xref: /freebsd/sys/vm/vm_map.c (revision 924226fba12cc9a228c73b956e1b7fa24c60b055)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62 
63 /*
64  *	Virtual memory mapping module.
65  */
66 
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/elf.h>
73 #include <sys/kernel.h>
74 #include <sys/ktr.h>
75 #include <sys/lock.h>
76 #include <sys/mutex.h>
77 #include <sys/proc.h>
78 #include <sys/vmmeter.h>
79 #include <sys/mman.h>
80 #include <sys/vnode.h>
81 #include <sys/racct.h>
82 #include <sys/resourcevar.h>
83 #include <sys/rwlock.h>
84 #include <sys/file.h>
85 #include <sys/sysctl.h>
86 #include <sys/sysent.h>
87 #include <sys/shm.h>
88 
89 #include <vm/vm.h>
90 #include <vm/vm_param.h>
91 #include <vm/pmap.h>
92 #include <vm/vm_map.h>
93 #include <vm/vm_page.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/vm_object.h>
96 #include <vm/vm_pager.h>
97 #include <vm/vm_kern.h>
98 #include <vm/vm_extern.h>
99 #include <vm/vnode_pager.h>
100 #include <vm/swap_pager.h>
101 #include <vm/uma.h>
102 
103 /*
104  *	Virtual memory maps provide for the mapping, protection,
105  *	and sharing of virtual memory objects.  In addition,
106  *	this module provides for an efficient virtual copy of
107  *	memory from one map to another.
108  *
109  *	Synchronization is required prior to most operations.
110  *
111  *	Maps consist of an ordered doubly-linked list of simple
112  *	entries; a self-adjusting binary search tree of these
113  *	entries is used to speed up lookups.
114  *
115  *	Since portions of maps are specified by start/end addresses,
116  *	which may not align with existing map entries, all
117  *	routines merely "clip" entries to these start/end values.
118  *	[That is, an entry is split into two, bordering at a
119  *	start or end value.]  Note that these clippings may not
120  *	always be necessary (as the two resulting entries are then
121  *	not changed); however, the clipping is done for convenience.
122  *
123  *	As mentioned above, virtual copy operations are performed
124  *	by copying VM object references from one map to
125  *	another, and then marking both regions as copy-on-write.
126  */
127 
128 static struct mtx map_sleep_mtx;
129 static uma_zone_t mapentzone;
130 static uma_zone_t kmapentzone;
131 static uma_zone_t vmspace_zone;
132 static int vmspace_zinit(void *mem, int size, int flags);
133 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
134     vm_offset_t max);
135 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
136 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
137 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
138 static int vm_map_growstack(vm_map_t map, vm_offset_t addr,
139     vm_map_entry_t gap_entry);
140 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
141     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
142 #ifdef INVARIANTS
143 static void vmspace_zdtor(void *mem, int size, void *arg);
144 #endif
145 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
146     vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
147     int cow);
148 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
149     vm_offset_t failed_addr);
150 
151 #define	ENTRY_CHARGED(e) ((e)->cred != NULL || \
152     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
153      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
154 
155 /*
156  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
157  * stable.
158  */
159 #define PROC_VMSPACE_LOCK(p) do { } while (0)
160 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
161 
162 /*
163  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
164  *
165  *	Asserts that the starting and ending region
166  *	addresses fall within the valid range of the map.
167  */
168 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
169 		{					\
170 		if (start < vm_map_min(map))		\
171 			start = vm_map_min(map);	\
172 		if (end > vm_map_max(map))		\
173 			end = vm_map_max(map);		\
174 		if (start > end)			\
175 			start = end;			\
176 		}
177 
178 #ifndef UMA_MD_SMALL_ALLOC
179 
180 /*
181  * Allocate a new slab for kernel map entries.  The kernel map may be locked or
182  * unlocked, depending on whether the request is coming from the kernel map or a
183  * submap.  This function allocates a virtual address range directly from the
184  * kernel map instead of the kmem_* layer to avoid recursion on the kernel map
185  * lock and also to avoid triggering allocator recursion in the vmem boundary
186  * tag allocator.
187  */
188 static void *
189 kmapent_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
190     int wait)
191 {
192 	vm_offset_t addr;
193 	int error, locked;
194 
195 	*pflag = UMA_SLAB_PRIV;
196 
197 	if (!(locked = vm_map_locked(kernel_map)))
198 		vm_map_lock(kernel_map);
199 	addr = vm_map_findspace(kernel_map, vm_map_min(kernel_map), bytes);
200 	if (addr + bytes < addr || addr + bytes > vm_map_max(kernel_map))
201 		panic("%s: kernel map is exhausted", __func__);
202 	error = vm_map_insert(kernel_map, NULL, 0, addr, addr + bytes,
203 	    VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT);
204 	if (error != KERN_SUCCESS)
205 		panic("%s: vm_map_insert() failed: %d", __func__, error);
206 	if (!locked)
207 		vm_map_unlock(kernel_map);
208 	error = kmem_back_domain(domain, kernel_object, addr, bytes, M_NOWAIT |
209 	    M_USE_RESERVE | (wait & M_ZERO));
210 	if (error == KERN_SUCCESS) {
211 		return ((void *)addr);
212 	} else {
213 		if (!locked)
214 			vm_map_lock(kernel_map);
215 		vm_map_delete(kernel_map, addr, bytes);
216 		if (!locked)
217 			vm_map_unlock(kernel_map);
218 		return (NULL);
219 	}
220 }
221 
222 static void
223 kmapent_free(void *item, vm_size_t size, uint8_t pflag)
224 {
225 	vm_offset_t addr;
226 	int error __diagused;
227 
228 	if ((pflag & UMA_SLAB_PRIV) == 0)
229 		/* XXX leaked */
230 		return;
231 
232 	addr = (vm_offset_t)item;
233 	kmem_unback(kernel_object, addr, size);
234 	error = vm_map_remove(kernel_map, addr, addr + size);
235 	KASSERT(error == KERN_SUCCESS,
236 	    ("%s: vm_map_remove failed: %d", __func__, error));
237 }
238 
239 /*
240  * The worst-case upper bound on the number of kernel map entries that may be
241  * created before the zone must be replenished in _vm_map_unlock().
242  */
243 #define	KMAPENT_RESERVE		1
244 
245 #endif /* !UMD_MD_SMALL_ALLOC */
246 
247 /*
248  *	vm_map_startup:
249  *
250  *	Initialize the vm_map module.  Must be called before any other vm_map
251  *	routines.
252  *
253  *	User map and entry structures are allocated from the general purpose
254  *	memory pool.  Kernel maps are statically defined.  Kernel map entries
255  *	require special handling to avoid recursion; see the comments above
256  *	kmapent_alloc() and in vm_map_entry_create().
257  */
258 void
259 vm_map_startup(void)
260 {
261 	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
262 
263 	/*
264 	 * Disable the use of per-CPU buckets: map entry allocation is
265 	 * serialized by the kernel map lock.
266 	 */
267 	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
268 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
269 	    UMA_ZONE_VM | UMA_ZONE_NOBUCKET);
270 #ifndef UMA_MD_SMALL_ALLOC
271 	/* Reserve an extra map entry for use when replenishing the reserve. */
272 	uma_zone_reserve(kmapentzone, KMAPENT_RESERVE + 1);
273 	uma_prealloc(kmapentzone, KMAPENT_RESERVE + 1);
274 	uma_zone_set_allocf(kmapentzone, kmapent_alloc);
275 	uma_zone_set_freef(kmapentzone, kmapent_free);
276 #endif
277 
278 	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
279 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
280 	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
281 #ifdef INVARIANTS
282 	    vmspace_zdtor,
283 #else
284 	    NULL,
285 #endif
286 	    vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
287 }
288 
289 static int
290 vmspace_zinit(void *mem, int size, int flags)
291 {
292 	struct vmspace *vm;
293 	vm_map_t map;
294 
295 	vm = (struct vmspace *)mem;
296 	map = &vm->vm_map;
297 
298 	memset(map, 0, sizeof(*map));
299 	mtx_init(&map->system_mtx, "vm map (system)", NULL,
300 	    MTX_DEF | MTX_DUPOK);
301 	sx_init(&map->lock, "vm map (user)");
302 	PMAP_LOCK_INIT(vmspace_pmap(vm));
303 	return (0);
304 }
305 
306 #ifdef INVARIANTS
307 static void
308 vmspace_zdtor(void *mem, int size, void *arg)
309 {
310 	struct vmspace *vm;
311 
312 	vm = (struct vmspace *)mem;
313 	KASSERT(vm->vm_map.nentries == 0,
314 	    ("vmspace %p nentries == %d on free", vm, vm->vm_map.nentries));
315 	KASSERT(vm->vm_map.size == 0,
316 	    ("vmspace %p size == %ju on free", vm, (uintmax_t)vm->vm_map.size));
317 }
318 #endif	/* INVARIANTS */
319 
320 /*
321  * Allocate a vmspace structure, including a vm_map and pmap,
322  * and initialize those structures.  The refcnt is set to 1.
323  */
324 struct vmspace *
325 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
326 {
327 	struct vmspace *vm;
328 
329 	vm = uma_zalloc(vmspace_zone, M_WAITOK);
330 	KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
331 	if (!pinit(vmspace_pmap(vm))) {
332 		uma_zfree(vmspace_zone, vm);
333 		return (NULL);
334 	}
335 	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
336 	_vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
337 	refcount_init(&vm->vm_refcnt, 1);
338 	vm->vm_shm = NULL;
339 	vm->vm_swrss = 0;
340 	vm->vm_tsize = 0;
341 	vm->vm_dsize = 0;
342 	vm->vm_ssize = 0;
343 	vm->vm_taddr = 0;
344 	vm->vm_daddr = 0;
345 	vm->vm_maxsaddr = 0;
346 	return (vm);
347 }
348 
349 #ifdef RACCT
350 static void
351 vmspace_container_reset(struct proc *p)
352 {
353 
354 	PROC_LOCK(p);
355 	racct_set(p, RACCT_DATA, 0);
356 	racct_set(p, RACCT_STACK, 0);
357 	racct_set(p, RACCT_RSS, 0);
358 	racct_set(p, RACCT_MEMLOCK, 0);
359 	racct_set(p, RACCT_VMEM, 0);
360 	PROC_UNLOCK(p);
361 }
362 #endif
363 
364 static inline void
365 vmspace_dofree(struct vmspace *vm)
366 {
367 
368 	CTR1(KTR_VM, "vmspace_free: %p", vm);
369 
370 	/*
371 	 * Make sure any SysV shm is freed, it might not have been in
372 	 * exit1().
373 	 */
374 	shmexit(vm);
375 
376 	/*
377 	 * Lock the map, to wait out all other references to it.
378 	 * Delete all of the mappings and pages they hold, then call
379 	 * the pmap module to reclaim anything left.
380 	 */
381 	(void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map),
382 	    vm_map_max(&vm->vm_map));
383 
384 	pmap_release(vmspace_pmap(vm));
385 	vm->vm_map.pmap = NULL;
386 	uma_zfree(vmspace_zone, vm);
387 }
388 
389 void
390 vmspace_free(struct vmspace *vm)
391 {
392 
393 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
394 	    "vmspace_free() called");
395 
396 	if (refcount_release(&vm->vm_refcnt))
397 		vmspace_dofree(vm);
398 }
399 
400 void
401 vmspace_exitfree(struct proc *p)
402 {
403 	struct vmspace *vm;
404 
405 	PROC_VMSPACE_LOCK(p);
406 	vm = p->p_vmspace;
407 	p->p_vmspace = NULL;
408 	PROC_VMSPACE_UNLOCK(p);
409 	KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
410 	vmspace_free(vm);
411 }
412 
413 void
414 vmspace_exit(struct thread *td)
415 {
416 	struct vmspace *vm;
417 	struct proc *p;
418 	bool released;
419 
420 	p = td->td_proc;
421 	vm = p->p_vmspace;
422 
423 	/*
424 	 * Prepare to release the vmspace reference.  The thread that releases
425 	 * the last reference is responsible for tearing down the vmspace.
426 	 * However, threads not releasing the final reference must switch to the
427 	 * kernel's vmspace0 before the decrement so that the subsequent pmap
428 	 * deactivation does not modify a freed vmspace.
429 	 */
430 	refcount_acquire(&vmspace0.vm_refcnt);
431 	if (!(released = refcount_release_if_last(&vm->vm_refcnt))) {
432 		if (p->p_vmspace != &vmspace0) {
433 			PROC_VMSPACE_LOCK(p);
434 			p->p_vmspace = &vmspace0;
435 			PROC_VMSPACE_UNLOCK(p);
436 			pmap_activate(td);
437 		}
438 		released = refcount_release(&vm->vm_refcnt);
439 	}
440 	if (released) {
441 		/*
442 		 * pmap_remove_pages() expects the pmap to be active, so switch
443 		 * back first if necessary.
444 		 */
445 		if (p->p_vmspace != vm) {
446 			PROC_VMSPACE_LOCK(p);
447 			p->p_vmspace = vm;
448 			PROC_VMSPACE_UNLOCK(p);
449 			pmap_activate(td);
450 		}
451 		pmap_remove_pages(vmspace_pmap(vm));
452 		PROC_VMSPACE_LOCK(p);
453 		p->p_vmspace = &vmspace0;
454 		PROC_VMSPACE_UNLOCK(p);
455 		pmap_activate(td);
456 		vmspace_dofree(vm);
457 	}
458 #ifdef RACCT
459 	if (racct_enable)
460 		vmspace_container_reset(p);
461 #endif
462 }
463 
464 /* Acquire reference to vmspace owned by another process. */
465 
466 struct vmspace *
467 vmspace_acquire_ref(struct proc *p)
468 {
469 	struct vmspace *vm;
470 
471 	PROC_VMSPACE_LOCK(p);
472 	vm = p->p_vmspace;
473 	if (vm == NULL || !refcount_acquire_if_not_zero(&vm->vm_refcnt)) {
474 		PROC_VMSPACE_UNLOCK(p);
475 		return (NULL);
476 	}
477 	if (vm != p->p_vmspace) {
478 		PROC_VMSPACE_UNLOCK(p);
479 		vmspace_free(vm);
480 		return (NULL);
481 	}
482 	PROC_VMSPACE_UNLOCK(p);
483 	return (vm);
484 }
485 
486 /*
487  * Switch between vmspaces in an AIO kernel process.
488  *
489  * The new vmspace is either the vmspace of a user process obtained
490  * from an active AIO request or the initial vmspace of the AIO kernel
491  * process (when it is idling).  Because user processes will block to
492  * drain any active AIO requests before proceeding in exit() or
493  * execve(), the reference count for vmspaces from AIO requests can
494  * never be 0.  Similarly, AIO kernel processes hold an extra
495  * reference on their initial vmspace for the life of the process.  As
496  * a result, the 'newvm' vmspace always has a non-zero reference
497  * count.  This permits an additional reference on 'newvm' to be
498  * acquired via a simple atomic increment rather than the loop in
499  * vmspace_acquire_ref() above.
500  */
501 void
502 vmspace_switch_aio(struct vmspace *newvm)
503 {
504 	struct vmspace *oldvm;
505 
506 	/* XXX: Need some way to assert that this is an aio daemon. */
507 
508 	KASSERT(refcount_load(&newvm->vm_refcnt) > 0,
509 	    ("vmspace_switch_aio: newvm unreferenced"));
510 
511 	oldvm = curproc->p_vmspace;
512 	if (oldvm == newvm)
513 		return;
514 
515 	/*
516 	 * Point to the new address space and refer to it.
517 	 */
518 	curproc->p_vmspace = newvm;
519 	refcount_acquire(&newvm->vm_refcnt);
520 
521 	/* Activate the new mapping. */
522 	pmap_activate(curthread);
523 
524 	vmspace_free(oldvm);
525 }
526 
527 void
528 _vm_map_lock(vm_map_t map, const char *file, int line)
529 {
530 
531 	if (map->system_map)
532 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
533 	else
534 		sx_xlock_(&map->lock, file, line);
535 	map->timestamp++;
536 }
537 
538 void
539 vm_map_entry_set_vnode_text(vm_map_entry_t entry, bool add)
540 {
541 	vm_object_t object;
542 	struct vnode *vp;
543 	bool vp_held;
544 
545 	if ((entry->eflags & MAP_ENTRY_VN_EXEC) == 0)
546 		return;
547 	KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
548 	    ("Submap with execs"));
549 	object = entry->object.vm_object;
550 	KASSERT(object != NULL, ("No object for text, entry %p", entry));
551 	if ((object->flags & OBJ_ANON) != 0)
552 		object = object->handle;
553 	else
554 		KASSERT(object->backing_object == NULL,
555 		    ("non-anon object %p shadows", object));
556 	KASSERT(object != NULL, ("No content object for text, entry %p obj %p",
557 	    entry, entry->object.vm_object));
558 
559 	/*
560 	 * Mostly, we do not lock the backing object.  It is
561 	 * referenced by the entry we are processing, so it cannot go
562 	 * away.
563 	 */
564 	vm_pager_getvp(object, &vp, &vp_held);
565 	if (vp != NULL) {
566 		if (add) {
567 			VOP_SET_TEXT_CHECKED(vp);
568 		} else {
569 			vn_lock(vp, LK_SHARED | LK_RETRY);
570 			VOP_UNSET_TEXT_CHECKED(vp);
571 			VOP_UNLOCK(vp);
572 		}
573 		if (vp_held)
574 			vdrop(vp);
575 	}
576 }
577 
578 /*
579  * Use a different name for this vm_map_entry field when it's use
580  * is not consistent with its use as part of an ordered search tree.
581  */
582 #define defer_next right
583 
584 static void
585 vm_map_process_deferred(void)
586 {
587 	struct thread *td;
588 	vm_map_entry_t entry, next;
589 	vm_object_t object;
590 
591 	td = curthread;
592 	entry = td->td_map_def_user;
593 	td->td_map_def_user = NULL;
594 	while (entry != NULL) {
595 		next = entry->defer_next;
596 		MPASS((entry->eflags & (MAP_ENTRY_WRITECNT |
597 		    MAP_ENTRY_VN_EXEC)) != (MAP_ENTRY_WRITECNT |
598 		    MAP_ENTRY_VN_EXEC));
599 		if ((entry->eflags & MAP_ENTRY_WRITECNT) != 0) {
600 			/*
601 			 * Decrement the object's writemappings and
602 			 * possibly the vnode's v_writecount.
603 			 */
604 			KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
605 			    ("Submap with writecount"));
606 			object = entry->object.vm_object;
607 			KASSERT(object != NULL, ("No object for writecount"));
608 			vm_pager_release_writecount(object, entry->start,
609 			    entry->end);
610 		}
611 		vm_map_entry_set_vnode_text(entry, false);
612 		vm_map_entry_deallocate(entry, FALSE);
613 		entry = next;
614 	}
615 }
616 
617 #ifdef INVARIANTS
618 static void
619 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
620 {
621 
622 	if (map->system_map)
623 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
624 	else
625 		sx_assert_(&map->lock, SA_XLOCKED, file, line);
626 }
627 
628 #define	VM_MAP_ASSERT_LOCKED(map) \
629     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
630 
631 enum { VMMAP_CHECK_NONE, VMMAP_CHECK_UNLOCK, VMMAP_CHECK_ALL };
632 #ifdef DIAGNOSTIC
633 static int enable_vmmap_check = VMMAP_CHECK_UNLOCK;
634 #else
635 static int enable_vmmap_check = VMMAP_CHECK_NONE;
636 #endif
637 SYSCTL_INT(_debug, OID_AUTO, vmmap_check, CTLFLAG_RWTUN,
638     &enable_vmmap_check, 0, "Enable vm map consistency checking");
639 
640 static void _vm_map_assert_consistent(vm_map_t map, int check);
641 
642 #define VM_MAP_ASSERT_CONSISTENT(map) \
643     _vm_map_assert_consistent(map, VMMAP_CHECK_ALL)
644 #ifdef DIAGNOSTIC
645 #define VM_MAP_UNLOCK_CONSISTENT(map) do {				\
646 	if (map->nupdates > map->nentries) {				\
647 		_vm_map_assert_consistent(map, VMMAP_CHECK_UNLOCK);	\
648 		map->nupdates = 0;					\
649 	}								\
650 } while (0)
651 #else
652 #define VM_MAP_UNLOCK_CONSISTENT(map)
653 #endif
654 #else
655 #define	VM_MAP_ASSERT_LOCKED(map)
656 #define VM_MAP_ASSERT_CONSISTENT(map)
657 #define VM_MAP_UNLOCK_CONSISTENT(map)
658 #endif /* INVARIANTS */
659 
660 void
661 _vm_map_unlock(vm_map_t map, const char *file, int line)
662 {
663 
664 	VM_MAP_UNLOCK_CONSISTENT(map);
665 	if (map->system_map) {
666 #ifndef UMA_MD_SMALL_ALLOC
667 		if (map == kernel_map && (map->flags & MAP_REPLENISH) != 0) {
668 			uma_prealloc(kmapentzone, 1);
669 			map->flags &= ~MAP_REPLENISH;
670 		}
671 #endif
672 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
673 	} else {
674 		sx_xunlock_(&map->lock, file, line);
675 		vm_map_process_deferred();
676 	}
677 }
678 
679 void
680 _vm_map_lock_read(vm_map_t map, const char *file, int line)
681 {
682 
683 	if (map->system_map)
684 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
685 	else
686 		sx_slock_(&map->lock, file, line);
687 }
688 
689 void
690 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
691 {
692 
693 	if (map->system_map) {
694 		KASSERT((map->flags & MAP_REPLENISH) == 0,
695 		    ("%s: MAP_REPLENISH leaked", __func__));
696 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
697 	} else {
698 		sx_sunlock_(&map->lock, file, line);
699 		vm_map_process_deferred();
700 	}
701 }
702 
703 int
704 _vm_map_trylock(vm_map_t map, const char *file, int line)
705 {
706 	int error;
707 
708 	error = map->system_map ?
709 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
710 	    !sx_try_xlock_(&map->lock, file, line);
711 	if (error == 0)
712 		map->timestamp++;
713 	return (error == 0);
714 }
715 
716 int
717 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
718 {
719 	int error;
720 
721 	error = map->system_map ?
722 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
723 	    !sx_try_slock_(&map->lock, file, line);
724 	return (error == 0);
725 }
726 
727 /*
728  *	_vm_map_lock_upgrade:	[ internal use only ]
729  *
730  *	Tries to upgrade a read (shared) lock on the specified map to a write
731  *	(exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
732  *	non-zero value if the upgrade fails.  If the upgrade fails, the map is
733  *	returned without a read or write lock held.
734  *
735  *	Requires that the map be read locked.
736  */
737 int
738 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
739 {
740 	unsigned int last_timestamp;
741 
742 	if (map->system_map) {
743 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
744 	} else {
745 		if (!sx_try_upgrade_(&map->lock, file, line)) {
746 			last_timestamp = map->timestamp;
747 			sx_sunlock_(&map->lock, file, line);
748 			vm_map_process_deferred();
749 			/*
750 			 * If the map's timestamp does not change while the
751 			 * map is unlocked, then the upgrade succeeds.
752 			 */
753 			sx_xlock_(&map->lock, file, line);
754 			if (last_timestamp != map->timestamp) {
755 				sx_xunlock_(&map->lock, file, line);
756 				return (1);
757 			}
758 		}
759 	}
760 	map->timestamp++;
761 	return (0);
762 }
763 
764 void
765 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
766 {
767 
768 	if (map->system_map) {
769 		KASSERT((map->flags & MAP_REPLENISH) == 0,
770 		    ("%s: MAP_REPLENISH leaked", __func__));
771 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
772 	} else {
773 		VM_MAP_UNLOCK_CONSISTENT(map);
774 		sx_downgrade_(&map->lock, file, line);
775 	}
776 }
777 
778 /*
779  *	vm_map_locked:
780  *
781  *	Returns a non-zero value if the caller holds a write (exclusive) lock
782  *	on the specified map and the value "0" otherwise.
783  */
784 int
785 vm_map_locked(vm_map_t map)
786 {
787 
788 	if (map->system_map)
789 		return (mtx_owned(&map->system_mtx));
790 	else
791 		return (sx_xlocked(&map->lock));
792 }
793 
794 /*
795  *	_vm_map_unlock_and_wait:
796  *
797  *	Atomically releases the lock on the specified map and puts the calling
798  *	thread to sleep.  The calling thread will remain asleep until either
799  *	vm_map_wakeup() is performed on the map or the specified timeout is
800  *	exceeded.
