start, end);
3780 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
3781 		vm_map_unlock_read(map);
3782 		return (KERN_INVALID_ADDRESS);
3783 	} else if (start == end) {
3784 		start = first_entry->start;
3785 		end = first_entry->end;
3786 	}
3787 
3788 	/*
3789 	 * Make a first pass to check for user-wired memory, holes,
3790 	 * and partial invalidation of largepage mappings.
3791 	 */
3792 	for (entry = first_entry; entry->start < end; entry = next_entry) {
3793 		if (invalidate) {
3794 			if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0) {
3795 				vm_map_unlock_read(map);
3796 				return (KERN_INVALID_ARGUMENT);
3797 			}
3798 			bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry);
3799 			if (bdry_idx != 0 &&
3800 			    ((start & (pagesizes[bdry_idx] - 1)) != 0 ||
3801 			    (end & (pagesizes[bdry_idx] - 1)) != 0)) {
3802 				vm_map_unlock_read(map);
3803 				return (KERN_INVALID_ARGUMENT);
3804 			}
3805 		}
3806 		next_entry = vm_map_entry_succ(entry);
3807 		if (end > entry->end &&
3808 		    entry->end != next_entry->start) {
3809 			vm_map_unlock_read(map);
3810 			return (KERN_INVALID_ADDRESS);
3811 		}
3812 	}
3813 
3814 	if (invalidate)
3815 		pmap_remove(map->pmap, start, end);
3816 	failed = FALSE;
3817 
3818 	/*
3819 	 * Make a second pass, cleaning/uncaching pages from the indicated
3820 	 * objects as we go.
3821 	 */
3822 	for (entry = first_entry; entry->start < end;) {
3823 		offset = entry->offset + (start - entry->start);
3824 		size = (end <= entry->end ? end : entry->end) - start;
3825 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) {
3826 			vm_map_t smap;
3827 			vm_map_entry_t tentry;
3828 			vm_size_t tsize;
3829 
3830 			smap = entry->object.sub_map;
3831 			vm_map_lock_read(smap);
3832 			(void) vm_map_lookup_entry(smap, offset, &tentry);
3833 			tsize = tentry->end - offset;
3834 			if (tsize < size)
3835 				size = tsize;
3836 			object = tentry->object.vm_object;
3837 			offset = tentry->offset + (offset - tentry->start);
3838 			vm_map_unlock_read(smap);
3839 		} else {
3840 			object = entry->object.vm_object;
3841 		}
3842 		vm_object_reference(object);
3843 		last_timestamp = map->timestamp;
3844 		vm_map_unlock_read(map);
3845 		if (!vm_object_sync(object, offset, size, syncio, invalidate))
3846 			failed = TRUE;
3847 		start += size;
3848 		vm_object_deallocate(object);
3849 		vm_map_lock_read(map);
3850 		if (last_timestamp == map->timestamp ||
3851 		    !vm_map_lookup_entry(map, start, &entry))
3852 			entry = vm_map_entry_succ(entry);
3853 	}
3854 
3855 	vm_map_unlock_read(map);
3856 	return (failed ? KERN_FAILURE : KERN_SUCCESS);
3857 }
3858 
3859 /*
3860  *	vm_map_entry_unwire:	[ internal use only ]
3861  *
3862  *	Make the region specified by this entry pageable.
3863  *
3864  *	The map in question should be locked.
3865  *	[This is the reason for this routine's existence.]
3866  */
3867 static void
3868 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
3869 {
3870 	vm_size_t size;
3871 
3872 	VM_MAP_ASSERT_LOCKED(map);
3873 	KASSERT(entry->wired_count > 0,
3874 	    ("vm_map_entry_unwire: entry %p isn't wired", entry));
3875 
3876 	size = entry->end - entry->start;
3877 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0)
3878 		vm_map_wire_user_count_sub(atop(size));
3879 	pmap_unwire(map->pmap, entry->start, entry->end);
3880 	vm_object_unwire(entry->object.vm_object, entry->offset, size,
3881 	    PQ_ACTIVE);
3882 	entry->wired_count = 0;
3883 }
3884 
3885 static void
3886 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
3887 {
3888 
3889 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
3890 		vm_object_deallocate(entry->object.vm_object);
3891 	uma_zfree(system_map ? kmapentzone : mapentzone, entry);
3892 }
3893 
3894 /*
3895  *	vm_map_entry_delete:	[ internal use only ]
3896  *
3897  *	Deallocate the given entry from the target map.
3898  */
3899 static void
3900 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
3901 {
3902 	vm_object_t object;
3903 	vm_pindex_t offidxstart, offidxend, size1;
3904 	vm_size_t size;
3905 
3906 	vm_map_entry_unlink(map, entry, UNLINK_MERGE_NONE);
3907 	object = entry->object.vm_object;
3908 
3909 	if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
3910 		MPASS(entry->cred == NULL);
3911 		MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0);
3912 		MPASS(object == NULL);
3913 		vm_map_entry_deallocate(entry, map->system_map);
3914 		return;
3915 	}
3916 
3917 	size = entry->end - entry->start;
3918 	map->size -= size;
3919 
3920 	if (entry->cred != NULL) {
3921 		swap_release_by_cred(size, entry->cred);
3922 		crfree(entry->cred);
3923 	}
3924 
3925 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || object == NULL) {
3926 		entry->object.vm_object = NULL;
3927 	} else if ((object->flags & OBJ_ANON) != 0 ||
3928 	    object == kernel_object) {
3929 		KASSERT(entry->cred == NULL || object->cred == NULL ||
3930 		    (entry->eflags & MAP_ENTRY_NEEDS_COPY),
3931 		    ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
3932 		offidxstart = OFF_TO_IDX(entry->offset);
3933 		offidxend = offidxstart + atop(size);
3934 		VM_OBJECT_WLOCK(object);
3935 		if (object->ref_count != 1 &&
3936 		    ((object->flags & OBJ_ONEMAPPING) != 0 ||
3937 		    object == kernel_object)) {
3938 			vm_object_collapse(object);
3939 
3940 			/*
3941 			 * The option OBJPR_NOTMAPPED can be passed here
3942 			 * because vm_map_delete() already performed
3943 			 * pmap_remove() on the only mapping to this range
3944 			 * of pages.
3945 			 */
3946 			vm_object_page_remove(object, offidxstart, offidxend,
3947 			    OBJPR_NOTMAPPED);
3948 			if (offidxend >= object->size &&
3949 			    offidxstart < object->size) {
3950 				size1 = object->size;
3951 				object->size = offidxstart;
3952 				if (object->cred != NULL) {
3953 					size1 -= object->size;
3954 					KASSERT(object->charge >= ptoa(size1),
3955 					    ("object %p charge < 0", object));
3956 					swap_release_by_cred(ptoa(size1),
3957 					    object->cred);
3958 					object->charge -= ptoa(size1);
3959 				}
3960 			}
3961 		}
3962 		VM_OBJECT_WUNLOCK(object);
3963 	}
3964 	if (map->system_map)
3965 		vm_map_entry_deallocate(entry, TRUE);
3966 	else {
3967 		entry->defer_next = curthread->td_map_def_user;
3968 		curthread->td_map_def_user = entry;
3969 	}
3970 }
3971 
3972 /*
3973  *	vm_map_delete:	[ internal use only ]
3974  *
3975  *	Deallocates the given address range from the target
3976  *	map.
3977  */
3978 int
3979 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
3980 {
3981 	vm_map_entry_t entry, next_entry, scratch_entry;
3982 	int rv;
3983 
3984 	VM_MAP_ASSERT_LOCKED(map);
3985 
3986 	if (start == end)
3987 		return (KERN_SUCCESS);
3988 
3989 	/*
3990 	 * Find the start of the region, and clip it.
3991 	 * Step through all entries in this region.
