xref: /freebsd/sys/vm/vm_map.c (revision 9162f64b58d01ec01481d60b6cdc06ffd8e8c7fc)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60 
61 /*
62  *	Virtual memory mapping module.
63  */
64 
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67 
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/ktr.h>
71 #include <sys/lock.h>
72 #include <sys/mutex.h>
73 #include <sys/proc.h>
74 #include <sys/vmmeter.h>
75 #include <sys/mman.h>
76 #include <sys/vnode.h>
77 #include <sys/resourcevar.h>
78 #include <sys/file.h>
79 #include <sys/sysent.h>
80 #include <sys/shm.h>
81 
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <vm/pmap.h>
85 #include <vm/vm_map.h>
86 #include <vm/vm_page.h>
87 #include <vm/vm_object.h>
88 #include <vm/vm_pager.h>
89 #include <vm/vm_kern.h>
90 #include <vm/vm_extern.h>
91 #include <vm/swap_pager.h>
92 #include <vm/uma.h>
93 
94 /*
95  *	Virtual memory maps provide for the mapping, protection,
96  *	and sharing of virtual memory objects.  In addition,
97  *	this module provides for an efficient virtual copy of
98  *	memory from one map to another.
99  *
100  *	Synchronization is required prior to most operations.
101  *
102  *	Maps consist of an ordered doubly-linked list of simple
103  *	entries; a self-adjusting binary search tree of these
104  *	entries is used to speed up lookups.
105  *
106  *	Since portions of maps are specified by start/end addresses,
107  *	which may not align with existing map entries, all
108  *	routines merely "clip" entries to these start/end values.
109  *	[That is, an entry is split into two, bordering at a
110  *	start or end value.]  Note that these clippings may not
111  *	always be necessary (as the two resulting entries are then
112  *	not changed); however, the clipping is done for convenience.
113  *
114  *	As mentioned above, virtual copy operations are performed
115  *	by copying VM object references from one map to
116  *	another, and then marking both regions as copy-on-write.
117  */
118 
119 /*
120  *	vm_map_startup:
121  *
122  *	Initialize the vm_map module.  Must be called before
123  *	any other vm_map routines.
124  *
125  *	Map and entry structures are allocated from the general
126  *	purpose memory pool with some exceptions:
127  *
128  *	- The kernel map and kmem submap are allocated statically.
129  *	- Kernel map entries are allocated out of a static pool.
130  *
131  *	These restrictions are necessary since malloc() uses the
132  *	maps and requires map entries.
133  */
134 
135 static struct mtx map_sleep_mtx;
136 static uma_zone_t mapentzone;
137 static uma_zone_t kmapentzone;
138 static uma_zone_t mapzone;
139 static uma_zone_t vmspace_zone;
140 static struct vm_object kmapentobj;
141 static int vmspace_zinit(void *mem, int size, int flags);
142 static void vmspace_zfini(void *mem, int size);
143 static int vm_map_zinit(void *mem, int ize, int flags);
144 static void vm_map_zfini(void *mem, int size);
145 static void _vm_map_init(vm_map_t map, vm_offset_t min, vm_offset_t max);
146 
147 #ifdef INVARIANTS
148 static void vm_map_zdtor(void *mem, int size, void *arg);
149 static void vmspace_zdtor(void *mem, int size, void *arg);
150 #endif
151 
152 /*
153  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
154  * stable.
155  */
156 #define PROC_VMSPACE_LOCK(p) do { } while (0)
157 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
158 
159 /*
160  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
161  *
162  *	Asserts that the starting and ending region
163  *	addresses fall within the valid range of the map.
164  */
165 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
166 		{					\
167 		if (start < vm_map_min(map))		\
168 			start = vm_map_min(map);	\
169 		if (end > vm_map_max(map))		\
170 			end = vm_map_max(map);		\
171 		if (start > end)			\
172 			start = end;			\
173 		}
174 
175 void
176 vm_map_startup(void)
177 {
178 	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
179 	mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
180 #ifdef INVARIANTS
181 	    vm_map_zdtor,
182 #else
183 	    NULL,
184 #endif
185 	    vm_map_zinit, vm_map_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
186 	uma_prealloc(mapzone, MAX_KMAP);
187 	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
188 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
189 	    UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
190 	uma_prealloc(kmapentzone, MAX_KMAPENT);
191 	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
192 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
193 }
194 
195 static void
196 vmspace_zfini(void *mem, int size)
197 {
198 	struct vmspace *vm;
199 
200 	vm = (struct vmspace *)mem;
201 	vm_map_zfini(&vm->vm_map, sizeof(vm->vm_map));
202 }
203 
204 static int
205 vmspace_zinit(void *mem, int size, int flags)
206 {
207 	struct vmspace *vm;
208 
209 	vm = (struct vmspace *)mem;
210 
211 	vm->vm_map.pmap = NULL;
212 	(void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
213 	return (0);
214 }
215 
216 static void
217 vm_map_zfini(void *mem, int size)
218 {
219 	vm_map_t map;
220 
221 	map = (vm_map_t)mem;
222 	mtx_destroy(&map->system_mtx);
223 	sx_destroy(&map->lock);
224 }
225 
226 static int
227 vm_map_zinit(void *mem, int size, int flags)
228 {
229 	vm_map_t map;
230 
231 	map = (vm_map_t)mem;
232 	map->nentries = 0;
233 	map->size = 0;
234 	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
235 	sx_init(&map->lock, "user map");
236 	return (0);
237 }
238 
239 #ifdef INVARIANTS
240 static void
241 vmspace_zdtor(void *mem, int size, void *arg)
242 {
243 	struct vmspace *vm;
244 
245 	vm = (struct vmspace *)mem;
246 
247 	vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
248 }
249 static void
250 vm_map_zdtor(void *mem, int size, void *arg)
251 {
252 	vm_map_t map;
253 
254 	map = (vm_map_t)mem;
255 	KASSERT(map->nentries == 0,
256 	    ("map %p nentries == %d on free.",
257 	    map, map->nentries));
258 	KASSERT(map->size == 0,
259 	    ("map %p size == %lu on free.",
260 	    map, (unsigned long)map->size));
261 }
262 #endif	/* INVARIANTS */
263 
264 /*
265  * Allocate a vmspace structure, including a vm_map and pmap,
266  * and initialize those structures.  The refcnt is set to 1.
267  */
268 struct vmspace *
269 vmspace_alloc(min, max)
270 	vm_offset_t min, max;
271 {
272 	struct vmspace *vm;
273 
274 	vm = uma_zalloc(vmspace_zone, M_WAITOK);
275 	if (vm->vm_map.pmap == NULL && !pmap_pinit(vmspace_pmap(vm))) {
276 		uma_zfree(vmspace_zone, vm);
277 		return (NULL);
278 	}
279 	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
280 	_vm_map_init(&vm->vm_map, min, max);
281 	vm->vm_map.pmap = vmspace_pmap(vm);		/* XXX */
282 	vm->vm_refcnt = 1;
283 	vm->vm_shm = NULL;
284 	vm->vm_swrss = 0;
285 	vm->vm_tsize = 0;
286 	vm->vm_dsize = 0;
287 	vm->vm_ssize = 0;
288 	vm->vm_taddr = 0;
289 	vm->vm_daddr = 0;
290 	vm->vm_maxsaddr = 0;
291 	return (vm);
292 }
293 
294 void
295 vm_init2(void)
296 {
297 	uma_zone_set_obj(kmapentzone, &kmapentobj, lmin(cnt.v_page_count,
298 	    (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) / PAGE_SIZE) / 8 +
299 	     maxproc * 2 + maxfiles);
300 	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
301 #ifdef INVARIANTS
302 	    vmspace_zdtor,
303 #else
304 	    NULL,
305 #endif
306 	    vmspace_zinit, vmspace_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
307 }
308 
309 static inline void
310 vmspace_dofree(struct vmspace *vm)
311 {
312 	CTR1(KTR_VM, "vmspace_free: %p", vm);
313 
314 	/*
315 	 * Make sure any SysV shm is freed, it might not have been in
316 	 * exit1().
317 	 */
318 	shmexit(vm);
319 
320 	/*
321 	 * Lock the map, to wait out all other references to it.
322 	 * Delete all of the mappings and pages they hold, then call
323 	 * the pmap module to reclaim anything left.
324 	 */
325 	(void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset,
326 	    vm->vm_map.max_offset);
327 
328 	/*
329 	 * XXX Comment out the pmap_release call for now. The
330 	 * vmspace_zone is marked as UMA_ZONE_NOFREE, and bugs cause
331 	 * pmap.resident_count to be != 0 on exit sometimes.
332 	 */
333 /* 	pmap_release(vmspace_pmap(vm)); */
334 	uma_zfree(vmspace_zone, vm);
335 }
336 
337 void
338 vmspace_free(struct vmspace *vm)
339 {
340 	int refcnt;
341 
342 	if (vm->vm_refcnt == 0)
343 		panic("vmspace_free: attempt to free already freed vmspace");
344 
345 	do
346 		refcnt = vm->vm_refcnt;
347 	while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
348 	if (refcnt == 1)
349 		vmspace_dofree(vm);
350 }
351 
352 void
353 vmspace_exitfree(struct proc *p)
354 {
355 	struct vmspace *vm;
356 
357 	PROC_VMSPACE_LOCK(p);
358 	vm = p->p_vmspace;
359 	p->p_vmspace = NULL;
360 	PROC_VMSPACE_UNLOCK(p);
361 	KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
362 	vmspace_free(vm);
363 }
364 
365 void
366 vmspace_exit(struct thread *td)
367 {
368 	int refcnt;
369 	struct vmspace *vm;
370 	struct proc *p;
371 
372 	/*
373 	 * Release user portion of address space.
374 	 * This releases references to vnodes,
375 	 * which could cause I/O if the file has been unlinked.
376 	 * Need to do this early enough that we can still sleep.
377 	 *
378 	 * The last exiting process to reach this point releases as
379 	 * much of the environment as it can. vmspace_dofree() is the
380 	 * slower fallback in case another process had a temporary
381 	 * reference to the vmspace.
382 	 */
383 
384 	p = td->td_proc;
385 	vm = p->p_vmspace;
386 	atomic_add_int(&vmspace0.vm_refcnt, 1);
387 	do {
388 		refcnt = vm->vm_refcnt;
389 		if (refcnt > 1 && p->p_vmspace != &vmspace0) {
390 			/* Switch now since other proc might free vmspace */
391 			PROC_VMSPACE_LOCK(p);
392 			p->p_vmspace = &vmspace0;
393 			PROC_VMSPACE_UNLOCK(p);
394 			pmap_activate(td);
395 		}
396 	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
397 	if (refcnt == 1) {
398 		if (p->p_vmspace != vm) {
399 			/* vmspace not yet freed, switch back */
400 			PROC_VMSPACE_LOCK(p);
401 			p->p_vmspace = vm;
402 			PROC_VMSPACE_UNLOCK(p);
403 			pmap_activate(td);
404 		}
405 		pmap_remove_pages(vmspace_pmap(vm));
406 		/* Switch now since this proc will free vmspace */
407 		PROC_VMSPACE_LOCK(p);
408 		p->p_vmspace = &vmspace0;
409 		PROC_VMSPACE_UNLOCK(p);
410 		pmap_activate(td);
411 		vmspace_dofree(vm);
412 	}
413 }
414 
415 /* Acquire reference to vmspace owned by another process. */
416 
417 struct vmspace *
418 vmspace_acquire_ref(struct proc *p)
419 {
420 	struct vmspace *vm;
421 	int refcnt;
422 
423 	PROC_VMSPACE_LOCK(p);
424 	vm = p->p_vmspace;
425 	if (vm == NULL) {
426 		PROC_VMSPACE_UNLOCK(p);
427 		return (NULL);
428 	}
429 	do {
430 		refcnt = vm->vm_refcnt;
431 		if (refcnt <= 0) { 	/* Avoid 0->1 transition */
432 			PROC_VMSPACE_UNLOCK(p);
433 			return (NULL);
434 		}
435 	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
436 	if (vm != p->p_vmspace) {
437 		PROC_VMSPACE_UNLOCK(p);
438 		vmspace_free(vm);
439 		return (NULL);
440 	}
441 	PROC_VMSPACE_UNLOCK(p);
442 	return (vm);
443 }
444 
445 void
446 _vm_map_lock(vm_map_t map, const char *file, int line)
447 {
448 
449 	if (map->system_map)
450 		_mtx_lock_flags(&map->system_mtx, 0, file, line);
451 	else
452 		(void)_sx_xlock(&map->lock, 0, file, line);
453 	map->timestamp++;
454 }
455 
456 void
457 _vm_map_unlock(vm_map_t map, const char *file, int line)
458 {
459 
460 	if (map->system_map)
461 		_mtx_unlock_flags(&map->system_mtx, 0, file, line);
462 	else
463 		_sx_xunlock(&map->lock, file, line);
464 }
465 
466 void
467 _vm_map_lock_read(vm_map_t map, const char *file, int line)
468 {
469 
470 	if (map->system_map)
471 		_mtx_lock_flags(&map->system_mtx, 0, file, line);
472 	else
473 		(void)_sx_slock(&map->lock, 0, file, line);
474 }
475 
476 void
477 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
478 {
479 
480 	if (map->system_map)
481 		_mtx_unlock_flags(&map->system_mtx, 0, file, line);
482 	else
483 		_sx_sunlock(&map->lock, file, line);
484 }
485 
486 int
487 _vm_map_trylock(vm_map_t map, const char *file, int line)
488 {
489 	int error;
490 
491 	error = map->system_map ?
492 	    !_mtx_trylock(&map->system_mtx, 0, file, line) :
493 	    !_sx_try_xlock(&map->lock, file, line);
494 	if (error == 0)
495 		map->timestamp++;
496 	return (error == 0);
497 }
498 
499 int
500 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
501 {
502 	int error;
503 
504 	error = map->system_map ?
505 	    !_mtx_trylock(&map->system_mtx, 0, file, line) :
506 	    !_sx_try_slock(&map->lock, file, line);
507 	return (error == 0);
508 }
509 
510 /*
511  *	_vm_map_lock_upgrade:	[ internal use only ]
512  *
513  *	Tries to upgrade a read (shared) lock on the specified map to a write
514  *	(exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
515  *	non-zero value if the upgrade fails.  If the upgrade fails, the map is
516  *	returned without a read or write lock held.
517  *
518  *	Requires that the map be read locked.