801  *
802  *	WARNING!  This function does not perform deferred deallocations of
803  *	objects and map	entries.  Therefore, the calling thread is expected to
804  *	reacquire the map lock after reawakening and later perform an ordinary
805  *	unlock operation, such as vm_map_unlock(), before completing its
806  *	operation on the map.
807  */
808 int
809 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
810 {
811 
812 	VM_MAP_UNLOCK_CONSISTENT(map);
813 	mtx_lock(&map_sleep_mtx);
814 	if (map->system_map) {
815 		KASSERT((map->flags & MAP_REPLENISH) == 0,
816 		    ("%s: MAP_REPLENISH leaked", __func__));
817 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
818 	} else {
819 		sx_xunlock_(&map->lock, file, line);
820 	}
821 	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
822 	    timo));
823 }
824 
825 /*
826  *	vm_map_wakeup:
827  *
828  *	Awaken any threads that have slept on the map using
829  *	vm_map_unlock_and_wait().
830  */
831 void
832 vm_map_wakeup(vm_map_t map)
833 {
834 
835 	/*
836 	 * Acquire and release map_sleep_mtx to prevent a wakeup()
837 	 * from being performed (and lost) between the map unlock
838 	 * and the msleep() in _vm_map_unlock_and_wait().
839 	 */
840 	mtx_lock(&map_sleep_mtx);
841 	mtx_unlock(&map_sleep_mtx);
842 	wakeup(&map->root);
843 }
844 
845 void
846 vm_map_busy(vm_map_t map)
847 {
848 
849 	VM_MAP_ASSERT_LOCKED(map);
850 	map->busy++;
851 }
852 
853 void
854 vm_map_unbusy(vm_map_t map)
855 {
856 
857 	VM_MAP_ASSERT_LOCKED(map);
858 	KASSERT(map->busy, ("vm_map_unbusy: not busy"));
859 	if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
860 		vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
861 		wakeup(&map->busy);
862 	}
863 }
864 
865 void
866 vm_map_wait_busy(vm_map_t map)
867 {
868 
869 	VM_MAP_ASSERT_LOCKED(map);
870 	while (map->busy) {
871 		vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
872 		if (map->system_map)
873 			msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
874 		else
875 			sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
876 	}
877 	map->timestamp++;
878 }
879 
880 long
881 vmspace_resident_count(struct vmspace *vmspace)
882 {
883 	return pmap_resident_count(vmspace_pmap(vmspace));
884 }
885 
886 /*
887  * Initialize an existing vm_map structure
888  * such as that in the vmspace structure.
889  */
890 static void
891 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
892 {
893 
894 	map->header.eflags = MAP_ENTRY_HEADER;
895 	map->needs_wakeup = FALSE;
896 	map->system_map = 0;
897 	map->pmap = pmap;
898 	map->header.end = min;
899 	map->header.start = max;
900 	map->flags = 0;
901 	map->header.left = map->header.right = &map->header;
902 	map->root = NULL;
903 	map->timestamp = 0;
904 	map->busy = 0;
905 	map->anon_loc = 0;
906 #ifdef DIAGNOSTIC
907 	map->nupdates = 0;
908 #endif
909 }
910 
911 void
912 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
913 {
914 
915 	_vm_map_init(map, pmap, min, max);
916 	mtx_init(&map->system_mtx, "vm map (system)", NULL,
917 	    MTX_DEF | MTX_DUPOK);
918 	sx_init(&map->lock, "vm map (user)");
919 }
920 
921 /*
922  *	vm_map_entry_dispose:	[ internal use only ]
923  *
924  *	Inverse of vm_map_entry_create.
925  */
926 static void
927 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
928 {
929 	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
930 }
931 
932 /*
933  *	vm_map_entry_create:	[ internal use only ]
934  *
935  *	Allocates a VM map entry for insertion.
936  *	No entry fields are filled in.
937  */
938 static vm_map_entry_t
939 vm_map_entry_create(vm_map_t map)
940 {
941 	vm_map_entry_t new_entry;
942 
943 #ifndef UMA_MD_SMALL_ALLOC
944 	if (map == kernel_map) {
945 		VM_MAP_ASSERT_LOCKED(map);
946 
947 		/*
948 		 * A new slab of kernel map entries cannot be allocated at this
949 		 * point because the kernel map has not yet been updated to
950 		 * reflect the caller's request.  Therefore, we allocate a new
951 		 * map entry, dipping into the reserve if necessary, and set a
952 		 * flag indicating that the reserve must be replenished before
953 		 * the map is unlocked.
954 		 */
955 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT | M_NOVM);
956 		if (new_entry == NULL) {
957 			new_entry = uma_zalloc(kmapentzone,
958 			    M_NOWAIT | M_NOVM | M_USE_RESERVE);
959 			kernel_map->flags |= MAP_REPLENISH;
960 		}
961 	} else
962 #endif
963 	if (map->system_map) {
964 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
965 	} else {
966 		new_entry = uma_zalloc(mapentzone, M_WAITOK);
967 	}
968 	KASSERT(new_entry != NULL,
969 	    ("vm_map_entry_create: kernel resources exhausted"));
970 	return (new_entry);
971 }
972 
973 /*
974  *	vm_map_entry_set_behavior:
975  *
976  *	Set the expected access behavior, either normal, random, or
977  *	sequential.
978  */
979 static inline void
980 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
981 {
982 	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
983 	    (behavior & MAP_ENTRY_BEHAV_MASK);
984 }
985 
986 /*
987  *	vm_map_entry_max_free_{left,right}:
988  *
989  *	Compute the size of the largest free gap between two entries,
990  *	one the root of a tree and the other the ancestor of that root
991  *	that is the least or greatest ancestor found on the search path.
992  */
993 static inline vm_size_t
994 vm_map_entry_max_free_left(vm_map_entry_t root, vm_map_entry_t left_ancestor)
995 {
996 
997 	return (root->left != left_ancestor ?
998 	    root->left->max_free : root->start - left_ancestor->end);
999 }
1000 
1001 static inline vm_size_t
1002 vm_map_entry_max_free_right(vm_map_entry_t root, vm_map_entry_t right_ancestor)
1003 {
1004 
1005 	return (root->right != right_ancestor ?
1006 	    root->right->max_free : right_ancestor->start - root->end);
1007 }
1008 
1009 /*
1010  *	vm_map_entry_{pred,succ}:
1011  *
1012  *	Find the {predecessor, successor} of the entry by taking one step
1013  *	in the appropriate direction and backtracking as much as necessary.
1014  *	vm_map_entry_succ is defined in vm_map.h.
1015  */
1016 static inline vm_map_entry_t
1017 vm_map_entry_pred(vm_map_entry_t entry)
1018 {
1019 	vm_map_entry_t prior;
1020 
1021 	prior = entry->left;
1022 	if (prior->right->start < entry->start) {
1023 		do
1024 			prior = prior->right;
1025 		while (prior->right != entry);
1026 	}
1027 	return (prior);
1028 }
1029 
1030 static inline vm_size_t
1031 vm_size_max(vm_size_t a, vm_size_t b)
1032 {
1033 
1034 	return (a > b ? a : b);
1035 }
1036 
1037 #define SPLAY_LEFT_STEP(root, y, llist, rlist, test) do {		\
1038 	vm_map_entry_t z;						\
1039 	vm_size_t max_free;						\
1040 									\
1041 	/*								\
1042 	 * Infer root->right->max_free == root->max_free when		\
1043 	 * y->max_free < root->max_free || root->max_free == 0.		\
1044 	 * Otherwise, look right to find it.				\
1045 	 */								\
1046 	y = root->left;							\
1047 	max_free = root->max_free;					\
1048 	KASSERT(max_free == vm_size_max(				\
1049 	    vm_map_entry_max_free_left(root, llist),			\
1050 	    vm_map_entry_max_free_right(root, rlist)),			\
1051 	    ("%s: max_free invariant fails", __func__));		\
1052 	if (max_free - 1 < vm_map_entry_max_free_left(root, llist))	\
1053 		max_free = vm_map_entry_max_free_right(root, rlist);	\
1054 	if (y != llist && (test)) {					\
1055 		/* Rotate right and make y root. */			\
1056 		z = y->right;						\
1057 		if (z != root) {					\
1058 			root->left = z;					\
1059 			y->right = root;				\
1060 			if (max_free < y->max_free)			\
1061 			    root->max_free = max_free =			\
1062 			    vm_size_max(max_free, z->max_free);		\
1063 		} else if (max_free < y->max_free)			\
1064 			root->max_free = max_free =			\
1065 			    vm_size_max(max_free, root->start - y->end);\
1066 		root = y;						\
1067 		y = root->left;						\
1068 	}								\
1069 	/* Copy right->max_free.  Put root on rlist. */			\
1070 	root->max_free = max_free;					\
1071 	KASSERT(max_free == vm_map_entry_max_free_right(root, rlist),	\
1072 	    ("%s: max_free not copied from right", __func__));		\
1073 	root->left = rlist;						\
1074 	rlist = root;							\
1075 	root = y != llist ? y : NULL;					\
1076 } while (0)
1077 
1078 #define SPLAY_RIGHT_STEP(root, y, llist, rlist, test) do {		\
1079 	vm_map_entry_t z;						\
1080 	vm_size_t max_free;						\
1081 									\
1082 	/*								\
1083 	 * Infer root->left->max_free == root->max_free when		\
1084 	 * y->max_free < root->max_free || root->max_free == 0.		\
1085 	 * Otherwise, look left to find it.				\
1086 	 */								\
1087 	y = root->right;						\
1088 	max_free = root->max_free;					\
1089 	KASSERT(max_free == vm_size_max(				\
1090 	    vm_map_entry_max_free_left(root, llist),			\
1091 	    vm_map_entry_max_free_right(root, rlist)),			\
1092 	    ("%s: max_free invariant fails", __func__));		\
1093 	if (max_free - 1 < vm_map_entry_max_free_right(root, rlist))	\
1094 		max_free = vm_map_entry_max_free_left(root, llist);	\
1095 	if (y != rlist && (test)) {					\
1096 		/* Rotate left and make y root. */			\
1097 		z = y->left;						\
1098 		if (z != root) {					\
1099 			root->right = z;				\
1100 			y->left = root;					\
1101 			if (max_free < y->max_free)			\
1102 			    root->max_free = max_free =			\
1103 			    vm_size_max(max_free, z->max_free);		\
1104 		} else if (max_free < y->max_free)			\
1105 			root->max_free = max_free =			\
1106 			    vm_size_max(max_free, y->start - root->end);\
1107 		root = y;						\
1108 		y = root->right;					\
1109 	}								\
1110 	/* Copy left->max_free.  Put root on llist. */			\
1111 	root->max_free = max_free;					\
1112 	KASSERT(max_free == vm_map_entry_max_free_left(root, llist),	\
1113 	    ("%s: max_free not copied from left", __func__));		\
1114 	root->right = llist;						\
1115 	llist = root;							\
1116 	root = y != rlist ? y : NULL;					\
1117 } while (0)
1118 
1119 /*
1120  * Walk down the tree until we find addr or a gap where addr would go, breaking
1121  * off left and right subtrees of nodes less than, or greater than addr.  Treat
1122  * subtrees with root->max_free < length as empty trees.  llist and rlist are
1123  * the two sides in reverse order (bottom-up), with llist linked by the right
1124  * pointer and rlist linked by the left pointer in the vm_map_entry, and both
1125  * lists terminated by &map->header.  This function, and the subsequent call to
1126  * vm_map_splay_merge_{left,right,pred,succ}, rely on the start and end address
1127  * values in &map->header.
1128  */
1129 static __always_inline vm_map_entry_t
1130 vm_map_splay_split(vm_map_t map, vm_offset_t addr, vm_size_t length,
1131     vm_map_entry_t *llist, vm_map_entry_t *rlist)
1132 {
1133 	vm_map_entry_t left, right, root, y;
1134 
1135 	left = right = &map->header;
1136 	root = map->root;
1137 	while (root != NULL && root->max_free >= length) {
1138 		KASSERT(left->end <= root->start &&
1139 		    root->end <= right->start,
1140 		    ("%s: root not within tree bounds", __func__));
1141 		if (addr < root->start) {
1142 			SPLAY_LEFT_STEP(root, y, left, right,
1143 			    y->max_free >= length && addr < y->start);
1144 		} else if (addr >= root->end) {
1145 			SPLAY_RIGHT_STEP(root, y, left, right,
1146 			    y->max_free >= length && addr >= y->end);
1147 		} else
1148 			break;
1149 	}
1150 	*llist = left;
1151 	*rlist = right;
1152 	return (root);
1153 }
1154 
1155 static __always_inline void
1156 vm_map_splay_findnext(vm_map_entry_t root, vm_map_entry_t *rlist)
1157 {
1158 	vm_map_entry_t hi, right, y;
1159 
1160 	right = *rlist;
1161 	hi = root->right == right ? NULL : root->right;
1162 	if (hi == NULL)
1163 		return;
1164 	do
1165 		SPLAY_LEFT_STEP(hi, y, root, right, true);
1166 	while (hi != NULL);
1167 	*rlist = right;
1168 }
1169 
1170 static __always_inline void
1171 vm_map_splay_findprev(vm_map_entry_t root, vm_map_entry_t *llist)
1172 {
1173 	vm_map_entry_t left, lo, y;
1174 
1175 	left = *llist;
1176 	lo = root->left == left ? NULL : root->left;
1177 	if (lo == NULL)
1178 		return;
1179 	do
1180 		SPLAY_RIGHT_STEP(lo, y, left, root, true);
1181 	while (lo != NULL);
1182 	*llist = left;
1183 }
1184 
1185 static inline void
1186 vm_map_entry_swap(vm_map_entry_t *a, vm_map_entry_t *b)
1187 {
1188 	vm_map_entry_t tmp;
1189 
1190 	tmp = *b;
1191 	*b = *a;
1192 	*a = tmp;
1193 }
1194 
1195 /*
1196  * Walk back up the two spines, flip the pointers and set max_free.  The
1197  * subtrees of the root go at the bottom of llist and rlist.
1198  */
1199 static vm_size_t
1200 vm_map_splay_merge_left_walk(vm_map_entry_t header, vm_map_entry_t root,
1201     vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t llist)
1202 {
1203 	do {
1204 		/*
1205 		 * The max_free values of the children of llist are in
1206 		 * llist->max_free and max_free.  Update with the
1207 		 * max value.
1208 		 */
1209 		llist->max_free = max_free =
1210 		    vm_size_max(llist->max_free, max_free);
1211 		vm_map_entry_swap(&llist->right, &tail);
1212 		vm_map_entry_swap(&tail, &llist);
1213 	} while (llist != header);
1214 	root->left = tail;
1215 	return (max_free);
1216 }
1217 
1218 /*
1219  * When llist is known to be the predecessor of root.
1220  */
1221 static inline vm_size_t
1222 vm_map_splay_merge_pred(vm_map_entry_t header, vm_map_entry_t root,
1223     vm_map_entry_t llist)
1224 {
1225 	vm_size_t max_free;
1226 
1227 	max_free = root->start - llist->end;
1228 	if (llist != header) {
1229 		max_free = vm_map_splay_merge_left_walk(header, root,
1230 		    root, max_free, llist);
1231 	} else {
1232 		root->left = header;
1233 		header->right = root;
1234 	}
1235 	return (max_free);
1236 }
1237 
1238 /*
1239  * When llist may or may not be the predecessor of root.
1240  */
1241 static inline vm_size_t
1242 vm_map_splay_merge_left(vm_map_entry_t header, vm_map_entry_t root,
1243     vm_map_entry_t llist)
1244 {
1245 	vm_size_t max_free;
1246 
1247 	max_free = vm_map_entry_max_free_left(root, llist);
1248 	if (llist != header) {
1249 		max_free = vm_map_splay_merge_left_walk(header, root,
1250 		    root->left == llist ? root : root->left,
1251 		    max_free, llist);
1252 	}
1253 	return (max_free);
1254 }
1255 
1256 static vm_size_t
1257 vm_map_splay_merge_right_walk(vm_map_entry_t header, vm_map_entry_t root,
1258     vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t rlist)
1259 {
1260 	do {
1261 		/*
1262 		 * The max_free values of the children of rlist are in
1263 		 * rlist->max_free and max_free.  Update with the
1264 		 * max value.
1265 		 */
1266 		rlist->max_free = max_free =
1267 		    vm_size_max(rlist->max_free, max_free);
1268 		vm_map_entry_swap(&rlist->left, &tail);
1269 		vm_map_entry_swap(&tail, &rlist);
1270 	} while (rlist != header);
1271 	root->right = tail;
1272 	return (max_free);
1273 }
1274 
1275 /*
1276  * When rlist is known to be the succecessor of root.
1277  */
1278 static inline vm_size_t
1279 vm_map_splay_merge_succ(vm_map_entry_t header, vm_map_entry_t root,
1280     vm_map_entry_t rlist)
1281 {
1282 	vm_size_t max_free;
1283 
1284 	max_free = rlist->start - root->end;
1285 	if (rlist != header) {
1286 		max_free = vm_map_splay_merge_right_walk(header, root,
1287 		    root, max_free, rlist);
1288 	} else {
1289 		root->right = header;
1290 		header->left = root;
1291 	}
1292 	return (max_free);
1293 }
1294 
1295 /*
1296  * When rlist may or may not be the succecessor of root.
1297  */
1298 static inline vm_size_t
1299 vm_map_splay_merge_right(vm_map_entry_t header, vm_map_entry_t root,
1300     vm_map_entry_t rlist)
1301 {
1302 	vm_size_t max_free;
1303 
1304 	max_free = vm_map_entry_max_free_right(root, rlist);
1305 	if (rlist != header) {
1306 		max_free = vm_map_splay_merge_right_walk(header, root,
1307 		    root->right == rlist ? root : root->right,
1308 		    max_free, rlist);
1309 	}
1310 	return (max_free);
1311 }
1312 
1313 /*
1314  *	vm_map_splay:
1315  *
1316  *	The Sleator and Tarjan top-down splay algorithm with the
1317  *	following variation.  Max_free must be computed bottom-up, so
1318  *	on the downward pass, maintain the left and right spines in
1319  *	reverse order.  Then, make a second pass up each side to fix
1320  *	the pointers and compute max_free.  The time bound is O(log n)
1321  *	amortized.
1322  *
1323  *	The tree is threaded, which means that there are no null pointers.
1324  *	When a node has no left child, its left pointer points to its
1325  *	predecessor, which the last ancestor on the search path from the root
1326  *	where the search branched right.  Likewise, when a node has no right
1327  *	child, its right pointer points to its successor.  The map header node
1328  *	is the predecessor of the first map entry, and the successor of the
1329  *	last.
1330  *
1331  *	The new root is the vm_map_entry containing "addr", or else an
1332  *	adjacent entry (lower if possible) if addr is not in the tree.
1333  *
1334  *	The map must be locked, and leaves it so.
1335  *
1336  *	Returns: the new root.
1337  */
1338 static vm_map_entry_t
1339 vm_map_splay(vm_map_t map, vm_offset_t addr)
1340 {
1341 	vm_map_entry_t header, llist, rlist, root;
1342 	vm_size_t max_free_left, max_free_right;
1343 
1344 	header = &map->header;
1345 	root = vm_map_splay_split(map, addr, 0, &llist, &rlist);
1346 	if (root != NULL) {
1347 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1348 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1349 	} else if (llist != header) {
1350 		/*
1351 		 * Recover the greatest node in the left
1352 		 * subtree and make it the root.
1353 		 */
1354 		root = llist;
1355 		llist = root->right;
1356 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1357 		max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1358 	} else if (rlist != header) {
1359 		/*
1360 		 * Recover the least node in the right
1361 		 * subtree and make it the root.
1362 		 */
1363 		root = rlist;
1364 		rlist = root->left;
1365 		max_free_left = vm_map_splay_merge_pred(header, root, llist);
1366 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1367 	} else {
1368 		/* There is no root. */
1369 		return (NULL);
1370 	}
1371 	root->max_free = vm_size_max(max_free_left, max_free_right);
1372 	map->root = root;
1373 	VM_MAP_ASSERT_CONSISTENT(map);
1374 	return (root);
1375 }
1376 
1377 /*
1378  *	vm_map_entry_{un,}link:
1379  *
1380  *	Insert/remove entries from maps.  On linking, if new entry clips
1381  *	existing entry, trim existing entry to avoid overlap, and manage
1382  *	offsets.  On unlinking, merge disappearing entry with neighbor, if
1383  *	called for, and manage offsets.  Callers should not modify fields in
1384  *	entries already mapped.
1385  */
1386 static void
1387 vm_map_entry_link(vm_map_t map, vm_map_entry_t entry)
1388 {
1389 	vm_map_entry_t header, llist, rlist, root;
1390 	vm_size_t max_free_left, max_free_right;
1391 
1392 	CTR3(KTR_VM,
1393 	    "vm_map_entry_link: map %p, nentries %d, entry %p", map,
1394 	    map->nentries, entry);
1395 	VM_MAP_ASSERT_LOCKED(map);
1396 	map->nentries++;
1397 	header = &map->header;
1398 	root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1399 	if (root == NULL) {
1400 		/*
1401 		 * The new entry does not overlap any existing entry in the
1402 		 * map, so it becomes the new root of the map tree.
1403 		 */
1404 		max_free_left = vm_map_splay_merge_pred(header, entry, llist);
1405 		max_free_right = vm_map_splay_merge_succ(header, entry, rlist);
1406 	} else if (entry->start == root->start) {
1407 		/*
1408 		 * The new entry is a clone of root, with only the end field
1409 		 * changed.  The root entry will be shrunk to abut the new
1410 		 * entry, and will be the right child of the new root entry in
1411 		 * the modified map.
1412 		 */
1413 		KASSERT(entry->end < root->end,
1414 		    ("%s: clip_start not within entry", __func__));
1415 		vm_map_splay_findprev(root, &llist);
1416 		root->offset += entry->end - root->start;
1417 		root->start = entry->end;
1418 		max_free_left = vm_map_splay_merge_pred(header, entry, llist);
1419 		max_free_right = root->max_free = vm_size_max(
1420 		    vm_map_splay_merge_pred(entry, root, entry),
1421 		    vm_map_splay_merge_right(header, root, rlist));
1422 	} else {
1423 		/*
1424 		 * The new entry is a clone of root, with only the start field
1425 		 * changed.  The root entry will be shrunk to abut the new
1426 		 * entry, and will be the left child of the new root entry in
1427 		 * the modified map.
1428 		 */
1429 		KASSERT(entry->end == root->end,
1430 		    ("%s: clip_start not within entry", __func__));
1431 		vm_map_splay_findnext(root, &rlist);
1432 		entry->offset += entry->start - root->start;
1433 		root->end = entry->start;
1434 		max_free_left = root->max_free = vm_size_max(
1435 		    vm_map_splay_merge_left(header, root, llist),
1436 		    vm_map_splay_merge_succ(entry, root, entry));
1437 		max_free_right = vm_map_splay_merge_succ(header, entry, rlist);
1438 	}
1439 	entry->max_free = vm_size_max(max_free_left, max_free_right);
1440 	map->root = entry;
1441 	VM_MAP_ASSERT_CONSISTENT(map);
1442 }
1443 
1444 enum unlink_merge_type {
1445 	UNLINK_MERGE_NONE,
1446 	UNLINK_MERGE_NEXT
1447 };
1448 
1449 static void
1450 vm_map_entry_unlink(vm_map_t map, vm_map_entry_t entry,
1451     enum unlink_merge_type op)
1452 {
1453 	vm_map_entry_t header, llist, rlist, root;
1454 	vm_size_t max_free_left, max_free_right;
1455 
1456 	VM_MAP_ASSERT_LOCKED(map);
1457 	header = &map->header;
1458 	root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1459 	KASSERT(root != NULL,
1460 	    ("vm_map_entry_unlink: unlink object not mapped"));
1461 
1462 	vm_map_splay_findprev(root, &llist);
1463 	vm_map_splay_findnext(root, &rlist);
1464 	if (op == UNLINK_MERGE_NEXT) {
1465 		rlist->start = root->start;
1466 		rlist->offset = root->offset;
1467 	}
1468 	if (llist != header) {
1469 		root = llist;
1470 		llist = root->right;
1471 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1472 		max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1473 	} else if (rlist != header) {
1474 		root = rlist;
1475 		rlist = root->left;
1476 		max_free_left = vm_map_splay_merge_pred(header, root, llist);
1477 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1478 	} else {
1479 		header->left = header->right = header;
1480 		root = NULL;
1481 	}
1482 	if (root != NULL)
1483 		root->max_free = vm_size_max(max_free_left, max_free_right);
1484 	map->root = root;
1485 	VM_MAP_ASSERT_CONSISTENT(map);
1486 	map->nentries--;
1487 	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1488 	    map->nentries, entry);
1489 }
1490 
1491 /*
1492  *	vm_map_entry_resize:
1493  *
1494  *	Resize a vm_map_entry, recompute the amount of free space that
1495  *	follows it and propagate that value up the tree.