3992 	 */
3993 	rv = vm_map_lookup_clip_start(map, start, &entry, &scratch_entry);
3994 	if (rv != KERN_SUCCESS)
3995 		return (rv);
3996 	for (; entry->start < end; entry = next_entry) {
3997 		/*
3998 		 * Wait for wiring or unwiring of an entry to complete.
3999 		 * Also wait for any system wirings to disappear on
4000 		 * user maps.
4001 		 */
4002 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
4003 		    (vm_map_pmap(map) != kernel_pmap &&
4004 		    vm_map_entry_system_wired_count(entry) != 0)) {
4005 			unsigned int last_timestamp;
4006 			vm_offset_t saved_start;
4007 
4008 			saved_start = entry->start;
4009 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
4010 			last_timestamp = map->timestamp;
4011 			(void) vm_map_unlock_and_wait(map, 0);
4012 			vm_map_lock(map);
4013 			if (last_timestamp + 1 != map->timestamp) {
4014 				/*
4015 				 * Look again for the entry because the map was
4016 				 * modified while it was unlocked.
4017 				 * Specifically, the entry may have been
4018 				 * clipped, merged, or deleted.
4019 				 */
4020 				rv = vm_map_lookup_clip_start(map, saved_start,
4021 				    &next_entry, &scratch_entry);
4022 				if (rv != KERN_SUCCESS)
4023 					break;
4024 			} else
4025 				next_entry = entry;
4026 			continue;
4027 		}
4028 
4029 		/* XXXKIB or delete to the upper superpage boundary ? */
4030 		rv = vm_map_clip_end(map, entry, end);
4031 		if (rv != KERN_SUCCESS)
4032 			break;
4033 		next_entry = vm_map_entry_succ(entry);
4034 
4035 		/*
4036 		 * Unwire before removing addresses from the pmap; otherwise,
4037 		 * unwiring will put the entries back in the pmap.
4038 		 */
4039 		if (entry->wired_count != 0)
4040 			vm_map_entry_unwire(map, entry);
4041 
4042 		/*
4043 		 * Remove mappings for the pages, but only if the
4044 		 * mappings could exist.  For instance, it does not
4045 		 * make sense to call pmap_remove() for guard entries.
4046 		 */
4047 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 ||
4048 		    entry->object.vm_object != NULL)
4049 			pmap_map_delete(map->pmap, entry->start, entry->end);
4050 
4051 		/*
4052 		 * Delete the entry only after removing all pmap
4053 		 * entries pointing to its pages.  (Otherwise, its
4054 		 * page frames may be reallocated, and any modify bits
4055 		 * will be set in the wrong object!)
4056 		 */
4057 		vm_map_entry_delete(map, entry);
4058 	}
4059 	return (rv);
4060 }
4061 
4062 /*
4063  *	vm_map_remove:
4064  *
4065  *	Remove the given address range from the target map.
4066  *	This is the exported form of vm_map_delete.
4067  */
4068 int
4069 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
4070 {
4071 	int result;
4072 
4073 	vm_map_lock(map);
4074 	VM_MAP_RANGE_CHECK(map, start, end);
4075 	result = vm_map_delete(map, start, end);
4076 	vm_map_unlock(map);
4077 	return (result);
4078 }
4079 
4080 /*
4081  *	vm_map_check_protection:
4082  *
4083  *	Assert that the target map allows the specified privilege on the
4084  *	entire address region given.  The entire region must be allocated.
4085  *
4086  *	WARNING!  This code does not and should not check whether the
4087  *	contents of the region is accessible.  For example a smaller file
4088  *	might be mapped into a larger address space.
4089  *
4090  *	NOTE!  This code is also called by munmap().
4091  *
4092  *	The map must be locked.  A read lock is sufficient.
4093  */
4094 boolean_t
4095 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
4096 			vm_prot_t protection)
4097 {
4098 	vm_map_entry_t entry;
4099 	vm_map_entry_t tmp_entry;
4100 
4101 	if (!vm_map_lookup_entry(map, start, &tmp_entry))
4102 		return (FALSE);
4103 	entry = tmp_entry;
4104 
4105 	while (start < end) {
4106 		/*
4107 		 * No holes allowed!
4108 		 */
4109 		if (start < entry->start)
4110 			return (FALSE);
4111 		/*
4112 		 * Check protection associated with entry.
4113 		 */
4114 		if ((entry->protection & protection) != protection)
4115 			return (FALSE);
4116 		/* go to next entry */
4117 		start = entry->end;
4118 		entry = vm_map_entry_succ(entry);
4119 	}
4120 	return (TRUE);
4121 }
4122 
4123 /*
4124  *
4125  *	vm_map_copy_swap_object:
4126  *
4127  *	Copies a swap-backed object from an existing map entry to a
4128  *	new one.  Carries forward the swap charge.  May change the
4129  *	src object on return.
4130  */
4131 static void
4132 vm_map_copy_swap_object(vm_map_entry_t src_entry, vm_map_entry_t dst_entry,
4133     vm_offset_t size, vm_ooffset_t *fork_charge)
4134 {
4135 	vm_object_t src_object;
4136 	struct ucred *cred;
4137 	int charged;
4138 
4139 	src_object = src_entry->object.vm_object;
4140 	charged = ENTRY_CHARGED(src_entry);
4141 	if ((src_object->flags & OBJ_ANON) != 0) {
4142 		VM_OBJECT_WLOCK(src_object);
4143 		vm_object_collapse(src_object);
4144 		if ((src_object->flags & OBJ_ONEMAPPING) != 0) {
4145 			vm_object_split(src_entry);
4146 			src_object = src_entry->object.vm_object;
4147 		}
4148 		vm_object_reference_locked(src_object);
4149 		vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
4150 		VM_OBJECT_WUNLOCK(src_object);
4151 	} else
4152 		vm_object_reference(src_object);
4153 	if (src_entry->cred != NULL &&
4154 	    !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
4155 		KASSERT(src_object->cred == NULL,
4156 		    ("OVERCOMMIT: vm_map_copy_anon_entry: cred %p",
4157 		     src_object));
4158 		src_object->cred = src_entry->cred;
4159 		src_object->charge = size;
4160 	}
4161 	dst_entry->object.vm_object = src_object;
4162 	if (charged) {
4163 		cred = curthread->td_ucred;
4164 		crhold(cred);
4165 		dst_entry->cred = cred;
4166 		*fork_charge += size;
4167 		if (!(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
4168 			crhold(cred);
4169 			src_entry->cred = cred;
4170 			*fork_charge += size;
4171 		}
4172 	}
4173 }
4174 
4175 /*
4176  *	vm_map_copy_entry:
4177  *
4178  *	Copies the contents of the source entry to the destination
4179  *	entry.  The entries *must* be aligned properly.
4180  */
4181 static void
4182 vm_map_copy_entry(
4183 	vm_map_t src_map,
4184 	vm_map_t dst_map,
4185 	vm_map_entry_t src_entry,
4186 	vm_map_entry_t dst_entry,
4187 	vm_ooffset_t *fork_charge)
4188 {
4189 	vm_object_t src_object;
4190 	vm_map_entry_t fake_entry;
4191 	vm_offset_t size;
4192 
4193 	VM_MAP_ASSERT_LOCKED(dst_map);
4194 
4195 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
4196 		return;
4197 
4198 	if (src_entry->wired_count == 0 ||
4199 	    (src_entry->protection & VM_PROT_WRITE) == 0) {
4200 		/*
4201 		 * If the source entry is marked needs_copy, it is already
4202 		 * write-protected.
4203 		 */
4204 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
4205 		    (src_entry->protection & VM_PROT_WRITE) != 0) {
4206 			pmap_protect(src_map->pmap,
4207 			    src_entry->start,
4208 			    src_entry->end,
4209 			    src_entry->protection & ~VM_PROT_WRITE);
4210 		}
4211 
4212 		/*
4213 		 * Make a copy of the object.