519  */
520 int
521 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
522 {
523 	unsigned int last_timestamp;
524 
525 	if (map->system_map) {
526 #ifdef INVARIANTS
527 		_mtx_assert(&map->system_mtx, MA_OWNED, file, line);
528 #endif
529 	} else {
530 		if (!_sx_try_upgrade(&map->lock, file, line)) {
531 			last_timestamp = map->timestamp;
532 			_sx_sunlock(&map->lock, file, line);
533 			/*
534 			 * If the map's timestamp does not change while the
535 			 * map is unlocked, then the upgrade succeeds.
536 			 */
537 			(void)_sx_xlock(&map->lock, 0, file, line);
538 			if (last_timestamp != map->timestamp) {
539 				_sx_xunlock(&map->lock, file, line);
540 				return (1);
541 			}
542 		}
543 	}
544 	map->timestamp++;
545 	return (0);
546 }
547 
548 void
549 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
550 {
551 
552 	if (map->system_map) {
553 #ifdef INVARIANTS
554 		_mtx_assert(&map->system_mtx, MA_OWNED, file, line);
555 #endif
556 	} else
557 		_sx_downgrade(&map->lock, file, line);
558 }
559 
560 /*
561  *	vm_map_locked:
562  *
563  *	Returns a non-zero value if the caller holds a write (exclusive) lock
564  *	on the specified map and the value "0" otherwise.
565  */
566 int
567 vm_map_locked(vm_map_t map)
568 {
569 
570 	if (map->system_map)
571 		return (mtx_owned(&map->system_mtx));
572 	else
573 		return (sx_xlocked(&map->lock));
574 }
575 
576 /*
577  *	vm_map_unlock_and_wait:
578  */
579 int
580 vm_map_unlock_and_wait(vm_map_t map, int timo)
581 {
582 
583 	mtx_lock(&map_sleep_mtx);
584 	vm_map_unlock(map);
585 	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps", timo));
586 }
587 
588 /*
589  *	vm_map_wakeup:
590  */
591 void
592 vm_map_wakeup(vm_map_t map)
593 {
594 
595 	/*
596 	 * Acquire and release map_sleep_mtx to prevent a wakeup()
597 	 * from being performed (and lost) between the vm_map_unlock()
598 	 * and the msleep() in vm_map_unlock_and_wait().
599 	 */
600 	mtx_lock(&map_sleep_mtx);
601 	mtx_unlock(&map_sleep_mtx);
602 	wakeup(&map->root);
603 }
604 
605 long
606 vmspace_resident_count(struct vmspace *vmspace)
607 {
608 	return pmap_resident_count(vmspace_pmap(vmspace));
609 }
610 
611 long
612 vmspace_wired_count(struct vmspace *vmspace)
613 {
614 	return pmap_wired_count(vmspace_pmap(vmspace));
615 }
616 
617 /*
618  *	vm_map_create:
619  *
620  *	Creates and returns a new empty VM map with
621  *	the given physical map structure, and having
622  *	the given lower and upper address bounds.
623  */
624 vm_map_t
625 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
626 {
627 	vm_map_t result;
628 
629 	result = uma_zalloc(mapzone, M_WAITOK);
630 	CTR1(KTR_VM, "vm_map_create: %p", result);
631 	_vm_map_init(result, min, max);
632 	result->pmap = pmap;
633 	return (result);
634 }
635 
636 /*
637  * Initialize an existing vm_map structure
638  * such as that in the vmspace structure.
639  * The pmap is set elsewhere.
640  */
641 static void
642 _vm_map_init(vm_map_t map, vm_offset_t min, vm_offset_t max)
643 {
644 
645 	map->header.next = map->header.prev = &map->header;
646 	map->needs_wakeup = FALSE;
647 	map->system_map = 0;
648 	map->min_offset = min;
649 	map->max_offset = max;
650 	map->flags = 0;
651 	map->root = NULL;
652 	map->timestamp = 0;
653 }
654 
655 void
656 vm_map_init(vm_map_t map, vm_offset_t min, vm_offset_t max)
657 {
658 	_vm_map_init(map, min, max);
659 	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
660 	sx_init(&map->lock, "user map");
661 }
662 
663 /*
664  *	vm_map_entry_dispose:	[ internal use only ]
665  *
666  *	Inverse of vm_map_entry_create.
667  */
668 static void
669 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
670 {
671 	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
672 }
673 
674 /*
675  *	vm_map_entry_create:	[ internal use only ]
676  *
677  *	Allocates a VM map entry for insertion.
678  *	No entry fields are filled in.
679  */
680 static vm_map_entry_t
681 vm_map_entry_create(vm_map_t map)
682 {
683 	vm_map_entry_t new_entry;
684 
685 	if (map->system_map)
686 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
687 	else
688 		new_entry = uma_zalloc(mapentzone, M_WAITOK);
689 	if (new_entry == NULL)
690 		panic("vm_map_entry_create: kernel resources exhausted");
691 	return (new_entry);
692 }
693 
694 /*
695  *	vm_map_entry_set_behavior:
696  *
697  *	Set the expected access behavior, either normal, random, or
698  *	sequential.
699  */
700 static inline void
701 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
702 {
703 	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
704 	    (behavior & MAP_ENTRY_BEHAV_MASK);
705 }
706 
707 /*
708  *	vm_map_entry_set_max_free:
709  *
710  *	Set the max_free field in a vm_map_entry.
711  */
712 static inline void
713 vm_map_entry_set_max_free(vm_map_entry_t entry)
714 {
715 
716 	entry->max_free = entry->adj_free;
717 	if (entry->left != NULL && entry->left->max_free > entry->max_free)
718 		entry->max_free = entry->left->max_free;
719 	if (entry->right != NULL && entry->right->max_free > entry->max_free)
720 		entry->max_free = entry->right->max_free;
721 }
722 
723 /*
724  *	vm_map_entry_splay:
725  *
726  *	The Sleator and Tarjan top-down splay algorithm with the
727  *	following variation.  Max_free must be computed bottom-up, so
728  *	on the downward pass, maintain the left and right spines in
729  *	reverse order.  Then, make a second pass up each side to fix
730  *	the pointers and compute max_free.  The time bound is O(log n)
731  *	amortized.
732  *
733  *	The new root is the vm_map_entry containing "addr", or else an
734  *	adjacent entry (lower or higher) if addr is not in the tree.
735  *
736  *	The map must be locked, and leaves it so.
737  *
738  *	Returns: the new root.
739  */
740 static vm_map_entry_t
741 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
742 {
743 	vm_map_entry_t llist, rlist;
744 	vm_map_entry_t ltree, rtree;
745 	vm_map_entry_t y;
746 
747 	/* Special case of empty tree. */
748 	if (root == NULL)
749 		return (root);
750 
751 	/*
752 	 * Pass One: Splay down the tree until we find addr or a NULL
753 	 * pointer where addr would go.  llist and rlist are the two
754 	 * sides in reverse order (bottom-up), with llist linked by
755 	 * the right pointer and rlist linked by the left pointer in
756 	 * the vm_map_entry.  Wait until Pass Two to set max_free on
757 	 * the two spines.
758 	 */
759 	llist = NULL;
760 	rlist = NULL;
761 	for (;;) {
762 		/* root is never NULL in here. */
763 		if (addr < root->start) {
764 			y = root->left;
765 			if (y == NULL)
766 				break;
767 			if (addr < y->start && y->left != NULL) {
768 				/* Rotate right and put y on rlist. */
769 				root->left = y->right;
770 				y->right = root;
771 				vm_map_entry_set_max_free(root);
772 				root = y->left;
773 				y->left = rlist;
774 				rlist = y;
775 			} else {
776 				/* Put root on rlist. */
777 				root->left = rlist;
778 				rlist = root;
779 				root = y;
780 			}
781 		} else if (addr >= root->end) {
782 			y = root->right;
783 			if (y == NULL)
784 				break;
785 			if (addr >= y->end && y->right != NULL) {
786 				/* Rotate left and put y on llist. */
787 				root->right = y->left;
788 				y->left = root;
789 				vm_map_entry_set_max_free(root);
790 				root = y->right;
791 				y->right = llist;
792 				llist = y;
793 			} else {
794 				/* Put root on llist. */
795 				root->right = llist;
796 				llist = root;
797 				root = y;
798 			}
799 		} else
800 			break;
801 	}
802 
803 	/*
804 	 * Pass Two: Walk back up the two spines, flip the pointers
805 	 * and set max_free.  The subtrees of the root go at the
806 	 * bottom of llist and rlist.
807 	 */
808 	ltree = root->left;
809 	while (llist != NULL) {
810 		y = llist->right;
811 		llist->right = ltree;
812 		vm_map_entry_set_max_free(llist);
813 		ltree = llist;
814 		llist = y;
815 	}
816 	rtree = root->right;
817 	while (rlist != NULL) {
818 		y = rlist->left;
819 		rlist->left = rtree;
820 		vm_map_entry_set_max_free(rlist);
821 		rtree = rlist;
822 		rlist = y;
823 	}
824 
825 	/*
826 	 * Final assembly: add ltree and rtree as subtrees of root.
827 	 */
828 	root->left = ltree;
829 	root->right = rtree;
830 	vm_map_entry_set_max_free(root);
831 
832 	return (root);
833 }
834 
835 /*
836  *	vm_map_entry_{un,}link:
837  *
838  *	Insert/remove entries from maps.
839  */
840 static void
841 vm_map_entry_link(vm_map_t map,
842 		  vm_map_entry_t after_where,
843 		  vm_map_entry_t entry)
844 {
845 
846 	CTR4(KTR_VM,
847 	    "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
848 	    map->nentries, entry, after_where);
849 	map->nentries++;
850 	entry->prev = after_where;
851 	entry->next = after_where->next;
852 	entry->next->prev = entry;
853 	after_where->next = entry;
854 
855 	if (after_where != &map->header) {
856 		if (after_where != map->root)
857 			vm_map_entry_splay(after_where->start, map->root);
858 		entry->right = after_where->right;
859 		entry->left = after_where;
860 		after_where->right = NULL;
861 		after_where->adj_free = entry->start - after_where->end;
862 		vm_map_entry_set_max_free(after_where);
863 	} else {
864 		entry->right = map->root;
865 		entry->left = NULL;
866 	}
867 	entry->adj_free = (entry->next == &map->header ? map->max_offset :
868 	    entry->next->start) - entry->end;
869 	vm_map_entry_set_max_free(entry);
870 	map->root = entry;
871 }
872 
873 static void
874 vm_map_entry_unlink(vm_map_t map,
875 		    vm_map_entry_t entry)
876 {
877 	vm_map_entry_t next, prev, root;
878 
879 	if (entry != map->root)
880 		vm_map_entry_splay(entry->start, map->root);
881 	if (entry->left == NULL)
882 		root = entry->right;
883 	else {
884 		root = vm_map_entry_splay(entry->start, entry->left);
885 		root->right = entry->right;
886 		root->adj_free = (entry->next == &map->header ? map->max_offset :
887 		    entry->next->start) - root->end;
888 		vm_map_entry_set_max_free(root);
889 	}
890 	map->root = root;
891 
892 	prev = entry->prev;
893 	next = entry->next;
894 	next->prev = prev;
895 	prev->next = next;
896 	map->nentries--;
897 	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
898 	    map->nentries, entry);
899 }
900 
901 /*
902  *	vm_map_entry_resize_free:
903  *
904  *	Recompute the amount of free space following a vm_map_entry
905  *	and propagate that value up the tree.  Call this function after
906  *	resizing a map entry in-place, that is, without a call to
907  *	vm_map_entry_link() or _unlink().
908  *
909  *	The map must be locked, and leaves it so.
910  */
911 static void
912 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
913 {
914 
915 	/*
916 	 * Using splay trees without parent pointers, propagating
917 	 * max_free up the tree is done by moving the entry to the
918 	 * root and making the change there.
919 	 */
920 	if (entry != map->root)
921 		map->root = vm_map_entry_splay(entry->start, map->root);
922 
923 	entry->adj_free = (entry->next == &map->header ? map->max_offset :
924 	    entry->next->start) - entry->end;
925 	vm_map_entry_set_max_free(entry);
926 }
927 
928 /*
929  *	vm_map_lookup_entry:	[ internal use only ]
930  *
931  *	Finds the map entry containing (or
932  *	immediately preceding) the specified address
933  *	in the given map; the entry is returned
934  *	in the "entry" parameter.  The boolean
935  *	result indicates whether the address is
936  *	actually contained in the map.
937  */
938 boolean_t
939 vm_map_lookup_entry(
940 	vm_map_t map,
941 	vm_offset_t address,
942 	vm_map_entry_t *entry)	/* OUT */
943 {
944 	vm_map_entry_t cur;
945 	boolean_t locked;
946 
947 	/*
948 	 * If the map is empty, then the map entry immediately preceding
949 	 * "address" is the map's header.
950 	 */
951 	cur = map->root;
952 	if (cur == NULL)
953 		*entry = &map->header;
954 	else if (address >= cur->start && cur->end > address) {
955 		*entry = cur;
956 		return (TRUE);
957 	} else if ((locked = vm_map_locked(map)) ||
958 	    sx_try_upgrade(&map->lock)) {
959 		/*
960 		 * Splay requires a write lock on the map.  However, it only
961 		 * restructures the binary search tree; it does not otherwise
962 		 * change the map.  Thus, the map's timestamp need not change
963 		 * on a temporary upgrade.
964 		 */
965 		map->root = cur = vm_map_entry_splay(address, cur);
966 		if (!locked)
967 			sx_downgrade(&map->lock);
968 
969 		/*
970 		 * If "address" is contained within a map entry, the new root
971 		 * is that map entry.  Otherwise, the new root is a map entry
972 		 * immediately before or after "address".
973 		 */
974 		if (address >= cur->start) {
975 			*entry = cur;
976 			if (cur->end > address)
977 				return (TRUE);
978 		} else
979 			*entry = cur->prev;
980 	} else
981 		/*
982 		 * Since the map is only locked for read access, perform a
983 		 * standard binary search tree lookup for "address".
984 		 */
985 		for (;;) {
986 			if (address < cur->start) {
987 				if (cur->left == NULL) {
988 					*entry = cur->prev;
989 					break;
990 				}
991 				cur = cur->left;
992 			} else if (cur->end > address) {
993 				*entry = cur;
994 				return (TRUE);
995 			} else {
996 				if (cur->right == NULL) {
997 					*entry = cur;
998 					break;
999 				}
1000 				cur = cur->right;
1001 			}
1002 		}
1003 	return (FALSE);
1004 }
1005 
1006 /*
1007  *	vm_map_insert:
1008  *
1009  *	Inserts the given whole VM object into the target
1010  *	map at the specified address range.  The object's
1011  *	size should match that of the address range.
