xref: /freebsd/sys/vm/vm_map.c (revision 9af6c78cd43b18e169f10802142c61638bd62bed)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62 
63 /*
64  *	Virtual memory mapping module.
65  */
66 
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/elf.h>
73 #include <sys/kernel.h>
74 #include <sys/ktr.h>
75 #include <sys/lock.h>
76 #include <sys/mutex.h>
77 #include <sys/proc.h>
78 #include <sys/vmmeter.h>
79 #include <sys/mman.h>
80 #include <sys/vnode.h>
81 #include <sys/racct.h>
82 #include <sys/resourcevar.h>
83 #include <sys/rwlock.h>
84 #include <sys/file.h>
85 #include <sys/sysctl.h>
86 #include <sys/sysent.h>
87 #include <sys/shm.h>
88 
89 #include <vm/vm.h>
90 #include <vm/vm_param.h>
91 #include <vm/pmap.h>
92 #include <vm/vm_map.h>
93 #include <vm/vm_page.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/vm_object.h>
96 #include <vm/vm_pager.h>
97 #include <vm/vm_kern.h>
98 #include <vm/vm_extern.h>
99 #include <vm/vnode_pager.h>
100 #include <vm/swap_pager.h>
101 #include <vm/uma.h>
102 
103 /*
104  *	Virtual memory maps provide for the mapping, protection,
105  *	and sharing of virtual memory objects.  In addition,
106  *	this module provides for an efficient virtual copy of
107  *	memory from one map to another.
108  *
109  *	Synchronization is required prior to most operations.
110  *
111  *	Maps consist of an ordered doubly-linked list of simple
112  *	entries; a self-adjusting binary search tree of these
113  *	entries is used to speed up lookups.
114  *
115  *	Since portions of maps are specified by start/end addresses,
116  *	which may not align with existing map entries, all
117  *	routines merely "clip" entries to these start/end values.
118  *	[That is, an entry is split into two, bordering at a
119  *	start or end value.]  Note that these clippings may not
120  *	always be necessary (as the two resulting entries are then
121  *	not changed); however, the clipping is done for convenience.
122  *
123  *	As mentioned above, virtual copy operations are performed
124  *	by copying VM object references from one map to
125  *	another, and then marking both regions as copy-on-write.
126  */
127 
128 static struct mtx map_sleep_mtx;
129 static uma_zone_t mapentzone;
130 static uma_zone_t kmapentzone;
131 static uma_zone_t mapzone;
132 static uma_zone_t vmspace_zone;
133 static int vmspace_zinit(void *mem, int size, int flags);
134 static int vm_map_zinit(void *mem, int ize, int flags);
135 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
136     vm_offset_t max);
137 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
138 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
139 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
140 static int vm_map_growstack(vm_map_t map, vm_offset_t addr,
141     vm_map_entry_t gap_entry);
142 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
143     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
144 #ifdef INVARIANTS
145 static void vm_map_zdtor(void *mem, int size, void *arg);
146 static void vmspace_zdtor(void *mem, int size, void *arg);
147 #endif
148 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
149     vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
150     int cow);
151 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
152     vm_offset_t failed_addr);
153 
154 #define	ENTRY_CHARGED(e) ((e)->cred != NULL || \
155     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
156      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
157 
158 /*
159  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
160  * stable.
161  */
162 #define PROC_VMSPACE_LOCK(p) do { } while (0)
163 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
164 
165 /*
166  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
167  *
168  *	Asserts that the starting and ending region
169  *	addresses fall within the valid range of the map.
170  */
171 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
172 		{					\
173 		if (start < vm_map_min(map))		\
174 			start = vm_map_min(map);	\
175 		if (end > vm_map_max(map))		\
176 			end = vm_map_max(map);		\
177 		if (start > end)			\
178 			start = end;			\
179 		}
180 
181 /*
182  *	vm_map_startup:
183  *
184  *	Initialize the vm_map module.  Must be called before
185  *	any other vm_map routines.
186  *
187  *	Map and entry structures are allocated from the general
188  *	purpose memory pool with some exceptions:
189  *
190  *	- The kernel map and kmem submap are allocated statically.
191  *	- Kernel map entries are allocated out of a static pool.
192  *
193  *	These restrictions are necessary since malloc() uses the
194  *	maps and requires map entries.
195  */
196 
197 void
198 vm_map_startup(void)
199 {
200 	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
201 	mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
202 #ifdef INVARIANTS
203 	    vm_map_zdtor,
204 #else
205 	    NULL,
206 #endif
207 	    vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
208 	uma_prealloc(mapzone, MAX_KMAP);
209 	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
210 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
211 	    UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
212 	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
213 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
214 	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
215 #ifdef INVARIANTS
216 	    vmspace_zdtor,
217 #else
218 	    NULL,
219 #endif
220 	    vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
221 }
222 
223 static int
224 vmspace_zinit(void *mem, int size, int flags)
225 {
226 	struct vmspace *vm;
227 
228 	vm = (struct vmspace *)mem;
229 
230 	vm->vm_map.pmap = NULL;
231 	(void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
232 	PMAP_LOCK_INIT(vmspace_pmap(vm));
233 	return (0);
234 }
235 
236 static int
237 vm_map_zinit(void *mem, int size, int flags)
238 {
239 	vm_map_t map;
240 
241 	map = (vm_map_t)mem;
242 	memset(map, 0, sizeof(*map));
243 	mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
244 	sx_init(&map->lock, "vm map (user)");
245 	return (0);
246 }
247 
248 #ifdef INVARIANTS
249 static void
250 vmspace_zdtor(void *mem, int size, void *arg)
251 {
252 	struct vmspace *vm;
253 
254 	vm = (struct vmspace *)mem;
255 
256 	vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
257 }
258 static void
259 vm_map_zdtor(void *mem, int size, void *arg)
260 {
261 	vm_map_t map;
262 
263 	map = (vm_map_t)mem;
264 	KASSERT(map->nentries == 0,
265 	    ("map %p nentries == %d on free.",
266 	    map, map->nentries));
267 	KASSERT(map->size == 0,
268 	    ("map %p size == %lu on free.",
269 	    map, (unsigned long)map->size));
270 }
271 #endif	/* INVARIANTS */
272 
273 /*
274  * Allocate a vmspace structure, including a vm_map and pmap,
275  * and initialize those structures.  The refcnt is set to 1.
276  *
277  * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit().
278  */
279 struct vmspace *
280 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
281 {
282 	struct vmspace *vm;
283 
284 	vm = uma_zalloc(vmspace_zone, M_WAITOK);
285 	KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
286 	if (!pinit(vmspace_pmap(vm))) {
287 		uma_zfree(vmspace_zone, vm);
288 		return (NULL);
289 	}
290 	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
291 	_vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
292 	vm->vm_refcnt = 1;
293 	vm->vm_shm = NULL;
294 	vm->vm_swrss = 0;
295 	vm->vm_tsize = 0;
296 	vm->vm_dsize = 0;
297 	vm->vm_ssize = 0;
298 	vm->vm_taddr = 0;
299 	vm->vm_daddr = 0;
300 	vm->vm_maxsaddr = 0;
301 	return (vm);
302 }
303 
304 #ifdef RACCT
305 static void
306 vmspace_container_reset(struct proc *p)
307 {
308 
309 	PROC_LOCK(p);
310 	racct_set(p, RACCT_DATA, 0);
311 	racct_set(p, RACCT_STACK, 0);
312 	racct_set(p, RACCT_RSS, 0);
313 	racct_set(p, RACCT_MEMLOCK, 0);
314 	racct_set(p, RACCT_VMEM, 0);
315 	PROC_UNLOCK(p);
316 }
317 #endif
318 
319 static inline void
320 vmspace_dofree(struct vmspace *vm)
321 {
322 
323 	CTR1(KTR_VM, "vmspace_free: %p", vm);
324 
325 	/*
326 	 * Make sure any SysV shm is freed, it might not have been in
327 	 * exit1().
328 	 */
329 	shmexit(vm);
330 
331 	/*
332 	 * Lock the map, to wait out all other references to it.
333 	 * Delete all of the mappings and pages they hold, then call
334 	 * the pmap module to reclaim anything left.
335 	 */
336 	(void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map),
337 	    vm_map_max(&vm->vm_map));
338 
339 	pmap_release(vmspace_pmap(vm));
340 	vm->vm_map.pmap = NULL;
341 	uma_zfree(vmspace_zone, vm);
342 }
343 
344 void
345 vmspace_free(struct vmspace *vm)
346 {
347 
348 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
349 	    "vmspace_free() called");
350 
351 	if (vm->vm_refcnt == 0)
352 		panic("vmspace_free: attempt to free already freed vmspace");
353 
354 	if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
355 		vmspace_dofree(vm);
356 }
357 
358 void
359 vmspace_exitfree(struct proc *p)
360 {
361 	struct vmspace *vm;
362 
363 	PROC_VMSPACE_LOCK(p);
364 	vm = p->p_vmspace;
365 	p->p_vmspace = NULL;
366 	PROC_VMSPACE_UNLOCK(p);
367 	KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
368 	vmspace_free(vm);
369 }
370 
371 void
372 vmspace_exit(struct thread *td)
373 {
374 	int refcnt;
375 	struct vmspace *vm;
376 	struct proc *p;
377 
378 	/*
379 	 * Release user portion of address space.
380 	 * This releases references to vnodes,
381 	 * which could cause I/O if the file has been unlinked.
382 	 * Need to do this early enough that we can still sleep.
383 	 *
384 	 * The last exiting process to reach this point releases as
385 	 * much of the environment as it can. vmspace_dofree() is the
386 	 * slower fallback in case another process had a temporary
387 	 * reference to the vmspace.
388 	 */
389 
390 	p = td->td_proc;
391 	vm = p->p_vmspace;
392 	atomic_add_int(&vmspace0.vm_refcnt, 1);
393 	refcnt = vm->vm_refcnt;
394 	do {
395 		if (refcnt > 1 && p->p_vmspace != &vmspace0) {
396 			/* Switch now since other proc might free vmspace */
397 			PROC_VMSPACE_LOCK(p);
398 			p->p_vmspace = &vmspace0;
399 			PROC_VMSPACE_UNLOCK(p);
400 			pmap_activate(td);
401 		}
402 	} while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt - 1));
403 	if (refcnt == 1) {
404 		if (p->p_vmspace != vm) {
405 			/* vmspace not yet freed, switch back */
406 			PROC_VMSPACE_LOCK(p);
407 			p->p_vmspace = vm;
408 			PROC_VMSPACE_UNLOCK(p);
409 			pmap_activate(td);
410 		}
411 		pmap_remove_pages(vmspace_pmap(vm));
412 		/* Switch now since this proc will free vmspace */
413 		PROC_VMSPACE_LOCK(p);
414 		p->p_vmspace = &vmspace0;
415 		PROC_VMSPACE_UNLOCK(p);
416 		pmap_activate(td);
417 		vmspace_dofree(vm);
418 	}
419 #ifdef RACCT
420 	if (racct_enable)
421 		vmspace_container_reset(p);
422 #endif
423 }
424 
425 /* Acquire reference to vmspace owned by another process. */
426 
427 struct vmspace *
428 vmspace_acquire_ref(struct proc *p)
429 {
430 	struct vmspace *vm;
431 	int refcnt;
432 
433 	PROC_VMSPACE_LOCK(p);
434 	vm = p->p_vmspace;
435 	if (vm == NULL) {
436 		PROC_VMSPACE_UNLOCK(p);
437 		return (NULL);
438 	}
439 	refcnt = vm->vm_refcnt;
440 	do {
441 		if (refcnt <= 0) { 	/* Avoid 0->1 transition */
442 			PROC_VMSPACE_UNLOCK(p);
443 			return (NULL);
444 		}
445 	} while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt + 1));
446 	if (vm != p->p_vmspace) {
447 		PROC_VMSPACE_UNLOCK(p);
448 		vmspace_free(vm);
449 		return (NULL);
450 	}
451 	PROC_VMSPACE_UNLOCK(p);
452 	return (vm);
453 }
454 
455 /*
456  * Switch between vmspaces in an AIO kernel process.
457  *
458  * The new vmspace is either the vmspace of a user process obtained
459  * from an active AIO request or the initial vmspace of the AIO kernel
460  * process (when it is idling).  Because user processes will block to
461  * drain any active AIO requests before proceeding in exit() or
462  * execve(), the reference count for vmspaces from AIO requests can
463  * never be 0.  Similarly, AIO kernel processes hold an extra
464  * reference on their initial vmspace for the life of the process.  As
465  * a result, the 'newvm' vmspace always has a non-zero reference
466  * count.  This permits an additional reference on 'newvm' to be
467  * acquired via a simple atomic increment rather than the loop in
468  * vmspace_acquire_ref() above.
469  */
470 void
471 vmspace_switch_aio(struct vmspace *newvm)
472 {
473 	struct vmspace *oldvm;
474 
475 	/* XXX: Need some way to assert that this is an aio daemon. */
476 
477 	KASSERT(newvm->vm_refcnt > 0,
478 	    ("vmspace_switch_aio: newvm unreferenced"));
479 
480 	oldvm = curproc->p_vmspace;
481 	if (oldvm == newvm)
482 		return;
483 
484 	/*
485 	 * Point to the new address space and refer to it.
486 	 */
487 	curproc->p_vmspace = newvm;
488 	atomic_add_int(&newvm->vm_refcnt, 1);
489 
490 	/* Activate the new mapping. */
491 	pmap_activate(curthread);
492 
493 	vmspace_free(oldvm);
494 }
495 
496 void
497 _vm_map_lock(vm_map_t map, const char *file, int line)
498 {
499 
500 	if (map->system_map)
501 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
502 	else
503 		sx_xlock_(&map->lock, file, line);
504 	map->timestamp++;
505 }
506 
507 void
508 vm_map_entry_set_vnode_text(vm_map_entry_t entry, bool add)
509 {
510 	vm_object_t object, object1;
511 	struct vnode *vp;
512 
513 	if ((entry->eflags & MAP_ENTRY_VN_EXEC) == 0)
514 		return;
515 	KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
516 	    ("Submap with execs"));
517 	object = entry->object.vm_object;
518 	KASSERT(object != NULL, ("No object for text, entry %p", entry));
519 	VM_OBJECT_RLOCK(object);
520 	while ((object1 = object->backing_object) != NULL) {
521 		VM_OBJECT_RLOCK(object1);
522 		VM_OBJECT_RUNLOCK(object);
523 		object = object1;
524 	}
525 
526 	vp = NULL;
527 	if (object->type == OBJT_DEAD) {
528 		/*
529 		 * For OBJT_DEAD objects, v_writecount was handled in
530 		 * vnode_pager_dealloc().
531 		 */
532 	} else if (object->type == OBJT_VNODE) {
533 		vp = object->handle;
534 	} else if (object->type == OBJT_SWAP) {
535 		KASSERT((object->flags & OBJ_TMPFS_NODE) != 0,
536 		    ("vm_map_entry_set_vnode_text: swap and !TMPFS "
537 		    "entry %p, object %p, add %d", entry, object, add));
538 		/*
539 		 * Tmpfs VREG node, which was reclaimed, has
540 		 * OBJ_TMPFS_NODE flag set, but not OBJ_TMPFS.  In
541 		 * this case there is no v_writecount to adjust.
542 		 */
543 		if ((object->flags & OBJ_TMPFS) != 0)
544 			vp = object->un_pager.swp.swp_tmpfs;
545 	} else {
546 		KASSERT(0,
547 		    ("vm_map_entry_set_vnode_text: wrong object type, "
548 		    "entry %p, object %p, add %d", entry, object, add));
549 	}
550 	if (vp != NULL) {
551 		if (add) {
552 			VOP_SET_TEXT_CHECKED(vp);
553 			VM_OBJECT_RUNLOCK(object);
554 		} else {
555 			vhold(vp);
556 			VM_OBJECT_RUNLOCK(object);
557 			vn_lock(vp, LK_SHARED | LK_RETRY);
558 			VOP_UNSET_TEXT_CHECKED(vp);
559 			VOP_UNLOCK(vp, 0);
560 			vdrop(vp);
561 		}
562 	} else {
563 		VM_OBJECT_RUNLOCK(object);
564 	}
565 }
566 
567 /*
568  * Use a different name for this vm_map_entry field when it's use
569  * is not consistent with its use as part of an ordered search tree.
570  */
571 #define defer_next right
572 
573 static void
574 vm_map_process_deferred(void)
575 {
576 	struct thread *td;
577 	vm_map_entry_t entry, next;
578 	vm_object_t object;
579 
580 	td = curthread;
581 	entry = td->td_map_def_user;
582 	td->td_map_def_user = NULL;
583 	while (entry != NULL) {
584 		next = entry->defer_next;
585 		MPASS((entry->eflags & (MAP_ENTRY_WRITECNT |
586 		    MAP_ENTRY_VN_EXEC)) != (MAP_ENTRY_WRITECNT |
587 		    MAP_ENTRY_VN_EXEC));
588 		if ((entry->eflags & MAP_ENTRY_WRITECNT) != 0) {
589 			/*
590 			 * Decrement the object's writemappings and
591 			 * possibly the vnode's v_writecount.
592 			 */
593 			KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
594 			    ("Submap with writecount"));
595 			object = entry->object.vm_object;
596 			KASSERT(object != NULL, ("No object for writecount"));
597 			vm_pager_release_writecount(object, entry->start,
598 			    entry->end);
599 		}
600 		vm_map_entry_set_vnode_text(entry, false);
601 		vm_map_entry_deallocate(entry, FALSE);
602 		entry = next;
603 	}
604 }
605 
606 #ifdef INVARIANTS
607 static void
608 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
609 {
610 
611 	if (map->system_map)
612 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
613 	else
614 		sx_assert_(&map->lock, SA_XLOCKED, file, line);
615 }
616 
617 #define	VM_MAP_ASSERT_LOCKED(map) \
618     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
619 
620 enum { VMMAP_CHECK_NONE, VMMAP_CHECK_UNLOCK, VMMAP_CHECK_ALL };
621 #ifdef DIAGNOSTIC
622 static int enable_vmmap_check = VMMAP_CHECK_UNLOCK;
623 #else
624 static int enable_vmmap_check = VMMAP_CHECK_NONE;
625 #endif
626 SYSCTL_INT(_debug, OID_AUTO, vmmap_check, CTLFLAG_RWTUN,
627     &enable_vmmap_check, 0, "Enable vm map consistency checking");
628 
629 static void _vm_map_assert_consistent(vm_map_t map, int check);
630 
631 #define VM_MAP_ASSERT_CONSISTENT(map) \
632     _vm_map_assert_consistent(map, VMMAP_CHECK_ALL)
633 #ifdef DIAGNOSTIC
634 #define VM_MAP_UNLOCK_CONSISTENT(map) do {				\
635 	if (map->nupdates > map->nentries) {				\
636 		_vm_map_assert_consistent(map, VMMAP_CHECK_UNLOCK);	\
637 		map->nupdates = 0;					\
638 	}								\
639 } while (0)
640 #else
641 #define VM_MAP_UNLOCK_CONSISTENT(map)
642 #endif
643 #else
644 #define	VM_MAP_ASSERT_LOCKED(map)
645 #define VM_MAP_ASSERT_CONSISTENT(map)
646 #define VM_MAP_UNLOCK_CONSISTENT(map)
647 #endif /* INVARIANTS */
648 
649 void
650 _vm_map_unlock(vm_map_t map, const char *file, int line)
651 {
652 
653 	VM_MAP_UNLOCK_CONSISTENT(map);
654 	if (map->system_map)
655 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
656 	else {
657 		sx_xunlock_(&map->lock, file, line);
658 		vm_map_process_deferred();
659 	}
660 }
661 
662 void
663 _vm_map_lock_read(vm_map_t map, const char *file, int line)
664 {
665 
666 	if (map->system_map)
667 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
668 	else
669 		sx_slock_(&map->lock, file, line);
670 }
671 
672 void
673 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
674 {
675 
676 	if (map->system_map)
677 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
678 	else {
679 		sx_sunlock_(&map->lock, file, line);
680 		vm_map_process_deferred();
681 	}
682 }
683 
684 int
685 _vm_map_trylock(vm_map_t map, const char *file, int line)
686 {
687 	int error;
688 
689 	error = map->system_map ?
690 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
691 	    !sx_try_xlock_(&map->lock, file, line);
692 	if (error == 0)
693 		map->timestamp++;
694 	return (error == 0);
695 }
696 
697 int
698 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
699 {
700 	int error;
701 
702 	error = map->system_map ?
703 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
704 	    !sx_try_slock_(&map->lock, file, line);
705 	return (error == 0);
706 }
707 
708 /*
709  *	_vm_map_lock_upgrade:	[ internal use only ]
710  *
711  *	Tries to upgrade a read (shared) lock on the specified map to a write
712  *	(exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
713  *	non-zero value if the upgrade fails.  If the upgrade fails, the map is
714  *	returned without a read or write lock held.
715  *
716  *	Requires that the map be read locked.
717  */
718 int
719 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
720 {
721 	unsigned int last_timestamp;
722 
723 	if (map->system_map) {
724 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
725 	} else {
726 		if (!sx_try_upgrade_(&map->lock, file, line)) {
727 			last_timestamp = map->timestamp;
728 			sx_sunlock_(&map->lock, file, line);
729 			vm_map_process_deferred();
730 			/*
731 			 * If the map's timestamp does not change while the
732 			 * map is unlocked, then the upgrade succeeds.
733 			 */
734 			sx_xlock_(&map->lock, file, line);
735 			if (last_timestamp != map->timestamp) {
736 				sx_xunlock_(&map->lock, file, line);
737 				return (1);
738 			}
739 		}
740 	}
741 	map->timestamp++;
742 	return (0);
743 }
744 
745 void
746 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
747 {
748 
749 	if (map->system_map) {
750 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
751 	} else {
752 		VM_MAP_UNLOCK_CONSISTENT(map);
753 		sx_downgrade_(&map->lock, file, line);
754 	}
755 }
756 
757 /*
758  *	vm_map_locked:
759  *
760  *	Returns a non-zero value if the caller holds a write (exclusive) lock
761  *	on the specified map and the value "0" otherwise.