4214 		 */
4215 		size = src_entry->end - src_entry->start;
4216 		if ((src_object = src_entry->object.vm_object) != NULL) {
4217 			if ((src_object->flags & OBJ_SWAP) != 0) {
4218 				vm_map_copy_swap_object(src_entry, dst_entry,
4219 				    size, fork_charge);
4220 				/* May have split/collapsed, reload obj. */
4221 				src_object = src_entry->object.vm_object;
4222 			} else {
4223 				vm_object_reference(src_object);
4224 				dst_entry->object.vm_object = src_object;
4225 			}
4226 			src_entry->eflags |= MAP_ENTRY_COW |
4227 			    MAP_ENTRY_NEEDS_COPY;
4228 			dst_entry->eflags |= MAP_ENTRY_COW |
4229 			    MAP_ENTRY_NEEDS_COPY;
4230 			dst_entry->offset = src_entry->offset;
4231 			if (src_entry->eflags & MAP_ENTRY_WRITECNT) {
4232 				/*
4233 				 * MAP_ENTRY_WRITECNT cannot
4234 				 * indicate write reference from
4235 				 * src_entry, since the entry is
4236 				 * marked as needs copy.  Allocate a
4237 				 * fake entry that is used to
4238 				 * decrement object->un_pager writecount
4239 				 * at the appropriate time.  Attach
4240 				 * fake_entry to the deferred list.
4241 				 */
4242 				fake_entry = vm_map_entry_create(dst_map);
4243 				fake_entry->eflags = MAP_ENTRY_WRITECNT;
4244 				src_entry->eflags &= ~MAP_ENTRY_WRITECNT;
4245 				vm_object_reference(src_object);
4246 				fake_entry->object.vm_object = src_object;
4247 				fake_entry->start = src_entry->start;
4248 				fake_entry->end = src_entry->end;
4249 				fake_entry->defer_next =
4250 				    curthread->td_map_def_user;
4251 				curthread->td_map_def_user = fake_entry;
4252 			}
4253 
4254 			pmap_copy(dst_map->pmap, src_map->pmap,
4255 			    dst_entry->start, dst_entry->end - dst_entry->start,
4256 			    src_entry->start);
4257 		} else {
4258 			dst_entry->object.vm_object = NULL;
4259 			if ((dst_entry->eflags & MAP_ENTRY_GUARD) == 0)
4260 				dst_entry->offset = 0;
4261 			if (src_entry->cred != NULL) {
4262 				dst_entry->cred = curthread->td_ucred;
4263 				crhold(dst_entry->cred);
4264 				*fork_charge += size;
4265 			}
4266 		}
4267 	} else {
4268 		/*
4269 		 * We don't want to make writeable wired pages copy-on-write.
4270 		 * Immediately copy these pages into the new map by simulating
4271 		 * page faults.  The new pages are pageable.
4272 		 */
4273 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
4274 		    fork_charge);
4275 	}
4276 }
4277 
4278 /*
4279  * vmspace_map_entry_forked:
4280  * Update the newly-forked vmspace each time a map entry is inherited
4281  * or copied.  The values for vm_dsize and vm_tsize are approximate
4282  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
4283  */
4284 static void
4285 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
4286     vm_map_entry_t entry)
4287 {
4288 	vm_size_t entrysize;
4289 	vm_offset_t newend;
4290 
4291 	if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
4292 		return;
4293 	entrysize = entry->end - entry->start;
4294 	vm2->vm_map.size += entrysize;
4295 	if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
4296 		vm2->vm_ssize += btoc(entrysize);
4297 	} else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
4298 	    entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
4299 		newend = MIN(entry->end,
4300 		    (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
4301 		vm2->vm_dsize += btoc(newend - entry->start);
4302 	} else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
4303 	    entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
4304 		newend = MIN(entry->end,
4305 		    (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
4306 		vm2->vm_tsize += btoc(newend - entry->start);
4307 	}
4308 }
4309 
4310 /*
4311  * vmspace_fork:
4312  * Create a new process vmspace structure and vm_map
4313  * based on those of an existing process.  The new map
4314  * is based on the old map, according to the inheritance
4315  * values on the regions in that map.
4316  *
4317  * XXX It might be worth coalescing the entries added to the new vmspace.
4318  *
4319  * The source map must not be locked.
4320  */
4321 struct vmspace *
4322 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
4323 {
4324 	struct vmspace *vm2;
4325 	vm_map_t new_map, old_map;
4326 	vm_map_entry_t new_entry, old_entry;
4327 	vm_object_t object;
4328 	int error, locked __diagused;
4329 	vm_inherit_t inh;
4330 
4331 	old_map = &vm1->vm_map;
4332 	/* Copy immutable fields of vm1 to vm2. */
4333 	vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map),
4334 	    pmap_pinit);
4335 	if (vm2 == NULL)
4336 		return (NULL);
4337 
4338 	vm2->vm_taddr = vm1->vm_taddr;
4339 	vm2->vm_daddr = vm1->vm_daddr;
4340 	vm2->vm_maxsaddr = vm1->vm_maxsaddr;
4341 	vm2->vm_stacktop = vm1->vm_stacktop;
4342 	vm2->vm_shp_base = vm1->vm_shp_base;
4343 	vm_map_lock(old_map);
4344 	if (old_map->busy)
4345 		vm_map_wait_busy(old_map);
4346 	new_map = &vm2->vm_map;
4347 	locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
4348 	KASSERT(locked, ("vmspace_fork: lock failed"));
4349 
4350 	error = pmap_vmspace_copy(new_map->pmap, old_map->pmap);
4351 	if (error != 0) {
4352 		sx_xunlock(&old_map->lock);
4353 		sx_xunlock(&new_map->lock);
4354 		vm_map_process_deferred();
4355 		vmspace_free(vm2);
4356 		return (NULL);
4357 	}
4358 
4359 	new_map->anon_loc = old_map->anon_loc;
4360 	new_map->flags |= old_map->flags & (MAP_ASLR | MAP_ASLR_IGNSTART |
4361 	    MAP_ASLR_STACK | MAP_WXORX);
4362 
4363 	VM_MAP_ENTRY_FOREACH(old_entry, old_map) {
4364 		if ((old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
4365 			panic("vm_map_fork: encountered a submap");
4366 
4367 		inh = old_entry->inheritance;
4368 		if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4369 		    inh != VM_INHERIT_NONE)
4370 			inh = VM_INHERIT_COPY;
4371 
4372 		switch (inh) {
4373 		case VM_INHERIT_NONE:
4374 			break;
4375 
4376 		case VM_INHERIT_SHARE:
4377 			/*
4378 			 * Clone the entry, creating the shared object if
4379 			 * necessary.
4380 			 */
4381 			object = old_entry->object.vm_object;
4382 			if (object == NULL) {
4383 				vm_map_entry_back(old_entry);
4384 				object = old_entry->object.vm_object;
4385 			}
4386 
4387 			/*
4388 			 * Add the reference before calling vm_object_shadow
4389 			 * to insure that a shadow object is created.
4390 			 */
4391 			vm_object_reference(object);
4392 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4393 				vm_object_shadow(&old_entry->object.vm_object,
4394 				    &old_entry->offset,
4395 				    old_entry->end - old_entry->start,
4396 				    old_entry->cred,
4397 				    /* Transfer the second reference too. */
4398 				    true);
4399 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4400 				old_entry->cred = NULL;
4401 
4402 				/*
4403 				 * As in vm_map_merged_neighbor_dispose(),
4404 				 * the vnode lock will not be acquired in
4405 				 * this call to vm_object_deallocate().
