1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 */ 60 61 /* 62 * Virtual memory mapping module. 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include <sys/param.h> 69 #include <sys/systm.h> 70 #include <sys/kernel.h> 71 #include <sys/ktr.h> 72 #include <sys/lock.h> 73 #include <sys/mutex.h> 74 #include <sys/proc.h> 75 #include <sys/vmmeter.h> 76 #include <sys/mman.h> 77 #include <sys/vnode.h> 78 #include <sys/racct.h> 79 #include <sys/resourcevar.h> 80 #include <sys/file.h> 81 #include <sys/sysctl.h> 82 #include <sys/sysent.h> 83 #include <sys/shm.h> 84 85 #include <vm/vm.h> 86 #include <vm/vm_param.h> 87 #include <vm/pmap.h> 88 #include <vm/vm_map.h> 89 #include <vm/vm_page.h> 90 #include <vm/vm_object.h> 91 #include <vm/vm_pager.h> 92 #include <vm/vm_kern.h> 93 #include <vm/vm_extern.h> 94 #include <vm/swap_pager.h> 95 #include <vm/uma.h> 96 97 /* 98 * Virtual memory maps provide for the mapping, protection, 99 * and sharing of virtual memory objects. In addition, 100 * this module provides for an efficient virtual copy of 101 * memory from one map to another. 102 * 103 * Synchronization is required prior to most operations. 104 * 105 * Maps consist of an ordered doubly-linked list of simple 106 * entries; a self-adjusting binary search tree of these 107 * entries is used to speed up lookups. 108 * 109 * Since portions of maps are specified by start/end addresses, 110 * which may not align with existing map entries, all 111 * routines merely "clip" entries to these start/end values. 112 * [That is, an entry is split into two, bordering at a 113 * start or end value.] Note that these clippings may not 114 * always be necessary (as the two resulting entries are then 115 * not changed); however, the clipping is done for convenience. 116 * 117 * As mentioned above, virtual copy operations are performed 118 * by copying VM object references from one map to 119 * another, and then marking both regions as copy-on-write. 120 */ 121 122 static struct mtx map_sleep_mtx; 123 static uma_zone_t mapentzone; 124 static uma_zone_t kmapentzone; 125 static uma_zone_t mapzone; 126 static uma_zone_t vmspace_zone; 127 static struct vm_object kmapentobj; 128 static int vmspace_zinit(void *mem, int size, int flags); 129 static void vmspace_zfini(void *mem, int size); 130 static int vm_map_zinit(void *mem, int ize, int flags); 131 static void vm_map_zfini(void *mem, int size); 132 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, 133 vm_offset_t max); 134 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map); 135 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry); 136 #ifdef INVARIANTS 137 static void vm_map_zdtor(void *mem, int size, void *arg); 138 static void vmspace_zdtor(void *mem, int size, void *arg); 139 #endif 140 141 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \ 142 ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \ 143 !((e)->eflags & MAP_ENTRY_NEEDS_COPY))) 144 145 /* 146 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type 147 * stable. 148 */ 149 #define PROC_VMSPACE_LOCK(p) do { } while (0) 150 #define PROC_VMSPACE_UNLOCK(p) do { } while (0) 151 152 /* 153 * VM_MAP_RANGE_CHECK: [ internal use only ] 154 * 155 * Asserts that the starting and ending region 156 * addresses fall within the valid range of the map. 157 */ 158 #define VM_MAP_RANGE_CHECK(map, start, end) \ 159 { \ 160 if (start < vm_map_min(map)) \ 161 start = vm_map_min(map); \ 162 if (end > vm_map_max(map)) \ 163 end = vm_map_max(map); \ 164 if (start > end) \ 165 start = end; \ 166 } 167 168 /* 169 * vm_map_startup: 170 * 171 * Initialize the vm_map module. Must be called before 172 * any other vm_map routines. 