xref: /freebsd/sys/vm/vm_map.c (revision 96474d2a3fa895fb9636183403fc8ca7ccf60216)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62 
63 /*
64  *	Virtual memory mapping module.
65  */
66 
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/elf.h>
73 #include <sys/kernel.h>
74 #include <sys/ktr.h>
75 #include <sys/lock.h>
76 #include <sys/mutex.h>
77 #include <sys/proc.h>
78 #include <sys/vmmeter.h>
79 #include <sys/mman.h>
80 #include <sys/vnode.h>
81 #include <sys/racct.h>
82 #include <sys/resourcevar.h>
83 #include <sys/rwlock.h>
84 #include <sys/file.h>
85 #include <sys/sysctl.h>
86 #include <sys/sysent.h>
87 #include <sys/shm.h>
88 
89 #include <vm/vm.h>
90 #include <vm/vm_param.h>
91 #include <vm/pmap.h>
92 #include <vm/vm_map.h>
93 #include <vm/vm_page.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/vm_object.h>
96 #include <vm/vm_pager.h>
97 #include <vm/vm_kern.h>
98 #include <vm/vm_extern.h>
99 #include <vm/vnode_pager.h>
100 #include <vm/swap_pager.h>
101 #include <vm/uma.h>
102 
103 /*
104  *	Virtual memory maps provide for the mapping, protection,
105  *	and sharing of virtual memory objects.  In addition,
106  *	this module provides for an efficient virtual copy of
107  *	memory from one map to another.
108  *
109  *	Synchronization is required prior to most operations.
110  *
111  *	Maps consist of an ordered doubly-linked list of simple
112  *	entries; a self-adjusting binary search tree of these
113  *	entries is used to speed up lookups.
114  *
115  *	Since portions of maps are specified by start/end addresses,
116  *	which may not align with existing map entries, all
117  *	routines merely "clip" entries to these start/end values.
118  *	[That is, an entry is split into two, bordering at a
119  *	start or end value.]  Note that these clippings may not
120  *	always be necessary (as the two resulting entries are then
121  *	not changed); however, the clipping is done for convenience.
122  *
123  *	As mentioned above, virtual copy operations are performed
124  *	by copying VM object references from one map to
125  *	another, and then marking both regions as copy-on-write.
126  */
127 
128 static struct mtx map_sleep_mtx;
129 static uma_zone_t mapentzone;
130 static uma_zone_t kmapentzone;
131 static uma_zone_t vmspace_zone;
132 static int vmspace_zinit(void *mem, int size, int flags);
133 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
134     vm_offset_t max);
135 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
136 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
137 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
138 static int vm_map_growstack(vm_map_t map, vm_offset_t addr,
139     vm_map_entry_t gap_entry);
140 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
141     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
142 #ifdef INVARIANTS
143 static void vmspace_zdtor(void *mem, int size, void *arg);
144 #endif
145 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
146     vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
147     int cow);
148 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
149     vm_offset_t failed_addr);
150 
151 #define	ENTRY_CHARGED(e) ((e)->cred != NULL || \
152     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
153      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
154 
155 /*
156  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
157  * stable.
158  */
159 #define PROC_VMSPACE_LOCK(p) do { } while (0)
160 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
161 
162 /*
163  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
164  *
165  *	Asserts that the starting and ending region
166  *	addresses fall within the valid range of the map.
167  */
168 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
169 		{					\
170 		if (start < vm_map_min(map))		\
171 			start = vm_map_min(map);	\
172 		if (end > vm_map_max(map))		\
173 			end = vm_map_max(map);		\
174 		if (start > end)			\
175 			start = end;			\
176 		}
177 
178 /*
179  *	vm_map_startup:
180  *
181  *	Initialize the vm_map module.  Must be called before
182  *	any other vm_map routines.
183  *
184  *	Map and entry structures are allocated from the general
185  *	purpose memory pool with some exceptions:
186  *
187  *	- The kernel map and kmem submap are allocated statically.
188  *	- Kernel map entries are allocated out of a static pool.
189  *
190  *	These restrictions are necessary since malloc() uses the
191  *	maps and requires map entries.
192  */
193 
194 void
195 vm_map_startup(void)
196 {
197 	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
198 	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
199 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
200 	    UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
201 	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
202 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
203 	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
204 #ifdef INVARIANTS
205 	    vmspace_zdtor,
206 #else
207 	    NULL,
208 #endif
209 	    vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
210 }
211 
212 static int
213 vmspace_zinit(void *mem, int size, int flags)
214 {
215 	struct vmspace *vm;
216 	vm_map_t map;
217 
218 	vm = (struct vmspace *)mem;
219 	map = &vm->vm_map;
220 
221 	memset(map, 0, sizeof(*map));
222 	mtx_init(&map->system_mtx, "vm map (system)", NULL,
223 	    MTX_DEF | MTX_DUPOK);
224 	sx_init(&map->lock, "vm map (user)");
225 	PMAP_LOCK_INIT(vmspace_pmap(vm));
226 	return (0);
227 }
228 
229 #ifdef INVARIANTS
230 static void
231 vmspace_zdtor(void *mem, int size, void *arg)
232 {
233 	struct vmspace *vm;
234 
235 	vm = (struct vmspace *)mem;
236 	KASSERT(vm->vm_map.nentries == 0,
237 	    ("vmspace %p nentries == %d on free", vm, vm->vm_map.nentries));
238 	KASSERT(vm->vm_map.size == 0,
239 	    ("vmspace %p size == %ju on free", vm, (uintmax_t)vm->vm_map.size));
240 }
241 #endif	/* INVARIANTS */
242 
243 /*
244  * Allocate a vmspace structure, including a vm_map and pmap,
245  * and initialize those structures.  The refcnt is set to 1.
246  */
247 struct vmspace *
248 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
249 {
250 	struct vmspace *vm;
251 
252 	vm = uma_zalloc(vmspace_zone, M_WAITOK);
253 	KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
254 	if (!pinit(vmspace_pmap(vm))) {
255 		uma_zfree(vmspace_zone, vm);
256 		return (NULL);
257 	}
258 	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
259 	_vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
260 	vm->vm_refcnt = 1;
261 	vm->vm_shm = NULL;
262 	vm->vm_swrss = 0;
263 	vm->vm_tsize = 0;
264 	vm->vm_dsize = 0;
265 	vm->vm_ssize = 0;
266 	vm->vm_taddr = 0;
267 	vm->vm_daddr = 0;
268 	vm->vm_maxsaddr = 0;
269 	return (vm);
270 }
271 
272 #ifdef RACCT
273 static void
274 vmspace_container_reset(struct proc *p)
275 {
276 
277 	PROC_LOCK(p);
278 	racct_set(p, RACCT_DATA, 0);
279 	racct_set(p, RACCT_STACK, 0);
280 	racct_set(p, RACCT_RSS, 0);
281 	racct_set(p, RACCT_MEMLOCK, 0);
282 	racct_set(p, RACCT_VMEM, 0);
283 	PROC_UNLOCK(p);
284 }
285 #endif
286 
287 static inline void
288 vmspace_dofree(struct vmspace *vm)
289 {
290 
291 	CTR1(KTR_VM, "vmspace_free: %p", vm);
292 
293 	/*
294 	 * Make sure any SysV shm is freed, it might not have been in
295 	 * exit1().
296 	 */
297 	shmexit(vm);
298 
299 	/*
300 	 * Lock the map, to wait out all other references to it.
301 	 * Delete all of the mappings and pages they hold, then call
302 	 * the pmap module to reclaim anything left.
303 	 */
304 	(void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map),
305 	    vm_map_max(&vm->vm_map));
306 
307 	pmap_release(vmspace_pmap(vm));
308 	vm->vm_map.pmap = NULL;
309 	uma_zfree(vmspace_zone, vm);
310 }
311 
312 void
313 vmspace_free(struct vmspace *vm)
314 {
315 
316 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
317 	    "vmspace_free() called");
318 
319 	if (vm->vm_refcnt == 0)
320 		panic("vmspace_free: attempt to free already freed vmspace");
321 
322 	if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
323 		vmspace_dofree(vm);
324 }
325 
326 void
327 vmspace_exitfree(struct proc *p)
328 {
329 	struct vmspace *vm;
330 
331 	PROC_VMSPACE_LOCK(p);
332 	vm = p->p_vmspace;
333 	p->p_vmspace = NULL;
334 	PROC_VMSPACE_UNLOCK(p);
335 	KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
336 	vmspace_free(vm);
337 }
338 
339 void
340 vmspace_exit(struct thread *td)
341 {
342 	int refcnt;
343 	struct vmspace *vm;
344 	struct proc *p;
345 
346 	/*
347 	 * Release user portion of address space.
348 	 * This releases references to vnodes,
349 	 * which could cause I/O if the file has been unlinked.
350 	 * Need to do this early enough that we can still sleep.
351 	 *
352 	 * The last exiting process to reach this point releases as
353 	 * much of the environment as it can. vmspace_dofree() is the
354 	 * slower fallback in case another process had a temporary
355 	 * reference to the vmspace.
356 	 */
357 
358 	p = td->td_proc;
359 	vm = p->p_vmspace;
360 	atomic_add_int(&vmspace0.vm_refcnt, 1);
361 	refcnt = vm->vm_refcnt;
362 	do {
363 		if (refcnt > 1 && p->p_vmspace != &vmspace0) {
364 			/* Switch now since other proc might free vmspace */
365 			PROC_VMSPACE_LOCK(p);
366 			p->p_vmspace = &vmspace0;
367 			PROC_VMSPACE_UNLOCK(p);
368 			pmap_activate(td);
369 		}
370 	} while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt - 1));
371 	if (refcnt == 1) {
372 		if (p->p_vmspace != vm) {
373 			/* vmspace not yet freed, switch back */
374 			PROC_VMSPACE_LOCK(p);
375 			p->p_vmspace = vm;
376 			PROC_VMSPACE_UNLOCK(p);
377 			pmap_activate(td);
378 		}
379 		pmap_remove_pages(vmspace_pmap(vm));
380 		/* Switch now since this proc will free vmspace */
381 		PROC_VMSPACE_LOCK(p);
382 		p->p_vmspace = &vmspace0;
383 		PROC_VMSPACE_UNLOCK(p);
384 		pmap_activate(td);
385 		vmspace_dofree(vm);
386 	}
387 #ifdef RACCT
388 	if (racct_enable)
389 		vmspace_container_reset(p);
390 #endif
391 }
392 
393 /* Acquire reference to vmspace owned by another process. */
394 
395 struct vmspace *
396 vmspace_acquire_ref(struct proc *p)
397 {
398 	struct vmspace *vm;
399 	int refcnt;
400 
401 	PROC_VMSPACE_LOCK(p);
402 	vm = p->p_vmspace;
403 	if (vm == NULL) {
404 		PROC_VMSPACE_UNLOCK(p);
405 		return (NULL);
406 	}
407 	refcnt = vm->vm_refcnt;
408 	do {
409 		if (refcnt <= 0) { 	/* Avoid 0->1 transition */
410 			PROC_VMSPACE_UNLOCK(p);
411 			return (NULL);
412 		}
413 	} while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt + 1));
414 	if (vm != p->p_vmspace) {
415 		PROC_VMSPACE_UNLOCK(p);
416 		vmspace_free(vm);
417 		return (NULL);
418 	}
419 	PROC_VMSPACE_UNLOCK(p);
420 	return (vm);
421 }
422 
423 /*
424  * Switch between vmspaces in an AIO kernel process.
425  *
426  * The new vmspace is either the vmspace of a user process obtained
427  * from an active AIO request or the initial vmspace of the AIO kernel
428  * process (when it is idling).  Because user processes will block to
429  * drain any active AIO requests before proceeding in exit() or
430  * execve(), the reference count for vmspaces from AIO requests can
431  * never be 0.  Similarly, AIO kernel processes hold an extra
432  * reference on their initial vmspace for the life of the process.  As
433  * a result, the 'newvm' vmspace always has a non-zero reference
434  * count.  This permits an additional reference on 'newvm' to be
435  * acquired via a simple atomic increment rather than the loop in
436  * vmspace_acquire_ref() above.
437  */
438 void
439 vmspace_switch_aio(struct vmspace *newvm)
440 {
441 	struct vmspace *oldvm;
442 
443 	/* XXX: Need some way to assert that this is an aio daemon. */
444 
445 	KASSERT(newvm->vm_refcnt > 0,
446 	    ("vmspace_switch_aio: newvm unreferenced"));
447 
448 	oldvm = curproc->p_vmspace;
449 	if (oldvm == newvm)
450 		return;
451 
452 	/*
453 	 * Point to the new address space and refer to it.
454 	 */
455 	curproc->p_vmspace = newvm;
456 	atomic_add_int(&newvm->vm_refcnt, 1);
457 
458 	/* Activate the new mapping. */
459 	pmap_activate(curthread);
460 
461 	vmspace_free(oldvm);
462 }
463 
464 void
465 _vm_map_lock(vm_map_t map, const char *file, int line)
466 {
467 
468 	if (map->system_map)
469 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
470 	else
471 		sx_xlock_(&map->lock, file, line);
472 	map->timestamp++;
473 }
474 
475 void
476 vm_map_entry_set_vnode_text(vm_map_entry_t entry, bool add)
477 {
478 	vm_object_t object;
479 	struct vnode *vp;
480 	bool vp_held;
481 
482 	if ((entry->eflags & MAP_ENTRY_VN_EXEC) == 0)
483 		return;
484 	KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
485 	    ("Submap with execs"));
486 	object = entry->object.vm_object;
487 	KASSERT(object != NULL, ("No object for text, entry %p", entry));
488 	if ((object->flags & OBJ_ANON) != 0)
489 		object = object->handle;
490 	else
491 		KASSERT(object->backing_object == NULL,
492 		    ("non-anon object %p shadows", object));
493 	KASSERT(object != NULL, ("No content object for text, entry %p obj %p",
494 	    entry, entry->object.vm_object));
495 
496 	/*
497 	 * Mostly, we do not lock the backing object.  It is
498 	 * referenced by the entry we are processing, so it cannot go
499 	 * away.
500 	 */
501 	vp = NULL;
502 	vp_held = false;
503 	if (object->type == OBJT_DEAD) {
504 		/*
505 		 * For OBJT_DEAD objects, v_writecount was handled in
506 		 * vnode_pager_dealloc().
507 		 */
508 	} else if (object->type == OBJT_VNODE) {
509 		vp = object->handle;
510 	} else if (object->type == OBJT_SWAP) {
511 		KASSERT((object->flags & OBJ_TMPFS_NODE) != 0,
512 		    ("vm_map_entry_set_vnode_text: swap and !TMPFS "
513 		    "entry %p, object %p, add %d", entry, object, add));
514 		/*
515 		 * Tmpfs VREG node, which was reclaimed, has
516 		 * OBJ_TMPFS_NODE flag set, but not OBJ_TMPFS.  In
517 		 * this case there is no v_writecount to adjust.
518 		 */
519 		VM_OBJECT_RLOCK(object);
520 		if ((object->flags & OBJ_TMPFS) != 0) {
521 			vp = object->un_pager.swp.swp_tmpfs;
522 			if (vp != NULL) {
523 				vhold(vp);
524 				vp_held = true;
525 			}
526 		}
527 		VM_OBJECT_RUNLOCK(object);
528 	} else {
529 		KASSERT(0,
530 		    ("vm_map_entry_set_vnode_text: wrong object type, "
531 		    "entry %p, object %p, add %d", entry, object, add));
532 	}
533 	if (vp != NULL) {
534 		if (add) {
535 			VOP_SET_TEXT_CHECKED(vp);
536 		} else {
537 			vn_lock(vp, LK_SHARED | LK_RETRY);
538 			VOP_UNSET_TEXT_CHECKED(vp);
539 			VOP_UNLOCK(vp);
540 		}
541 		if (vp_held)
542 			vdrop(vp);
543 	}
544 }
545 
546 /*
547  * Use a different name for this vm_map_entry field when it's use
548  * is not consistent with its use as part of an ordered search tree.
549  */
550 #define defer_next right
551 
552 static void
553 vm_map_process_deferred(void)
554 {
555 	struct thread *td;
556 	vm_map_entry_t entry, next;
557 	vm_object_t object;
558 
559 	td = curthread;
560 	entry = td->td_map_def_user;
561 	td->td_map_def_user = NULL;
562 	while (entry != NULL) {
563 		next = entry->defer_next;
564 		MPASS((entry->eflags & (MAP_ENTRY_WRITECNT |
565 		    MAP_ENTRY_VN_EXEC)) != (MAP_ENTRY_WRITECNT |
566 		    MAP_ENTRY_VN_EXEC));
567 		if ((entry->eflags & MAP_ENTRY_WRITECNT) != 0) {
568 			/*
569 			 * Decrement the object's writemappings and
570 			 * possibly the vnode's v_writecount.
571 			 */
572 			KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
573 			    ("Submap with writecount"));
574 			object = entry->object.vm_object;
575 			KASSERT(object != NULL, ("No object for writecount"));
576 			vm_pager_release_writecount(object, entry->start,
577 			    entry->end);
578 		}
579 		vm_map_entry_set_vnode_text(entry, false);
580 		vm_map_entry_deallocate(entry, FALSE);
581 		entry = next;
582 	}
583 }
584 
585 #ifdef INVARIANTS
586 static void
587 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
588 {
589 
590 	if (map->system_map)
591 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
592 	else
593 		sx_assert_(&map->lock, SA_XLOCKED, file, line);
594 }
595 
596 #define	VM_MAP_ASSERT_LOCKED(map) \
597     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
598 
599 enum { VMMAP_CHECK_NONE, VMMAP_CHECK_UNLOCK, VMMAP_CHECK_ALL };
600 #ifdef DIAGNOSTIC
601 static int enable_vmmap_check = VMMAP_CHECK_UNLOCK;
602 #else
603 static int enable_vmmap_check = VMMAP_CHECK_NONE;
604 #endif
605 SYSCTL_INT(_debug, OID_AUTO, vmmap_check, CTLFLAG_RWTUN,
606     &enable_vmmap_check, 0, "Enable vm map consistency checking");
607 
608 static void _vm_map_assert_consistent(vm_map_t map, int check);
609 
610 #define VM_MAP_ASSERT_CONSISTENT(map) \
611     _vm_map_assert_consistent(map, VMMAP_CHECK_ALL)
612 #ifdef DIAGNOSTIC
613 #define VM_MAP_UNLOCK_CONSISTENT(map) do {				\
614 	if (map->nupdates > map->nentries) {				\
615 		_vm_map_assert_consistent(map, VMMAP_CHECK_UNLOCK);	\
616 		map->nupdates = 0;					\
617 	}								\
618 } while (0)
619 #else
620 #define VM_MAP_UNLOCK_CONSISTENT(map)
621 #endif
622 #else
623 #define	VM_MAP_ASSERT_LOCKED(map)
624 #define VM_MAP_ASSERT_CONSISTENT(map)
625 #define VM_MAP_UNLOCK_CONSISTENT(map)
626 #endif /* INVARIANTS */
627 
628 void
629 _vm_map_unlock(vm_map_t map, const char *file, int line)
630 {
631 
632 	VM_MAP_UNLOCK_CONSISTENT(map);
633 	if (map->system_map)
634 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
635 	else {
636 		sx_xunlock_(&map->lock, file, line);
637 		vm_map_process_deferred();
638 	}
639 }
640 
641 void
642 _vm_map_lock_read(vm_map_t map, const char *file, int line)
643 {
644 
645 	if (map->system_map)
646 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
647 	else
648 		sx_slock_(&map->lock, file, line);
649 }
650 
651 void
652 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
653 {
654 
655 	if (map->system_map)
656 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
657 	else {
658 		sx_sunlock_(&map->lock, file, line);
659 		vm_map_process_deferred();
660 	}
661 }
662 
663 int
664 _vm_map_trylock(vm_map_t map, const char *file, int line)
665 {
666 	int error;
667 
668 	error = map->system_map ?
669 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
670 	    !sx_try_xlock_(&map->lock, file, line);
671 	if (error == 0)
672 		map->timestamp++;
673 	return (error == 0);
674 }
675 
676 int
677 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
678 {
679 	int error;
680 
681 	error = map->system_map ?
682 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
683 	    !sx_try_slock_(&map->lock, file, line);
684 	return (error == 0);
685 }
686 
687 /*
688  *	_vm_map_lock_upgrade:	[ internal use only ]
689  *
690  *	Tries to upgrade a read (shared) lock on the specified map to a write
691  *	(exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
692  *	non-zero value if the upgrade fails.  If the upgrade fails, the map is
693  *	returned without a read or write lock held.
694  *
695  *	Requires that the map be read locked.
696  */
697 int
698 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
699 {
700 	unsigned int last_timestamp;
701 
702 	if (map->system_map) {
703 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
704 	} else {
705 		if (!sx_try_upgrade_(&map->lock, file, line)) {
706 			last_timestamp = map->timestamp;
707 			sx_sunlock_(&map->lock, file, line);
708 			vm_map_process_deferred();
709 			/*
710 			 * If the map's timestamp does not change while the
711 			 * map is unlocked, then the upgrade succeeds.
712 			 */
713 			sx_xlock_(&map->lock, file, line);
714 			if (last_timestamp != map->timestamp) {
715 				sx_xunlock_(&map->lock, file, line);
716 				return (1);
717 			}
718 		}
719 	}
720 	map->timestamp++;
721 	return (0);
722 }
723 
724 void
725 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
726 {
727 
728 	if (map->system_map) {
729 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
730 	} else {
731 		VM_MAP_UNLOCK_CONSISTENT(map);
732 		sx_downgrade_(&map->lock, file, line);
733 	}
734 }
735 
736 /*
737  *	vm_map_locked:
738  *
739  *	Returns a non-zero value if the caller holds a write (exclusive) lock
740  *	on the specified map and the value "0" otherwise.
741  */
742 int
743 vm_map_locked(vm_map_t map)
744 {
745 
746 	if (map->system_map)
747 		return (mtx_owned(&map->system_mtx));
748 	else
749 		return (sx_xlocked(&map->lock));
750 }
751 
752 /*
753  *	_vm_map_unlock_and_wait:
754  *
755  *	Atomically releases the lock on the specified map and puts the calling
756  *	thread to sleep.  The calling thread will remain asleep until either
757  *	vm_map_wakeup() is performed on the map or the specified timeout is
758  *	exceeded.
759  *
760  *	WARNING!  This function does not perform deferred deallocations of
761  *	objects and map	entries.  Therefore, the calling thread is expected to
762  *	reacquire the map lock after reawakening and later perform an ordinary
763  *	unlock operation, such as vm_map_unlock(), before completing its
764  *	operation on the map.
765  */
766 int
767 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
768 {
769 
770 	VM_MAP_UNLOCK_CONSISTENT(map);
771 	mtx_lock(&map_sleep_mtx);
772 	if (map->system_map)
773 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
774 	else
775 		sx_xunlock_(&map->lock, file, line);
776 	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
777 	    timo));
778 }
779 
780 /*
781  *	vm_map_wakeup:
782  *
783  *	Awaken any threads that have slept on the map using
784  *	vm_map_unlock_and_wait().
785  */
786 void
787 vm_map_wakeup(vm_map_t map)
788 {
789 
790 	/*
791 	 * Acquire and release map_sleep_mtx to prevent a wakeup()
792 	 * from being performed (and lost) between the map unlock
793 	 * and the msleep() in _vm_map_unlock_and_wait().