4406 				 */
4407 				vm_object_deallocate(object);
4408 				object = old_entry->object.vm_object;
4409 			} else {
4410 				VM_OBJECT_WLOCK(object);
4411 				vm_object_clear_flag(object, OBJ_ONEMAPPING);
4412 				if (old_entry->cred != NULL) {
4413 					KASSERT(object->cred == NULL,
4414 					    ("vmspace_fork both cred"));
4415 					object->cred = old_entry->cred;
4416 					object->charge = old_entry->end -
4417 					    old_entry->start;
4418 					old_entry->cred = NULL;
4419 				}
4420 
4421 				/*
4422 				 * Assert the correct state of the vnode
4423 				 * v_writecount while the object is locked, to
4424 				 * not relock it later for the assertion
4425 				 * correctness.
4426 				 */
4427 				if (old_entry->eflags & MAP_ENTRY_WRITECNT &&
4428 				    object->type == OBJT_VNODE) {
4429 					KASSERT(((struct vnode *)object->
4430 					    handle)->v_writecount > 0,
4431 					    ("vmspace_fork: v_writecount %p",
4432 					    object));
4433 					KASSERT(object->un_pager.vnp.
4434 					    writemappings > 0,
4435 					    ("vmspace_fork: vnp.writecount %p",
4436 					    object));
4437 				}
4438 				VM_OBJECT_WUNLOCK(object);
4439 			}
4440 
4441 			/*
4442 			 * Clone the entry, referencing the shared object.
4443 			 */
4444 			new_entry = vm_map_entry_create(new_map);
4445 			*new_entry = *old_entry;
4446 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
4447 			    MAP_ENTRY_IN_TRANSITION);
4448 			new_entry->wiring_thread = NULL;
4449 			new_entry->wired_count = 0;
4450 			if (new_entry->eflags & MAP_ENTRY_WRITECNT) {
4451 				vm_pager_update_writecount(object,
4452 				    new_entry->start, new_entry->end);
4453 			}
4454 			vm_map_entry_set_vnode_text(new_entry, true);
4455 
4456 			/*
4457 			 * Insert the entry into the new map -- we know we're
4458 			 * inserting at the end of the new map.
4459 			 */
4460 			vm_map_entry_link(new_map, new_entry);
4461 			vmspace_map_entry_forked(vm1, vm2, new_entry);
4462 
4463 			/*
4464 			 * Update the physical map
4465 			 */
4466 			pmap_copy(new_map->pmap, old_map->pmap,
4467 			    new_entry->start,
4468 			    (old_entry->end - old_entry->start),
4469 			    old_entry->start);
4470 			break;
4471 
4472 		case VM_INHERIT_COPY:
4473 			/*
4474 			 * Clone the entry and link into the map.
4475 			 */
4476 			new_entry = vm_map_entry_create(new_map);
4477 			*new_entry = *old_entry;
4478 			/*
4479 			 * Copied entry is COW over the old object.
4480 			 */
4481 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
4482 			    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_WRITECNT);
4483 			new_entry->wiring_thread = NULL;
4484 			new_entry->wired_count = 0;
4485 			new_entry->object.vm_object = NULL;
4486 			new_entry->cred = NULL;
4487 			vm_map_entry_link(new_map, new_entry);
4488 			vmspace_map_entry_forked(vm1, vm2, new_entry);
4489 			vm_map_copy_entry(old_map, new_map, old_entry,
4490 			    new_entry, fork_charge);
4491 			vm_map_entry_set_vnode_text(new_entry, true);
4492 			break;
4493 
4494 		case VM_INHERIT_ZERO:
4495 			/*
4496 			 * Create a new anonymous mapping entry modelled from
4497 			 * the old one.
4498 			 */
4499 			new_entry = vm_map_entry_create(new_map);
4500 			memset(new_entry, 0, sizeof(*new_entry));
4501 
4502 			new_entry->start = old_entry->start;
4503 			new_entry->end = old_entry->end;
4504 			new_entry->eflags = old_entry->eflags &
4505 			    ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION |
4506 			    MAP_ENTRY_WRITECNT | MAP_ENTRY_VN_EXEC |
4507 			    MAP_ENTRY_SPLIT_BOUNDARY_MASK);
4508 			new_entry->protection = old_entry->protection;
4509 			new_entry->max_protection = old_entry->max_protection;
4510 			new_entry->inheritance = VM_INHERIT_ZERO;
4511 
4512 			vm_map_entry_link(new_map, new_entry);
4513 			vmspace_map_entry_forked(vm1, vm2, new_entry);
4514 
4515 			new_entry->cred = curthread->td_ucred;
4516 			crhold(new_entry->cred);
4517 			*fork_charge += (new_entry->end - new_entry->start);
4518 
4519 			break;
4520 		}
4521 	}
4522 	/*
4523 	 * Use inlined vm_map_unlock() to postpone handling the deferred
4524 	 * map entries, which cannot be done until both old_map and
4525 	 * new_map locks are released.
4526 	 */
4527 	sx_xunlock(&old_map->lock);
4528 	sx_xunlock(&new_map->lock);
4529 	vm_map_process_deferred();
4530 
4531 	return (vm2);
4532 }
4533 
4534 /*
4535  * Create a process's stack for exec_new_vmspace().  This function is never
4536  * asked to wire the newly created stack.
4537  */
4538 int
4539 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4540     vm_prot_t prot, vm_prot_t max, int cow)
4541 {
4542 	vm_size_t growsize, init_ssize;
4543 	rlim_t vmemlim;
4544 	int rv;
4545 
4546 	MPASS((map->flags & MAP_WIREFUTURE) == 0);
4547 	growsize = sgrowsiz;
4548 	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
4549 	vm_map_lock(map);
4550 	vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4551 	/* If we would blow our VMEM resource limit, no go */
4552 	if (map->size + init_ssize > vmemlim) {
4553 		rv = KERN_NO_SPACE;
4554 		goto out;
4555 	}
4556 	rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
4557 	    max, cow);
4558 out:
4559 	vm_map_unlock(map);
4560 	return (rv);
4561 }
4562 
4563 static int stack_guard_page = 1;
4564 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
4565     &stack_guard_page, 0,
4566     "Specifies the number of guard pages for a stack that grows");
4567 
4568 static int
4569 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4570     vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
4571 {
4572 	vm_map_entry_t gap_entry, new_entry, prev_entry;
4573 	vm_offset_t bot, gap_bot, gap_top, top;
4574 	vm_size_t init_ssize, sgp;
4575 	int orient, rv;
4576 
4577 	/*
4578 	 * The stack orientation is piggybacked with the cow argument.
4579 	 * Extract it into orient and mask the cow argument so that we
4580 	 * don't pass it around further.
4581 	 */
4582 	orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP);
4583 	KASSERT(orient != 0, ("No stack grow direction"));
4584 	KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP),
4585 	    ("bi-dir stack"));
4586 
4587 	if (max_ssize == 0 ||
4588 	    !vm_map_range_valid(map, addrbos, addrbos + max_ssize))
4589 		return (KERN_INVALID_ADDRESS);
4590 	sgp = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ||
4591 	    (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 :
4592 	    (vm_size_t)stack_guard_page * PAGE_SIZE;
4593 	if (sgp >= max_ssize)
4594 		return (KERN_INVALID_ARGUMENT);
4595 
4596 	init_ssize = growsize;
4597 	if (max_ssize < init_ssize + sgp)
4598 		init_ssize = max_ssize - sgp;
4599 
4600 	/* If addr is already mapped, no go */
4601 	if (vm_map_lookup_entry(map, addrbos, &prev_entry))
4602 		return (KERN_NO_SPACE);
4603 
4604 	/*
4605 	 * If we can't accommodate max_ssize in the current mapping, no go.
4606 	 */
4607 	if (vm_map_entry_succ(prev_entry)->start < addrbos + max_ssize)
4608 		return (KERN_NO_SPACE);
4609 
4610 	/*
4611 	 * We initially map a stack of only init_ssize.  We will grow as
4612 	 * needed later.  Depending on the orientation of the stack (i.e.
4613 	 * the grow direction) we either map at the top of the range, the
4614 	 * bottom of the range or in the middle.