1012  *
1013  *	Requires that the map be locked, and leaves it so.
1014  *
1015  *	If object is non-NULL, ref count must be bumped by caller
1016  *	prior to making call to account for the new entry.
1017  */
1018 int
1019 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1020 	      vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max,
1021 	      int cow)
1022 {
1023 	vm_map_entry_t new_entry;
1024 	vm_map_entry_t prev_entry;
1025 	vm_map_entry_t temp_entry;
1026 	vm_eflags_t protoeflags;
1027 
1028 	/*
1029 	 * Check that the start and end points are not bogus.
1030 	 */
1031 	if ((start < map->min_offset) || (end > map->max_offset) ||
1032 	    (start >= end))
1033 		return (KERN_INVALID_ADDRESS);
1034 
1035 	/*
1036 	 * Find the entry prior to the proposed starting address; if it's part
1037 	 * of an existing entry, this range is bogus.
1038 	 */
1039 	if (vm_map_lookup_entry(map, start, &temp_entry))
1040 		return (KERN_NO_SPACE);
1041 
1042 	prev_entry = temp_entry;
1043 
1044 	/*
1045 	 * Assert that the next entry doesn't overlap the end point.
1046 	 */
1047 	if ((prev_entry->next != &map->header) &&
1048 	    (prev_entry->next->start < end))
1049 		return (KERN_NO_SPACE);
1050 
1051 	protoeflags = 0;
1052 
1053 	if (cow & MAP_COPY_ON_WRITE)
1054 		protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
1055 
1056 	if (cow & MAP_NOFAULT) {
1057 		protoeflags |= MAP_ENTRY_NOFAULT;
1058 
1059 		KASSERT(object == NULL,
1060 			("vm_map_insert: paradoxical MAP_NOFAULT request"));
1061 	}
1062 	if (cow & MAP_DISABLE_SYNCER)
1063 		protoeflags |= MAP_ENTRY_NOSYNC;
1064 	if (cow & MAP_DISABLE_COREDUMP)
1065 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1066 
1067 	if (object != NULL) {
1068 		/*
1069 		 * OBJ_ONEMAPPING must be cleared unless this mapping
1070 		 * is trivially proven to be the only mapping for any
1071 		 * of the object's pages.  (Object granularity
1072 		 * reference counting is insufficient to recognize
1073 		 * aliases with precision.)
1074 		 */
1075 		VM_OBJECT_LOCK(object);
1076 		if (object->ref_count > 1 || object->shadow_count != 0)
1077 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
1078 		VM_OBJECT_UNLOCK(object);
1079 	}
1080 	else if ((prev_entry != &map->header) &&
1081 		 (prev_entry->eflags == protoeflags) &&
1082 		 (prev_entry->end == start) &&
1083 		 (prev_entry->wired_count == 0) &&
1084 		 ((prev_entry->object.vm_object == NULL) ||
1085 		  vm_object_coalesce(prev_entry->object.vm_object,
1086 				     prev_entry->offset,
1087 				     (vm_size_t)(prev_entry->end - prev_entry->start),
1088 				     (vm_size_t)(end - prev_entry->end)))) {
1089 		/*
1090 		 * We were able to extend the object.  Determine if we
1091 		 * can extend the previous map entry to include the
1092 		 * new range as well.
1093 		 */
1094 		if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
1095 		    (prev_entry->protection == prot) &&
1096 		    (prev_entry->max_protection == max)) {
1097 			map->size += (end - prev_entry->end);
1098 			prev_entry->end = end;
1099 			vm_map_entry_resize_free(map, prev_entry);
1100 			vm_map_simplify_entry(map, prev_entry);
1101 			return (KERN_SUCCESS);
1102 		}
1103 
1104 		/*
1105 		 * If we can extend the object but cannot extend the
1106 		 * map entry, we have to create a new map entry.  We
1107 		 * must bump the ref count on the extended object to
1108 		 * account for it.  object may be NULL.
1109 		 */
1110 		object = prev_entry->object.vm_object;
1111 		offset = prev_entry->offset +
1112 			(prev_entry->end - prev_entry->start);
1113 		vm_object_reference(object);
1114 	}
1115 
1116 	/*
1117 	 * NOTE: if conditionals fail, object can be NULL here.  This occurs
1118 	 * in things like the buffer map where we manage kva but do not manage
1119 	 * backing objects.
1120 	 */
1121 
1122 	/*
1123 	 * Create a new entry
1124 	 */
1125 	new_entry = vm_map_entry_create(map);
1126 	new_entry->start = start;
1127 	new_entry->end = end;
1128 
1129 	new_entry->eflags = protoeflags;
1130 	new_entry->object.vm_object = object;
1131 	new_entry->offset = offset;
1132 	new_entry->avail_ssize = 0;
1133 
1134 	new_entry->inheritance = VM_INHERIT_DEFAULT;
1135 	new_entry->protection = prot;
1136 	new_entry->max_protection = max;
1137 	new_entry->wired_count = 0;
1138 
1139 	/*
1140 	 * Insert the new entry into the list
1141 	 */
1142 	vm_map_entry_link(map, prev_entry, new_entry);
1143 	map->size += new_entry->end - new_entry->start;
1144 
1145 #if 0
1146 	/*
1147 	 * Temporarily removed to avoid MAP_STACK panic, due to
1148 	 * MAP_STACK being a huge hack.  Will be added back in
1149 	 * when MAP_STACK (and the user stack mapping) is fixed.
1150 	 */
1151 	/*
1152 	 * It may be possible to simplify the entry
1153 	 */
1154 	vm_map_simplify_entry(map, new_entry);
1155 #endif
1156 
1157 	if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
1158 		vm_map_pmap_enter(map, start, prot,
1159 				    object, OFF_TO_IDX(offset), end - start,
1160 				    cow & MAP_PREFAULT_PARTIAL);
1161 	}
1162 
1163 	return (KERN_SUCCESS);
1164 }
1165 
1166 /*
1167  *	vm_map_findspace:
1168  *
1169  *	Find the first fit (lowest VM address) for "length" free bytes
1170  *	beginning at address >= start in the given map.
1171  *
1172  *	In a vm_map_entry, "adj_free" is the amount of free space
1173  *	adjacent (higher address) to this entry, and "max_free" is the
1174  *	maximum amount of contiguous free space in its subtree.  This
1175  *	allows finding a free region in one path down the tree, so
1176  *	O(log n) amortized with splay trees.
1177  *
1178  *	The map must be locked, and leaves it so.
1179  *
1180  *	Returns: 0 on success, and starting address in *addr,
1181  *		 1 if insufficient space.
1182  */
1183 int
1184 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1185     vm_offset_t *addr)	/* OUT */
1186 {
1187 	vm_map_entry_t entry;
1188 	vm_offset_t end, st;
1189 
1190 	/*
1191 	 * Request must fit within min/max VM address and must avoid
1192 	 * address wrap.
1193 	 */
1194 	if (start < map->min_offset)
1195 		start = map->min_offset;
1196 	if (start + length > map->max_offset || start + length < start)
1197 		return (1);
1198 
1199 	/* Empty tree means wide open address space. */
1200 	if (map->root == NULL) {
1201 		*addr = start;
1202 		goto found;
1203 	}
1204 
1205 	/*
1206 	 * After splay, if start comes before root node, then there
1207 	 * must be a gap from start to the root.
1208 	 */
1209 	map->root = vm_map_entry_splay(start, map->root);
1210 	if (start + length <= map->root->start) {
1211 		*addr = start;
1212 		goto found;
1213 	}
1214 
1215 	/*
1216 	 * Root is the last node that might begin its gap before
1217 	 * start, and this is the last comparison where address
1218 	 * wrap might be a problem.
1219 	 */
1220 	st = (start > map->root->end) ? start : map->root->end;
1221 	if (length <= map->root->end + map->root->adj_free - st) {
1222 		*addr = st;
1223 		goto found;
1224 	}
1225 
1226 	/* With max_free, can immediately tell if no solution. */
1227 	entry = map->root->right;
1228 	if (entry == NULL || length > entry->max_free)
1229 		return (1);
1230 
1231 	/*
1232 	 * Search the right subtree in the order: left subtree, root,
1233 	 * right subtree (first fit).  The previous splay implies that
1234 	 * all regions in the right subtree have addresses > start.
1235 	 */
1236 	while (entry != NULL) {
1237 		if (entry->left != NULL && entry->left->max_free >= length)
1238 			entry = entry->left;
1239 		else if (entry->adj_free >= length) {
1240 			*addr = entry->end;
1241 			goto found;
1242 		} else
1243 			entry = entry->right;
1244 	}
1245 
1246 	/* Can't get here, so panic if we do. */
1247 	panic("vm_map_findspace: max_free corrupt");
1248 
1249 found:
1250 	/* Expand the kernel pmap, if necessary. */
1251 	if (map == kernel_map) {
1252 		end = round_page(*addr + length);
1253 		if (end > kernel_vm_end)
1254 			pmap_growkernel(end);
1255 	}
1256 	return (0);
1257 }
1258 
1259 int
1260 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1261     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1262     vm_prot_t max, int cow)
1263 {
1264 	vm_offset_t end;
1265 	int result;
1266 
1267 	vm_map_lock(map);
1268 	end = start + length;
1269 	VM_MAP_RANGE_CHECK(map, start, end);
1270 	(void) vm_map_delete(map, start, end);
1271 	result = vm_map_insert(map, object, offset, start, end, prot,
1272 	    max, cow);
1273 	vm_map_unlock(map);
1274 	return (result);
1275 }
1276 
1277 /*
1278  *	vm_map_find finds an unallocated region in the target address
1279  *	map with the given length.  The search is defined to be
1280  *	first-fit from the specified address; the region found is
1281  *	returned in the same parameter.
1282  *
1283  *	If object is non-NULL, ref count must be bumped by caller
1284  *	prior to making call to account for the new entry.
1285  */
1286 int
1287 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1288 	    vm_offset_t *addr,	/* IN/OUT */
1289 	    vm_size_t length, int find_space, vm_prot_t prot,
1290 	    vm_prot_t max, int cow)
1291 {
1292 	vm_offset_t start;
1293 	int result;
1294 
1295 	start = *addr;
1296 	vm_map_lock(map);
1297 	do {
1298 		if (find_space != VMFS_NO_SPACE) {
1299 			if (vm_map_findspace(map, start, length, addr)) {
1300 				vm_map_unlock(map);
1301 				return (KERN_NO_SPACE);
1302 			}
1303 			if (find_space == VMFS_ALIGNED_SPACE)
1304 				pmap_align_superpage(object, offset, addr,
1305 				    length);
1306 			start = *addr;
1307 		}
1308 		result = vm_map_insert(map, object, offset, start, start +
1309 		    length, prot, max, cow);
1310 	} while (result == KERN_NO_SPACE && find_space == VMFS_ALIGNED_SPACE);
1311 	vm_map_unlock(map);
1312 	return (result);
1313 }
1314 
1315 /*
1316  *	vm_map_simplify_entry:
1317  *
1318  *	Simplify the given map entry by merging with either neighbor.  This
1319  *	routine also has the ability to merge with both neighbors.
1320  *
1321  *	The map must be locked.
1322  *
1323  *	This routine guarentees that the passed entry remains valid (though
1324  *	possibly extended).  When merging, this routine may delete one or
1325  *	both neighbors.
1326  */
1327 void
1328 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1329 {
1330 	vm_map_entry_t next, prev;
1331 	vm_size_t prevsize, esize;
1332 
1333 	if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP))
1334 		return;
1335 
1336 	prev = entry->prev;
1337 	if (prev != &map->header) {
1338 		prevsize = prev->end - prev->start;
1339 		if ( (prev->end == entry->start) &&
1340 		     (prev->object.vm_object == entry->object.vm_object) &&
1341 		     (!prev->object.vm_object ||
1342 			(prev->offset + prevsize == entry->offset)) &&
1343 		     (prev->eflags == entry->eflags) &&
1344 		     (prev->protection == entry->protection) &&
1345 		     (prev->max_protection == entry->max_protection) &&
1346 		     (prev->inheritance == entry->inheritance) &&
1347 		     (prev->wired_count == entry->wired_count)) {
1348 			vm_map_entry_unlink(map, prev);
1349 			entry->start = prev->start;
1350 			entry->offset = prev->offset;
1351 			if (entry->prev != &map->header)
1352 				vm_map_entry_resize_free(map, entry->prev);
1353 			if (prev->object.vm_object)
1354 				vm_object_deallocate(prev->object.vm_object);
1355 			vm_map_entry_dispose(map, prev);
1356 		}
1357 	}
1358 
1359 	next = entry->next;
1360 	if (next != &map->header) {
1361 		esize = entry->end - entry->start;
1362 		if ((entry->end == next->start) &&
1363 		    (next->object.vm_object == entry->object.vm_object) &&
1364 		     (!entry->object.vm_object ||
1365 			(entry->offset + esize == next->offset)) &&
1366 		    (next->eflags == entry->eflags) &&
1367 		    (next->protection == entry->protection) &&
1368 		    (next->max_protection == entry->max_protection) &&
1369 		    (next->inheritance == entry->inheritance) &&
1370 		    (next->wired_count == entry->wired_count)) {
1371 			vm_map_entry_unlink(map, next);
1372 			entry->end = next->end;
1373 			vm_map_entry_resize_free(map, entry);
1374 			if (next->object.vm_object)
1375 				vm_object_deallocate(next->object.vm_object);
1376 			vm_map_entry_dispose(map, next);
1377 		}
1378 	}
1379 }
1380 /*
1381  *	vm_map_clip_start:	[ internal use only ]
1382  *
1383  *	Asserts that the given entry begins at or after
1384  *	the specified address; if necessary,
1385  *	it splits the entry into two.
1386  */
1387 #define vm_map_clip_start(map, entry, startaddr) \
1388 { \
1389 	if (startaddr > entry->start) \
1390 		_vm_map_clip_start(map, entry, startaddr); \
1391 }
1392 
1393 /*
1394  *	This routine is called only when it is known that
1395  *	the entry must be split.
1396  */
1397 static void
1398 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1399 {
1400 	vm_map_entry_t new_entry;
1401 
1402 	/*
1403 	 * Split off the front portion -- note that we must insert the new
1404 	 * entry BEFORE this one, so that this entry has the specified
1405 	 * starting address.