1496  *
1497  *	The map must be locked, and leaves it so.
1498  */
1499 static void
1500 vm_map_entry_resize(vm_map_t map, vm_map_entry_t entry, vm_size_t grow_amount)
1501 {
1502 	vm_map_entry_t header, llist, rlist, root;
1503 
1504 	VM_MAP_ASSERT_LOCKED(map);
1505 	header = &map->header;
1506 	root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1507 	KASSERT(root != NULL, ("%s: resize object not mapped", __func__));
1508 	vm_map_splay_findnext(root, &rlist);
1509 	entry->end += grow_amount;
1510 	root->max_free = vm_size_max(
1511 	    vm_map_splay_merge_left(header, root, llist),
1512 	    vm_map_splay_merge_succ(header, root, rlist));
1513 	map->root = root;
1514 	VM_MAP_ASSERT_CONSISTENT(map);
1515 	CTR4(KTR_VM, "%s: map %p, nentries %d, entry %p",
1516 	    __func__, map, map->nentries, entry);
1517 }
1518 
1519 /*
1520  *	vm_map_lookup_entry:	[ internal use only ]
1521  *
1522  *	Finds the map entry containing (or
1523  *	immediately preceding) the specified address
1524  *	in the given map; the entry is returned
1525  *	in the "entry" parameter.  The boolean
1526  *	result indicates whether the address is
1527  *	actually contained in the map.
1528  */
1529 boolean_t
1530 vm_map_lookup_entry(
1531 	vm_map_t map,
1532 	vm_offset_t address,
1533 	vm_map_entry_t *entry)	/* OUT */
1534 {
1535 	vm_map_entry_t cur, header, lbound, ubound;
1536 	boolean_t locked;
1537 
1538 	/*
1539 	 * If the map is empty, then the map entry immediately preceding
1540 	 * "address" is the map's header.
1541 	 */
1542 	header = &map->header;
1543 	cur = map->root;
1544 	if (cur == NULL) {
1545 		*entry = header;
1546 		return (FALSE);
1547 	}
1548 	if (address >= cur->start && cur->end > address) {
1549 		*entry = cur;
1550 		return (TRUE);
1551 	}
1552 	if ((locked = vm_map_locked(map)) ||
1553 	    sx_try_upgrade(&map->lock)) {
1554 		/*
1555 		 * Splay requires a write lock on the map.  However, it only
1556 		 * restructures the binary search tree; it does not otherwise
1557 		 * change the map.  Thus, the map's timestamp need not change
1558 		 * on a temporary upgrade.
1559 		 */
1560 		cur = vm_map_splay(map, address);
1561 		if (!locked) {
1562 			VM_MAP_UNLOCK_CONSISTENT(map);
1563 			sx_downgrade(&map->lock);
1564 		}
1565 
1566 		/*
1567 		 * If "address" is contained within a map entry, the new root
1568 		 * is that map entry.  Otherwise, the new root is a map entry
1569 		 * immediately before or after "address".
1570 		 */
1571 		if (address < cur->start) {
1572 			*entry = header;
1573 			return (FALSE);
1574 		}
1575 		*entry = cur;
1576 		return (address < cur->end);
1577 	}
1578 	/*
1579 	 * Since the map is only locked for read access, perform a
1580 	 * standard binary search tree lookup for "address".
1581 	 */
1582 	lbound = ubound = header;
1583 	for (;;) {
1584 		if (address < cur->start) {
1585 			ubound = cur;
1586 			cur = cur->left;
1587 			if (cur == lbound)
1588 				break;
1589 		} else if (cur->end <= address) {
1590 			lbound = cur;
1591 			cur = cur->right;
1592 			if (cur == ubound)
1593 				break;
1594 		} else {
1595 			*entry = cur;
1596 			return (TRUE);
1597 		}
1598 	}
1599 	*entry = lbound;
1600 	return (FALSE);
1601 }
1602 
1603 /*
1604  *	vm_map_insert:
1605  *
1606  *	Inserts the given whole VM object into the target
1607  *	map at the specified address range.  The object's
1608  *	size should match that of the address range.
1609  *
1610  *	Requires that the map be locked, and leaves it so.
1611  *
1612  *	If object is non-NULL, ref count must be bumped by caller
1613  *	prior to making call to account for the new entry.
1614  */
1615 int
1616 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1617     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1618 {
1619 	vm_map_entry_t new_entry, next_entry, prev_entry;
1620 	struct ucred *cred;
1621 	vm_eflags_t protoeflags;
1622 	vm_inherit_t inheritance;
1623 	u_long bdry;
1624 	u_int bidx;
1625 
1626 	VM_MAP_ASSERT_LOCKED(map);
1627 	KASSERT(object != kernel_object ||
1628 	    (cow & MAP_COPY_ON_WRITE) == 0,
1629 	    ("vm_map_insert: kernel object and COW"));
1630 	KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0 ||
1631 	    (cow & MAP_SPLIT_BOUNDARY_MASK) != 0,
1632 	    ("vm_map_insert: paradoxical MAP_NOFAULT request, obj %p cow %#x",
1633 	    object, cow));
1634 	KASSERT((prot & ~max) == 0,
1635 	    ("prot %#x is not subset of max_prot %#x", prot, max));
1636 
1637 	/*
1638 	 * Check that the start and end points are not bogus.
1639 	 */
1640 	if (start == end || !vm_map_range_valid(map, start, end))
1641 		return (KERN_INVALID_ADDRESS);
1642 
1643 	if ((map->flags & MAP_WXORX) != 0 && (prot & (VM_PROT_WRITE |
1644 	    VM_PROT_EXECUTE)) == (VM_PROT_WRITE | VM_PROT_EXECUTE))
1645 		return (KERN_PROTECTION_FAILURE);
1646 
1647 	/*
1648 	 * Find the entry prior to the proposed starting address; if it's part
1649 	 * of an existing entry, this range is bogus.
1650 	 */
1651 	if (vm_map_lookup_entry(map, start, &prev_entry))
1652 		return (KERN_NO_SPACE);
1653 
1654 	/*
1655 	 * Assert that the next entry doesn't overlap the end point.
1656 	 */
1657 	next_entry = vm_map_entry_succ(prev_entry);
1658 	if (next_entry->start < end)
1659 		return (KERN_NO_SPACE);
1660 
1661 	if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL ||
1662 	    max != VM_PROT_NONE))
1663 		return (KERN_INVALID_ARGUMENT);
1664 
1665 	protoeflags = 0;
1666 	if (cow & MAP_COPY_ON_WRITE)
1667 		protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1668 	if (cow & MAP_NOFAULT)
1669 		protoeflags |= MAP_ENTRY_NOFAULT;
1670 	if (cow & MAP_DISABLE_SYNCER)
1671 		protoeflags |= MAP_ENTRY_NOSYNC;
1672 	if (cow & MAP_DISABLE_COREDUMP)
1673 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1674 	if (cow & MAP_STACK_GROWS_DOWN)
1675 		protoeflags |= MAP_ENTRY_GROWS_DOWN;
1676 	if (cow & MAP_STACK_GROWS_UP)
1677 		protoeflags |= MAP_ENTRY_GROWS_UP;
1678 	if (cow & MAP_WRITECOUNT)
1679 		protoeflags |= MAP_ENTRY_WRITECNT;
1680 	if (cow & MAP_VN_EXEC)
1681 		protoeflags |= MAP_ENTRY_VN_EXEC;
1682 	if ((cow & MAP_CREATE_GUARD) != 0)
1683 		protoeflags |= MAP_ENTRY_GUARD;
1684 	if ((cow & MAP_CREATE_STACK_GAP_DN) != 0)
1685 		protoeflags |= MAP_ENTRY_STACK_GAP_DN;
1686 	if ((cow & MAP_CREATE_STACK_GAP_UP) != 0)
1687 		protoeflags |= MAP_ENTRY_STACK_GAP_UP;
1688 	if (cow & MAP_INHERIT_SHARE)
1689 		inheritance = VM_INHERIT_SHARE;
1690 	else
1691 		inheritance = VM_INHERIT_DEFAULT;
1692 	if ((cow & MAP_SPLIT_BOUNDARY_MASK) != 0) {
1693 		/* This magically ignores index 0, for usual page size. */
1694 		bidx = (cow & MAP_SPLIT_BOUNDARY_MASK) >>
1695 		    MAP_SPLIT_BOUNDARY_SHIFT;
1696 		if (bidx >= MAXPAGESIZES)
1697 			return (KERN_INVALID_ARGUMENT);
1698 		bdry = pagesizes[bidx] - 1;
1699 		if ((start & bdry) != 0 || (end & bdry) != 0)
1700 			return (KERN_INVALID_ARGUMENT);
1701 		protoeflags |= bidx << MAP_ENTRY_SPLIT_BOUNDARY_SHIFT;
1702 	}
1703 
1704 	cred = NULL;
1705 	if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0)
1706 		goto charged;
1707 	if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1708 	    ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1709 		if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1710 			return (KERN_RESOURCE_SHORTAGE);
1711 		KASSERT(object == NULL ||
1712 		    (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
1713 		    object->cred == NULL,
1714 		    ("overcommit: vm_map_insert o %p", object));
1715 		cred = curthread->td_ucred;
1716 	}
1717 
1718 charged:
1719 	/* Expand the kernel pmap, if necessary. */
1720 	if (map == kernel_map && end > kernel_vm_end)
1721 		pmap_growkernel(end);
1722 	if (object != NULL) {
1723 		/*
1724 		 * OBJ_ONEMAPPING must be cleared unless this mapping
1725 		 * is trivially proven to be the only mapping for any
1726 		 * of the object's pages.  (Object granularity
1727 		 * reference counting is insufficient to recognize
1728 		 * aliases with precision.)
1729 		 */
1730 		if ((object->flags & OBJ_ANON) != 0) {
1731 			VM_OBJECT_WLOCK(object);
1732 			if (object->ref_count > 1 || object->shadow_count != 0)
1733 				vm_object_clear_flag(object, OBJ_ONEMAPPING);
1734 			VM_OBJECT_WUNLOCK(object);
1735 		}
1736 	} else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) ==
1737 	    protoeflags &&
1738 	    (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP |
1739 	    MAP_VN_EXEC)) == 0 &&
1740 	    prev_entry->end == start && (prev_entry->cred == cred ||
1741 	    (prev_entry->object.vm_object != NULL &&
1742 	    prev_entry->object.vm_object->cred == cred)) &&
1743 	    vm_object_coalesce(prev_entry->object.vm_object,
1744 	    prev_entry->offset,
1745 	    (vm_size_t)(prev_entry->end - prev_entry->start),
1746 	    (vm_size_t)(end - prev_entry->end), cred != NULL &&
1747 	    (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1748 		/*
1749 		 * We were able to extend the object.  Determine if we
1750 		 * can extend the previous map entry to include the
1751 		 * new range as well.
1752 		 */
1753 		if (prev_entry->inheritance == inheritance &&
1754 		    prev_entry->protection == prot &&
1755 		    prev_entry->max_protection == max &&
1756 		    prev_entry->wired_count == 0) {
1757 			KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) ==
1758 			    0, ("prev_entry %p has incoherent wiring",
1759 			    prev_entry));
1760 			if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0)
1761 				map->size += end - prev_entry->end;
1762 			vm_map_entry_resize(map, prev_entry,
1763 			    end - prev_entry->end);
1764 			vm_map_try_merge_entries(map, prev_entry, next_entry);
1765 			return (KERN_SUCCESS);
1766 		}
1767 
1768 		/*
1769 		 * If we can extend the object but cannot extend the
1770 		 * map entry, we have to create a new map entry.  We
1771 		 * must bump the ref count on the extended object to
1772 		 * account for it.  object may be NULL.
1773 		 */
1774 		object = prev_entry->object.vm_object;
1775 		offset = prev_entry->offset +
1776 		    (prev_entry->end - prev_entry->start);
1777 		vm_object_reference(object);
1778 		if (cred != NULL && object != NULL && object->cred != NULL &&
1779 		    !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1780 			/* Object already accounts for this uid. */
1781 			cred = NULL;
1782 		}
1783 	}
1784 	if (cred != NULL)
1785 		crhold(cred);
1786 
1787 	/*
1788 	 * Create a new entry
1789 	 */
1790 	new_entry = vm_map_entry_create(map);
1791 	new_entry->start = start;
1792 	new_entry->end = end;
1793 	new_entry->cred = NULL;
1794 
1795 	new_entry->eflags = protoeflags;
1796 	new_entry->object.vm_object = object;
1797 	new_entry->offset = offset;
1798 
1799 	new_entry->inheritance = inheritance;
1800 	new_entry->protection = prot;
1801 	new_entry->max_protection = max;
1802 	new_entry->wired_count = 0;
1803 	new_entry->wiring_thread = NULL;
1804 	new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1805 	new_entry->next_read = start;
1806 
1807 	KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1808 	    ("overcommit: vm_map_insert leaks vm_map %p", new_entry));
1809 	new_entry->cred = cred;
1810 
1811 	/*
1812 	 * Insert the new entry into the list
1813 	 */
1814 	vm_map_entry_link(map, new_entry);
1815 	if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0)
1816 		map->size += new_entry->end - new_entry->start;
1817 
1818 	/*
1819 	 * Try to coalesce the new entry with both the previous and next
1820 	 * entries in the list.  Previously, we only attempted to coalesce
1821 	 * with the previous entry when object is NULL.  Here, we handle the
1822 	 * other cases, which are less common.
1823 	 */
1824 	vm_map_try_merge_entries(map, prev_entry, new_entry);
1825 	vm_map_try_merge_entries(map, new_entry, next_entry);
1826 
1827 	if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) {
1828 		vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset),
1829 		    end - start, cow & MAP_PREFAULT_PARTIAL);
1830 	}
1831 
1832 	return (KERN_SUCCESS);
1833 }
1834 
1835 /*
1836  *	vm_map_findspace:
1837  *
1838  *	Find the first fit (lowest VM address) for "length" free bytes
1839  *	beginning at address >= start in the given map.
1840  *
1841  *	In a vm_map_entry, "max_free" is the maximum amount of
1842  *	contiguous free space between an entry in its subtree and a
1843  *	neighbor of that entry.  This allows finding a free region in
1844  *	one path down the tree, so O(log n) amortized with splay
1845  *	trees.
1846  *
1847  *	The map must be locked, and leaves it so.
1848  *
1849  *	Returns: starting address if sufficient space,
1850  *		 vm_map_max(map)-length+1 if insufficient space.
1851  */
1852 vm_offset_t
1853 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length)
1854 {
1855 	vm_map_entry_t header, llist, rlist, root, y;
1856 	vm_size_t left_length, max_free_left, max_free_right;
1857 	vm_offset_t gap_end;
1858 
1859 	VM_MAP_ASSERT_LOCKED(map);
1860 
1861 	/*
1862 	 * Request must fit within min/max VM address and must avoid
1863 	 * address wrap.
1864 	 */
1865 	start = MAX(start, vm_map_min(map));
1866 	if (start >= vm_map_max(map) || length > vm_map_max(map) - start)
1867 		return (vm_map_max(map) - length + 1);
1868 
1869 	/* Empty tree means wide open address space. */
1870 	if (map->root == NULL)
1871 		return (start);
1872 
1873 	/*
1874 	 * After splay_split, if start is within an entry, push it to the start
1875 	 * of the following gap.  If rlist is at the end of the gap containing
1876 	 * start, save the end of that gap in gap_end to see if the gap is big
1877 	 * enough; otherwise set gap_end to start skip gap-checking and move
1878 	 * directly to a search of the right subtree.
1879 	 */
1880 	header = &map->header;
1881 	root = vm_map_splay_split(map, start, length, &llist, &rlist);
1882 	gap_end = rlist->start;
1883 	if (root != NULL) {
1884 		start = root->end;
1885 		if (root->right != rlist)
1886 			gap_end = start;
1887 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1888 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1889 	} else if (rlist != header) {
1890 		root = rlist;
1891 		rlist = root->left;
1892 		max_free_left = vm_map_splay_merge_pred(header, root, llist);
1893 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1894 	} else {
1895 		root = llist;
1896 		llist = root->right;
1897 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1898 		max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1899 	}
1900 	root->max_free = vm_size_max(max_free_left, max_free_right);
1901 	map->root = root;
1902 	VM_MAP_ASSERT_CONSISTENT(map);
1903 	if (length <= gap_end - start)
1904 		return (start);
1905 
1906 	/* With max_free, can immediately tell if no solution. */
1907 	if (root->right == header || length > root->right->max_free)
1908 		return (vm_map_max(map) - length + 1);
1909 
1910 	/*
1911 	 * Splay for the least large-enough gap in the right subtree.
1912 	 */
1913 	llist = rlist = header;
1914 	for (left_length = 0;;
1915 	    left_length = vm_map_entry_max_free_left(root, llist)) {
1916 		if (length <= left_length)
1917 			SPLAY_LEFT_STEP(root, y, llist, rlist,
1918 			    length <= vm_map_entry_max_free_left(y, llist));
1919 		else
1920 			SPLAY_RIGHT_STEP(root, y, llist, rlist,
1921 			    length > vm_map_entry_max_free_left(y, root));
1922 		if (root == NULL)
1923 			break;
1924 	}
1925 	root = llist;
1926 	llist = root->right;
1927 	max_free_left = vm_map_splay_merge_left(header, root, llist);
1928 	if (rlist == header) {
1929 		root->max_free = vm_size_max(max_free_left,
1930 		    vm_map_splay_merge_succ(header, root, rlist));
1931 	} else {
1932 		y = rlist;
1933 		rlist = y->left;
1934 		y->max_free = vm_size_max(
1935 		    vm_map_splay_merge_pred(root, y, root),
1936 		    vm_map_splay_merge_right(header, y, rlist));
1937 		root->max_free = vm_size_max(max_free_left, y->max_free);
1938 	}
1939 	map->root = root;
1940 	VM_MAP_ASSERT_CONSISTENT(map);
1941 	return (root->end);
1942 }
1943 
1944 int
1945 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1946     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1947     vm_prot_t max, int cow)
1948 {
1949 	vm_offset_t end;
1950 	int result;
1951 
1952 	end = start + length;
1953 	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1954 	    object == NULL,
1955 	    ("vm_map_fixed: non-NULL backing object for stack"));
1956 	vm_map_lock(map);
1957 	VM_MAP_RANGE_CHECK(map, start, end);
1958 	if ((cow & MAP_CHECK_EXCL) == 0) {
1959 		result = vm_map_delete(map, start, end);
1960 		if (result != KERN_SUCCESS)
1961 			goto out;
1962 	}
1963 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1964 		result = vm_map_stack_locked(map, start, length, sgrowsiz,
1965 		    prot, max, cow);
1966 	} else {
1967 		result = vm_map_insert(map, object, offset, start, end,
1968 		    prot, max, cow);
1969 	}
1970 out:
1971 	vm_map_unlock(map);
1972 	return (result);
1973 }
1974 
1975 static const int aslr_pages_rnd_64[2] = {0x1000, 0x10};
1976 static const int aslr_pages_rnd_32[2] = {0x100, 0x4};
1977 
1978 static int cluster_anon = 1;
1979 SYSCTL_INT(_vm, OID_AUTO, cluster_anon, CTLFLAG_RW,
1980     &cluster_anon, 0,
1981     "Cluster anonymous mappings: 0 = no, 1 = yes if no hint, 2 = always");
1982 
1983 static bool
1984 clustering_anon_allowed(vm_offset_t addr)
1985 {
1986 
1987 	switch (cluster_anon) {
1988 	case 0:
1989 		return (false);
1990 	case 1:
1991 		return (addr == 0);
1992 	case 2:
1993 	default:
1994 		return (true);
1995 	}
1996 }
1997 
1998 static long aslr_restarts;
1999 SYSCTL_LONG(_vm, OID_AUTO, aslr_restarts, CTLFLAG_RD,
2000     &aslr_restarts, 0,
2001     "Number of aslr failures");
2002 
2003 /*
2004  * Searches for the specified amount of free space in the given map with the
2005  * specified alignment.  Performs an address-ordered, first-fit search from
2006  * the given address "*addr", with an optional upper bound "max_addr".  If the
2007  * parameter "alignment" is zero, then the alignment is computed from the
2008  * given (object, offset) pair so as to enable the greatest possible use of
2009  * superpage mappings.  Returns KERN_SUCCESS and the address of the free space
2010  * in "*addr" if successful.  Otherwise, returns KERN_NO_SPACE.
2011  *
2012  * The map must be locked.  Initially, there must be at least "length" bytes
2013  * of free space at the given address.
2014  */
2015 static int
2016 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2017     vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr,
2018     vm_offset_t alignment)
2019 {
2020 	vm_offset_t aligned_addr, free_addr;
2021 
2022 	VM_MAP_ASSERT_LOCKED(map);
2023 	free_addr = *addr;
2024 	KASSERT(free_addr == vm_map_findspace(map, free_addr, length),
2025 	    ("caller failed to provide space %#jx at address %p",
2026 	     (uintmax_t)length, (void *)free_addr));
2027 	for (;;) {
2028 		/*
2029 		 * At the start of every iteration, the free space at address
2030 		 * "*addr" is at least "length" bytes.
2031 		 */
2032 		if (alignment == 0)
2033 			pmap_align_superpage(object, offset, addr, length);
2034 		else
2035 			*addr = roundup2(*addr, alignment);
2036 		aligned_addr = *addr;
2037 		if (aligned_addr == free_addr) {
2038 			/*
2039 			 * Alignment did not change "*addr", so "*addr" must
2040 			 * still provide sufficient free space.
2041 			 */
2042 			return (KERN_SUCCESS);
2043 		}
2044 
2045 		/*
2046 		 * Test for address wrap on "*addr".  A wrapped "*addr" could
2047 		 * be a valid address, in which case vm_map_findspace() cannot
2048 		 * be relied upon to fail.
2049 		 */
2050 		if (aligned_addr < free_addr)
2051 			return (KERN_NO_SPACE);
2052 		*addr = vm_map_findspace(map, aligned_addr, length);
2053 		if (*addr + length > vm_map_max(map) ||
2054 		    (max_addr != 0 && *addr + length > max_addr))
2055 			return (KERN_NO_SPACE);
2056 		free_addr = *addr;
2057 		if (free_addr == aligned_addr) {
2058 			/*
2059 			 * If a successful call to vm_map_findspace() did not
2060 			 * change "*addr", then "*addr" must still be aligned
2061 			 * and provide sufficient free space.
2062 			 */
2063 			return (KERN_SUCCESS);
2064 		}
2065 	}
2066 }
2067 
2068 int
2069 vm_map_find_aligned(vm_map_t map, vm_offset_t *addr, vm_size_t length,
2070     vm_offset_t max_addr, vm_offset_t alignment)
2071 {
2072 	/* XXXKIB ASLR eh ? */
2073 	*addr = vm_map_findspace(map, *addr, length);
2074 	if (*addr + length > vm_map_max(map) ||
2075 	    (max_addr != 0 && *addr + length > max_addr))
2076 		return (KERN_NO_SPACE);
2077 	return (vm_map_alignspace(map, NULL, 0, addr, length, max_addr,
2078 	    alignment));
2079 }
2080 
2081 /*
2082  *	vm_map_find finds an unallocated region in the target address
2083  *	map with the given length.  The search is defined to be
2084  *	first-fit from the specified address; the region found is
2085  *	returned in the same parameter.
2086  *
2087  *	If object is non-NULL, ref count must be bumped by caller
2088  *	prior to making call to account for the new entry.
