1 /*- 2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * The Mach Operating System project at Carnegie-Mellon University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 35 * 36 * 37 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 38 * All rights reserved. 39 * 40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 41 * 42 * Permission to use, copy, modify and distribute this software and 43 * its documentation is hereby granted, provided that both the copyright 44 * notice and this permission notice appear in all copies of the 45 * software, derivative works or modified versions, and any portions 46 * thereof, and that both notices appear in supporting documentation. 47 * 48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 51 * 52 * Carnegie Mellon requests users of this software to return to 53 * 54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 55 * School of Computer Science 56 * Carnegie Mellon University 57 * Pittsburgh PA 15213-3890 58 * 59 * any improvements or extensions that they make and grant Carnegie the 60 * rights to redistribute these changes. 61 */ 62 63 /* 64 * Virtual memory mapping module. 65 */ 66 67 #include <sys/cdefs.h> 68 __FBSDID("$FreeBSD$"); 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/elf.h> 73 #include <sys/kernel.h> 74 #include <sys/ktr.h> 75 #include <sys/lock.h> 76 #include <sys/mutex.h> 77 #include <sys/proc.h> 78 #include <sys/vmmeter.h> 79 #include <sys/mman.h> 80 #include <sys/vnode.h> 81 #include <sys/racct.h> 82 #include <sys/resourcevar.h> 83 #include <sys/rwlock.h> 84 #include <sys/file.h> 85 #include <sys/sysctl.h> 86 #include <sys/sysent.h> 87 #include <sys/shm.h> 88 89 #include <vm/vm.h> 90 #include <vm/vm_param.h> 91 #include <vm/pmap.h> 92 #include <vm/vm_map.h> 93 #include <vm/vm_page.h> 94 #include <vm/vm_pageout.h> 95 #include <vm/vm_object.h> 96 #include <vm/vm_pager.h> 97 #include <vm/vm_kern.h> 98 #include <vm/vm_extern.h> 99 #include <vm/vnode_pager.h> 100 #include <vm/swap_pager.h> 101 #include <vm/uma.h> 102 103 /* 104 * Virtual memory maps provide for the mapping, protection, 105 * and sharing of virtual memory objects. In addition, 106 * this module provides for an efficient virtual copy of 107 * memory from one map to another. 108 * 109 * Synchronization is required prior to most operations. 110 * 111 * Maps consist of an ordered doubly-linked list of simple 112 * entries; a self-adjusting binary search tree of these 113 * entries is used to speed up lookups. 114 * 115 * Since portions of maps are specified by start/end addresses, 116 * which may not align with existing map entries, all 117 * routines merely "clip" entries to these start/end values. 118 * [That is, an entry is split into two, bordering at a 119 * start or end value.] Note that these clippings may not 120 * always be necessary (as the two resulting entries are then 121 * not changed); however, the clipping is done for convenience. 122 * 123 * As mentioned above, virtual copy operations are performed 124 * by copying VM object references from one map to 125 * another, and then marking both regions as copy-on-write. 126 */ 127 128 static struct mtx map_sleep_mtx; 129 static uma_zone_t mapentzone; 130 static uma_zone_t kmapentzone; 131 static uma_zone_t mapzone; 132 static uma_zone_t vmspace_zone; 133 static int vmspace_zinit(void *mem, int size, int flags); 134 static int vm_map_zinit(void *mem, int ize, int flags); 135 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, 136 vm_offset_t max); 137 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map); 138 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry); 139 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry); 140 static int vm_map_growstack(vm_map_t map, vm_offset_t addr, 141 vm_map_entry_t gap_entry); 142 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 143 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags); 144 #ifdef INVARIANTS 145 static void vm_map_zdtor(void *mem, int size, void *arg); 146 static void vmspace_zdtor(void *mem, int size, void *arg); 147 #endif 148 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, 149 vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max, 150 int cow); 151 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry, 152 vm_offset_t failed_addr); 153 154 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \ 155 ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \ 156 !((e)->eflags & MAP_ENTRY_NEEDS_COPY))) 157 158 /* 159 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type 160 * stable. 161 */ 162 #define PROC_VMSPACE_LOCK(p) do { } while (0) 163 #define PROC_VMSPACE_UNLOCK(p) do { } while (0) 164 165 /* 166 * VM_MAP_RANGE_CHECK: [ internal use only ] 167 * 168 * Asserts that the starting and ending region 169 * addresses fall within the valid range of the map. 170 */ 171 #define VM_MAP_RANGE_CHECK(map, start, end) \ 172 { \ 173 if (start < vm_map_min(map)) \ 174 start = vm_map_min(map); \ 175 if (end > vm_map_max(map)) \ 176 end = vm_map_max(map); \ 177 if (start > end) \ 178 start = end; \ 179 } 180 181 /* 182 * vm_map_startup: 183 * 184 * Initialize the vm_map module. Must be called before 185 * any other vm_map routines. 186 * 187 * Map and entry structures are allocated from the general 188 * purpose memory pool with some exceptions: 189 * 190 * - The kernel map and kmem submap are allocated statically. 191 * - Kernel map entries are allocated out of a static pool. 192 * 193 * These restrictions are necessary since malloc() uses the 194 * maps and requires map entries. 195 */ 196 197 void 198 vm_map_startup(void) 199 { 200 mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF); 201 mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL, 202 #ifdef INVARIANTS 203 vm_map_zdtor, 204 #else 205 NULL, 206 #endif 207 vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 208 uma_prealloc(mapzone, MAX_KMAP); 209 kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry), 210 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 211 UMA_ZONE_MTXCLASS | UMA_ZONE_VM); 212 mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry), 213 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 214 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL, 215 #ifdef INVARIANTS 216 vmspace_zdtor, 217 #else 218 NULL, 219 #endif 220 vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 221 } 222 223 static int 224 vmspace_zinit(void *mem, int size, int flags) 225 { 226 struct vmspace *vm; 227 228 vm = (struct vmspace *)mem; 229 230 vm->vm_map.pmap = NULL; 231 (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags); 232 PMAP_LOCK_INIT(vmspace_pmap(vm)); 233 return (0); 234 } 235 236 static int 237 vm_map_zinit(void *mem, int size, int flags) 238 { 239 vm_map_t map; 240 241 map = (vm_map_t)mem; 242 memset(map, 0, sizeof(*map)); 243 mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK); 244 sx_init(&map->lock, "vm map (user)"); 245 return (0); 246 } 247 248 #ifdef INVARIANTS 249 static void 250 vmspace_zdtor(void *mem, int size, void *arg) 251 { 252 struct vmspace *vm; 253 254 vm = (struct vmspace *)mem; 255 256 vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg); 257 } 258 static void 259 vm_map_zdtor(void *mem, int size, void *arg) 260 { 261 vm_map_t map; 262 263 map = (vm_map_t)mem; 264 KASSERT(map->nentries == 0, 265 ("map %p nentries == %d on free.", 266 map, map->nentries)); 267 KASSERT(map->size == 0, 268 ("map %p size == %lu on free.", 269 map, (unsigned long)map->size)); 270 } 271 #endif /* INVARIANTS */ 272 273 /* 274 * Allocate a vmspace structure, including a vm_map and pmap, 275 * and initialize those structures. The refcnt is set to 1. 276 * 277 * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit(). 278 */ 279 struct vmspace * 280 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit) 281 { 282 struct vmspace *vm; 283 284 vm = uma_zalloc(vmspace_zone, M_WAITOK); 285 KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL")); 286 if (!pinit(vmspace_pmap(vm))) { 287 uma_zfree(vmspace_zone, vm); 288 return (NULL); 289 } 290 CTR1(KTR_VM, "vmspace_alloc: %p", vm); 291 _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max); 292 vm->vm_refcnt = 1; 293 vm->vm_shm = NULL; 294 vm->vm_swrss = 0; 295 vm->vm_tsize = 0; 296 vm->vm_dsize = 0; 297 vm->vm_ssize = 0; 298 vm->vm_taddr = 0; 299 vm->vm_daddr = 0; 300 vm->vm_maxsaddr = 0; 301 return (vm); 302 } 303 304 #ifdef RACCT 305 static void 306 vmspace_container_reset(struct proc *p) 307 { 308 309 PROC_LOCK(p); 310 racct_set(p, RACCT_DATA, 0); 311 racct_set(p, RACCT_STACK, 0); 312 racct_set(p, RACCT_RSS, 0); 313 racct_set(p, RACCT_MEMLOCK, 0); 314 racct_set(p, RACCT_VMEM, 0); 315 PROC_UNLOCK(p); 316 } 317 #endif 318 319 static inline void 320 vmspace_dofree(struct vmspace *vm) 321 { 322 323 CTR1(KTR_VM, "vmspace_free: %p", vm); 324 325 /* 326 * Make sure any SysV shm is freed, it might not have been in 327 * exit1(). 328 */ 329 shmexit(vm); 330 331 /* 332 * Lock the map, to wait out all other references to it. 333 * Delete all of the mappings and pages they hold, then call 334 * the pmap module to reclaim anything left. 335 */ 336 (void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map), 337 vm_map_max(&vm->vm_map)); 338 339 pmap_release(vmspace_pmap(vm)); 340 vm->vm_map.pmap = NULL; 341 uma_zfree(vmspace_zone, vm); 342 } 343 344 void 345 vmspace_free(struct vmspace *vm) 346 { 347 348 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 349 "vmspace_free() called"); 350 351 if (vm->vm_refcnt == 0) 352 panic("vmspace_free: attempt to free already freed vmspace"); 353 354 if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1) 355 vmspace_dofree(vm); 356 } 357 358 void 359 vmspace_exitfree(struct proc *p) 360 { 361 struct vmspace *vm; 362 363 PROC_VMSPACE_LOCK(p); 364 vm = p->p_vmspace; 365 p->p_vmspace = NULL; 366 PROC_VMSPACE_UNLOCK(p); 367 KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace")); 368 vmspace_free(vm); 369 } 370 371 void 372 vmspace_exit(struct thread *td) 373 { 374 int refcnt; 375 struct vmspace *vm; 376 struct proc *p; 377 378 /* 379 * Release user portion of address space. 380 * This releases references to vnodes, 381 * which could cause I/O if the file has been unlinked. 382 * Need to do this early enough that we can still sleep. 383 * 384 * The last exiting process to reach this point releases as 385 * much of the environment as it can. vmspace_dofree() is the 386 * slower fallback in case another process had a temporary 387 * reference to the vmspace. 388 */ 389 390 p = td->td_proc; 391 vm = p->p_vmspace; 392 atomic_add_int(&vmspace0.vm_refcnt, 1); 393 refcnt = vm->vm_refcnt; 394 do { 395 if (refcnt > 1 && p->p_vmspace != &vmspace0) { 396 /* Switch now since other proc might free vmspace */ 397 PROC_VMSPACE_LOCK(p); 398 p->p_vmspace = &vmspace0; 399 PROC_VMSPACE_UNLOCK(p); 400 pmap_activate(td); 401 } 402 } while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt - 1)); 403 if (refcnt == 1) { 404 if (p->p_vmspace != vm) { 405 /* vmspace not yet freed, switch back */ 406 PROC_VMSPACE_LOCK(p); 407 p->p_vmspace = vm; 408 PROC_VMSPACE_UNLOCK(p); 409 pmap_activate(td); 410 } 411 pmap_remove_pages(vmspace_pmap(vm)); 412 /* Switch now since this proc will free vmspace */ 413 PROC_VMSPACE_LOCK(p); 414 p->p_vmspace = &vmspace0; 415 PROC_VMSPACE_UNLOCK(p); 416 pmap_activate(td); 417 vmspace_dofree(vm); 418 } 419 #ifdef RACCT 420 if (racct_enable) 421 vmspace_container_reset(p); 422 #endif 423 } 424 425 /* Acquire reference to vmspace owned by another process. */ 426 427 struct vmspace * 428 vmspace_acquire_ref(struct proc *p) 429 { 430 struct vmspace *vm; 431 int refcnt; 432 433 PROC_VMSPACE_LOCK(p); 434 vm = p->p_vmspace; 435 if (vm == NULL) { 436 PROC_VMSPACE_UNLOCK(p); 437 return (NULL); 438 } 439 refcnt = vm->vm_refcnt; 440 do { 441 if (refcnt <= 0) { /* Avoid 0->1 transition */ 442 PROC_VMSPACE_UNLOCK(p); 443 return (NULL); 444 } 445 } while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt + 1)); 446 if (vm != p->p_vmspace) { 447 PROC_VMSPACE_UNLOCK(p); 448 vmspace_free(vm); 449 return (NULL); 450 } 451 PROC_VMSPACE_UNLOCK(p); 452 return (vm); 453 } 454 455 /* 456 * Switch between vmspaces in an AIO kernel process. 457 * 458 * The new vmspace is either the vmspace of a user process obtained 459 * from an active AIO request or the initial vmspace of the AIO kernel 460 * process (when it is idling). Because user processes will block to 461 * drain any active AIO requests before proceeding in exit() or 462 * execve(), the reference count for vmspaces from AIO requests can 463 * never be 0. Similarly, AIO kernel processes hold an extra 464 * reference on their initial vmspace for the life of the process. As 465 * a result, the 'newvm' vmspace always has a non-zero reference 466 * count. This permits an additional reference on 'newvm' to be 467 * acquired via a simple atomic increment rather than the loop in 468 * vmspace_acquire_ref() above. 469 */ 470 void 471 vmspace_switch_aio(struct vmspace *newvm) 472 { 473 struct vmspace *oldvm; 474 475 /* XXX: Need some way to assert that this is an aio daemon. */ 476 477 KASSERT(newvm->vm_refcnt > 0, 478 ("vmspace_switch_aio: newvm unreferenced")); 479 480 oldvm = curproc->p_vmspace; 481 if (oldvm == newvm) 482 return; 483 484 /* 485 * Point to the new address space and refer to it. 486 */ 487 curproc->p_vmspace = newvm; 488 atomic_add_int(&newvm->vm_refcnt, 1); 489 490 /* Activate the new mapping. */ 491 pmap_activate(curthread); 492 493 vmspace_free(oldvm); 494 } 495 496 void 497 _vm_map_lock(vm_map_t map, const char *file, int line) 498 { 499 500 if (map->system_map) 501 mtx_lock_flags_(&map->system_mtx, 0, file, line); 502 else 503 sx_xlock_(&map->lock, file, line); 504 map->timestamp++; 505 } 506 507 void 508 vm_map_entry_set_vnode_text(vm_map_entry_t entry, bool add) 509 { 510 vm_object_t object; 511 struct vnode *vp; 512 bool vp_held; 513 514 if ((entry->eflags & MAP_ENTRY_VN_EXEC) == 0) 515 return; 516 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 517 ("Submap with execs")); 518 object = entry->object.vm_object; 519 KASSERT(object != NULL, ("No object for text, entry %p", entry)); 520 if ((object->flags & OBJ_ANON) != 0) 521 object = object->handle; 522 else 523 KASSERT(object->backing_object == NULL, 524 ("non-anon object %p shadows", object)); 525 KASSERT(object != NULL, ("No content object for text, entry %p obj %p", 526 entry, entry->object.vm_object)); 527 528 /* 529 * Mostly, we do not lock the backing object. It is 530 * referenced by the entry we are processing, so it cannot go 531 * away. 532 */ 533 vp = NULL; 534 vp_held = false; 535 if (object->type == OBJT_DEAD) { 536 /* 537 * For OBJT_DEAD objects, v_writecount was handled in 538 * vnode_pager_dealloc(). 539 */ 540 } else if (object->type == OBJT_VNODE) { 541 vp = object->handle; 542 } else if (object->type == OBJT_SWAP) { 543 KASSERT((object->flags & OBJ_TMPFS_NODE) != 0, 544 ("vm_map_entry_set_vnode_text: swap and !TMPFS " 545 "entry %p, object %p, add %d", entry, object, add)); 546 /* 547 * Tmpfs VREG node, which was reclaimed, has 548 * OBJ_TMPFS_NODE flag set, but not OBJ_TMPFS. In 549 * this case there is no v_writecount to adjust. 550 */ 551 VM_OBJECT_RLOCK(object); 552 if ((object->flags & OBJ_TMPFS) != 0) { 553 vp = object->un_pager.swp.swp_tmpfs; 554 if (vp != NULL) { 555 vhold(vp); 556 vp_held = true; 557 } 558 } 559 VM_OBJECT_RUNLOCK(object); 560 } else { 561 KASSERT(0, 562 ("vm_map_entry_set_vnode_text: wrong object type, " 563 "entry %p, object %p, add %d", entry, object, add)); 564 } 565 if (vp != NULL) { 566 if (add) { 567 VOP_SET_TEXT_CHECKED(vp); 568 } else { 569 vn_lock(vp, LK_SHARED | LK_RETRY); 570 VOP_UNSET_TEXT_CHECKED(vp); 571 VOP_UNLOCK(vp); 572 } 573 if (vp_held) 574 vdrop(vp); 575 } 576 } 577 578 /* 579 * Use a different name for this vm_map_entry field when it's use 580 * is not consistent with its use as part of an ordered search tree. 581 */ 582 #define defer_next right 583 584 static void 585 vm_map_process_deferred(void) 586 { 587 struct thread *td; 588 vm_map_entry_t entry, next; 589 vm_object_t object; 590 591 td = curthread; 592 entry = td->td_map_def_user; 593 td->td_map_def_user = NULL; 594 while (entry != NULL) { 595 next = entry->defer_next; 596 MPASS((entry->eflags & (MAP_ENTRY_WRITECNT | 597 MAP_ENTRY_VN_EXEC)) != (MAP_ENTRY_WRITECNT | 598 MAP_ENTRY_VN_EXEC)); 599 if ((entry->eflags & MAP_ENTRY_WRITECNT) != 0) { 600 /* 601 * Decrement the object's writemappings and 602 * possibly the vnode's v_writecount. 603 */ 604 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 605 ("Submap with writecount")); 606 object = entry->object.vm_object; 607 KASSERT(object != NULL, ("No object for writecount")); 608 vm_pager_release_writecount(object, entry->start, 609 entry->end); 610 } 611 vm_map_entry_set_vnode_text(entry, false); 612 vm_map_entry_deallocate(entry, FALSE); 613 entry = next; 614 } 615 } 616 617 #ifdef INVARIANTS 618 static void 619 _vm_map_assert_locked(vm_map_t map, const char *file, int line) 620 { 621 622 if (map->system_map) 623 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 624 else 625 sx_assert_(&map->lock, SA_XLOCKED, file, line); 626 } 627 628 #define VM_MAP_ASSERT_LOCKED(map) \ 629 _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE) 630 631 enum { VMMAP_CHECK_NONE, VMMAP_CHECK_UNLOCK, VMMAP_CHECK_ALL }; 632 #ifdef DIAGNOSTIC 633 static int enable_vmmap_check = VMMAP_CHECK_UNLOCK; 634 #else 635 static int enable_vmmap_check = VMMAP_CHECK_NONE; 636 #endif 637 SYSCTL_INT(_debug, OID_AUTO, vmmap_check, CTLFLAG_RWTUN, 638 &enable_vmmap_check, 0, "Enable vm map consistency checking"); 639 640 static void _vm_map_assert_consistent(vm_map_t map, int check); 641 642 #define VM_MAP_ASSERT_CONSISTENT(map) \ 643 _vm_map_assert_consistent(map, VMMAP_CHECK_ALL) 644 #ifdef DIAGNOSTIC 645 #define VM_MAP_UNLOCK_CONSISTENT(map) do { \ 646 if (map->nupdates > map->nentries) { \ 647 _vm_map_assert_consistent(map, VMMAP_CHECK_UNLOCK); \ 648 map->nupdates = 0; \ 649 } \ 650 } while (0) 651 #else 652 #define VM_MAP_UNLOCK_CONSISTENT(map) 653 #endif 654 #else 655 #define VM_MAP_ASSERT_LOCKED(map) 656 #define VM_MAP_ASSERT_CONSISTENT(map) 657 #define VM_MAP_UNLOCK_CONSISTENT(map) 658 #endif /* INVARIANTS */ 659 660 void 661 _vm_map_unlock(vm_map_t map, const char *file, int line) 662 { 663 664 VM_MAP_UNLOCK_CONSISTENT(map); 665 if (map->system_map) 666 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 667 else { 668 sx_xunlock_(&map->lock, file, line); 669 vm_map_process_deferred(); 670 } 671 } 672 673 void 674 _vm_map_lock_read(vm_map_t map, const char *file, int line) 675 { 676 677 if (map->system_map) 678 mtx_lock_flags_(&map->system_mtx, 0, file, line); 679 else 680 sx_slock_(&map->lock, file, line); 681 } 682 683 void 684 _vm_map_unlock_read(vm_map_t map, const char *file, int line) 685 { 686 687 if (map->system_map) 688 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 689 else { 690 sx_sunlock_(&map->lock, file, line); 691 vm_map_process_deferred(); 692 } 693 } 694 695 int 696 _vm_map_trylock(vm_map_t map, const char *file, int line) 697 { 698 int error; 699 700 error = map->system_map ? 701 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 702 !sx_try_xlock_(&map->lock, file, line); 703 if (error == 0) 704 map->timestamp++; 705 return (error == 0); 706 } 707 708 int 709 _vm_map_trylock_read(vm_map_t map, const char *file, int line) 710 { 711 int error; 712 713 error = map->system_map ? 