1406 	 */
1407 	vm_map_simplify_entry(map, entry);
1408 
1409 	/*
1410 	 * If there is no object backing this entry, we might as well create
1411 	 * one now.  If we defer it, an object can get created after the map
1412 	 * is clipped, and individual objects will be created for the split-up
1413 	 * map.  This is a bit of a hack, but is also about the best place to
1414 	 * put this improvement.
1415 	 */
1416 	if (entry->object.vm_object == NULL && !map->system_map) {
1417 		vm_object_t object;
1418 		object = vm_object_allocate(OBJT_DEFAULT,
1419 				atop(entry->end - entry->start));
1420 		entry->object.vm_object = object;
1421 		entry->offset = 0;
1422 	}
1423 
1424 	new_entry = vm_map_entry_create(map);
1425 	*new_entry = *entry;
1426 
1427 	new_entry->end = start;
1428 	entry->offset += (start - entry->start);
1429 	entry->start = start;
1430 
1431 	vm_map_entry_link(map, entry->prev, new_entry);
1432 
1433 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1434 		vm_object_reference(new_entry->object.vm_object);
1435 	}
1436 }
1437 
1438 /*
1439  *	vm_map_clip_end:	[ internal use only ]
1440  *
1441  *	Asserts that the given entry ends at or before
1442  *	the specified address; if necessary,
1443  *	it splits the entry into two.
1444  */
1445 #define vm_map_clip_end(map, entry, endaddr) \
1446 { \
1447 	if ((endaddr) < (entry->end)) \
1448 		_vm_map_clip_end((map), (entry), (endaddr)); \
1449 }
1450 
1451 /*
1452  *	This routine is called only when it is known that
1453  *	the entry must be split.
1454  */
1455 static void
1456 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1457 {
1458 	vm_map_entry_t new_entry;
1459 
1460 	/*
1461 	 * If there is no object backing this entry, we might as well create
1462 	 * one now.  If we defer it, an object can get created after the map
1463 	 * is clipped, and individual objects will be created for the split-up
1464 	 * map.  This is a bit of a hack, but is also about the best place to
1465 	 * put this improvement.
1466 	 */
1467 	if (entry->object.vm_object == NULL && !map->system_map) {
1468 		vm_object_t object;
1469 		object = vm_object_allocate(OBJT_DEFAULT,
1470 				atop(entry->end - entry->start));
1471 		entry->object.vm_object = object;
1472 		entry->offset = 0;
1473 	}
1474 
1475 	/*
1476 	 * Create a new entry and insert it AFTER the specified entry
1477 	 */
1478 	new_entry = vm_map_entry_create(map);
1479 	*new_entry = *entry;
1480 
1481 	new_entry->start = entry->end = end;
1482 	new_entry->offset += (end - entry->start);
1483 
1484 	vm_map_entry_link(map, entry, new_entry);
1485 
1486 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1487 		vm_object_reference(new_entry->object.vm_object);
1488 	}
1489 }
1490 
1491 /*
1492  *	vm_map_submap:		[ kernel use only ]
1493  *
1494  *	Mark the given range as handled by a subordinate map.
1495  *
1496  *	This range must have been created with vm_map_find,
1497  *	and no other operations may have been performed on this
1498  *	range prior to calling vm_map_submap.
1499  *
1500  *	Only a limited number of operations can be performed
1501  *	within this rage after calling vm_map_submap:
1502  *		vm_fault
1503  *	[Don't try vm_map_copy!]
1504  *
1505  *	To remove a submapping, one must first remove the
1506  *	range from the superior map, and then destroy the
1507  *	submap (if desired).  [Better yet, don't try it.]
1508  */
1509 int
1510 vm_map_submap(
1511 	vm_map_t map,
1512 	vm_offset_t start,
1513 	vm_offset_t end,
1514 	vm_map_t submap)
1515 {
1516 	vm_map_entry_t entry;
1517 	int result = KERN_INVALID_ARGUMENT;
1518 
1519 	vm_map_lock(map);
1520 
1521 	VM_MAP_RANGE_CHECK(map, start, end);
1522 
1523 	if (vm_map_lookup_entry(map, start, &entry)) {
1524 		vm_map_clip_start(map, entry, start);
1525 	} else
1526 		entry = entry->next;
1527 
1528 	vm_map_clip_end(map, entry, end);
1529 
1530 	if ((entry->start == start) && (entry->end == end) &&
1531 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1532 	    (entry->object.vm_object == NULL)) {
1533 		entry->object.sub_map = submap;
1534 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1535 		result = KERN_SUCCESS;
1536 	}
1537 	vm_map_unlock(map);
1538 
1539 	return (result);
1540 }
1541 
1542 /*
1543  * The maximum number of pages to map
1544  */
1545 #define	MAX_INIT_PT	96
1546 
1547 /*
1548  *	vm_map_pmap_enter:
1549  *
1550  *	Preload read-only mappings for the given object's resident pages into
1551  *	the given map.  This eliminates the soft faults on process startup and
1552  *	immediately after an mmap(2).  Because these are speculative mappings,
1553  *	cached pages are not reactivated and mapped.
1554  */
1555 void
1556 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
1557     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
1558 {
1559 	vm_offset_t start;
1560 	vm_page_t p, p_start;
1561 	vm_pindex_t psize, tmpidx;
1562 	boolean_t are_queues_locked;
1563 
1564 	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
1565 		return;
1566 	VM_OBJECT_LOCK(object);
1567 	if (object->type == OBJT_DEVICE) {
1568 		pmap_object_init_pt(map->pmap, addr, object, pindex, size);
1569 		goto unlock_return;
1570 	}
1571 
1572 	psize = atop(size);
1573 
1574 	if (object->type != OBJT_VNODE ||
1575 	    ((flags & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
1576 	     (object->resident_page_count > MAX_INIT_PT))) {
1577 		goto unlock_return;
1578 	}
1579 
1580 	if (psize + pindex > object->size) {
1581 		if (object->size < pindex)
1582 			goto unlock_return;
1583 		psize = object->size - pindex;
1584 	}
1585 
1586 	are_queues_locked = FALSE;
1587 	start = 0;
1588 	p_start = NULL;
1589 
1590 	if ((p = TAILQ_FIRST(&object->memq)) != NULL) {
1591 		if (p->pindex < pindex) {
1592 			p = vm_page_splay(pindex, object->root);
1593 			if ((object->root = p)->pindex < pindex)
1594 				p = TAILQ_NEXT(p, listq);
1595 		}
1596 	}
1597 	/*
1598 	 * Assert: the variable p is either (1) the page with the
1599 	 * least pindex greater than or equal to the parameter pindex
1600 	 * or (2) NULL.
1601 	 */
1602 	for (;
1603 	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
1604 	     p = TAILQ_NEXT(p, listq)) {
1605 		/*
1606 		 * don't allow an madvise to blow away our really
1607 		 * free pages allocating pv entries.
1608 		 */
1609 		if ((flags & MAP_PREFAULT_MADVISE) &&
1610 		    cnt.v_free_count < cnt.v_free_reserved) {
1611 			psize = tmpidx;
1612 			break;
1613 		}
1614 		if ((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL &&
1615 		    (p->busy == 0)) {
1616 			if (p_start == NULL) {
1617 				start = addr + ptoa(tmpidx);
1618 				p_start = p;
1619 			}
1620 		} else if (p_start != NULL) {
1621 			if (!are_queues_locked) {
1622 				are_queues_locked = TRUE;
1623 				vm_page_lock_queues();
1624 			}
1625 			pmap_enter_object(map->pmap, start, addr +
1626 			    ptoa(tmpidx), p_start, prot);
1627 			p_start = NULL;
1628 		}
1629 	}
1630 	if (p_start != NULL) {
1631 		if (!are_queues_locked) {
1632 			are_queues_locked = TRUE;
1633 			vm_page_lock_queues();
1634 		}
1635 		pmap_enter_object(map->pmap, start, addr + ptoa(psize),
1636 		    p_start, prot);
1637 	}
1638 	if (are_queues_locked)
1639 		vm_page_unlock_queues();
1640 unlock_return:
1641 	VM_OBJECT_UNLOCK(object);
1642 }
1643 
1644 /*
1645  *	vm_map_protect:
1646  *
1647  *	Sets the protection of the specified address
1648  *	region in the target map.  If "set_max" is
1649  *	specified, the maximum protection is to be set;
1650  *	otherwise, only the current protection is affected.
1651  */
1652 int
1653 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1654 	       vm_prot_t new_prot, boolean_t set_max)
1655 {
1656 	vm_map_entry_t current;
1657 	vm_map_entry_t entry;
1658 
1659 	vm_map_lock(map);
1660 
1661 	VM_MAP_RANGE_CHECK(map, start, end);
1662 
1663 	if (vm_map_lookup_entry(map, start, &entry)) {
1664 		vm_map_clip_start(map, entry, start);
1665 	} else {
1666 		entry = entry->next;
1667 	}
1668 
1669 	/*
1670 	 * Make a first pass to check for protection violations.
1671 	 */
1672 	current = entry;
1673 	while ((current != &map->header) && (current->start < end)) {
1674 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1675 			vm_map_unlock(map);
1676 			return (KERN_INVALID_ARGUMENT);
1677 		}
1678 		if ((new_prot & current->max_protection) != new_prot) {
1679 			vm_map_unlock(map);
1680 			return (KERN_PROTECTION_FAILURE);
1681 		}
1682 		current = current->next;
1683 	}
1684 
1685 	/*
1686 	 * Go back and fix up protections. [Note that clipping is not
1687 	 * necessary the second time.]
1688 	 */
1689 	current = entry;
1690 	while ((current != &map->header) && (current->start < end)) {
1691 		vm_prot_t old_prot;
1692 
1693 		vm_map_clip_end(map, current, end);
1694 
1695 		old_prot = current->protection;
1696 		if (set_max)
1697 			current->protection =
1698 			    (current->max_protection = new_prot) &
1699 			    old_prot;
1700 		else
1701 			current->protection = new_prot;
1702 
1703 		/*
1704 		 * Update physical map if necessary. Worry about copy-on-write
1705 		 * here.
1706 		 */
1707 		if (current->protection != old_prot) {
1708 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1709 							VM_PROT_ALL)
1710 			pmap_protect(map->pmap, current->start,
1711 			    current->end,
1712 			    current->protection & MASK(current));
1713 #undef	MASK
1714 		}
1715 		vm_map_simplify_entry(map, current);
1716 		current = current->next;
1717 	}
1718 	vm_map_unlock(map);
1719 	return (KERN_SUCCESS);
1720 }
1721 
1722 /*
1723  *	vm_map_madvise:
1724  *
1725  *	This routine traverses a processes map handling the madvise
1726  *	system call.  Advisories are classified as either those effecting
1727  *	the vm_map_entry structure, or those effecting the underlying
1728  *	objects.
1729  */
1730 int
1731 vm_map_madvise(
1732 	vm_map_t map,
1733 	vm_offset_t start,
1734 	vm_offset_t end,
1735 	int behav)
1736 {
1737 	vm_map_entry_t current, entry;
1738 	int modify_map = 0;
1739 
1740 	/*
1741 	 * Some madvise calls directly modify the vm_map_entry, in which case
1742 	 * we need to use an exclusive lock on the map and we need to perform
1743 	 * various clipping operations.  Otherwise we only need a read-lock
1744 	 * on the map.
1745 	 */
1746 	switch(behav) {
1747 	case MADV_NORMAL:
1748 	case MADV_SEQUENTIAL:
1749 	case MADV_RANDOM:
1750 	case MADV_NOSYNC:
1751 	case MADV_AUTOSYNC:
1752 	case MADV_NOCORE:
1753 	case MADV_CORE:
1754 		modify_map = 1;
1755 		vm_map_lock(map);
1756 		break;
1757 	case MADV_WILLNEED:
1758 	case MADV_DONTNEED:
1759 	case MADV_FREE:
1760 		vm_map_lock_read(map);
1761 		break;
1762 	default:
1763 		return (KERN_INVALID_ARGUMENT);
1764 	}
1765 
1766 	/*
1767 	 * Locate starting entry and clip if necessary.
1768 	 */
1769 	VM_MAP_RANGE_CHECK(map, start, end);
1770 
1771 	if (vm_map_lookup_entry(map, start, &entry)) {
1772 		if (modify_map)
1773 			vm_map_clip_start(map, entry, start);
1774 	} else {
1775 		entry = entry->next;
1776 	}
1777 
1778 	if (modify_map) {
1779 		/*
1780 		 * madvise behaviors that are implemented in the vm_map_entry.
1781 		 *
1782 		 * We clip the vm_map_entry so that behavioral changes are
1783 		 * limited to the specified address range.
1784 		 */
1785 		for (current = entry;
1786 		     (current != &map->header) && (current->start < end);
1787 		     current = current->next
1788 		) {
1789 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
1790 				continue;
1791 
1792 			vm_map_clip_end(map, current, end);
1793 
1794 			switch (behav) {
1795 			case MADV_NORMAL:
1796 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
1797 				break;
1798 			case MADV_SEQUENTIAL:
1799 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
1800 				break;
1801 			case MADV_RANDOM:
1802 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
1803 				break;
1804 			case MADV_NOSYNC:
1805 				current->eflags |= MAP_ENTRY_NOSYNC;
1806 				break;
1807 			case MADV_AUTOSYNC:
1808 				current->eflags &= ~MAP_ENTRY_NOSYNC;
1809 				break;
1810 			case MADV_NOCORE:
1811 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
1812 				break;
1813 			case MADV_CORE:
1814 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
1815 				break;
1816 			default:
1817 				break;
1818 			}
1819 			vm_map_simplify_entry(map, current);
1820 		}
1821 		vm_map_unlock(map);
1822 	} else {
1823 		vm_pindex_t pindex;
1824 		int count;
1825 
1826 		/*
1827 		 * madvise behaviors that are implemented in the underlying
1828 		 * vm_object.
1829 		 *
1830 		 * Since we don't clip the vm_map_entry, we have to clip
1831 		 * the vm_object pindex and count.