2089  */
2090 int
2091 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2092 	    vm_offset_t *addr,	/* IN/OUT */
2093 	    vm_size_t length, vm_offset_t max_addr, int find_space,
2094 	    vm_prot_t prot, vm_prot_t max, int cow)
2095 {
2096 	vm_offset_t alignment, curr_min_addr, min_addr;
2097 	int gap, pidx, rv, try;
2098 	bool cluster, en_aslr, update_anon;
2099 
2100 	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
2101 	    object == NULL,
2102 	    ("vm_map_find: non-NULL backing object for stack"));
2103 	MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE &&
2104 	    (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0));
2105 	if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
2106 	    (object->flags & OBJ_COLORED) == 0))
2107 		find_space = VMFS_ANY_SPACE;
2108 	if (find_space >> 8 != 0) {
2109 		KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
2110 		alignment = (vm_offset_t)1 << (find_space >> 8);
2111 	} else
2112 		alignment = 0;
2113 	en_aslr = (map->flags & MAP_ASLR) != 0;
2114 	update_anon = cluster = clustering_anon_allowed(*addr) &&
2115 	    (map->flags & MAP_IS_SUB_MAP) == 0 && max_addr == 0 &&
2116 	    find_space != VMFS_NO_SPACE && object == NULL &&
2117 	    (cow & (MAP_INHERIT_SHARE | MAP_STACK_GROWS_UP |
2118 	    MAP_STACK_GROWS_DOWN)) == 0 && prot != PROT_NONE;
2119 	curr_min_addr = min_addr = *addr;
2120 	if (en_aslr && min_addr == 0 && !cluster &&
2121 	    find_space != VMFS_NO_SPACE &&
2122 	    (map->flags & MAP_ASLR_IGNSTART) != 0)
2123 		curr_min_addr = min_addr = vm_map_min(map);
2124 	try = 0;
2125 	vm_map_lock(map);
2126 	if (cluster) {
2127 		curr_min_addr = map->anon_loc;
2128 		if (curr_min_addr == 0)
2129 			cluster = false;
2130 	}
2131 	if (find_space != VMFS_NO_SPACE) {
2132 		KASSERT(find_space == VMFS_ANY_SPACE ||
2133 		    find_space == VMFS_OPTIMAL_SPACE ||
2134 		    find_space == VMFS_SUPER_SPACE ||
2135 		    alignment != 0, ("unexpected VMFS flag"));
2136 again:
2137 		/*
2138 		 * When creating an anonymous mapping, try clustering
2139 		 * with an existing anonymous mapping first.
2140 		 *
2141 		 * We make up to two attempts to find address space
2142 		 * for a given find_space value. The first attempt may
2143 		 * apply randomization or may cluster with an existing
2144 		 * anonymous mapping. If this first attempt fails,
2145 		 * perform a first-fit search of the available address
2146 		 * space.
2147 		 *
2148 		 * If all tries failed, and find_space is
2149 		 * VMFS_OPTIMAL_SPACE, fallback to VMFS_ANY_SPACE.
2150 		 * Again enable clustering and randomization.
2151 		 */
2152 		try++;
2153 		MPASS(try <= 2);
2154 
2155 		if (try == 2) {
2156 			/*
2157 			 * Second try: we failed either to find a
2158 			 * suitable region for randomizing the
2159 			 * allocation, or to cluster with an existing
2160 			 * mapping.  Retry with free run.
2161 			 */
2162 			curr_min_addr = (map->flags & MAP_ASLR_IGNSTART) != 0 ?
2163 			    vm_map_min(map) : min_addr;
2164 			atomic_add_long(&aslr_restarts, 1);
2165 		}
2166 
2167 		if (try == 1 && en_aslr && !cluster) {
2168 			/*
2169 			 * Find space for allocation, including
2170 			 * gap needed for later randomization.
2171 			 */
2172 			pidx = MAXPAGESIZES > 1 && pagesizes[1] != 0 &&
2173 			    (find_space == VMFS_SUPER_SPACE || find_space ==
2174 			    VMFS_OPTIMAL_SPACE) ? 1 : 0;
2175 			gap = vm_map_max(map) > MAP_32BIT_MAX_ADDR &&
2176 			    (max_addr == 0 || max_addr > MAP_32BIT_MAX_ADDR) ?
2177 			    aslr_pages_rnd_64[pidx] : aslr_pages_rnd_32[pidx];
2178 			*addr = vm_map_findspace(map, curr_min_addr,
2179 			    length + gap * pagesizes[pidx]);
2180 			if (*addr + length + gap * pagesizes[pidx] >
2181 			    vm_map_max(map))
2182 				goto again;
2183 			/* And randomize the start address. */
2184 			*addr += (arc4random() % gap) * pagesizes[pidx];
2185 			if (max_addr != 0 && *addr + length > max_addr)
2186 				goto again;
2187 		} else {
2188 			*addr = vm_map_findspace(map, curr_min_addr, length);
2189 			if (*addr + length > vm_map_max(map) ||
2190 			    (max_addr != 0 && *addr + length > max_addr)) {
2191 				if (cluster) {
2192 					cluster = false;
2193 					MPASS(try == 1);
2194 					goto again;
2195 				}
2196 				rv = KERN_NO_SPACE;
2197 				goto done;
2198 			}
2199 		}
2200 
2201 		if (find_space != VMFS_ANY_SPACE &&
2202 		    (rv = vm_map_alignspace(map, object, offset, addr, length,
2203 		    max_addr, alignment)) != KERN_SUCCESS) {
2204 			if (find_space == VMFS_OPTIMAL_SPACE) {
2205 				find_space = VMFS_ANY_SPACE;
2206 				curr_min_addr = min_addr;
2207 				cluster = update_anon;
2208 				try = 0;
2209 				goto again;
2210 			}
2211 			goto done;
2212 		}
2213 	} else if ((cow & MAP_REMAP) != 0) {
2214 		if (!vm_map_range_valid(map, *addr, *addr + length)) {
2215 			rv = KERN_INVALID_ADDRESS;
2216 			goto done;
2217 		}
2218 		rv = vm_map_delete(map, *addr, *addr + length);
2219 		if (rv != KERN_SUCCESS)
2220 			goto done;
2221 	}
2222 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
2223 		rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot,
2224 		    max, cow);
2225 	} else {
2226 		rv = vm_map_insert(map, object, offset, *addr, *addr + length,
2227 		    prot, max, cow);
2228 	}
2229 	if (rv == KERN_SUCCESS && update_anon)
2230 		map->anon_loc = *addr + length;
2231 done:
2232 	vm_map_unlock(map);
2233 	return (rv);
2234 }
2235 
2236 /*
2237  *	vm_map_find_min() is a variant of vm_map_find() that takes an
2238  *	additional parameter (min_addr) and treats the given address
2239  *	(*addr) differently.  Specifically, it treats *addr as a hint
2240  *	and not as the minimum address where the mapping is created.
2241  *
2242  *	This function works in two phases.  First, it tries to
2243  *	allocate above the hint.  If that fails and the hint is
2244  *	greater than min_addr, it performs a second pass, replacing
2245  *	the hint with min_addr as the minimum address for the
2246  *	allocation.
2247  */
2248 int
2249 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2250     vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr,
2251     vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max,
2252     int cow)
2253 {
2254 	vm_offset_t hint;
2255 	int rv;
2256 
2257 	hint = *addr;
2258 	for (;;) {
2259 		rv = vm_map_find(map, object, offset, addr, length, max_addr,
2260 		    find_space, prot, max, cow);
2261 		if (rv == KERN_SUCCESS || min_addr >= hint)
2262 			return (rv);
2263 		*addr = hint = min_addr;
2264 	}
2265 }
2266 
2267 /*
2268  * A map entry with any of the following flags set must not be merged with
2269  * another entry.
2270  */
2271 #define	MAP_ENTRY_NOMERGE_MASK	(MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | \
2272 	    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP | MAP_ENTRY_VN_EXEC)
2273 
2274 static bool
2275 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry)
2276 {
2277 
2278 	KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 ||
2279 	    (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0,
2280 	    ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable",
2281 	    prev, entry));
2282 	return (prev->end == entry->start &&
2283 	    prev->object.vm_object == entry->object.vm_object &&
2284 	    (prev->object.vm_object == NULL ||
2285 	    prev->offset + (prev->end - prev->start) == entry->offset) &&
2286 	    prev->eflags == entry->eflags &&
2287 	    prev->protection == entry->protection &&
2288 	    prev->max_protection == entry->max_protection &&
2289 	    prev->inheritance == entry->inheritance &&
2290 	    prev->wired_count == entry->wired_count &&
2291 	    prev->cred == entry->cred);
2292 }
2293 
2294 static void
2295 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry)
2296 {
2297 
2298 	/*
2299 	 * If the backing object is a vnode object, vm_object_deallocate()
2300 	 * calls vrele().  However, vrele() does not lock the vnode because
2301 	 * the vnode has additional references.  Thus, the map lock can be
2302 	 * kept without causing a lock-order reversal with the vnode lock.
2303 	 *
2304 	 * Since we count the number of virtual page mappings in
2305 	 * object->un_pager.vnp.writemappings, the writemappings value
2306 	 * should not be adjusted when the entry is disposed of.
2307 	 */
2308 	if (entry->object.vm_object != NULL)
2309 		vm_object_deallocate(entry->object.vm_object);
2310 	if (entry->cred != NULL)
2311 		crfree(entry->cred);
2312 	vm_map_entry_dispose(map, entry);
2313 }
2314 
2315 /*
2316  *	vm_map_try_merge_entries:
2317  *
2318  *	Compare the given map entry to its predecessor, and merge its precessor
2319  *	into it if possible.  The entry remains valid, and may be extended.
2320  *	The predecessor may be deleted.
2321  *
2322  *	The map must be locked.
2323  */
2324 void
2325 vm_map_try_merge_entries(vm_map_t map, vm_map_entry_t prev_entry,
2326     vm_map_entry_t entry)
2327 {
2328 
2329 	VM_MAP_ASSERT_LOCKED(map);
2330 	if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 &&
2331 	    vm_map_mergeable_neighbors(prev_entry, entry)) {
2332 		vm_map_entry_unlink(map, prev_entry, UNLINK_MERGE_NEXT);
2333 		vm_map_merged_neighbor_dispose(map, prev_entry);
2334 	}
2335 }
2336 
2337 /*
2338  *	vm_map_entry_back:
2339  *
2340  *	Allocate an object to back a map entry.
2341  */
2342 static inline void
2343 vm_map_entry_back(vm_map_entry_t entry)
2344 {
2345 	vm_object_t object;
2346 
2347 	KASSERT(entry->object.vm_object == NULL,
2348 	    ("map entry %p has backing object", entry));
2349 	KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
2350 	    ("map entry %p is a submap", entry));
2351 	object = vm_object_allocate_anon(atop(entry->end - entry->start), NULL,
2352 	    entry->cred, entry->end - entry->start);
2353 	entry->object.vm_object = object;
2354 	entry->offset = 0;
2355 	entry->cred = NULL;
2356 }
2357 
2358 /*
2359  *	vm_map_entry_charge_object
2360  *
2361  *	If there is no object backing this entry, create one.  Otherwise, if
2362  *	the entry has cred, give it to the backing object.
2363  */
2364 static inline void
2365 vm_map_entry_charge_object(vm_map_t map, vm_map_entry_t entry)
2366 {
2367 
2368 	VM_MAP_ASSERT_LOCKED(map);
2369 	KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
2370 	    ("map entry %p is a submap", entry));
2371 	if (entry->object.vm_object == NULL && !map->system_map &&
2372 	    (entry->eflags & MAP_ENTRY_GUARD) == 0)
2373 		vm_map_entry_back(entry);
2374 	else if (entry->object.vm_object != NULL &&
2375 	    ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
2376 	    entry->cred != NULL) {
2377 		VM_OBJECT_WLOCK(entry->object.vm_object);
2378 		KASSERT(entry->object.vm_object->cred == NULL,
2379 		    ("OVERCOMMIT: %s: both cred e %p", __func__, entry));
2380 		entry->object.vm_object->cred = entry->cred;
2381 		entry->object.vm_object->charge = entry->end - entry->start;
2382 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
2383 		entry->cred = NULL;
2384 	}
2385 }
2386 
2387 /*
2388  *	vm_map_entry_clone
2389  *
2390  *	Create a duplicate map entry for clipping.
2391  */
2392 static vm_map_entry_t
2393 vm_map_entry_clone(vm_map_t map, vm_map_entry_t entry)
2394 {
2395 	vm_map_entry_t new_entry;
2396 
2397 	VM_MAP_ASSERT_LOCKED(map);
2398 
2399 	/*
2400 	 * Create a backing object now, if none exists, so that more individual
2401 	 * objects won't be created after the map entry is split.
2402 	 */
2403 	vm_map_entry_charge_object(map, entry);
2404 
2405 	/* Clone the entry. */
2406 	new_entry = vm_map_entry_create(map);
2407 	*new_entry = *entry;
2408 	if (new_entry->cred != NULL)
2409 		crhold(entry->cred);
2410 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2411 		vm_object_reference(new_entry->object.vm_object);
2412 		vm_map_entry_set_vnode_text(new_entry, true);
2413 		/*
2414 		 * The object->un_pager.vnp.writemappings for the object of
2415 		 * MAP_ENTRY_WRITECNT type entry shall be kept as is here.  The
2416 		 * virtual pages are re-distributed among the clipped entries,
2417 		 * so the sum is left the same.
2418 		 */
2419 	}
2420 	return (new_entry);
2421 }
2422 
2423 /*
2424  *	vm_map_clip_start:	[ internal use only ]
2425  *
2426  *	Asserts that the given entry begins at or after
2427  *	the specified address; if necessary,
2428  *	it splits the entry into two.
2429  */
2430 static int
2431 vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t startaddr)
2432 {
2433 	vm_map_entry_t new_entry;
2434 	int bdry_idx;
2435 
2436 	if (!map->system_map)
2437 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2438 		    "%s: map %p entry %p start 0x%jx", __func__, map, entry,
2439 		    (uintmax_t)startaddr);
2440 
2441 	if (startaddr <= entry->start)
2442 		return (KERN_SUCCESS);
2443 
2444 	VM_MAP_ASSERT_LOCKED(map);
2445 	KASSERT(entry->end > startaddr && entry->start < startaddr,
2446 	    ("%s: invalid clip of entry %p", __func__, entry));
2447 
2448 	bdry_idx = (entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) >>
2449 	    MAP_ENTRY_SPLIT_BOUNDARY_SHIFT;
2450 	if (bdry_idx != 0) {
2451 		if ((startaddr & (pagesizes[bdry_idx] - 1)) != 0)
2452 			return (KERN_INVALID_ARGUMENT);
2453 	}
2454 
2455 	new_entry = vm_map_entry_clone(map, entry);
2456 
2457 	/*
2458 	 * Split off the front portion.  Insert the new entry BEFORE this one,
2459 	 * so that this entry has the specified starting address.
2460 	 */
2461 	new_entry->end = startaddr;
2462 	vm_map_entry_link(map, new_entry);
2463 	return (KERN_SUCCESS);
2464 }
2465 
2466 /*
2467  *	vm_map_lookup_clip_start:
2468  *
2469  *	Find the entry at or just after 'start', and clip it if 'start' is in
2470  *	the interior of the entry.  Return entry after 'start', and in
2471  *	prev_entry set the entry before 'start'.
2472  */
2473 static int
2474 vm_map_lookup_clip_start(vm_map_t map, vm_offset_t start,
2475     vm_map_entry_t *res_entry, vm_map_entry_t *prev_entry)
2476 {
2477 	vm_map_entry_t entry;
2478 	int rv;
2479 
2480 	if (!map->system_map)
2481 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2482 		    "%s: map %p start 0x%jx prev %p", __func__, map,
2483 		    (uintmax_t)start, prev_entry);
2484 
2485 	if (vm_map_lookup_entry(map, start, prev_entry)) {
2486 		entry = *prev_entry;
2487 		rv = vm_map_clip_start(map, entry, start);
2488 		if (rv != KERN_SUCCESS)
2489 			return (rv);
2490 		*prev_entry = vm_map_entry_pred(entry);
2491 	} else
2492 		entry = vm_map_entry_succ(*prev_entry);
2493 	*res_entry = entry;
2494 	return (KERN_SUCCESS);
2495 }
2496 
2497 /*
2498  *	vm_map_clip_end:	[ internal use only ]
2499  *
2500  *	Asserts that the given entry ends at or before
2501  *	the specified address; if necessary,
2502  *	it splits the entry into two.
2503  */
2504 static int
2505 vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t endaddr)
2506 {
2507 	vm_map_entry_t new_entry;
2508 	int bdry_idx;
2509 
2510 	if (!map->system_map)
2511 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2512 		    "%s: map %p entry %p end 0x%jx", __func__, map, entry,
2513 		    (uintmax_t)endaddr);
2514 
2515 	if (endaddr >= entry->end)
2516 		return (KERN_SUCCESS);
2517 
2518 	VM_MAP_ASSERT_LOCKED(map);
2519 	KASSERT(entry->start < endaddr && entry->end > endaddr,
2520 	    ("%s: invalid clip of entry %p", __func__, entry));
2521 
2522 	bdry_idx = (entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) >>
2523 	    MAP_ENTRY_SPLIT_BOUNDARY_SHIFT;
2524 	if (bdry_idx != 0) {
2525 		if ((endaddr & (pagesizes[bdry_idx] - 1)) != 0)
2526 			return (KERN_INVALID_ARGUMENT);
2527 	}
2528 
2529 	new_entry = vm_map_entry_clone(map, entry);
2530 
2531 	/*
2532 	 * Split off the back portion.  Insert the new entry AFTER this one,
2533 	 * so that this entry has the specified ending address.
2534 	 */
2535 	new_entry->start = endaddr;
2536 	vm_map_entry_link(map, new_entry);
2537 
2538 	return (KERN_SUCCESS);
2539 }
2540 
2541 /*
2542  *	vm_map_submap:		[ kernel use only ]
2543  *
2544  *	Mark the given range as handled by a subordinate map.
2545  *
2546  *	This range must have been created with vm_map_find,
2547  *	and no other operations may have been performed on this
2548  *	range prior to calling vm_map_submap.
2549  *
2550  *	Only a limited number of operations can be performed
2551  *	within this rage after calling vm_map_submap:
2552  *		vm_fault
2553  *	[Don't try vm_map_copy!]
2554  *
2555  *	To remove a submapping, one must first remove the
2556  *	range from the superior map, and then destroy the
2557  *	submap (if desired).  [Better yet, don't try it.]
2558  */
2559 int
2560 vm_map_submap(
2561 	vm_map_t map,
2562 	vm_offset_t start,
2563 	vm_offset_t end,
2564 	vm_map_t submap)
2565 {
2566 	vm_map_entry_t entry;
2567 	int result;
2568 
2569 	result = KERN_INVALID_ARGUMENT;
2570 
2571 	vm_map_lock(submap);
2572 	submap->flags |= MAP_IS_SUB_MAP;
2573 	vm_map_unlock(submap);
2574 
2575 	vm_map_lock(map);
2576 	VM_MAP_RANGE_CHECK(map, start, end);
2577 	if (vm_map_lookup_entry(map, start, &entry) && entry->end >= end &&
2578 	    (entry->eflags & MAP_ENTRY_COW) == 0 &&
2579 	    entry->object.vm_object == NULL) {
2580 		result = vm_map_clip_start(map, entry, start);
2581 		if (result != KERN_SUCCESS)
2582 			goto unlock;
2583 		result = vm_map_clip_end(map, entry, end);
2584 		if (result != KERN_SUCCESS)
2585 			goto unlock;
2586 		entry->object.sub_map = submap;
2587 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
2588 		result = KERN_SUCCESS;
2589 	}
2590 unlock:
2591 	vm_map_unlock(map);
2592 
2593 	if (result != KERN_SUCCESS) {
2594 		vm_map_lock(submap);
2595 		submap->flags &= ~MAP_IS_SUB_MAP;
2596 		vm_map_unlock(submap);
2597 	}
2598 	return (result);
2599 }
2600 
2601 /*
2602  * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
2603  */
2604 #define	MAX_INIT_PT	96
2605 
2606 /*
2607  *	vm_map_pmap_enter:
2608  *
2609  *	Preload the specified map's pmap with mappings to the specified
2610  *	object's memory-resident pages.  No further physical pages are
2611  *	allocated, and no further virtual pages are retrieved from secondary
2612  *	storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
2613  *	limited number of page mappings are created at the low-end of the
2614  *	specified address range.  (For this purpose, a superpage mapping
2615  *	counts as one page mapping.)  Otherwise, all resident pages within
2616  *	the specified address range are mapped.
2617  */
2618 static void
2619 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
2620     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
2621 {
2622 	vm_offset_t start;
2623 	vm_page_t p, p_start;
2624 	vm_pindex_t mask, psize, threshold, tmpidx;
2625 
2626 	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
2627 		return;
2628 	if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2629 		VM_OBJECT_WLOCK(object);
2630 		if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2631 			pmap_object_init_pt(map->pmap, addr, object, pindex,
2632 			    size);
2633 			VM_OBJECT_WUNLOCK(object);
2634 			return;
2635 		}
2636 		VM_OBJECT_LOCK_DOWNGRADE(object);
2637 	} else
2638 		VM_OBJECT_RLOCK(object);
2639 
2640 	psize = atop(size);
2641 	if (psize + pindex > object->size) {
2642 		if (pindex >= object->size) {
2643 			VM_OBJECT_RUNLOCK(object);
2644 			return;
2645 		}
2646 		psize = object->size - pindex;
2647 	}
2648 
2649 	start = 0;
2650 	p_start = NULL;
2651 	threshold = MAX_INIT_PT;
2652 
2653 	p = vm_page_find_least(object, pindex);
2654 	/*
2655 	 * Assert: the variable p is either (1) the page with the
2656 	 * least pindex greater than or equal to the parameter pindex
2657 	 * or (2) NULL.
2658 	 */
2659 	for (;
2660 	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
2661 	     p = TAILQ_NEXT(p, listq)) {
2662 		/*
2663 		 * don't allow an madvise to blow away our really
2664 		 * free pages allocating pv entries.
2665 		 */
2666 		if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
2667 		    vm_page_count_severe()) ||
2668 		    ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
2669 		    tmpidx >= threshold)) {
2670 			psize = tmpidx;
2671 			break;
2672 		}
2673 		if (vm_page_all_valid(p)) {
2674 			if (p_start == NULL) {
2675 				start = addr + ptoa(tmpidx);
2676 				p_start = p;
2677 			}
2678 			/* Jump ahead if a superpage mapping is possible. */
2679 			if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
2680 			    (pagesizes[p->psind] - 1)) == 0) {
2681 				mask = atop(pagesizes[p->psind]) - 1;
2682 				if (tmpidx + mask < psize &&
2683 				    vm_page_ps_test(p, PS_ALL_VALID, NULL)) {
2684 					p += mask;
2685 					threshold += mask;
2686 				}
2687 			}
2688 		} else if (p_start != NULL) {
2689 			pmap_enter_object(map->pmap, start, addr +
2690 			    ptoa(tmpidx), p_start, prot);
2691 			p_start = NULL;
2692 		}
2693 	}
2694 	if (p_start != NULL)
2695 		pmap_enter_object(map->pmap, start, addr + ptoa(psize),
2696 		    p_start, prot);
2697 	VM_OBJECT_RUNLOCK(object);
2698 }
2699 
2700 /*
2701  *	vm_map_protect:
2702  *
2703  *	Sets the protection and/or the maximum protection of the
2704  *	specified address region in the target map.
2705  */
2706 int
2707 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
2708     vm_prot_t new_prot, vm_prot_t new_maxprot, int flags)
2709 {
2710 	vm_map_entry_t entry, first_entry, in_tran, prev_entry;
2711 	vm_object_t obj;
2712 	struct ucred *cred;
2713 	vm_prot_t old_prot;
2714 	int rv;
2715 
2716 	if (start == end)
2717 		return (KERN_SUCCESS);
2718 
2719 	if ((flags & (VM_MAP_PROTECT_SET_PROT | VM_MAP_PROTECT_SET_MAXPROT)) ==
2720 	    (VM_MAP_PROTECT_SET_PROT | VM_MAP_PROTECT_SET_MAXPROT) &&
2721 	    (new_prot & new_maxprot) != new_prot)
2722 		return (KERN_OUT_OF_BOUNDS);
2723 
2724 again:
2725 	in_tran = NULL;
2726 	vm_map_lock(map);
2727 
2728 	if ((map->flags & MAP_WXORX) != 0 &&
2729 	    (flags & VM_MAP_PROTECT_SET_PROT) != 0 &&
2730 	    (new_prot & (VM_PROT_WRITE | VM_PROT_EXECUTE)) == (VM_PROT_WRITE |
2731 	    VM_PROT_EXECUTE)) {
2732 		vm_map_unlock(map);
2733 		return (KERN_PROTECTION_FAILURE);
2734 	}
2735 
2736 	/*
2737 	 * Ensure that we are not concurrently wiring pages.  vm_map_wire() may
2738 	 * need to fault pages into the map and will drop the map lock while
2739 	 * doing so, and the VM object may end up in an inconsistent state if we
2740 	 * update the protection on the map entry in between faults.