714 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 715 !sx_try_slock_(&map->lock, file, line); 716 return (error == 0); 717 } 718 719 /* 720 * _vm_map_lock_upgrade: [ internal use only ] 721 * 722 * Tries to upgrade a read (shared) lock on the specified map to a write 723 * (exclusive) lock. Returns the value "0" if the upgrade succeeds and a 724 * non-zero value if the upgrade fails. If the upgrade fails, the map is 725 * returned without a read or write lock held. 726 * 727 * Requires that the map be read locked. 728 */ 729 int 730 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line) 731 { 732 unsigned int last_timestamp; 733 734 if (map->system_map) { 735 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 736 } else { 737 if (!sx_try_upgrade_(&map->lock, file, line)) { 738 last_timestamp = map->timestamp; 739 sx_sunlock_(&map->lock, file, line); 740 vm_map_process_deferred(); 741 /* 742 * If the map's timestamp does not change while the 743 * map is unlocked, then the upgrade succeeds. 744 */ 745 sx_xlock_(&map->lock, file, line); 746 if (last_timestamp != map->timestamp) { 747 sx_xunlock_(&map->lock, file, line); 748 return (1); 749 } 750 } 751 } 752 map->timestamp++; 753 return (0); 754 } 755 756 void 757 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line) 758 { 759 760 if (map->system_map) { 761 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 762 } else { 763 VM_MAP_UNLOCK_CONSISTENT(map); 764 sx_downgrade_(&map->lock, file, line); 765 } 766 } 767 768 /* 769 * vm_map_locked: 770 * 771 * Returns a non-zero value if the caller holds a write (exclusive) lock 772 * on the specified map and the value "0" otherwise. 773 */ 774 int 775 vm_map_locked(vm_map_t map) 776 { 777 778 if (map->system_map) 779 return (mtx_owned(&map->system_mtx)); 780 else 781 return (sx_xlocked(&map->lock)); 782 } 783 784 /* 785 * _vm_map_unlock_and_wait: 786 * 787 * Atomically releases the lock on the specified map and puts the calling 788 * thread to sleep. The calling thread will remain asleep until either 789 * vm_map_wakeup() is performed on the map or the specified timeout is 790 * exceeded. 791 * 792 * WARNING! This function does not perform deferred deallocations of 793 * objects and map entries. Therefore, the calling thread is expected to 794 * reacquire the map lock after reawakening and later perform an ordinary 795 * unlock operation, such as vm_map_unlock(), before completing its 796 * operation on the map. 797 */ 798 int 799 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line) 800 { 801 802 VM_MAP_UNLOCK_CONSISTENT(map); 803 mtx_lock(&map_sleep_mtx); 804 if (map->system_map) 805 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 806 else 807 sx_xunlock_(&map->lock, file, line); 808 return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps", 809 timo)); 810 } 811 812 /* 813 * vm_map_wakeup: 814 * 815 * Awaken any threads that have slept on the map using 816 * vm_map_unlock_and_wait(). 817 */ 818 void 819 vm_map_wakeup(vm_map_t map) 820 { 821 822 /* 823 * Acquire and release map_sleep_mtx to prevent a wakeup() 824 * from being performed (and lost) between the map unlock 825 * and the msleep() in _vm_map_unlock_and_wait(). 826 */ 827 mtx_lock(&map_sleep_mtx); 828 mtx_unlock(&map_sleep_mtx); 829 wakeup(&map->root); 830 } 831 832 void 833 vm_map_busy(vm_map_t map) 834 { 835 836 VM_MAP_ASSERT_LOCKED(map); 837 map->busy++; 838 } 839 840 void 841 vm_map_unbusy(vm_map_t map) 842 { 843 844 VM_MAP_ASSERT_LOCKED(map); 845 KASSERT(map->busy, ("vm_map_unbusy: not busy")); 846 if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) { 847 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP); 848 wakeup(&map->busy); 849 } 850 } 851 852 void 853 vm_map_wait_busy(vm_map_t map) 854 { 855 856 VM_MAP_ASSERT_LOCKED(map); 857 while (map->busy) { 858 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0); 859 if (map->system_map) 860 msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0); 861 else 862 sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0); 863 } 864 map->timestamp++; 865 } 866 867 long 868 vmspace_resident_count(struct vmspace *vmspace) 869 { 870 return pmap_resident_count(vmspace_pmap(vmspace)); 871 } 872 873 /* 874 * vm_map_create: 875 * 876 * Creates and returns a new empty VM map with 877 * the given physical map structure, and having 878 * the given lower and upper address bounds. 879 */ 880 vm_map_t 881 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max) 882 { 883 vm_map_t result; 884 885 result = uma_zalloc(mapzone, M_WAITOK); 886 CTR1(KTR_VM, "vm_map_create: %p", result); 887 _vm_map_init(result, pmap, min, max); 888 return (result); 889 } 890 891 /* 892 * Initialize an existing vm_map structure 893 * such as that in the vmspace structure. 894 */ 895 static void 896 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 897 { 898 899 map->header.eflags = MAP_ENTRY_HEADER; 900 map->needs_wakeup = FALSE; 901 map->system_map = 0; 902 map->pmap = pmap; 903 map->header.end = min; 904 map->header.start = max; 905 map->flags = 0; 906 map->header.left = map->header.right = &map->header; 907 map->root = NULL; 908 map->timestamp = 0; 909 map->busy = 0; 910 map->anon_loc = 0; 911 #ifdef DIAGNOSTIC 912 map->nupdates = 0; 913 #endif 914 } 915 916 void 917 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 918 { 919 920 _vm_map_init(map, pmap, min, max); 921 mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK); 922 sx_init(&map->lock, "user map"); 923 } 924 925 /* 926 * vm_map_entry_dispose: [ internal use only ] 927 * 928 * Inverse of vm_map_entry_create. 929 */ 930 static void 931 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry) 932 { 933 uma_zfree(map->system_map ? kmapentzone : mapentzone, entry); 934 } 935 936 /* 937 * vm_map_entry_create: [ internal use only ] 938 * 939 * Allocates a VM map entry for insertion. 940 * No entry fields are filled in. 941 */ 942 static vm_map_entry_t 943 vm_map_entry_create(vm_map_t map) 944 { 945 vm_map_entry_t new_entry; 946 947 if (map->system_map) 948 new_entry = uma_zalloc(kmapentzone, M_NOWAIT); 949 else 950 new_entry = uma_zalloc(mapentzone, M_WAITOK); 951 if (new_entry == NULL) 952 panic("vm_map_entry_create: kernel resources exhausted"); 953 return (new_entry); 954 } 955 956 /* 957 * vm_map_entry_set_behavior: 958 * 959 * Set the expected access behavior, either normal, random, or 960 * sequential. 961 */ 962 static inline void 963 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior) 964 { 965 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) | 966 (behavior & MAP_ENTRY_BEHAV_MASK); 967 } 968 969 /* 970 * vm_map_entry_max_free_{left,right}: 971 * 972 * Compute the size of the largest free gap between two entries, 973 * one the root of a tree and the other the ancestor of that root 974 * that is the least or greatest ancestor found on the search path. 975 */ 976 static inline vm_size_t 977 vm_map_entry_max_free_left(vm_map_entry_t root, vm_map_entry_t left_ancestor) 978 { 979 980 return (root->left != left_ancestor ? 981 root->left->max_free : root->start - left_ancestor->end); 982 } 983 984 static inline vm_size_t 985 vm_map_entry_max_free_right(vm_map_entry_t root, vm_map_entry_t right_ancestor) 986 { 987 988 return (root->right != right_ancestor ? 989 root->right->max_free : right_ancestor->start - root->end); 990 } 991 992 /* 993 * vm_map_entry_{pred,succ}: 994 * 995 * Find the {predecessor, successor} of the entry by taking one step 996 * in the appropriate direction and backtracking as much as necessary. 997 * vm_map_entry_succ is defined in vm_map.h. 998 */ 999 static inline vm_map_entry_t 1000 vm_map_entry_pred(vm_map_entry_t entry) 1001 { 1002 vm_map_entry_t prior; 1003 1004 prior = entry->left; 1005 if (prior->right->start < entry->start) { 1006 do 1007 prior = prior->right; 1008 while (prior->right != entry); 1009 } 1010 return (prior); 1011 } 1012 1013 static inline vm_size_t 1014 vm_size_max(vm_size_t a, vm_size_t b) 1015 { 1016 1017 return (a > b ? a : b); 1018 } 1019 1020 #define SPLAY_LEFT_STEP(root, y, llist, rlist, test) do { \ 1021 vm_map_entry_t z; \ 1022 vm_size_t max_free; \ 1023 \ 1024 /* \ 1025 * Infer root->right->max_free == root->max_free when \ 1026 * y->max_free < root->max_free || root->max_free == 0. \ 1027 * Otherwise, look right to find it. \ 1028 */ \ 1029 y = root->left; \ 1030 max_free = root->max_free; \ 1031 KASSERT(max_free == vm_size_max( \ 1032 vm_map_entry_max_free_left(root, llist), \ 1033 vm_map_entry_max_free_right(root, rlist)), \ 1034 ("%s: max_free invariant fails", __func__)); \ 1035 if (max_free - 1 < vm_map_entry_max_free_left(root, llist)) \ 1036 max_free = vm_map_entry_max_free_right(root, rlist); \ 1037 if (y != llist && (test)) { \ 1038 /* Rotate right and make y root. */ \ 1039 z = y->right; \ 1040 if (z != root) { \ 1041 root->left = z; \ 1042 y->right = root; \ 1043 if (max_free < y->max_free) \ 1044 root->max_free = max_free = \ 1045 vm_size_max(max_free, z->max_free); \ 1046 } else if (max_free < y->max_free) \ 1047 root->max_free = max_free = \ 1048 vm_size_max(max_free, root->start - y->end);\ 1049 root = y; \ 1050 y = root->left; \ 1051 } \ 1052 /* Copy right->max_free. Put root on rlist. */ \ 1053 root->max_free = max_free; \ 1054 KASSERT(max_free == vm_map_entry_max_free_right(root, rlist), \ 1055 ("%s: max_free not copied from right", __func__)); \ 1056 root->left = rlist; \ 1057 rlist = root; \ 1058 root = y != llist ? y : NULL; \ 1059 } while (0) 1060 1061 #define SPLAY_RIGHT_STEP(root, y, llist, rlist, test) do { \ 1062 vm_map_entry_t z; \ 1063 vm_size_t max_free; \ 1064 \ 1065 /* \ 1066 * Infer root->left->max_free == root->max_free when \ 1067 * y->max_free < root->max_free || root->max_free == 0. \ 1068 * Otherwise, look left to find it. \ 1069 */ \ 1070 y = root->right; \ 1071 max_free = root->max_free; \ 1072 KASSERT(max_free == vm_size_max( \ 1073 vm_map_entry_max_free_left(root, llist), \ 1074 vm_map_entry_max_free_right(root, rlist)), \ 1075 ("%s: max_free invariant fails", __func__)); \ 1076 if (max_free - 1 < vm_map_entry_max_free_right(root, rlist)) \ 1077 max_free = vm_map_entry_max_free_left(root, llist); \ 1078 if (y != rlist && (test)) { \ 1079 /* Rotate left and make y root. */ \ 1080 z = y->left; \ 1081 if (z != root) { \ 1082 root->right = z; \ 1083 y->left = root; \ 1084 if (max_free < y->max_free) \ 1085 root->max_free = max_free = \ 1086 vm_size_max(max_free, z->max_free); \ 1087 } else if (max_free < y->max_free) \ 1088 root->max_free = max_free = \ 1089 vm_size_max(max_free, y->start - root->end);\ 1090 root = y; \ 1091 y = root->right; \ 1092 } \ 1093 /* Copy left->max_free. Put root on llist. */ \ 1094 root->max_free = max_free; \ 1095 KASSERT(max_free == vm_map_entry_max_free_left(root, llist), \ 1096 ("%s: max_free not copied from left", __func__)); \ 1097 root->right = llist; \ 1098 llist = root; \ 1099 root = y != rlist ? y : NULL; \ 1100 } while (0) 1101 1102 /* 1103 * Walk down the tree until we find addr or a gap where addr would go, breaking 1104 * off left and right subtrees of nodes less than, or greater than addr. Treat 1105 * subtrees with root->max_free < length as empty trees. llist and rlist are 1106 * the two sides in reverse order (bottom-up), with llist linked by the right 1107 * pointer and rlist linked by the left pointer in the vm_map_entry, and both 1108 * lists terminated by &map->header. This function, and the subsequent call to 1109 * vm_map_splay_merge_{left,right,pred,succ}, rely on the start and end address 1110 * values in &map->header. 1111 */ 1112 static __always_inline vm_map_entry_t 1113 vm_map_splay_split(vm_map_t map, vm_offset_t addr, vm_size_t length, 1114 vm_map_entry_t *llist, vm_map_entry_t *rlist) 1115 { 1116 vm_map_entry_t left, right, root, y; 1117 1118 left = right = &map->header; 1119 root = map->root; 1120 while (root != NULL && root->max_free >= length) { 1121 KASSERT(left->end <= root->start && 1122 root->end <= right->start, 1123 ("%s: root not within tree bounds", __func__)); 1124 if (addr < root->start) { 1125 SPLAY_LEFT_STEP(root, y, left, right, 1126 y->max_free >= length && addr < y->start); 1127 } else if (addr >= root->end) { 1128 SPLAY_RIGHT_STEP(root, y, left, right, 1129 y->max_free >= length && addr >= y->end); 1130 } else 1131 break; 1132 } 1133 *llist = left; 1134 *rlist = right; 1135 return (root); 1136 } 1137 1138 static __always_inline void 1139 vm_map_splay_findnext(vm_map_entry_t root, vm_map_entry_t *rlist) 1140 { 1141 vm_map_entry_t hi, right, y; 1142 1143 right = *rlist; 1144 hi = root->right == right ? NULL : root->right; 1145 if (hi == NULL) 1146 return; 1147 do 1148 SPLAY_LEFT_STEP(hi, y, root, right, true); 1149 while (hi != NULL); 1150 *rlist = right; 1151 } 1152 1153 static __always_inline void 1154 vm_map_splay_findprev(vm_map_entry_t root, vm_map_entry_t *llist) 1155 { 1156 vm_map_entry_t left, lo, y; 1157 1158 left = *llist; 1159 lo = root->left == left ? NULL : root->left; 1160 if (lo == NULL) 1161 return; 1162 do 1163 SPLAY_RIGHT_STEP(lo, y, left, root, true); 1164 while (lo != NULL); 1165 *llist = left; 1166 } 1167 1168 static inline void 1169 vm_map_entry_swap(vm_map_entry_t *a, vm_map_entry_t *b) 1170 { 1171 vm_map_entry_t tmp; 1172 1173 tmp = *b; 1174 *b = *a; 1175 *a = tmp; 1176 } 1177 1178 /* 1179 * Walk back up the two spines, flip the pointers and set max_free. The 1180 * subtrees of the root go at the bottom of llist and rlist. 1181 */ 1182 static vm_size_t 1183 vm_map_splay_merge_left_walk(vm_map_entry_t header, vm_map_entry_t root, 1184 vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t llist) 1185 { 1186 do { 1187 /* 1188 * The max_free values of the children of llist are in 1189 * llist->max_free and max_free. Update with the 1190 * max value. 1191 */ 1192 llist->max_free = max_free = 1193 vm_size_max(llist->max_free, max_free); 1194 vm_map_entry_swap(&llist->right, &tail); 1195 vm_map_entry_swap(&tail, &llist); 1196 } while (llist != header); 1197 root->left = tail; 1198 return (max_free); 1199 } 1200 1201 /* 1202 * When llist is known to be the predecessor of root. 1203 */ 1204 static inline vm_size_t 1205 vm_map_splay_merge_pred(vm_map_entry_t header, vm_map_entry_t root, 1206 vm_map_entry_t llist) 1207 { 1208 vm_size_t max_free; 1209 1210 max_free = root->start - llist->end; 1211 if (llist != header) { 1212 max_free = vm_map_splay_merge_left_walk(header, root, 1213 root, max_free, llist); 1214 } else { 1215 root->left = header; 1216 header->right = root; 1217 } 1218 return (max_free); 1219 } 1220 1221 /* 1222 * When llist may or may not be the predecessor of root. 1223 */ 1224 static inline vm_size_t 1225 vm_map_splay_merge_left(vm_map_entry_t header, vm_map_entry_t root, 1226 vm_map_entry_t llist) 1227 { 1228 vm_size_t max_free; 1229 1230 max_free = vm_map_entry_max_free_left(root, llist); 1231 if (llist != header) { 1232 max_free = vm_map_splay_merge_left_walk(header, root, 1233 root->left == llist ? root : root->left, 1234 max_free, llist); 1235 } 1236 return (max_free); 1237 } 1238 1239 static vm_size_t 1240 vm_map_splay_merge_right_walk(vm_map_entry_t header, vm_map_entry_t root, 1241 vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t rlist) 1242 { 1243 do { 1244 /* 1245 * The max_free values of the children of rlist are in 1246 * rlist->max_free and max_free. Update with the 1247 * max value. 1248 */ 1249 rlist->max_free = max_free = 1250 vm_size_max(rlist->max_free, max_free); 1251 vm_map_entry_swap(&rlist->left, &tail); 1252 vm_map_entry_swap(&tail, &rlist); 1253 } while (rlist != header); 1254 root->right = tail; 1255 return (max_free); 1256 } 1257 1258 /* 1259 * When rlist is known to be the succecessor of root. 1260 */ 1261 static inline vm_size_t 1262 vm_map_splay_merge_succ(vm_map_entry_t header, vm_map_entry_t root, 1263 vm_map_entry_t rlist) 1264 { 1265 vm_size_t max_free; 1266 1267 max_free = rlist->start - root->end; 1268 if (rlist != header) { 1269 max_free = vm_map_splay_merge_right_walk(header, root, 1270 root, max_free, rlist); 1271 } else { 1272 root->right = header; 1273 header->left = root; 1274 } 1275 return (max_free); 1276 } 1277 1278 /* 1279 * When rlist may or may not be the succecessor of root. 1280 */ 1281 static inline vm_size_t 1282 vm_map_splay_merge_right(vm_map_entry_t header, vm_map_entry_t root, 1283 vm_map_entry_t rlist) 1284 { 1285 vm_size_t max_free; 1286 1287 max_free = vm_map_entry_max_free_right(root, rlist); 1288 if (rlist != header) { 1289 max_free = vm_map_splay_merge_right_walk(header, root, 1290 root->right == rlist ? root : root->right, 1291 max_free, rlist); 1292 } 1293 return (max_free); 1294 } 1295 1296 /* 1297 * vm_map_splay: 1298 * 1299 * The Sleator and Tarjan top-down splay algorithm with the 1300 * following variation. Max_free must be computed bottom-up, so 1301 * on the downward pass, maintain the left and right spines in 1302 * reverse order. Then, make a second pass up each side to fix 1303 * the pointers and compute max_free. The time bound is O(log n) 1304 * amortized. 1305 * 1306 * The tree is threaded, which means that there are no null pointers. 1307 * When a node has no left child, its left pointer points to its 1308 * predecessor, which the last ancestor on the search path from the root 1309 * where the search branched right. Likewise, when a node has no right 1310 * child, its right pointer points to its successor. The map header node 1311 * is the predecessor of the first map entry, and the successor of the 1312 * last. 1313 * 1314 * The new root is the vm_map_entry containing "addr", or else an 1315 * adjacent entry (lower if possible) if addr is not in the tree. 1316 * 1317 * The map must be locked, and leaves it so. 1318 * 1319 * Returns: the new root. 1320 */ 1321 static vm_map_entry_t 1322 vm_map_splay(vm_map_t map, vm_offset_t addr) 1323 { 1324 vm_map_entry_t header, llist, rlist, root; 1325 vm_size_t max_free_left, max_free_right; 1326 1327 header = &map->header; 1328 root = vm_map_splay_split(map, addr, 0, &llist, &rlist); 1329 if (root != NULL) { 1330 max_free_left = vm_map_splay_merge_left(header, root, llist); 1331 max_free_right = vm_map_splay_merge_right(header, root, rlist); 1332 } else if (llist != header) { 1333 /* 1334 * Recover the greatest node in the left 1335 * subtree and make it the root. 1336 */ 1337 root = llist; 1338 llist = root->right; 1339 max_free_left = vm_map_splay_merge_left(header, root, llist); 1340 max_free_right = vm_map_splay_merge_succ(header, root, rlist); 1341 } else if (rlist != header) { 1342 /* 1343 * Recover the least node in the right 1344 * subtree and make it the root. 1345 */ 1346 root = rlist; 1347 rlist = root->left; 1348 max_free_left = vm_map_splay_merge_pred(header, root, llist); 1349 max_free_right = vm_map_splay_merge_right(header, root, rlist); 1350 } else { 1351 /* There is no root. */ 1352 return (NULL); 1353 } 1354 root->max_free = vm_size_max(max_free_left, max_free_right); 1355 map->root = root; 1356 VM_MAP_ASSERT_CONSISTENT(map); 1357 return (root); 1358 } 1359 1360 /* 1361 * vm_map_entry_{un,}link: 1362 * 1363 * Insert/remove entries from maps. On linking, if new entry clips 1364 * existing entry, trim existing entry to avoid overlap, and manage 1365 * offsets. On unlinking, merge disappearing entry with neighbor, if 1366 * called for, and manage offsets. Callers should not modify fields in 1367 * entries already mapped. 