1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 */ 60 61 /* 62 * Virtual memory mapping module. 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include <sys/param.h> 69 #include <sys/systm.h> 70 #include <sys/kernel.h> 71 #include <sys/ktr.h> 72 #include <sys/lock.h> 73 #include <sys/mutex.h> 74 #include <sys/proc.h> 75 #include <sys/vmmeter.h> 76 #include <sys/mman.h> 77 #include <sys/vnode.h> 78 #include <sys/racct.h> 79 #include <sys/resourcevar.h> 80 #include <sys/rwlock.h> 81 #include <sys/file.h> 82 #include <sys/sysctl.h> 83 #include <sys/sysent.h> 84 #include <sys/shm.h> 85 86 #include <vm/vm.h> 87 #include <vm/vm_param.h> 88 #include <vm/pmap.h> 89 #include <vm/vm_map.h> 90 #include <vm/vm_page.h> 91 #include <vm/vm_object.h> 92 #include <vm/vm_pager.h> 93 #include <vm/vm_kern.h> 94 #include <vm/vm_extern.h> 95 #include <vm/vnode_pager.h> 96 #include <vm/swap_pager.h> 97 #include <vm/uma.h> 98 99 /* 100 * Virtual memory maps provide for the mapping, protection, 101 * and sharing of virtual memory objects. In addition, 102 * this module provides for an efficient virtual copy of 103 * memory from one map to another. 104 * 105 * Synchronization is required prior to most operations. 106 * 107 * Maps consist of an ordered doubly-linked list of simple 108 * entries; a self-adjusting binary search tree of these 109 * entries is used to speed up lookups. 110 * 111 * Since portions of maps are specified by start/end addresses, 112 * which may not align with existing map entries, all 113 * routines merely "clip" entries to these start/end values. 114 * [That is, an entry is split into two, bordering at a 115 * start or end value.] Note that these clippings may not 116 * always be necessary (as the two resulting entries are then 117 * not changed); however, the clipping is done for convenience. 118 * 119 * As mentioned above, virtual copy operations are performed 120 * by copying VM object references from one map to 121 * another, and then marking both regions as copy-on-write. 122 */ 123 124 static struct mtx map_sleep_mtx; 125 static uma_zone_t mapentzone; 126 static uma_zone_t kmapentzone; 127 static uma_zone_t mapzone; 128 static uma_zone_t vmspace_zone; 129 static int vmspace_zinit(void *mem, int size, int flags); 130 static void vmspace_zfini(void *mem, int size); 131 static int vm_map_zinit(void *mem, int ize, int flags); 132 static void vm_map_zfini(void *mem, int size); 133 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, 134 vm_offset_t max); 135 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map); 136 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry); 137 #ifdef INVARIANTS 138 static void vm_map_zdtor(void *mem, int size, void *arg); 139 static void vmspace_zdtor(void *mem, int size, void *arg); 140 #endif 141 142 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \ 143 ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \ 144 !((e)->eflags & MAP_ENTRY_NEEDS_COPY))) 145 146 /* 147 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type 148 * stable. 149 */ 150 #define PROC_VMSPACE_LOCK(p) do { } while (0) 151 #define PROC_VMSPACE_UNLOCK(p) do { } while (0) 152 153 /* 154 * VM_MAP_RANGE_CHECK: [ internal use only ] 155 * 156 * Asserts that the starting and ending region 157 * addresses fall within the valid range of the map. 158 */ 159 #define VM_MAP_RANGE_CHECK(map, start, end) \ 160 { \ 161 if (start < vm_map_min(map)) \ 162 start = vm_map_min(map); \ 163 if (end > vm_map_max(map)) \ 164 end = vm_map_max(map); \ 165 if (start > end) \ 166 start = end; \ 167 } 168 169 /* 170 * vm_map_startup: 171 * 172 * Initialize the vm_map module. Must be called before 173 * any other vm_map routines. 174 * 175 * Map and entry structures are allocated from the general 176 * purpose memory pool with some exceptions: 177 * 178 * - The kernel map and kmem submap are allocated statically. 179 * - Kernel map entries are allocated out of a static pool. 180 * 181 * These restrictions are necessary since malloc() uses the 182 * maps and requires map entries. 183 */ 184 185 void 186 vm_map_startup(void) 187 { 188 mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF); 189 mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL, 190 #ifdef INVARIANTS 191 vm_map_zdtor, 192 #else 193 NULL, 194 #endif 195 vm_map_zinit, vm_map_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 196 uma_prealloc(mapzone, MAX_KMAP); 197 kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry), 198 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 199 UMA_ZONE_MTXCLASS | UMA_ZONE_VM); 200 mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry), 201 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 202 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL, 203 #ifdef INVARIANTS 204 vmspace_zdtor, 205 #else 206 NULL, 207 #endif 208 vmspace_zinit, vmspace_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 209 } 210 211 static void 212 vmspace_zfini(void *mem, int size) 213 { 214 struct vmspace *vm; 215 216 vm = (struct vmspace *)mem; 217 vm_map_zfini(&vm->vm_map, sizeof(vm->vm_map)); 218 } 219 220 static int 221 vmspace_zinit(void *mem, int size, int flags) 222 { 223 struct vmspace *vm; 224 225 vm = (struct vmspace *)mem; 226 227 vm->vm_map.pmap = NULL; 228 (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags); 229 return (0); 230 } 231 232 static void 233 vm_map_zfini(void *mem, int size) 234 { 235 vm_map_t map; 236 237 map = (vm_map_t)mem; 238 mtx_destroy(&map->system_mtx); 239 sx_destroy(&map->lock); 240 } 241 242 static int 243 vm_map_zinit(void *mem, int size, int flags) 244 { 245 vm_map_t map; 246 247 map = (vm_map_t)mem; 248 memset(map, 0, sizeof(*map)); 249 mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK); 250 sx_init(&map->lock, "vm map (user)"); 251 return (0); 252 } 253 254 #ifdef INVARIANTS 255 static void 256 vmspace_zdtor(void *mem, int size, void *arg) 257 { 258 struct vmspace *vm; 259 260 vm = (struct vmspace *)mem; 261 262 vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg); 263 } 264 static void 265 vm_map_zdtor(void *mem, int size, void *arg) 266 { 267 vm_map_t map; 268 269 map = (vm_map_t)mem; 270 KASSERT(map->nentries == 0, 271 ("map %p nentries == %d on free.", 272 map, map->nentries)); 273 KASSERT(map->size == 0, 274 ("map %p size == %lu on free.", 275 map, (unsigned long)map->size)); 276 } 277 #endif /* INVARIANTS */ 278 279 /* 280 * Allocate a vmspace structure, including a vm_map and pmap, 281 * and initialize those structures. The refcnt is set to 1. 282 */ 283 struct vmspace * 284 vmspace_alloc(min, max) 285 vm_offset_t min, max; 286 { 287 struct vmspace *vm; 288 289 vm = uma_zalloc(vmspace_zone, M_WAITOK); 290 if (vm->vm_map.pmap == NULL && !pmap_pinit(vmspace_pmap(vm))) { 291 uma_zfree(vmspace_zone, vm); 292 return (NULL); 293 } 294 CTR1(KTR_VM, "vmspace_alloc: %p", vm); 295 _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max); 296 vm->vm_refcnt = 1; 297 vm->vm_shm = NULL; 298 vm->vm_swrss = 0; 299 vm->vm_tsize = 0; 300 vm->vm_dsize = 0; 301 vm->vm_ssize = 0; 302 vm->vm_taddr = 0; 303 vm->vm_daddr = 0; 304 vm->vm_maxsaddr = 0; 305 return (vm); 306 } 307 308 static void 309 vmspace_container_reset(struct proc *p) 310 { 311 312 #ifdef RACCT 313 PROC_LOCK(p); 314 racct_set(p, RACCT_DATA, 0); 315 racct_set(p, RACCT_STACK, 0); 316 racct_set(p, RACCT_RSS, 0); 317 racct_set(p, RACCT_MEMLOCK, 0); 318 racct_set(p, RACCT_VMEM, 0); 319 PROC_UNLOCK(p); 320 #endif 321 } 322 323 static inline void 324 vmspace_dofree(struct vmspace *vm) 325 { 326 327 CTR1(KTR_VM, "vmspace_free: %p", vm); 328 329 /* 330 * Make sure any SysV shm is freed, it might not have been in 331 * exit1(). 332 */ 333 shmexit(vm); 334 335 /* 336 * Lock the map, to wait out all other references to it. 337 * Delete all of the mappings and pages they hold, then call 338 * the pmap module to reclaim anything left. 339 */ 340 (void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset, 341 vm->vm_map.max_offset); 342 343 pmap_release(vmspace_pmap(vm)); 344 vm->vm_map.pmap = NULL; 345 uma_zfree(vmspace_zone, vm); 346 } 347 348 void 349 vmspace_free(struct vmspace *vm) 350 { 351 352 if (vm->vm_refcnt == 0) 353 panic("vmspace_free: attempt to free already freed vmspace"); 354 355 if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1) 356 vmspace_dofree(vm); 357 } 358 359 void 360 vmspace_exitfree(struct proc *p) 361 { 362 struct vmspace *vm; 363 364 PROC_VMSPACE_LOCK(p); 365 vm = p->p_vmspace; 366 p->p_vmspace = NULL; 367 PROC_VMSPACE_UNLOCK(p); 368 KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace")); 369 vmspace_free(vm); 370 } 371 372 void 373 vmspace_exit(struct thread *td) 374 { 375 int refcnt; 376 struct vmspace *vm; 377 struct proc *p; 378 379 /* 380 * Release user portion of address space. 381 * This releases references to vnodes, 382 * which could cause I/O if the file has been unlinked. 383 * Need to do this early enough that we can still sleep. 384 * 385 * The last exiting process to reach this point releases as 386 * much of the environment as it can. vmspace_dofree() is the 387 * slower fallback in case another process had a temporary 388 * reference to the vmspace. 389 */ 390 391 p = td->td_proc; 392 vm = p->p_vmspace; 393 atomic_add_int(&vmspace0.vm_refcnt, 1); 394 do { 395 refcnt = vm->vm_refcnt; 396 if (refcnt > 1 && p->p_vmspace != &vmspace0) { 397 /* Switch now since other proc might free vmspace */ 398 PROC_VMSPACE_LOCK(p); 399 p->p_vmspace = &vmspace0; 400 PROC_VMSPACE_UNLOCK(p); 401 pmap_activate(td); 402 } 403 } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1)); 404 if (refcnt == 1) { 405 if (p->p_vmspace != vm) { 406 /* vmspace not yet freed, switch back */ 407 PROC_VMSPACE_LOCK(p); 408 p->p_vmspace = vm; 409 PROC_VMSPACE_UNLOCK(p); 410 pmap_activate(td); 411 } 412 pmap_remove_pages(vmspace_pmap(vm)); 413 /* Switch now since this proc will free vmspace */ 414 PROC_VMSPACE_LOCK(p); 415 p->p_vmspace = &vmspace0; 416 PROC_VMSPACE_UNLOCK(p); 417 pmap_activate(td); 418 vmspace_dofree(vm); 419 } 420 vmspace_container_reset(p); 421 } 422 423 /* Acquire reference to vmspace owned by another process. */ 424 425 struct vmspace * 426 vmspace_acquire_ref(struct proc *p) 427 { 428 struct vmspace *vm; 429 int refcnt; 430 431 PROC_VMSPACE_LOCK(p); 432 vm = p->p_vmspace; 433 if (vm == NULL) { 434 PROC_VMSPACE_UNLOCK(p); 435 return (NULL); 436 } 437 do { 438 refcnt = vm->vm_refcnt; 439 if (refcnt <= 0) { /* Avoid 0->1 transition */ 440 PROC_VMSPACE_UNLOCK(p); 441 return (NULL); 442 } 443 } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1)); 444 if (vm != p->p_vmspace) { 445 PROC_VMSPACE_UNLOCK(p); 446 vmspace_free(vm); 447 return (NULL); 448 } 449 PROC_VMSPACE_UNLOCK(p); 450 return (vm); 451 } 452 453 void 454 _vm_map_lock(vm_map_t map, const char *file, int line) 455 { 456 457 if (map->system_map) 458 mtx_lock_flags_(&map->system_mtx, 0, file, line); 459 else 460 sx_xlock_(&map->lock, file, line); 461 map->timestamp++; 462 } 463 464 static void 465 vm_map_process_deferred(void) 466 { 467 struct thread *td; 468 vm_map_entry_t entry, next; 469 vm_object_t object; 470 471 td = curthread; 472 entry = td->td_map_def_user; 473 td->td_map_def_user = NULL; 474 while (entry != NULL) { 475 next = entry->next; 476 if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) { 477 /* 478 * Decrement the object's writemappings and 479 * possibly the vnode's v_writecount. 480 */ 481 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 482 ("Submap with writecount")); 483 object = entry->object.vm_object; 484 KASSERT(object != NULL, ("No object for writecount")); 485 vnode_pager_release_writecount(object, entry->start, 486 entry->end); 487 } 488 vm_map_entry_deallocate(entry, FALSE); 489 entry = next; 490 } 491 } 492 493 void 494 _vm_map_unlock(vm_map_t map, const char *file, int line) 495 { 496 497 if (map->system_map) 498 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 499 else { 500 sx_xunlock_(&map->lock, file, line); 501 vm_map_process_deferred(); 502 } 503 } 504 505 void 506 _vm_map_lock_read(vm_map_t map, const char *file, int line) 507 { 508 509 if (map->system_map) 510 mtx_lock_flags_(&map->system_mtx, 0, file, line); 511 else 512 sx_slock_(&map->lock, file, line); 513 } 514 515 void 516 _vm_map_unlock_read(vm_map_t map, const char *file, int line) 517 { 518 519 if (map->system_map) 520 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 521 else { 522 sx_sunlock_(&map->lock, file, line); 523 vm_map_process_deferred(); 524 } 525 } 526 527 int 528 _vm_map_trylock(vm_map_t map, const char *file, int line) 529 { 530 int error; 531 532 error = map->system_map ? 533 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 534 !sx_try_xlock_(&map->lock, file, line); 535 if (error == 0) 536 map->timestamp++; 537 return (error == 0); 538 } 539 540 int 541 _vm_map_trylock_read(vm_map_t map, const char *file, int line) 542 { 543 int error; 544 545 error = map->system_map ? 546 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 547 !sx_try_slock_(&map->lock, file, line); 548 return (error == 0); 549 } 550 551 /* 552 * _vm_map_lock_upgrade: [ internal use only ] 553 * 554 * Tries to upgrade a read (shared) lock on the specified map to a write 555 * (exclusive) lock. Returns the value "0" if the upgrade succeeds and a 556 * non-zero value if the upgrade fails. If the upgrade fails, the map is 557 * returned without a read or write lock held. 558 * 559 * Requires that the map be read locked. 560 */ 561 int 562 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line) 563 { 564 unsigned int last_timestamp; 565 566 if (map->system_map) { 567 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 568 } else { 569 if (!sx_try_upgrade_(&map->lock, file, line)) { 570 last_timestamp = map->timestamp; 571 sx_sunlock_(&map->lock, file, line); 572 vm_map_process_deferred(); 573 /* 574 * If the map's timestamp does not change while the 575 * map is unlocked, then the upgrade succeeds. 576 */ 577 sx_xlock_(&map->lock, file, line); 578 if (last_timestamp != map->timestamp) { 579 sx_xunlock_(&map->lock, file, line); 580 return (1); 581 } 582 } 583 } 584 map->timestamp++; 585 return (0); 586 } 587 588 void 589 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line) 590 { 591 592 if (map->system_map) { 593 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 594 } else 595 sx_downgrade_(&map->lock, file, line); 596 } 597 598 /* 599 * vm_map_locked: 600 * 601 * Returns a non-zero value if the caller holds a write (exclusive) lock 602 * on the specified map and the value "0" otherwise. 603 */ 604 int 605 vm_map_locked(vm_map_t map) 606 { 607 608 if (map->system_map) 609 return (mtx_owned(&map->system_mtx)); 610 else 611 return (sx_xlocked(&map->lock)); 612 } 613 614 #ifdef INVARIANTS 615 static void 616 _vm_map_assert_locked(vm_map_t map, const char *file, int line) 617 { 618 619 if (map->system_map) 620 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 621 else 622 sx_assert_(&map->lock, SA_XLOCKED, file, line); 623 } 624 625 #define VM_MAP_ASSERT_LOCKED(map) \ 626 _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE) 627 #else 628 #define VM_MAP_ASSERT_LOCKED(map) 629 #endif 630 631 /* 632 * _vm_map_unlock_and_wait: 633 * 634 * Atomically releases the lock on the specified map and puts the calling 635 * thread to sleep. The calling thread will remain asleep until either 636 * vm_map_wakeup() is performed on the map or the specified timeout is 637 * exceeded. 