762  */
763 int
764 vm_map_locked(vm_map_t map)
765 {
766 
767 	if (map->system_map)
768 		return (mtx_owned(&map->system_mtx));
769 	else
770 		return (sx_xlocked(&map->lock));
771 }
772 
773 /*
774  *	_vm_map_unlock_and_wait:
775  *
776  *	Atomically releases the lock on the specified map and puts the calling
777  *	thread to sleep.  The calling thread will remain asleep until either
778  *	vm_map_wakeup() is performed on the map or the specified timeout is
779  *	exceeded.
780  *
781  *	WARNING!  This function does not perform deferred deallocations of
782  *	objects and map	entries.  Therefore, the calling thread is expected to
783  *	reacquire the map lock after reawakening and later perform an ordinary
784  *	unlock operation, such as vm_map_unlock(), before completing its
785  *	operation on the map.
786  */
787 int
788 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
789 {
790 
791 	VM_MAP_UNLOCK_CONSISTENT(map);
792 	mtx_lock(&map_sleep_mtx);
793 	if (map->system_map)
794 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
795 	else
796 		sx_xunlock_(&map->lock, file, line);
797 	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
798 	    timo));
799 }
800 
801 /*
802  *	vm_map_wakeup:
803  *
804  *	Awaken any threads that have slept on the map using
805  *	vm_map_unlock_and_wait().
806  */
807 void
808 vm_map_wakeup(vm_map_t map)
809 {
810 
811 	/*
812 	 * Acquire and release map_sleep_mtx to prevent a wakeup()
813 	 * from being performed (and lost) between the map unlock
814 	 * and the msleep() in _vm_map_unlock_and_wait().
815 	 */
816 	mtx_lock(&map_sleep_mtx);
817 	mtx_unlock(&map_sleep_mtx);
818 	wakeup(&map->root);
819 }
820 
821 void
822 vm_map_busy(vm_map_t map)
823 {
824 
825 	VM_MAP_ASSERT_LOCKED(map);
826 	map->busy++;
827 }
828 
829 void
830 vm_map_unbusy(vm_map_t map)
831 {
832 
833 	VM_MAP_ASSERT_LOCKED(map);
834 	KASSERT(map->busy, ("vm_map_unbusy: not busy"));
835 	if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
836 		vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
837 		wakeup(&map->busy);
838 	}
839 }
840 
841 void
842 vm_map_wait_busy(vm_map_t map)
843 {
844 
845 	VM_MAP_ASSERT_LOCKED(map);
846 	while (map->busy) {
847 		vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
848 		if (map->system_map)
849 			msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
850 		else
851 			sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
852 	}
853 	map->timestamp++;
854 }
855 
856 long
857 vmspace_resident_count(struct vmspace *vmspace)
858 {
859 	return pmap_resident_count(vmspace_pmap(vmspace));
860 }
861 
862 /*
863  *	vm_map_create:
864  *
865  *	Creates and returns a new empty VM map with
866  *	the given physical map structure, and having
867  *	the given lower and upper address bounds.
868  */
869 vm_map_t
870 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
871 {
872 	vm_map_t result;
873 
874 	result = uma_zalloc(mapzone, M_WAITOK);
875 	CTR1(KTR_VM, "vm_map_create: %p", result);
876 	_vm_map_init(result, pmap, min, max);
877 	return (result);
878 }
879 
880 /*
881  * Initialize an existing vm_map structure
882  * such as that in the vmspace structure.
883  */
884 static void
885 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
886 {
887 
888 	map->header.next = map->header.prev = &map->header;
889 	map->header.eflags = MAP_ENTRY_HEADER;
890 	map->needs_wakeup = FALSE;
891 	map->system_map = 0;
892 	map->pmap = pmap;
893 	map->header.end = min;
894 	map->header.start = max;
895 	map->flags = 0;
896 	map->root = NULL;
897 	map->timestamp = 0;
898 	map->busy = 0;
899 	map->anon_loc = 0;
900 #ifdef DIAGNOSTIC
901 	map->nupdates = 0;
902 #endif
903 }
904 
905 void
906 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
907 {
908 
909 	_vm_map_init(map, pmap, min, max);
910 	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
911 	sx_init(&map->lock, "user map");
912 }
913 
914 /*
915  *	vm_map_entry_dispose:	[ internal use only ]
916  *
917  *	Inverse of vm_map_entry_create.
918  */
919 static void
920 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
921 {
922 	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
923 }
924 
925 /*
926  *	vm_map_entry_create:	[ internal use only ]
927  *
928  *	Allocates a VM map entry for insertion.
929  *	No entry fields are filled in.
930  */
931 static vm_map_entry_t
932 vm_map_entry_create(vm_map_t map)
933 {
934 	vm_map_entry_t new_entry;
935 
936 	if (map->system_map)
937 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
938 	else
939 		new_entry = uma_zalloc(mapentzone, M_WAITOK);
940 	if (new_entry == NULL)
941 		panic("vm_map_entry_create: kernel resources exhausted");
942 	return (new_entry);
943 }
944 
945 /*
946  *	vm_map_entry_set_behavior:
947  *
948  *	Set the expected access behavior, either normal, random, or
949  *	sequential.
950  */
951 static inline void
952 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
953 {
954 	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
955 	    (behavior & MAP_ENTRY_BEHAV_MASK);
956 }
957 
958 /*
959  *	vm_map_entry_max_free_{left,right}:
960  *
961  *	Compute the size of the largest free gap between two entries,
962  *	one the root of a tree and the other the ancestor of that root
963  *	that is the least or greatest ancestor found on the search path.
964  */
965 static inline vm_size_t
966 vm_map_entry_max_free_left(vm_map_entry_t root, vm_map_entry_t left_ancestor)
967 {
968 
969 	return (root->left != NULL ?
970 	    root->left->max_free : root->start - left_ancestor->end);
971 }
972 
973 static inline vm_size_t
974 vm_map_entry_max_free_right(vm_map_entry_t root, vm_map_entry_t right_ancestor)
975 {
976 
977 	return (root->right != NULL ?
978 	    root->right->max_free : right_ancestor->start - root->end);
979 }
980 
981 /*
982  *	vm_map_entry_{pred,succ}:
983  *
984  *	Find the {predecessor, successor} of the entry by taking one step
985  *	in the appropriate direction and backtracking as much as necessary.
986  */
987 static inline vm_map_entry_t
988 vm_map_entry_pred(vm_map_entry_t entry)
989 {
990 
991 	return (entry->prev);
992 }
993 
994 /* vm_map_entry_succ is defined in vm_map.h. */
995 
996 #define SPLAY_LEFT_STEP(root, y, rlist, test) do {			\
997 	vm_size_t max_free;						\
998 									\
999 	/*								\
1000 	 * Infer root->right->max_free == root->max_free when		\
1001 	 * y->max_free < root->max_free || root->max_free == 0.		\
1002 	 * Otherwise, look right to find it.				\
1003 	 */								\
1004 	y = root->left;							\
1005 	max_free = root->max_free;					\
1006 	KASSERT(max_free >= vm_map_entry_max_free_right(root, rlist),	\
1007 	    ("%s: max_free invariant fails", __func__));		\
1008 	if (y == NULL ? max_free > 0 : max_free - 1 < y->max_free)	\
1009 		max_free = vm_map_entry_max_free_right(root, rlist);	\
1010 	if (y != NULL && (test)) {					\
1011 		/* Rotate right and make y root. */			\
1012 		root->left = y->right;					\
1013 		y->right = root;					\
1014 		if (max_free < y->max_free)				\
1015 			root->max_free = max_free = MAX(max_free,	\
1016 			    vm_map_entry_max_free_left(root, y));	\
1017 		root = y;						\
1018 		y = root->left;						\
1019 	}								\
1020 	/* Copy right->max_free.  Put root on rlist. */			\
1021 	root->max_free = max_free;					\
1022 	KASSERT(max_free == vm_map_entry_max_free_right(root, rlist),	\
1023 	    ("%s: max_free not copied from right", __func__));		\
1024 	root->left = rlist;						\
1025 	rlist = root;							\
1026 	root = y;							\
1027 } while (0)
1028 
1029 #define SPLAY_RIGHT_STEP(root, y, llist, test) do {			\
1030 	vm_size_t max_free;						\
1031 									\
1032 	/*								\
1033 	 * Infer root->left->max_free == root->max_free when		\
1034 	 * y->max_free < root->max_free || root->max_free == 0.		\
1035 	 * Otherwise, look left to find it.				\
1036 	 */								\
1037 	y = root->right;						\
1038 	max_free = root->max_free;					\
1039 	KASSERT(max_free >= vm_map_entry_max_free_left(root, llist),	\
1040 	    ("%s: max_free invariant fails", __func__));		\
1041 	if (y == NULL ? max_free > 0 : max_free - 1 < y->max_free)	\
1042 		max_free = vm_map_entry_max_free_left(root, llist);	\
1043 	if (y != NULL && (test)) {					\
1044 		/* Rotate left and make y root. */			\
1045 		root->right = y->left;					\
1046 		y->left = root;						\
1047 		if (max_free < y->max_free)				\
1048 			root->max_free = max_free = MAX(max_free,	\
1049 			    vm_map_entry_max_free_right(root, y));	\
1050 		root = y;						\
1051 		y = root->right;					\
1052 	}								\
1053 	/* Copy left->max_free.  Put root on llist. */			\
1054 	root->max_free = max_free;					\
1055 	KASSERT(max_free == vm_map_entry_max_free_left(root, llist),	\
1056 	    ("%s: max_free not copied from left", __func__));		\
1057 	root->right = llist;						\
1058 	llist = root;							\
1059 	root = y;							\
1060 } while (0)
1061 
1062 /*
1063  * Walk down the tree until we find addr or a NULL pointer where addr would go,
1064  * breaking off left and right subtrees of nodes less than, or greater than
1065  * addr.  Treat pointers to nodes with max_free < length as NULL pointers.
1066  * llist and rlist are the two sides in reverse order (bottom-up), with llist
1067  * linked by the right pointer and rlist linked by the left pointer in the
1068  * vm_map_entry, and both lists terminated by &map->header.  This function, and
1069  * the subsequent call to vm_map_splay_merge, rely on the start and end address
1070  * values in &map->header.
1071  */
1072 static vm_map_entry_t
1073 vm_map_splay_split(vm_map_t map, vm_offset_t addr, vm_size_t length,
1074     vm_map_entry_t *out_llist, vm_map_entry_t *out_rlist)
1075 {
1076 	vm_map_entry_t llist, rlist, root, y;
1077 
1078 	llist = rlist = &map->header;
1079 	root = map->root;
1080 	while (root != NULL && root->max_free >= length) {
1081 		KASSERT(llist->end <= root->start && root->end <= rlist->start,
1082 		    ("%s: root not within tree bounds", __func__));
1083 		if (addr < root->start) {
1084 			SPLAY_LEFT_STEP(root, y, rlist,
1085 			    y->max_free >= length && addr < y->start);
1086 		} else if (addr >= root->end) {
1087 			SPLAY_RIGHT_STEP(root, y, llist,
1088 			    y->max_free >= length && addr >= y->end);
1089 		} else
1090 			break;
1091 	}
1092 	*out_llist = llist;
1093 	*out_rlist = rlist;
1094 	return (root);
1095 }
1096 
1097 static void
1098 vm_map_splay_findnext(vm_map_entry_t root, vm_map_entry_t *iolist)
1099 {
1100 	vm_map_entry_t rlist, y;
1101 
1102 	root = root->right;
1103 	rlist = *iolist;
1104 	while (root != NULL)
1105 		SPLAY_LEFT_STEP(root, y, rlist, true);
1106 	*iolist = rlist;
1107 }
1108 
1109 static void
1110 vm_map_splay_findprev(vm_map_entry_t root, vm_map_entry_t *iolist)
1111 {
1112 	vm_map_entry_t llist, y;
1113 
1114 	root = root->left;
1115 	llist = *iolist;
1116 	while (root != NULL)
1117 		SPLAY_RIGHT_STEP(root, y, llist, true);
1118 	*iolist = llist;
1119 }
1120 
1121 static inline void
1122 vm_map_entry_swap(vm_map_entry_t *a, vm_map_entry_t *b)
1123 {
1124 	vm_map_entry_t tmp;
1125 
1126 	tmp = *b;
1127 	*b = *a;
1128 	*a = tmp;
1129 }
1130 
1131 /*
1132  * Walk back up the two spines, flip the pointers and set max_free.  The
1133  * subtrees of the root go at the bottom of llist and rlist.
1134  */
1135 static void
1136 vm_map_splay_merge(vm_map_t map, vm_map_entry_t root,
1137     vm_map_entry_t llist, vm_map_entry_t rlist)
1138 {
1139 	vm_map_entry_t prev;
1140 	vm_size_t max_free_left, max_free_right;
1141 
1142 	max_free_left = vm_map_entry_max_free_left(root, llist);
1143 	if (llist != &map->header) {
1144 		prev = root->left;
1145 		do {
1146 			/*
1147 			 * The max_free values of the children of llist are in
1148 			 * llist->max_free and max_free_left.  Update with the
1149 			 * max value.
1150 			 */
1151 			llist->max_free = max_free_left =
1152 			    MAX(llist->max_free, max_free_left);
1153 			vm_map_entry_swap(&llist->right, &prev);
1154 			vm_map_entry_swap(&prev, &llist);
1155 		} while (llist != &map->header);
1156 		root->left = prev;
1157 	}
1158 	max_free_right = vm_map_entry_max_free_right(root, rlist);
1159 	if (rlist != &map->header) {
1160 		prev = root->right;
1161 		do {
1162 			/*
1163 			 * The max_free values of the children of rlist are in
1164 			 * rlist->max_free and max_free_right.  Update with the
1165 			 * max value.
1166 			 */
1167 			rlist->max_free = max_free_right =
1168 			    MAX(rlist->max_free, max_free_right);
1169 			vm_map_entry_swap(&rlist->left, &prev);
1170 			vm_map_entry_swap(&prev, &rlist);
1171 		} while (rlist != &map->header);
1172 		root->right = prev;
1173 	}
1174 	root->max_free = MAX(max_free_left, max_free_right);
1175 	map->root = root;
1176 #ifdef DIAGNOSTIC
1177 	++map->nupdates;
1178 #endif
1179 }
1180 
1181 /*
1182  *	vm_map_splay:
1183  *
1184  *	The Sleator and Tarjan top-down splay algorithm with the
1185  *	following variation.  Max_free must be computed bottom-up, so
1186  *	on the downward pass, maintain the left and right spines in
1187  *	reverse order.  Then, make a second pass up each side to fix
1188  *	the pointers and compute max_free.  The time bound is O(log n)
1189  *	amortized.
1190  *
1191  *	The new root is the vm_map_entry containing "addr", or else an
1192  *	adjacent entry (lower if possible) if addr is not in the tree.
1193  *
1194  *	The map must be locked, and leaves it so.
1195  *
1196  *	Returns: the new root.
1197  */
1198 static vm_map_entry_t
1199 vm_map_splay(vm_map_t map, vm_offset_t addr)
1200 {
1201 	vm_map_entry_t llist, rlist, root;
1202 
1203 	root = vm_map_splay_split(map, addr, 0, &llist, &rlist);
1204 	if (root != NULL) {
1205 		/* do nothing */
1206 	} else if (llist != &map->header) {
1207 		/*
1208 		 * Recover the greatest node in the left
1209 		 * subtree and make it the root.
1210 		 */
1211 		root = llist;
1212 		llist = root->right;
1213 		root->right = NULL;
1214 	} else if (rlist != &map->header) {
1215 		/*
1216 		 * Recover the least node in the right
1217 		 * subtree and make it the root.
1218 		 */
1219 		root = rlist;
1220 		rlist = root->left;
1221 		root->left = NULL;
1222 	} else {
1223 		/* There is no root. */
1224 		return (NULL);
1225 	}
1226 	vm_map_splay_merge(map, root, llist, rlist);
1227 	VM_MAP_ASSERT_CONSISTENT(map);
1228 	return (root);
1229 }
1230 
1231 /*
1232  *	vm_map_entry_{un,}link:
1233  *
1234  *	Insert/remove entries from maps.
1235  */
1236 static void
1237 vm_map_entry_link(vm_map_t map, vm_map_entry_t entry)
1238 {
1239 	vm_map_entry_t llist, rlist, root;
1240 
1241 	CTR3(KTR_VM,
1242 	    "vm_map_entry_link: map %p, nentries %d, entry %p", map,
1243 	    map->nentries, entry);
1244 	VM_MAP_ASSERT_LOCKED(map);
1245 	map->nentries++;
1246 	root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1247 	KASSERT(root == NULL,
1248 	    ("vm_map_entry_link: link object already mapped"));
1249 	entry->prev = llist;
1250 	entry->next = rlist;
1251 	llist->next = rlist->prev = entry;
1252 	entry->left = entry->right = NULL;
1253 	vm_map_splay_merge(map, entry, llist, rlist);
1254 	VM_MAP_ASSERT_CONSISTENT(map);
1255 }
1256 
1257 enum unlink_merge_type {
1258 	UNLINK_MERGE_NONE,
1259 	UNLINK_MERGE_NEXT
1260 };
1261 
1262 static void
1263 vm_map_entry_unlink(vm_map_t map, vm_map_entry_t entry,
1264     enum unlink_merge_type op)
1265 {
1266 	vm_map_entry_t llist, rlist, root, y;
1267 
1268 	VM_MAP_ASSERT_LOCKED(map);
1269 	root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1270 	KASSERT(root != NULL,
1271 	    ("vm_map_entry_unlink: unlink object not mapped"));
1272 
1273 	vm_map_splay_findnext(root, &rlist);
1274 	switch (op) {
1275 	case UNLINK_MERGE_NEXT:
1276 		rlist->start = root->start;
1277 		rlist->offset = root->offset;
1278 		y = root->left;
1279 		root = rlist;
1280 		rlist = root->left;
1281 		root->left = y;
1282 		break;
1283 	case UNLINK_MERGE_NONE:
1284 		vm_map_splay_findprev(root, &llist);
1285 		if (llist != &map->header) {
1286 			root = llist;
1287 			llist = root->right;
1288 			root->right = NULL;
1289 		} else if (rlist != &map->header) {
1290 			root = rlist;
1291 			rlist = root->left;
1292 			root->left = NULL;
1293 		} else
1294 			root = NULL;
1295 		break;
1296 	}
1297 	y = entry->next;
1298 	y->prev = entry->prev;
1299 	y->prev->next = y;
1300 	if (root != NULL)
1301 		vm_map_splay_merge(map, root, llist, rlist);
1302 	else
1303 		map->root = NULL;
1304 	VM_MAP_ASSERT_CONSISTENT(map);
1305 	map->nentries--;
1306 	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1307 	    map->nentries, entry);
1308 }
1309 
1310 /*
1311  *	vm_map_entry_resize:
1312  *
1313  *	Resize a vm_map_entry, recompute the amount of free space that
1314  *	follows it and propagate that value up the tree.
1315  *
1316  *	The map must be locked, and leaves it so.
1317  */
1318 static void
1319 vm_map_entry_resize(vm_map_t map, vm_map_entry_t entry, vm_size_t grow_amount)
1320 {
1321 	vm_map_entry_t llist, rlist, root;
1322 
1323 	VM_MAP_ASSERT_LOCKED(map);
1324 	root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1325 	KASSERT(root != NULL,
1326 	    ("%s: resize object not mapped", __func__));
1327 	vm_map_splay_findnext(root, &rlist);
1328 	root->right = NULL;
1329 	entry->end += grow_amount;
1330 	vm_map_splay_merge(map, root, llist, rlist);
1331 	VM_MAP_ASSERT_CONSISTENT(map);
1332 	CTR4(KTR_VM, "%s: map %p, nentries %d, entry %p",
1333 	    __func__, map, map->nentries, entry);
1334 }
1335 
1336 /*
1337  *	vm_map_lookup_entry:	[ internal use only ]
1338  *
1339  *	Finds the map entry containing (or
1340  *	immediately preceding) the specified address
1341  *	in the given map; the entry is returned
1342  *	in the "entry" parameter.  The boolean
1343  *	result indicates whether the address is
1344  *	actually contained in the map.
1345  */
1346 boolean_t
1347 vm_map_lookup_entry(
1348 	vm_map_t map,
1349 	vm_offset_t address,
1350 	vm_map_entry_t *entry)	/* OUT */
1351 {
1352 	vm_map_entry_t cur, lbound;
1353 	boolean_t locked;
1354 
1355 	/*
1356 	 * If the map is empty, then the map entry immediately preceding
1357 	 * "address" is the map's header.
1358 	 */
1359 	cur = map->root;
1360 	if (cur == NULL) {
1361 		*entry = &map->header;
1362 		return (FALSE);
1363 	}
1364 	if (address >= cur->start && cur->end > address) {
1365 		*entry = cur;
1366 		return (TRUE);
1367 	}
1368 	if ((locked = vm_map_locked(map)) ||
1369 	    sx_try_upgrade(&map->lock)) {
1370 		/*
1371 		 * Splay requires a write lock on the map.  However, it only
1372 		 * restructures the binary search tree; it does not otherwise
1373 		 * change the map.  Thus, the map's timestamp need not change
1374 		 * on a temporary upgrade.
1375 		 */
1376 		cur = vm_map_splay(map, address);
1377 		if (!locked) {
1378 			VM_MAP_UNLOCK_CONSISTENT(map);
1379 			sx_downgrade(&map->lock);
1380 		}
1381 
1382 		/*
1383 		 * If "address" is contained within a map entry, the new root
1384 		 * is that map entry.  Otherwise, the new root is a map entry
1385 		 * immediately before or after "address".