1368 */ 1369 static void 1370 vm_map_entry_link(vm_map_t map, vm_map_entry_t entry) 1371 { 1372 vm_map_entry_t header, llist, rlist, root; 1373 vm_size_t max_free_left, max_free_right; 1374 1375 CTR3(KTR_VM, 1376 "vm_map_entry_link: map %p, nentries %d, entry %p", map, 1377 map->nentries, entry); 1378 VM_MAP_ASSERT_LOCKED(map); 1379 map->nentries++; 1380 header = &map->header; 1381 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist); 1382 if (root == NULL) { 1383 /* 1384 * The new entry does not overlap any existing entry in the 1385 * map, so it becomes the new root of the map tree. 1386 */ 1387 max_free_left = vm_map_splay_merge_pred(header, entry, llist); 1388 max_free_right = vm_map_splay_merge_succ(header, entry, rlist); 1389 } else if (entry->start == root->start) { 1390 /* 1391 * The new entry is a clone of root, with only the end field 1392 * changed. The root entry will be shrunk to abut the new 1393 * entry, and will be the right child of the new root entry in 1394 * the modified map. 1395 */ 1396 KASSERT(entry->end < root->end, 1397 ("%s: clip_start not within entry", __func__)); 1398 vm_map_splay_findprev(root, &llist); 1399 root->offset += entry->end - root->start; 1400 root->start = entry->end; 1401 max_free_left = vm_map_splay_merge_pred(header, entry, llist); 1402 max_free_right = root->max_free = vm_size_max( 1403 vm_map_splay_merge_pred(entry, root, entry), 1404 vm_map_splay_merge_right(header, root, rlist)); 1405 } else { 1406 /* 1407 * The new entry is a clone of root, with only the start field 1408 * changed. The root entry will be shrunk to abut the new 1409 * entry, and will be the left child of the new root entry in 1410 * the modified map. 1411 */ 1412 KASSERT(entry->end == root->end, 1413 ("%s: clip_start not within entry", __func__)); 1414 vm_map_splay_findnext(root, &rlist); 1415 entry->offset += entry->start - root->start; 1416 root->end = entry->start; 1417 max_free_left = root->max_free = vm_size_max( 1418 vm_map_splay_merge_left(header, root, llist), 1419 vm_map_splay_merge_succ(entry, root, entry)); 1420 max_free_right = vm_map_splay_merge_succ(header, entry, rlist); 1421 } 1422 entry->max_free = vm_size_max(max_free_left, max_free_right); 1423 map->root = entry; 1424 VM_MAP_ASSERT_CONSISTENT(map); 1425 } 1426 1427 enum unlink_merge_type { 1428 UNLINK_MERGE_NONE, 1429 UNLINK_MERGE_NEXT 1430 }; 1431 1432 static void 1433 vm_map_entry_unlink(vm_map_t map, vm_map_entry_t entry, 1434 enum unlink_merge_type op) 1435 { 1436 vm_map_entry_t header, llist, rlist, root; 1437 vm_size_t max_free_left, max_free_right; 1438 1439 VM_MAP_ASSERT_LOCKED(map); 1440 header = &map->header; 1441 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist); 1442 KASSERT(root != NULL, 1443 ("vm_map_entry_unlink: unlink object not mapped")); 1444 1445 vm_map_splay_findprev(root, &llist); 1446 vm_map_splay_findnext(root, &rlist); 1447 if (op == UNLINK_MERGE_NEXT) { 1448 rlist->start = root->start; 1449 rlist->offset = root->offset; 1450 } 1451 if (llist != header) { 1452 root = llist; 1453 llist = root->right; 1454 max_free_left = vm_map_splay_merge_left(header, root, llist); 1455 max_free_right = vm_map_splay_merge_succ(header, root, rlist); 1456 } else if (rlist != header) { 1457 root = rlist; 1458 rlist = root->left; 1459 max_free_left = vm_map_splay_merge_pred(header, root, llist); 1460 max_free_right = vm_map_splay_merge_right(header, root, rlist); 1461 } else { 1462 header->left = header->right = header; 1463 root = NULL; 1464 } 1465 if (root != NULL) 1466 root->max_free = vm_size_max(max_free_left, max_free_right); 1467 map->root = root; 1468 VM_MAP_ASSERT_CONSISTENT(map); 1469 map->nentries--; 1470 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map, 1471 map->nentries, entry); 1472 } 1473 1474 /* 1475 * vm_map_entry_resize: 1476 * 1477 * Resize a vm_map_entry, recompute the amount of free space that 1478 * follows it and propagate that value up the tree. 1479 * 1480 * The map must be locked, and leaves it so. 1481 */ 1482 static void 1483 vm_map_entry_resize(vm_map_t map, vm_map_entry_t entry, vm_size_t grow_amount) 1484 { 1485 vm_map_entry_t header, llist, rlist, root; 1486 1487 VM_MAP_ASSERT_LOCKED(map); 1488 header = &map->header; 1489 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist); 1490 KASSERT(root != NULL, ("%s: resize object not mapped", __func__)); 1491 vm_map_splay_findnext(root, &rlist); 1492 entry->end += grow_amount; 1493 root->max_free = vm_size_max( 1494 vm_map_splay_merge_left(header, root, llist), 1495 vm_map_splay_merge_succ(header, root, rlist)); 1496 map->root = root; 1497 VM_MAP_ASSERT_CONSISTENT(map); 1498 CTR4(KTR_VM, "%s: map %p, nentries %d, entry %p", 1499 __func__, map, map->nentries, entry); 1500 } 1501 1502 /* 1503 * vm_map_lookup_entry: [ internal use only ] 1504 * 1505 * Finds the map entry containing (or 1506 * immediately preceding) the specified address 1507 * in the given map; the entry is returned 1508 * in the "entry" parameter. The boolean 1509 * result indicates whether the address is 1510 * actually contained in the map. 1511 */ 1512 boolean_t 1513 vm_map_lookup_entry( 1514 vm_map_t map, 1515 vm_offset_t address, 1516 vm_map_entry_t *entry) /* OUT */ 1517 { 1518 vm_map_entry_t cur, header, lbound, ubound; 1519 boolean_t locked; 1520 1521 /* 1522 * If the map is empty, then the map entry immediately preceding 1523 * "address" is the map's header. 1524 */ 1525 header = &map->header; 1526 cur = map->root; 1527 if (cur == NULL) { 1528 *entry = header; 1529 return (FALSE); 1530 } 1531 if (address >= cur->start && cur->end > address) { 1532 *entry = cur; 1533 return (TRUE); 1534 } 1535 if ((locked = vm_map_locked(map)) || 1536 sx_try_upgrade(&map->lock)) { 1537 /* 1538 * Splay requires a write lock on the map. However, it only 1539 * restructures the binary search tree; it does not otherwise 1540 * change the map. Thus, the map's timestamp need not change 1541 * on a temporary upgrade. 1542 */ 1543 cur = vm_map_splay(map, address); 1544 if (!locked) { 1545 VM_MAP_UNLOCK_CONSISTENT(map); 1546 sx_downgrade(&map->lock); 1547 } 1548 1549 /* 1550 * If "address" is contained within a map entry, the new root 1551 * is that map entry. Otherwise, the new root is a map entry 1552 * immediately before or after "address". 1553 */ 1554 if (address < cur->start) { 1555 *entry = header; 1556 return (FALSE); 1557 } 1558 *entry = cur; 1559 return (address < cur->end); 1560 } 1561 /* 1562 * Since the map is only locked for read access, perform a 1563 * standard binary search tree lookup for "address". 1564 */ 1565 lbound = ubound = header; 1566 for (;;) { 1567 if (address < cur->start) { 1568 ubound = cur; 1569 cur = cur->left; 1570 if (cur == lbound) 1571 break; 1572 } else if (cur->end <= address) { 1573 lbound = cur; 1574 cur = cur->right; 1575 if (cur == ubound) 1576 break; 1577 } else { 1578 *entry = cur; 1579 return (TRUE); 1580 } 1581 } 1582 *entry = lbound; 1583 return (FALSE); 1584 } 1585 1586 /* 1587 * vm_map_insert: 1588 * 1589 * Inserts the given whole VM object into the target 1590 * map at the specified address range. The object's 1591 * size should match that of the address range. 1592 * 1593 * Requires that the map be locked, and leaves it so. 1594 * 1595 * If object is non-NULL, ref count must be bumped by caller 1596 * prior to making call to account for the new entry. 1597 */ 1598 int 1599 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1600 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow) 1601 { 1602 vm_map_entry_t new_entry, next_entry, prev_entry; 1603 struct ucred *cred; 1604 vm_eflags_t protoeflags; 1605 vm_inherit_t inheritance; 1606 1607 VM_MAP_ASSERT_LOCKED(map); 1608 KASSERT(object != kernel_object || 1609 (cow & MAP_COPY_ON_WRITE) == 0, 1610 ("vm_map_insert: kernel object and COW")); 1611 KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0, 1612 ("vm_map_insert: paradoxical MAP_NOFAULT request")); 1613 KASSERT((prot & ~max) == 0, 1614 ("prot %#x is not subset of max_prot %#x", prot, max)); 1615 1616 /* 1617 * Check that the start and end points are not bogus. 1618 */ 1619 if (start == end || !vm_map_range_valid(map, start, end)) 1620 return (KERN_INVALID_ADDRESS); 1621 1622 /* 1623 * Find the entry prior to the proposed starting address; if it's part 1624 * of an existing entry, this range is bogus. 1625 */ 1626 if (vm_map_lookup_entry(map, start, &prev_entry)) 1627 return (KERN_NO_SPACE); 1628 1629 /* 1630 * Assert that the next entry doesn't overlap the end point. 1631 */ 1632 next_entry = vm_map_entry_succ(prev_entry); 1633 if (next_entry->start < end) 1634 return (KERN_NO_SPACE); 1635 1636 if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL || 1637 max != VM_PROT_NONE)) 1638 return (KERN_INVALID_ARGUMENT); 1639 1640 protoeflags = 0; 1641 if (cow & MAP_COPY_ON_WRITE) 1642 protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY; 1643 if (cow & MAP_NOFAULT) 1644 protoeflags |= MAP_ENTRY_NOFAULT; 1645 if (cow & MAP_DISABLE_SYNCER) 1646 protoeflags |= MAP_ENTRY_NOSYNC; 1647 if (cow & MAP_DISABLE_COREDUMP) 1648 protoeflags |= MAP_ENTRY_NOCOREDUMP; 1649 if (cow & MAP_STACK_GROWS_DOWN) 1650 protoeflags |= MAP_ENTRY_GROWS_DOWN; 1651 if (cow & MAP_STACK_GROWS_UP) 1652 protoeflags |= MAP_ENTRY_GROWS_UP; 1653 if (cow & MAP_WRITECOUNT) 1654 protoeflags |= MAP_ENTRY_WRITECNT; 1655 if (cow & MAP_VN_EXEC) 1656 protoeflags |= MAP_ENTRY_VN_EXEC; 1657 if ((cow & MAP_CREATE_GUARD) != 0) 1658 protoeflags |= MAP_ENTRY_GUARD; 1659 if ((cow & MAP_CREATE_STACK_GAP_DN) != 0) 1660 protoeflags |= MAP_ENTRY_STACK_GAP_DN; 1661 if ((cow & MAP_CREATE_STACK_GAP_UP) != 0) 1662 protoeflags |= MAP_ENTRY_STACK_GAP_UP; 1663 if (cow & MAP_INHERIT_SHARE) 1664 inheritance = VM_INHERIT_SHARE; 1665 else 1666 inheritance = VM_INHERIT_DEFAULT; 1667 1668 cred = NULL; 1669 if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0) 1670 goto charged; 1671 if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) && 1672 ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) { 1673 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start)) 1674 return (KERN_RESOURCE_SHORTAGE); 1675 KASSERT(object == NULL || 1676 (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 || 1677 object->cred == NULL, 1678 ("overcommit: vm_map_insert o %p", object)); 1679 cred = curthread->td_ucred; 1680 } 1681 1682 charged: 1683 /* Expand the kernel pmap, if necessary. */ 1684 if (map == kernel_map && end > kernel_vm_end) 1685 pmap_growkernel(end); 1686 if (object != NULL) { 1687 /* 1688 * OBJ_ONEMAPPING must be cleared unless this mapping 1689 * is trivially proven to be the only mapping for any 1690 * of the object's pages. (Object granularity 1691 * reference counting is insufficient to recognize 1692 * aliases with precision.) 1693 */ 1694 if ((object->flags & OBJ_ANON) != 0) { 1695 VM_OBJECT_WLOCK(object); 1696 if (object->ref_count > 1 || object->shadow_count != 0) 1697 vm_object_clear_flag(object, OBJ_ONEMAPPING); 1698 VM_OBJECT_WUNLOCK(object); 1699 } 1700 } else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) == 1701 protoeflags && 1702 (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP | 1703 MAP_VN_EXEC)) == 0 && 1704 prev_entry->end == start && (prev_entry->cred == cred || 1705 (prev_entry->object.vm_object != NULL && 1706 prev_entry->object.vm_object->cred == cred)) && 1707 vm_object_coalesce(prev_entry->object.vm_object, 1708 prev_entry->offset, 1709 (vm_size_t)(prev_entry->end - prev_entry->start), 1710 (vm_size_t)(end - prev_entry->end), cred != NULL && 1711 (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) { 1712 /* 1713 * We were able to extend the object. Determine if we 1714 * can extend the previous map entry to include the 1715 * new range as well. 1716 */ 1717 if (prev_entry->inheritance == inheritance && 1718 prev_entry->protection == prot && 1719 prev_entry->max_protection == max && 1720 prev_entry->wired_count == 0) { 1721 KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) == 1722 0, ("prev_entry %p has incoherent wiring", 1723 prev_entry)); 1724 if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0) 1725 map->size += end - prev_entry->end; 1726 vm_map_entry_resize(map, prev_entry, 1727 end - prev_entry->end); 1728 vm_map_try_merge_entries(map, prev_entry, next_entry); 1729 return (KERN_SUCCESS); 1730 } 1731 1732 /* 1733 * If we can extend the object but cannot extend the 1734 * map entry, we have to create a new map entry. We 1735 * must bump the ref count on the extended object to 1736 * account for it. object may be NULL. 1737 */ 1738 object = prev_entry->object.vm_object; 1739 offset = prev_entry->offset + 1740 (prev_entry->end - prev_entry->start); 1741 vm_object_reference(object); 1742 if (cred != NULL && object != NULL && object->cred != NULL && 1743 !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 1744 /* Object already accounts for this uid. */ 1745 cred = NULL; 1746 } 1747 } 1748 if (cred != NULL) 1749 crhold(cred); 1750 1751 /* 1752 * Create a new entry 1753 */ 1754 new_entry = vm_map_entry_create(map); 1755 new_entry->start = start; 1756 new_entry->end = end; 1757 new_entry->cred = NULL; 1758 1759 new_entry->eflags = protoeflags; 1760 new_entry->object.vm_object = object; 1761 new_entry->offset = offset; 1762 1763 new_entry->inheritance = inheritance; 1764 new_entry->protection = prot; 1765 new_entry->max_protection = max; 1766 new_entry->wired_count = 0; 1767 new_entry->wiring_thread = NULL; 1768 new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT; 1769 new_entry->next_read = start; 1770 1771 KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry), 1772 ("overcommit: vm_map_insert leaks vm_map %p", new_entry)); 1773 new_entry->cred = cred; 1774 1775 /* 1776 * Insert the new entry into the list 1777 */ 1778 vm_map_entry_link(map, new_entry); 1779 if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0) 1780 map->size += new_entry->end - new_entry->start; 1781 1782 /* 1783 * Try to coalesce the new entry with both the previous and next 1784 * entries in the list. Previously, we only attempted to coalesce 1785 * with the previous entry when object is NULL. Here, we handle the 1786 * other cases, which are less common. 1787 */ 1788 vm_map_try_merge_entries(map, prev_entry, new_entry); 1789 vm_map_try_merge_entries(map, new_entry, next_entry); 1790 1791 if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) { 1792 vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset), 1793 end - start, cow & MAP_PREFAULT_PARTIAL); 1794 } 1795 1796 return (KERN_SUCCESS); 1797 } 1798 1799 /* 1800 * vm_map_findspace: 1801 * 1802 * Find the first fit (lowest VM address) for "length" free bytes 1803 * beginning at address >= start in the given map. 1804 * 1805 * In a vm_map_entry, "max_free" is the maximum amount of 1806 * contiguous free space between an entry in its subtree and a 1807 * neighbor of that entry. This allows finding a free region in 1808 * one path down the tree, so O(log n) amortized with splay 1809 * trees. 1810 * 1811 * The map must be locked, and leaves it so. 1812 * 1813 * Returns: starting address if sufficient space, 1814 * vm_map_max(map)-length+1 if insufficient space. 1815 */ 1816 vm_offset_t 1817 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length) 1818 { 1819 vm_map_entry_t header, llist, rlist, root, y; 1820 vm_size_t left_length, max_free_left, max_free_right; 1821 vm_offset_t gap_end; 1822 1823 /* 1824 * Request must fit within min/max VM address and must avoid 1825 * address wrap. 1826 */ 1827 start = MAX(start, vm_map_min(map)); 1828 if (start >= vm_map_max(map) || length > vm_map_max(map) - start) 1829 return (vm_map_max(map) - length + 1); 1830 1831 /* Empty tree means wide open address space. */ 1832 if (map->root == NULL) 1833 return (start); 1834 1835 /* 1836 * After splay_split, if start is within an entry, push it to the start 1837 * of the following gap. If rlist is at the end of the gap containing 1838 * start, save the end of that gap in gap_end to see if the gap is big 1839 * enough; otherwise set gap_end to start skip gap-checking and move 1840 * directly to a search of the right subtree. 1841 */ 1842 header = &map->header; 1843 root = vm_map_splay_split(map, start, length, &llist, &rlist); 1844 gap_end = rlist->start; 1845 if (root != NULL) { 1846 start = root->end; 1847 if (root->right != rlist) 1848 gap_end = start; 1849 max_free_left = vm_map_splay_merge_left(header, root, llist); 1850 max_free_right = vm_map_splay_merge_right(header, root, rlist); 1851 } else if (rlist != header) { 1852 root = rlist; 1853 rlist = root->left; 1854 max_free_left = vm_map_splay_merge_pred(header, root, llist); 1855 max_free_right = vm_map_splay_merge_right(header, root, rlist); 1856 } else { 1857 root = llist; 1858 llist = root->right; 1859 max_free_left = vm_map_splay_merge_left(header, root, llist); 1860 max_free_right = vm_map_splay_merge_succ(header, root, rlist); 1861 } 1862 root->max_free = vm_size_max(max_free_left, max_free_right); 1863 map->root = root; 1864 VM_MAP_ASSERT_CONSISTENT(map); 1865 if (length <= gap_end - start) 1866 return (start); 1867 1868 /* With max_free, can immediately tell if no solution. */ 1869 if (root->right == header || length > root->right->max_free) 1870 return (vm_map_max(map) - length + 1); 1871 1872 /* 1873 * Splay for the least large-enough gap in the right subtree. 1874 */ 1875 llist = rlist = header; 1876 for (left_length = 0;; 1877 left_length = vm_map_entry_max_free_left(root, llist)) { 1878 if (length <= left_length) 1879 SPLAY_LEFT_STEP(root, y, llist, rlist, 1880 length <= vm_map_entry_max_free_left(y, llist)); 1881 else 1882 SPLAY_RIGHT_STEP(root, y, llist, rlist, 1883 length > vm_map_entry_max_free_left(y, root)); 1884 if (root == NULL) 1885 break; 1886 } 1887 root = llist; 1888 llist = root->right; 1889 max_free_left = vm_map_splay_merge_left(header, root, llist); 1890 if (rlist == header) { 1891 root->max_free = vm_size_max(max_free_left, 1892 vm_map_splay_merge_succ(header, root, rlist)); 1893 } else { 1894 y = rlist; 1895 rlist = y->left; 1896 y->max_free = vm_size_max( 1897 vm_map_splay_merge_pred(root, y, root), 1898 vm_map_splay_merge_right(header, y, rlist)); 1899 root->max_free = vm_size_max(max_free_left, y->max_free); 1900 } 1901 map->root = root; 1902 VM_MAP_ASSERT_CONSISTENT(map); 1903 return (root->end); 1904 } 1905 1906 int 1907 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1908 vm_offset_t start, vm_size_t length, vm_prot_t prot, 1909 vm_prot_t max, int cow) 1910 { 1911 vm_offset_t end; 1912 int result; 1913 1914 end = start + length; 1915 KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 || 1916 object == NULL, 1917 ("vm_map_fixed: non-NULL backing object for stack")); 1918 vm_map_lock(map); 1919 VM_MAP_RANGE_CHECK(map, start, end); 1920 if ((cow & MAP_CHECK_EXCL) == 0) 1921 vm_map_delete(map, start, end); 1922 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) { 1923 result = vm_map_stack_locked(map, start, length, sgrowsiz, 1924 prot, max, cow); 1925 } else { 1926 result = vm_map_insert(map, object, offset, start, end, 1927 prot, max, cow); 1928 } 1929 vm_map_unlock(map); 1930 return (result); 1931 } 1932 1933 static const int aslr_pages_rnd_64[2] = {0x1000, 0x10}; 1934 static const int aslr_pages_rnd_32[2] = {0x100, 0x4}; 1935 1936 static int cluster_anon = 1; 1937 SYSCTL_INT(_vm, OID_AUTO, cluster_anon, CTLFLAG_RW, 1938 &cluster_anon, 0, 1939 "Cluster anonymous mappings: 0 = no, 1 = yes if no hint, 2 = always"); 1940 1941 static bool 1942 clustering_anon_allowed(vm_offset_t addr) 1943 { 1944 1945 switch (cluster_anon) { 1946 case 0: 1947 return (false); 1948 case 1: 1949 return (addr == 0); 1950 case 2: 1951 default: 1952 return (true); 1953 } 1954 } 1955 1956 static long aslr_restarts; 1957 SYSCTL_LONG(_vm, OID_AUTO, aslr_restarts, CTLFLAG_RD, 1958 &aslr_restarts, 0, 1959 "Number of aslr failures"); 1960 1961 #define MAP_32BIT_MAX_ADDR ((vm_offset_t)1 << 31) 1962 1963 /* 1964 * Searches for the specified amount of free space in the given map with the 1965 * specified alignment. Performs an address-ordered, first-fit search from 1966 * the given address "*addr", with an optional upper bound "max_addr". If the 1967 * parameter "alignment" is zero, then the alignment is computed from the 1968 * given (object, offset) pair so as to enable the greatest possible use of 1969 * superpage mappings. Returns KERN_SUCCESS and the address of the free space 1970 * in "*addr" if successful. Otherwise, returns KERN_NO_SPACE. 