638 * 639 * WARNING! This function does not perform deferred deallocations of 640 * objects and map entries. Therefore, the calling thread is expected to 641 * reacquire the map lock after reawakening and later perform an ordinary 642 * unlock operation, such as vm_map_unlock(), before completing its 643 * operation on the map. 644 */ 645 int 646 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line) 647 { 648 649 mtx_lock(&map_sleep_mtx); 650 if (map->system_map) 651 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 652 else 653 sx_xunlock_(&map->lock, file, line); 654 return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps", 655 timo)); 656 } 657 658 /* 659 * vm_map_wakeup: 660 * 661 * Awaken any threads that have slept on the map using 662 * vm_map_unlock_and_wait(). 663 */ 664 void 665 vm_map_wakeup(vm_map_t map) 666 { 667 668 /* 669 * Acquire and release map_sleep_mtx to prevent a wakeup() 670 * from being performed (and lost) between the map unlock 671 * and the msleep() in _vm_map_unlock_and_wait(). 672 */ 673 mtx_lock(&map_sleep_mtx); 674 mtx_unlock(&map_sleep_mtx); 675 wakeup(&map->root); 676 } 677 678 void 679 vm_map_busy(vm_map_t map) 680 { 681 682 VM_MAP_ASSERT_LOCKED(map); 683 map->busy++; 684 } 685 686 void 687 vm_map_unbusy(vm_map_t map) 688 { 689 690 VM_MAP_ASSERT_LOCKED(map); 691 KASSERT(map->busy, ("vm_map_unbusy: not busy")); 692 if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) { 693 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP); 694 wakeup(&map->busy); 695 } 696 } 697 698 void 699 vm_map_wait_busy(vm_map_t map) 700 { 701 702 VM_MAP_ASSERT_LOCKED(map); 703 while (map->busy) { 704 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0); 705 if (map->system_map) 706 msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0); 707 else 708 sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0); 709 } 710 map->timestamp++; 711 } 712 713 long 714 vmspace_resident_count(struct vmspace *vmspace) 715 { 716 return pmap_resident_count(vmspace_pmap(vmspace)); 717 } 718 719 /* 720 * vm_map_create: 721 * 722 * Creates and returns a new empty VM map with 723 * the given physical map structure, and having 724 * the given lower and upper address bounds. 725 */ 726 vm_map_t 727 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max) 728 { 729 vm_map_t result; 730 731 result = uma_zalloc(mapzone, M_WAITOK); 732 CTR1(KTR_VM, "vm_map_create: %p", result); 733 _vm_map_init(result, pmap, min, max); 734 return (result); 735 } 736 737 /* 738 * Initialize an existing vm_map structure 739 * such as that in the vmspace structure. 740 */ 741 static void 742 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 743 { 744 745 map->header.next = map->header.prev = &map->header; 746 map->needs_wakeup = FALSE; 747 map->system_map = 0; 748 map->pmap = pmap; 749 map->min_offset = min; 750 map->max_offset = max; 751 map->flags = 0; 752 map->root = NULL; 753 map->timestamp = 0; 754 map->busy = 0; 755 } 756 757 void 758 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 759 { 760 761 _vm_map_init(map, pmap, min, max); 762 mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK); 763 sx_init(&map->lock, "user map"); 764 } 765 766 /* 767 * vm_map_entry_dispose: [ internal use only ] 768 * 769 * Inverse of vm_map_entry_create. 770 */ 771 static void 772 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry) 773 { 774 uma_zfree(map->system_map ? kmapentzone : mapentzone, entry); 775 } 776 777 /* 778 * vm_map_entry_create: [ internal use only ] 779 * 780 * Allocates a VM map entry for insertion. 781 * No entry fields are filled in. 782 */ 783 static vm_map_entry_t 784 vm_map_entry_create(vm_map_t map) 785 { 786 vm_map_entry_t new_entry; 787 788 if (map->system_map) 789 new_entry = uma_zalloc(kmapentzone, M_NOWAIT); 790 else 791 new_entry = uma_zalloc(mapentzone, M_WAITOK); 792 if (new_entry == NULL) 793 panic("vm_map_entry_create: kernel resources exhausted"); 794 return (new_entry); 795 } 796 797 /* 798 * vm_map_entry_set_behavior: 799 * 800 * Set the expected access behavior, either normal, random, or 801 * sequential. 802 */ 803 static inline void 804 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior) 805 { 806 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) | 807 (behavior & MAP_ENTRY_BEHAV_MASK); 808 } 809 810 /* 811 * vm_map_entry_set_max_free: 812 * 813 * Set the max_free field in a vm_map_entry. 814 */ 815 static inline void 816 vm_map_entry_set_max_free(vm_map_entry_t entry) 817 { 818 819 entry->max_free = entry->adj_free; 820 if (entry->left != NULL && entry->left->max_free > entry->max_free) 821 entry->max_free = entry->left->max_free; 822 if (entry->right != NULL && entry->right->max_free > entry->max_free) 823 entry->max_free = entry->right->max_free; 824 } 825 826 /* 827 * vm_map_entry_splay: 828 * 829 * The Sleator and Tarjan top-down splay algorithm with the 830 * following variation. Max_free must be computed bottom-up, so 831 * on the downward pass, maintain the left and right spines in 832 * reverse order. Then, make a second pass up each side to fix 833 * the pointers and compute max_free. The time bound is O(log n) 834 * amortized. 835 * 836 * The new root is the vm_map_entry containing "addr", or else an 837 * adjacent entry (lower or higher) if addr is not in the tree. 838 * 839 * The map must be locked, and leaves it so. 840 * 841 * Returns: the new root. 842 */ 843 static vm_map_entry_t 844 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root) 845 { 846 vm_map_entry_t llist, rlist; 847 vm_map_entry_t ltree, rtree; 848 vm_map_entry_t y; 849 850 /* Special case of empty tree. */ 851 if (root == NULL) 852 return (root); 853 854 /* 855 * Pass One: Splay down the tree until we find addr or a NULL 856 * pointer where addr would go. llist and rlist are the two 857 * sides in reverse order (bottom-up), with llist linked by 858 * the right pointer and rlist linked by the left pointer in 859 * the vm_map_entry. Wait until Pass Two to set max_free on 860 * the two spines. 861 */ 862 llist = NULL; 863 rlist = NULL; 864 for (;;) { 865 /* root is never NULL in here. */ 866 if (addr < root->start) { 867 y = root->left; 868 if (y == NULL) 869 break; 870 if (addr < y->start && y->left != NULL) { 871 /* Rotate right and put y on rlist. */ 872 root->left = y->right; 873 y->right = root; 874 vm_map_entry_set_max_free(root); 875 root = y->left; 876 y->left = rlist; 877 rlist = y; 878 } else { 879 /* Put root on rlist. */ 880 root->left = rlist; 881 rlist = root; 882 root = y; 883 } 884 } else if (addr >= root->end) { 885 y = root->right; 886 if (y == NULL) 887 break; 888 if (addr >= y->end && y->right != NULL) { 889 /* Rotate left and put y on llist. */ 890 root->right = y->left; 891 y->left = root; 892 vm_map_entry_set_max_free(root); 893 root = y->right; 894 y->right = llist; 895 llist = y; 896 } else { 897 /* Put root on llist. */ 898 root->right = llist; 899 llist = root; 900 root = y; 901 } 902 } else 903 break; 904 } 905 906 /* 907 * Pass Two: Walk back up the two spines, flip the pointers 908 * and set max_free. The subtrees of the root go at the 909 * bottom of llist and rlist. 910 */ 911 ltree = root->left; 912 while (llist != NULL) { 913 y = llist->right; 914 llist->right = ltree; 915 vm_map_entry_set_max_free(llist); 916 ltree = llist; 917 llist = y; 918 } 919 rtree = root->right; 920 while (rlist != NULL) { 921 y = rlist->left; 922 rlist->left = rtree; 923 vm_map_entry_set_max_free(rlist); 924 rtree = rlist; 925 rlist = y; 926 } 927 928 /* 929 * Final assembly: add ltree and rtree as subtrees of root. 930 */ 931 root->left = ltree; 932 root->right = rtree; 933 vm_map_entry_set_max_free(root); 934 935 return (root); 936 } 937 938 /* 939 * vm_map_entry_{un,}link: 940 * 941 * Insert/remove entries from maps. 942 */ 943 static void 944 vm_map_entry_link(vm_map_t map, 945 vm_map_entry_t after_where, 946 vm_map_entry_t entry) 947 { 948 949 CTR4(KTR_VM, 950 "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map, 951 map->nentries, entry, after_where); 952 VM_MAP_ASSERT_LOCKED(map); 953 map->nentries++; 954 entry->prev = after_where; 955 entry->next = after_where->next; 956 entry->next->prev = entry; 957 after_where->next = entry; 958 959 if (after_where != &map->header) { 960 if (after_where != map->root) 961 vm_map_entry_splay(after_where->start, map->root); 962 entry->right = after_where->right; 963 entry->left = after_where; 964 after_where->right = NULL; 965 after_where->adj_free = entry->start - after_where->end; 966 vm_map_entry_set_max_free(after_where); 967 } else { 968 entry->right = map->root; 969 entry->left = NULL; 970 } 971 entry->adj_free = (entry->next == &map->header ? map->max_offset : 972 entry->next->start) - entry->end; 973 vm_map_entry_set_max_free(entry); 974 map->root = entry; 975 } 976 977 static void 978 vm_map_entry_unlink(vm_map_t map, 979 vm_map_entry_t entry) 980 { 981 vm_map_entry_t next, prev, root; 982 983 VM_MAP_ASSERT_LOCKED(map); 984 if (entry != map->root) 985 vm_map_entry_splay(entry->start, map->root); 986 if (entry->left == NULL) 987 root = entry->right; 988 else { 989 root = vm_map_entry_splay(entry->start, entry->left); 990 root->right = entry->right; 991 root->adj_free = (entry->next == &map->header ? map->max_offset : 992 entry->next->start) - root->end; 993 vm_map_entry_set_max_free(root); 994 } 995 map->root = root; 996 997 prev = entry->prev; 998 next = entry->next; 999 next->prev = prev; 1000 prev->next = next; 1001 map->nentries--; 1002 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map, 1003 map->nentries, entry); 1004 } 1005 1006 /* 1007 * vm_map_entry_resize_free: 1008 * 1009 * Recompute the amount of free space following a vm_map_entry 1010 * and propagate that value up the tree. Call this function after 1011 * resizing a map entry in-place, that is, without a call to 1012 * vm_map_entry_link() or _unlink(). 1013 * 1014 * The map must be locked, and leaves it so. 1015 */ 1016 static void 1017 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry) 1018 { 1019 1020 /* 1021 * Using splay trees without parent pointers, propagating 1022 * max_free up the tree is done by moving the entry to the 1023 * root and making the change there. 1024 */ 1025 if (entry != map->root) 1026 map->root = vm_map_entry_splay(entry->start, map->root); 1027 1028 entry->adj_free = (entry->next == &map->header ? map->max_offset : 1029 entry->next->start) - entry->end; 1030 vm_map_entry_set_max_free(entry); 1031 } 1032 1033 /* 1034 * vm_map_lookup_entry: [ internal use only ] 1035 * 1036 * Finds the map entry containing (or 1037 * immediately preceding) the specified address 1038 * in the given map; the entry is returned 1039 * in the "entry" parameter. The boolean 1040 * result indicates whether the address is 1041 * actually contained in the map. 1042 */ 1043 boolean_t 1044 vm_map_lookup_entry( 1045 vm_map_t map, 1046 vm_offset_t address, 1047 vm_map_entry_t *entry) /* OUT */ 1048 { 1049 vm_map_entry_t cur; 1050 boolean_t locked; 1051 1052 /* 1053 * If the map is empty, then the map entry immediately preceding 1054 * "address" is the map's header. 1055 */ 1056 cur = map->root; 1057 if (cur == NULL) 1058 *entry = &map->header; 1059 else if (address >= cur->start && cur->end > address) { 1060 *entry = cur; 1061 return (TRUE); 1062 } else if ((locked = vm_map_locked(map)) || 1063 sx_try_upgrade(&map->lock)) { 1064 /* 1065 * Splay requires a write lock on the map. However, it only 1066 * restructures the binary search tree; it does not otherwise 1067 * change the map. Thus, the map's timestamp need not change 1068 * on a temporary upgrade. 1069 */ 1070 map->root = cur = vm_map_entry_splay(address, cur); 1071 if (!locked) 1072 sx_downgrade(&map->lock); 1073 1074 /* 1075 * If "address" is contained within a map entry, the new root 1076 * is that map entry. Otherwise, the new root is a map entry 1077 * immediately before or after "address". 1078 */ 1079 if (address >= cur->start) { 1080 *entry = cur; 1081 if (cur->end > address) 1082 return (TRUE); 1083 } else 1084 *entry = cur->prev; 1085 } else 1086 /* 1087 * Since the map is only locked for read access, perform a 1088 * standard binary search tree lookup for "address". 1089 */ 1090 for (;;) { 1091 if (address < cur->start) { 1092 if (cur->left == NULL) { 1093 *entry = cur->prev; 1094 break; 1095 } 1096 cur = cur->left; 1097 } else if (cur->end > address) { 1098 *entry = cur; 1099 return (TRUE); 1100 } else { 1101 if (cur->right == NULL) { 1102 *entry = cur; 1103 break; 1104 } 1105 cur = cur->right; 1106 } 1107 } 1108 return (FALSE); 1109 } 1110 1111 /* 1112 * vm_map_insert: 1113 * 1114 * Inserts the given whole VM object into the target 1115 * map at the specified address range. The object's 1116 * size should match that of the address range. 1117 * 1118 * Requires that the map be locked, and leaves it so. 1119 * 1120 * If object is non-NULL, ref count must be bumped by caller 1121 * prior to making call to account for the new entry. 1122 */ 1123 int 1124 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1125 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, 1126 int cow) 1127 { 1128 vm_map_entry_t new_entry; 1129 vm_map_entry_t prev_entry; 1130 vm_map_entry_t temp_entry; 1131 vm_eflags_t protoeflags; 1132 struct ucred *cred; 1133 vm_inherit_t inheritance; 1134 boolean_t charge_prev_obj; 1135 1136 VM_MAP_ASSERT_LOCKED(map); 1137 1138 /* 1139 * Check that the start and end points are not bogus. 1140 */ 1141 if ((start < map->min_offset) || (end > map->max_offset) || 1142 (start >= end)) 1143 return (KERN_INVALID_ADDRESS); 1144 1145 /* 1146 * Find the entry prior to the proposed starting address; if it's part 1147 * of an existing entry, this range is bogus. 1148 */ 1149 if (vm_map_lookup_entry(map, start, &temp_entry)) 1150 return (KERN_NO_SPACE); 1151 1152 prev_entry = temp_entry; 1153 1154 /* 1155 * Assert that the next entry doesn't overlap the end point. 1156 */ 1157 if ((prev_entry->next != &map->header) && 1158 (prev_entry->next->start < end)) 1159 return (KERN_NO_SPACE); 1160 1161 protoeflags = 0; 1162 charge_prev_obj = FALSE; 1163 1164 if (cow & MAP_COPY_ON_WRITE) 1165 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY; 1166 1167 if (cow & MAP_NOFAULT) { 1168 protoeflags |= MAP_ENTRY_NOFAULT; 1169 1170 KASSERT(object == NULL, 1171 ("vm_map_insert: paradoxical MAP_NOFAULT request")); 1172 } 1173 if (cow & MAP_DISABLE_SYNCER) 1174 protoeflags |= MAP_ENTRY_NOSYNC; 1175 if (cow & MAP_DISABLE_COREDUMP) 1176 protoeflags |= MAP_ENTRY_NOCOREDUMP; 1177 if (cow & MAP_VN_WRITECOUNT) 1178 protoeflags |= MAP_ENTRY_VN_WRITECNT; 1179 if (cow & MAP_INHERIT_SHARE) 1180 inheritance = VM_INHERIT_SHARE; 1181 else 1182 inheritance = VM_INHERIT_DEFAULT; 1183 1184 cred = NULL; 1185 KASSERT((object != kmem_object && object != kernel_object) || 1186 ((object == kmem_object || object == kernel_object) && 1187 !