794 	 */
795 	mtx_lock(&map_sleep_mtx);
796 	mtx_unlock(&map_sleep_mtx);
797 	wakeup(&map->root);
798 }
799 
800 void
801 vm_map_busy(vm_map_t map)
802 {
803 
804 	VM_MAP_ASSERT_LOCKED(map);
805 	map->busy++;
806 }
807 
808 void
809 vm_map_unbusy(vm_map_t map)
810 {
811 
812 	VM_MAP_ASSERT_LOCKED(map);
813 	KASSERT(map->busy, ("vm_map_unbusy: not busy"));
814 	if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
815 		vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
816 		wakeup(&map->busy);
817 	}
818 }
819 
820 void
821 vm_map_wait_busy(vm_map_t map)
822 {
823 
824 	VM_MAP_ASSERT_LOCKED(map);
825 	while (map->busy) {
826 		vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
827 		if (map->system_map)
828 			msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
829 		else
830 			sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
831 	}
832 	map->timestamp++;
833 }
834 
835 long
836 vmspace_resident_count(struct vmspace *vmspace)
837 {
838 	return pmap_resident_count(vmspace_pmap(vmspace));
839 }
840 
841 /*
842  * Initialize an existing vm_map structure
843  * such as that in the vmspace structure.
844  */
845 static void
846 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
847 {
848 
849 	map->header.eflags = MAP_ENTRY_HEADER;
850 	map->needs_wakeup = FALSE;
851 	map->system_map = 0;
852 	map->pmap = pmap;
853 	map->header.end = min;
854 	map->header.start = max;
855 	map->flags = 0;
856 	map->header.left = map->header.right = &map->header;
857 	map->root = NULL;
858 	map->timestamp = 0;
859 	map->busy = 0;
860 	map->anon_loc = 0;
861 #ifdef DIAGNOSTIC
862 	map->nupdates = 0;
863 #endif
864 }
865 
866 void
867 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
868 {
869 
870 	_vm_map_init(map, pmap, min, max);
871 	mtx_init(&map->system_mtx, "vm map (system)", NULL,
872 	    MTX_DEF | MTX_DUPOK);
873 	sx_init(&map->lock, "vm map (user)");
874 }
875 
876 /*
877  *	vm_map_entry_dispose:	[ internal use only ]
878  *
879  *	Inverse of vm_map_entry_create.
880  */
881 static void
882 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
883 {
884 	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
885 }
886 
887 /*
888  *	vm_map_entry_create:	[ internal use only ]
889  *
890  *	Allocates a VM map entry for insertion.
891  *	No entry fields are filled in.
892  */
893 static vm_map_entry_t
894 vm_map_entry_create(vm_map_t map)
895 {
896 	vm_map_entry_t new_entry;
897 
898 	if (map->system_map)
899 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
900 	else
901 		new_entry = uma_zalloc(mapentzone, M_WAITOK);
902 	if (new_entry == NULL)
903 		panic("vm_map_entry_create: kernel resources exhausted");
904 	return (new_entry);
905 }
906 
907 /*
908  *	vm_map_entry_set_behavior:
909  *
910  *	Set the expected access behavior, either normal, random, or
911  *	sequential.
912  */
913 static inline void
914 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
915 {
916 	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
917 	    (behavior & MAP_ENTRY_BEHAV_MASK);
918 }
919 
920 /*
921  *	vm_map_entry_max_free_{left,right}:
922  *
923  *	Compute the size of the largest free gap between two entries,
924  *	one the root of a tree and the other the ancestor of that root
925  *	that is the least or greatest ancestor found on the search path.
926  */
927 static inline vm_size_t
928 vm_map_entry_max_free_left(vm_map_entry_t root, vm_map_entry_t left_ancestor)
929 {
930 
931 	return (root->left != left_ancestor ?
932 	    root->left->max_free : root->start - left_ancestor->end);
933 }
934 
935 static inline vm_size_t
936 vm_map_entry_max_free_right(vm_map_entry_t root, vm_map_entry_t right_ancestor)
937 {
938 
939 	return (root->right != right_ancestor ?
940 	    root->right->max_free : right_ancestor->start - root->end);
941 }
942 
943 /*
944  *	vm_map_entry_{pred,succ}:
945  *
946  *	Find the {predecessor, successor} of the entry by taking one step
947  *	in the appropriate direction and backtracking as much as necessary.
948  *	vm_map_entry_succ is defined in vm_map.h.
949  */
950 static inline vm_map_entry_t
951 vm_map_entry_pred(vm_map_entry_t entry)
952 {
953 	vm_map_entry_t prior;
954 
955 	prior = entry->left;
956 	if (prior->right->start < entry->start) {
957 		do
958 			prior = prior->right;
959 		while (prior->right != entry);
960 	}
961 	return (prior);
962 }
963 
964 static inline vm_size_t
965 vm_size_max(vm_size_t a, vm_size_t b)
966 {
967 
968 	return (a > b ? a : b);
969 }
970 
971 #define SPLAY_LEFT_STEP(root, y, llist, rlist, test) do {		\
972 	vm_map_entry_t z;						\
973 	vm_size_t max_free;						\
974 									\
975 	/*								\
976 	 * Infer root->right->max_free == root->max_free when		\
977 	 * y->max_free < root->max_free || root->max_free == 0.		\
978 	 * Otherwise, look right to find it.				\
979 	 */								\
980 	y = root->left;							\
981 	max_free = root->max_free;					\
982 	KASSERT(max_free == vm_size_max(				\
983 	    vm_map_entry_max_free_left(root, llist),			\
984 	    vm_map_entry_max_free_right(root, rlist)),			\
985 	    ("%s: max_free invariant fails", __func__));		\
986 	if (max_free - 1 < vm_map_entry_max_free_left(root, llist))	\
987 		max_free = vm_map_entry_max_free_right(root, rlist);	\
988 	if (y != llist && (test)) {					\
989 		/* Rotate right and make y root. */			\
990 		z = y->right;						\
991 		if (z != root) {					\
992 			root->left = z;					\
993 			y->right = root;				\
994 			if (max_free < y->max_free)			\
995 			    root->max_free = max_free =			\
996 			    vm_size_max(max_free, z->max_free);		\
997 		} else if (max_free < y->max_free)			\
998 			root->max_free = max_free =			\
999 			    vm_size_max(max_free, root->start - y->end);\
1000 		root = y;						\
1001 		y = root->left;						\
1002 	}								\
1003 	/* Copy right->max_free.  Put root on rlist. */			\
1004 	root->max_free = max_free;					\
1005 	KASSERT(max_free == vm_map_entry_max_free_right(root, rlist),	\
1006 	    ("%s: max_free not copied from right", __func__));		\
1007 	root->left = rlist;						\
1008 	rlist = root;							\
1009 	root = y != llist ? y : NULL;					\
1010 } while (0)
1011 
1012 #define SPLAY_RIGHT_STEP(root, y, llist, rlist, test) do {		\
1013 	vm_map_entry_t z;						\
1014 	vm_size_t max_free;						\
1015 									\
1016 	/*								\
1017 	 * Infer root->left->max_free == root->max_free when		\
1018 	 * y->max_free < root->max_free || root->max_free == 0.		\
1019 	 * Otherwise, look left to find it.				\
1020 	 */								\
1021 	y = root->right;						\
1022 	max_free = root->max_free;					\
1023 	KASSERT(max_free == vm_size_max(				\
1024 	    vm_map_entry_max_free_left(root, llist),			\
1025 	    vm_map_entry_max_free_right(root, rlist)),			\
1026 	    ("%s: max_free invariant fails", __func__));		\
1027 	if (max_free - 1 < vm_map_entry_max_free_right(root, rlist))	\
1028 		max_free = vm_map_entry_max_free_left(root, llist);	\
1029 	if (y != rlist && (test)) {					\
1030 		/* Rotate left and make y root. */			\
1031 		z = y->left;						\
1032 		if (z != root) {					\
1033 			root->right = z;				\
1034 			y->left = root;					\
1035 			if (max_free < y->max_free)			\
1036 			    root->max_free = max_free =			\
1037 			    vm_size_max(max_free, z->max_free);		\
1038 		} else if (max_free < y->max_free)			\
1039 			root->max_free = max_free =			\
1040 			    vm_size_max(max_free, y->start - root->end);\
1041 		root = y;						\
1042 		y = root->right;					\
1043 	}								\
1044 	/* Copy left->max_free.  Put root on llist. */			\
1045 	root->max_free = max_free;					\
1046 	KASSERT(max_free == vm_map_entry_max_free_left(root, llist),	\
1047 	    ("%s: max_free not copied from left", __func__));		\
1048 	root->right = llist;						\
1049 	llist = root;							\
1050 	root = y != rlist ? y : NULL;					\
1051 } while (0)
1052 
1053 /*
1054  * Walk down the tree until we find addr or a gap where addr would go, breaking
1055  * off left and right subtrees of nodes less than, or greater than addr.  Treat
1056  * subtrees with root->max_free < length as empty trees.  llist and rlist are
1057  * the two sides in reverse order (bottom-up), with llist linked by the right
1058  * pointer and rlist linked by the left pointer in the vm_map_entry, and both
1059  * lists terminated by &map->header.  This function, and the subsequent call to
1060  * vm_map_splay_merge_{left,right,pred,succ}, rely on the start and end address
1061  * values in &map->header.
1062  */
1063 static __always_inline vm_map_entry_t
1064 vm_map_splay_split(vm_map_t map, vm_offset_t addr, vm_size_t length,
1065     vm_map_entry_t *llist, vm_map_entry_t *rlist)
1066 {
1067 	vm_map_entry_t left, right, root, y;
1068 
1069 	left = right = &map->header;
1070 	root = map->root;
1071 	while (root != NULL && root->max_free >= length) {
1072 		KASSERT(left->end <= root->start &&
1073 		    root->end <= right->start,
1074 		    ("%s: root not within tree bounds", __func__));
1075 		if (addr < root->start) {
1076 			SPLAY_LEFT_STEP(root, y, left, right,
1077 			    y->max_free >= length && addr < y->start);
1078 		} else if (addr >= root->end) {
1079 			SPLAY_RIGHT_STEP(root, y, left, right,
1080 			    y->max_free >= length && addr >= y->end);
1081 		} else
1082 			break;
1083 	}
1084 	*llist = left;
1085 	*rlist = right;
1086 	return (root);
1087 }
1088 
1089 static __always_inline void
1090 vm_map_splay_findnext(vm_map_entry_t root, vm_map_entry_t *rlist)
1091 {
1092 	vm_map_entry_t hi, right, y;
1093 
1094 	right = *rlist;
1095 	hi = root->right == right ? NULL : root->right;
1096 	if (hi == NULL)
1097 		return;
1098 	do
1099 		SPLAY_LEFT_STEP(hi, y, root, right, true);
1100 	while (hi != NULL);
1101 	*rlist = right;
1102 }
1103 
1104 static __always_inline void
1105 vm_map_splay_findprev(vm_map_entry_t root, vm_map_entry_t *llist)
1106 {
1107 	vm_map_entry_t left, lo, y;
1108 
1109 	left = *llist;
1110 	lo = root->left == left ? NULL : root->left;
1111 	if (lo == NULL)
1112 		return;
1113 	do
1114 		SPLAY_RIGHT_STEP(lo, y, left, root, true);
1115 	while (lo != NULL);
1116 	*llist = left;
1117 }
1118 
1119 static inline void
1120 vm_map_entry_swap(vm_map_entry_t *a, vm_map_entry_t *b)
1121 {
1122 	vm_map_entry_t tmp;
1123 
1124 	tmp = *b;
1125 	*b = *a;
1126 	*a = tmp;
1127 }
1128 
1129 /*
1130  * Walk back up the two spines, flip the pointers and set max_free.  The
1131  * subtrees of the root go at the bottom of llist and rlist.
1132  */
1133 static vm_size_t
1134 vm_map_splay_merge_left_walk(vm_map_entry_t header, vm_map_entry_t root,
1135     vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t llist)
1136 {
1137 	do {
1138 		/*
1139 		 * The max_free values of the children of llist are in
1140 		 * llist->max_free and max_free.  Update with the
1141 		 * max value.
1142 		 */
1143 		llist->max_free = max_free =
1144 		    vm_size_max(llist->max_free, max_free);
1145 		vm_map_entry_swap(&llist->right, &tail);
1146 		vm_map_entry_swap(&tail, &llist);
1147 	} while (llist != header);
1148 	root->left = tail;
1149 	return (max_free);
1150 }
1151 
1152 /*
1153  * When llist is known to be the predecessor of root.
1154  */
1155 static inline vm_size_t
1156 vm_map_splay_merge_pred(vm_map_entry_t header, vm_map_entry_t root,
1157     vm_map_entry_t llist)
1158 {
1159 	vm_size_t max_free;
1160 
1161 	max_free = root->start - llist->end;
1162 	if (llist != header) {
1163 		max_free = vm_map_splay_merge_left_walk(header, root,
1164 		    root, max_free, llist);
1165 	} else {
1166 		root->left = header;
1167 		header->right = root;
1168 	}
1169 	return (max_free);
1170 }
1171 
1172 /*
1173  * When llist may or may not be the predecessor of root.
1174  */
1175 static inline vm_size_t
1176 vm_map_splay_merge_left(vm_map_entry_t header, vm_map_entry_t root,
1177     vm_map_entry_t llist)
1178 {
1179 	vm_size_t max_free;
1180 
1181 	max_free = vm_map_entry_max_free_left(root, llist);
1182 	if (llist != header) {
1183 		max_free = vm_map_splay_merge_left_walk(header, root,
1184 		    root->left == llist ? root : root->left,
1185 		    max_free, llist);
1186 	}
1187 	return (max_free);
1188 }
1189 
1190 static vm_size_t
1191 vm_map_splay_merge_right_walk(vm_map_entry_t header, vm_map_entry_t root,
1192     vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t rlist)
1193 {
1194 	do {
1195 		/*
1196 		 * The max_free values of the children of rlist are in
1197 		 * rlist->max_free and max_free.  Update with the
1198 		 * max value.
1199 		 */
1200 		rlist->max_free = max_free =
1201 		    vm_size_max(rlist->max_free, max_free);
1202 		vm_map_entry_swap(&rlist->left, &tail);
1203 		vm_map_entry_swap(&tail, &rlist);
1204 	} while (rlist != header);
1205 	root->right = tail;
1206 	return (max_free);
1207 }
1208 
1209 /*
1210  * When rlist is known to be the succecessor of root.
1211  */
1212 static inline vm_size_t
1213 vm_map_splay_merge_succ(vm_map_entry_t header, vm_map_entry_t root,
1214     vm_map_entry_t rlist)
1215 {
1216 	vm_size_t max_free;
1217 
1218 	max_free = rlist->start - root->end;
1219 	if (rlist != header) {
1220 		max_free = vm_map_splay_merge_right_walk(header, root,
1221 		    root, max_free, rlist);
1222 	} else {
1223 		root->right = header;
1224 		header->left = root;
1225 	}
1226 	return (max_free);
1227 }
1228 
1229 /*
1230  * When rlist may or may not be the succecessor of root.
1231  */
1232 static inline vm_size_t
1233 vm_map_splay_merge_right(vm_map_entry_t header, vm_map_entry_t root,
1234     vm_map_entry_t rlist)
1235 {
1236 	vm_size_t max_free;
1237 
1238 	max_free = vm_map_entry_max_free_right(root, rlist);
1239 	if (rlist != header) {
1240 		max_free = vm_map_splay_merge_right_walk(header, root,
1241 		    root->right == rlist ? root : root->right,
1242 		    max_free, rlist);
1243 	}
1244 	return (max_free);
1245 }
1246 
1247 /*
1248  *	vm_map_splay:
1249  *
1250  *	The Sleator and Tarjan top-down splay algorithm with the
1251  *	following variation.  Max_free must be computed bottom-up, so
1252  *	on the downward pass, maintain the left and right spines in
1253  *	reverse order.  Then, make a second pass up each side to fix
1254  *	the pointers and compute max_free.  The time bound is O(log n)
1255  *	amortized.
1256  *
1257  *	The tree is threaded, which means that there are no null pointers.
1258  *	When a node has no left child, its left pointer points to its
1259  *	predecessor, which the last ancestor on the search path from the root
1260  *	where the search branched right.  Likewise, when a node has no right
1261  *	child, its right pointer points to its successor.  The map header node
1262  *	is the predecessor of the first map entry, and the successor of the
1263  *	last.
1264  *
1265  *	The new root is the vm_map_entry containing "addr", or else an
1266  *	adjacent entry (lower if possible) if addr is not in the tree.
1267  *
1268  *	The map must be locked, and leaves it so.
1269  *
1270  *	Returns: the new root.
1271  */
1272 static vm_map_entry_t
1273 vm_map_splay(vm_map_t map, vm_offset_t addr)
1274 {
1275 	vm_map_entry_t header, llist, rlist, root;
1276 	vm_size_t max_free_left, max_free_right;
1277 
1278 	header = &map->header;
1279 	root = vm_map_splay_split(map, addr, 0, &llist, &rlist);
1280 	if (root != NULL) {
1281 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1282 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1283 	} else if (llist != header) {
1284 		/*
1285 		 * Recover the greatest node in the left
1286 		 * subtree and make it the root.
1287 		 */
1288 		root = llist;
1289 		llist = root->right;
1290 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1291 		max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1292 	} else if (rlist != header) {
1293 		/*
1294 		 * Recover the least node in the right
1295 		 * subtree and make it the root.
1296 		 */
1297 		root = rlist;
1298 		rlist = root->left;
1299 		max_free_left = vm_map_splay_merge_pred(header, root, llist);
1300 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1301 	} else {
1302 		/* There is no root. */
1303 		return (NULL);
1304 	}
1305 	root->max_free = vm_size_max(max_free_left, max_free_right);
1306 	map->root = root;
1307 	VM_MAP_ASSERT_CONSISTENT(map);
1308 	return (root);
1309 }
1310 
1311 /*
1312  *	vm_map_entry_{un,}link:
1313  *
1314  *	Insert/remove entries from maps.  On linking, if new entry clips
1315  *	existing entry, trim existing entry to avoid overlap, and manage
1316  *	offsets.  On unlinking, merge disappearing entry with neighbor, if
1317  *	called for, and manage offsets.  Callers should not modify fields in
1318  *	entries already mapped.
1319  */
1320 static void
1321 vm_map_entry_link(vm_map_t map, vm_map_entry_t entry)
1322 {
1323 	vm_map_entry_t header, llist, rlist, root;
1324 	vm_size_t max_free_left, max_free_right;
1325 
1326 	CTR3(KTR_VM,
1327 	    "vm_map_entry_link: map %p, nentries %d, entry %p", map,
1328 	    map->nentries, entry);
1329 	VM_MAP_ASSERT_LOCKED(map);
1330 	map->nentries++;
1331 	header = &map->header;
1332 	root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1333 	if (root == NULL) {
1334 		/*
1335 		 * The new entry does not overlap any existing entry in the
1336 		 * map, so it becomes the new root of the map tree.
1337 		 */
1338 		max_free_left = vm_map_splay_merge_pred(header, entry, llist);
1339 		max_free_right = vm_map_splay_merge_succ(header, entry, rlist);
1340 	} else if (entry->start == root->start) {
1341 		/*
1342 		 * The new entry is a clone of root, with only the end field
1343 		 * changed.  The root entry will be shrunk to abut the new
1344 		 * entry, and will be the right child of the new root entry in
1345 		 * the modified map.
1346 		 */
1347 		KASSERT(entry->end < root->end,
1348 		    ("%s: clip_start not within entry", __func__));
1349 		vm_map_splay_findprev(root, &llist);
1350 		root->offset += entry->end - root->start;
1351 		root->start = entry->end;
1352 		max_free_left = vm_map_splay_merge_pred(header, entry, llist);
1353 		max_free_right = root->max_free = vm_size_max(
1354 		    vm_map_splay_merge_pred(entry, root, entry),
1355 		    vm_map_splay_merge_right(header, root, rlist));
1356 	} else {
1357 		/*
1358 		 * The new entry is a clone of root, with only the start field
1359 		 * changed.  The root entry will be shrunk to abut the new
1360 		 * entry, and will be the left child of the new root entry in
1361 		 * the modified map.
1362 		 */
1363 		KASSERT(entry->end == root->end,
1364 		    ("%s: clip_start not within entry", __func__));
1365 		vm_map_splay_findnext(root, &rlist);
1366 		entry->offset += entry->start - root->start;
1367 		root->end = entry->start;
1368 		max_free_left = root->max_free = vm_size_max(
1369 		    vm_map_splay_merge_left(header, root, llist),
1370 		    vm_map_splay_merge_succ(entry, root, entry));
1371 		max_free_right = vm_map_splay_merge_succ(header, entry, rlist);
1372 	}
1373 	entry->max_free = vm_size_max(max_free_left, max_free_right);
1374 	map->root = entry;
1375 	VM_MAP_ASSERT_CONSISTENT(map);
1376 }
1377 
1378 enum unlink_merge_type {
1379 	UNLINK_MERGE_NONE,
1380 	UNLINK_MERGE_NEXT
1381 };
1382 
1383 static void
1384 vm_map_entry_unlink(vm_map_t map, vm_map_entry_t entry,
1385     enum unlink_merge_type op)
1386 {
1387 	vm_map_entry_t header, llist, rlist, root;
1388 	vm_size_t max_free_left, max_free_right;
1389 
1390 	VM_MAP_ASSERT_LOCKED(map);
1391 	header = &map->header;
1392 	root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1393 	KASSERT(root != NULL,
1394 	    ("vm_map_entry_unlink: unlink object not mapped"));
1395 
1396 	vm_map_splay_findprev(root, &llist);
1397 	vm_map_splay_findnext(root, &rlist);
1398 	if (op == UNLINK_MERGE_NEXT) {
1399 		rlist->start = root->start;
1400 		rlist->offset = root->offset;
1401 	}
1402 	if (llist != header) {
1403 		root = llist;
1404 		llist = root->right;
1405 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1406 		max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1407 	} else if (rlist != header) {
1408 		root = rlist;
1409 		rlist = root->left;
1410 		max_free_left = vm_map_splay_merge_pred(header, root, llist);
1411 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1412 	} else {
1413 		header->left = header->right = header;
1414 		root = NULL;
1415 	}
1416 	if (root != NULL)
1417 		root->max_free = vm_size_max(max_free_left, max_free_right);
1418 	map->root = root;
1419 	VM_MAP_ASSERT_CONSISTENT(map);
1420 	map->nentries--;
1421 	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1422 	    map->nentries, entry);
1423 }
1424 
1425 /*
1426  *	vm_map_entry_resize:
1427  *
1428  *	Resize a vm_map_entry, recompute the amount of free space that
1429  *	follows it and propagate that value up the tree.
1430  *
1431  *	The map must be locked, and leaves it so.
1432  */
1433 static void
1434 vm_map_entry_resize(vm_map_t map, vm_map_entry_t entry, vm_size_t grow_amount)
1435 {
1436 	vm_map_entry_t header, llist, rlist, root;
1437 
1438 	VM_MAP_ASSERT_LOCKED(map);
1439 	header = &map->header;
1440 	root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1441 	KASSERT(root != NULL, ("%s: resize object not mapped", __func__));
1442 	vm_map_splay_findnext(root, &rlist);
1443 	entry->end += grow_amount;
1444 	root->max_free = vm_size_max(
1445 	    vm_map_splay_merge_left(header, root, llist),
1446 	    vm_map_splay_merge_succ(header, root, rlist));
1447 	map->root = root;
1448 	VM_MAP_ASSERT_CONSISTENT(map);
1449 	CTR4(KTR_VM, "%s: map %p, nentries %d, entry %p",
1450 	    __func__, map, map->nentries, entry);
1451 }
1452 
1453 /*
1454  *	vm_map_lookup_entry:	[ internal use only ]
1455  *
1456  *	Finds the map entry containing (or
1457  *	immediately preceding) the specified address
1458  *	in the given map; the entry is returned
1459  *	in the "entry" parameter.  The boolean
1460  *	result indicates whether the address is
1461  *	actually contained in the map.