1971 * 1972 * The map must be locked. Initially, there must be at least "length" bytes 1973 * of free space at the given address. 1974 */ 1975 static int 1976 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1977 vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr, 1978 vm_offset_t alignment) 1979 { 1980 vm_offset_t aligned_addr, free_addr; 1981 1982 VM_MAP_ASSERT_LOCKED(map); 1983 free_addr = *addr; 1984 KASSERT(free_addr == vm_map_findspace(map, free_addr, length), 1985 ("caller failed to provide space %#jx at address %p", 1986 (uintmax_t)length, (void *)free_addr)); 1987 for (;;) { 1988 /* 1989 * At the start of every iteration, the free space at address 1990 * "*addr" is at least "length" bytes. 1991 */ 1992 if (alignment == 0) 1993 pmap_align_superpage(object, offset, addr, length); 1994 else if ((*addr & (alignment - 1)) != 0) { 1995 *addr &= ~(alignment - 1); 1996 *addr += alignment; 1997 } 1998 aligned_addr = *addr; 1999 if (aligned_addr == free_addr) { 2000 /* 2001 * Alignment did not change "*addr", so "*addr" must 2002 * still provide sufficient free space. 2003 */ 2004 return (KERN_SUCCESS); 2005 } 2006 2007 /* 2008 * Test for address wrap on "*addr". A wrapped "*addr" could 2009 * be a valid address, in which case vm_map_findspace() cannot 2010 * be relied upon to fail. 2011 */ 2012 if (aligned_addr < free_addr) 2013 return (KERN_NO_SPACE); 2014 *addr = vm_map_findspace(map, aligned_addr, length); 2015 if (*addr + length > vm_map_max(map) || 2016 (max_addr != 0 && *addr + length > max_addr)) 2017 return (KERN_NO_SPACE); 2018 free_addr = *addr; 2019 if (free_addr == aligned_addr) { 2020 /* 2021 * If a successful call to vm_map_findspace() did not 2022 * change "*addr", then "*addr" must still be aligned 2023 * and provide sufficient free space. 2024 */ 2025 return (KERN_SUCCESS); 2026 } 2027 } 2028 } 2029 2030 /* 2031 * vm_map_find finds an unallocated region in the target address 2032 * map with the given length. The search is defined to be 2033 * first-fit from the specified address; the region found is 2034 * returned in the same parameter. 2035 * 2036 * If object is non-NULL, ref count must be bumped by caller 2037 * prior to making call to account for the new entry. 2038 */ 2039 int 2040 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 2041 vm_offset_t *addr, /* IN/OUT */ 2042 vm_size_t length, vm_offset_t max_addr, int find_space, 2043 vm_prot_t prot, vm_prot_t max, int cow) 2044 { 2045 vm_offset_t alignment, curr_min_addr, min_addr; 2046 int gap, pidx, rv, try; 2047 bool cluster, en_aslr, update_anon; 2048 2049 KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 || 2050 object == NULL, 2051 ("vm_map_find: non-NULL backing object for stack")); 2052 MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE && 2053 (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0)); 2054 if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL || 2055 (object->flags & OBJ_COLORED) == 0)) 2056 find_space = VMFS_ANY_SPACE; 2057 if (find_space >> 8 != 0) { 2058 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags")); 2059 alignment = (vm_offset_t)1 << (find_space >> 8); 2060 } else 2061 alignment = 0; 2062 en_aslr = (map->flags & MAP_ASLR) != 0; 2063 update_anon = cluster = clustering_anon_allowed(*addr) && 2064 (map->flags & MAP_IS_SUB_MAP) == 0 && max_addr == 0 && 2065 find_space != VMFS_NO_SPACE && object == NULL && 2066 (cow & (MAP_INHERIT_SHARE | MAP_STACK_GROWS_UP | 2067 MAP_STACK_GROWS_DOWN)) == 0 && prot != PROT_NONE; 2068 curr_min_addr = min_addr = *addr; 2069 if (en_aslr && min_addr == 0 && !cluster && 2070 find_space != VMFS_NO_SPACE && 2071 (map->flags & MAP_ASLR_IGNSTART) != 0) 2072 curr_min_addr = min_addr = vm_map_min(map); 2073 try = 0; 2074 vm_map_lock(map); 2075 if (cluster) { 2076 curr_min_addr = map->anon_loc; 2077 if (curr_min_addr == 0) 2078 cluster = false; 2079 } 2080 if (find_space != VMFS_NO_SPACE) { 2081 KASSERT(find_space == VMFS_ANY_SPACE || 2082 find_space == VMFS_OPTIMAL_SPACE || 2083 find_space == VMFS_SUPER_SPACE || 2084 alignment != 0, ("unexpected VMFS flag")); 2085 again: 2086 /* 2087 * When creating an anonymous mapping, try clustering 2088 * with an existing anonymous mapping first. 2089 * 2090 * We make up to two attempts to find address space 2091 * for a given find_space value. The first attempt may 2092 * apply randomization or may cluster with an existing 2093 * anonymous mapping. If this first attempt fails, 2094 * perform a first-fit search of the available address 2095 * space. 2096 * 2097 * If all tries failed, and find_space is 2098 * VMFS_OPTIMAL_SPACE, fallback to VMFS_ANY_SPACE. 2099 * Again enable clustering and randomization. 2100 */ 2101 try++; 2102 MPASS(try <= 2); 2103 2104 if (try == 2) { 2105 /* 2106 * Second try: we failed either to find a 2107 * suitable region for randomizing the 2108 * allocation, or to cluster with an existing 2109 * mapping. Retry with free run. 2110 */ 2111 curr_min_addr = (map->flags & MAP_ASLR_IGNSTART) != 0 ? 2112 vm_map_min(map) : min_addr; 2113 atomic_add_long(&aslr_restarts, 1); 2114 } 2115 2116 if (try == 1 && en_aslr && !cluster) { 2117 /* 2118 * Find space for allocation, including 2119 * gap needed for later randomization. 2120 */ 2121 pidx = MAXPAGESIZES > 1 && pagesizes[1] != 0 && 2122 (find_space == VMFS_SUPER_SPACE || find_space == 2123 VMFS_OPTIMAL_SPACE) ? 1 : 0; 2124 gap = vm_map_max(map) > MAP_32BIT_MAX_ADDR && 2125 (max_addr == 0 || max_addr > MAP_32BIT_MAX_ADDR) ? 2126 aslr_pages_rnd_64[pidx] : aslr_pages_rnd_32[pidx]; 2127 *addr = vm_map_findspace(map, curr_min_addr, 2128 length + gap * pagesizes[pidx]); 2129 if (*addr + length + gap * pagesizes[pidx] > 2130 vm_map_max(map)) 2131 goto again; 2132 /* And randomize the start address. */ 2133 *addr += (arc4random() % gap) * pagesizes[pidx]; 2134 if (max_addr != 0 && *addr + length > max_addr) 2135 goto again; 2136 } else { 2137 *addr = vm_map_findspace(map, curr_min_addr, length); 2138 if (*addr + length > vm_map_max(map) || 2139 (max_addr != 0 && *addr + length > max_addr)) { 2140 if (cluster) { 2141 cluster = false; 2142 MPASS(try == 1); 2143 goto again; 2144 } 2145 rv = KERN_NO_SPACE; 2146 goto done; 2147 } 2148 } 2149 2150 if (find_space != VMFS_ANY_SPACE && 2151 (rv = vm_map_alignspace(map, object, offset, addr, length, 2152 max_addr, alignment)) != KERN_SUCCESS) { 2153 if (find_space == VMFS_OPTIMAL_SPACE) { 2154 find_space = VMFS_ANY_SPACE; 2155 curr_min_addr = min_addr; 2156 cluster = update_anon; 2157 try = 0; 2158 goto again; 2159 } 2160 goto done; 2161 } 2162 } else if ((cow & MAP_REMAP) != 0) { 2163 if (!vm_map_range_valid(map, *addr, *addr + length)) { 2164 rv = KERN_INVALID_ADDRESS; 2165 goto done; 2166 } 2167 vm_map_delete(map, *addr, *addr + length); 2168 } 2169 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) { 2170 rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot, 2171 max, cow); 2172 } else { 2173 rv = vm_map_insert(map, object, offset, *addr, *addr + length, 2174 prot, max, cow); 2175 } 2176 if (rv == KERN_SUCCESS && update_anon) 2177 map->anon_loc = *addr + length; 2178 done: 2179 vm_map_unlock(map); 2180 return (rv); 2181 } 2182 2183 /* 2184 * vm_map_find_min() is a variant of vm_map_find() that takes an 2185 * additional parameter (min_addr) and treats the given address 2186 * (*addr) differently. Specifically, it treats *addr as a hint 2187 * and not as the minimum address where the mapping is created. 2188 * 2189 * This function works in two phases. First, it tries to 2190 * allocate above the hint. If that fails and the hint is 2191 * greater than min_addr, it performs a second pass, replacing 2192 * the hint with min_addr as the minimum address for the 2193 * allocation. 2194 */ 2195 int 2196 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 2197 vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr, 2198 vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max, 2199 int cow) 2200 { 2201 vm_offset_t hint; 2202 int rv; 2203 2204 hint = *addr; 2205 for (;;) { 2206 rv = vm_map_find(map, object, offset, addr, length, max_addr, 2207 find_space, prot, max, cow); 2208 if (rv == KERN_SUCCESS || min_addr >= hint) 2209 return (rv); 2210 *addr = hint = min_addr; 2211 } 2212 } 2213 2214 /* 2215 * A map entry with any of the following flags set must not be merged with 2216 * another entry. 2217 */ 2218 #define MAP_ENTRY_NOMERGE_MASK (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | \ 2219 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP | MAP_ENTRY_VN_EXEC) 2220 2221 static bool 2222 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry) 2223 { 2224 2225 KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 || 2226 (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0, 2227 ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable", 2228 prev, entry)); 2229 return (prev->end == entry->start && 2230 prev->object.vm_object == entry->object.vm_object && 2231 (prev->object.vm_object == NULL || 2232 prev->offset + (prev->end - prev->start) == entry->offset) && 2233 prev->eflags == entry->eflags && 2234 prev->protection == entry->protection && 2235 prev->max_protection == entry->max_protection && 2236 prev->inheritance == entry->inheritance && 2237 prev->wired_count == entry->wired_count && 2238 prev->cred == entry->cred); 2239 } 2240 2241 static void 2242 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry) 2243 { 2244 2245 /* 2246 * If the backing object is a vnode object, vm_object_deallocate() 2247 * calls vrele(). However, vrele() does not lock the vnode because 2248 * the vnode has additional references. Thus, the map lock can be 2249 * kept without causing a lock-order reversal with the vnode lock. 2250 * 2251 * Since we count the number of virtual page mappings in 2252 * object->un_pager.vnp.writemappings, the writemappings value 2253 * should not be adjusted when the entry is disposed of. 2254 */ 2255 if (entry->object.vm_object != NULL) 2256 vm_object_deallocate(entry->object.vm_object); 2257 if (entry->cred != NULL) 2258 crfree(entry->cred); 2259 vm_map_entry_dispose(map, entry); 2260 } 2261 2262 /* 2263 * vm_map_try_merge_entries: 2264 * 2265 * Compare the given map entry to its predecessor, and merge its precessor 2266 * into it if possible. The entry remains valid, and may be extended. 2267 * The predecessor may be deleted. 2268 * 2269 * The map must be locked. 2270 */ 2271 void 2272 vm_map_try_merge_entries(vm_map_t map, vm_map_entry_t prev_entry, 2273 vm_map_entry_t entry) 2274 { 2275 2276 VM_MAP_ASSERT_LOCKED(map); 2277 if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 && 2278 vm_map_mergeable_neighbors(prev_entry, entry)) { 2279 vm_map_entry_unlink(map, prev_entry, UNLINK_MERGE_NEXT); 2280 vm_map_merged_neighbor_dispose(map, prev_entry); 2281 } 2282 } 2283 2284 /* 2285 * vm_map_entry_back: 2286 * 2287 * Allocate an object to back a map entry. 2288 */ 2289 static inline void 2290 vm_map_entry_back(vm_map_entry_t entry) 2291 { 2292 vm_object_t object; 2293 2294 KASSERT(entry->object.vm_object == NULL, 2295 ("map entry %p has backing object", entry)); 2296 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 2297 ("map entry %p is a submap", entry)); 2298 object = vm_object_allocate_anon(atop(entry->end - entry->start), NULL, 2299 entry->cred, entry->end - entry->start); 2300 entry->object.vm_object = object; 2301 entry->offset = 0; 2302 entry->cred = NULL; 2303 } 2304 2305 /* 2306 * vm_map_entry_charge_object 2307 * 2308 * If there is no object backing this entry, create one. Otherwise, if 2309 * the entry has cred, give it to the backing object. 2310 */ 2311 static inline void 2312 vm_map_entry_charge_object(vm_map_t map, vm_map_entry_t entry) 2313 { 2314 2315 VM_MAP_ASSERT_LOCKED(map); 2316 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 2317 ("map entry %p is a submap", entry)); 2318 if (entry->object.vm_object == NULL && !map->system_map && 2319 (entry->eflags & MAP_ENTRY_GUARD) == 0) 2320 vm_map_entry_back(entry); 2321 else if (entry->object.vm_object != NULL && 2322 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 2323 entry->cred != NULL) { 2324 VM_OBJECT_WLOCK(entry->object.vm_object); 2325 KASSERT(entry->object.vm_object->cred == NULL, 2326 ("OVERCOMMIT: %s: both cred e %p", __func__, entry)); 2327 entry->object.vm_object->cred = entry->cred; 2328 entry->object.vm_object->charge = entry->end - entry->start; 2329 VM_OBJECT_WUNLOCK(entry->object.vm_object); 2330 entry->cred = NULL; 2331 } 2332 } 2333 2334 /* 2335 * vm_map_entry_clone 2336 * 2337 * Create a duplicate map entry for clipping. 2338 */ 2339 static vm_map_entry_t 2340 vm_map_entry_clone(vm_map_t map, vm_map_entry_t entry) 2341 { 2342 vm_map_entry_t new_entry; 2343 2344 VM_MAP_ASSERT_LOCKED(map); 2345 2346 /* 2347 * Create a backing object now, if none exists, so that more individual 2348 * objects won't be created after the map entry is split. 2349 */ 2350 vm_map_entry_charge_object(map, entry); 2351 2352 /* Clone the entry. */ 2353 new_entry = vm_map_entry_create(map); 2354 *new_entry = *entry; 2355 if (new_entry->cred != NULL) 2356 crhold(entry->cred); 2357 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 2358 vm_object_reference(new_entry->object.vm_object); 2359 vm_map_entry_set_vnode_text(new_entry, true); 2360 /* 2361 * The object->un_pager.vnp.writemappings for the object of 2362 * MAP_ENTRY_WRITECNT type entry shall be kept as is here. The 2363 * virtual pages are re-distributed among the clipped entries, 2364 * so the sum is left the same. 2365 */ 2366 } 2367 return (new_entry); 2368 } 2369 2370 /* 2371 * vm_map_clip_start: [ internal use only ] 2372 * 2373 * Asserts that the given entry begins at or after 2374 * the specified address; if necessary, 2375 * it splits the entry into two. 2376 */ 2377 static inline void 2378 vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start) 2379 { 2380 vm_map_entry_t new_entry; 2381 2382 if (start <= entry->start) 2383 return; 2384 2385 VM_MAP_ASSERT_LOCKED(map); 2386 KASSERT(entry->end > start && entry->start < start, 2387 ("%s: invalid clip of entry %p", __func__, entry)); 2388 2389 new_entry = vm_map_entry_clone(map, entry); 2390 2391 /* 2392 * Split off the front portion. Insert the new entry BEFORE this one, 2393 * so that this entry has the specified starting address. 2394 */ 2395 new_entry->end = start; 2396 vm_map_entry_link(map, new_entry); 2397 } 2398 2399 /* 2400 * vm_map_lookup_clip_start: 2401 * 2402 * Find the entry at or just after 'start', and clip it if 'start' is in 2403 * the interior of the entry. Return entry after 'start', and in 2404 * prev_entry set the entry before 'start'. 2405 */ 2406 static inline vm_map_entry_t 2407 vm_map_lookup_clip_start(vm_map_t map, vm_offset_t start, 2408 vm_map_entry_t *prev_entry) 2409 { 2410 vm_map_entry_t entry; 2411 2412 if (vm_map_lookup_entry(map, start, prev_entry)) { 2413 entry = *prev_entry; 2414 vm_map_clip_start(map, entry, start); 2415 *prev_entry = vm_map_entry_pred(entry); 2416 } else 2417 entry = vm_map_entry_succ(*prev_entry); 2418 return (entry); 2419 } 2420 2421 /* 2422 * vm_map_clip_end: [ internal use only ] 2423 * 2424 * Asserts that the given entry ends at or before 2425 * the specified address; if necessary, 2426 * it splits the entry into two. 2427 */ 2428 static inline void 2429 vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end) 2430 { 2431 vm_map_entry_t new_entry; 2432 2433 if (end >= entry->end) 2434 return; 2435 2436 VM_MAP_ASSERT_LOCKED(map); 2437 KASSERT(entry->start < end && entry->end > end, 2438 ("%s: invalid clip of entry %p", __func__, entry)); 2439 2440 new_entry = vm_map_entry_clone(map, entry); 2441 2442 /* 2443 * Split off the back portion. Insert the new entry AFTER this one, 2444 * so that this entry has the specified ending address. 2445 */ 2446 new_entry->start = end; 2447 vm_map_entry_link(map, new_entry); 2448 } 2449 2450 /* 2451 * vm_map_submap: [ kernel use only ] 2452 * 2453 * Mark the given range as handled by a subordinate map. 2454 * 2455 * This range must have been created with vm_map_find, 2456 * and no other operations may have been performed on this 2457 * range prior to calling vm_map_submap. 2458 * 2459 * Only a limited number of operations can be performed 2460 * within this rage after calling vm_map_submap: 2461 * vm_fault 2462 * [Don't try vm_map_copy!] 2463 * 2464 * To remove a submapping, one must first remove the 2465 * range from the superior map, and then destroy the 2466 * submap (if desired). [Better yet, don't try it.] 2467 */ 2468 int 2469 vm_map_submap( 2470 vm_map_t map, 2471 vm_offset_t start, 2472 vm_offset_t end, 2473 vm_map_t submap) 2474 { 2475 vm_map_entry_t entry; 2476 int result; 2477 2478 result = KERN_INVALID_ARGUMENT; 2479 2480 vm_map_lock(submap); 2481 submap->flags |= MAP_IS_SUB_MAP; 2482 vm_map_unlock(submap); 2483 2484 vm_map_lock(map); 2485 VM_MAP_RANGE_CHECK(map, start, end); 2486 if (vm_map_lookup_entry(map, start, &entry) && entry->end >= end && 2487 (entry->eflags & MAP_ENTRY_COW) == 0 && 2488 entry->object.vm_object == NULL) { 2489 vm_map_clip_start(map, entry, start); 2490 vm_map_clip_end(map, entry, end); 2491 entry->object.sub_map = submap; 2492 entry->eflags |= MAP_ENTRY_IS_SUB_MAP; 2493 result = KERN_SUCCESS; 2494 } 2495 vm_map_unlock(map); 2496 2497 if (result != KERN_SUCCESS) { 2498 vm_map_lock(submap); 2499 submap->flags &= ~MAP_IS_SUB_MAP; 2500 vm_map_unlock(submap); 2501 } 2502 return (result); 2503 } 2504 2505 /* 2506 * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified 2507 */ 2508 #define MAX_INIT_PT 96 2509 2510 /* 2511 * vm_map_pmap_enter: 2512 * 2513 * Preload the specified map's pmap with mappings to the specified 2514 * object's memory-resident pages. No further physical pages are 2515 * allocated, and no further virtual pages are retrieved from secondary 2516 * storage. If the specified flags include MAP_PREFAULT_PARTIAL, then a 2517 * limited number of page mappings are created at the low-end of the 2518 * specified address range. (For this purpose, a superpage mapping 2519 * counts as one page mapping.) Otherwise, all resident pages within 2520 * the specified address range are mapped. 2521 */ 2522 static void 2523 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 2524 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags) 2525 { 2526 vm_offset_t start; 2527 vm_page_t p, p_start; 2528 vm_pindex_t mask, psize, threshold, tmpidx; 2529 2530 if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL) 2531 return; 2532 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 2533 VM_OBJECT_WLOCK(object); 2534 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 2535 pmap_object_init_pt(map->pmap, addr, object, pindex, 2536 size); 2537 VM_OBJECT_WUNLOCK(object); 2538 return; 2539 } 2540 VM_OBJECT_LOCK_DOWNGRADE(object); 2541 } else 2542 VM_OBJECT_RLOCK(object); 2543 2544 psize = atop(size); 2545 if (psize + pindex > object->size) { 2546 if (pindex >= object->size) { 2547 VM_OBJECT_RUNLOCK(object); 2548 return; 2549 } 2550 psize = object->size - pindex; 2551 } 2552 2553 start = 0; 2554 p_start = NULL; 2555 threshold = MAX_INIT_PT; 2556 2557 p = vm_page_find_least(object, pindex); 2558 /* 2559 * Assert: the variable p is either (1) the page with the 2560 * least pindex greater than or equal to the parameter pindex 2561 * or (2) NULL. 2562 */ 2563 for (; 2564 p != NULL && (tmpidx = p->pindex - pindex) < psize; 2565 p = TAILQ_NEXT(p, listq)) { 2566 /* 2567 * don't allow an madvise to blow away our really 2568 * free pages allocating pv entries. 