(protoeflags & MAP_ENTRY_NEEDS_COPY)), 1188 ("kmem or kernel object and cow")); 1189 if (cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT)) 1190 goto charged; 1191 if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) && 1192 ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) { 1193 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start)) 1194 return (KERN_RESOURCE_SHORTAGE); 1195 KASSERT(object == NULL || (protoeflags & MAP_ENTRY_NEEDS_COPY) || 1196 object->cred == NULL, 1197 ("OVERCOMMIT: vm_map_insert o %p", object)); 1198 cred = curthread->td_ucred; 1199 crhold(cred); 1200 if (object == NULL && !(protoeflags & MAP_ENTRY_NEEDS_COPY)) 1201 charge_prev_obj = TRUE; 1202 } 1203 1204 charged: 1205 /* Expand the kernel pmap, if necessary. */ 1206 if (map == kernel_map && end > kernel_vm_end) 1207 pmap_growkernel(end); 1208 if (object != NULL) { 1209 /* 1210 * OBJ_ONEMAPPING must be cleared unless this mapping 1211 * is trivially proven to be the only mapping for any 1212 * of the object's pages. (Object granularity 1213 * reference counting is insufficient to recognize 1214 * aliases with precision.) 1215 */ 1216 VM_OBJECT_WLOCK(object); 1217 if (object->ref_count > 1 || object->shadow_count != 0) 1218 vm_object_clear_flag(object, OBJ_ONEMAPPING); 1219 VM_OBJECT_WUNLOCK(object); 1220 } 1221 else if ((prev_entry != &map->header) && 1222 (prev_entry->eflags == protoeflags) && 1223 (prev_entry->end == start) && 1224 (prev_entry->wired_count == 0) && 1225 (prev_entry->cred == cred || 1226 (prev_entry->object.vm_object != NULL && 1227 (prev_entry->object.vm_object->cred == cred))) && 1228 vm_object_coalesce(prev_entry->object.vm_object, 1229 prev_entry->offset, 1230 (vm_size_t)(prev_entry->end - prev_entry->start), 1231 (vm_size_t)(end - prev_entry->end), charge_prev_obj)) { 1232 /* 1233 * We were able to extend the object. Determine if we 1234 * can extend the previous map entry to include the 1235 * new range as well. 1236 */ 1237 if ((prev_entry->inheritance == inheritance) && 1238 (prev_entry->protection == prot) && 1239 (prev_entry->max_protection == max)) { 1240 map->size += (end - prev_entry->end); 1241 prev_entry->end = end; 1242 vm_map_entry_resize_free(map, prev_entry); 1243 vm_map_simplify_entry(map, prev_entry); 1244 if (cred != NULL) 1245 crfree(cred); 1246 return (KERN_SUCCESS); 1247 } 1248 1249 /* 1250 * If we can extend the object but cannot extend the 1251 * map entry, we have to create a new map entry. We 1252 * must bump the ref count on the extended object to 1253 * account for it. object may be NULL. 1254 */ 1255 object = prev_entry->object.vm_object; 1256 offset = prev_entry->offset + 1257 (prev_entry->end - prev_entry->start); 1258 vm_object_reference(object); 1259 if (cred != NULL && object != NULL && object->cred != NULL && 1260 !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 1261 /* Object already accounts for this uid. */ 1262 crfree(cred); 1263 cred = NULL; 1264 } 1265 } 1266 1267 /* 1268 * NOTE: if conditionals fail, object can be NULL here. This occurs 1269 * in things like the buffer map where we manage kva but do not manage 1270 * backing objects. 1271 */ 1272 1273 /* 1274 * Create a new entry 1275 */ 1276 new_entry = vm_map_entry_create(map); 1277 new_entry->start = start; 1278 new_entry->end = end; 1279 new_entry->cred = NULL; 1280 1281 new_entry->eflags = protoeflags; 1282 new_entry->object.vm_object = object; 1283 new_entry->offset = offset; 1284 new_entry->avail_ssize = 0; 1285 1286 new_entry->inheritance = inheritance; 1287 new_entry->protection = prot; 1288 new_entry->max_protection = max; 1289 new_entry->wired_count = 0; 1290 new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT; 1291 new_entry->next_read = OFF_TO_IDX(offset); 1292 1293 KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry), 1294 ("OVERCOMMIT: vm_map_insert leaks vm_map %p", new_entry)); 1295 new_entry->cred = cred; 1296 1297 /* 1298 * Insert the new entry into the list 1299 */ 1300 vm_map_entry_link(map, prev_entry, new_entry); 1301 map->size += new_entry->end - new_entry->start; 1302 1303 /* 1304 * It may be possible to merge the new entry with the next and/or 1305 * previous entries. However, due to MAP_STACK_* being a hack, a 1306 * panic can result from merging such entries. 1307 */ 1308 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0) 1309 vm_map_simplify_entry(map, new_entry); 1310 1311 if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) { 1312 vm_map_pmap_enter(map, start, prot, 1313 object, OFF_TO_IDX(offset), end - start, 1314 cow & MAP_PREFAULT_PARTIAL); 1315 } 1316 1317 return (KERN_SUCCESS); 1318 } 1319 1320 /* 1321 * vm_map_findspace: 1322 * 1323 * Find the first fit (lowest VM address) for "length" free bytes 1324 * beginning at address >= start in the given map. 1325 * 1326 * In a vm_map_entry, "adj_free" is the amount of free space 1327 * adjacent (higher address) to this entry, and "max_free" is the 1328 * maximum amount of contiguous free space in its subtree. This 1329 * allows finding a free region in one path down the tree, so 1330 * O(log n) amortized with splay trees. 1331 * 1332 * The map must be locked, and leaves it so. 1333 * 1334 * Returns: 0 on success, and starting address in *addr, 1335 * 1 if insufficient space. 1336 */ 1337 int 1338 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length, 1339 vm_offset_t *addr) /* OUT */ 1340 { 1341 vm_map_entry_t entry; 1342 vm_offset_t st; 1343 1344 /* 1345 * Request must fit within min/max VM address and must avoid 1346 * address wrap. 1347 */ 1348 if (start < map->min_offset) 1349 start = map->min_offset; 1350 if (start + length > map->max_offset || start + length < start) 1351 return (1); 1352 1353 /* Empty tree means wide open address space. */ 1354 if (map->root == NULL) { 1355 *addr = start; 1356 return (0); 1357 } 1358 1359 /* 1360 * After splay, if start comes before root node, then there 1361 * must be a gap from start to the root. 1362 */ 1363 map->root = vm_map_entry_splay(start, map->root); 1364 if (start + length <= map->root->start) { 1365 *addr = start; 1366 return (0); 1367 } 1368 1369 /* 1370 * Root is the last node that might begin its gap before 1371 * start, and this is the last comparison where address 1372 * wrap might be a problem. 1373 */ 1374 st = (start > map->root->end) ? start : map->root->end; 1375 if (length <= map->root->end + map->root->adj_free - st) { 1376 *addr = st; 1377 return (0); 1378 } 1379 1380 /* With max_free, can immediately tell if no solution. */ 1381 entry = map->root->right; 1382 if (entry == NULL || length > entry->max_free) 1383 return (1); 1384 1385 /* 1386 * Search the right subtree in the order: left subtree, root, 1387 * right subtree (first fit). The previous splay implies that 1388 * all regions in the right subtree have addresses > start. 1389 */ 1390 while (entry != NULL) { 1391 if (entry->left != NULL && entry->left->max_free >= length) 1392 entry = entry->left; 1393 else if (entry->adj_free >= length) { 1394 *addr = entry->end; 1395 return (0); 1396 } else 1397 entry = entry->right; 1398 } 1399 1400 /* Can't get here, so panic if we do. */ 1401 panic("vm_map_findspace: max_free corrupt"); 1402 } 1403 1404 int 1405 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1406 vm_offset_t start, vm_size_t length, vm_prot_t prot, 1407 vm_prot_t max, int cow) 1408 { 1409 vm_offset_t end; 1410 int result; 1411 1412 end = start + length; 1413 vm_map_lock(map); 1414 VM_MAP_RANGE_CHECK(map, start, end); 1415 (void) vm_map_delete(map, start, end); 1416 result = vm_map_insert(map, object, offset, start, end, prot, 1417 max, cow); 1418 vm_map_unlock(map); 1419 return (result); 1420 } 1421 1422 /* 1423 * vm_map_find finds an unallocated region in the target address 1424 * map with the given length. The search is defined to be 1425 * first-fit from the specified address; the region found is 1426 * returned in the same parameter. 1427 * 1428 * If object is non-NULL, ref count must be bumped by caller 1429 * prior to making call to account for the new entry. 1430 */ 1431 int 1432 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1433 vm_offset_t *addr, /* IN/OUT */ 1434 vm_size_t length, int find_space, vm_prot_t prot, 1435 vm_prot_t max, int cow) 1436 { 1437 vm_offset_t alignment, initial_addr, start; 1438 int result; 1439 1440 if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL || 1441 (object->flags & OBJ_COLORED) == 0)) 1442 find_space = VMFS_ANY_SPACE; 1443 if (find_space >> 8 != 0) { 1444 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags")); 1445 alignment = (vm_offset_t)1 << (find_space >> 8); 1446 } else 1447 alignment = 0; 1448 initial_addr = *addr; 1449 again: 1450 start = initial_addr; 1451 vm_map_lock(map); 1452 do { 1453 if (find_space != VMFS_NO_SPACE) { 1454 if (vm_map_findspace(map, start, length, addr)) { 1455 vm_map_unlock(map); 1456 if (find_space == VMFS_OPTIMAL_SPACE) { 1457 find_space = VMFS_ANY_SPACE; 1458 goto again; 1459 } 1460 return (KERN_NO_SPACE); 1461 } 1462 switch (find_space) { 1463 case VMFS_SUPER_SPACE: 1464 case VMFS_OPTIMAL_SPACE: 1465 pmap_align_superpage(object, offset, addr, 1466 length); 1467 break; 1468 case VMFS_ANY_SPACE: 1469 break; 1470 default: 1471 if ((*addr & (alignment - 1)) != 0) { 1472 *addr &= ~(alignment - 1); 1473 *addr += alignment; 1474 } 1475 break; 1476 } 1477 1478 start = *addr; 1479 } 1480 result = vm_map_insert(map, object, offset, start, start + 1481 length, prot, max, cow); 1482 } while (result == KERN_NO_SPACE && find_space != VMFS_NO_SPACE && 1483 find_space != VMFS_ANY_SPACE); 1484 vm_map_unlock(map); 1485 return (result); 1486 } 1487 1488 /* 1489 * vm_map_simplify_entry: 1490 * 1491 * Simplify the given map entry by merging with either neighbor. This 1492 * routine also has the ability to merge with both neighbors. 1493 * 1494 * The map must be locked. 1495 * 1496 * This routine guarentees that the passed entry remains valid (though 1497 * possibly extended). When merging, this routine may delete one or 1498 * both neighbors. 1499 */ 1500 void 1501 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry) 1502 { 1503 vm_map_entry_t next, prev; 1504 vm_size_t prevsize, esize; 1505 1506 if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) 1507 return; 1508 1509 prev = entry->prev; 1510 if (prev != &map->header) { 1511 prevsize = prev->end - prev->start; 1512 if ( (prev->end == entry->start) && 1513 (prev->object.vm_object == entry->object.vm_object) && 1514 (!prev->object.vm_object || 1515 (prev->offset + prevsize == entry->offset)) && 1516 (prev->eflags == entry->eflags) && 1517 (prev->protection == entry->protection) && 1518 (prev->max_protection == entry->max_protection) && 1519 (prev->inheritance == entry->inheritance) && 1520 (prev->wired_count == entry->wired_count) && 1521 (prev->cred == entry->cred)) { 1522 vm_map_entry_unlink(map, prev); 1523 entry->start = prev->start; 1524 entry->offset = prev->offset; 1525 if (entry->prev != &map->header) 1526 vm_map_entry_resize_free(map, entry->prev); 1527 1528 /* 1529 * If the backing object is a vnode object, 1530 * vm_object_deallocate() calls vrele(). 1531 * However, vrele() does not lock the vnode 1532 * because the vnode has additional 1533 * references. Thus, the map lock can be kept 1534 * without causing a lock-order reversal with 1535 * the vnode lock. 1536 * 1537 * Since we count the number of virtual page 1538 * mappings in object->un_pager.vnp.writemappings, 1539 * the writemappings value should not be adjusted 1540 * when the entry is disposed of. 1541 */ 1542 if (prev->object.vm_object) 1543 vm_object_deallocate(prev->object.vm_object); 1544 if (prev->cred != NULL) 1545 crfree(prev->cred); 1546 vm_map_entry_dispose(map, prev); 1547 } 1548 } 1549 1550 next = entry->next; 1551 if (next != &map->header) { 1552 esize = entry->end - entry->start; 1553 if ((entry->end == next->start) && 1554 (next->object.vm_object == entry->object.vm_object) && 1555 (!entry->object.vm_object || 1556 (entry->offset + esize == next->offset)) && 1557 (next->eflags == entry->eflags) && 1558 (next->protection == entry->protection) && 1559 (next->max_protection == entry->max_protection) && 1560 (next->inheritance == entry->inheritance) && 1561 (next->wired_count == entry->wired_count) && 1562 (next->cred == entry->cred)) { 1563 vm_map_entry_unlink(map, next); 1564 entry->end = next->end; 1565 vm_map_entry_resize_free(map, entry); 1566 1567 /* 1568 * See comment above. 1569 */ 1570 if (next->object.vm_object) 1571 vm_object_deallocate(next->object.vm_object); 1572 if (next->cred != NULL) 1573 crfree(next->cred); 1574 vm_map_entry_dispose(map, next); 1575 } 1576 } 1577 } 1578 /* 1579 * vm_map_clip_start: [ internal use only ] 1580 * 1581 * Asserts that the given entry begins at or after 1582 * the specified address; if necessary, 1583 * it splits the entry into two. 1584 */ 1585 #define vm_map_clip_start(map, entry, startaddr) \ 1586 { \ 1587 if (startaddr > entry->start) \ 1588 _vm_map_clip_start(map, entry, startaddr); \ 1589 } 1590 1591 /* 1592 * This routine is called only when it is known that 1593 * the entry must be split. 1594 */ 1595 static void 1596 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start) 1597 { 1598 vm_map_entry_t new_entry; 1599 1600 VM_MAP_ASSERT_LOCKED(map); 1601 1602 /* 1603 * Split off the front portion -- note that we must insert the new 1604 * entry BEFORE this one, so that this entry has the specified 1605 * starting address. 1606 */ 1607 vm_map_simplify_entry(map, entry); 1608 1609 /* 1610 * If there is no object backing this entry, we might as well create 1611 * one now. If we defer it, an object can get created after the map 1612 * is clipped, and individual objects will be created for the split-up 1613 * map. This is a bit of a hack, but is also about the best place to 1614 * put this improvement. 1615 */ 1616 if (entry->object.vm_object == NULL && !map->system_map) { 1617 vm_object_t object; 1618 object = vm_object_allocate(OBJT_DEFAULT, 1619 atop(entry->end - entry->start)); 1620 entry->object.vm_object = object; 1621 entry->offset = 0; 1622 if (entry->cred != NULL) { 1623 object->cred = entry->cred; 1624 object->charge = entry->end - entry->start; 1625 entry->cred = NULL; 1626 } 1627 } else if (entry->object.vm_object != NULL && 1628 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 1629 entry->cred != NULL) { 1630 VM_OBJECT_WLOCK(entry->object.vm_object); 1631 KASSERT(entry->object.vm_object->cred == NULL, 1632 ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry)); 1633 entry->object.vm_object->cred = entry->cred; 1634 entry->object.vm_object->charge = entry->end - entry->start; 1635 VM_OBJECT_WUNLOCK(entry->object.vm_object); 1636 entry->cred = NULL; 1637 } 1638 1639 new_entry = vm_map_entry_create(map); 1640 *new_entry = *entry; 1641 1642 new_entry->end = start; 1643 entry->offset += (start - entry->start); 1644 entry->start = start; 1645 if (new_entry->cred != NULL) 1646 crhold(entry->cred); 1647 1648 vm_map_entry_link(map, entry->prev, new_entry); 1649 1650 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1651 vm_object_reference(new_entry->object.vm_object); 1652 /* 1653 * The object->un_pager.vnp.writemappings for the 1654 * object of MAP_ENTRY_VN_WRITECNT type entry shall be 1655 * kept as is here. The virtual pages are 1656 * re-distributed among the clipped entries, so the sum is 1657 * left the same. 1658 */ 1659 } 1660 } 1661 1662 /* 1663 * vm_map_clip_end: [ internal use only ] 1664 * 1665 * Asserts that the given entry ends at or before 1666 * the specified address; if necessary, 1667 * it splits the entry into two. 1668 */ 1669 #define vm_map_clip_end(map, entry, endaddr) \ 1670 { \ 1671 if ((endaddr) < (entry->end)) \ 1672 _vm_map_clip_end((map), (entry), (endaddr)); \ 1673 } 1674 1675 /* 1676 * This routine is called only when it is known that 1677 * the entry must be split. 