1832 		 */
1833 		for (current = entry;
1834 		     (current != &map->header) && (current->start < end);
1835 		     current = current->next
1836 		) {
1837 			vm_offset_t useStart;
1838 
1839 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
1840 				continue;
1841 
1842 			pindex = OFF_TO_IDX(current->offset);
1843 			count = atop(current->end - current->start);
1844 			useStart = current->start;
1845 
1846 			if (current->start < start) {
1847 				pindex += atop(start - current->start);
1848 				count -= atop(start - current->start);
1849 				useStart = start;
1850 			}
1851 			if (current->end > end)
1852 				count -= atop(current->end - end);
1853 
1854 			if (count <= 0)
1855 				continue;
1856 
1857 			vm_object_madvise(current->object.vm_object,
1858 					  pindex, count, behav);
1859 			if (behav == MADV_WILLNEED) {
1860 				vm_map_pmap_enter(map,
1861 				    useStart,
1862 				    current->protection,
1863 				    current->object.vm_object,
1864 				    pindex,
1865 				    (count << PAGE_SHIFT),
1866 				    MAP_PREFAULT_MADVISE
1867 				);
1868 			}
1869 		}
1870 		vm_map_unlock_read(map);
1871 	}
1872 	return (0);
1873 }
1874 
1875 
1876 /*
1877  *	vm_map_inherit:
1878  *
1879  *	Sets the inheritance of the specified address
1880  *	range in the target map.  Inheritance
1881  *	affects how the map will be shared with
1882  *	child maps at the time of vmspace_fork.
1883  */
1884 int
1885 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
1886 	       vm_inherit_t new_inheritance)
1887 {
1888 	vm_map_entry_t entry;
1889 	vm_map_entry_t temp_entry;
1890 
1891 	switch (new_inheritance) {
1892 	case VM_INHERIT_NONE:
1893 	case VM_INHERIT_COPY:
1894 	case VM_INHERIT_SHARE:
1895 		break;
1896 	default:
1897 		return (KERN_INVALID_ARGUMENT);
1898 	}
1899 	vm_map_lock(map);
1900 	VM_MAP_RANGE_CHECK(map, start, end);
1901 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
1902 		entry = temp_entry;
1903 		vm_map_clip_start(map, entry, start);
1904 	} else
1905 		entry = temp_entry->next;
1906 	while ((entry != &map->header) && (entry->start < end)) {
1907 		vm_map_clip_end(map, entry, end);
1908 		entry->inheritance = new_inheritance;
1909 		vm_map_simplify_entry(map, entry);
1910 		entry = entry->next;
1911 	}
1912 	vm_map_unlock(map);
1913 	return (KERN_SUCCESS);
1914 }
1915 
1916 /*
1917  *	vm_map_unwire:
1918  *
1919  *	Implements both kernel and user unwiring.
1920  */
1921 int
1922 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1923     int flags)
1924 {
1925 	vm_map_entry_t entry, first_entry, tmp_entry;
1926 	vm_offset_t saved_start;
1927 	unsigned int last_timestamp;
1928 	int rv;
1929 	boolean_t need_wakeup, result, user_unwire;
1930 
1931 	user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
1932 	vm_map_lock(map);
1933 	VM_MAP_RANGE_CHECK(map, start, end);
1934 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
1935 		if (flags & VM_MAP_WIRE_HOLESOK)
1936 			first_entry = first_entry->next;
1937 		else {
1938 			vm_map_unlock(map);
1939 			return (KERN_INVALID_ADDRESS);
1940 		}
1941 	}
1942 	last_timestamp = map->timestamp;
1943 	entry = first_entry;
1944 	while (entry != &map->header && entry->start < end) {
1945 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1946 			/*
1947 			 * We have not yet clipped the entry.
1948 			 */
1949 			saved_start = (start >= entry->start) ? start :
1950 			    entry->start;
1951 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1952 			if (vm_map_unlock_and_wait(map, 0)) {
1953 				/*
1954 				 * Allow interruption of user unwiring?
1955 				 */
1956 			}
1957 			vm_map_lock(map);
1958 			if (last_timestamp+1 != map->timestamp) {
1959 				/*
1960 				 * Look again for the entry because the map was
1961 				 * modified while it was unlocked.
1962 				 * Specifically, the entry may have been
1963 				 * clipped, merged, or deleted.
1964 				 */
1965 				if (!vm_map_lookup_entry(map, saved_start,
1966 				    &tmp_entry)) {
1967 					if (flags & VM_MAP_WIRE_HOLESOK)
1968 						tmp_entry = tmp_entry->next;
1969 					else {
1970 						if (saved_start == start) {
1971 							/*
1972 							 * First_entry has been deleted.
1973 							 */
1974 							vm_map_unlock(map);
1975 							return (KERN_INVALID_ADDRESS);
1976 						}
1977 						end = saved_start;
1978 						rv = KERN_INVALID_ADDRESS;
1979 						goto done;
1980 					}
1981 				}
1982 				if (entry == first_entry)
1983 					first_entry = tmp_entry;
1984 				else
1985 					first_entry = NULL;
1986 				entry = tmp_entry;
1987 			}
1988 			last_timestamp = map->timestamp;
1989 			continue;
1990 		}
1991 		vm_map_clip_start(map, entry, start);
1992 		vm_map_clip_end(map, entry, end);
1993 		/*
1994 		 * Mark the entry in case the map lock is released.  (See
1995 		 * above.)
1996 		 */
1997 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
1998 		/*
1999 		 * Check the map for holes in the specified region.
2000 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2001 		 */
2002 		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2003 		    (entry->end < end && (entry->next == &map->header ||
2004 		    entry->next->start > entry->end))) {
2005 			end = entry->end;
2006 			rv = KERN_INVALID_ADDRESS;
2007 			goto done;
2008 		}
2009 		/*
2010 		 * If system unwiring, require that the entry is system wired.
2011 		 */
2012 		if (!user_unwire &&
2013 		    vm_map_entry_system_wired_count(entry) == 0) {
2014 			end = entry->end;
2015 			rv = KERN_INVALID_ARGUMENT;
2016 			goto done;
2017 		}
2018 		entry = entry->next;
2019 	}
2020 	rv = KERN_SUCCESS;
2021 done:
2022 	need_wakeup = FALSE;
2023 	if (first_entry == NULL) {
2024 		result = vm_map_lookup_entry(map, start, &first_entry);
2025 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2026 			first_entry = first_entry->next;
2027 		else
2028 			KASSERT(result, ("vm_map_unwire: lookup failed"));
2029 	}
2030 	entry = first_entry;
2031 	while (entry != &map->header && entry->start < end) {
2032 		if (rv == KERN_SUCCESS && (!user_unwire ||
2033 		    (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2034 			if (user_unwire)
2035 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2036 			entry->wired_count--;
2037 			if (entry->wired_count == 0) {
2038 				/*
2039 				 * Retain the map lock.
2040 				 */
2041 				vm_fault_unwire(map, entry->start, entry->end,
2042 				    entry->object.vm_object != NULL &&
2043 				    entry->object.vm_object->type == OBJT_DEVICE);
2044 			}
2045 		}
2046 		KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
2047 			("vm_map_unwire: in-transition flag missing"));
2048 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2049 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2050 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2051 			need_wakeup = TRUE;
2052 		}
2053 		vm_map_simplify_entry(map, entry);
2054 		entry = entry->next;
2055 	}
2056 	vm_map_unlock(map);
2057 	if (need_wakeup)
2058 		vm_map_wakeup(map);
2059 	return (rv);
2060 }
2061 
2062 /*
2063  *	vm_map_wire:
2064  *
2065  *	Implements both kernel and user wiring.
2066  */
2067 int
2068 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2069     int flags)
2070 {
2071 	vm_map_entry_t entry, first_entry, tmp_entry;
2072 	vm_offset_t saved_end, saved_start;
2073 	unsigned int last_timestamp;
2074 	int rv;
2075 	boolean_t fictitious, need_wakeup, result, user_wire;
2076 
2077 	user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2078 	vm_map_lock(map);
2079 	VM_MAP_RANGE_CHECK(map, start, end);
2080 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2081 		if (flags & VM_MAP_WIRE_HOLESOK)
2082 			first_entry = first_entry->next;
2083 		else {
2084 			vm_map_unlock(map);
2085 			return (KERN_INVALID_ADDRESS);
2086 		}
2087 	}
2088 	last_timestamp = map->timestamp;
2089 	entry = first_entry;
2090 	while (entry != &map->header && entry->start < end) {
2091 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2092 			/*
2093 			 * We have not yet clipped the entry.
2094 			 */
2095 			saved_start = (start >= entry->start) ? start :
2096 			    entry->start;
2097 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2098 			if (vm_map_unlock_and_wait(map, 0)) {
2099 				/*
2100 				 * Allow interruption of user wiring?
2101 				 */
2102 			}
2103 			vm_map_lock(map);
2104 			if (last_timestamp + 1 != map->timestamp) {
2105 				/*
2106 				 * Look again for the entry because the map was
2107 				 * modified while it was unlocked.
2108 				 * Specifically, the entry may have been
2109 				 * clipped, merged, or deleted.
2110 				 */
2111 				if (!vm_map_lookup_entry(map, saved_start,
2112 				    &tmp_entry)) {
2113 					if (flags & VM_MAP_WIRE_HOLESOK)
2114 						tmp_entry = tmp_entry->next;
2115 					else {
2116 						if (saved_start == start) {
2117 							/*
2118 							 * first_entry has been deleted.
2119 							 */
2120 							vm_map_unlock(map);
2121 							return (KERN_INVALID_ADDRESS);
2122 						}
2123 						end = saved_start;
2124 						rv = KERN_INVALID_ADDRESS;
2125 						goto done;
2126 					}
2127 				}
2128 				if (entry == first_entry)
2129 					first_entry = tmp_entry;
2130 				else
2131 					first_entry = NULL;
2132 				entry = tmp_entry;
2133 			}
2134 			last_timestamp = map->timestamp;
2135 			continue;
2136 		}
2137 		vm_map_clip_start(map, entry, start);
2138 		vm_map_clip_end(map, entry, end);
2139 		/*
2140 		 * Mark the entry in case the map lock is released.  (See
2141 		 * above.)
2142 		 */
2143 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2144 		/*
2145 		 *
2146 		 */
2147 		if (entry->wired_count == 0) {
2148 			entry->wired_count++;
2149 			saved_start = entry->start;
2150 			saved_end = entry->end;
2151 			fictitious = entry->object.vm_object != NULL &&
2152 			    entry->object.vm_object->type == OBJT_DEVICE;
2153 			/*
2154 			 * Release the map lock, relying on the in-transition
2155 			 * mark.
2156 			 */
2157 			vm_map_unlock(map);
2158 			rv = vm_fault_wire(map, saved_start, saved_end,
2159 			    user_wire, fictitious);
2160 			vm_map_lock(map);
2161 			if (last_timestamp + 1 != map->timestamp) {
2162 				/*
2163 				 * Look again for the entry because the map was
2164 				 * modified while it was unlocked.  The entry
2165 				 * may have been clipped, but NOT merged or
2166 				 * deleted.
2167 				 */
2168 				result = vm_map_lookup_entry(map, saved_start,
2169 				    &tmp_entry);
2170 				KASSERT(result, ("vm_map_wire: lookup failed"));
2171 				if (entry == first_entry)
2172 					first_entry = tmp_entry;
2173 				else
2174 					first_entry = NULL;
2175 				entry = tmp_entry;
2176 				while (entry->end < saved_end) {
2177 					if (rv != KERN_SUCCESS) {
2178 						KASSERT(entry->wired_count == 1,
2179 						    ("vm_map_wire: bad count"));
2180 						entry->wired_count = -1;
2181 					}
2182 					entry = entry->next;
2183 				}
2184 			}
2185 			last_timestamp = map->timestamp;
2186 			if (rv != KERN_SUCCESS) {
2187 				KASSERT(entry->wired_count == 1,
2188 				    ("vm_map_wire: bad count"));
2189 				/*
2190 				 * Assign an out-of-range value to represent
2191 				 * the failure to wire this entry.
2192 				 */
2193 				entry->wired_count = -1;
2194 				end = entry->end;
2195 				goto done;
2196 			}
2197 		} else if (!user_wire ||
2198 			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2199 			entry->wired_count++;
2200 		}
2201 		/*
2202 		 * Check the map for holes in the specified region.
2203 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2204 		 */
2205 		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2206 		    (entry->end < end && (entry->next == &map->header ||
2207 		    entry->next->start > entry->end))) {
2208 			end = entry->end;
2209 			rv = KERN_INVALID_ADDRESS;
2210 			goto done;
2211 		}
2212 		entry = entry->next;
2213 	}
2214 	rv = KERN_SUCCESS;
2215 done:
2216 	need_wakeup = FALSE;
2217 	if (first_entry == NULL) {
2218 		result = vm_map_lookup_entry(map, start, &first_entry);
2219 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2220 			first_entry = first_entry->next;
2221 		else
2222 			KASSERT(result, ("vm_map_wire: lookup failed"));
2223 	}
2224 	entry = first_entry;
2225 	while (entry != &map->header && entry->start < end) {
2226 		if (rv == KERN_SUCCESS) {
2227 			if (user_wire)
2228 				entry->eflags |= MAP_ENTRY_USER_WIRED;
2229 		} else if (entry->wired_count == -1) {
2230 			/*
2231 			 * Wiring failed on this entry.  Thus, unwiring is
2232 			 * unnecessary.
2233 			 */
2234 			entry->wired_count = 0;
2235 		} else {
2236 			if (!user_wire ||
2237 			    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0)
2238 				entry->wired_count--;
2239 			if (entry->wired_count == 0) {
2240 				/*
2241 				 * Retain the map lock.
2242 				 */
2243 				vm_fault_unwire(map, entry->start, entry->end,
2244 				    entry->object.vm_object != NULL &&
2245 				    entry->object.vm_object->type == OBJT_DEVICE);
2246 			}
2247 		}
2248 		KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
2249 			("vm_map_wire: in-transition flag missing"));
2250 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2251 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2252 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2253 			need_wakeup = TRUE;
2254 		}
2255 		vm_map_simplify_entry(map, entry);
2256 		entry = entry->next;
2257 	}
2258 	vm_map_unlock(map);
2259 	if (need_wakeup)
2260 		vm_map_wakeup(map);
2261 	return (rv);
2262 }
2263 
2264 /*
2265  * vm_map_sync
2266  *
2267  * Push any dirty cached pages in the address range to their pager.
2268  * If syncio is TRUE, dirty pages are written synchronously.
2269  * If invalidate is TRUE, any cached pages are freed as well.
2270  *
2271  * If the size of the region from start to end is zero, we are
2272  * supposed to flush all modified pages within the region containing
2273  * start.  Unfortunately, a region can be split or coalesced with
2274  * neighboring regions, making it difficult to determine what the
2275  * original region was.  Therefore, we approximate this requirement by
2276  * flushing the current region containing start.
2277  *
2278  * Returns an error if any part of the specified range is not mapped.
