xref: /freebsd/sys/vm/vm_map.c (revision 99e8005137088aafb1350e23b113d69b01b0820f)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD$
65  */
66 
67 /*
68  *	Virtual memory mapping module.
69  */
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/lock.h>
74 #include <sys/mutex.h>
75 #include <sys/proc.h>
76 #include <sys/vmmeter.h>
77 #include <sys/mman.h>
78 #include <sys/vnode.h>
79 #include <sys/resourcevar.h>
80 
81 #include <vm/vm.h>
82 #include <vm/vm_param.h>
83 #include <vm/pmap.h>
84 #include <vm/vm_map.h>
85 #include <vm/vm_page.h>
86 #include <vm/vm_object.h>
87 #include <vm/vm_pager.h>
88 #include <vm/vm_kern.h>
89 #include <vm/vm_extern.h>
90 #include <vm/vm_zone.h>
91 #include <vm/swap_pager.h>
92 
93 /*
94  *	Virtual memory maps provide for the mapping, protection,
95  *	and sharing of virtual memory objects.  In addition,
96  *	this module provides for an efficient virtual copy of
97  *	memory from one map to another.
98  *
99  *	Synchronization is required prior to most operations.
100  *
101  *	Maps consist of an ordered doubly-linked list of simple
102  *	entries; a single hint is used to speed up lookups.
103  *
104  *	Since portions of maps are specified by start/end addresses,
105  *	which may not align with existing map entries, all
106  *	routines merely "clip" entries to these start/end values.
107  *	[That is, an entry is split into two, bordering at a
108  *	start or end value.]  Note that these clippings may not
109  *	always be necessary (as the two resulting entries are then
110  *	not changed); however, the clipping is done for convenience.
111  *
112  *	As mentioned above, virtual copy operations are performed
113  *	by copying VM object references from one map to
114  *	another, and then marking both regions as copy-on-write.
115  */
116 
117 /*
118  *	vm_map_startup:
119  *
120  *	Initialize the vm_map module.  Must be called before
121  *	any other vm_map routines.
122  *
123  *	Map and entry structures are allocated from the general
124  *	purpose memory pool with some exceptions:
125  *
126  *	- The kernel map and kmem submap are allocated statically.
127  *	- Kernel map entries are allocated out of a static pool.
128  *
129  *	These restrictions are necessary since malloc() uses the
130  *	maps and requires map entries.
131  */
132 
133 static struct vm_zone kmapentzone_store, mapentzone_store, mapzone_store;
134 static vm_zone_t mapentzone, kmapentzone, mapzone, vmspace_zone;
135 static struct vm_object kmapentobj, mapentobj, mapobj;
136 
137 static struct vm_map_entry map_entry_init[MAX_MAPENT];
138 static struct vm_map_entry kmap_entry_init[MAX_KMAPENT];
139 static struct vm_map map_init[MAX_KMAP];
140 
141 static void _vm_map_clip_end __P((vm_map_t, vm_map_entry_t, vm_offset_t));
142 static void _vm_map_clip_start __P((vm_map_t, vm_map_entry_t, vm_offset_t));
143 static vm_map_entry_t vm_map_entry_create __P((vm_map_t));
144 static void vm_map_entry_delete __P((vm_map_t, vm_map_entry_t));
145 static void vm_map_entry_dispose __P((vm_map_t, vm_map_entry_t));
146 static void vm_map_entry_unwire __P((vm_map_t, vm_map_entry_t));
147 static void vm_map_copy_entry __P((vm_map_t, vm_map_t, vm_map_entry_t,
148 		vm_map_entry_t));
149 static void vm_map_split __P((vm_map_entry_t));
150 
151 void
152 vm_map_startup()
153 {
154 	mapzone = &mapzone_store;
155 	zbootinit(mapzone, "MAP", sizeof (struct vm_map),
156 		map_init, MAX_KMAP);
157 	kmapentzone = &kmapentzone_store;
158 	zbootinit(kmapentzone, "KMAP ENTRY", sizeof (struct vm_map_entry),
159 		kmap_entry_init, MAX_KMAPENT);
160 	mapentzone = &mapentzone_store;
161 	zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry),
162 		map_entry_init, MAX_MAPENT);
163 }
164 
165 /*
166  * Allocate a vmspace structure, including a vm_map and pmap,
167  * and initialize those structures.  The refcnt is set to 1.
168  * The remaining fields must be initialized by the caller.
169  */
170 struct vmspace *
171 vmspace_alloc(min, max)
172 	vm_offset_t min, max;
173 {
174 	struct vmspace *vm;
175 
176 	mtx_assert(&vm_mtx, MA_OWNED);
177 	vm = zalloc(vmspace_zone);
178 	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
179 	vm_map_init(&vm->vm_map, min, max);
180 	pmap_pinit(vmspace_pmap(vm));
181 	vm->vm_map.pmap = vmspace_pmap(vm);		/* XXX */
182 	vm->vm_refcnt = 1;
183 	vm->vm_shm = NULL;
184 	return (vm);
185 }
186 
187 void
188 vm_init2(void) {
189 	zinitna(kmapentzone, &kmapentobj,
190 		NULL, 0, cnt.v_page_count / 4, ZONE_INTERRUPT, 1);
191 	zinitna(mapentzone, &mapentobj,
192 		NULL, 0, 0, 0, 1);
193 	zinitna(mapzone, &mapobj,
194 		NULL, 0, 0, 0, 1);
195 	vmspace_zone = zinit("VMSPACE", sizeof (struct vmspace), 0, 0, 3);
196 	pmap_init2();
197 	vm_object_init2();
198 }
199 
200 void
201 vmspace_free(vm)
202 	struct vmspace *vm;
203 {
204 
205 	mtx_assert(&vm_mtx, MA_OWNED);
206 	if (vm->vm_refcnt == 0)
207 		panic("vmspace_free: attempt to free already freed vmspace");
208 
209 	if (--vm->vm_refcnt == 0) {
210 
211 		CTR1(KTR_VM, "vmspace_free: %p", vm);
212 		/*
213 		 * Lock the map, to wait out all other references to it.
214 		 * Delete all of the mappings and pages they hold, then call
215 		 * the pmap module to reclaim anything left.
216 		 */
217 		vm_map_lock(&vm->vm_map);
218 		(void) vm_map_delete(&vm->vm_map, vm->vm_map.min_offset,
219 		    vm->vm_map.max_offset);
220 		vm_map_unlock(&vm->vm_map);
221 
222 		pmap_release(vmspace_pmap(vm));
223 		vm_map_destroy(&vm->vm_map);
224 		zfree(vmspace_zone, vm);
225 	}
226 }
227 
228 /*
229  *	vm_map_create:
230  *
231  *	Creates and returns a new empty VM map with
232  *	the given physical map structure, and having
233  *	the given lower and upper address bounds.
234  */
235 vm_map_t
236 vm_map_create(pmap, min, max)
237 	pmap_t pmap;
238 	vm_offset_t min, max;
239 {
240 	vm_map_t result;
241 
242 	mtx_assert(&vm_mtx, MA_OWNED);
243 	result = zalloc(mapzone);
244 	CTR1(KTR_VM, "vm_map_create: %p", result);
245 	vm_map_init(result, min, max);
246 	result->pmap = pmap;
247 	return (result);
248 }
249 
250 /*
251  * Initialize an existing vm_map structure
252  * such as that in the vmspace structure.
253  * The pmap is set elsewhere.
254  */
255 void
256 vm_map_init(map, min, max)
257 	struct vm_map *map;
258 	vm_offset_t min, max;
259 {
260 
261 	mtx_assert(&vm_mtx, MA_OWNED);
262 	map->header.next = map->header.prev = &map->header;
263 	map->nentries = 0;
264 	map->size = 0;
265 	map->system_map = 0;
266 	map->infork = 0;
267 	map->min_offset = min;
268 	map->max_offset = max;
269 	map->first_free = &map->header;
270 	map->hint = &map->header;
271 	map->timestamp = 0;
272 	lockinit(&map->lock, PVM, "thrd_sleep", 0, LK_NOPAUSE);
273 }
274 
275 void
276 vm_map_destroy(map)
277 	struct vm_map *map;
278 {
279 
280 	mtx_assert(&vm_mtx, MA_OWNED);
281 	lockdestroy(&map->lock);
282 }
283 
284 /*
285  *	vm_map_entry_dispose:	[ internal use only ]
286  *
287  *	Inverse of vm_map_entry_create.
288  */
289 static void
290 vm_map_entry_dispose(map, entry)
291 	vm_map_t map;
292 	vm_map_entry_t entry;
293 {
294 	zfree((map->system_map || !mapentzone) ? kmapentzone : mapentzone, entry);
295 }
296 
297 /*
298  *	vm_map_entry_create:	[ internal use only ]
299  *
300  *	Allocates a VM map entry for insertion.
301  *	No entry fields are filled in.
302  */
303 static vm_map_entry_t
304 vm_map_entry_create(map)
305 	vm_map_t map;
306 {
307 	vm_map_entry_t new_entry;
308 
309 	new_entry = zalloc((map->system_map || !mapentzone) ?
310 		kmapentzone : mapentzone);
311 	if (new_entry == NULL)
312 	    panic("vm_map_entry_create: kernel resources exhausted");
313 	return(new_entry);
314 }
315 
316 /*
317  *	vm_map_entry_{un,}link:
318  *
319  *	Insert/remove entries from maps.
320  */
321 static __inline void
322 vm_map_entry_link(vm_map_t map,
323 		  vm_map_entry_t after_where,
324 		  vm_map_entry_t entry)
325 {
326 
327 	CTR4(KTR_VM,
328 	    "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
329 	    map->nentries, entry, after_where);
330 	map->nentries++;
331 	entry->prev = after_where;
332 	entry->next = after_where->next;
333 	entry->next->prev = entry;
334 	after_where->next = entry;
335 }
336 
337 static __inline void
338 vm_map_entry_unlink(vm_map_t map,
339 		    vm_map_entry_t entry)
340 {
341 	vm_map_entry_t prev = entry->prev;
342 	vm_map_entry_t next = entry->next;
343 
344 	next->prev = prev;
345 	prev->next = next;
346 	map->nentries--;
347 	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
348 	    map->nentries, entry);
349 }
350 
351 /*
352  *	SAVE_HINT:
353  *
354  *	Saves the specified entry as the hint for
355  *	future lookups.
356  */
357 #define	SAVE_HINT(map,value) \
358 		(map)->hint = (value);
359 
360 /*
361  *	vm_map_lookup_entry:	[ internal use only ]
362  *
363  *	Finds the map entry containing (or
364  *	immediately preceding) the specified address
365  *	in the given map; the entry is returned
366  *	in the "entry" parameter.  The boolean
367  *	result indicates whether the address is
368  *	actually contained in the map.
369  *
370  *	Doesn't block.
371  */
372 boolean_t
373 vm_map_lookup_entry(map, address, entry)
374 	vm_map_t map;
375 	vm_offset_t address;
376 	vm_map_entry_t *entry;	/* OUT */
377 {
378 	vm_map_entry_t cur;
379 	vm_map_entry_t last;
380 
381 	mtx_assert(&vm_mtx, MA_OWNED);
382 	/*
383 	 * Start looking either from the head of the list, or from the hint.
384 	 */
385 
386 	cur = map->hint;
387 
388 	if (cur == &map->header)
389 		cur = cur->next;
390 
391 	if (address >= cur->start) {
392 		/*
393 		 * Go from hint to end of list.
394 		 *
395 		 * But first, make a quick check to see if we are already looking
396 		 * at the entry we want (which is usually the case). Note also
397 		 * that we don't need to save the hint here... it is the same
398 		 * hint (unless we are at the header, in which case the hint
399 		 * didn't buy us anything anyway).
400 		 */
401 		last = &map->header;
402 		if ((cur != last) && (cur->end > address)) {
403 			*entry = cur;
404 			return (TRUE);
405 		}
406 	} else {
407 		/*
408 		 * Go from start to hint, *inclusively*
409 		 */
410 		last = cur->next;
411 		cur = map->header.next;
412 	}
413 
414 	/*
415 	 * Search linearly
416 	 */
417 
418 	while (cur != last) {
419 		if (cur->end > address) {
420 			if (address >= cur->start) {
421 				/*
422 				 * Save this lookup for future hints, and
423 				 * return
424 				 */
425 
426 				*entry = cur;
427 				SAVE_HINT(map, cur);
428 				return (TRUE);
429 			}
430 			break;
431 		}
432 		cur = cur->next;
433 	}
434 	*entry = cur->prev;
435 	SAVE_HINT(map, *entry);
436 	return (FALSE);
437 }
438 
439 /*
440  *	vm_map_insert:
441  *
442  *	Inserts the given whole VM object into the target
443  *	map at the specified address range.  The object's
444  *	size should match that of the address range.
445  *
446  *	Requires that the map be locked, and leaves it so.
447  *
448  *	If object is non-NULL, ref count must be bumped by caller
449  *	prior to making call to account for the new entry.