1678 */ 1679 static void 1680 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end) 1681 { 1682 vm_map_entry_t new_entry; 1683 1684 VM_MAP_ASSERT_LOCKED(map); 1685 1686 /* 1687 * If there is no object backing this entry, we might as well create 1688 * one now. If we defer it, an object can get created after the map 1689 * is clipped, and individual objects will be created for the split-up 1690 * map. This is a bit of a hack, but is also about the best place to 1691 * put this improvement. 1692 */ 1693 if (entry->object.vm_object == NULL && !map->system_map) { 1694 vm_object_t object; 1695 object = vm_object_allocate(OBJT_DEFAULT, 1696 atop(entry->end - entry->start)); 1697 entry->object.vm_object = object; 1698 entry->offset = 0; 1699 if (entry->cred != NULL) { 1700 object->cred = entry->cred; 1701 object->charge = entry->end - entry->start; 1702 entry->cred = NULL; 1703 } 1704 } else if (entry->object.vm_object != NULL && 1705 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 1706 entry->cred != NULL) { 1707 VM_OBJECT_WLOCK(entry->object.vm_object); 1708 KASSERT(entry->object.vm_object->cred == NULL, 1709 ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry)); 1710 entry->object.vm_object->cred = entry->cred; 1711 entry->object.vm_object->charge = entry->end - entry->start; 1712 VM_OBJECT_WUNLOCK(entry->object.vm_object); 1713 entry->cred = NULL; 1714 } 1715 1716 /* 1717 * Create a new entry and insert it AFTER the specified entry 1718 */ 1719 new_entry = vm_map_entry_create(map); 1720 *new_entry = *entry; 1721 1722 new_entry->start = entry->end = end; 1723 new_entry->offset += (end - entry->start); 1724 if (new_entry->cred != NULL) 1725 crhold(entry->cred); 1726 1727 vm_map_entry_link(map, entry, new_entry); 1728 1729 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1730 vm_object_reference(new_entry->object.vm_object); 1731 } 1732 } 1733 1734 /* 1735 * vm_map_submap: [ kernel use only ] 1736 * 1737 * Mark the given range as handled by a subordinate map. 1738 * 1739 * This range must have been created with vm_map_find, 1740 * and no other operations may have been performed on this 1741 * range prior to calling vm_map_submap. 1742 * 1743 * Only a limited number of operations can be performed 1744 * within this rage after calling vm_map_submap: 1745 * vm_fault 1746 * [Don't try vm_map_copy!] 1747 * 1748 * To remove a submapping, one must first remove the 1749 * range from the superior map, and then destroy the 1750 * submap (if desired). [Better yet, don't try it.] 1751 */ 1752 int 1753 vm_map_submap( 1754 vm_map_t map, 1755 vm_offset_t start, 1756 vm_offset_t end, 1757 vm_map_t submap) 1758 { 1759 vm_map_entry_t entry; 1760 int result = KERN_INVALID_ARGUMENT; 1761 1762 vm_map_lock(map); 1763 1764 VM_MAP_RANGE_CHECK(map, start, end); 1765 1766 if (vm_map_lookup_entry(map, start, &entry)) { 1767 vm_map_clip_start(map, entry, start); 1768 } else 1769 entry = entry->next; 1770 1771 vm_map_clip_end(map, entry, end); 1772 1773 if ((entry->start == start) && (entry->end == end) && 1774 ((entry->eflags & MAP_ENTRY_COW) == 0) && 1775 (entry->object.vm_object == NULL)) { 1776 entry->object.sub_map = submap; 1777 entry->eflags |= MAP_ENTRY_IS_SUB_MAP; 1778 result = KERN_SUCCESS; 1779 } 1780 vm_map_unlock(map); 1781 1782 return (result); 1783 } 1784 1785 /* 1786 * The maximum number of pages to map 1787 */ 1788 #define MAX_INIT_PT 96 1789 1790 /* 1791 * vm_map_pmap_enter: 1792 * 1793 * Preload read-only mappings for the specified object's resident pages 1794 * into the target map. If "flags" is MAP_PREFAULT_PARTIAL, then only 1795 * the resident pages within the address range [addr, addr + ulmin(size, 1796 * ptoa(MAX_INIT_PT))) are mapped. Otherwise, all resident pages within 1797 * the specified address range are mapped. This eliminates many soft 1798 * faults on process startup and immediately after an mmap(2). Because 1799 * these are speculative mappings, cached pages are not reactivated and 1800 * mapped. 1801 */ 1802 void 1803 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 1804 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags) 1805 { 1806 vm_offset_t start; 1807 vm_page_t p, p_start; 1808 vm_pindex_t psize, tmpidx; 1809 1810 if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL) 1811 return; 1812 VM_OBJECT_RLOCK(object); 1813 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 1814 VM_OBJECT_RUNLOCK(object); 1815 VM_OBJECT_WLOCK(object); 1816 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 1817 pmap_object_init_pt(map->pmap, addr, object, pindex, 1818 size); 1819 VM_OBJECT_WUNLOCK(object); 1820 return; 1821 } 1822 VM_OBJECT_LOCK_DOWNGRADE(object); 1823 } 1824 1825 psize = atop(size); 1826 if (psize > MAX_INIT_PT && (flags & MAP_PREFAULT_PARTIAL) != 0) 1827 psize = MAX_INIT_PT; 1828 if (psize + pindex > object->size) { 1829 if (object->size < pindex) { 1830 VM_OBJECT_RUNLOCK(object); 1831 return; 1832 } 1833 psize = object->size - pindex; 1834 } 1835 1836 start = 0; 1837 p_start = NULL; 1838 1839 p = vm_page_find_least(object, pindex); 1840 /* 1841 * Assert: the variable p is either (1) the page with the 1842 * least pindex greater than or equal to the parameter pindex 1843 * or (2) NULL. 1844 */ 1845 for (; 1846 p != NULL && (tmpidx = p->pindex - pindex) < psize; 1847 p = TAILQ_NEXT(p, listq)) { 1848 /* 1849 * don't allow an madvise to blow away our really 1850 * free pages allocating pv entries. 1851 */ 1852 if ((flags & MAP_PREFAULT_MADVISE) && 1853 cnt.v_free_count < cnt.v_free_reserved) { 1854 psize = tmpidx; 1855 break; 1856 } 1857 if (p->valid == VM_PAGE_BITS_ALL) { 1858 if (p_start == NULL) { 1859 start = addr + ptoa(tmpidx); 1860 p_start = p; 1861 } 1862 } else if (p_start != NULL) { 1863 pmap_enter_object(map->pmap, start, addr + 1864 ptoa(tmpidx), p_start, prot); 1865 p_start = NULL; 1866 } 1867 } 1868 if (p_start != NULL) 1869 pmap_enter_object(map->pmap, start, addr + ptoa(psize), 1870 p_start, prot); 1871 VM_OBJECT_RUNLOCK(object); 1872 } 1873 1874 /* 1875 * vm_map_protect: 1876 * 1877 * Sets the protection of the specified address 1878 * region in the target map. If "set_max" is 1879 * specified, the maximum protection is to be set; 1880 * otherwise, only the current protection is affected. 1881 */ 1882 int 1883 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 1884 vm_prot_t new_prot, boolean_t set_max) 1885 { 1886 vm_map_entry_t current, entry; 1887 vm_object_t obj; 1888 struct ucred *cred; 1889 vm_prot_t old_prot; 1890 1891 vm_map_lock(map); 1892 1893 VM_MAP_RANGE_CHECK(map, start, end); 1894 1895 if (vm_map_lookup_entry(map, start, &entry)) { 1896 vm_map_clip_start(map, entry, start); 1897 } else { 1898 entry = entry->next; 1899 } 1900 1901 /* 1902 * Make a first pass to check for protection violations. 1903 */ 1904 current = entry; 1905 while ((current != &map->header) && (current->start < end)) { 1906 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 1907 vm_map_unlock(map); 1908 return (KERN_INVALID_ARGUMENT); 1909 } 1910 if ((new_prot & current->max_protection) != new_prot) { 1911 vm_map_unlock(map); 1912 return (KERN_PROTECTION_FAILURE); 1913 } 1914 current = current->next; 1915 } 1916 1917 1918 /* 1919 * Do an accounting pass for private read-only mappings that 1920 * now will do cow due to allowed write (e.g. debugger sets 1921 * breakpoint on text segment) 1922 */ 1923 for (current = entry; (current != &map->header) && 1924 (current->start < end); current = current->next) { 1925 1926 vm_map_clip_end(map, current, end); 1927 1928 if (set_max || 1929 ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 || 1930 ENTRY_CHARGED(current)) { 1931 continue; 1932 } 1933 1934 cred = curthread->td_ucred; 1935 obj = current->object.vm_object; 1936 1937 if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) { 1938 if (!swap_reserve(current->end - current->start)) { 1939 vm_map_unlock(map); 1940 return (KERN_RESOURCE_SHORTAGE); 1941 } 1942 crhold(cred); 1943 current->cred = cred; 1944 continue; 1945 } 1946 1947 VM_OBJECT_WLOCK(obj); 1948 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) { 1949 VM_OBJECT_WUNLOCK(obj); 1950 continue; 1951 } 1952 1953 /* 1954 * Charge for the whole object allocation now, since 1955 * we cannot distinguish between non-charged and 1956 * charged clipped mapping of the same object later. 1957 */ 1958 KASSERT(obj->charge == 0, 1959 ("vm_map_protect: object %p overcharged\n", obj)); 1960 if (!swap_reserve(ptoa(obj->size))) { 1961 VM_OBJECT_WUNLOCK(obj); 1962 vm_map_unlock(map); 1963 return (KERN_RESOURCE_SHORTAGE); 1964 } 1965 1966 crhold(cred); 1967 obj->cred = cred; 1968 obj->charge = ptoa(obj->size); 1969 VM_OBJECT_WUNLOCK(obj); 1970 } 1971 1972 /* 1973 * Go back and fix up protections. [Note that clipping is not 1974 * necessary the second time.] 1975 */ 1976 current = entry; 1977 while ((current != &map->header) && (current->start < end)) { 1978 old_prot = current->protection; 1979 1980 if (set_max) 1981 current->protection = 1982 (current->max_protection = new_prot) & 1983 old_prot; 1984 else 1985 current->protection = new_prot; 1986 1987 if ((current->eflags & (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED)) 1988 == (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED) && 1989 (current->protection & VM_PROT_WRITE) != 0 && 1990 (old_prot & VM_PROT_WRITE) == 0) { 1991 vm_fault_copy_entry(map, map, current, current, NULL); 1992 } 1993 1994 /* 1995 * When restricting access, update the physical map. Worry 1996 * about copy-on-write here. 1997 */ 1998 if ((old_prot & ~current->protection) != 0) { 1999 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 2000 VM_PROT_ALL) 2001 pmap_protect(map->pmap, current->start, 2002 current->end, 2003 current->protection & MASK(current)); 2004 #undef MASK 2005 } 2006 vm_map_simplify_entry(map, current); 2007 current = current->next; 2008 } 2009 vm_map_unlock(map); 2010 return (KERN_SUCCESS); 2011 } 2012 2013 /* 2014 * vm_map_madvise: 2015 * 2016 * This routine traverses a processes map handling the madvise 2017 * system call. Advisories are classified as either those effecting 2018 * the vm_map_entry structure, or those effecting the underlying 2019 * objects. 2020 */ 2021 int 2022 vm_map_madvise( 2023 vm_map_t map, 2024 vm_offset_t start, 2025 vm_offset_t end, 2026 int behav) 2027 { 2028 vm_map_entry_t current, entry; 2029 int modify_map = 0; 2030 2031 /* 2032 * Some madvise calls directly modify the vm_map_entry, in which case 2033 * we need to use an exclusive lock on the map and we need to perform 2034 * various clipping operations. Otherwise we only need a read-lock 2035 * on the map. 2036 */ 2037 switch(behav) { 2038 case MADV_NORMAL: 2039 case MADV_SEQUENTIAL: 2040 case MADV_RANDOM: 2041 case MADV_NOSYNC: 2042 case MADV_AUTOSYNC: 2043 case MADV_NOCORE: 2044 case MADV_CORE: 2045 modify_map = 1; 2046 vm_map_lock(map); 2047 break; 2048 case MADV_WILLNEED: 2049 case MADV_DONTNEED: 2050 case MADV_FREE: 2051 vm_map_lock_read(map); 2052 break; 2053 default: 2054 return (KERN_INVALID_ARGUMENT); 2055 } 2056 2057 /* 2058 * Locate starting entry and clip if necessary. 2059 */ 2060 VM_MAP_RANGE_CHECK(map, start, end); 2061 2062 if (vm_map_lookup_entry(map, start, &entry)) { 2063 if (modify_map) 2064 vm_map_clip_start(map, entry, start); 2065 } else { 2066 entry = entry->next; 2067 } 2068 2069 if (modify_map) { 2070 /* 2071 * madvise behaviors that are implemented in the vm_map_entry. 2072 * 2073 * We clip the vm_map_entry so that behavioral changes are 2074 * limited to the specified address range. 2075 */ 2076 for (current = entry; 2077 (current != &map->header) && (current->start < end); 2078 current = current->next 2079 ) { 2080 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2081 continue; 2082 2083 vm_map_clip_end(map, current, end); 2084 2085 switch (behav) { 2086 case MADV_NORMAL: 2087 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL); 2088 break; 2089 case MADV_SEQUENTIAL: 2090 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL); 2091 break; 2092 case MADV_RANDOM: 2093 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM); 2094 break; 2095 case MADV_NOSYNC: 2096 current->eflags |= MAP_ENTRY_NOSYNC; 2097 break; 2098 case MADV_AUTOSYNC: 2099 current->eflags &= ~MAP_ENTRY_NOSYNC; 2100 break; 2101 case MADV_NOCORE: 2102 current->eflags |= MAP_ENTRY_NOCOREDUMP; 2103 break; 2104 case MADV_CORE: 2105 current->eflags &= ~MAP_ENTRY_NOCOREDUMP; 2106 break; 2107 default: 2108 break; 2109 } 2110 vm_map_simplify_entry(map, current); 2111 } 2112 vm_map_unlock(map); 2113 } else { 2114 vm_pindex_t pstart, pend; 2115 2116 /* 2117 * madvise behaviors that are implemented in the underlying 2118 * vm_object. 2119 * 2120 * Since we don't clip the vm_map_entry, we have to clip 2121 * the vm_object pindex and count. 2122 */ 2123 for (current = entry; 2124 (current != &map->header) && (current->start < end); 2125 current = current->next 2126 ) { 2127 vm_offset_t useStart; 2128 2129 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2130 continue; 2131 2132 pstart = OFF_TO_IDX(current->offset); 2133 pend = pstart + atop(current->end - current->start); 2134 useStart = current->start; 2135 2136 if (current->start < start) { 2137 pstart += atop(start - current->start); 2138 useStart = start; 2139 } 2140 if (current->end > end) 2141 pend -= atop(current->end - end); 2142 2143 if (pstart >= pend) 2144 continue; 2145 2146 vm_object_madvise(current->object.vm_object, pstart, 2147 pend, behav); 2148 if (behav == MADV_WILLNEED) { 2149 vm_map_pmap_enter(map, 2150 useStart, 2151 current->protection, 2152 current->object.vm_object, 2153 pstart, 2154 ptoa(pend - pstart), 2155 MAP_PREFAULT_MADVISE 2156 ); 2157 } 2158 } 2159 vm_map_unlock_read(map); 2160 } 2161 return (0); 2162 } 2163 2164 2165 /* 2166 * vm_map_inherit: 2167 * 2168 * Sets the inheritance of the specified address 2169 * range in the target map. Inheritance 2170 * affects how the map will be shared with 2171 * child maps at the time of vmspace_fork. 2172 */ 2173 int 2174 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 2175 vm_inherit_t new_inheritance) 2176 { 2177 vm_map_entry_t entry; 2178 vm_map_entry_t temp_entry; 2179 2180 switch (new_inheritance) { 2181 case VM_INHERIT_NONE: 2182 case VM_INHERIT_COPY: 2183 case VM_INHERIT_SHARE: 2184 break; 2185 default: 2186 return (KERN_INVALID_ARGUMENT); 2187 } 2188 vm_map_lock(map); 2189 VM_MAP_RANGE_CHECK(map, start, end); 2190 if (vm_map_lookup_entry(map, start, &temp_entry)) { 2191 entry = temp_entry; 2192 vm_map_clip_start(map, entry, start); 2193 } else 2194 entry = temp_entry->next; 2195 while ((entry != &map->header) && (entry->start < end)) { 2196 vm_map_clip_end(map, entry, end); 2197 entry->inheritance = new_inheritance; 2198 vm_map_simplify_entry(map, entry); 2199 entry = entry->next; 2200 } 2201 vm_map_unlock(map); 2202 return (KERN_SUCCESS); 2203 } 2204 2205 /* 2206 * vm_map_unwire: 2207 * 2208 * Implements both kernel and user unwiring. 