2279  */
2280 int
2281 vm_map_sync(
2282 	vm_map_t map,
2283 	vm_offset_t start,
2284 	vm_offset_t end,
2285 	boolean_t syncio,
2286 	boolean_t invalidate)
2287 {
2288 	vm_map_entry_t current;
2289 	vm_map_entry_t entry;
2290 	vm_size_t size;
2291 	vm_object_t object;
2292 	vm_ooffset_t offset;
2293 
2294 	vm_map_lock_read(map);
2295 	VM_MAP_RANGE_CHECK(map, start, end);
2296 	if (!vm_map_lookup_entry(map, start, &entry)) {
2297 		vm_map_unlock_read(map);
2298 		return (KERN_INVALID_ADDRESS);
2299 	} else if (start == end) {
2300 		start = entry->start;
2301 		end = entry->end;
2302 	}
2303 	/*
2304 	 * Make a first pass to check for user-wired memory and holes.
2305 	 */
2306 	for (current = entry; current != &map->header && current->start < end;
2307 	    current = current->next) {
2308 		if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
2309 			vm_map_unlock_read(map);
2310 			return (KERN_INVALID_ARGUMENT);
2311 		}
2312 		if (end > current->end &&
2313 		    (current->next == &map->header ||
2314 			current->end != current->next->start)) {
2315 			vm_map_unlock_read(map);
2316 			return (KERN_INVALID_ADDRESS);
2317 		}
2318 	}
2319 
2320 	if (invalidate)
2321 		pmap_remove(map->pmap, start, end);
2322 
2323 	/*
2324 	 * Make a second pass, cleaning/uncaching pages from the indicated
2325 	 * objects as we go.
2326 	 */
2327 	for (current = entry; current != &map->header && current->start < end;
2328 	    current = current->next) {
2329 		offset = current->offset + (start - current->start);
2330 		size = (end <= current->end ? end : current->end) - start;
2331 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2332 			vm_map_t smap;
2333 			vm_map_entry_t tentry;
2334 			vm_size_t tsize;
2335 
2336 			smap = current->object.sub_map;
2337 			vm_map_lock_read(smap);
2338 			(void) vm_map_lookup_entry(smap, offset, &tentry);
2339 			tsize = tentry->end - offset;
2340 			if (tsize < size)
2341 				size = tsize;
2342 			object = tentry->object.vm_object;
2343 			offset = tentry->offset + (offset - tentry->start);
2344 			vm_map_unlock_read(smap);
2345 		} else {
2346 			object = current->object.vm_object;
2347 		}
2348 		vm_object_sync(object, offset, size, syncio, invalidate);
2349 		start += size;
2350 	}
2351 
2352 	vm_map_unlock_read(map);
2353 	return (KERN_SUCCESS);
2354 }
2355 
2356 /*
2357  *	vm_map_entry_unwire:	[ internal use only ]
2358  *
2359  *	Make the region specified by this entry pageable.
2360  *
2361  *	The map in question should be locked.
2362  *	[This is the reason for this routine's existence.]
2363  */
2364 static void
2365 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2366 {
2367 	vm_fault_unwire(map, entry->start, entry->end,
2368 	    entry->object.vm_object != NULL &&
2369 	    entry->object.vm_object->type == OBJT_DEVICE);
2370 	entry->wired_count = 0;
2371 }
2372 
2373 /*
2374  *	vm_map_entry_delete:	[ internal use only ]
2375  *
2376  *	Deallocate the given entry from the target map.
2377  */
2378 static void
2379 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
2380 {
2381 	vm_object_t object;
2382 	vm_pindex_t offidxstart, offidxend, count;
2383 
2384 	vm_map_entry_unlink(map, entry);
2385 	map->size -= entry->end - entry->start;
2386 
2387 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2388 	    (object = entry->object.vm_object) != NULL) {
2389 		count = OFF_TO_IDX(entry->end - entry->start);
2390 		offidxstart = OFF_TO_IDX(entry->offset);
2391 		offidxend = offidxstart + count;
2392 		VM_OBJECT_LOCK(object);
2393 		if (object->ref_count != 1 &&
2394 		    ((object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
2395 		    object == kernel_object || object == kmem_object)) {
2396 			vm_object_collapse(object);
2397 			vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2398 			if (object->type == OBJT_SWAP)
2399 				swap_pager_freespace(object, offidxstart, count);
2400 			if (offidxend >= object->size &&
2401 			    offidxstart < object->size)
2402 				object->size = offidxstart;
2403 		}
2404 		VM_OBJECT_UNLOCK(object);
2405 		vm_object_deallocate(object);
2406 	}
2407 
2408 	vm_map_entry_dispose(map, entry);
2409 }
2410 
2411 /*
2412  *	vm_map_delete:	[ internal use only ]
2413  *
2414  *	Deallocates the given address range from the target
2415  *	map.
2416  */
2417 int
2418 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
2419 {
2420 	vm_map_entry_t entry;
2421 	vm_map_entry_t first_entry;
2422 
2423 	/*
2424 	 * Find the start of the region, and clip it
2425 	 */
2426 	if (!vm_map_lookup_entry(map, start, &first_entry))
2427 		entry = first_entry->next;
2428 	else {
2429 		entry = first_entry;
2430 		vm_map_clip_start(map, entry, start);
2431 	}
2432 
2433 	/*
2434 	 * Step through all entries in this region
2435 	 */
2436 	while ((entry != &map->header) && (entry->start < end)) {
2437 		vm_map_entry_t next;
2438 
2439 		/*
2440 		 * Wait for wiring or unwiring of an entry to complete.
2441 		 * Also wait for any system wirings to disappear on
2442 		 * user maps.
2443 		 */
2444 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
2445 		    (vm_map_pmap(map) != kernel_pmap &&
2446 		    vm_map_entry_system_wired_count(entry) != 0)) {
2447 			unsigned int last_timestamp;
2448 			vm_offset_t saved_start;
2449 			vm_map_entry_t tmp_entry;
2450 
2451 			saved_start = entry->start;
2452 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2453 			last_timestamp = map->timestamp;
2454 			(void) vm_map_unlock_and_wait(map, 0);
2455 			vm_map_lock(map);
2456 			if (last_timestamp + 1 != map->timestamp) {
2457 				/*
2458 				 * Look again for the entry because the map was
2459 				 * modified while it was unlocked.
2460 				 * Specifically, the entry may have been
2461 				 * clipped, merged, or deleted.
2462 				 */
2463 				if (!vm_map_lookup_entry(map, saved_start,
2464 							 &tmp_entry))
2465 					entry = tmp_entry->next;
2466 				else {
2467 					entry = tmp_entry;
2468 					vm_map_clip_start(map, entry,
2469 							  saved_start);
2470 				}
2471 			}
2472 			continue;
2473 		}
2474 		vm_map_clip_end(map, entry, end);
2475 
2476 		next = entry->next;
2477 
2478 		/*
2479 		 * Unwire before removing addresses from the pmap; otherwise,
2480 		 * unwiring will put the entries back in the pmap.
2481 		 */
2482 		if (entry->wired_count != 0) {
2483 			vm_map_entry_unwire(map, entry);
2484 		}
2485 
2486 		pmap_remove(map->pmap, entry->start, entry->end);
2487 
2488 		/*
2489 		 * Delete the entry (which may delete the object) only after
2490 		 * removing all pmap entries pointing to its pages.
2491 		 * (Otherwise, its page frames may be reallocated, and any
2492 		 * modify bits will be set in the wrong object!)
2493 		 */
2494 		vm_map_entry_delete(map, entry);
2495 		entry = next;
2496 	}
2497 	return (KERN_SUCCESS);
2498 }
2499 
2500 /*
2501  *	vm_map_remove:
2502  *
2503  *	Remove the given address range from the target map.
2504  *	This is the exported form of vm_map_delete.
2505  */
2506 int
2507 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2508 {
2509 	int result;
2510 
2511 	vm_map_lock(map);
2512 	VM_MAP_RANGE_CHECK(map, start, end);
2513 	result = vm_map_delete(map, start, end);
2514 	vm_map_unlock(map);
2515 	return (result);
2516 }
2517 
2518 /*
2519  *	vm_map_check_protection:
2520  *
2521  *	Assert that the target map allows the specified privilege on the
2522  *	entire address region given.  The entire region must be allocated.
2523  *
2524  *	WARNING!  This code does not and should not check whether the
2525  *	contents of the region is accessible.  For example a smaller file
2526  *	might be mapped into a larger address space.
2527  *
2528  *	NOTE!  This code is also called by munmap().
2529  *
2530  *	The map must be locked.  A read lock is sufficient.
2531  */
2532 boolean_t
2533 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2534 			vm_prot_t protection)
2535 {
2536 	vm_map_entry_t entry;
2537 	vm_map_entry_t tmp_entry;
2538 
2539 	if (!vm_map_lookup_entry(map, start, &tmp_entry))
2540 		return (FALSE);
2541 	entry = tmp_entry;
2542 
2543 	while (start < end) {
2544 		if (entry == &map->header)
2545 			return (FALSE);
2546 		/*
2547 		 * No holes allowed!
2548 		 */
2549 		if (start < entry->start)
2550 			return (FALSE);
2551 		/*
2552 		 * Check protection associated with entry.
2553 		 */
2554 		if ((entry->protection & protection) != protection)
2555 			return (FALSE);
2556 		/* go to next entry */
2557 		start = entry->end;
2558 		entry = entry->next;
2559 	}
2560 	return (TRUE);
2561 }
2562 
2563 /*
2564  *	vm_map_copy_entry:
2565  *
2566  *	Copies the contents of the source entry to the destination
2567  *	entry.  The entries *must* be aligned properly.
2568  */
2569 static void
2570 vm_map_copy_entry(
2571 	vm_map_t src_map,
2572 	vm_map_t dst_map,
2573 	vm_map_entry_t src_entry,
2574 	vm_map_entry_t dst_entry)
2575 {
2576 	vm_object_t src_object;
2577 
2578 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
2579 		return;
2580 
2581 	if (src_entry->wired_count == 0) {
2582 
2583 		/*
2584 		 * If the source entry is marked needs_copy, it is already
2585 		 * write-protected.
2586 		 */
2587 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2588 			pmap_protect(src_map->pmap,
2589 			    src_entry->start,
2590 			    src_entry->end,
2591 			    src_entry->protection & ~VM_PROT_WRITE);
2592 		}
2593 
2594 		/*
2595 		 * Make a copy of the object.
2596 		 */
2597 		if ((src_object = src_entry->object.vm_object) != NULL) {
2598 			VM_OBJECT_LOCK(src_object);
2599 			if ((src_object->handle == NULL) &&
2600 				(src_object->type == OBJT_DEFAULT ||
2601 				 src_object->type == OBJT_SWAP)) {
2602 				vm_object_collapse(src_object);
2603 				if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
2604 					vm_object_split(src_entry);
2605 					src_object = src_entry->object.vm_object;
2606 				}
2607 			}
2608 			vm_object_reference_locked(src_object);
2609 			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
2610 			VM_OBJECT_UNLOCK(src_object);
2611 			dst_entry->object.vm_object = src_object;
2612 			src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2613 			dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2614 			dst_entry->offset = src_entry->offset;
2615 		} else {
2616 			dst_entry->object.vm_object = NULL;
2617 			dst_entry->offset = 0;
2618 		}
2619 
2620 		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
2621 		    dst_entry->end - dst_entry->start, src_entry->start);
2622 	} else {
2623 		/*
2624 		 * Of course, wired down pages can't be set copy-on-write.
2625 		 * Cause wired pages to be copied into the new map by
2626 		 * simulating faults (the new pages are pageable)
2627 		 */
2628 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
2629 	}
2630 }
2631 
2632 /*
2633  * vmspace_map_entry_forked:
2634  * Update the newly-forked vmspace each time a map entry is inherited
2635  * or copied.  The values for vm_dsize and vm_tsize are approximate
2636  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
2637  */
2638 static void
2639 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
2640     vm_map_entry_t entry)
2641 {
2642 	vm_size_t entrysize;
2643 	vm_offset_t newend;
2644 
2645 	entrysize = entry->end - entry->start;
2646 	vm2->vm_map.size += entrysize;
2647 	if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
2648 		vm2->vm_ssize += btoc(entrysize);
2649 	} else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
2650 	    entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
2651 		newend = MIN(entry->end,
2652 		    (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
2653 		vm2->vm_dsize += btoc(newend - entry->start);
2654 	} else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
2655 	    entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
2656 		newend = MIN(entry->end,
2657 		    (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
2658 		vm2->vm_tsize += btoc(newend - entry->start);
2659 	}
2660 }
2661 
2662 /*
2663  * vmspace_fork:
2664  * Create a new process vmspace structure and vm_map
2665  * based on those of an existing process.  The new map
2666  * is based on the old map, according to the inheritance
2667  * values on the regions in that map.
2668  *
2669  * XXX It might be worth coalescing the entries added to the new vmspace.
2670  *
2671  * The source map must not be locked.
2672  */
2673 struct vmspace *
2674 vmspace_fork(struct vmspace *vm1)
2675 {
2676 	struct vmspace *vm2;
2677 	vm_map_t old_map = &vm1->vm_map;
2678 	vm_map_t new_map;
2679 	vm_map_entry_t old_entry;
2680 	vm_map_entry_t new_entry;
2681 	vm_object_t object;
2682 
2683 	vm_map_lock(old_map);
2684 
2685 	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
2686 	if (vm2 == NULL)
2687 		goto unlock_and_return;
2688 	vm2->vm_taddr = vm1->vm_taddr;
2689 	vm2->vm_daddr = vm1->vm_daddr;
2690 	vm2->vm_maxsaddr = vm1->vm_maxsaddr;
2691 	new_map = &vm2->vm_map;	/* XXX */
2692 	new_map->timestamp = 1;
2693 
2694 	old_entry = old_map->header.next;
2695 
2696 	while (old_entry != &old_map->header) {
2697 		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2698 			panic("vm_map_fork: encountered a submap");
2699 
2700 		switch (old_entry->inheritance) {
2701 		case VM_INHERIT_NONE:
2702 			break;
2703 
2704 		case VM_INHERIT_SHARE:
2705 			/*
2706 			 * Clone the entry, creating the shared object if necessary.
2707 			 */
2708 			object = old_entry->object.vm_object;
2709 			if (object == NULL) {
2710 				object = vm_object_allocate(OBJT_DEFAULT,
2711 					atop(old_entry->end - old_entry->start));
2712 				old_entry->object.vm_object = object;
2713 				old_entry->offset = 0;
2714 			}
2715 
2716 			/*
2717 			 * Add the reference before calling vm_object_shadow
2718 			 * to insure that a shadow object is created.