173 * 174 * Map and entry structures are allocated from the general 175 * purpose memory pool with some exceptions: 176 * 177 * - The kernel map and kmem submap are allocated statically. 178 * - Kernel map entries are allocated out of a static pool. 179 * 180 * These restrictions are necessary since malloc() uses the 181 * maps and requires map entries. 182 */ 183 184 void 185 vm_map_startup(void) 186 { 187 mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF); 188 mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL, 189 #ifdef INVARIANTS 190 vm_map_zdtor, 191 #else 192 NULL, 193 #endif 194 vm_map_zinit, vm_map_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 195 uma_prealloc(mapzone, MAX_KMAP); 196 kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry), 197 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 198 UMA_ZONE_MTXCLASS | UMA_ZONE_VM); 199 uma_prealloc(kmapentzone, MAX_KMAPENT); 200 mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry), 201 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 202 } 203 204 static void 205 vmspace_zfini(void *mem, int size) 206 { 207 struct vmspace *vm; 208 209 vm = (struct vmspace *)mem; 210 vm_map_zfini(&vm->vm_map, sizeof(vm->vm_map)); 211 } 212 213 static int 214 vmspace_zinit(void *mem, int size, int flags) 215 { 216 struct vmspace *vm; 217 218 vm = (struct vmspace *)mem; 219 220 vm->vm_map.pmap = NULL; 221 (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags); 222 return (0); 223 } 224 225 static void 226 vm_map_zfini(void *mem, int size) 227 { 228 vm_map_t map; 229 230 map = (vm_map_t)mem; 231 mtx_destroy(&map->system_mtx); 232 sx_destroy(&map->lock); 233 } 234 235 static int 236 vm_map_zinit(void *mem, int size, int flags) 237 { 238 vm_map_t map; 239 240 map = (vm_map_t)mem; 241 map->nentries = 0; 242 map->size = 0; 243 mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK); 244 sx_init(&map->lock, "user map"); 245 return (0); 246 } 247 248 #ifdef INVARIANTS 249 static void 250 vmspace_zdtor(void *mem, int size, void *arg) 251 { 252 struct vmspace *vm; 253 254 vm = (struct vmspace *)mem; 255 256 vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg); 257 } 258 static void 259 vm_map_zdtor(void *mem, int size, void *arg) 260 { 261 vm_map_t map; 262 263 map = (vm_map_t)mem; 264 KASSERT(map->nentries == 0, 265 ("map %p nentries == %d on free.", 266 map, map->nentries)); 267 KASSERT(map->size == 0, 268 ("map %p size == %lu on free.", 269 map, (unsigned long)map->size)); 270 } 271 #endif /* INVARIANTS */ 272 273 /* 274 * Allocate a vmspace structure, including a vm_map and pmap, 275 * and initialize those structures. The refcnt is set to 1. 276 */ 277 struct vmspace * 278 vmspace_alloc(min, max) 279 vm_offset_t min, max; 280 { 281 struct vmspace *vm; 282 283 vm = uma_zalloc(vmspace_zone, M_WAITOK); 284 if (vm->vm_map.pmap == NULL && !pmap_pinit(vmspace_pmap(vm))) { 285 uma_zfree(vmspace_zone, vm); 286 return (NULL); 287 } 288 CTR1(KTR_VM, "vmspace_alloc: %p", vm); 289 _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max); 290 vm->vm_refcnt = 1; 291 vm->vm_shm = NULL; 292 vm->vm_swrss = 0; 293 vm->vm_tsize = 0; 294 vm->vm_dsize = 0; 295 vm->vm_ssize = 0; 296 vm->vm_taddr = 0; 297 vm->vm_daddr = 0; 298 vm->vm_maxsaddr = 0; 299 return (vm); 300 } 301 302 void 303 vm_init2(void) 304 { 305 uma_zone_set_obj(kmapentzone, &kmapentobj, lmin(cnt.v_page_count, 