1386 		 */
1387 		if (address < cur->start) {
1388 			*entry = &map->header;
1389 			return (FALSE);
1390 		}
1391 		*entry = cur;
1392 		return (address < cur->end);
1393 	}
1394 	/*
1395 	 * Since the map is only locked for read access, perform a
1396 	 * standard binary search tree lookup for "address".
1397 	 */
1398 	lbound = &map->header;
1399 	do {
1400 		if (address < cur->start) {
1401 			cur = cur->left;
1402 		} else if (cur->end <= address) {
1403 			lbound = cur;
1404 			cur = cur->right;
1405 		} else {
1406 			*entry = cur;
1407 			return (TRUE);
1408 		}
1409 	} while (cur != NULL);
1410 	*entry = lbound;
1411 	return (FALSE);
1412 }
1413 
1414 /*
1415  *	vm_map_insert:
1416  *
1417  *	Inserts the given whole VM object into the target
1418  *	map at the specified address range.  The object's
1419  *	size should match that of the address range.
1420  *
1421  *	Requires that the map be locked, and leaves it so.
1422  *
1423  *	If object is non-NULL, ref count must be bumped by caller
1424  *	prior to making call to account for the new entry.
1425  */
1426 int
1427 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1428     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1429 {
1430 	vm_map_entry_t new_entry, next_entry, prev_entry;
1431 	struct ucred *cred;
1432 	vm_eflags_t protoeflags;
1433 	vm_inherit_t inheritance;
1434 
1435 	VM_MAP_ASSERT_LOCKED(map);
1436 	KASSERT(object != kernel_object ||
1437 	    (cow & MAP_COPY_ON_WRITE) == 0,
1438 	    ("vm_map_insert: kernel object and COW"));
1439 	KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0,
1440 	    ("vm_map_insert: paradoxical MAP_NOFAULT request"));
1441 	KASSERT((prot & ~max) == 0,
1442 	    ("prot %#x is not subset of max_prot %#x", prot, max));
1443 
1444 	/*
1445 	 * Check that the start and end points are not bogus.
1446 	 */
1447 	if (start < vm_map_min(map) || end > vm_map_max(map) ||
1448 	    start >= end)
1449 		return (KERN_INVALID_ADDRESS);
1450 
1451 	/*
1452 	 * Find the entry prior to the proposed starting address; if it's part
1453 	 * of an existing entry, this range is bogus.
1454 	 */
1455 	if (vm_map_lookup_entry(map, start, &prev_entry))
1456 		return (KERN_NO_SPACE);
1457 
1458 	/*
1459 	 * Assert that the next entry doesn't overlap the end point.
1460 	 */
1461 	next_entry = vm_map_entry_succ(prev_entry);
1462 	if (next_entry->start < end)
1463 		return (KERN_NO_SPACE);
1464 
1465 	if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL ||
1466 	    max != VM_PROT_NONE))
1467 		return (KERN_INVALID_ARGUMENT);
1468 
1469 	protoeflags = 0;
1470 	if (cow & MAP_COPY_ON_WRITE)
1471 		protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1472 	if (cow & MAP_NOFAULT)
1473 		protoeflags |= MAP_ENTRY_NOFAULT;
1474 	if (cow & MAP_DISABLE_SYNCER)
1475 		protoeflags |= MAP_ENTRY_NOSYNC;
1476 	if (cow & MAP_DISABLE_COREDUMP)
1477 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1478 	if (cow & MAP_STACK_GROWS_DOWN)
1479 		protoeflags |= MAP_ENTRY_GROWS_DOWN;
1480 	if (cow & MAP_STACK_GROWS_UP)
1481 		protoeflags |= MAP_ENTRY_GROWS_UP;
1482 	if (cow & MAP_WRITECOUNT)
1483 		protoeflags |= MAP_ENTRY_WRITECNT;
1484 	if (cow & MAP_VN_EXEC)
1485 		protoeflags |= MAP_ENTRY_VN_EXEC;
1486 	if ((cow & MAP_CREATE_GUARD) != 0)
1487 		protoeflags |= MAP_ENTRY_GUARD;
1488 	if ((cow & MAP_CREATE_STACK_GAP_DN) != 0)
1489 		protoeflags |= MAP_ENTRY_STACK_GAP_DN;
1490 	if ((cow & MAP_CREATE_STACK_GAP_UP) != 0)
1491 		protoeflags |= MAP_ENTRY_STACK_GAP_UP;
1492 	if (cow & MAP_INHERIT_SHARE)
1493 		inheritance = VM_INHERIT_SHARE;
1494 	else
1495 		inheritance = VM_INHERIT_DEFAULT;
1496 
1497 	cred = NULL;
1498 	if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0)
1499 		goto charged;
1500 	if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1501 	    ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1502 		if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1503 			return (KERN_RESOURCE_SHORTAGE);
1504 		KASSERT(object == NULL ||
1505 		    (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
1506 		    object->cred == NULL,
1507 		    ("overcommit: vm_map_insert o %p", object));
1508 		cred = curthread->td_ucred;
1509 	}
1510 
1511 charged:
1512 	/* Expand the kernel pmap, if necessary. */
1513 	if (map == kernel_map && end > kernel_vm_end)
1514 		pmap_growkernel(end);
1515 	if (object != NULL) {
1516 		/*
1517 		 * OBJ_ONEMAPPING must be cleared unless this mapping
1518 		 * is trivially proven to be the only mapping for any
1519 		 * of the object's pages.  (Object granularity
1520 		 * reference counting is insufficient to recognize
1521 		 * aliases with precision.)
1522 		 */
1523 		if ((object->flags & OBJ_ANON) != 0) {
1524 			VM_OBJECT_WLOCK(object);
1525 			if (object->ref_count > 1 || object->shadow_count != 0)
1526 				vm_object_clear_flag(object, OBJ_ONEMAPPING);
1527 			VM_OBJECT_WUNLOCK(object);
1528 		}
1529 	} else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) ==
1530 	    protoeflags &&
1531 	    (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP |
1532 	    MAP_VN_EXEC)) == 0 &&
1533 	    prev_entry->end == start && (prev_entry->cred == cred ||
1534 	    (prev_entry->object.vm_object != NULL &&
1535 	    prev_entry->object.vm_object->cred == cred)) &&
1536 	    vm_object_coalesce(prev_entry->object.vm_object,
1537 	    prev_entry->offset,
1538 	    (vm_size_t)(prev_entry->end - prev_entry->start),
1539 	    (vm_size_t)(end - prev_entry->end), cred != NULL &&
1540 	    (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1541 		/*
1542 		 * We were able to extend the object.  Determine if we
1543 		 * can extend the previous map entry to include the
1544 		 * new range as well.
1545 		 */
1546 		if (prev_entry->inheritance == inheritance &&
1547 		    prev_entry->protection == prot &&
1548 		    prev_entry->max_protection == max &&
1549 		    prev_entry->wired_count == 0) {
1550 			KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) ==
1551 			    0, ("prev_entry %p has incoherent wiring",
1552 			    prev_entry));
1553 			if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0)
1554 				map->size += end - prev_entry->end;
1555 			vm_map_entry_resize(map, prev_entry,
1556 			    end - prev_entry->end);
1557 			vm_map_try_merge_entries(map, prev_entry, next_entry);
1558 			return (KERN_SUCCESS);
1559 		}
1560 
1561 		/*
1562 		 * If we can extend the object but cannot extend the
1563 		 * map entry, we have to create a new map entry.  We
1564 		 * must bump the ref count on the extended object to
1565 		 * account for it.  object may be NULL.
1566 		 */
1567 		object = prev_entry->object.vm_object;
1568 		offset = prev_entry->offset +
1569 		    (prev_entry->end - prev_entry->start);
1570 		vm_object_reference(object);
1571 		if (cred != NULL && object != NULL && object->cred != NULL &&
1572 		    !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1573 			/* Object already accounts for this uid. */
1574 			cred = NULL;
1575 		}
1576 	}
1577 	if (cred != NULL)
1578 		crhold(cred);
1579 
1580 	/*
1581 	 * Create a new entry
1582 	 */
1583 	new_entry = vm_map_entry_create(map);
1584 	new_entry->start = start;
1585 	new_entry->end = end;
1586 	new_entry->cred = NULL;
1587 
1588 	new_entry->eflags = protoeflags;
1589 	new_entry->object.vm_object = object;
1590 	new_entry->offset = offset;
1591 
1592 	new_entry->inheritance = inheritance;
1593 	new_entry->protection = prot;
1594 	new_entry->max_protection = max;
1595 	new_entry->wired_count = 0;
1596 	new_entry->wiring_thread = NULL;
1597 	new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1598 	new_entry->next_read = start;
1599 
1600 	KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1601 	    ("overcommit: vm_map_insert leaks vm_map %p", new_entry));
1602 	new_entry->cred = cred;
1603 
1604 	/*
1605 	 * Insert the new entry into the list
1606 	 */
1607 	vm_map_entry_link(map, new_entry);
1608 	if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0)
1609 		map->size += new_entry->end - new_entry->start;
1610 
1611 	/*
1612 	 * Try to coalesce the new entry with both the previous and next
1613 	 * entries in the list.  Previously, we only attempted to coalesce
1614 	 * with the previous entry when object is NULL.  Here, we handle the
1615 	 * other cases, which are less common.
1616 	 */
1617 	vm_map_try_merge_entries(map, prev_entry, new_entry);
1618 	vm_map_try_merge_entries(map, new_entry, next_entry);
1619 
1620 	if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) {
1621 		vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset),
1622 		    end - start, cow & MAP_PREFAULT_PARTIAL);
1623 	}
1624 
1625 	return (KERN_SUCCESS);
1626 }
1627 
1628 /*
1629  *	vm_map_findspace:
1630  *
1631  *	Find the first fit (lowest VM address) for "length" free bytes
1632  *	beginning at address >= start in the given map.
1633  *
1634  *	In a vm_map_entry, "max_free" is the maximum amount of
1635  *	contiguous free space between an entry in its subtree and a
1636  *	neighbor of that entry.  This allows finding a free region in
1637  *	one path down the tree, so O(log n) amortized with splay
1638  *	trees.
1639  *
1640  *	The map must be locked, and leaves it so.
1641  *
1642  *	Returns: starting address if sufficient space,
1643  *		 vm_map_max(map)-length+1 if insufficient space.
1644  */
1645 vm_offset_t
1646 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length)
1647 {
1648 	vm_map_entry_t llist, rlist, root, y;
1649 	vm_size_t left_length;
1650 	vm_offset_t gap_end;
1651 
1652 	/*
1653 	 * Request must fit within min/max VM address and must avoid
1654 	 * address wrap.
1655 	 */
1656 	start = MAX(start, vm_map_min(map));
1657 	if (start >= vm_map_max(map) || length > vm_map_max(map) - start)
1658 		return (vm_map_max(map) - length + 1);
1659 
1660 	/* Empty tree means wide open address space. */
1661 	if (map->root == NULL)
1662 		return (start);
1663 
1664 	/*
1665 	 * After splay_split, if start is within an entry, push it to the start
1666 	 * of the following gap.  If rlist is at the end of the gap containing
1667 	 * start, save the end of that gap in gap_end to see if the gap is big
1668 	 * enough; otherwise set gap_end to start skip gap-checking and move
1669 	 * directly to a search of the right subtree.
1670 	 */
1671 	root = vm_map_splay_split(map, start, length, &llist, &rlist);
1672 	gap_end = rlist->start;
1673 	if (root != NULL) {
1674 		start = root->end;
1675 		if (root->right != NULL)
1676 			gap_end = start;
1677 	} else if (rlist != &map->header) {
1678 		root = rlist;
1679 		rlist = root->left;
1680 		root->left = NULL;
1681 	} else {
1682 		root = llist;
1683 		llist = root->right;
1684 		root->right = NULL;
1685 	}
1686 	vm_map_splay_merge(map, root, llist, rlist);
1687 	VM_MAP_ASSERT_CONSISTENT(map);
1688 	if (length <= gap_end - start)
1689 		return (start);
1690 
1691 	/* With max_free, can immediately tell if no solution. */
1692 	if (root->right == NULL || length > root->right->max_free)
1693 		return (vm_map_max(map) - length + 1);
1694 
1695 	/*
1696 	 * Splay for the least large-enough gap in the right subtree.
1697 	 */
1698 	llist = rlist = &map->header;
1699 	for (left_length = 0;;
1700 	    left_length = vm_map_entry_max_free_left(root, llist)) {
1701 		if (length <= left_length)
1702 			SPLAY_LEFT_STEP(root, y, rlist,
1703 			    length <= vm_map_entry_max_free_left(y, llist));
1704 		else
1705 			SPLAY_RIGHT_STEP(root, y, llist,
1706 			    length > vm_map_entry_max_free_left(y, root));
1707 		if (root == NULL)
1708 			break;
1709 	}
1710 	root = llist;
1711 	llist = root->right;
1712 	root->right = NULL;
1713 	if (rlist != &map->header) {
1714 		y = rlist;
1715 		rlist = y->left;
1716 		y->left = NULL;
1717 		vm_map_splay_merge(map, y, &map->header, rlist);
1718 		y->max_free = MAX(
1719 		    vm_map_entry_max_free_left(y, root),
1720 		    vm_map_entry_max_free_right(y, &map->header));
1721 		root->right = y;
1722 	}
1723 	vm_map_splay_merge(map, root, llist, &map->header);
1724 	VM_MAP_ASSERT_CONSISTENT(map);
1725 	return (root->end);
1726 }
1727 
1728 int
1729 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1730     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1731     vm_prot_t max, int cow)
1732 {
1733 	vm_offset_t end;
1734 	int result;
1735 
1736 	end = start + length;
1737 	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1738 	    object == NULL,
1739 	    ("vm_map_fixed: non-NULL backing object for stack"));
1740 	vm_map_lock(map);
1741 	VM_MAP_RANGE_CHECK(map, start, end);
1742 	if ((cow & MAP_CHECK_EXCL) == 0)
1743 		vm_map_delete(map, start, end);
1744 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1745 		result = vm_map_stack_locked(map, start, length, sgrowsiz,
1746 		    prot, max, cow);
1747 	} else {
1748 		result = vm_map_insert(map, object, offset, start, end,
1749 		    prot, max, cow);
1750 	}
1751 	vm_map_unlock(map);
1752 	return (result);
1753 }
1754 
1755 static const int aslr_pages_rnd_64[2] = {0x1000, 0x10};
1756 static const int aslr_pages_rnd_32[2] = {0x100, 0x4};
1757 
1758 static int cluster_anon = 1;
1759 SYSCTL_INT(_vm, OID_AUTO, cluster_anon, CTLFLAG_RW,
1760     &cluster_anon, 0,
1761     "Cluster anonymous mappings: 0 = no, 1 = yes if no hint, 2 = always");
1762 
1763 static bool
1764 clustering_anon_allowed(vm_offset_t addr)
1765 {
1766 
1767 	switch (cluster_anon) {
1768 	case 0:
1769 		return (false);
1770 	case 1:
1771 		return (addr == 0);
1772 	case 2:
1773 	default:
1774 		return (true);
1775 	}
1776 }
1777 
1778 static long aslr_restarts;
1779 SYSCTL_LONG(_vm, OID_AUTO, aslr_restarts, CTLFLAG_RD,
1780     &aslr_restarts, 0,
1781     "Number of aslr failures");
1782 
1783 #define	MAP_32BIT_MAX_ADDR	((vm_offset_t)1 << 31)
1784 
1785 /*
1786  * Searches for the specified amount of free space in the given map with the
1787  * specified alignment.  Performs an address-ordered, first-fit search from
1788  * the given address "*addr", with an optional upper bound "max_addr".  If the
1789  * parameter "alignment" is zero, then the alignment is computed from the
1790  * given (object, offset) pair so as to enable the greatest possible use of
1791  * superpage mappings.  Returns KERN_SUCCESS and the address of the free space
1792  * in "*addr" if successful.  Otherwise, returns KERN_NO_SPACE.
1793  *
1794  * The map must be locked.  Initially, there must be at least "length" bytes
1795  * of free space at the given address.
1796  */
1797 static int
1798 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1799     vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr,
1800     vm_offset_t alignment)
1801 {
1802 	vm_offset_t aligned_addr, free_addr;
1803 
1804 	VM_MAP_ASSERT_LOCKED(map);
1805 	free_addr = *addr;
1806 	KASSERT(free_addr == vm_map_findspace(map, free_addr, length),
1807 	    ("caller failed to provide space %#jx at address %p",
1808 	     (uintmax_t)length, (void *)free_addr));
1809 	for (;;) {
1810 		/*
1811 		 * At the start of every iteration, the free space at address
1812 		 * "*addr" is at least "length" bytes.
1813 		 */
1814 		if (alignment == 0)
1815 			pmap_align_superpage(object, offset, addr, length);
1816 		else if ((*addr & (alignment - 1)) != 0) {
1817 			*addr &= ~(alignment - 1);
1818 			*addr += alignment;
1819 		}
1820 		aligned_addr = *addr;
1821 		if (aligned_addr == free_addr) {
1822 			/*
1823 			 * Alignment did not change "*addr", so "*addr" must
1824 			 * still provide sufficient free space.
1825 			 */
1826 			return (KERN_SUCCESS);
1827 		}
1828 
1829 		/*
1830 		 * Test for address wrap on "*addr".  A wrapped "*addr" could
1831 		 * be a valid address, in which case vm_map_findspace() cannot
1832 		 * be relied upon to fail.
1833 		 */
1834 		if (aligned_addr < free_addr)
1835 			return (KERN_NO_SPACE);
1836 		*addr = vm_map_findspace(map, aligned_addr, length);
1837 		if (*addr + length > vm_map_max(map) ||
1838 		    (max_addr != 0 && *addr + length > max_addr))
1839 			return (KERN_NO_SPACE);
1840 		free_addr = *addr;
1841 		if (free_addr == aligned_addr) {
1842 			/*
1843 			 * If a successful call to vm_map_findspace() did not
1844 			 * change "*addr", then "*addr" must still be aligned
1845 			 * and provide sufficient free space.
1846 			 */
1847 			return (KERN_SUCCESS);
1848 		}
1849 	}
1850 }
1851 
1852 /*
1853  *	vm_map_find finds an unallocated region in the target address
1854  *	map with the given length.  The search is defined to be
1855  *	first-fit from the specified address; the region found is
1856  *	returned in the same parameter.
1857  *
1858  *	If object is non-NULL, ref count must be bumped by caller
1859  *	prior to making call to account for the new entry.
1860  */
1861 int
1862 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1863 	    vm_offset_t *addr,	/* IN/OUT */
1864 	    vm_size_t length, vm_offset_t max_addr, int find_space,
1865 	    vm_prot_t prot, vm_prot_t max, int cow)
1866 {
1867 	vm_offset_t alignment, curr_min_addr, min_addr;
1868 	int gap, pidx, rv, try;
1869 	bool cluster, en_aslr, update_anon;
1870 
1871 	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1872 	    object == NULL,
1873 	    ("vm_map_find: non-NULL backing object for stack"));
1874 	MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE &&
1875 	    (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0));
1876 	if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
1877 	    (object->flags & OBJ_COLORED) == 0))
1878 		find_space = VMFS_ANY_SPACE;
1879 	if (find_space >> 8 != 0) {
1880 		KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
1881 		alignment = (vm_offset_t)1 << (find_space >> 8);
1882 	} else
1883 		alignment = 0;
1884 	en_aslr = (map->flags & MAP_ASLR) != 0;
1885 	update_anon = cluster = clustering_anon_allowed(*addr) &&
1886 	    (map->flags & MAP_IS_SUB_MAP) == 0 && max_addr == 0 &&
1887 	    find_space != VMFS_NO_SPACE && object == NULL &&
1888 	    (cow & (MAP_INHERIT_SHARE | MAP_STACK_GROWS_UP |
1889 	    MAP_STACK_GROWS_DOWN)) == 0 && prot != PROT_NONE;
1890 	curr_min_addr = min_addr = *addr;
1891 	if (en_aslr && min_addr == 0 && !cluster &&
1892 	    find_space != VMFS_NO_SPACE &&
1893 	    (map->flags & MAP_ASLR_IGNSTART) != 0)
1894 		curr_min_addr = min_addr = vm_map_min(map);
1895 	try = 0;
1896 	vm_map_lock(map);
1897 	if (cluster) {
1898 		curr_min_addr = map->anon_loc;
1899 		if (curr_min_addr == 0)
1900 			cluster = false;
1901 	}
1902 	if (find_space != VMFS_NO_SPACE) {
1903 		KASSERT(find_space == VMFS_ANY_SPACE ||
1904 		    find_space == VMFS_OPTIMAL_SPACE ||
1905 		    find_space == VMFS_SUPER_SPACE ||
1906 		    alignment != 0, ("unexpected VMFS flag"));
1907 again:
1908 		/*
1909 		 * When creating an anonymous mapping, try clustering
1910 		 * with an existing anonymous mapping first.
1911 		 *
1912 		 * We make up to two attempts to find address space
1913 		 * for a given find_space value. The first attempt may
1914 		 * apply randomization or may cluster with an existing
1915 		 * anonymous mapping. If this first attempt fails,
1916 		 * perform a first-fit search of the available address
1917 		 * space.
1918 		 *
1919 		 * If all tries failed, and find_space is
1920 		 * VMFS_OPTIMAL_SPACE, fallback to VMFS_ANY_SPACE.
1921 		 * Again enable clustering and randomization.
1922 		 */
1923 		try++;
1924 		MPASS(try <= 2);
1925 
1926 		if (try == 2) {
1927 			/*
1928 			 * Second try: we failed either to find a
1929 			 * suitable region for randomizing the
1930 			 * allocation, or to cluster with an existing
1931 			 * mapping.  Retry with free run.
1932 			 */
1933 			curr_min_addr = (map->flags & MAP_ASLR_IGNSTART) != 0 ?
1934 			    vm_map_min(map) : min_addr;
1935 			atomic_add_long(&aslr_restarts, 1);
1936 		}
1937 
1938 		if (try == 1 && en_aslr && !cluster) {
1939 			/*
1940 			 * Find space for allocation, including
1941 			 * gap needed for later randomization.