450  */
451 int
452 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
453 	      vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max,
454 	      int cow)
455 {
456 	vm_map_entry_t new_entry;
457 	vm_map_entry_t prev_entry;
458 	vm_map_entry_t temp_entry;
459 	vm_eflags_t protoeflags;
460 
461 	mtx_assert(&vm_mtx, MA_OWNED);
462 	/*
463 	 * Check that the start and end points are not bogus.
464 	 */
465 
466 	if ((start < map->min_offset) || (end > map->max_offset) ||
467 	    (start >= end))
468 		return (KERN_INVALID_ADDRESS);
469 
470 	/*
471 	 * Find the entry prior to the proposed starting address; if it's part
472 	 * of an existing entry, this range is bogus.
473 	 */
474 
475 	if (vm_map_lookup_entry(map, start, &temp_entry))
476 		return (KERN_NO_SPACE);
477 
478 	prev_entry = temp_entry;
479 
480 	/*
481 	 * Assert that the next entry doesn't overlap the end point.
482 	 */
483 
484 	if ((prev_entry->next != &map->header) &&
485 	    (prev_entry->next->start < end))
486 		return (KERN_NO_SPACE);
487 
488 	protoeflags = 0;
489 
490 	if (cow & MAP_COPY_ON_WRITE)
491 		protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
492 
493 	if (cow & MAP_NOFAULT) {
494 		protoeflags |= MAP_ENTRY_NOFAULT;
495 
496 		KASSERT(object == NULL,
497 			("vm_map_insert: paradoxical MAP_NOFAULT request"));
498 	}
499 	if (cow & MAP_DISABLE_SYNCER)
500 		protoeflags |= MAP_ENTRY_NOSYNC;
501 	if (cow & MAP_DISABLE_COREDUMP)
502 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
503 
504 	if (object) {
505 		/*
506 		 * When object is non-NULL, it could be shared with another
507 		 * process.  We have to set or clear OBJ_ONEMAPPING
508 		 * appropriately.
509 		 */
510 		if ((object->ref_count > 1) || (object->shadow_count != 0)) {
511 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
512 		}
513 	}
514 	else if ((prev_entry != &map->header) &&
515 		 (prev_entry->eflags == protoeflags) &&
516 		 (prev_entry->end == start) &&
517 		 (prev_entry->wired_count == 0) &&
518 		 ((prev_entry->object.vm_object == NULL) ||
519 		  vm_object_coalesce(prev_entry->object.vm_object,
520 				     OFF_TO_IDX(prev_entry->offset),
521 				     (vm_size_t)(prev_entry->end - prev_entry->start),
522 				     (vm_size_t)(end - prev_entry->end)))) {
523 		/*
524 		 * We were able to extend the object.  Determine if we
525 		 * can extend the previous map entry to include the
526 		 * new range as well.
527 		 */
528 		if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
529 		    (prev_entry->protection == prot) &&
530 		    (prev_entry->max_protection == max)) {
531 			map->size += (end - prev_entry->end);
532 			prev_entry->end = end;
533 			vm_map_simplify_entry(map, prev_entry);
534 			return (KERN_SUCCESS);
535 		}
536 
537 		/*
538 		 * If we can extend the object but cannot extend the
539 		 * map entry, we have to create a new map entry.  We
540 		 * must bump the ref count on the extended object to
541 		 * account for it.  object may be NULL.
542 		 */
543 		object = prev_entry->object.vm_object;
544 		offset = prev_entry->offset +
545 			(prev_entry->end - prev_entry->start);
546 		vm_object_reference(object);
547 	}
548 
549 	/*
550 	 * NOTE: if conditionals fail, object can be NULL here.  This occurs
551 	 * in things like the buffer map where we manage kva but do not manage
552 	 * backing objects.
553 	 */
554 
555 	/*
556 	 * Create a new entry
557 	 */
558 
559 	new_entry = vm_map_entry_create(map);
560 	new_entry->start = start;
561 	new_entry->end = end;
562 
563 	new_entry->eflags = protoeflags;
564 	new_entry->object.vm_object = object;
565 	new_entry->offset = offset;
566 	new_entry->avail_ssize = 0;
567 
568 	new_entry->inheritance = VM_INHERIT_DEFAULT;
569 	new_entry->protection = prot;
570 	new_entry->max_protection = max;
571 	new_entry->wired_count = 0;
572 
573 	/*
574 	 * Insert the new entry into the list
575 	 */
576 
577 	vm_map_entry_link(map, prev_entry, new_entry);
578 	map->size += new_entry->end - new_entry->start;
579 
580 	/*
581 	 * Update the free space hint
582 	 */
583 	if ((map->first_free == prev_entry) &&
584 	    (prev_entry->end >= new_entry->start)) {
585 		map->first_free = new_entry;
586 	}
587 
588 #if 0
589 	/*
590 	 * Temporarily removed to avoid MAP_STACK panic, due to
591 	 * MAP_STACK being a huge hack.  Will be added back in
592 	 * when MAP_STACK (and the user stack mapping) is fixed.
593 	 */
594 	/*
595 	 * It may be possible to simplify the entry
596 	 */
597 	vm_map_simplify_entry(map, new_entry);
598 #endif
599 
600 	if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
601 		pmap_object_init_pt(map->pmap, start,
602 				    object, OFF_TO_IDX(offset), end - start,
603 				    cow & MAP_PREFAULT_PARTIAL);
604 	}
605 
606 	return (KERN_SUCCESS);
607 }
608 
609 /*
610  * Find sufficient space for `length' bytes in the given map, starting at
611  * `start'.  The map must be locked.  Returns 0 on success, 1 on no space.
612  */
613 int
614 vm_map_findspace(map, start, length, addr)
615 	vm_map_t map;
616 	vm_offset_t start;
617 	vm_size_t length;
618 	vm_offset_t *addr;
619 {
620 	vm_map_entry_t entry, next;
621 	vm_offset_t end;
622 
623 	mtx_assert(&vm_mtx, MA_OWNED);
624 	if (start < map->min_offset)
625 		start = map->min_offset;
626 	if (start > map->max_offset)
627 		return (1);
628 
629 	/*
630 	 * Look for the first possible address; if there's already something
631 	 * at this address, we have to start after it.
632 	 */
633 	if (start == map->min_offset) {
634 		if ((entry = map->first_free) != &map->header)
635 			start = entry->end;
636 	} else {
637 		vm_map_entry_t tmp;
638 
639 		if (vm_map_lookup_entry(map, start, &tmp))
640 			start = tmp->end;
641 		entry = tmp;
642 	}
643 
644 	/*
645 	 * Look through the rest of the map, trying to fit a new region in the
646 	 * gap between existing regions, or after the very last region.
647 	 */
648 	for (;; start = (entry = next)->end) {
649 		/*
650 		 * Find the end of the proposed new region.  Be sure we didn't
651 		 * go beyond the end of the map, or wrap around the address;
652 		 * if so, we lose.  Otherwise, if this is the last entry, or
653 		 * if the proposed new region fits before the next entry, we
654 		 * win.
655 		 */
656 		end = start + length;
657 		if (end > map->max_offset || end < start)
658 			return (1);
659 		next = entry->next;
660 		if (next == &map->header || next->start >= end)
661 			break;
662 	}
663 	SAVE_HINT(map, entry);
664 	*addr = start;
665 	if (map == kernel_map) {
666 		vm_offset_t ksize;
667 		if ((ksize = round_page(start + length)) > kernel_vm_end) {
668 			pmap_growkernel(ksize);
669 		}
670 	}
671 	return (0);
672 }
673 
674 /*
675  *	vm_map_find finds an unallocated region in the target address
676  *	map with the given length.  The search is defined to be
677  *	first-fit from the specified address; the region found is
678  *	returned in the same parameter.
679  *
680  *	If object is non-NULL, ref count must be bumped by caller
681  *	prior to making call to account for the new entry.
682  */
683 int
684 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
685 	    vm_offset_t *addr,	/* IN/OUT */
686 	    vm_size_t length, boolean_t find_space, vm_prot_t prot,
687 	    vm_prot_t max, int cow)
688 {
689 	vm_offset_t start;
690 	int result, s = 0;
691 
692 	mtx_assert(&vm_mtx, MA_OWNED);
693 	start = *addr;
694 
695 	if (map == kmem_map || map == mb_map)
696 		s = splvm();
697 
698 	vm_map_lock(map);
699 	if (find_space) {
700 		if (vm_map_findspace(map, start, length, addr)) {
701 			vm_map_unlock(map);
702 			if (map == kmem_map || map == mb_map)
703 				splx(s);
704 			return (KERN_NO_SPACE);
705 		}
706 		start = *addr;
707 	}
708 	result = vm_map_insert(map, object, offset,
709 		start, start + length, prot, max, cow);
710 	vm_map_unlock(map);
711 
712 	if (map == kmem_map || map == mb_map)
713 		splx(s);
714 
715 	return (result);
716 }
717 
718 /*
719  *	vm_map_simplify_entry:
720  *
721  *	Simplify the given map entry by merging with either neighbor.  This
722  *	routine also has the ability to merge with both neighbors.
723  *
724  *	The map must be locked.
725  *
726  *	This routine guarentees that the passed entry remains valid (though
727  *	possibly extended).  When merging, this routine may delete one or
728  *	both neighbors.
729  */
730 void
731 vm_map_simplify_entry(map, entry)
732 	vm_map_t map;
733 	vm_map_entry_t entry;
734 {
735 	vm_map_entry_t next, prev;
736 	vm_size_t prevsize, esize;
737 
738 	mtx_assert(&vm_mtx, MA_OWNED);
739 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
740 		return;
741 
742 	prev = entry->prev;
743 	if (prev != &map->header) {
744 		prevsize = prev->end - prev->start;
745 		if ( (prev->end == entry->start) &&
746 		     (prev->object.vm_object == entry->object.vm_object) &&
747 		     (!prev->object.vm_object ||
748 			(prev->offset + prevsize == entry->offset)) &&
749 		     (prev->eflags == entry->eflags) &&
750 		     (prev->protection == entry->protection) &&
751 		     (prev->max_protection == entry->max_protection) &&
752 		     (prev->inheritance == entry->inheritance) &&
753 		     (prev->wired_count == entry->wired_count)) {
754 			if (map->first_free == prev)
755 				map->first_free = entry;
756 			if (map->hint == prev)
757 				map->hint = entry;
758 			vm_map_entry_unlink(map, prev);
759 			entry->start = prev->start;
760 			entry->offset = prev->offset;
761 			if (prev->object.vm_object)
762 				vm_object_deallocate(prev->object.vm_object);
763 			vm_map_entry_dispose(map, prev);
764 		}
765 	}
766 
767 	next = entry->next;
768 	if (next != &map->header) {
769 		esize = entry->end - entry->start;
770 		if ((entry->end == next->start) &&
771 		    (next->object.vm_object == entry->object.vm_object) &&
772 		     (!entry->object.vm_object ||
773 			(entry->offset + esize == next->offset)) &&
774 		    (next->eflags == entry->eflags) &&
775 		    (next->protection == entry->protection) &&
776 		    (next->max_protection == entry->max_protection) &&
777 		    (next->inheritance == entry->inheritance) &&
778 		    (next->wired_count == entry->wired_count)) {
779 			if (map->first_free == next)
780 				map->first_free = entry;
781 			if (map->hint == next)
782 				map->hint = entry;
783 			vm_map_entry_unlink(map, next);
784 			entry->end = next->end;
785 			if (next->object.vm_object)
786 				vm_object_deallocate(next->object.vm_object);
787 			vm_map_entry_dispose(map, next);
788 	        }
789 	}
790 }
791 /*
792  *	vm_map_clip_start:	[ internal use only ]
793  *
794  *	Asserts that the given entry begins at or after
795  *	the specified address; if necessary,
796  *	it splits the entry into two.
797  */
798 #define vm_map_clip_start(map, entry, startaddr) \
799 { \
800 	if (startaddr > entry->start) \
801 		_vm_map_clip_start(map, entry, startaddr); \
802 }
803 
804 /*
805  *	This routine is called only when it is known that
806  *	the entry must be split.
807  */
808 static void
809 _vm_map_clip_start(map, entry, start)
810 	vm_map_t map;
811 	vm_map_entry_t entry;
812 	vm_offset_t start;
813 {
814 	vm_map_entry_t new_entry;
815 
816 	/*
817 	 * Split off the front portion -- note that we must insert the new
818 	 * entry BEFORE this one, so that this entry has the specified
819 	 * starting address.
820 	 */
821 
822 	vm_map_simplify_entry(map, entry);
823 
824 	/*
825 	 * If there is no object backing this entry, we might as well create
826 	 * one now.  If we defer it, an object can get created after the map
827 	 * is clipped, and individual objects will be created for the split-up
828 	 * map.  This is a bit of a hack, but is also about the best place to
829 	 * put this improvement.
830 	 */
831 
832 	if (entry->object.vm_object == NULL && !map->system_map) {
833 		vm_object_t object;
834 		object = vm_object_allocate(OBJT_DEFAULT,
835 				atop(entry->end - entry->start));
836 		entry->object.vm_object = object;
837 		entry->offset = 0;
838 	}
839 
840 	new_entry = vm_map_entry_create(map);
841 	*new_entry = *entry;
842 
843 	new_entry->end = start;
844 	entry->offset += (start - entry->start);
845 	entry->start = start;
846 
847 	vm_map_entry_link(map, entry->prev, new_entry);
848 
849 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
850 		vm_object_reference(new_entry->object.vm_object);
851 	}
852 }
853 
854 /*
855  *	vm_map_clip_end:	[ internal use only ]
856  *
857  *	Asserts that the given entry ends at or before
858  *	the specified address; if necessary,
859  *	it splits the entry into two.