306 (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) / PAGE_SIZE) / 8 + 307 maxproc * 2 + maxfiles); 308 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL, 309 #ifdef INVARIANTS 310 vmspace_zdtor, 311 #else 312 NULL, 313 #endif 314 vmspace_zinit, vmspace_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 315 } 316 317 static void 318 vmspace_container_reset(struct proc *p) 319 { 320 321 PROC_LOCK(p); 322 racct_set(p, RACCT_DATA, 0); 323 racct_set(p, RACCT_STACK, 0); 324 racct_set(p, RACCT_RSS, 0); 325 racct_set(p, RACCT_MEMLOCK, 0); 326 racct_set(p, RACCT_VMEM, 0); 327 PROC_UNLOCK(p); 328 } 329 330 static inline void 331 vmspace_dofree(struct vmspace *vm) 332 { 333 334 CTR1(KTR_VM, "vmspace_free: %p", vm); 335 336 /* 337 * Make sure any SysV shm is freed, it might not have been in 338 * exit1(). 339 */ 340 shmexit(vm); 341 342 /* 343 * Lock the map, to wait out all other references to it. 344 * Delete all of the mappings and pages they hold, then call 345 * the pmap module to reclaim anything left. 346 */ 347 (void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset, 348 vm->vm_map.max_offset); 349 350 pmap_release(vmspace_pmap(vm)); 351 vm->vm_map.pmap = NULL; 352 uma_zfree(vmspace_zone, vm); 353 } 354 355 void 356 vmspace_free(struct vmspace *vm) 357 { 358 359 if (vm->vm_refcnt == 0) 360 panic("vmspace_free: attempt to free already freed vmspace"); 361 362 if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1) 363 vmspace_dofree(vm); 364 } 365 366 void 367 vmspace_exitfree(struct proc *p) 368 { 369 struct vmspace *vm; 370 371 PROC_VMSPACE_LOCK(p); 372 vm = p->p_vmspace; 373 p->p_vmspace = NULL; 374 PROC_VMSPACE_UNLOCK(p); 375 KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace")); 376 vmspace_free(vm); 377 } 378 379 void 380 vmspace_exit(struct thread *td) 381 { 382 int refcnt; 383 struct vmspace *vm; 384 struct proc *p; 385 386 /* 387 * Release user portion of address space. 388 * This releases references to vnodes, 389 * which could cause I/O if the file has been unlinked. 390 * Need to do this early enough that we can still sleep. 391 * 392 * The last exiting process to reach this point releases as 393 * much of the environment as it can. vmspace_dofree() is the 394 * slower fallback in case another process had a temporary 395 * reference to the vmspace. 396 */ 397 398 p = td->td_proc; 399 vm = p->p_vmspace; 400 atomic_add_int(&vmspace0.vm_refcnt, 1); 401 do { 402 refcnt = vm->vm_refcnt; 403 if (refcnt > 1 && p->p_vmspace != &vmspace0) { 404 /* Switch now since other proc might free vmspace */ 405 PROC_VMSPACE_LOCK(p); 406 p->p_vmspace = &vmspace0; 407 PROC_VMSPACE_UNLOCK(p); 408 pmap_activate(td); 409 } 410 } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1)); 411 if (refcnt == 1) { 412 if (p->p_vmspace != vm) { 413 /* vmspace not yet freed, switch back */ 414 PROC_VMSPACE_LOCK(p); 415 p->p_vmspace = vm; 416 PROC_VMSPACE_UNLOCK(p); 417 pmap_activate(td); 418 } 419 pmap_remove_pages(vmspace_pmap(vm)); 420 /* Switch now since this proc will free vmspace */ 421 PROC_VMSPACE_LOCK(p); 422 p->p_vmspace = &vmspace0; 423 PROC_VMSPACE_UNLOCK(p); 424 pmap_activate(td); 425 vmspace_dofree(vm); 426 } 427 vmspace_container_reset(p); 428 } 429 430 /* Acquire reference to vmspace owned by another process. */ 431 432 struct vmspace * 433 vmspace_acquire_ref(struct proc *p) 434 { 435 struct vmspace *vm; 436 int refcnt; 437 438 PROC_VMSPACE_LOCK(p); 439 vm = p->p_vmspace; 440 if (vm == NULL) { 441 PROC_VMSPACE_UNLOCK(p); 442 