2209 */ 2210 int 2211 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2212 int flags) 2213 { 2214 vm_map_entry_t entry, first_entry, tmp_entry; 2215 vm_offset_t saved_start; 2216 unsigned int last_timestamp; 2217 int rv; 2218 boolean_t need_wakeup, result, user_unwire; 2219 2220 user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 2221 vm_map_lock(map); 2222 VM_MAP_RANGE_CHECK(map, start, end); 2223 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2224 if (flags & VM_MAP_WIRE_HOLESOK) 2225 first_entry = first_entry->next; 2226 else { 2227 vm_map_unlock(map); 2228 return (KERN_INVALID_ADDRESS); 2229 } 2230 } 2231 last_timestamp = map->timestamp; 2232 entry = first_entry; 2233 while (entry != &map->header && entry->start < end) { 2234 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2235 /* 2236 * We have not yet clipped the entry. 2237 */ 2238 saved_start = (start >= entry->start) ? start : 2239 entry->start; 2240 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2241 if (vm_map_unlock_and_wait(map, 0)) { 2242 /* 2243 * Allow interruption of user unwiring? 2244 */ 2245 } 2246 vm_map_lock(map); 2247 if (last_timestamp+1 != map->timestamp) { 2248 /* 2249 * Look again for the entry because the map was 2250 * modified while it was unlocked. 2251 * Specifically, the entry may have been 2252 * clipped, merged, or deleted. 2253 */ 2254 if (!vm_map_lookup_entry(map, saved_start, 2255 &tmp_entry)) { 2256 if (flags & VM_MAP_WIRE_HOLESOK) 2257 tmp_entry = tmp_entry->next; 2258 else { 2259 if (saved_start == start) { 2260 /* 2261 * First_entry has been deleted. 2262 */ 2263 vm_map_unlock(map); 2264 return (KERN_INVALID_ADDRESS); 2265 } 2266 end = saved_start; 2267 rv = KERN_INVALID_ADDRESS; 2268 goto done; 2269 } 2270 } 2271 if (entry == first_entry) 2272 first_entry = tmp_entry; 2273 else 2274 first_entry = NULL; 2275 entry = tmp_entry; 2276 } 2277 last_timestamp = map->timestamp; 2278 continue; 2279 } 2280 vm_map_clip_start(map, entry, start); 2281 vm_map_clip_end(map, entry, end); 2282 /* 2283 * Mark the entry in case the map lock is released. (See 2284 * above.) 2285 */ 2286 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 2287 entry->wiring_thread = curthread; 2288 /* 2289 * Check the map for holes in the specified region. 2290 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 2291 */ 2292 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) && 2293 (entry->end < end && (entry->next == &map->header || 2294 entry->next->start > entry->end))) { 2295 end = entry->end; 2296 rv = KERN_INVALID_ADDRESS; 2297 goto done; 2298 } 2299 /* 2300 * If system unwiring, require that the entry is system wired. 2301 */ 2302 if (!user_unwire && 2303 vm_map_entry_system_wired_count(entry) == 0) { 2304 end = entry->end; 2305 rv = KERN_INVALID_ARGUMENT; 2306 goto done; 2307 } 2308 entry = entry->next; 2309 } 2310 rv = KERN_SUCCESS; 2311 done: 2312 need_wakeup = FALSE; 2313 if (first_entry == NULL) { 2314 result = vm_map_lookup_entry(map, start, &first_entry); 2315 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 2316 first_entry = first_entry->next; 2317 else 2318 KASSERT(result, ("vm_map_unwire: lookup failed")); 2319 } 2320 for (entry = first_entry; entry != &map->header && entry->start < end; 2321 entry = entry->next) { 2322 /* 2323 * If VM_MAP_WIRE_HOLESOK was specified, an empty 2324 * space in the unwired region could have been mapped 2325 * while the map lock was dropped for draining 2326 * MAP_ENTRY_IN_TRANSITION. Moreover, another thread 2327 * could be simultaneously wiring this new mapping 2328 * entry. Detect these cases and skip any entries 2329 * marked as in transition by us. 2330 */ 2331 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 2332 entry->wiring_thread != curthread) { 2333 KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0, 2334 ("vm_map_unwire: !HOLESOK and new/changed entry")); 2335 continue; 2336 } 2337 2338 if (rv == KERN_SUCCESS && (!user_unwire || 2339 (entry->eflags & MAP_ENTRY_USER_WIRED))) { 2340 if (user_unwire) 2341 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2342 entry->wired_count--; 2343 if (entry->wired_count == 0) { 2344 /* 2345 * Retain the map lock. 2346 */ 2347 vm_fault_unwire(map, entry->start, entry->end, 2348 entry->object.vm_object != NULL && 2349 (entry->object.vm_object->flags & 2350 OBJ_FICTITIOUS) != 0); 2351 } 2352 } 2353 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 2354 ("vm_map_unwire: in-transition flag missing")); 2355 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 2356 entry->wiring_thread = NULL; 2357 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 2358 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 2359 need_wakeup = TRUE; 2360 } 2361 vm_map_simplify_entry(map, entry); 2362 } 2363 vm_map_unlock(map); 2364 if (need_wakeup) 2365 vm_map_wakeup(map); 2366 return (rv); 2367 } 2368 2369 /* 2370 * vm_map_wire: 2371 * 2372 * Implements both kernel and user wiring. 2373 */ 2374 int 2375 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2376 int flags) 2377 { 2378 vm_map_entry_t entry, first_entry, tmp_entry; 2379 vm_offset_t saved_end, saved_start; 2380 unsigned int last_timestamp; 2381 int rv; 2382 boolean_t fictitious, need_wakeup, result, user_wire; 2383 vm_prot_t prot; 2384 2385 prot = 0; 2386 if (flags & VM_MAP_WIRE_WRITE) 2387 prot |= VM_PROT_WRITE; 2388 user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 2389 vm_map_lock(map); 2390 VM_MAP_RANGE_CHECK(map, start, end); 2391 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2392 if (flags & VM_MAP_WIRE_HOLESOK) 2393 first_entry = first_entry->next; 2394 else { 2395 vm_map_unlock(map); 2396 return (KERN_INVALID_ADDRESS); 2397 } 2398 } 2399 last_timestamp = map->timestamp; 2400 entry = first_entry; 2401 while (entry != &map->header && entry->start < end) { 2402 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2403 /* 2404 * We have not yet clipped the entry. 2405 */ 2406 saved_start = (start >= entry->start) ? start : 2407 entry->start; 2408 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2409 if (vm_map_unlock_and_wait(map, 0)) { 2410 /* 2411 * Allow interruption of user wiring? 2412 */ 2413 } 2414 vm_map_lock(map); 2415 if (last_timestamp + 1 != map->timestamp) { 2416 /* 2417 * Look again for the entry because the map was 2418 * modified while it was unlocked. 2419 * Specifically, the entry may have been 2420 * clipped, merged, or deleted. 2421 */ 2422 if (!vm_map_lookup_entry(map, saved_start, 2423 &tmp_entry)) { 2424 if (flags & VM_MAP_WIRE_HOLESOK) 2425 tmp_entry = tmp_entry->next; 2426 else { 2427 if (saved_start == start) { 2428 /* 2429 * first_entry has been deleted. 2430 */ 2431 vm_map_unlock(map); 2432 return (KERN_INVALID_ADDRESS); 2433 } 2434 end = saved_start; 2435 rv = KERN_INVALID_ADDRESS; 2436 goto done; 2437 } 2438 } 2439 if (entry == first_entry) 2440 first_entry = tmp_entry; 2441 else 2442 first_entry = NULL; 2443 entry = tmp_entry; 2444 } 2445 last_timestamp = map->timestamp; 2446 continue; 2447 } 2448 vm_map_clip_start(map, entry, start); 2449 vm_map_clip_end(map, entry, end); 2450 /* 2451 * Mark the entry in case the map lock is released. (See 2452 * above.) 2453 */ 2454 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 2455 entry->wiring_thread = curthread; 2456 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 2457 || (entry->protection & prot) != prot) { 2458 entry->eflags |= MAP_ENTRY_WIRE_SKIPPED; 2459 if ((flags & VM_MAP_WIRE_HOLESOK) == 0) { 2460 end = entry->end; 2461 rv = KERN_INVALID_ADDRESS; 2462 goto done; 2463 } 2464 goto next_entry; 2465 } 2466 if (entry->wired_count == 0) { 2467 entry->wired_count++; 2468 saved_start = entry->start; 2469 saved_end = entry->end; 2470 fictitious = entry->object.vm_object != NULL && 2471 (entry->object.vm_object->flags & 2472 OBJ_FICTITIOUS) != 0; 2473 /* 2474 * Release the map lock, relying on the in-transition 2475 * mark. Mark the map busy for fork. 2476 */ 2477 vm_map_busy(map); 2478 vm_map_unlock(map); 2479 rv = vm_fault_wire(map, saved_start, saved_end, 2480 fictitious); 2481 vm_map_lock(map); 2482 vm_map_unbusy(map); 2483 if (last_timestamp + 1 != map->timestamp) { 2484 /* 2485 * Look again for the entry because the map was 2486 * modified while it was unlocked. The entry 2487 * may have been clipped, but NOT merged or 2488 * deleted. 2489 */ 2490 result = vm_map_lookup_entry(map, saved_start, 2491 &tmp_entry); 2492 KASSERT(result, ("vm_map_wire: lookup failed")); 2493 if (entry == first_entry) 2494 first_entry = tmp_entry; 2495 else 2496 first_entry = NULL; 2497 entry = tmp_entry; 2498 while (entry->end < saved_end) { 2499 if (rv != KERN_SUCCESS) { 2500 KASSERT(entry->wired_count == 1, 2501 ("vm_map_wire: bad count")); 2502 entry->wired_count = -1; 2503 } 2504 entry = entry->next; 2505 } 2506 } 2507 last_timestamp = map->timestamp; 2508 if (rv != KERN_SUCCESS) { 2509 KASSERT(entry->wired_count == 1, 2510 ("vm_map_wire: bad count")); 2511 /* 2512 * Assign an out-of-range value to represent 2513 * the failure to wire this entry. 2514 */ 2515 entry->wired_count = -1; 2516 end = entry->end; 2517 goto done; 2518 } 2519 } else if (!user_wire || 2520 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 2521 entry->wired_count++; 2522 } 2523 /* 2524 * Check the map for holes in the specified region. 2525 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 2526 */ 2527 next_entry: 2528 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) && 2529 (entry->end < end && (entry->next == &map->header || 2530 entry->next->start > entry->end))) { 2531 end = entry->end; 2532 rv = KERN_INVALID_ADDRESS; 2533 goto done; 2534 } 2535 entry = entry->next; 2536 } 2537 rv = KERN_SUCCESS; 2538 done: 2539 need_wakeup = FALSE; 2540 if (first_entry == NULL) { 2541 result = vm_map_lookup_entry(map, start, &first_entry); 2542 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 2543 first_entry = first_entry->next; 2544 else 2545 KASSERT(result, ("vm_map_wire: lookup failed")); 2546 } 2547 for (entry = first_entry; entry != &map->header && entry->start < end; 2548 entry = entry->next) { 2549 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) 2550 goto next_entry_done; 2551 2552 /* 2553 * If VM_MAP_WIRE_HOLESOK was specified, an empty 2554 * space in the unwired region could have been mapped 2555 * while the map lock was dropped for faulting in the 2556 * pages or draining MAP_ENTRY_IN_TRANSITION. 2557 * Moreover, another thread could be simultaneously 2558 * wiring this new mapping entry. Detect these cases 2559 * and skip any entries marked as in transition by us. 2560 */ 2561 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 2562 entry->wiring_thread != curthread) { 2563 KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0, 2564 ("vm_map_wire: !HOLESOK and new/changed entry")); 2565 continue; 2566 } 2567 2568 if (rv == KERN_SUCCESS) { 2569 if (user_wire) 2570 entry->eflags |= MAP_ENTRY_USER_WIRED; 2571 } else if (entry->wired_count == -1) { 2572 /* 2573 * Wiring failed on this entry. Thus, unwiring is 2574 * unnecessary. 2575 */ 2576 entry->wired_count = 0; 2577 } else { 2578 if (!user_wire || 2579 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) 2580 entry->wired_count--; 2581 if (entry->wired_count == 0) { 2582 /* 2583 * Retain the map lock. 2584 */ 2585 vm_fault_unwire(map, entry->start, entry->end, 2586 entry->object.vm_object != NULL && 2587 (entry->object.vm_object->flags & 2588 OBJ_FICTITIOUS) != 0); 2589 } 2590 } 2591 next_entry_done: 2592 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 2593 ("vm_map_wire: in-transition flag missing %p", entry)); 2594 KASSERT(entry->wiring_thread == curthread, 2595 ("vm_map_wire: alien wire %p", entry)); 2596 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION | 2597 MAP_ENTRY_WIRE_SKIPPED); 2598 entry->wiring_thread = NULL; 2599 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 2600 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 2601 need_wakeup = TRUE; 2602 } 2603 vm_map_simplify_entry(map, entry); 2604 } 2605 vm_map_unlock(map); 2606 if (need_wakeup) 2607 vm_map_wakeup(map); 2608 return (rv); 2609 } 2610 2611 /* 2612 * vm_map_sync 2613 * 2614 * Push any dirty cached pages in the address range to their pager. 2615 * If syncio is TRUE, dirty pages are written synchronously. 2616 * If invalidate is TRUE, any cached pages are freed as well. 2617 * 2618 * If the size of the region from start to end is zero, we are 2619 * supposed to flush all modified pages within the region containing 2620 * start. Unfortunately, a region can be split or coalesced with 2621 * neighboring regions, making it difficult to determine what the 2622 * original region was. Therefore, we approximate this requirement by 2623 * flushing the current region containing start. 2624 * 2625 * Returns an error if any part of the specified range is not mapped. 2626 */ 2627 int 2628 vm_map_sync( 2629 vm_map_t map, 2630 vm_offset_t start, 2631 vm_offset_t end, 2632 boolean_t syncio, 2633 boolean_t invalidate) 2634 { 2635 vm_map_entry_t current; 2636 vm_map_entry_t entry; 2637 vm_size_t size; 2638 vm_object_t object; 2639 vm_ooffset_t offset; 2640 unsigned int last_timestamp; 2641 boolean_t failed; 2642 2643 vm_map_lock_read(map); 2644 VM_MAP_RANGE_CHECK(map, start, end); 2645 if (!vm_map_lookup_entry(map, start, &entry)) { 2646 vm_map_unlock_read(map); 2647 return (KERN_INVALID_ADDRESS); 2648 } else if (start == end) { 2649 start = entry->start; 2650 end = entry->end; 2651 } 2652 /* 2653 * Make a first pass to check for user-wired memory and holes. 