4615 	 *
4616 	 * Note: we would normally expect prot and max to be VM_PROT_ALL,
4617 	 * and cow to be 0.  Possibly we should eliminate these as input
4618 	 * parameters, and just pass these values here in the insert call.
4619 	 */
4620 	if (orient == MAP_STACK_GROWS_DOWN) {
4621 		bot = addrbos + max_ssize - init_ssize;
4622 		top = bot + init_ssize;
4623 		gap_bot = addrbos;
4624 		gap_top = bot;
4625 	} else /* if (orient == MAP_STACK_GROWS_UP) */ {
4626 		bot = addrbos;
4627 		top = bot + init_ssize;
4628 		gap_bot = top;
4629 		gap_top = addrbos + max_ssize;
4630 	}
4631 	rv = vm_map_insert1(map, NULL, 0, bot, top, prot, max, cow,
4632 	    &new_entry);
4633 	if (rv != KERN_SUCCESS)
4634 		return (rv);
4635 	KASSERT(new_entry->end == top || new_entry->start == bot,
4636 	    ("Bad entry start/end for new stack entry"));
4637 	KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
4638 	    (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
4639 	    ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
4640 	KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
4641 	    (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
4642 	    ("new entry lacks MAP_ENTRY_GROWS_UP"));
4643 	if (gap_bot == gap_top)
4644 		return (KERN_SUCCESS);
4645 	rv = vm_map_insert1(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE,
4646 	    VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ?
4647 	    MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP), &gap_entry);
4648 	if (rv == KERN_SUCCESS) {
4649 		KASSERT((gap_entry->eflags & MAP_ENTRY_GUARD) != 0,
4650 		    ("entry %p not gap %#x", gap_entry, gap_entry->eflags));
4651 		KASSERT((gap_entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
4652 		    MAP_ENTRY_STACK_GAP_UP)) != 0,
4653 		    ("entry %p not stack gap %#x", gap_entry,
4654 		    gap_entry->eflags));
4655 
4656 		/*
4657 		 * Gap can never successfully handle a fault, so
4658 		 * read-ahead logic is never used for it.  Re-use
4659 		 * next_read of the gap entry to store
4660 		 * stack_guard_page for vm_map_growstack().
4661 		 * Similarly, since a gap cannot have a backing object,
4662 		 * store the original stack protections in the
4663 		 * object offset.
4664 		 */
4665 		gap_entry->next_read = sgp;
4666 		gap_entry->offset = prot | PROT_MAX(max);
4667 	} else {
4668 		(void)vm_map_delete(map, bot, top);
4669 	}
4670 	return (rv);
4671 }
4672 
4673 /*
4674  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if we
4675  * successfully grow the stack.
4676  */
4677 static int
4678 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry)
4679 {
4680 	vm_map_entry_t stack_entry;
4681 	struct proc *p;
4682 	struct vmspace *vm;
4683 	struct ucred *cred;
4684 	vm_offset_t gap_end, gap_start, grow_start;
4685 	vm_size_t grow_amount, guard, max_grow, sgp;
4686 	vm_prot_t prot, max;
4687 	rlim_t lmemlim, stacklim, vmemlim;
4688 	int rv, rv1 __diagused;
4689 	bool gap_deleted, grow_down, is_procstack;
4690 #ifdef notyet
4691 	uint64_t limit;
4692 #endif
4693 #ifdef RACCT
4694 	int error __diagused;
4695 #endif
4696 
4697 	p = curproc;
4698 	vm = p->p_vmspace;
4699 
4700 	/*
4701 	 * Disallow stack growth when the access is performed by a
4702 	 * debugger or AIO daemon.  The reason is that the wrong
4703 	 * resource limits are applied.
4704 	 */
4705 	if (p != initproc && (map != &p->p_vmspace->vm_map ||
4706 	    p->p_textvp == NULL))
4707 		return (KERN_FAILURE);
4708 
4709 	MPASS(!map->system_map);
4710 
4711 	lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
4712 	stacklim = lim_cur(curthread, RLIMIT_STACK);
4713 	vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4714 retry:
4715 	/* If addr is not in a hole for a stack grow area, no need to grow. */
4716 	if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry))
4717 		return (KERN_FAILURE);
4718 	if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0)
4719 		return (KERN_SUCCESS);
4720 	if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) {
4721 		stack_entry = vm_map_entry_succ(gap_entry);
4722 		if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 ||
4723 		    stack_entry->start != gap_entry->end)
4724 			return (KERN_FAILURE);
4725 		grow_amount = round_page(stack_entry->start - addr);
4726 		grow_down = true;
4727 	} else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) {
4728 		stack_entry = vm_map_entry_pred(gap_entry);
4729 		if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 ||
4730 		    stack_entry->end != gap_entry->start)
4731 			return (KERN_FAILURE);
4732 		grow_amount = round_page(addr + 1 - stack_entry->end);
4733 		grow_down = false;
4734 	} else {
4735 		return (KERN_FAILURE);
4736 	}
4737 	guard = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ||
4738 	    (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 :
4739 	    gap_entry->next_read;
4740 	max_grow = gap_entry->end - gap_entry->start;
4741 	if (guard > max_grow)
4742 		return (KERN_NO_SPACE);
4743 	max_grow -= guard;
4744 	if (grow_amount > max_grow)
4745 		return (KERN_NO_SPACE);
4746 
4747 	/*
4748 	 * If this is the main process stack, see if we're over the stack
4749 	 * limit.
4750 	 */
4751 	is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr &&
4752 	    addr < (vm_offset_t)vm->vm_stacktop;
4753 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim))
4754 		return (KERN_NO_SPACE);
4755 
4756 #ifdef RACCT
4757 	if (racct_enable) {
4758 		PROC_LOCK(p);
4759 		if (is_procstack && racct_set(p, RACCT_STACK,
4760 		    ctob(vm->vm_ssize) + grow_amount)) {
4761 			PROC_UNLOCK(p);
4762 			return (KERN_NO_SPACE);
4763 		}
4764 		PROC_UNLOCK(p);
4765 	}
4766 #endif
4767 
4768 	grow_amount = roundup(grow_amount, sgrowsiz);
4769 	if (grow_amount > max_grow)
4770 		grow_amount = max_grow;
4771 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
4772 		grow_amount = trunc_page((vm_size_t)stacklim) -
4773 		    ctob(vm->vm_ssize);
4774 	}
4775 
4776 #ifdef notyet
4777 	PROC_LOCK(p);
4778 	limit = racct_get_available(p, RACCT_STACK);
4779 	PROC_UNLOCK(p);
4780 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
4781 		grow_amount = limit - ctob(vm->vm_ssize);
4782 #endif
4783 
4784 	if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) {
4785 		if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
4786 			rv = KERN_NO_SPACE;
4787 			goto out;
4788 		}
4789 #ifdef RACCT
4790 		if (racct_enable) {
4791 			PROC_LOCK(p);
4792 			if (racct_set(p, RACCT_MEMLOCK,
4793 			    ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
4794 				PROC_UNLOCK(p);
4795 				rv = KERN_NO_SPACE;
4796 				goto out;
4797 			}
4798 			PROC_UNLOCK(p);
4799 		}
4800 #endif
4801 	}
4802 
4803 	/* If we would blow our VMEM resource limit, no go */
4804 	if (map->size + grow_amount > vmemlim) {
4805 		rv = KERN_NO_SPACE;
4806 		goto out;
4807 	}
4808 #ifdef RACCT
4809 	if (racct_enable) {
4810 		PROC_LOCK(p);
4811 		if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
4812 			PROC_UNLOCK(p);
4813 			rv = KERN_NO_SPACE;
4814 			goto out;
4815 		}
4816 		PROC_UNLOCK(p);
4817 	}
4818 #endif
4819 
4820 	if (vm_map_lock_upgrade(map)) {
4821 		gap_entry = NULL;
4822 		vm_map_lock_read(map);
4823 		goto retry;
4824 	}
4825 
4826 	if (grow_down) {
4827 		/*
4828 		 * The gap_entry "offset" field is overloaded.  See
4829 		 * vm_map_stack_locked().
