1 /*- 2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * The Mach Operating System project at Carnegie-Mellon University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 35 * 36 * 37 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 38 * All rights reserved. 39 * 40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 41 * 42 * Permission to use, copy, modify and distribute this software and 43 * its documentation is hereby granted, provided that both the copyright 44 * notice and this permission notice appear in all copies of the 45 * software, derivative works or modified versions, and any portions 46 * thereof, and that both notices appear in supporting documentation. 47 * 48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 51 * 52 * Carnegie Mellon requests users of this software to return to 53 * 54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 55 * School of Computer Science 56 * Carnegie Mellon University 57 * Pittsburgh PA 15213-3890 58 * 59 * any improvements or extensions that they make and grant Carnegie the 60 * rights to redistribute these changes. 61 */ 62 63 /* 64 * Virtual memory mapping module. 65 */ 66 67 #include <sys/cdefs.h> 68 __FBSDID("$FreeBSD$"); 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/elf.h> 73 #include <sys/kernel.h> 74 #include <sys/ktr.h> 75 #include <sys/lock.h> 76 #include <sys/mutex.h> 77 #include <sys/proc.h> 78 #include <sys/vmmeter.h> 79 #include <sys/mman.h> 80 #include <sys/vnode.h> 81 #include <sys/racct.h> 82 #include <sys/resourcevar.h> 83 #include <sys/rwlock.h> 84 #include <sys/file.h> 85 #include <sys/sysctl.h> 86 #include <sys/sysent.h> 87 #include <sys/shm.h> 88 89 #include <vm/vm.h> 90 #include <vm/vm_param.h> 91 #include <vm/pmap.h> 92 #include <vm/vm_map.h> 93 #include <vm/vm_page.h> 94 #include <vm/vm_pageout.h> 95 #include <vm/vm_object.h> 96 #include <vm/vm_pager.h> 97 #include <vm/vm_kern.h> 98 #include <vm/vm_extern.h> 99 #include <vm/vnode_pager.h> 100 #include <vm/swap_pager.h> 101 #include <vm/uma.h> 102 103 /* 104 * Virtual memory maps provide for the mapping, protection, 105 * and sharing of virtual memory objects. In addition, 106 * this module provides for an efficient virtual copy of 107 * memory from one map to another. 108 * 109 * Synchronization is required prior to most operations. 110 * 111 * Maps consist of an ordered doubly-linked list of simple 112 * entries; a self-adjusting binary search tree of these 113 * entries is used to speed up lookups. 114 * 115 * Since portions of maps are specified by start/end addresses, 116 * which may not align with existing map entries, all 117 * routines merely "clip" entries to these start/end values. 118 * [That is, an entry is split into two, bordering at a 119 * start or end value.] Note that these clippings may not 120 * always be necessary (as the two resulting entries are then 121 * not changed); however, the clipping is done for convenience. 122 * 123 * As mentioned above, virtual copy operations are performed 124 * by copying VM object references from one map to 125 * another, and then marking both regions as copy-on-write. 126 */ 127 128 static struct mtx map_sleep_mtx; 129 static uma_zone_t mapentzone; 130 static uma_zone_t kmapentzone; 131 static uma_zone_t mapzone; 132 static uma_zone_t vmspace_zone; 133 static int vmspace_zinit(void *mem, int size, int flags); 134 static int vm_map_zinit(void *mem, int ize, int flags); 135 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, 136 vm_offset_t max); 137 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map); 138 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry); 139 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry); 140 static int vm_map_growstack(vm_map_t map, vm_offset_t addr, 141 vm_map_entry_t gap_entry); 142 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 143 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags); 144 #ifdef INVARIANTS 145 static void vm_map_zdtor(void *mem, int size, void *arg); 146 static void vmspace_zdtor(void *mem, int size, void *arg); 147 #endif 148 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, 149 vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max, 150 int cow); 151 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry, 152 vm_offset_t failed_addr); 153 154 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \ 155 ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \ 156 !((e)->eflags & MAP_ENTRY_NEEDS_COPY))) 157 158 /* 159 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type 160 * stable. 161 */ 162 #define PROC_VMSPACE_LOCK(p) do { } while (0) 163 #define PROC_VMSPACE_UNLOCK(p) do { } while (0) 164 165 /* 166 * VM_MAP_RANGE_CHECK: [ internal use only ] 167 * 168 * Asserts that the starting and ending region 169 * addresses fall within the valid range of the map. 170 */ 171 #define VM_MAP_RANGE_CHECK(map, start, end) \ 172 { \ 173 if (start < vm_map_min(map)) \ 174 start = vm_map_min(map); \ 175 if (end > vm_map_max(map)) \ 176 end = vm_map_max(map); \ 177 if (start > end) \ 178 start = end; \ 179 } 180 181 /* 182 * vm_map_startup: 183 * 184 * Initialize the vm_map module. Must be called before 185 * any other vm_map routines. 186 * 187 * Map and entry structures are allocated from the general 188 * purpose memory pool with some exceptions: 189 * 190 * - The kernel map and kmem submap are allocated statically. 191 * - Kernel map entries are allocated out of a static pool. 192 * 193 * These restrictions are necessary since malloc() uses the 194 * maps and requires map entries. 195 */ 196 197 void 198 vm_map_startup(void) 199 { 200 mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF); 201 mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL, 202 #ifdef INVARIANTS 203 vm_map_zdtor, 204 #else 205 NULL, 206 #endif 207 vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 208 uma_prealloc(mapzone, MAX_KMAP); 209 kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry), 210 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 211 UMA_ZONE_MTXCLASS | UMA_ZONE_VM); 212 mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry), 213 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 214 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL, 215 #ifdef INVARIANTS 216 vmspace_zdtor, 217 #else 218 NULL, 219 #endif 220 vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 221 } 222 223 static int 224 vmspace_zinit(void *mem, int size, int flags) 225 { 226 struct vmspace *vm; 227 228 vm = (struct vmspace *)mem; 229 230 vm->vm_map.pmap = NULL; 231 (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags); 232 PMAP_LOCK_INIT(vmspace_pmap(vm)); 233 return (0); 234 } 235 236 static int 237 vm_map_zinit(void *mem, int size, int flags) 238 { 239 vm_map_t map; 240 241 map = (vm_map_t)mem; 242 memset(map, 0, sizeof(*map)); 243 mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK); 244 sx_init(&map->lock, "vm map (user)"); 245 return (0); 246 } 247 248 #ifdef INVARIANTS 249 static void 250 vmspace_zdtor(void *mem, int size, void *arg) 251 { 252 struct vmspace *vm; 253 254 vm = (struct vmspace *)mem; 255 256 vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg); 257 } 258 static void 259 vm_map_zdtor(void *mem, int size, void *arg) 260 { 261 vm_map_t map; 262 263 map = (vm_map_t)mem; 264 KASSERT(map->nentries == 0, 265 ("map %p nentries == %d on free.", 266 map, map->nentries)); 267 KASSERT(map->size == 0, 268 ("map %p size == %lu on free.", 269 map, (unsigned long)map->size)); 270 } 271 #endif /* INVARIANTS */ 272 273 /* 274 * Allocate a vmspace structure, including a vm_map and pmap, 275 * and initialize those structures. The refcnt is set to 1. 276 * 277 * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit(). 278 */ 279 struct vmspace * 280 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit) 281 { 282 struct vmspace *vm; 283 284 vm = uma_zalloc(vmspace_zone, M_WAITOK); 285 KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL")); 286 if (!pinit(vmspace_pmap(vm))) { 287 uma_zfree(vmspace_zone, vm); 288 return (NULL); 289 } 290 CTR1(KTR_VM, "vmspace_alloc: %p", vm); 291 _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max); 292 vm->vm_refcnt = 1; 293 vm->vm_shm = NULL; 294 vm->vm_swrss = 0; 295 vm->vm_tsize = 0; 296 vm->vm_dsize = 0; 297 vm->vm_ssize = 0; 298 vm->vm_taddr = 0; 299 vm->vm_daddr = 0; 300 vm->vm_maxsaddr = 0; 301 return (vm); 302 } 303 304 #ifdef RACCT 305 static void 306 vmspace_container_reset(struct proc *p) 307 { 308 309 PROC_LOCK(p); 310 racct_set(p, RACCT_DATA, 0); 311 racct_set(p, RACCT_STACK, 0); 312 racct_set(p, RACCT_RSS, 0); 313 racct_set(p, RACCT_MEMLOCK, 0); 314 racct_set(p, RACCT_VMEM, 0); 315 PROC_UNLOCK(p); 316 } 317 #endif 318 319 static inline void 320 vmspace_dofree(struct vmspace *vm) 321 { 322 323 CTR1(KTR_VM, "vmspace_free: %p", vm); 324 325 /* 326 * Make sure any SysV shm is freed, it might not have been in 327 * exit1(). 328 */ 329 shmexit(vm); 330 331 /* 332 * Lock the map, to wait out all other references to it. 333 * Delete all of the mappings and pages they hold, then call 334 * the pmap module to reclaim anything left. 335 */ 336 (void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map), 337 vm_map_max(&vm->vm_map)); 338 339 pmap_release(vmspace_pmap(vm)); 340 vm->vm_map.pmap = NULL; 341 uma_zfree(vmspace_zone, vm); 342 } 343 344 void 345 vmspace_free(struct vmspace *vm) 346 { 347 348 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 349 "vmspace_free() called"); 350 351 if (vm->vm_refcnt == 0) 352 panic("vmspace_free: attempt to free already freed vmspace"); 353 354 if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1) 355 vmspace_dofree(vm); 356 } 357 358 void 359 vmspace_exitfree(struct proc *p) 360 { 361 struct vmspace *vm; 362 363 PROC_VMSPACE_LOCK(p); 364 vm = p->p_vmspace; 365 p->p_vmspace = NULL; 366 PROC_VMSPACE_UNLOCK(p); 367 KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace")); 368 vmspace_free(vm); 369 } 370 371 void 372 vmspace_exit(struct thread *td) 373 { 374 int refcnt; 375 struct vmspace *vm; 376 struct proc *p; 377 378 /* 379 * Release user portion of address space. 380 * This releases references to vnodes, 381 * which could cause I/O if the file has been unlinked. 382 * Need to do this early enough that we can still sleep. 383 * 384 * The last exiting process to reach this point releases as 385 * much of the environment as it can. vmspace_dofree() is the 386 * slower fallback in case another process had a temporary 387 * reference to the vmspace. 388 */ 389 390 p = td->td_proc; 391 vm = p->p_vmspace; 392 atomic_add_int(&vmspace0.vm_refcnt, 1); 393 refcnt = vm->vm_refcnt; 394 do { 395 if (refcnt > 1 && p->p_vmspace != &vmspace0) { 396 /* Switch now since other proc might free vmspace */ 397 PROC_VMSPACE_LOCK(p); 398 p->p_vmspace = &vmspace0; 399 PROC_VMSPACE_UNLOCK(p); 400 pmap_activate(td); 401 } 402 } while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt - 1)); 403 if (refcnt == 1) { 404 if (p->p_vmspace != vm) { 405 /* vmspace not yet freed, switch back */ 406 PROC_VMSPACE_LOCK(p); 407 p->p_vmspace = vm; 408 PROC_VMSPACE_UNLOCK(p); 409 pmap_activate(td); 410 } 411 pmap_remove_pages(vmspace_pmap(vm)); 412 /* Switch now since this proc will free vmspace */ 413 PROC_VMSPACE_LOCK(p); 414 p->p_vmspace = &vmspace0; 415 PROC_VMSPACE_UNLOCK(p); 416 pmap_activate(td); 417 vmspace_dofree(vm); 418 } 419 #ifdef RACCT 420 if (racct_enable) 421 vmspace_container_reset(p); 422 #endif 423 } 424 425 /* Acquire reference to vmspace owned by another process. */ 426 427 struct vmspace * 428 vmspace_acquire_ref(struct proc *p) 429 { 430 struct vmspace *vm; 431 int refcnt; 432 433 PROC_VMSPACE_LOCK(p); 434 vm = p->p_vmspace; 435 if (vm == NULL) { 436 PROC_VMSPACE_UNLOCK(p); 437 return (NULL); 438 } 439 refcnt = vm->vm_refcnt; 440 do { 441 if (refcnt <= 0) { /* Avoid 0->1 transition */ 442 PROC_VMSPACE_UNLOCK(p); 443 return (NULL); 444 } 445 } while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt + 1)); 446 if (vm != p->p_vmspace) { 447 PROC_VMSPACE_UNLOCK(p); 448 vmspace_free(vm); 449 return (NULL); 450 } 451 PROC_VMSPACE_UNLOCK(p); 452 return (vm); 453 } 454 455 /* 456 * Switch between vmspaces in an AIO kernel process. 457 * 458 * The new vmspace is either the vmspace of a user process obtained 459 * from an active AIO request or the initial vmspace of the AIO kernel 460 * process (when it is idling). Because user processes will block to 461 * drain any active AIO requests before proceeding in exit() or 462 * execve(), the reference count for vmspaces from AIO requests can 463 * never be 0. Similarly, AIO kernel processes hold an extra 464 * reference on their initial vmspace for the life of the process. As 465 * a result, the 'newvm' vmspace always has a non-zero reference 466 * count. This permits an additional reference on 'newvm' to be 467 * acquired via a simple atomic increment rather than the loop in 468 * vmspace_acquire_ref() above. 469 */ 470 void 471 vmspace_switch_aio(struct vmspace *newvm) 472 { 473 struct vmspace *oldvm; 474 475 /* XXX: Need some way to assert that this is an aio daemon. */ 476 477 KASSERT(newvm->vm_refcnt > 0, 478 ("vmspace_switch_aio: newvm unreferenced")); 479 480 oldvm = curproc->p_vmspace; 481 if (oldvm == newvm) 482 return; 483 484 /* 485 * Point to the new address space and refer to it. 486 */ 487 curproc->p_vmspace = newvm; 488 atomic_add_int(&newvm->vm_refcnt, 1); 489 490 /* Activate the new mapping. */ 491 pmap_activate(curthread); 492 493 vmspace_free(oldvm); 494 } 495 496 void 497 _vm_map_lock(vm_map_t map, const char *file, int line) 498 { 499 500 if (map->system_map) 501 mtx_lock_flags_(&map->system_mtx, 0, file, line); 502 else 503 sx_xlock_(&map->lock, file, line); 504 map->timestamp++; 505 } 506 507 void 508 vm_map_entry_set_vnode_text(vm_map_entry_t entry, bool add) 509 { 510 vm_object_t object, object1; 511 struct vnode *vp; 512 513 if ((entry->eflags & MAP_ENTRY_VN_EXEC) == 0) 514 return; 515 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 516 ("Submap with execs")); 517 object = entry->object.vm_object; 518 KASSERT(object != NULL, ("No object for text, entry %p", entry)); 519 VM_OBJECT_RLOCK(object); 520 while ((object1 = object->backing_object) != NULL) { 521 VM_OBJECT_RLOCK(object1); 522 VM_OBJECT_RUNLOCK(object); 523 object = object1; 524 } 525 526 vp = NULL; 527 if (object->type == OBJT_DEAD) { 528 /* 529 * For OBJT_DEAD objects, v_writecount was handled in 530 * vnode_pager_dealloc(). 531 */ 532 } else if (object->type == OBJT_VNODE) { 533 vp = object->handle; 534 } else if (object->type == OBJT_SWAP) { 535 KASSERT((object->flags & OBJ_TMPFS_NODE) != 0, 536 ("vm_map_entry_set_vnode_text: swap and !TMPFS " 537 "entry %p, object %p, add %d", entry, object, add)); 538 /* 539 * Tmpfs VREG node, which was reclaimed, has 540 * OBJ_TMPFS_NODE flag set, but not OBJ_TMPFS. In 541 * this case there is no v_writecount to adjust. 542 */ 543 if ((object->flags & OBJ_TMPFS) != 0) 544 vp = object->un_pager.swp.swp_tmpfs; 545 } else { 546 KASSERT(0, 547 ("vm_map_entry_set_vnode_text: wrong object type, " 548 "entry %p, object %p, add %d", entry, object, add)); 549 } 550 if (vp != NULL) { 551 if (add) { 552 VOP_SET_TEXT_CHECKED(vp); 553 VM_OBJECT_RUNLOCK(object); 554 } else { 555 vhold(vp); 556 VM_OBJECT_RUNLOCK(object); 557 vn_lock(vp, LK_SHARED | LK_RETRY); 558 VOP_UNSET_TEXT_CHECKED(vp); 559 VOP_UNLOCK(vp, 0); 560 vdrop(vp); 561 } 562 } else { 563 VM_OBJECT_RUNLOCK(object); 564 } 565 } 566 567 /* 568 * Use a different name for this vm_map_entry field when it's use 569 * is not consistent with its use as part of an ordered search tree. 570 */ 571 #define defer_next right 572 573 static void 574 vm_map_process_deferred(void) 575 { 576 struct thread *td; 577 vm_map_entry_t entry, next; 578 vm_object_t object; 579 580 td = curthread; 581 entry = td->td_map_def_user; 582 td->td_map_def_user = NULL; 583 while (entry != NULL) { 584 next = entry->defer_next; 585 MPASS((entry->eflags & (MAP_ENTRY_WRITECNT | 586 MAP_ENTRY_VN_EXEC)) != (MAP_ENTRY_WRITECNT | 587 MAP_ENTRY_VN_EXEC)); 588 if ((entry->eflags & MAP_ENTRY_WRITECNT) != 0) { 589 /* 590 * Decrement the object's writemappings and 591 * possibly the vnode's v_writecount. 592 */ 593 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 594 ("Submap with writecount")); 595 object = entry->object.vm_object; 596 KASSERT(object != NULL, ("No object for writecount")); 597 vm_pager_release_writecount(object, entry->start, 598 entry->end); 599 } 600 vm_map_entry_set_vnode_text(entry, false); 601 vm_map_entry_deallocate(entry, FALSE); 602 entry = next; 603 } 604 } 605 606 #ifdef INVARIANTS 607 static void 608 _vm_map_assert_locked(vm_map_t map, const char *file, int line) 609 { 610 611 if (map->system_map) 612 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 613 else 614 sx_assert_(&map->lock, SA_XLOCKED, file, line); 615 } 616 617 #define VM_MAP_ASSERT_LOCKED(map) \ 618 _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE) 619 620 enum { VMMAP_CHECK_NONE, VMMAP_CHECK_UNLOCK, VMMAP_CHECK_ALL }; 621 #ifdef DIAGNOSTIC 622 static int enable_vmmap_check = VMMAP_CHECK_UNLOCK; 623 #else 624 static int enable_vmmap_check = VMMAP_CHECK_NONE; 625 #endif 626 SYSCTL_INT(_debug, OID_AUTO, vmmap_check, CTLFLAG_RWTUN, 627 &enable_vmmap_check, 0, "Enable vm map consistency checking"); 628 629 static void _vm_map_assert_consistent(vm_map_t map, int check); 630 631 #define VM_MAP_ASSERT_CONSISTENT(map) \ 632 _vm_map_assert_consistent(map, VMMAP_CHECK_ALL) 633 #ifdef DIAGNOSTIC 634 #define VM_MAP_UNLOCK_CONSISTENT(map) do { \ 635 if (map->nupdates > map->nentries) { \ 636 _vm_map_assert_consistent(map, VMMAP_CHECK_UNLOCK); \ 637 map->nupdates = 0; \ 638 } \ 639 } while (0) 640 #else 641 #define VM_MAP_UNLOCK_CONSISTENT(map) 642 #endif 643 #else 644 #define VM_MAP_ASSERT_LOCKED(map) 645 #define VM_MAP_ASSERT_CONSISTENT(map) 646 #define VM_MAP_UNLOCK_CONSISTENT(map) 647 #endif /* INVARIANTS */ 648 649 void 650 _vm_map_unlock(vm_map_t map, const char *file, int line) 651 { 652 653 VM_MAP_UNLOCK_CONSISTENT(map); 654 if (map->system_map) 655 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 656 else { 657 sx_xunlock_(&map->lock, file, line); 658 vm_map_process_deferred(); 659 } 660 } 661 662 void 663 _vm_map_lock_read(vm_map_t map, const char *file, int line) 664 { 665 666 if (map->system_map) 667 mtx_lock_flags_(&map->system_mtx, 0, file, line); 668 else 669 sx_slock_(&map->lock, file, line); 670 } 671 672 void 673 _vm_map_unlock_read(vm_map_t map, const char *file, int line) 674 { 675 676 if (map->system_map) 677 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 678 else { 679 sx_sunlock_(&map->lock, file, line); 680 vm_map_process_deferred(); 681 } 682 } 683 684 int 685 _vm_map_trylock(vm_map_t map, const char *file, int line) 686 { 687 int error; 688 689 error = map->system_map ? 