1942 			 */
1943 			pidx = MAXPAGESIZES > 1 && pagesizes[1] != 0 &&
1944 			    (find_space == VMFS_SUPER_SPACE || find_space ==
1945 			    VMFS_OPTIMAL_SPACE) ? 1 : 0;
1946 			gap = vm_map_max(map) > MAP_32BIT_MAX_ADDR &&
1947 			    (max_addr == 0 || max_addr > MAP_32BIT_MAX_ADDR) ?
1948 			    aslr_pages_rnd_64[pidx] : aslr_pages_rnd_32[pidx];
1949 			*addr = vm_map_findspace(map, curr_min_addr,
1950 			    length + gap * pagesizes[pidx]);
1951 			if (*addr + length + gap * pagesizes[pidx] >
1952 			    vm_map_max(map))
1953 				goto again;
1954 			/* And randomize the start address. */
1955 			*addr += (arc4random() % gap) * pagesizes[pidx];
1956 			if (max_addr != 0 && *addr + length > max_addr)
1957 				goto again;
1958 		} else {
1959 			*addr = vm_map_findspace(map, curr_min_addr, length);
1960 			if (*addr + length > vm_map_max(map) ||
1961 			    (max_addr != 0 && *addr + length > max_addr)) {
1962 				if (cluster) {
1963 					cluster = false;
1964 					MPASS(try == 1);
1965 					goto again;
1966 				}
1967 				rv = KERN_NO_SPACE;
1968 				goto done;
1969 			}
1970 		}
1971 
1972 		if (find_space != VMFS_ANY_SPACE &&
1973 		    (rv = vm_map_alignspace(map, object, offset, addr, length,
1974 		    max_addr, alignment)) != KERN_SUCCESS) {
1975 			if (find_space == VMFS_OPTIMAL_SPACE) {
1976 				find_space = VMFS_ANY_SPACE;
1977 				curr_min_addr = min_addr;
1978 				cluster = update_anon;
1979 				try = 0;
1980 				goto again;
1981 			}
1982 			goto done;
1983 		}
1984 	} else if ((cow & MAP_REMAP) != 0) {
1985 		if (*addr < vm_map_min(map) ||
1986 		    *addr + length > vm_map_max(map) ||
1987 		    *addr + length <= length) {
1988 			rv = KERN_INVALID_ADDRESS;
1989 			goto done;
1990 		}
1991 		vm_map_delete(map, *addr, *addr + length);
1992 	}
1993 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1994 		rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot,
1995 		    max, cow);
1996 	} else {
1997 		rv = vm_map_insert(map, object, offset, *addr, *addr + length,
1998 		    prot, max, cow);
1999 	}
2000 	if (rv == KERN_SUCCESS && update_anon)
2001 		map->anon_loc = *addr + length;
2002 done:
2003 	vm_map_unlock(map);
2004 	return (rv);
2005 }
2006 
2007 /*
2008  *	vm_map_find_min() is a variant of vm_map_find() that takes an
2009  *	additional parameter (min_addr) and treats the given address
2010  *	(*addr) differently.  Specifically, it treats *addr as a hint
2011  *	and not as the minimum address where the mapping is created.
2012  *
2013  *	This function works in two phases.  First, it tries to
2014  *	allocate above the hint.  If that fails and the hint is
2015  *	greater than min_addr, it performs a second pass, replacing
2016  *	the hint with min_addr as the minimum address for the
2017  *	allocation.
2018  */
2019 int
2020 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2021     vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr,
2022     vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max,
2023     int cow)
2024 {
2025 	vm_offset_t hint;
2026 	int rv;
2027 
2028 	hint = *addr;
2029 	for (;;) {
2030 		rv = vm_map_find(map, object, offset, addr, length, max_addr,
2031 		    find_space, prot, max, cow);
2032 		if (rv == KERN_SUCCESS || min_addr >= hint)
2033 			return (rv);
2034 		*addr = hint = min_addr;
2035 	}
2036 }
2037 
2038 /*
2039  * A map entry with any of the following flags set must not be merged with
2040  * another entry.
2041  */
2042 #define	MAP_ENTRY_NOMERGE_MASK	(MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | \
2043 	    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP | MAP_ENTRY_VN_EXEC)
2044 
2045 static bool
2046 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry)
2047 {
2048 
2049 	KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 ||
2050 	    (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0,
2051 	    ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable",
2052 	    prev, entry));
2053 	return (prev->end == entry->start &&
2054 	    prev->object.vm_object == entry->object.vm_object &&
2055 	    (prev->object.vm_object == NULL ||
2056 	    prev->offset + (prev->end - prev->start) == entry->offset) &&
2057 	    prev->eflags == entry->eflags &&
2058 	    prev->protection == entry->protection &&
2059 	    prev->max_protection == entry->max_protection &&
2060 	    prev->inheritance == entry->inheritance &&
2061 	    prev->wired_count == entry->wired_count &&
2062 	    prev->cred == entry->cred);
2063 }
2064 
2065 static void
2066 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry)
2067 {
2068 
2069 	/*
2070 	 * If the backing object is a vnode object, vm_object_deallocate()
2071 	 * calls vrele().  However, vrele() does not lock the vnode because
2072 	 * the vnode has additional references.  Thus, the map lock can be
2073 	 * kept without causing a lock-order reversal with the vnode lock.
2074 	 *
2075 	 * Since we count the number of virtual page mappings in
2076 	 * object->un_pager.vnp.writemappings, the writemappings value
2077 	 * should not be adjusted when the entry is disposed of.
2078 	 */
2079 	if (entry->object.vm_object != NULL)
2080 		vm_object_deallocate(entry->object.vm_object);
2081 	if (entry->cred != NULL)
2082 		crfree(entry->cred);
2083 	vm_map_entry_dispose(map, entry);
2084 }
2085 
2086 /*
2087  *	vm_map_try_merge_entries:
2088  *
2089  *	Compare the given map entry to its predecessor, and merge its precessor
2090  *	into it if possible.  The entry remains valid, and may be extended.
2091  *	The predecessor may be deleted.
2092  *
2093  *	The map must be locked.
2094  */
2095 void
2096 vm_map_try_merge_entries(vm_map_t map, vm_map_entry_t prev, vm_map_entry_t entry)
2097 {
2098 
2099 	VM_MAP_ASSERT_LOCKED(map);
2100 	if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 &&
2101 	    vm_map_mergeable_neighbors(prev, entry)) {
2102 		vm_map_entry_unlink(map, prev, UNLINK_MERGE_NEXT);
2103 		vm_map_merged_neighbor_dispose(map, prev);
2104 	}
2105 }
2106 
2107 /*
2108  *	vm_map_entry_back:
2109  *
2110  *	Allocate an object to back a map entry.
2111  */
2112 static inline void
2113 vm_map_entry_back(vm_map_entry_t entry)
2114 {
2115 	vm_object_t object;
2116 
2117 	KASSERT(entry->object.vm_object == NULL,
2118 	    ("map entry %p has backing object", entry));
2119 	KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
2120 	    ("map entry %p is a submap", entry));
2121 	object = vm_object_allocate_anon(atop(entry->end - entry->start));
2122 	entry->object.vm_object = object;
2123 	entry->offset = 0;
2124 	if (entry->cred != NULL) {
2125 		object->cred = entry->cred;
2126 		object->charge = entry->end - entry->start;
2127 		entry->cred = NULL;
2128 	}
2129 }
2130 
2131 /*
2132  *	vm_map_entry_charge_object
2133  *
2134  *	If there is no object backing this entry, create one.  Otherwise, if
2135  *	the entry has cred, give it to the backing object.
2136  */
2137 static inline void
2138 vm_map_entry_charge_object(vm_map_t map, vm_map_entry_t entry)
2139 {
2140 
2141 	VM_MAP_ASSERT_LOCKED(map);
2142 	KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
2143 	    ("map entry %p is a submap", entry));
2144 	if (entry->object.vm_object == NULL && !map->system_map &&
2145 	    (entry->eflags & MAP_ENTRY_GUARD) == 0)
2146 		vm_map_entry_back(entry);
2147 	else if (entry->object.vm_object != NULL &&
2148 	    ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
2149 	    entry->cred != NULL) {
2150 		VM_OBJECT_WLOCK(entry->object.vm_object);
2151 		KASSERT(entry->object.vm_object->cred == NULL,
2152 		    ("OVERCOMMIT: %s: both cred e %p", __func__, entry));
2153 		entry->object.vm_object->cred = entry->cred;
2154 		entry->object.vm_object->charge = entry->end - entry->start;
2155 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
2156 		entry->cred = NULL;
2157 	}
2158 }
2159 
2160 /*
2161  *	vm_map_clip_start:	[ internal use only ]
2162  *
2163  *	Asserts that the given entry begins at or after
2164  *	the specified address; if necessary,
2165  *	it splits the entry into two.
2166  */
2167 #define vm_map_clip_start(map, entry, startaddr) \
2168 { \
2169 	if (startaddr > entry->start) \
2170 		_vm_map_clip_start(map, entry, startaddr); \
2171 }
2172 
2173 /*
2174  *	This routine is called only when it is known that
2175  *	the entry must be split.
2176  */
2177 static void
2178 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
2179 {
2180 	vm_map_entry_t new_entry;
2181 
2182 	VM_MAP_ASSERT_LOCKED(map);
2183 	KASSERT(entry->end > start && entry->start < start,
2184 	    ("_vm_map_clip_start: invalid clip of entry %p", entry));
2185 
2186 	/*
2187 	 * Create a backing object now, if none exists, so that more individual
2188 	 * objects won't be created after the map entry is split.
2189 	 */
2190 	vm_map_entry_charge_object(map, entry);
2191 
2192 	/* Clone the entry. */
2193 	new_entry = vm_map_entry_create(map);
2194 	*new_entry = *entry;
2195 
2196 	/*
2197 	 * Split off the front portion.  Insert the new entry BEFORE this one,
2198 	 * so that this entry has the specified starting address.
2199 	 */
2200 	new_entry->end = start;
2201 	entry->offset += (start - entry->start);
2202 	entry->start = start;
2203 	if (new_entry->cred != NULL)
2204 		crhold(entry->cred);
2205 
2206 	vm_map_entry_link(map, new_entry);
2207 
2208 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2209 		vm_object_reference(new_entry->object.vm_object);
2210 		vm_map_entry_set_vnode_text(new_entry, true);
2211 		/*
2212 		 * The object->un_pager.vnp.writemappings for the
2213 		 * object of MAP_ENTRY_WRITECNT type entry shall be
2214 		 * kept as is here.  The virtual pages are
2215 		 * re-distributed among the clipped entries, so the sum is
2216 		 * left the same.
2217 		 */
2218 	}
2219 }
2220 
2221 /*
2222  *	vm_map_clip_end:	[ internal use only ]
2223  *
2224  *	Asserts that the given entry ends at or before
2225  *	the specified address; if necessary,
2226  *	it splits the entry into two.
2227  */
2228 #define vm_map_clip_end(map, entry, endaddr) \
2229 { \
2230 	if ((endaddr) < (entry->end)) \
2231 		_vm_map_clip_end((map), (entry), (endaddr)); \
2232 }
2233 
2234 /*
2235  *	This routine is called only when it is known that
2236  *	the entry must be split.
2237  */
2238 static void
2239 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
2240 {
2241 	vm_map_entry_t new_entry;
2242 
2243 	VM_MAP_ASSERT_LOCKED(map);
2244 	KASSERT(entry->start < end && entry->end > end,
2245 	    ("_vm_map_clip_end: invalid clip of entry %p", entry));
2246 
2247 	/*
2248 	 * Create a backing object now, if none exists, so that more individual
2249 	 * objects won't be created after the map entry is split.
2250 	 */
2251 	vm_map_entry_charge_object(map, entry);
2252 
2253 	/* Clone the entry. */
2254 	new_entry = vm_map_entry_create(map);
2255 	*new_entry = *entry;
2256 
2257 	/*
2258 	 * Split off the back portion.  Insert the new entry AFTER this one,
2259 	 * so that this entry has the specified ending address.
2260 	 */
2261 	new_entry->start = entry->end = end;
2262 	new_entry->offset += (end - entry->start);
2263 	if (new_entry->cred != NULL)
2264 		crhold(entry->cred);
2265 
2266 	vm_map_entry_link(map, new_entry);
2267 
2268 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2269 		vm_object_reference(new_entry->object.vm_object);
2270 		vm_map_entry_set_vnode_text(new_entry, true);
2271 	}
2272 }
2273 
2274 /*
2275  *	vm_map_submap:		[ kernel use only ]
2276  *
2277  *	Mark the given range as handled by a subordinate map.
2278  *
2279  *	This range must have been created with vm_map_find,
2280  *	and no other operations may have been performed on this
2281  *	range prior to calling vm_map_submap.
2282  *
2283  *	Only a limited number of operations can be performed
2284  *	within this rage after calling vm_map_submap:
2285  *		vm_fault
2286  *	[Don't try vm_map_copy!]
2287  *
2288  *	To remove a submapping, one must first remove the
2289  *	range from the superior map, and then destroy the
2290  *	submap (if desired).  [Better yet, don't try it.]
2291  */
2292 int
2293 vm_map_submap(
2294 	vm_map_t map,
2295 	vm_offset_t start,
2296 	vm_offset_t end,
2297 	vm_map_t submap)
2298 {
2299 	vm_map_entry_t entry;
2300 	int result;
2301 
2302 	result = KERN_INVALID_ARGUMENT;
2303 
2304 	vm_map_lock(submap);
2305 	submap->flags |= MAP_IS_SUB_MAP;
2306 	vm_map_unlock(submap);
2307 
2308 	vm_map_lock(map);
2309 
2310 	VM_MAP_RANGE_CHECK(map, start, end);
2311 
2312 	if (vm_map_lookup_entry(map, start, &entry)) {
2313 		vm_map_clip_start(map, entry, start);
2314 	} else
2315 		entry = vm_map_entry_succ(entry);
2316 
2317 	vm_map_clip_end(map, entry, end);
2318 
2319 	if ((entry->start == start) && (entry->end == end) &&
2320 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
2321 	    (entry->object.vm_object == NULL)) {
2322 		entry->object.sub_map = submap;
2323 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
2324 		result = KERN_SUCCESS;
2325 	}
2326 	vm_map_unlock(map);
2327 
2328 	if (result != KERN_SUCCESS) {
2329 		vm_map_lock(submap);
2330 		submap->flags &= ~MAP_IS_SUB_MAP;
2331 		vm_map_unlock(submap);
2332 	}
2333 	return (result);
2334 }
2335 
2336 /*
2337  * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
2338  */
2339 #define	MAX_INIT_PT	96
2340 
2341 /*
2342  *	vm_map_pmap_enter:
2343  *
2344  *	Preload the specified map's pmap with mappings to the specified
2345  *	object's memory-resident pages.  No further physical pages are
2346  *	allocated, and no further virtual pages are retrieved from secondary
2347  *	storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
2348  *	limited number of page mappings are created at the low-end of the
2349  *	specified address range.  (For this purpose, a superpage mapping
2350  *	counts as one page mapping.)  Otherwise, all resident pages within
2351  *	the specified address range are mapped.
2352  */
2353 static void
2354 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
2355     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
2356 {
2357 	vm_offset_t start;
2358 	vm_page_t p, p_start;
2359 	vm_pindex_t mask, psize, threshold, tmpidx;
2360 
2361 	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
2362 		return;
2363 	VM_OBJECT_RLOCK(object);
2364 	if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2365 		VM_OBJECT_RUNLOCK(object);
2366 		VM_OBJECT_WLOCK(object);
2367 		if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2368 			pmap_object_init_pt(map->pmap, addr, object, pindex,
2369 			    size);
2370 			VM_OBJECT_WUNLOCK(object);
2371 			return;
2372 		}
2373 		VM_OBJECT_LOCK_DOWNGRADE(object);
2374 	}
2375 
2376 	psize = atop(size);
2377 	if (psize + pindex > object->size) {
2378 		if (object->size < pindex) {
2379 			VM_OBJECT_RUNLOCK(object);
2380 			return;
2381 		}
2382 		psize = object->size - pindex;
2383 	}
2384 
2385 	start = 0;
2386 	p_start = NULL;
2387 	threshold = MAX_INIT_PT;
2388 
2389 	p = vm_page_find_least(object, pindex);
2390 	/*
2391 	 * Assert: the variable p is either (1) the page with the
2392 	 * least pindex greater than or equal to the parameter pindex
2393 	 * or (2) NULL.
2394 	 */
2395 	for (;
2396 	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
2397 	     p = TAILQ_NEXT(p, listq)) {
2398 		/*
2399 		 * don't allow an madvise to blow away our really
2400 		 * free pages allocating pv entries.
2401 		 */
2402 		if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
2403 		    vm_page_count_severe()) ||
2404 		    ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
2405 		    tmpidx >= threshold)) {
2406 			psize = tmpidx;
2407 			break;
2408 		}
2409 		if (vm_page_all_valid(p)) {
2410 			if (p_start == NULL) {
2411 				start = addr + ptoa(tmpidx);
2412 				p_start = p;
2413 			}
2414 			/* Jump ahead if a superpage mapping is possible. */
2415 			if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
2416 			    (pagesizes[p->psind] - 1)) == 0) {
2417 				mask = atop(pagesizes[p->psind]) - 1;
2418 				if (tmpidx + mask < psize &&
2419 				    vm_page_ps_test(p, PS_ALL_VALID, NULL)) {
2420 					p += mask;
2421 					threshold += mask;
2422 				}
2423 			}
2424 		} else if (p_start != NULL) {
2425 			pmap_enter_object(map->pmap, start, addr +
2426 			    ptoa(tmpidx), p_start, prot);
2427 			p_start = NULL;
2428 		}
2429 	}
2430 	if (p_start != NULL)
2431 		pmap_enter_object(map->pmap, start, addr + ptoa(psize),
2432 		    p_start, prot);
2433 	VM_OBJECT_RUNLOCK(object);
2434 }
2435 
2436 /*
2437  *	vm_map_protect:
2438  *
2439  *	Sets the protection of the specified address
2440  *	region in the target map.  If "set_max" is
2441  *	specified, the maximum protection is to be set;
2442  *	otherwise, only the current protection is affected.
2443  */
2444 int
2445 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
2446 	       vm_prot_t new_prot, boolean_t set_max)
2447 {
2448 	vm_map_entry_t current, entry, in_tran, prev_entry;
2449 	vm_object_t obj;
2450 	struct ucred *cred;
2451 	vm_prot_t old_prot;
2452 	int rv;
2453 
2454 	if (start == end)
2455 		return (KERN_SUCCESS);
2456 
2457 again:
2458 	in_tran = NULL;
2459 	vm_map_lock(map);
2460 
2461 	/*
2462 	 * Ensure that we are not concurrently wiring pages.  vm_map_wire() may
2463 	 * need to fault pages into the map and will drop the map lock while
2464 	 * doing so, and the VM object may end up in an inconsistent state if we
2465 	 * update the protection on the map entry in between faults.
2466 	 */
2467 	vm_map_wait_busy(map);
2468 
2469 	VM_MAP_RANGE_CHECK(map, start, end);
2470 
2471 	if (!vm_map_lookup_entry(map, start, &entry))
2472 		entry = vm_map_entry_succ(entry);
2473 
2474 	/*
2475 	 * Make a first pass to check for protection violations.
2476 	 */
2477 	for (current = entry; current->start < end;
2478 	    current = vm_map_entry_succ(current)) {
2479 		if ((current->eflags & MAP_ENTRY_GUARD) != 0)
2480 			continue;
2481 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2482 			vm_map_unlock(map);
2483 			return (KERN_INVALID_ARGUMENT);
2484 		}
2485 		if ((new_prot & current->max_protection) != new_prot) {
2486 			vm_map_unlock(map);
2487 			return (KERN_PROTECTION_FAILURE);
2488 		}
2489 		if ((current->eflags & MAP_ENTRY_IN_TRANSITION) != 0)
2490 			in_tran = current;
2491 	}
2492 
2493 	/*
2494 	 * Postpone the operation until all in-transition map entries have
2495 	 * stabilized.  An in-transition entry might already have its pages
2496 	 * wired and wired_count incremented, but not yet have its
2497 	 * MAP_ENTRY_USER_WIRED flag set.  In which case, we would fail to call
2498 	 * vm_fault_copy_entry() in the final loop below.
2499 	 */
2500 	if (in_tran != NULL) {
2501 		in_tran->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2502 		vm_map_unlock_and_wait(map, 0);
2503 		goto again;
2504 	}
2505 
2506 	/*
2507 	 * Before changing the protections, try to reserve swap space for any
2508 	 * private (i.e., copy-on-write) mappings that are transitioning from
2509 	 * read-only to read/write access.  If a reservation fails, break out
2510 	 * of this loop early and let the next loop simplify the entries, since
2511 	 * some may now be mergeable.
2512 	 */
2513 	rv = KERN_SUCCESS;
2514 	vm_map_clip_start(map, entry, start);
2515 	for (current = entry; current->start < end;
2516 	    current = vm_map_entry_succ(current)) {
2517 
2518 		vm_map_clip_end(map, current, end);
2519 
2520 		if (set_max ||
2521 		    ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
2522 		    ENTRY_CHARGED(current) ||
2523 		    (current->eflags & MAP_ENTRY_GUARD) != 0) {
2524 			continue;
2525 		}
2526 
2527 		cred = curthread->td_ucred;
2528 		obj = current->object.vm_object;
2529 
2530 		if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
2531 			if (!swap_reserve(current->end - current->start)) {
2532 				rv = KERN_RESOURCE_SHORTAGE;
2533 				end = current->end;
2534 				break;
2535 			}
2536 			crhold(cred);
2537 			current->cred = cred;
2538 			continue;
2539 		}
2540 
2541 		VM_OBJECT_WLOCK(obj);
2542 		if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
2543 			VM_OBJECT_WUNLOCK(obj);
2544 			continue;
2545 		}
2546 
2547 		/*
2548 		 * Charge for the whole object allocation now, since
2549 		 * we cannot distinguish between non-charged and
2550 		 * charged clipped mapping of the same object later.