4830 		 */
4831 		prot = PROT_EXTRACT(gap_entry->offset);
4832 		max = PROT_MAX_EXTRACT(gap_entry->offset);
4833 		sgp = gap_entry->next_read;
4834 
4835 		grow_start = gap_entry->end - grow_amount;
4836 		if (gap_entry->start + grow_amount == gap_entry->end) {
4837 			gap_start = gap_entry->start;
4838 			gap_end = gap_entry->end;
4839 			vm_map_entry_delete(map, gap_entry);
4840 			gap_deleted = true;
4841 		} else {
4842 			MPASS(gap_entry->start < gap_entry->end - grow_amount);
4843 			vm_map_entry_resize(map, gap_entry, -grow_amount);
4844 			gap_deleted = false;
4845 		}
4846 		rv = vm_map_insert(map, NULL, 0, grow_start,
4847 		    grow_start + grow_amount, prot, max, MAP_STACK_GROWS_DOWN);
4848 		if (rv != KERN_SUCCESS) {
4849 			if (gap_deleted) {
4850 				rv1 = vm_map_insert1(map, NULL, 0, gap_start,
4851 				    gap_end, VM_PROT_NONE, VM_PROT_NONE,
4852 				    MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN,
4853 				    &gap_entry);
4854 				MPASS(rv1 == KERN_SUCCESS);
4855 				gap_entry->next_read = sgp;
4856 				gap_entry->offset = prot | PROT_MAX(max);
4857 			} else
4858 				vm_map_entry_resize(map, gap_entry,
4859 				    grow_amount);
4860 		}
4861 	} else {
4862 		grow_start = stack_entry->end;
4863 		cred = stack_entry->cred;
4864 		if (cred == NULL && stack_entry->object.vm_object != NULL)
4865 			cred = stack_entry->object.vm_object->cred;
4866 		if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
4867 			rv = KERN_NO_SPACE;
4868 		/* Grow the underlying object if applicable. */
4869 		else if (stack_entry->object.vm_object == NULL ||
4870 		    vm_object_coalesce(stack_entry->object.vm_object,
4871 		    stack_entry->offset,
4872 		    (vm_size_t)(stack_entry->end - stack_entry->start),
4873 		    grow_amount, cred != NULL)) {
4874 			if (gap_entry->start + grow_amount == gap_entry->end) {
4875 				vm_map_entry_delete(map, gap_entry);
4876 				vm_map_entry_resize(map, stack_entry,
4877 				    grow_amount);
4878 			} else {
4879 				gap_entry->start += grow_amount;
4880 				stack_entry->end += grow_amount;
4881 			}
4882 			map->size += grow_amount;
4883 			rv = KERN_SUCCESS;
4884 		} else
4885 			rv = KERN_FAILURE;
4886 	}
4887 	if (rv == KERN_SUCCESS && is_procstack)
4888 		vm->vm_ssize += btoc(grow_amount);
4889 
4890 	/*
4891 	 * Heed the MAP_WIREFUTURE flag if it was set for this process.
4892 	 */
4893 	if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) {
4894 		rv = vm_map_wire_locked(map, grow_start,
4895 		    grow_start + grow_amount,
4896 		    VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
4897 	}
4898 	vm_map_lock_downgrade(map);
4899 
4900 out:
4901 #ifdef RACCT
4902 	if (racct_enable && rv != KERN_SUCCESS) {
4903 		PROC_LOCK(p);
4904 		error = racct_set(p, RACCT_VMEM, map->size);
4905 		KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
4906 		if (!old_mlock) {
4907 			error = racct_set(p, RACCT_MEMLOCK,
4908 			    ptoa(pmap_wired_count(map->pmap)));
4909 			KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
4910 		}
4911 	    	error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
4912 		KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
4913 		PROC_UNLOCK(p);
4914 	}
4915 #endif
4916 
4917 	return (rv);
4918 }
4919 
4920 /*
4921  * Unshare the specified VM space for exec.  If other processes are
4922  * mapped to it, then create a new one.  The new vmspace is null.
4923  */
4924 int
4925 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
4926 {
4927 	struct vmspace *oldvmspace = p->p_vmspace;
4928 	struct vmspace *newvmspace;
4929 
4930 	KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
4931 	    ("vmspace_exec recursed"));
4932 	newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit);
4933 	if (newvmspace == NULL)
4934 		return (ENOMEM);
4935 	newvmspace->vm_swrss = oldvmspace->vm_swrss;
4936 	/*
4937 	 * This code is written like this for prototype purposes.  The
4938 	 * goal is to avoid running down the vmspace here, but let the
4939 	 * other process's that are still using the vmspace to finally
4940 	 * run it down.  Even though there is little or no chance of blocking
4941 	 * here, it is a good idea to keep this form for future mods.
4942 	 */
4943 	PROC_VMSPACE_LOCK(p);
4944 	p->p_vmspace = newvmspace;
4945 	PROC_VMSPACE_UNLOCK(p);
4946 	if (p == curthread->td_proc)
4947 		pmap_activate(curthread);
4948 	curthread->td_pflags |= TDP_EXECVMSPC;
4949 	return (0);
4950 }
4951 
4952 /*
4953  * Unshare the specified VM space for forcing COW.  This
4954  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
4955  */
4956 int
4957 vmspace_unshare(struct proc *p)
4958 {
4959 	struct vmspace *oldvmspace = p->p_vmspace;
4960 	struct vmspace *newvmspace;
4961 	vm_ooffset_t fork_charge;
4962 
4963 	/*
4964 	 * The caller is responsible for ensuring that the reference count
4965 	 * cannot concurrently transition 1 -> 2.
4966 	 */
4967 	if (refcount_load(&oldvmspace->vm_refcnt) == 1)
4968 		return (0);
4969 	fork_charge = 0;
4970 	newvmspace = vmspace_fork(oldvmspace, &fork_charge);
4971 	if (newvmspace == NULL)
4972 		return (ENOMEM);
4973 	if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
4974 		vmspace_free(newvmspace);
4975 		return (ENOMEM);
4976 	}
4977 	PROC_VMSPACE_LOCK(p);
4978 	p->p_vmspace = newvmspace;
4979 	PROC_VMSPACE_UNLOCK(p);
4980 	if (p == curthread->td_proc)
4981 		pmap_activate(curthread);
4982 	vmspace_free(oldvmspace);
4983 	return (0);
4984 }
4985 
4986 /*
4987  *	vm_map_lookup:
4988  *
4989  *	Finds the VM object, offset, and
4990  *	protection for a given virtual address in the
4991  *	specified map, assuming a page fault of the
4992  *	type specified.
4993  *
4994  *	Leaves the map in question locked for read; return
4995  *	values are guaranteed until a vm_map_lookup_done
4996  *	call is performed.  Note that the map argument
4997  *	is in/out; the returned map must be used in
4998  *	the call to vm_map_lookup_done.
4999  *
5000  *	A handle (out_entry) is returned for use in
5001  *	vm_map_lookup_done, to make that fast.
5002  *
5003  *	If a lookup is requested with "write protection"
5004  *	specified, the map may be changed to perform virtual
5005  *	copying operations, although the data referenced will
5006  *	remain the same.
5007  */
5008 int
5009 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
5010 	      vm_offset_t vaddr,
5011 	      vm_prot_t fault_typea,
5012 	      vm_map_entry_t *out_entry,	/* OUT */
5013 	      vm_object_t *object,		/* OUT */
5014 	      vm_pindex_t *pindex,		/* OUT */
5015 	      vm_prot_t *out_prot,		/* OUT */
5016 	      boolean_t *wired)			/* OUT */
5017 {
5018 	vm_map_entry_t entry;
5019 	vm_map_t map = *var_map;
5020 	vm_prot_t prot;
5021 	vm_prot_t fault_type;
5022 	vm_object_t eobject;
5023 	vm_size_t size;
5024 	struct ucred *cred;
5025 
5026 RetryLookup:
5027 
5028 	vm_map_lock_read(map);
5029 
5030 RetryLookupLocked:
5031 	/*
5032 	 * Lookup the faulting address.