690 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 691 !sx_try_xlock_(&map->lock, file, line); 692 if (error == 0) 693 map->timestamp++; 694 return (error == 0); 695 } 696 697 int 698 _vm_map_trylock_read(vm_map_t map, const char *file, int line) 699 { 700 int error; 701 702 error = map->system_map ? 703 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 704 !sx_try_slock_(&map->lock, file, line); 705 return (error == 0); 706 } 707 708 /* 709 * _vm_map_lock_upgrade: [ internal use only ] 710 * 711 * Tries to upgrade a read (shared) lock on the specified map to a write 712 * (exclusive) lock. Returns the value "0" if the upgrade succeeds and a 713 * non-zero value if the upgrade fails. If the upgrade fails, the map is 714 * returned without a read or write lock held. 715 * 716 * Requires that the map be read locked. 717 */ 718 int 719 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line) 720 { 721 unsigned int last_timestamp; 722 723 if (map->system_map) { 724 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 725 } else { 726 if (!sx_try_upgrade_(&map->lock, file, line)) { 727 last_timestamp = map->timestamp; 728 sx_sunlock_(&map->lock, file, line); 729 vm_map_process_deferred(); 730 /* 731 * If the map's timestamp does not change while the 732 * map is unlocked, then the upgrade succeeds. 733 */ 734 sx_xlock_(&map->lock, file, line); 735 if (last_timestamp != map->timestamp) { 736 sx_xunlock_(&map->lock, file, line); 737 return (1); 738 } 739 } 740 } 741 map->timestamp++; 742 return (0); 743 } 744 745 void 746 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line) 747 { 748 749 if (map->system_map) { 750 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 751 } else { 752 VM_MAP_UNLOCK_CONSISTENT(map); 753 sx_downgrade_(&map->lock, file, line); 754 } 755 } 756 757 /* 758 * vm_map_locked: 759 * 760 * Returns a non-zero value if the caller holds a write (exclusive) lock 761 * on the specified map and the value "0" otherwise. 762 */ 763 int 764 vm_map_locked(vm_map_t map) 765 { 766 767 if (map->system_map) 768 return (mtx_owned(&map->system_mtx)); 769 else 770 return (sx_xlocked(&map->lock)); 771 } 772 773 /* 774 * _vm_map_unlock_and_wait: 775 * 776 * Atomically releases the lock on the specified map and puts the calling 777 * thread to sleep. The calling thread will remain asleep until either 778 * vm_map_wakeup() is performed on the map or the specified timeout is 779 * exceeded. 780 * 781 * WARNING! This function does not perform deferred deallocations of 782 * objects and map entries. Therefore, the calling thread is expected to 783 * reacquire the map lock after reawakening and later perform an ordinary 784 * unlock operation, such as vm_map_unlock(), before completing its 785 * operation on the map. 786 */ 787 int 788 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line) 789 { 790 791 VM_MAP_UNLOCK_CONSISTENT(map); 792 mtx_lock(&map_sleep_mtx); 793 if (map->system_map) 794 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 795 else 796 sx_xunlock_(&map->lock, file, line); 797 return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps", 798 timo)); 799 } 800 801 /* 802 * vm_map_wakeup: 803 * 804 * Awaken any threads that have slept on the map using 805 * vm_map_unlock_and_wait(). 806 */ 807 void 808 vm_map_wakeup(vm_map_t map) 809 { 810 811 /* 812 * Acquire and release map_sleep_mtx to prevent a wakeup() 813 * from being performed (and lost) between the map unlock 814 * and the msleep() in _vm_map_unlock_and_wait(). 815 */ 816 mtx_lock(&map_sleep_mtx); 817 mtx_unlock(&map_sleep_mtx); 818 wakeup(&map->root); 819 } 820 821 void 822 vm_map_busy(vm_map_t map) 823 { 824 825 VM_MAP_ASSERT_LOCKED(map); 826 map->busy++; 827 } 828 829 void 830 vm_map_unbusy(vm_map_t map) 831 { 832 833 VM_MAP_ASSERT_LOCKED(map); 834 KASSERT(map->busy, ("vm_map_unbusy: not busy")); 835 if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) { 836 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP); 837 wakeup(&map->busy); 838 } 839 } 840 841 void 842 vm_map_wait_busy(vm_map_t map) 843 { 844 845 VM_MAP_ASSERT_LOCKED(map); 846 while (map->busy) { 847 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0); 848 if (map->system_map) 849 msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0); 850 else 851 sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0); 852 } 853 map->timestamp++; 854 } 855 856 long 857 vmspace_resident_count(struct vmspace *vmspace) 858 { 859 return pmap_resident_count(vmspace_pmap(vmspace)); 860 } 861 862 /* 863 * vm_map_create: 864 * 865 * Creates and returns a new empty VM map with 866 * the given physical map structure, and having 867 * the given lower and upper address bounds. 868 */ 869 vm_map_t 870 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max) 871 { 872 vm_map_t result; 873 874 result = uma_zalloc(mapzone, M_WAITOK); 875 CTR1(KTR_VM, "vm_map_create: %p", result); 876 _vm_map_init(result, pmap, min, max); 877 return (result); 878 } 879 880 /* 881 * Initialize an existing vm_map structure 882 * such as that in the vmspace structure. 883 */ 884 static void 885 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 886 { 887 888 map->header.next = map->header.prev = &map->header; 889 map->header.eflags = MAP_ENTRY_HEADER; 890 map->needs_wakeup = FALSE; 891 map->system_map = 0; 892 map->pmap = pmap; 893 map->header.end = min; 894 map->header.start = max; 895 map->flags = 0; 896 map->root = NULL; 897 map->timestamp = 0; 898 map->busy = 0; 899 map->anon_loc = 0; 900 #ifdef DIAGNOSTIC 901 map->nupdates = 0; 902 #endif 903 } 904 905 void 906 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 907 { 908 909 _vm_map_init(map, pmap, min, max); 910 mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK); 911 sx_init(&map->lock, "user map"); 912 } 913 914 /* 915 * vm_map_entry_dispose: [ internal use only ] 916 * 917 * Inverse of vm_map_entry_create. 918 */ 919 static void 920 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry) 921 { 922 uma_zfree(map->system_map ? kmapentzone : mapentzone, entry); 923 } 924 925 /* 926 * vm_map_entry_create: [ internal use only ] 927 * 928 * Allocates a VM map entry for insertion. 929 * No entry fields are filled in. 930 */ 931 static vm_map_entry_t 932 vm_map_entry_create(vm_map_t map) 933 { 934 vm_map_entry_t new_entry; 935 936 if (map->system_map) 937 new_entry = uma_zalloc(kmapentzone, M_NOWAIT); 938 else 939 new_entry = uma_zalloc(mapentzone, M_WAITOK); 940 if (new_entry == NULL) 941 panic("vm_map_entry_create: kernel resources exhausted"); 942 return (new_entry); 943 } 944 945 /* 946 * vm_map_entry_set_behavior: 947 * 948 * Set the expected access behavior, either normal, random, or 949 * sequential. 950 */ 951 static inline void 952 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior) 953 { 954 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) | 955 (behavior & MAP_ENTRY_BEHAV_MASK); 956 } 957 958 /* 959 * vm_map_entry_max_free_{left,right}: 960 * 961 * Compute the size of the largest free gap between two entries, 962 * one the root of a tree and the other the ancestor of that root 963 * that is the least or greatest ancestor found on the search path. 964 */ 965 static inline vm_size_t 966 vm_map_entry_max_free_left(vm_map_entry_t root, vm_map_entry_t left_ancestor) 967 { 968 969 return (root->left != NULL ? 970 root->left->max_free : root->start - left_ancestor->end); 971 } 972 973 static inline vm_size_t 974 vm_map_entry_max_free_right(vm_map_entry_t root, vm_map_entry_t right_ancestor) 975 { 976 977 return (root->right != NULL ? 978 root->right->max_free : right_ancestor->start - root->end); 979 } 980 981 /* 982 * vm_map_entry_{pred,succ}: 983 * 984 * Find the {predecessor, successor} of the entry by taking one step 985 * in the appropriate direction and backtracking as much as necessary. 986 */ 987 static inline vm_map_entry_t 988 vm_map_entry_pred(vm_map_entry_t entry) 989 { 990 991 return (entry->prev); 992 } 993 994 /* vm_map_entry_succ is defined in vm_map.h. */ 995 996 #define SPLAY_LEFT_STEP(root, y, rlist, test) do { \ 997 vm_size_t max_free; \ 998 \ 999 /* \ 1000 * Infer root->right->max_free == root->max_free when \ 1001 * y->max_free < root->max_free || root->max_free == 0. \ 1002 * Otherwise, look right to find it. \ 1003 */ \ 1004 y = root->left; \ 1005 max_free = root->max_free; \ 1006 KASSERT(max_free >= vm_map_entry_max_free_right(root, rlist), \ 1007 ("%s: max_free invariant fails", __func__)); \ 1008 if (y == NULL ? max_free > 0 : max_free - 1 < y->max_free) \ 1009 max_free = vm_map_entry_max_free_right(root, rlist); \ 1010 if (y != NULL && (test)) { \ 1011 /* Rotate right and make y root. */ \ 1012 root->left = y->right; \ 1013 y->right = root; \ 1014 if (max_free < y->max_free) \ 1015 root->max_free = max_free = MAX(max_free, \ 1016 vm_map_entry_max_free_left(root, y)); \ 1017 root = y; \ 1018 y = root->left; \ 1019 } \ 1020 /* Copy right->max_free. Put root on rlist. */ \ 1021 root->max_free = max_free; \ 1022 KASSERT(max_free == vm_map_entry_max_free_right(root, rlist), \ 1023 ("%s: max_free not copied from right", __func__)); \ 1024 root->left = rlist; \ 1025 rlist = root; \ 1026 root = y; \ 1027 } while (0) 1028 1029 #define SPLAY_RIGHT_STEP(root, y, llist, test) do { \ 1030 vm_size_t max_free; \ 1031 \ 1032 /* \ 1033 * Infer root->left->max_free == root->max_free when \ 1034 * y->max_free < root->max_free || root->max_free == 0. \ 1035 * Otherwise, look left to find it. \ 1036 */ \ 1037 y = root->right; \ 1038 max_free = root->max_free; \ 1039 KASSERT(max_free >= vm_map_entry_max_free_left(root, llist), \ 1040 ("%s: max_free invariant fails", __func__)); \ 1041 if (y == NULL ? max_free > 0 : max_free - 1 < y->max_free) \ 1042 max_free = vm_map_entry_max_free_left(root, llist); \ 1043 if (y != NULL && (test)) { \ 1044 /* Rotate left and make y root. */ \ 1045 root->right = y->left; \ 1046 y->left = root; \ 1047 if (max_free < y->max_free) \ 1048 root->max_free = max_free = MAX(max_free, \ 1049 vm_map_entry_max_free_right(root, y)); \ 1050 root = y; \ 1051 y = root->right; \ 1052 } \ 1053 /* Copy left->max_free. Put root on llist. */ \ 1054 root->max_free = max_free; \ 1055 KASSERT(max_free == vm_map_entry_max_free_left(root, llist), \ 1056 ("%s: max_free not copied from left", __func__)); \ 1057 root->right = llist; \ 1058 llist = root; \ 1059 root = y; \ 1060 } while (0) 1061 1062 /* 1063 * Walk down the tree until we find addr or a NULL pointer where addr would go, 1064 * breaking off left and right subtrees of nodes less than, or greater than 1065 * addr. Treat pointers to nodes with max_free < length as NULL pointers. 1066 * llist and rlist are the two sides in reverse order (bottom-up), with llist 1067 * linked by the right pointer and rlist linked by the left pointer in the 1068 * vm_map_entry, and both lists terminated by &map->header. This function, and 1069 * the subsequent call to vm_map_splay_merge, rely on the start and end address 1070 * values in &map->header. 1071 */ 1072 static vm_map_entry_t 1073 vm_map_splay_split(vm_map_t map, vm_offset_t addr, vm_size_t length, 1074 vm_map_entry_t *out_llist, vm_map_entry_t *out_rlist) 1075 { 1076 vm_map_entry_t llist, rlist, root, y; 1077 1078 llist = rlist = &map->header; 1079 root = map->root; 1080 while (root != NULL && root->max_free >= length) { 1081 KASSERT(llist->end <= root->start && root->end <= rlist->start, 1082 ("%s: root not within tree bounds", __func__)); 1083 if (addr < root->start) { 1084 SPLAY_LEFT_STEP(root, y, rlist, 1085 y->max_free >= length && addr < y->start); 1086 } else if (addr >= root->end) { 1087 SPLAY_RIGHT_STEP(root, y, llist, 1088 y->max_free >= length && addr >= y->end); 1089 } else 1090 break; 1091 } 1092 *out_llist = llist; 1093 *out_rlist = rlist; 1094 return (root); 1095 } 1096 1097 static void 1098 vm_map_splay_findnext(vm_map_entry_t root, vm_map_entry_t *iolist) 1099 { 1100 vm_map_entry_t rlist, y; 1101 1102 root = root->right; 1103 rlist = *iolist; 1104 while (root != NULL) 1105 SPLAY_LEFT_STEP(root, y, rlist, true); 1106 *iolist = rlist; 1107 } 1108 1109 static void 1110 vm_map_splay_findprev(vm_map_entry_t root, vm_map_entry_t *iolist) 1111 { 1112 vm_map_entry_t llist, y; 1113 1114 root = root->left; 1115 llist = *iolist; 1116 while (root != NULL) 1117 SPLAY_RIGHT_STEP(root, y, llist, true); 1118 *iolist = llist; 1119 } 1120 1121 static inline void 1122 vm_map_entry_swap(vm_map_entry_t *a, vm_map_entry_t *b) 1123 { 1124 vm_map_entry_t tmp; 1125 1126 tmp = *b; 1127 *b = *a; 1128 *a = tmp; 1129 } 1130 1131 /* 1132 * Walk back up the two spines, flip the pointers and set max_free. The 1133 * subtrees of the root go at the bottom of llist and rlist. 1134 */ 1135 static void 1136 vm_map_splay_merge(vm_map_t map, vm_map_entry_t root, 1137 vm_map_entry_t llist, vm_map_entry_t rlist) 1138 { 1139 vm_map_entry_t prev; 1140 vm_size_t max_free_left, max_free_right; 1141 1142 max_free_left = vm_map_entry_max_free_left(root, llist); 1143 if (llist != &map->header) { 1144 prev = root->left; 1145 do { 1146 /* 1147 * The max_free values of the children of llist are in 1148 * llist->max_free and max_free_left. Update with the 1149 * max value. 1150 */ 1151 llist->max_free = max_free_left = 1152 MAX(llist->max_free, max_free_left); 1153 vm_map_entry_swap(&llist->right, &prev); 1154 vm_map_entry_swap(&prev, &llist); 1155 } while (llist != &map->header); 1156 root->left = prev; 1157 } 1158 max_free_right = vm_map_entry_max_free_right(root, rlist); 1159 if (rlist != &map->header) { 1160 prev = root->right; 1161 do { 1162 /* 1163 * The max_free values of the children of rlist are in 1164 * rlist->max_free and max_free_right. Update with the 1165 * max value. 1166 */ 1167 rlist->max_free = max_free_right = 1168 MAX(rlist->max_free, max_free_right); 1169 vm_map_entry_swap(&rlist->left, &prev); 1170 vm_map_entry_swap(&prev, &rlist); 1171 } while (rlist != &map->header); 1172 root->right = prev; 1173 } 1174 root->max_free = MAX(max_free_left, max_free_right); 1175 map->root = root; 1176 #ifdef DIAGNOSTIC 1177 ++map->nupdates; 1178 #endif 1179 } 1180 1181 /* 1182 * vm_map_splay: 1183 * 1184 * The Sleator and Tarjan top-down splay algorithm with the 1185 * following variation. Max_free must be computed bottom-up, so 1186 * on the downward pass, maintain the left and right spines in 1187 * reverse order. Then, make a second pass up each side to fix 1188 * the pointers and compute max_free. The time bound is O(log n) 1189 * amortized. 1190 * 1191 * The new root is the vm_map_entry containing "addr", or else an 1192 * adjacent entry (lower if possible) if addr is not in the tree. 1193 * 1194 * The map must be locked, and leaves it so. 1195 * 1196 * Returns: the new root. 1197 */ 1198 static vm_map_entry_t 1199 vm_map_splay(vm_map_t map, vm_offset_t addr) 1200 { 1201 vm_map_entry_t llist, rlist, root; 1202 1203 root = vm_map_splay_split(map, addr, 0, &llist, &rlist); 1204 if (root != NULL) { 1205 /* do nothing */ 1206 } else if (llist != &map->header) { 1207 /* 1208 * Recover the greatest node in the left 1209 * subtree and make it the root. 1210 */ 1211 root = llist; 1212 llist = root->right; 1213 root->right = NULL; 1214 } else if (rlist != &map->header) { 1215 /* 1216 * Recover the least node in the right 1217 * subtree and make it the root. 1218 */ 1219 root = rlist; 1220 rlist = root->left; 1221 root->left = NULL; 1222 } else { 1223 /* There is no root. */ 1224 return (NULL); 1225 } 1226 vm_map_splay_merge(map, root, llist, rlist); 1227 VM_MAP_ASSERT_CONSISTENT(map); 1228 return (root); 1229 } 1230 1231 /* 1232 * vm_map_entry_{un,}link: 1233 * 1234 * Insert/remove entries from maps. 1235 */ 1236 static void 1237 vm_map_entry_link(vm_map_t map, vm_map_entry_t entry) 1238 { 1239 vm_map_entry_t llist, rlist, root; 1240 1241 CTR3(KTR_VM, 1242 "vm_map_entry_link: map %p, nentries %d, entry %p", map, 1243 map->nentries, entry); 1244 VM_MAP_ASSERT_LOCKED(map); 1245 map->nentries++; 1246 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist); 1247 KASSERT(root == NULL, 1248 ("vm_map_entry_link: link object already mapped")); 1249 entry->prev = llist; 1250 entry->next = rlist; 1251 llist->next = rlist->prev = entry; 1252 entry->left = entry->right = NULL; 1253 vm_map_splay_merge(map, entry, llist, rlist); 1254 VM_MAP_ASSERT_CONSISTENT(map); 1255 } 1256 1257 enum unlink_merge_type { 1258 UNLINK_MERGE_NONE, 1259 UNLINK_MERGE_NEXT 1260 }; 1261 1262 static void 1263 vm_map_entry_unlink(vm_map_t map, vm_map_entry_t entry, 1264 enum unlink_merge_type op) 1265 { 1266 vm_map_entry_t llist, rlist, root, y; 1267 1268 VM_MAP_ASSERT_LOCKED(map); 1269 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist); 1270 KASSERT(root != NULL, 1271 ("vm_map_entry_unlink: unlink object not mapped")); 1272 1273 vm_map_splay_findnext(root, &rlist); 1274 switch (op) { 1275 case UNLINK_MERGE_NEXT: 1276 rlist->start = root->start; 1277 rlist->offset = root->offset; 1278 y = root->left; 1279 root = rlist; 1280 rlist = root->left; 1281 root->left = y; 1282 break; 1283 case UNLINK_MERGE_NONE: 1284 vm_map_splay_findprev(root, &llist); 1285 if (llist != &map->header) { 1286 root = llist; 1287 llist = root->right; 1288 root->right = NULL; 1289 } else if (rlist != &map->header) { 1290 root = rlist; 1291 rlist = root->left; 1292 root->left = NULL; 1293 } else 1294 root = NULL; 1295 break; 1296 } 1297 y = entry->next; 1298 y->prev = entry->prev; 1299 y->prev->next = y; 1300 if (root != NULL) 1301 vm_map_splay_merge(map, root, llist, rlist); 1302 else 1303 map->root = NULL; 1304 VM_MAP_ASSERT_CONSISTENT(map); 1305 map->nentries--; 1306 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map, 1307 map->nentries, entry); 1308 } 1309 1310 /* 1311 * vm_map_entry_resize: 1312 * 1313 * Resize a vm_map_entry, recompute the amount of free space that 1314 * follows it and propagate that value up the tree. 1315 * 1316 * The map must be locked, and leaves it so. 1317 */ 1318 static void 1319 vm_map_entry_resize(vm_map_t map, vm_map_entry_t entry, vm_size_t grow_amount) 1320 { 1321 vm_map_entry_t llist, rlist, root; 1322 1323 VM_MAP_ASSERT_LOCKED(map); 1324 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist); 1325 KASSERT(root != NULL, 1326 ("%s: resize object not mapped", __func__)); 1327 vm_map_splay_findnext(root, &rlist); 1328 root->right = NULL; 1329 entry->end += grow_amount; 1330 vm_map_splay_merge(map, root, llist, rlist); 1331 VM_MAP_ASSERT_CONSISTENT(map); 1332 CTR4(KTR_VM, "%s: map %p, nentries %d, entry %p", 1333 __func__, map, map->nentries, entry); 1334 } 1335 1336 /* 1337 * vm_map_lookup_entry: [ internal use only ] 1338 * 1339 * Finds the map entry containing (or 1340 * immediately preceding) the specified address 1341 * in the given map; the entry is returned 1342 * in the "entry" parameter. The boolean 1343 * result indicates whether the address is 1344 * actually contained in the map. 1345 */ 1346 boolean_t 1347 vm_map_lookup_entry( 1348 vm_map_t map, 1349 vm_offset_t address, 1350 vm_map_entry_t *entry) /* OUT */ 1351 { 1352 vm_map_entry_t cur, lbound; 1353 boolean_t locked; 1354 1355 /* 1356 * If the map is empty, then the map entry immediately preceding 1357 * "address" is the map's header. 