860  */
861 
862 #define vm_map_clip_end(map, entry, endaddr) \
863 { \
864 	if (endaddr < entry->end) \
865 		_vm_map_clip_end(map, entry, endaddr); \
866 }
867 
868 /*
869  *	This routine is called only when it is known that
870  *	the entry must be split.
871  */
872 static void
873 _vm_map_clip_end(map, entry, end)
874 	vm_map_t map;
875 	vm_map_entry_t entry;
876 	vm_offset_t end;
877 {
878 	vm_map_entry_t new_entry;
879 
880 	/*
881 	 * If there is no object backing this entry, we might as well create
882 	 * one now.  If we defer it, an object can get created after the map
883 	 * is clipped, and individual objects will be created for the split-up
884 	 * map.  This is a bit of a hack, but is also about the best place to
885 	 * put this improvement.
886 	 */
887 
888 	if (entry->object.vm_object == NULL && !map->system_map) {
889 		vm_object_t object;
890 		object = vm_object_allocate(OBJT_DEFAULT,
891 				atop(entry->end - entry->start));
892 		entry->object.vm_object = object;
893 		entry->offset = 0;
894 	}
895 
896 	/*
897 	 * Create a new entry and insert it AFTER the specified entry
898 	 */
899 
900 	new_entry = vm_map_entry_create(map);
901 	*new_entry = *entry;
902 
903 	new_entry->start = entry->end = end;
904 	new_entry->offset += (end - entry->start);
905 
906 	vm_map_entry_link(map, entry, new_entry);
907 
908 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
909 		vm_object_reference(new_entry->object.vm_object);
910 	}
911 }
912 
913 /*
914  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
915  *
916  *	Asserts that the starting and ending region
917  *	addresses fall within the valid range of the map.
918  */
919 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
920 		{					\
921 		if (start < vm_map_min(map))		\
922 			start = vm_map_min(map);	\
923 		if (end > vm_map_max(map))		\
924 			end = vm_map_max(map);		\
925 		if (start > end)			\
926 			start = end;			\
927 		}
928 
929 /*
930  *	vm_map_submap:		[ kernel use only ]
931  *
932  *	Mark the given range as handled by a subordinate map.
933  *
934  *	This range must have been created with vm_map_find,
935  *	and no other operations may have been performed on this
936  *	range prior to calling vm_map_submap.
937  *
938  *	Only a limited number of operations can be performed
939  *	within this rage after calling vm_map_submap:
940  *		vm_fault
941  *	[Don't try vm_map_copy!]
942  *
943  *	To remove a submapping, one must first remove the
944  *	range from the superior map, and then destroy the
945  *	submap (if desired).  [Better yet, don't try it.]
946  */
947 int
948 vm_map_submap(map, start, end, submap)
949 	vm_map_t map;
950 	vm_offset_t start;
951 	vm_offset_t end;
952 	vm_map_t submap;
953 {
954 	vm_map_entry_t entry;
955 	int result = KERN_INVALID_ARGUMENT;
956 
957 	mtx_assert(&vm_mtx, MA_OWNED);
958 	vm_map_lock(map);
959 
960 	VM_MAP_RANGE_CHECK(map, start, end);
961 
962 	if (vm_map_lookup_entry(map, start, &entry)) {
963 		vm_map_clip_start(map, entry, start);
964 	} else
965 		entry = entry->next;
966 
967 	vm_map_clip_end(map, entry, end);
968 
969 	if ((entry->start == start) && (entry->end == end) &&
970 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
971 	    (entry->object.vm_object == NULL)) {
972 		entry->object.sub_map = submap;
973 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
974 		result = KERN_SUCCESS;
975 	}
976 	vm_map_unlock(map);
977 
978 	return (result);
979 }
980 
981 /*
982  *	vm_map_protect:
983  *
984  *	Sets the protection of the specified address
985  *	region in the target map.  If "set_max" is
986  *	specified, the maximum protection is to be set;
987  *	otherwise, only the current protection is affected.
988  */
989 int
990 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
991 	       vm_prot_t new_prot, boolean_t set_max)
992 {
993 	vm_map_entry_t current;
994 	vm_map_entry_t entry;
995 
996 	mtx_assert(&vm_mtx, MA_OWNED);
997 	vm_map_lock(map);
998 
999 	VM_MAP_RANGE_CHECK(map, start, end);
1000 
1001 	if (vm_map_lookup_entry(map, start, &entry)) {
1002 		vm_map_clip_start(map, entry, start);
1003 	} else {
1004 		entry = entry->next;
1005 	}
1006 
1007 	/*
1008 	 * Make a first pass to check for protection violations.
1009 	 */
1010 
1011 	current = entry;
1012 	while ((current != &map->header) && (current->start < end)) {
1013 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1014 			vm_map_unlock(map);
1015 			return (KERN_INVALID_ARGUMENT);
1016 		}
1017 		if ((new_prot & current->max_protection) != new_prot) {
1018 			vm_map_unlock(map);
1019 			return (KERN_PROTECTION_FAILURE);
1020 		}
1021 		current = current->next;
1022 	}
1023 
1024 	/*
1025 	 * Go back and fix up protections. [Note that clipping is not
1026 	 * necessary the second time.]
1027 	 */
1028 
1029 	current = entry;
1030 
1031 	while ((current != &map->header) && (current->start < end)) {
1032 		vm_prot_t old_prot;
1033 
1034 		vm_map_clip_end(map, current, end);
1035 
1036 		old_prot = current->protection;
1037 		if (set_max)
1038 			current->protection =
1039 			    (current->max_protection = new_prot) &
1040 			    old_prot;
1041 		else
1042 			current->protection = new_prot;
1043 
1044 		/*
1045 		 * Update physical map if necessary. Worry about copy-on-write
1046 		 * here -- CHECK THIS XXX
1047 		 */
1048 
1049 		if (current->protection != old_prot) {
1050 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1051 							VM_PROT_ALL)
1052 
1053 			pmap_protect(map->pmap, current->start,
1054 			    current->end,
1055 			    current->protection & MASK(current));
1056 #undef	MASK
1057 		}
1058 
1059 		vm_map_simplify_entry(map, current);
1060 
1061 		current = current->next;
1062 	}
1063 
1064 	vm_map_unlock(map);
1065 	return (KERN_SUCCESS);
1066 }
1067 
1068 /*
1069  *	vm_map_madvise:
1070  *
1071  * 	This routine traverses a processes map handling the madvise
1072  *	system call.  Advisories are classified as either those effecting
1073  *	the vm_map_entry structure, or those effecting the underlying
1074  *	objects.
1075  */
1076 
1077 int
1078 vm_map_madvise(map, start, end, behav)
1079 	vm_map_t map;
1080 	vm_offset_t start, end;
1081 	int behav;
1082 {
1083 	vm_map_entry_t current, entry;
1084 	int modify_map = 0;
1085 
1086 	mtx_assert(&vm_mtx, MA_OWNED);
1087 	/*
1088 	 * Some madvise calls directly modify the vm_map_entry, in which case
1089 	 * we need to use an exclusive lock on the map and we need to perform
1090 	 * various clipping operations.  Otherwise we only need a read-lock
1091 	 * on the map.
1092 	 */
1093 
1094 	switch(behav) {
1095 	case MADV_NORMAL:
1096 	case MADV_SEQUENTIAL:
1097 	case MADV_RANDOM:
1098 	case MADV_NOSYNC:
1099 	case MADV_AUTOSYNC:
1100 	case MADV_NOCORE:
1101 	case MADV_CORE:
1102 		modify_map = 1;
1103 		vm_map_lock(map);
1104 		break;
1105 	case MADV_WILLNEED:
1106 	case MADV_DONTNEED:
1107 	case MADV_FREE:
1108 		vm_map_lock_read(map);
1109 		break;
1110 	default:
1111 		return (KERN_INVALID_ARGUMENT);
1112 	}
1113 
1114 	/*
1115 	 * Locate starting entry and clip if necessary.
1116 	 */
1117 
1118 	VM_MAP_RANGE_CHECK(map, start, end);
1119 
1120 	if (vm_map_lookup_entry(map, start, &entry)) {
1121 		if (modify_map)
1122 			vm_map_clip_start(map, entry, start);
1123 	} else {
1124 		entry = entry->next;
1125 	}
1126 
1127 	if (modify_map) {
1128 		/*
1129 		 * madvise behaviors that are implemented in the vm_map_entry.
1130 		 *
1131 		 * We clip the vm_map_entry so that behavioral changes are
1132 		 * limited to the specified address range.
1133 		 */
1134 		for (current = entry;
1135 		     (current != &map->header) && (current->start < end);
1136 		     current = current->next
1137 		) {
1138 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
1139 				continue;
1140 
1141 			vm_map_clip_end(map, current, end);
1142 
1143 			switch (behav) {
1144 			case MADV_NORMAL:
1145 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
1146 				break;
1147 			case MADV_SEQUENTIAL:
1148 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
1149 				break;
1150 			case MADV_RANDOM:
1151 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
1152 				break;
1153 			case MADV_NOSYNC:
1154 				current->eflags |= MAP_ENTRY_NOSYNC;
1155 				break;
1156 			case MADV_AUTOSYNC:
1157 				current->eflags &= ~MAP_ENTRY_NOSYNC;
1158 				break;
1159 			case MADV_NOCORE:
1160 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
1161 				break;
1162 			case MADV_CORE:
1163 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
1164 				break;
1165 			default:
1166 				break;
1167 			}
1168 			vm_map_simplify_entry(map, current);
1169 		}
1170 		vm_map_unlock(map);
1171 	} else {
1172 		vm_pindex_t pindex;
1173 		int count;
1174 
1175 		/*
1176 		 * madvise behaviors that are implemented in the underlying
1177 		 * vm_object.
1178 		 *
1179 		 * Since we don't clip the vm_map_entry, we have to clip
1180 		 * the vm_object pindex and count.
1181 		 */
1182 		for (current = entry;
1183 		     (current != &map->header) && (current->start < end);
1184 		     current = current->next
1185 		) {
1186 			vm_offset_t useStart;
1187 
1188 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
1189 				continue;
1190 
1191 			pindex = OFF_TO_IDX(current->offset);
1192 			count = atop(current->end - current->start);
1193 			useStart = current->start;
1194 
1195 			if (current->start < start) {
1196 				pindex += atop(start - current->start);
1197 				count -= atop(start - current->start);
1198 				useStart = start;
1199 			}
1200 			if (current->end > end)
1201 				count -= atop(current->end - end);
1202 
1203 			if (count <= 0)
1204 				continue;
1205 
1206 			vm_object_madvise(current->object.vm_object,
1207 					  pindex, count, behav);
1208 			if (behav == MADV_WILLNEED) {
1209 				pmap_object_init_pt(
1210 				    map->pmap,
1211 				    useStart,
1212 				    current->object.vm_object,
1213 				    pindex,
1214 				    (count << PAGE_SHIFT),
1215 				    0
1216 				);
1217 			}
1218 		}
1219 		vm_map_unlock_read(map);
1220 	}
1221 	return(0);
1222 }
1223 
1224 
1225 /*
1226  *	vm_map_inherit:
1227  *
1228  *	Sets the inheritance of the specified address
1229  *	range in the target map.  Inheritance
1230  *	affects how the map will be shared with
1231  *	child maps at the time of vm_map_fork.
1232  */
1233 int
1234 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
1235 	       vm_inherit_t new_inheritance)
1236 {
1237 	vm_map_entry_t entry;
1238 	vm_map_entry_t temp_entry;
1239 
1240 	mtx_assert(&vm_mtx, MA_OWNED);
1241 	switch (new_inheritance) {
1242 	case VM_INHERIT_NONE:
1243 	case VM_INHERIT_COPY:
1244 	case VM_INHERIT_SHARE:
1245 		break;
1246 	default:
1247 		return (KERN_INVALID_ARGUMENT);
1248 	}
1249 
1250 	vm_map_lock(map);
1251 
1252 	VM_MAP_RANGE_CHECK(map, start, end);
1253 
1254 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
1255 		entry = temp_entry;
1256 		vm_map_clip_start(map, entry, start);
1257 	} else
1258 		entry = temp_entry->next;
1259 
1260 	while ((entry != &map->header) && (entry->start < end)) {
1261 		vm_map_clip_end(map, entry, end);
1262 
1263 		entry->inheritance = new_inheritance;
1264 
1265 		vm_map_simplify_entry(map, entry);
1266 
1267 		entry = entry->next;
1268 	}
1269 
1270 	vm_map_unlock(map);
1271 	return (KERN_SUCCESS);
1272 }
1273 
1274 /*
1275  * Implement the semantics of mlock
1276  */
1277 int
1278 vm_map_user_pageable(map, start, end, new_pageable)
1279 	vm_map_t map;
1280 	vm_offset_t start;
1281 	vm_offset_t end;
1282 	boolean_t new_pageable;
1283 {
1284 	vm_map_entry_t entry;
1285 	vm_map_entry_t start_entry;
1286 	vm_offset_t estart;
1287 	int rv;
1288 
1289 	vm_map_lock(map);
1290 	VM_MAP_RANGE_CHECK(map, start, end);
1291 
1292 	if (vm_map_lookup_entry(map, start, &start_entry) == FALSE) {
1293 		vm_map_unlock(map);
1294 		return (KERN_INVALID_ADDRESS);
1295 	}
1296 
1297 	if (new_pageable) {
1298 
1299 		entry = start_entry;
1300 		vm_map_clip_start(map, entry, start);
1301 
1302 		/*
1303 		 * Now decrement the wiring count for each region. If a region
1304 		 * becomes completely unwired, unwire its physical pages and
1305 		 * mappings.