2551 		 */
2552 		KASSERT(obj->charge == 0,
2553 		    ("vm_map_protect: object %p overcharged (entry %p)",
2554 		    obj, current));
2555 		if (!swap_reserve(ptoa(obj->size))) {
2556 			VM_OBJECT_WUNLOCK(obj);
2557 			rv = KERN_RESOURCE_SHORTAGE;
2558 			end = current->end;
2559 			break;
2560 		}
2561 
2562 		crhold(cred);
2563 		obj->cred = cred;
2564 		obj->charge = ptoa(obj->size);
2565 		VM_OBJECT_WUNLOCK(obj);
2566 	}
2567 
2568 	/*
2569 	 * If enough swap space was available, go back and fix up protections.
2570 	 * Otherwise, just simplify entries, since some may have been modified.
2571 	 * [Note that clipping is not necessary the second time.]
2572 	 */
2573 	for (prev_entry = vm_map_entry_pred(entry), current = entry;
2574 	    current->start < end;
2575 	    vm_map_try_merge_entries(map, prev_entry, current),
2576 	    prev_entry = current, current = vm_map_entry_succ(current)) {
2577 		if (rv != KERN_SUCCESS ||
2578 		    (current->eflags & MAP_ENTRY_GUARD) != 0)
2579 			continue;
2580 
2581 		old_prot = current->protection;
2582 
2583 		if (set_max)
2584 			current->protection =
2585 			    (current->max_protection = new_prot) &
2586 			    old_prot;
2587 		else
2588 			current->protection = new_prot;
2589 
2590 		/*
2591 		 * For user wired map entries, the normal lazy evaluation of
2592 		 * write access upgrades through soft page faults is
2593 		 * undesirable.  Instead, immediately copy any pages that are
2594 		 * copy-on-write and enable write access in the physical map.
2595 		 */
2596 		if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2597 		    (current->protection & VM_PROT_WRITE) != 0 &&
2598 		    (old_prot & VM_PROT_WRITE) == 0)
2599 			vm_fault_copy_entry(map, map, current, current, NULL);
2600 
2601 		/*
2602 		 * When restricting access, update the physical map.  Worry
2603 		 * about copy-on-write here.
2604 		 */
2605 		if ((old_prot & ~current->protection) != 0) {
2606 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2607 							VM_PROT_ALL)
2608 			pmap_protect(map->pmap, current->start,
2609 			    current->end,
2610 			    current->protection & MASK(current));
2611 #undef	MASK
2612 		}
2613 	}
2614 	vm_map_try_merge_entries(map, prev_entry, current);
2615 	vm_map_unlock(map);
2616 	return (rv);
2617 }
2618 
2619 /*
2620  *	vm_map_madvise:
2621  *
2622  *	This routine traverses a processes map handling the madvise
2623  *	system call.  Advisories are classified as either those effecting
2624  *	the vm_map_entry structure, or those effecting the underlying
2625  *	objects.
2626  */
2627 int
2628 vm_map_madvise(
2629 	vm_map_t map,
2630 	vm_offset_t start,
2631 	vm_offset_t end,
2632 	int behav)
2633 {
2634 	vm_map_entry_t current, prev_entry;
2635 	bool modify_map;
2636 
2637 	/*
2638 	 * Some madvise calls directly modify the vm_map_entry, in which case
2639 	 * we need to use an exclusive lock on the map and we need to perform
2640 	 * various clipping operations.  Otherwise we only need a read-lock
2641 	 * on the map.
2642 	 */
2643 	switch(behav) {
2644 	case MADV_NORMAL:
2645 	case MADV_SEQUENTIAL:
2646 	case MADV_RANDOM:
2647 	case MADV_NOSYNC:
2648 	case MADV_AUTOSYNC:
2649 	case MADV_NOCORE:
2650 	case MADV_CORE:
2651 		if (start == end)
2652 			return (0);
2653 		modify_map = true;
2654 		vm_map_lock(map);
2655 		break;
2656 	case MADV_WILLNEED:
2657 	case MADV_DONTNEED:
2658 	case MADV_FREE:
2659 		if (start == end)
2660 			return (0);
2661 		modify_map = false;
2662 		vm_map_lock_read(map);
2663 		break;
2664 	default:
2665 		return (EINVAL);
2666 	}
2667 
2668 	/*
2669 	 * Locate starting entry and clip if necessary.
2670 	 */
2671 	VM_MAP_RANGE_CHECK(map, start, end);
2672 
2673 	if (vm_map_lookup_entry(map, start, &current)) {
2674 		if (modify_map)
2675 			vm_map_clip_start(map, current, start);
2676 		prev_entry = vm_map_entry_pred(current);
2677 	} else {
2678 		prev_entry = current;
2679 		current = vm_map_entry_succ(current);
2680 	}
2681 
2682 	if (modify_map) {
2683 		/*
2684 		 * madvise behaviors that are implemented in the vm_map_entry.
2685 		 *
2686 		 * We clip the vm_map_entry so that behavioral changes are
2687 		 * limited to the specified address range.
2688 		 */
2689 		for (; current->start < end; prev_entry = current,
2690 		    current = vm_map_entry_succ(current)) {
2691 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2692 				continue;
2693 
2694 			vm_map_clip_end(map, current, end);
2695 
2696 			switch (behav) {
2697 			case MADV_NORMAL:
2698 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2699 				break;
2700 			case MADV_SEQUENTIAL:
2701 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2702 				break;
2703 			case MADV_RANDOM:
2704 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2705 				break;
2706 			case MADV_NOSYNC:
2707 				current->eflags |= MAP_ENTRY_NOSYNC;
2708 				break;
2709 			case MADV_AUTOSYNC:
2710 				current->eflags &= ~MAP_ENTRY_NOSYNC;
2711 				break;
2712 			case MADV_NOCORE:
2713 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
2714 				break;
2715 			case MADV_CORE:
2716 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2717 				break;
2718 			default:
2719 				break;
2720 			}
2721 			vm_map_try_merge_entries(map, prev_entry, current);
2722 		}
2723 		vm_map_try_merge_entries(map, prev_entry, current);
2724 		vm_map_unlock(map);
2725 	} else {
2726 		vm_pindex_t pstart, pend;
2727 
2728 		/*
2729 		 * madvise behaviors that are implemented in the underlying
2730 		 * vm_object.
2731 		 *
2732 		 * Since we don't clip the vm_map_entry, we have to clip
2733 		 * the vm_object pindex and count.
2734 		 */
2735 		for (; current->start < end;
2736 		    current = vm_map_entry_succ(current)) {
2737 			vm_offset_t useEnd, useStart;
2738 
2739 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2740 				continue;
2741 
2742 			/*
2743 			 * MADV_FREE would otherwise rewind time to
2744 			 * the creation of the shadow object.  Because
2745 			 * we hold the VM map read-locked, neither the
2746 			 * entry's object nor the presence of a
2747 			 * backing object can change.
2748 			 */
2749 			if (behav == MADV_FREE &&
2750 			    current->object.vm_object != NULL &&
2751 			    current->object.vm_object->backing_object != NULL)
2752 				continue;
2753 
2754 			pstart = OFF_TO_IDX(current->offset);
2755 			pend = pstart + atop(current->end - current->start);
2756 			useStart = current->start;
2757 			useEnd = current->end;
2758 
2759 			if (current->start < start) {
2760 				pstart += atop(start - current->start);
2761 				useStart = start;
2762 			}
2763 			if (current->end > end) {
2764 				pend -= atop(current->end - end);
2765 				useEnd = end;
2766 			}
2767 
2768 			if (pstart >= pend)
2769 				continue;
2770 
2771 			/*
2772 			 * Perform the pmap_advise() before clearing
2773 			 * PGA_REFERENCED in vm_page_advise().  Otherwise, a
2774 			 * concurrent pmap operation, such as pmap_remove(),
2775 			 * could clear a reference in the pmap and set
2776 			 * PGA_REFERENCED on the page before the pmap_advise()
2777 			 * had completed.  Consequently, the page would appear
2778 			 * referenced based upon an old reference that
2779 			 * occurred before this pmap_advise() ran.
2780 			 */
2781 			if (behav == MADV_DONTNEED || behav == MADV_FREE)
2782 				pmap_advise(map->pmap, useStart, useEnd,
2783 				    behav);
2784 
2785 			vm_object_madvise(current->object.vm_object, pstart,
2786 			    pend, behav);
2787 
2788 			/*
2789 			 * Pre-populate paging structures in the
2790 			 * WILLNEED case.  For wired entries, the
2791 			 * paging structures are already populated.
2792 			 */
2793 			if (behav == MADV_WILLNEED &&
2794 			    current->wired_count == 0) {
2795 				vm_map_pmap_enter(map,
2796 				    useStart,
2797 				    current->protection,
2798 				    current->object.vm_object,
2799 				    pstart,
2800 				    ptoa(pend - pstart),
2801 				    MAP_PREFAULT_MADVISE
2802 				);
2803 			}
2804 		}
2805 		vm_map_unlock_read(map);
2806 	}
2807 	return (0);
2808 }
2809 
2810 
2811 /*
2812  *	vm_map_inherit:
2813  *
2814  *	Sets the inheritance of the specified address
2815  *	range in the target map.  Inheritance
2816  *	affects how the map will be shared with
2817  *	child maps at the time of vmspace_fork.
2818  */
2819 int
2820 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2821 	       vm_inherit_t new_inheritance)
2822 {
2823 	vm_map_entry_t entry, prev_entry;
2824 
2825 	switch (new_inheritance) {
2826 	case VM_INHERIT_NONE:
2827 	case VM_INHERIT_COPY:
2828 	case VM_INHERIT_SHARE:
2829 	case VM_INHERIT_ZERO:
2830 		break;
2831 	default:
2832 		return (KERN_INVALID_ARGUMENT);
2833 	}
2834 	if (start == end)
2835 		return (KERN_SUCCESS);
2836 	vm_map_lock(map);
2837 	VM_MAP_RANGE_CHECK(map, start, end);
2838 	if (vm_map_lookup_entry(map, start, &prev_entry)) {
2839 		entry = prev_entry;
2840 		vm_map_clip_start(map, entry, start);
2841 		prev_entry = vm_map_entry_pred(entry);
2842 	} else
2843 		entry = vm_map_entry_succ(prev_entry);
2844 	for (; entry->start < end;
2845 	    prev_entry = entry, entry = vm_map_entry_succ(entry)) {
2846 		vm_map_clip_end(map, entry, end);
2847 		if ((entry->eflags & MAP_ENTRY_GUARD) == 0 ||
2848 		    new_inheritance != VM_INHERIT_ZERO)
2849 			entry->inheritance = new_inheritance;
2850 		vm_map_try_merge_entries(map, prev_entry, entry);
2851 	}
2852 	vm_map_try_merge_entries(map, prev_entry, entry);
2853 	vm_map_unlock(map);
2854 	return (KERN_SUCCESS);
2855 }
2856 
2857 /*
2858  *	vm_map_entry_in_transition:
2859  *
2860  *	Release the map lock, and sleep until the entry is no longer in
2861  *	transition.  Awake and acquire the map lock.  If the map changed while
2862  *	another held the lock, lookup a possibly-changed entry at or after the
2863  *	'start' position of the old entry.
2864  */
2865 static vm_map_entry_t
2866 vm_map_entry_in_transition(vm_map_t map, vm_offset_t in_start,
2867     vm_offset_t *io_end, bool holes_ok, vm_map_entry_t in_entry)
2868 {
2869 	vm_map_entry_t entry;
2870 	vm_offset_t start;
2871 	u_int last_timestamp;
2872 
2873 	VM_MAP_ASSERT_LOCKED(map);
2874 	KASSERT((in_entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2875 	    ("not in-tranition map entry %p", in_entry));
2876 	/*
2877 	 * We have not yet clipped the entry.
2878 	 */
2879 	start = MAX(in_start, in_entry->start);
2880 	in_entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2881 	last_timestamp = map->timestamp;
2882 	if (vm_map_unlock_and_wait(map, 0)) {
2883 		/*
2884 		 * Allow interruption of user wiring/unwiring?
2885 		 */
2886 	}
2887 	vm_map_lock(map);
2888 	if (last_timestamp + 1 == map->timestamp)
2889 		return (in_entry);
2890 
2891 	/*
2892 	 * Look again for the entry because the map was modified while it was
2893 	 * unlocked.  Specifically, the entry may have been clipped, merged, or
2894 	 * deleted.
2895 	 */
2896 	if (!vm_map_lookup_entry(map, start, &entry)) {
2897 		if (!holes_ok) {
2898 			*io_end = start;
2899 			return (NULL);
2900 		}
2901 		entry = vm_map_entry_succ(entry);
2902 	}
2903 	return (entry);
2904 }
2905 
2906 /*
2907  *	vm_map_unwire:
2908  *
2909  *	Implements both kernel and user unwiring.
2910  */
2911 int
2912 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2913     int flags)
2914 {
2915 	vm_map_entry_t entry, first_entry, next_entry, prev_entry;
2916 	int rv;
2917 	bool holes_ok, need_wakeup, user_unwire;
2918 
2919 	if (start == end)
2920 		return (KERN_SUCCESS);
2921 	holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0;
2922 	user_unwire = (flags & VM_MAP_WIRE_USER) != 0;
2923 	vm_map_lock(map);
2924 	VM_MAP_RANGE_CHECK(map, start, end);
2925 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2926 		if (holes_ok)
2927 			first_entry = vm_map_entry_succ(first_entry);
2928 		else {
2929 			vm_map_unlock(map);
2930 			return (KERN_INVALID_ADDRESS);
2931 		}
2932 	}
2933 	rv = KERN_SUCCESS;
2934 	for (entry = first_entry; entry->start < end; entry = next_entry) {
2935 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2936 			/*
2937 			 * We have not yet clipped the entry.
2938 			 */
2939 			next_entry = vm_map_entry_in_transition(map, start,
2940 			    &end, holes_ok, entry);
2941 			if (next_entry == NULL) {
2942 				if (entry == first_entry) {
2943 					vm_map_unlock(map);
2944 					return (KERN_INVALID_ADDRESS);
2945 				}
2946 				rv = KERN_INVALID_ADDRESS;
2947 				break;
2948 			}
2949 			first_entry = (entry == first_entry) ?
2950 			    next_entry : NULL;
2951 			continue;
2952 		}
2953 		vm_map_clip_start(map, entry, start);
2954 		vm_map_clip_end(map, entry, end);
2955 		/*
2956 		 * Mark the entry in case the map lock is released.  (See
2957 		 * above.)
2958 		 */
2959 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2960 		    entry->wiring_thread == NULL,
2961 		    ("owned map entry %p", entry));
2962 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2963 		entry->wiring_thread = curthread;
2964 		next_entry = vm_map_entry_succ(entry);
2965 		/*
2966 		 * Check the map for holes in the specified region.
2967 		 * If holes_ok, skip this check.
2968 		 */
2969 		if (!holes_ok &&
2970 		    entry->end < end && next_entry->start > entry->end) {
2971 			end = entry->end;
2972 			rv = KERN_INVALID_ADDRESS;
2973 			break;
2974 		}
2975 		/*
2976 		 * If system unwiring, require that the entry is system wired.
2977 		 */
2978 		if (!user_unwire &&
2979 		    vm_map_entry_system_wired_count(entry) == 0) {
2980 			end = entry->end;
2981 			rv = KERN_INVALID_ARGUMENT;
2982 			break;
2983 		}
2984 	}
2985 	need_wakeup = false;
2986 	if (first_entry == NULL &&
2987 	    !vm_map_lookup_entry(map, start, &first_entry)) {
2988 		KASSERT(holes_ok, ("vm_map_unwire: lookup failed"));
2989 		prev_entry = first_entry;
2990 		entry = vm_map_entry_succ(first_entry);
2991 	} else {
2992 		prev_entry = vm_map_entry_pred(first_entry);
2993 		entry = first_entry;
2994 	}
2995 	for (; entry->start < end;
2996 	    prev_entry = entry, entry = vm_map_entry_succ(entry)) {
2997 		/*
2998 		 * If holes_ok was specified, an empty
2999 		 * space in the unwired region could have been mapped
3000 		 * while the map lock was dropped for draining
3001 		 * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
3002 		 * could be simultaneously wiring this new mapping
3003 		 * entry.  Detect these cases and skip any entries
3004 		 * marked as in transition by us.
3005 		 */
3006 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
3007 		    entry->wiring_thread != curthread) {
3008 			KASSERT(holes_ok,
3009 			    ("vm_map_unwire: !HOLESOK and new/changed entry"));
3010 			continue;
3011 		}
3012 
3013 		if (rv == KERN_SUCCESS && (!user_unwire ||
3014 		    (entry->eflags & MAP_ENTRY_USER_WIRED))) {
3015 			if (entry->wired_count == 1)
3016 				vm_map_entry_unwire(map, entry);
3017 			else
3018 				entry->wired_count--;
3019 			if (user_unwire)
3020 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3021 		}
3022 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3023 		    ("vm_map_unwire: in-transition flag missing %p", entry));
3024 		KASSERT(entry->wiring_thread == curthread,
3025 		    ("vm_map_unwire: alien wire %p", entry));
3026 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
3027 		entry->wiring_thread = NULL;
3028 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3029 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3030 			need_wakeup = true;
3031 		}
3032 		vm_map_try_merge_entries(map, prev_entry, entry);
3033 	}
3034 	vm_map_try_merge_entries(map, prev_entry, entry);
3035 	vm_map_unlock(map);
3036 	if (need_wakeup)
3037 		vm_map_wakeup(map);
3038 	return (rv);
3039 }
3040 
3041 static void
3042 vm_map_wire_user_count_sub(u_long npages)
3043 {
3044 
3045 	atomic_subtract_long(&vm_user_wire_count, npages);
3046 }
3047 
3048 static bool
3049 vm_map_wire_user_count_add(u_long npages)
3050 {
3051 	u_long wired;
3052 
3053 	wired = vm_user_wire_count;
3054 	do {
3055 		if (npages + wired > vm_page_max_user_wired)
3056 			return (false);
3057 	} while (!atomic_fcmpset_long(&vm_user_wire_count, &wired,
3058 	    npages + wired));
3059 
3060 	return (true);
3061 }
3062 
3063 /*
3064  *	vm_map_wire_entry_failure:
3065  *
3066  *	Handle a wiring failure on the given entry.
3067  *
3068  *	The map should be locked.
3069  */
3070 static void
3071 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
3072     vm_offset_t failed_addr)
3073 {
3074 
3075 	VM_MAP_ASSERT_LOCKED(map);
3076 	KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
3077 	    entry->wired_count == 1,
3078 	    ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
3079 	KASSERT(failed_addr < entry->end,
3080 	    ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
3081 
3082 	/*
3083 	 * If any pages at the start of this entry were successfully wired,
3084 	 * then unwire them.
3085 	 */
3086 	if (failed_addr > entry->start) {
3087 		pmap_unwire(map->pmap, entry->start, failed_addr);
3088 		vm_object_unwire(entry->object.vm_object, entry->offset,
3089 		    failed_addr - entry->start, PQ_ACTIVE);
3090 	}
3091 
3092 	/*
3093 	 * Assign an out-of-range value to represent the failure to wire this
3094 	 * entry.
3095 	 */
3096 	entry->wired_count = -1;
3097 }
3098 
3099 int
3100 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3101 {
3102 	int rv;
3103 
3104 	vm_map_lock(map);
3105 	rv = vm_map_wire_locked(map, start, end, flags);
3106 	vm_map_unlock(map);
3107 	return (rv);
3108 }
3109 
3110 
3111 /*
3112  *	vm_map_wire_locked:
3113  *
3114  *	Implements both kernel and user wiring.  Returns with the map locked,
3115  *	the map lock may be dropped.
3116  */
3117 int
3118 vm_map_wire_locked(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3119 {
3120 	vm_map_entry_t entry, first_entry, next_entry, prev_entry;
3121 	vm_offset_t faddr, saved_end, saved_start;
3122 	u_long npages;
3123 	u_int last_timestamp;
3124 	int rv;
3125 	bool holes_ok, need_wakeup, user_wire;
3126 	vm_prot_t prot;
3127 
3128 	VM_MAP_ASSERT_LOCKED(map);
3129 
3130 	if (start == end)
3131 		return (KERN_SUCCESS);
3132 	prot = 0;
3133 	if (flags & VM_MAP_WIRE_WRITE)
3134 		prot |= VM_PROT_WRITE;
3135 	holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0;
3136 	user_wire = (flags & VM_MAP_WIRE_USER) != 0;
3137 	VM_MAP_RANGE_CHECK(map, start, end);
3138 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
3139 		if (holes_ok)
3140 			first_entry = vm_map_entry_succ(first_entry);
3141 		else
3142 			return (KERN_INVALID_ADDRESS);
3143 	}
3144 	for (entry = first_entry; entry->start < end; entry = next_entry) {
3145 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
3146 			/*
3147 			 * We have not yet clipped the entry.
3148 			 */
3149 			next_entry = vm_map_entry_in_transition(map, start,
3150 			    &end, holes_ok, entry);
3151 			if (next_entry == NULL) {
3152 				if (entry == first_entry)
3153 					return (KERN_INVALID_ADDRESS);
3154 				rv = KERN_INVALID_ADDRESS;
3155 				goto done;
3156 			}
3157 			first_entry = (entry == first_entry) ?
3158 			    next_entry : NULL;
3159 			continue;
3160 		}
3161 		vm_map_clip_start(map, entry, start);
3162 		vm_map_clip_end(map, entry, end);
3163 		/*
3164 		 * Mark the entry in case the map lock is released.  (See
3165 		 * above.)