1358 */ 1359 cur = map->root; 1360 if (cur == NULL) { 1361 *entry = &map->header; 1362 return (FALSE); 1363 } 1364 if (address >= cur->start && cur->end > address) { 1365 *entry = cur; 1366 return (TRUE); 1367 } 1368 if ((locked = vm_map_locked(map)) || 1369 sx_try_upgrade(&map->lock)) { 1370 /* 1371 * Splay requires a write lock on the map. However, it only 1372 * restructures the binary search tree; it does not otherwise 1373 * change the map. Thus, the map's timestamp need not change 1374 * on a temporary upgrade. 1375 */ 1376 cur = vm_map_splay(map, address); 1377 if (!locked) { 1378 VM_MAP_UNLOCK_CONSISTENT(map); 1379 sx_downgrade(&map->lock); 1380 } 1381 1382 /* 1383 * If "address" is contained within a map entry, the new root 1384 * is that map entry. Otherwise, the new root is a map entry 1385 * immediately before or after "address". 1386 */ 1387 if (address < cur->start) { 1388 *entry = &map->header; 1389 return (FALSE); 1390 } 1391 *entry = cur; 1392 return (address < cur->end); 1393 } 1394 /* 1395 * Since the map is only locked for read access, perform a 1396 * standard binary search tree lookup for "address". 1397 */ 1398 lbound = &map->header; 1399 do { 1400 if (address < cur->start) { 1401 cur = cur->left; 1402 } else if (cur->end <= address) { 1403 lbound = cur; 1404 cur = cur->right; 1405 } else { 1406 *entry = cur; 1407 return (TRUE); 1408 } 1409 } while (cur != NULL); 1410 *entry = lbound; 1411 return (FALSE); 1412 } 1413 1414 /* 1415 * vm_map_insert: 1416 * 1417 * Inserts the given whole VM object into the target 1418 * map at the specified address range. The object's 1419 * size should match that of the address range. 1420 * 1421 * Requires that the map be locked, and leaves it so. 1422 * 1423 * If object is non-NULL, ref count must be bumped by caller 1424 * prior to making call to account for the new entry. 1425 */ 1426 int 1427 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1428 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow) 1429 { 1430 vm_map_entry_t new_entry, next_entry, prev_entry; 1431 struct ucred *cred; 1432 vm_eflags_t protoeflags; 1433 vm_inherit_t inheritance; 1434 1435 VM_MAP_ASSERT_LOCKED(map); 1436 KASSERT(object != kernel_object || 1437 (cow & MAP_COPY_ON_WRITE) == 0, 1438 ("vm_map_insert: kernel object and COW")); 1439 KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0, 1440 ("vm_map_insert: paradoxical MAP_NOFAULT request")); 1441 KASSERT((prot & ~max) == 0, 1442 ("prot %#x is not subset of max_prot %#x", prot, max)); 1443 1444 /* 1445 * Check that the start and end points are not bogus. 1446 */ 1447 if (start < vm_map_min(map) || end > vm_map_max(map) || 1448 start >= end) 1449 return (KERN_INVALID_ADDRESS); 1450 1451 /* 1452 * Find the entry prior to the proposed starting address; if it's part 1453 * of an existing entry, this range is bogus. 1454 */ 1455 if (vm_map_lookup_entry(map, start, &prev_entry)) 1456 return (KERN_NO_SPACE); 1457 1458 /* 1459 * Assert that the next entry doesn't overlap the end point. 1460 */ 1461 next_entry = vm_map_entry_succ(prev_entry); 1462 if (next_entry->start < end) 1463 return (KERN_NO_SPACE); 1464 1465 if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL || 1466 max != VM_PROT_NONE)) 1467 return (KERN_INVALID_ARGUMENT); 1468 1469 protoeflags = 0; 1470 if (cow & MAP_COPY_ON_WRITE) 1471 protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY; 1472 if (cow & MAP_NOFAULT) 1473 protoeflags |= MAP_ENTRY_NOFAULT; 1474 if (cow & MAP_DISABLE_SYNCER) 1475 protoeflags |= MAP_ENTRY_NOSYNC; 1476 if (cow & MAP_DISABLE_COREDUMP) 1477 protoeflags |= MAP_ENTRY_NOCOREDUMP; 1478 if (cow & MAP_STACK_GROWS_DOWN) 1479 protoeflags |= MAP_ENTRY_GROWS_DOWN; 1480 if (cow & MAP_STACK_GROWS_UP) 1481 protoeflags |= MAP_ENTRY_GROWS_UP; 1482 if (cow & MAP_WRITECOUNT) 1483 protoeflags |= MAP_ENTRY_WRITECNT; 1484 if (cow & MAP_VN_EXEC) 1485 protoeflags |= MAP_ENTRY_VN_EXEC; 1486 if ((cow & MAP_CREATE_GUARD) != 0) 1487 protoeflags |= MAP_ENTRY_GUARD; 1488 if ((cow & MAP_CREATE_STACK_GAP_DN) != 0) 1489 protoeflags |= MAP_ENTRY_STACK_GAP_DN; 1490 if ((cow & MAP_CREATE_STACK_GAP_UP) != 0) 1491 protoeflags |= MAP_ENTRY_STACK_GAP_UP; 1492 if (cow & MAP_INHERIT_SHARE) 1493 inheritance = VM_INHERIT_SHARE; 1494 else 1495 inheritance = VM_INHERIT_DEFAULT; 1496 1497 cred = NULL; 1498 if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0) 1499 goto charged; 1500 if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) && 1501 ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) { 1502 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start)) 1503 return (KERN_RESOURCE_SHORTAGE); 1504 KASSERT(object == NULL || 1505 (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 || 1506 object->cred == NULL, 1507 ("overcommit: vm_map_insert o %p", object)); 1508 cred = curthread->td_ucred; 1509 } 1510 1511 charged: 1512 /* Expand the kernel pmap, if necessary. */ 1513 if (map == kernel_map && end > kernel_vm_end) 1514 pmap_growkernel(end); 1515 if (object != NULL) { 1516 /* 1517 * OBJ_ONEMAPPING must be cleared unless this mapping 1518 * is trivially proven to be the only mapping for any 1519 * of the object's pages. (Object granularity 1520 * reference counting is insufficient to recognize 1521 * aliases with precision.) 1522 */ 1523 if ((object->flags & OBJ_ANON) != 0) { 1524 VM_OBJECT_WLOCK(object); 1525 if (object->ref_count > 1 || object->shadow_count != 0) 1526 vm_object_clear_flag(object, OBJ_ONEMAPPING); 1527 VM_OBJECT_WUNLOCK(object); 1528 } 1529 } else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) == 1530 protoeflags && 1531 (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP | 1532 MAP_VN_EXEC)) == 0 && 1533 prev_entry->end == start && (prev_entry->cred == cred || 1534 (prev_entry->object.vm_object != NULL && 1535 prev_entry->object.vm_object->cred == cred)) && 1536 vm_object_coalesce(prev_entry->object.vm_object, 1537 prev_entry->offset, 1538 (vm_size_t)(prev_entry->end - prev_entry->start), 1539 (vm_size_t)(end - prev_entry->end), cred != NULL && 1540 (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) { 1541 /* 1542 * We were able to extend the object. Determine if we 1543 * can extend the previous map entry to include the 1544 * new range as well. 1545 */ 1546 if (prev_entry->inheritance == inheritance && 1547 prev_entry->protection == prot && 1548 prev_entry->max_protection == max && 1549 prev_entry->wired_count == 0) { 1550 KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) == 1551 0, ("prev_entry %p has incoherent wiring", 1552 prev_entry)); 1553 if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0) 1554 map->size += end - prev_entry->end; 1555 vm_map_entry_resize(map, prev_entry, 1556 end - prev_entry->end); 1557 vm_map_try_merge_entries(map, prev_entry, next_entry); 1558 return (KERN_SUCCESS); 1559 } 1560 1561 /* 1562 * If we can extend the object but cannot extend the 1563 * map entry, we have to create a new map entry. We 1564 * must bump the ref count on the extended object to 1565 * account for it. object may be NULL. 1566 */ 1567 object = prev_entry->object.vm_object; 1568 offset = prev_entry->offset + 1569 (prev_entry->end - prev_entry->start); 1570 vm_object_reference(object); 1571 if (cred != NULL && object != NULL && object->cred != NULL && 1572 !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 1573 /* Object already accounts for this uid. */ 1574 cred = NULL; 1575 } 1576 } 1577 if (cred != NULL) 1578 crhold(cred); 1579 1580 /* 1581 * Create a new entry 1582 */ 1583 new_entry = vm_map_entry_create(map); 1584 new_entry->start = start; 1585 new_entry->end = end; 1586 new_entry->cred = NULL; 1587 1588 new_entry->eflags = protoeflags; 1589 new_entry->object.vm_object = object; 1590 new_entry->offset = offset; 1591 1592 new_entry->inheritance = inheritance; 1593 new_entry->protection = prot; 1594 new_entry->max_protection = max; 1595 new_entry->wired_count = 0; 1596 new_entry->wiring_thread = NULL; 1597 new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT; 1598 new_entry->next_read = start; 1599 1600 KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry), 1601 ("overcommit: vm_map_insert leaks vm_map %p", new_entry)); 1602 new_entry->cred = cred; 1603 1604 /* 1605 * Insert the new entry into the list 1606 */ 1607 vm_map_entry_link(map, new_entry); 1608 if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0) 1609 map->size += new_entry->end - new_entry->start; 1610 1611 /* 1612 * Try to coalesce the new entry with both the previous and next 1613 * entries in the list. Previously, we only attempted to coalesce 1614 * with the previous entry when object is NULL. Here, we handle the 1615 * other cases, which are less common. 1616 */ 1617 vm_map_try_merge_entries(map, prev_entry, new_entry); 1618 vm_map_try_merge_entries(map, new_entry, next_entry); 1619 1620 if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) { 1621 vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset), 1622 end - start, cow & MAP_PREFAULT_PARTIAL); 1623 } 1624 1625 return (KERN_SUCCESS); 1626 } 1627 1628 /* 1629 * vm_map_findspace: 1630 * 1631 * Find the first fit (lowest VM address) for "length" free bytes 1632 * beginning at address >= start in the given map. 1633 * 1634 * In a vm_map_entry, "max_free" is the maximum amount of 1635 * contiguous free space between an entry in its subtree and a 1636 * neighbor of that entry. This allows finding a free region in 1637 * one path down the tree, so O(log n) amortized with splay 1638 * trees. 1639 * 1640 * The map must be locked, and leaves it so. 1641 * 1642 * Returns: starting address if sufficient space, 1643 * vm_map_max(map)-length+1 if insufficient space. 1644 */ 1645 vm_offset_t 1646 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length) 1647 { 1648 vm_map_entry_t llist, rlist, root, y; 1649 vm_size_t left_length; 1650 vm_offset_t gap_end; 1651 1652 /* 1653 * Request must fit within min/max VM address and must avoid 1654 * address wrap. 1655 */ 1656 start = MAX(start, vm_map_min(map)); 1657 if (start >= vm_map_max(map) || length > vm_map_max(map) - start) 1658 return (vm_map_max(map) - length + 1); 1659 1660 /* Empty tree means wide open address space. */ 1661 if (map->root == NULL) 1662 return (start); 1663 1664 /* 1665 * After splay_split, if start is within an entry, push it to the start 1666 * of the following gap. If rlist is at the end of the gap containing 1667 * start, save the end of that gap in gap_end to see if the gap is big 1668 * enough; otherwise set gap_end to start skip gap-checking and move 1669 * directly to a search of the right subtree. 1670 */ 1671 root = vm_map_splay_split(map, start, length, &llist, &rlist); 1672 gap_end = rlist->start; 1673 if (root != NULL) { 1674 start = root->end; 1675 if (root->right != NULL) 1676 gap_end = start; 1677 } else if (rlist != &map->header) { 1678 root = rlist; 1679 rlist = root->left; 1680 root->left = NULL; 1681 } else { 1682 root = llist; 1683 llist = root->right; 1684 root->right = NULL; 1685 } 1686 vm_map_splay_merge(map, root, llist, rlist); 1687 VM_MAP_ASSERT_CONSISTENT(map); 1688 if (length <= gap_end - start) 1689 return (start); 1690 1691 /* With max_free, can immediately tell if no solution. */ 1692 if (root->right == NULL || length > root->right->max_free) 1693 return (vm_map_max(map) - length + 1); 1694 1695 /* 1696 * Splay for the least large-enough gap in the right subtree. 1697 */ 1698 llist = rlist = &map->header; 1699 for (left_length = 0;; 1700 left_length = vm_map_entry_max_free_left(root, llist)) { 1701 if (length <= left_length) 1702 SPLAY_LEFT_STEP(root, y, rlist, 1703 length <= vm_map_entry_max_free_left(y, llist)); 1704 else 1705 SPLAY_RIGHT_STEP(root, y, llist, 1706 length > vm_map_entry_max_free_left(y, root)); 1707 if (root == NULL) 1708 break; 1709 } 1710 root = llist; 1711 llist = root->right; 1712 root->right = NULL; 1713 if (rlist != &map->header) { 1714 y = rlist; 1715 rlist = y->left; 1716 y->left = NULL; 1717 vm_map_splay_merge(map, y, &map->header, rlist); 1718 y->max_free = MAX( 1719 vm_map_entry_max_free_left(y, root), 1720 vm_map_entry_max_free_right(y, &map->header)); 1721 root->right = y; 1722 } 1723 vm_map_splay_merge(map, root, llist, &map->header); 1724 VM_MAP_ASSERT_CONSISTENT(map); 1725 return (root->end); 1726 } 1727 1728 int 1729 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1730 vm_offset_t start, vm_size_t length, vm_prot_t prot, 1731 vm_prot_t max, int cow) 1732 { 1733 vm_offset_t end; 1734 int result; 1735 1736 end = start + length; 1737 KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 || 1738 object == NULL, 1739 ("vm_map_fixed: non-NULL backing object for stack")); 1740 vm_map_lock(map); 1741 VM_MAP_RANGE_CHECK(map, start, end); 1742 if ((cow & MAP_CHECK_EXCL) == 0) 1743 vm_map_delete(map, start, end); 1744 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) { 1745 result = vm_map_stack_locked(map, start, length, sgrowsiz, 1746 prot, max, cow); 1747 } else { 1748 result = vm_map_insert(map, object, offset, start, end, 1749 prot, max, cow); 1750 } 1751 vm_map_unlock(map); 1752 return (result); 1753 } 1754 1755 static const int aslr_pages_rnd_64[2] = {0x1000, 0x10}; 1756 static const int aslr_pages_rnd_32[2] = {0x100, 0x4}; 1757 1758 static int cluster_anon = 1; 1759 SYSCTL_INT(_vm, OID_AUTO, cluster_anon, CTLFLAG_RW, 1760 &cluster_anon, 0, 1761 "Cluster anonymous mappings: 0 = no, 1 = yes if no hint, 2 = always"); 1762 1763 static bool 1764 clustering_anon_allowed(vm_offset_t addr) 1765 { 1766 1767 switch (cluster_anon) { 1768 case 0: 1769 return (false); 1770 case 1: 1771 return (addr == 0); 1772 case 2: 1773 default: 1774 return (true); 1775 } 1776 } 1777 1778 static long aslr_restarts; 1779 SYSCTL_LONG(_vm, OID_AUTO, aslr_restarts, CTLFLAG_RD, 1780 &aslr_restarts, 0, 1781 "Number of aslr failures"); 1782 1783 #define MAP_32BIT_MAX_ADDR ((vm_offset_t)1 << 31) 1784 1785 /* 1786 * Searches for the specified amount of free space in the given map with the 1787 * specified alignment. Performs an address-ordered, first-fit search from 1788 * the given address "*addr", with an optional upper bound "max_addr". If the 1789 * parameter "alignment" is zero, then the alignment is computed from the 1790 * given (object, offset) pair so as to enable the greatest possible use of 1791 * superpage mappings. Returns KERN_SUCCESS and the address of the free space 1792 * in "*addr" if successful. Otherwise, returns KERN_NO_SPACE. 1793 * 1794 * The map must be locked. Initially, there must be at least "length" bytes 1795 * of free space at the given address. 1796 */ 1797 static int 1798 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1799 vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr, 1800 vm_offset_t alignment) 1801 { 1802 vm_offset_t aligned_addr, free_addr; 1803 1804 VM_MAP_ASSERT_LOCKED(map); 1805 free_addr = *addr; 1806 KASSERT(free_addr == vm_map_findspace(map, free_addr, length), 1807 ("caller failed to provide space %#jx at address %p", 1808 (uintmax_t)length, (void *)free_addr)); 1809 for (;;) { 1810 /* 1811 * At the start of every iteration, the free space at address 1812 * "*addr" is at least "length" bytes. 1813 */ 1814 if (alignment == 0) 1815 pmap_align_superpage(object, offset, addr, length); 1816 else if ((*addr & (alignment - 1)) != 0) { 1817 *addr &= ~(alignment - 1); 1818 *addr += alignment; 1819 } 1820 aligned_addr = *addr; 1821 if (aligned_addr == free_addr) { 1822 /* 1823 * Alignment did not change "*addr", so "*addr" must 1824 * still provide sufficient free space. 1825 */ 1826 return (KERN_SUCCESS); 1827 } 1828 1829 /* 1830 * Test for address wrap on "*addr". A wrapped "*addr" could 1831 * be a valid address, in which case vm_map_findspace() cannot 1832 * be relied upon to fail. 1833 */ 1834 if (aligned_addr < free_addr) 1835 return (KERN_NO_SPACE); 1836 *addr = vm_map_findspace(map, aligned_addr, length); 1837 if (*addr + length > vm_map_max(map) || 1838 (max_addr != 0 && *addr + length > max_addr)) 1839 return (KERN_NO_SPACE); 1840 free_addr = *addr; 1841 if (free_addr == aligned_addr) { 1842 /* 1843 * If a successful call to vm_map_findspace() did not 1844 * change "*addr", then "*addr" must still be aligned 1845 * and provide sufficient free space. 1846 */ 1847 return (KERN_SUCCESS); 1848 } 1849 } 1850 } 1851 1852 /* 1853 * vm_map_find finds an unallocated region in the target address 1854 * map with the given length. The search is defined to be 1855 * first-fit from the specified address; the region found is 1856 * returned in the same parameter. 1857 * 1858 * If object is non-NULL, ref count must be bumped by caller 1859 * prior to making call to account for the new entry. 1860 */ 1861 int 1862 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1863 vm_offset_t *addr, /* IN/OUT */ 1864 vm_size_t length, vm_offset_t max_addr, int find_space, 1865 vm_prot_t prot, vm_prot_t max, int cow) 1866 { 1867 vm_offset_t alignment, curr_min_addr, min_addr; 1868 int gap, pidx, rv, try; 1869 bool cluster, en_aslr, update_anon; 1870 1871 KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 || 1872 object == NULL, 1873 ("vm_map_find: non-NULL backing object for stack")); 1874 MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE && 1875 (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0)); 1876 if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL || 1877 (object->flags & OBJ_COLORED) == 0)) 1878 find_space = VMFS_ANY_SPACE; 1879 if (find_space >> 8 != 0) { 1880 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags")); 1881 alignment = (vm_offset_t)1 << (find_space >> 8); 1882 } else 1883 alignment = 0; 1884 en_aslr = (map->flags & MAP_ASLR) != 0; 1885 update_anon = cluster = clustering_anon_allowed(*addr) && 1886 (map->flags & MAP_IS_SUB_MAP) == 0 && max_addr == 0 && 1887 find_space != VMFS_NO_SPACE && object == NULL && 1888 (cow & (MAP_INHERIT_SHARE | MAP_STACK_GROWS_UP | 1889 MAP_STACK_GROWS_DOWN)) == 0 && prot != PROT_NONE; 1890 curr_min_addr = min_addr = *addr; 1891 if (en_aslr && min_addr == 0 && !cluster && 1892 find_space != VMFS_NO_SPACE && 1893 (map->flags & MAP_ASLR_IGNSTART) != 0) 1894 curr_min_addr = min_addr = vm_map_min(map); 1895 try = 0; 1896 vm_map_lock(map); 1897 if (cluster) { 1898 curr_min_addr = map->anon_loc; 1899 if (curr_min_addr == 0) 1900 cluster = false; 1901 } 1902 if (find_space != VMFS_NO_SPACE) { 1903 KASSERT(find_space == VMFS_ANY_SPACE || 1904 find_space == VMFS_OPTIMAL_SPACE || 1905 find_space == VMFS_SUPER_SPACE || 1906 alignment != 0, ("unexpected VMFS flag")); 1907 again: 1908 /* 1909 * When creating an anonymous mapping, try clustering 1910 * with an existing anonymous mapping first. 