2741 	 */
2742 	vm_map_wait_busy(map);
2743 
2744 	VM_MAP_RANGE_CHECK(map, start, end);
2745 
2746 	if (!vm_map_lookup_entry(map, start, &first_entry))
2747 		first_entry = vm_map_entry_succ(first_entry);
2748 
2749 	/*
2750 	 * Make a first pass to check for protection violations.
2751 	 */
2752 	for (entry = first_entry; entry->start < end;
2753 	    entry = vm_map_entry_succ(entry)) {
2754 		if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
2755 			continue;
2756 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) {
2757 			vm_map_unlock(map);
2758 			return (KERN_INVALID_ARGUMENT);
2759 		}
2760 		if ((flags & VM_MAP_PROTECT_SET_PROT) == 0)
2761 			new_prot = entry->protection;
2762 		if ((flags & VM_MAP_PROTECT_SET_MAXPROT) == 0)
2763 			new_maxprot = entry->max_protection;
2764 		if ((new_prot & entry->max_protection) != new_prot ||
2765 		    (new_maxprot & entry->max_protection) != new_maxprot) {
2766 			vm_map_unlock(map);
2767 			return (KERN_PROTECTION_FAILURE);
2768 		}
2769 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0)
2770 			in_tran = entry;
2771 	}
2772 
2773 	/*
2774 	 * Postpone the operation until all in-transition map entries have
2775 	 * stabilized.  An in-transition entry might already have its pages
2776 	 * wired and wired_count incremented, but not yet have its
2777 	 * MAP_ENTRY_USER_WIRED flag set.  In which case, we would fail to call
2778 	 * vm_fault_copy_entry() in the final loop below.
2779 	 */
2780 	if (in_tran != NULL) {
2781 		in_tran->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2782 		vm_map_unlock_and_wait(map, 0);
2783 		goto again;
2784 	}
2785 
2786 	/*
2787 	 * Before changing the protections, try to reserve swap space for any
2788 	 * private (i.e., copy-on-write) mappings that are transitioning from
2789 	 * read-only to read/write access.  If a reservation fails, break out
2790 	 * of this loop early and let the next loop simplify the entries, since
2791 	 * some may now be mergeable.
2792 	 */
2793 	rv = vm_map_clip_start(map, first_entry, start);
2794 	if (rv != KERN_SUCCESS) {
2795 		vm_map_unlock(map);
2796 		return (rv);
2797 	}
2798 	for (entry = first_entry; entry->start < end;
2799 	    entry = vm_map_entry_succ(entry)) {
2800 		rv = vm_map_clip_end(map, entry, end);
2801 		if (rv != KERN_SUCCESS) {
2802 			vm_map_unlock(map);
2803 			return (rv);
2804 		}
2805 
2806 		if ((flags & VM_MAP_PROTECT_SET_PROT) == 0 ||
2807 		    ((new_prot & ~entry->protection) & VM_PROT_WRITE) == 0 ||
2808 		    ENTRY_CHARGED(entry) ||
2809 		    (entry->eflags & MAP_ENTRY_GUARD) != 0)
2810 			continue;
2811 
2812 		cred = curthread->td_ucred;
2813 		obj = entry->object.vm_object;
2814 
2815 		if (obj == NULL ||
2816 		    (entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0) {
2817 			if (!swap_reserve(entry->end - entry->start)) {
2818 				rv = KERN_RESOURCE_SHORTAGE;
2819 				end = entry->end;
2820 				break;
2821 			}
2822 			crhold(cred);
2823 			entry->cred = cred;
2824 			continue;
2825 		}
2826 
2827 		VM_OBJECT_WLOCK(obj);
2828 		if (obj->type != OBJT_DEFAULT &&
2829 		    (obj->flags & OBJ_SWAP) == 0) {
2830 			VM_OBJECT_WUNLOCK(obj);
2831 			continue;
2832 		}
2833 
2834 		/*
2835 		 * Charge for the whole object allocation now, since
2836 		 * we cannot distinguish between non-charged and
2837 		 * charged clipped mapping of the same object later.
2838 		 */
2839 		KASSERT(obj->charge == 0,
2840 		    ("vm_map_protect: object %p overcharged (entry %p)",
2841 		    obj, entry));
2842 		if (!swap_reserve(ptoa(obj->size))) {
2843 			VM_OBJECT_WUNLOCK(obj);
2844 			rv = KERN_RESOURCE_SHORTAGE;
2845 			end = entry->end;
2846 			break;
2847 		}
2848 
2849 		crhold(cred);
2850 		obj->cred = cred;
2851 		obj->charge = ptoa(obj->size);
2852 		VM_OBJECT_WUNLOCK(obj);
2853 	}
2854 
2855 	/*
2856 	 * If enough swap space was available, go back and fix up protections.
2857 	 * Otherwise, just simplify entries, since some may have been modified.
2858 	 * [Note that clipping is not necessary the second time.]
2859 	 */
2860 	for (prev_entry = vm_map_entry_pred(first_entry), entry = first_entry;
2861 	    entry->start < end;
2862 	    vm_map_try_merge_entries(map, prev_entry, entry),
2863 	    prev_entry = entry, entry = vm_map_entry_succ(entry)) {
2864 		if (rv != KERN_SUCCESS ||
2865 		    (entry->eflags & MAP_ENTRY_GUARD) != 0)
2866 			continue;
2867 
2868 		old_prot = entry->protection;
2869 
2870 		if ((flags & VM_MAP_PROTECT_SET_MAXPROT) != 0) {
2871 			entry->max_protection = new_maxprot;
2872 			entry->protection = new_maxprot & old_prot;
2873 		}
2874 		if ((flags & VM_MAP_PROTECT_SET_PROT) != 0)
2875 			entry->protection = new_prot;
2876 
2877 		/*
2878 		 * For user wired map entries, the normal lazy evaluation of
2879 		 * write access upgrades through soft page faults is
2880 		 * undesirable.  Instead, immediately copy any pages that are
2881 		 * copy-on-write and enable write access in the physical map.
2882 		 */
2883 		if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2884 		    (entry->protection & VM_PROT_WRITE) != 0 &&
2885 		    (old_prot & VM_PROT_WRITE) == 0)
2886 			vm_fault_copy_entry(map, map, entry, entry, NULL);
2887 
2888 		/*
2889 		 * When restricting access, update the physical map.  Worry
2890 		 * about copy-on-write here.
2891 		 */
2892 		if ((old_prot & ~entry->protection) != 0) {
2893 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2894 							VM_PROT_ALL)
2895 			pmap_protect(map->pmap, entry->start,
2896 			    entry->end,
2897 			    entry->protection & MASK(entry));
2898 #undef	MASK
2899 		}
2900 	}
2901 	vm_map_try_merge_entries(map, prev_entry, entry);
2902 	vm_map_unlock(map);
2903 	return (rv);
2904 }
2905 
2906 /*
2907  *	vm_map_madvise:
2908  *
2909  *	This routine traverses a processes map handling the madvise
2910  *	system call.  Advisories are classified as either those effecting
2911  *	the vm_map_entry structure, or those effecting the underlying
2912  *	objects.
2913  */
2914 int
2915 vm_map_madvise(
2916 	vm_map_t map,
2917 	vm_offset_t start,
2918 	vm_offset_t end,
2919 	int behav)
2920 {
2921 	vm_map_entry_t entry, prev_entry;
2922 	int rv;
2923 	bool modify_map;
2924 
2925 	/*
2926 	 * Some madvise calls directly modify the vm_map_entry, in which case
2927 	 * we need to use an exclusive lock on the map and we need to perform
2928 	 * various clipping operations.  Otherwise we only need a read-lock
2929 	 * on the map.
2930 	 */
2931 	switch(behav) {
2932 	case MADV_NORMAL:
2933 	case MADV_SEQUENTIAL:
2934 	case MADV_RANDOM:
2935 	case MADV_NOSYNC:
2936 	case MADV_AUTOSYNC:
2937 	case MADV_NOCORE:
2938 	case MADV_CORE:
2939 		if (start == end)
2940 			return (0);
2941 		modify_map = true;
2942 		vm_map_lock(map);
2943 		break;
2944 	case MADV_WILLNEED:
2945 	case MADV_DONTNEED:
2946 	case MADV_FREE:
2947 		if (start == end)
2948 			return (0);
2949 		modify_map = false;
2950 		vm_map_lock_read(map);
2951 		break;
2952 	default:
2953 		return (EINVAL);
2954 	}
2955 
2956 	/*
2957 	 * Locate starting entry and clip if necessary.
2958 	 */
2959 	VM_MAP_RANGE_CHECK(map, start, end);
2960 
2961 	if (modify_map) {
2962 		/*
2963 		 * madvise behaviors that are implemented in the vm_map_entry.
2964 		 *
2965 		 * We clip the vm_map_entry so that behavioral changes are
2966 		 * limited to the specified address range.
2967 		 */
2968 		rv = vm_map_lookup_clip_start(map, start, &entry, &prev_entry);
2969 		if (rv != KERN_SUCCESS) {
2970 			vm_map_unlock(map);
2971 			return (vm_mmap_to_errno(rv));
2972 		}
2973 
2974 		for (; entry->start < end; prev_entry = entry,
2975 		    entry = vm_map_entry_succ(entry)) {
2976 			if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
2977 				continue;
2978 
2979 			rv = vm_map_clip_end(map, entry, end);
2980 			if (rv != KERN_SUCCESS) {
2981 				vm_map_unlock(map);
2982 				return (vm_mmap_to_errno(rv));
2983 			}
2984 
2985 			switch (behav) {
2986 			case MADV_NORMAL:
2987 				vm_map_entry_set_behavior(entry,
2988 				    MAP_ENTRY_BEHAV_NORMAL);
2989 				break;
2990 			case MADV_SEQUENTIAL:
2991 				vm_map_entry_set_behavior(entry,
2992 				    MAP_ENTRY_BEHAV_SEQUENTIAL);
2993 				break;
2994 			case MADV_RANDOM:
2995 				vm_map_entry_set_behavior(entry,
2996 				    MAP_ENTRY_BEHAV_RANDOM);
2997 				break;
2998 			case MADV_NOSYNC:
2999 				entry->eflags |= MAP_ENTRY_NOSYNC;
3000 				break;
3001 			case MADV_AUTOSYNC:
3002 				entry->eflags &= ~MAP_ENTRY_NOSYNC;
3003 				break;
3004 			case MADV_NOCORE:
3005 				entry->eflags |= MAP_ENTRY_NOCOREDUMP;
3006 				break;
3007 			case MADV_CORE:
3008 				entry->eflags &= ~MAP_ENTRY_NOCOREDUMP;
3009 				break;
3010 			default:
3011 				break;
3012 			}
3013 			vm_map_try_merge_entries(map, prev_entry, entry);
3014 		}
3015 		vm_map_try_merge_entries(map, prev_entry, entry);
3016 		vm_map_unlock(map);
3017 	} else {
3018 		vm_pindex_t pstart, pend;
3019 
3020 		/*
3021 		 * madvise behaviors that are implemented in the underlying
3022 		 * vm_object.
3023 		 *
3024 		 * Since we don't clip the vm_map_entry, we have to clip
3025 		 * the vm_object pindex and count.
3026 		 */
3027 		if (!vm_map_lookup_entry(map, start, &entry))
3028 			entry = vm_map_entry_succ(entry);
3029 		for (; entry->start < end;
3030 		    entry = vm_map_entry_succ(entry)) {
3031 			vm_offset_t useEnd, useStart;
3032 
3033 			if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
3034 				continue;
3035 
3036 			/*
3037 			 * MADV_FREE would otherwise rewind time to
3038 			 * the creation of the shadow object.  Because
3039 			 * we hold the VM map read-locked, neither the
3040 			 * entry's object nor the presence of a
3041 			 * backing object can change.
3042 			 */
3043 			if (behav == MADV_FREE &&
3044 			    entry->object.vm_object != NULL &&
3045 			    entry->object.vm_object->backing_object != NULL)
3046 				continue;
3047 
3048 			pstart = OFF_TO_IDX(entry->offset);
3049 			pend = pstart + atop(entry->end - entry->start);
3050 			useStart = entry->start;
3051 			useEnd = entry->end;
3052 
3053 			if (entry->start < start) {
3054 				pstart += atop(start - entry->start);
3055 				useStart = start;
3056 			}
3057 			if (entry->end > end) {
3058 				pend -= atop(entry->end - end);
3059 				useEnd = end;
3060 			}
3061 
3062 			if (pstart >= pend)
3063 				continue;
3064 
3065 			/*
3066 			 * Perform the pmap_advise() before clearing
3067 			 * PGA_REFERENCED in vm_page_advise().  Otherwise, a
3068 			 * concurrent pmap operation, such as pmap_remove(),
3069 			 * could clear a reference in the pmap and set
3070 			 * PGA_REFERENCED on the page before the pmap_advise()
3071 			 * had completed.  Consequently, the page would appear
3072 			 * referenced based upon an old reference that
3073 			 * occurred before this pmap_advise() ran.
3074 			 */
3075 			if (behav == MADV_DONTNEED || behav == MADV_FREE)
3076 				pmap_advise(map->pmap, useStart, useEnd,
3077 				    behav);
3078 
3079 			vm_object_madvise(entry->object.vm_object, pstart,
3080 			    pend, behav);
3081 
3082 			/*
3083 			 * Pre-populate paging structures in the
3084 			 * WILLNEED case.  For wired entries, the
3085 			 * paging structures are already populated.
3086 			 */
3087 			if (behav == MADV_WILLNEED &&
3088 			    entry->wired_count == 0) {
3089 				vm_map_pmap_enter(map,
3090 				    useStart,
3091 				    entry->protection,
3092 				    entry->object.vm_object,
3093 				    pstart,
3094 				    ptoa(pend - pstart),
3095 				    MAP_PREFAULT_MADVISE
3096 				);
3097 			}
3098 		}
3099 		vm_map_unlock_read(map);
3100 	}
3101 	return (0);
3102 }
3103 
3104 /*
3105  *	vm_map_inherit:
3106  *
3107  *	Sets the inheritance of the specified address
3108  *	range in the target map.  Inheritance
3109  *	affects how the map will be shared with
3110  *	child maps at the time of vmspace_fork.
3111  */
3112 int
3113 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
3114 	       vm_inherit_t new_inheritance)
3115 {
3116 	vm_map_entry_t entry, lentry, prev_entry, start_entry;
3117 	int rv;
3118 
3119 	switch (new_inheritance) {
3120 	case VM_INHERIT_NONE:
3121 	case VM_INHERIT_COPY:
3122 	case VM_INHERIT_SHARE:
3123 	case VM_INHERIT_ZERO:
3124 		break;
3125 	default:
3126 		return (KERN_INVALID_ARGUMENT);
3127 	}
3128 	if (start == end)
3129 		return (KERN_SUCCESS);
3130 	vm_map_lock(map);
3131 	VM_MAP_RANGE_CHECK(map, start, end);
3132 	rv = vm_map_lookup_clip_start(map, start, &start_entry, &prev_entry);
3133 	if (rv != KERN_SUCCESS)
3134 		goto unlock;
3135 	if (vm_map_lookup_entry(map, end - 1, &lentry)) {
3136 		rv = vm_map_clip_end(map, lentry, end);
3137 		if (rv != KERN_SUCCESS)
3138 			goto unlock;
3139 	}
3140 	if (new_inheritance == VM_INHERIT_COPY) {
3141 		for (entry = start_entry; entry->start < end;
3142 		    prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3143 			if ((entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK)
3144 			    != 0) {
3145 				rv = KERN_INVALID_ARGUMENT;
3146 				goto unlock;
3147 			}
3148 		}
3149 	}
3150 	for (entry = start_entry; entry->start < end; prev_entry = entry,
3151 	    entry = vm_map_entry_succ(entry)) {
3152 		KASSERT(entry->end <= end, ("non-clipped entry %p end %jx %jx",
3153 		    entry, (uintmax_t)entry->end, (uintmax_t)end));
3154 		if ((entry->eflags & MAP_ENTRY_GUARD) == 0 ||
3155 		    new_inheritance != VM_INHERIT_ZERO)
3156 			entry->inheritance = new_inheritance;
3157 		vm_map_try_merge_entries(map, prev_entry, entry);
3158 	}
3159 	vm_map_try_merge_entries(map, prev_entry, entry);
3160 unlock:
3161 	vm_map_unlock(map);
3162 	return (rv);
3163 }
3164 
3165 /*
3166  *	vm_map_entry_in_transition:
3167  *
3168  *	Release the map lock, and sleep until the entry is no longer in
3169  *	transition.  Awake and acquire the map lock.  If the map changed while
3170  *	another held the lock, lookup a possibly-changed entry at or after the
3171  *	'start' position of the old entry.
3172  */
3173 static vm_map_entry_t
3174 vm_map_entry_in_transition(vm_map_t map, vm_offset_t in_start,
3175     vm_offset_t *io_end, bool holes_ok, vm_map_entry_t in_entry)
3176 {
3177 	vm_map_entry_t entry;
3178 	vm_offset_t start;
3179 	u_int last_timestamp;
3180 
3181 	VM_MAP_ASSERT_LOCKED(map);
3182 	KASSERT((in_entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3183 	    ("not in-tranition map entry %p", in_entry));
3184 	/*
3185 	 * We have not yet clipped the entry.
3186 	 */
3187 	start = MAX(in_start, in_entry->start);
3188 	in_entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3189 	last_timestamp = map->timestamp;
3190 	if (vm_map_unlock_and_wait(map, 0)) {
3191 		/*
3192 		 * Allow interruption of user wiring/unwiring?
3193 		 */
3194 	}
3195 	vm_map_lock(map);
3196 	if (last_timestamp + 1 == map->timestamp)
3197 		return (in_entry);
3198 
3199 	/*
3200 	 * Look again for the entry because the map was modified while it was
3201 	 * unlocked.  Specifically, the entry may have been clipped, merged, or
3202 	 * deleted.
3203 	 */
3204 	if (!vm_map_lookup_entry(map, start, &entry)) {
3205 		if (!holes_ok) {
3206 			*io_end = start;
3207 			return (NULL);
3208 		}
3209 		entry = vm_map_entry_succ(entry);
3210 	}
3211 	return (entry);
3212 }
3213 
3214 /*
3215  *	vm_map_unwire:
3216  *
3217  *	Implements both kernel and user unwiring.
3218  */
3219 int
3220 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
3221     int flags)
3222 {
3223 	vm_map_entry_t entry, first_entry, next_entry, prev_entry;
3224 	int rv;
3225 	bool holes_ok, need_wakeup, user_unwire;
3226 
3227 	if (start == end)
3228 		return (KERN_SUCCESS);
3229 	holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0;
3230 	user_unwire = (flags & VM_MAP_WIRE_USER) != 0;
3231 	vm_map_lock(map);
3232 	VM_MAP_RANGE_CHECK(map, start, end);
3233 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
3234 		if (holes_ok)
3235 			first_entry = vm_map_entry_succ(first_entry);
3236 		else {
3237 			vm_map_unlock(map);
3238 			return (KERN_INVALID_ADDRESS);
3239 		}
3240 	}
3241 	rv = KERN_SUCCESS;
3242 	for (entry = first_entry; entry->start < end; entry = next_entry) {
3243 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
3244 			/*
3245 			 * We have not yet clipped the entry.
3246 			 */
3247 			next_entry = vm_map_entry_in_transition(map, start,
3248 			    &end, holes_ok, entry);
3249 			if (next_entry == NULL) {
3250 				if (entry == first_entry) {
3251 					vm_map_unlock(map);
3252 					return (KERN_INVALID_ADDRESS);
3253 				}
3254 				rv = KERN_INVALID_ADDRESS;
3255 				break;
3256 			}
3257 			first_entry = (entry == first_entry) ?
3258 			    next_entry : NULL;
3259 			continue;
3260 		}
3261 		rv = vm_map_clip_start(map, entry, start);
3262 		if (rv != KERN_SUCCESS)
3263 			break;
3264 		rv = vm_map_clip_end(map, entry, end);
3265 		if (rv != KERN_SUCCESS)
3266 			break;
3267 
3268 		/*
3269 		 * Mark the entry in case the map lock is released.  (See
3270 		 * above.)
3271 		 */
3272 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
3273 		    entry->wiring_thread == NULL,
3274 		    ("owned map entry %p", entry));
3275 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
3276 		entry->wiring_thread = curthread;
3277 		next_entry = vm_map_entry_succ(entry);
3278 		/*
3279 		 * Check the map for holes in the specified region.
3280 		 * If holes_ok, skip this check.
3281 		 */
3282 		if (!holes_ok &&
3283 		    entry->end < end && next_entry->start > entry->end) {
3284 			end = entry->end;
3285 			rv = KERN_INVALID_ADDRESS;
3286 			break;
3287 		}
3288 		/*
3289 		 * If system unwiring, require that the entry is system wired.
3290 		 */
3291 		if (!user_unwire &&
3292 		    vm_map_entry_system_wired_count(entry) == 0) {
3293 			end = entry->end;
3294 			rv = KERN_INVALID_ARGUMENT;
3295 			break;
3296 		}
3297 	}
3298 	need_wakeup = false;
3299 	if (first_entry == NULL &&
3300 	    !vm_map_lookup_entry(map, start, &first_entry)) {
3301 		KASSERT(holes_ok, ("vm_map_unwire: lookup failed"));
3302 		prev_entry = first_entry;
3303 		entry = vm_map_entry_succ(first_entry);
3304 	} else {
3305 		prev_entry = vm_map_entry_pred(first_entry);
3306 		entry = first_entry;
3307 	}
3308 	for (; entry->start < end;
3309 	    prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3310 		/*
3311 		 * If holes_ok was specified, an empty
3312 		 * space in the unwired region could have been mapped
3313 		 * while the map lock was dropped for draining
3314 		 * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
3315 		 * could be simultaneously wiring this new mapping
3316 		 * entry.  Detect these cases and skip any entries
3317 		 * marked as in transition by us.
3318 		 */
3319 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
3320 		    entry->wiring_thread != curthread) {
3321 			KASSERT(holes_ok,
3322 			    ("vm_map_unwire: !HOLESOK and new/changed entry"));
3323 			continue;
3324 		}
3325 
3326 		if (rv == KERN_SUCCESS && (!user_unwire ||
3327 		    (entry->eflags & MAP_ENTRY_USER_WIRED))) {
3328 			if (entry->wired_count == 1)
3329 				vm_map_entry_unwire(map, entry);
3330 			else
3331 				entry->wired_count--;
3332 			if (user_unwire)
3333 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3334 		}
3335 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3336 		    ("vm_map_unwire: in-transition flag missing %p", entry));
3337 		KASSERT(entry->wiring_thread == curthread,
3338 		    ("vm_map_unwire: alien wire %p", entry));
3339 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
3340 		entry->wiring_thread = NULL;
3341 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3342 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3343 			need_wakeup = true;
3344 		}
3345 		vm_map_try_merge_entries(map, prev_entry, entry);
3346 	}
3347 	vm_map_try_merge_entries(map, prev_entry, entry);
3348 	vm_map_unlock(map);
3349 	if (need_wakeup)
3350 		vm_map_wakeup(map);
3351 	return (rv);
3352 }
3353 
3354 static void
3355 vm_map_wire_user_count_sub(u_long npages)
3356 {
3357 
3358 	atomic_subtract_long(&vm_user_wire_count, npages);
3359 }
3360 
3361 static bool
3362 vm_map_wire_user_count_add(u_long npages)
3363 {
3364 	u_long wired;
3365 
3366 	wired = vm_user_wire_count;
3367 	do {
3368 		if (npages + wired > vm_page_max_user_wired)
3369 			return (false);
3370 	} while (!atomic_fcmpset_long(&vm_user_wire_count, &wired,
3371 	    npages + wired));
3372 
3373 	return (true);
3374 }
3375 
3376 /*
3377  *	vm_map_wire_entry_failure:
3378  *
3379  *	Handle a wiring failure on the given entry.