1306 		 */
1307 		while ((entry != &map->header) && (entry->start < end)) {
1308 			if (entry->eflags & MAP_ENTRY_USER_WIRED) {
1309 				vm_map_clip_end(map, entry, end);
1310 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
1311 				entry->wired_count--;
1312 				if (entry->wired_count == 0)
1313 					vm_fault_unwire(map, entry->start, entry->end);
1314 			}
1315 			vm_map_simplify_entry(map,entry);
1316 			entry = entry->next;
1317 		}
1318 	} else {
1319 
1320 		entry = start_entry;
1321 
1322 		while ((entry != &map->header) && (entry->start < end)) {
1323 
1324 			if (entry->eflags & MAP_ENTRY_USER_WIRED) {
1325 				entry = entry->next;
1326 				continue;
1327 			}
1328 
1329 			if (entry->wired_count != 0) {
1330 				entry->wired_count++;
1331 				entry->eflags |= MAP_ENTRY_USER_WIRED;
1332 				entry = entry->next;
1333 				continue;
1334 			}
1335 
1336 			/* Here on entry being newly wired */
1337 
1338 			if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1339 				int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
1340 				if (copyflag && ((entry->protection & VM_PROT_WRITE) != 0)) {
1341 
1342 					vm_object_shadow(&entry->object.vm_object,
1343 					    &entry->offset,
1344 					    atop(entry->end - entry->start));
1345 					entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
1346 
1347 				} else if (entry->object.vm_object == NULL &&
1348 					   !map->system_map) {
1349 
1350 					entry->object.vm_object =
1351 					    vm_object_allocate(OBJT_DEFAULT,
1352 						atop(entry->end - entry->start));
1353 					entry->offset = (vm_offset_t) 0;
1354 
1355 				}
1356 			}
1357 
1358 			vm_map_clip_start(map, entry, start);
1359 			vm_map_clip_end(map, entry, end);
1360 
1361 			entry->wired_count++;
1362 			entry->eflags |= MAP_ENTRY_USER_WIRED;
1363 			estart = entry->start;
1364 
1365 			/* First we need to allow map modifications */
1366 			vm_map_set_recursive(map);
1367 			vm_map_lock_downgrade(map);
1368 			map->timestamp++;
1369 
1370 			rv = vm_fault_user_wire(map, entry->start, entry->end);
1371 			if (rv) {
1372 
1373 				entry->wired_count--;
1374 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
1375 
1376 				vm_map_clear_recursive(map);
1377 				vm_map_unlock(map);
1378 
1379 				(void) vm_map_user_pageable(map, start, entry->start, TRUE);
1380 				return rv;
1381 			}
1382 
1383 			vm_map_clear_recursive(map);
1384 			if (vm_map_lock_upgrade(map)) {
1385 				vm_map_lock(map);
1386 				if (vm_map_lookup_entry(map, estart, &entry)
1387 				    == FALSE) {
1388 					vm_map_unlock(map);
1389 					(void) vm_map_user_pageable(map,
1390 								    start,
1391 								    estart,
1392 								    TRUE);
1393 					return (KERN_INVALID_ADDRESS);
1394 				}
1395 			}
1396 			vm_map_simplify_entry(map,entry);
1397 		}
1398 	}
1399 	map->timestamp++;
1400 	vm_map_unlock(map);
1401 	return KERN_SUCCESS;
1402 }
1403 
1404 /*
1405  *	vm_map_pageable:
1406  *
1407  *	Sets the pageability of the specified address
1408  *	range in the target map.  Regions specified
1409  *	as not pageable require locked-down physical
1410  *	memory and physical page maps.
1411  *
1412  *	The map must not be locked, but a reference
1413  *	must remain to the map throughout the call.
1414  */
1415 int
1416 vm_map_pageable(map, start, end, new_pageable)
1417 	vm_map_t map;
1418 	vm_offset_t start;
1419 	vm_offset_t end;
1420 	boolean_t new_pageable;
1421 {
1422 	vm_map_entry_t entry;
1423 	vm_map_entry_t start_entry;
1424 	vm_offset_t failed = 0;
1425 	int rv;
1426 
1427 	mtx_assert(&vm_mtx, MA_OWNED);
1428 	vm_map_lock(map);
1429 
1430 	VM_MAP_RANGE_CHECK(map, start, end);
1431 
1432 	/*
1433 	 * Only one pageability change may take place at one time, since
1434 	 * vm_fault assumes it will be called only once for each
1435 	 * wiring/unwiring.  Therefore, we have to make sure we're actually
1436 	 * changing the pageability for the entire region.  We do so before
1437 	 * making any changes.
1438 	 */
1439 
1440 	if (vm_map_lookup_entry(map, start, &start_entry) == FALSE) {
1441 		vm_map_unlock(map);
1442 		return (KERN_INVALID_ADDRESS);
1443 	}
1444 	entry = start_entry;
1445 
1446 	/*
1447 	 * Actions are rather different for wiring and unwiring, so we have
1448 	 * two separate cases.
1449 	 */
1450 
1451 	if (new_pageable) {
1452 
1453 		vm_map_clip_start(map, entry, start);
1454 
1455 		/*
1456 		 * Unwiring.  First ensure that the range to be unwired is
1457 		 * really wired down and that there are no holes.
1458 		 */
1459 		while ((entry != &map->header) && (entry->start < end)) {
1460 
1461 			if (entry->wired_count == 0 ||
1462 			    (entry->end < end &&
1463 				(entry->next == &map->header ||
1464 				    entry->next->start > entry->end))) {
1465 				vm_map_unlock(map);
1466 				return (KERN_INVALID_ARGUMENT);
1467 			}
1468 			entry = entry->next;
1469 		}
1470 
1471 		/*
1472 		 * Now decrement the wiring count for each region. If a region
1473 		 * becomes completely unwired, unwire its physical pages and
1474 		 * mappings.
1475 		 */
1476 		entry = start_entry;
1477 		while ((entry != &map->header) && (entry->start < end)) {
1478 			vm_map_clip_end(map, entry, end);
1479 
1480 			entry->wired_count--;
1481 			if (entry->wired_count == 0)
1482 				vm_fault_unwire(map, entry->start, entry->end);
1483 
1484 			vm_map_simplify_entry(map, entry);
1485 
1486 			entry = entry->next;
1487 		}
1488 	} else {
1489 		/*
1490 		 * Wiring.  We must do this in two passes:
1491 		 *
1492 		 * 1.  Holding the write lock, we create any shadow or zero-fill
1493 		 * objects that need to be created. Then we clip each map
1494 		 * entry to the region to be wired and increment its wiring
1495 		 * count.  We create objects before clipping the map entries
1496 		 * to avoid object proliferation.
1497 		 *
1498 		 * 2.  We downgrade to a read lock, and call vm_fault_wire to
1499 		 * fault in the pages for any newly wired area (wired_count is
1500 		 * 1).
1501 		 *
1502 		 * Downgrading to a read lock for vm_fault_wire avoids a possible
1503 		 * deadlock with another process that may have faulted on one
1504 		 * of the pages to be wired (it would mark the page busy,
1505 		 * blocking us, then in turn block on the map lock that we
1506 		 * hold).  Because of problems in the recursive lock package,
1507 		 * we cannot upgrade to a write lock in vm_map_lookup.  Thus,
1508 		 * any actions that require the write lock must be done
1509 		 * beforehand.  Because we keep the read lock on the map, the
1510 		 * copy-on-write status of the entries we modify here cannot
1511 		 * change.
1512 		 */
1513 
1514 		/*
1515 		 * Pass 1.
1516 		 */
1517 		while ((entry != &map->header) && (entry->start < end)) {
1518 			if (entry->wired_count == 0) {
1519 
1520 				/*
1521 				 * Perform actions of vm_map_lookup that need
1522 				 * the write lock on the map: create a shadow
1523 				 * object for a copy-on-write region, or an
1524 				 * object for a zero-fill region.
1525 				 *
1526 				 * We don't have to do this for entries that
1527 				 * point to sub maps, because we won't
1528 				 * hold the lock on the sub map.
1529 				 */
1530 				if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1531 					int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
1532 					if (copyflag &&
1533 					    ((entry->protection & VM_PROT_WRITE) != 0)) {
1534 
1535 						vm_object_shadow(&entry->object.vm_object,
1536 						    &entry->offset,
1537 						    atop(entry->end - entry->start));
1538 						entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
1539 					} else if (entry->object.vm_object == NULL &&
1540 						   !map->system_map) {
1541 						entry->object.vm_object =
1542 						    vm_object_allocate(OBJT_DEFAULT,
1543 							atop(entry->end - entry->start));
1544 						entry->offset = (vm_offset_t) 0;
1545 					}
1546 				}
1547 			}
1548 			vm_map_clip_start(map, entry, start);
1549 			vm_map_clip_end(map, entry, end);
1550 			entry->wired_count++;
1551 
1552 			/*
1553 			 * Check for holes
1554 			 */
1555 			if (entry->end < end &&
1556 			    (entry->next == &map->header ||
1557 				entry->next->start > entry->end)) {
1558 				/*
1559 				 * Found one.  Object creation actions do not
1560 				 * need to be undone, but the wired counts
1561 				 * need to be restored.
1562 				 */
1563 				while (entry != &map->header && entry->end > start) {
1564 					entry->wired_count--;
1565 					entry = entry->prev;
1566 				}
1567 				vm_map_unlock(map);
1568 				return (KERN_INVALID_ARGUMENT);
1569 			}
1570 			entry = entry->next;
1571 		}
1572 
1573 		/*
1574 		 * Pass 2.
1575 		 */
1576 
1577 		/*
1578 		 * HACK HACK HACK HACK
1579 		 *
1580 		 * If we are wiring in the kernel map or a submap of it,
1581 		 * unlock the map to avoid deadlocks.  We trust that the
1582 		 * kernel is well-behaved, and therefore will not do
1583 		 * anything destructive to this region of the map while
1584 		 * we have it unlocked.  We cannot trust user processes
1585 		 * to do the same.
1586 		 *
1587 		 * HACK HACK HACK HACK
1588 		 */
1589 		if (vm_map_pmap(map) == kernel_pmap) {
1590 			vm_map_unlock(map);	/* trust me ... */
1591 		} else {
1592 			vm_map_lock_downgrade(map);
1593 		}
1594 
1595 		rv = 0;
1596 		entry = start_entry;
1597 		while (entry != &map->header && entry->start < end) {
1598 			/*
1599 			 * If vm_fault_wire fails for any page we need to undo
1600 			 * what has been done.  We decrement the wiring count
1601 			 * for those pages which have not yet been wired (now)
1602 			 * and unwire those that have (later).
1603 			 *
1604 			 * XXX this violates the locking protocol on the map,
1605 			 * needs to be fixed.
1606 			 */
1607 			if (rv)
1608 				entry->wired_count--;
1609 			else if (entry->wired_count == 1) {
1610 				rv = vm_fault_wire(map, entry->start, entry->end);
1611 				if (rv) {
1612 					failed = entry->start;
1613 					entry->wired_count--;
1614 				}
1615 			}
1616 			entry = entry->next;
1617 		}
1618 
1619 		if (vm_map_pmap(map) == kernel_pmap) {
1620 			vm_map_lock(map);
1621 		}
1622 		if (rv) {
1623 			vm_map_unlock(map);
1624 			(void) vm_map_pageable(map, start, failed, TRUE);
1625 			return (rv);
1626 		}
1627 		vm_map_simplify_entry(map, start_entry);
1628 	}
1629 
1630 	vm_map_unlock(map);
1631 
1632 	return (KERN_SUCCESS);
1633 }
1634 
1635 /*
1636  * vm_map_clean
1637  *
1638  * Push any dirty cached pages in the address range to their pager.
1639  * If syncio is TRUE, dirty pages are written synchronously.
1640  * If invalidate is TRUE, any cached pages are freed as well.
1641  *
1642  * Returns an error if any part of the specified range is not mapped.