1911 * 1912 * We make up to two attempts to find address space 1913 * for a given find_space value. The first attempt may 1914 * apply randomization or may cluster with an existing 1915 * anonymous mapping. If this first attempt fails, 1916 * perform a first-fit search of the available address 1917 * space. 1918 * 1919 * If all tries failed, and find_space is 1920 * VMFS_OPTIMAL_SPACE, fallback to VMFS_ANY_SPACE. 1921 * Again enable clustering and randomization. 1922 */ 1923 try++; 1924 MPASS(try <= 2); 1925 1926 if (try == 2) { 1927 /* 1928 * Second try: we failed either to find a 1929 * suitable region for randomizing the 1930 * allocation, or to cluster with an existing 1931 * mapping. Retry with free run. 1932 */ 1933 curr_min_addr = (map->flags & MAP_ASLR_IGNSTART) != 0 ? 1934 vm_map_min(map) : min_addr; 1935 atomic_add_long(&aslr_restarts, 1); 1936 } 1937 1938 if (try == 1 && en_aslr && !cluster) { 1939 /* 1940 * Find space for allocation, including 1941 * gap needed for later randomization. 1942 */ 1943 pidx = MAXPAGESIZES > 1 && pagesizes[1] != 0 && 1944 (find_space == VMFS_SUPER_SPACE || find_space == 1945 VMFS_OPTIMAL_SPACE) ? 1 : 0; 1946 gap = vm_map_max(map) > MAP_32BIT_MAX_ADDR && 1947 (max_addr == 0 || max_addr > MAP_32BIT_MAX_ADDR) ? 1948 aslr_pages_rnd_64[pidx] : aslr_pages_rnd_32[pidx]; 1949 *addr = vm_map_findspace(map, curr_min_addr, 1950 length + gap * pagesizes[pidx]); 1951 if (*addr + length + gap * pagesizes[pidx] > 1952 vm_map_max(map)) 1953 goto again; 1954 /* And randomize the start address. */ 1955 *addr += (arc4random() % gap) * pagesizes[pidx]; 1956 if (max_addr != 0 && *addr + length > max_addr) 1957 goto again; 1958 } else { 1959 *addr = vm_map_findspace(map, curr_min_addr, length); 1960 if (*addr + length > vm_map_max(map) || 1961 (max_addr != 0 && *addr + length > max_addr)) { 1962 if (cluster) { 1963 cluster = false; 1964 MPASS(try == 1); 1965 goto again; 1966 } 1967 rv = KERN_NO_SPACE; 1968 goto done; 1969 } 1970 } 1971 1972 if (find_space != VMFS_ANY_SPACE && 1973 (rv = vm_map_alignspace(map, object, offset, addr, length, 1974 max_addr, alignment)) != KERN_SUCCESS) { 1975 if (find_space == VMFS_OPTIMAL_SPACE) { 1976 find_space = VMFS_ANY_SPACE; 1977 curr_min_addr = min_addr; 1978 cluster = update_anon; 1979 try = 0; 1980 goto again; 1981 } 1982 goto done; 1983 } 1984 } else if ((cow & MAP_REMAP) != 0) { 1985 if (*addr < vm_map_min(map) || 1986 *addr + length > vm_map_max(map) || 1987 *addr + length <= length) { 1988 rv = KERN_INVALID_ADDRESS; 1989 goto done; 1990 } 1991 vm_map_delete(map, *addr, *addr + length); 1992 } 1993 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) { 1994 rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot, 1995 max, cow); 1996 } else { 1997 rv = vm_map_insert(map, object, offset, *addr, *addr + length, 1998 prot, max, cow); 1999 } 2000 if (rv == KERN_SUCCESS && update_anon) 2001 map->anon_loc = *addr + length; 2002 done: 2003 vm_map_unlock(map); 2004 return (rv); 2005 } 2006 2007 /* 2008 * vm_map_find_min() is a variant of vm_map_find() that takes an 2009 * additional parameter (min_addr) and treats the given address 2010 * (*addr) differently. Specifically, it treats *addr as a hint 2011 * and not as the minimum address where the mapping is created. 2012 * 2013 * This function works in two phases. First, it tries to 2014 * allocate above the hint. If that fails and the hint is 2015 * greater than min_addr, it performs a second pass, replacing 2016 * the hint with min_addr as the minimum address for the 2017 * allocation. 2018 */ 2019 int 2020 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 2021 vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr, 2022 vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max, 2023 int cow) 2024 { 2025 vm_offset_t hint; 2026 int rv; 2027 2028 hint = *addr; 2029 for (;;) { 2030 rv = vm_map_find(map, object, offset, addr, length, max_addr, 2031 find_space, prot, max, cow); 2032 if (rv == KERN_SUCCESS || min_addr >= hint) 2033 return (rv); 2034 *addr = hint = min_addr; 2035 } 2036 } 2037 2038 /* 2039 * A map entry with any of the following flags set must not be merged with 2040 * another entry. 2041 */ 2042 #define MAP_ENTRY_NOMERGE_MASK (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | \ 2043 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP | MAP_ENTRY_VN_EXEC) 2044 2045 static bool 2046 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry) 2047 { 2048 2049 KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 || 2050 (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0, 2051 ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable", 2052 prev, entry)); 2053 return (prev->end == entry->start && 2054 prev->object.vm_object == entry->object.vm_object && 2055 (prev->object.vm_object == NULL || 2056 prev->offset + (prev->end - prev->start) == entry->offset) && 2057 prev->eflags == entry->eflags && 2058 prev->protection == entry->protection && 2059 prev->max_protection == entry->max_protection && 2060 prev->inheritance == entry->inheritance && 2061 prev->wired_count == entry->wired_count && 2062 prev->cred == entry->cred); 2063 } 2064 2065 static void 2066 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry) 2067 { 2068 2069 /* 2070 * If the backing object is a vnode object, vm_object_deallocate() 2071 * calls vrele(). However, vrele() does not lock the vnode because 2072 * the vnode has additional references. Thus, the map lock can be 2073 * kept without causing a lock-order reversal with the vnode lock. 2074 * 2075 * Since we count the number of virtual page mappings in 2076 * object->un_pager.vnp.writemappings, the writemappings value 2077 * should not be adjusted when the entry is disposed of. 2078 */ 2079 if (entry->object.vm_object != NULL) 2080 vm_object_deallocate(entry->object.vm_object); 2081 if (entry->cred != NULL) 2082 crfree(entry->cred); 2083 vm_map_entry_dispose(map, entry); 2084 } 2085 2086 /* 2087 * vm_map_try_merge_entries: 2088 * 2089 * Compare the given map entry to its predecessor, and merge its precessor 2090 * into it if possible. The entry remains valid, and may be extended. 2091 * The predecessor may be deleted. 2092 * 2093 * The map must be locked. 2094 */ 2095 void 2096 vm_map_try_merge_entries(vm_map_t map, vm_map_entry_t prev, vm_map_entry_t entry) 2097 { 2098 2099 VM_MAP_ASSERT_LOCKED(map); 2100 if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 && 2101 vm_map_mergeable_neighbors(prev, entry)) { 2102 vm_map_entry_unlink(map, prev, UNLINK_MERGE_NEXT); 2103 vm_map_merged_neighbor_dispose(map, prev); 2104 } 2105 } 2106 2107 /* 2108 * vm_map_entry_back: 2109 * 2110 * Allocate an object to back a map entry. 2111 */ 2112 static inline void 2113 vm_map_entry_back(vm_map_entry_t entry) 2114 { 2115 vm_object_t object; 2116 2117 KASSERT(entry->object.vm_object == NULL, 2118 ("map entry %p has backing object", entry)); 2119 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 2120 ("map entry %p is a submap", entry)); 2121 object = vm_object_allocate_anon(atop(entry->end - entry->start)); 2122 entry->object.vm_object = object; 2123 entry->offset = 0; 2124 if (entry->cred != NULL) { 2125 object->cred = entry->cred; 2126 object->charge = entry->end - entry->start; 2127 entry->cred = NULL; 2128 } 2129 } 2130 2131 /* 2132 * vm_map_entry_charge_object 2133 * 2134 * If there is no object backing this entry, create one. Otherwise, if 2135 * the entry has cred, give it to the backing object. 2136 */ 2137 static inline void 2138 vm_map_entry_charge_object(vm_map_t map, vm_map_entry_t entry) 2139 { 2140 2141 VM_MAP_ASSERT_LOCKED(map); 2142 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 2143 ("map entry %p is a submap", entry)); 2144 if (entry->object.vm_object == NULL && !map->system_map && 2145 (entry->eflags & MAP_ENTRY_GUARD) == 0) 2146 vm_map_entry_back(entry); 2147 else if (entry->object.vm_object != NULL && 2148 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 2149 entry->cred != NULL) { 2150 VM_OBJECT_WLOCK(entry->object.vm_object); 2151 KASSERT(entry->object.vm_object->cred == NULL, 2152 ("OVERCOMMIT: %s: both cred e %p", __func__, entry)); 2153 entry->object.vm_object->cred = entry->cred; 2154 entry->object.vm_object->charge = entry->end - entry->start; 2155 VM_OBJECT_WUNLOCK(entry->object.vm_object); 2156 entry->cred = NULL; 2157 } 2158 } 2159 2160 /* 2161 * vm_map_clip_start: [ internal use only ] 2162 * 2163 * Asserts that the given entry begins at or after 2164 * the specified address; if necessary, 2165 * it splits the entry into two. 2166 */ 2167 #define vm_map_clip_start(map, entry, startaddr) \ 2168 { \ 2169 if (startaddr > entry->start) \ 2170 _vm_map_clip_start(map, entry, startaddr); \ 2171 } 2172 2173 /* 2174 * This routine is called only when it is known that 2175 * the entry must be split. 2176 */ 2177 static void 2178 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start) 2179 { 2180 vm_map_entry_t new_entry; 2181 2182 VM_MAP_ASSERT_LOCKED(map); 2183 KASSERT(entry->end > start && entry->start < start, 2184 ("_vm_map_clip_start: invalid clip of entry %p", entry)); 2185 2186 /* 2187 * Create a backing object now, if none exists, so that more individual 2188 * objects won't be created after the map entry is split. 2189 */ 2190 vm_map_entry_charge_object(map, entry); 2191 2192 /* Clone the entry. */ 2193 new_entry = vm_map_entry_create(map); 2194 *new_entry = *entry; 2195 2196 /* 2197 * Split off the front portion. Insert the new entry BEFORE this one, 2198 * so that this entry has the specified starting address. 2199 */ 2200 new_entry->end = start; 2201 entry->offset += (start - entry->start); 2202 entry->start = start; 2203 if (new_entry->cred != NULL) 2204 crhold(entry->cred); 2205 2206 vm_map_entry_link(map, new_entry); 2207 2208 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 2209 vm_object_reference(new_entry->object.vm_object); 2210 vm_map_entry_set_vnode_text(new_entry, true); 2211 /* 2212 * The object->un_pager.vnp.writemappings for the 2213 * object of MAP_ENTRY_WRITECNT type entry shall be 2214 * kept as is here. The virtual pages are 2215 * re-distributed among the clipped entries, so the sum is 2216 * left the same. 2217 */ 2218 } 2219 } 2220 2221 /* 2222 * vm_map_clip_end: [ internal use only ] 2223 * 2224 * Asserts that the given entry ends at or before 2225 * the specified address; if necessary, 2226 * it splits the entry into two. 2227 */ 2228 #define vm_map_clip_end(map, entry, endaddr) \ 2229 { \ 2230 if ((endaddr) < (entry->end)) \ 2231 _vm_map_clip_end((map), (entry), (endaddr)); \ 2232 } 2233 2234 /* 2235 * This routine is called only when it is known that 2236 * the entry must be split. 2237 */ 2238 static void 2239 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end) 2240 { 2241 vm_map_entry_t new_entry; 2242 2243 VM_MAP_ASSERT_LOCKED(map); 2244 KASSERT(entry->start < end && entry->end > end, 2245 ("_vm_map_clip_end: invalid clip of entry %p", entry)); 2246 2247 /* 2248 * Create a backing object now, if none exists, so that more individual 2249 * objects won't be created after the map entry is split. 2250 */ 2251 vm_map_entry_charge_object(map, entry); 2252 2253 /* Clone the entry. */ 2254 new_entry = vm_map_entry_create(map); 2255 *new_entry = *entry; 2256 2257 /* 2258 * Split off the back portion. Insert the new entry AFTER this one, 2259 * so that this entry has the specified ending address. 2260 */ 2261 new_entry->start = entry->end = end; 2262 new_entry->offset += (end - entry->start); 2263 if (new_entry->cred != NULL) 2264 crhold(entry->cred); 2265 2266 vm_map_entry_link(map, new_entry); 2267 2268 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 2269 vm_object_reference(new_entry->object.vm_object); 2270 vm_map_entry_set_vnode_text(new_entry, true); 2271 } 2272 } 2273 2274 /* 2275 * vm_map_submap: [ kernel use only ] 2276 * 2277 * Mark the given range as handled by a subordinate map. 2278 * 2279 * This range must have been created with vm_map_find, 2280 * and no other operations may have been performed on this 2281 * range prior to calling vm_map_submap. 2282 * 2283 * Only a limited number of operations can be performed 2284 * within this rage after calling vm_map_submap: 2285 * vm_fault 2286 * [Don't try vm_map_copy!] 2287 * 2288 * To remove a submapping, one must first remove the 2289 * range from the superior map, and then destroy the 2290 * submap (if desired). [Better yet, don't try it.] 2291 */ 2292 int 2293 vm_map_submap( 2294 vm_map_t map, 2295 vm_offset_t start, 2296 vm_offset_t end, 2297 vm_map_t submap) 2298 { 2299 vm_map_entry_t entry; 2300 int result; 2301 2302 result = KERN_INVALID_ARGUMENT; 2303 2304 vm_map_lock(submap); 2305 submap->flags |= MAP_IS_SUB_MAP; 2306 vm_map_unlock(submap); 2307 2308 vm_map_lock(map); 2309 2310 VM_MAP_RANGE_CHECK(map, start, end); 2311 2312 if (vm_map_lookup_entry(map, start, &entry)) { 2313 vm_map_clip_start(map, entry, start); 2314 } else 2315 entry = vm_map_entry_succ(entry); 2316 2317 vm_map_clip_end(map, entry, end); 2318 2319 if ((entry->start == start) && (entry->end == end) && 2320 ((entry->eflags & MAP_ENTRY_COW) == 0) && 2321 (entry->object.vm_object == NULL)) { 2322 entry->object.sub_map = submap; 2323 entry->eflags |= MAP_ENTRY_IS_SUB_MAP; 2324 result = KERN_SUCCESS; 2325 } 2326 vm_map_unlock(map); 2327 2328 if (result != KERN_SUCCESS) { 2329 vm_map_lock(submap); 2330 submap->flags &= ~MAP_IS_SUB_MAP; 2331 vm_map_unlock(submap); 2332 } 2333 return (result); 2334 } 2335 2336 /* 2337 * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified 2338 */ 2339 #define MAX_INIT_PT 96 2340 2341 /* 2342 * vm_map_pmap_enter: 2343 * 2344 * Preload the specified map's pmap with mappings to the specified 2345 * object's memory-resident pages. No further physical pages are 2346 * allocated, and no further virtual pages are retrieved from secondary 2347 * storage. If the specified flags include MAP_PREFAULT_PARTIAL, then a 2348 * limited number of page mappings are created at the low-end of the 2349 * specified address range. (For this purpose, a superpage mapping 2350 * counts as one page mapping.) Otherwise, all resident pages within 2351 * the specified address range are mapped. 2352 */ 2353 static void 2354 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 2355 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags) 2356 { 2357 vm_offset_t start; 2358 vm_page_t p, p_start; 2359 vm_pindex_t mask, psize, threshold, tmpidx; 2360 2361 if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL) 2362 return; 2363 VM_OBJECT_RLOCK(object); 2364 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 2365 VM_OBJECT_RUNLOCK(object); 2366 VM_OBJECT_WLOCK(object); 2367 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 2368 pmap_object_init_pt(map->pmap, addr, object, pindex, 2369 size); 2370 VM_OBJECT_WUNLOCK(object); 2371 return; 2372 } 2373 VM_OBJECT_LOCK_DOWNGRADE(object); 2374 } 2375 2376 psize = atop(size); 2377 if (psize + pindex > object->size) { 2378 if (object->size < pindex) { 2379 VM_OBJECT_RUNLOCK(object); 2380 return; 2381 } 2382 psize = object->size - pindex; 2383 } 2384 2385 start = 0; 2386 p_start = NULL; 2387 threshold = MAX_INIT_PT; 2388 2389 p = vm_page_find_least(object, pindex); 2390 /* 2391 * Assert: the variable p is either (1) the page with the 2392 * least pindex greater than or equal to the parameter pindex 2393 * or (2) NULL. 2394 */ 2395 for (; 2396 p != NULL && (tmpidx = p->pindex - pindex) < psize; 2397 p = TAILQ_NEXT(p, listq)) { 2398 /* 2399 * don't allow an madvise to blow away our really 2400 * free pages allocating pv entries. 2401 */ 2402 if (((flags & MAP_PREFAULT_MADVISE) != 0 && 2403 vm_page_count_severe()) || 2404 ((flags & MAP_PREFAULT_PARTIAL) != 0 && 2405 tmpidx >= threshold)) { 2406 psize = tmpidx; 2407 break; 2408 } 2409 if (vm_page_all_valid(p)) { 2410 if (p_start == NULL) { 2411 start = addr + ptoa(tmpidx); 2412 p_start = p; 2413 } 2414 /* Jump ahead if a superpage mapping is possible. */ 2415 if (p->psind > 0 && ((addr + ptoa(tmpidx)) & 2416 (pagesizes[p->psind] - 1)) == 0) { 2417 mask = atop(pagesizes[p->psind]) - 1; 2418 if (tmpidx + mask < psize && 2419 vm_page_ps_test(p, PS_ALL_VALID, NULL)) { 2420 p += mask; 2421 threshold += mask; 2422 } 2423 } 2424 } else if (p_start != NULL) { 2425 pmap_enter_object(map->pmap, start, addr + 2426 ptoa(tmpidx), p_start, prot); 2427 p_start = NULL; 2428 } 2429 } 2430 if (p_start != NULL) 2431 pmap_enter_object(map->pmap, start, addr + ptoa(psize), 2432 p_start, prot); 2433 VM_OBJECT_RUNLOCK(object); 2434 } 2435 2436 /* 2437 * vm_map_protect: 2438 * 2439 * Sets the protection of the specified address 2440 * region in the target map. If "set_max" is 2441 * specified, the maximum protection is to be set; 2442 * otherwise, only the current protection is affected. 2443 */ 2444 int 2445 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 2446 vm_prot_t new_prot, boolean_t set_max) 2447 { 2448 vm_map_entry_t current, entry, in_tran, prev_entry; 2449 vm_object_t obj; 2450 struct ucred *cred; 2451 vm_prot_t old_prot; 2452 int rv; 2453 2454 if (start == end) 2455 return (KERN_SUCCESS); 2456 2457 again: 2458 in_tran = NULL; 2459 vm_map_lock(map); 2460 2461 /* 2462 * Ensure that we are not concurrently wiring pages. vm_map_wire() may 2463 * need to fault pages into the map and will drop the map lock while 2464 * doing so, and the VM object may end up in an inconsistent state if we 2465 * update the protection on the map entry in between faults. 2466 */ 2467 vm_map_wait_busy(map); 2468 2469 VM_MAP_RANGE_CHECK(map, start, end); 2470 2471 if (!vm_map_lookup_entry(map, start, &entry)) 2472 entry = vm_map_entry_succ(entry); 2473 2474 /* 2475 * Make a first pass to check for protection violations. 2476 */ 2477 for (current = entry; current->start < end; 2478 current = vm_map_entry_succ(current)) { 2479 if ((current->eflags & MAP_ENTRY_GUARD) != 0) 2480 continue; 2481 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 2482 vm_map_unlock(map); 2483 return (KERN_INVALID_ARGUMENT); 2484 } 2485 if ((new_prot & current->max_protection) != new_prot) { 2486 vm_map_unlock(map); 2487 return (KERN_PROTECTION_FAILURE); 2488 } 2489 if ((current->eflags & MAP_ENTRY_IN_TRANSITION) != 0) 2490 in_tran = current; 2491 } 2492 2493 /* 2494 * Postpone the operation until all in-transition map entries have 2495 * stabilized. An in-transition entry might already have its pages 2496 * wired and wired_count incremented, but not yet have its 2497 * MAP_ENTRY_USER_WIRED flag set. In which case, we would fail to call 2498 * vm_fault_copy_entry() in the final loop below. 