3380  *
3381  *	The map should be locked.
3382  */
3383 static void
3384 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
3385     vm_offset_t failed_addr)
3386 {
3387 
3388 	VM_MAP_ASSERT_LOCKED(map);
3389 	KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
3390 	    entry->wired_count == 1,
3391 	    ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
3392 	KASSERT(failed_addr < entry->end,
3393 	    ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
3394 
3395 	/*
3396 	 * If any pages at the start of this entry were successfully wired,
3397 	 * then unwire them.
3398 	 */
3399 	if (failed_addr > entry->start) {
3400 		pmap_unwire(map->pmap, entry->start, failed_addr);
3401 		vm_object_unwire(entry->object.vm_object, entry->offset,
3402 		    failed_addr - entry->start, PQ_ACTIVE);
3403 	}
3404 
3405 	/*
3406 	 * Assign an out-of-range value to represent the failure to wire this
3407 	 * entry.
3408 	 */
3409 	entry->wired_count = -1;
3410 }
3411 
3412 int
3413 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3414 {
3415 	int rv;
3416 
3417 	vm_map_lock(map);
3418 	rv = vm_map_wire_locked(map, start, end, flags);
3419 	vm_map_unlock(map);
3420 	return (rv);
3421 }
3422 
3423 /*
3424  *	vm_map_wire_locked:
3425  *
3426  *	Implements both kernel and user wiring.  Returns with the map locked,
3427  *	the map lock may be dropped.
3428  */
3429 int
3430 vm_map_wire_locked(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3431 {
3432 	vm_map_entry_t entry, first_entry, next_entry, prev_entry;
3433 	vm_offset_t faddr, saved_end, saved_start;
3434 	u_long incr, npages;
3435 	u_int bidx, last_timestamp;
3436 	int rv;
3437 	bool holes_ok, need_wakeup, user_wire;
3438 	vm_prot_t prot;
3439 
3440 	VM_MAP_ASSERT_LOCKED(map);
3441 
3442 	if (start == end)
3443 		return (KERN_SUCCESS);
3444 	prot = 0;
3445 	if (flags & VM_MAP_WIRE_WRITE)
3446 		prot |= VM_PROT_WRITE;
3447 	holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0;
3448 	user_wire = (flags & VM_MAP_WIRE_USER) != 0;
3449 	VM_MAP_RANGE_CHECK(map, start, end);
3450 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
3451 		if (holes_ok)
3452 			first_entry = vm_map_entry_succ(first_entry);
3453 		else
3454 			return (KERN_INVALID_ADDRESS);
3455 	}
3456 	for (entry = first_entry; entry->start < end; entry = next_entry) {
3457 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
3458 			/*
3459 			 * We have not yet clipped the entry.
3460 			 */
3461 			next_entry = vm_map_entry_in_transition(map, start,
3462 			    &end, holes_ok, entry);
3463 			if (next_entry == NULL) {
3464 				if (entry == first_entry)
3465 					return (KERN_INVALID_ADDRESS);
3466 				rv = KERN_INVALID_ADDRESS;
3467 				goto done;
3468 			}
3469 			first_entry = (entry == first_entry) ?
3470 			    next_entry : NULL;
3471 			continue;
3472 		}
3473 		rv = vm_map_clip_start(map, entry, start);
3474 		if (rv != KERN_SUCCESS)
3475 			goto done;
3476 		rv = vm_map_clip_end(map, entry, end);
3477 		if (rv != KERN_SUCCESS)
3478 			goto done;
3479 
3480 		/*
3481 		 * Mark the entry in case the map lock is released.  (See
3482 		 * above.)
3483 		 */
3484 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
3485 		    entry->wiring_thread == NULL,
3486 		    ("owned map entry %p", entry));
3487 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
3488 		entry->wiring_thread = curthread;
3489 		if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
3490 		    || (entry->protection & prot) != prot) {
3491 			entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
3492 			if (!holes_ok) {
3493 				end = entry->end;
3494 				rv = KERN_INVALID_ADDRESS;
3495 				goto done;
3496 			}
3497 		} else if (entry->wired_count == 0) {
3498 			entry->wired_count++;
3499 
3500 			npages = atop(entry->end - entry->start);
3501 			if (user_wire && !vm_map_wire_user_count_add(npages)) {
3502 				vm_map_wire_entry_failure(map, entry,
3503 				    entry->start);
3504 				end = entry->end;
3505 				rv = KERN_RESOURCE_SHORTAGE;
3506 				goto done;
3507 			}
3508 
3509 			/*
3510 			 * Release the map lock, relying on the in-transition
3511 			 * mark.  Mark the map busy for fork.
3512 			 */
3513 			saved_start = entry->start;
3514 			saved_end = entry->end;
3515 			last_timestamp = map->timestamp;
3516 			bidx = (entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK)
3517 			    >> MAP_ENTRY_SPLIT_BOUNDARY_SHIFT;
3518 			incr =  pagesizes[bidx];
3519 			vm_map_busy(map);
3520 			vm_map_unlock(map);
3521 
3522 			for (faddr = saved_start; faddr < saved_end;
3523 			    faddr += incr) {
3524 				/*
3525 				 * Simulate a fault to get the page and enter
3526 				 * it into the physical map.
3527 				 */
3528 				rv = vm_fault(map, faddr, VM_PROT_NONE,
3529 				    VM_FAULT_WIRE, NULL);
3530 				if (rv != KERN_SUCCESS)
3531 					break;
3532 			}
3533 			vm_map_lock(map);
3534 			vm_map_unbusy(map);
3535 			if (last_timestamp + 1 != map->timestamp) {
3536 				/*
3537 				 * Look again for the entry because the map was
3538 				 * modified while it was unlocked.  The entry
3539 				 * may have been clipped, but NOT merged or
3540 				 * deleted.
3541 				 */
3542 				if (!vm_map_lookup_entry(map, saved_start,
3543 				    &next_entry))
3544 					KASSERT(false,
3545 					    ("vm_map_wire: lookup failed"));
3546 				first_entry = (entry == first_entry) ?
3547 				    next_entry : NULL;
3548 				for (entry = next_entry; entry->end < saved_end;
3549 				    entry = vm_map_entry_succ(entry)) {
3550 					/*
3551 					 * In case of failure, handle entries
3552 					 * that were not fully wired here;
3553 					 * fully wired entries are handled
3554 					 * later.
3555 					 */
3556 					if (rv != KERN_SUCCESS &&
3557 					    faddr < entry->end)
3558 						vm_map_wire_entry_failure(map,
3559 						    entry, faddr);
3560 				}
3561 			}
3562 			if (rv != KERN_SUCCESS) {
3563 				vm_map_wire_entry_failure(map, entry, faddr);
3564 				if (user_wire)
3565 					vm_map_wire_user_count_sub(npages);
3566 				end = entry->end;
3567 				goto done;
3568 			}
3569 		} else if (!user_wire ||
3570 			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3571 			entry->wired_count++;
3572 		}
3573 		/*
3574 		 * Check the map for holes in the specified region.
3575 		 * If holes_ok was specified, skip this check.
3576 		 */
3577 		next_entry = vm_map_entry_succ(entry);
3578 		if (!holes_ok &&
3579 		    entry->end < end && next_entry->start > entry->end) {
3580 			end = entry->end;
3581 			rv = KERN_INVALID_ADDRESS;
3582 			goto done;
3583 		}
3584 	}
3585 	rv = KERN_SUCCESS;
3586 done:
3587 	need_wakeup = false;
3588 	if (first_entry == NULL &&
3589 	    !vm_map_lookup_entry(map, start, &first_entry)) {
3590 		KASSERT(holes_ok, ("vm_map_wire: lookup failed"));
3591 		prev_entry = first_entry;
3592 		entry = vm_map_entry_succ(first_entry);
3593 	} else {
3594 		prev_entry = vm_map_entry_pred(first_entry);
3595 		entry = first_entry;
3596 	}
3597 	for (; entry->start < end;
3598 	    prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3599 		/*
3600 		 * If holes_ok was specified, an empty
3601 		 * space in the unwired region could have been mapped
3602 		 * while the map lock was dropped for faulting in the
3603 		 * pages or draining MAP_ENTRY_IN_TRANSITION.
3604 		 * Moreover, another thread could be simultaneously
3605 		 * wiring this new mapping entry.  Detect these cases
3606 		 * and skip any entries marked as in transition not by us.
3607 		 *
3608 		 * Another way to get an entry not marked with
3609 		 * MAP_ENTRY_IN_TRANSITION is after failed clipping,
3610 		 * which set rv to KERN_INVALID_ARGUMENT.
3611 		 */
3612 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
3613 		    entry->wiring_thread != curthread) {
3614 			KASSERT(holes_ok || rv == KERN_INVALID_ARGUMENT,
3615 			    ("vm_map_wire: !HOLESOK and new/changed entry"));
3616 			continue;
3617 		}
3618 
3619 		if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) {
3620 			/* do nothing */
3621 		} else if (rv == KERN_SUCCESS) {
3622 			if (user_wire)
3623 				entry->eflags |= MAP_ENTRY_USER_WIRED;
3624 		} else if (entry->wired_count == -1) {
3625 			/*
3626 			 * Wiring failed on this entry.  Thus, unwiring is
3627 			 * unnecessary.
3628 			 */
3629 			entry->wired_count = 0;
3630 		} else if (!user_wire ||
3631 		    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3632 			/*
3633 			 * Undo the wiring.  Wiring succeeded on this entry
3634 			 * but failed on a later entry.
3635 			 */
3636 			if (entry->wired_count == 1) {
3637 				vm_map_entry_unwire(map, entry);
3638 				if (user_wire)
3639 					vm_map_wire_user_count_sub(
3640 					    atop(entry->end - entry->start));
3641 			} else
3642 				entry->wired_count--;
3643 		}
3644 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3645 		    ("vm_map_wire: in-transition flag missing %p", entry));
3646 		KASSERT(entry->wiring_thread == curthread,
3647 		    ("vm_map_wire: alien wire %p", entry));
3648 		entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
3649 		    MAP_ENTRY_WIRE_SKIPPED);
3650 		entry->wiring_thread = NULL;
3651 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3652 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3653 			need_wakeup = true;
3654 		}
3655 		vm_map_try_merge_entries(map, prev_entry, entry);
3656 	}
3657 	vm_map_try_merge_entries(map, prev_entry, entry);
3658 	if (need_wakeup)
3659 		vm_map_wakeup(map);
3660 	return (rv);
3661 }
3662 
3663 /*
3664  * vm_map_sync
3665  *
3666  * Push any dirty cached pages in the address range to their pager.
3667  * If syncio is TRUE, dirty pages are written synchronously.
3668  * If invalidate is TRUE, any cached pages are freed as well.
3669  *
3670  * If the size of the region from start to end is zero, we are
3671  * supposed to flush all modified pages within the region containing
3672  * start.  Unfortunately, a region can be split or coalesced with
3673  * neighboring regions, making it difficult to determine what the
3674  * original region was.  Therefore, we approximate this requirement by
3675  * flushing the current region containing start.
3676  *
3677  * Returns an error if any part of the specified range is not mapped.
3678  */
3679 int
3680 vm_map_sync(
3681 	vm_map_t map,
3682 	vm_offset_t start,
3683 	vm_offset_t end,
3684 	boolean_t syncio,
3685 	boolean_t invalidate)
3686 {
3687 	vm_map_entry_t entry, first_entry, next_entry;
3688 	vm_size_t size;
3689 	vm_object_t object;
3690 	vm_ooffset_t offset;
3691 	unsigned int last_timestamp;
3692 	int bdry_idx;
3693 	boolean_t failed;
3694 
3695 	vm_map_lock_read(map);
3696 	VM_MAP_RANGE_CHECK(map, start, end);
3697 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
3698 		vm_map_unlock_read(map);
3699 		return (KERN_INVALID_ADDRESS);
3700 	} else if (start == end) {
3701 		start = first_entry->start;
3702 		end = first_entry->end;
3703 	}
3704 
3705 	/*
3706 	 * Make a first pass to check for user-wired memory, holes,
3707 	 * and partial invalidation of largepage mappings.
3708 	 */
3709 	for (entry = first_entry; entry->start < end; entry = next_entry) {
3710 		if (invalidate) {
3711 			if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0) {
3712 				vm_map_unlock_read(map);
3713 				return (KERN_INVALID_ARGUMENT);
3714 			}
3715 			bdry_idx = (entry->eflags &
3716 			    MAP_ENTRY_SPLIT_BOUNDARY_MASK) >>
3717 			    MAP_ENTRY_SPLIT_BOUNDARY_SHIFT;
3718 			if (bdry_idx != 0 &&
3719 			    ((start & (pagesizes[bdry_idx] - 1)) != 0 ||
3720 			    (end & (pagesizes[bdry_idx] - 1)) != 0)) {
3721 				vm_map_unlock_read(map);
3722 				return (KERN_INVALID_ARGUMENT);
3723 			}
3724 		}
3725 		next_entry = vm_map_entry_succ(entry);
3726 		if (end > entry->end &&
3727 		    entry->end != next_entry->start) {
3728 			vm_map_unlock_read(map);
3729 			return (KERN_INVALID_ADDRESS);
3730 		}
3731 	}
3732 
3733 	if (invalidate)
3734 		pmap_remove(map->pmap, start, end);
3735 	failed = FALSE;
3736 
3737 	/*
3738 	 * Make a second pass, cleaning/uncaching pages from the indicated
3739 	 * objects as we go.
3740 	 */
3741 	for (entry = first_entry; entry->start < end;) {
3742 		offset = entry->offset + (start - entry->start);
3743 		size = (end <= entry->end ? end : entry->end) - start;
3744 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) {
3745 			vm_map_t smap;
3746 			vm_map_entry_t tentry;
3747 			vm_size_t tsize;
3748 
3749 			smap = entry->object.sub_map;
3750 			vm_map_lock_read(smap);
3751 			(void) vm_map_lookup_entry(smap, offset, &tentry);
3752 			tsize = tentry->end - offset;
3753 			if (tsize < size)
3754 				size = tsize;
3755 			object = tentry->object.vm_object;
3756 			offset = tentry->offset + (offset - tentry->start);
3757 			vm_map_unlock_read(smap);
3758 		} else {
3759 			object = entry->object.vm_object;
3760 		}
3761 		vm_object_reference(object);
3762 		last_timestamp = map->timestamp;
3763 		vm_map_unlock_read(map);
3764 		if (!vm_object_sync(object, offset, size, syncio, invalidate))
3765 			failed = TRUE;
3766 		start += size;
3767 		vm_object_deallocate(object);
3768 		vm_map_lock_read(map);
3769 		if (last_timestamp == map->timestamp ||
3770 		    !vm_map_lookup_entry(map, start, &entry))
3771 			entry = vm_map_entry_succ(entry);
3772 	}
3773 
3774 	vm_map_unlock_read(map);
3775 	return (failed ? KERN_FAILURE : KERN_SUCCESS);
3776 }
3777 
3778 /*
3779  *	vm_map_entry_unwire:	[ internal use only ]
3780  *
3781  *	Make the region specified by this entry pageable.
3782  *
3783  *	The map in question should be locked.
3784  *	[This is the reason for this routine's existence.]
3785  */
3786 static void
3787 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
3788 {
3789 	vm_size_t size;
3790 
3791 	VM_MAP_ASSERT_LOCKED(map);
3792 	KASSERT(entry->wired_count > 0,
3793 	    ("vm_map_entry_unwire: entry %p isn't wired", entry));
3794 
3795 	size = entry->end - entry->start;
3796 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0)
3797 		vm_map_wire_user_count_sub(atop(size));
3798 	pmap_unwire(map->pmap, entry->start, entry->end);
3799 	vm_object_unwire(entry->object.vm_object, entry->offset, size,
3800 	    PQ_ACTIVE);
3801 	entry->wired_count = 0;
3802 }
3803 
3804 static void
3805 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
3806 {
3807 
3808 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
3809 		vm_object_deallocate(entry->object.vm_object);
3810 	uma_zfree(system_map ? kmapentzone : mapentzone, entry);
3811 }
3812 
3813 /*
3814  *	vm_map_entry_delete:	[ internal use only ]
3815  *
3816  *	Deallocate the given entry from the target map.
3817  */
3818 static void
3819 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
3820 {
3821 	vm_object_t object;
3822 	vm_pindex_t offidxstart, offidxend, size1;
3823 	vm_size_t size;
3824 
3825 	vm_map_entry_unlink(map, entry, UNLINK_MERGE_NONE);
3826 	object = entry->object.vm_object;
3827 
3828 	if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
3829 		MPASS(entry->cred == NULL);
3830 		MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0);
3831 		MPASS(object == NULL);
3832 		vm_map_entry_deallocate(entry, map->system_map);
3833 		return;
3834 	}
3835 
3836 	size = entry->end - entry->start;
3837 	map->size -= size;
3838 
3839 	if (entry->cred != NULL) {
3840 		swap_release_by_cred(size, entry->cred);
3841 		crfree(entry->cred);
3842 	}
3843 
3844 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || object == NULL) {
3845 		entry->object.vm_object = NULL;
3846 	} else if ((object->flags & OBJ_ANON) != 0 ||
3847 	    object == kernel_object) {
3848 		KASSERT(entry->cred == NULL || object->cred == NULL ||
3849 		    (entry->eflags & MAP_ENTRY_NEEDS_COPY),
3850 		    ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
3851 		offidxstart = OFF_TO_IDX(entry->offset);
3852 		offidxend = offidxstart + atop(size);
3853 		VM_OBJECT_WLOCK(object);
3854 		if (object->ref_count != 1 &&
3855 		    ((object->flags & OBJ_ONEMAPPING) != 0 ||
3856 		    object == kernel_object)) {
3857 			vm_object_collapse(object);
3858 
3859 			/*
3860 			 * The option OBJPR_NOTMAPPED can be passed here
3861 			 * because vm_map_delete() already performed
3862 			 * pmap_remove() on the only mapping to this range
3863 			 * of pages.
3864 			 */
3865 			vm_object_page_remove(object, offidxstart, offidxend,
3866 			    OBJPR_NOTMAPPED);
3867 			if (offidxend >= object->size &&
3868 			    offidxstart < object->size) {
3869 				size1 = object->size;
3870 				object->size = offidxstart;
3871 				if (object->cred != NULL) {
3872 					size1 -= object->size;
3873 					KASSERT(object->charge >= ptoa(size1),
3874 					    ("object %p charge < 0", object));
3875 					swap_release_by_cred(ptoa(size1),
3876 					    object->cred);
3877 					object->charge -= ptoa(size1);
3878 				}
3879 			}
3880 		}
3881 		VM_OBJECT_WUNLOCK(object);
3882 	}
3883 	if (map->system_map)
3884 		vm_map_entry_deallocate(entry, TRUE);
3885 	else {
3886 		entry->defer_next = curthread->td_map_def_user;
3887 		curthread->td_map_def_user = entry;
3888 	}
3889 }
3890 
3891 /*
3892  *	vm_map_delete:	[ internal use only ]
3893  *
3894  *	Deallocates the given address range from the target
3895  *	map.
3896  */
3897 int
3898 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
3899 {
3900 	vm_map_entry_t entry, next_entry, scratch_entry;
3901 	int rv;
3902 
3903 	VM_MAP_ASSERT_LOCKED(map);
3904 
3905 	if (start == end)
3906 		return (KERN_SUCCESS);
3907 
3908 	/*
3909 	 * Find the start of the region, and clip it.
3910 	 * Step through all entries in this region.
3911 	 */
3912 	rv = vm_map_lookup_clip_start(map, start, &entry, &scratch_entry);
3913 	if (rv != KERN_SUCCESS)
3914 		return (rv);
3915 	for (; entry->start < end; entry = next_entry) {
3916 		/*
3917 		 * Wait for wiring or unwiring of an entry to complete.
3918 		 * Also wait for any system wirings to disappear on
3919 		 * user maps.
3920 		 */
3921 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
3922 		    (vm_map_pmap(map) != kernel_pmap &&
3923 		    vm_map_entry_system_wired_count(entry) != 0)) {
3924 			unsigned int last_timestamp;
3925 			vm_offset_t saved_start;
3926 
3927 			saved_start = entry->start;
3928 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3929 			last_timestamp = map->timestamp;
3930 			(void) vm_map_unlock_and_wait(map, 0);
3931 			vm_map_lock(map);
3932 			if (last_timestamp + 1 != map->timestamp) {
3933 				/*
3934 				 * Look again for the entry because the map was
3935 				 * modified while it was unlocked.
3936 				 * Specifically, the entry may have been
3937 				 * clipped, merged, or deleted.
3938 				 */
3939 				rv = vm_map_lookup_clip_start(map, saved_start,
3940 				    &next_entry, &scratch_entry);
3941 				if (rv != KERN_SUCCESS)
3942 					break;
3943 			} else
3944 				next_entry = entry;
3945 			continue;
3946 		}
3947 
3948 		/* XXXKIB or delete to the upper superpage boundary ? */
3949 		rv = vm_map_clip_end(map, entry, end);
3950 		if (rv != KERN_SUCCESS)
3951 			break;
3952 		next_entry = vm_map_entry_succ(entry);
3953 
3954 		/*
3955 		 * Unwire before removing addresses from the pmap; otherwise,
3956 		 * unwiring will put the entries back in the pmap.
3957 		 */
3958 		if (entry->wired_count != 0)
3959 			vm_map_entry_unwire(map, entry);
3960 
3961 		/*
3962 		 * Remove mappings for the pages, but only if the
3963 		 * mappings could exist.  For instance, it does not
3964 		 * make sense to call pmap_remove() for guard entries.
3965 		 */
3966 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 ||
3967 		    entry->object.vm_object != NULL)
3968 			pmap_remove(map->pmap, entry->start, entry->end);
3969 
3970 		if (entry->end == map->anon_loc)
3971 			map->anon_loc = entry->start;
3972 
3973 		/*
3974 		 * Delete the entry only after removing all pmap
3975 		 * entries pointing to its pages.  (Otherwise, its
3976 		 * page frames may be reallocated, and any modify bits
3977 		 * will be set in the wrong object!)
3978 		 */
3979 		vm_map_entry_delete(map, entry);
3980 	}
3981 	return (rv);
3982 }
3983 
3984 /*
3985  *	vm_map_remove:
3986  *
3987  *	Remove the given address range from the target map.
3988  *	This is the exported form of vm_map_delete.
3989  */
3990 int
3991 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3992 {
3993 	int result;
3994 
3995 	vm_map_lock(map);
3996 	VM_MAP_RANGE_CHECK(map, start, end);
3997 	result = vm_map_delete(map, start, end);
3998 	vm_map_unlock(map);
3999 	return (result);
4000 }
4001 
4002 /*
4003  *	vm_map_check_protection:
4004  *
4005  *	Assert that the target map allows the specified privilege on the
4006  *	entire address region given.  The entire region must be allocated.
4007  *
4008  *	WARNING!  This code does not and should not check whether the
4009  *	contents of the region is accessible.  For example a smaller file
4010  *	might be mapped into a larger address space.
4011  *
4012  *	NOTE!  This code is also called by munmap().
4013  *
4014  *	The map must be locked.  A read lock is sufficient.
4015  */
4016 boolean_t
4017 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
4018 			vm_prot_t protection)
4019 {
4020 	vm_map_entry_t entry;
4021 	vm_map_entry_t tmp_entry;
4022 
4023 	if (!vm_map_lookup_entry(map, start, &tmp_entry))
4024 		return (FALSE);
4025 	entry = tmp_entry;
4026 
4027 	while (start < end) {
4028 		/*
4029 		 * No holes allowed!
4030 		 */
4031 		if (start < entry->start)
4032 			return (FALSE);
4033 		/*
4034 		 * Check protection associated with entry.
4035 		 */
4036 		if ((entry->protection & protection) != protection)
4037 			return (FALSE);
4038 		/* go to next entry */
4039 		start = entry->end;
4040 		entry = vm_map_entry_succ(entry);
4041 	}
4042 	return (TRUE);
4043 }
4044 
4045 /*
4046  *
4047  *	vm_map_copy_swap_object:
4048  *
4049  *	Copies a swap-backed object from an existing map entry to a
4050  *	new one.  Carries forward the swap charge.  May change the
4051  *	src object on return.