2654 */ 2655 for (current = entry; current != &map->header && current->start < end; 2656 current = current->next) { 2657 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) { 2658 vm_map_unlock_read(map); 2659 return (KERN_INVALID_ARGUMENT); 2660 } 2661 if (end > current->end && 2662 (current->next == &map->header || 2663 current->end != current->next->start)) { 2664 vm_map_unlock_read(map); 2665 return (KERN_INVALID_ADDRESS); 2666 } 2667 } 2668 2669 if (invalidate) 2670 pmap_remove(map->pmap, start, end); 2671 failed = FALSE; 2672 2673 /* 2674 * Make a second pass, cleaning/uncaching pages from the indicated 2675 * objects as we go. 2676 */ 2677 for (current = entry; current != &map->header && current->start < end;) { 2678 offset = current->offset + (start - current->start); 2679 size = (end <= current->end ? end : current->end) - start; 2680 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 2681 vm_map_t smap; 2682 vm_map_entry_t tentry; 2683 vm_size_t tsize; 2684 2685 smap = current->object.sub_map; 2686 vm_map_lock_read(smap); 2687 (void) vm_map_lookup_entry(smap, offset, &tentry); 2688 tsize = tentry->end - offset; 2689 if (tsize < size) 2690 size = tsize; 2691 object = tentry->object.vm_object; 2692 offset = tentry->offset + (offset - tentry->start); 2693 vm_map_unlock_read(smap); 2694 } else { 2695 object = current->object.vm_object; 2696 } 2697 vm_object_reference(object); 2698 last_timestamp = map->timestamp; 2699 vm_map_unlock_read(map); 2700 if (!vm_object_sync(object, offset, size, syncio, invalidate)) 2701 failed = TRUE; 2702 start += size; 2703 vm_object_deallocate(object); 2704 vm_map_lock_read(map); 2705 if (last_timestamp == map->timestamp || 2706 !vm_map_lookup_entry(map, start, ¤t)) 2707 current = current->next; 2708 } 2709 2710 vm_map_unlock_read(map); 2711 return (failed ? KERN_FAILURE : KERN_SUCCESS); 2712 } 2713 2714 /* 2715 * vm_map_entry_unwire: [ internal use only ] 2716 * 2717 * Make the region specified by this entry pageable. 2718 * 2719 * The map in question should be locked. 2720 * [This is the reason for this routine's existence.] 2721 */ 2722 static void 2723 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 2724 { 2725 vm_fault_unwire(map, entry->start, entry->end, 2726 entry->object.vm_object != NULL && 2727 (entry->object.vm_object->flags & OBJ_FICTITIOUS) != 0); 2728 entry->wired_count = 0; 2729 } 2730 2731 static void 2732 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map) 2733 { 2734 2735 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) 2736 vm_object_deallocate(entry->object.vm_object); 2737 uma_zfree(system_map ? kmapentzone : mapentzone, entry); 2738 } 2739 2740 /* 2741 * vm_map_entry_delete: [ internal use only ] 2742 * 2743 * Deallocate the given entry from the target map. 2744 */ 2745 static void 2746 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry) 2747 { 2748 vm_object_t object; 2749 vm_pindex_t offidxstart, offidxend, count, size1; 2750 vm_ooffset_t size; 2751 2752 vm_map_entry_unlink(map, entry); 2753 object = entry->object.vm_object; 2754 size = entry->end - entry->start; 2755 map->size -= size; 2756 2757 if (entry->cred != NULL) { 2758 swap_release_by_cred(size, entry->cred); 2759 crfree(entry->cred); 2760 } 2761 2762 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 && 2763 (object != NULL)) { 2764 KASSERT(entry->cred == NULL || object->cred == NULL || 2765 (entry->eflags & MAP_ENTRY_NEEDS_COPY), 2766 ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry)); 2767 count = OFF_TO_IDX(size); 2768 offidxstart = OFF_TO_IDX(entry->offset); 2769 offidxend = offidxstart + count; 2770 VM_OBJECT_WLOCK(object); 2771 if (object->ref_count != 1 && 2772 ((object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING || 2773 object == kernel_object || object == kmem_object)) { 2774 vm_object_collapse(object); 2775 2776 /* 2777 * The option OBJPR_NOTMAPPED can be passed here 2778 * because vm_map_delete() already performed 2779 * pmap_remove() on the only mapping to this range 2780 * of pages. 2781 */ 2782 vm_object_page_remove(object, offidxstart, offidxend, 2783 OBJPR_NOTMAPPED); 2784 if (object->type == OBJT_SWAP) 2785 swap_pager_freespace(object, offidxstart, count); 2786 if (offidxend >= object->size && 2787 offidxstart < object->size) { 2788 size1 = object->size; 2789 object->size = offidxstart; 2790 if (object->cred != NULL) { 2791 size1 -= object->size; 2792 KASSERT(object->charge >= ptoa(size1), 2793 ("vm_map_entry_delete: object->charge < 0")); 2794 swap_release_by_cred(ptoa(size1), object->cred); 2795 object->charge -= ptoa(size1); 2796 } 2797 } 2798 } 2799 VM_OBJECT_WUNLOCK(object); 2800 } else 2801 entry->object.vm_object = NULL; 2802 if (map->system_map) 2803 vm_map_entry_deallocate(entry, TRUE); 2804 else { 2805 entry->next = curthread->td_map_def_user; 2806 curthread->td_map_def_user = entry; 2807 } 2808 } 2809 2810 /* 2811 * vm_map_delete: [ internal use only ] 2812 * 2813 * Deallocates the given address range from the target 2814 * map. 2815 */ 2816 int 2817 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end) 2818 { 2819 vm_map_entry_t entry; 2820 vm_map_entry_t first_entry; 2821 2822 VM_MAP_ASSERT_LOCKED(map); 2823 2824 /* 2825 * Find the start of the region, and clip it 2826 */ 2827 if (!vm_map_lookup_entry(map, start, &first_entry)) 2828 entry = first_entry->next; 2829 else { 2830 entry = first_entry; 2831 vm_map_clip_start(map, entry, start); 2832 } 2833 2834 /* 2835 * Step through all entries in this region 2836 */ 2837 while ((entry != &map->header) && (entry->start < end)) { 2838 vm_map_entry_t next; 2839 2840 /* 2841 * Wait for wiring or unwiring of an entry to complete. 2842 * Also wait for any system wirings to disappear on 2843 * user maps. 2844 */ 2845 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 || 2846 (vm_map_pmap(map) != kernel_pmap && 2847 vm_map_entry_system_wired_count(entry) != 0)) { 2848 unsigned int last_timestamp; 2849 vm_offset_t saved_start; 2850 vm_map_entry_t tmp_entry; 2851 2852 saved_start = entry->start; 2853 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2854 last_timestamp = map->timestamp; 2855 (void) vm_map_unlock_and_wait(map, 0); 2856 vm_map_lock(map); 2857 if (last_timestamp + 1 != map->timestamp) { 2858 /* 2859 * Look again for the entry because the map was 2860 * modified while it was unlocked. 2861 * Specifically, the entry may have been 2862 * clipped, merged, or deleted. 2863 */ 2864 if (!vm_map_lookup_entry(map, saved_start, 2865 &tmp_entry)) 2866 entry = tmp_entry->next; 2867 else { 2868 entry = tmp_entry; 2869 vm_map_clip_start(map, entry, 2870 saved_start); 2871 } 2872 } 2873 continue; 2874 } 2875 vm_map_clip_end(map, entry, end); 2876 2877 next = entry->next; 2878 2879 /* 2880 * Unwire before removing addresses from the pmap; otherwise, 2881 * unwiring will put the entries back in the pmap. 2882 */ 2883 if (entry->wired_count != 0) { 2884 vm_map_entry_unwire(map, entry); 2885 } 2886 2887 pmap_remove(map->pmap, entry->start, entry->end); 2888 2889 /* 2890 * Delete the entry only after removing all pmap 2891 * entries pointing to its pages. (Otherwise, its 2892 * page frames may be reallocated, and any modify bits 2893 * will be set in the wrong object!) 2894 */ 2895 vm_map_entry_delete(map, entry); 2896 entry = next; 2897 } 2898 return (KERN_SUCCESS); 2899 } 2900 2901 /* 2902 * vm_map_remove: 2903 * 2904 * Remove the given address range from the target map. 2905 * This is the exported form of vm_map_delete. 2906 */ 2907 int 2908 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 2909 { 2910 int result; 2911 2912 vm_map_lock(map); 2913 VM_MAP_RANGE_CHECK(map, start, end); 2914 result = vm_map_delete(map, start, end); 2915 vm_map_unlock(map); 2916 return (result); 2917 } 2918 2919 /* 2920 * vm_map_check_protection: 2921 * 2922 * Assert that the target map allows the specified privilege on the 2923 * entire address region given. The entire region must be allocated. 2924 * 2925 * WARNING! This code does not and should not check whether the 2926 * contents of the region is accessible. For example a smaller file 2927 * might be mapped into a larger address space. 2928 * 2929 * NOTE! This code is also called by munmap(). 2930 * 2931 * The map must be locked. A read lock is sufficient. 2932 */ 2933 boolean_t 2934 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 2935 vm_prot_t protection) 2936 { 2937 vm_map_entry_t entry; 2938 vm_map_entry_t tmp_entry; 2939 2940 if (!vm_map_lookup_entry(map, start, &tmp_entry)) 2941 return (FALSE); 2942 entry = tmp_entry; 2943 2944 while (start < end) { 2945 if (entry == &map->header) 2946 return (FALSE); 2947 /* 2948 * No holes allowed! 2949 */ 2950 if (start < entry->start) 2951 return (FALSE); 2952 /* 2953 * Check protection associated with entry. 2954 */ 2955 if ((entry->protection & protection) != protection) 2956 return (FALSE); 2957 /* go to next entry */ 2958 start = entry->end; 2959 entry = entry->next; 2960 } 2961 return (TRUE); 2962 } 2963 2964 /* 2965 * vm_map_copy_entry: 2966 * 2967 * Copies the contents of the source entry to the destination 2968 * entry. The entries *must* be aligned properly. 2969 */ 2970 static void 2971 vm_map_copy_entry( 2972 vm_map_t src_map, 2973 vm_map_t dst_map, 2974 vm_map_entry_t src_entry, 2975 vm_map_entry_t dst_entry, 2976 vm_ooffset_t *fork_charge) 2977 { 2978 vm_object_t src_object; 2979 vm_map_entry_t fake_entry; 2980 vm_offset_t size; 2981 struct ucred *cred; 2982 int charged; 2983 2984 VM_MAP_ASSERT_LOCKED(dst_map); 2985 2986 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP) 2987 return; 2988 2989 if (src_entry->wired_count == 0) { 2990 2991 /* 2992 * If the source entry is marked needs_copy, it is already 2993 * write-protected. 2994 */ 2995 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) { 2996 pmap_protect(src_map->pmap, 2997 src_entry->start, 2998 src_entry->end, 2999 src_entry->protection & ~VM_PROT_WRITE); 3000 } 3001 3002 /* 3003 * Make a copy of the object. 3004 */ 3005 size = src_entry->end - src_entry->start; 3006 if ((src_object = src_entry->object.vm_object) != NULL) { 3007 VM_OBJECT_WLOCK(src_object); 3008 charged = ENTRY_CHARGED(src_entry); 3009 if ((src_object->handle == NULL) && 3010 (src_object->type == OBJT_DEFAULT || 3011 src_object->type == OBJT_SWAP)) { 3012 vm_object_collapse(src_object); 3013 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) { 3014 vm_object_split(src_entry); 3015 src_object = src_entry->object.vm_object; 3016 } 3017 } 3018 vm_object_reference_locked(src_object); 3019 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 3020 if (src_entry->cred != NULL && 3021 !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 3022 KASSERT(src_object->cred == NULL, 3023 ("OVERCOMMIT: vm_map_copy_entry: cred %p", 3024 src_object)); 3025 src_object->cred = src_entry->cred; 3026 src_object->charge = size; 3027 } 3028 VM_OBJECT_WUNLOCK(src_object); 3029 dst_entry->object.vm_object = src_object; 3030 if (charged) { 3031 cred = curthread->td_ucred; 3032 crhold(cred); 3033 dst_entry->cred = cred; 3034 *fork_charge += size; 3035 if (!(src_entry->eflags & 3036 MAP_ENTRY_NEEDS_COPY)) { 3037 crhold(cred); 3038 src_entry->cred = cred; 3039 *fork_charge += size; 3040 } 3041 } 3042 src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 3043 dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 3044 dst_entry->offset = src_entry->offset; 3045 if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) { 3046 /* 3047 * MAP_ENTRY_VN_WRITECNT cannot 3048 * indicate write reference from 3049 * src_entry, since the entry is 3050 * marked as needs copy. Allocate a 3051 * fake entry that is used to 3052 * decrement object->un_pager.vnp.writecount 3053 * at the appropriate time. Attach 3054 * fake_entry to the deferred list. 3055 */ 3056 fake_entry = vm_map_entry_create(dst_map); 3057 fake_entry->eflags = MAP_ENTRY_VN_WRITECNT; 3058 src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT; 3059 vm_object_reference(src_object); 3060 fake_entry->object.vm_object = src_object; 3061 fake_entry->start = src_entry->start; 3062 fake_entry->end = src_entry->end; 3063 fake_entry->next = curthread->td_map_def_user; 3064 curthread->td_map_def_user = fake_entry; 3065 } 3066 } else { 3067 dst_entry->object.vm_object = NULL; 3068 dst_entry->offset = 0; 3069 if (src_entry->cred != NULL) { 3070 dst_entry->cred = curthread->td_ucred; 3071 crhold(dst_entry->cred); 3072 *fork_charge += size; 3073 } 3074 } 3075 3076 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start, 3077 dst_entry->end - dst_entry->start, src_entry->start); 3078 } else { 3079 /* 3080 * Of course, wired down pages can't be set copy-on-write. 3081 * Cause wired pages to be copied into the new map by 3082 * simulating faults (the new pages are pageable) 3083 */ 3084 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry, 3085 fork_charge); 3086 } 3087 } 3088 3089 /* 3090 * vmspace_map_entry_forked: 3091 * Update the newly-forked vmspace each time a map entry is inherited 3092 * or copied. The values for vm_dsize and vm_tsize are approximate 3093 * (and mostly-obsolete ideas in the face of mmap(2) et al.) 3094 */ 3095 static void 3096 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2, 3097 vm_map_entry_t entry) 3098 { 3099 vm_size_t entrysize; 3100 vm_offset_t newend; 3101 3102 entrysize = entry->end - entry->start; 3103 vm2->vm_map.size += entrysize; 3104 if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) { 3105 vm2->vm_ssize += btoc(entrysize); 3106 } else if (entry->start >= (vm_offset_t)vm1->vm_daddr && 3107 entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) { 3108 newend = MIN(entry->end, 3109 (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)); 3110 vm2->vm_dsize += btoc(newend - entry->start); 3111 } else if (entry->start >= (vm_offset_t)vm1->vm_taddr && 3112 entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) { 3113 newend = MIN(entry->end, 3114 (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)); 3115 vm2->vm_tsize += btoc(newend - entry->start); 3116 } 3117 } 3118 3119 /* 3120 * vmspace_fork: 3121 * Create a new process vmspace structure and vm_map 3122 * based on those of an existing process. The new map 3123 * is based on the old map, according to the inheritance 3124 * values on the regions in that map. 3125 * 3126 * XXX It might be worth coalescing the entries added to the new vmspace. 3127 * 3128 * The source map must not be locked. 3129 */ 3130 struct vmspace * 3131 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge) 3132 { 3133 struct vmspace *vm2; 3134 vm_map_t new_map, old_map; 3135 vm_map_entry_t new_entry, old_entry; 3136 vm_object_t object; 3137 int locked; 3138 3139 old_map = &vm1->vm_map; 3140 /* Copy immutable fields of vm1 to vm2. */ 3141 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset); 3142 if (vm2 == NULL) 3143 return (NULL); 3144 vm2->vm_taddr = vm1->vm_taddr; 3145 vm2->vm_daddr = vm1->vm_daddr; 3146 vm2->vm_maxsaddr = vm1->vm_maxsaddr; 3147 vm_map_lock(old_map); 3148 if (old_map->busy) 3149 vm_map_wait_busy(old_map); 3150 new_map = &vm2->vm_map; 3151 locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */ 3152 KASSERT(locked, ("vmspace_fork: lock failed")); 3153 3154 old_entry = old_map->header.next; 3155 3156 while (old_entry != &old_map->header) { 3157 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) 3158 panic("vm_map_fork: encountered a submap"); 3159 3160 switch (old_entry->inheritance) { 3161 case VM_INHERIT_NONE: 3162 break; 3163 3164 case VM_INHERIT_SHARE: 3165 /* 3166 * Clone the entry, creating the shared object if necessary. 