1462  */
1463 boolean_t
1464 vm_map_lookup_entry(
1465 	vm_map_t map,
1466 	vm_offset_t address,
1467 	vm_map_entry_t *entry)	/* OUT */
1468 {
1469 	vm_map_entry_t cur, header, lbound, ubound;
1470 	boolean_t locked;
1471 
1472 	/*
1473 	 * If the map is empty, then the map entry immediately preceding
1474 	 * "address" is the map's header.
1475 	 */
1476 	header = &map->header;
1477 	cur = map->root;
1478 	if (cur == NULL) {
1479 		*entry = header;
1480 		return (FALSE);
1481 	}
1482 	if (address >= cur->start && cur->end > address) {
1483 		*entry = cur;
1484 		return (TRUE);
1485 	}
1486 	if ((locked = vm_map_locked(map)) ||
1487 	    sx_try_upgrade(&map->lock)) {
1488 		/*
1489 		 * Splay requires a write lock on the map.  However, it only
1490 		 * restructures the binary search tree; it does not otherwise
1491 		 * change the map.  Thus, the map's timestamp need not change
1492 		 * on a temporary upgrade.
1493 		 */
1494 		cur = vm_map_splay(map, address);
1495 		if (!locked) {
1496 			VM_MAP_UNLOCK_CONSISTENT(map);
1497 			sx_downgrade(&map->lock);
1498 		}
1499 
1500 		/*
1501 		 * If "address" is contained within a map entry, the new root
1502 		 * is that map entry.  Otherwise, the new root is a map entry
1503 		 * immediately before or after "address".
1504 		 */
1505 		if (address < cur->start) {
1506 			*entry = header;
1507 			return (FALSE);
1508 		}
1509 		*entry = cur;
1510 		return (address < cur->end);
1511 	}
1512 	/*
1513 	 * Since the map is only locked for read access, perform a
1514 	 * standard binary search tree lookup for "address".
1515 	 */
1516 	lbound = ubound = header;
1517 	for (;;) {
1518 		if (address < cur->start) {
1519 			ubound = cur;
1520 			cur = cur->left;
1521 			if (cur == lbound)
1522 				break;
1523 		} else if (cur->end <= address) {
1524 			lbound = cur;
1525 			cur = cur->right;
1526 			if (cur == ubound)
1527 				break;
1528 		} else {
1529 			*entry = cur;
1530 			return (TRUE);
1531 		}
1532 	}
1533 	*entry = lbound;
1534 	return (FALSE);
1535 }
1536 
1537 /*
1538  *	vm_map_insert:
1539  *
1540  *	Inserts the given whole VM object into the target
1541  *	map at the specified address range.  The object's
1542  *	size should match that of the address range.
1543  *
1544  *	Requires that the map be locked, and leaves it so.
1545  *
1546  *	If object is non-NULL, ref count must be bumped by caller
1547  *	prior to making call to account for the new entry.
1548  */
1549 int
1550 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1551     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1552 {
1553 	vm_map_entry_t new_entry, next_entry, prev_entry;
1554 	struct ucred *cred;
1555 	vm_eflags_t protoeflags;
1556 	vm_inherit_t inheritance;
1557 	u_long bdry;
1558 	u_int bidx;
1559 
1560 	VM_MAP_ASSERT_LOCKED(map);
1561 	KASSERT(object != kernel_object ||
1562 	    (cow & MAP_COPY_ON_WRITE) == 0,
1563 	    ("vm_map_insert: kernel object and COW"));
1564 	KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0 ||
1565 	    (cow & MAP_SPLIT_BOUNDARY_MASK) != 0,
1566 	    ("vm_map_insert: paradoxical MAP_NOFAULT request, obj %p cow %#x",
1567 	    object, cow));
1568 	KASSERT((prot & ~max) == 0,
1569 	    ("prot %#x is not subset of max_prot %#x", prot, max));
1570 
1571 	/*
1572 	 * Check that the start and end points are not bogus.
1573 	 */
1574 	if (start == end || !vm_map_range_valid(map, start, end))
1575 		return (KERN_INVALID_ADDRESS);
1576 
1577 	/*
1578 	 * Find the entry prior to the proposed starting address; if it's part
1579 	 * of an existing entry, this range is bogus.
1580 	 */
1581 	if (vm_map_lookup_entry(map, start, &prev_entry))
1582 		return (KERN_NO_SPACE);
1583 
1584 	/*
1585 	 * Assert that the next entry doesn't overlap the end point.
1586 	 */
1587 	next_entry = vm_map_entry_succ(prev_entry);
1588 	if (next_entry->start < end)
1589 		return (KERN_NO_SPACE);
1590 
1591 	if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL ||
1592 	    max != VM_PROT_NONE))
1593 		return (KERN_INVALID_ARGUMENT);
1594 
1595 	protoeflags = 0;
1596 	if (cow & MAP_COPY_ON_WRITE)
1597 		protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1598 	if (cow & MAP_NOFAULT)
1599 		protoeflags |= MAP_ENTRY_NOFAULT;
1600 	if (cow & MAP_DISABLE_SYNCER)
1601 		protoeflags |= MAP_ENTRY_NOSYNC;
1602 	if (cow & MAP_DISABLE_COREDUMP)
1603 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1604 	if (cow & MAP_STACK_GROWS_DOWN)
1605 		protoeflags |= MAP_ENTRY_GROWS_DOWN;
1606 	if (cow & MAP_STACK_GROWS_UP)
1607 		protoeflags |= MAP_ENTRY_GROWS_UP;
1608 	if (cow & MAP_WRITECOUNT)
1609 		protoeflags |= MAP_ENTRY_WRITECNT;
1610 	if (cow & MAP_VN_EXEC)
1611 		protoeflags |= MAP_ENTRY_VN_EXEC;
1612 	if ((cow & MAP_CREATE_GUARD) != 0)
1613 		protoeflags |= MAP_ENTRY_GUARD;
1614 	if ((cow & MAP_CREATE_STACK_GAP_DN) != 0)
1615 		protoeflags |= MAP_ENTRY_STACK_GAP_DN;
1616 	if ((cow & MAP_CREATE_STACK_GAP_UP) != 0)
1617 		protoeflags |= MAP_ENTRY_STACK_GAP_UP;
1618 	if (cow & MAP_INHERIT_SHARE)
1619 		inheritance = VM_INHERIT_SHARE;
1620 	else
1621 		inheritance = VM_INHERIT_DEFAULT;
1622 	if ((cow & MAP_SPLIT_BOUNDARY_MASK) != 0) {
1623 		/* This magically ignores index 0, for usual page size. */
1624 		bidx = (cow & MAP_SPLIT_BOUNDARY_MASK) >>
1625 		    MAP_SPLIT_BOUNDARY_SHIFT;
1626 		if (bidx >= MAXPAGESIZES)
1627 			return (KERN_INVALID_ARGUMENT);
1628 		bdry = pagesizes[bidx] - 1;
1629 		if ((start & bdry) != 0 || (end & bdry) != 0)
1630 			return (KERN_INVALID_ARGUMENT);
1631 		protoeflags |= bidx << MAP_ENTRY_SPLIT_BOUNDARY_SHIFT;
1632 	}
1633 
1634 	cred = NULL;
1635 	if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0)
1636 		goto charged;
1637 	if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1638 	    ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1639 		if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1640 			return (KERN_RESOURCE_SHORTAGE);
1641 		KASSERT(object == NULL ||
1642 		    (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
1643 		    object->cred == NULL,
1644 		    ("overcommit: vm_map_insert o %p", object));
1645 		cred = curthread->td_ucred;
1646 	}
1647 
1648 charged:
1649 	/* Expand the kernel pmap, if necessary. */
1650 	if (map == kernel_map && end > kernel_vm_end)
1651 		pmap_growkernel(end);
1652 	if (object != NULL) {
1653 		/*
1654 		 * OBJ_ONEMAPPING must be cleared unless this mapping
1655 		 * is trivially proven to be the only mapping for any
1656 		 * of the object's pages.  (Object granularity
1657 		 * reference counting is insufficient to recognize
1658 		 * aliases with precision.)
1659 		 */
1660 		if ((object->flags & OBJ_ANON) != 0) {
1661 			VM_OBJECT_WLOCK(object);
1662 			if (object->ref_count > 1 || object->shadow_count != 0)
1663 				vm_object_clear_flag(object, OBJ_ONEMAPPING);
1664 			VM_OBJECT_WUNLOCK(object);
1665 		}
1666 	} else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) ==
1667 	    protoeflags &&
1668 	    (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP |
1669 	    MAP_VN_EXEC)) == 0 &&
1670 	    prev_entry->end == start && (prev_entry->cred == cred ||
1671 	    (prev_entry->object.vm_object != NULL &&
1672 	    prev_entry->object.vm_object->cred == cred)) &&
1673 	    vm_object_coalesce(prev_entry->object.vm_object,
1674 	    prev_entry->offset,
1675 	    (vm_size_t)(prev_entry->end - prev_entry->start),
1676 	    (vm_size_t)(end - prev_entry->end), cred != NULL &&
1677 	    (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1678 		/*
1679 		 * We were able to extend the object.  Determine if we
1680 		 * can extend the previous map entry to include the
1681 		 * new range as well.
1682 		 */
1683 		if (prev_entry->inheritance == inheritance &&
1684 		    prev_entry->protection == prot &&
1685 		    prev_entry->max_protection == max &&
1686 		    prev_entry->wired_count == 0) {
1687 			KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) ==
1688 			    0, ("prev_entry %p has incoherent wiring",
1689 			    prev_entry));
1690 			if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0)
1691 				map->size += end - prev_entry->end;
1692 			vm_map_entry_resize(map, prev_entry,
1693 			    end - prev_entry->end);
1694 			vm_map_try_merge_entries(map, prev_entry, next_entry);
1695 			return (KERN_SUCCESS);
1696 		}
1697 
1698 		/*
1699 		 * If we can extend the object but cannot extend the
1700 		 * map entry, we have to create a new map entry.  We
1701 		 * must bump the ref count on the extended object to
1702 		 * account for it.  object may be NULL.
1703 		 */
1704 		object = prev_entry->object.vm_object;
1705 		offset = prev_entry->offset +
1706 		    (prev_entry->end - prev_entry->start);
1707 		vm_object_reference(object);
1708 		if (cred != NULL && object != NULL && object->cred != NULL &&
1709 		    !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1710 			/* Object already accounts for this uid. */
1711 			cred = NULL;
1712 		}
1713 	}
1714 	if (cred != NULL)
1715 		crhold(cred);
1716 
1717 	/*
1718 	 * Create a new entry
1719 	 */
1720 	new_entry = vm_map_entry_create(map);
1721 	new_entry->start = start;
1722 	new_entry->end = end;
1723 	new_entry->cred = NULL;
1724 
1725 	new_entry->eflags = protoeflags;
1726 	new_entry->object.vm_object = object;
1727 	new_entry->offset = offset;
1728 
1729 	new_entry->inheritance = inheritance;
1730 	new_entry->protection = prot;
1731 	new_entry->max_protection = max;
1732 	new_entry->wired_count = 0;
1733 	new_entry->wiring_thread = NULL;
1734 	new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1735 	new_entry->next_read = start;
1736 
1737 	KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1738 	    ("overcommit: vm_map_insert leaks vm_map %p", new_entry));
1739 	new_entry->cred = cred;
1740 
1741 	/*
1742 	 * Insert the new entry into the list
1743 	 */
1744 	vm_map_entry_link(map, new_entry);
1745 	if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0)
1746 		map->size += new_entry->end - new_entry->start;
1747 
1748 	/*
1749 	 * Try to coalesce the new entry with both the previous and next
1750 	 * entries in the list.  Previously, we only attempted to coalesce
1751 	 * with the previous entry when object is NULL.  Here, we handle the
1752 	 * other cases, which are less common.
1753 	 */
1754 	vm_map_try_merge_entries(map, prev_entry, new_entry);
1755 	vm_map_try_merge_entries(map, new_entry, next_entry);
1756 
1757 	if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) {
1758 		vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset),
1759 		    end - start, cow & MAP_PREFAULT_PARTIAL);
1760 	}
1761 
1762 	return (KERN_SUCCESS);
1763 }
1764 
1765 /*
1766  *	vm_map_findspace:
1767  *
1768  *	Find the first fit (lowest VM address) for "length" free bytes
1769  *	beginning at address >= start in the given map.
1770  *
1771  *	In a vm_map_entry, "max_free" is the maximum amount of
1772  *	contiguous free space between an entry in its subtree and a
1773  *	neighbor of that entry.  This allows finding a free region in
1774  *	one path down the tree, so O(log n) amortized with splay
1775  *	trees.
1776  *
1777  *	The map must be locked, and leaves it so.
1778  *
1779  *	Returns: starting address if sufficient space,
1780  *		 vm_map_max(map)-length+1 if insufficient space.
1781  */
1782 vm_offset_t
1783 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length)
1784 {
1785 	vm_map_entry_t header, llist, rlist, root, y;
1786 	vm_size_t left_length, max_free_left, max_free_right;
1787 	vm_offset_t gap_end;
1788 
1789 	/*
1790 	 * Request must fit within min/max VM address and must avoid
1791 	 * address wrap.
1792 	 */
1793 	start = MAX(start, vm_map_min(map));
1794 	if (start >= vm_map_max(map) || length > vm_map_max(map) - start)
1795 		return (vm_map_max(map) - length + 1);
1796 
1797 	/* Empty tree means wide open address space. */
1798 	if (map->root == NULL)
1799 		return (start);
1800 
1801 	/*
1802 	 * After splay_split, if start is within an entry, push it to the start
1803 	 * of the following gap.  If rlist is at the end of the gap containing
1804 	 * start, save the end of that gap in gap_end to see if the gap is big
1805 	 * enough; otherwise set gap_end to start skip gap-checking and move
1806 	 * directly to a search of the right subtree.
1807 	 */
1808 	header = &map->header;
1809 	root = vm_map_splay_split(map, start, length, &llist, &rlist);
1810 	gap_end = rlist->start;
1811 	if (root != NULL) {
1812 		start = root->end;
1813 		if (root->right != rlist)
1814 			gap_end = start;
1815 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1816 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1817 	} else if (rlist != header) {
1818 		root = rlist;
1819 		rlist = root->left;
1820 		max_free_left = vm_map_splay_merge_pred(header, root, llist);
1821 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1822 	} else {
1823 		root = llist;
1824 		llist = root->right;
1825 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1826 		max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1827 	}
1828 	root->max_free = vm_size_max(max_free_left, max_free_right);
1829 	map->root = root;
1830 	VM_MAP_ASSERT_CONSISTENT(map);
1831 	if (length <= gap_end - start)
1832 		return (start);
1833 
1834 	/* With max_free, can immediately tell if no solution. */
1835 	if (root->right == header || length > root->right->max_free)
1836 		return (vm_map_max(map) - length + 1);
1837 
1838 	/*
1839 	 * Splay for the least large-enough gap in the right subtree.
1840 	 */
1841 	llist = rlist = header;
1842 	for (left_length = 0;;
1843 	    left_length = vm_map_entry_max_free_left(root, llist)) {
1844 		if (length <= left_length)
1845 			SPLAY_LEFT_STEP(root, y, llist, rlist,
1846 			    length <= vm_map_entry_max_free_left(y, llist));
1847 		else
1848 			SPLAY_RIGHT_STEP(root, y, llist, rlist,
1849 			    length > vm_map_entry_max_free_left(y, root));
1850 		if (root == NULL)
1851 			break;
1852 	}
1853 	root = llist;
1854 	llist = root->right;
1855 	max_free_left = vm_map_splay_merge_left(header, root, llist);
1856 	if (rlist == header) {
1857 		root->max_free = vm_size_max(max_free_left,
1858 		    vm_map_splay_merge_succ(header, root, rlist));
1859 	} else {
1860 		y = rlist;
1861 		rlist = y->left;
1862 		y->max_free = vm_size_max(
1863 		    vm_map_splay_merge_pred(root, y, root),
1864 		    vm_map_splay_merge_right(header, y, rlist));
1865 		root->max_free = vm_size_max(max_free_left, y->max_free);
1866 	}
1867 	map->root = root;
1868 	VM_MAP_ASSERT_CONSISTENT(map);
1869 	return (root->end);
1870 }
1871 
1872 int
1873 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1874     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1875     vm_prot_t max, int cow)
1876 {
1877 	vm_offset_t end;
1878 	int result;
1879 
1880 	end = start + length;
1881 	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1882 	    object == NULL,
1883 	    ("vm_map_fixed: non-NULL backing object for stack"));
1884 	vm_map_lock(map);
1885 	VM_MAP_RANGE_CHECK(map, start, end);
1886 	if ((cow & MAP_CHECK_EXCL) == 0) {
1887 		result = vm_map_delete(map, start, end);
1888 		if (result != KERN_SUCCESS)
1889 			goto out;
1890 	}
1891 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1892 		result = vm_map_stack_locked(map, start, length, sgrowsiz,
1893 		    prot, max, cow);
1894 	} else {
1895 		result = vm_map_insert(map, object, offset, start, end,
1896 		    prot, max, cow);
1897 	}
1898 out:
1899 	vm_map_unlock(map);
1900 	return (result);
1901 }
1902 
1903 static const int aslr_pages_rnd_64[2] = {0x1000, 0x10};
1904 static const int aslr_pages_rnd_32[2] = {0x100, 0x4};
1905 
1906 static int cluster_anon = 1;
1907 SYSCTL_INT(_vm, OID_AUTO, cluster_anon, CTLFLAG_RW,
1908     &cluster_anon, 0,
1909     "Cluster anonymous mappings: 0 = no, 1 = yes if no hint, 2 = always");
1910 
1911 static bool
1912 clustering_anon_allowed(vm_offset_t addr)
1913 {
1914 
1915 	switch (cluster_anon) {
1916 	case 0:
1917 		return (false);
1918 	case 1:
1919 		return (addr == 0);
1920 	case 2:
1921 	default:
1922 		return (true);
1923 	}
1924 }
1925 
1926 static long aslr_restarts;
1927 SYSCTL_LONG(_vm, OID_AUTO, aslr_restarts, CTLFLAG_RD,
1928     &aslr_restarts, 0,
1929     "Number of aslr failures");
1930 
1931 /*
1932  * Searches for the specified amount of free space in the given map with the
1933  * specified alignment.  Performs an address-ordered, first-fit search from
1934  * the given address "*addr", with an optional upper bound "max_addr".  If the
1935  * parameter "alignment" is zero, then the alignment is computed from the
1936  * given (object, offset) pair so as to enable the greatest possible use of
1937  * superpage mappings.  Returns KERN_SUCCESS and the address of the free space
1938  * in "*addr" if successful.  Otherwise, returns KERN_NO_SPACE.
1939  *
1940  * The map must be locked.  Initially, there must be at least "length" bytes
1941  * of free space at the given address.
1942  */
1943 static int
1944 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1945     vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr,
1946     vm_offset_t alignment)
1947 {
1948 	vm_offset_t aligned_addr, free_addr;
1949 
1950 	VM_MAP_ASSERT_LOCKED(map);
1951 	free_addr = *addr;
1952 	KASSERT(free_addr == vm_map_findspace(map, free_addr, length),
1953 	    ("caller failed to provide space %#jx at address %p",
1954 	     (uintmax_t)length, (void *)free_addr));
1955 	for (;;) {
1956 		/*
1957 		 * At the start of every iteration, the free space at address
1958 		 * "*addr" is at least "length" bytes.
1959 		 */
1960 		if (alignment == 0)
1961 			pmap_align_superpage(object, offset, addr, length);
1962 		else if ((*addr & (alignment - 1)) != 0) {
1963 			*addr &= ~(alignment - 1);
1964 			*addr += alignment;
1965 		}
1966 		aligned_addr = *addr;
1967 		if (aligned_addr == free_addr) {
1968 			/*
1969 			 * Alignment did not change "*addr", so "*addr" must
1970 			 * still provide sufficient free space.
1971 			 */
1972 			return (KERN_SUCCESS);
1973 		}
1974 
1975 		/*
1976 		 * Test for address wrap on "*addr".  A wrapped "*addr" could
1977 		 * be a valid address, in which case vm_map_findspace() cannot
1978 		 * be relied upon to fail.
1979 		 */
1980 		if (aligned_addr < free_addr)
1981 			return (KERN_NO_SPACE);
1982 		*addr = vm_map_findspace(map, aligned_addr, length);
1983 		if (*addr + length > vm_map_max(map) ||
1984 		    (max_addr != 0 && *addr + length > max_addr))
1985 			return (KERN_NO_SPACE);
1986 		free_addr = *addr;
1987 		if (free_addr == aligned_addr) {
1988 			/*
1989 			 * If a successful call to vm_map_findspace() did not
1990 			 * change "*addr", then "*addr" must still be aligned
1991 			 * and provide sufficient free space.
1992 			 */
1993 			return (KERN_SUCCESS);
1994 		}
1995 	}
1996 }
1997 
1998 int
1999 vm_map_find_aligned(vm_map_t map, vm_offset_t *addr, vm_size_t length,
2000     vm_offset_t max_addr, vm_offset_t alignment)
2001 {
2002 	/* XXXKIB ASLR eh ? */
2003 	*addr = vm_map_findspace(map, *addr, length);
2004 	if (*addr + length > vm_map_max(map) ||
2005 	    (max_addr != 0 && *addr + length > max_addr))
2006 		return (KERN_NO_SPACE);
2007 	return (vm_map_alignspace(map, NULL, 0, addr, length, max_addr,
2008 	    alignment));
2009 }
2010 
2011 /*
2012  *	vm_map_find finds an unallocated region in the target address
2013  *	map with the given length.  The search is defined to be
2014  *	first-fit from the specified address; the region found is
2015  *	returned in the same parameter.
2016  *
2017  *	If object is non-NULL, ref count must be bumped by caller
2018  *	prior to making call to account for the new entry.
2019  */
2020 int
2021 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2022 	    vm_offset_t *addr,	/* IN/OUT */
2023 	    vm_size_t length, vm_offset_t max_addr, int find_space,
2024 	    vm_prot_t prot, vm_prot_t max, int cow)
2025 {
2026 	vm_offset_t alignment, curr_min_addr, min_addr;
2027 	int gap, pidx, rv, try;
2028 	bool cluster, en_aslr, update_anon;
2029 
2030 	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
2031 	    object == NULL,
2032 	    ("vm_map_find: non-NULL backing object for stack"));
2033 	MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE &&
2034 	    (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0));
2035 	if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
2036 	    (object->flags & OBJ_COLORED) == 0))
2037 		find_space = VMFS_ANY_SPACE;
2038 	if (find_space >> 8 != 0) {
2039 		KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
2040 		alignment = (vm_offset_t)1 << (find_space >> 8);
2041 	} else
2042 		alignment = 0;
2043 	en_aslr = (map->flags & MAP_ASLR) != 0;
2044 	update_anon = cluster = clustering_anon_allowed(*addr) &&
2045 	    (map->flags & MAP_IS_SUB_MAP) == 0 && max_addr == 0 &&
2046 	    find_space != VMFS_NO_SPACE && object == NULL &&
2047 	    (cow & (MAP_INHERIT_SHARE | MAP_STACK_GROWS_UP |
2048 	    MAP_STACK_GROWS_DOWN)) == 0 && prot != PROT_NONE;
2049 	curr_min_addr = min_addr = *addr;
2050 	if (en_aslr && min_addr == 0 && !cluster &&
2051 	    find_space != VMFS_NO_SPACE &&
2052 	    (map->flags & MAP_ASLR_IGNSTART) != 0)
2053 		curr_min_addr = min_addr = vm_map_min(map);
2054 	try = 0;
2055 	vm_map_lock(map);
2056 	if (cluster) {
2057 		curr_min_addr = map->anon_loc;
2058 		if (curr_min_addr == 0)
2059 			cluster = false;
2060 	}
2061 	if (find_space != VMFS_NO_SPACE) {
2062 		KASSERT(find_space == VMFS_ANY_SPACE ||
2063 		    find_space == VMFS_OPTIMAL_SPACE ||
2064 		    find_space == VMFS_SUPER_SPACE ||
2065 		    alignment != 0, ("unexpected VMFS flag"));
2066 again:
2067 		/*
2068 		 * When creating an anonymous mapping, try clustering
2069 		 * with an existing anonymous mapping first.