3166 		 */
3167 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
3168 		    entry->wiring_thread == NULL,
3169 		    ("owned map entry %p", entry));
3170 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
3171 		entry->wiring_thread = curthread;
3172 		if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
3173 		    || (entry->protection & prot) != prot) {
3174 			entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
3175 			if (!holes_ok) {
3176 				end = entry->end;
3177 				rv = KERN_INVALID_ADDRESS;
3178 				goto done;
3179 			}
3180 		} else if (entry->wired_count == 0) {
3181 			entry->wired_count++;
3182 
3183 			npages = atop(entry->end - entry->start);
3184 			if (user_wire && !vm_map_wire_user_count_add(npages)) {
3185 				vm_map_wire_entry_failure(map, entry,
3186 				    entry->start);
3187 				end = entry->end;
3188 				rv = KERN_RESOURCE_SHORTAGE;
3189 				goto done;
3190 			}
3191 
3192 			/*
3193 			 * Release the map lock, relying on the in-transition
3194 			 * mark.  Mark the map busy for fork.
3195 			 */
3196 			saved_start = entry->start;
3197 			saved_end = entry->end;
3198 			last_timestamp = map->timestamp;
3199 			vm_map_busy(map);
3200 			vm_map_unlock(map);
3201 
3202 			faddr = saved_start;
3203 			do {
3204 				/*
3205 				 * Simulate a fault to get the page and enter
3206 				 * it into the physical map.
3207 				 */
3208 				if ((rv = vm_fault(map, faddr,
3209 				    VM_PROT_NONE, VM_FAULT_WIRE, NULL)) !=
3210 				    KERN_SUCCESS)
3211 					break;
3212 			} while ((faddr += PAGE_SIZE) < saved_end);
3213 			vm_map_lock(map);
3214 			vm_map_unbusy(map);
3215 			if (last_timestamp + 1 != map->timestamp) {
3216 				/*
3217 				 * Look again for the entry because the map was
3218 				 * modified while it was unlocked.  The entry
3219 				 * may have been clipped, but NOT merged or
3220 				 * deleted.
3221 				 */
3222 				if (!vm_map_lookup_entry(map, saved_start,
3223 				    &next_entry))
3224 					KASSERT(false,
3225 					    ("vm_map_wire: lookup failed"));
3226 				first_entry = (entry == first_entry) ?
3227 				    next_entry : NULL;
3228 				for (entry = next_entry; entry->end < saved_end;
3229 				    entry = vm_map_entry_succ(entry)) {
3230 					/*
3231 					 * In case of failure, handle entries
3232 					 * that were not fully wired here;
3233 					 * fully wired entries are handled
3234 					 * later.
3235 					 */
3236 					if (rv != KERN_SUCCESS &&
3237 					    faddr < entry->end)
3238 						vm_map_wire_entry_failure(map,
3239 						    entry, faddr);
3240 				}
3241 			}
3242 			if (rv != KERN_SUCCESS) {
3243 				vm_map_wire_entry_failure(map, entry, faddr);
3244 				if (user_wire)
3245 					vm_map_wire_user_count_sub(npages);
3246 				end = entry->end;
3247 				goto done;
3248 			}
3249 		} else if (!user_wire ||
3250 			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3251 			entry->wired_count++;
3252 		}
3253 		/*
3254 		 * Check the map for holes in the specified region.
3255 		 * If holes_ok was specified, skip this check.
3256 		 */
3257 		next_entry = vm_map_entry_succ(entry);
3258 		if (!holes_ok &&
3259 		    entry->end < end && next_entry->start > entry->end) {
3260 			end = entry->end;
3261 			rv = KERN_INVALID_ADDRESS;
3262 			goto done;
3263 		}
3264 	}
3265 	rv = KERN_SUCCESS;
3266 done:
3267 	need_wakeup = false;
3268 	if (first_entry == NULL &&
3269 	    !vm_map_lookup_entry(map, start, &first_entry)) {
3270 		KASSERT(holes_ok, ("vm_map_wire: lookup failed"));
3271 		prev_entry = first_entry;
3272 		entry = vm_map_entry_succ(first_entry);
3273 	} else {
3274 		prev_entry = vm_map_entry_pred(first_entry);
3275 		entry = first_entry;
3276 	}
3277 	for (; entry->start < end;
3278 	    prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3279 		/*
3280 		 * If holes_ok was specified, an empty
3281 		 * space in the unwired region could have been mapped
3282 		 * while the map lock was dropped for faulting in the
3283 		 * pages or draining MAP_ENTRY_IN_TRANSITION.
3284 		 * Moreover, another thread could be simultaneously
3285 		 * wiring this new mapping entry.  Detect these cases
3286 		 * and skip any entries marked as in transition not by us.
3287 		 */
3288 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
3289 		    entry->wiring_thread != curthread) {
3290 			KASSERT(holes_ok,
3291 			    ("vm_map_wire: !HOLESOK and new/changed entry"));
3292 			continue;
3293 		}
3294 
3295 		if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) {
3296 			/* do nothing */
3297 		} else if (rv == KERN_SUCCESS) {
3298 			if (user_wire)
3299 				entry->eflags |= MAP_ENTRY_USER_WIRED;
3300 		} else if (entry->wired_count == -1) {
3301 			/*
3302 			 * Wiring failed on this entry.  Thus, unwiring is
3303 			 * unnecessary.
3304 			 */
3305 			entry->wired_count = 0;
3306 		} else if (!user_wire ||
3307 		    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3308 			/*
3309 			 * Undo the wiring.  Wiring succeeded on this entry
3310 			 * but failed on a later entry.
3311 			 */
3312 			if (entry->wired_count == 1) {
3313 				vm_map_entry_unwire(map, entry);
3314 				if (user_wire)
3315 					vm_map_wire_user_count_sub(
3316 					    atop(entry->end - entry->start));
3317 			} else
3318 				entry->wired_count--;
3319 		}
3320 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3321 		    ("vm_map_wire: in-transition flag missing %p", entry));
3322 		KASSERT(entry->wiring_thread == curthread,
3323 		    ("vm_map_wire: alien wire %p", entry));
3324 		entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
3325 		    MAP_ENTRY_WIRE_SKIPPED);
3326 		entry->wiring_thread = NULL;
3327 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3328 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3329 			need_wakeup = true;
3330 		}
3331 		vm_map_try_merge_entries(map, prev_entry, entry);
3332 	}
3333 	vm_map_try_merge_entries(map, prev_entry, entry);
3334 	if (need_wakeup)
3335 		vm_map_wakeup(map);
3336 	return (rv);
3337 }
3338 
3339 /*
3340  * vm_map_sync
3341  *
3342  * Push any dirty cached pages in the address range to their pager.
3343  * If syncio is TRUE, dirty pages are written synchronously.
3344  * If invalidate is TRUE, any cached pages are freed as well.
3345  *
3346  * If the size of the region from start to end is zero, we are
3347  * supposed to flush all modified pages within the region containing
3348  * start.  Unfortunately, a region can be split or coalesced with
3349  * neighboring regions, making it difficult to determine what the
3350  * original region was.  Therefore, we approximate this requirement by
3351  * flushing the current region containing start.
3352  *
3353  * Returns an error if any part of the specified range is not mapped.
3354  */
3355 int
3356 vm_map_sync(
3357 	vm_map_t map,
3358 	vm_offset_t start,
3359 	vm_offset_t end,
3360 	boolean_t syncio,
3361 	boolean_t invalidate)
3362 {
3363 	vm_map_entry_t current, entry, next_entry;
3364 	vm_size_t size;
3365 	vm_object_t object;
3366 	vm_ooffset_t offset;
3367 	unsigned int last_timestamp;
3368 	boolean_t failed;
3369 
3370 	vm_map_lock_read(map);
3371 	VM_MAP_RANGE_CHECK(map, start, end);
3372 	if (!vm_map_lookup_entry(map, start, &entry)) {
3373 		vm_map_unlock_read(map);
3374 		return (KERN_INVALID_ADDRESS);
3375 	} else if (start == end) {
3376 		start = entry->start;
3377 		end = entry->end;
3378 	}
3379 	/*
3380 	 * Make a first pass to check for user-wired memory and holes.
3381 	 */
3382 	for (current = entry; current->start < end;
3383 	    current = next_entry) {
3384 		if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
3385 			vm_map_unlock_read(map);
3386 			return (KERN_INVALID_ARGUMENT);
3387 		}
3388 		next_entry = vm_map_entry_succ(current);
3389 		if (end > current->end &&
3390 		    current->end != next_entry->start) {
3391 			vm_map_unlock_read(map);
3392 			return (KERN_INVALID_ADDRESS);
3393 		}
3394 	}
3395 
3396 	if (invalidate)
3397 		pmap_remove(map->pmap, start, end);
3398 	failed = FALSE;
3399 
3400 	/*
3401 	 * Make a second pass, cleaning/uncaching pages from the indicated
3402 	 * objects as we go.
3403 	 */
3404 	for (current = entry; current->start < end;) {
3405 		offset = current->offset + (start - current->start);
3406 		size = (end <= current->end ? end : current->end) - start;
3407 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
3408 			vm_map_t smap;
3409 			vm_map_entry_t tentry;
3410 			vm_size_t tsize;
3411 
3412 			smap = current->object.sub_map;
3413 			vm_map_lock_read(smap);
3414 			(void) vm_map_lookup_entry(smap, offset, &tentry);
3415 			tsize = tentry->end - offset;
3416 			if (tsize < size)
3417 				size = tsize;
3418 			object = tentry->object.vm_object;
3419 			offset = tentry->offset + (offset - tentry->start);
3420 			vm_map_unlock_read(smap);
3421 		} else {
3422 			object = current->object.vm_object;
3423 		}
3424 		vm_object_reference(object);
3425 		last_timestamp = map->timestamp;
3426 		vm_map_unlock_read(map);
3427 		if (!vm_object_sync(object, offset, size, syncio, invalidate))
3428 			failed = TRUE;
3429 		start += size;
3430 		vm_object_deallocate(object);
3431 		vm_map_lock_read(map);
3432 		if (last_timestamp == map->timestamp ||
3433 		    !vm_map_lookup_entry(map, start, &current))
3434 			current = vm_map_entry_succ(current);
3435 	}
3436 
3437 	vm_map_unlock_read(map);
3438 	return (failed ? KERN_FAILURE : KERN_SUCCESS);
3439 }
3440 
3441 /*
3442  *	vm_map_entry_unwire:	[ internal use only ]
3443  *
3444  *	Make the region specified by this entry pageable.
3445  *
3446  *	The map in question should be locked.
3447  *	[This is the reason for this routine's existence.]
3448  */
3449 static void
3450 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
3451 {
3452 	vm_size_t size;
3453 
3454 	VM_MAP_ASSERT_LOCKED(map);
3455 	KASSERT(entry->wired_count > 0,
3456 	    ("vm_map_entry_unwire: entry %p isn't wired", entry));
3457 
3458 	size = entry->end - entry->start;
3459 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0)
3460 		vm_map_wire_user_count_sub(atop(size));
3461 	pmap_unwire(map->pmap, entry->start, entry->end);
3462 	vm_object_unwire(entry->object.vm_object, entry->offset, size,
3463 	    PQ_ACTIVE);
3464 	entry->wired_count = 0;
3465 }
3466 
3467 static void
3468 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
3469 {
3470 
3471 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
3472 		vm_object_deallocate(entry->object.vm_object);
3473 	uma_zfree(system_map ? kmapentzone : mapentzone, entry);
3474 }
3475 
3476 /*
3477  *	vm_map_entry_delete:	[ internal use only ]
3478  *
3479  *	Deallocate the given entry from the target map.
3480  */
3481 static void
3482 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
3483 {
3484 	vm_object_t object;
3485 	vm_pindex_t offidxstart, offidxend, count, size1;
3486 	vm_size_t size;
3487 
3488 	vm_map_entry_unlink(map, entry, UNLINK_MERGE_NONE);
3489 	object = entry->object.vm_object;
3490 
3491 	if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
3492 		MPASS(entry->cred == NULL);
3493 		MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0);
3494 		MPASS(object == NULL);
3495 		vm_map_entry_deallocate(entry, map->system_map);
3496 		return;
3497 	}
3498 
3499 	size = entry->end - entry->start;
3500 	map->size -= size;
3501 
3502 	if (entry->cred != NULL) {
3503 		swap_release_by_cred(size, entry->cred);
3504 		crfree(entry->cred);
3505 	}
3506 
3507 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || object == NULL) {
3508 		entry->object.vm_object = NULL;
3509 	} else if ((object->flags & OBJ_ANON) != 0 ||
3510 	    object == kernel_object) {
3511 		KASSERT(entry->cred == NULL || object->cred == NULL ||
3512 		    (entry->eflags & MAP_ENTRY_NEEDS_COPY),
3513 		    ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
3514 		count = atop(size);
3515 		offidxstart = OFF_TO_IDX(entry->offset);
3516 		offidxend = offidxstart + count;
3517 		VM_OBJECT_WLOCK(object);
3518 		if (object->ref_count != 1 &&
3519 		    ((object->flags & OBJ_ONEMAPPING) != 0 ||
3520 		    object == kernel_object)) {
3521 			vm_object_collapse(object);
3522 
3523 			/*
3524 			 * The option OBJPR_NOTMAPPED can be passed here
3525 			 * because vm_map_delete() already performed
3526 			 * pmap_remove() on the only mapping to this range
3527 			 * of pages.
3528 			 */
3529 			vm_object_page_remove(object, offidxstart, offidxend,
3530 			    OBJPR_NOTMAPPED);
3531 			if (object->type == OBJT_SWAP)
3532 				swap_pager_freespace(object, offidxstart,
3533 				    count);
3534 			if (offidxend >= object->size &&
3535 			    offidxstart < object->size) {
3536 				size1 = object->size;
3537 				object->size = offidxstart;
3538 				if (object->cred != NULL) {
3539 					size1 -= object->size;
3540 					KASSERT(object->charge >= ptoa(size1),
3541 					    ("object %p charge < 0", object));
3542 					swap_release_by_cred(ptoa(size1),
3543 					    object->cred);
3544 					object->charge -= ptoa(size1);
3545 				}
3546 			}
3547 		}
3548 		VM_OBJECT_WUNLOCK(object);
3549 	}
3550 	if (map->system_map)
3551 		vm_map_entry_deallocate(entry, TRUE);
3552 	else {
3553 		entry->defer_next = curthread->td_map_def_user;
3554 		curthread->td_map_def_user = entry;
3555 	}
3556 }
3557 
3558 /*
3559  *	vm_map_delete:	[ internal use only ]
3560  *
3561  *	Deallocates the given address range from the target
3562  *	map.
3563  */
3564 int
3565 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
3566 {
3567 	vm_map_entry_t entry;
3568 	vm_map_entry_t first_entry;
3569 
3570 	VM_MAP_ASSERT_LOCKED(map);
3571 	if (start == end)
3572 		return (KERN_SUCCESS);
3573 
3574 	/*
3575 	 * Find the start of the region, and clip it
3576 	 */
3577 	if (!vm_map_lookup_entry(map, start, &first_entry))
3578 		entry = vm_map_entry_succ(first_entry);
3579 	else {
3580 		entry = first_entry;
3581 		vm_map_clip_start(map, entry, start);
3582 	}
3583 
3584 	/*
3585 	 * Step through all entries in this region
3586 	 */
3587 	while (entry->start < end) {
3588 		vm_map_entry_t next;
3589 
3590 		/*
3591 		 * Wait for wiring or unwiring of an entry to complete.
3592 		 * Also wait for any system wirings to disappear on
3593 		 * user maps.
3594 		 */
3595 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
3596 		    (vm_map_pmap(map) != kernel_pmap &&
3597 		    vm_map_entry_system_wired_count(entry) != 0)) {
3598 			unsigned int last_timestamp;
3599 			vm_offset_t saved_start;
3600 			vm_map_entry_t tmp_entry;
3601 
3602 			saved_start = entry->start;
3603 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3604 			last_timestamp = map->timestamp;
3605 			(void) vm_map_unlock_and_wait(map, 0);
3606 			vm_map_lock(map);
3607 			if (last_timestamp + 1 != map->timestamp) {
3608 				/*
3609 				 * Look again for the entry because the map was
3610 				 * modified while it was unlocked.
3611 				 * Specifically, the entry may have been
3612 				 * clipped, merged, or deleted.
3613 				 */
3614 				if (!vm_map_lookup_entry(map, saved_start,
3615 							 &tmp_entry))
3616 					entry = vm_map_entry_succ(tmp_entry);
3617 				else {
3618 					entry = tmp_entry;
3619 					vm_map_clip_start(map, entry,
3620 							  saved_start);
3621 				}
3622 			}
3623 			continue;
3624 		}
3625 		vm_map_clip_end(map, entry, end);
3626 
3627 		next = vm_map_entry_succ(entry);
3628 
3629 		/*
3630 		 * Unwire before removing addresses from the pmap; otherwise,
3631 		 * unwiring will put the entries back in the pmap.
3632 		 */
3633 		if (entry->wired_count != 0)
3634 			vm_map_entry_unwire(map, entry);
3635 
3636 		/*
3637 		 * Remove mappings for the pages, but only if the
3638 		 * mappings could exist.  For instance, it does not
3639 		 * make sense to call pmap_remove() for guard entries.
3640 		 */
3641 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 ||
3642 		    entry->object.vm_object != NULL)
3643 			pmap_remove(map->pmap, entry->start, entry->end);
3644 
3645 		if (entry->end == map->anon_loc)
3646 			map->anon_loc = entry->start;
3647 
3648 		/*
3649 		 * Delete the entry only after removing all pmap
3650 		 * entries pointing to its pages.  (Otherwise, its
3651 		 * page frames may be reallocated, and any modify bits
3652 		 * will be set in the wrong object!)
3653 		 */
3654 		vm_map_entry_delete(map, entry);
3655 		entry = next;
3656 	}
3657 	return (KERN_SUCCESS);
3658 }
3659 
3660 /*
3661  *	vm_map_remove:
3662  *
3663  *	Remove the given address range from the target map.
3664  *	This is the exported form of vm_map_delete.
3665  */
3666 int
3667 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3668 {
3669 	int result;
3670 
3671 	vm_map_lock(map);
3672 	VM_MAP_RANGE_CHECK(map, start, end);
3673 	result = vm_map_delete(map, start, end);
3674 	vm_map_unlock(map);
3675 	return (result);
3676 }
3677 
3678 /*
3679  *	vm_map_check_protection:
3680  *
3681  *	Assert that the target map allows the specified privilege on the
3682  *	entire address region given.  The entire region must be allocated.
3683  *
3684  *	WARNING!  This code does not and should not check whether the
3685  *	contents of the region is accessible.  For example a smaller file
3686  *	might be mapped into a larger address space.
3687  *
3688  *	NOTE!  This code is also called by munmap().
3689  *
3690  *	The map must be locked.  A read lock is sufficient.
3691  */
3692 boolean_t
3693 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
3694 			vm_prot_t protection)
3695 {
3696 	vm_map_entry_t entry;
3697 	vm_map_entry_t tmp_entry;
3698 
3699 	if (!vm_map_lookup_entry(map, start, &tmp_entry))
3700 		return (FALSE);
3701 	entry = tmp_entry;
3702 
3703 	while (start < end) {
3704 		/*
3705 		 * No holes allowed!
3706 		 */
3707 		if (start < entry->start)
3708 			return (FALSE);
3709 		/*
3710 		 * Check protection associated with entry.
3711 		 */
3712 		if ((entry->protection & protection) != protection)
3713 			return (FALSE);
3714 		/* go to next entry */
3715 		start = entry->end;
3716 		entry = vm_map_entry_succ(entry);
3717 	}
3718 	return (TRUE);
3719 }
3720 
3721 /*
3722  *	vm_map_copy_entry:
3723  *
3724  *	Copies the contents of the source entry to the destination
3725  *	entry.  The entries *must* be aligned properly.
3726  */
3727 static void
3728 vm_map_copy_entry(
3729 	vm_map_t src_map,
3730 	vm_map_t dst_map,
3731 	vm_map_entry_t src_entry,
3732 	vm_map_entry_t dst_entry,
3733 	vm_ooffset_t *fork_charge)
3734 {
3735 	vm_object_t src_object;
3736 	vm_map_entry_t fake_entry;
3737 	vm_offset_t size;
3738 	struct ucred *cred;
3739 	int charged;
3740 
3741 	VM_MAP_ASSERT_LOCKED(dst_map);
3742 
3743 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
3744 		return;
3745 
3746 	if (src_entry->wired_count == 0 ||
3747 	    (src_entry->protection & VM_PROT_WRITE) == 0) {
3748 		/*
3749 		 * If the source entry is marked needs_copy, it is already
3750 		 * write-protected.
3751 		 */
3752 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
3753 		    (src_entry->protection & VM_PROT_WRITE) != 0) {
3754 			pmap_protect(src_map->pmap,
3755 			    src_entry->start,
3756 			    src_entry->end,
3757 			    src_entry->protection & ~VM_PROT_WRITE);
3758 		}
3759 
3760 		/*
3761 		 * Make a copy of the object.