2569 */ 2570 if (((flags & MAP_PREFAULT_MADVISE) != 0 && 2571 vm_page_count_severe()) || 2572 ((flags & MAP_PREFAULT_PARTIAL) != 0 && 2573 tmpidx >= threshold)) { 2574 psize = tmpidx; 2575 break; 2576 } 2577 if (vm_page_all_valid(p)) { 2578 if (p_start == NULL) { 2579 start = addr + ptoa(tmpidx); 2580 p_start = p; 2581 } 2582 /* Jump ahead if a superpage mapping is possible. */ 2583 if (p->psind > 0 && ((addr + ptoa(tmpidx)) & 2584 (pagesizes[p->psind] - 1)) == 0) { 2585 mask = atop(pagesizes[p->psind]) - 1; 2586 if (tmpidx + mask < psize && 2587 vm_page_ps_test(p, PS_ALL_VALID, NULL)) { 2588 p += mask; 2589 threshold += mask; 2590 } 2591 } 2592 } else if (p_start != NULL) { 2593 pmap_enter_object(map->pmap, start, addr + 2594 ptoa(tmpidx), p_start, prot); 2595 p_start = NULL; 2596 } 2597 } 2598 if (p_start != NULL) 2599 pmap_enter_object(map->pmap, start, addr + ptoa(psize), 2600 p_start, prot); 2601 VM_OBJECT_RUNLOCK(object); 2602 } 2603 2604 /* 2605 * vm_map_protect: 2606 * 2607 * Sets the protection of the specified address 2608 * region in the target map. If "set_max" is 2609 * specified, the maximum protection is to be set; 2610 * otherwise, only the current protection is affected. 2611 */ 2612 int 2613 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 2614 vm_prot_t new_prot, boolean_t set_max) 2615 { 2616 vm_map_entry_t entry, first_entry, in_tran, prev_entry; 2617 vm_object_t obj; 2618 struct ucred *cred; 2619 vm_prot_t old_prot; 2620 int rv; 2621 2622 if (start == end) 2623 return (KERN_SUCCESS); 2624 2625 again: 2626 in_tran = NULL; 2627 vm_map_lock(map); 2628 2629 /* 2630 * Ensure that we are not concurrently wiring pages. vm_map_wire() may 2631 * need to fault pages into the map and will drop the map lock while 2632 * doing so, and the VM object may end up in an inconsistent state if we 2633 * update the protection on the map entry in between faults. 2634 */ 2635 vm_map_wait_busy(map); 2636 2637 VM_MAP_RANGE_CHECK(map, start, end); 2638 2639 if (!vm_map_lookup_entry(map, start, &first_entry)) 2640 first_entry = vm_map_entry_succ(first_entry); 2641 2642 /* 2643 * Make a first pass to check for protection violations. 2644 */ 2645 for (entry = first_entry; entry->start < end; 2646 entry = vm_map_entry_succ(entry)) { 2647 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) 2648 continue; 2649 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) { 2650 vm_map_unlock(map); 2651 return (KERN_INVALID_ARGUMENT); 2652 } 2653 if ((new_prot & entry->max_protection) != new_prot) { 2654 vm_map_unlock(map); 2655 return (KERN_PROTECTION_FAILURE); 2656 } 2657 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0) 2658 in_tran = entry; 2659 } 2660 2661 /* 2662 * Postpone the operation until all in-transition map entries have 2663 * stabilized. An in-transition entry might already have its pages 2664 * wired and wired_count incremented, but not yet have its 2665 * MAP_ENTRY_USER_WIRED flag set. In which case, we would fail to call 2666 * vm_fault_copy_entry() in the final loop below. 2667 */ 2668 if (in_tran != NULL) { 2669 in_tran->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2670 vm_map_unlock_and_wait(map, 0); 2671 goto again; 2672 } 2673 2674 /* 2675 * Before changing the protections, try to reserve swap space for any 2676 * private (i.e., copy-on-write) mappings that are transitioning from 2677 * read-only to read/write access. If a reservation fails, break out 2678 * of this loop early and let the next loop simplify the entries, since 2679 * some may now be mergeable. 2680 */ 2681 rv = KERN_SUCCESS; 2682 vm_map_clip_start(map, first_entry, start); 2683 for (entry = first_entry; entry->start < end; 2684 entry = vm_map_entry_succ(entry)) { 2685 vm_map_clip_end(map, entry, end); 2686 2687 if (set_max || 2688 ((new_prot & ~entry->protection) & VM_PROT_WRITE) == 0 || 2689 ENTRY_CHARGED(entry) || 2690 (entry->eflags & MAP_ENTRY_GUARD) != 0) { 2691 continue; 2692 } 2693 2694 cred = curthread->td_ucred; 2695 obj = entry->object.vm_object; 2696 2697 if (obj == NULL || 2698 (entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0) { 2699 if (!swap_reserve(entry->end - entry->start)) { 2700 rv = KERN_RESOURCE_SHORTAGE; 2701 end = entry->end; 2702 break; 2703 } 2704 crhold(cred); 2705 entry->cred = cred; 2706 continue; 2707 } 2708 2709 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) 2710 continue; 2711 VM_OBJECT_WLOCK(obj); 2712 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) { 2713 VM_OBJECT_WUNLOCK(obj); 2714 continue; 2715 } 2716 2717 /* 2718 * Charge for the whole object allocation now, since 2719 * we cannot distinguish between non-charged and 2720 * charged clipped mapping of the same object later. 2721 */ 2722 KASSERT(obj->charge == 0, 2723 ("vm_map_protect: object %p overcharged (entry %p)", 2724 obj, entry)); 2725 if (!swap_reserve(ptoa(obj->size))) { 2726 VM_OBJECT_WUNLOCK(obj); 2727 rv = KERN_RESOURCE_SHORTAGE; 2728 end = entry->end; 2729 break; 2730 } 2731 2732 crhold(cred); 2733 obj->cred = cred; 2734 obj->charge = ptoa(obj->size); 2735 VM_OBJECT_WUNLOCK(obj); 2736 } 2737 2738 /* 2739 * If enough swap space was available, go back and fix up protections. 2740 * Otherwise, just simplify entries, since some may have been modified. 2741 * [Note that clipping is not necessary the second time.] 2742 */ 2743 for (prev_entry = vm_map_entry_pred(first_entry), entry = first_entry; 2744 entry->start < end; 2745 vm_map_try_merge_entries(map, prev_entry, entry), 2746 prev_entry = entry, entry = vm_map_entry_succ(entry)) { 2747 if (rv != KERN_SUCCESS || 2748 (entry->eflags & MAP_ENTRY_GUARD) != 0) 2749 continue; 2750 2751 old_prot = entry->protection; 2752 2753 if (set_max) 2754 entry->protection = 2755 (entry->max_protection = new_prot) & 2756 old_prot; 2757 else 2758 entry->protection = new_prot; 2759 2760 /* 2761 * For user wired map entries, the normal lazy evaluation of 2762 * write access upgrades through soft page faults is 2763 * undesirable. Instead, immediately copy any pages that are 2764 * copy-on-write and enable write access in the physical map. 2765 */ 2766 if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0 && 2767 (entry->protection & VM_PROT_WRITE) != 0 && 2768 (old_prot & VM_PROT_WRITE) == 0) 2769 vm_fault_copy_entry(map, map, entry, entry, NULL); 2770 2771 /* 2772 * When restricting access, update the physical map. Worry 2773 * about copy-on-write here. 2774 */ 2775 if ((old_prot & ~entry->protection) != 0) { 2776 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 2777 VM_PROT_ALL) 2778 pmap_protect(map->pmap, entry->start, 2779 entry->end, 2780 entry->protection & MASK(entry)); 2781 #undef MASK 2782 } 2783 } 2784 vm_map_try_merge_entries(map, prev_entry, entry); 2785 vm_map_unlock(map); 2786 return (rv); 2787 } 2788 2789 /* 2790 * vm_map_madvise: 2791 * 2792 * This routine traverses a processes map handling the madvise 2793 * system call. Advisories are classified as either those effecting 2794 * the vm_map_entry structure, or those effecting the underlying 2795 * objects. 2796 */ 2797 int 2798 vm_map_madvise( 2799 vm_map_t map, 2800 vm_offset_t start, 2801 vm_offset_t end, 2802 int behav) 2803 { 2804 vm_map_entry_t entry, prev_entry; 2805 bool modify_map; 2806 2807 /* 2808 * Some madvise calls directly modify the vm_map_entry, in which case 2809 * we need to use an exclusive lock on the map and we need to perform 2810 * various clipping operations. Otherwise we only need a read-lock 2811 * on the map. 2812 */ 2813 switch(behav) { 2814 case MADV_NORMAL: 2815 case MADV_SEQUENTIAL: 2816 case MADV_RANDOM: 2817 case MADV_NOSYNC: 2818 case MADV_AUTOSYNC: 2819 case MADV_NOCORE: 2820 case MADV_CORE: 2821 if (start == end) 2822 return (0); 2823 modify_map = true; 2824 vm_map_lock(map); 2825 break; 2826 case MADV_WILLNEED: 2827 case MADV_DONTNEED: 2828 case MADV_FREE: 2829 if (start == end) 2830 return (0); 2831 modify_map = false; 2832 vm_map_lock_read(map); 2833 break; 2834 default: 2835 return (EINVAL); 2836 } 2837 2838 /* 2839 * Locate starting entry and clip if necessary. 2840 */ 2841 VM_MAP_RANGE_CHECK(map, start, end); 2842 2843 if (modify_map) { 2844 /* 2845 * madvise behaviors that are implemented in the vm_map_entry. 2846 * 2847 * We clip the vm_map_entry so that behavioral changes are 2848 * limited to the specified address range. 2849 */ 2850 for (entry = vm_map_lookup_clip_start(map, start, &prev_entry); 2851 entry->start < end; 2852 prev_entry = entry, entry = vm_map_entry_succ(entry)) { 2853 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) 2854 continue; 2855 2856 vm_map_clip_end(map, entry, end); 2857 2858 switch (behav) { 2859 case MADV_NORMAL: 2860 vm_map_entry_set_behavior(entry, 2861 MAP_ENTRY_BEHAV_NORMAL); 2862 break; 2863 case MADV_SEQUENTIAL: 2864 vm_map_entry_set_behavior(entry, 2865 MAP_ENTRY_BEHAV_SEQUENTIAL); 2866 break; 2867 case MADV_RANDOM: 2868 vm_map_entry_set_behavior(entry, 2869 MAP_ENTRY_BEHAV_RANDOM); 2870 break; 2871 case MADV_NOSYNC: 2872 entry->eflags |= MAP_ENTRY_NOSYNC; 2873 break; 2874 case MADV_AUTOSYNC: 2875 entry->eflags &= ~MAP_ENTRY_NOSYNC; 2876 break; 2877 case MADV_NOCORE: 2878 entry->eflags |= MAP_ENTRY_NOCOREDUMP; 2879 break; 2880 case MADV_CORE: 2881 entry->eflags &= ~MAP_ENTRY_NOCOREDUMP; 2882 break; 2883 default: 2884 break; 2885 } 2886 vm_map_try_merge_entries(map, prev_entry, entry); 2887 } 2888 vm_map_try_merge_entries(map, prev_entry, entry); 2889 vm_map_unlock(map); 2890 } else { 2891 vm_pindex_t pstart, pend; 2892 2893 /* 2894 * madvise behaviors that are implemented in the underlying 2895 * vm_object. 2896 * 2897 * Since we don't clip the vm_map_entry, we have to clip 2898 * the vm_object pindex and count. 2899 */ 2900 if (!vm_map_lookup_entry(map, start, &entry)) 2901 entry = vm_map_entry_succ(entry); 2902 for (; entry->start < end; 2903 entry = vm_map_entry_succ(entry)) { 2904 vm_offset_t useEnd, useStart; 2905 2906 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) 2907 continue; 2908 2909 /* 2910 * MADV_FREE would otherwise rewind time to 2911 * the creation of the shadow object. Because 2912 * we hold the VM map read-locked, neither the 2913 * entry's object nor the presence of a 2914 * backing object can change. 2915 */ 2916 if (behav == MADV_FREE && 2917 entry->object.vm_object != NULL && 2918 entry->object.vm_object->backing_object != NULL) 2919 continue; 2920 2921 pstart = OFF_TO_IDX(entry->offset); 2922 pend = pstart + atop(entry->end - entry->start); 2923 useStart = entry->start; 2924 useEnd = entry->end; 2925 2926 if (entry->start < start) { 2927 pstart += atop(start - entry->start); 2928 useStart = start; 2929 } 2930 if (entry->end > end) { 2931 pend -= atop(entry->end - end); 2932 useEnd = end; 2933 } 2934 2935 if (pstart >= pend) 2936 continue; 2937 2938 /* 2939 * Perform the pmap_advise() before clearing 2940 * PGA_REFERENCED in vm_page_advise(). Otherwise, a 2941 * concurrent pmap operation, such as pmap_remove(), 2942 * could clear a reference in the pmap and set 2943 * PGA_REFERENCED on the page before the pmap_advise() 2944 * had completed. Consequently, the page would appear 2945 * referenced based upon an old reference that 2946 * occurred before this pmap_advise() ran. 2947 */ 2948 if (behav == MADV_DONTNEED || behav == MADV_FREE) 2949 pmap_advise(map->pmap, useStart, useEnd, 2950 behav); 2951 2952 vm_object_madvise(entry->object.vm_object, pstart, 2953 pend, behav); 2954 2955 /* 2956 * Pre-populate paging structures in the 2957 * WILLNEED case. For wired entries, the 2958 * paging structures are already populated. 2959 */ 2960 if (behav == MADV_WILLNEED && 2961 entry->wired_count == 0) { 2962 vm_map_pmap_enter(map, 2963 useStart, 2964 entry->protection, 2965 entry->object.vm_object, 2966 pstart, 2967 ptoa(pend - pstart), 2968 MAP_PREFAULT_MADVISE 2969 ); 2970 } 2971 } 2972 vm_map_unlock_read(map); 2973 } 2974 return (0); 2975 } 2976 2977 2978 /* 2979 * vm_map_inherit: 2980 * 2981 * Sets the inheritance of the specified address 2982 * range in the target map. Inheritance 2983 * affects how the map will be shared with 2984 * child maps at the time of vmspace_fork. 2985 */ 2986 int 2987 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 2988 vm_inherit_t new_inheritance) 2989 { 2990 vm_map_entry_t entry, prev_entry; 2991 2992 switch (new_inheritance) { 2993 case VM_INHERIT_NONE: 2994 case VM_INHERIT_COPY: 2995 case VM_INHERIT_SHARE: 2996 case VM_INHERIT_ZERO: 2997 break; 2998 default: 2999 return (KERN_INVALID_ARGUMENT); 3000 } 3001 if (start == end) 3002 return (KERN_SUCCESS); 3003 vm_map_lock(map); 3004 VM_MAP_RANGE_CHECK(map, start, end); 3005 for (entry = vm_map_lookup_clip_start(map, start, &prev_entry); 3006 entry->start < end; 3007 prev_entry = entry, entry = vm_map_entry_succ(entry)) { 3008 vm_map_clip_end(map, entry, end); 3009 if ((entry->eflags & MAP_ENTRY_GUARD) == 0 || 3010 new_inheritance != VM_INHERIT_ZERO) 3011 entry->inheritance = new_inheritance; 3012 vm_map_try_merge_entries(map, prev_entry, entry); 3013 } 3014 vm_map_try_merge_entries(map, prev_entry, entry); 3015 vm_map_unlock(map); 3016 return (KERN_SUCCESS); 3017 } 3018 3019 /* 3020 * vm_map_entry_in_transition: 3021 * 3022 * Release the map lock, and sleep until the entry is no longer in 3023 * transition. Awake and acquire the map lock. If the map changed while 3024 * another held the lock, lookup a possibly-changed entry at or after the 3025 * 'start' position of the old entry. 3026 */ 3027 static vm_map_entry_t 3028 vm_map_entry_in_transition(vm_map_t map, vm_offset_t in_start, 3029 vm_offset_t *io_end, bool holes_ok, vm_map_entry_t in_entry) 3030 { 3031 vm_map_entry_t entry; 3032 vm_offset_t start; 3033 u_int last_timestamp; 3034 3035 VM_MAP_ASSERT_LOCKED(map); 3036 KASSERT((in_entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 3037 ("not in-tranition map entry %p", in_entry)); 3038 /* 3039 * We have not yet clipped the entry. 3040 */ 3041 start = MAX(in_start, in_entry->start); 3042 in_entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 3043 last_timestamp = map->timestamp; 3044 if (vm_map_unlock_and_wait(map, 0)) { 3045 /* 3046 * Allow interruption of user wiring/unwiring? 3047 */ 3048 } 3049 vm_map_lock(map); 3050 if (last_timestamp + 1 == map->timestamp) 3051 return (in_entry); 3052 3053 /* 3054 * Look again for the entry because the map was modified while it was 3055 * unlocked. Specifically, the entry may have been clipped, merged, or 3056 * deleted. 3057 */ 3058 if (!vm_map_lookup_entry(map, start, &entry)) { 3059 if (!holes_ok) { 3060 *io_end = start; 3061 return (NULL); 3062 } 3063 entry = vm_map_entry_succ(entry); 3064 } 3065 return (entry); 3066 } 3067 3068 /* 3069 * vm_map_unwire: 3070 * 3071 * Implements both kernel and user unwiring. 3072 */ 3073 int 3074 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end, 3075 int flags) 3076 { 3077 vm_map_entry_t entry, first_entry, next_entry, prev_entry; 3078 int rv; 3079 bool holes_ok, need_wakeup, user_unwire; 3080 3081 if (start == end) 3082 return (KERN_SUCCESS); 3083 holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0; 3084 user_unwire = (flags & VM_MAP_WIRE_USER) != 0; 3085 vm_map_lock(map); 3086 VM_MAP_RANGE_CHECK(map, start, end); 3087 if (!vm_map_lookup_entry(map, start, &first_entry)) { 3088 if (holes_ok) 3089 first_entry = vm_map_entry_succ(first_entry); 3090 else { 3091 vm_map_unlock(map); 3092 return (KERN_INVALID_ADDRESS); 3093 } 3094 } 3095 rv = KERN_SUCCESS; 3096 for (entry = first_entry; entry->start < end; entry = next_entry) { 3097 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 3098 /* 3099 * We have not yet clipped the entry. 3100 */ 3101 next_entry = vm_map_entry_in_transition(map, start, 3102 &end, holes_ok, entry); 3103 if (next_entry == NULL) { 3104 if (entry == first_entry) { 3105 vm_map_unlock(map); 3106 return (KERN_INVALID_ADDRESS); 3107 } 3108 rv = KERN_INVALID_ADDRESS; 3109 break; 3110 } 3111 first_entry = (entry == first_entry) ? 3112 next_entry : NULL; 3113 continue; 3114 } 3115 vm_map_clip_start(map, entry, start); 3116 vm_map_clip_end(map, entry, end); 3117 /* 3118 * Mark the entry in case the map lock is released. (See 3119 * above.) 3120 */ 3121 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 3122 entry->wiring_thread == NULL, 3123 ("owned map entry %p", entry)); 3124 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 3125 entry->wiring_thread = curthread; 3126 next_entry = vm_map_entry_succ(entry); 3127 /* 3128 * Check the map for holes in the specified region. 3129 * If holes_ok, skip this check. 3130 */ 3131 if (!holes_ok && 3132 entry->end < end && next_entry->start > entry->end) { 3133 end = entry->end; 3134 rv = KERN_INVALID_ADDRESS; 3135 break; 3136 } 3137 /* 3138 * If system unwiring, require that the entry is system wired. 3139 */ 3140 if (!user_unwire && 3141 vm_map_entry_system_wired_count(entry) == 0) { 3142 end = entry->end; 3143 rv = KERN_INVALID_ARGUMENT; 3144 break; 3145 } 3146 } 3147 need_wakeup = false; 3148 if (first_entry == NULL && 3149 !vm_map_lookup_entry(map, start, &first_entry)) { 3150 KASSERT(holes_ok, ("vm_map_unwire: lookup failed")); 3151 prev_entry = first_entry; 3152 entry = vm_map_entry_succ(first_entry); 3153 } else { 3154 prev_entry = vm_map_entry_pred(first_entry); 3155 entry = first_entry; 3156 } 3157 for (; entry->start < end; 3158 prev_entry = entry, entry = vm_map_entry_succ(entry)) { 3159 /* 3160 * If holes_ok was specified, an empty 3161 * space in the unwired region could have been mapped 3162 * while the map lock was dropped for draining 3163 * MAP_ENTRY_IN_TRANSITION. Moreover, another thread 3164 * could be simultaneously wiring this new mapping 3165 * entry. Detect these cases and skip any entries 3166 * marked as in transition by us. 3167 */ 3168 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 3169 entry->wiring_thread != curthread) { 3170 KASSERT(holes_ok, 3171 ("vm_map_unwire: !HOLESOK and new/changed entry")); 3172 continue; 3173 } 3174 3175 if (rv == KERN_SUCCESS && (!user_unwire || 3176 (entry->eflags & MAP_ENTRY_USER_WIRED))) { 3177 if (entry->wired_count == 1) 3178 vm_map_entry_unwire(map, entry); 3179 else 3180 entry->wired_count--; 3181 if (user_unwire) 3182 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 3183 } 3184 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 3185 ("vm_map_unwire: in-transition flag missing %p", entry)); 3186 KASSERT(entry->wiring_thread == curthread, 3187 ("vm_map_unwire: alien wire %p", entry)); 3188 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 3189 entry->wiring_thread = NULL; 3190 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 3191 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 3192 need_wakeup = true; 3193 } 3194 vm_map_try_merge_entries(map, prev_entry, entry); 3195 } 3196 vm_map_try_merge_entries(map, prev_entry, entry); 3197 vm_map_unlock(map); 3198 if (need_wakeup) 3199 vm_map_wakeup(map); 3200 return (rv); 3201 } 3202 3203 static void 3204 vm_map_wire_user_count_sub(u_long npages) 3205 { 3206 3207 atomic_subtract_long(&vm_user_wire_count, npages); 3208 } 3209 3210 static bool 3211 vm_map_wire_user_count_add(u_long npages) 3212 { 3213 u_long wired; 3214 3215 wired = vm_user_wire_count; 3216 do { 3217 if (npages + wired > vm_page_max_user_wired) 3218 return (false); 3219 } while (!atomic_fcmpset_long(&vm_user_wire_count, &wired, 3220 npages + wired)); 3221 3222 return (true); 3223 } 3224 3225 /* 3226 * vm_map_wire_entry_failure: 3227 * 3228 * Handle a wiring failure on the given entry. 3229 * 3230 * The map should be locked. 