2070 		 *
2071 		 * We make up to two attempts to find address space
2072 		 * for a given find_space value. The first attempt may
2073 		 * apply randomization or may cluster with an existing
2074 		 * anonymous mapping. If this first attempt fails,
2075 		 * perform a first-fit search of the available address
2076 		 * space.
2077 		 *
2078 		 * If all tries failed, and find_space is
2079 		 * VMFS_OPTIMAL_SPACE, fallback to VMFS_ANY_SPACE.
2080 		 * Again enable clustering and randomization.
2081 		 */
2082 		try++;
2083 		MPASS(try <= 2);
2084 
2085 		if (try == 2) {
2086 			/*
2087 			 * Second try: we failed either to find a
2088 			 * suitable region for randomizing the
2089 			 * allocation, or to cluster with an existing
2090 			 * mapping.  Retry with free run.
2091 			 */
2092 			curr_min_addr = (map->flags & MAP_ASLR_IGNSTART) != 0 ?
2093 			    vm_map_min(map) : min_addr;
2094 			atomic_add_long(&aslr_restarts, 1);
2095 		}
2096 
2097 		if (try == 1 && en_aslr && !cluster) {
2098 			/*
2099 			 * Find space for allocation, including
2100 			 * gap needed for later randomization.
2101 			 */
2102 			pidx = MAXPAGESIZES > 1 && pagesizes[1] != 0 &&
2103 			    (find_space == VMFS_SUPER_SPACE || find_space ==
2104 			    VMFS_OPTIMAL_SPACE) ? 1 : 0;
2105 			gap = vm_map_max(map) > MAP_32BIT_MAX_ADDR &&
2106 			    (max_addr == 0 || max_addr > MAP_32BIT_MAX_ADDR) ?
2107 			    aslr_pages_rnd_64[pidx] : aslr_pages_rnd_32[pidx];
2108 			*addr = vm_map_findspace(map, curr_min_addr,
2109 			    length + gap * pagesizes[pidx]);
2110 			if (*addr + length + gap * pagesizes[pidx] >
2111 			    vm_map_max(map))
2112 				goto again;
2113 			/* And randomize the start address. */
2114 			*addr += (arc4random() % gap) * pagesizes[pidx];
2115 			if (max_addr != 0 && *addr + length > max_addr)
2116 				goto again;
2117 		} else {
2118 			*addr = vm_map_findspace(map, curr_min_addr, length);
2119 			if (*addr + length > vm_map_max(map) ||
2120 			    (max_addr != 0 && *addr + length > max_addr)) {
2121 				if (cluster) {
2122 					cluster = false;
2123 					MPASS(try == 1);
2124 					goto again;
2125 				}
2126 				rv = KERN_NO_SPACE;
2127 				goto done;
2128 			}
2129 		}
2130 
2131 		if (find_space != VMFS_ANY_SPACE &&
2132 		    (rv = vm_map_alignspace(map, object, offset, addr, length,
2133 		    max_addr, alignment)) != KERN_SUCCESS) {
2134 			if (find_space == VMFS_OPTIMAL_SPACE) {
2135 				find_space = VMFS_ANY_SPACE;
2136 				curr_min_addr = min_addr;
2137 				cluster = update_anon;
2138 				try = 0;
2139 				goto again;
2140 			}
2141 			goto done;
2142 		}
2143 	} else if ((cow & MAP_REMAP) != 0) {
2144 		if (!vm_map_range_valid(map, *addr, *addr + length)) {
2145 			rv = KERN_INVALID_ADDRESS;
2146 			goto done;
2147 		}
2148 		rv = vm_map_delete(map, *addr, *addr + length);
2149 		if (rv != KERN_SUCCESS)
2150 			goto done;
2151 	}
2152 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
2153 		rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot,
2154 		    max, cow);
2155 	} else {
2156 		rv = vm_map_insert(map, object, offset, *addr, *addr + length,
2157 		    prot, max, cow);
2158 	}
2159 	if (rv == KERN_SUCCESS && update_anon)
2160 		map->anon_loc = *addr + length;
2161 done:
2162 	vm_map_unlock(map);
2163 	return (rv);
2164 }
2165 
2166 /*
2167  *	vm_map_find_min() is a variant of vm_map_find() that takes an
2168  *	additional parameter (min_addr) and treats the given address
2169  *	(*addr) differently.  Specifically, it treats *addr as a hint
2170  *	and not as the minimum address where the mapping is created.
2171  *
2172  *	This function works in two phases.  First, it tries to
2173  *	allocate above the hint.  If that fails and the hint is
2174  *	greater than min_addr, it performs a second pass, replacing
2175  *	the hint with min_addr as the minimum address for the
2176  *	allocation.
2177  */
2178 int
2179 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2180     vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr,
2181     vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max,
2182     int cow)
2183 {
2184 	vm_offset_t hint;
2185 	int rv;
2186 
2187 	hint = *addr;
2188 	for (;;) {
2189 		rv = vm_map_find(map, object, offset, addr, length, max_addr,
2190 		    find_space, prot, max, cow);
2191 		if (rv == KERN_SUCCESS || min_addr >= hint)
2192 			return (rv);
2193 		*addr = hint = min_addr;
2194 	}
2195 }
2196 
2197 /*
2198  * A map entry with any of the following flags set must not be merged with
2199  * another entry.
2200  */
2201 #define	MAP_ENTRY_NOMERGE_MASK	(MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | \
2202 	    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP | MAP_ENTRY_VN_EXEC)
2203 
2204 static bool
2205 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry)
2206 {
2207 
2208 	KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 ||
2209 	    (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0,
2210 	    ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable",
2211 	    prev, entry));
2212 	return (prev->end == entry->start &&
2213 	    prev->object.vm_object == entry->object.vm_object &&
2214 	    (prev->object.vm_object == NULL ||
2215 	    prev->offset + (prev->end - prev->start) == entry->offset) &&
2216 	    prev->eflags == entry->eflags &&
2217 	    prev->protection == entry->protection &&
2218 	    prev->max_protection == entry->max_protection &&
2219 	    prev->inheritance == entry->inheritance &&
2220 	    prev->wired_count == entry->wired_count &&
2221 	    prev->cred == entry->cred);
2222 }
2223 
2224 static void
2225 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry)
2226 {
2227 
2228 	/*
2229 	 * If the backing object is a vnode object, vm_object_deallocate()
2230 	 * calls vrele().  However, vrele() does not lock the vnode because
2231 	 * the vnode has additional references.  Thus, the map lock can be
2232 	 * kept without causing a lock-order reversal with the vnode lock.
2233 	 *
2234 	 * Since we count the number of virtual page mappings in
2235 	 * object->un_pager.vnp.writemappings, the writemappings value
2236 	 * should not be adjusted when the entry is disposed of.
2237 	 */
2238 	if (entry->object.vm_object != NULL)
2239 		vm_object_deallocate(entry->object.vm_object);
2240 	if (entry->cred != NULL)
2241 		crfree(entry->cred);
2242 	vm_map_entry_dispose(map, entry);
2243 }
2244 
2245 /*
2246  *	vm_map_try_merge_entries:
2247  *
2248  *	Compare the given map entry to its predecessor, and merge its precessor
2249  *	into it if possible.  The entry remains valid, and may be extended.
2250  *	The predecessor may be deleted.
2251  *
2252  *	The map must be locked.
2253  */
2254 void
2255 vm_map_try_merge_entries(vm_map_t map, vm_map_entry_t prev_entry,
2256     vm_map_entry_t entry)
2257 {
2258 
2259 	VM_MAP_ASSERT_LOCKED(map);
2260 	if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 &&
2261 	    vm_map_mergeable_neighbors(prev_entry, entry)) {
2262 		vm_map_entry_unlink(map, prev_entry, UNLINK_MERGE_NEXT);
2263 		vm_map_merged_neighbor_dispose(map, prev_entry);
2264 	}
2265 }
2266 
2267 /*
2268  *	vm_map_entry_back:
2269  *
2270  *	Allocate an object to back a map entry.
2271  */
2272 static inline void
2273 vm_map_entry_back(vm_map_entry_t entry)
2274 {
2275 	vm_object_t object;
2276 
2277 	KASSERT(entry->object.vm_object == NULL,
2278 	    ("map entry %p has backing object", entry));
2279 	KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
2280 	    ("map entry %p is a submap", entry));
2281 	object = vm_object_allocate_anon(atop(entry->end - entry->start), NULL,
2282 	    entry->cred, entry->end - entry->start);
2283 	entry->object.vm_object = object;
2284 	entry->offset = 0;
2285 	entry->cred = NULL;
2286 }
2287 
2288 /*
2289  *	vm_map_entry_charge_object
2290  *
2291  *	If there is no object backing this entry, create one.  Otherwise, if
2292  *	the entry has cred, give it to the backing object.
2293  */
2294 static inline void
2295 vm_map_entry_charge_object(vm_map_t map, vm_map_entry_t entry)
2296 {
2297 
2298 	VM_MAP_ASSERT_LOCKED(map);
2299 	KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
2300 	    ("map entry %p is a submap", entry));
2301 	if (entry->object.vm_object == NULL && !map->system_map &&
2302 	    (entry->eflags & MAP_ENTRY_GUARD) == 0)
2303 		vm_map_entry_back(entry);
2304 	else if (entry->object.vm_object != NULL &&
2305 	    ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
2306 	    entry->cred != NULL) {
2307 		VM_OBJECT_WLOCK(entry->object.vm_object);
2308 		KASSERT(entry->object.vm_object->cred == NULL,
2309 		    ("OVERCOMMIT: %s: both cred e %p", __func__, entry));
2310 		entry->object.vm_object->cred = entry->cred;
2311 		entry->object.vm_object->charge = entry->end - entry->start;
2312 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
2313 		entry->cred = NULL;
2314 	}
2315 }
2316 
2317 /*
2318  *	vm_map_entry_clone
2319  *
2320  *	Create a duplicate map entry for clipping.
2321  */
2322 static vm_map_entry_t
2323 vm_map_entry_clone(vm_map_t map, vm_map_entry_t entry)
2324 {
2325 	vm_map_entry_t new_entry;
2326 
2327 	VM_MAP_ASSERT_LOCKED(map);
2328 
2329 	/*
2330 	 * Create a backing object now, if none exists, so that more individual
2331 	 * objects won't be created after the map entry is split.
2332 	 */
2333 	vm_map_entry_charge_object(map, entry);
2334 
2335 	/* Clone the entry. */
2336 	new_entry = vm_map_entry_create(map);
2337 	*new_entry = *entry;
2338 	if (new_entry->cred != NULL)
2339 		crhold(entry->cred);
2340 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2341 		vm_object_reference(new_entry->object.vm_object);
2342 		vm_map_entry_set_vnode_text(new_entry, true);
2343 		/*
2344 		 * The object->un_pager.vnp.writemappings for the object of
2345 		 * MAP_ENTRY_WRITECNT type entry shall be kept as is here.  The
2346 		 * virtual pages are re-distributed among the clipped entries,
2347 		 * so the sum is left the same.
2348 		 */
2349 	}
2350 	return (new_entry);
2351 }
2352 
2353 /*
2354  *	vm_map_clip_start:	[ internal use only ]
2355  *
2356  *	Asserts that the given entry begins at or after
2357  *	the specified address; if necessary,
2358  *	it splits the entry into two.
2359  */
2360 static int
2361 vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t startaddr)
2362 {
2363 	vm_map_entry_t new_entry;
2364 	int bdry_idx;
2365 
2366 	if (!map->system_map)
2367 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2368 		    "%s: map %p entry %p start 0x%jx", __func__, map, entry,
2369 		    (uintmax_t)startaddr);
2370 
2371 	if (startaddr <= entry->start)
2372 		return (KERN_SUCCESS);
2373 
2374 	VM_MAP_ASSERT_LOCKED(map);
2375 	KASSERT(entry->end > startaddr && entry->start < startaddr,
2376 	    ("%s: invalid clip of entry %p", __func__, entry));
2377 
2378 	bdry_idx = (entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) >>
2379 	    MAP_ENTRY_SPLIT_BOUNDARY_SHIFT;
2380 	if (bdry_idx != 0) {
2381 		if ((startaddr & (pagesizes[bdry_idx] - 1)) != 0)
2382 			return (KERN_INVALID_ARGUMENT);
2383 	}
2384 
2385 	new_entry = vm_map_entry_clone(map, entry);
2386 
2387 	/*
2388 	 * Split off the front portion.  Insert the new entry BEFORE this one,
2389 	 * so that this entry has the specified starting address.
2390 	 */
2391 	new_entry->end = startaddr;
2392 	vm_map_entry_link(map, new_entry);
2393 	return (KERN_SUCCESS);
2394 }
2395 
2396 /*
2397  *	vm_map_lookup_clip_start:
2398  *
2399  *	Find the entry at or just after 'start', and clip it if 'start' is in
2400  *	the interior of the entry.  Return entry after 'start', and in
2401  *	prev_entry set the entry before 'start'.
2402  */
2403 static int
2404 vm_map_lookup_clip_start(vm_map_t map, vm_offset_t start,
2405     vm_map_entry_t *res_entry, vm_map_entry_t *prev_entry)
2406 {
2407 	vm_map_entry_t entry;
2408 	int rv;
2409 
2410 	if (!map->system_map)
2411 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2412 		    "%s: map %p start 0x%jx prev %p", __func__, map,
2413 		    (uintmax_t)start, prev_entry);
2414 
2415 	if (vm_map_lookup_entry(map, start, prev_entry)) {
2416 		entry = *prev_entry;
2417 		rv = vm_map_clip_start(map, entry, start);
2418 		if (rv != KERN_SUCCESS)
2419 			return (rv);
2420 		*prev_entry = vm_map_entry_pred(entry);
2421 	} else
2422 		entry = vm_map_entry_succ(*prev_entry);
2423 	*res_entry = entry;
2424 	return (KERN_SUCCESS);
2425 }
2426 
2427 /*
2428  *	vm_map_clip_end:	[ internal use only ]
2429  *
2430  *	Asserts that the given entry ends at or before
2431  *	the specified address; if necessary,
2432  *	it splits the entry into two.
2433  */
2434 static int
2435 vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t endaddr)
2436 {
2437 	vm_map_entry_t new_entry;
2438 	int bdry_idx;
2439 
2440 	if (!map->system_map)
2441 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2442 		    "%s: map %p entry %p end 0x%jx", __func__, map, entry,
2443 		    (uintmax_t)endaddr);
2444 
2445 	if (endaddr >= entry->end)
2446 		return (KERN_SUCCESS);
2447 
2448 	VM_MAP_ASSERT_LOCKED(map);
2449 	KASSERT(entry->start < endaddr && entry->end > endaddr,
2450 	    ("%s: invalid clip of entry %p", __func__, entry));
2451 
2452 	bdry_idx = (entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) >>
2453 	    MAP_ENTRY_SPLIT_BOUNDARY_SHIFT;
2454 	if (bdry_idx != 0) {
2455 		if ((endaddr & (pagesizes[bdry_idx] - 1)) != 0)
2456 			return (KERN_INVALID_ARGUMENT);
2457 	}
2458 
2459 	new_entry = vm_map_entry_clone(map, entry);
2460 
2461 	/*
2462 	 * Split off the back portion.  Insert the new entry AFTER this one,
2463 	 * so that this entry has the specified ending address.
2464 	 */
2465 	new_entry->start = endaddr;
2466 	vm_map_entry_link(map, new_entry);
2467 
2468 	return (KERN_SUCCESS);
2469 }
2470 
2471 /*
2472  *	vm_map_submap:		[ kernel use only ]
2473  *
2474  *	Mark the given range as handled by a subordinate map.
2475  *
2476  *	This range must have been created with vm_map_find,
2477  *	and no other operations may have been performed on this
2478  *	range prior to calling vm_map_submap.
2479  *
2480  *	Only a limited number of operations can be performed
2481  *	within this rage after calling vm_map_submap:
2482  *		vm_fault
2483  *	[Don't try vm_map_copy!]
2484  *
2485  *	To remove a submapping, one must first remove the
2486  *	range from the superior map, and then destroy the
2487  *	submap (if desired).  [Better yet, don't try it.]
2488  */
2489 int
2490 vm_map_submap(
2491 	vm_map_t map,
2492 	vm_offset_t start,
2493 	vm_offset_t end,
2494 	vm_map_t submap)
2495 {
2496 	vm_map_entry_t entry;
2497 	int result;
2498 
2499 	result = KERN_INVALID_ARGUMENT;
2500 
2501 	vm_map_lock(submap);
2502 	submap->flags |= MAP_IS_SUB_MAP;
2503 	vm_map_unlock(submap);
2504 
2505 	vm_map_lock(map);
2506 	VM_MAP_RANGE_CHECK(map, start, end);
2507 	if (vm_map_lookup_entry(map, start, &entry) && entry->end >= end &&
2508 	    (entry->eflags & MAP_ENTRY_COW) == 0 &&
2509 	    entry->object.vm_object == NULL) {
2510 		result = vm_map_clip_start(map, entry, start);
2511 		if (result != KERN_SUCCESS)
2512 			goto unlock;
2513 		result = vm_map_clip_end(map, entry, end);
2514 		if (result != KERN_SUCCESS)
2515 			goto unlock;
2516 		entry->object.sub_map = submap;
2517 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
2518 		result = KERN_SUCCESS;
2519 	}
2520 unlock:
2521 	vm_map_unlock(map);
2522 
2523 	if (result != KERN_SUCCESS) {
2524 		vm_map_lock(submap);
2525 		submap->flags &= ~MAP_IS_SUB_MAP;
2526 		vm_map_unlock(submap);
2527 	}
2528 	return (result);
2529 }
2530 
2531 /*
2532  * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
2533  */
2534 #define	MAX_INIT_PT	96
2535 
2536 /*
2537  *	vm_map_pmap_enter:
2538  *
2539  *	Preload the specified map's pmap with mappings to the specified
2540  *	object's memory-resident pages.  No further physical pages are
2541  *	allocated, and no further virtual pages are retrieved from secondary
2542  *	storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
2543  *	limited number of page mappings are created at the low-end of the
2544  *	specified address range.  (For this purpose, a superpage mapping
2545  *	counts as one page mapping.)  Otherwise, all resident pages within
2546  *	the specified address range are mapped.
2547  */
2548 static void
2549 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
2550     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
2551 {
2552 	vm_offset_t start;
2553 	vm_page_t p, p_start;
2554 	vm_pindex_t mask, psize, threshold, tmpidx;
2555 
2556 	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
2557 		return;
2558 	if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2559 		VM_OBJECT_WLOCK(object);
2560 		if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2561 			pmap_object_init_pt(map->pmap, addr, object, pindex,
2562 			    size);
2563 			VM_OBJECT_WUNLOCK(object);
2564 			return;
2565 		}
2566 		VM_OBJECT_LOCK_DOWNGRADE(object);
2567 	} else
2568 		VM_OBJECT_RLOCK(object);
2569 
2570 	psize = atop(size);
2571 	if (psize + pindex > object->size) {
2572 		if (pindex >= object->size) {
2573 			VM_OBJECT_RUNLOCK(object);
2574 			return;
2575 		}
2576 		psize = object->size - pindex;
2577 	}
2578 
2579 	start = 0;
2580 	p_start = NULL;
2581 	threshold = MAX_INIT_PT;
2582 
2583 	p = vm_page_find_least(object, pindex);
2584 	/*
2585 	 * Assert: the variable p is either (1) the page with the
2586 	 * least pindex greater than or equal to the parameter pindex
2587 	 * or (2) NULL.
2588 	 */
2589 	for (;
2590 	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
2591 	     p = TAILQ_NEXT(p, listq)) {
2592 		/*
2593 		 * don't allow an madvise to blow away our really
2594 		 * free pages allocating pv entries.
2595 		 */
2596 		if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
2597 		    vm_page_count_severe()) ||
2598 		    ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
2599 		    tmpidx >= threshold)) {
2600 			psize = tmpidx;
2601 			break;
2602 		}
2603 		if (vm_page_all_valid(p)) {
2604 			if (p_start == NULL) {
2605 				start = addr + ptoa(tmpidx);
2606 				p_start = p;
2607 			}
2608 			/* Jump ahead if a superpage mapping is possible. */
2609 			if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
2610 			    (pagesizes[p->psind] - 1)) == 0) {
2611 				mask = atop(pagesizes[p->psind]) - 1;
2612 				if (tmpidx + mask < psize &&
2613 				    vm_page_ps_test(p, PS_ALL_VALID, NULL)) {
2614 					p += mask;
2615 					threshold += mask;
2616 				}
2617 			}
2618 		} else if (p_start != NULL) {
2619 			pmap_enter_object(map->pmap, start, addr +
2620 			    ptoa(tmpidx), p_start, prot);
2621 			p_start = NULL;
2622 		}
2623 	}
2624 	if (p_start != NULL)
2625 		pmap_enter_object(map->pmap, start, addr + ptoa(psize),
2626 		    p_start, prot);
2627 	VM_OBJECT_RUNLOCK(object);
2628 }
2629 
2630 /*
2631  *	vm_map_protect:
2632  *
2633  *	Sets the protection of the specified address
2634  *	region in the target map.  If "set_max" is
2635  *	specified, the maximum protection is to be set;
2636  *	otherwise, only the current protection is affected.
2637  */
2638 int
2639 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
2640 	       vm_prot_t new_prot, boolean_t set_max)
2641 {
2642 	vm_map_entry_t entry, first_entry, in_tran, prev_entry;
2643 	vm_object_t obj;
2644 	struct ucred *cred;
2645 	vm_prot_t old_prot;
2646 	int rv;
2647 
2648 	if (start == end)
2649 		return (KERN_SUCCESS);
2650 
2651 again:
2652 	in_tran = NULL;
2653 	vm_map_lock(map);
2654 
2655 	/*
2656 	 * Ensure that we are not concurrently wiring pages.  vm_map_wire() may
2657 	 * need to fault pages into the map and will drop the map lock while
2658 	 * doing so, and the VM object may end up in an inconsistent state if we
2659 	 * update the protection on the map entry in between faults.
2660 	 */
2661 	vm_map_wait_busy(map);
2662 
2663 	VM_MAP_RANGE_CHECK(map, start, end);
2664 
2665 	if (!vm_map_lookup_entry(map, start, &first_entry))
2666 		first_entry = vm_map_entry_succ(first_entry);
2667 
2668 	/*
2669 	 * Make a first pass to check for protection violations.