2719 			 */
2720 			vm_object_reference(object);
2721 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
2722 				vm_object_shadow(&old_entry->object.vm_object,
2723 					&old_entry->offset,
2724 					atop(old_entry->end - old_entry->start));
2725 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
2726 				/* Transfer the second reference too. */
2727 				vm_object_reference(
2728 				    old_entry->object.vm_object);
2729 				vm_object_deallocate(object);
2730 				object = old_entry->object.vm_object;
2731 			}
2732 			VM_OBJECT_LOCK(object);
2733 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
2734 			VM_OBJECT_UNLOCK(object);
2735 
2736 			/*
2737 			 * Clone the entry, referencing the shared object.
2738 			 */
2739 			new_entry = vm_map_entry_create(new_map);
2740 			*new_entry = *old_entry;
2741 			new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2742 			new_entry->wired_count = 0;
2743 
2744 			/*
2745 			 * Insert the entry into the new map -- we know we're
2746 			 * inserting at the end of the new map.
2747 			 */
2748 			vm_map_entry_link(new_map, new_map->header.prev,
2749 			    new_entry);
2750 			vmspace_map_entry_forked(vm1, vm2, new_entry);
2751 
2752 			/*
2753 			 * Update the physical map
2754 			 */
2755 			pmap_copy(new_map->pmap, old_map->pmap,
2756 			    new_entry->start,
2757 			    (old_entry->end - old_entry->start),
2758 			    old_entry->start);
2759 			break;
2760 
2761 		case VM_INHERIT_COPY:
2762 			/*
2763 			 * Clone the entry and link into the map.
2764 			 */
2765 			new_entry = vm_map_entry_create(new_map);
2766 			*new_entry = *old_entry;
2767 			new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2768 			new_entry->wired_count = 0;
2769 			new_entry->object.vm_object = NULL;
2770 			vm_map_entry_link(new_map, new_map->header.prev,
2771 			    new_entry);
2772 			vmspace_map_entry_forked(vm1, vm2, new_entry);
2773 			vm_map_copy_entry(old_map, new_map, old_entry,
2774 			    new_entry);
2775 			break;
2776 		}
2777 		old_entry = old_entry->next;
2778 	}
2779 unlock_and_return:
2780 	vm_map_unlock(old_map);
2781 
2782 	return (vm2);
2783 }
2784 
2785 int
2786 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
2787     vm_prot_t prot, vm_prot_t max, int cow)
2788 {
2789 	vm_map_entry_t new_entry, prev_entry;
2790 	vm_offset_t bot, top;
2791 	vm_size_t init_ssize;
2792 	int orient, rv;
2793 	rlim_t vmemlim;
2794 
2795 	/*
2796 	 * The stack orientation is piggybacked with the cow argument.
2797 	 * Extract it into orient and mask the cow argument so that we
2798 	 * don't pass it around further.
2799 	 * NOTE: We explicitly allow bi-directional stacks.
2800 	 */
2801 	orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP);
2802 	cow &= ~orient;
2803 	KASSERT(orient != 0, ("No stack grow direction"));
2804 
2805 	if (addrbos < vm_map_min(map) ||
2806 	    addrbos > vm_map_max(map) ||
2807 	    addrbos + max_ssize < addrbos)
2808 		return (KERN_NO_SPACE);
2809 
2810 	init_ssize = (max_ssize < sgrowsiz) ? max_ssize : sgrowsiz;
2811 
2812 	PROC_LOCK(curthread->td_proc);
2813 	vmemlim = lim_cur(curthread->td_proc, RLIMIT_VMEM);
2814 	PROC_UNLOCK(curthread->td_proc);
2815 
2816 	vm_map_lock(map);
2817 
2818 	/* If addr is already mapped, no go */
2819 	if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
2820 		vm_map_unlock(map);
2821 		return (KERN_NO_SPACE);
2822 	}
2823 
2824 	/* If we would blow our VMEM resource limit, no go */
2825 	if (map->size + init_ssize > vmemlim) {
2826 		vm_map_unlock(map);
2827 		return (KERN_NO_SPACE);
2828 	}
2829 
2830 	/*
2831 	 * If we can't accomodate max_ssize in the current mapping, no go.
2832 	 * However, we need to be aware that subsequent user mappings might
2833 	 * map into the space we have reserved for stack, and currently this
2834 	 * space is not protected.
2835 	 *
2836 	 * Hopefully we will at least detect this condition when we try to
2837 	 * grow the stack.
2838 	 */
2839 	if ((prev_entry->next != &map->header) &&
2840 	    (prev_entry->next->start < addrbos + max_ssize)) {
2841 		vm_map_unlock(map);
2842 		return (KERN_NO_SPACE);
2843 	}
2844 
2845 	/*
2846 	 * We initially map a stack of only init_ssize.  We will grow as
2847 	 * needed later.  Depending on the orientation of the stack (i.e.
2848 	 * the grow direction) we either map at the top of the range, the
2849 	 * bottom of the range or in the middle.
2850 	 *
2851 	 * Note: we would normally expect prot and max to be VM_PROT_ALL,
2852 	 * and cow to be 0.  Possibly we should eliminate these as input
2853 	 * parameters, and just pass these values here in the insert call.
2854 	 */
2855 	if (orient == MAP_STACK_GROWS_DOWN)
2856 		bot = addrbos + max_ssize - init_ssize;
2857 	else if (orient == MAP_STACK_GROWS_UP)
2858 		bot = addrbos;
2859 	else
2860 		bot = round_page(addrbos + max_ssize/2 - init_ssize/2);
2861 	top = bot + init_ssize;
2862 	rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
2863 
2864 	/* Now set the avail_ssize amount. */
2865 	if (rv == KERN_SUCCESS) {
2866 		if (prev_entry != &map->header)
2867 			vm_map_clip_end(map, prev_entry, bot);
2868 		new_entry = prev_entry->next;
2869 		if (new_entry->end != top || new_entry->start != bot)
2870 			panic("Bad entry start/end for new stack entry");
2871 
2872 		new_entry->avail_ssize = max_ssize - init_ssize;
2873 		if (orient & MAP_STACK_GROWS_DOWN)
2874 			new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
2875 		if (orient & MAP_STACK_GROWS_UP)
2876 			new_entry->eflags |= MAP_ENTRY_GROWS_UP;
2877 	}
2878 
2879 	vm_map_unlock(map);
2880 	return (rv);
2881 }
2882 
2883 /* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
2884  * desired address is already mapped, or if we successfully grow
2885  * the stack.  Also returns KERN_SUCCESS if addr is outside the
2886  * stack range (this is strange, but preserves compatibility with
2887  * the grow function in vm_machdep.c).
2888  */
2889 int
2890 vm_map_growstack(struct proc *p, vm_offset_t addr)
2891 {
2892 	vm_map_entry_t next_entry, prev_entry;
2893 	vm_map_entry_t new_entry, stack_entry;
2894 	struct vmspace *vm = p->p_vmspace;
2895 	vm_map_t map = &vm->vm_map;
2896 	vm_offset_t end;
2897 	size_t grow_amount, max_grow;
2898 	rlim_t stacklim, vmemlim;
2899 	int is_procstack, rv;
2900 
2901 Retry:
2902 	PROC_LOCK(p);
2903 	stacklim = lim_cur(p, RLIMIT_STACK);
2904 	vmemlim = lim_cur(p, RLIMIT_VMEM);
2905 	PROC_UNLOCK(p);
2906 
2907 	vm_map_lock_read(map);
2908 
2909 	/* If addr is already in the entry range, no need to grow.*/
2910 	if (vm_map_lookup_entry(map, addr, &prev_entry)) {
2911 		vm_map_unlock_read(map);
2912 		return (KERN_SUCCESS);
2913 	}
2914 
2915 	next_entry = prev_entry->next;
2916 	if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) {
2917 		/*
2918 		 * This entry does not grow upwards. Since the address lies
2919 		 * beyond this entry, the next entry (if one exists) has to
2920 		 * be a downward growable entry. The entry list header is
2921 		 * never a growable entry, so it suffices to check the flags.
2922 		 */
2923 		if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) {
2924 			vm_map_unlock_read(map);
2925 			return (KERN_SUCCESS);
2926 		}
2927 		stack_entry = next_entry;
2928 	} else {
2929 		/*
2930 		 * This entry grows upward. If the next entry does not at
2931 		 * least grow downwards, this is the entry we need to grow.
2932 		 * otherwise we have two possible choices and we have to
2933 		 * select one.
2934 		 */
2935 		if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) {
2936 			/*
2937 			 * We have two choices; grow the entry closest to
2938 			 * the address to minimize the amount of growth.
2939 			 */
2940 			if (addr - prev_entry->end <= next_entry->start - addr)
2941 				stack_entry = prev_entry;
2942 			else
2943 				stack_entry = next_entry;
2944 		} else
2945 			stack_entry = prev_entry;
2946 	}
2947 
2948 	if (stack_entry == next_entry) {
2949 		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo"));
2950 		KASSERT(addr < stack_entry->start, ("foo"));
2951 		end = (prev_entry != &map->header) ? prev_entry->end :
2952 		    stack_entry->start - stack_entry->avail_ssize;
2953 		grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE);
2954 		max_grow = stack_entry->start - end;
2955 	} else {
2956 		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo"));
2957 		KASSERT(addr >= stack_entry->end, ("foo"));
2958 		end = (next_entry != &map->header) ? next_entry->start :
2959 		    stack_entry->end + stack_entry->avail_ssize;
2960 		grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE);
2961 		max_grow = end - stack_entry->end;
2962 	}
2963 
2964 	if (grow_amount > stack_entry->avail_ssize) {
2965 		vm_map_unlock_read(map);
2966 		return (KERN_NO_SPACE);
2967 	}
2968 
2969 	/*
2970 	 * If there is no longer enough space between the entries nogo, and
2971 	 * adjust the available space.  Note: this  should only happen if the
2972 	 * user has mapped into the stack area after the stack was created,
2973 	 * and is probably an error.
2974 	 *
2975 	 * This also effectively destroys any guard page the user might have
2976 	 * intended by limiting the stack size.
2977 	 */
2978 	if (grow_amount > max_grow) {
2979 		if (vm_map_lock_upgrade(map))
2980 			goto Retry;
2981 
2982 		stack_entry->avail_ssize = max_grow;
2983 
2984 		vm_map_unlock(map);
2985 		return (KERN_NO_SPACE);
2986 	}
2987 
2988 	is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr) ? 1 : 0;
2989 
2990 	/*
2991 	 * If this is the main process stack, see if we're over the stack
2992 	 * limit.
2993 	 */
2994 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
2995 		vm_map_unlock_read(map);
2996 		return (KERN_NO_SPACE);
2997 	}
2998 
2999 	/* Round up the grow amount modulo SGROWSIZ */
3000 	grow_amount = roundup (grow_amount, sgrowsiz);
3001 	if (grow_amount > stack_entry->avail_ssize)
3002 		grow_amount = stack_entry->avail_ssize;
3003 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3004 		grow_amount = stacklim - ctob(vm->vm_ssize);
3005 	}
3006 
3007 	/* If we would blow our VMEM resource limit, no go */
3008 	if (map->size + grow_amount > vmemlim) {
3009 		vm_map_unlock_read(map);
3010 		return (KERN_NO_SPACE);
3011 	}
3012 
3013 	if (vm_map_lock_upgrade(map))
3014 		goto Retry;
3015 
3016 	if (stack_entry == next_entry) {
3017 		/*
3018 		 * Growing downward.
3019 		 */
3020 		/* Get the preliminary new entry start value */
3021 		addr = stack_entry->start - grow_amount;
3022 
3023 		/*
3024 		 * If this puts us into the previous entry, cut back our
3025 		 * growth to the available space. Also, see the note above.
3026 		 */
3027 		if (addr < end) {
3028 			stack_entry->avail_ssize = max_grow;
3029 			addr = end;
3030 		}
3031 
3032 		rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start,
3033 		    p->p_sysent->sv_stackprot, VM_PROT_ALL, 0);
3034 
3035 		/* Adjust the available stack space by the amount we grew. */
3036 		if (rv == KERN_SUCCESS) {
3037 			if (prev_entry != &map->header)
3038 				vm_map_clip_end(map, prev_entry, addr);
3039 			new_entry = prev_entry->next;
3040 			KASSERT(new_entry == stack_entry->prev, ("foo"));
3041 			KASSERT(new_entry->end == stack_entry->start, ("foo"));
3042 			KASSERT(new_entry->start == addr, ("foo"));
3043 			grow_amount = new_entry->end - new_entry->start;
3044 			new_entry->avail_ssize = stack_entry->avail_ssize -
3045 			    grow_amount;
3046 			stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN;
3047 			new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
3048 		}
3049 	} else {
3050 		/*
3051 		 * Growing upward.
3052 		 */
3053 		addr = stack_entry->end + grow_amount;
3054 
3055 		/*
3056 		 * If this puts us into the next entry, cut back our growth
3057 		 * to the available space. Also, see the note above.
3058 		 */
3059 		if (addr > end) {
3060 			stack_entry->avail_ssize = end - stack_entry->end;
3061 			addr = end;
3062 		}
3063 
3064 		grow_amount = addr - stack_entry->end;
3065 
3066 		/* Grow the underlying object if applicable. */
3067 		if (stack_entry->object.vm_object == NULL ||
3068 		    vm_object_coalesce(stack_entry->object.vm_object,
3069 		    stack_entry->offset,
3070 		    (vm_size_t)(stack_entry->end - stack_entry->start),
3071 		    (vm_size_t)grow_amount)) {
3072 			map->size += (addr - stack_entry->end);
3073 			/* Update the current entry. */
3074 			stack_entry->end = addr;
3075 			stack_entry->avail_ssize -= grow_amount;
3076 			vm_map_entry_resize_free(map, stack_entry);
3077 			rv = KERN_SUCCESS;
3078 
3079 			if (next_entry != &map->header)
3080 				vm_map_clip_start(map, next_entry, addr);
3081 		} else
3082 			rv = KERN_FAILURE;
3083 	}
3084 
3085 	if (rv == KERN_SUCCESS && is_procstack)
3086 		vm->vm_ssize += btoc(grow_amount);
3087 
3088 	vm_map_unlock(map);
3089 
3090 	/*
3091 	 * Heed the MAP_WIREFUTURE flag if it was set for this process.