4052  */
4053 static void
4054 vm_map_copy_swap_object(vm_map_entry_t src_entry, vm_map_entry_t dst_entry,
4055     vm_offset_t size, vm_ooffset_t *fork_charge)
4056 {
4057 	vm_object_t src_object;
4058 	struct ucred *cred;
4059 	int charged;
4060 
4061 	src_object = src_entry->object.vm_object;
4062 	charged = ENTRY_CHARGED(src_entry);
4063 	if ((src_object->flags & OBJ_ANON) != 0) {
4064 		VM_OBJECT_WLOCK(src_object);
4065 		vm_object_collapse(src_object);
4066 		if ((src_object->flags & OBJ_ONEMAPPING) != 0) {
4067 			vm_object_split(src_entry);
4068 			src_object = src_entry->object.vm_object;
4069 		}
4070 		vm_object_reference_locked(src_object);
4071 		vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
4072 		VM_OBJECT_WUNLOCK(src_object);
4073 	} else
4074 		vm_object_reference(src_object);
4075 	if (src_entry->cred != NULL &&
4076 	    !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
4077 		KASSERT(src_object->cred == NULL,
4078 		    ("OVERCOMMIT: vm_map_copy_anon_entry: cred %p",
4079 		     src_object));
4080 		src_object->cred = src_entry->cred;
4081 		src_object->charge = size;
4082 	}
4083 	dst_entry->object.vm_object = src_object;
4084 	if (charged) {
4085 		cred = curthread->td_ucred;
4086 		crhold(cred);
4087 		dst_entry->cred = cred;
4088 		*fork_charge += size;
4089 		if (!(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
4090 			crhold(cred);
4091 			src_entry->cred = cred;
4092 			*fork_charge += size;
4093 		}
4094 	}
4095 }
4096 
4097 /*
4098  *	vm_map_copy_entry:
4099  *
4100  *	Copies the contents of the source entry to the destination
4101  *	entry.  The entries *must* be aligned properly.
4102  */
4103 static void
4104 vm_map_copy_entry(
4105 	vm_map_t src_map,
4106 	vm_map_t dst_map,
4107 	vm_map_entry_t src_entry,
4108 	vm_map_entry_t dst_entry,
4109 	vm_ooffset_t *fork_charge)
4110 {
4111 	vm_object_t src_object;
4112 	vm_map_entry_t fake_entry;
4113 	vm_offset_t size;
4114 
4115 	VM_MAP_ASSERT_LOCKED(dst_map);
4116 
4117 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
4118 		return;
4119 
4120 	if (src_entry->wired_count == 0 ||
4121 	    (src_entry->protection & VM_PROT_WRITE) == 0) {
4122 		/*
4123 		 * If the source entry is marked needs_copy, it is already
4124 		 * write-protected.
4125 		 */
4126 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
4127 		    (src_entry->protection & VM_PROT_WRITE) != 0) {
4128 			pmap_protect(src_map->pmap,
4129 			    src_entry->start,
4130 			    src_entry->end,
4131 			    src_entry->protection & ~VM_PROT_WRITE);
4132 		}
4133 
4134 		/*
4135 		 * Make a copy of the object.
4136 		 */
4137 		size = src_entry->end - src_entry->start;
4138 		if ((src_object = src_entry->object.vm_object) != NULL) {
4139 			/*
4140 			 * Swap-backed objects need special handling.  Note that
4141 			 * this is an unlocked check, so it is possible to race
4142 			 * with an OBJT_DEFAULT -> OBJT_SWAP conversion.
4143 			 */
4144 			if (src_object->type == OBJT_DEFAULT ||
4145 			    src_object->type == OBJT_SWAP ||
4146 			    (src_object->flags & OBJ_SWAP) != 0) {
4147 				vm_map_copy_swap_object(src_entry, dst_entry,
4148 				    size, fork_charge);
4149 				/* May have split/collapsed, reload obj. */
4150 				src_object = src_entry->object.vm_object;
4151 			} else {
4152 				vm_object_reference(src_object);
4153 				dst_entry->object.vm_object = src_object;
4154 			}
4155 			src_entry->eflags |= MAP_ENTRY_COW |
4156 			    MAP_ENTRY_NEEDS_COPY;
4157 			dst_entry->eflags |= MAP_ENTRY_COW |
4158 			    MAP_ENTRY_NEEDS_COPY;
4159 			dst_entry->offset = src_entry->offset;
4160 			if (src_entry->eflags & MAP_ENTRY_WRITECNT) {
4161 				/*
4162 				 * MAP_ENTRY_WRITECNT cannot
4163 				 * indicate write reference from
4164 				 * src_entry, since the entry is
4165 				 * marked as needs copy.  Allocate a
4166 				 * fake entry that is used to
4167 				 * decrement object->un_pager writecount
4168 				 * at the appropriate time.  Attach
4169 				 * fake_entry to the deferred list.
4170 				 */
4171 				fake_entry = vm_map_entry_create(dst_map);
4172 				fake_entry->eflags = MAP_ENTRY_WRITECNT;
4173 				src_entry->eflags &= ~MAP_ENTRY_WRITECNT;
4174 				vm_object_reference(src_object);
4175 				fake_entry->object.vm_object = src_object;
4176 				fake_entry->start = src_entry->start;
4177 				fake_entry->end = src_entry->end;
4178 				fake_entry->defer_next =
4179 				    curthread->td_map_def_user;
4180 				curthread->td_map_def_user = fake_entry;
4181 			}
4182 
4183 			pmap_copy(dst_map->pmap, src_map->pmap,
4184 			    dst_entry->start, dst_entry->end - dst_entry->start,
4185 			    src_entry->start);
4186 		} else {
4187 			dst_entry->object.vm_object = NULL;
4188 			dst_entry->offset = 0;
4189 			if (src_entry->cred != NULL) {
4190 				dst_entry->cred = curthread->td_ucred;
4191 				crhold(dst_entry->cred);
4192 				*fork_charge += size;
4193 			}
4194 		}
4195 	} else {
4196 		/*
4197 		 * We don't want to make writeable wired pages copy-on-write.
4198 		 * Immediately copy these pages into the new map by simulating
4199 		 * page faults.  The new pages are pageable.
4200 		 */
4201 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
4202 		    fork_charge);
4203 	}
4204 }
4205 
4206 /*
4207  * vmspace_map_entry_forked:
4208  * Update the newly-forked vmspace each time a map entry is inherited
4209  * or copied.  The values for vm_dsize and vm_tsize are approximate
4210  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
4211  */
4212 static void
4213 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
4214     vm_map_entry_t entry)
4215 {
4216 	vm_size_t entrysize;
4217 	vm_offset_t newend;
4218 
4219 	if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
4220 		return;
4221 	entrysize = entry->end - entry->start;
4222 	vm2->vm_map.size += entrysize;
4223 	if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
4224 		vm2->vm_ssize += btoc(entrysize);
4225 	} else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
4226 	    entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
4227 		newend = MIN(entry->end,
4228 		    (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
4229 		vm2->vm_dsize += btoc(newend - entry->start);
4230 	} else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
4231 	    entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
4232 		newend = MIN(entry->end,
4233 		    (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
4234 		vm2->vm_tsize += btoc(newend - entry->start);
4235 	}
4236 }
4237 
4238 /*
4239  * vmspace_fork:
4240  * Create a new process vmspace structure and vm_map
4241  * based on those of an existing process.  The new map
4242  * is based on the old map, according to the inheritance
4243  * values on the regions in that map.
4244  *
4245  * XXX It might be worth coalescing the entries added to the new vmspace.
4246  *
4247  * The source map must not be locked.
4248  */
4249 struct vmspace *
4250 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
4251 {
4252 	struct vmspace *vm2;
4253 	vm_map_t new_map, old_map;
4254 	vm_map_entry_t new_entry, old_entry;
4255 	vm_object_t object;
4256 	int error, locked __diagused;
4257 	vm_inherit_t inh;
4258 
4259 	old_map = &vm1->vm_map;
4260 	/* Copy immutable fields of vm1 to vm2. */
4261 	vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map),
4262 	    pmap_pinit);
4263 	if (vm2 == NULL)
4264 		return (NULL);
4265 
4266 	vm2->vm_taddr = vm1->vm_taddr;
4267 	vm2->vm_daddr = vm1->vm_daddr;
4268 	vm2->vm_maxsaddr = vm1->vm_maxsaddr;
4269 	vm2->vm_stacktop = vm1->vm_stacktop;
4270 	vm_map_lock(old_map);
4271 	if (old_map->busy)
4272 		vm_map_wait_busy(old_map);
4273 	new_map = &vm2->vm_map;
4274 	locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
4275 	KASSERT(locked, ("vmspace_fork: lock failed"));
4276 
4277 	error = pmap_vmspace_copy(new_map->pmap, old_map->pmap);
4278 	if (error != 0) {
4279 		sx_xunlock(&old_map->lock);
4280 		sx_xunlock(&new_map->lock);
4281 		vm_map_process_deferred();
4282 		vmspace_free(vm2);
4283 		return (NULL);
4284 	}
4285 
4286 	new_map->anon_loc = old_map->anon_loc;
4287 	new_map->flags |= old_map->flags & (MAP_ASLR | MAP_ASLR_IGNSTART |
4288 	    MAP_ASLR_STACK | MAP_WXORX);
4289 
4290 	VM_MAP_ENTRY_FOREACH(old_entry, old_map) {
4291 		if ((old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
4292 			panic("vm_map_fork: encountered a submap");
4293 
4294 		inh = old_entry->inheritance;
4295 		if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4296 		    inh != VM_INHERIT_NONE)
4297 			inh = VM_INHERIT_COPY;
4298 
4299 		switch (inh) {
4300 		case VM_INHERIT_NONE:
4301 			break;
4302 
4303 		case VM_INHERIT_SHARE:
4304 			/*
4305 			 * Clone the entry, creating the shared object if
4306 			 * necessary.
4307 			 */
4308 			object = old_entry->object.vm_object;
4309 			if (object == NULL) {
4310 				vm_map_entry_back(old_entry);
4311 				object = old_entry->object.vm_object;
4312 			}
4313 
4314 			/*
4315 			 * Add the reference before calling vm_object_shadow
4316 			 * to insure that a shadow object is created.
4317 			 */
4318 			vm_object_reference(object);
4319 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4320 				vm_object_shadow(&old_entry->object.vm_object,
4321 				    &old_entry->offset,
4322 				    old_entry->end - old_entry->start,
4323 				    old_entry->cred,
4324 				    /* Transfer the second reference too. */
4325 				    true);
4326 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4327 				old_entry->cred = NULL;
4328 
4329 				/*
4330 				 * As in vm_map_merged_neighbor_dispose(),
4331 				 * the vnode lock will not be acquired in
4332 				 * this call to vm_object_deallocate().
4333 				 */
4334 				vm_object_deallocate(object);
4335 				object = old_entry->object.vm_object;
4336 			} else {
4337 				VM_OBJECT_WLOCK(object);
4338 				vm_object_clear_flag(object, OBJ_ONEMAPPING);
4339 				if (old_entry->cred != NULL) {
4340 					KASSERT(object->cred == NULL,
4341 					    ("vmspace_fork both cred"));
4342 					object->cred = old_entry->cred;
4343 					object->charge = old_entry->end -
4344 					    old_entry->start;
4345 					old_entry->cred = NULL;
4346 				}
4347 
4348 				/*
4349 				 * Assert the correct state of the vnode
4350 				 * v_writecount while the object is locked, to
4351 				 * not relock it later for the assertion
4352 				 * correctness.
4353 				 */
4354 				if (old_entry->eflags & MAP_ENTRY_WRITECNT &&
4355 				    object->type == OBJT_VNODE) {
4356 					KASSERT(((struct vnode *)object->
4357 					    handle)->v_writecount > 0,
4358 					    ("vmspace_fork: v_writecount %p",
4359 					    object));
4360 					KASSERT(object->un_pager.vnp.
4361 					    writemappings > 0,
4362 					    ("vmspace_fork: vnp.writecount %p",
4363 					    object));
4364 				}
4365 				VM_OBJECT_WUNLOCK(object);
4366 			}
4367 
4368 			/*
4369 			 * Clone the entry, referencing the shared object.
4370 			 */
4371 			new_entry = vm_map_entry_create(new_map);
4372 			*new_entry = *old_entry;
4373 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
4374 			    MAP_ENTRY_IN_TRANSITION);
4375 			new_entry->wiring_thread = NULL;
4376 			new_entry->wired_count = 0;
4377 			if (new_entry->eflags & MAP_ENTRY_WRITECNT) {
4378 				vm_pager_update_writecount(object,
4379 				    new_entry->start, new_entry->end);
4380 			}
4381 			vm_map_entry_set_vnode_text(new_entry, true);
4382 
4383 			/*
4384 			 * Insert the entry into the new map -- we know we're
4385 			 * inserting at the end of the new map.
4386 			 */
4387 			vm_map_entry_link(new_map, new_entry);
4388 			vmspace_map_entry_forked(vm1, vm2, new_entry);
4389 
4390 			/*
4391 			 * Update the physical map
4392 			 */
4393 			pmap_copy(new_map->pmap, old_map->pmap,
4394 			    new_entry->start,
4395 			    (old_entry->end - old_entry->start),
4396 			    old_entry->start);
4397 			break;
4398 
4399 		case VM_INHERIT_COPY:
4400 			/*
4401 			 * Clone the entry and link into the map.
4402 			 */
4403 			new_entry = vm_map_entry_create(new_map);
4404 			*new_entry = *old_entry;
4405 			/*
4406 			 * Copied entry is COW over the old object.
4407 			 */
4408 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
4409 			    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_WRITECNT);
4410 			new_entry->wiring_thread = NULL;
4411 			new_entry->wired_count = 0;
4412 			new_entry->object.vm_object = NULL;
4413 			new_entry->cred = NULL;
4414 			vm_map_entry_link(new_map, new_entry);
4415 			vmspace_map_entry_forked(vm1, vm2, new_entry);
4416 			vm_map_copy_entry(old_map, new_map, old_entry,
4417 			    new_entry, fork_charge);
4418 			vm_map_entry_set_vnode_text(new_entry, true);
4419 			break;
4420 
4421 		case VM_INHERIT_ZERO:
4422 			/*
4423 			 * Create a new anonymous mapping entry modelled from
4424 			 * the old one.
4425 			 */
4426 			new_entry = vm_map_entry_create(new_map);
4427 			memset(new_entry, 0, sizeof(*new_entry));
4428 
4429 			new_entry->start = old_entry->start;
4430 			new_entry->end = old_entry->end;
4431 			new_entry->eflags = old_entry->eflags &
4432 			    ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION |
4433 			    MAP_ENTRY_WRITECNT | MAP_ENTRY_VN_EXEC |
4434 			    MAP_ENTRY_SPLIT_BOUNDARY_MASK);
4435 			new_entry->protection = old_entry->protection;
4436 			new_entry->max_protection = old_entry->max_protection;
4437 			new_entry->inheritance = VM_INHERIT_ZERO;
4438 
4439 			vm_map_entry_link(new_map, new_entry);
4440 			vmspace_map_entry_forked(vm1, vm2, new_entry);
4441 
4442 			new_entry->cred = curthread->td_ucred;
4443 			crhold(new_entry->cred);
4444 			*fork_charge += (new_entry->end - new_entry->start);
4445 
4446 			break;
4447 		}
4448 	}
4449 	/*
4450 	 * Use inlined vm_map_unlock() to postpone handling the deferred
4451 	 * map entries, which cannot be done until both old_map and
4452 	 * new_map locks are released.
4453 	 */
4454 	sx_xunlock(&old_map->lock);
4455 	sx_xunlock(&new_map->lock);
4456 	vm_map_process_deferred();
4457 
4458 	return (vm2);
4459 }
4460 
4461 /*
4462  * Create a process's stack for exec_new_vmspace().  This function is never
4463  * asked to wire the newly created stack.
4464  */
4465 int
4466 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4467     vm_prot_t prot, vm_prot_t max, int cow)
4468 {
4469 	vm_size_t growsize, init_ssize;
4470 	rlim_t vmemlim;
4471 	int rv;
4472 
4473 	MPASS((map->flags & MAP_WIREFUTURE) == 0);
4474 	growsize = sgrowsiz;
4475 	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
4476 	vm_map_lock(map);
4477 	vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4478 	/* If we would blow our VMEM resource limit, no go */
4479 	if (map->size + init_ssize > vmemlim) {
4480 		rv = KERN_NO_SPACE;
4481 		goto out;
4482 	}
4483 	rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
4484 	    max, cow);
4485 out:
4486 	vm_map_unlock(map);
4487 	return (rv);
4488 }
4489 
4490 static int stack_guard_page = 1;
4491 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
4492     &stack_guard_page, 0,
4493     "Specifies the number of guard pages for a stack that grows");
4494 
4495 static int
4496 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4497     vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
4498 {
4499 	vm_map_entry_t new_entry, prev_entry;
4500 	vm_offset_t bot, gap_bot, gap_top, top;
4501 	vm_size_t init_ssize, sgp;
4502 	int orient, rv;
4503 
4504 	/*
4505 	 * The stack orientation is piggybacked with the cow argument.
4506 	 * Extract it into orient and mask the cow argument so that we
4507 	 * don't pass it around further.
4508 	 */
4509 	orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP);
4510 	KASSERT(orient != 0, ("No stack grow direction"));
4511 	KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP),
4512 	    ("bi-dir stack"));
4513 
4514 	if (max_ssize == 0 ||
4515 	    !vm_map_range_valid(map, addrbos, addrbos + max_ssize))
4516 		return (KERN_INVALID_ADDRESS);
4517 	sgp = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ||
4518 	    (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 :
4519 	    (vm_size_t)stack_guard_page * PAGE_SIZE;
4520 	if (sgp >= max_ssize)
4521 		return (KERN_INVALID_ARGUMENT);
4522 
4523 	init_ssize = growsize;
4524 	if (max_ssize < init_ssize + sgp)
4525 		init_ssize = max_ssize - sgp;
4526 
4527 	/* If addr is already mapped, no go */
4528 	if (vm_map_lookup_entry(map, addrbos, &prev_entry))
4529 		return (KERN_NO_SPACE);
4530 
4531 	/*
4532 	 * If we can't accommodate max_ssize in the current mapping, no go.
4533 	 */
4534 	if (vm_map_entry_succ(prev_entry)->start < addrbos + max_ssize)
4535 		return (KERN_NO_SPACE);
4536 
4537 	/*
4538 	 * We initially map a stack of only init_ssize.  We will grow as
4539 	 * needed later.  Depending on the orientation of the stack (i.e.
4540 	 * the grow direction) we either map at the top of the range, the
4541 	 * bottom of the range or in the middle.
4542 	 *
4543 	 * Note: we would normally expect prot and max to be VM_PROT_ALL,
4544 	 * and cow to be 0.  Possibly we should eliminate these as input
4545 	 * parameters, and just pass these values here in the insert call.
4546 	 */
4547 	if (orient == MAP_STACK_GROWS_DOWN) {
4548 		bot = addrbos + max_ssize - init_ssize;
4549 		top = bot + init_ssize;
4550 		gap_bot = addrbos;
4551 		gap_top = bot;
4552 	} else /* if (orient == MAP_STACK_GROWS_UP) */ {
4553 		bot = addrbos;
4554 		top = bot + init_ssize;
4555 		gap_bot = top;
4556 		gap_top = addrbos + max_ssize;
4557 	}
4558 	rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
4559 	if (rv != KERN_SUCCESS)
4560 		return (rv);
4561 	new_entry = vm_map_entry_succ(prev_entry);
4562 	KASSERT(new_entry->end == top || new_entry->start == bot,
4563 	    ("Bad entry start/end for new stack entry"));
4564 	KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
4565 	    (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
4566 	    ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
4567 	KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
4568 	    (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
4569 	    ("new entry lacks MAP_ENTRY_GROWS_UP"));
4570 	if (gap_bot == gap_top)
4571 		return (KERN_SUCCESS);
4572 	rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE,
4573 	    VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ?
4574 	    MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP));
4575 	if (rv == KERN_SUCCESS) {
4576 		/*
4577 		 * Gap can never successfully handle a fault, so
4578 		 * read-ahead logic is never used for it.  Re-use
4579 		 * next_read of the gap entry to store
4580 		 * stack_guard_page for vm_map_growstack().
4581 		 */
4582 		if (orient == MAP_STACK_GROWS_DOWN)
4583 			vm_map_entry_pred(new_entry)->next_read = sgp;
4584 		else
4585 			vm_map_entry_succ(new_entry)->next_read = sgp;
4586 	} else {
4587 		(void)vm_map_delete(map, bot, top);
4588 	}
4589 	return (rv);
4590 }
4591 
4592 /*
4593  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if we
4594  * successfully grow the stack.
4595  */
4596 static int
4597 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry)
4598 {
4599 	vm_map_entry_t stack_entry;
4600 	struct proc *p;
4601 	struct vmspace *vm;
4602 	struct ucred *cred;
4603 	vm_offset_t gap_end, gap_start, grow_start;
4604 	vm_size_t grow_amount, guard, max_grow;
4605 	rlim_t lmemlim, stacklim, vmemlim;
4606 	int rv, rv1 __diagused;
4607 	bool gap_deleted, grow_down, is_procstack;
4608 #ifdef notyet
4609 	uint64_t limit;
4610 #endif
4611 #ifdef RACCT
4612 	int error __diagused;
4613 #endif
4614 
4615 	p = curproc;
4616 	vm = p->p_vmspace;
4617 
4618 	/*
4619 	 * Disallow stack growth when the access is performed by a
4620 	 * debugger or AIO daemon.  The reason is that the wrong
4621 	 * resource limits are applied.
4622 	 */
4623 	if (p != initproc && (map != &p->p_vmspace->vm_map ||
4624 	    p->p_textvp == NULL))
4625 		return (KERN_FAILURE);
4626 
4627 	MPASS(!map->system_map);
4628 
4629 	lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
4630 	stacklim = lim_cur(curthread, RLIMIT_STACK);
4631 	vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4632 retry:
4633 	/* If addr is not in a hole for a stack grow area, no need to grow. */
4634 	if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry))
4635 		return (KERN_FAILURE);
4636 	if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0)
4637 		return (KERN_SUCCESS);
4638 	if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) {
4639 		stack_entry = vm_map_entry_succ(gap_entry);
4640 		if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 ||
4641 		    stack_entry->start != gap_entry->end)
4642 			return (KERN_FAILURE);
4643 		grow_amount = round_page(stack_entry->start - addr);
4644 		grow_down = true;
4645 	} else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) {
4646 		stack_entry = vm_map_entry_pred(gap_entry);
4647 		if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 ||
4648 		    stack_entry->end != gap_entry->start)
4649 			return (KERN_FAILURE);
4650 		grow_amount = round_page(addr + 1 - stack_entry->end);
4651 		grow_down = false;
4652 	} else {
4653 		return (KERN_FAILURE);
4654 	}
4655 	guard = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ||
4656 	    (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 :
4657 	    gap_entry->next_read;
4658 	max_grow = gap_entry->end - gap_entry->start;
4659 	if (guard > max_grow)
4660 		return (KERN_NO_SPACE);
4661 	max_grow -= guard;
4662 	if (grow_amount > max_grow)
4663 		return (KERN_NO_SPACE);
4664 
4665 	/*
4666 	 * If this is the main process stack, see if we're over the stack
4667 	 * limit.