return (NULL); 443 } 444 do { 445 refcnt = vm->vm_refcnt; 446 if (refcnt <= 0) { /* Avoid 0->1 transition */ 447 PROC_VMSPACE_UNLOCK(p); 448 return (NULL); 449 } 450 } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1)); 451 if (vm != p->p_vmspace) { 452 PROC_VMSPACE_UNLOCK(p); 453 vmspace_free(vm); 454 return (NULL); 455 } 456 PROC_VMSPACE_UNLOCK(p); 457 return (vm); 458 } 459 460 void 461 _vm_map_lock(vm_map_t map, const char *file, int line) 462 { 463 464 if (map->system_map) 465 _mtx_lock_flags(&map->system_mtx, 0, file, line); 466 else 467 (void)_sx_xlock(&map->lock, 0, file, line); 468 map->timestamp++; 469 } 470 471 static void 472 vm_map_process_deferred(void) 473 { 474 struct thread *td; 475 vm_map_entry_t entry; 476 477 td = curthread; 478 479 while ((entry = td->td_map_def_user) != NULL) { 480 td->td_map_def_user = entry->next; 481 vm_map_entry_deallocate(entry, FALSE); 482 } 483 } 484 485 void 486 _vm_map_unlock(vm_map_t map, const char *file, int line) 487 { 488 489 if (map->system_map) 490 _mtx_unlock_flags(&map->system_mtx, 0, file, line); 491 else { 492 _sx_xunlock(&map->lock, file, line); 493 vm_map_process_deferred(); 494 } 495 } 496 497 void 498 _vm_map_lock_read(vm_map_t map, const char *file, int line) 499 { 500 501 if (map->system_map) 502 _mtx_lock_flags(&map->system_mtx, 0, file, line); 503 else 504 (void)_sx_slock(&map->lock, 0, file, line); 505 } 506 507 void 508 _vm_map_unlock_read(vm_map_t map, const char *file, int line) 509 { 510 511 if (map->system_map) 512 _mtx_unlock_flags(&map->system_mtx, 0, file, line); 513 else { 514 _sx_sunlock(&map->lock, file, line); 515 vm_map_process_deferred(); 516 } 517 } 518 519 int 520 _vm_map_trylock(vm_map_t map, const char *file, int line) 521 { 522 int error; 523 524 error = map->system_map ? 525 !_mtx_trylock(&map->system_mtx, 0, file, line) : 526 !_sx_try_xlock(&map->lock, file, line); 527 if (error == 0) 528 map->timestamp++; 529 return (error == 0); 530 } 531 532 int 533 _vm_map_trylock_read(vm_map_t map, const char *file, int line) 534 { 535 int error; 536 537 error = map->system_map ? 538 !_mtx_trylock(&map->system_mtx, 0, file, line) : 539 !_sx_try_slock(&map->lock, file, line); 540 return (error == 0); 541 } 542 543 /* 544 * _vm_map_lock_upgrade: [ internal use only ] 545 * 546 * Tries to upgrade a read (shared) lock on the specified map to a write 547 * (exclusive) lock. Returns the value "0" if the upgrade succeeds and a 548 * non-zero value if the upgrade fails. If the upgrade fails, the map is 549 * returned without a read or write lock held. 550 * 551 * Requires that the map be read locked. 552 */ 553 int 554 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line) 555 { 556 unsigned int last_timestamp; 557 558 if (map->system_map) { 559 #ifdef INVARIANTS 560 _mtx_assert(&map->system_mtx, MA_OWNED, file, line); 561 #endif 562 } else { 563 if (!_sx_try_upgrade(&map->lock, file, line)) { 564 last_timestamp = map->timestamp; 565 _sx_sunlock(&map->lock, file, line); 566 vm_map_process_deferred(); 567 /* 568 * If the map's timestamp does not change while the 569 * map is unlocked, then the upgrade succeeds. 570 */ 571 (void)_sx_xlock(&map->lock, 0, file, line); 572 if (last_timestamp != map->timestamp) { 573 _sx_xunlock(&map->lock, file, line); 574 return (1); 575 } 576 } 577 } 578 map->timestamp++; 579 return (0); 580 } 581 582 void 583 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line) 584 { 585 586 if (map->system_map) { 587 #ifdef INVARIANTS 588 _mtx_assert(&map->system_mtx, MA_OWNED, file, line); 589 #endif 590 } else 591 _sx_downgrade(&map->lock, file, line); 592 } 593 594 /* 595 * vm_map_locked: 596 * 597 * Returns a non-zero value if the caller holds a write (exclusive) lock 598 * on the specified map and the value "0" otherwise. 