3231 */ 3232 static void 3233 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry, 3234 vm_offset_t failed_addr) 3235 { 3236 3237 VM_MAP_ASSERT_LOCKED(map); 3238 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 && 3239 entry->wired_count == 1, 3240 ("vm_map_wire_entry_failure: entry %p isn't being wired", entry)); 3241 KASSERT(failed_addr < entry->end, 3242 ("vm_map_wire_entry_failure: entry %p was fully wired", entry)); 3243 3244 /* 3245 * If any pages at the start of this entry were successfully wired, 3246 * then unwire them. 3247 */ 3248 if (failed_addr > entry->start) { 3249 pmap_unwire(map->pmap, entry->start, failed_addr); 3250 vm_object_unwire(entry->object.vm_object, entry->offset, 3251 failed_addr - entry->start, PQ_ACTIVE); 3252 } 3253 3254 /* 3255 * Assign an out-of-range value to represent the failure to wire this 3256 * entry. 3257 */ 3258 entry->wired_count = -1; 3259 } 3260 3261 int 3262 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags) 3263 { 3264 int rv; 3265 3266 vm_map_lock(map); 3267 rv = vm_map_wire_locked(map, start, end, flags); 3268 vm_map_unlock(map); 3269 return (rv); 3270 } 3271 3272 3273 /* 3274 * vm_map_wire_locked: 3275 * 3276 * Implements both kernel and user wiring. Returns with the map locked, 3277 * the map lock may be dropped. 3278 */ 3279 int 3280 vm_map_wire_locked(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags) 3281 { 3282 vm_map_entry_t entry, first_entry, next_entry, prev_entry; 3283 vm_offset_t faddr, saved_end, saved_start; 3284 u_long npages; 3285 u_int last_timestamp; 3286 int rv; 3287 bool holes_ok, need_wakeup, user_wire; 3288 vm_prot_t prot; 3289 3290 VM_MAP_ASSERT_LOCKED(map); 3291 3292 if (start == end) 3293 return (KERN_SUCCESS); 3294 prot = 0; 3295 if (flags & VM_MAP_WIRE_WRITE) 3296 prot |= VM_PROT_WRITE; 3297 holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0; 3298 user_wire = (flags & VM_MAP_WIRE_USER) != 0; 3299 VM_MAP_RANGE_CHECK(map, start, end); 3300 if (!vm_map_lookup_entry(map, start, &first_entry)) { 3301 if (holes_ok) 3302 first_entry = vm_map_entry_succ(first_entry); 3303 else 3304 return (KERN_INVALID_ADDRESS); 3305 } 3306 for (entry = first_entry; entry->start < end; entry = next_entry) { 3307 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 3308 /* 3309 * We have not yet clipped the entry. 3310 */ 3311 next_entry = vm_map_entry_in_transition(map, start, 3312 &end, holes_ok, entry); 3313 if (next_entry == NULL) { 3314 if (entry == first_entry) 3315 return (KERN_INVALID_ADDRESS); 3316 rv = KERN_INVALID_ADDRESS; 3317 goto done; 3318 } 3319 first_entry = (entry == first_entry) ? 3320 next_entry : NULL; 3321 continue; 3322 } 3323 vm_map_clip_start(map, entry, start); 3324 vm_map_clip_end(map, entry, end); 3325 /* 3326 * Mark the entry in case the map lock is released. (See 3327 * above.) 3328 */ 3329 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 3330 entry->wiring_thread == NULL, 3331 ("owned map entry %p", entry)); 3332 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 3333 entry->wiring_thread = curthread; 3334 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 3335 || (entry->protection & prot) != prot) { 3336 entry->eflags |= MAP_ENTRY_WIRE_SKIPPED; 3337 if (!holes_ok) { 3338 end = entry->end; 3339 rv = KERN_INVALID_ADDRESS; 3340 goto done; 3341 } 3342 } else if (entry->wired_count == 0) { 3343 entry->wired_count++; 3344 3345 npages = atop(entry->end - entry->start); 3346 if (user_wire && !vm_map_wire_user_count_add(npages)) { 3347 vm_map_wire_entry_failure(map, entry, 3348 entry->start); 3349 end = entry->end; 3350 rv = KERN_RESOURCE_SHORTAGE; 3351 goto done; 3352 } 3353 3354 /* 3355 * Release the map lock, relying on the in-transition 3356 * mark. Mark the map busy for fork. 3357 */ 3358 saved_start = entry->start; 3359 saved_end = entry->end; 3360 last_timestamp = map->timestamp; 3361 vm_map_busy(map); 3362 vm_map_unlock(map); 3363 3364 faddr = saved_start; 3365 do { 3366 /* 3367 * Simulate a fault to get the page and enter 3368 * it into the physical map. 3369 */ 3370 if ((rv = vm_fault(map, faddr, 3371 VM_PROT_NONE, VM_FAULT_WIRE, NULL)) != 3372 KERN_SUCCESS) 3373 break; 3374 } while ((faddr += PAGE_SIZE) < saved_end); 3375 vm_map_lock(map); 3376 vm_map_unbusy(map); 3377 if (last_timestamp + 1 != map->timestamp) { 3378 /* 3379 * Look again for the entry because the map was 3380 * modified while it was unlocked. The entry 3381 * may have been clipped, but NOT merged or 3382 * deleted. 3383 */ 3384 if (!vm_map_lookup_entry(map, saved_start, 3385 &next_entry)) 3386 KASSERT(false, 3387 ("vm_map_wire: lookup failed")); 3388 first_entry = (entry == first_entry) ? 3389 next_entry : NULL; 3390 for (entry = next_entry; entry->end < saved_end; 3391 entry = vm_map_entry_succ(entry)) { 3392 /* 3393 * In case of failure, handle entries 3394 * that were not fully wired here; 3395 * fully wired entries are handled 3396 * later. 3397 */ 3398 if (rv != KERN_SUCCESS && 3399 faddr < entry->end) 3400 vm_map_wire_entry_failure(map, 3401 entry, faddr); 3402 } 3403 } 3404 if (rv != KERN_SUCCESS) { 3405 vm_map_wire_entry_failure(map, entry, faddr); 3406 if (user_wire) 3407 vm_map_wire_user_count_sub(npages); 3408 end = entry->end; 3409 goto done; 3410 } 3411 } else if (!user_wire || 3412 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 3413 entry->wired_count++; 3414 } 3415 /* 3416 * Check the map for holes in the specified region. 3417 * If holes_ok was specified, skip this check. 3418 */ 3419 next_entry = vm_map_entry_succ(entry); 3420 if (!holes_ok && 3421 entry->end < end && next_entry->start > entry->end) { 3422 end = entry->end; 3423 rv = KERN_INVALID_ADDRESS; 3424 goto done; 3425 } 3426 } 3427 rv = KERN_SUCCESS; 3428 done: 3429 need_wakeup = false; 3430 if (first_entry == NULL && 3431 !vm_map_lookup_entry(map, start, &first_entry)) { 3432 KASSERT(holes_ok, ("vm_map_wire: lookup failed")); 3433 prev_entry = first_entry; 3434 entry = vm_map_entry_succ(first_entry); 3435 } else { 3436 prev_entry = vm_map_entry_pred(first_entry); 3437 entry = first_entry; 3438 } 3439 for (; entry->start < end; 3440 prev_entry = entry, entry = vm_map_entry_succ(entry)) { 3441 /* 3442 * If holes_ok was specified, an empty 3443 * space in the unwired region could have been mapped 3444 * while the map lock was dropped for faulting in the 3445 * pages or draining MAP_ENTRY_IN_TRANSITION. 3446 * Moreover, another thread could be simultaneously 3447 * wiring this new mapping entry. Detect these cases 3448 * and skip any entries marked as in transition not by us. 3449 */ 3450 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 3451 entry->wiring_thread != curthread) { 3452 KASSERT(holes_ok, 3453 ("vm_map_wire: !HOLESOK and new/changed entry")); 3454 continue; 3455 } 3456 3457 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) { 3458 /* do nothing */ 3459 } else if (rv == KERN_SUCCESS) { 3460 if (user_wire) 3461 entry->eflags |= MAP_ENTRY_USER_WIRED; 3462 } else if (entry->wired_count == -1) { 3463 /* 3464 * Wiring failed on this entry. Thus, unwiring is 3465 * unnecessary. 3466 */ 3467 entry->wired_count = 0; 3468 } else if (!user_wire || 3469 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 3470 /* 3471 * Undo the wiring. Wiring succeeded on this entry 3472 * but failed on a later entry. 3473 */ 3474 if (entry->wired_count == 1) { 3475 vm_map_entry_unwire(map, entry); 3476 if (user_wire) 3477 vm_map_wire_user_count_sub( 3478 atop(entry->end - entry->start)); 3479 } else 3480 entry->wired_count--; 3481 } 3482 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 3483 ("vm_map_wire: in-transition flag missing %p", entry)); 3484 KASSERT(entry->wiring_thread == curthread, 3485 ("vm_map_wire: alien wire %p", entry)); 3486 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION | 3487 MAP_ENTRY_WIRE_SKIPPED); 3488 entry->wiring_thread = NULL; 3489 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 3490 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 3491 need_wakeup = true; 3492 } 3493 vm_map_try_merge_entries(map, prev_entry, entry); 3494 } 3495 vm_map_try_merge_entries(map, prev_entry, entry); 3496 if (need_wakeup) 3497 vm_map_wakeup(map); 3498 return (rv); 3499 } 3500 3501 /* 3502 * vm_map_sync 3503 * 3504 * Push any dirty cached pages in the address range to their pager. 3505 * If syncio is TRUE, dirty pages are written synchronously. 3506 * If invalidate is TRUE, any cached pages are freed as well. 3507 * 3508 * If the size of the region from start to end is zero, we are 3509 * supposed to flush all modified pages within the region containing 3510 * start. Unfortunately, a region can be split or coalesced with 3511 * neighboring regions, making it difficult to determine what the 3512 * original region was. Therefore, we approximate this requirement by 3513 * flushing the current region containing start. 3514 * 3515 * Returns an error if any part of the specified range is not mapped. 3516 */ 3517 int 3518 vm_map_sync( 3519 vm_map_t map, 3520 vm_offset_t start, 3521 vm_offset_t end, 3522 boolean_t syncio, 3523 boolean_t invalidate) 3524 { 3525 vm_map_entry_t entry, first_entry, next_entry; 3526 vm_size_t size; 3527 vm_object_t object; 3528 vm_ooffset_t offset; 3529 unsigned int last_timestamp; 3530 boolean_t failed; 3531 3532 vm_map_lock_read(map); 3533 VM_MAP_RANGE_CHECK(map, start, end); 3534 if (!vm_map_lookup_entry(map, start, &first_entry)) { 3535 vm_map_unlock_read(map); 3536 return (KERN_INVALID_ADDRESS); 3537 } else if (start == end) { 3538 start = first_entry->start; 3539 end = first_entry->end; 3540 } 3541 /* 3542 * Make a first pass to check for user-wired memory and holes. 3543 */ 3544 for (entry = first_entry; entry->start < end; entry = next_entry) { 3545 if (invalidate && 3546 (entry->eflags & MAP_ENTRY_USER_WIRED) != 0) { 3547 vm_map_unlock_read(map); 3548 return (KERN_INVALID_ARGUMENT); 3549 } 3550 next_entry = vm_map_entry_succ(entry); 3551 if (end > entry->end && 3552 entry->end != next_entry->start) { 3553 vm_map_unlock_read(map); 3554 return (KERN_INVALID_ADDRESS); 3555 } 3556 } 3557 3558 if (invalidate) 3559 pmap_remove(map->pmap, start, end); 3560 failed = FALSE; 3561 3562 /* 3563 * Make a second pass, cleaning/uncaching pages from the indicated 3564 * objects as we go. 3565 */ 3566 for (entry = first_entry; entry->start < end;) { 3567 offset = entry->offset + (start - entry->start); 3568 size = (end <= entry->end ? end : entry->end) - start; 3569 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) { 3570 vm_map_t smap; 3571 vm_map_entry_t tentry; 3572 vm_size_t tsize; 3573 3574 smap = entry->object.sub_map; 3575 vm_map_lock_read(smap); 3576 (void) vm_map_lookup_entry(smap, offset, &tentry); 3577 tsize = tentry->end - offset; 3578 if (tsize < size) 3579 size = tsize; 3580 object = tentry->object.vm_object; 3581 offset = tentry->offset + (offset - tentry->start); 3582 vm_map_unlock_read(smap); 3583 } else { 3584 object = entry->object.vm_object; 3585 } 3586 vm_object_reference(object); 3587 last_timestamp = map->timestamp; 3588 vm_map_unlock_read(map); 3589 if (!vm_object_sync(object, offset, size, syncio, invalidate)) 3590 failed = TRUE; 3591 start += size; 3592 vm_object_deallocate(object); 3593 vm_map_lock_read(map); 3594 if (last_timestamp == map->timestamp || 3595 !vm_map_lookup_entry(map, start, &entry)) 3596 entry = vm_map_entry_succ(entry); 3597 } 3598 3599 vm_map_unlock_read(map); 3600 return (failed ? KERN_FAILURE : KERN_SUCCESS); 3601 } 3602 3603 /* 3604 * vm_map_entry_unwire: [ internal use only ] 3605 * 3606 * Make the region specified by this entry pageable. 3607 * 3608 * The map in question should be locked. 3609 * [This is the reason for this routine's existence.] 3610 */ 3611 static void 3612 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 3613 { 3614 vm_size_t size; 3615 3616 VM_MAP_ASSERT_LOCKED(map); 3617 KASSERT(entry->wired_count > 0, 3618 ("vm_map_entry_unwire: entry %p isn't wired", entry)); 3619 3620 size = entry->end - entry->start; 3621 if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0) 3622 vm_map_wire_user_count_sub(atop(size)); 3623 pmap_unwire(map->pmap, entry->start, entry->end); 3624 vm_object_unwire(entry->object.vm_object, entry->offset, size, 3625 PQ_ACTIVE); 3626 entry->wired_count = 0; 3627 } 3628 3629 static void 3630 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map) 3631 { 3632 3633 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) 3634 vm_object_deallocate(entry->object.vm_object); 3635 uma_zfree(system_map ? kmapentzone : mapentzone, entry); 3636 } 3637 3638 /* 3639 * vm_map_entry_delete: [ internal use only ] 3640 * 3641 * Deallocate the given entry from the target map. 3642 */ 3643 static void 3644 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry) 3645 { 3646 vm_object_t object; 3647 vm_pindex_t offidxstart, offidxend, count, size1; 3648 vm_size_t size; 3649 3650 vm_map_entry_unlink(map, entry, UNLINK_MERGE_NONE); 3651 object = entry->object.vm_object; 3652 3653 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) { 3654 MPASS(entry->cred == NULL); 3655 MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0); 3656 MPASS(object == NULL); 3657 vm_map_entry_deallocate(entry, map->system_map); 3658 return; 3659 } 3660 3661 size = entry->end - entry->start; 3662 map->size -= size; 3663 3664 if (entry->cred != NULL) { 3665 swap_release_by_cred(size, entry->cred); 3666 crfree(entry->cred); 3667 } 3668 3669 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || object == NULL) { 3670 entry->object.vm_object = NULL; 3671 } else if ((object->flags & OBJ_ANON) != 0 || 3672 object == kernel_object) { 3673 KASSERT(entry->cred == NULL || object->cred == NULL || 3674 (entry->eflags & MAP_ENTRY_NEEDS_COPY), 3675 ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry)); 3676 count = atop(size); 3677 offidxstart = OFF_TO_IDX(entry->offset); 3678 offidxend = offidxstart + count; 3679 VM_OBJECT_WLOCK(object); 3680 if (object->ref_count != 1 && 3681 ((object->flags & OBJ_ONEMAPPING) != 0 || 3682 object == kernel_object)) { 3683 vm_object_collapse(object); 3684 3685 /* 3686 * The option OBJPR_NOTMAPPED can be passed here 3687 * because vm_map_delete() already performed 3688 * pmap_remove() on the only mapping to this range 3689 * of pages. 3690 */ 3691 vm_object_page_remove(object, offidxstart, offidxend, 3692 OBJPR_NOTMAPPED); 3693 if (object->type == OBJT_SWAP) 3694 swap_pager_freespace(object, offidxstart, 3695 count); 3696 if (offidxend >= object->size && 3697 offidxstart < object->size) { 3698 size1 = object->size; 3699 object->size = offidxstart; 3700 if (object->cred != NULL) { 3701 size1 -= object->size; 3702 KASSERT(object->charge >= ptoa(size1), 3703 ("object %p charge < 0", object)); 3704 swap_release_by_cred(ptoa(size1), 3705 object->cred); 3706 object->charge -= ptoa(size1); 3707 } 3708 } 3709 } 3710 VM_OBJECT_WUNLOCK(object); 3711 } 3712 if (map->system_map) 3713 vm_map_entry_deallocate(entry, TRUE); 3714 else { 3715 entry->defer_next = curthread->td_map_def_user; 3716 curthread->td_map_def_user = entry; 3717 } 3718 } 3719 3720 /* 3721 * vm_map_delete: [ internal use only ] 3722 * 3723 * Deallocates the given address range from the target 3724 * map. 3725 */ 3726 int 3727 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end) 3728 { 3729 vm_map_entry_t entry, next_entry; 3730 3731 VM_MAP_ASSERT_LOCKED(map); 3732 if (start == end) 3733 return (KERN_SUCCESS); 3734 3735 /* 3736 * Find the start of the region, and clip it. 3737 * Step through all entries in this region. 3738 */ 3739 for (entry = vm_map_lookup_clip_start(map, start, &entry); 3740 entry->start < end; entry = next_entry) { 3741 /* 3742 * Wait for wiring or unwiring of an entry to complete. 3743 * Also wait for any system wirings to disappear on 3744 * user maps. 3745 */ 3746 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 || 3747 (vm_map_pmap(map) != kernel_pmap && 3748 vm_map_entry_system_wired_count(entry) != 0)) { 3749 unsigned int last_timestamp; 3750 vm_offset_t saved_start; 3751 3752 saved_start = entry->start; 3753 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 3754 last_timestamp = map->timestamp; 3755 (void) vm_map_unlock_and_wait(map, 0); 3756 vm_map_lock(map); 3757 if (last_timestamp + 1 != map->timestamp) { 3758 /* 3759 * Look again for the entry because the map was 3760 * modified while it was unlocked. 3761 * Specifically, the entry may have been 3762 * clipped, merged, or deleted. 3763 */ 3764 next_entry = vm_map_lookup_clip_start(map, 3765 saved_start, &next_entry); 3766 } else 3767 next_entry = entry; 3768 continue; 3769 } 3770 vm_map_clip_end(map, entry, end); 3771 next_entry = vm_map_entry_succ(entry); 3772 3773 /* 3774 * Unwire before removing addresses from the pmap; otherwise, 3775 * unwiring will put the entries back in the pmap. 3776 */ 3777 if (entry->wired_count != 0) 3778 vm_map_entry_unwire(map, entry); 3779 3780 /* 3781 * Remove mappings for the pages, but only if the 3782 * mappings could exist. For instance, it does not 3783 * make sense to call pmap_remove() for guard entries. 3784 */ 3785 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || 3786 entry->object.vm_object != NULL) 3787 pmap_remove(map->pmap, entry->start, entry->end); 3788 3789 if (entry->end == map->anon_loc) 3790 map->anon_loc = entry->start; 3791 3792 /* 3793 * Delete the entry only after removing all pmap 3794 * entries pointing to its pages. (Otherwise, its 3795 * page frames may be reallocated, and any modify bits 3796 * will be set in the wrong object!) 3797 */ 3798 vm_map_entry_delete(map, entry); 3799 } 3800 return (KERN_SUCCESS); 3801 } 3802 3803 /* 3804 * vm_map_remove: 3805 * 3806 * Remove the given address range from the target map. 3807 * This is the exported form of vm_map_delete. 3808 */ 3809 int 3810 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 3811 { 3812 int result; 3813 3814 vm_map_lock(map); 3815 VM_MAP_RANGE_CHECK(map, start, end); 3816 result = vm_map_delete(map, start, end); 3817 vm_map_unlock(map); 3818 return (result); 3819 } 3820 3821 /* 3822 * vm_map_check_protection: 3823 * 3824 * Assert that the target map allows the specified privilege on the 3825 * entire address region given. The entire region must be allocated. 3826 * 3827 * WARNING! This code does not and should not check whether the 3828 * contents of the region is accessible. For example a smaller file 3829 * might be mapped into a larger address space. 3830 * 3831 * NOTE! This code is also called by munmap(). 3832 * 3833 * The map must be locked. A read lock is sufficient. 3834 */ 3835 boolean_t 3836 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 3837 vm_prot_t protection) 3838 { 3839 vm_map_entry_t entry; 3840 vm_map_entry_t tmp_entry; 3841 3842 if (!vm_map_lookup_entry(map, start, &tmp_entry)) 3843 return (FALSE); 3844 entry = tmp_entry; 3845 3846 while (start < end) { 3847 /* 3848 * No holes allowed! 3849 */ 3850 if (start < entry->start) 3851 return (FALSE); 3852 /* 3853 * Check protection associated with entry. 3854 */ 3855 if ((entry->protection & protection) != protection) 3856 return (FALSE); 3857 /* go to next entry */ 3858 start = entry->end; 3859 entry = vm_map_entry_succ(entry); 3860 } 3861 return (TRUE); 3862 } 3863 3864 3865 /* 3866 * 3867 * vm_map_copy_swap_object: 3868 * 3869 * Copies a swap-backed object from an existing map entry to a 3870 * new one. Carries forward the swap charge. May change the 3871 * src object on return. 