2670 	 */
2671 	for (entry = first_entry; entry->start < end;
2672 	    entry = vm_map_entry_succ(entry)) {
2673 		if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
2674 			continue;
2675 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) {
2676 			vm_map_unlock(map);
2677 			return (KERN_INVALID_ARGUMENT);
2678 		}
2679 		if ((new_prot & entry->max_protection) != new_prot) {
2680 			vm_map_unlock(map);
2681 			return (KERN_PROTECTION_FAILURE);
2682 		}
2683 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0)
2684 			in_tran = entry;
2685 	}
2686 
2687 	/*
2688 	 * Postpone the operation until all in-transition map entries have
2689 	 * stabilized.  An in-transition entry might already have its pages
2690 	 * wired and wired_count incremented, but not yet have its
2691 	 * MAP_ENTRY_USER_WIRED flag set.  In which case, we would fail to call
2692 	 * vm_fault_copy_entry() in the final loop below.
2693 	 */
2694 	if (in_tran != NULL) {
2695 		in_tran->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2696 		vm_map_unlock_and_wait(map, 0);
2697 		goto again;
2698 	}
2699 
2700 	/*
2701 	 * Before changing the protections, try to reserve swap space for any
2702 	 * private (i.e., copy-on-write) mappings that are transitioning from
2703 	 * read-only to read/write access.  If a reservation fails, break out
2704 	 * of this loop early and let the next loop simplify the entries, since
2705 	 * some may now be mergeable.
2706 	 */
2707 	rv = vm_map_clip_start(map, first_entry, start);
2708 	if (rv != KERN_SUCCESS) {
2709 		vm_map_unlock(map);
2710 		return (rv);
2711 	}
2712 	for (entry = first_entry; entry->start < end;
2713 	    entry = vm_map_entry_succ(entry)) {
2714 		rv = vm_map_clip_end(map, entry, end);
2715 		if (rv != KERN_SUCCESS) {
2716 			vm_map_unlock(map);
2717 			return (rv);
2718 		}
2719 
2720 		if (set_max ||
2721 		    ((new_prot & ~entry->protection) & VM_PROT_WRITE) == 0 ||
2722 		    ENTRY_CHARGED(entry) ||
2723 		    (entry->eflags & MAP_ENTRY_GUARD) != 0) {
2724 			continue;
2725 		}
2726 
2727 		cred = curthread->td_ucred;
2728 		obj = entry->object.vm_object;
2729 
2730 		if (obj == NULL ||
2731 		    (entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0) {
2732 			if (!swap_reserve(entry->end - entry->start)) {
2733 				rv = KERN_RESOURCE_SHORTAGE;
2734 				end = entry->end;
2735 				break;
2736 			}
2737 			crhold(cred);
2738 			entry->cred = cred;
2739 			continue;
2740 		}
2741 
2742 		if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP)
2743 			continue;
2744 		VM_OBJECT_WLOCK(obj);
2745 		if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
2746 			VM_OBJECT_WUNLOCK(obj);
2747 			continue;
2748 		}
2749 
2750 		/*
2751 		 * Charge for the whole object allocation now, since
2752 		 * we cannot distinguish between non-charged and
2753 		 * charged clipped mapping of the same object later.
2754 		 */
2755 		KASSERT(obj->charge == 0,
2756 		    ("vm_map_protect: object %p overcharged (entry %p)",
2757 		    obj, entry));
2758 		if (!swap_reserve(ptoa(obj->size))) {
2759 			VM_OBJECT_WUNLOCK(obj);
2760 			rv = KERN_RESOURCE_SHORTAGE;
2761 			end = entry->end;
2762 			break;
2763 		}
2764 
2765 		crhold(cred);
2766 		obj->cred = cred;
2767 		obj->charge = ptoa(obj->size);
2768 		VM_OBJECT_WUNLOCK(obj);
2769 	}
2770 
2771 	/*
2772 	 * If enough swap space was available, go back and fix up protections.
2773 	 * Otherwise, just simplify entries, since some may have been modified.
2774 	 * [Note that clipping is not necessary the second time.]
2775 	 */
2776 	for (prev_entry = vm_map_entry_pred(first_entry), entry = first_entry;
2777 	    entry->start < end;
2778 	    vm_map_try_merge_entries(map, prev_entry, entry),
2779 	    prev_entry = entry, entry = vm_map_entry_succ(entry)) {
2780 		if (rv != KERN_SUCCESS ||
2781 		    (entry->eflags & MAP_ENTRY_GUARD) != 0)
2782 			continue;
2783 
2784 		old_prot = entry->protection;
2785 
2786 		if (set_max)
2787 			entry->protection =
2788 			    (entry->max_protection = new_prot) &
2789 			    old_prot;
2790 		else
2791 			entry->protection = new_prot;
2792 
2793 		/*
2794 		 * For user wired map entries, the normal lazy evaluation of
2795 		 * write access upgrades through soft page faults is
2796 		 * undesirable.  Instead, immediately copy any pages that are
2797 		 * copy-on-write and enable write access in the physical map.
2798 		 */
2799 		if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2800 		    (entry->protection & VM_PROT_WRITE) != 0 &&
2801 		    (old_prot & VM_PROT_WRITE) == 0)
2802 			vm_fault_copy_entry(map, map, entry, entry, NULL);
2803 
2804 		/*
2805 		 * When restricting access, update the physical map.  Worry
2806 		 * about copy-on-write here.
2807 		 */
2808 		if ((old_prot & ~entry->protection) != 0) {
2809 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2810 							VM_PROT_ALL)
2811 			pmap_protect(map->pmap, entry->start,
2812 			    entry->end,
2813 			    entry->protection & MASK(entry));
2814 #undef	MASK
2815 		}
2816 	}
2817 	vm_map_try_merge_entries(map, prev_entry, entry);
2818 	vm_map_unlock(map);
2819 	return (rv);
2820 }
2821 
2822 /*
2823  *	vm_map_madvise:
2824  *
2825  *	This routine traverses a processes map handling the madvise
2826  *	system call.  Advisories are classified as either those effecting
2827  *	the vm_map_entry structure, or those effecting the underlying
2828  *	objects.
2829  */
2830 int
2831 vm_map_madvise(
2832 	vm_map_t map,
2833 	vm_offset_t start,
2834 	vm_offset_t end,
2835 	int behav)
2836 {
2837 	vm_map_entry_t entry, prev_entry;
2838 	int rv;
2839 	bool modify_map;
2840 
2841 	/*
2842 	 * Some madvise calls directly modify the vm_map_entry, in which case
2843 	 * we need to use an exclusive lock on the map and we need to perform
2844 	 * various clipping operations.  Otherwise we only need a read-lock
2845 	 * on the map.
2846 	 */
2847 	switch(behav) {
2848 	case MADV_NORMAL:
2849 	case MADV_SEQUENTIAL:
2850 	case MADV_RANDOM:
2851 	case MADV_NOSYNC:
2852 	case MADV_AUTOSYNC:
2853 	case MADV_NOCORE:
2854 	case MADV_CORE:
2855 		if (start == end)
2856 			return (0);
2857 		modify_map = true;
2858 		vm_map_lock(map);
2859 		break;
2860 	case MADV_WILLNEED:
2861 	case MADV_DONTNEED:
2862 	case MADV_FREE:
2863 		if (start == end)
2864 			return (0);
2865 		modify_map = false;
2866 		vm_map_lock_read(map);
2867 		break;
2868 	default:
2869 		return (EINVAL);
2870 	}
2871 
2872 	/*
2873 	 * Locate starting entry and clip if necessary.
2874 	 */
2875 	VM_MAP_RANGE_CHECK(map, start, end);
2876 
2877 	if (modify_map) {
2878 		/*
2879 		 * madvise behaviors that are implemented in the vm_map_entry.
2880 		 *
2881 		 * We clip the vm_map_entry so that behavioral changes are
2882 		 * limited to the specified address range.
2883 		 */
2884 		rv = vm_map_lookup_clip_start(map, start, &entry, &prev_entry);
2885 		if (rv != KERN_SUCCESS) {
2886 			vm_map_unlock(map);
2887 			return (vm_mmap_to_errno(rv));
2888 		}
2889 
2890 		for (; entry->start < end; prev_entry = entry,
2891 		    entry = vm_map_entry_succ(entry)) {
2892 			if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
2893 				continue;
2894 
2895 			rv = vm_map_clip_end(map, entry, end);
2896 			if (rv != KERN_SUCCESS) {
2897 				vm_map_unlock(map);
2898 				return (vm_mmap_to_errno(rv));
2899 			}
2900 
2901 			switch (behav) {
2902 			case MADV_NORMAL:
2903 				vm_map_entry_set_behavior(entry,
2904 				    MAP_ENTRY_BEHAV_NORMAL);
2905 				break;
2906 			case MADV_SEQUENTIAL:
2907 				vm_map_entry_set_behavior(entry,
2908 				    MAP_ENTRY_BEHAV_SEQUENTIAL);
2909 				break;
2910 			case MADV_RANDOM:
2911 				vm_map_entry_set_behavior(entry,
2912 				    MAP_ENTRY_BEHAV_RANDOM);
2913 				break;
2914 			case MADV_NOSYNC:
2915 				entry->eflags |= MAP_ENTRY_NOSYNC;
2916 				break;
2917 			case MADV_AUTOSYNC:
2918 				entry->eflags &= ~MAP_ENTRY_NOSYNC;
2919 				break;
2920 			case MADV_NOCORE:
2921 				entry->eflags |= MAP_ENTRY_NOCOREDUMP;
2922 				break;
2923 			case MADV_CORE:
2924 				entry->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2925 				break;
2926 			default:
2927 				break;
2928 			}
2929 			vm_map_try_merge_entries(map, prev_entry, entry);
2930 		}
2931 		vm_map_try_merge_entries(map, prev_entry, entry);
2932 		vm_map_unlock(map);
2933 	} else {
2934 		vm_pindex_t pstart, pend;
2935 
2936 		/*
2937 		 * madvise behaviors that are implemented in the underlying
2938 		 * vm_object.
2939 		 *
2940 		 * Since we don't clip the vm_map_entry, we have to clip
2941 		 * the vm_object pindex and count.
2942 		 */
2943 		if (!vm_map_lookup_entry(map, start, &entry))
2944 			entry = vm_map_entry_succ(entry);
2945 		for (; entry->start < end;
2946 		    entry = vm_map_entry_succ(entry)) {
2947 			vm_offset_t useEnd, useStart;
2948 
2949 			if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
2950 				continue;
2951 
2952 			/*
2953 			 * MADV_FREE would otherwise rewind time to
2954 			 * the creation of the shadow object.  Because
2955 			 * we hold the VM map read-locked, neither the
2956 			 * entry's object nor the presence of a
2957 			 * backing object can change.
2958 			 */
2959 			if (behav == MADV_FREE &&
2960 			    entry->object.vm_object != NULL &&
2961 			    entry->object.vm_object->backing_object != NULL)
2962 				continue;
2963 
2964 			pstart = OFF_TO_IDX(entry->offset);
2965 			pend = pstart + atop(entry->end - entry->start);
2966 			useStart = entry->start;
2967 			useEnd = entry->end;
2968 
2969 			if (entry->start < start) {
2970 				pstart += atop(start - entry->start);
2971 				useStart = start;
2972 			}
2973 			if (entry->end > end) {
2974 				pend -= atop(entry->end - end);
2975 				useEnd = end;
2976 			}
2977 
2978 			if (pstart >= pend)
2979 				continue;
2980 
2981 			/*
2982 			 * Perform the pmap_advise() before clearing
2983 			 * PGA_REFERENCED in vm_page_advise().  Otherwise, a
2984 			 * concurrent pmap operation, such as pmap_remove(),
2985 			 * could clear a reference in the pmap and set
2986 			 * PGA_REFERENCED on the page before the pmap_advise()
2987 			 * had completed.  Consequently, the page would appear
2988 			 * referenced based upon an old reference that
2989 			 * occurred before this pmap_advise() ran.
2990 			 */
2991 			if (behav == MADV_DONTNEED || behav == MADV_FREE)
2992 				pmap_advise(map->pmap, useStart, useEnd,
2993 				    behav);
2994 
2995 			vm_object_madvise(entry->object.vm_object, pstart,
2996 			    pend, behav);
2997 
2998 			/*
2999 			 * Pre-populate paging structures in the
3000 			 * WILLNEED case.  For wired entries, the
3001 			 * paging structures are already populated.
3002 			 */
3003 			if (behav == MADV_WILLNEED &&
3004 			    entry->wired_count == 0) {
3005 				vm_map_pmap_enter(map,
3006 				    useStart,
3007 				    entry->protection,
3008 				    entry->object.vm_object,
3009 				    pstart,
3010 				    ptoa(pend - pstart),
3011 				    MAP_PREFAULT_MADVISE
3012 				);
3013 			}
3014 		}
3015 		vm_map_unlock_read(map);
3016 	}
3017 	return (0);
3018 }
3019 
3020 /*
3021  *	vm_map_inherit:
3022  *
3023  *	Sets the inheritance of the specified address
3024  *	range in the target map.  Inheritance
3025  *	affects how the map will be shared with
3026  *	child maps at the time of vmspace_fork.
3027  */
3028 int
3029 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
3030 	       vm_inherit_t new_inheritance)
3031 {
3032 	vm_map_entry_t entry, lentry, prev_entry, start_entry;
3033 	int rv;
3034 
3035 	switch (new_inheritance) {
3036 	case VM_INHERIT_NONE:
3037 	case VM_INHERIT_COPY:
3038 	case VM_INHERIT_SHARE:
3039 	case VM_INHERIT_ZERO:
3040 		break;
3041 	default:
3042 		return (KERN_INVALID_ARGUMENT);
3043 	}
3044 	if (start == end)
3045 		return (KERN_SUCCESS);
3046 	vm_map_lock(map);
3047 	VM_MAP_RANGE_CHECK(map, start, end);
3048 	rv = vm_map_lookup_clip_start(map, start, &start_entry, &prev_entry);
3049 	if (rv != KERN_SUCCESS)
3050 		goto unlock;
3051 	if (vm_map_lookup_entry(map, end - 1, &lentry)) {
3052 		rv = vm_map_clip_end(map, lentry, end);
3053 		if (rv != KERN_SUCCESS)
3054 			goto unlock;
3055 	}
3056 	if (new_inheritance == VM_INHERIT_COPY) {
3057 		for (entry = start_entry; entry->start < end;
3058 		    prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3059 			if ((entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK)
3060 			    != 0) {
3061 				rv = KERN_INVALID_ARGUMENT;
3062 				goto unlock;
3063 			}
3064 		}
3065 	}
3066 	for (entry = start_entry; entry->start < end; prev_entry = entry,
3067 	    entry = vm_map_entry_succ(entry)) {
3068 		KASSERT(entry->end <= end, ("non-clipped entry %p end %jx %jx",
3069 		    entry, (uintmax_t)entry->end, (uintmax_t)end));
3070 		if ((entry->eflags & MAP_ENTRY_GUARD) == 0 ||
3071 		    new_inheritance != VM_INHERIT_ZERO)
3072 			entry->inheritance = new_inheritance;
3073 		vm_map_try_merge_entries(map, prev_entry, entry);
3074 	}
3075 	vm_map_try_merge_entries(map, prev_entry, entry);
3076 unlock:
3077 	vm_map_unlock(map);
3078 	return (rv);
3079 }
3080 
3081 /*
3082  *	vm_map_entry_in_transition:
3083  *
3084  *	Release the map lock, and sleep until the entry is no longer in
3085  *	transition.  Awake and acquire the map lock.  If the map changed while
3086  *	another held the lock, lookup a possibly-changed entry at or after the
3087  *	'start' position of the old entry.
3088  */
3089 static vm_map_entry_t
3090 vm_map_entry_in_transition(vm_map_t map, vm_offset_t in_start,
3091     vm_offset_t *io_end, bool holes_ok, vm_map_entry_t in_entry)
3092 {
3093 	vm_map_entry_t entry;
3094 	vm_offset_t start;
3095 	u_int last_timestamp;
3096 
3097 	VM_MAP_ASSERT_LOCKED(map);
3098 	KASSERT((in_entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3099 	    ("not in-tranition map entry %p", in_entry));
3100 	/*
3101 	 * We have not yet clipped the entry.
3102 	 */
3103 	start = MAX(in_start, in_entry->start);
3104 	in_entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3105 	last_timestamp = map->timestamp;
3106 	if (vm_map_unlock_and_wait(map, 0)) {
3107 		/*
3108 		 * Allow interruption of user wiring/unwiring?
3109 		 */
3110 	}
3111 	vm_map_lock(map);
3112 	if (last_timestamp + 1 == map->timestamp)
3113 		return (in_entry);
3114 
3115 	/*
3116 	 * Look again for the entry because the map was modified while it was
3117 	 * unlocked.  Specifically, the entry may have been clipped, merged, or
3118 	 * deleted.
3119 	 */
3120 	if (!vm_map_lookup_entry(map, start, &entry)) {
3121 		if (!holes_ok) {
3122 			*io_end = start;
3123 			return (NULL);
3124 		}
3125 		entry = vm_map_entry_succ(entry);
3126 	}
3127 	return (entry);
3128 }
3129 
3130 /*
3131  *	vm_map_unwire:
3132  *
3133  *	Implements both kernel and user unwiring.
3134  */
3135 int
3136 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
3137     int flags)
3138 {
3139 	vm_map_entry_t entry, first_entry, next_entry, prev_entry;
3140 	int rv;
3141 	bool holes_ok, need_wakeup, user_unwire;
3142 
3143 	if (start == end)
3144 		return (KERN_SUCCESS);
3145 	holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0;
3146 	user_unwire = (flags & VM_MAP_WIRE_USER) != 0;
3147 	vm_map_lock(map);
3148 	VM_MAP_RANGE_CHECK(map, start, end);
3149 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
3150 		if (holes_ok)
3151 			first_entry = vm_map_entry_succ(first_entry);
3152 		else {
3153 			vm_map_unlock(map);
3154 			return (KERN_INVALID_ADDRESS);
3155 		}
3156 	}
3157 	rv = KERN_SUCCESS;
3158 	for (entry = first_entry; entry->start < end; entry = next_entry) {
3159 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
3160 			/*
3161 			 * We have not yet clipped the entry.
3162 			 */
3163 			next_entry = vm_map_entry_in_transition(map, start,
3164 			    &end, holes_ok, entry);
3165 			if (next_entry == NULL) {
3166 				if (entry == first_entry) {
3167 					vm_map_unlock(map);
3168 					return (KERN_INVALID_ADDRESS);
3169 				}
3170 				rv = KERN_INVALID_ADDRESS;
3171 				break;
3172 			}
3173 			first_entry = (entry == first_entry) ?
3174 			    next_entry : NULL;
3175 			continue;
3176 		}
3177 		rv = vm_map_clip_start(map, entry, start);
3178 		if (rv != KERN_SUCCESS)
3179 			break;
3180 		rv = vm_map_clip_end(map, entry, end);
3181 		if (rv != KERN_SUCCESS)
3182 			break;
3183 
3184 		/*
3185 		 * Mark the entry in case the map lock is released.  (See
3186 		 * above.)
3187 		 */
3188 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
3189 		    entry->wiring_thread == NULL,
3190 		    ("owned map entry %p", entry));
3191 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
3192 		entry->wiring_thread = curthread;
3193 		next_entry = vm_map_entry_succ(entry);
3194 		/*
3195 		 * Check the map for holes in the specified region.
3196 		 * If holes_ok, skip this check.
3197 		 */
3198 		if (!holes_ok &&
3199 		    entry->end < end && next_entry->start > entry->end) {
3200 			end = entry->end;
3201 			rv = KERN_INVALID_ADDRESS;
3202 			break;
3203 		}
3204 		/*
3205 		 * If system unwiring, require that the entry is system wired.
3206 		 */
3207 		if (!user_unwire &&
3208 		    vm_map_entry_system_wired_count(entry) == 0) {
3209 			end = entry->end;
3210 			rv = KERN_INVALID_ARGUMENT;
3211 			break;
3212 		}
3213 	}
3214 	need_wakeup = false;
3215 	if (first_entry == NULL &&
3216 	    !vm_map_lookup_entry(map, start, &first_entry)) {
3217 		KASSERT(holes_ok, ("vm_map_unwire: lookup failed"));
3218 		prev_entry = first_entry;
3219 		entry = vm_map_entry_succ(first_entry);
3220 	} else {
3221 		prev_entry = vm_map_entry_pred(first_entry);
3222 		entry = first_entry;
3223 	}
3224 	for (; entry->start < end;
3225 	    prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3226 		/*
3227 		 * If holes_ok was specified, an empty
3228 		 * space in the unwired region could have been mapped
3229 		 * while the map lock was dropped for draining
3230 		 * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
3231 		 * could be simultaneously wiring this new mapping
3232 		 * entry.  Detect these cases and skip any entries
3233 		 * marked as in transition by us.
3234 		 */
3235 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
3236 		    entry->wiring_thread != curthread) {
3237 			KASSERT(holes_ok,
3238 			    ("vm_map_unwire: !HOLESOK and new/changed entry"));
3239 			continue;
3240 		}
3241 
3242 		if (rv == KERN_SUCCESS && (!user_unwire ||
3243 		    (entry->eflags & MAP_ENTRY_USER_WIRED))) {
3244 			if (entry->wired_count == 1)
3245 				vm_map_entry_unwire(map, entry);
3246 			else
3247 				entry->wired_count--;
3248 			if (user_unwire)
3249 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3250 		}
3251 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3252 		    ("vm_map_unwire: in-transition flag missing %p", entry));
3253 		KASSERT(entry->wiring_thread == curthread,
3254 		    ("vm_map_unwire: alien wire %p", entry));
3255 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
3256 		entry->wiring_thread = NULL;
3257 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3258 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3259 			need_wakeup = true;
3260 		}
3261 		vm_map_try_merge_entries(map, prev_entry, entry);
3262 	}
3263 	vm_map_try_merge_entries(map, prev_entry, entry);
3264 	vm_map_unlock(map);
3265 	if (need_wakeup)
3266 		vm_map_wakeup(map);
3267 	return (rv);
3268 }
3269 
3270 static void
3271 vm_map_wire_user_count_sub(u_long npages)
3272 {
3273 
3274 	atomic_subtract_long(&vm_user_wire_count, npages);
3275 }
3276 
3277 static bool
3278 vm_map_wire_user_count_add(u_long npages)
3279 {
3280 	u_long wired;
3281 
3282 	wired = vm_user_wire_count;
3283 	do {
3284 		if (npages + wired > vm_page_max_user_wired)
3285 			return (false);
3286 	} while (!atomic_fcmpset_long(&vm_user_wire_count, &wired,
3287 	    npages + wired));
3288 
3289 	return (true);
3290 }
3291 
3292 /*
3293  *	vm_map_wire_entry_failure:
3294  *
3295  *	Handle a wiring failure on the given entry.
3296  *
3297  *	The map should be locked.
3298  */
3299 static void
3300 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
3301     vm_offset_t failed_addr)
3302 {
3303 
3304 	VM_MAP_ASSERT_LOCKED(map);
3305 	KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
3306 	    entry->wired_count == 1,
3307 	    ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
3308 	KASSERT(failed_addr < entry->end,
3309 	    ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
3310 
3311 	/*
3312 	 * If any pages at the start of this entry were successfully wired,
3313 	 * then unwire them.
3314 	 */
3315 	if (failed_addr > entry->start) {
3316 		pmap_unwire(map->pmap, entry->start, failed_addr);
3317 		vm_object_unwire(entry->object.vm_object, entry->offset,
3318 		    failed_addr - entry->start, PQ_ACTIVE);
3319 	}
3320 
3321 	/*
3322 	 * Assign an out-of-range value to represent the failure to wire this
3323 	 * entry.
3324 	 */
3325 	entry->wired_count = -1;
3326 }
3327 
3328 int
3329 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3330 {
3331 	int rv;
3332 
3333 	vm_map_lock(map);
3334 	rv = vm_map_wire_locked(map, start, end, flags);
3335 	vm_map_unlock(map);
3336 	return (rv);
3337 }
3338 
3339 /*
3340  *	vm_map_wire_locked:
3341  *
3342  *	Implements both kernel and user wiring.  Returns with the map locked,
3343  *	the map lock may be dropped.