3167 */ 3168 object = old_entry->object.vm_object; 3169 if (object == NULL) { 3170 object = vm_object_allocate(OBJT_DEFAULT, 3171 atop(old_entry->end - old_entry->start)); 3172 old_entry->object.vm_object = object; 3173 old_entry->offset = 0; 3174 if (old_entry->cred != NULL) { 3175 object->cred = old_entry->cred; 3176 object->charge = old_entry->end - 3177 old_entry->start; 3178 old_entry->cred = NULL; 3179 } 3180 } 3181 3182 /* 3183 * Add the reference before calling vm_object_shadow 3184 * to insure that a shadow object is created. 3185 */ 3186 vm_object_reference(object); 3187 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3188 vm_object_shadow(&old_entry->object.vm_object, 3189 &old_entry->offset, 3190 old_entry->end - old_entry->start); 3191 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 3192 /* Transfer the second reference too. */ 3193 vm_object_reference( 3194 old_entry->object.vm_object); 3195 3196 /* 3197 * As in vm_map_simplify_entry(), the 3198 * vnode lock will not be acquired in 3199 * this call to vm_object_deallocate(). 3200 */ 3201 vm_object_deallocate(object); 3202 object = old_entry->object.vm_object; 3203 } 3204 VM_OBJECT_WLOCK(object); 3205 vm_object_clear_flag(object, OBJ_ONEMAPPING); 3206 if (old_entry->cred != NULL) { 3207 KASSERT(object->cred == NULL, ("vmspace_fork both cred")); 3208 object->cred = old_entry->cred; 3209 object->charge = old_entry->end - old_entry->start; 3210 old_entry->cred = NULL; 3211 } 3212 3213 /* 3214 * Assert the correct state of the vnode 3215 * v_writecount while the object is locked, to 3216 * not relock it later for the assertion 3217 * correctness. 3218 */ 3219 if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT && 3220 object->type == OBJT_VNODE) { 3221 KASSERT(((struct vnode *)object->handle)-> 3222 v_writecount > 0, 3223 ("vmspace_fork: v_writecount %p", object)); 3224 KASSERT(object->un_pager.vnp.writemappings > 0, 3225 ("vmspace_fork: vnp.writecount %p", 3226 object)); 3227 } 3228 VM_OBJECT_WUNLOCK(object); 3229 3230 /* 3231 * Clone the entry, referencing the shared object. 3232 */ 3233 new_entry = vm_map_entry_create(new_map); 3234 *new_entry = *old_entry; 3235 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 3236 MAP_ENTRY_IN_TRANSITION); 3237 new_entry->wiring_thread = NULL; 3238 new_entry->wired_count = 0; 3239 if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) { 3240 vnode_pager_update_writecount(object, 3241 new_entry->start, new_entry->end); 3242 } 3243 3244 /* 3245 * Insert the entry into the new map -- we know we're 3246 * inserting at the end of the new map. 3247 */ 3248 vm_map_entry_link(new_map, new_map->header.prev, 3249 new_entry); 3250 vmspace_map_entry_forked(vm1, vm2, new_entry); 3251 3252 /* 3253 * Update the physical map 3254 */ 3255 pmap_copy(new_map->pmap, old_map->pmap, 3256 new_entry->start, 3257 (old_entry->end - old_entry->start), 3258 old_entry->start); 3259 break; 3260 3261 case VM_INHERIT_COPY: 3262 /* 3263 * Clone the entry and link into the map. 3264 */ 3265 new_entry = vm_map_entry_create(new_map); 3266 *new_entry = *old_entry; 3267 /* 3268 * Copied entry is COW over the old object. 3269 */ 3270 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 3271 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT); 3272 new_entry->wiring_thread = NULL; 3273 new_entry->wired_count = 0; 3274 new_entry->object.vm_object = NULL; 3275 new_entry->cred = NULL; 3276 vm_map_entry_link(new_map, new_map->header.prev, 3277 new_entry); 3278 vmspace_map_entry_forked(vm1, vm2, new_entry); 3279 vm_map_copy_entry(old_map, new_map, old_entry, 3280 new_entry, fork_charge); 3281 break; 3282 } 3283 old_entry = old_entry->next; 3284 } 3285 /* 3286 * Use inlined vm_map_unlock() to postpone handling the deferred 3287 * map entries, which cannot be done until both old_map and 3288 * new_map locks are released. 3289 */ 3290 sx_xunlock(&old_map->lock); 3291 sx_xunlock(&new_map->lock); 3292 vm_map_process_deferred(); 3293 3294 return (vm2); 3295 } 3296 3297 int 3298 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 3299 vm_prot_t prot, vm_prot_t max, int cow) 3300 { 3301 vm_map_entry_t new_entry, prev_entry; 3302 vm_offset_t bot, top; 3303 vm_size_t growsize, init_ssize; 3304 int orient, rv; 3305 rlim_t lmemlim, vmemlim; 3306 3307 /* 3308 * The stack orientation is piggybacked with the cow argument. 3309 * Extract it into orient and mask the cow argument so that we 3310 * don't pass it around further. 3311 * NOTE: We explicitly allow bi-directional stacks. 3312 */ 3313 orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP); 3314 cow &= ~orient; 3315 KASSERT(orient != 0, ("No stack grow direction")); 3316 3317 if (addrbos < vm_map_min(map) || 3318 addrbos > vm_map_max(map) || 3319 addrbos + max_ssize < addrbos) 3320 return (KERN_NO_SPACE); 3321 3322 growsize = sgrowsiz; 3323 init_ssize = (max_ssize < growsize) ? max_ssize : growsize; 3324 3325 PROC_LOCK(curproc); 3326 lmemlim = lim_cur(curproc, RLIMIT_MEMLOCK); 3327 vmemlim = lim_cur(curproc, RLIMIT_VMEM); 3328 PROC_UNLOCK(curproc); 3329 3330 vm_map_lock(map); 3331 3332 /* If addr is already mapped, no go */ 3333 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) { 3334 vm_map_unlock(map); 3335 return (KERN_NO_SPACE); 3336 } 3337 3338 if (!old_mlock && map->flags & MAP_WIREFUTURE) { 3339 if (ptoa(pmap_wired_count(map->pmap)) + init_ssize > lmemlim) { 3340 vm_map_unlock(map); 3341 return (KERN_NO_SPACE); 3342 } 3343 } 3344 3345 /* If we would blow our VMEM resource limit, no go */ 3346 if (map->size + init_ssize > vmemlim) { 3347 vm_map_unlock(map); 3348 return (KERN_NO_SPACE); 3349 } 3350 3351 /* 3352 * If we can't accomodate max_ssize in the current mapping, no go. 3353 * However, we need to be aware that subsequent user mappings might 3354 * map into the space we have reserved for stack, and currently this 3355 * space is not protected. 3356 * 3357 * Hopefully we will at least detect this condition when we try to 3358 * grow the stack. 3359 */ 3360 if ((prev_entry->next != &map->header) && 3361 (prev_entry->next->start < addrbos + max_ssize)) { 3362 vm_map_unlock(map); 3363 return (KERN_NO_SPACE); 3364 } 3365 3366 /* 3367 * We initially map a stack of only init_ssize. We will grow as 3368 * needed later. Depending on the orientation of the stack (i.e. 3369 * the grow direction) we either map at the top of the range, the 3370 * bottom of the range or in the middle. 3371 * 3372 * Note: we would normally expect prot and max to be VM_PROT_ALL, 3373 * and cow to be 0. Possibly we should eliminate these as input 3374 * parameters, and just pass these values here in the insert call. 3375 */ 3376 if (orient == MAP_STACK_GROWS_DOWN) 3377 bot = addrbos + max_ssize - init_ssize; 3378 else if (orient == MAP_STACK_GROWS_UP) 3379 bot = addrbos; 3380 else 3381 bot = round_page(addrbos + max_ssize/2 - init_ssize/2); 3382 top = bot + init_ssize; 3383 rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow); 3384 3385 /* Now set the avail_ssize amount. */ 3386 if (rv == KERN_SUCCESS) { 3387 if (prev_entry != &map->header) 3388 vm_map_clip_end(map, prev_entry, bot); 3389 new_entry = prev_entry->next; 3390 if (new_entry->end != top || new_entry->start != bot) 3391 panic("Bad entry start/end for new stack entry"); 3392 3393 new_entry->avail_ssize = max_ssize - init_ssize; 3394 if (orient & MAP_STACK_GROWS_DOWN) 3395 new_entry->eflags |= MAP_ENTRY_GROWS_DOWN; 3396 if (orient & MAP_STACK_GROWS_UP) 3397 new_entry->eflags |= MAP_ENTRY_GROWS_UP; 3398 } 3399 3400 vm_map_unlock(map); 3401 return (rv); 3402 } 3403 3404 static int stack_guard_page = 0; 3405 TUNABLE_INT("security.bsd.stack_guard_page", &stack_guard_page); 3406 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RW, 3407 &stack_guard_page, 0, 3408 "Insert stack guard page ahead of the growable segments."); 3409 3410 /* Attempts to grow a vm stack entry. Returns KERN_SUCCESS if the 3411 * desired address is already mapped, or if we successfully grow 3412 * the stack. Also returns KERN_SUCCESS if addr is outside the 3413 * stack range (this is strange, but preserves compatibility with 3414 * the grow function in vm_machdep.c). 3415 */ 3416 int 3417 vm_map_growstack(struct proc *p, vm_offset_t addr) 3418 { 3419 vm_map_entry_t next_entry, prev_entry; 3420 vm_map_entry_t new_entry, stack_entry; 3421 struct vmspace *vm = p->p_vmspace; 3422 vm_map_t map = &vm->vm_map; 3423 vm_offset_t end; 3424 vm_size_t growsize; 3425 size_t grow_amount, max_grow; 3426 rlim_t lmemlim, stacklim, vmemlim; 3427 int is_procstack, rv; 3428 struct ucred *cred; 3429 #ifdef notyet 3430 uint64_t limit; 3431 #endif 3432 #ifdef RACCT 3433 int error; 3434 #endif 3435 3436 Retry: 3437 PROC_LOCK(p); 3438 lmemlim = lim_cur(p, RLIMIT_MEMLOCK); 3439 stacklim = lim_cur(p, RLIMIT_STACK); 3440 vmemlim = lim_cur(p, RLIMIT_VMEM); 3441 PROC_UNLOCK(p); 3442 3443 vm_map_lock_read(map); 3444 3445 /* If addr is already in the entry range, no need to grow.*/ 3446 if (vm_map_lookup_entry(map, addr, &prev_entry)) { 3447 vm_map_unlock_read(map); 3448 return (KERN_SUCCESS); 3449 } 3450 3451 next_entry = prev_entry->next; 3452 if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) { 3453 /* 3454 * This entry does not grow upwards. Since the address lies 3455 * beyond this entry, the next entry (if one exists) has to 3456 * be a downward growable entry. The entry list header is 3457 * never a growable entry, so it suffices to check the flags. 3458 */ 3459 if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) { 3460 vm_map_unlock_read(map); 3461 return (KERN_SUCCESS); 3462 } 3463 stack_entry = next_entry; 3464 } else { 3465 /* 3466 * This entry grows upward. If the next entry does not at 3467 * least grow downwards, this is the entry we need to grow. 3468 * otherwise we have two possible choices and we have to 3469 * select one. 3470 */ 3471 if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) { 3472 /* 3473 * We have two choices; grow the entry closest to 3474 * the address to minimize the amount of growth. 3475 */ 3476 if (addr - prev_entry->end <= next_entry->start - addr) 3477 stack_entry = prev_entry; 3478 else 3479 stack_entry = next_entry; 3480 } else 3481 stack_entry = prev_entry; 3482 } 3483 3484 if (stack_entry == next_entry) { 3485 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo")); 3486 KASSERT(addr < stack_entry->start, ("foo")); 3487 end = (prev_entry != &map->header) ? prev_entry->end : 3488 stack_entry->start - stack_entry->avail_ssize; 3489 grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE); 3490 max_grow = stack_entry->start - end; 3491 } else { 3492 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo")); 3493 KASSERT(addr >= stack_entry->end, ("foo")); 3494 end = (next_entry != &map->header) ? next_entry->start : 3495 stack_entry->end + stack_entry->avail_ssize; 3496 grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE); 3497 max_grow = end - stack_entry->end; 3498 } 3499 3500 if (grow_amount > stack_entry->avail_ssize) { 3501 vm_map_unlock_read(map); 3502 return (KERN_NO_SPACE); 3503 } 3504 3505 /* 3506 * If there is no longer enough space between the entries nogo, and 3507 * adjust the available space. Note: this should only happen if the 3508 * user has mapped into the stack area after the stack was created, 3509 * and is probably an error. 3510 * 3511 * This also effectively destroys any guard page the user might have 3512 * intended by limiting the stack size. 3513 */ 3514 if (grow_amount + (stack_guard_page ? PAGE_SIZE : 0) > max_grow) { 3515 if (vm_map_lock_upgrade(map)) 3516 goto Retry; 3517 3518 stack_entry->avail_ssize = max_grow; 3519 3520 vm_map_unlock(map); 3521 return (KERN_NO_SPACE); 3522 } 3523 3524 is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr) ? 1 : 0; 3525 3526 /* 3527 * If this is the main process stack, see if we're over the stack 3528 * limit. 3529 */ 3530 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 3531 vm_map_unlock_read(map); 3532 return (KERN_NO_SPACE); 3533 } 3534 #ifdef RACCT 3535 PROC_LOCK(p); 3536 if (is_procstack && 3537 racct_set(p, RACCT_STACK, ctob(vm->vm_ssize) + grow_amount)) { 3538 PROC_UNLOCK(p); 3539 vm_map_unlock_read(map); 3540 return (KERN_NO_SPACE); 3541 } 3542 PROC_UNLOCK(p); 3543 #endif 3544 3545 /* Round up the grow amount modulo sgrowsiz */ 3546 growsize = sgrowsiz; 3547 grow_amount = roundup(grow_amount, growsize); 3548 if (grow_amount > stack_entry->avail_ssize) 3549 grow_amount = stack_entry->avail_ssize; 3550 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 3551 grow_amount = trunc_page((vm_size_t)stacklim) - 3552 ctob(vm->vm_ssize); 3553 } 3554 #ifdef notyet 3555 PROC_LOCK(p); 3556 limit = racct_get_available(p, RACCT_STACK); 3557 PROC_UNLOCK(p); 3558 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit)) 3559 grow_amount = limit - ctob(vm->vm_ssize); 3560 #endif 3561 if (!old_mlock && map->flags & MAP_WIREFUTURE) { 3562 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) { 3563 vm_map_unlock_read(map); 3564 rv = KERN_NO_SPACE; 3565 goto out; 3566 } 3567 #ifdef RACCT 3568 PROC_LOCK(p); 3569 if (racct_set(p, RACCT_MEMLOCK, 3570 ptoa(pmap_wired_count(map->pmap)) + grow_amount)) { 3571 PROC_UNLOCK(p); 3572 vm_map_unlock_read(map); 3573 rv = KERN_NO_SPACE; 3574 goto out; 3575 } 3576 PROC_UNLOCK(p); 3577 #endif 3578 } 3579 /* If we would blow our VMEM resource limit, no go */ 3580 if (map->size + grow_amount > vmemlim) { 3581 vm_map_unlock_read(map); 3582 rv = KERN_NO_SPACE; 3583 goto out; 3584 } 3585 #ifdef RACCT 3586 PROC_LOCK(p); 3587 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) { 3588 PROC_UNLOCK(p); 3589 vm_map_unlock_read(map); 3590 rv = KERN_NO_SPACE; 3591 goto out; 3592 } 3593 PROC_UNLOCK(p); 3594 #endif 3595 3596 if (vm_map_lock_upgrade(map)) 3597 goto Retry; 3598 3599 if (stack_entry == next_entry) { 3600 /* 3601 * Growing downward. 3602 */ 3603 /* Get the preliminary new entry start value */ 3604 addr = stack_entry->start - grow_amount; 3605 3606 /* 3607 * If this puts us into the previous entry, cut back our 3608 * growth to the available space. Also, see the note above. 3609 */ 3610 if (addr < end) { 3611 stack_entry->avail_ssize = max_grow; 3612 addr = end; 3613 if (stack_guard_page) 3614 addr += PAGE_SIZE; 3615 } 3616 3617 rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start, 3618 next_entry->protection, next_entry->max_protection, 0); 3619 3620 /* Adjust the available stack space by the amount we grew. */ 3621 if (rv == KERN_SUCCESS) { 3622 if (prev_entry != &map->header) 3623 vm_map_clip_end(map, prev_entry, addr); 3624 new_entry = prev_entry->next; 3625 KASSERT(new_entry == stack_entry->prev, ("foo")); 3626 KASSERT(new_entry->end == stack_entry->start, ("foo")); 3627 KASSERT(new_entry->start == addr, ("foo")); 3628 grow_amount = new_entry->end - new_entry->start; 3629 new_entry->avail_ssize = stack_entry->avail_ssize - 3630 grow_amount; 3631 stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN; 3632 new_entry->eflags |= MAP_ENTRY_GROWS_DOWN; 3633 } 3634 } else { 3635 /* 3636 * Growing upward. 3637 */ 3638 addr = stack_entry->end + grow_amount; 3639 3640 /* 3641 * If this puts us into the next entry, cut back our growth 3642 * to the available space. Also, see the note above. 