1643  */
1644 int
1645 vm_map_clean(map, start, end, syncio, invalidate)
1646 	vm_map_t map;
1647 	vm_offset_t start;
1648 	vm_offset_t end;
1649 	boolean_t syncio;
1650 	boolean_t invalidate;
1651 {
1652 	vm_map_entry_t current;
1653 	vm_map_entry_t entry;
1654 	vm_size_t size;
1655 	vm_object_t object;
1656 	vm_ooffset_t offset;
1657 
1658 	mtx_assert(&Giant, MA_OWNED);
1659 	mtx_assert(&vm_mtx, MA_OWNED);
1660 	vm_map_lock_read(map);
1661 	VM_MAP_RANGE_CHECK(map, start, end);
1662 	if (!vm_map_lookup_entry(map, start, &entry)) {
1663 		vm_map_unlock_read(map);
1664 		return (KERN_INVALID_ADDRESS);
1665 	}
1666 	/*
1667 	 * Make a first pass to check for holes.
1668 	 */
1669 	for (current = entry; current->start < end; current = current->next) {
1670 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1671 			vm_map_unlock_read(map);
1672 			return (KERN_INVALID_ARGUMENT);
1673 		}
1674 		if (end > current->end &&
1675 		    (current->next == &map->header ||
1676 			current->end != current->next->start)) {
1677 			vm_map_unlock_read(map);
1678 			return (KERN_INVALID_ADDRESS);
1679 		}
1680 	}
1681 
1682 	if (invalidate)
1683 		pmap_remove(vm_map_pmap(map), start, end);
1684 	/*
1685 	 * Make a second pass, cleaning/uncaching pages from the indicated
1686 	 * objects as we go.
1687 	 */
1688 	for (current = entry; current->start < end; current = current->next) {
1689 		offset = current->offset + (start - current->start);
1690 		size = (end <= current->end ? end : current->end) - start;
1691 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1692 			vm_map_t smap;
1693 			vm_map_entry_t tentry;
1694 			vm_size_t tsize;
1695 
1696 			smap = current->object.sub_map;
1697 			vm_map_lock_read(smap);
1698 			(void) vm_map_lookup_entry(smap, offset, &tentry);
1699 			tsize = tentry->end - offset;
1700 			if (tsize < size)
1701 				size = tsize;
1702 			object = tentry->object.vm_object;
1703 			offset = tentry->offset + (offset - tentry->start);
1704 			vm_map_unlock_read(smap);
1705 		} else {
1706 			object = current->object.vm_object;
1707 		}
1708 		/*
1709 		 * Note that there is absolutely no sense in writing out
1710 		 * anonymous objects, so we track down the vnode object
1711 		 * to write out.
1712 		 * We invalidate (remove) all pages from the address space
1713 		 * anyway, for semantic correctness.
1714 		 */
1715 		while (object->backing_object) {
1716 			object = object->backing_object;
1717 			offset += object->backing_object_offset;
1718 			if (object->size < OFF_TO_IDX( offset + size))
1719 				size = IDX_TO_OFF(object->size) - offset;
1720 		}
1721 		if (object && (object->type == OBJT_VNODE) &&
1722 		    (current->protection & VM_PROT_WRITE)) {
1723 			/*
1724 			 * Flush pages if writing is allowed, invalidate them
1725 			 * if invalidation requested.  Pages undergoing I/O
1726 			 * will be ignored by vm_object_page_remove().
1727 			 *
1728 			 * We cannot lock the vnode and then wait for paging
1729 			 * to complete without deadlocking against vm_fault.
1730 			 * Instead we simply call vm_object_page_remove() and
1731 			 * allow it to block internally on a page-by-page
1732 			 * basis when it encounters pages undergoing async
1733 			 * I/O.
1734 			 */
1735 			int flags;
1736 
1737 			vm_object_reference(object);
1738 			mtx_unlock(&vm_mtx);
1739 			vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY, curproc);
1740 			mtx_lock(&vm_mtx);
1741 			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1742 			flags |= invalidate ? OBJPC_INVAL : 0;
1743 			vm_object_page_clean(object,
1744 			    OFF_TO_IDX(offset),
1745 			    OFF_TO_IDX(offset + size + PAGE_MASK),
1746 			    flags);
1747 			if (invalidate) {
1748 				/*vm_object_pip_wait(object, "objmcl");*/
1749 				vm_object_page_remove(object,
1750 				    OFF_TO_IDX(offset),
1751 				    OFF_TO_IDX(offset + size + PAGE_MASK),
1752 				    FALSE);
1753 			}
1754 			VOP_UNLOCK(object->handle, 0, curproc);
1755 			vm_object_deallocate(object);
1756 		}
1757 		start += size;
1758 	}
1759 
1760 	vm_map_unlock_read(map);
1761 	return (KERN_SUCCESS);
1762 }
1763 
1764 /*
1765  *	vm_map_entry_unwire:	[ internal use only ]
1766  *
1767  *	Make the region specified by this entry pageable.
1768  *
1769  *	The map in question should be locked.
1770  *	[This is the reason for this routine's existence.]
1771  */
1772 static void
1773 vm_map_entry_unwire(map, entry)
1774 	vm_map_t map;
1775 	vm_map_entry_t entry;
1776 {
1777 	vm_fault_unwire(map, entry->start, entry->end);
1778 	entry->wired_count = 0;
1779 }
1780 
1781 /*
1782  *	vm_map_entry_delete:	[ internal use only ]
1783  *
1784  *	Deallocate the given entry from the target map.
1785  */
1786 static void
1787 vm_map_entry_delete(map, entry)
1788 	vm_map_t map;
1789 	vm_map_entry_t entry;
1790 {
1791 	vm_map_entry_unlink(map, entry);
1792 	map->size -= entry->end - entry->start;
1793 
1794 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1795 		vm_object_deallocate(entry->object.vm_object);
1796 	}
1797 
1798 	vm_map_entry_dispose(map, entry);
1799 }
1800 
1801 /*
1802  *	vm_map_delete:	[ internal use only ]
1803  *
1804  *	Deallocates the given address range from the target
1805  *	map.
1806  */
1807 int
1808 vm_map_delete(map, start, end)
1809 	vm_map_t map;
1810 	vm_offset_t start;
1811 	vm_offset_t end;
1812 {
1813 	vm_object_t object;
1814 	vm_map_entry_t entry;
1815 	vm_map_entry_t first_entry;
1816 
1817 	mtx_assert(&vm_mtx, MA_OWNED);
1818 	/*
1819 	 * Find the start of the region, and clip it
1820 	 */
1821 
1822 	if (!vm_map_lookup_entry(map, start, &first_entry))
1823 		entry = first_entry->next;
1824 	else {
1825 		entry = first_entry;
1826 		vm_map_clip_start(map, entry, start);
1827 		/*
1828 		 * Fix the lookup hint now, rather than each time though the
1829 		 * loop.
1830 		 */
1831 		SAVE_HINT(map, entry->prev);
1832 	}
1833 
1834 	/*
1835 	 * Save the free space hint
1836 	 */
1837 
1838 	if (entry == &map->header) {
1839 		map->first_free = &map->header;
1840 	} else if (map->first_free->start >= start) {
1841 		map->first_free = entry->prev;
1842 	}
1843 
1844 	/*
1845 	 * Step through all entries in this region
1846 	 */
1847 
1848 	while ((entry != &map->header) && (entry->start < end)) {
1849 		vm_map_entry_t next;
1850 		vm_offset_t s, e;
1851 		vm_pindex_t offidxstart, offidxend, count;
1852 
1853 		vm_map_clip_end(map, entry, end);
1854 
1855 		s = entry->start;
1856 		e = entry->end;
1857 		next = entry->next;
1858 
1859 		offidxstart = OFF_TO_IDX(entry->offset);
1860 		count = OFF_TO_IDX(e - s);
1861 		object = entry->object.vm_object;
1862 
1863 		/*
1864 		 * Unwire before removing addresses from the pmap; otherwise,
1865 		 * unwiring will put the entries back in the pmap.
1866 		 */
1867 		if (entry->wired_count != 0) {
1868 			vm_map_entry_unwire(map, entry);
1869 		}
1870 
1871 		offidxend = offidxstart + count;
1872 
1873 		if ((object == kernel_object) || (object == kmem_object)) {
1874 			vm_object_page_remove(object, offidxstart, offidxend, FALSE);
1875 		} else {
1876 			pmap_remove(map->pmap, s, e);
1877 			if (object != NULL &&
1878 			    object->ref_count != 1 &&
1879 			    (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING &&
1880 			    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
1881 				vm_object_collapse(object);
1882 				vm_object_page_remove(object, offidxstart, offidxend, FALSE);
1883 				if (object->type == OBJT_SWAP) {
1884 					swap_pager_freespace(object, offidxstart, count);
1885 				}
1886 				if (offidxend >= object->size &&
1887 				    offidxstart < object->size) {
1888 					object->size = offidxstart;
1889 				}
1890 			}
1891 		}
1892 
1893 		/*
1894 		 * Delete the entry (which may delete the object) only after
1895 		 * removing all pmap entries pointing to its pages.
1896 		 * (Otherwise, its page frames may be reallocated, and any
1897 		 * modify bits will be set in the wrong object!)
1898 		 */
1899 		vm_map_entry_delete(map, entry);
1900 		entry = next;
1901 	}
1902 	return (KERN_SUCCESS);
1903 }
1904 
1905 /*
1906  *	vm_map_remove:
1907  *
1908  *	Remove the given address range from the target map.
1909  *	This is the exported form of vm_map_delete.
1910  */
1911 int
1912 vm_map_remove(map, start, end)
1913 	vm_map_t map;
1914 	vm_offset_t start;
1915 	vm_offset_t end;
1916 {
1917 	int result, s = 0;
1918 
1919 	mtx_assert(&vm_mtx, MA_OWNED);
1920 	if (map == kmem_map || map == mb_map)
1921 		s = splvm();
1922 
1923 	vm_map_lock(map);
1924 	VM_MAP_RANGE_CHECK(map, start, end);
1925 	result = vm_map_delete(map, start, end);
1926 	vm_map_unlock(map);
1927 
1928 	if (map == kmem_map || map == mb_map)
1929 		splx(s);
1930 
1931 	return (result);
1932 }
1933 
1934 /*
1935  *	vm_map_check_protection:
1936  *
1937  *	Assert that the target map allows the specified
1938  *	privilege on the entire address region given.
1939  *	The entire region must be allocated.
1940  */
1941 boolean_t
1942 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
1943 			vm_prot_t protection)
1944 {
1945 	vm_map_entry_t entry;
1946 	vm_map_entry_t tmp_entry;
1947 
1948 	mtx_assert(&vm_mtx, MA_OWNED);
1949 	if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
1950 		return (FALSE);
1951 	}
1952 	entry = tmp_entry;
1953 
1954 	while (start < end) {
1955 		if (entry == &map->header) {
1956 			return (FALSE);
1957 		}
1958 		/*
1959 		 * No holes allowed!
1960 		 */
1961 
1962 		if (start < entry->start) {
1963 			return (FALSE);
1964 		}
1965 		/*
1966 		 * Check protection associated with entry.
1967 		 */
1968 
1969 		if ((entry->protection & protection) != protection) {
1970 			return (FALSE);
1971 		}
1972 		/* go to next entry */
1973 
1974 		start = entry->end;
1975 		entry = entry->next;
1976 	}
1977 	return (TRUE);
1978 }
1979 
1980 /*
1981  * Split the pages in a map entry into a new object.  This affords
1982  * easier removal of unused pages, and keeps object inheritance from
1983  * being a negative impact on memory usage.
1984  */
1985 static void
1986 vm_map_split(entry)
1987 	vm_map_entry_t entry;
1988 {
1989 	vm_page_t m;
1990 	vm_object_t orig_object, new_object, source;
1991 	vm_offset_t s, e;
1992 	vm_pindex_t offidxstart, offidxend, idx;
1993 	vm_size_t size;
1994 	vm_ooffset_t offset;
1995 
1996 	mtx_assert(&vm_mtx, MA_OWNED);
1997 	orig_object = entry->object.vm_object;
1998 	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1999 		return;
2000 	if (orig_object->ref_count <= 1)
2001 		return;
2002 
2003 	offset = entry->offset;
2004 	s = entry->start;
2005 	e = entry->end;
2006 
2007 	offidxstart = OFF_TO_IDX(offset);
2008 	offidxend = offidxstart + OFF_TO_IDX(e - s);
2009 	size = offidxend - offidxstart;
2010 
2011 	new_object = vm_pager_allocate(orig_object->type,
2012 		NULL, IDX_TO_OFF(size), VM_PROT_ALL, 0LL);
2013 	if (new_object == NULL)
2014 		return;
2015 
2016 	source = orig_object->backing_object;
2017 	if (source != NULL) {
2018 		vm_object_reference(source);	/* Referenced by new_object */
2019 		TAILQ_INSERT_TAIL(&source->shadow_head,
2020 				  new_object, shadow_list);
2021 		vm_object_clear_flag(source, OBJ_ONEMAPPING);
2022 		new_object->backing_object_offset =
2023 			orig_object->backing_object_offset + IDX_TO_OFF(offidxstart);
2024 		new_object->backing_object = source;
2025 		source->shadow_count++;
2026 		source->generation++;
2027 	}
2028 
2029 	for (idx = 0; idx < size; idx++) {
2030 		vm_page_t m;
2031 
2032 	retry:
2033 		m = vm_page_lookup(orig_object, offidxstart + idx);
2034 		if (m == NULL)
2035 			continue;
2036 
2037 		/*
2038 		 * We must wait for pending I/O to complete before we can
2039 		 * rename the page.