599 */ 600 int 601 vm_map_locked(vm_map_t map) 602 { 603 604 if (map->system_map) 605 return (mtx_owned(&map->system_mtx)); 606 else 607 return (sx_xlocked(&map->lock)); 608 } 609 610 #ifdef INVARIANTS 611 static void 612 _vm_map_assert_locked(vm_map_t map, const char *file, int line) 613 { 614 615 if (map->system_map) 616 _mtx_assert(&map->system_mtx, MA_OWNED, file, line); 617 else 618 _sx_assert(&map->lock, SA_XLOCKED, file, line); 619 } 620 621 #if 0 622 static void 623 _vm_map_assert_locked_read(vm_map_t map, const char *file, int line) 624 { 625 626 if (map->system_map) 627 _mtx_assert(&map->system_mtx, MA_OWNED, file, line); 628 else 629 _sx_assert(&map->lock, SA_SLOCKED, file, line); 630 } 631 #endif 632 633 #define VM_MAP_ASSERT_LOCKED(map) \ 634 _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE) 635 #define VM_MAP_ASSERT_LOCKED_READ(map) \ 636 _vm_map_assert_locked_read(map, LOCK_FILE, LOCK_LINE) 637 #else 638 #define VM_MAP_ASSERT_LOCKED(map) 639 #define VM_MAP_ASSERT_LOCKED_READ(map) 640 #endif 641 642 /* 643 * _vm_map_unlock_and_wait: 644 * 645 * Atomically releases the lock on the specified map and puts the calling 646 * thread to sleep. The calling thread will remain asleep until either 647 * vm_map_wakeup() is performed on the map or the specified timeout is 648 * exceeded. 649 * 650 * WARNING! This function does not perform deferred deallocations of 651 * objects and map entries. Therefore, the calling thread is expected to 652 * reacquire the map lock after reawakening and later perform an ordinary 653 * unlock operation, such as vm_map_unlock(), before completing its 654 * operation on the map. 655 */ 656 int 657 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line) 658 { 659 660 mtx_lock(&map_sleep_mtx); 661 if (map->system_map) 662 _mtx_unlock_flags(&map->system_mtx, 0, file, line); 663 else 664 _sx_xunlock(&map->lock, file, line); 665 return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps", 666 timo)); 667 } 668 669 /* 670 * vm_map_wakeup: 671 * 672 * Awaken any threads that have slept on the map using 673 * vm_map_unlock_and_wait(). 674 */ 675 void 676 vm_map_wakeup(vm_map_t map) 677 { 678 679 /* 680 * Acquire and release map_sleep_mtx to prevent a wakeup() 681 * from being performed (and lost) between the map unlock 682 * and the msleep() in _vm_map_unlock_and_wait(). 683 */ 684 mtx_lock(&map_sleep_mtx); 685 mtx_unlock(&map_sleep_mtx); 686 wakeup(&map->root); 687 } 688 689 void 690 vm_map_busy(vm_map_t map) 691 { 692 693 VM_MAP_ASSERT_LOCKED(map); 694 map->busy++; 695 } 696 697 void 698 vm_map_unbusy(vm_map_t map) 699 { 700 701 VM_MAP_ASSERT_LOCKED(map); 702 KASSERT(map->busy, ("vm_map_unbusy: not busy")); 703 if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) { 704 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP); 705 wakeup(&map->busy); 706 } 707 } 708 709 void 710 vm_map_wait_busy(vm_map_t map) 711 { 712 713 VM_MAP_ASSERT_LOCKED(map); 714 while (map->busy) { 715 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0); 716 if (map->system_map) 717 msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0); 718 else 719 sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0); 720 } 721 map->timestamp++; 722 } 723 724 long 725 vmspace_resident_count(struct vmspace *vmspace) 726 { 727 return pmap_resident_count(vmspace_pmap(vmspace)); 728 } 729 730 long 731 vmspace_wired_count(struct vmspace *vmspace) 732 { 733 return pmap_wired_count(vmspace_pmap(vmspace)); 734 } 735 736 /* 737 * vm_map_create: 738 * 739 * Creates and returns a new empty VM map with 740 * the given physical map structure, and having 741 * the given lower and upper address bounds. 