2499 */ 2500 if (in_tran != NULL) { 2501 in_tran->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2502 vm_map_unlock_and_wait(map, 0); 2503 goto again; 2504 } 2505 2506 /* 2507 * Before changing the protections, try to reserve swap space for any 2508 * private (i.e., copy-on-write) mappings that are transitioning from 2509 * read-only to read/write access. If a reservation fails, break out 2510 * of this loop early and let the next loop simplify the entries, since 2511 * some may now be mergeable. 2512 */ 2513 rv = KERN_SUCCESS; 2514 vm_map_clip_start(map, entry, start); 2515 for (current = entry; current->start < end; 2516 current = vm_map_entry_succ(current)) { 2517 2518 vm_map_clip_end(map, current, end); 2519 2520 if (set_max || 2521 ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 || 2522 ENTRY_CHARGED(current) || 2523 (current->eflags & MAP_ENTRY_GUARD) != 0) { 2524 continue; 2525 } 2526 2527 cred = curthread->td_ucred; 2528 obj = current->object.vm_object; 2529 2530 if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) { 2531 if (!swap_reserve(current->end - current->start)) { 2532 rv = KERN_RESOURCE_SHORTAGE; 2533 end = current->end; 2534 break; 2535 } 2536 crhold(cred); 2537 current->cred = cred; 2538 continue; 2539 } 2540 2541 VM_OBJECT_WLOCK(obj); 2542 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) { 2543 VM_OBJECT_WUNLOCK(obj); 2544 continue; 2545 } 2546 2547 /* 2548 * Charge for the whole object allocation now, since 2549 * we cannot distinguish between non-charged and 2550 * charged clipped mapping of the same object later. 2551 */ 2552 KASSERT(obj->charge == 0, 2553 ("vm_map_protect: object %p overcharged (entry %p)", 2554 obj, current)); 2555 if (!swap_reserve(ptoa(obj->size))) { 2556 VM_OBJECT_WUNLOCK(obj); 2557 rv = KERN_RESOURCE_SHORTAGE; 2558 end = current->end; 2559 break; 2560 } 2561 2562 crhold(cred); 2563 obj->cred = cred; 2564 obj->charge = ptoa(obj->size); 2565 VM_OBJECT_WUNLOCK(obj); 2566 } 2567 2568 /* 2569 * If enough swap space was available, go back and fix up protections. 2570 * Otherwise, just simplify entries, since some may have been modified. 2571 * [Note that clipping is not necessary the second time.] 2572 */ 2573 for (prev_entry = vm_map_entry_pred(entry), current = entry; 2574 current->start < end; 2575 vm_map_try_merge_entries(map, prev_entry, current), 2576 prev_entry = current, current = vm_map_entry_succ(current)) { 2577 if (rv != KERN_SUCCESS || 2578 (current->eflags & MAP_ENTRY_GUARD) != 0) 2579 continue; 2580 2581 old_prot = current->protection; 2582 2583 if (set_max) 2584 current->protection = 2585 (current->max_protection = new_prot) & 2586 old_prot; 2587 else 2588 current->protection = new_prot; 2589 2590 /* 2591 * For user wired map entries, the normal lazy evaluation of 2592 * write access upgrades through soft page faults is 2593 * undesirable. Instead, immediately copy any pages that are 2594 * copy-on-write and enable write access in the physical map. 2595 */ 2596 if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 && 2597 (current->protection & VM_PROT_WRITE) != 0 && 2598 (old_prot & VM_PROT_WRITE) == 0) 2599 vm_fault_copy_entry(map, map, current, current, NULL); 2600 2601 /* 2602 * When restricting access, update the physical map. Worry 2603 * about copy-on-write here. 2604 */ 2605 if ((old_prot & ~current->protection) != 0) { 2606 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 2607 VM_PROT_ALL) 2608 pmap_protect(map->pmap, current->start, 2609 current->end, 2610 current->protection & MASK(current)); 2611 #undef MASK 2612 } 2613 } 2614 vm_map_try_merge_entries(map, prev_entry, current); 2615 vm_map_unlock(map); 2616 return (rv); 2617 } 2618 2619 /* 2620 * vm_map_madvise: 2621 * 2622 * This routine traverses a processes map handling the madvise 2623 * system call. Advisories are classified as either those effecting 2624 * the vm_map_entry structure, or those effecting the underlying 2625 * objects. 2626 */ 2627 int 2628 vm_map_madvise( 2629 vm_map_t map, 2630 vm_offset_t start, 2631 vm_offset_t end, 2632 int behav) 2633 { 2634 vm_map_entry_t current, prev_entry; 2635 bool modify_map; 2636 2637 /* 2638 * Some madvise calls directly modify the vm_map_entry, in which case 2639 * we need to use an exclusive lock on the map and we need to perform 2640 * various clipping operations. Otherwise we only need a read-lock 2641 * on the map. 2642 */ 2643 switch(behav) { 2644 case MADV_NORMAL: 2645 case MADV_SEQUENTIAL: 2646 case MADV_RANDOM: 2647 case MADV_NOSYNC: 2648 case MADV_AUTOSYNC: 2649 case MADV_NOCORE: 2650 case MADV_CORE: 2651 if (start == end) 2652 return (0); 2653 modify_map = true; 2654 vm_map_lock(map); 2655 break; 2656 case MADV_WILLNEED: 2657 case MADV_DONTNEED: 2658 case MADV_FREE: 2659 if (start == end) 2660 return (0); 2661 modify_map = false; 2662 vm_map_lock_read(map); 2663 break; 2664 default: 2665 return (EINVAL); 2666 } 2667 2668 /* 2669 * Locate starting entry and clip if necessary. 2670 */ 2671 VM_MAP_RANGE_CHECK(map, start, end); 2672 2673 if (vm_map_lookup_entry(map, start, ¤t)) { 2674 if (modify_map) 2675 vm_map_clip_start(map, current, start); 2676 prev_entry = vm_map_entry_pred(current); 2677 } else { 2678 prev_entry = current; 2679 current = vm_map_entry_succ(current); 2680 } 2681 2682 if (modify_map) { 2683 /* 2684 * madvise behaviors that are implemented in the vm_map_entry. 2685 * 2686 * We clip the vm_map_entry so that behavioral changes are 2687 * limited to the specified address range. 2688 */ 2689 for (; current->start < end; prev_entry = current, 2690 current = vm_map_entry_succ(current)) { 2691 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2692 continue; 2693 2694 vm_map_clip_end(map, current, end); 2695 2696 switch (behav) { 2697 case MADV_NORMAL: 2698 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL); 2699 break; 2700 case MADV_SEQUENTIAL: 2701 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL); 2702 break; 2703 case MADV_RANDOM: 2704 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM); 2705 break; 2706 case MADV_NOSYNC: 2707 current->eflags |= MAP_ENTRY_NOSYNC; 2708 break; 2709 case MADV_AUTOSYNC: 2710 current->eflags &= ~MAP_ENTRY_NOSYNC; 2711 break; 2712 case MADV_NOCORE: 2713 current->eflags |= MAP_ENTRY_NOCOREDUMP; 2714 break; 2715 case MADV_CORE: 2716 current->eflags &= ~MAP_ENTRY_NOCOREDUMP; 2717 break; 2718 default: 2719 break; 2720 } 2721 vm_map_try_merge_entries(map, prev_entry, current); 2722 } 2723 vm_map_try_merge_entries(map, prev_entry, current); 2724 vm_map_unlock(map); 2725 } else { 2726 vm_pindex_t pstart, pend; 2727 2728 /* 2729 * madvise behaviors that are implemented in the underlying 2730 * vm_object. 2731 * 2732 * Since we don't clip the vm_map_entry, we have to clip 2733 * the vm_object pindex and count. 2734 */ 2735 for (; current->start < end; 2736 current = vm_map_entry_succ(current)) { 2737 vm_offset_t useEnd, useStart; 2738 2739 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2740 continue; 2741 2742 /* 2743 * MADV_FREE would otherwise rewind time to 2744 * the creation of the shadow object. Because 2745 * we hold the VM map read-locked, neither the 2746 * entry's object nor the presence of a 2747 * backing object can change. 2748 */ 2749 if (behav == MADV_FREE && 2750 current->object.vm_object != NULL && 2751 current->object.vm_object->backing_object != NULL) 2752 continue; 2753 2754 pstart = OFF_TO_IDX(current->offset); 2755 pend = pstart + atop(current->end - current->start); 2756 useStart = current->start; 2757 useEnd = current->end; 2758 2759 if (current->start < start) { 2760 pstart += atop(start - current->start); 2761 useStart = start; 2762 } 2763 if (current->end > end) { 2764 pend -= atop(current->end - end); 2765 useEnd = end; 2766 } 2767 2768 if (pstart >= pend) 2769 continue; 2770 2771 /* 2772 * Perform the pmap_advise() before clearing 2773 * PGA_REFERENCED in vm_page_advise(). Otherwise, a 2774 * concurrent pmap operation, such as pmap_remove(), 2775 * could clear a reference in the pmap and set 2776 * PGA_REFERENCED on the page before the pmap_advise() 2777 * had completed. Consequently, the page would appear 2778 * referenced based upon an old reference that 2779 * occurred before this pmap_advise() ran. 2780 */ 2781 if (behav == MADV_DONTNEED || behav == MADV_FREE) 2782 pmap_advise(map->pmap, useStart, useEnd, 2783 behav); 2784 2785 vm_object_madvise(current->object.vm_object, pstart, 2786 pend, behav); 2787 2788 /* 2789 * Pre-populate paging structures in the 2790 * WILLNEED case. For wired entries, the 2791 * paging structures are already populated. 2792 */ 2793 if (behav == MADV_WILLNEED && 2794 current->wired_count == 0) { 2795 vm_map_pmap_enter(map, 2796 useStart, 2797 current->protection, 2798 current->object.vm_object, 2799 pstart, 2800 ptoa(pend - pstart), 2801 MAP_PREFAULT_MADVISE 2802 ); 2803 } 2804 } 2805 vm_map_unlock_read(map); 2806 } 2807 return (0); 2808 } 2809 2810 2811 /* 2812 * vm_map_inherit: 2813 * 2814 * Sets the inheritance of the specified address 2815 * range in the target map. Inheritance 2816 * affects how the map will be shared with 2817 * child maps at the time of vmspace_fork. 2818 */ 2819 int 2820 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 2821 vm_inherit_t new_inheritance) 2822 { 2823 vm_map_entry_t entry, prev_entry; 2824 2825 switch (new_inheritance) { 2826 case VM_INHERIT_NONE: 2827 case VM_INHERIT_COPY: 2828 case VM_INHERIT_SHARE: 2829 case VM_INHERIT_ZERO: 2830 break; 2831 default: 2832 return (KERN_INVALID_ARGUMENT); 2833 } 2834 if (start == end) 2835 return (KERN_SUCCESS); 2836 vm_map_lock(map); 2837 VM_MAP_RANGE_CHECK(map, start, end); 2838 if (vm_map_lookup_entry(map, start, &prev_entry)) { 2839 entry = prev_entry; 2840 vm_map_clip_start(map, entry, start); 2841 prev_entry = vm_map_entry_pred(entry); 2842 } else 2843 entry = vm_map_entry_succ(prev_entry); 2844 for (; entry->start < end; 2845 prev_entry = entry, entry = vm_map_entry_succ(entry)) { 2846 vm_map_clip_end(map, entry, end); 2847 if ((entry->eflags & MAP_ENTRY_GUARD) == 0 || 2848 new_inheritance != VM_INHERIT_ZERO) 2849 entry->inheritance = new_inheritance; 2850 vm_map_try_merge_entries(map, prev_entry, entry); 2851 } 2852 vm_map_try_merge_entries(map, prev_entry, entry); 2853 vm_map_unlock(map); 2854 return (KERN_SUCCESS); 2855 } 2856 2857 /* 2858 * vm_map_entry_in_transition: 2859 * 2860 * Release the map lock, and sleep until the entry is no longer in 2861 * transition. Awake and acquire the map lock. If the map changed while 2862 * another held the lock, lookup a possibly-changed entry at or after the 2863 * 'start' position of the old entry. 2864 */ 2865 static vm_map_entry_t 2866 vm_map_entry_in_transition(vm_map_t map, vm_offset_t in_start, 2867 vm_offset_t *io_end, bool holes_ok, vm_map_entry_t in_entry) 2868 { 2869 vm_map_entry_t entry; 2870 vm_offset_t start; 2871 u_int last_timestamp; 2872 2873 VM_MAP_ASSERT_LOCKED(map); 2874 KASSERT((in_entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 2875 ("not in-tranition map entry %p", in_entry)); 2876 /* 2877 * We have not yet clipped the entry. 2878 */ 2879 start = MAX(in_start, in_entry->start); 2880 in_entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2881 last_timestamp = map->timestamp; 2882 if (vm_map_unlock_and_wait(map, 0)) { 2883 /* 2884 * Allow interruption of user wiring/unwiring? 2885 */ 2886 } 2887 vm_map_lock(map); 2888 if (last_timestamp + 1 == map->timestamp) 2889 return (in_entry); 2890 2891 /* 2892 * Look again for the entry because the map was modified while it was 2893 * unlocked. Specifically, the entry may have been clipped, merged, or 2894 * deleted. 2895 */ 2896 if (!vm_map_lookup_entry(map, start, &entry)) { 2897 if (!holes_ok) { 2898 *io_end = start; 2899 return (NULL); 2900 } 2901 entry = vm_map_entry_succ(entry); 2902 } 2903 return (entry); 2904 } 2905 2906 /* 2907 * vm_map_unwire: 2908 * 2909 * Implements both kernel and user unwiring. 2910 */ 2911 int 2912 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2913 int flags) 2914 { 2915 vm_map_entry_t entry, first_entry, next_entry, prev_entry; 2916 int rv; 2917 bool holes_ok, need_wakeup, user_unwire; 2918 2919 if (start == end) 2920 return (KERN_SUCCESS); 2921 holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0; 2922 user_unwire = (flags & VM_MAP_WIRE_USER) != 0; 2923 vm_map_lock(map); 2924 VM_MAP_RANGE_CHECK(map, start, end); 2925 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2926 if (holes_ok) 2927 first_entry = vm_map_entry_succ(first_entry); 2928 else { 2929 vm_map_unlock(map); 2930 return (KERN_INVALID_ADDRESS); 2931 } 2932 } 2933 rv = KERN_SUCCESS; 2934 for (entry = first_entry; entry->start < end; entry = next_entry) { 2935 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2936 /* 2937 * We have not yet clipped the entry. 2938 */ 2939 next_entry = vm_map_entry_in_transition(map, start, 2940 &end, holes_ok, entry); 2941 if (next_entry == NULL) { 2942 if (entry == first_entry) { 2943 vm_map_unlock(map); 2944 return (KERN_INVALID_ADDRESS); 2945 } 2946 rv = KERN_INVALID_ADDRESS; 2947 break; 2948 } 2949 first_entry = (entry == first_entry) ? 2950 next_entry : NULL; 2951 continue; 2952 } 2953 vm_map_clip_start(map, entry, start); 2954 vm_map_clip_end(map, entry, end); 2955 /* 2956 * Mark the entry in case the map lock is released. (See 2957 * above.) 2958 */ 2959 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 2960 entry->wiring_thread == NULL, 2961 ("owned map entry %p", entry)); 2962 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 2963 entry->wiring_thread = curthread; 2964 next_entry = vm_map_entry_succ(entry); 2965 /* 2966 * Check the map for holes in the specified region. 2967 * If holes_ok, skip this check. 2968 */ 2969 if (!holes_ok && 2970 entry->end < end && next_entry->start > entry->end) { 2971 end = entry->end; 2972 rv = KERN_INVALID_ADDRESS; 2973 break; 2974 } 2975 /* 2976 * If system unwiring, require that the entry is system wired. 2977 */ 2978 if (!user_unwire && 2979 vm_map_entry_system_wired_count(entry) == 0) { 2980 end = entry->end; 2981 rv = KERN_INVALID_ARGUMENT; 2982 break; 2983 } 2984 } 2985 need_wakeup = false; 2986 if (first_entry == NULL && 2987 !vm_map_lookup_entry(map, start, &first_entry)) { 2988 KASSERT(holes_ok, ("vm_map_unwire: lookup failed")); 2989 prev_entry = first_entry; 2990 entry = vm_map_entry_succ(first_entry); 2991 } else { 2992 prev_entry = vm_map_entry_pred(first_entry); 2993 entry = first_entry; 2994 } 2995 for (; entry->start < end; 2996 prev_entry = entry, entry = vm_map_entry_succ(entry)) { 2997 /* 2998 * If holes_ok was specified, an empty 2999 * space in the unwired region could have been mapped 3000 * while the map lock was dropped for draining 3001 * MAP_ENTRY_IN_TRANSITION. Moreover, another thread 3002 * could be simultaneously wiring this new mapping 3003 * entry. Detect these cases and skip any entries 3004 * marked as in transition by us. 3005 */ 3006 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 3007 entry->wiring_thread != curthread) { 3008 KASSERT(holes_ok, 3009 ("vm_map_unwire: !HOLESOK and new/changed entry")); 3010 continue; 3011 } 3012 3013 if (rv == KERN_SUCCESS && (!user_unwire || 3014 (entry->eflags & MAP_ENTRY_USER_WIRED))) { 3015 if (entry->wired_count == 1) 3016 vm_map_entry_unwire(map, entry); 3017 else 3018 entry->wired_count--; 3019 if (user_unwire) 3020 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 3021 } 3022 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 3023 ("vm_map_unwire: in-transition flag missing %p", entry)); 3024 KASSERT(entry->wiring_thread == curthread, 3025 ("vm_map_unwire: alien wire %p", entry)); 3026 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 3027 entry->wiring_thread = NULL; 3028 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 3029 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 3030 need_wakeup = true; 3031 } 3032 vm_map_try_merge_entries(map, prev_entry, entry); 3033 } 3034 vm_map_try_merge_entries(map, prev_entry, entry); 3035 vm_map_unlock(map); 3036 if (need_wakeup) 3037 vm_map_wakeup(map); 3038 return (rv); 3039 } 3040 3041 static void 3042 vm_map_wire_user_count_sub(u_long npages) 3043 { 3044 3045 atomic_subtract_long(&vm_user_wire_count, npages); 3046 } 3047 3048 static bool 3049 vm_map_wire_user_count_add(u_long npages) 3050 { 3051 u_long wired; 3052 3053 wired = vm_user_wire_count; 3054 do { 3055 if (npages + wired > vm_page_max_user_wired) 3056 return (false); 3057 } while (!atomic_fcmpset_long(&vm_user_wire_count, &wired, 3058 npages + wired)); 3059 3060 return (true); 3061 } 3062 3063 /* 3064 * vm_map_wire_entry_failure: 3065 * 3066 * Handle a wiring failure on the given entry. 3067 * 3068 * The map should be locked. 3069 */ 3070 static void 3071 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry, 3072 vm_offset_t failed_addr) 3073 { 3074 3075 VM_MAP_ASSERT_LOCKED(map); 3076 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 && 3077 entry->wired_count == 1, 3078 ("vm_map_wire_entry_failure: entry %p isn't being wired", entry)); 3079 KASSERT(failed_addr < entry->end, 3080 ("vm_map_wire_entry_failure: entry %p was fully wired", entry)); 3081 3082 /* 3083 * If any pages at the start of this entry were successfully wired, 3084 * then unwire them. 3085 */ 3086 if (failed_addr > entry->start) { 3087 pmap_unwire(map->pmap, entry->start, failed_addr); 3088 vm_object_unwire(entry->object.vm_object, entry->offset, 3089 failed_addr - entry->start, PQ_ACTIVE); 3090 } 3091 3092 /* 3093 * Assign an out-of-range value to represent the failure to wire this 3094 * entry. 3095 */ 3096 entry->wired_count = -1; 3097 } 3098 3099 int 3100 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags) 3101 { 3102 int rv; 3103 3104 vm_map_lock(map); 3105 rv = vm_map_wire_locked(map, start, end, flags); 3106 vm_map_unlock(map); 3107 return (rv); 3108 } 3109 3110 3111 /* 3112 * vm_map_wire_locked: 3113 * 3114 * Implements both kernel and user wiring. Returns with the map locked, 3115 * the map lock may be dropped. 3116 */ 3117 int 3118 vm_map_wire_locked(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags) 3119 { 3120 vm_map_entry_t entry, first_entry, next_entry, prev_entry; 3121 vm_offset_t faddr, saved_end, saved_start; 3122 u_long npages; 3123 u_int last_timestamp; 3124 int rv; 3125 bool holes_ok, need_wakeup, user_wire; 3126 vm_prot_t prot; 3127 3128 VM_MAP_ASSERT_LOCKED(map); 3129 3130 if (start == end) 3131 return (KERN_SUCCESS); 3132 prot = 0; 3133 if (flags & VM_MAP_WIRE_WRITE) 3134 prot |= VM_PROT_WRITE; 3135 holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0; 3136 user_wire = (flags & VM_MAP_WIRE_USER) != 0; 3137 VM_MAP_RANGE_CHECK(map, start, end); 3138 if (!vm_map_lookup_entry(map, start, &first_entry)) { 3139 if (holes_ok) 3140 first_entry = vm_map_entry_succ(first_entry); 3141 else 3142 return (KERN_INVALID_ADDRESS); 3143 } 3144 for (entry = first_entry; entry->start < end; entry = next_entry) { 3145 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 3146 /* 3147 * We have not yet clipped the entry. 