5033 	 */
5034 	if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
5035 		vm_map_unlock_read(map);
5036 		return (KERN_INVALID_ADDRESS);
5037 	}
5038 
5039 	entry = *out_entry;
5040 
5041 	/*
5042 	 * Handle submaps.
5043 	 */
5044 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
5045 		vm_map_t old_map = map;
5046 
5047 		*var_map = map = entry->object.sub_map;
5048 		vm_map_unlock_read(old_map);
5049 		goto RetryLookup;
5050 	}
5051 
5052 	/*
5053 	 * Check whether this task is allowed to have this page.
5054 	 */
5055 	prot = entry->protection;
5056 	if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) {
5057 		fault_typea &= ~VM_PROT_FAULT_LOOKUP;
5058 		if (prot == VM_PROT_NONE && map != kernel_map &&
5059 		    (entry->eflags & MAP_ENTRY_GUARD) != 0 &&
5060 		    (entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
5061 		    MAP_ENTRY_STACK_GAP_UP)) != 0 &&
5062 		    vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS)
5063 			goto RetryLookupLocked;
5064 	}
5065 	fault_type = fault_typea & VM_PROT_ALL;
5066 	if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
5067 		vm_map_unlock_read(map);
5068 		return (KERN_PROTECTION_FAILURE);
5069 	}
5070 	KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
5071 	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
5072 	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
5073 	    ("entry %p flags %x", entry, entry->eflags));
5074 	if ((fault_typea & VM_PROT_COPY) != 0 &&
5075 	    (entry->max_protection & VM_PROT_WRITE) == 0 &&
5076 	    (entry->eflags & MAP_ENTRY_COW) == 0) {
5077 		vm_map_unlock_read(map);
5078 		return (KERN_PROTECTION_FAILURE);
5079 	}
5080 
5081 	/*
5082 	 * If this page is not pageable, we have to get it for all possible
5083 	 * accesses.
5084 	 */
5085 	*wired = (entry->wired_count != 0);
5086 	if (*wired)
5087 		fault_type = entry->protection;
5088 	size = entry->end - entry->start;
5089 
5090 	/*
5091 	 * If the entry was copy-on-write, we either ...
5092 	 */
5093 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
5094 		/*
5095 		 * If we want to write the page, we may as well handle that
5096 		 * now since we've got the map locked.
5097 		 *
5098 		 * If we don't need to write the page, we just demote the
5099 		 * permissions allowed.
5100 		 */
5101 		if ((fault_type & VM_PROT_WRITE) != 0 ||
5102 		    (fault_typea & VM_PROT_COPY) != 0) {
5103 			/*
5104 			 * Make a new object, and place it in the object
5105 			 * chain.  Note that no new references have appeared
5106 			 * -- one just moved from the map to the new
5107 			 * object.
5108 			 */
5109 			if (vm_map_lock_upgrade(map))
5110 				goto RetryLookup;
5111 
5112 			if (entry->cred == NULL) {
5113 				/*
5114 				 * The debugger owner is charged for
5115 				 * the memory.
5116 				 */
5117 				cred = curthread->td_ucred;
5118 				crhold(cred);
5119 				if (!swap_reserve_by_cred(size, cred)) {
5120 					crfree(cred);
5121 					vm_map_unlock(map);
5122 					return (KERN_RESOURCE_SHORTAGE);
5123 				}
5124 				entry->cred = cred;
5125 			}
5126 			eobject = entry->object.vm_object;
5127 			vm_object_shadow(&entry->object.vm_object,
5128 			    &entry->offset, size, entry->cred, false);
5129 			if (eobject == entry->object.vm_object) {
5130 				/*
5131 				 * The object was not shadowed.
5132 				 */
5133 				swap_release_by_cred(size, entry->cred);
5134 				crfree(entry->cred);
5135 			}
5136 			entry->cred = NULL;
5137 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
5138 
5139 			vm_map_lock_downgrade(map);
5140 		} else {
5141 			/*
5142 			 * We're attempting to read a copy-on-write page --
5143 			 * don't allow writes.
5144 			 */
5145 			prot &= ~VM_PROT_WRITE;
5146 		}
5147 	}
5148 
5149 	/*
5150 	 * Create an object if necessary.
5151 	 */
5152 	if (entry->object.vm_object == NULL && !map->system_map) {
5153 		if (vm_map_lock_upgrade(map))
5154 			goto RetryLookup;
5155 		entry->object.vm_object = vm_object_allocate_anon(atop(size),
5156 		    NULL, entry->cred, size);
5157 		entry->offset = 0;
5158 		entry->cred = NULL;
5159 		vm_map_lock_downgrade(map);
5160 	}
5161 
5162 	/*
5163 	 * Return the object/offset from this entry.  If the entry was
5164 	 * copy-on-write or empty, it has been fixed up.
5165 	 */
5166 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
5167 	*object = entry->object.vm_object;
5168 
5169 	*out_prot = prot;
5170 	return (KERN_SUCCESS);
5171 }
5172 
5173 /*
5174  *	vm_map_lookup_locked:
5175  *
5176  *	Lookup the faulting address.  A version of vm_map_lookup that returns
5177  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
5178  */
5179 int
5180 vm_map_lookup_locked(vm_map_t *var_map,		/* IN/OUT */
5181 		     vm_offset_t vaddr,
5182 		     vm_prot_t fault_typea,
5183 		     vm_map_entry_t *out_entry,	/* OUT */
5184 		     vm_object_t *object,	/* OUT */
5185 		     vm_pindex_t *pindex,	/* OUT */
5186 		     vm_prot_t *out_prot,	/* OUT */
5187 		     boolean_t *wired)		/* OUT */
5188 {
5189 	vm_map_entry_t entry;
5190 	vm_map_t map = *var_map;
5191 	vm_prot_t prot;
5192 	vm_prot_t fault_type = fault_typea;
5193 
5194 	/*
5195 	 * Lookup the faulting address.
5196 	 */
5197 	if (!vm_map_lookup_entry(map, vaddr, out_entry))
5198 		return (KERN_INVALID_ADDRESS);
5199 
5200 	entry = *out_entry;
5201 
5202 	/*
5203 	 * Fail if the entry refers to a submap.
5204 	 */
5205 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
5206 		return (KERN_FAILURE);
5207 
5208 	/*
5209 	 * Check whether this task is allowed to have this page.
5210 	 */
5211 	prot = entry->protection;
5212 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
5213 	if ((fault_type & prot) != fault_type)
5214 		return (KERN_PROTECTION_FAILURE);
5215 
5216 	/*
5217 	 * If this page is not pageable, we have to get it for all possible
5218 	 * accesses.
5219 	 */
5220 	*wired = (entry->wired_count != 0);
5221 	if (*wired)
5222 		fault_type = entry->protection;
5223 
5224 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
5225 		/*
5226 		 * Fail if the entry was copy-on-write for a write fault.
5227 		 */
5228 		if (fault_type & VM_PROT_WRITE)
5229 			return (KERN_FAILURE);
5230 		/*
5231 		 * We're attempting to read a copy-on-write page --
5232 		 * don't allow writes.
5233 		 */
5234 		prot &= ~VM_PROT_WRITE;
5235 	}
5236 
5237 	/*
5238 	 * Fail if an object should be created.
5239 	 */
5240 	if (entry->object.vm_object == NULL && !map->system_map)
5241 		return (KERN_FAILURE);
5242 
5243 	/*
5244 	 * Return the object/offset from this entry.  If the entry was
5245 	 * copy-on-write or empty, it has been fixed up.