3344  */
3345 int
3346 vm_map_wire_locked(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3347 {
3348 	vm_map_entry_t entry, first_entry, next_entry, prev_entry;
3349 	vm_offset_t faddr, saved_end, saved_start;
3350 	u_long incr, npages;
3351 	u_int bidx, last_timestamp;
3352 	int rv;
3353 	bool holes_ok, need_wakeup, user_wire;
3354 	vm_prot_t prot;
3355 
3356 	VM_MAP_ASSERT_LOCKED(map);
3357 
3358 	if (start == end)
3359 		return (KERN_SUCCESS);
3360 	prot = 0;
3361 	if (flags & VM_MAP_WIRE_WRITE)
3362 		prot |= VM_PROT_WRITE;
3363 	holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0;
3364 	user_wire = (flags & VM_MAP_WIRE_USER) != 0;
3365 	VM_MAP_RANGE_CHECK(map, start, end);
3366 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
3367 		if (holes_ok)
3368 			first_entry = vm_map_entry_succ(first_entry);
3369 		else
3370 			return (KERN_INVALID_ADDRESS);
3371 	}
3372 	for (entry = first_entry; entry->start < end; entry = next_entry) {
3373 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
3374 			/*
3375 			 * We have not yet clipped the entry.
3376 			 */
3377 			next_entry = vm_map_entry_in_transition(map, start,
3378 			    &end, holes_ok, entry);
3379 			if (next_entry == NULL) {
3380 				if (entry == first_entry)
3381 					return (KERN_INVALID_ADDRESS);
3382 				rv = KERN_INVALID_ADDRESS;
3383 				goto done;
3384 			}
3385 			first_entry = (entry == first_entry) ?
3386 			    next_entry : NULL;
3387 			continue;
3388 		}
3389 		rv = vm_map_clip_start(map, entry, start);
3390 		if (rv != KERN_SUCCESS)
3391 			goto done;
3392 		rv = vm_map_clip_end(map, entry, end);
3393 		if (rv != KERN_SUCCESS)
3394 			goto done;
3395 
3396 		/*
3397 		 * Mark the entry in case the map lock is released.  (See
3398 		 * above.)
3399 		 */
3400 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
3401 		    entry->wiring_thread == NULL,
3402 		    ("owned map entry %p", entry));
3403 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
3404 		entry->wiring_thread = curthread;
3405 		if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
3406 		    || (entry->protection & prot) != prot) {
3407 			entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
3408 			if (!holes_ok) {
3409 				end = entry->end;
3410 				rv = KERN_INVALID_ADDRESS;
3411 				goto done;
3412 			}
3413 		} else if (entry->wired_count == 0) {
3414 			entry->wired_count++;
3415 
3416 			npages = atop(entry->end - entry->start);
3417 			if (user_wire && !vm_map_wire_user_count_add(npages)) {
3418 				vm_map_wire_entry_failure(map, entry,
3419 				    entry->start);
3420 				end = entry->end;
3421 				rv = KERN_RESOURCE_SHORTAGE;
3422 				goto done;
3423 			}
3424 
3425 			/*
3426 			 * Release the map lock, relying on the in-transition
3427 			 * mark.  Mark the map busy for fork.
3428 			 */
3429 			saved_start = entry->start;
3430 			saved_end = entry->end;
3431 			last_timestamp = map->timestamp;
3432 			bidx = (entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK)
3433 			    >> MAP_ENTRY_SPLIT_BOUNDARY_SHIFT;
3434 			incr =  pagesizes[bidx];
3435 			vm_map_busy(map);
3436 			vm_map_unlock(map);
3437 
3438 			for (faddr = saved_start; faddr < saved_end;
3439 			    faddr += incr) {
3440 				/*
3441 				 * Simulate a fault to get the page and enter
3442 				 * it into the physical map.
3443 				 */
3444 				rv = vm_fault(map, faddr, VM_PROT_NONE,
3445 				    VM_FAULT_WIRE, NULL);
3446 				if (rv != KERN_SUCCESS)
3447 					break;
3448 			}
3449 			vm_map_lock(map);
3450 			vm_map_unbusy(map);
3451 			if (last_timestamp + 1 != map->timestamp) {
3452 				/*
3453 				 * Look again for the entry because the map was
3454 				 * modified while it was unlocked.  The entry
3455 				 * may have been clipped, but NOT merged or
3456 				 * deleted.
3457 				 */
3458 				if (!vm_map_lookup_entry(map, saved_start,
3459 				    &next_entry))
3460 					KASSERT(false,
3461 					    ("vm_map_wire: lookup failed"));
3462 				first_entry = (entry == first_entry) ?
3463 				    next_entry : NULL;
3464 				for (entry = next_entry; entry->end < saved_end;
3465 				    entry = vm_map_entry_succ(entry)) {
3466 					/*
3467 					 * In case of failure, handle entries
3468 					 * that were not fully wired here;
3469 					 * fully wired entries are handled
3470 					 * later.
3471 					 */
3472 					if (rv != KERN_SUCCESS &&
3473 					    faddr < entry->end)
3474 						vm_map_wire_entry_failure(map,
3475 						    entry, faddr);
3476 				}
3477 			}
3478 			if (rv != KERN_SUCCESS) {
3479 				vm_map_wire_entry_failure(map, entry, faddr);
3480 				if (user_wire)
3481 					vm_map_wire_user_count_sub(npages);
3482 				end = entry->end;
3483 				goto done;
3484 			}
3485 		} else if (!user_wire ||
3486 			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3487 			entry->wired_count++;
3488 		}
3489 		/*
3490 		 * Check the map for holes in the specified region.
3491 		 * If holes_ok was specified, skip this check.
3492 		 */
3493 		next_entry = vm_map_entry_succ(entry);
3494 		if (!holes_ok &&
3495 		    entry->end < end && next_entry->start > entry->end) {
3496 			end = entry->end;
3497 			rv = KERN_INVALID_ADDRESS;
3498 			goto done;
3499 		}
3500 	}
3501 	rv = KERN_SUCCESS;
3502 done:
3503 	need_wakeup = false;
3504 	if (first_entry == NULL &&
3505 	    !vm_map_lookup_entry(map, start, &first_entry)) {
3506 		KASSERT(holes_ok, ("vm_map_wire: lookup failed"));
3507 		prev_entry = first_entry;
3508 		entry = vm_map_entry_succ(first_entry);
3509 	} else {
3510 		prev_entry = vm_map_entry_pred(first_entry);
3511 		entry = first_entry;
3512 	}
3513 	for (; entry->start < end;
3514 	    prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3515 		/*
3516 		 * If holes_ok was specified, an empty
3517 		 * space in the unwired region could have been mapped
3518 		 * while the map lock was dropped for faulting in the
3519 		 * pages or draining MAP_ENTRY_IN_TRANSITION.
3520 		 * Moreover, another thread could be simultaneously
3521 		 * wiring this new mapping entry.  Detect these cases
3522 		 * and skip any entries marked as in transition not by us.
3523 		 *
3524 		 * Another way to get an entry not marked with
3525 		 * MAP_ENTRY_IN_TRANSITION is after failed clipping,
3526 		 * which set rv to KERN_INVALID_ARGUMENT.
3527 		 */
3528 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
3529 		    entry->wiring_thread != curthread) {
3530 			KASSERT(holes_ok || rv == KERN_INVALID_ARGUMENT,
3531 			    ("vm_map_wire: !HOLESOK and new/changed entry"));
3532 			continue;
3533 		}
3534 
3535 		if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) {
3536 			/* do nothing */
3537 		} else if (rv == KERN_SUCCESS) {
3538 			if (user_wire)
3539 				entry->eflags |= MAP_ENTRY_USER_WIRED;
3540 		} else if (entry->wired_count == -1) {
3541 			/*
3542 			 * Wiring failed on this entry.  Thus, unwiring is
3543 			 * unnecessary.
3544 			 */
3545 			entry->wired_count = 0;
3546 		} else if (!user_wire ||
3547 		    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3548 			/*
3549 			 * Undo the wiring.  Wiring succeeded on this entry
3550 			 * but failed on a later entry.
3551 			 */
3552 			if (entry->wired_count == 1) {
3553 				vm_map_entry_unwire(map, entry);
3554 				if (user_wire)
3555 					vm_map_wire_user_count_sub(
3556 					    atop(entry->end - entry->start));
3557 			} else
3558 				entry->wired_count--;
3559 		}
3560 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3561 		    ("vm_map_wire: in-transition flag missing %p", entry));
3562 		KASSERT(entry->wiring_thread == curthread,
3563 		    ("vm_map_wire: alien wire %p", entry));
3564 		entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
3565 		    MAP_ENTRY_WIRE_SKIPPED);
3566 		entry->wiring_thread = NULL;
3567 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3568 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3569 			need_wakeup = true;
3570 		}
3571 		vm_map_try_merge_entries(map, prev_entry, entry);
3572 	}
3573 	vm_map_try_merge_entries(map, prev_entry, entry);
3574 	if (need_wakeup)
3575 		vm_map_wakeup(map);
3576 	return (rv);
3577 }
3578 
3579 /*
3580  * vm_map_sync
3581  *
3582  * Push any dirty cached pages in the address range to their pager.
3583  * If syncio is TRUE, dirty pages are written synchronously.
3584  * If invalidate is TRUE, any cached pages are freed as well.
3585  *
3586  * If the size of the region from start to end is zero, we are
3587  * supposed to flush all modified pages within the region containing
3588  * start.  Unfortunately, a region can be split or coalesced with
3589  * neighboring regions, making it difficult to determine what the
3590  * original region was.  Therefore, we approximate this requirement by
3591  * flushing the current region containing start.
3592  *
3593  * Returns an error if any part of the specified range is not mapped.
3594  */
3595 int
3596 vm_map_sync(
3597 	vm_map_t map,
3598 	vm_offset_t start,
3599 	vm_offset_t end,
3600 	boolean_t syncio,
3601 	boolean_t invalidate)
3602 {
3603 	vm_map_entry_t entry, first_entry, next_entry;
3604 	vm_size_t size;
3605 	vm_object_t object;
3606 	vm_ooffset_t offset;
3607 	unsigned int last_timestamp;
3608 	int bdry_idx;
3609 	boolean_t failed;
3610 
3611 	vm_map_lock_read(map);
3612 	VM_MAP_RANGE_CHECK(map, start, end);
3613 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
3614 		vm_map_unlock_read(map);
3615 		return (KERN_INVALID_ADDRESS);
3616 	} else if (start == end) {
3617 		start = first_entry->start;
3618 		end = first_entry->end;
3619 	}
3620 
3621 	/*
3622 	 * Make a first pass to check for user-wired memory, holes,
3623 	 * and partial invalidation of largepage mappings.
3624 	 */
3625 	for (entry = first_entry; entry->start < end; entry = next_entry) {
3626 		if (invalidate) {
3627 			if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0) {
3628 				vm_map_unlock_read(map);
3629 				return (KERN_INVALID_ARGUMENT);
3630 			}
3631 			bdry_idx = (entry->eflags &
3632 			    MAP_ENTRY_SPLIT_BOUNDARY_MASK) >>
3633 			    MAP_ENTRY_SPLIT_BOUNDARY_SHIFT;
3634 			if (bdry_idx != 0 &&
3635 			    ((start & (pagesizes[bdry_idx] - 1)) != 0 ||
3636 			    (end & (pagesizes[bdry_idx] - 1)) != 0)) {
3637 				vm_map_unlock_read(map);
3638 				return (KERN_INVALID_ARGUMENT);
3639 			}
3640 		}
3641 		next_entry = vm_map_entry_succ(entry);
3642 		if (end > entry->end &&
3643 		    entry->end != next_entry->start) {
3644 			vm_map_unlock_read(map);
3645 			return (KERN_INVALID_ADDRESS);
3646 		}
3647 	}
3648 
3649 	if (invalidate)
3650 		pmap_remove(map->pmap, start, end);
3651 	failed = FALSE;
3652 
3653 	/*
3654 	 * Make a second pass, cleaning/uncaching pages from the indicated
3655 	 * objects as we go.
3656 	 */
3657 	for (entry = first_entry; entry->start < end;) {
3658 		offset = entry->offset + (start - entry->start);
3659 		size = (end <= entry->end ? end : entry->end) - start;
3660 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) {
3661 			vm_map_t smap;
3662 			vm_map_entry_t tentry;
3663 			vm_size_t tsize;
3664 
3665 			smap = entry->object.sub_map;
3666 			vm_map_lock_read(smap);
3667 			(void) vm_map_lookup_entry(smap, offset, &tentry);
3668 			tsize = tentry->end - offset;
3669 			if (tsize < size)
3670 				size = tsize;
3671 			object = tentry->object.vm_object;
3672 			offset = tentry->offset + (offset - tentry->start);
3673 			vm_map_unlock_read(smap);
3674 		} else {
3675 			object = entry->object.vm_object;
3676 		}
3677 		vm_object_reference(object);
3678 		last_timestamp = map->timestamp;
3679 		vm_map_unlock_read(map);
3680 		if (!vm_object_sync(object, offset, size, syncio, invalidate))
3681 			failed = TRUE;
3682 		start += size;
3683 		vm_object_deallocate(object);
3684 		vm_map_lock_read(map);
3685 		if (last_timestamp == map->timestamp ||
3686 		    !vm_map_lookup_entry(map, start, &entry))
3687 			entry = vm_map_entry_succ(entry);
3688 	}
3689 
3690 	vm_map_unlock_read(map);
3691 	return (failed ? KERN_FAILURE : KERN_SUCCESS);
3692 }
3693 
3694 /*
3695  *	vm_map_entry_unwire:	[ internal use only ]
3696  *
3697  *	Make the region specified by this entry pageable.
3698  *
3699  *	The map in question should be locked.
3700  *	[This is the reason for this routine's existence.]
3701  */
3702 static void
3703 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
3704 {
3705 	vm_size_t size;
3706 
3707 	VM_MAP_ASSERT_LOCKED(map);
3708 	KASSERT(entry->wired_count > 0,
3709 	    ("vm_map_entry_unwire: entry %p isn't wired", entry));
3710 
3711 	size = entry->end - entry->start;
3712 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0)
3713 		vm_map_wire_user_count_sub(atop(size));
3714 	pmap_unwire(map->pmap, entry->start, entry->end);
3715 	vm_object_unwire(entry->object.vm_object, entry->offset, size,
3716 	    PQ_ACTIVE);
3717 	entry->wired_count = 0;
3718 }
3719 
3720 static void
3721 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
3722 {
3723 
3724 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
3725 		vm_object_deallocate(entry->object.vm_object);
3726 	uma_zfree(system_map ? kmapentzone : mapentzone, entry);
3727 }
3728 
3729 /*
3730  *	vm_map_entry_delete:	[ internal use only ]
3731  *
3732  *	Deallocate the given entry from the target map.
3733  */
3734 static void
3735 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
3736 {
3737 	vm_object_t object;
3738 	vm_pindex_t offidxstart, offidxend, size1;
3739 	vm_size_t size;
3740 
3741 	vm_map_entry_unlink(map, entry, UNLINK_MERGE_NONE);
3742 	object = entry->object.vm_object;
3743 
3744 	if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
3745 		MPASS(entry->cred == NULL);
3746 		MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0);
3747 		MPASS(object == NULL);
3748 		vm_map_entry_deallocate(entry, map->system_map);
3749 		return;
3750 	}
3751 
3752 	size = entry->end - entry->start;
3753 	map->size -= size;
3754 
3755 	if (entry->cred != NULL) {
3756 		swap_release_by_cred(size, entry->cred);
3757 		crfree(entry->cred);
3758 	}
3759 
3760 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || object == NULL) {
3761 		entry->object.vm_object = NULL;
3762 	} else if ((object->flags & OBJ_ANON) != 0 ||
3763 	    object == kernel_object) {
3764 		KASSERT(entry->cred == NULL || object->cred == NULL ||
3765 		    (entry->eflags & MAP_ENTRY_NEEDS_COPY),
3766 		    ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
3767 		offidxstart = OFF_TO_IDX(entry->offset);
3768 		offidxend = offidxstart + atop(size);
3769 		VM_OBJECT_WLOCK(object);
3770 		if (object->ref_count != 1 &&
3771 		    ((object->flags & OBJ_ONEMAPPING) != 0 ||
3772 		    object == kernel_object)) {
3773 			vm_object_collapse(object);
3774 
3775 			/*
3776 			 * The option OBJPR_NOTMAPPED can be passed here
3777 			 * because vm_map_delete() already performed
3778 			 * pmap_remove() on the only mapping to this range
3779 			 * of pages.
3780 			 */
3781 			vm_object_page_remove(object, offidxstart, offidxend,
3782 			    OBJPR_NOTMAPPED);
3783 			if (offidxend >= object->size &&
3784 			    offidxstart < object->size) {
3785 				size1 = object->size;
3786 				object->size = offidxstart;
3787 				if (object->cred != NULL) {
3788 					size1 -= object->size;
3789 					KASSERT(object->charge >= ptoa(size1),
3790 					    ("object %p charge < 0", object));
3791 					swap_release_by_cred(ptoa(size1),
3792 					    object->cred);
3793 					object->charge -= ptoa(size1);
3794 				}
3795 			}
3796 		}
3797 		VM_OBJECT_WUNLOCK(object);
3798 	}
3799 	if (map->system_map)
3800 		vm_map_entry_deallocate(entry, TRUE);
3801 	else {
3802 		entry->defer_next = curthread->td_map_def_user;
3803 		curthread->td_map_def_user = entry;
3804 	}
3805 }
3806 
3807 /*
3808  *	vm_map_delete:	[ internal use only ]
3809  *
3810  *	Deallocates the given address range from the target
3811  *	map.
3812  */
3813 int
3814 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
3815 {
3816 	vm_map_entry_t entry, next_entry, scratch_entry;
3817 	int rv;
3818 
3819 	VM_MAP_ASSERT_LOCKED(map);
3820 
3821 	if (start == end)
3822 		return (KERN_SUCCESS);
3823 
3824 	/*
3825 	 * Find the start of the region, and clip it.
3826 	 * Step through all entries in this region.
3827 	 */
3828 	rv = vm_map_lookup_clip_start(map, start, &entry, &scratch_entry);
3829 	if (rv != KERN_SUCCESS)
3830 		return (rv);
3831 	for (; entry->start < end; entry = next_entry) {
3832 		/*
3833 		 * Wait for wiring or unwiring of an entry to complete.
3834 		 * Also wait for any system wirings to disappear on
3835 		 * user maps.
3836 		 */
3837 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
3838 		    (vm_map_pmap(map) != kernel_pmap &&
3839 		    vm_map_entry_system_wired_count(entry) != 0)) {
3840 			unsigned int last_timestamp;
3841 			vm_offset_t saved_start;
3842 
3843 			saved_start = entry->start;
3844 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3845 			last_timestamp = map->timestamp;
3846 			(void) vm_map_unlock_and_wait(map, 0);
3847 			vm_map_lock(map);
3848 			if (last_timestamp + 1 != map->timestamp) {
3849 				/*
3850 				 * Look again for the entry because the map was
3851 				 * modified while it was unlocked.
3852 				 * Specifically, the entry may have been
3853 				 * clipped, merged, or deleted.
3854 				 */
3855 				rv = vm_map_lookup_clip_start(map, saved_start,
3856 				    &next_entry, &scratch_entry);
3857 				if (rv != KERN_SUCCESS)
3858 					break;
3859 			} else
3860 				next_entry = entry;
3861 			continue;
3862 		}
3863 
3864 		/* XXXKIB or delete to the upper superpage boundary ? */
3865 		rv = vm_map_clip_end(map, entry, end);
3866 		if (rv != KERN_SUCCESS)
3867 			break;
3868 		next_entry = vm_map_entry_succ(entry);
3869 
3870 		/*
3871 		 * Unwire before removing addresses from the pmap; otherwise,
3872 		 * unwiring will put the entries back in the pmap.
3873 		 */
3874 		if (entry->wired_count != 0)
3875 			vm_map_entry_unwire(map, entry);
3876 
3877 		/*
3878 		 * Remove mappings for the pages, but only if the
3879 		 * mappings could exist.  For instance, it does not
3880 		 * make sense to call pmap_remove() for guard entries.
3881 		 */
3882 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 ||
3883 		    entry->object.vm_object != NULL)
3884 			pmap_remove(map->pmap, entry->start, entry->end);
3885 
3886 		if (entry->end == map->anon_loc)
3887 			map->anon_loc = entry->start;
3888 
3889 		/*
3890 		 * Delete the entry only after removing all pmap
3891 		 * entries pointing to its pages.  (Otherwise, its
3892 		 * page frames may be reallocated, and any modify bits
3893 		 * will be set in the wrong object!)
3894 		 */
3895 		vm_map_entry_delete(map, entry);
3896 	}
3897 	return (rv);
3898 }
3899 
3900 /*
3901  *	vm_map_remove:
3902  *
3903  *	Remove the given address range from the target map.
3904  *	This is the exported form of vm_map_delete.
3905  */
3906 int
3907 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3908 {
3909 	int result;
3910 
3911 	vm_map_lock(map);
3912 	VM_MAP_RANGE_CHECK(map, start, end);
3913 	result = vm_map_delete(map, start, end);
3914 	vm_map_unlock(map);
3915 	return (result);
3916 }
3917 
3918 /*
3919  *	vm_map_check_protection:
3920  *
3921  *	Assert that the target map allows the specified privilege on the
3922  *	entire address region given.  The entire region must be allocated.
3923  *
3924  *	WARNING!  This code does not and should not check whether the
3925  *	contents of the region is accessible.  For example a smaller file
3926  *	might be mapped into a larger address space.
3927  *
3928  *	NOTE!  This code is also called by munmap().
3929  *
3930  *	The map must be locked.  A read lock is sufficient.
3931  */
3932 boolean_t
3933 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
3934 			vm_prot_t protection)
3935 {
3936 	vm_map_entry_t entry;
3937 	vm_map_entry_t tmp_entry;
3938 
3939 	if (!vm_map_lookup_entry(map, start, &tmp_entry))
3940 		return (FALSE);
3941 	entry = tmp_entry;
3942 
3943 	while (start < end) {
3944 		/*
3945 		 * No holes allowed!
3946 		 */
3947 		if (start < entry->start)
3948 			return (FALSE);
3949 		/*
3950 		 * Check protection associated with entry.
3951 		 */
3952 		if ((entry->protection & protection) != protection)
3953 			return (FALSE);
3954 		/* go to next entry */
3955 		start = entry->end;
3956 		entry = vm_map_entry_succ(entry);
3957 	}
3958 	return (TRUE);
3959 }
3960 
3961 /*
3962  *
3963  *	vm_map_copy_swap_object:
3964  *
3965  *	Copies a swap-backed object from an existing map entry to a
3966  *	new one.  Carries forward the swap charge.  May change the
3967  *	src object on return.