3148 */ 3149 next_entry = vm_map_entry_in_transition(map, start, 3150 &end, holes_ok, entry); 3151 if (next_entry == NULL) { 3152 if (entry == first_entry) 3153 return (KERN_INVALID_ADDRESS); 3154 rv = KERN_INVALID_ADDRESS; 3155 goto done; 3156 } 3157 first_entry = (entry == first_entry) ? 3158 next_entry : NULL; 3159 continue; 3160 } 3161 vm_map_clip_start(map, entry, start); 3162 vm_map_clip_end(map, entry, end); 3163 /* 3164 * Mark the entry in case the map lock is released. (See 3165 * above.) 3166 */ 3167 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 3168 entry->wiring_thread == NULL, 3169 ("owned map entry %p", entry)); 3170 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 3171 entry->wiring_thread = curthread; 3172 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 3173 || (entry->protection & prot) != prot) { 3174 entry->eflags |= MAP_ENTRY_WIRE_SKIPPED; 3175 if (!holes_ok) { 3176 end = entry->end; 3177 rv = KERN_INVALID_ADDRESS; 3178 goto done; 3179 } 3180 } else if (entry->wired_count == 0) { 3181 entry->wired_count++; 3182 3183 npages = atop(entry->end - entry->start); 3184 if (user_wire && !vm_map_wire_user_count_add(npages)) { 3185 vm_map_wire_entry_failure(map, entry, 3186 entry->start); 3187 end = entry->end; 3188 rv = KERN_RESOURCE_SHORTAGE; 3189 goto done; 3190 } 3191 3192 /* 3193 * Release the map lock, relying on the in-transition 3194 * mark. Mark the map busy for fork. 3195 */ 3196 saved_start = entry->start; 3197 saved_end = entry->end; 3198 last_timestamp = map->timestamp; 3199 vm_map_busy(map); 3200 vm_map_unlock(map); 3201 3202 faddr = saved_start; 3203 do { 3204 /* 3205 * Simulate a fault to get the page and enter 3206 * it into the physical map. 3207 */ 3208 if ((rv = vm_fault(map, faddr, 3209 VM_PROT_NONE, VM_FAULT_WIRE, NULL)) != 3210 KERN_SUCCESS) 3211 break; 3212 } while ((faddr += PAGE_SIZE) < saved_end); 3213 vm_map_lock(map); 3214 vm_map_unbusy(map); 3215 if (last_timestamp + 1 != map->timestamp) { 3216 /* 3217 * Look again for the entry because the map was 3218 * modified while it was unlocked. The entry 3219 * may have been clipped, but NOT merged or 3220 * deleted. 3221 */ 3222 if (!vm_map_lookup_entry(map, saved_start, 3223 &next_entry)) 3224 KASSERT(false, 3225 ("vm_map_wire: lookup failed")); 3226 first_entry = (entry == first_entry) ? 3227 next_entry : NULL; 3228 for (entry = next_entry; entry->end < saved_end; 3229 entry = vm_map_entry_succ(entry)) { 3230 /* 3231 * In case of failure, handle entries 3232 * that were not fully wired here; 3233 * fully wired entries are handled 3234 * later. 3235 */ 3236 if (rv != KERN_SUCCESS && 3237 faddr < entry->end) 3238 vm_map_wire_entry_failure(map, 3239 entry, faddr); 3240 } 3241 } 3242 if (rv != KERN_SUCCESS) { 3243 vm_map_wire_entry_failure(map, entry, faddr); 3244 if (user_wire) 3245 vm_map_wire_user_count_sub(npages); 3246 end = entry->end; 3247 goto done; 3248 } 3249 } else if (!user_wire || 3250 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 3251 entry->wired_count++; 3252 } 3253 /* 3254 * Check the map for holes in the specified region. 3255 * If holes_ok was specified, skip this check. 3256 */ 3257 next_entry = vm_map_entry_succ(entry); 3258 if (!holes_ok && 3259 entry->end < end && next_entry->start > entry->end) { 3260 end = entry->end; 3261 rv = KERN_INVALID_ADDRESS; 3262 goto done; 3263 } 3264 } 3265 rv = KERN_SUCCESS; 3266 done: 3267 need_wakeup = false; 3268 if (first_entry == NULL && 3269 !vm_map_lookup_entry(map, start, &first_entry)) { 3270 KASSERT(holes_ok, ("vm_map_wire: lookup failed")); 3271 prev_entry = first_entry; 3272 entry = vm_map_entry_succ(first_entry); 3273 } else { 3274 prev_entry = vm_map_entry_pred(first_entry); 3275 entry = first_entry; 3276 } 3277 for (; entry->start < end; 3278 prev_entry = entry, entry = vm_map_entry_succ(entry)) { 3279 /* 3280 * If holes_ok was specified, an empty 3281 * space in the unwired region could have been mapped 3282 * while the map lock was dropped for faulting in the 3283 * pages or draining MAP_ENTRY_IN_TRANSITION. 3284 * Moreover, another thread could be simultaneously 3285 * wiring this new mapping entry. Detect these cases 3286 * and skip any entries marked as in transition not by us. 3287 */ 3288 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 3289 entry->wiring_thread != curthread) { 3290 KASSERT(holes_ok, 3291 ("vm_map_wire: !HOLESOK and new/changed entry")); 3292 continue; 3293 } 3294 3295 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) { 3296 /* do nothing */ 3297 } else if (rv == KERN_SUCCESS) { 3298 if (user_wire) 3299 entry->eflags |= MAP_ENTRY_USER_WIRED; 3300 } else if (entry->wired_count == -1) { 3301 /* 3302 * Wiring failed on this entry. Thus, unwiring is 3303 * unnecessary. 3304 */ 3305 entry->wired_count = 0; 3306 } else if (!user_wire || 3307 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 3308 /* 3309 * Undo the wiring. Wiring succeeded on this entry 3310 * but failed on a later entry. 3311 */ 3312 if (entry->wired_count == 1) { 3313 vm_map_entry_unwire(map, entry); 3314 if (user_wire) 3315 vm_map_wire_user_count_sub( 3316 atop(entry->end - entry->start)); 3317 } else 3318 entry->wired_count--; 3319 } 3320 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 3321 ("vm_map_wire: in-transition flag missing %p", entry)); 3322 KASSERT(entry->wiring_thread == curthread, 3323 ("vm_map_wire: alien wire %p", entry)); 3324 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION | 3325 MAP_ENTRY_WIRE_SKIPPED); 3326 entry->wiring_thread = NULL; 3327 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 3328 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 3329 need_wakeup = true; 3330 } 3331 vm_map_try_merge_entries(map, prev_entry, entry); 3332 } 3333 vm_map_try_merge_entries(map, prev_entry, entry); 3334 if (need_wakeup) 3335 vm_map_wakeup(map); 3336 return (rv); 3337 } 3338 3339 /* 3340 * vm_map_sync 3341 * 3342 * Push any dirty cached pages in the address range to their pager. 3343 * If syncio is TRUE, dirty pages are written synchronously. 3344 * If invalidate is TRUE, any cached pages are freed as well. 3345 * 3346 * If the size of the region from start to end is zero, we are 3347 * supposed to flush all modified pages within the region containing 3348 * start. Unfortunately, a region can be split or coalesced with 3349 * neighboring regions, making it difficult to determine what the 3350 * original region was. Therefore, we approximate this requirement by 3351 * flushing the current region containing start. 3352 * 3353 * Returns an error if any part of the specified range is not mapped. 3354 */ 3355 int 3356 vm_map_sync( 3357 vm_map_t map, 3358 vm_offset_t start, 3359 vm_offset_t end, 3360 boolean_t syncio, 3361 boolean_t invalidate) 3362 { 3363 vm_map_entry_t current, entry, next_entry; 3364 vm_size_t size; 3365 vm_object_t object; 3366 vm_ooffset_t offset; 3367 unsigned int last_timestamp; 3368 boolean_t failed; 3369 3370 vm_map_lock_read(map); 3371 VM_MAP_RANGE_CHECK(map, start, end); 3372 if (!vm_map_lookup_entry(map, start, &entry)) { 3373 vm_map_unlock_read(map); 3374 return (KERN_INVALID_ADDRESS); 3375 } else if (start == end) { 3376 start = entry->start; 3377 end = entry->end; 3378 } 3379 /* 3380 * Make a first pass to check for user-wired memory and holes. 3381 */ 3382 for (current = entry; current->start < end; 3383 current = next_entry) { 3384 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) { 3385 vm_map_unlock_read(map); 3386 return (KERN_INVALID_ARGUMENT); 3387 } 3388 next_entry = vm_map_entry_succ(current); 3389 if (end > current->end && 3390 current->end != next_entry->start) { 3391 vm_map_unlock_read(map); 3392 return (KERN_INVALID_ADDRESS); 3393 } 3394 } 3395 3396 if (invalidate) 3397 pmap_remove(map->pmap, start, end); 3398 failed = FALSE; 3399 3400 /* 3401 * Make a second pass, cleaning/uncaching pages from the indicated 3402 * objects as we go. 3403 */ 3404 for (current = entry; current->start < end;) { 3405 offset = current->offset + (start - current->start); 3406 size = (end <= current->end ? end : current->end) - start; 3407 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 3408 vm_map_t smap; 3409 vm_map_entry_t tentry; 3410 vm_size_t tsize; 3411 3412 smap = current->object.sub_map; 3413 vm_map_lock_read(smap); 3414 (void) vm_map_lookup_entry(smap, offset, &tentry); 3415 tsize = tentry->end - offset; 3416 if (tsize < size) 3417 size = tsize; 3418 object = tentry->object.vm_object; 3419 offset = tentry->offset + (offset - tentry->start); 3420 vm_map_unlock_read(smap); 3421 } else { 3422 object = current->object.vm_object; 3423 } 3424 vm_object_reference(object); 3425 last_timestamp = map->timestamp; 3426 vm_map_unlock_read(map); 3427 if (!vm_object_sync(object, offset, size, syncio, invalidate)) 3428 failed = TRUE; 3429 start += size; 3430 vm_object_deallocate(object); 3431 vm_map_lock_read(map); 3432 if (last_timestamp == map->timestamp || 3433 !vm_map_lookup_entry(map, start, ¤t)) 3434 current = vm_map_entry_succ(current); 3435 } 3436 3437 vm_map_unlock_read(map); 3438 return (failed ? KERN_FAILURE : KERN_SUCCESS); 3439 } 3440 3441 /* 3442 * vm_map_entry_unwire: [ internal use only ] 3443 * 3444 * Make the region specified by this entry pageable. 3445 * 3446 * The map in question should be locked. 3447 * [This is the reason for this routine's existence.] 3448 */ 3449 static void 3450 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 3451 { 3452 vm_size_t size; 3453 3454 VM_MAP_ASSERT_LOCKED(map); 3455 KASSERT(entry->wired_count > 0, 3456 ("vm_map_entry_unwire: entry %p isn't wired", entry)); 3457 3458 size = entry->end - entry->start; 3459 if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0) 3460 vm_map_wire_user_count_sub(atop(size)); 3461 pmap_unwire(map->pmap, entry->start, entry->end); 3462 vm_object_unwire(entry->object.vm_object, entry->offset, size, 3463 PQ_ACTIVE); 3464 entry->wired_count = 0; 3465 } 3466 3467 static void 3468 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map) 3469 { 3470 3471 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) 3472 vm_object_deallocate(entry->object.vm_object); 3473 uma_zfree(system_map ? kmapentzone : mapentzone, entry); 3474 } 3475 3476 /* 3477 * vm_map_entry_delete: [ internal use only ] 3478 * 3479 * Deallocate the given entry from the target map. 3480 */ 3481 static void 3482 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry) 3483 { 3484 vm_object_t object; 3485 vm_pindex_t offidxstart, offidxend, count, size1; 3486 vm_size_t size; 3487 3488 vm_map_entry_unlink(map, entry, UNLINK_MERGE_NONE); 3489 object = entry->object.vm_object; 3490 3491 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) { 3492 MPASS(entry->cred == NULL); 3493 MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0); 3494 MPASS(object == NULL); 3495 vm_map_entry_deallocate(entry, map->system_map); 3496 return; 3497 } 3498 3499 size = entry->end - entry->start; 3500 map->size -= size; 3501 3502 if (entry->cred != NULL) { 3503 swap_release_by_cred(size, entry->cred); 3504 crfree(entry->cred); 3505 } 3506 3507 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || object == NULL) { 3508 entry->object.vm_object = NULL; 3509 } else if ((object->flags & OBJ_ANON) != 0 || 3510 object == kernel_object) { 3511 KASSERT(entry->cred == NULL || object->cred == NULL || 3512 (entry->eflags & MAP_ENTRY_NEEDS_COPY), 3513 ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry)); 3514 count = atop(size); 3515 offidxstart = OFF_TO_IDX(entry->offset); 3516 offidxend = offidxstart + count; 3517 VM_OBJECT_WLOCK(object); 3518 if (object->ref_count != 1 && 3519 ((object->flags & OBJ_ONEMAPPING) != 0 || 3520 object == kernel_object)) { 3521 vm_object_collapse(object); 3522 3523 /* 3524 * The option OBJPR_NOTMAPPED can be passed here 3525 * because vm_map_delete() already performed 3526 * pmap_remove() on the only mapping to this range 3527 * of pages. 3528 */ 3529 vm_object_page_remove(object, offidxstart, offidxend, 3530 OBJPR_NOTMAPPED); 3531 if (object->type == OBJT_SWAP) 3532 swap_pager_freespace(object, offidxstart, 3533 count); 3534 if (offidxend >= object->size && 3535 offidxstart < object->size) { 3536 size1 = object->size; 3537 object->size = offidxstart; 3538 if (object->cred != NULL) { 3539 size1 -= object->size; 3540 KASSERT(object->charge >= ptoa(size1), 3541 ("object %p charge < 0", object)); 3542 swap_release_by_cred(ptoa(size1), 3543 object->cred); 3544 object->charge -= ptoa(size1); 3545 } 3546 } 3547 } 3548 VM_OBJECT_WUNLOCK(object); 3549 } 3550 if (map->system_map) 3551 vm_map_entry_deallocate(entry, TRUE); 3552 else { 3553 entry->defer_next = curthread->td_map_def_user; 3554 curthread->td_map_def_user = entry; 3555 } 3556 } 3557 3558 /* 3559 * vm_map_delete: [ internal use only ] 3560 * 3561 * Deallocates the given address range from the target 3562 * map. 3563 */ 3564 int 3565 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end) 3566 { 3567 vm_map_entry_t entry; 3568 vm_map_entry_t first_entry; 3569 3570 VM_MAP_ASSERT_LOCKED(map); 3571 if (start == end) 3572 return (KERN_SUCCESS); 3573 3574 /* 3575 * Find the start of the region, and clip it 3576 */ 3577 if (!vm_map_lookup_entry(map, start, &first_entry)) 3578 entry = vm_map_entry_succ(first_entry); 3579 else { 3580 entry = first_entry; 3581 vm_map_clip_start(map, entry, start); 3582 } 3583 3584 /* 3585 * Step through all entries in this region 3586 */ 3587 while (entry->start < end) { 3588 vm_map_entry_t next; 3589 3590 /* 3591 * Wait for wiring or unwiring of an entry to complete. 3592 * Also wait for any system wirings to disappear on 3593 * user maps. 3594 */ 3595 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 || 3596 (vm_map_pmap(map) != kernel_pmap && 3597 vm_map_entry_system_wired_count(entry) != 0)) { 3598 unsigned int last_timestamp; 3599 vm_offset_t saved_start; 3600 vm_map_entry_t tmp_entry; 3601 3602 saved_start = entry->start; 3603 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 3604 last_timestamp = map->timestamp; 3605 (void) vm_map_unlock_and_wait(map, 0); 3606 vm_map_lock(map); 3607 if (last_timestamp + 1 != map->timestamp) { 3608 /* 3609 * Look again for the entry because the map was 3610 * modified while it was unlocked. 3611 * Specifically, the entry may have been 3612 * clipped, merged, or deleted. 3613 */ 3614 if (!vm_map_lookup_entry(map, saved_start, 3615 &tmp_entry)) 3616 entry = vm_map_entry_succ(tmp_entry); 3617 else { 3618 entry = tmp_entry; 3619 vm_map_clip_start(map, entry, 3620 saved_start); 3621 } 3622 } 3623 continue; 3624 } 3625 vm_map_clip_end(map, entry, end); 3626 3627 next = vm_map_entry_succ(entry); 3628 3629 /* 3630 * Unwire before removing addresses from the pmap; otherwise, 3631 * unwiring will put the entries back in the pmap. 3632 */ 3633 if (entry->wired_count != 0) 3634 vm_map_entry_unwire(map, entry); 3635 3636 /* 3637 * Remove mappings for the pages, but only if the 3638 * mappings could exist. For instance, it does not 3639 * make sense to call pmap_remove() for guard entries. 3640 */ 3641 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || 3642 entry->object.vm_object != NULL) 3643 pmap_remove(map->pmap, entry->start, entry->end); 3644 3645 if (entry->end == map->anon_loc) 3646 map->anon_loc = entry->start; 3647 3648 /* 3649 * Delete the entry only after removing all pmap 3650 * entries pointing to its pages. (Otherwise, its 3651 * page frames may be reallocated, and any modify bits 3652 * will be set in the wrong object!) 3653 */ 3654 vm_map_entry_delete(map, entry); 3655 entry = next; 3656 } 3657 return (KERN_SUCCESS); 3658 } 3659 3660 /* 3661 * vm_map_remove: 3662 * 3663 * Remove the given address range from the target map. 3664 * This is the exported form of vm_map_delete. 3665 */ 3666 int 3667 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 3668 { 3669 int result; 3670 3671 vm_map_lock(map); 3672 VM_MAP_RANGE_CHECK(map, start, end); 3673 result = vm_map_delete(map, start, end); 3674 vm_map_unlock(map); 3675 return (result); 3676 } 3677 3678 /* 3679 * vm_map_check_protection: 3680 * 3681 * Assert that the target map allows the specified privilege on the 3682 * entire address region given. The entire region must be allocated. 3683 * 3684 * WARNING! This code does not and should not check whether the 3685 * contents of the region is accessible. For example a smaller file 3686 * might be mapped into a larger address space. 3687 * 3688 * NOTE! This code is also called by munmap(). 3689 * 3690 * The map must be locked. A read lock is sufficient. 3691 */ 3692 boolean_t 3693 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 3694 vm_prot_t protection) 3695 { 3696 vm_map_entry_t entry; 3697 vm_map_entry_t tmp_entry; 3698 3699 if (!vm_map_lookup_entry(map, start, &tmp_entry)) 3700 return (FALSE); 3701 entry = tmp_entry; 3702 3703 while (start < end) { 3704 /* 3705 * No holes allowed! 3706 */ 3707 if (start < entry->start) 3708 return (FALSE); 3709 /* 3710 * Check protection associated with entry. 3711 */ 3712 if ((entry->protection & protection) != protection) 3713 return (FALSE); 3714 /* go to next entry */ 3715 start = entry->end; 3716 entry = vm_map_entry_succ(entry); 3717 } 3718 return (TRUE); 3719 } 3720 3721 /* 3722 * vm_map_copy_entry: 3723 * 3724 * Copies the contents of the source entry to the destination 3725 * entry. The entries *must* be aligned properly. 3726 */ 3727 static void 3728 vm_map_copy_entry( 3729 vm_map_t src_map, 3730 vm_map_t dst_map, 3731 vm_map_entry_t src_entry, 3732 vm_map_entry_t dst_entry, 3733 vm_ooffset_t *fork_charge) 3734 { 3735 vm_object_t src_object; 3736 vm_map_entry_t fake_entry; 3737 vm_offset_t size; 3738 struct ucred *cred; 3739 int charged; 3740 3741 VM_MAP_ASSERT_LOCKED(dst_map); 3742 3743 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP) 3744 return; 3745 3746 if (src_entry->wired_count == 0 || 3747 (src_entry->protection & VM_PROT_WRITE) == 0) { 3748 /* 3749 * If the source entry is marked needs_copy, it is already 3750 * write-protected. 3751 */ 3752 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 && 3753 (src_entry->protection & VM_PROT_WRITE) != 0) { 3754 pmap_protect(src_map->pmap, 3755 src_entry->start, 3756 src_entry->end, 3757 src_entry->protection & ~VM_PROT_WRITE); 3758 } 3759 3760 /* 3761 * Make a copy of the object. 3762 */ 3763 size = src_entry->end - src_entry->start; 3764 if ((src_object = src_entry->object.vm_object) != NULL) { 3765 VM_OBJECT_WLOCK(src_object); 3766 charged = ENTRY_CHARGED(src_entry); 3767 if (src_object->handle == NULL && 3768 (src_object->flags & OBJ_ANON) != 0) { 3769 vm_object_collapse(src_object); 3770 if ((src_object->flags & OBJ_ONEMAPPING) != 0) { 3771 vm_object_split(src_entry); 3772 src_object = 3773 src_entry->object.vm_object; 3774 } 3775 } 3776 vm_object_reference_locked(src_object); 3777 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 3778 if (src_entry->cred != NULL && 3779 !