742 */ 743 vm_map_t 744 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max) 745 { 746 vm_map_t result; 747 748 result = uma_zalloc(mapzone, M_WAITOK); 749 CTR1(KTR_VM, "vm_map_create: %p", result); 750 _vm_map_init(result, pmap, min, max); 751 return (result); 752 } 753 754 /* 755 * Initialize an existing vm_map structure 756 * such as that in the vmspace structure. 757 */ 758 static void 759 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 760 { 761 762 map->header.next = map->header.prev = &map->header; 763 map->needs_wakeup = FALSE; 764 map->system_map = 0; 765 map->pmap = pmap; 766 map->min_offset = min; 767 map->max_offset = max; 768 map->flags = 0; 769 map->root = NULL; 770 map->timestamp = 0; 771 map->busy = 0; 772 } 773 774 void 775 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 776 { 777 778 _vm_map_init(map, pmap, min, max); 779 mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK); 780 sx_init(&map->lock, "user map"); 781 } 782 783 /* 784 * vm_map_entry_dispose: [ internal use only ] 785 * 786 * Inverse of vm_map_entry_create. 787 */ 788 static void 789 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry) 790 { 791 uma_zfree(map->system_map ? kmapentzone : mapentzone, entry); 792 } 793 794 /* 795 * vm_map_entry_create: [ internal use only ] 796 * 797 * Allocates a VM map entry for insertion. 798 * No entry fields are filled in. 799 */ 800 static vm_map_entry_t 801 vm_map_entry_create(vm_map_t map) 802 { 803 vm_map_entry_t new_entry; 804 805 if (map->system_map) 806 new_entry = uma_zalloc(kmapentzone, M_NOWAIT); 807 else 808 new_entry = uma_zalloc(mapentzone, M_WAITOK); 809 if (new_entry == NULL) 810 panic("vm_map_entry_create: kernel resources exhausted"); 811 return (new_entry); 812 } 813 814 /* 815 * vm_map_entry_set_behavior: 816 * 817 * Set the expected access behavior, either normal, random, or 818 * sequential. 819 */ 820 static inline void 821 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior) 822 { 823 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) | 824 (behavior & MAP_ENTRY_BEHAV_MASK); 825 } 826 827 /* 828 * vm_map_entry_set_max_free: 829 * 830 * Set the max_free field in a vm_map_entry. 831 */ 832 static inline void 833 vm_map_entry_set_max_free(vm_map_entry_t entry) 834 { 835 836 entry->max_free = entry->adj_free; 837 if (entry->left != NULL && entry->left->max_free > entry->max_free) 838 entry->max_free = entry->left->max_free; 839 if (entry->right != NULL && entry->right->max_free > entry->max_free) 840 entry->max_free = entry->right->max_free; 841 } 842 843 /* 844 * vm_map_entry_splay: 845 * 846 * The Sleator and Tarjan top-down splay algorithm with the 847 * following variation. Max_free must be computed bottom-up, so 848 * on the downward pass, maintain the left and right spines in 849 * reverse order. Then, make a second pass up each side to fix 850 * the pointers and compute max_free. The time bound is O(log n) 851 * amortized. 