3968  */
3969 static void
3970 vm_map_copy_swap_object(vm_map_entry_t src_entry, vm_map_entry_t dst_entry,
3971     vm_offset_t size, vm_ooffset_t *fork_charge)
3972 {
3973 	vm_object_t src_object;
3974 	struct ucred *cred;
3975 	int charged;
3976 
3977 	src_object = src_entry->object.vm_object;
3978 	charged = ENTRY_CHARGED(src_entry);
3979 	if ((src_object->flags & OBJ_ANON) != 0) {
3980 		VM_OBJECT_WLOCK(src_object);
3981 		vm_object_collapse(src_object);
3982 		if ((src_object->flags & OBJ_ONEMAPPING) != 0) {
3983 			vm_object_split(src_entry);
3984 			src_object = src_entry->object.vm_object;
3985 		}
3986 		vm_object_reference_locked(src_object);
3987 		vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3988 		VM_OBJECT_WUNLOCK(src_object);
3989 	} else
3990 		vm_object_reference(src_object);
3991 	if (src_entry->cred != NULL &&
3992 	    !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3993 		KASSERT(src_object->cred == NULL,
3994 		    ("OVERCOMMIT: vm_map_copy_anon_entry: cred %p",
3995 		     src_object));
3996 		src_object->cred = src_entry->cred;
3997 		src_object->charge = size;
3998 	}
3999 	dst_entry->object.vm_object = src_object;
4000 	if (charged) {
4001 		cred = curthread->td_ucred;
4002 		crhold(cred);
4003 		dst_entry->cred = cred;
4004 		*fork_charge += size;
4005 		if (!(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
4006 			crhold(cred);
4007 			src_entry->cred = cred;
4008 			*fork_charge += size;
4009 		}
4010 	}
4011 }
4012 
4013 /*
4014  *	vm_map_copy_entry:
4015  *
4016  *	Copies the contents of the source entry to the destination
4017  *	entry.  The entries *must* be aligned properly.
4018  */
4019 static void
4020 vm_map_copy_entry(
4021 	vm_map_t src_map,
4022 	vm_map_t dst_map,
4023 	vm_map_entry_t src_entry,
4024 	vm_map_entry_t dst_entry,
4025 	vm_ooffset_t *fork_charge)
4026 {
4027 	vm_object_t src_object;
4028 	vm_map_entry_t fake_entry;
4029 	vm_offset_t size;
4030 
4031 	VM_MAP_ASSERT_LOCKED(dst_map);
4032 
4033 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
4034 		return;
4035 
4036 	if (src_entry->wired_count == 0 ||
4037 	    (src_entry->protection & VM_PROT_WRITE) == 0) {
4038 		/*
4039 		 * If the source entry is marked needs_copy, it is already
4040 		 * write-protected.
4041 		 */
4042 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
4043 		    (src_entry->protection & VM_PROT_WRITE) != 0) {
4044 			pmap_protect(src_map->pmap,
4045 			    src_entry->start,
4046 			    src_entry->end,
4047 			    src_entry->protection & ~VM_PROT_WRITE);
4048 		}
4049 
4050 		/*
4051 		 * Make a copy of the object.
4052 		 */
4053 		size = src_entry->end - src_entry->start;
4054 		if ((src_object = src_entry->object.vm_object) != NULL) {
4055 			if (src_object->type == OBJT_DEFAULT ||
4056 			    src_object->type == OBJT_SWAP) {
4057 				vm_map_copy_swap_object(src_entry, dst_entry,
4058 				    size, fork_charge);
4059 				/* May have split/collapsed, reload obj. */
4060 				src_object = src_entry->object.vm_object;
4061 			} else {
4062 				vm_object_reference(src_object);
4063 				dst_entry->object.vm_object = src_object;
4064 			}
4065 			src_entry->eflags |= MAP_ENTRY_COW |
4066 			    MAP_ENTRY_NEEDS_COPY;
4067 			dst_entry->eflags |= MAP_ENTRY_COW |
4068 			    MAP_ENTRY_NEEDS_COPY;
4069 			dst_entry->offset = src_entry->offset;
4070 			if (src_entry->eflags & MAP_ENTRY_WRITECNT) {
4071 				/*
4072 				 * MAP_ENTRY_WRITECNT cannot
4073 				 * indicate write reference from
4074 				 * src_entry, since the entry is
4075 				 * marked as needs copy.  Allocate a
4076 				 * fake entry that is used to
4077 				 * decrement object->un_pager writecount
4078 				 * at the appropriate time.  Attach
4079 				 * fake_entry to the deferred list.
4080 				 */
4081 				fake_entry = vm_map_entry_create(dst_map);
4082 				fake_entry->eflags = MAP_ENTRY_WRITECNT;
4083 				src_entry->eflags &= ~MAP_ENTRY_WRITECNT;
4084 				vm_object_reference(src_object);
4085 				fake_entry->object.vm_object = src_object;
4086 				fake_entry->start = src_entry->start;
4087 				fake_entry->end = src_entry->end;
4088 				fake_entry->defer_next =
4089 				    curthread->td_map_def_user;
4090 				curthread->td_map_def_user = fake_entry;
4091 			}
4092 
4093 			pmap_copy(dst_map->pmap, src_map->pmap,
4094 			    dst_entry->start, dst_entry->end - dst_entry->start,
4095 			    src_entry->start);
4096 		} else {
4097 			dst_entry->object.vm_object = NULL;
4098 			dst_entry->offset = 0;
4099 			if (src_entry->cred != NULL) {
4100 				dst_entry->cred = curthread->td_ucred;
4101 				crhold(dst_entry->cred);
4102 				*fork_charge += size;
4103 			}
4104 		}
4105 	} else {
4106 		/*
4107 		 * We don't want to make writeable wired pages copy-on-write.
4108 		 * Immediately copy these pages into the new map by simulating
4109 		 * page faults.  The new pages are pageable.
4110 		 */
4111 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
4112 		    fork_charge);
4113 	}
4114 }
4115 
4116 /*
4117  * vmspace_map_entry_forked:
4118  * Update the newly-forked vmspace each time a map entry is inherited
4119  * or copied.  The values for vm_dsize and vm_tsize are approximate
4120  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
4121  */
4122 static void
4123 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
4124     vm_map_entry_t entry)
4125 {
4126 	vm_size_t entrysize;
4127 	vm_offset_t newend;
4128 
4129 	if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
4130 		return;
4131 	entrysize = entry->end - entry->start;
4132 	vm2->vm_map.size += entrysize;
4133 	if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
4134 		vm2->vm_ssize += btoc(entrysize);
4135 	} else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
4136 	    entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
4137 		newend = MIN(entry->end,
4138 		    (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
4139 		vm2->vm_dsize += btoc(newend - entry->start);
4140 	} else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
4141 	    entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
4142 		newend = MIN(entry->end,
4143 		    (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
4144 		vm2->vm_tsize += btoc(newend - entry->start);
4145 	}
4146 }
4147 
4148 /*
4149  * vmspace_fork:
4150  * Create a new process vmspace structure and vm_map
4151  * based on those of an existing process.  The new map
4152  * is based on the old map, according to the inheritance
4153  * values on the regions in that map.
4154  *
4155  * XXX It might be worth coalescing the entries added to the new vmspace.
4156  *
4157  * The source map must not be locked.
4158  */
4159 struct vmspace *
4160 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
4161 {
4162 	struct vmspace *vm2;
4163 	vm_map_t new_map, old_map;
4164 	vm_map_entry_t new_entry, old_entry;
4165 	vm_object_t object;
4166 	int error, locked;
4167 	vm_inherit_t inh;
4168 
4169 	old_map = &vm1->vm_map;
4170 	/* Copy immutable fields of vm1 to vm2. */
4171 	vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map),
4172 	    pmap_pinit);
4173 	if (vm2 == NULL)
4174 		return (NULL);
4175 
4176 	vm2->vm_taddr = vm1->vm_taddr;
4177 	vm2->vm_daddr = vm1->vm_daddr;
4178 	vm2->vm_maxsaddr = vm1->vm_maxsaddr;
4179 	vm_map_lock(old_map);
4180 	if (old_map->busy)
4181 		vm_map_wait_busy(old_map);
4182 	new_map = &vm2->vm_map;
4183 	locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
4184 	KASSERT(locked, ("vmspace_fork: lock failed"));
4185 
4186 	error = pmap_vmspace_copy(new_map->pmap, old_map->pmap);
4187 	if (error != 0) {
4188 		sx_xunlock(&old_map->lock);
4189 		sx_xunlock(&new_map->lock);
4190 		vm_map_process_deferred();
4191 		vmspace_free(vm2);
4192 		return (NULL);
4193 	}
4194 
4195 	new_map->anon_loc = old_map->anon_loc;
4196 	new_map->flags |= old_map->flags & (MAP_ASLR | MAP_ASLR_IGNSTART);
4197 
4198 	VM_MAP_ENTRY_FOREACH(old_entry, old_map) {
4199 		if ((old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
4200 			panic("vm_map_fork: encountered a submap");
4201 
4202 		inh = old_entry->inheritance;
4203 		if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4204 		    inh != VM_INHERIT_NONE)
4205 			inh = VM_INHERIT_COPY;
4206 
4207 		switch (inh) {
4208 		case VM_INHERIT_NONE:
4209 			break;
4210 
4211 		case VM_INHERIT_SHARE:
4212 			/*
4213 			 * Clone the entry, creating the shared object if
4214 			 * necessary.
4215 			 */
4216 			object = old_entry->object.vm_object;
4217 			if (object == NULL) {
4218 				vm_map_entry_back(old_entry);
4219 				object = old_entry->object.vm_object;
4220 			}
4221 
4222 			/*
4223 			 * Add the reference before calling vm_object_shadow
4224 			 * to insure that a shadow object is created.
4225 			 */
4226 			vm_object_reference(object);
4227 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4228 				vm_object_shadow(&old_entry->object.vm_object,
4229 				    &old_entry->offset,
4230 				    old_entry->end - old_entry->start,
4231 				    old_entry->cred,
4232 				    /* Transfer the second reference too. */
4233 				    true);
4234 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4235 				old_entry->cred = NULL;
4236 
4237 				/*
4238 				 * As in vm_map_merged_neighbor_dispose(),
4239 				 * the vnode lock will not be acquired in
4240 				 * this call to vm_object_deallocate().
4241 				 */
4242 				vm_object_deallocate(object);
4243 				object = old_entry->object.vm_object;
4244 			} else {
4245 				VM_OBJECT_WLOCK(object);
4246 				vm_object_clear_flag(object, OBJ_ONEMAPPING);
4247 				if (old_entry->cred != NULL) {
4248 					KASSERT(object->cred == NULL,
4249 					    ("vmspace_fork both cred"));
4250 					object->cred = old_entry->cred;
4251 					object->charge = old_entry->end -
4252 					    old_entry->start;
4253 					old_entry->cred = NULL;
4254 				}
4255 
4256 				/*
4257 				 * Assert the correct state of the vnode
4258 				 * v_writecount while the object is locked, to
4259 				 * not relock it later for the assertion
4260 				 * correctness.
4261 				 */
4262 				if (old_entry->eflags & MAP_ENTRY_WRITECNT &&
4263 				    object->type == OBJT_VNODE) {
4264 					KASSERT(((struct vnode *)object->
4265 					    handle)->v_writecount > 0,
4266 					    ("vmspace_fork: v_writecount %p",
4267 					    object));
4268 					KASSERT(object->un_pager.vnp.
4269 					    writemappings > 0,
4270 					    ("vmspace_fork: vnp.writecount %p",
4271 					    object));
4272 				}
4273 				VM_OBJECT_WUNLOCK(object);
4274 			}
4275 
4276 			/*
4277 			 * Clone the entry, referencing the shared object.
4278 			 */
4279 			new_entry = vm_map_entry_create(new_map);
4280 			*new_entry = *old_entry;
4281 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
4282 			    MAP_ENTRY_IN_TRANSITION);
4283 			new_entry->wiring_thread = NULL;
4284 			new_entry->wired_count = 0;
4285 			if (new_entry->eflags & MAP_ENTRY_WRITECNT) {
4286 				vm_pager_update_writecount(object,
4287 				    new_entry->start, new_entry->end);
4288 			}
4289 			vm_map_entry_set_vnode_text(new_entry, true);
4290 
4291 			/*
4292 			 * Insert the entry into the new map -- we know we're
4293 			 * inserting at the end of the new map.
4294 			 */
4295 			vm_map_entry_link(new_map, new_entry);
4296 			vmspace_map_entry_forked(vm1, vm2, new_entry);
4297 
4298 			/*
4299 			 * Update the physical map
4300 			 */
4301 			pmap_copy(new_map->pmap, old_map->pmap,
4302 			    new_entry->start,
4303 			    (old_entry->end - old_entry->start),
4304 			    old_entry->start);
4305 			break;
4306 
4307 		case VM_INHERIT_COPY:
4308 			/*
4309 			 * Clone the entry and link into the map.
4310 			 */
4311 			new_entry = vm_map_entry_create(new_map);
4312 			*new_entry = *old_entry;
4313 			/*
4314 			 * Copied entry is COW over the old object.
4315 			 */
4316 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
4317 			    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_WRITECNT);
4318 			new_entry->wiring_thread = NULL;
4319 			new_entry->wired_count = 0;
4320 			new_entry->object.vm_object = NULL;
4321 			new_entry->cred = NULL;
4322 			vm_map_entry_link(new_map, new_entry);
4323 			vmspace_map_entry_forked(vm1, vm2, new_entry);
4324 			vm_map_copy_entry(old_map, new_map, old_entry,
4325 			    new_entry, fork_charge);
4326 			vm_map_entry_set_vnode_text(new_entry, true);
4327 			break;
4328 
4329 		case VM_INHERIT_ZERO:
4330 			/*
4331 			 * Create a new anonymous mapping entry modelled from
4332 			 * the old one.
4333 			 */
4334 			new_entry = vm_map_entry_create(new_map);
4335 			memset(new_entry, 0, sizeof(*new_entry));
4336 
4337 			new_entry->start = old_entry->start;
4338 			new_entry->end = old_entry->end;
4339 			new_entry->eflags = old_entry->eflags &
4340 			    ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION |
4341 			    MAP_ENTRY_WRITECNT | MAP_ENTRY_VN_EXEC |
4342 			    MAP_ENTRY_SPLIT_BOUNDARY_MASK);
4343 			new_entry->protection = old_entry->protection;
4344 			new_entry->max_protection = old_entry->max_protection;
4345 			new_entry->inheritance = VM_INHERIT_ZERO;
4346 
4347 			vm_map_entry_link(new_map, new_entry);
4348 			vmspace_map_entry_forked(vm1, vm2, new_entry);
4349 
4350 			new_entry->cred = curthread->td_ucred;
4351 			crhold(new_entry->cred);
4352 			*fork_charge += (new_entry->end - new_entry->start);
4353 
4354 			break;
4355 		}
4356 	}
4357 	/*
4358 	 * Use inlined vm_map_unlock() to postpone handling the deferred
4359 	 * map entries, which cannot be done until both old_map and
4360 	 * new_map locks are released.
4361 	 */
4362 	sx_xunlock(&old_map->lock);
4363 	sx_xunlock(&new_map->lock);
4364 	vm_map_process_deferred();
4365 
4366 	return (vm2);
4367 }
4368 
4369 /*
4370  * Create a process's stack for exec_new_vmspace().  This function is never
4371  * asked to wire the newly created stack.
4372  */
4373 int
4374 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4375     vm_prot_t prot, vm_prot_t max, int cow)
4376 {
4377 	vm_size_t growsize, init_ssize;
4378 	rlim_t vmemlim;
4379 	int rv;
4380 
4381 	MPASS((map->flags & MAP_WIREFUTURE) == 0);
4382 	growsize = sgrowsiz;
4383 	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
4384 	vm_map_lock(map);
4385 	vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4386 	/* If we would blow our VMEM resource limit, no go */
4387 	if (map->size + init_ssize > vmemlim) {
4388 		rv = KERN_NO_SPACE;
4389 		goto out;
4390 	}
4391 	rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
4392 	    max, cow);
4393 out:
4394 	vm_map_unlock(map);
4395 	return (rv);
4396 }
4397 
4398 static int stack_guard_page = 1;
4399 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
4400     &stack_guard_page, 0,
4401     "Specifies the number of guard pages for a stack that grows");
4402 
4403 static int
4404 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4405     vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
4406 {
4407 	vm_map_entry_t new_entry, prev_entry;
4408 	vm_offset_t bot, gap_bot, gap_top, top;
4409 	vm_size_t init_ssize, sgp;
4410 	int orient, rv;
4411 
4412 	/*
4413 	 * The stack orientation is piggybacked with the cow argument.
4414 	 * Extract it into orient and mask the cow argument so that we
4415 	 * don't pass it around further.
4416 	 */
4417 	orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP);
4418 	KASSERT(orient != 0, ("No stack grow direction"));
4419 	KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP),
4420 	    ("bi-dir stack"));
4421 
4422 	if (max_ssize == 0 ||
4423 	    !vm_map_range_valid(map, addrbos, addrbos + max_ssize))
4424 		return (KERN_INVALID_ADDRESS);
4425 	sgp = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ||
4426 	    (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 :
4427 	    (vm_size_t)stack_guard_page * PAGE_SIZE;
4428 	if (sgp >= max_ssize)
4429 		return (KERN_INVALID_ARGUMENT);
4430 
4431 	init_ssize = growsize;
4432 	if (max_ssize < init_ssize + sgp)
4433 		init_ssize = max_ssize - sgp;
4434 
4435 	/* If addr is already mapped, no go */
4436 	if (vm_map_lookup_entry(map, addrbos, &prev_entry))
4437 		return (KERN_NO_SPACE);
4438 
4439 	/*
4440 	 * If we can't accommodate max_ssize in the current mapping, no go.
4441 	 */
4442 	if (vm_map_entry_succ(prev_entry)->start < addrbos + max_ssize)
4443 		return (KERN_NO_SPACE);
4444 
4445 	/*
4446 	 * We initially map a stack of only init_ssize.  We will grow as
4447 	 * needed later.  Depending on the orientation of the stack (i.e.
4448 	 * the grow direction) we either map at the top of the range, the
4449 	 * bottom of the range or in the middle.
4450 	 *
4451 	 * Note: we would normally expect prot and max to be VM_PROT_ALL,
4452 	 * and cow to be 0.  Possibly we should eliminate these as input
4453 	 * parameters, and just pass these values here in the insert call.
4454 	 */
4455 	if (orient == MAP_STACK_GROWS_DOWN) {
4456 		bot = addrbos + max_ssize - init_ssize;
4457 		top = bot + init_ssize;
4458 		gap_bot = addrbos;
4459 		gap_top = bot;
4460 	} else /* if (orient == MAP_STACK_GROWS_UP) */ {
4461 		bot = addrbos;
4462 		top = bot + init_ssize;
4463 		gap_bot = top;
4464 		gap_top = addrbos + max_ssize;
4465 	}
4466 	rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
4467 	if (rv != KERN_SUCCESS)
4468 		return (rv);
4469 	new_entry = vm_map_entry_succ(prev_entry);
4470 	KASSERT(new_entry->end == top || new_entry->start == bot,
4471 	    ("Bad entry start/end for new stack entry"));
4472 	KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
4473 	    (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
4474 	    ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
4475 	KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
4476 	    (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
4477 	    ("new entry lacks MAP_ENTRY_GROWS_UP"));
4478 	if (gap_bot == gap_top)
4479 		return (KERN_SUCCESS);
4480 	rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE,
4481 	    VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ?
4482 	    MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP));
4483 	if (rv == KERN_SUCCESS) {
4484 		/*
4485 		 * Gap can never successfully handle a fault, so
4486 		 * read-ahead logic is never used for it.  Re-use
4487 		 * next_read of the gap entry to store
4488 		 * stack_guard_page for vm_map_growstack().
4489 		 */
4490 		if (orient == MAP_STACK_GROWS_DOWN)
4491 			vm_map_entry_pred(new_entry)->next_read = sgp;
4492 		else
4493 			vm_map_entry_succ(new_entry)->next_read = sgp;
4494 	} else {
4495 		(void)vm_map_delete(map, bot, top);
4496 	}
4497 	return (rv);
4498 }
4499 
4500 /*
4501  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if we
4502  * successfully grow the stack.
4503  */
4504 static int
4505 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry)
4506 {
4507 	vm_map_entry_t stack_entry;
4508 	struct proc *p;
4509 	struct vmspace *vm;
4510 	struct ucred *cred;
4511 	vm_offset_t gap_end, gap_start, grow_start;
4512 	vm_size_t grow_amount, guard, max_grow;
4513 	rlim_t lmemlim, stacklim, vmemlim;
4514 	int rv, rv1;
4515 	bool gap_deleted, grow_down, is_procstack;
4516 #ifdef notyet
4517 	uint64_t limit;
4518 #endif
4519 #ifdef RACCT
4520 	int error;
4521 #endif
4522 
4523 	p = curproc;
4524 	vm = p->p_vmspace;
4525 
4526 	/*
4527 	 * Disallow stack growth when the access is performed by a
4528 	 * debugger or AIO daemon.  The reason is that the wrong
4529 	 * resource limits are applied.
4530 	 */
4531 	if (p != initproc && (map != &p->p_vmspace->vm_map ||
4532 	    p->p_textvp == NULL))
4533 		return (KERN_FAILURE);
4534 
4535 	MPASS(!map->system_map);
4536 
4537 	lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
4538 	stacklim = lim_cur(curthread, RLIMIT_STACK);
4539 	vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4540 retry:
4541 	/* If addr is not in a hole for a stack grow area, no need to grow. */
4542 	if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry))
4543 		return (KERN_FAILURE);
4544 	if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0)
4545 		return (KERN_SUCCESS);
4546 	if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) {
4547 		stack_entry = vm_map_entry_succ(gap_entry);
4548 		if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 ||
4549 		    stack_entry->start != gap_entry->end)
4550 			return (KERN_FAILURE);
4551 		grow_amount = round_page(stack_entry->start - addr);
4552 		grow_down = true;
4553 	} else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) {
4554 		stack_entry = vm_map_entry_pred(gap_entry);
4555 		if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 ||
4556 		    stack_entry->end != gap_entry->start)
4557 			return (KERN_FAILURE);
4558 		grow_amount = round_page(addr + 1 - stack_entry->end);
4559 		grow_down = false;
4560 	} else {
4561 		return (KERN_FAILURE);
4562 	}
4563 	guard = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ||
4564 	    (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 :
4565 	    gap_entry->next_read;
4566 	max_grow = gap_entry->end - gap_entry->start;
4567 	if (guard > max_grow)
4568 		return (KERN_NO_SPACE);
4569 	max_grow -= guard;
4570 	if (grow_amount > max_grow)
4571 		return (KERN_NO_SPACE);
4572 
4573 	/*
4574 	 * If this is the main process stack, see if we're over the stack
4575 	 * limit.