4668 	 */
4669 	is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr &&
4670 	    addr < (vm_offset_t)vm->vm_stacktop;
4671 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim))
4672 		return (KERN_NO_SPACE);
4673 
4674 #ifdef RACCT
4675 	if (racct_enable) {
4676 		PROC_LOCK(p);
4677 		if (is_procstack && racct_set(p, RACCT_STACK,
4678 		    ctob(vm->vm_ssize) + grow_amount)) {
4679 			PROC_UNLOCK(p);
4680 			return (KERN_NO_SPACE);
4681 		}
4682 		PROC_UNLOCK(p);
4683 	}
4684 #endif
4685 
4686 	grow_amount = roundup(grow_amount, sgrowsiz);
4687 	if (grow_amount > max_grow)
4688 		grow_amount = max_grow;
4689 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
4690 		grow_amount = trunc_page((vm_size_t)stacklim) -
4691 		    ctob(vm->vm_ssize);
4692 	}
4693 
4694 #ifdef notyet
4695 	PROC_LOCK(p);
4696 	limit = racct_get_available(p, RACCT_STACK);
4697 	PROC_UNLOCK(p);
4698 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
4699 		grow_amount = limit - ctob(vm->vm_ssize);
4700 #endif
4701 
4702 	if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) {
4703 		if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
4704 			rv = KERN_NO_SPACE;
4705 			goto out;
4706 		}
4707 #ifdef RACCT
4708 		if (racct_enable) {
4709 			PROC_LOCK(p);
4710 			if (racct_set(p, RACCT_MEMLOCK,
4711 			    ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
4712 				PROC_UNLOCK(p);
4713 				rv = KERN_NO_SPACE;
4714 				goto out;
4715 			}
4716 			PROC_UNLOCK(p);
4717 		}
4718 #endif
4719 	}
4720 
4721 	/* If we would blow our VMEM resource limit, no go */
4722 	if (map->size + grow_amount > vmemlim) {
4723 		rv = KERN_NO_SPACE;
4724 		goto out;
4725 	}
4726 #ifdef RACCT
4727 	if (racct_enable) {
4728 		PROC_LOCK(p);
4729 		if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
4730 			PROC_UNLOCK(p);
4731 			rv = KERN_NO_SPACE;
4732 			goto out;
4733 		}
4734 		PROC_UNLOCK(p);
4735 	}
4736 #endif
4737 
4738 	if (vm_map_lock_upgrade(map)) {
4739 		gap_entry = NULL;
4740 		vm_map_lock_read(map);
4741 		goto retry;
4742 	}
4743 
4744 	if (grow_down) {
4745 		grow_start = gap_entry->end - grow_amount;
4746 		if (gap_entry->start + grow_amount == gap_entry->end) {
4747 			gap_start = gap_entry->start;
4748 			gap_end = gap_entry->end;
4749 			vm_map_entry_delete(map, gap_entry);
4750 			gap_deleted = true;
4751 		} else {
4752 			MPASS(gap_entry->start < gap_entry->end - grow_amount);
4753 			vm_map_entry_resize(map, gap_entry, -grow_amount);
4754 			gap_deleted = false;
4755 		}
4756 		rv = vm_map_insert(map, NULL, 0, grow_start,
4757 		    grow_start + grow_amount,
4758 		    stack_entry->protection, stack_entry->max_protection,
4759 		    MAP_STACK_GROWS_DOWN);
4760 		if (rv != KERN_SUCCESS) {
4761 			if (gap_deleted) {
4762 				rv1 = vm_map_insert(map, NULL, 0, gap_start,
4763 				    gap_end, VM_PROT_NONE, VM_PROT_NONE,
4764 				    MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN);
4765 				MPASS(rv1 == KERN_SUCCESS);
4766 			} else
4767 				vm_map_entry_resize(map, gap_entry,
4768 				    grow_amount);
4769 		}
4770 	} else {
4771 		grow_start = stack_entry->end;
4772 		cred = stack_entry->cred;
4773 		if (cred == NULL && stack_entry->object.vm_object != NULL)
4774 			cred = stack_entry->object.vm_object->cred;
4775 		if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
4776 			rv = KERN_NO_SPACE;
4777 		/* Grow the underlying object if applicable. */
4778 		else if (stack_entry->object.vm_object == NULL ||
4779 		    vm_object_coalesce(stack_entry->object.vm_object,
4780 		    stack_entry->offset,
4781 		    (vm_size_t)(stack_entry->end - stack_entry->start),
4782 		    grow_amount, cred != NULL)) {
4783 			if (gap_entry->start + grow_amount == gap_entry->end) {
4784 				vm_map_entry_delete(map, gap_entry);
4785 				vm_map_entry_resize(map, stack_entry,
4786 				    grow_amount);
4787 			} else {
4788 				gap_entry->start += grow_amount;
4789 				stack_entry->end += grow_amount;
4790 			}
4791 			map->size += grow_amount;
4792 			rv = KERN_SUCCESS;
4793 		} else
4794 			rv = KERN_FAILURE;
4795 	}
4796 	if (rv == KERN_SUCCESS && is_procstack)
4797 		vm->vm_ssize += btoc(grow_amount);
4798 
4799 	/*
4800 	 * Heed the MAP_WIREFUTURE flag if it was set for this process.
4801 	 */
4802 	if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) {
4803 		rv = vm_map_wire_locked(map, grow_start,
4804 		    grow_start + grow_amount,
4805 		    VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
4806 	}
4807 	vm_map_lock_downgrade(map);
4808 
4809 out:
4810 #ifdef RACCT
4811 	if (racct_enable && rv != KERN_SUCCESS) {
4812 		PROC_LOCK(p);
4813 		error = racct_set(p, RACCT_VMEM, map->size);
4814 		KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
4815 		if (!old_mlock) {
4816 			error = racct_set(p, RACCT_MEMLOCK,
4817 			    ptoa(pmap_wired_count(map->pmap)));
4818 			KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
4819 		}
4820 	    	error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
4821 		KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
4822 		PROC_UNLOCK(p);
4823 	}
4824 #endif
4825 
4826 	return (rv);
4827 }
4828 
4829 /*
4830  * Unshare the specified VM space for exec.  If other processes are
4831  * mapped to it, then create a new one.  The new vmspace is null.
4832  */
4833 int
4834 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
4835 {
4836 	struct vmspace *oldvmspace = p->p_vmspace;
4837 	struct vmspace *newvmspace;
4838 
4839 	KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
4840 	    ("vmspace_exec recursed"));
4841 	newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit);
4842 	if (newvmspace == NULL)
4843 		return (ENOMEM);
4844 	newvmspace->vm_swrss = oldvmspace->vm_swrss;
4845 	/*
4846 	 * This code is written like this for prototype purposes.  The
4847 	 * goal is to avoid running down the vmspace here, but let the
4848 	 * other process's that are still using the vmspace to finally
4849 	 * run it down.  Even though there is little or no chance of blocking
4850 	 * here, it is a good idea to keep this form for future mods.
4851 	 */
4852 	PROC_VMSPACE_LOCK(p);
4853 	p->p_vmspace = newvmspace;
4854 	PROC_VMSPACE_UNLOCK(p);
4855 	if (p == curthread->td_proc)
4856 		pmap_activate(curthread);
4857 	curthread->td_pflags |= TDP_EXECVMSPC;
4858 	return (0);
4859 }
4860 
4861 /*
4862  * Unshare the specified VM space for forcing COW.  This
4863  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
4864  */
4865 int
4866 vmspace_unshare(struct proc *p)
4867 {
4868 	struct vmspace *oldvmspace = p->p_vmspace;
4869 	struct vmspace *newvmspace;
4870 	vm_ooffset_t fork_charge;
4871 
4872 	/*
4873 	 * The caller is responsible for ensuring that the reference count
4874 	 * cannot concurrently transition 1 -> 2.
4875 	 */
4876 	if (refcount_load(&oldvmspace->vm_refcnt) == 1)
4877 		return (0);
4878 	fork_charge = 0;
4879 	newvmspace = vmspace_fork(oldvmspace, &fork_charge);
4880 	if (newvmspace == NULL)
4881 		return (ENOMEM);
4882 	if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
4883 		vmspace_free(newvmspace);
4884 		return (ENOMEM);
4885 	}
4886 	PROC_VMSPACE_LOCK(p);
4887 	p->p_vmspace = newvmspace;
4888 	PROC_VMSPACE_UNLOCK(p);
4889 	if (p == curthread->td_proc)
4890 		pmap_activate(curthread);
4891 	vmspace_free(oldvmspace);
4892 	return (0);
4893 }
4894 
4895 /*
4896  *	vm_map_lookup:
4897  *
4898  *	Finds the VM object, offset, and
4899  *	protection for a given virtual address in the
4900  *	specified map, assuming a page fault of the
4901  *	type specified.
4902  *
4903  *	Leaves the map in question locked for read; return
4904  *	values are guaranteed until a vm_map_lookup_done
4905  *	call is performed.  Note that the map argument
4906  *	is in/out; the returned map must be used in
4907  *	the call to vm_map_lookup_done.
4908  *
4909  *	A handle (out_entry) is returned for use in
4910  *	vm_map_lookup_done, to make that fast.
4911  *
4912  *	If a lookup is requested with "write protection"
4913  *	specified, the map may be changed to perform virtual
4914  *	copying operations, although the data referenced will
4915  *	remain the same.
4916  */
4917 int
4918 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
4919 	      vm_offset_t vaddr,
4920 	      vm_prot_t fault_typea,
4921 	      vm_map_entry_t *out_entry,	/* OUT */
4922 	      vm_object_t *object,		/* OUT */
4923 	      vm_pindex_t *pindex,		/* OUT */
4924 	      vm_prot_t *out_prot,		/* OUT */
4925 	      boolean_t *wired)			/* OUT */
4926 {
4927 	vm_map_entry_t entry;
4928 	vm_map_t map = *var_map;
4929 	vm_prot_t prot;
4930 	vm_prot_t fault_type;
4931 	vm_object_t eobject;
4932 	vm_size_t size;
4933 	struct ucred *cred;
4934 
4935 RetryLookup:
4936 
4937 	vm_map_lock_read(map);
4938 
4939 RetryLookupLocked:
4940 	/*
4941 	 * Lookup the faulting address.
4942 	 */
4943 	if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
4944 		vm_map_unlock_read(map);
4945 		return (KERN_INVALID_ADDRESS);
4946 	}
4947 
4948 	entry = *out_entry;
4949 
4950 	/*
4951 	 * Handle submaps.
4952 	 */
4953 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4954 		vm_map_t old_map = map;
4955 
4956 		*var_map = map = entry->object.sub_map;
4957 		vm_map_unlock_read(old_map);
4958 		goto RetryLookup;
4959 	}
4960 
4961 	/*
4962 	 * Check whether this task is allowed to have this page.
4963 	 */
4964 	prot = entry->protection;
4965 	if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) {
4966 		fault_typea &= ~VM_PROT_FAULT_LOOKUP;
4967 		if (prot == VM_PROT_NONE && map != kernel_map &&
4968 		    (entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4969 		    (entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
4970 		    MAP_ENTRY_STACK_GAP_UP)) != 0 &&
4971 		    vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS)
4972 			goto RetryLookupLocked;
4973 	}
4974 	fault_type = fault_typea & VM_PROT_ALL;
4975 	if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
4976 		vm_map_unlock_read(map);
4977 		return (KERN_PROTECTION_FAILURE);
4978 	}
4979 	KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
4980 	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
4981 	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
4982 	    ("entry %p flags %x", entry, entry->eflags));
4983 	if ((fault_typea & VM_PROT_COPY) != 0 &&
4984 	    (entry->max_protection & VM_PROT_WRITE) == 0 &&
4985 	    (entry->eflags & MAP_ENTRY_COW) == 0) {
4986 		vm_map_unlock_read(map);
4987 		return (KERN_PROTECTION_FAILURE);
4988 	}
4989 
4990 	/*
4991 	 * If this page is not pageable, we have to get it for all possible
4992 	 * accesses.
4993 	 */
4994 	*wired = (entry->wired_count != 0);
4995 	if (*wired)
4996 		fault_type = entry->protection;
4997 	size = entry->end - entry->start;
4998 
4999 	/*
5000 	 * If the entry was copy-on-write, we either ...
5001 	 */
5002 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
5003 		/*
5004 		 * If we want to write the page, we may as well handle that
5005 		 * now since we've got the map locked.
5006 		 *
5007 		 * If we don't need to write the page, we just demote the
5008 		 * permissions allowed.
5009 		 */
5010 		if ((fault_type & VM_PROT_WRITE) != 0 ||
5011 		    (fault_typea & VM_PROT_COPY) != 0) {
5012 			/*
5013 			 * Make a new object, and place it in the object
5014 			 * chain.  Note that no new references have appeared
5015 			 * -- one just moved from the map to the new
5016 			 * object.
5017 			 */
5018 			if (vm_map_lock_upgrade(map))
5019 				goto RetryLookup;
5020 
5021 			if (entry->cred == NULL) {
5022 				/*
5023 				 * The debugger owner is charged for
5024 				 * the memory.
5025 				 */
5026 				cred = curthread->td_ucred;
5027 				crhold(cred);
5028 				if (!swap_reserve_by_cred(size, cred)) {
5029 					crfree(cred);
5030 					vm_map_unlock(map);
5031 					return (KERN_RESOURCE_SHORTAGE);
5032 				}
5033 				entry->cred = cred;
5034 			}
5035 			eobject = entry->object.vm_object;
5036 			vm_object_shadow(&entry->object.vm_object,
5037 			    &entry->offset, size, entry->cred, false);
5038 			if (eobject == entry->object.vm_object) {
5039 				/*
5040 				 * The object was not shadowed.
5041 				 */
5042 				swap_release_by_cred(size, entry->cred);
5043 				crfree(entry->cred);
5044 			}
5045 			entry->cred = NULL;
5046 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
5047 
5048 			vm_map_lock_downgrade(map);
5049 		} else {
5050 			/*
5051 			 * We're attempting to read a copy-on-write page --
5052 			 * don't allow writes.
5053 			 */
5054 			prot &= ~VM_PROT_WRITE;
5055 		}
5056 	}
5057 
5058 	/*
5059 	 * Create an object if necessary.
5060 	 */
5061 	if (entry->object.vm_object == NULL && !map->system_map) {
5062 		if (vm_map_lock_upgrade(map))
5063 			goto RetryLookup;
5064 		entry->object.vm_object = vm_object_allocate_anon(atop(size),
5065 		    NULL, entry->cred, entry->cred != NULL ? size : 0);
5066 		entry->offset = 0;
5067 		entry->cred = NULL;
5068 		vm_map_lock_downgrade(map);
5069 	}
5070 
5071 	/*
5072 	 * Return the object/offset from this entry.  If the entry was
5073 	 * copy-on-write or empty, it has been fixed up.
5074 	 */
5075 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
5076 	*object = entry->object.vm_object;
5077 
5078 	*out_prot = prot;
5079 	return (KERN_SUCCESS);
5080 }
5081 
5082 /*
5083  *	vm_map_lookup_locked:
5084  *
5085  *	Lookup the faulting address.  A version of vm_map_lookup that returns
5086  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
5087  */
5088 int
5089 vm_map_lookup_locked(vm_map_t *var_map,		/* IN/OUT */
5090 		     vm_offset_t vaddr,
5091 		     vm_prot_t fault_typea,
5092 		     vm_map_entry_t *out_entry,	/* OUT */
5093 		     vm_object_t *object,	/* OUT */
5094 		     vm_pindex_t *pindex,	/* OUT */
5095 		     vm_prot_t *out_prot,	/* OUT */
5096 		     boolean_t *wired)		/* OUT */
5097 {
5098 	vm_map_entry_t entry;
5099 	vm_map_t map = *var_map;
5100 	vm_prot_t prot;
5101 	vm_prot_t fault_type = fault_typea;
5102 
5103 	/*
5104 	 * Lookup the faulting address.
5105 	 */
5106 	if (!vm_map_lookup_entry(map, vaddr, out_entry))
5107 		return (KERN_INVALID_ADDRESS);
5108 
5109 	entry = *out_entry;
5110 
5111 	/*
5112 	 * Fail if the entry refers to a submap.
5113 	 */
5114 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
5115 		return (KERN_FAILURE);
5116 
5117 	/*
5118 	 * Check whether this task is allowed to have this page.
5119 	 */
5120 	prot = entry->protection;
5121 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
5122 	if ((fault_type & prot) != fault_type)
5123 		return (KERN_PROTECTION_FAILURE);
5124 
5125 	/*
5126 	 * If this page is not pageable, we have to get it for all possible
5127 	 * accesses.
5128 	 */
5129 	*wired = (entry->wired_count != 0);
5130 	if (*wired)
5131 		fault_type = entry->protection;
5132 
5133 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
5134 		/*
5135 		 * Fail if the entry was copy-on-write for a write fault.
5136 		 */
5137 		if (fault_type & VM_PROT_WRITE)
5138 			return (KERN_FAILURE);
5139 		/*
5140 		 * We're attempting to read a copy-on-write page --
5141 		 * don't allow writes.
5142 		 */
5143 		prot &= ~VM_PROT_WRITE;
5144 	}
5145 
5146 	/*
5147 	 * Fail if an object should be created.
5148 	 */
5149 	if (entry->object.vm_object == NULL && !map->system_map)
5150 		return (KERN_FAILURE);
5151 
5152 	/*
5153 	 * Return the object/offset from this entry.  If the entry was
5154 	 * copy-on-write or empty, it has been fixed up.
5155 	 */
5156 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
5157 	*object = entry->object.vm_object;
5158 
5159 	*out_prot = prot;
5160 	return (KERN_SUCCESS);
5161 }
5162 
5163 /*
5164  *	vm_map_lookup_done:
5165  *
5166  *	Releases locks acquired by a vm_map_lookup
5167  *	(according to the handle returned by that lookup).
5168  */
5169 void
5170 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
5171 {
5172 	/*
5173 	 * Unlock the main-level map
5174 	 */
5175 	vm_map_unlock_read(map);
5176 }
5177 
5178 vm_offset_t
5179 vm_map_max_KBI(const struct vm_map *map)
5180 {
5181 
5182 	return (vm_map_max(map));
5183 }
5184 
5185 vm_offset_t
5186 vm_map_min_KBI(const struct vm_map *map)
5187 {
5188 
5189 	return (vm_map_min(map));
5190 }
5191 
5192 pmap_t
5193 vm_map_pmap_KBI(vm_map_t map)
5194 {
5195 
5196 	return (map->pmap);
5197 }
5198 
5199 bool
5200 vm_map_range_valid_KBI(vm_map_t map, vm_offset_t start, vm_offset_t end)
5201 {
5202 
5203 	return (vm_map_range_valid(map, start, end));
5204 }
5205 
5206 #ifdef INVARIANTS
5207 static void
5208 _vm_map_assert_consistent(vm_map_t map, int check)
5209 {
5210 	vm_map_entry_t entry, prev;
5211 	vm_map_entry_t cur, header, lbound, ubound;
5212 	vm_size_t max_left, max_right;
5213 
5214 #ifdef DIAGNOSTIC
5215 	++map->nupdates;
5216 #endif
5217 	if (enable_vmmap_check != check)
5218 		return;
5219 
5220 	header = prev = &map->header;
5221 	VM_MAP_ENTRY_FOREACH(entry, map) {
5222 		KASSERT(prev->end <= entry->start,
5223 		    ("map %p prev->end = %jx, start = %jx", map,
5224 		    (uintmax_t)prev->end, (uintmax_t)entry->start));
5225 		KASSERT(entry->start < entry->end,
5226 		    ("map %p start = %jx, end = %jx", map,
5227 		    (uintmax_t)entry->start, (uintmax_t)entry->end));
5228 		KASSERT(entry->left == header ||
5229 		    entry->left->start < entry->start,
5230 		    ("map %p left->start = %jx, start = %jx", map,
5231 		    (uintmax_t)entry->left->start, (uintmax_t)entry->start));
5232 		KASSERT(entry->right == header ||
5233 		    entry->start < entry->right->start,
5234 		    ("map %p start = %jx, right->start = %jx", map,
5235 		    (uintmax_t)entry->start, (uintmax_t)entry->right->start));
5236 		cur = map->root;
5237 		lbound = ubound = header;
5238 		for (;;) {
5239 			if (entry->start < cur->start) {
5240 				ubound = cur;
5241 				cur = cur->left;
5242 				KASSERT(cur != lbound,
5243 				    ("map %p cannot find %jx",
5244 				    map, (uintmax_t)entry->start));
5245 			} else if (cur->end <= entry->start) {
5246 				lbound = cur;
5247 				cur = cur->right;
5248 				KASSERT(cur != ubound,
5249 				    ("map %p cannot find %jx",
5250 				    map, (uintmax_t)entry->start));
5251 			} else {
5252 				KASSERT(cur == entry,
5253 				    ("map %p cannot find %jx",
5254 				    map, (uintmax_t)entry->start));
5255 				break;
5256 			}
5257 		}
5258 		max_left = vm_map_entry_max_free_left(entry, lbound);
5259 		max_right = vm_map_entry_max_free_right(entry, ubound);
5260 		KASSERT(entry->max_free == vm_size_max(max_left, max_right),
5261 		    ("map %p max = %jx, max_left = %jx, max_right = %jx", map,
5262 		    (uintmax_t)entry->max_free,
5263 		    (uintmax_t)max_left, (uintmax_t)max_right));
5264 		prev = entry;
5265 	}
5266 	KASSERT(prev->end <= entry->start,
5267 	    ("map %p prev->end = %jx, start = %jx", map,
5268 	    (uintmax_t)prev->end, (uintmax_t)entry->start));
5269 }
5270 #endif
5271 
5272 #include "opt_ddb.h"
5273 #ifdef DDB
5274 #include <sys/kernel.h>
5275 
5276 #include <ddb/ddb.h>
5277 
5278 static void
5279 vm_map_print(vm_map_t map)
5280 {
5281 	vm_map_entry_t entry, prev;
5282 
5283 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
5284 	    (void *)map,
5285 	    (void *)map->pmap, map->nentries, map->timestamp);
5286 
5287 	db_indent += 2;
5288 	prev = &map->header;
5289 	VM_MAP_ENTRY_FOREACH(entry, map) {
5290 		db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n",
5291 		    (void *)entry, (void *)entry->start, (void *)entry->end,
5292 		    entry->eflags);
5293 		{
5294 			static const char * const inheritance_name[4] =
5295 			{"share", "copy", "none", "donate_copy"};
5296 
5297 			db_iprintf(" prot=%x/%x/%s",
5298 			    entry->protection,
5299 			    entry->max_protection,
5300 			    inheritance_name[(int)(unsigned char)
5301 			    entry->inheritance]);
5302 			if (entry->wired_count != 0)
5303 				db_printf(", wired");
5304 		}
5305 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
5306 			db_printf(", share=%p, offset=0x%jx\n",
5307 			    (void *)entry->object.sub_map,
5308 			    (uintmax_t)entry->offset);
5309 			if (prev == &map->header ||
5310 			    prev->object.sub_map !=
5311 				entry->object.sub_map) {
5312 				db_indent += 2;
5313 				vm_map_print((vm_map_t)entry->object.sub_map);
5314 				db_indent -= 2;
5315 			}
5316 		} else {
5317 			if (entry->cred != NULL)
5318 				db_printf(", ruid %d", entry->cred->cr_ruid);
5319 			db_printf(", object=%p, offset=0x%jx",
5320 			    (void *)entry->object.vm_object,
5321 			    (uintmax_t)entry->offset);
5322 			if (entry->object.vm_object && entry->object.vm_object->cred)
5323 				db_printf(", obj ruid %d charge %jx",
5324 				    entry->object.vm_object->cred->cr_ruid,
5325 				    (uintmax_t)entry->object.vm_object->charge);
5326 			if (entry->eflags & MAP_ENTRY_COW)
5327 				db_printf(", copy (%s)",
5328 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
5329 			db_printf("\n");
5330 
5331 			if (prev == &map->header ||
5332 			    prev->object.vm_object !=
5333 				entry->object.vm_object) {
5334 				db_indent += 2;
5335 				vm_object_print((db_expr_t)(intptr_t)
5336 						entry->object.vm_object,
5337 						0, 0, (char *)0);
5338 				db_indent -= 2;
5339 			}
5340 		}
5341 		prev = entry;
5342 	}
5343 	db_indent -= 2;
5344 }
5345 
5346 DB_SHOW_COMMAND(map, map)
5347 {
5348 
5349 	if (!have_addr) {
5350 		db_printf("usage: show map <addr>\n");
5351 		return;
5352 	}
5353 	vm_map_print((vm_map_t)addr);
5354 }
5355 
5356 DB_SHOW_COMMAND(procvm, procvm)
5357 {
5358 	struct proc *p;
5359 
5360 	if (have_addr) {
5361 		p = db_lookup_proc(addr);
5362 	} else {
5363 		p = curproc;
5364 	}
5365 
5366 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
5367 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
5368 	    (void *)vmspace_pmap(p->p_vmspace));
5369 
5370 	vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
5371 }
5372 
5373 #endif /* DDB */
5374