3643 */ 3644 if (addr > end) { 3645 stack_entry->avail_ssize = end - stack_entry->end; 3646 addr = end; 3647 if (stack_guard_page) 3648 addr -= PAGE_SIZE; 3649 } 3650 3651 grow_amount = addr - stack_entry->end; 3652 cred = stack_entry->cred; 3653 if (cred == NULL && stack_entry->object.vm_object != NULL) 3654 cred = stack_entry->object.vm_object->cred; 3655 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred)) 3656 rv = KERN_NO_SPACE; 3657 /* Grow the underlying object if applicable. */ 3658 else if (stack_entry->object.vm_object == NULL || 3659 vm_object_coalesce(stack_entry->object.vm_object, 3660 stack_entry->offset, 3661 (vm_size_t)(stack_entry->end - stack_entry->start), 3662 (vm_size_t)grow_amount, cred != NULL)) { 3663 map->size += (addr - stack_entry->end); 3664 /* Update the current entry. */ 3665 stack_entry->end = addr; 3666 stack_entry->avail_ssize -= grow_amount; 3667 vm_map_entry_resize_free(map, stack_entry); 3668 rv = KERN_SUCCESS; 3669 3670 if (next_entry != &map->header) 3671 vm_map_clip_start(map, next_entry, addr); 3672 } else 3673 rv = KERN_FAILURE; 3674 } 3675 3676 if (rv == KERN_SUCCESS && is_procstack) 3677 vm->vm_ssize += btoc(grow_amount); 3678 3679 vm_map_unlock(map); 3680 3681 /* 3682 * Heed the MAP_WIREFUTURE flag if it was set for this process. 3683 */ 3684 if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) { 3685 vm_map_wire(map, 3686 (stack_entry == next_entry) ? addr : addr - grow_amount, 3687 (stack_entry == next_entry) ? stack_entry->start : addr, 3688 (p->p_flag & P_SYSTEM) 3689 ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES 3690 : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES); 3691 } 3692 3693 out: 3694 #ifdef RACCT 3695 if (rv != KERN_SUCCESS) { 3696 PROC_LOCK(p); 3697 error = racct_set(p, RACCT_VMEM, map->size); 3698 KASSERT(error == 0, ("decreasing RACCT_VMEM failed")); 3699 if (!old_mlock) { 3700 error = racct_set(p, RACCT_MEMLOCK, 3701 ptoa(pmap_wired_count(map->pmap))); 3702 KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed")); 3703 } 3704 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize)); 3705 KASSERT(error == 0, ("decreasing RACCT_STACK failed")); 3706 PROC_UNLOCK(p); 3707 } 3708 #endif 3709 3710 return (rv); 3711 } 3712 3713 /* 3714 * Unshare the specified VM space for exec. If other processes are 3715 * mapped to it, then create a new one. The new vmspace is null. 3716 */ 3717 int 3718 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser) 3719 { 3720 struct vmspace *oldvmspace = p->p_vmspace; 3721 struct vmspace *newvmspace; 3722 3723 newvmspace = vmspace_alloc(minuser, maxuser); 3724 if (newvmspace == NULL) 3725 return (ENOMEM); 3726 newvmspace->vm_swrss = oldvmspace->vm_swrss; 3727 /* 3728 * This code is written like this for prototype purposes. The 3729 * goal is to avoid running down the vmspace here, but let the 3730 * other process's that are still using the vmspace to finally 3731 * run it down. Even though there is little or no chance of blocking 3732 * here, it is a good idea to keep this form for future mods. 3733 */ 3734 PROC_VMSPACE_LOCK(p); 3735 p->p_vmspace = newvmspace; 3736 PROC_VMSPACE_UNLOCK(p); 3737 if (p == curthread->td_proc) 3738 pmap_activate(curthread); 3739 vmspace_free(oldvmspace); 3740 return (0); 3741 } 3742 3743 /* 3744 * Unshare the specified VM space for forcing COW. This 3745 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 3746 */ 3747 int 3748 vmspace_unshare(struct proc *p) 3749 { 3750 struct vmspace *oldvmspace = p->p_vmspace; 3751 struct vmspace *newvmspace; 3752 vm_ooffset_t fork_charge; 3753 3754 if (oldvmspace->vm_refcnt == 1) 3755 return (0); 3756 fork_charge = 0; 3757 newvmspace = vmspace_fork(oldvmspace, &fork_charge); 3758 if (newvmspace == NULL) 3759 return (ENOMEM); 3760 if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) { 3761 vmspace_free(newvmspace); 3762 return (ENOMEM); 3763 } 3764 PROC_VMSPACE_LOCK(p); 3765 p->p_vmspace = newvmspace; 3766 PROC_VMSPACE_UNLOCK(p); 3767 if (p == curthread->td_proc) 3768 pmap_activate(curthread); 3769 vmspace_free(oldvmspace); 3770 return (0); 3771 } 3772 3773 /* 3774 * vm_map_lookup: 3775 * 3776 * Finds the VM object, offset, and 3777 * protection for a given virtual address in the 3778 * specified map, assuming a page fault of the 3779 * type specified. 3780 * 3781 * Leaves the map in question locked for read; return 3782 * values are guaranteed until a vm_map_lookup_done 3783 * call is performed. Note that the map argument 3784 * is in/out; the returned map must be used in 3785 * the call to vm_map_lookup_done. 3786 * 3787 * A handle (out_entry) is returned for use in 3788 * vm_map_lookup_done, to make that fast. 3789 * 3790 * If a lookup is requested with "write protection" 3791 * specified, the map may be changed to perform virtual 3792 * copying operations, although the data referenced will 3793 * remain the same. 3794 */ 3795 int 3796 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 3797 vm_offset_t vaddr, 3798 vm_prot_t fault_typea, 3799 vm_map_entry_t *out_entry, /* OUT */ 3800 vm_object_t *object, /* OUT */ 3801 vm_pindex_t *pindex, /* OUT */ 3802 vm_prot_t *out_prot, /* OUT */ 3803 boolean_t *wired) /* OUT */ 3804 { 3805 vm_map_entry_t entry; 3806 vm_map_t map = *var_map; 3807 vm_prot_t prot; 3808 vm_prot_t fault_type = fault_typea; 3809 vm_object_t eobject; 3810 vm_size_t size; 3811 struct ucred *cred; 3812 3813 RetryLookup:; 3814 3815 vm_map_lock_read(map); 3816 3817 /* 3818 * Lookup the faulting address. 3819 */ 3820 if (!vm_map_lookup_entry(map, vaddr, out_entry)) { 3821 vm_map_unlock_read(map); 3822 return (KERN_INVALID_ADDRESS); 3823 } 3824 3825 entry = *out_entry; 3826 3827 /* 3828 * Handle submaps. 3829 */ 3830 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 3831 vm_map_t old_map = map; 3832 3833 *var_map = map = entry->object.sub_map; 3834 vm_map_unlock_read(old_map); 3835 goto RetryLookup; 3836 } 3837 3838 /* 3839 * Check whether this task is allowed to have this page. 3840 */ 3841 prot = entry->protection; 3842 fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE); 3843 if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) { 3844 vm_map_unlock_read(map); 3845 return (KERN_PROTECTION_FAILURE); 3846 } 3847 if ((entry->eflags & MAP_ENTRY_USER_WIRED) && 3848 (entry->eflags & MAP_ENTRY_COW) && 3849 (fault_type & VM_PROT_WRITE)) { 3850 vm_map_unlock_read(map); 3851 return (KERN_PROTECTION_FAILURE); 3852 } 3853 if ((fault_typea & VM_PROT_COPY) != 0 && 3854 (entry->max_protection & VM_PROT_WRITE) == 0 && 3855 (entry->eflags & MAP_ENTRY_COW) == 0) { 3856 vm_map_unlock_read(map); 3857 return (KERN_PROTECTION_FAILURE); 3858 } 3859 3860 /* 3861 * If this page is not pageable, we have to get it for all possible 3862 * accesses. 3863 */ 3864 *wired = (entry->wired_count != 0); 3865 if (*wired) 3866 fault_type = entry->protection; 3867 size = entry->end - entry->start; 3868 /* 3869 * If the entry was copy-on-write, we either ... 3870 */ 3871 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3872 /* 3873 * If we want to write the page, we may as well handle that 3874 * now since we've got the map locked. 3875 * 3876 * If we don't need to write the page, we just demote the 3877 * permissions allowed. 3878 */ 3879 if ((fault_type & VM_PROT_WRITE) != 0 || 3880 (fault_typea & VM_PROT_COPY) != 0) { 3881 /* 3882 * Make a new object, and place it in the object 3883 * chain. Note that no new references have appeared 3884 * -- one just moved from the map to the new 3885 * object. 3886 */ 3887 if (vm_map_lock_upgrade(map)) 3888 goto RetryLookup; 3889 3890 if (entry->cred == NULL) { 3891 /* 3892 * The debugger owner is charged for 3893 * the memory. 3894 */ 3895 cred = curthread->td_ucred; 3896 crhold(cred); 3897 if (!swap_reserve_by_cred(size, cred)) { 3898 crfree(cred); 3899 vm_map_unlock(map); 3900 return (KERN_RESOURCE_SHORTAGE); 3901 } 3902 entry->cred = cred; 3903 } 3904 vm_object_shadow(&entry->object.vm_object, 3905 &entry->offset, size); 3906 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 3907 eobject = entry->object.vm_object; 3908 if (eobject->cred != NULL) { 3909 /* 3910 * The object was not shadowed. 3911 */ 3912 swap_release_by_cred(size, entry->cred); 3913 crfree(entry->cred); 3914 entry->cred = NULL; 3915 } else if (entry->cred != NULL) { 3916 VM_OBJECT_WLOCK(eobject); 3917 eobject->cred = entry->cred; 3918 eobject->charge = size; 3919 VM_OBJECT_WUNLOCK(eobject); 3920 entry->cred = NULL; 3921 } 3922 3923 vm_map_lock_downgrade(map); 3924 } else { 3925 /* 3926 * We're attempting to read a copy-on-write page -- 3927 * don't allow writes. 3928 */ 3929 prot &= ~VM_PROT_WRITE; 3930 } 3931 } 3932 3933 /* 3934 * Create an object if necessary. 3935 */ 3936 if (entry->object.vm_object == NULL && 3937 !map->system_map) { 3938 if (vm_map_lock_upgrade(map)) 3939 goto RetryLookup; 3940 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT, 3941 atop(size)); 3942 entry->offset = 0; 3943 if (entry->cred != NULL) { 3944 VM_OBJECT_WLOCK(entry->object.vm_object); 3945 entry->object.vm_object->cred = entry->cred; 3946 entry->object.vm_object->charge = size; 3947 VM_OBJECT_WUNLOCK(entry->object.vm_object); 3948 entry->cred = NULL; 3949 } 3950 vm_map_lock_downgrade(map); 3951 } 3952 3953 /* 3954 * Return the object/offset from this entry. If the entry was 3955 * copy-on-write or empty, it has been fixed up. 3956 */ 3957 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 3958 *object = entry->object.vm_object; 3959 3960 *out_prot = prot; 3961 return (KERN_SUCCESS); 3962 } 3963 3964 /* 3965 * vm_map_lookup_locked: 3966 * 3967 * Lookup the faulting address. A version of vm_map_lookup that returns 3968 * KERN_FAILURE instead of blocking on map lock or memory allocation. 3969 */ 3970 int 3971 vm_map_lookup_locked(vm_map_t *var_map, /* IN/OUT */ 3972 vm_offset_t vaddr, 3973 vm_prot_t fault_typea, 3974 vm_map_entry_t *out_entry, /* OUT */ 3975 vm_object_t *object, /* OUT */ 3976 vm_pindex_t *pindex, /* OUT */ 3977 vm_prot_t *out_prot, /* OUT */ 3978 boolean_t *wired) /* OUT */ 3979 { 3980 vm_map_entry_t entry; 3981 vm_map_t map = *var_map; 3982 vm_prot_t prot; 3983 vm_prot_t fault_type = fault_typea; 3984 3985 /* 3986 * Lookup the faulting address. 3987 */ 3988 if (!vm_map_lookup_entry(map, vaddr, out_entry)) 3989 return (KERN_INVALID_ADDRESS); 3990 3991 entry = *out_entry; 3992 3993 /* 3994 * Fail if the entry refers to a submap. 3995 */ 3996 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 3997 return (KERN_FAILURE); 3998 3999 /* 4000 * Check whether this task is allowed to have this page. 4001 */ 4002 prot = entry->protection; 4003 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; 4004 if ((fault_type & prot) != fault_type) 4005 return (KERN_PROTECTION_FAILURE); 4006 if ((entry->eflags & MAP_ENTRY_USER_WIRED) && 4007 (entry->eflags & MAP_ENTRY_COW) && 4008 (fault_type & VM_PROT_WRITE)) 4009 return (KERN_PROTECTION_FAILURE); 4010 4011 /* 4012 * If this page is not pageable, we have to get it for all possible 4013 * accesses. 4014 */ 4015 *wired = (entry->wired_count != 0); 4016 if (*wired) 4017 fault_type = entry->protection; 4018 4019 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 4020 /* 4021 * Fail if the entry was copy-on-write for a write fault. 4022 */ 4023 if (fault_type & VM_PROT_WRITE) 4024 return (KERN_FAILURE); 4025 /* 4026 * We're attempting to read a copy-on-write page -- 4027 * don't allow writes. 4028 */ 4029 prot &= ~VM_PROT_WRITE; 4030 } 4031 4032 /* 4033 * Fail if an object should be created. 4034 */ 4035 if (entry->object.vm_object == NULL && !map->system_map) 4036 return (KERN_FAILURE); 4037 4038 /* 4039 * Return the object/offset from this entry. If the entry was 4040 * copy-on-write or empty, it has been fixed up. 4041 */ 4042 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 4043 *object = entry->object.vm_object; 4044 4045 *out_prot = prot; 4046 return (KERN_SUCCESS); 4047 } 4048 4049 /* 4050 * vm_map_lookup_done: 4051 * 4052 * Releases locks acquired by a vm_map_lookup 4053 * (according to the handle returned by that lookup). 4054 */ 4055 void 4056 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry) 4057 { 4058 /* 4059 * Unlock the main-level map 4060 */ 4061 vm_map_unlock_read(map); 4062 } 4063 4064 #include "opt_ddb.h" 4065 #ifdef DDB 4066 #include <sys/kernel.h> 4067 4068 #include <ddb/ddb.h> 4069 4070 static void 4071 vm_map_print(vm_map_t map) 4072 { 4073 vm_map_entry_t entry; 4074 4075 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 4076 (void *)map, 4077 (void *)map->pmap, map->nentries, map->timestamp); 4078 4079 db_indent += 2; 4080 for (entry = map->header.next; entry != &map->header; 4081 entry = entry->next) { 4082 db_iprintf("map entry %p: start=%p, end=%p\n", 4083 (void *)entry, (void *)entry->start, (void *)entry->end); 4084 { 4085 static char *inheritance_name[4] = 4086 {"share", "copy", "none", "donate_copy"}; 4087 4088 db_iprintf(" prot=%x/%x/%s", 4089 entry->protection, 4090 entry->max_protection, 4091 inheritance_name[(int)(unsigned char)entry->inheritance]); 4092 if (entry->wired_count != 0) 4093 db_printf(", wired"); 4094 } 4095 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 4096 db_printf(", share=%p, offset=0x%jx\n", 4097 (void *)entry->object.sub_map, 4098 (uintmax_t)entry->offset); 4099 if ((entry->prev == &map->header) || 4100 (entry->prev->object.sub_map != 4101 entry->object.sub_map)) { 4102 db_indent += 2; 4103 vm_map_print((vm_map_t)entry->object.sub_map); 4104 db_indent -= 2; 4105 } 4106 } else { 4107 if (entry->cred != NULL) 4108 db_printf(", ruid %d", entry->cred->cr_ruid); 4109 db_printf(", object=%p, offset=0x%jx", 4110 (void *)entry->object.vm_object, 4111 (uintmax_t)entry->offset); 4112 if (entry->object.vm_object && entry->object.vm_object->cred) 4113 db_printf(", obj ruid %d charge %jx", 4114 entry->object.vm_object->cred->cr_ruid, 4115 (uintmax_t)entry->object.vm_object->charge); 4116 if (entry->eflags & MAP_ENTRY_COW) 4117 db_printf(", copy (%s)", 4118 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 4119 db_printf("\n"); 4120 4121 if ((entry->prev == &map->header) || 4122 (entry->prev->object.vm_object != 4123 entry->object.vm_object)) { 4124 db_indent += 2; 4125 vm_object_print((db_expr_t)(intptr_t) 4126 entry->object.vm_object, 4127 1, 0, (char *)0); 4128 db_indent -= 2; 4129 } 4130 } 4131 } 4132 db_indent -= 2; 4133 } 4134 4135 DB_SHOW_COMMAND(map, map) 4136 { 4137 4138 if (!have_addr) { 4139 db_printf("usage: show map <addr>\n"); 4140 return; 4141 } 4142 vm_map_print((vm_map_t)addr); 4143 } 4144 4145 DB_SHOW_COMMAND(procvm, procvm) 4146 { 4147 struct proc *p; 4148 4149 if (have_addr) { 4150 p = (struct proc *) addr; 4151 } else { 4152 p = curproc; 4153 } 4154 4155 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 4156 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 4157 (void *)vmspace_pmap(p->p_vmspace)); 4158 4159 vm_map_print((vm_map_t)&p->p_vmspace->vm_map); 4160 } 4161 4162 #endif /* DDB */ 4163