3872 */ 3873 static void 3874 vm_map_copy_swap_object(vm_map_entry_t src_entry, vm_map_entry_t dst_entry, 3875 vm_offset_t size, vm_ooffset_t *fork_charge) 3876 { 3877 vm_object_t src_object; 3878 struct ucred *cred; 3879 int charged; 3880 3881 src_object = src_entry->object.vm_object; 3882 charged = ENTRY_CHARGED(src_entry); 3883 if ((src_object->flags & OBJ_ANON) != 0) { 3884 VM_OBJECT_WLOCK(src_object); 3885 vm_object_collapse(src_object); 3886 if ((src_object->flags & OBJ_ONEMAPPING) != 0) { 3887 vm_object_split(src_entry); 3888 src_object = src_entry->object.vm_object; 3889 } 3890 vm_object_reference_locked(src_object); 3891 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 3892 VM_OBJECT_WUNLOCK(src_object); 3893 } else 3894 vm_object_reference(src_object); 3895 if (src_entry->cred != NULL && 3896 !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 3897 KASSERT(src_object->cred == NULL, 3898 ("OVERCOMMIT: vm_map_copy_anon_entry: cred %p", 3899 src_object)); 3900 src_object->cred = src_entry->cred; 3901 src_object->charge = size; 3902 } 3903 dst_entry->object.vm_object = src_object; 3904 if (charged) { 3905 cred = curthread->td_ucred; 3906 crhold(cred); 3907 dst_entry->cred = cred; 3908 *fork_charge += size; 3909 if (!(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 3910 crhold(cred); 3911 src_entry->cred = cred; 3912 *fork_charge += size; 3913 } 3914 } 3915 } 3916 3917 /* 3918 * vm_map_copy_entry: 3919 * 3920 * Copies the contents of the source entry to the destination 3921 * entry. The entries *must* be aligned properly. 3922 */ 3923 static void 3924 vm_map_copy_entry( 3925 vm_map_t src_map, 3926 vm_map_t dst_map, 3927 vm_map_entry_t src_entry, 3928 vm_map_entry_t dst_entry, 3929 vm_ooffset_t *fork_charge) 3930 { 3931 vm_object_t src_object; 3932 vm_map_entry_t fake_entry; 3933 vm_offset_t size; 3934 3935 VM_MAP_ASSERT_LOCKED(dst_map); 3936 3937 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP) 3938 return; 3939 3940 if (src_entry->wired_count == 0 || 3941 (src_entry->protection & VM_PROT_WRITE) == 0) { 3942 /* 3943 * If the source entry is marked needs_copy, it is already 3944 * write-protected. 3945 */ 3946 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 && 3947 (src_entry->protection & VM_PROT_WRITE) != 0) { 3948 pmap_protect(src_map->pmap, 3949 src_entry->start, 3950 src_entry->end, 3951 src_entry->protection & ~VM_PROT_WRITE); 3952 } 3953 3954 /* 3955 * Make a copy of the object. 3956 */ 3957 size = src_entry->end - src_entry->start; 3958 if ((src_object = src_entry->object.vm_object) != NULL) { 3959 if (src_object->type == OBJT_DEFAULT || 3960 src_object->type == OBJT_SWAP) { 3961 vm_map_copy_swap_object(src_entry, dst_entry, 3962 size, fork_charge); 3963 /* May have split/collapsed, reload obj. */ 3964 src_object = src_entry->object.vm_object; 3965 } else { 3966 vm_object_reference(src_object); 3967 dst_entry->object.vm_object = src_object; 3968 } 3969 src_entry->eflags |= MAP_ENTRY_COW | 3970 MAP_ENTRY_NEEDS_COPY; 3971 dst_entry->eflags |= MAP_ENTRY_COW | 3972 MAP_ENTRY_NEEDS_COPY; 3973 dst_entry->offset = src_entry->offset; 3974 if (src_entry->eflags & MAP_ENTRY_WRITECNT) { 3975 /* 3976 * MAP_ENTRY_WRITECNT cannot 3977 * indicate write reference from 3978 * src_entry, since the entry is 3979 * marked as needs copy. Allocate a 3980 * fake entry that is used to 3981 * decrement object->un_pager writecount 3982 * at the appropriate time. Attach 3983 * fake_entry to the deferred list. 3984 */ 3985 fake_entry = vm_map_entry_create(dst_map); 3986 fake_entry->eflags = MAP_ENTRY_WRITECNT; 3987 src_entry->eflags &= ~MAP_ENTRY_WRITECNT; 3988 vm_object_reference(src_object); 3989 fake_entry->object.vm_object = src_object; 3990 fake_entry->start = src_entry->start; 3991 fake_entry->end = src_entry->end; 3992 fake_entry->defer_next = 3993 curthread->td_map_def_user; 3994 curthread->td_map_def_user = fake_entry; 3995 } 3996 3997 pmap_copy(dst_map->pmap, src_map->pmap, 3998 dst_entry->start, dst_entry->end - dst_entry->start, 3999 src_entry->start); 4000 } else { 4001 dst_entry->object.vm_object = NULL; 4002 dst_entry->offset = 0; 4003 if (src_entry->cred != NULL) { 4004 dst_entry->cred = curthread->td_ucred; 4005 crhold(dst_entry->cred); 4006 *fork_charge += size; 4007 } 4008 } 4009 } else { 4010 /* 4011 * We don't want to make writeable wired pages copy-on-write. 4012 * Immediately copy these pages into the new map by simulating 4013 * page faults. The new pages are pageable. 4014 */ 4015 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry, 4016 fork_charge); 4017 } 4018 } 4019 4020 /* 4021 * vmspace_map_entry_forked: 4022 * Update the newly-forked vmspace each time a map entry is inherited 4023 * or copied. The values for vm_dsize and vm_tsize are approximate 4024 * (and mostly-obsolete ideas in the face of mmap(2) et al.) 4025 */ 4026 static void 4027 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2, 4028 vm_map_entry_t entry) 4029 { 4030 vm_size_t entrysize; 4031 vm_offset_t newend; 4032 4033 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) 4034 return; 4035 entrysize = entry->end - entry->start; 4036 vm2->vm_map.size += entrysize; 4037 if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) { 4038 vm2->vm_ssize += btoc(entrysize); 4039 } else if (entry->start >= (vm_offset_t)vm1->vm_daddr && 4040 entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) { 4041 newend = MIN(entry->end, 4042 (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)); 4043 vm2->vm_dsize += btoc(newend - entry->start); 4044 } else if (entry->start >= (vm_offset_t)vm1->vm_taddr && 4045 entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) { 4046 newend = MIN(entry->end, 4047 (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)); 4048 vm2->vm_tsize += btoc(newend - entry->start); 4049 } 4050 } 4051 4052 /* 4053 * vmspace_fork: 4054 * Create a new process vmspace structure and vm_map 4055 * based on those of an existing process. The new map 4056 * is based on the old map, according to the inheritance 4057 * values on the regions in that map. 4058 * 4059 * XXX It might be worth coalescing the entries added to the new vmspace. 4060 * 4061 * The source map must not be locked. 4062 */ 4063 struct vmspace * 4064 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge) 4065 { 4066 struct vmspace *vm2; 4067 vm_map_t new_map, old_map; 4068 vm_map_entry_t new_entry, old_entry; 4069 vm_object_t object; 4070 int error, locked; 4071 vm_inherit_t inh; 4072 4073 old_map = &vm1->vm_map; 4074 /* Copy immutable fields of vm1 to vm2. */ 4075 vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map), 4076 pmap_pinit); 4077 if (vm2 == NULL) 4078 return (NULL); 4079 4080 vm2->vm_taddr = vm1->vm_taddr; 4081 vm2->vm_daddr = vm1->vm_daddr; 4082 vm2->vm_maxsaddr = vm1->vm_maxsaddr; 4083 vm_map_lock(old_map); 4084 if (old_map->busy) 4085 vm_map_wait_busy(old_map); 4086 new_map = &vm2->vm_map; 4087 locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */ 4088 KASSERT(locked, ("vmspace_fork: lock failed")); 4089 4090 error = pmap_vmspace_copy(new_map->pmap, old_map->pmap); 4091 if (error != 0) { 4092 sx_xunlock(&old_map->lock); 4093 sx_xunlock(&new_map->lock); 4094 vm_map_process_deferred(); 4095 vmspace_free(vm2); 4096 return (NULL); 4097 } 4098 4099 new_map->anon_loc = old_map->anon_loc; 4100 4101 VM_MAP_ENTRY_FOREACH(old_entry, old_map) { 4102 if ((old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) 4103 panic("vm_map_fork: encountered a submap"); 4104 4105 inh = old_entry->inheritance; 4106 if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 && 4107 inh != VM_INHERIT_NONE) 4108 inh = VM_INHERIT_COPY; 4109 4110 switch (inh) { 4111 case VM_INHERIT_NONE: 4112 break; 4113 4114 case VM_INHERIT_SHARE: 4115 /* 4116 * Clone the entry, creating the shared object if 4117 * necessary. 4118 */ 4119 object = old_entry->object.vm_object; 4120 if (object == NULL) { 4121 vm_map_entry_back(old_entry); 4122 object = old_entry->object.vm_object; 4123 } 4124 4125 /* 4126 * Add the reference before calling vm_object_shadow 4127 * to insure that a shadow object is created. 4128 */ 4129 vm_object_reference(object); 4130 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 4131 vm_object_shadow(&old_entry->object.vm_object, 4132 &old_entry->offset, 4133 old_entry->end - old_entry->start, 4134 old_entry->cred, 4135 /* Transfer the second reference too. */ 4136 true); 4137 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 4138 old_entry->cred = NULL; 4139 4140 /* 4141 * As in vm_map_merged_neighbor_dispose(), 4142 * the vnode lock will not be acquired in 4143 * this call to vm_object_deallocate(). 4144 */ 4145 vm_object_deallocate(object); 4146 object = old_entry->object.vm_object; 4147 } else { 4148 VM_OBJECT_WLOCK(object); 4149 vm_object_clear_flag(object, OBJ_ONEMAPPING); 4150 if (old_entry->cred != NULL) { 4151 KASSERT(object->cred == NULL, 4152 ("vmspace_fork both cred")); 4153 object->cred = old_entry->cred; 4154 object->charge = old_entry->end - 4155 old_entry->start; 4156 old_entry->cred = NULL; 4157 } 4158 4159 /* 4160 * Assert the correct state of the vnode 4161 * v_writecount while the object is locked, to 4162 * not relock it later for the assertion 4163 * correctness. 4164 */ 4165 if (old_entry->eflags & MAP_ENTRY_WRITECNT && 4166 object->type == OBJT_VNODE) { 4167 KASSERT(((struct vnode *)object-> 4168 handle)->v_writecount > 0, 4169 ("vmspace_fork: v_writecount %p", 4170 object)); 4171 KASSERT(object->un_pager.vnp. 4172 writemappings > 0, 4173 ("vmspace_fork: vnp.writecount %p", 4174 object)); 4175 } 4176 VM_OBJECT_WUNLOCK(object); 4177 } 4178 4179 /* 4180 * Clone the entry, referencing the shared object. 4181 */ 4182 new_entry = vm_map_entry_create(new_map); 4183 *new_entry = *old_entry; 4184 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 4185 MAP_ENTRY_IN_TRANSITION); 4186 new_entry->wiring_thread = NULL; 4187 new_entry->wired_count = 0; 4188 if (new_entry->eflags & MAP_ENTRY_WRITECNT) { 4189 vm_pager_update_writecount(object, 4190 new_entry->start, new_entry->end); 4191 } 4192 vm_map_entry_set_vnode_text(new_entry, true); 4193 4194 /* 4195 * Insert the entry into the new map -- we know we're 4196 * inserting at the end of the new map. 4197 */ 4198 vm_map_entry_link(new_map, new_entry); 4199 vmspace_map_entry_forked(vm1, vm2, new_entry); 4200 4201 /* 4202 * Update the physical map 4203 */ 4204 pmap_copy(new_map->pmap, old_map->pmap, 4205 new_entry->start, 4206 (old_entry->end - old_entry->start), 4207 old_entry->start); 4208 break; 4209 4210 case VM_INHERIT_COPY: 4211 /* 4212 * Clone the entry and link into the map. 4213 */ 4214 new_entry = vm_map_entry_create(new_map); 4215 *new_entry = *old_entry; 4216 /* 4217 * Copied entry is COW over the old object. 4218 */ 4219 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 4220 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_WRITECNT); 4221 new_entry->wiring_thread = NULL; 4222 new_entry->wired_count = 0; 4223 new_entry->object.vm_object = NULL; 4224 new_entry->cred = NULL; 4225 vm_map_entry_link(new_map, new_entry); 4226 vmspace_map_entry_forked(vm1, vm2, new_entry); 4227 vm_map_copy_entry(old_map, new_map, old_entry, 4228 new_entry, fork_charge); 4229 vm_map_entry_set_vnode_text(new_entry, true); 4230 break; 4231 4232 case VM_INHERIT_ZERO: 4233 /* 4234 * Create a new anonymous mapping entry modelled from 4235 * the old one. 4236 */ 4237 new_entry = vm_map_entry_create(new_map); 4238 memset(new_entry, 0, sizeof(*new_entry)); 4239 4240 new_entry->start = old_entry->start; 4241 new_entry->end = old_entry->end; 4242 new_entry->eflags = old_entry->eflags & 4243 ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION | 4244 MAP_ENTRY_WRITECNT | MAP_ENTRY_VN_EXEC); 4245 new_entry->protection = old_entry->protection; 4246 new_entry->max_protection = old_entry->max_protection; 4247 new_entry->inheritance = VM_INHERIT_ZERO; 4248 4249 vm_map_entry_link(new_map, new_entry); 4250 vmspace_map_entry_forked(vm1, vm2, new_entry); 4251 4252 new_entry->cred = curthread->td_ucred; 4253 crhold(new_entry->cred); 4254 *fork_charge += (new_entry->end - new_entry->start); 4255 4256 break; 4257 } 4258 } 4259 /* 4260 * Use inlined vm_map_unlock() to postpone handling the deferred 4261 * map entries, which cannot be done until both old_map and 4262 * new_map locks are released. 4263 */ 4264 sx_xunlock(&old_map->lock); 4265 sx_xunlock(&new_map->lock); 4266 vm_map_process_deferred(); 4267 4268 return (vm2); 4269 } 4270 4271 /* 4272 * Create a process's stack for exec_new_vmspace(). This function is never 4273 * asked to wire the newly created stack. 4274 */ 4275 int 4276 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 4277 vm_prot_t prot, vm_prot_t max, int cow) 4278 { 4279 vm_size_t growsize, init_ssize; 4280 rlim_t vmemlim; 4281 int rv; 4282 4283 MPASS((map->flags & MAP_WIREFUTURE) == 0); 4284 growsize = sgrowsiz; 4285 init_ssize = (max_ssize < growsize) ? max_ssize : growsize; 4286 vm_map_lock(map); 4287 vmemlim = lim_cur(curthread, RLIMIT_VMEM); 4288 /* If we would blow our VMEM resource limit, no go */ 4289 if (map->size + init_ssize > vmemlim) { 4290 rv = KERN_NO_SPACE; 4291 goto out; 4292 } 4293 rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot, 4294 max, cow); 4295 out: 4296 vm_map_unlock(map); 4297 return (rv); 4298 } 4299 4300 static int stack_guard_page = 1; 4301 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN, 4302 &stack_guard_page, 0, 4303 "Specifies the number of guard pages for a stack that grows"); 4304 4305 static int 4306 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 4307 vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow) 4308 { 4309 vm_map_entry_t new_entry, prev_entry; 4310 vm_offset_t bot, gap_bot, gap_top, top; 4311 vm_size_t init_ssize, sgp; 4312 int orient, rv; 4313 4314 /* 4315 * The stack orientation is piggybacked with the cow argument. 4316 * Extract it into orient and mask the cow argument so that we 4317 * don't pass it around further. 4318 */ 4319 orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP); 4320 KASSERT(orient != 0, ("No stack grow direction")); 4321 KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP), 4322 ("bi-dir stack")); 4323 4324 if (max_ssize == 0 || 4325 !vm_map_range_valid(map, addrbos, addrbos + max_ssize)) 4326 return (KERN_INVALID_ADDRESS); 4327 sgp = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 || 4328 (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 : 4329 (vm_size_t)stack_guard_page * PAGE_SIZE; 4330 if (sgp >= max_ssize) 4331 return (KERN_INVALID_ARGUMENT); 4332 4333 init_ssize = growsize; 4334 if (max_ssize < init_ssize + sgp) 4335 init_ssize = max_ssize - sgp; 4336 4337 /* If addr is already mapped, no go */ 4338 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) 4339 return (KERN_NO_SPACE); 4340 4341 /* 4342 * If we can't accommodate max_ssize in the current mapping, no go. 4343 */ 4344 if (vm_map_entry_succ(prev_entry)->start < addrbos + max_ssize) 4345 return (KERN_NO_SPACE); 4346 4347 /* 4348 * We initially map a stack of only init_ssize. We will grow as 4349 * needed later. Depending on the orientation of the stack (i.e. 4350 * the grow direction) we either map at the top of the range, the 4351 * bottom of the range or in the middle. 4352 * 4353 * Note: we would normally expect prot and max to be VM_PROT_ALL, 4354 * and cow to be 0. Possibly we should eliminate these as input 4355 * parameters, and just pass these values here in the insert call. 4356 */ 4357 if (orient == MAP_STACK_GROWS_DOWN) { 4358 bot = addrbos + max_ssize - init_ssize; 4359 top = bot + init_ssize; 4360 gap_bot = addrbos; 4361 gap_top = bot; 4362 } else /* if (orient == MAP_STACK_GROWS_UP) */ { 4363 bot = addrbos; 4364 top = bot + init_ssize; 4365 gap_bot = top; 4366 gap_top = addrbos + max_ssize; 4367 } 4368 rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow); 4369 if (rv != KERN_SUCCESS) 4370 return (rv); 4371 new_entry = vm_map_entry_succ(prev_entry); 4372 KASSERT(new_entry->end == top || new_entry->start == bot, 4373 ("Bad entry start/end for new stack entry")); 4374 KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 || 4375 (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0, 4376 ("new entry lacks MAP_ENTRY_GROWS_DOWN")); 4377 KASSERT((orient & MAP_STACK_GROWS_UP) == 0 || 4378 (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0, 4379 ("new entry lacks MAP_ENTRY_GROWS_UP")); 4380 if (gap_bot == gap_top) 4381 return (KERN_SUCCESS); 4382 rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE, 4383 VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ? 4384 MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP)); 4385 if (rv == KERN_SUCCESS) { 4386 /* 4387 * Gap can never successfully handle a fault, so 4388 * read-ahead logic is never used for it. Re-use 4389 * next_read of the gap entry to store 4390 * stack_guard_page for vm_map_growstack(). 4391 */ 4392 if (orient == MAP_STACK_GROWS_DOWN) 4393 vm_map_entry_pred(new_entry)->next_read = sgp; 4394 else 4395 vm_map_entry_succ(new_entry)->next_read = sgp; 4396 } else { 4397 (void)vm_map_delete(map, bot, top); 4398 } 4399 return (rv); 4400 } 4401 4402 /* 4403 * Attempts to grow a vm stack entry. Returns KERN_SUCCESS if we 4404 * successfully grow the stack. 4405 */ 4406 static int 4407 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry) 4408 { 4409 vm_map_entry_t stack_entry; 4410 struct proc *p; 4411 struct vmspace *vm; 4412 struct ucred *cred; 4413 vm_offset_t gap_end, gap_start, grow_start; 4414 vm_size_t grow_amount, guard, max_grow; 4415 rlim_t lmemlim, stacklim, vmemlim; 4416 int rv, rv1; 4417 bool gap_deleted, grow_down, is_procstack; 4418 #ifdef notyet 4419 uint64_t limit; 4420 #endif 4421 #ifdef RACCT 4422 int error; 4423 #endif 4424 4425 p = curproc; 4426 vm = p->p_vmspace; 4427 4428 /* 4429 * Disallow stack growth when the access is performed by a 4430 * debugger or AIO daemon. The reason is that the wrong 4431 * resource limits are applied. 4432 */ 4433 if (p != initproc && (map != &p->p_vmspace->vm_map || 4434 p->p_textvp == NULL)) 4435 return (KERN_FAILURE); 4436 4437 MPASS(!map->system_map); 4438 4439 lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK); 4440 stacklim = lim_cur(curthread, RLIMIT_STACK); 4441 vmemlim = lim_cur(curthread, RLIMIT_VMEM); 4442 retry: 4443 /* If addr is not in a hole for a stack grow area, no need to grow. */ 4444 if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry)) 4445 return (KERN_FAILURE); 4446 if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0) 4447 return (KERN_SUCCESS); 4448 if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) { 4449 stack_entry = vm_map_entry_succ(gap_entry); 4450 if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 || 4451 stack_entry->start != gap_entry->end) 4452 return (KERN_FAILURE); 4453 grow_amount = round_page(stack_entry->start - addr); 4454 grow_down = true; 4455 } else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) { 4456 stack_entry = vm_map_entry_pred(gap_entry); 4457 if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 || 4458 stack_entry->end != gap_entry->start) 4459 return (KERN_FAILURE); 4460 grow_amount = round_page(addr + 1 - stack_entry->end); 4461 grow_down = false; 4462 } else { 4463 return (KERN_FAILURE); 4464 } 4465 guard = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 || 4466 (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 : 4467 gap_entry->next_read; 4468 max_grow = gap_entry->end - gap_entry->start; 4469 if (guard > max_grow) 4470 return (KERN_NO_SPACE); 4471 max_grow -= guard; 4472 if (grow_amount > max_grow) 4473 return (KERN_NO_SPACE); 4474 4475 /* 4476 * If this is the main process stack, see if we're over the stack 4477 * limit. 