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 3780 KASSERT(src_object->cred == NULL, 3781 ("OVERCOMMIT: vm_map_copy_entry: cred %p", 3782 src_object)); 3783 src_object->cred = src_entry->cred; 3784 src_object->charge = size; 3785 } 3786 VM_OBJECT_WUNLOCK(src_object); 3787 dst_entry->object.vm_object = src_object; 3788 if (charged) { 3789 cred = curthread->td_ucred; 3790 crhold(cred); 3791 dst_entry->cred = cred; 3792 *fork_charge += size; 3793 if (!(src_entry->eflags & 3794 MAP_ENTRY_NEEDS_COPY)) { 3795 crhold(cred); 3796 src_entry->cred = cred; 3797 *fork_charge += size; 3798 } 3799 } 3800 src_entry->eflags |= MAP_ENTRY_COW | 3801 MAP_ENTRY_NEEDS_COPY; 3802 dst_entry->eflags |= MAP_ENTRY_COW | 3803 MAP_ENTRY_NEEDS_COPY; 3804 dst_entry->offset = src_entry->offset; 3805 if (src_entry->eflags & MAP_ENTRY_WRITECNT) { 3806 /* 3807 * MAP_ENTRY_WRITECNT cannot 3808 * indicate write reference from 3809 * src_entry, since the entry is 3810 * marked as needs copy. Allocate a 3811 * fake entry that is used to 3812 * decrement object->un_pager writecount 3813 * at the appropriate time. Attach 3814 * fake_entry to the deferred list. 3815 */ 3816 fake_entry = vm_map_entry_create(dst_map); 3817 fake_entry->eflags = MAP_ENTRY_WRITECNT; 3818 src_entry->eflags &= ~MAP_ENTRY_WRITECNT; 3819 vm_object_reference(src_object); 3820 fake_entry->object.vm_object = src_object; 3821 fake_entry->start = src_entry->start; 3822 fake_entry->end = src_entry->end; 3823 fake_entry->defer_next = 3824 curthread->td_map_def_user; 3825 curthread->td_map_def_user = fake_entry; 3826 } 3827 3828 pmap_copy(dst_map->pmap, src_map->pmap, 3829 dst_entry->start, dst_entry->end - dst_entry->start, 3830 src_entry->start); 3831 } else { 3832 dst_entry->object.vm_object = NULL; 3833 dst_entry->offset = 0; 3834 if (src_entry->cred != NULL) { 3835 dst_entry->cred = curthread->td_ucred; 3836 crhold(dst_entry->cred); 3837 *fork_charge += size; 3838 } 3839 } 3840 } else { 3841 /* 3842 * We don't want to make writeable wired pages copy-on-write. 3843 * Immediately copy these pages into the new map by simulating 3844 * page faults. The new pages are pageable. 3845 */ 3846 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry, 3847 fork_charge); 3848 } 3849 } 3850 3851 /* 3852 * vmspace_map_entry_forked: 3853 * Update the newly-forked vmspace each time a map entry is inherited 3854 * or copied. The values for vm_dsize and vm_tsize are approximate 3855 * (and mostly-obsolete ideas in the face of mmap(2) et al.) 3856 */ 3857 static void 3858 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2, 3859 vm_map_entry_t entry) 3860 { 3861 vm_size_t entrysize; 3862 vm_offset_t newend; 3863 3864 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) 3865 return; 3866 entrysize = entry->end - entry->start; 3867 vm2->vm_map.size += entrysize; 3868 if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) { 3869 vm2->vm_ssize += btoc(entrysize); 3870 } else if (entry->start >= (vm_offset_t)vm1->vm_daddr && 3871 entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) { 3872 newend = MIN(entry->end, 3873 (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)); 3874 vm2->vm_dsize += btoc(newend - entry->start); 3875 } else if (entry->start >= (vm_offset_t)vm1->vm_taddr && 3876 entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) { 3877 newend = MIN(entry->end, 3878 (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)); 3879 vm2->vm_tsize += btoc(newend - entry->start); 3880 } 3881 } 3882 3883 /* 3884 * vmspace_fork: 3885 * Create a new process vmspace structure and vm_map 3886 * based on those of an existing process. The new map 3887 * is based on the old map, according to the inheritance 3888 * values on the regions in that map. 3889 * 3890 * XXX It might be worth coalescing the entries added to the new vmspace. 3891 * 3892 * The source map must not be locked. 3893 */ 3894 struct vmspace * 3895 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge) 3896 { 3897 struct vmspace *vm2; 3898 vm_map_t new_map, old_map; 3899 vm_map_entry_t new_entry, old_entry; 3900 vm_object_t object; 3901 int error, locked; 3902 vm_inherit_t inh; 3903 3904 old_map = &vm1->vm_map; 3905 /* Copy immutable fields of vm1 to vm2. */ 3906 vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map), 3907 pmap_pinit); 3908 if (vm2 == NULL) 3909 return (NULL); 3910 3911 vm2->vm_taddr = vm1->vm_taddr; 3912 vm2->vm_daddr = vm1->vm_daddr; 3913 vm2->vm_maxsaddr = vm1->vm_maxsaddr; 3914 vm_map_lock(old_map); 3915 if (old_map->busy) 3916 vm_map_wait_busy(old_map); 3917 new_map = &vm2->vm_map; 3918 locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */ 3919 KASSERT(locked, ("vmspace_fork: lock failed")); 3920 3921 error = pmap_vmspace_copy(new_map->pmap, old_map->pmap); 3922 if (error != 0) { 3923 sx_xunlock(&old_map->lock); 3924 sx_xunlock(&new_map->lock); 3925 vm_map_process_deferred(); 3926 vmspace_free(vm2); 3927 return (NULL); 3928 } 3929 3930 new_map->anon_loc = old_map->anon_loc; 3931 3932 old_entry = vm_map_entry_first(old_map); 3933 3934 while (old_entry != &old_map->header) { 3935 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) 3936 panic("vm_map_fork: encountered a submap"); 3937 3938 inh = old_entry->inheritance; 3939 if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 && 3940 inh != VM_INHERIT_NONE) 3941 inh = VM_INHERIT_COPY; 3942 3943 switch (inh) { 3944 case VM_INHERIT_NONE: 3945 break; 3946 3947 case VM_INHERIT_SHARE: 3948 /* 3949 * Clone the entry, creating the shared object if necessary. 3950 */ 3951 object = old_entry->object.vm_object; 3952 if (object == NULL) { 3953 vm_map_entry_back(old_entry); 3954 object = old_entry->object.vm_object; 3955 } 3956 3957 /* 3958 * Add the reference before calling vm_object_shadow 3959 * to insure that a shadow object is created. 3960 */ 3961 vm_object_reference(object); 3962 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3963 vm_object_shadow(&old_entry->object.vm_object, 3964 &old_entry->offset, 3965 old_entry->end - old_entry->start); 3966 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 3967 /* Transfer the second reference too. */ 3968 vm_object_reference( 3969 old_entry->object.vm_object); 3970 3971 /* 3972 * As in vm_map_merged_neighbor_dispose(), 3973 * the vnode lock will not be acquired in 3974 * this call to vm_object_deallocate(). 3975 */ 3976 vm_object_deallocate(object); 3977 object = old_entry->object.vm_object; 3978 } 3979 VM_OBJECT_WLOCK(object); 3980 vm_object_clear_flag(object, OBJ_ONEMAPPING); 3981 if (old_entry->cred != NULL) { 3982 KASSERT(object->cred == NULL, ("vmspace_fork both cred")); 3983 object->cred = old_entry->cred; 3984 object->charge = old_entry->end - old_entry->start; 3985 old_entry->cred = NULL; 3986 } 3987 3988 /* 3989 * Assert the correct state of the vnode 3990 * v_writecount while the object is locked, to 3991 * not relock it later for the assertion 3992 * correctness. 3993 */ 3994 if (old_entry->eflags & MAP_ENTRY_WRITECNT && 3995 object->type == OBJT_VNODE) { 3996 KASSERT(((struct vnode *)object->handle)-> 3997 v_writecount > 0, 3998 ("vmspace_fork: v_writecount %p", object)); 3999 KASSERT(object->un_pager.vnp.writemappings > 0, 4000 ("vmspace_fork: vnp.writecount %p", 4001 object)); 4002 } 4003 VM_OBJECT_WUNLOCK(object); 4004 4005 /* 4006 * Clone the entry, referencing the shared object. 4007 */ 4008 new_entry = vm_map_entry_create(new_map); 4009 *new_entry = *old_entry; 4010 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 4011 MAP_ENTRY_IN_TRANSITION); 4012 new_entry->wiring_thread = NULL; 4013 new_entry->wired_count = 0; 4014 if (new_entry->eflags & MAP_ENTRY_WRITECNT) { 4015 vm_pager_update_writecount(object, 4016 new_entry->start, new_entry->end); 4017 } 4018 vm_map_entry_set_vnode_text(new_entry, true); 4019 4020 /* 4021 * Insert the entry into the new map -- we know we're 4022 * inserting at the end of the new map. 4023 */ 4024 vm_map_entry_link(new_map, new_entry); 4025 vmspace_map_entry_forked(vm1, vm2, new_entry); 4026 4027 /* 4028 * Update the physical map 4029 */ 4030 pmap_copy(new_map->pmap, old_map->pmap, 4031 new_entry->start, 4032 (old_entry->end - old_entry->start), 4033 old_entry->start); 4034 break; 4035 4036 case VM_INHERIT_COPY: 4037 /* 4038 * Clone the entry and link into the map. 4039 */ 4040 new_entry = vm_map_entry_create(new_map); 4041 *new_entry = *old_entry; 4042 /* 4043 * Copied entry is COW over the old object. 4044 */ 4045 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 4046 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_WRITECNT); 4047 new_entry->wiring_thread = NULL; 4048 new_entry->wired_count = 0; 4049 new_entry->object.vm_object = NULL; 4050 new_entry->cred = NULL; 4051 vm_map_entry_link(new_map, new_entry); 4052 vmspace_map_entry_forked(vm1, vm2, new_entry); 4053 vm_map_copy_entry(old_map, new_map, old_entry, 4054 new_entry, fork_charge); 4055 vm_map_entry_set_vnode_text(new_entry, true); 4056 break; 4057 4058 case VM_INHERIT_ZERO: 4059 /* 4060 * Create a new anonymous mapping entry modelled from 4061 * the old one. 4062 */ 4063 new_entry = vm_map_entry_create(new_map); 4064 memset(new_entry, 0, sizeof(*new_entry)); 4065 4066 new_entry->start = old_entry->start; 4067 new_entry->end = old_entry->end; 4068 new_entry->eflags = old_entry->eflags & 4069 ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION | 4070 MAP_ENTRY_WRITECNT | MAP_ENTRY_VN_EXEC); 4071 new_entry->protection = old_entry->protection; 4072 new_entry->max_protection = old_entry->max_protection; 4073 new_entry->inheritance = VM_INHERIT_ZERO; 4074 4075 vm_map_entry_link(new_map, new_entry); 4076 vmspace_map_entry_forked(vm1, vm2, new_entry); 4077 4078 new_entry->cred = curthread->td_ucred; 4079 crhold(new_entry->cred); 4080 *fork_charge += (new_entry->end - new_entry->start); 4081 4082 break; 4083 } 4084 old_entry = vm_map_entry_succ(old_entry); 4085 } 4086 /* 4087 * Use inlined vm_map_unlock() to postpone handling the deferred 4088 * map entries, which cannot be done until both old_map and 4089 * new_map locks are released. 4090 */ 4091 sx_xunlock(&old_map->lock); 4092 sx_xunlock(&new_map->lock); 4093 vm_map_process_deferred(); 4094 4095 return (vm2); 4096 } 4097 4098 /* 4099 * Create a process's stack for exec_new_vmspace(). This function is never 4100 * asked to wire the newly created stack. 4101 */ 4102 int 4103 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 4104 vm_prot_t prot, vm_prot_t max, int cow) 4105 { 4106 vm_size_t growsize, init_ssize; 4107 rlim_t vmemlim; 4108 int rv; 4109 4110 MPASS((map->flags & MAP_WIREFUTURE) == 0); 4111 growsize = sgrowsiz; 4112 init_ssize = (max_ssize < growsize) ? max_ssize : growsize; 4113 vm_map_lock(map); 4114 vmemlim = lim_cur(curthread, RLIMIT_VMEM); 4115 /* If we would blow our VMEM resource limit, no go */ 4116 if (map->size + init_ssize > vmemlim) { 4117 rv = KERN_NO_SPACE; 4118 goto out; 4119 } 4120 rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot, 4121 max, cow); 4122 out: 4123 vm_map_unlock(map); 4124 return (rv); 4125 } 4126 4127 static int stack_guard_page = 1; 4128 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN, 4129 &stack_guard_page, 0, 4130 "Specifies the number of guard pages for a stack that grows"); 4131 4132 static int 4133 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 4134 vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow) 4135 { 4136 vm_map_entry_t new_entry, prev_entry; 4137 vm_offset_t bot, gap_bot, gap_top, top; 4138 vm_size_t init_ssize, sgp; 4139 int orient, rv; 4140 4141 /* 4142 * The stack orientation is piggybacked with the cow argument. 4143 * Extract it into orient and mask the cow argument so that we 4144 * don't pass it around further. 4145 */ 4146 orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP); 4147 KASSERT(orient != 0, ("No stack grow direction")); 4148 KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP), 4149 ("bi-dir stack")); 4150 4151 if (addrbos < vm_map_min(map) || 4152 addrbos + max_ssize > vm_map_max(map) || 4153 addrbos + max_ssize <= addrbos) 4154 return (KERN_INVALID_ADDRESS); 4155 sgp = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 || 4156 (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 : 4157 (vm_size_t)stack_guard_page * PAGE_SIZE; 4158 if (sgp >= max_ssize) 4159 return (KERN_INVALID_ARGUMENT); 4160 4161 init_ssize = growsize; 4162 if (max_ssize < init_ssize + sgp) 4163 init_ssize = max_ssize - sgp; 4164 4165 /* If addr is already mapped, no go */ 4166 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) 4167 return (KERN_NO_SPACE); 4168 4169 /* 4170 * If we can't accommodate max_ssize in the current mapping, no go. 4171 */ 4172 if (vm_map_entry_succ(prev_entry)->start < addrbos + max_ssize) 4173 return (KERN_NO_SPACE); 4174 4175 /* 4176 * We initially map a stack of only init_ssize. We will grow as 4177 * needed later. Depending on the orientation of the stack (i.e. 4178 * the grow direction) we either map at the top of the range, the 4179 * bottom of the range or in the middle. 4180 * 4181 * Note: we would normally expect prot and max to be VM_PROT_ALL, 4182 * and cow to be 0. Possibly we should eliminate these as input 4183 * parameters, and just pass these values here in the insert call. 4184 */ 4185 if (orient == MAP_STACK_GROWS_DOWN) { 4186 bot = addrbos + max_ssize - init_ssize; 4187 top = bot + init_ssize; 4188 gap_bot = addrbos; 4189 gap_top = bot; 4190 } else /* if (orient == MAP_STACK_GROWS_UP) */ { 4191 bot = addrbos; 4192 top = bot + init_ssize; 4193 gap_bot = top; 4194 gap_top = addrbos + max_ssize; 4195 } 4196 rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow); 4197 if (rv != KERN_SUCCESS) 4198 return (rv); 4199 new_entry = vm_map_entry_succ(prev_entry); 4200 KASSERT(new_entry->end == top || new_entry->start == bot, 4201 ("Bad entry start/end for new stack entry")); 4202 KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 || 4203 (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0, 4204 ("new entry lacks MAP_ENTRY_GROWS_DOWN")); 4205 KASSERT((orient & MAP_STACK_GROWS_UP) == 0 || 4206 (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0, 4207 ("new entry lacks MAP_ENTRY_GROWS_UP")); 4208 if (gap_bot == gap_top) 4209 return (KERN_SUCCESS); 4210 rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE, 4211 VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ? 4212 MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP)); 4213 if (rv == KERN_SUCCESS) { 4214 /* 4215 * Gap can never successfully handle a fault, so 4216 * read-ahead logic is never used for it. Re-use 4217 * next_read of the gap entry to store 4218 * stack_guard_page for vm_map_growstack(). 4219 */ 4220 if (orient == MAP_STACK_GROWS_DOWN) 4221 vm_map_entry_pred(new_entry)->next_read = sgp; 4222 else 4223 vm_map_entry_succ(new_entry)->next_read = sgp; 4224 } else { 4225 (void)vm_map_delete(map, bot, top); 4226 } 4227 return (rv); 4228 } 4229 4230 /* 4231 * Attempts to grow a vm stack entry. Returns KERN_SUCCESS if we 4232 * successfully grow the stack. 4233 */ 4234 static int 4235 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry) 4236 { 4237 vm_map_entry_t stack_entry; 4238 struct proc *p; 4239 struct vmspace *vm; 4240 struct ucred *cred; 4241 vm_offset_t gap_end, gap_start, grow_start; 4242 vm_size_t grow_amount, guard, max_grow; 4243 rlim_t lmemlim, stacklim, vmemlim; 4244 int rv, rv1; 4245 bool gap_deleted, grow_down, is_procstack; 4246 #ifdef notyet 4247 uint64_t limit; 4248 #endif 4249 #ifdef RACCT 4250 int error; 4251 #endif 4252 4253 p = curproc; 4254 vm = p->p_vmspace; 4255 4256 /* 4257 * Disallow stack growth when the access is performed by a 4258 * debugger or AIO daemon. The reason is that the wrong 4259 * resource limits are applied. 4260 */ 4261 if (p != initproc && (map != &p->p_vmspace->vm_map || 4262 p->p_textvp == NULL)) 4263 return (KERN_FAILURE); 4264 4265 MPASS(!map->system_map); 4266 4267 lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK); 4268 stacklim = lim_cur(curthread, RLIMIT_STACK); 4269 vmemlim = lim_cur(curthread, RLIMIT_VMEM); 4270 retry: 4271 /* If addr is not in a hole for a stack grow area, no need to grow. */ 4272 if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry)) 4273 return (KERN_FAILURE); 4274 if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0) 4275 return (KERN_SUCCESS); 4276 if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) { 4277 stack_entry = vm_map_entry_succ(gap_entry); 4278 if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 || 4279 stack_entry->start != gap_entry->end) 4280 return (KERN_FAILURE); 4281 grow_amount = round_page(stack_entry->start - addr); 4282 grow_down = true; 4283 } else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) { 4284 stack_entry = vm_map_entry_pred(gap_entry); 4285 if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 || 4286 stack_entry->end != gap_entry->start) 4287 return (KERN_FAILURE); 4288 grow_amount = round_page(addr + 1 - stack_entry->end); 4289 grow_down = false; 4290 } else { 4291 return (KERN_FAILURE); 4292 } 4293 guard = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 || 4294 (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 : 4295 gap_entry->next_read; 4296 max_grow = gap_entry->end - gap_entry->start; 4297 if (guard > max_grow) 4298 return (KERN_NO_SPACE); 4299 max_grow -= guard; 4300 if (grow_amount > max_grow) 4301 return (KERN_NO_SPACE); 4302 4303 /* 4304 * If this is the main process stack, see if we're over the stack 4305 * limit. 