4576 	 */
4577 	is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr &&
4578 	    addr < (vm_offset_t)p->p_sysent->sv_usrstack;
4579 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim))
4580 		return (KERN_NO_SPACE);
4581 
4582 #ifdef RACCT
4583 	if (racct_enable) {
4584 		PROC_LOCK(p);
4585 		if (is_procstack && racct_set(p, RACCT_STACK,
4586 		    ctob(vm->vm_ssize) + grow_amount)) {
4587 			PROC_UNLOCK(p);
4588 			return (KERN_NO_SPACE);
4589 		}
4590 		PROC_UNLOCK(p);
4591 	}
4592 #endif
4593 
4594 	grow_amount = roundup(grow_amount, sgrowsiz);
4595 	if (grow_amount > max_grow)
4596 		grow_amount = max_grow;
4597 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
4598 		grow_amount = trunc_page((vm_size_t)stacklim) -
4599 		    ctob(vm->vm_ssize);
4600 	}
4601 
4602 #ifdef notyet
4603 	PROC_LOCK(p);
4604 	limit = racct_get_available(p, RACCT_STACK);
4605 	PROC_UNLOCK(p);
4606 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
4607 		grow_amount = limit - ctob(vm->vm_ssize);
4608 #endif
4609 
4610 	if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) {
4611 		if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
4612 			rv = KERN_NO_SPACE;
4613 			goto out;
4614 		}
4615 #ifdef RACCT
4616 		if (racct_enable) {
4617 			PROC_LOCK(p);
4618 			if (racct_set(p, RACCT_MEMLOCK,
4619 			    ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
4620 				PROC_UNLOCK(p);
4621 				rv = KERN_NO_SPACE;
4622 				goto out;
4623 			}
4624 			PROC_UNLOCK(p);
4625 		}
4626 #endif
4627 	}
4628 
4629 	/* If we would blow our VMEM resource limit, no go */
4630 	if (map->size + grow_amount > vmemlim) {
4631 		rv = KERN_NO_SPACE;
4632 		goto out;
4633 	}
4634 #ifdef RACCT
4635 	if (racct_enable) {
4636 		PROC_LOCK(p);
4637 		if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
4638 			PROC_UNLOCK(p);
4639 			rv = KERN_NO_SPACE;
4640 			goto out;
4641 		}
4642 		PROC_UNLOCK(p);
4643 	}
4644 #endif
4645 
4646 	if (vm_map_lock_upgrade(map)) {
4647 		gap_entry = NULL;
4648 		vm_map_lock_read(map);
4649 		goto retry;
4650 	}
4651 
4652 	if (grow_down) {
4653 		grow_start = gap_entry->end - grow_amount;
4654 		if (gap_entry->start + grow_amount == gap_entry->end) {
4655 			gap_start = gap_entry->start;
4656 			gap_end = gap_entry->end;
4657 			vm_map_entry_delete(map, gap_entry);
4658 			gap_deleted = true;
4659 		} else {
4660 			MPASS(gap_entry->start < gap_entry->end - grow_amount);
4661 			vm_map_entry_resize(map, gap_entry, -grow_amount);
4662 			gap_deleted = false;
4663 		}
4664 		rv = vm_map_insert(map, NULL, 0, grow_start,
4665 		    grow_start + grow_amount,
4666 		    stack_entry->protection, stack_entry->max_protection,
4667 		    MAP_STACK_GROWS_DOWN);
4668 		if (rv != KERN_SUCCESS) {
4669 			if (gap_deleted) {
4670 				rv1 = vm_map_insert(map, NULL, 0, gap_start,
4671 				    gap_end, VM_PROT_NONE, VM_PROT_NONE,
4672 				    MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN);
4673 				MPASS(rv1 == KERN_SUCCESS);
4674 			} else
4675 				vm_map_entry_resize(map, gap_entry,
4676 				    grow_amount);
4677 		}
4678 	} else {
4679 		grow_start = stack_entry->end;
4680 		cred = stack_entry->cred;
4681 		if (cred == NULL && stack_entry->object.vm_object != NULL)
4682 			cred = stack_entry->object.vm_object->cred;
4683 		if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
4684 			rv = KERN_NO_SPACE;
4685 		/* Grow the underlying object if applicable. */
4686 		else if (stack_entry->object.vm_object == NULL ||
4687 		    vm_object_coalesce(stack_entry->object.vm_object,
4688 		    stack_entry->offset,
4689 		    (vm_size_t)(stack_entry->end - stack_entry->start),
4690 		    grow_amount, cred != NULL)) {
4691 			if (gap_entry->start + grow_amount == gap_entry->end) {
4692 				vm_map_entry_delete(map, gap_entry);
4693 				vm_map_entry_resize(map, stack_entry,
4694 				    grow_amount);
4695 			} else {
4696 				gap_entry->start += grow_amount;
4697 				stack_entry->end += grow_amount;
4698 			}
4699 			map->size += grow_amount;
4700 			rv = KERN_SUCCESS;
4701 		} else
4702 			rv = KERN_FAILURE;
4703 	}
4704 	if (rv == KERN_SUCCESS && is_procstack)
4705 		vm->vm_ssize += btoc(grow_amount);
4706 
4707 	/*
4708 	 * Heed the MAP_WIREFUTURE flag if it was set for this process.
4709 	 */
4710 	if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) {
4711 		rv = vm_map_wire_locked(map, grow_start,
4712 		    grow_start + grow_amount,
4713 		    VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
4714 	}
4715 	vm_map_lock_downgrade(map);
4716 
4717 out:
4718 #ifdef RACCT
4719 	if (racct_enable && rv != KERN_SUCCESS) {
4720 		PROC_LOCK(p);
4721 		error = racct_set(p, RACCT_VMEM, map->size);
4722 		KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
4723 		if (!old_mlock) {
4724 			error = racct_set(p, RACCT_MEMLOCK,
4725 			    ptoa(pmap_wired_count(map->pmap)));
4726 			KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
4727 		}
4728 	    	error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
4729 		KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
4730 		PROC_UNLOCK(p);
4731 	}
4732 #endif
4733 
4734 	return (rv);
4735 }
4736 
4737 /*
4738  * Unshare the specified VM space for exec.  If other processes are
4739  * mapped to it, then create a new one.  The new vmspace is null.
4740  */
4741 int
4742 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
4743 {
4744 	struct vmspace *oldvmspace = p->p_vmspace;
4745 	struct vmspace *newvmspace;
4746 
4747 	KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
4748 	    ("vmspace_exec recursed"));
4749 	newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit);
4750 	if (newvmspace == NULL)
4751 		return (ENOMEM);
4752 	newvmspace->vm_swrss = oldvmspace->vm_swrss;
4753 	/*
4754 	 * This code is written like this for prototype purposes.  The
4755 	 * goal is to avoid running down the vmspace here, but let the
4756 	 * other process's that are still using the vmspace to finally
4757 	 * run it down.  Even though there is little or no chance of blocking
4758 	 * here, it is a good idea to keep this form for future mods.
4759 	 */
4760 	PROC_VMSPACE_LOCK(p);
4761 	p->p_vmspace = newvmspace;
4762 	PROC_VMSPACE_UNLOCK(p);
4763 	if (p == curthread->td_proc)
4764 		pmap_activate(curthread);
4765 	curthread->td_pflags |= TDP_EXECVMSPC;
4766 	return (0);
4767 }
4768 
4769 /*
4770  * Unshare the specified VM space for forcing COW.  This
4771  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
4772  */
4773 int
4774 vmspace_unshare(struct proc *p)
4775 {
4776 	struct vmspace *oldvmspace = p->p_vmspace;
4777 	struct vmspace *newvmspace;
4778 	vm_ooffset_t fork_charge;
4779 
4780 	if (oldvmspace->vm_refcnt == 1)
4781 		return (0);
4782 	fork_charge = 0;
4783 	newvmspace = vmspace_fork(oldvmspace, &fork_charge);
4784 	if (newvmspace == NULL)
4785 		return (ENOMEM);
4786 	if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
4787 		vmspace_free(newvmspace);
4788 		return (ENOMEM);
4789 	}
4790 	PROC_VMSPACE_LOCK(p);
4791 	p->p_vmspace = newvmspace;
4792 	PROC_VMSPACE_UNLOCK(p);
4793 	if (p == curthread->td_proc)
4794 		pmap_activate(curthread);
4795 	vmspace_free(oldvmspace);
4796 	return (0);
4797 }
4798 
4799 /*
4800  *	vm_map_lookup:
4801  *
4802  *	Finds the VM object, offset, and
4803  *	protection for a given virtual address in the
4804  *	specified map, assuming a page fault of the
4805  *	type specified.
4806  *
4807  *	Leaves the map in question locked for read; return
4808  *	values are guaranteed until a vm_map_lookup_done
4809  *	call is performed.  Note that the map argument
4810  *	is in/out; the returned map must be used in
4811  *	the call to vm_map_lookup_done.
4812  *
4813  *	A handle (out_entry) is returned for use in
4814  *	vm_map_lookup_done, to make that fast.
4815  *
4816  *	If a lookup is requested with "write protection"
4817  *	specified, the map may be changed to perform virtual
4818  *	copying operations, although the data referenced will
4819  *	remain the same.
4820  */
4821 int
4822 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
4823 	      vm_offset_t vaddr,
4824 	      vm_prot_t fault_typea,
4825 	      vm_map_entry_t *out_entry,	/* OUT */
4826 	      vm_object_t *object,		/* OUT */
4827 	      vm_pindex_t *pindex,		/* OUT */
4828 	      vm_prot_t *out_prot,		/* OUT */
4829 	      boolean_t *wired)			/* OUT */
4830 {
4831 	vm_map_entry_t entry;
4832 	vm_map_t map = *var_map;
4833 	vm_prot_t prot;
4834 	vm_prot_t fault_type;
4835 	vm_object_t eobject;
4836 	vm_size_t size;
4837 	struct ucred *cred;
4838 
4839 RetryLookup:
4840 
4841 	vm_map_lock_read(map);
4842 
4843 RetryLookupLocked:
4844 	/*
4845 	 * Lookup the faulting address.
4846 	 */
4847 	if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
4848 		vm_map_unlock_read(map);
4849 		return (KERN_INVALID_ADDRESS);
4850 	}
4851 
4852 	entry = *out_entry;
4853 
4854 	/*
4855 	 * Handle submaps.
4856 	 */
4857 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4858 		vm_map_t old_map = map;
4859 
4860 		*var_map = map = entry->object.sub_map;
4861 		vm_map_unlock_read(old_map);
4862 		goto RetryLookup;
4863 	}
4864 
4865 	/*
4866 	 * Check whether this task is allowed to have this page.
4867 	 */
4868 	prot = entry->protection;
4869 	if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) {
4870 		fault_typea &= ~VM_PROT_FAULT_LOOKUP;
4871 		if (prot == VM_PROT_NONE && map != kernel_map &&
4872 		    (entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4873 		    (entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
4874 		    MAP_ENTRY_STACK_GAP_UP)) != 0 &&
4875 		    vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS)
4876 			goto RetryLookupLocked;
4877 	}
4878 	fault_type = fault_typea & VM_PROT_ALL;
4879 	if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
4880 		vm_map_unlock_read(map);
4881 		return (KERN_PROTECTION_FAILURE);
4882 	}
4883 	KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
4884 	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
4885 	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
4886 	    ("entry %p flags %x", entry, entry->eflags));
4887 	if ((fault_typea & VM_PROT_COPY) != 0 &&
4888 	    (entry->max_protection & VM_PROT_WRITE) == 0 &&
4889 	    (entry->eflags & MAP_ENTRY_COW) == 0) {
4890 		vm_map_unlock_read(map);
4891 		return (KERN_PROTECTION_FAILURE);
4892 	}
4893 
4894 	/*
4895 	 * If this page is not pageable, we have to get it for all possible
4896 	 * accesses.
4897 	 */
4898 	*wired = (entry->wired_count != 0);
4899 	if (*wired)
4900 		fault_type = entry->protection;
4901 	size = entry->end - entry->start;
4902 
4903 	/*
4904 	 * If the entry was copy-on-write, we either ...
4905 	 */
4906 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4907 		/*
4908 		 * If we want to write the page, we may as well handle that
4909 		 * now since we've got the map locked.
4910 		 *
4911 		 * If we don't need to write the page, we just demote the
4912 		 * permissions allowed.
4913 		 */
4914 		if ((fault_type & VM_PROT_WRITE) != 0 ||
4915 		    (fault_typea & VM_PROT_COPY) != 0) {
4916 			/*
4917 			 * Make a new object, and place it in the object
4918 			 * chain.  Note that no new references have appeared
4919 			 * -- one just moved from the map to the new
4920 			 * object.
4921 			 */
4922 			if (vm_map_lock_upgrade(map))
4923 				goto RetryLookup;
4924 
4925 			if (entry->cred == NULL) {
4926 				/*
4927 				 * The debugger owner is charged for
4928 				 * the memory.
4929 				 */
4930 				cred = curthread->td_ucred;
4931 				crhold(cred);
4932 				if (!swap_reserve_by_cred(size, cred)) {
4933 					crfree(cred);
4934 					vm_map_unlock(map);
4935 					return (KERN_RESOURCE_SHORTAGE);
4936 				}
4937 				entry->cred = cred;
4938 			}
4939 			eobject = entry->object.vm_object;
4940 			vm_object_shadow(&entry->object.vm_object,
4941 			    &entry->offset, size, entry->cred, false);
4942 			if (eobject == entry->object.vm_object) {
4943 				/*
4944 				 * The object was not shadowed.
4945 				 */
4946 				swap_release_by_cred(size, entry->cred);
4947 				crfree(entry->cred);
4948 			}
4949 			entry->cred = NULL;
4950 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4951 
4952 			vm_map_lock_downgrade(map);
4953 		} else {
4954 			/*
4955 			 * We're attempting to read a copy-on-write page --
4956 			 * don't allow writes.
4957 			 */
4958 			prot &= ~VM_PROT_WRITE;
4959 		}
4960 	}
4961 
4962 	/*
4963 	 * Create an object if necessary.
4964 	 */
4965 	if (entry->object.vm_object == NULL && !map->system_map) {
4966 		if (vm_map_lock_upgrade(map))
4967 			goto RetryLookup;
4968 		entry->object.vm_object = vm_object_allocate_anon(atop(size),
4969 		    NULL, entry->cred, entry->cred != NULL ? size : 0);
4970 		entry->offset = 0;
4971 		entry->cred = NULL;
4972 		vm_map_lock_downgrade(map);
4973 	}
4974 
4975 	/*
4976 	 * Return the object/offset from this entry.  If the entry was
4977 	 * copy-on-write or empty, it has been fixed up.
4978 	 */
4979 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4980 	*object = entry->object.vm_object;
4981 
4982 	*out_prot = prot;
4983 	return (KERN_SUCCESS);
4984 }
4985 
4986 /*
4987  *	vm_map_lookup_locked:
4988  *
4989  *	Lookup the faulting address.  A version of vm_map_lookup that returns
4990  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
4991  */
4992 int
4993 vm_map_lookup_locked(vm_map_t *var_map,		/* IN/OUT */
4994 		     vm_offset_t vaddr,
4995 		     vm_prot_t fault_typea,
4996 		     vm_map_entry_t *out_entry,	/* OUT */
4997 		     vm_object_t *object,	/* OUT */
4998 		     vm_pindex_t *pindex,	/* OUT */
4999 		     vm_prot_t *out_prot,	/* OUT */
5000 		     boolean_t *wired)		/* OUT */
5001 {
5002 	vm_map_entry_t entry;
5003 	vm_map_t map = *var_map;
5004 	vm_prot_t prot;
5005 	vm_prot_t fault_type = fault_typea;
5006 
5007 	/*
5008 	 * Lookup the faulting address.
5009 	 */
5010 	if (!vm_map_lookup_entry(map, vaddr, out_entry))
5011 		return (KERN_INVALID_ADDRESS);
5012 
5013 	entry = *out_entry;
5014 
5015 	/*
5016 	 * Fail if the entry refers to a submap.
5017 	 */
5018 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
5019 		return (KERN_FAILURE);
5020 
5021 	/*
5022 	 * Check whether this task is allowed to have this page.
5023 	 */
5024 	prot = entry->protection;
5025 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
5026 	if ((fault_type & prot) != fault_type)
5027 		return (KERN_PROTECTION_FAILURE);
5028 
5029 	/*
5030 	 * If this page is not pageable, we have to get it for all possible
5031 	 * accesses.
5032 	 */
5033 	*wired = (entry->wired_count != 0);
5034 	if (*wired)
5035 		fault_type = entry->protection;
5036 
5037 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
5038 		/*
5039 		 * Fail if the entry was copy-on-write for a write fault.
5040 		 */
5041 		if (fault_type & VM_PROT_WRITE)
5042 			return (KERN_FAILURE);
5043 		/*
5044 		 * We're attempting to read a copy-on-write page --
5045 		 * don't allow writes.
5046 		 */
5047 		prot &= ~VM_PROT_WRITE;
5048 	}
5049 
5050 	/*
5051 	 * Fail if an object should be created.
5052 	 */
5053 	if (entry->object.vm_object == NULL && !map->system_map)
5054 		return (KERN_FAILURE);
5055 
5056 	/*
5057 	 * Return the object/offset from this entry.  If the entry was
5058 	 * copy-on-write or empty, it has been fixed up.
5059 	 */
5060 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
5061 	*object = entry->object.vm_object;
5062 
5063 	*out_prot = prot;
5064 	return (KERN_SUCCESS);
5065 }
5066 
5067 /*
5068  *	vm_map_lookup_done:
5069  *
5070  *	Releases locks acquired by a vm_map_lookup
5071  *	(according to the handle returned by that lookup).
5072  */
5073 void
5074 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
5075 {
5076 	/*
5077 	 * Unlock the main-level map
5078 	 */
5079 	vm_map_unlock_read(map);
5080 }
5081 
5082 vm_offset_t
5083 vm_map_max_KBI(const struct vm_map *map)
5084 {
5085 
5086 	return (vm_map_max(map));
5087 }
5088 
5089 vm_offset_t
5090 vm_map_min_KBI(const struct vm_map *map)
5091 {
5092 
5093 	return (vm_map_min(map));
5094 }
5095 
5096 pmap_t
5097 vm_map_pmap_KBI(vm_map_t map)
5098 {
5099 
5100 	return (map->pmap);
5101 }
5102 
5103 bool
5104 vm_map_range_valid_KBI(vm_map_t map, vm_offset_t start, vm_offset_t end)
5105 {
5106 
5107 	return (vm_map_range_valid(map, start, end));
5108 }
5109 
5110 #ifdef INVARIANTS
5111 static void
5112 _vm_map_assert_consistent(vm_map_t map, int check)
5113 {
5114 	vm_map_entry_t entry, prev;
5115 	vm_map_entry_t cur, header, lbound, ubound;
5116 	vm_size_t max_left, max_right;
5117 
5118 #ifdef DIAGNOSTIC
5119 	++map->nupdates;
5120 #endif
5121 	if (enable_vmmap_check != check)
5122 		return;
5123 
5124 	header = prev = &map->header;
5125 	VM_MAP_ENTRY_FOREACH(entry, map) {
5126 		KASSERT(prev->end <= entry->start,
5127 		    ("map %p prev->end = %jx, start = %jx", map,
5128 		    (uintmax_t)prev->end, (uintmax_t)entry->start));
5129 		KASSERT(entry->start < entry->end,
5130 		    ("map %p start = %jx, end = %jx", map,
5131 		    (uintmax_t)entry->start, (uintmax_t)entry->end));
5132 		KASSERT(entry->left == header ||
5133 		    entry->left->start < entry->start,
5134 		    ("map %p left->start = %jx, start = %jx", map,
5135 		    (uintmax_t)entry->left->start, (uintmax_t)entry->start));
5136 		KASSERT(entry->right == header ||
5137 		    entry->start < entry->right->start,
5138 		    ("map %p start = %jx, right->start = %jx", map,
5139 		    (uintmax_t)entry->start, (uintmax_t)entry->right->start));
5140 		cur = map->root;
5141 		lbound = ubound = header;
5142 		for (;;) {
5143 			if (entry->start < cur->start) {
5144 				ubound = cur;
5145 				cur = cur->left;
5146 				KASSERT(cur != lbound,
5147 				    ("map %p cannot find %jx",
5148 				    map, (uintmax_t)entry->start));
5149 			} else if (cur->end <= entry->start) {
5150 				lbound = cur;
5151 				cur = cur->right;
5152 				KASSERT(cur != ubound,
5153 				    ("map %p cannot find %jx",
5154 				    map, (uintmax_t)entry->start));
5155 			} else {
5156 				KASSERT(cur == entry,
5157 				    ("map %p cannot find %jx",
5158 				    map, (uintmax_t)entry->start));
5159 				break;
5160 			}
5161 		}
5162 		max_left = vm_map_entry_max_free_left(entry, lbound);
5163 		max_right = vm_map_entry_max_free_right(entry, ubound);
5164 		KASSERT(entry->max_free == vm_size_max(max_left, max_right),
5165 		    ("map %p max = %jx, max_left = %jx, max_right = %jx", map,
5166 		    (uintmax_t)entry->max_free,
5167 		    (uintmax_t)max_left, (uintmax_t)max_right));
5168 		prev = entry;
5169 	}
5170 	KASSERT(prev->end <= entry->start,
5171 	    ("map %p prev->end = %jx, start = %jx", map,
5172 	    (uintmax_t)prev->end, (uintmax_t)entry->start));
5173 }
5174 #endif
5175 
5176 #include "opt_ddb.h"
5177 #ifdef DDB
5178 #include <sys/kernel.h>
5179 
5180 #include <ddb/ddb.h>
5181 
5182 static void
5183 vm_map_print(vm_map_t map)
5184 {
5185 	vm_map_entry_t entry, prev;
5186 
5187 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
5188 	    (void *)map,
5189 	    (void *)map->pmap, map->nentries, map->timestamp);
5190 
5191 	db_indent += 2;
5192 	prev = &map->header;
5193 	VM_MAP_ENTRY_FOREACH(entry, map) {
5194 		db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n",
5195 		    (void *)entry, (void *)entry->start, (void *)entry->end,
5196 		    entry->eflags);
5197 		{
5198 			static const char * const inheritance_name[4] =
5199 			{"share", "copy", "none", "donate_copy"};
5200 
5201 			db_iprintf(" prot=%x/%x/%s",
5202 			    entry->protection,
5203 			    entry->max_protection,
5204 			    inheritance_name[(int)(unsigned char)
5205 			    entry->inheritance]);
5206 			if (entry->wired_count != 0)
5207 				db_printf(", wired");
5208 		}
5209 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
5210 			db_printf(", share=%p, offset=0x%jx\n",
5211 			    (void *)entry->object.sub_map,
5212 			    (uintmax_t)entry->offset);
5213 			if (prev == &map->header ||
5214 			    prev->object.sub_map !=
5215 				entry->object.sub_map) {
5216 				db_indent += 2;
5217 				vm_map_print((vm_map_t)entry->object.sub_map);
5218 				db_indent -= 2;
5219 			}
5220 		} else {
5221 			if (entry->cred != NULL)
5222 				db_printf(", ruid %d", entry->cred->cr_ruid);
5223 			db_printf(", object=%p, offset=0x%jx",
5224 			    (void *)entry->object.vm_object,
5225 			    (uintmax_t)entry->offset);
5226 			if (entry->object.vm_object && entry->object.vm_object->cred)
5227 				db_printf(", obj ruid %d charge %jx",
5228 				    entry->object.vm_object->cred->cr_ruid,
5229 				    (uintmax_t)entry->object.vm_object->charge);
5230 			if (entry->eflags & MAP_ENTRY_COW)
5231 				db_printf(", copy (%s)",
5232 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
5233 			db_printf("\n");
5234 
5235 			if (prev == &map->header ||
5236 			    prev->object.vm_object !=
5237 				entry->object.vm_object) {
5238 				db_indent += 2;
5239 				vm_object_print((db_expr_t)(intptr_t)
5240 						entry->object.vm_object,
5241 						0, 0, (char *)0);
5242 				db_indent -= 2;
5243 			}
5244 		}
5245 		prev = entry;
5246 	}
5247 	db_indent -= 2;
5248 }
5249 
5250 DB_SHOW_COMMAND(map, map)
5251 {
5252 
5253 	if (!have_addr) {
5254 		db_printf("usage: show map <addr>\n");
5255 		return;
5256 	}
5257 	vm_map_print((vm_map_t)addr);
5258 }
5259 
5260 DB_SHOW_COMMAND(procvm, procvm)
5261 {
5262 	struct proc *p;
5263 
5264 	if (have_addr) {
5265 		p = db_lookup_proc(addr);
5266 	} else {
5267 		p = curproc;
5268 	}
5269 
5270 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
5271 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
5272 	    (void *)vmspace_pmap(p->p_vmspace));
5273 
5274 	vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
5275 }
5276 
5277 #endif /* DDB */
5278