4478 */ 4479 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr && 4480 addr < (vm_offset_t)p->p_sysent->sv_usrstack; 4481 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) 4482 return (KERN_NO_SPACE); 4483 4484 #ifdef RACCT 4485 if (racct_enable) { 4486 PROC_LOCK(p); 4487 if (is_procstack && racct_set(p, RACCT_STACK, 4488 ctob(vm->vm_ssize) + grow_amount)) { 4489 PROC_UNLOCK(p); 4490 return (KERN_NO_SPACE); 4491 } 4492 PROC_UNLOCK(p); 4493 } 4494 #endif 4495 4496 grow_amount = roundup(grow_amount, sgrowsiz); 4497 if (grow_amount > max_grow) 4498 grow_amount = max_grow; 4499 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 4500 grow_amount = trunc_page((vm_size_t)stacklim) - 4501 ctob(vm->vm_ssize); 4502 } 4503 4504 #ifdef notyet 4505 PROC_LOCK(p); 4506 limit = racct_get_available(p, RACCT_STACK); 4507 PROC_UNLOCK(p); 4508 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit)) 4509 grow_amount = limit - ctob(vm->vm_ssize); 4510 #endif 4511 4512 if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) { 4513 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) { 4514 rv = KERN_NO_SPACE; 4515 goto out; 4516 } 4517 #ifdef RACCT 4518 if (racct_enable) { 4519 PROC_LOCK(p); 4520 if (racct_set(p, RACCT_MEMLOCK, 4521 ptoa(pmap_wired_count(map->pmap)) + grow_amount)) { 4522 PROC_UNLOCK(p); 4523 rv = KERN_NO_SPACE; 4524 goto out; 4525 } 4526 PROC_UNLOCK(p); 4527 } 4528 #endif 4529 } 4530 4531 /* If we would blow our VMEM resource limit, no go */ 4532 if (map->size + grow_amount > vmemlim) { 4533 rv = KERN_NO_SPACE; 4534 goto out; 4535 } 4536 #ifdef RACCT 4537 if (racct_enable) { 4538 PROC_LOCK(p); 4539 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) { 4540 PROC_UNLOCK(p); 4541 rv = KERN_NO_SPACE; 4542 goto out; 4543 } 4544 PROC_UNLOCK(p); 4545 } 4546 #endif 4547 4548 if (vm_map_lock_upgrade(map)) { 4549 gap_entry = NULL; 4550 vm_map_lock_read(map); 4551 goto retry; 4552 } 4553 4554 if (grow_down) { 4555 grow_start = gap_entry->end - grow_amount; 4556 if (gap_entry->start + grow_amount == gap_entry->end) { 4557 gap_start = gap_entry->start; 4558 gap_end = gap_entry->end; 4559 vm_map_entry_delete(map, gap_entry); 4560 gap_deleted = true; 4561 } else { 4562 MPASS(gap_entry->start < gap_entry->end - grow_amount); 4563 vm_map_entry_resize(map, gap_entry, -grow_amount); 4564 gap_deleted = false; 4565 } 4566 rv = vm_map_insert(map, NULL, 0, grow_start, 4567 grow_start + grow_amount, 4568 stack_entry->protection, stack_entry->max_protection, 4569 MAP_STACK_GROWS_DOWN); 4570 if (rv != KERN_SUCCESS) { 4571 if (gap_deleted) { 4572 rv1 = vm_map_insert(map, NULL, 0, gap_start, 4573 gap_end, VM_PROT_NONE, VM_PROT_NONE, 4574 MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN); 4575 MPASS(rv1 == KERN_SUCCESS); 4576 } else 4577 vm_map_entry_resize(map, gap_entry, 4578 grow_amount); 4579 } 4580 } else { 4581 grow_start = stack_entry->end; 4582 cred = stack_entry->cred; 4583 if (cred == NULL && stack_entry->object.vm_object != NULL) 4584 cred = stack_entry->object.vm_object->cred; 4585 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred)) 4586 rv = KERN_NO_SPACE; 4587 /* Grow the underlying object if applicable. */ 4588 else if (stack_entry->object.vm_object == NULL || 4589 vm_object_coalesce(stack_entry->object.vm_object, 4590 stack_entry->offset, 4591 (vm_size_t)(stack_entry->end - stack_entry->start), 4592 grow_amount, cred != NULL)) { 4593 if (gap_entry->start + grow_amount == gap_entry->end) { 4594 vm_map_entry_delete(map, gap_entry); 4595 vm_map_entry_resize(map, stack_entry, 4596 grow_amount); 4597 } else { 4598 gap_entry->start += grow_amount; 4599 stack_entry->end += grow_amount; 4600 } 4601 map->size += grow_amount; 4602 rv = KERN_SUCCESS; 4603 } else 4604 rv = KERN_FAILURE; 4605 } 4606 if (rv == KERN_SUCCESS && is_procstack) 4607 vm->vm_ssize += btoc(grow_amount); 4608 4609 /* 4610 * Heed the MAP_WIREFUTURE flag if it was set for this process. 4611 */ 4612 if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) { 4613 rv = vm_map_wire_locked(map, grow_start, 4614 grow_start + grow_amount, 4615 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 4616 } 4617 vm_map_lock_downgrade(map); 4618 4619 out: 4620 #ifdef RACCT 4621 if (racct_enable && rv != KERN_SUCCESS) { 4622 PROC_LOCK(p); 4623 error = racct_set(p, RACCT_VMEM, map->size); 4624 KASSERT(error == 0, ("decreasing RACCT_VMEM failed")); 4625 if (!old_mlock) { 4626 error = racct_set(p, RACCT_MEMLOCK, 4627 ptoa(pmap_wired_count(map->pmap))); 4628 KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed")); 4629 } 4630 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize)); 4631 KASSERT(error == 0, ("decreasing RACCT_STACK failed")); 4632 PROC_UNLOCK(p); 4633 } 4634 #endif 4635 4636 return (rv); 4637 } 4638 4639 /* 4640 * Unshare the specified VM space for exec. If other processes are 4641 * mapped to it, then create a new one. The new vmspace is null. 4642 */ 4643 int 4644 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser) 4645 { 4646 struct vmspace *oldvmspace = p->p_vmspace; 4647 struct vmspace *newvmspace; 4648 4649 KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0, 4650 ("vmspace_exec recursed")); 4651 newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit); 4652 if (newvmspace == NULL) 4653 return (ENOMEM); 4654 newvmspace->vm_swrss = oldvmspace->vm_swrss; 4655 /* 4656 * This code is written like this for prototype purposes. The 4657 * goal is to avoid running down the vmspace here, but let the 4658 * other process's that are still using the vmspace to finally 4659 * run it down. Even though there is little or no chance of blocking 4660 * here, it is a good idea to keep this form for future mods. 4661 */ 4662 PROC_VMSPACE_LOCK(p); 4663 p->p_vmspace = newvmspace; 4664 PROC_VMSPACE_UNLOCK(p); 4665 if (p == curthread->td_proc) 4666 pmap_activate(curthread); 4667 curthread->td_pflags |= TDP_EXECVMSPC; 4668 return (0); 4669 } 4670 4671 /* 4672 * Unshare the specified VM space for forcing COW. This 4673 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 4674 */ 4675 int 4676 vmspace_unshare(struct proc *p) 4677 { 4678 struct vmspace *oldvmspace = p->p_vmspace; 4679 struct vmspace *newvmspace; 4680 vm_ooffset_t fork_charge; 4681 4682 if (oldvmspace->vm_refcnt == 1) 4683 return (0); 4684 fork_charge = 0; 4685 newvmspace = vmspace_fork(oldvmspace, &fork_charge); 4686 if (newvmspace == NULL) 4687 return (ENOMEM); 4688 if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) { 4689 vmspace_free(newvmspace); 4690 return (ENOMEM); 4691 } 4692 PROC_VMSPACE_LOCK(p); 4693 p->p_vmspace = newvmspace; 4694 PROC_VMSPACE_UNLOCK(p); 4695 if (p == curthread->td_proc) 4696 pmap_activate(curthread); 4697 vmspace_free(oldvmspace); 4698 return (0); 4699 } 4700 4701 /* 4702 * vm_map_lookup: 4703 * 4704 * Finds the VM object, offset, and 4705 * protection for a given virtual address in the 4706 * specified map, assuming a page fault of the 4707 * type specified. 4708 * 4709 * Leaves the map in question locked for read; return 4710 * values are guaranteed until a vm_map_lookup_done 4711 * call is performed. Note that the map argument 4712 * is in/out; the returned map must be used in 4713 * the call to vm_map_lookup_done. 4714 * 4715 * A handle (out_entry) is returned for use in 4716 * vm_map_lookup_done, to make that fast. 4717 * 4718 * If a lookup is requested with "write protection" 4719 * specified, the map may be changed to perform virtual 4720 * copying operations, although the data referenced will 4721 * remain the same. 4722 */ 4723 int 4724 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 4725 vm_offset_t vaddr, 4726 vm_prot_t fault_typea, 4727 vm_map_entry_t *out_entry, /* OUT */ 4728 vm_object_t *object, /* OUT */ 4729 vm_pindex_t *pindex, /* OUT */ 4730 vm_prot_t *out_prot, /* OUT */ 4731 boolean_t *wired) /* OUT */ 4732 { 4733 vm_map_entry_t entry; 4734 vm_map_t map = *var_map; 4735 vm_prot_t prot; 4736 vm_prot_t fault_type; 4737 vm_object_t eobject; 4738 vm_size_t size; 4739 struct ucred *cred; 4740 4741 RetryLookup: 4742 4743 vm_map_lock_read(map); 4744 4745 RetryLookupLocked: 4746 /* 4747 * Lookup the faulting address. 4748 */ 4749 if (!vm_map_lookup_entry(map, vaddr, out_entry)) { 4750 vm_map_unlock_read(map); 4751 return (KERN_INVALID_ADDRESS); 4752 } 4753 4754 entry = *out_entry; 4755 4756 /* 4757 * Handle submaps. 4758 */ 4759 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 4760 vm_map_t old_map = map; 4761 4762 *var_map = map = entry->object.sub_map; 4763 vm_map_unlock_read(old_map); 4764 goto RetryLookup; 4765 } 4766 4767 /* 4768 * Check whether this task is allowed to have this page. 4769 */ 4770 prot = entry->protection; 4771 if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) { 4772 fault_typea &= ~VM_PROT_FAULT_LOOKUP; 4773 if (prot == VM_PROT_NONE && map != kernel_map && 4774 (entry->eflags & MAP_ENTRY_GUARD) != 0 && 4775 (entry->eflags & (MAP_ENTRY_STACK_GAP_DN | 4776 MAP_ENTRY_STACK_GAP_UP)) != 0 && 4777 vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS) 4778 goto RetryLookupLocked; 4779 } 4780 fault_type = fault_typea & VM_PROT_ALL; 4781 if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) { 4782 vm_map_unlock_read(map); 4783 return (KERN_PROTECTION_FAILURE); 4784 } 4785 KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags & 4786 (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) != 4787 (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY), 4788 ("entry %p flags %x", entry, entry->eflags)); 4789 if ((fault_typea & VM_PROT_COPY) != 0 && 4790 (entry->max_protection & VM_PROT_WRITE) == 0 && 4791 (entry->eflags & MAP_ENTRY_COW) == 0) { 4792 vm_map_unlock_read(map); 4793 return (KERN_PROTECTION_FAILURE); 4794 } 4795 4796 /* 4797 * If this page is not pageable, we have to get it for all possible 4798 * accesses. 4799 */ 4800 *wired = (entry->wired_count != 0); 4801 if (*wired) 4802 fault_type = entry->protection; 4803 size = entry->end - entry->start; 4804 4805 /* 4806 * If the entry was copy-on-write, we either ... 4807 */ 4808 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 4809 /* 4810 * If we want to write the page, we may as well handle that 4811 * now since we've got the map locked. 4812 * 4813 * If we don't need to write the page, we just demote the 4814 * permissions allowed. 4815 */ 4816 if ((fault_type & VM_PROT_WRITE) != 0 || 4817 (fault_typea & VM_PROT_COPY) != 0) { 4818 /* 4819 * Make a new object, and place it in the object 4820 * chain. Note that no new references have appeared 4821 * -- one just moved from the map to the new 4822 * object. 4823 */ 4824 if (vm_map_lock_upgrade(map)) 4825 goto RetryLookup; 4826 4827 if (entry->cred == NULL) { 4828 /* 4829 * The debugger owner is charged for 4830 * the memory. 4831 */ 4832 cred = curthread->td_ucred; 4833 crhold(cred); 4834 if (!swap_reserve_by_cred(size, cred)) { 4835 crfree(cred); 4836 vm_map_unlock(map); 4837 return (KERN_RESOURCE_SHORTAGE); 4838 } 4839 entry->cred = cred; 4840 } 4841 eobject = entry->object.vm_object; 4842 vm_object_shadow(&entry->object.vm_object, 4843 &entry->offset, size, entry->cred, false); 4844 if (eobject == entry->object.vm_object) { 4845 /* 4846 * The object was not shadowed. 4847 */ 4848 swap_release_by_cred(size, entry->cred); 4849 crfree(entry->cred); 4850 } 4851 entry->cred = NULL; 4852 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 4853 4854 vm_map_lock_downgrade(map); 4855 } else { 4856 /* 4857 * We're attempting to read a copy-on-write page -- 4858 * don't allow writes. 4859 */ 4860 prot &= ~VM_PROT_WRITE; 4861 } 4862 } 4863 4864 /* 4865 * Create an object if necessary. 4866 */ 4867 if (entry->object.vm_object == NULL && !map->system_map) { 4868 if (vm_map_lock_upgrade(map)) 4869 goto RetryLookup; 4870 entry->object.vm_object = vm_object_allocate_anon(atop(size), 4871 NULL, entry->cred, entry->cred != NULL ? size : 0); 4872 entry->offset = 0; 4873 entry->cred = NULL; 4874 vm_map_lock_downgrade(map); 4875 } 4876 4877 /* 4878 * Return the object/offset from this entry. If the entry was 4879 * copy-on-write or empty, it has been fixed up. 4880 */ 4881 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 4882 *object = entry->object.vm_object; 4883 4884 *out_prot = prot; 4885 return (KERN_SUCCESS); 4886 } 4887 4888 /* 4889 * vm_map_lookup_locked: 4890 * 4891 * Lookup the faulting address. A version of vm_map_lookup that returns 4892 * KERN_FAILURE instead of blocking on map lock or memory allocation. 4893 */ 4894 int 4895 vm_map_lookup_locked(vm_map_t *var_map, /* IN/OUT */ 4896 vm_offset_t vaddr, 4897 vm_prot_t fault_typea, 4898 vm_map_entry_t *out_entry, /* OUT */ 4899 vm_object_t *object, /* OUT */ 4900 vm_pindex_t *pindex, /* OUT */ 4901 vm_prot_t *out_prot, /* OUT */ 4902 boolean_t *wired) /* OUT */ 4903 { 4904 vm_map_entry_t entry; 4905 vm_map_t map = *var_map; 4906 vm_prot_t prot; 4907 vm_prot_t fault_type = fault_typea; 4908 4909 /* 4910 * Lookup the faulting address. 4911 */ 4912 if (!vm_map_lookup_entry(map, vaddr, out_entry)) 4913 return (KERN_INVALID_ADDRESS); 4914 4915 entry = *out_entry; 4916 4917 /* 4918 * Fail if the entry refers to a submap. 4919 */ 4920 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 4921 return (KERN_FAILURE); 4922 4923 /* 4924 * Check whether this task is allowed to have this page. 4925 */ 4926 prot = entry->protection; 4927 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; 4928 if ((fault_type & prot) != fault_type) 4929 return (KERN_PROTECTION_FAILURE); 4930 4931 /* 4932 * If this page is not pageable, we have to get it for all possible 4933 * accesses. 4934 */ 4935 *wired = (entry->wired_count != 0); 4936 if (*wired) 4937 fault_type = entry->protection; 4938 4939 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 4940 /* 4941 * Fail if the entry was copy-on-write for a write fault. 4942 */ 4943 if (fault_type & VM_PROT_WRITE) 4944 return (KERN_FAILURE); 4945 /* 4946 * We're attempting to read a copy-on-write page -- 4947 * don't allow writes. 4948 */ 4949 prot &= ~VM_PROT_WRITE; 4950 } 4951 4952 /* 4953 * Fail if an object should be created. 4954 */ 4955 if (entry->object.vm_object == NULL && !map->system_map) 4956 return (KERN_FAILURE); 4957 4958 /* 4959 * Return the object/offset from this entry. If the entry was 4960 * copy-on-write or empty, it has been fixed up. 4961 */ 4962 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 4963 *object = entry->object.vm_object; 4964 4965 *out_prot = prot; 4966 return (KERN_SUCCESS); 4967 } 4968 4969 /* 4970 * vm_map_lookup_done: 4971 * 4972 * Releases locks acquired by a vm_map_lookup 4973 * (according to the handle returned by that lookup). 4974 */ 4975 void 4976 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry) 4977 { 4978 /* 4979 * Unlock the main-level map 4980 */ 4981 vm_map_unlock_read(map); 4982 } 4983 4984 vm_offset_t 4985 vm_map_max_KBI(const struct vm_map *map) 4986 { 4987 4988 return (vm_map_max(map)); 4989 } 4990 4991 vm_offset_t 4992 vm_map_min_KBI(const struct vm_map *map) 4993 { 4994 4995 return (vm_map_min(map)); 4996 } 4997 4998 pmap_t 4999 vm_map_pmap_KBI(vm_map_t map) 5000 { 5001 5002 return (map->pmap); 5003 } 5004 5005 #ifdef INVARIANTS 5006 static void 5007 _vm_map_assert_consistent(vm_map_t map, int check) 5008 { 5009 vm_map_entry_t entry, prev; 5010 vm_map_entry_t cur, header, lbound, ubound; 5011 vm_size_t max_left, max_right; 5012 5013 #ifdef DIAGNOSTIC 5014 ++map->nupdates; 5015 #endif 5016 if (enable_vmmap_check != check) 5017 return; 5018 5019 header = prev = &map->header; 5020 VM_MAP_ENTRY_FOREACH(entry, map) { 5021 KASSERT(prev->end <= entry->start, 5022 ("map %p prev->end = %jx, start = %jx", map, 5023 (uintmax_t)prev->end, (uintmax_t)entry->start)); 5024 KASSERT(entry->start < entry->end, 5025 ("map %p start = %jx, end = %jx", map, 5026 (uintmax_t)entry->start, (uintmax_t)entry->end)); 5027 KASSERT(entry->left == header || 5028 entry->left->start < entry->start, 5029 ("map %p left->start = %jx, start = %jx", map, 5030 (uintmax_t)entry->left->start, (uintmax_t)entry->start)); 5031 KASSERT(entry->right == header || 5032 entry->start < entry->right->start, 5033 ("map %p start = %jx, right->start = %jx", map, 5034 (uintmax_t)entry->start, (uintmax_t)entry->right->start)); 5035 cur = map->root; 5036 lbound = ubound = header; 5037 for (;;) { 5038 if (entry->start < cur->start) { 5039 ubound = cur; 5040 cur = cur->left; 5041 KASSERT(cur != lbound, 5042 ("map %p cannot find %jx", 5043 map, (uintmax_t)entry->start)); 5044 } else if (cur->end <= entry->start) { 5045 lbound = cur; 5046 cur = cur->right; 5047 KASSERT(cur != ubound, 5048 ("map %p cannot find %jx", 5049 map, (uintmax_t)entry->start)); 5050 } else { 5051 KASSERT(cur == entry, 5052 ("map %p cannot find %jx", 5053 map, (uintmax_t)entry->start)); 5054 break; 5055 } 5056 } 5057 max_left = vm_map_entry_max_free_left(entry, lbound); 5058 max_right = vm_map_entry_max_free_right(entry, ubound); 5059 KASSERT(entry->max_free == vm_size_max(max_left, max_right), 5060 ("map %p max = %jx, max_left = %jx, max_right = %jx", map, 5061 (uintmax_t)entry->max_free, 5062 (uintmax_t)max_left, (uintmax_t)max_right)); 5063 prev = entry; 5064 } 5065 KASSERT(prev->end <= entry->start, 5066 ("map %p prev->end = %jx, start = %jx", map, 5067 (uintmax_t)prev->end, (uintmax_t)entry->start)); 5068 } 5069 #endif 5070 5071 #include "opt_ddb.h" 5072 #ifdef DDB 5073 #include <sys/kernel.h> 5074 5075 #include <ddb/ddb.h> 5076 5077 static void 5078 vm_map_print(vm_map_t map) 5079 { 5080 vm_map_entry_t entry, prev; 5081 5082 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 5083 (void *)map, 5084 (void *)map->pmap, map->nentries, map->timestamp); 5085 5086 db_indent += 2; 5087 prev = &map->header; 5088 VM_MAP_ENTRY_FOREACH(entry, map) { 5089 db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n", 5090 (void *)entry, (void *)entry->start, (void *)entry->end, 5091 entry->eflags); 5092 { 5093 static const char * const inheritance_name[4] = 5094 {"share", "copy", "none", "donate_copy"}; 5095 5096 db_iprintf(" prot=%x/%x/%s", 5097 entry->protection, 5098 entry->max_protection, 5099 inheritance_name[(int)(unsigned char) 5100 entry->inheritance]); 5101 if (entry->wired_count != 0) 5102 db_printf(", wired"); 5103 } 5104 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 5105 db_printf(", share=%p, offset=0x%jx\n", 5106 (void *)entry->object.sub_map, 5107 (uintmax_t)entry->offset); 5108 if (prev == &map->header || 5109 prev->object.sub_map != 5110 entry->object.sub_map) { 5111 db_indent += 2; 5112 vm_map_print((vm_map_t)entry->object.sub_map); 5113 db_indent -= 2; 5114 } 5115 } else { 5116 if (entry->cred != NULL) 5117 db_printf(", ruid %d", entry->cred->cr_ruid); 5118 db_printf(", object=%p, offset=0x%jx", 5119 (void *)entry->object.vm_object, 5120 (uintmax_t)entry->offset); 5121 if (entry->object.vm_object && entry->object.vm_object->cred) 5122 db_printf(", obj ruid %d charge %jx", 5123 entry->object.vm_object->cred->cr_ruid, 5124 (uintmax_t)entry->object.vm_object->charge); 5125 if (entry->eflags & MAP_ENTRY_COW) 5126 db_printf(", copy (%s)", 5127 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 5128 db_printf("\n"); 5129 5130 if (prev == &map->header || 5131 prev->object.vm_object != 5132 entry->object.vm_object) { 5133 db_indent += 2; 5134 vm_object_print((db_expr_t)(intptr_t) 5135 entry->object.vm_object, 5136 0, 0, (char *)0); 5137 db_indent -= 2; 5138 } 5139 } 5140 prev = entry; 5141 } 5142 db_indent -= 2; 5143 } 5144 5145 DB_SHOW_COMMAND(map, map) 5146 { 5147 5148 if (!have_addr) { 5149 db_printf("usage: show map <addr>\n"); 5150 return; 5151 } 5152 vm_map_print((vm_map_t)addr); 5153 } 5154 5155 DB_SHOW_COMMAND(procvm, procvm) 5156 { 5157 struct proc *p; 5158 5159 if (have_addr) { 5160 p = db_lookup_proc(addr); 5161 } else { 5162 p = curproc; 5163 } 5164 5165 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 5166 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 5167 (void *)vmspace_pmap(p->p_vmspace)); 5168 5169 vm_map_print((vm_map_t)&p->p_vmspace->vm_map); 5170 } 5171 5172 #endif /* DDB */ 5173