5246 	 */
5247 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
5248 	*object = entry->object.vm_object;
5249 
5250 	*out_prot = prot;
5251 	return (KERN_SUCCESS);
5252 }
5253 
5254 /*
5255  *	vm_map_lookup_done:
5256  *
5257  *	Releases locks acquired by a vm_map_lookup
5258  *	(according to the handle returned by that lookup).
5259  */
5260 void
5261 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
5262 {
5263 	/*
5264 	 * Unlock the main-level map
5265 	 */
5266 	vm_map_unlock_read(map);
5267 }
5268 
5269 vm_offset_t
5270 vm_map_max_KBI(const struct vm_map *map)
5271 {
5272 
5273 	return (vm_map_max(map));
5274 }
5275 
5276 vm_offset_t
5277 vm_map_min_KBI(const struct vm_map *map)
5278 {
5279 
5280 	return (vm_map_min(map));
5281 }
5282 
5283 pmap_t
5284 vm_map_pmap_KBI(vm_map_t map)
5285 {
5286 
5287 	return (map->pmap);
5288 }
5289 
5290 bool
5291 vm_map_range_valid_KBI(vm_map_t map, vm_offset_t start, vm_offset_t end)
5292 {
5293 
5294 	return (vm_map_range_valid(map, start, end));
5295 }
5296 
5297 #ifdef INVARIANTS
5298 static void
5299 _vm_map_assert_consistent(vm_map_t map, int check)
5300 {
5301 	vm_map_entry_t entry, prev;
5302 	vm_map_entry_t cur, header, lbound, ubound;
5303 	vm_size_t max_left, max_right;
5304 
5305 #ifdef DIAGNOSTIC
5306 	++map->nupdates;
5307 #endif
5308 	if (enable_vmmap_check != check)
5309 		return;
5310 
5311 	header = prev = &map->header;
5312 	VM_MAP_ENTRY_FOREACH(entry, map) {
5313 		KASSERT(prev->end <= entry->start,
5314 		    ("map %p prev->end = %jx, start = %jx", map,
5315 		    (uintmax_t)prev->end, (uintmax_t)entry->start));
5316 		KASSERT(entry->start < entry->end,
5317 		    ("map %p start = %jx, end = %jx", map,
5318 		    (uintmax_t)entry->start, (uintmax_t)entry->end));
5319 		KASSERT(entry->left == header ||
5320 		    entry->left->start < entry->start,
5321 		    ("map %p left->start = %jx, start = %jx", map,
5322 		    (uintmax_t)entry->left->start, (uintmax_t)entry->start));
5323 		KASSERT(entry->right == header ||
5324 		    entry->start < entry->right->start,
5325 		    ("map %p start = %jx, right->start = %jx", map,
5326 		    (uintmax_t)entry->start, (uintmax_t)entry->right->start));
5327 		cur = map->root;
5328 		lbound = ubound = header;
5329 		for (;;) {
5330 			if (entry->start < cur->start) {
5331 				ubound = cur;
5332 				cur = cur->left;
5333 				KASSERT(cur != lbound,
5334 				    ("map %p cannot find %jx",
5335 				    map, (uintmax_t)entry->start));
5336 			} else if (cur->end <= entry->start) {
5337 				lbound = cur;
5338 				cur = cur->right;
5339 				KASSERT(cur != ubound,
5340 				    ("map %p cannot find %jx",
5341 				    map, (uintmax_t)entry->start));
5342 			} else {
5343 				KASSERT(cur == entry,
5344 				    ("map %p cannot find %jx",
5345 				    map, (uintmax_t)entry->start));
5346 				break;
5347 			}
5348 		}
5349 		max_left = vm_map_entry_max_free_left(entry, lbound);
5350 		max_right = vm_map_entry_max_free_right(entry, ubound);
5351 		KASSERT(entry->max_free == vm_size_max(max_left, max_right),
5352 		    ("map %p max = %jx, max_left = %jx, max_right = %jx", map,
5353 		    (uintmax_t)entry->max_free,
5354 		    (uintmax_t)max_left, (uintmax_t)max_right));
5355 		prev = entry;
5356 	}
5357 	KASSERT(prev->end <= entry->start,
5358 	    ("map %p prev->end = %jx, start = %jx", map,
5359 	    (uintmax_t)prev->end, (uintmax_t)entry->start));
5360 }
5361 #endif
5362 
5363 #include "opt_ddb.h"
5364 #ifdef DDB
5365 #include <sys/kernel.h>
5366 
5367 #include <ddb/ddb.h>
5368 
5369 static void
5370 vm_map_print(vm_map_t map)
5371 {
5372 	vm_map_entry_t entry, prev;
5373 
5374 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
5375 	    (void *)map,
5376 	    (void *)map->pmap, map->nentries, map->timestamp);
5377 
5378 	db_indent += 2;
5379 	prev = &map->header;
5380 	VM_MAP_ENTRY_FOREACH(entry, map) {
5381 		db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n",
5382 		    (void *)entry, (void *)entry->start, (void *)entry->end,
5383 		    entry->eflags);
5384 		{
5385 			static const char * const inheritance_name[4] =
5386 			{"share", "copy", "none", "donate_copy"};
5387 
5388 			db_iprintf(" prot=%x/%x/%s",
5389 			    entry->protection,
5390 			    entry->max_protection,
5391 			    inheritance_name[(int)(unsigned char)
5392 			    entry->inheritance]);
5393 			if (entry->wired_count != 0)
5394 				db_printf(", wired");
5395 		}
5396 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
5397 			db_printf(", share=%p, offset=0x%jx\n",
5398 			    (void *)entry->object.sub_map,
5399 			    (uintmax_t)entry->offset);
5400 			if (prev == &map->header ||
5401 			    prev->object.sub_map !=
5402 				entry->object.sub_map) {
5403 				db_indent += 2;
5404 				vm_map_print((vm_map_t)entry->object.sub_map);
5405 				db_indent -= 2;
5406 			}
5407 		} else {
5408 			if (entry->cred != NULL)
5409 				db_printf(", ruid %d", entry->cred->cr_ruid);
5410 			db_printf(", object=%p, offset=0x%jx",
5411 			    (void *)entry->object.vm_object,
5412 			    (uintmax_t)entry->offset);
5413 			if (entry->object.vm_object && entry->object.vm_object->cred)
5414 				db_printf(", obj ruid %d charge %jx",
5415 				    entry->object.vm_object->cred->cr_ruid,
5416 				    (uintmax_t)entry->object.vm_object->charge);
5417 			if (entry->eflags & MAP_ENTRY_COW)
5418 				db_printf(", copy (%s)",
5419 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
5420 			db_printf("\n");
5421 
5422 			if (prev == &map->header ||
5423 			    prev->object.vm_object !=
5424 				entry->object.vm_object) {
5425 				db_indent += 2;
5426 				vm_object_print((db_expr_t)(intptr_t)
5427 						entry->object.vm_object,
5428 						0, 0, (char *)0);
5429 				db_indent -= 2;
5430 			}
5431 		}
5432 		prev = entry;
5433 	}
5434 	db_indent -= 2;
5435 }
5436 
5437 DB_SHOW_COMMAND(map, map)
5438 {
5439 
5440 	if (!have_addr) {
5441 		db_printf("usage: show map <addr>\n");
5442 		return;
5443 	}
5444 	vm_map_print((vm_map_t)addr);
5445 }
5446 
5447 DB_SHOW_COMMAND(procvm, procvm)
5448 {
5449 	struct proc *p;
5450 
5451 	if (have_addr) {
5452 		p = db_lookup_proc(addr);
5453 	} else {
5454 		p = curproc;
5455 	}
5456 
5457 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
5458 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
5459 	    (void *)vmspace_pmap(p->p_vmspace));
5460 
5461 	vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
5462 }
5463 
5464 #endif /* DDB */
5465