2040 		 *
2041 		 * We do not have to VM_PROT_NONE the page as mappings should
2042 		 * not be changed by this operation.
2043 		 */
2044 		if (vm_page_sleep_busy(m, TRUE, "spltwt"))
2045 			goto retry;
2046 
2047 		vm_page_busy(m);
2048 		vm_page_rename(m, new_object, idx);
2049 		/* page automatically made dirty by rename and cache handled */
2050 		vm_page_busy(m);
2051 	}
2052 
2053 	if (orig_object->type == OBJT_SWAP) {
2054 		vm_object_pip_add(orig_object, 1);
2055 		/*
2056 		 * copy orig_object pages into new_object
2057 		 * and destroy unneeded pages in
2058 		 * shadow object.
2059 		 */
2060 		swap_pager_copy(orig_object, new_object, offidxstart, 0);
2061 		vm_object_pip_wakeup(orig_object);
2062 	}
2063 
2064 	for (idx = 0; idx < size; idx++) {
2065 		m = vm_page_lookup(new_object, idx);
2066 		if (m) {
2067 			vm_page_wakeup(m);
2068 		}
2069 	}
2070 
2071 	entry->object.vm_object = new_object;
2072 	entry->offset = 0LL;
2073 	vm_object_deallocate(orig_object);
2074 }
2075 
2076 /*
2077  *	vm_map_copy_entry:
2078  *
2079  *	Copies the contents of the source entry to the destination
2080  *	entry.  The entries *must* be aligned properly.
2081  */
2082 static void
2083 vm_map_copy_entry(src_map, dst_map, src_entry, dst_entry)
2084 	vm_map_t src_map, dst_map;
2085 	vm_map_entry_t src_entry, dst_entry;
2086 {
2087 	vm_object_t src_object;
2088 
2089 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
2090 		return;
2091 
2092 	if (src_entry->wired_count == 0) {
2093 
2094 		/*
2095 		 * If the source entry is marked needs_copy, it is already
2096 		 * write-protected.
2097 		 */
2098 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2099 			pmap_protect(src_map->pmap,
2100 			    src_entry->start,
2101 			    src_entry->end,
2102 			    src_entry->protection & ~VM_PROT_WRITE);
2103 		}
2104 
2105 		/*
2106 		 * Make a copy of the object.
2107 		 */
2108 		if ((src_object = src_entry->object.vm_object) != NULL) {
2109 
2110 			if ((src_object->handle == NULL) &&
2111 				(src_object->type == OBJT_DEFAULT ||
2112 				 src_object->type == OBJT_SWAP)) {
2113 				vm_object_collapse(src_object);
2114 				if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
2115 					vm_map_split(src_entry);
2116 					src_object = src_entry->object.vm_object;
2117 				}
2118 			}
2119 
2120 			vm_object_reference(src_object);
2121 			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
2122 			dst_entry->object.vm_object = src_object;
2123 			src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2124 			dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2125 			dst_entry->offset = src_entry->offset;
2126 		} else {
2127 			dst_entry->object.vm_object = NULL;
2128 			dst_entry->offset = 0;
2129 		}
2130 
2131 		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
2132 		    dst_entry->end - dst_entry->start, src_entry->start);
2133 	} else {
2134 		/*
2135 		 * Of course, wired down pages can't be set copy-on-write.
2136 		 * Cause wired pages to be copied into the new map by
2137 		 * simulating faults (the new pages are pageable)
2138 		 */
2139 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
2140 	}
2141 }
2142 
2143 /*
2144  * vmspace_fork:
2145  * Create a new process vmspace structure and vm_map
2146  * based on those of an existing process.  The new map
2147  * is based on the old map, according to the inheritance
2148  * values on the regions in that map.
2149  *
2150  * The source map must not be locked.
2151  */
2152 struct vmspace *
2153 vmspace_fork(vm1)
2154 	struct vmspace *vm1;
2155 {
2156 	struct vmspace *vm2;
2157 	vm_map_t old_map = &vm1->vm_map;
2158 	vm_map_t new_map;
2159 	vm_map_entry_t old_entry;
2160 	vm_map_entry_t new_entry;
2161 	vm_object_t object;
2162 
2163 	mtx_assert(&vm_mtx, MA_OWNED);
2164 	vm_map_lock(old_map);
2165 	old_map->infork = 1;
2166 
2167 	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
2168 	bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy,
2169 	    (caddr_t) (vm1 + 1) - (caddr_t) &vm1->vm_startcopy);
2170 	new_map = &vm2->vm_map;	/* XXX */
2171 	new_map->timestamp = 1;
2172 
2173 	old_entry = old_map->header.next;
2174 
2175 	while (old_entry != &old_map->header) {
2176 		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2177 			panic("vm_map_fork: encountered a submap");
2178 
2179 		switch (old_entry->inheritance) {
2180 		case VM_INHERIT_NONE:
2181 			break;
2182 
2183 		case VM_INHERIT_SHARE:
2184 			/*
2185 			 * Clone the entry, creating the shared object if necessary.
2186 			 */
2187 			object = old_entry->object.vm_object;
2188 			if (object == NULL) {
2189 				object = vm_object_allocate(OBJT_DEFAULT,
2190 					atop(old_entry->end - old_entry->start));
2191 				old_entry->object.vm_object = object;
2192 				old_entry->offset = (vm_offset_t) 0;
2193 			}
2194 
2195 			/*
2196 			 * Add the reference before calling vm_object_shadow
2197 			 * to insure that a shadow object is created.
2198 			 */
2199 			vm_object_reference(object);
2200 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
2201 				vm_object_shadow(&old_entry->object.vm_object,
2202 					&old_entry->offset,
2203 					atop(old_entry->end - old_entry->start));
2204 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
2205 				/* Transfer the second reference too. */
2206 				vm_object_reference(
2207 				    old_entry->object.vm_object);
2208 				vm_object_deallocate(object);
2209 				object = old_entry->object.vm_object;
2210 			}
2211 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
2212 
2213 			/*
2214 			 * Clone the entry, referencing the shared object.
2215 			 */
2216 			new_entry = vm_map_entry_create(new_map);
2217 			*new_entry = *old_entry;
2218 			new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2219 			new_entry->wired_count = 0;
2220 
2221 			/*
2222 			 * Insert the entry into the new map -- we know we're
2223 			 * inserting at the end of the new map.
2224 			 */
2225 
2226 			vm_map_entry_link(new_map, new_map->header.prev,
2227 			    new_entry);
2228 
2229 			/*
2230 			 * Update the physical map
2231 			 */
2232 
2233 			pmap_copy(new_map->pmap, old_map->pmap,
2234 			    new_entry->start,
2235 			    (old_entry->end - old_entry->start),
2236 			    old_entry->start);
2237 			break;
2238 
2239 		case VM_INHERIT_COPY:
2240 			/*
2241 			 * Clone the entry and link into the map.
2242 			 */
2243 			new_entry = vm_map_entry_create(new_map);
2244 			*new_entry = *old_entry;
2245 			new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2246 			new_entry->wired_count = 0;
2247 			new_entry->object.vm_object = NULL;
2248 			vm_map_entry_link(new_map, new_map->header.prev,
2249 			    new_entry);
2250 			vm_map_copy_entry(old_map, new_map, old_entry,
2251 			    new_entry);
2252 			break;
2253 		}
2254 		old_entry = old_entry->next;
2255 	}
2256 
2257 	new_map->size = old_map->size;
2258 	old_map->infork = 0;
2259 	vm_map_unlock(old_map);
2260 
2261 	return (vm2);
2262 }
2263 
2264 int
2265 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
2266 	      vm_prot_t prot, vm_prot_t max, int cow)
2267 {
2268 	vm_map_entry_t prev_entry;
2269 	vm_map_entry_t new_stack_entry;
2270 	vm_size_t      init_ssize;
2271 	int            rv;
2272 
2273 	mtx_assert(&vm_mtx, MA_OWNED);
2274 	if (VM_MIN_ADDRESS > 0 && addrbos < VM_MIN_ADDRESS)
2275 		return (KERN_NO_SPACE);
2276 
2277 	if (max_ssize < SGROWSIZ)
2278 		init_ssize = max_ssize;
2279 	else
2280 		init_ssize = SGROWSIZ;
2281 
2282 	vm_map_lock(map);
2283 
2284 	/* If addr is already mapped, no go */
2285 	if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
2286 		vm_map_unlock(map);
2287 		return (KERN_NO_SPACE);
2288 	}
2289 
2290 	/* If we can't accomodate max_ssize in the current mapping,
2291 	 * no go.  However, we need to be aware that subsequent user
2292 	 * mappings might map into the space we have reserved for
2293 	 * stack, and currently this space is not protected.
2294 	 *
2295 	 * Hopefully we will at least detect this condition
2296 	 * when we try to grow the stack.
2297 	 */
2298 	if ((prev_entry->next != &map->header) &&
2299 	    (prev_entry->next->start < addrbos + max_ssize)) {
2300 		vm_map_unlock(map);
2301 		return (KERN_NO_SPACE);
2302 	}
2303 
2304 	/* We initially map a stack of only init_ssize.  We will
2305 	 * grow as needed later.  Since this is to be a grow
2306 	 * down stack, we map at the top of the range.
2307 	 *
2308 	 * Note: we would normally expect prot and max to be
2309 	 * VM_PROT_ALL, and cow to be 0.  Possibly we should
2310 	 * eliminate these as input parameters, and just
2311 	 * pass these values here in the insert call.
2312 	 */
2313 	rv = vm_map_insert(map, NULL, 0, addrbos + max_ssize - init_ssize,
2314 	                   addrbos + max_ssize, prot, max, cow);
2315 
2316 	/* Now set the avail_ssize amount */
2317 	if (rv == KERN_SUCCESS){
2318 		if (prev_entry != &map->header)
2319 			vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize);
2320 		new_stack_entry = prev_entry->next;
2321 		if (new_stack_entry->end   != addrbos + max_ssize ||
2322 		    new_stack_entry->start != addrbos + max_ssize - init_ssize)
2323 			panic ("Bad entry start/end for new stack entry");
2324 		else
2325 			new_stack_entry->avail_ssize = max_ssize - init_ssize;
2326 	}
2327 
2328 	vm_map_unlock(map);
2329 	return (rv);
2330 }
2331 
2332 /* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
2333  * desired address is already mapped, or if we successfully grow
2334  * the stack.  Also returns KERN_SUCCESS if addr is outside the
2335  * stack range (this is strange, but preserves compatibility with
2336  * the grow function in vm_machdep.c).
2337  *
2338  * Will grab vm_mtx if needed
2339  */
2340 int
2341 vm_map_growstack (struct proc *p, vm_offset_t addr)
2342 {
2343 	vm_map_entry_t prev_entry;
2344 	vm_map_entry_t stack_entry;
2345 	vm_map_entry_t new_stack_entry;
2346 	struct vmspace *vm = p->p_vmspace;
2347 	vm_map_t map = &vm->vm_map;
2348 	vm_offset_t    end;
2349 	int      grow_amount;
2350 	int      rv;
2351 	int      is_procstack;
2352 	int	hadvmlock;
2353 
2354 	hadvmlock = mtx_owned(&vm_mtx);
2355 	if (!hadvmlock)
2356 		mtx_lock(&vm_mtx);
2357 #define myreturn(rval)	do { \
2358 	if (!hadvmlock) \
2359 		mtx_unlock(&vm_mtx); \
2360 	return (rval); \
2361 } while (0)
2362 
2363 Retry:
2364 	vm_map_lock_read(map);
2365 
2366 	/* If addr is already in the entry range, no need to grow.*/
2367 	if (vm_map_lookup_entry(map, addr, &prev_entry)) {
2368 		vm_map_unlock_read(map);
2369 		myreturn (KERN_SUCCESS);
2370 	}
2371 
2372 	if ((stack_entry = prev_entry->next) == &map->header) {
2373 		vm_map_unlock_read(map);
2374 		myreturn (KERN_SUCCESS);
2375 	}
2376 	if (prev_entry == &map->header)
2377 		end = stack_entry->start - stack_entry->avail_ssize;
2378 	else
2379 		end = prev_entry->end;
2380 
2381 	/* This next test mimics the old grow function in vm_machdep.c.
2382 	 * It really doesn't quite make sense, but we do it anyway
2383 	 * for compatibility.
2384 	 *
2385 	 * If not growable stack, return success.  This signals the
2386 	 * caller to proceed as he would normally with normal vm.
2387 	 */
2388 	if (stack_entry->avail_ssize < 1 ||
2389 	    addr >= stack_entry->start ||
2390 	    addr <  stack_entry->start - stack_entry->avail_ssize) {
2391 		vm_map_unlock_read(map);
2392 		myreturn (KERN_SUCCESS);
2393 	}
2394 
2395 	/* Find the minimum grow amount */
2396 	grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE);
2397 	if (grow_amount > stack_entry->avail_ssize) {
2398 		vm_map_unlock_read(map);
2399 		myreturn (KERN_NO_SPACE);
2400 	}
2401 
2402 	/* If there is no longer enough space between the entries
2403 	 * nogo, and adjust the available space.  Note: this
2404 	 * should only happen if the user has mapped into the
2405 	 * stack area after the stack was created, and is
2406 	 * probably an error.