3092 	 */
3093 	if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) {
3094 		vm_map_wire(map,
3095 		    (stack_entry == next_entry) ? addr : addr - grow_amount,
3096 		    (stack_entry == next_entry) ? stack_entry->start : addr,
3097 		    (p->p_flag & P_SYSTEM)
3098 		    ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES
3099 		    : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES);
3100 	}
3101 
3102 	return (rv);
3103 }
3104 
3105 /*
3106  * Unshare the specified VM space for exec.  If other processes are
3107  * mapped to it, then create a new one.  The new vmspace is null.
3108  */
3109 int
3110 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
3111 {
3112 	struct vmspace *oldvmspace = p->p_vmspace;
3113 	struct vmspace *newvmspace;
3114 
3115 	newvmspace = vmspace_alloc(minuser, maxuser);
3116 	if (newvmspace == NULL)
3117 		return (ENOMEM);
3118 	newvmspace->vm_swrss = oldvmspace->vm_swrss;
3119 	/*
3120 	 * This code is written like this for prototype purposes.  The
3121 	 * goal is to avoid running down the vmspace here, but let the
3122 	 * other process's that are still using the vmspace to finally
3123 	 * run it down.  Even though there is little or no chance of blocking
3124 	 * here, it is a good idea to keep this form for future mods.
3125 	 */
3126 	PROC_VMSPACE_LOCK(p);
3127 	p->p_vmspace = newvmspace;
3128 	PROC_VMSPACE_UNLOCK(p);
3129 	if (p == curthread->td_proc)
3130 		pmap_activate(curthread);
3131 	vmspace_free(oldvmspace);
3132 	return (0);
3133 }
3134 
3135 /*
3136  * Unshare the specified VM space for forcing COW.  This
3137  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3138  */
3139 int
3140 vmspace_unshare(struct proc *p)
3141 {
3142 	struct vmspace *oldvmspace = p->p_vmspace;
3143 	struct vmspace *newvmspace;
3144 
3145 	if (oldvmspace->vm_refcnt == 1)
3146 		return (0);
3147 	newvmspace = vmspace_fork(oldvmspace);
3148 	if (newvmspace == NULL)
3149 		return (ENOMEM);
3150 	PROC_VMSPACE_LOCK(p);
3151 	p->p_vmspace = newvmspace;
3152 	PROC_VMSPACE_UNLOCK(p);
3153 	if (p == curthread->td_proc)
3154 		pmap_activate(curthread);
3155 	vmspace_free(oldvmspace);
3156 	return (0);
3157 }
3158 
3159 /*
3160  *	vm_map_lookup:
3161  *
3162  *	Finds the VM object, offset, and
3163  *	protection for a given virtual address in the
3164  *	specified map, assuming a page fault of the
3165  *	type specified.
3166  *
3167  *	Leaves the map in question locked for read; return
3168  *	values are guaranteed until a vm_map_lookup_done
3169  *	call is performed.  Note that the map argument
3170  *	is in/out; the returned map must be used in
3171  *	the call to vm_map_lookup_done.
3172  *
3173  *	A handle (out_entry) is returned for use in
3174  *	vm_map_lookup_done, to make that fast.
3175  *
3176  *	If a lookup is requested with "write protection"
3177  *	specified, the map may be changed to perform virtual
3178  *	copying operations, although the data referenced will
3179  *	remain the same.
3180  */
3181 int
3182 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
3183 	      vm_offset_t vaddr,
3184 	      vm_prot_t fault_typea,
3185 	      vm_map_entry_t *out_entry,	/* OUT */
3186 	      vm_object_t *object,		/* OUT */
3187 	      vm_pindex_t *pindex,		/* OUT */
3188 	      vm_prot_t *out_prot,		/* OUT */
3189 	      boolean_t *wired)			/* OUT */
3190 {
3191 	vm_map_entry_t entry;
3192 	vm_map_t map = *var_map;
3193 	vm_prot_t prot;
3194 	vm_prot_t fault_type = fault_typea;
3195 
3196 RetryLookup:;
3197 
3198 	vm_map_lock_read(map);
3199 
3200 	/*
3201 	 * Lookup the faulting address.
3202 	 */
3203 	if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
3204 		vm_map_unlock_read(map);
3205 		return (KERN_INVALID_ADDRESS);
3206 	}
3207 
3208 	entry = *out_entry;
3209 
3210 	/*
3211 	 * Handle submaps.
3212 	 */
3213 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3214 		vm_map_t old_map = map;
3215 
3216 		*var_map = map = entry->object.sub_map;
3217 		vm_map_unlock_read(old_map);
3218 		goto RetryLookup;
3219 	}
3220 
3221 	/*
3222 	 * Check whether this task is allowed to have this page.
3223 	 * Note the special case for MAP_ENTRY_COW
3224 	 * pages with an override.  This is to implement a forced
3225 	 * COW for debuggers.
3226 	 */
3227 	if (fault_type & VM_PROT_OVERRIDE_WRITE)
3228 		prot = entry->max_protection;
3229 	else
3230 		prot = entry->protection;
3231 	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3232 	if ((fault_type & prot) != fault_type) {
3233 		vm_map_unlock_read(map);
3234 		return (KERN_PROTECTION_FAILURE);
3235 	}
3236 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3237 	    (entry->eflags & MAP_ENTRY_COW) &&
3238 	    (fault_type & VM_PROT_WRITE) &&
3239 	    (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
3240 		vm_map_unlock_read(map);
3241 		return (KERN_PROTECTION_FAILURE);
3242 	}
3243 
3244 	/*
3245 	 * If this page is not pageable, we have to get it for all possible
3246 	 * accesses.
3247 	 */
3248 	*wired = (entry->wired_count != 0);
3249 	if (*wired)
3250 		prot = fault_type = entry->protection;
3251 
3252 	/*
3253 	 * If the entry was copy-on-write, we either ...
3254 	 */
3255 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3256 		/*
3257 		 * If we want to write the page, we may as well handle that
3258 		 * now since we've got the map locked.
3259 		 *
3260 		 * If we don't need to write the page, we just demote the
3261 		 * permissions allowed.
3262 		 */
3263 		if (fault_type & VM_PROT_WRITE) {
3264 			/*
3265 			 * Make a new object, and place it in the object
3266 			 * chain.  Note that no new references have appeared
3267 			 * -- one just moved from the map to the new
3268 			 * object.
3269 			 */
3270 			if (vm_map_lock_upgrade(map))
3271 				goto RetryLookup;
3272 
3273 			vm_object_shadow(
3274 			    &entry->object.vm_object,
3275 			    &entry->offset,
3276 			    atop(entry->end - entry->start));
3277 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3278 
3279 			vm_map_lock_downgrade(map);
3280 		} else {
3281 			/*
3282 			 * We're attempting to read a copy-on-write page --
3283 			 * don't allow writes.
3284 			 */
3285 			prot &= ~VM_PROT_WRITE;
3286 		}
3287 	}
3288 
3289 	/*
3290 	 * Create an object if necessary.
3291 	 */
3292 	if (entry->object.vm_object == NULL &&
3293 	    !map->system_map) {
3294 		if (vm_map_lock_upgrade(map))
3295 			goto RetryLookup;
3296 		entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
3297 		    atop(entry->end - entry->start));
3298 		entry->offset = 0;
3299 		vm_map_lock_downgrade(map);
3300 	}
3301 
3302 	/*
3303 	 * Return the object/offset from this entry.  If the entry was
3304 	 * copy-on-write or empty, it has been fixed up.
3305 	 */
3306 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3307 	*object = entry->object.vm_object;
3308 
3309 	*out_prot = prot;
3310 	return (KERN_SUCCESS);
3311 }
3312 
3313 /*
3314  *	vm_map_lookup_locked:
3315  *
3316  *	Lookup the faulting address.  A version of vm_map_lookup that returns
3317  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
3318  */
3319 int
3320 vm_map_lookup_locked(vm_map_t *var_map,		/* IN/OUT */
3321 		     vm_offset_t vaddr,
3322 		     vm_prot_t fault_typea,
3323 		     vm_map_entry_t *out_entry,	/* OUT */
3324 		     vm_object_t *object,	/* OUT */
3325 		     vm_pindex_t *pindex,	/* OUT */
3326 		     vm_prot_t *out_prot,	/* OUT */
3327 		     boolean_t *wired)		/* OUT */
3328 {
3329 	vm_map_entry_t entry;
3330 	vm_map_t map = *var_map;
3331 	vm_prot_t prot;
3332 	vm_prot_t fault_type = fault_typea;
3333 
3334 	/*
3335 	 * Lookup the faulting address.
3336 	 */
3337 	if (!vm_map_lookup_entry(map, vaddr, out_entry))
3338 		return (KERN_INVALID_ADDRESS);
3339 
3340 	entry = *out_entry;
3341 
3342 	/*
3343 	 * Fail if the entry refers to a submap.
3344 	 */
3345 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3346 		return (KERN_FAILURE);
3347 
3348 	/*
3349 	 * Check whether this task is allowed to have this page.
3350 	 * Note the special case for MAP_ENTRY_COW
3351 	 * pages with an override.  This is to implement a forced
3352 	 * COW for debuggers.
3353 	 */
3354 	if (fault_type & VM_PROT_OVERRIDE_WRITE)
3355 		prot = entry->max_protection;
3356 	else
3357 		prot = entry->protection;
3358 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
3359 	if ((fault_type & prot) != fault_type)
3360 		return (KERN_PROTECTION_FAILURE);
3361 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3362 	    (entry->eflags & MAP_ENTRY_COW) &&
3363 	    (fault_type & VM_PROT_WRITE) &&
3364 	    (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0)
3365 		return (KERN_PROTECTION_FAILURE);
3366 
3367 	/*
3368 	 * If this page is not pageable, we have to get it for all possible
3369 	 * accesses.
3370 	 */
3371 	*wired = (entry->wired_count != 0);
3372 	if (*wired)
3373 		prot = fault_type = entry->protection;
3374 
3375 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3376 		/*
3377 		 * Fail if the entry was copy-on-write for a write fault.
3378 		 */
3379 		if (fault_type & VM_PROT_WRITE)
3380 			return (KERN_FAILURE);
3381 		/*
3382 		 * We're attempting to read a copy-on-write page --
3383 		 * don't allow writes.
3384 		 */
3385 		prot &= ~VM_PROT_WRITE;
3386 	}
3387 
3388 	/*
3389 	 * Fail if an object should be created.
3390 	 */
3391 	if (entry->object.vm_object == NULL && !map->system_map)
3392 		return (KERN_FAILURE);
3393 
3394 	/*
3395 	 * Return the object/offset from this entry.  If the entry was
3396 	 * copy-on-write or empty, it has been fixed up.
3397 	 */
3398 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3399 	*object = entry->object.vm_object;
3400 
3401 	*out_prot = prot;
3402 	return (KERN_SUCCESS);
3403 }
3404 
3405 /*
3406  *	vm_map_lookup_done:
3407  *
3408  *	Releases locks acquired by a vm_map_lookup
3409  *	(according to the handle returned by that lookup).
3410  */
3411 void
3412 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
3413 {
3414 	/*
3415 	 * Unlock the main-level map
3416 	 */
3417 	vm_map_unlock_read(map);
3418 }
3419 
3420 #include "opt_ddb.h"
3421 #ifdef DDB
3422 #include <sys/kernel.h>
3423 
3424 #include <ddb/ddb.h>
3425 
3426 /*
3427  *	vm_map_print:	[ debug ]
3428  */
3429 DB_SHOW_COMMAND(map, vm_map_print)
3430 {
3431 	static int nlines;
3432 	/* XXX convert args. */
3433 	vm_map_t map = (vm_map_t)addr;
3434 	boolean_t full = have_addr;
3435 
3436 	vm_map_entry_t entry;
3437 
3438 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
3439 	    (void *)map,
3440 	    (void *)map->pmap, map->nentries, map->timestamp);
3441 	nlines++;
3442 
3443 	if (!full && db_indent)
3444 		return;
3445 
3446 	db_indent += 2;
3447 	for (entry = map->header.next; entry != &map->header;
3448 	    entry = entry->next) {
3449 		db_iprintf("map entry %p: start=%p, end=%p\n",
3450 		    (void *)entry, (void *)entry->start, (void *)entry->end);
3451 		nlines++;
3452 		{
3453 			static char *inheritance_name[4] =
3454 			{"share", "copy", "none", "donate_copy"};
3455 
3456 			db_iprintf(" prot=%x/%x/%s",
3457 			    entry->protection,
3458 			    entry->max_protection,
3459 			    inheritance_name[(int)(unsigned char)entry->inheritance]);
3460 			if (entry->wired_count != 0)
3461 				db_printf(", wired");
3462 		}
3463 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3464 			db_printf(", share=%p, offset=0x%jx\n",
3465 			    (void *)entry->object.sub_map,
3466 			    (uintmax_t)entry->offset);
3467 			nlines++;
3468 			if ((entry->prev == &map->header) ||
3469 			    (entry->prev->object.sub_map !=
3470 				entry->object.sub_map)) {
3471 				db_indent += 2;
3472 				vm_map_print((db_expr_t)(intptr_t)
3473 					     entry->object.sub_map,
3474 					     full, 0, (char *)0);
3475 				db_indent -= 2;
3476 			}
3477 		} else {
3478 			db_printf(", object=%p, offset=0x%jx",
3479 			    (void *)entry->object.vm_object,
3480 			    (uintmax_t)entry->offset);
3481 			if (entry->eflags & MAP_ENTRY_COW)
3482 				db_printf(", copy (%s)",
3483 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
3484 			db_printf("\n");
3485 			nlines++;
3486 
3487 			if ((entry->prev == &map->header) ||
3488 			    (entry->prev->object.vm_object !=
3489 				entry->object.vm_object)) {
3490 				db_indent += 2;
3491 				vm_object_print((db_expr_t)(intptr_t)
3492 						entry->object.vm_object,
3493 						full, 0, (char *)0);
3494 				nlines += 4;
3495 				db_indent -= 2;
3496 			}
3497 		}
3498 	}
3499 	db_indent -= 2;
3500 	if (db_indent == 0)
3501 		nlines = 0;
3502 }
3503 
3504 
3505 DB_SHOW_COMMAND(procvm, procvm)
3506 {
3507 	struct proc *p;
3508 
3509 	if (have_addr) {
3510 		p = (struct proc *) addr;
3511 	} else {
3512 		p = curproc;
3513 	}
3514 
3515 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
3516 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
3517 	    (void *)vmspace_pmap(p->p_vmspace));
3518 
3519 	vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
3520 }
3521 
3522 #endif /* DDB */
3523