4306 */ 4307 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr && 4308 addr < (vm_offset_t)p->p_sysent->sv_usrstack; 4309 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) 4310 return (KERN_NO_SPACE); 4311 4312 #ifdef RACCT 4313 if (racct_enable) { 4314 PROC_LOCK(p); 4315 if (is_procstack && racct_set(p, RACCT_STACK, 4316 ctob(vm->vm_ssize) + grow_amount)) { 4317 PROC_UNLOCK(p); 4318 return (KERN_NO_SPACE); 4319 } 4320 PROC_UNLOCK(p); 4321 } 4322 #endif 4323 4324 grow_amount = roundup(grow_amount, sgrowsiz); 4325 if (grow_amount > max_grow) 4326 grow_amount = max_grow; 4327 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 4328 grow_amount = trunc_page((vm_size_t)stacklim) - 4329 ctob(vm->vm_ssize); 4330 } 4331 4332 #ifdef notyet 4333 PROC_LOCK(p); 4334 limit = racct_get_available(p, RACCT_STACK); 4335 PROC_UNLOCK(p); 4336 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit)) 4337 grow_amount = limit - ctob(vm->vm_ssize); 4338 #endif 4339 4340 if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) { 4341 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) { 4342 rv = KERN_NO_SPACE; 4343 goto out; 4344 } 4345 #ifdef RACCT 4346 if (racct_enable) { 4347 PROC_LOCK(p); 4348 if (racct_set(p, RACCT_MEMLOCK, 4349 ptoa(pmap_wired_count(map->pmap)) + grow_amount)) { 4350 PROC_UNLOCK(p); 4351 rv = KERN_NO_SPACE; 4352 goto out; 4353 } 4354 PROC_UNLOCK(p); 4355 } 4356 #endif 4357 } 4358 4359 /* If we would blow our VMEM resource limit, no go */ 4360 if (map->size + grow_amount > vmemlim) { 4361 rv = KERN_NO_SPACE; 4362 goto out; 4363 } 4364 #ifdef RACCT 4365 if (racct_enable) { 4366 PROC_LOCK(p); 4367 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) { 4368 PROC_UNLOCK(p); 4369 rv = KERN_NO_SPACE; 4370 goto out; 4371 } 4372 PROC_UNLOCK(p); 4373 } 4374 #endif 4375 4376 if (vm_map_lock_upgrade(map)) { 4377 gap_entry = NULL; 4378 vm_map_lock_read(map); 4379 goto retry; 4380 } 4381 4382 if (grow_down) { 4383 grow_start = gap_entry->end - grow_amount; 4384 if (gap_entry->start + grow_amount == gap_entry->end) { 4385 gap_start = gap_entry->start; 4386 gap_end = gap_entry->end; 4387 vm_map_entry_delete(map, gap_entry); 4388 gap_deleted = true; 4389 } else { 4390 MPASS(gap_entry->start < gap_entry->end - grow_amount); 4391 vm_map_entry_resize(map, gap_entry, -grow_amount); 4392 gap_deleted = false; 4393 } 4394 rv = vm_map_insert(map, NULL, 0, grow_start, 4395 grow_start + grow_amount, 4396 stack_entry->protection, stack_entry->max_protection, 4397 MAP_STACK_GROWS_DOWN); 4398 if (rv != KERN_SUCCESS) { 4399 if (gap_deleted) { 4400 rv1 = vm_map_insert(map, NULL, 0, gap_start, 4401 gap_end, VM_PROT_NONE, VM_PROT_NONE, 4402 MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN); 4403 MPASS(rv1 == KERN_SUCCESS); 4404 } else 4405 vm_map_entry_resize(map, gap_entry, 4406 grow_amount); 4407 } 4408 } else { 4409 grow_start = stack_entry->end; 4410 cred = stack_entry->cred; 4411 if (cred == NULL && stack_entry->object.vm_object != NULL) 4412 cred = stack_entry->object.vm_object->cred; 4413 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred)) 4414 rv = KERN_NO_SPACE; 4415 /* Grow the underlying object if applicable. */ 4416 else if (stack_entry->object.vm_object == NULL || 4417 vm_object_coalesce(stack_entry->object.vm_object, 4418 stack_entry->offset, 4419 (vm_size_t)(stack_entry->end - stack_entry->start), 4420 grow_amount, cred != NULL)) { 4421 if (gap_entry->start + grow_amount == gap_entry->end) { 4422 vm_map_entry_delete(map, gap_entry); 4423 vm_map_entry_resize(map, stack_entry, 4424 grow_amount); 4425 } else { 4426 gap_entry->start += grow_amount; 4427 stack_entry->end += grow_amount; 4428 } 4429 map->size += grow_amount; 4430 rv = KERN_SUCCESS; 4431 } else 4432 rv = KERN_FAILURE; 4433 } 4434 if (rv == KERN_SUCCESS && is_procstack) 4435 vm->vm_ssize += btoc(grow_amount); 4436 4437 /* 4438 * Heed the MAP_WIREFUTURE flag if it was set for this process. 4439 */ 4440 if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) { 4441 rv = vm_map_wire_locked(map, grow_start, 4442 grow_start + grow_amount, 4443 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 4444 } 4445 vm_map_lock_downgrade(map); 4446 4447 out: 4448 #ifdef RACCT 4449 if (racct_enable && rv != KERN_SUCCESS) { 4450 PROC_LOCK(p); 4451 error = racct_set(p, RACCT_VMEM, map->size); 4452 KASSERT(error == 0, ("decreasing RACCT_VMEM failed")); 4453 if (!old_mlock) { 4454 error = racct_set(p, RACCT_MEMLOCK, 4455 ptoa(pmap_wired_count(map->pmap))); 4456 KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed")); 4457 } 4458 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize)); 4459 KASSERT(error == 0, ("decreasing RACCT_STACK failed")); 4460 PROC_UNLOCK(p); 4461 } 4462 #endif 4463 4464 return (rv); 4465 } 4466 4467 /* 4468 * Unshare the specified VM space for exec. If other processes are 4469 * mapped to it, then create a new one. The new vmspace is null. 4470 */ 4471 int 4472 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser) 4473 { 4474 struct vmspace *oldvmspace = p->p_vmspace; 4475 struct vmspace *newvmspace; 4476 4477 KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0, 4478 ("vmspace_exec recursed")); 4479 newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit); 4480 if (newvmspace == NULL) 4481 return (ENOMEM); 4482 newvmspace->vm_swrss = oldvmspace->vm_swrss; 4483 /* 4484 * This code is written like this for prototype purposes. The 4485 * goal is to avoid running down the vmspace here, but let the 4486 * other process's that are still using the vmspace to finally 4487 * run it down. Even though there is little or no chance of blocking 4488 * here, it is a good idea to keep this form for future mods. 4489 */ 4490 PROC_VMSPACE_LOCK(p); 4491 p->p_vmspace = newvmspace; 4492 PROC_VMSPACE_UNLOCK(p); 4493 if (p == curthread->td_proc) 4494 pmap_activate(curthread); 4495 curthread->td_pflags |= TDP_EXECVMSPC; 4496 return (0); 4497 } 4498 4499 /* 4500 * Unshare the specified VM space for forcing COW. This 4501 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 4502 */ 4503 int 4504 vmspace_unshare(struct proc *p) 4505 { 4506 struct vmspace *oldvmspace = p->p_vmspace; 4507 struct vmspace *newvmspace; 4508 vm_ooffset_t fork_charge; 4509 4510 if (oldvmspace->vm_refcnt == 1) 4511 return (0); 4512 fork_charge = 0; 4513 newvmspace = vmspace_fork(oldvmspace, &fork_charge); 4514 if (newvmspace == NULL) 4515 return (ENOMEM); 4516 if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) { 4517 vmspace_free(newvmspace); 4518 return (ENOMEM); 4519 } 4520 PROC_VMSPACE_LOCK(p); 4521 p->p_vmspace = newvmspace; 4522 PROC_VMSPACE_UNLOCK(p); 4523 if (p == curthread->td_proc) 4524 pmap_activate(curthread); 4525 vmspace_free(oldvmspace); 4526 return (0); 4527 } 4528 4529 /* 4530 * vm_map_lookup: 4531 * 4532 * Finds the VM object, offset, and 4533 * protection for a given virtual address in the 4534 * specified map, assuming a page fault of the 4535 * type specified. 4536 * 4537 * Leaves the map in question locked for read; return 4538 * values are guaranteed until a vm_map_lookup_done 4539 * call is performed. Note that the map argument 4540 * is in/out; the returned map must be used in 4541 * the call to vm_map_lookup_done. 4542 * 4543 * A handle (out_entry) is returned for use in 4544 * vm_map_lookup_done, to make that fast. 4545 * 4546 * If a lookup is requested with "write protection" 4547 * specified, the map may be changed to perform virtual 4548 * copying operations, although the data referenced will 4549 * remain the same. 4550 */ 4551 int 4552 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 4553 vm_offset_t vaddr, 4554 vm_prot_t fault_typea, 4555 vm_map_entry_t *out_entry, /* OUT */ 4556 vm_object_t *object, /* OUT */ 4557 vm_pindex_t *pindex, /* OUT */ 4558 vm_prot_t *out_prot, /* OUT */ 4559 boolean_t *wired) /* OUT */ 4560 { 4561 vm_map_entry_t entry; 4562 vm_map_t map = *var_map; 4563 vm_prot_t prot; 4564 vm_prot_t fault_type = fault_typea; 4565 vm_object_t eobject; 4566 vm_size_t size; 4567 struct ucred *cred; 4568 4569 RetryLookup: 4570 4571 vm_map_lock_read(map); 4572 4573 RetryLookupLocked: 4574 /* 4575 * Lookup the faulting address. 4576 */ 4577 if (!vm_map_lookup_entry(map, vaddr, out_entry)) { 4578 vm_map_unlock_read(map); 4579 return (KERN_INVALID_ADDRESS); 4580 } 4581 4582 entry = *out_entry; 4583 4584 /* 4585 * Handle submaps. 4586 */ 4587 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 4588 vm_map_t old_map = map; 4589 4590 *var_map = map = entry->object.sub_map; 4591 vm_map_unlock_read(old_map); 4592 goto RetryLookup; 4593 } 4594 4595 /* 4596 * Check whether this task is allowed to have this page. 4597 */ 4598 prot = entry->protection; 4599 if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) { 4600 fault_typea &= ~VM_PROT_FAULT_LOOKUP; 4601 if (prot == VM_PROT_NONE && map != kernel_map && 4602 (entry->eflags & MAP_ENTRY_GUARD) != 0 && 4603 (entry->eflags & (MAP_ENTRY_STACK_GAP_DN | 4604 MAP_ENTRY_STACK_GAP_UP)) != 0 && 4605 vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS) 4606 goto RetryLookupLocked; 4607 } 4608 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; 4609 if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) { 4610 vm_map_unlock_read(map); 4611 return (KERN_PROTECTION_FAILURE); 4612 } 4613 KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags & 4614 (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) != 4615 (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY), 4616 ("entry %p flags %x", entry, entry->eflags)); 4617 if ((fault_typea & VM_PROT_COPY) != 0 && 4618 (entry->max_protection & VM_PROT_WRITE) == 0 && 4619 (entry->eflags & MAP_ENTRY_COW) == 0) { 4620 vm_map_unlock_read(map); 4621 return (KERN_PROTECTION_FAILURE); 4622 } 4623 4624 /* 4625 * If this page is not pageable, we have to get it for all possible 4626 * accesses. 4627 */ 4628 *wired = (entry->wired_count != 0); 4629 if (*wired) 4630 fault_type = entry->protection; 4631 size = entry->end - entry->start; 4632 /* 4633 * If the entry was copy-on-write, we either ... 4634 */ 4635 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 4636 /* 4637 * If we want to write the page, we may as well handle that 4638 * now since we've got the map locked. 4639 * 4640 * If we don't need to write the page, we just demote the 4641 * permissions allowed. 4642 */ 4643 if ((fault_type & VM_PROT_WRITE) != 0 || 4644 (fault_typea & VM_PROT_COPY) != 0) { 4645 /* 4646 * Make a new object, and place it in the object 4647 * chain. Note that no new references have appeared 4648 * -- one just moved from the map to the new 4649 * object. 4650 */ 4651 if (vm_map_lock_upgrade(map)) 4652 goto RetryLookup; 4653 4654 if (entry->cred == NULL) { 4655 /* 4656 * The debugger owner is charged for 4657 * the memory. 4658 */ 4659 cred = curthread->td_ucred; 4660 crhold(cred); 4661 if (!swap_reserve_by_cred(size, cred)) { 4662 crfree(cred); 4663 vm_map_unlock(map); 4664 return (KERN_RESOURCE_SHORTAGE); 4665 } 4666 entry->cred = cred; 4667 } 4668 vm_object_shadow(&entry->object.vm_object, 4669 &entry->offset, size); 4670 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 4671 eobject = entry->object.vm_object; 4672 if (eobject->cred != NULL) { 4673 /* 4674 * The object was not shadowed. 4675 */ 4676 swap_release_by_cred(size, entry->cred); 4677 crfree(entry->cred); 4678 entry->cred = NULL; 4679 } else if (entry->cred != NULL) { 4680 VM_OBJECT_WLOCK(eobject); 4681 eobject->cred = entry->cred; 4682 eobject->charge = size; 4683 VM_OBJECT_WUNLOCK(eobject); 4684 entry->cred = NULL; 4685 } 4686 4687 vm_map_lock_downgrade(map); 4688 } else { 4689 /* 4690 * We're attempting to read a copy-on-write page -- 4691 * don't allow writes. 4692 */ 4693 prot &= ~VM_PROT_WRITE; 4694 } 4695 } 4696 4697 /* 4698 * Create an object if necessary. 4699 */ 4700 if (entry->object.vm_object == NULL && 4701 !map->system_map) { 4702 if (vm_map_lock_upgrade(map)) 4703 goto RetryLookup; 4704 entry->object.vm_object = vm_object_allocate_anon(atop(size)); 4705 entry->offset = 0; 4706 if (entry->cred != NULL) { 4707 VM_OBJECT_WLOCK(entry->object.vm_object); 4708 entry->object.vm_object->cred = entry->cred; 4709 entry->object.vm_object->charge = size; 4710 VM_OBJECT_WUNLOCK(entry->object.vm_object); 4711 entry->cred = NULL; 4712 } 4713 vm_map_lock_downgrade(map); 4714 } 4715 4716 /* 4717 * Return the object/offset from this entry. If the entry was 4718 * copy-on-write or empty, it has been fixed up. 4719 */ 4720 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 4721 *object = entry->object.vm_object; 4722 4723 *out_prot = prot; 4724 return (KERN_SUCCESS); 4725 } 4726 4727 /* 4728 * vm_map_lookup_locked: 4729 * 4730 * Lookup the faulting address. A version of vm_map_lookup that returns 4731 * KERN_FAILURE instead of blocking on map lock or memory allocation. 4732 */ 4733 int 4734 vm_map_lookup_locked(vm_map_t *var_map, /* IN/OUT */ 4735 vm_offset_t vaddr, 4736 vm_prot_t fault_typea, 4737 vm_map_entry_t *out_entry, /* OUT */ 4738 vm_object_t *object, /* OUT */ 4739 vm_pindex_t *pindex, /* OUT */ 4740 vm_prot_t *out_prot, /* OUT */ 4741 boolean_t *wired) /* OUT */ 4742 { 4743 vm_map_entry_t entry; 4744 vm_map_t map = *var_map; 4745 vm_prot_t prot; 4746 vm_prot_t fault_type = fault_typea; 4747 4748 /* 4749 * Lookup the faulting address. 4750 */ 4751 if (!vm_map_lookup_entry(map, vaddr, out_entry)) 4752 return (KERN_INVALID_ADDRESS); 4753 4754 entry = *out_entry; 4755 4756 /* 4757 * Fail if the entry refers to a submap. 4758 */ 4759 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 4760 return (KERN_FAILURE); 4761 4762 /* 4763 * Check whether this task is allowed to have this page. 4764 */ 4765 prot = entry->protection; 4766 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; 4767 if ((fault_type & prot) != fault_type) 4768 return (KERN_PROTECTION_FAILURE); 4769 4770 /* 4771 * If this page is not pageable, we have to get it for all possible 4772 * accesses. 4773 */ 4774 *wired = (entry->wired_count != 0); 4775 if (*wired) 4776 fault_type = entry->protection; 4777 4778 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 4779 /* 4780 * Fail if the entry was copy-on-write for a write fault. 4781 */ 4782 if (fault_type & VM_PROT_WRITE) 4783 return (KERN_FAILURE); 4784 /* 4785 * We're attempting to read a copy-on-write page -- 4786 * don't allow writes. 4787 */ 4788 prot &= ~VM_PROT_WRITE; 4789 } 4790 4791 /* 4792 * Fail if an object should be created. 4793 */ 4794 if (entry->object.vm_object == NULL && !map->system_map) 4795 return (KERN_FAILURE); 4796 4797 /* 4798 * Return the object/offset from this entry. If the entry was 4799 * copy-on-write or empty, it has been fixed up. 4800 */ 4801 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 4802 *object = entry->object.vm_object; 4803 4804 *out_prot = prot; 4805 return (KERN_SUCCESS); 4806 } 4807 4808 /* 4809 * vm_map_lookup_done: 4810 * 4811 * Releases locks acquired by a vm_map_lookup 4812 * (according to the handle returned by that lookup). 4813 */ 4814 void 4815 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry) 4816 { 4817 /* 4818 * Unlock the main-level map 4819 */ 4820 vm_map_unlock_read(map); 4821 } 4822 4823 vm_offset_t 4824 vm_map_max_KBI(const struct vm_map *map) 4825 { 4826 4827 return (vm_map_max(map)); 4828 } 4829 4830 vm_offset_t 4831 vm_map_min_KBI(const struct vm_map *map) 4832 { 4833 4834 return (vm_map_min(map)); 4835 } 4836 4837 pmap_t 4838 vm_map_pmap_KBI(vm_map_t map) 4839 { 4840 4841 return (map->pmap); 4842 } 4843 4844 #ifdef INVARIANTS 4845 static void 4846 _vm_map_assert_consistent(vm_map_t map, int check) 4847 { 4848 vm_map_entry_t entry, prev; 4849 vm_size_t max_left, max_right; 4850 4851 if (enable_vmmap_check != check) 4852 return; 4853 4854 prev = &map->header; 4855 VM_MAP_ENTRY_FOREACH(entry, map) { 4856 KASSERT(prev->end <= entry->start, 4857 ("map %p prev->end = %jx, start = %jx", map, 4858 (uintmax_t)prev->end, (uintmax_t)entry->start)); 4859 KASSERT(entry->start < entry->end, 4860 ("map %p start = %jx, end = %jx", map, 4861 (uintmax_t)entry->start, (uintmax_t)entry->end)); 4862 KASSERT(entry->end <= vm_map_entry_succ(entry)->start, 4863 ("map %p end = %jx, next->start = %jx", map, 4864 (uintmax_t)entry->end, 4865 (uintmax_t)vm_map_entry_succ(entry)->start)); 4866 KASSERT(entry->left == NULL || 4867 entry->left->start < entry->start, 4868 ("map %p left->start = %jx, start = %jx", map, 4869 (uintmax_t)entry->left->start, (uintmax_t)entry->start)); 4870 KASSERT(entry->right == NULL || 4871 entry->start < entry->right->start, 4872 ("map %p start = %jx, right->start = %jx", map, 4873 (uintmax_t)entry->start, (uintmax_t)entry->right->start)); 4874 max_left = vm_map_entry_max_free_left(entry, 4875 vm_map_entry_pred(entry)); 4876 max_right = vm_map_entry_max_free_right(entry, 4877 vm_map_entry_succ(entry)); 4878 KASSERT(entry->max_free == MAX(max_left, max_right), 4879 ("map %p max = %jx, max_left = %jx, max_right = %jx", map, 4880 (uintmax_t)entry->max_free, 4881 (uintmax_t)max_left, (uintmax_t)max_right)); 4882 prev = entry; 4883 } 4884 KASSERT(prev->end <= entry->start, 4885 ("map %p prev->end = %jx, start = %jx", map, 4886 (uintmax_t)prev->end, (uintmax_t)entry->start)); 4887 } 4888 #endif 4889 4890 #include "opt_ddb.h" 4891 #ifdef DDB 4892 #include <sys/kernel.h> 4893 4894 #include <ddb/ddb.h> 4895 4896 static void 4897 vm_map_print(vm_map_t map) 4898 { 4899 vm_map_entry_t entry, prev; 4900 4901 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 4902 (void *)map, 4903 (void *)map->pmap, map->nentries, map->timestamp); 4904 4905 db_indent += 2; 4906 prev = &map->header; 4907 VM_MAP_ENTRY_FOREACH(entry, map) { 4908 db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n", 4909 (void *)entry, (void *)entry->start, (void *)entry->end, 4910 entry->eflags); 4911 { 4912 static char *inheritance_name[4] = 4913 {"share", "copy", "none", "donate_copy"}; 4914 4915 db_iprintf(" prot=%x/%x/%s", 4916 entry->protection, 4917 entry->max_protection, 4918 inheritance_name[(int)(unsigned char) 4919 entry->inheritance]); 4920 if (entry->wired_count != 0) 4921 db_printf(", wired"); 4922 } 4923 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 4924 db_printf(", share=%p, offset=0x%jx\n", 4925 (void *)entry->object.sub_map, 4926 (uintmax_t)entry->offset); 4927 if (prev == &map->header || 4928 prev->object.sub_map != 4929 entry->object.sub_map) { 4930 db_indent += 2; 4931 vm_map_print((vm_map_t)entry->object.sub_map); 4932 db_indent -= 2; 4933 } 4934 } else { 4935 if (entry->cred != NULL) 4936 db_printf(", ruid %d", entry->cred->cr_ruid); 4937 db_printf(", object=%p, offset=0x%jx", 4938 (void *)entry->object.vm_object, 4939 (uintmax_t)entry->offset); 4940 if (entry->object.vm_object && entry->object.vm_object->cred) 4941 db_printf(", obj ruid %d charge %jx", 4942 entry->object.vm_object->cred->cr_ruid, 4943 (uintmax_t)entry->object.vm_object->charge); 4944 if (entry->eflags & MAP_ENTRY_COW) 4945 db_printf(", copy (%s)", 4946 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 4947 db_printf("\n"); 4948 4949 if (prev == &map->header || 4950 prev->object.vm_object != 4951 entry->object.vm_object) { 4952 db_indent += 2; 4953 vm_object_print((db_expr_t)(intptr_t) 4954 entry->object.vm_object, 4955 0, 0, (char *)0); 4956 db_indent -= 2; 4957 } 4958 } 4959 prev = entry; 4960 } 4961 db_indent -= 2; 4962 } 4963 4964 DB_SHOW_COMMAND(map, map) 4965 { 4966 4967 if (!have_addr) { 4968 db_printf("usage: show map <addr>\n"); 4969 return; 4970 } 4971 vm_map_print((vm_map_t)addr); 4972 } 4973 4974 DB_SHOW_COMMAND(procvm, procvm) 4975 { 4976 struct proc *p; 4977 4978 if (have_addr) { 4979 p = db_lookup_proc(addr); 4980 } else { 4981 p = curproc; 4982 } 4983 4984 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 4985 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 4986 (void *)vmspace_pmap(p->p_vmspace)); 4987 4988 vm_map_print((vm_map_t)&p->p_vmspace->vm_map); 4989 } 4990 4991 #endif /* DDB */ 4992