2407 	 *
2408 	 * This also effectively destroys any guard page the user
2409 	 * might have intended by limiting the stack size.
2410 	 */
2411 	if (grow_amount > stack_entry->start - end) {
2412 		if (vm_map_lock_upgrade(map))
2413 			goto Retry;
2414 
2415 		stack_entry->avail_ssize = stack_entry->start - end;
2416 
2417 		vm_map_unlock(map);
2418 		myreturn (KERN_NO_SPACE);
2419 	}
2420 
2421 	is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr;
2422 
2423 	/* If this is the main process stack, see if we're over the
2424 	 * stack limit.
2425 	 */
2426 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
2427 			     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
2428 		vm_map_unlock_read(map);
2429 		myreturn (KERN_NO_SPACE);
2430 	}
2431 
2432 	/* Round up the grow amount modulo SGROWSIZ */
2433 	grow_amount = roundup (grow_amount, SGROWSIZ);
2434 	if (grow_amount > stack_entry->avail_ssize) {
2435 		grow_amount = stack_entry->avail_ssize;
2436 	}
2437 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
2438 	                     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
2439 		grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur -
2440 		              ctob(vm->vm_ssize);
2441 	}
2442 
2443 	if (vm_map_lock_upgrade(map))
2444 		goto Retry;
2445 
2446 	/* Get the preliminary new entry start value */
2447 	addr = stack_entry->start - grow_amount;
2448 
2449 	/* If this puts us into the previous entry, cut back our growth
2450 	 * to the available space.  Also, see the note above.
2451 	 */
2452 	if (addr < end) {
2453 		stack_entry->avail_ssize = stack_entry->start - end;
2454 		addr = end;
2455 	}
2456 
2457 	rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start,
2458 			   VM_PROT_ALL,
2459 			   VM_PROT_ALL,
2460 			   0);
2461 
2462 	/* Adjust the available stack space by the amount we grew. */
2463 	if (rv == KERN_SUCCESS) {
2464 		if (prev_entry != &map->header)
2465 			vm_map_clip_end(map, prev_entry, addr);
2466 		new_stack_entry = prev_entry->next;
2467 		if (new_stack_entry->end   != stack_entry->start  ||
2468 		    new_stack_entry->start != addr)
2469 			panic ("Bad stack grow start/end in new stack entry");
2470 		else {
2471 			new_stack_entry->avail_ssize = stack_entry->avail_ssize -
2472 							(new_stack_entry->end -
2473 							 new_stack_entry->start);
2474 			if (is_procstack)
2475 				vm->vm_ssize += btoc(new_stack_entry->end -
2476 						     new_stack_entry->start);
2477 		}
2478 	}
2479 
2480 	vm_map_unlock(map);
2481 	myreturn (rv);
2482 #undef myreturn
2483 }
2484 
2485 /*
2486  * Unshare the specified VM space for exec.  If other processes are
2487  * mapped to it, then create a new one.  The new vmspace is null.
2488  */
2489 
2490 void
2491 vmspace_exec(struct proc *p) {
2492 	struct vmspace *oldvmspace = p->p_vmspace;
2493 	struct vmspace *newvmspace;
2494 	vm_map_t map = &p->p_vmspace->vm_map;
2495 
2496 	mtx_assert(&vm_mtx, MA_OWNED);
2497 	newvmspace = vmspace_alloc(map->min_offset, map->max_offset);
2498 	bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy,
2499 	    (caddr_t) (newvmspace + 1) - (caddr_t) &newvmspace->vm_startcopy);
2500 	/*
2501 	 * This code is written like this for prototype purposes.  The
2502 	 * goal is to avoid running down the vmspace here, but let the
2503 	 * other process's that are still using the vmspace to finally
2504 	 * run it down.  Even though there is little or no chance of blocking
2505 	 * here, it is a good idea to keep this form for future mods.
2506 	 */
2507 	p->p_vmspace = newvmspace;
2508 	pmap_pinit2(vmspace_pmap(newvmspace));
2509 	vmspace_free(oldvmspace);
2510 	if (p == curproc)
2511 		pmap_activate(p);
2512 }
2513 
2514 /*
2515  * Unshare the specified VM space for forcing COW.  This
2516  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
2517  */
2518 
2519 void
2520 vmspace_unshare(struct proc *p) {
2521 	struct vmspace *oldvmspace = p->p_vmspace;
2522 	struct vmspace *newvmspace;
2523 
2524 	mtx_assert(&vm_mtx, MA_OWNED);
2525 	if (oldvmspace->vm_refcnt == 1)
2526 		return;
2527 	newvmspace = vmspace_fork(oldvmspace);
2528 	p->p_vmspace = newvmspace;
2529 	pmap_pinit2(vmspace_pmap(newvmspace));
2530 	vmspace_free(oldvmspace);
2531 	if (p == curproc)
2532 		pmap_activate(p);
2533 }
2534 
2535 
2536 /*
2537  *	vm_map_lookup:
2538  *
2539  *	Finds the VM object, offset, and
2540  *	protection for a given virtual address in the
2541  *	specified map, assuming a page fault of the
2542  *	type specified.
2543  *
2544  *	Leaves the map in question locked for read; return
2545  *	values are guaranteed until a vm_map_lookup_done
2546  *	call is performed.  Note that the map argument
2547  *	is in/out; the returned map must be used in
2548  *	the call to vm_map_lookup_done.
2549  *
2550  *	A handle (out_entry) is returned for use in
2551  *	vm_map_lookup_done, to make that fast.
2552  *
2553  *	If a lookup is requested with "write protection"
2554  *	specified, the map may be changed to perform virtual
2555  *	copying operations, although the data referenced will
2556  *	remain the same.
2557  *
2558  *	Can block locking maps and while calling vm_object_shadow().
2559  *	Will drop/reaquire the vm_mtx.
2560  */
2561 int
2562 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
2563 	      vm_offset_t vaddr,
2564 	      vm_prot_t fault_typea,
2565 	      vm_map_entry_t *out_entry,	/* OUT */
2566 	      vm_object_t *object,		/* OUT */
2567 	      vm_pindex_t *pindex,		/* OUT */
2568 	      vm_prot_t *out_prot,		/* OUT */
2569 	      boolean_t *wired)			/* OUT */
2570 {
2571 	vm_map_entry_t entry;
2572 	vm_map_t map = *var_map;
2573 	vm_prot_t prot;
2574 	vm_prot_t fault_type = fault_typea;
2575 
2576 	mtx_assert(&vm_mtx, MA_OWNED);
2577 RetryLookup:;
2578 
2579 	/*
2580 	 * Lookup the faulting address.
2581 	 */
2582 
2583 	vm_map_lock_read(map);
2584 
2585 #define	RETURN(why) \
2586 		{ \
2587 		vm_map_unlock_read(map); \
2588 		return(why); \
2589 		}
2590 
2591 	/*
2592 	 * If the map has an interesting hint, try it before calling full
2593 	 * blown lookup routine.
2594 	 */
2595 
2596 	entry = map->hint;
2597 
2598 	*out_entry = entry;
2599 
2600 	if ((entry == &map->header) ||
2601 	    (vaddr < entry->start) || (vaddr >= entry->end)) {
2602 		vm_map_entry_t tmp_entry;
2603 
2604 		/*
2605 		 * Entry was either not a valid hint, or the vaddr was not
2606 		 * contained in the entry, so do a full lookup.
2607 		 */
2608 		if (!vm_map_lookup_entry(map, vaddr, &tmp_entry))
2609 			RETURN(KERN_INVALID_ADDRESS);
2610 
2611 		entry = tmp_entry;
2612 		*out_entry = entry;
2613 	}
2614 
2615 	/*
2616 	 * Handle submaps.
2617 	 */
2618 
2619 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2620 		vm_map_t old_map = map;
2621 
2622 		*var_map = map = entry->object.sub_map;
2623 		vm_map_unlock_read(old_map);
2624 		goto RetryLookup;
2625 	}
2626 
2627 	/*
2628 	 * Check whether this task is allowed to have this page.
2629 	 * Note the special case for MAP_ENTRY_COW
2630 	 * pages with an override.  This is to implement a forced
2631 	 * COW for debuggers.
2632 	 */
2633 
2634 	if (fault_type & VM_PROT_OVERRIDE_WRITE)
2635 		prot = entry->max_protection;
2636 	else
2637 		prot = entry->protection;
2638 
2639 	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
2640 	if ((fault_type & prot) != fault_type) {
2641 			RETURN(KERN_PROTECTION_FAILURE);
2642 	}
2643 
2644 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
2645 	    (entry->eflags & MAP_ENTRY_COW) &&
2646 	    (fault_type & VM_PROT_WRITE) &&
2647 	    (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
2648 		RETURN(KERN_PROTECTION_FAILURE);
2649 	}
2650 
2651 	/*
2652 	 * If this page is not pageable, we have to get it for all possible
2653 	 * accesses.
2654 	 */
2655 
2656 	*wired = (entry->wired_count != 0);
2657 	if (*wired)
2658 		prot = fault_type = entry->protection;
2659 
2660 	/*
2661 	 * If the entry was copy-on-write, we either ...
2662 	 */
2663 
2664 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
2665 		/*
2666 		 * If we want to write the page, we may as well handle that
2667 		 * now since we've got the map locked.
2668 		 *
2669 		 * If we don't need to write the page, we just demote the
2670 		 * permissions allowed.
2671 		 */
2672 
2673 		if (fault_type & VM_PROT_WRITE) {
2674 			/*
2675 			 * Make a new object, and place it in the object
2676 			 * chain.  Note that no new references have appeared
2677 			 * -- one just moved from the map to the new
2678 			 * object.
2679 			 */
2680 
2681 			if (vm_map_lock_upgrade(map))
2682 				goto RetryLookup;
2683 
2684 			vm_object_shadow(
2685 			    &entry->object.vm_object,
2686 			    &entry->offset,
2687 			    atop(entry->end - entry->start));
2688 
2689 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
2690 			vm_map_lock_downgrade(map);
2691 		} else {
2692 			/*
2693 			 * We're attempting to read a copy-on-write page --
2694 			 * don't allow writes.
2695 			 */
2696 
2697 			prot &= ~VM_PROT_WRITE;
2698 		}
2699 	}
2700 
2701 	/*
2702 	 * Create an object if necessary.
2703 	 */
2704 	if (entry->object.vm_object == NULL &&
2705 	    !map->system_map) {
2706 		if (vm_map_lock_upgrade(map))
2707 			goto RetryLookup;
2708 
2709 		entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
2710 		    atop(entry->end - entry->start));
2711 		entry->offset = 0;
2712 		vm_map_lock_downgrade(map);
2713 	}
2714 
2715 	/*
2716 	 * Return the object/offset from this entry.  If the entry was
2717 	 * copy-on-write or empty, it has been fixed up.
2718 	 */
2719 
2720 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
2721 	*object = entry->object.vm_object;
2722 
2723 	/*
2724 	 * Return whether this is the only map sharing this data.
2725 	 */
2726 
2727 	*out_prot = prot;
2728 	return (KERN_SUCCESS);
2729 
2730 #undef	RETURN
2731 }
2732 
2733 /*
2734  *	vm_map_lookup_done:
2735  *
2736  *	Releases locks acquired by a vm_map_lookup
2737  *	(according to the handle returned by that lookup).
2738  */
2739 
2740 void
2741 vm_map_lookup_done(map, entry)
2742 	vm_map_t map;
2743 	vm_map_entry_t entry;
2744 {
2745 	/*
2746 	 * Unlock the main-level map
2747 	 */
2748 
2749 	mtx_assert(&vm_mtx, MA_OWNED);
2750 	vm_map_unlock_read(map);
2751 }
2752 
2753 /*
2754  * Implement uiomove with VM operations.  This handles (and collateral changes)
2755  * support every combination of source object modification, and COW type
2756  * operations.