3762 		 */
3763 		size = src_entry->end - src_entry->start;
3764 		if ((src_object = src_entry->object.vm_object) != NULL) {
3765 			VM_OBJECT_WLOCK(src_object);
3766 			charged = ENTRY_CHARGED(src_entry);
3767 			if (src_object->handle == NULL &&
3768 			    (src_object->flags & OBJ_ANON) != 0) {
3769 				vm_object_collapse(src_object);
3770 				if ((src_object->flags & OBJ_ONEMAPPING) != 0) {
3771 					vm_object_split(src_entry);
3772 					src_object =
3773 					    src_entry->object.vm_object;
3774 				}
3775 			}
3776 			vm_object_reference_locked(src_object);
3777 			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3778 			if (src_entry->cred != NULL &&
3779 			    !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3780 				KASSERT(src_object->cred == NULL,
3781 				    ("OVERCOMMIT: vm_map_copy_entry: cred %p",
3782 				     src_object));
3783 				src_object->cred = src_entry->cred;
3784 				src_object->charge = size;
3785 			}
3786 			VM_OBJECT_WUNLOCK(src_object);
3787 			dst_entry->object.vm_object = src_object;
3788 			if (charged) {
3789 				cred = curthread->td_ucred;
3790 				crhold(cred);
3791 				dst_entry->cred = cred;
3792 				*fork_charge += size;
3793 				if (!(src_entry->eflags &
3794 				      MAP_ENTRY_NEEDS_COPY)) {
3795 					crhold(cred);
3796 					src_entry->cred = cred;
3797 					*fork_charge += size;
3798 				}
3799 			}
3800 			src_entry->eflags |= MAP_ENTRY_COW |
3801 			    MAP_ENTRY_NEEDS_COPY;
3802 			dst_entry->eflags |= MAP_ENTRY_COW |
3803 			    MAP_ENTRY_NEEDS_COPY;
3804 			dst_entry->offset = src_entry->offset;
3805 			if (src_entry->eflags & MAP_ENTRY_WRITECNT) {
3806 				/*
3807 				 * MAP_ENTRY_WRITECNT cannot
3808 				 * indicate write reference from
3809 				 * src_entry, since the entry is
3810 				 * marked as needs copy.  Allocate a
3811 				 * fake entry that is used to
3812 				 * decrement object->un_pager writecount
3813 				 * at the appropriate time.  Attach
3814 				 * fake_entry to the deferred list.
3815 				 */
3816 				fake_entry = vm_map_entry_create(dst_map);
3817 				fake_entry->eflags = MAP_ENTRY_WRITECNT;
3818 				src_entry->eflags &= ~MAP_ENTRY_WRITECNT;
3819 				vm_object_reference(src_object);
3820 				fake_entry->object.vm_object = src_object;
3821 				fake_entry->start = src_entry->start;
3822 				fake_entry->end = src_entry->end;
3823 				fake_entry->defer_next =
3824 				    curthread->td_map_def_user;
3825 				curthread->td_map_def_user = fake_entry;
3826 			}
3827 
3828 			pmap_copy(dst_map->pmap, src_map->pmap,
3829 			    dst_entry->start, dst_entry->end - dst_entry->start,
3830 			    src_entry->start);
3831 		} else {
3832 			dst_entry->object.vm_object = NULL;
3833 			dst_entry->offset = 0;
3834 			if (src_entry->cred != NULL) {
3835 				dst_entry->cred = curthread->td_ucred;
3836 				crhold(dst_entry->cred);
3837 				*fork_charge += size;
3838 			}
3839 		}
3840 	} else {
3841 		/*
3842 		 * We don't want to make writeable wired pages copy-on-write.
3843 		 * Immediately copy these pages into the new map by simulating
3844 		 * page faults.  The new pages are pageable.
3845 		 */
3846 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3847 		    fork_charge);
3848 	}
3849 }
3850 
3851 /*
3852  * vmspace_map_entry_forked:
3853  * Update the newly-forked vmspace each time a map entry is inherited
3854  * or copied.  The values for vm_dsize and vm_tsize are approximate
3855  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3856  */
3857 static void
3858 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3859     vm_map_entry_t entry)
3860 {
3861 	vm_size_t entrysize;
3862 	vm_offset_t newend;
3863 
3864 	if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
3865 		return;
3866 	entrysize = entry->end - entry->start;
3867 	vm2->vm_map.size += entrysize;
3868 	if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3869 		vm2->vm_ssize += btoc(entrysize);
3870 	} else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3871 	    entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3872 		newend = MIN(entry->end,
3873 		    (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3874 		vm2->vm_dsize += btoc(newend - entry->start);
3875 	} else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3876 	    entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3877 		newend = MIN(entry->end,
3878 		    (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3879 		vm2->vm_tsize += btoc(newend - entry->start);
3880 	}
3881 }
3882 
3883 /*
3884  * vmspace_fork:
3885  * Create a new process vmspace structure and vm_map
3886  * based on those of an existing process.  The new map
3887  * is based on the old map, according to the inheritance
3888  * values on the regions in that map.
3889  *
3890  * XXX It might be worth coalescing the entries added to the new vmspace.
3891  *
3892  * The source map must not be locked.
3893  */
3894 struct vmspace *
3895 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3896 {
3897 	struct vmspace *vm2;
3898 	vm_map_t new_map, old_map;
3899 	vm_map_entry_t new_entry, old_entry;
3900 	vm_object_t object;
3901 	int error, locked;
3902 	vm_inherit_t inh;
3903 
3904 	old_map = &vm1->vm_map;
3905 	/* Copy immutable fields of vm1 to vm2. */
3906 	vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map),
3907 	    pmap_pinit);
3908 	if (vm2 == NULL)
3909 		return (NULL);
3910 
3911 	vm2->vm_taddr = vm1->vm_taddr;
3912 	vm2->vm_daddr = vm1->vm_daddr;
3913 	vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3914 	vm_map_lock(old_map);
3915 	if (old_map->busy)
3916 		vm_map_wait_busy(old_map);
3917 	new_map = &vm2->vm_map;
3918 	locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3919 	KASSERT(locked, ("vmspace_fork: lock failed"));
3920 
3921 	error = pmap_vmspace_copy(new_map->pmap, old_map->pmap);
3922 	if (error != 0) {
3923 		sx_xunlock(&old_map->lock);
3924 		sx_xunlock(&new_map->lock);
3925 		vm_map_process_deferred();
3926 		vmspace_free(vm2);
3927 		return (NULL);
3928 	}
3929 
3930 	new_map->anon_loc = old_map->anon_loc;
3931 
3932 	old_entry = vm_map_entry_first(old_map);
3933 
3934 	while (old_entry != &old_map->header) {
3935 		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3936 			panic("vm_map_fork: encountered a submap");
3937 
3938 		inh = old_entry->inheritance;
3939 		if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 &&
3940 		    inh != VM_INHERIT_NONE)
3941 			inh = VM_INHERIT_COPY;
3942 
3943 		switch (inh) {
3944 		case VM_INHERIT_NONE:
3945 			break;
3946 
3947 		case VM_INHERIT_SHARE:
3948 			/*
3949 			 * Clone the entry, creating the shared object if necessary.
3950 			 */
3951 			object = old_entry->object.vm_object;
3952 			if (object == NULL) {
3953 				vm_map_entry_back(old_entry);
3954 				object = old_entry->object.vm_object;
3955 			}
3956 
3957 			/*
3958 			 * Add the reference before calling vm_object_shadow
3959 			 * to insure that a shadow object is created.
3960 			 */
3961 			vm_object_reference(object);
3962 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3963 				vm_object_shadow(&old_entry->object.vm_object,
3964 				    &old_entry->offset,
3965 				    old_entry->end - old_entry->start);
3966 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3967 				/* Transfer the second reference too. */
3968 				vm_object_reference(
3969 				    old_entry->object.vm_object);
3970 
3971 				/*
3972 				 * As in vm_map_merged_neighbor_dispose(),
3973 				 * the vnode lock will not be acquired in
3974 				 * this call to vm_object_deallocate().
3975 				 */
3976 				vm_object_deallocate(object);
3977 				object = old_entry->object.vm_object;
3978 			}
3979 			VM_OBJECT_WLOCK(object);
3980 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
3981 			if (old_entry->cred != NULL) {
3982 				KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3983 				object->cred = old_entry->cred;
3984 				object->charge = old_entry->end - old_entry->start;
3985 				old_entry->cred = NULL;
3986 			}
3987 
3988 			/*
3989 			 * Assert the correct state of the vnode
3990 			 * v_writecount while the object is locked, to
3991 			 * not relock it later for the assertion
3992 			 * correctness.
3993 			 */
3994 			if (old_entry->eflags & MAP_ENTRY_WRITECNT &&
3995 			    object->type == OBJT_VNODE) {
3996 				KASSERT(((struct vnode *)object->handle)->
3997 				    v_writecount > 0,
3998 				    ("vmspace_fork: v_writecount %p", object));
3999 				KASSERT(object->un_pager.vnp.writemappings > 0,
4000 				    ("vmspace_fork: vnp.writecount %p",
4001 				    object));
4002 			}
4003 			VM_OBJECT_WUNLOCK(object);
4004 
4005 			/*
4006 			 * Clone the entry, referencing the shared object.
4007 			 */
4008 			new_entry = vm_map_entry_create(new_map);
4009 			*new_entry = *old_entry;
4010 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
4011 			    MAP_ENTRY_IN_TRANSITION);
4012 			new_entry->wiring_thread = NULL;
4013 			new_entry->wired_count = 0;
4014 			if (new_entry->eflags & MAP_ENTRY_WRITECNT) {
4015 				vm_pager_update_writecount(object,
4016 				    new_entry->start, new_entry->end);
4017 			}
4018 			vm_map_entry_set_vnode_text(new_entry, true);
4019 
4020 			/*
4021 			 * Insert the entry into the new map -- we know we're
4022 			 * inserting at the end of the new map.
4023 			 */
4024 			vm_map_entry_link(new_map, new_entry);
4025 			vmspace_map_entry_forked(vm1, vm2, new_entry);
4026 
4027 			/*
4028 			 * Update the physical map
4029 			 */
4030 			pmap_copy(new_map->pmap, old_map->pmap,
4031 			    new_entry->start,
4032 			    (old_entry->end - old_entry->start),
4033 			    old_entry->start);
4034 			break;
4035 
4036 		case VM_INHERIT_COPY:
4037 			/*
4038 			 * Clone the entry and link into the map.
4039 			 */
4040 			new_entry = vm_map_entry_create(new_map);
4041 			*new_entry = *old_entry;
4042 			/*
4043 			 * Copied entry is COW over the old object.
4044 			 */
4045 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
4046 			    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_WRITECNT);
4047 			new_entry->wiring_thread = NULL;
4048 			new_entry->wired_count = 0;
4049 			new_entry->object.vm_object = NULL;
4050 			new_entry->cred = NULL;
4051 			vm_map_entry_link(new_map, new_entry);
4052 			vmspace_map_entry_forked(vm1, vm2, new_entry);
4053 			vm_map_copy_entry(old_map, new_map, old_entry,
4054 			    new_entry, fork_charge);
4055 			vm_map_entry_set_vnode_text(new_entry, true);
4056 			break;
4057 
4058 		case VM_INHERIT_ZERO:
4059 			/*
4060 			 * Create a new anonymous mapping entry modelled from
4061 			 * the old one.
4062 			 */
4063 			new_entry = vm_map_entry_create(new_map);
4064 			memset(new_entry, 0, sizeof(*new_entry));
4065 
4066 			new_entry->start = old_entry->start;
4067 			new_entry->end = old_entry->end;
4068 			new_entry->eflags = old_entry->eflags &
4069 			    ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION |
4070 			    MAP_ENTRY_WRITECNT | MAP_ENTRY_VN_EXEC);
4071 			new_entry->protection = old_entry->protection;
4072 			new_entry->max_protection = old_entry->max_protection;
4073 			new_entry->inheritance = VM_INHERIT_ZERO;
4074 
4075 			vm_map_entry_link(new_map, new_entry);
4076 			vmspace_map_entry_forked(vm1, vm2, new_entry);
4077 
4078 			new_entry->cred = curthread->td_ucred;
4079 			crhold(new_entry->cred);
4080 			*fork_charge += (new_entry->end - new_entry->start);
4081 
4082 			break;
4083 		}
4084 		old_entry = vm_map_entry_succ(old_entry);
4085 	}
4086 	/*
4087 	 * Use inlined vm_map_unlock() to postpone handling the deferred
4088 	 * map entries, which cannot be done until both old_map and
4089 	 * new_map locks are released.
4090 	 */
4091 	sx_xunlock(&old_map->lock);
4092 	sx_xunlock(&new_map->lock);
4093 	vm_map_process_deferred();
4094 
4095 	return (vm2);
4096 }
4097 
4098 /*
4099  * Create a process's stack for exec_new_vmspace().  This function is never
4100  * asked to wire the newly created stack.
4101  */
4102 int
4103 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4104     vm_prot_t prot, vm_prot_t max, int cow)
4105 {
4106 	vm_size_t growsize, init_ssize;
4107 	rlim_t vmemlim;
4108 	int rv;
4109 
4110 	MPASS((map->flags & MAP_WIREFUTURE) == 0);
4111 	growsize = sgrowsiz;
4112 	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
4113 	vm_map_lock(map);
4114 	vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4115 	/* If we would blow our VMEM resource limit, no go */
4116 	if (map->size + init_ssize > vmemlim) {
4117 		rv = KERN_NO_SPACE;
4118 		goto out;
4119 	}
4120 	rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
4121 	    max, cow);
4122 out:
4123 	vm_map_unlock(map);
4124 	return (rv);
4125 }
4126 
4127 static int stack_guard_page = 1;
4128 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
4129     &stack_guard_page, 0,
4130     "Specifies the number of guard pages for a stack that grows");
4131 
4132 static int
4133 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4134     vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
4135 {
4136 	vm_map_entry_t new_entry, prev_entry;
4137 	vm_offset_t bot, gap_bot, gap_top, top;
4138 	vm_size_t init_ssize, sgp;
4139 	int orient, rv;
4140 
4141 	/*
4142 	 * The stack orientation is piggybacked with the cow argument.
4143 	 * Extract it into orient and mask the cow argument so that we
4144 	 * don't pass it around further.
4145 	 */
4146 	orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP);
4147 	KASSERT(orient != 0, ("No stack grow direction"));
4148 	KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP),
4149 	    ("bi-dir stack"));
4150 
4151 	if (addrbos < vm_map_min(map) ||
4152 	    addrbos + max_ssize > vm_map_max(map) ||
4153 	    addrbos + max_ssize <= addrbos)
4154 		return (KERN_INVALID_ADDRESS);
4155 	sgp = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ||
4156 	    (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 :
4157 	    (vm_size_t)stack_guard_page * PAGE_SIZE;
4158 	if (sgp >= max_ssize)
4159 		return (KERN_INVALID_ARGUMENT);
4160 
4161 	init_ssize = growsize;
4162 	if (max_ssize < init_ssize + sgp)
4163 		init_ssize = max_ssize - sgp;
4164 
4165 	/* If addr is already mapped, no go */
4166 	if (vm_map_lookup_entry(map, addrbos, &prev_entry))
4167 		return (KERN_NO_SPACE);
4168 
4169 	/*
4170 	 * If we can't accommodate max_ssize in the current mapping, no go.
4171 	 */
4172 	if (vm_map_entry_succ(prev_entry)->start < addrbos + max_ssize)
4173 		return (KERN_NO_SPACE);
4174 
4175 	/*
4176 	 * We initially map a stack of only init_ssize.  We will grow as
4177 	 * needed later.  Depending on the orientation of the stack (i.e.
4178 	 * the grow direction) we either map at the top of the range, the
4179 	 * bottom of the range or in the middle.
4180 	 *
4181 	 * Note: we would normally expect prot and max to be VM_PROT_ALL,
4182 	 * and cow to be 0.  Possibly we should eliminate these as input
4183 	 * parameters, and just pass these values here in the insert call.
4184 	 */
4185 	if (orient == MAP_STACK_GROWS_DOWN) {
4186 		bot = addrbos + max_ssize - init_ssize;
4187 		top = bot + init_ssize;
4188 		gap_bot = addrbos;
4189 		gap_top = bot;
4190 	} else /* if (orient == MAP_STACK_GROWS_UP) */ {
4191 		bot = addrbos;
4192 		top = bot + init_ssize;
4193 		gap_bot = top;
4194 		gap_top = addrbos + max_ssize;
4195 	}
4196 	rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
4197 	if (rv != KERN_SUCCESS)
4198 		return (rv);
4199 	new_entry = vm_map_entry_succ(prev_entry);
4200 	KASSERT(new_entry->end == top || new_entry->start == bot,
4201 	    ("Bad entry start/end for new stack entry"));
4202 	KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
4203 	    (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
4204 	    ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
4205 	KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
4206 	    (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
4207 	    ("new entry lacks MAP_ENTRY_GROWS_UP"));
4208 	if (gap_bot == gap_top)
4209 		return (KERN_SUCCESS);
4210 	rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE,
4211 	    VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ?
4212 	    MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP));
4213 	if (rv == KERN_SUCCESS) {
4214 		/*
4215 		 * Gap can never successfully handle a fault, so
4216 		 * read-ahead logic is never used for it.  Re-use
4217 		 * next_read of the gap entry to store
4218 		 * stack_guard_page for vm_map_growstack().
4219 		 */
4220 		if (orient == MAP_STACK_GROWS_DOWN)
4221 			vm_map_entry_pred(new_entry)->next_read = sgp;
4222 		else
4223 			vm_map_entry_succ(new_entry)->next_read = sgp;
4224 	} else {
4225 		(void)vm_map_delete(map, bot, top);
4226 	}
4227 	return (rv);
4228 }
4229 
4230 /*
4231  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if we
4232  * successfully grow the stack.
4233  */
4234 static int
4235 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry)
4236 {
4237 	vm_map_entry_t stack_entry;
4238 	struct proc *p;
4239 	struct vmspace *vm;
4240 	struct ucred *cred;
4241 	vm_offset_t gap_end, gap_start, grow_start;
4242 	vm_size_t grow_amount, guard, max_grow;
4243 	rlim_t lmemlim, stacklim, vmemlim;
4244 	int rv, rv1;
4245 	bool gap_deleted, grow_down, is_procstack;
4246 #ifdef notyet
4247 	uint64_t limit;
4248 #endif
4249 #ifdef RACCT
4250 	int error;
4251 #endif
4252 
4253 	p = curproc;
4254 	vm = p->p_vmspace;
4255 
4256 	/*
4257 	 * Disallow stack growth when the access is performed by a
4258 	 * debugger or AIO daemon.  The reason is that the wrong
4259 	 * resource limits are applied.
4260 	 */
4261 	if (p != initproc && (map != &p->p_vmspace->vm_map ||
4262 	    p->p_textvp == NULL))
4263 		return (KERN_FAILURE);
4264 
4265 	MPASS(!map->system_map);
4266 
4267 	lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
4268 	stacklim = lim_cur(curthread, RLIMIT_STACK);
4269 	vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4270 retry:
4271 	/* If addr is not in a hole for a stack grow area, no need to grow. */
4272 	if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry))
4273 		return (KERN_FAILURE);
4274 	if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0)
4275 		return (KERN_SUCCESS);
4276 	if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) {
4277 		stack_entry = vm_map_entry_succ(gap_entry);
4278 		if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 ||
4279 		    stack_entry->start != gap_entry->end)
4280 			return (KERN_FAILURE);
4281 		grow_amount = round_page(stack_entry->start - addr);
4282 		grow_down = true;
4283 	} else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) {
4284 		stack_entry = vm_map_entry_pred(gap_entry);
4285 		if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 ||
4286 		    stack_entry->end != gap_entry->start)
4287 			return (KERN_FAILURE);
4288 		grow_amount = round_page(addr + 1 - stack_entry->end);
4289 		grow_down = false;
4290 	} else {
4291 		return (KERN_FAILURE);
4292 	}
4293 	guard = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ||
4294 	    (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 :
4295 	    gap_entry->next_read;
4296 	max_grow = gap_entry->end - gap_entry->start;
4297 	if (guard > max_grow)
4298 		return (KERN_NO_SPACE);
4299 	max_grow -= guard;
4300 	if (grow_amount > max_grow)
4301 		return (KERN_NO_SPACE);
4302 
4303 	/*
4304 	 * If this is the main process stack, see if we're over the stack
4305 	 * limit.
4306 	 */
4307 	is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr &&
4308 	    addr < (vm_offset_t)p->p_sysent->sv_usrstack;
4309 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim))
4310 		return (KERN_NO_SPACE);
4311 
4312 #ifdef RACCT
4313 	if (racct_enable) {
4314 		PROC_LOCK(p);
4315 		if (is_procstack && racct_set(p, RACCT_STACK,
4316 		    ctob(vm->vm_ssize) + grow_amount)) {
4317 			PROC_UNLOCK(p);
4318 			return (KERN_NO_SPACE);
4319 		}
4320 		PROC_UNLOCK(p);
4321 	}
4322 #endif
4323 
4324 	grow_amount = roundup(grow_amount, sgrowsiz);
4325 	if (grow_amount > max_grow)
4326 		grow_amount = max_grow;
4327 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
4328 		grow_amount = trunc_page((vm_size_t)stacklim) -
4329 		    ctob(vm->vm_ssize);
4330 	}
4331 
4332 #ifdef notyet
4333 	PROC_LOCK(p);
4334 	limit = racct_get_available(p, RACCT_STACK);
4335 	PROC_UNLOCK(p);
4336 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
4337 		grow_amount = limit - ctob(vm->vm_ssize);
4338 #endif
4339 
4340 	if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) {
4341 		if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
4342 			rv = KERN_NO_SPACE;
4343 			goto out;
4344 		}
4345 #ifdef RACCT
4346 		if (racct_enable) {
4347 			PROC_LOCK(p);
4348 			if (racct_set(p, RACCT_MEMLOCK,
4349 			    ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
4350 				PROC_UNLOCK(p);
4351 				rv = KERN_NO_SPACE;
4352 				goto out;
4353 			}
4354 			PROC_UNLOCK(p);
4355 		}
4356 #endif
4357 	}
4358 
4359 	/* If we would blow our VMEM resource limit, no go */
4360 	if (map->size + grow_amount > vmemlim) {
4361 		rv = KERN_NO_SPACE;
4362 		goto out;
4363 	}
4364 #ifdef RACCT
4365 	if (racct_enable) {
4366 		PROC_LOCK(p);
4367 		if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
4368 			PROC_UNLOCK(p);
4369 			rv = KERN_NO_SPACE;
4370 			goto out;
4371 		}
4372 		PROC_UNLOCK(p);
4373 	}
4374 #endif
4375 
4376 	if (vm_map_lock_upgrade(map)) {
4377 		gap_entry = NULL;
4378 		vm_map_lock_read(map);
4379 		goto retry;
4380 	}
4381 
4382 	if (grow_down) {
4383 		grow_start = gap_entry->end - grow_amount;
4384 		if (gap_entry->start + grow_amount == gap_entry->end) {
4385 			gap_start = gap_entry->start;
4386 			gap_end = gap_entry->end;
4387 			vm_map_entry_delete(map, gap_entry);
4388 			gap_deleted = true;
4389 		} else {
4390 			MPASS(gap_entry->start < gap_entry->end - grow_amount);
4391 			vm_map_entry_resize(map, gap_entry, -grow_amount);
4392 			gap_deleted = false;
4393 		}
4394 		rv = vm_map_insert(map, NULL, 0, grow_start,
4395 		    grow_start + grow_amount,
4396 		    stack_entry->protection, stack_entry->max_protection,
4397 		    MAP_STACK_GROWS_DOWN);
4398 		if (rv != KERN_SUCCESS) {
4399 			if (gap_deleted) {
4400 				rv1 = vm_map_insert(map, NULL, 0, gap_start,
4401 				    gap_end, VM_PROT_NONE, VM_PROT_NONE,
4402 				    MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN);
4403 				MPASS(rv1 == KERN_SUCCESS);
4404 			} else
4405 				vm_map_entry_resize(map, gap_entry,
4406 				    grow_amount);
4407 		}
4408 	} else {
4409 		grow_start = stack_entry->end;
4410 		cred = stack_entry->cred;
4411 		if (cred == NULL && stack_entry->object.vm_object != NULL)
4412 			cred = stack_entry->object.vm_object->cred;
4413 		if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
4414 			rv = KERN_NO_SPACE;
4415 		/* Grow the underlying object if applicable. */
4416 		else if (stack_entry->object.vm_object == NULL ||
4417 		    vm_object_coalesce(stack_entry->object.vm_object,
4418 		    stack_entry->offset,
4419 		    (vm_size_t)(stack_entry->end - stack_entry->start),
4420 		    grow_amount, cred != NULL)) {
4421 			if (gap_entry->start + grow_amount == gap_entry->end) {
4422 				vm_map_entry_delete(map, gap_entry);
4423 				vm_map_entry_resize(map, stack_entry,
4424 				    grow_amount);
4425 			} else {
4426 				gap_entry->start += grow_amount;
4427 				stack_entry->end += grow_amount;
4428 			}
4429 			map->size += grow_amount;
4430 			rv = KERN_SUCCESS;
4431 		} else
4432 			rv = KERN_FAILURE;
4433 	}
4434 	if (rv == KERN_SUCCESS && is_procstack)
4435 		vm->vm_ssize += btoc(grow_amount);
4436 
4437 	/*
4438 	 * Heed the MAP_WIREFUTURE flag if it was set for this process.