2757  */
2758 int
2759 vm_uiomove(mapa, srcobject, cp, cnta, uaddra, npages)
2760 	vm_map_t mapa;
2761 	vm_object_t srcobject;
2762 	off_t cp;
2763 	int cnta;
2764 	vm_offset_t uaddra;
2765 	int *npages;
2766 {
2767 	vm_map_t map;
2768 	vm_object_t first_object, oldobject, object;
2769 	vm_map_entry_t entry;
2770 	vm_prot_t prot;
2771 	boolean_t wired;
2772 	int tcnt, rv;
2773 	vm_offset_t uaddr, start, end, tend;
2774 	vm_pindex_t first_pindex, osize, oindex;
2775 	off_t ooffset;
2776 	int cnt;
2777 
2778 	mtx_assert(&vm_mtx, MA_OWNED);
2779 	if (npages)
2780 		*npages = 0;
2781 
2782 	cnt = cnta;
2783 	uaddr = uaddra;
2784 
2785 	while (cnt > 0) {
2786 		map = mapa;
2787 
2788 		if ((vm_map_lookup(&map, uaddr,
2789 			VM_PROT_READ, &entry, &first_object,
2790 			&first_pindex, &prot, &wired)) != KERN_SUCCESS) {
2791 			return EFAULT;
2792 		}
2793 
2794 		vm_map_clip_start(map, entry, uaddr);
2795 
2796 		tcnt = cnt;
2797 		tend = uaddr + tcnt;
2798 		if (tend > entry->end) {
2799 			tcnt = entry->end - uaddr;
2800 			tend = entry->end;
2801 		}
2802 
2803 		vm_map_clip_end(map, entry, tend);
2804 
2805 		start = entry->start;
2806 		end = entry->end;
2807 
2808 		osize = atop(tcnt);
2809 
2810 		oindex = OFF_TO_IDX(cp);
2811 		if (npages) {
2812 			vm_pindex_t idx;
2813 			for (idx = 0; idx < osize; idx++) {
2814 				vm_page_t m;
2815 				if ((m = vm_page_lookup(srcobject, oindex + idx)) == NULL) {
2816 					vm_map_lookup_done(map, entry);
2817 					return 0;
2818 				}
2819 				/*
2820 				 * disallow busy or invalid pages, but allow
2821 				 * m->busy pages if they are entirely valid.
2822 				 */
2823 				if ((m->flags & PG_BUSY) ||
2824 					((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL)) {
2825 					vm_map_lookup_done(map, entry);
2826 					return 0;
2827 				}
2828 			}
2829 		}
2830 
2831 /*
2832  * If we are changing an existing map entry, just redirect
2833  * the object, and change mappings.
2834  */
2835 		if ((first_object->type == OBJT_VNODE) &&
2836 			((oldobject = entry->object.vm_object) == first_object)) {
2837 
2838 			if ((entry->offset != cp) || (oldobject != srcobject)) {
2839 				/*
2840    				* Remove old window into the file
2841    				*/
2842 				pmap_remove (map->pmap, uaddr, tend);
2843 
2844 				/*
2845    				* Force copy on write for mmaped regions
2846    				*/
2847 				vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize);
2848 
2849 				/*
2850    				* Point the object appropriately
2851    				*/
2852 				if (oldobject != srcobject) {
2853 
2854 				/*
2855    				* Set the object optimization hint flag
2856    				*/
2857 					vm_object_set_flag(srcobject, OBJ_OPT);
2858 					vm_object_reference(srcobject);
2859 					entry->object.vm_object = srcobject;
2860 
2861 					if (oldobject) {
2862 						vm_object_deallocate(oldobject);
2863 					}
2864 				}
2865 
2866 				entry->offset = cp;
2867 				map->timestamp++;
2868 			} else {
2869 				pmap_remove (map->pmap, uaddr, tend);
2870 			}
2871 
2872 		} else if ((first_object->ref_count == 1) &&
2873 			(first_object->size == osize) &&
2874 			((first_object->type == OBJT_DEFAULT) ||
2875 				(first_object->type == OBJT_SWAP)) ) {
2876 
2877 			oldobject = first_object->backing_object;
2878 
2879 			if ((first_object->backing_object_offset != cp) ||
2880 				(oldobject != srcobject)) {
2881 				/*
2882    				* Remove old window into the file
2883    				*/
2884 				pmap_remove (map->pmap, uaddr, tend);
2885 
2886 				/*
2887 				 * Remove unneeded old pages
2888 				 */
2889 				vm_object_page_remove(first_object, 0, 0, 0);
2890 
2891 				/*
2892 				 * Invalidate swap space
2893 				 */
2894 				if (first_object->type == OBJT_SWAP) {
2895 					swap_pager_freespace(first_object,
2896 						0,
2897 						first_object->size);
2898 				}
2899 
2900 				/*
2901    				* Force copy on write for mmaped regions
2902    				*/
2903 				vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize);
2904 
2905 				/*
2906    				* Point the object appropriately
2907    				*/
2908 				if (oldobject != srcobject) {
2909 
2910 				/*
2911    				* Set the object optimization hint flag
2912    				*/
2913 					vm_object_set_flag(srcobject, OBJ_OPT);
2914 					vm_object_reference(srcobject);
2915 
2916 					if (oldobject) {
2917 						TAILQ_REMOVE(&oldobject->shadow_head,
2918 							first_object, shadow_list);
2919 						oldobject->shadow_count--;
2920 						/* XXX bump generation? */
2921 						vm_object_deallocate(oldobject);
2922 					}
2923 
2924 					TAILQ_INSERT_TAIL(&srcobject->shadow_head,
2925 						first_object, shadow_list);
2926 					srcobject->shadow_count++;
2927 					/* XXX bump generation? */
2928 
2929 					first_object->backing_object = srcobject;
2930 				}
2931 				first_object->backing_object_offset = cp;
2932 				map->timestamp++;
2933 			} else {
2934 				pmap_remove (map->pmap, uaddr, tend);
2935 			}
2936 /*
2937  * Otherwise, we have to do a logical mmap.
2938  */
2939 		} else {
2940 
2941 			vm_object_set_flag(srcobject, OBJ_OPT);
2942 			vm_object_reference(srcobject);
2943 
2944 			pmap_remove (map->pmap, uaddr, tend);
2945 
2946 			vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize);
2947 			vm_map_lock_upgrade(map);
2948 
2949 			if (entry == &map->header) {
2950 				map->first_free = &map->header;
2951 			} else if (map->first_free->start >= start) {
2952 				map->first_free = entry->prev;
2953 			}
2954 
2955 			SAVE_HINT(map, entry->prev);
2956 			vm_map_entry_delete(map, entry);
2957 
2958 			object = srcobject;
2959 			ooffset = cp;
2960 
2961 			rv = vm_map_insert(map, object, ooffset, start, tend,
2962 				VM_PROT_ALL, VM_PROT_ALL, MAP_COPY_ON_WRITE);
2963 
2964 			if (rv != KERN_SUCCESS)
2965 				panic("vm_uiomove: could not insert new entry: %d", rv);
2966 		}
2967 
2968 /*
2969  * Map the window directly, if it is already in memory
2970  */
2971 		pmap_object_init_pt(map->pmap, uaddr,
2972 			srcobject, oindex, tcnt, 0);
2973 
2974 		map->timestamp++;
2975 		vm_map_unlock(map);
2976 
2977 		cnt -= tcnt;
2978 		uaddr += tcnt;
2979 		cp += tcnt;
2980 		if (npages)
2981 			*npages += osize;
2982 	}
2983 	return 0;
2984 }
2985 
2986 /*
2987  * Performs the copy_on_write operations necessary to allow the virtual copies
2988  * into user space to work.  This has to be called for write(2) system calls
2989  * from other processes, file unlinking, and file size shrinkage.
2990  *
2991  * Requires that the vm_mtx is held
2992  */
2993 void
2994 vm_freeze_copyopts(object, froma, toa)
2995 	vm_object_t object;
2996 	vm_pindex_t froma, toa;
2997 {
2998 	int rv;
2999 	vm_object_t robject;
3000 	vm_pindex_t idx;
3001 
3002 	mtx_assert(&vm_mtx, MA_OWNED);
3003 	if ((object == NULL) ||
3004 		((object->flags & OBJ_OPT) == 0))
3005 		return;
3006 
3007 	if (object->shadow_count > object->ref_count)
3008 		panic("vm_freeze_copyopts: sc > rc");
3009 
3010 	while((robject = TAILQ_FIRST(&object->shadow_head)) != NULL) {
3011 		vm_pindex_t bo_pindex;
3012 		vm_page_t m_in, m_out;
3013 
3014 		bo_pindex = OFF_TO_IDX(robject->backing_object_offset);
3015 
3016 		vm_object_reference(robject);
3017 
3018 		vm_object_pip_wait(robject, "objfrz");
3019 
3020 		if (robject->ref_count == 1) {
3021 			vm_object_deallocate(robject);
3022 			continue;
3023 		}
3024 
3025 		vm_object_pip_add(robject, 1);
3026 
3027 		for (idx = 0; idx < robject->size; idx++) {
3028 
3029 			m_out = vm_page_grab(robject, idx,
3030 						VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
3031 
3032 			if (m_out->valid == 0) {
3033 				m_in = vm_page_grab(object, bo_pindex + idx,
3034 						VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
3035 				if (m_in->valid == 0) {
3036 					rv = vm_pager_get_pages(object, &m_in, 1, 0);
3037 					if (rv != VM_PAGER_OK) {
3038 						printf("vm_freeze_copyopts: cannot read page from file: %lx\n", (long)m_in->pindex);
3039 						continue;
3040 					}
3041 					vm_page_deactivate(m_in);
3042 				}
3043 
3044 				vm_page_protect(m_in, VM_PROT_NONE);
3045 				pmap_copy_page(VM_PAGE_TO_PHYS(m_in), VM_PAGE_TO_PHYS(m_out));
3046 				m_out->valid = m_in->valid;
3047 				vm_page_dirty(m_out);
3048 				vm_page_activate(m_out);
3049 				vm_page_wakeup(m_in);
3050 			}
3051 			vm_page_wakeup(m_out);
3052 		}
3053 
3054 		object->shadow_count--;
3055 		object->ref_count--;
3056 		TAILQ_REMOVE(&object->shadow_head, robject, shadow_list);
3057 		robject->backing_object = NULL;
3058 		robject->backing_object_offset = 0;
3059 
3060 		vm_object_pip_wakeup(robject);
3061 		vm_object_deallocate(robject);
3062 	}
3063 
3064 	vm_object_clear_flag(object, OBJ_OPT);
3065 }
3066 
3067 #include "opt_ddb.h"
3068 #ifdef DDB
3069 #include <sys/kernel.h>
3070 
3071 #include <ddb/ddb.h>
3072 
3073 /*
3074  *	vm_map_print:	[ debug ]
3075  */
3076 DB_SHOW_COMMAND(map, vm_map_print)
3077 {
3078 	static int nlines;
3079 	/* XXX convert args. */
3080 	vm_map_t map = (vm_map_t)addr;
3081 	boolean_t full = have_addr;
3082 
3083 	vm_map_entry_t entry;
3084 
3085 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
3086 	    (void *)map,
3087 	    (void *)map->pmap, map->nentries, map->timestamp);
3088 	nlines++;
3089 
3090 	if (!full && db_indent)
3091 		return;
3092 
3093 	db_indent += 2;
3094 	for (entry = map->header.next; entry != &map->header;
3095 	    entry = entry->next) {
3096 		db_iprintf("map entry %p: start=%p, end=%p\n",
3097 		    (void *)entry, (void *)entry->start, (void *)entry->end);
3098 		nlines++;
3099 		{
3100 			static char *inheritance_name[4] =
3101 			{"share", "copy", "none", "donate_copy"};
3102 
3103 			db_iprintf(" prot=%x/%x/%s",
3104 			    entry->protection,
3105 			    entry->max_protection,
3106 			    inheritance_name[(int)(unsigned char)entry->inheritance]);
3107 			if (entry->wired_count != 0)
3108 				db_printf(", wired");
3109 		}
3110 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3111 			/* XXX no %qd in kernel.  Truncate entry->offset. */
3112 			db_printf(", share=%p, offset=0x%lx\n",
3113 			    (void *)entry->object.sub_map,
3114 			    (long)entry->offset);
3115 			nlines++;
3116 			if ((entry->prev == &map->header) ||
3117 			    (entry->prev->object.sub_map !=
3118 				entry->object.sub_map)) {
3119 				db_indent += 2;
3120 				vm_map_print((db_expr_t)(intptr_t)
3121 					     entry->object.sub_map,
3122 					     full, 0, (char *)0);
3123 				db_indent -= 2;
3124 			}
3125 		} else {
3126 			/* XXX no %qd in kernel.  Truncate entry->offset. */
3127 			db_printf(", object=%p, offset=0x%lx",
3128 			    (void *)entry->object.vm_object,
3129 			    (long)entry->offset);
3130 			if (entry->eflags & MAP_ENTRY_COW)
3131 				db_printf(", copy (%s)",
3132 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
3133 			db_printf("\n");
3134 			nlines++;
3135 
3136 			if ((entry->prev == &map->header) ||
3137 			    (entry->prev->object.vm_object !=
3138 				entry->object.vm_object)) {
3139 				db_indent += 2;
3140 				vm_object_print((db_expr_t)(intptr_t)
3141 						entry->object.vm_object,
3142 						full, 0, (char *)0);
3143 				nlines += 4;
3144 				db_indent -= 2;
3145 			}
3146 		}
3147 	}
3148 	db_indent -= 2;
3149 	if (db_indent == 0)
3150 		nlines = 0;
3151 }
3152 
3153 
3154 DB_SHOW_COMMAND(procvm, procvm)
3155 {
3156 	struct proc *p;
3157 
3158 	if (have_addr) {
3159 		p = (struct proc *) addr;
3160 	} else {
3161 		p = curproc;
3162 	}
3163 
3164 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
3165 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
3166 	    (void *)vmspace_pmap(p->p_vmspace));
3167 
3168 	vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
3169 }
3170 
3171 #endif /* DDB */
3172