4439 	 */
4440 	if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) {
4441 		rv = vm_map_wire_locked(map, grow_start,
4442 		    grow_start + grow_amount,
4443 		    VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
4444 	}
4445 	vm_map_lock_downgrade(map);
4446 
4447 out:
4448 #ifdef RACCT
4449 	if (racct_enable && rv != KERN_SUCCESS) {
4450 		PROC_LOCK(p);
4451 		error = racct_set(p, RACCT_VMEM, map->size);
4452 		KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
4453 		if (!old_mlock) {
4454 			error = racct_set(p, RACCT_MEMLOCK,
4455 			    ptoa(pmap_wired_count(map->pmap)));
4456 			KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
4457 		}
4458 	    	error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
4459 		KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
4460 		PROC_UNLOCK(p);
4461 	}
4462 #endif
4463 
4464 	return (rv);
4465 }
4466 
4467 /*
4468  * Unshare the specified VM space for exec.  If other processes are
4469  * mapped to it, then create a new one.  The new vmspace is null.
4470  */
4471 int
4472 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
4473 {
4474 	struct vmspace *oldvmspace = p->p_vmspace;
4475 	struct vmspace *newvmspace;
4476 
4477 	KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
4478 	    ("vmspace_exec recursed"));
4479 	newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit);
4480 	if (newvmspace == NULL)
4481 		return (ENOMEM);
4482 	newvmspace->vm_swrss = oldvmspace->vm_swrss;
4483 	/*
4484 	 * This code is written like this for prototype purposes.  The
4485 	 * goal is to avoid running down the vmspace here, but let the
4486 	 * other process's that are still using the vmspace to finally
4487 	 * run it down.  Even though there is little or no chance of blocking
4488 	 * here, it is a good idea to keep this form for future mods.
4489 	 */
4490 	PROC_VMSPACE_LOCK(p);
4491 	p->p_vmspace = newvmspace;
4492 	PROC_VMSPACE_UNLOCK(p);
4493 	if (p == curthread->td_proc)
4494 		pmap_activate(curthread);
4495 	curthread->td_pflags |= TDP_EXECVMSPC;
4496 	return (0);
4497 }
4498 
4499 /*
4500  * Unshare the specified VM space for forcing COW.  This
4501  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
4502  */
4503 int
4504 vmspace_unshare(struct proc *p)
4505 {
4506 	struct vmspace *oldvmspace = p->p_vmspace;
4507 	struct vmspace *newvmspace;
4508 	vm_ooffset_t fork_charge;
4509 
4510 	if (oldvmspace->vm_refcnt == 1)
4511 		return (0);
4512 	fork_charge = 0;
4513 	newvmspace = vmspace_fork(oldvmspace, &fork_charge);
4514 	if (newvmspace == NULL)
4515 		return (ENOMEM);
4516 	if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
4517 		vmspace_free(newvmspace);
4518 		return (ENOMEM);
4519 	}
4520 	PROC_VMSPACE_LOCK(p);
4521 	p->p_vmspace = newvmspace;
4522 	PROC_VMSPACE_UNLOCK(p);
4523 	if (p == curthread->td_proc)
4524 		pmap_activate(curthread);
4525 	vmspace_free(oldvmspace);
4526 	return (0);
4527 }
4528 
4529 /*
4530  *	vm_map_lookup:
4531  *
4532  *	Finds the VM object, offset, and
4533  *	protection for a given virtual address in the
4534  *	specified map, assuming a page fault of the
4535  *	type specified.
4536  *
4537  *	Leaves the map in question locked for read; return
4538  *	values are guaranteed until a vm_map_lookup_done
4539  *	call is performed.  Note that the map argument
4540  *	is in/out; the returned map must be used in
4541  *	the call to vm_map_lookup_done.
4542  *
4543  *	A handle (out_entry) is returned for use in
4544  *	vm_map_lookup_done, to make that fast.
4545  *
4546  *	If a lookup is requested with "write protection"
4547  *	specified, the map may be changed to perform virtual
4548  *	copying operations, although the data referenced will
4549  *	remain the same.
4550  */
4551 int
4552 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
4553 	      vm_offset_t vaddr,
4554 	      vm_prot_t fault_typea,
4555 	      vm_map_entry_t *out_entry,	/* OUT */
4556 	      vm_object_t *object,		/* OUT */
4557 	      vm_pindex_t *pindex,		/* OUT */
4558 	      vm_prot_t *out_prot,		/* OUT */
4559 	      boolean_t *wired)			/* OUT */
4560 {
4561 	vm_map_entry_t entry;
4562 	vm_map_t map = *var_map;
4563 	vm_prot_t prot;
4564 	vm_prot_t fault_type = fault_typea;
4565 	vm_object_t eobject;
4566 	vm_size_t size;
4567 	struct ucred *cred;
4568 
4569 RetryLookup:
4570 
4571 	vm_map_lock_read(map);
4572 
4573 RetryLookupLocked:
4574 	/*
4575 	 * Lookup the faulting address.
4576 	 */
4577 	if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
4578 		vm_map_unlock_read(map);
4579 		return (KERN_INVALID_ADDRESS);
4580 	}
4581 
4582 	entry = *out_entry;
4583 
4584 	/*
4585 	 * Handle submaps.
4586 	 */
4587 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4588 		vm_map_t old_map = map;
4589 
4590 		*var_map = map = entry->object.sub_map;
4591 		vm_map_unlock_read(old_map);
4592 		goto RetryLookup;
4593 	}
4594 
4595 	/*
4596 	 * Check whether this task is allowed to have this page.
4597 	 */
4598 	prot = entry->protection;
4599 	if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) {
4600 		fault_typea &= ~VM_PROT_FAULT_LOOKUP;
4601 		if (prot == VM_PROT_NONE && map != kernel_map &&
4602 		    (entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4603 		    (entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
4604 		    MAP_ENTRY_STACK_GAP_UP)) != 0 &&
4605 		    vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS)
4606 			goto RetryLookupLocked;
4607 	}
4608 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4609 	if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
4610 		vm_map_unlock_read(map);
4611 		return (KERN_PROTECTION_FAILURE);
4612 	}
4613 	KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
4614 	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
4615 	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
4616 	    ("entry %p flags %x", entry, entry->eflags));
4617 	if ((fault_typea & VM_PROT_COPY) != 0 &&
4618 	    (entry->max_protection & VM_PROT_WRITE) == 0 &&
4619 	    (entry->eflags & MAP_ENTRY_COW) == 0) {
4620 		vm_map_unlock_read(map);
4621 		return (KERN_PROTECTION_FAILURE);
4622 	}
4623 
4624 	/*
4625 	 * If this page is not pageable, we have to get it for all possible
4626 	 * accesses.
4627 	 */
4628 	*wired = (entry->wired_count != 0);
4629 	if (*wired)
4630 		fault_type = entry->protection;
4631 	size = entry->end - entry->start;
4632 	/*
4633 	 * If the entry was copy-on-write, we either ...
4634 	 */
4635 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4636 		/*
4637 		 * If we want to write the page, we may as well handle that
4638 		 * now since we've got the map locked.
4639 		 *
4640 		 * If we don't need to write the page, we just demote the
4641 		 * permissions allowed.
4642 		 */
4643 		if ((fault_type & VM_PROT_WRITE) != 0 ||
4644 		    (fault_typea & VM_PROT_COPY) != 0) {
4645 			/*
4646 			 * Make a new object, and place it in the object
4647 			 * chain.  Note that no new references have appeared
4648 			 * -- one just moved from the map to the new
4649 			 * object.
4650 			 */
4651 			if (vm_map_lock_upgrade(map))
4652 				goto RetryLookup;
4653 
4654 			if (entry->cred == NULL) {
4655 				/*
4656 				 * The debugger owner is charged for
4657 				 * the memory.
4658 				 */
4659 				cred = curthread->td_ucred;
4660 				crhold(cred);
4661 				if (!swap_reserve_by_cred(size, cred)) {
4662 					crfree(cred);
4663 					vm_map_unlock(map);
4664 					return (KERN_RESOURCE_SHORTAGE);
4665 				}
4666 				entry->cred = cred;
4667 			}
4668 			vm_object_shadow(&entry->object.vm_object,
4669 			    &entry->offset, size);
4670 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4671 			eobject = entry->object.vm_object;
4672 			if (eobject->cred != NULL) {
4673 				/*
4674 				 * The object was not shadowed.
4675 				 */
4676 				swap_release_by_cred(size, entry->cred);
4677 				crfree(entry->cred);
4678 				entry->cred = NULL;
4679 			} else if (entry->cred != NULL) {
4680 				VM_OBJECT_WLOCK(eobject);
4681 				eobject->cred = entry->cred;
4682 				eobject->charge = size;
4683 				VM_OBJECT_WUNLOCK(eobject);
4684 				entry->cred = NULL;
4685 			}
4686 
4687 			vm_map_lock_downgrade(map);
4688 		} else {
4689 			/*
4690 			 * We're attempting to read a copy-on-write page --
4691 			 * don't allow writes.
4692 			 */
4693 			prot &= ~VM_PROT_WRITE;
4694 		}
4695 	}
4696 
4697 	/*
4698 	 * Create an object if necessary.
4699 	 */
4700 	if (entry->object.vm_object == NULL &&
4701 	    !map->system_map) {
4702 		if (vm_map_lock_upgrade(map))
4703 			goto RetryLookup;
4704 		entry->object.vm_object = vm_object_allocate_anon(atop(size));
4705 		entry->offset = 0;
4706 		if (entry->cred != NULL) {
4707 			VM_OBJECT_WLOCK(entry->object.vm_object);
4708 			entry->object.vm_object->cred = entry->cred;
4709 			entry->object.vm_object->charge = size;
4710 			VM_OBJECT_WUNLOCK(entry->object.vm_object);
4711 			entry->cred = NULL;
4712 		}
4713 		vm_map_lock_downgrade(map);
4714 	}
4715 
4716 	/*
4717 	 * Return the object/offset from this entry.  If the entry was
4718 	 * copy-on-write or empty, it has been fixed up.
4719 	 */
4720 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4721 	*object = entry->object.vm_object;
4722 
4723 	*out_prot = prot;
4724 	return (KERN_SUCCESS);
4725 }
4726 
4727 /*
4728  *	vm_map_lookup_locked:
4729  *
4730  *	Lookup the faulting address.  A version of vm_map_lookup that returns
4731  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
4732  */
4733 int
4734 vm_map_lookup_locked(vm_map_t *var_map,		/* IN/OUT */
4735 		     vm_offset_t vaddr,
4736 		     vm_prot_t fault_typea,
4737 		     vm_map_entry_t *out_entry,	/* OUT */
4738 		     vm_object_t *object,	/* OUT */
4739 		     vm_pindex_t *pindex,	/* OUT */
4740 		     vm_prot_t *out_prot,	/* OUT */
4741 		     boolean_t *wired)		/* OUT */
4742 {
4743 	vm_map_entry_t entry;
4744 	vm_map_t map = *var_map;
4745 	vm_prot_t prot;
4746 	vm_prot_t fault_type = fault_typea;
4747 
4748 	/*
4749 	 * Lookup the faulting address.
4750 	 */
4751 	if (!vm_map_lookup_entry(map, vaddr, out_entry))
4752 		return (KERN_INVALID_ADDRESS);
4753 
4754 	entry = *out_entry;
4755 
4756 	/*
4757 	 * Fail if the entry refers to a submap.
4758 	 */
4759 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4760 		return (KERN_FAILURE);
4761 
4762 	/*
4763 	 * Check whether this task is allowed to have this page.
4764 	 */
4765 	prot = entry->protection;
4766 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4767 	if ((fault_type & prot) != fault_type)
4768 		return (KERN_PROTECTION_FAILURE);
4769 
4770 	/*
4771 	 * If this page is not pageable, we have to get it for all possible
4772 	 * accesses.
4773 	 */
4774 	*wired = (entry->wired_count != 0);
4775 	if (*wired)
4776 		fault_type = entry->protection;
4777 
4778 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4779 		/*
4780 		 * Fail if the entry was copy-on-write for a write fault.
4781 		 */
4782 		if (fault_type & VM_PROT_WRITE)
4783 			return (KERN_FAILURE);
4784 		/*
4785 		 * We're attempting to read a copy-on-write page --
4786 		 * don't allow writes.
4787 		 */
4788 		prot &= ~VM_PROT_WRITE;
4789 	}
4790 
4791 	/*
4792 	 * Fail if an object should be created.
4793 	 */
4794 	if (entry->object.vm_object == NULL && !map->system_map)
4795 		return (KERN_FAILURE);
4796 
4797 	/*
4798 	 * Return the object/offset from this entry.  If the entry was
4799 	 * copy-on-write or empty, it has been fixed up.
4800 	 */
4801 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4802 	*object = entry->object.vm_object;
4803 
4804 	*out_prot = prot;
4805 	return (KERN_SUCCESS);
4806 }
4807 
4808 /*
4809  *	vm_map_lookup_done:
4810  *
4811  *	Releases locks acquired by a vm_map_lookup
4812  *	(according to the handle returned by that lookup).
4813  */
4814 void
4815 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
4816 {
4817 	/*
4818 	 * Unlock the main-level map
4819 	 */
4820 	vm_map_unlock_read(map);
4821 }
4822 
4823 vm_offset_t
4824 vm_map_max_KBI(const struct vm_map *map)
4825 {
4826 
4827 	return (vm_map_max(map));
4828 }
4829 
4830 vm_offset_t
4831 vm_map_min_KBI(const struct vm_map *map)
4832 {
4833 
4834 	return (vm_map_min(map));
4835 }
4836 
4837 pmap_t
4838 vm_map_pmap_KBI(vm_map_t map)
4839 {
4840 
4841 	return (map->pmap);
4842 }
4843 
4844 #ifdef INVARIANTS
4845 static void
4846 _vm_map_assert_consistent(vm_map_t map, int check)
4847 {
4848 	vm_map_entry_t entry, prev;
4849 	vm_size_t max_left, max_right;
4850 
4851 	if (enable_vmmap_check != check)
4852 		return;
4853 
4854 	prev = &map->header;
4855 	VM_MAP_ENTRY_FOREACH(entry, map) {
4856 		KASSERT(prev->end <= entry->start,
4857 		    ("map %p prev->end = %jx, start = %jx", map,
4858 		    (uintmax_t)prev->end, (uintmax_t)entry->start));
4859 		KASSERT(entry->start < entry->end,
4860 		    ("map %p start = %jx, end = %jx", map,
4861 		    (uintmax_t)entry->start, (uintmax_t)entry->end));
4862 		KASSERT(entry->end <= vm_map_entry_succ(entry)->start,
4863 		    ("map %p end = %jx, next->start = %jx", map,
4864 		     (uintmax_t)entry->end,
4865 		     (uintmax_t)vm_map_entry_succ(entry)->start));
4866 		KASSERT(entry->left == NULL ||
4867 		    entry->left->start < entry->start,
4868 		    ("map %p left->start = %jx, start = %jx", map,
4869 		    (uintmax_t)entry->left->start, (uintmax_t)entry->start));
4870 		KASSERT(entry->right == NULL ||
4871 		    entry->start < entry->right->start,
4872 		    ("map %p start = %jx, right->start = %jx", map,
4873 		    (uintmax_t)entry->start, (uintmax_t)entry->right->start));
4874 		max_left = vm_map_entry_max_free_left(entry,
4875 		    vm_map_entry_pred(entry));
4876 		max_right = vm_map_entry_max_free_right(entry,
4877 		    vm_map_entry_succ(entry));
4878 		KASSERT(entry->max_free == MAX(max_left, max_right),
4879 		    ("map %p max = %jx, max_left = %jx, max_right = %jx", map,
4880 		    (uintmax_t)entry->max_free,
4881 		    (uintmax_t)max_left, (uintmax_t)max_right));
4882 		prev = entry;
4883 	}
4884 	KASSERT(prev->end <= entry->start,
4885 	    ("map %p prev->end = %jx, start = %jx", map,
4886 	    (uintmax_t)prev->end, (uintmax_t)entry->start));
4887 }
4888 #endif
4889 
4890 #include "opt_ddb.h"
4891 #ifdef DDB
4892 #include <sys/kernel.h>
4893 
4894 #include <ddb/ddb.h>
4895 
4896 static void
4897 vm_map_print(vm_map_t map)
4898 {
4899 	vm_map_entry_t entry, prev;
4900 
4901 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4902 	    (void *)map,
4903 	    (void *)map->pmap, map->nentries, map->timestamp);
4904 
4905 	db_indent += 2;
4906 	prev = &map->header;
4907 	VM_MAP_ENTRY_FOREACH(entry, map) {
4908 		db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n",
4909 		    (void *)entry, (void *)entry->start, (void *)entry->end,
4910 		    entry->eflags);
4911 		{
4912 			static char *inheritance_name[4] =
4913 			{"share", "copy", "none", "donate_copy"};
4914 
4915 			db_iprintf(" prot=%x/%x/%s",
4916 			    entry->protection,
4917 			    entry->max_protection,
4918 			    inheritance_name[(int)(unsigned char)
4919 			    entry->inheritance]);
4920 			if (entry->wired_count != 0)
4921 				db_printf(", wired");
4922 		}
4923 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4924 			db_printf(", share=%p, offset=0x%jx\n",
4925 			    (void *)entry->object.sub_map,
4926 			    (uintmax_t)entry->offset);
4927 			if (prev == &map->header ||
4928 			    prev->object.sub_map !=
4929 				entry->object.sub_map) {
4930 				db_indent += 2;
4931 				vm_map_print((vm_map_t)entry->object.sub_map);
4932 				db_indent -= 2;
4933 			}
4934 		} else {
4935 			if (entry->cred != NULL)
4936 				db_printf(", ruid %d", entry->cred->cr_ruid);
4937 			db_printf(", object=%p, offset=0x%jx",
4938 			    (void *)entry->object.vm_object,
4939 			    (uintmax_t)entry->offset);
4940 			if (entry->object.vm_object && entry->object.vm_object->cred)
4941 				db_printf(", obj ruid %d charge %jx",
4942 				    entry->object.vm_object->cred->cr_ruid,
4943 				    (uintmax_t)entry->object.vm_object->charge);
4944 			if (entry->eflags & MAP_ENTRY_COW)
4945 				db_printf(", copy (%s)",
4946 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4947 			db_printf("\n");
4948 
4949 			if (prev == &map->header ||
4950 			    prev->object.vm_object !=
4951 				entry->object.vm_object) {
4952 				db_indent += 2;
4953 				vm_object_print((db_expr_t)(intptr_t)
4954 						entry->object.vm_object,
4955 						0, 0, (char *)0);
4956 				db_indent -= 2;
4957 			}
4958 		}
4959 		prev = entry;
4960 	}
4961 	db_indent -= 2;
4962 }
4963 
4964 DB_SHOW_COMMAND(map, map)
4965 {
4966 
4967 	if (!have_addr) {
4968 		db_printf("usage: show map <addr>\n");
4969 		return;
4970 	}
4971 	vm_map_print((vm_map_t)addr);
4972 }
4973 
4974 DB_SHOW_COMMAND(procvm, procvm)
4975 {
4976 	struct proc *p;
4977 
4978 	if (have_addr) {
4979 		p = db_lookup_proc(addr);
4980 	} else {
4981 		p = curproc;
4982 	}
4983 
4984 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4985 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4986 	    (void *)vmspace_pmap(p->p_vmspace));
4987 
4988 	vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
4989 }
4990 
4991 #endif /* DDB */
4992