852 * 853 * The new root is the vm_map_entry containing "addr", or else an 854 * adjacent entry (lower or higher) if addr is not in the tree. 855 * 856 * The map must be locked, and leaves it so. 857 * 858 * Returns: the new root. 859 */ 860 static vm_map_entry_t 861 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root) 862 { 863 vm_map_entry_t llist, rlist; 864 vm_map_entry_t ltree, rtree; 865 vm_map_entry_t y; 866 867 /* Special case of empty tree. */ 868 if (root == NULL) 869 return (root); 870 871 /* 872 * Pass One: Splay down the tree until we find addr or a NULL 873 * pointer where addr would go. llist and rlist are the two 874 * sides in reverse order (bottom-up), with llist linked by 875 * the right pointer and rlist linked by the left pointer in 876 * the vm_map_entry. Wait until Pass Two to set max_free on 877 * the two spines. 878 */ 879 llist = NULL; 880 rlist = NULL; 881 for (;;) { 882 /* root is never NULL in here. */ 883 if (addr < root->start) { 884 y = root->left; 885 if (y == NULL) 886 break; 887 if (addr < y->start && y->left != NULL) { 888 /* Rotate right and put y on rlist. */ 889 root->left = y->right; 890 y->right = root; 891 vm_map_entry_set_max_free(root); 892 root = y->left; 893 y->left = rlist; 894 rlist = y; 895 } else { 896 /* Put root on rlist. */ 897 root->left = rlist; 898 rlist = root; 899 root = y; 900 } 901 } else if (addr >= root->end) { 902 y = root->right; 903 if (y == NULL) 904 break; 905 if (addr >= y->end && y->right != NULL) { 906 /* Rotate left and put y on llist. */ 907 root->right = y->left; 908 y->left = root; 909 vm_map_entry_set_max_free(root); 910 root = y->right; 911 y->right = llist; 912 llist = y; 913 } else { 914 /* Put root on llist. */ 915 root->right = llist; 916 llist = root; 917 root = y; 918 } 919 } else 920 break; 921 } 922 923 /* 924 * Pass Two: Walk back up the two spines, flip the pointers 925 * and set max_free. The subtrees of the root go at the 926 * bottom of llist and rlist. 927 */ 928 ltree = root->left; 929 while (llist != NULL) { 930 y = llist->right; 931 llist->right = ltree; 932 vm_map_entry_set_max_free(llist); 933 ltree = llist; 934 llist = y; 935 } 936 rtree = root->right; 937 while (rlist != NULL) { 938 y = rlist->left; 939 rlist->left = rtree; 940 vm_map_entry_set_max_free(rlist); 941 rtree = rlist; 942 rlist = y; 943 } 944 945 /* 946 * Final assembly: add ltree and rtree as subtrees of root. 947 */ 948 root->left = ltree; 949 root->right = rtree; 950 vm_map_entry_set_max_free(root); 951 952 return (root); 953 } 954 955 /* 956 * vm_map_entry_{un,}link: 957 * 958 * Insert/remove entries from maps. 959 */ 960 static void 961 vm_map_entry_link(vm_map_t map, 962 vm_map_entry_t after_where, 963 vm_map_entry_t entry) 964 { 965 966 CTR4(KTR_VM, 967 "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map, 968 map->nentries, entry, after_where); 969 VM_MAP_ASSERT_LOCKED(map); 970 map->nentries++; 971 entry->prev = after_where; 972 entry->next = after_where->next; 973 entry->next->prev = entry; 974 after_where->next = entry; 975 976 if (after_where != &map->header) { 977 if (after_where != map->root) 978 vm_map_entry_splay(after_where->start, map->root); 979 entry->right = after_where->right; 980 entry->left = after_where; 981 after_where->right = NULL; 982 after_where->adj_free = entry->start - after_where->end; 983 vm_map_entry_set_max_free(after_where); 984 } else { 985 entry->right = map->root; 986 entry->left = NULL; 987 } 988 entry->adj_free = (entry->next == &map->header ? map->max_offset : 989 entry->next->start) - entry->end; 990 vm_map_entry_set_max_free(entry); 991 map->root = entry; 992 } 993 994 static void 995 vm_map_entry_unlink(vm_map_t map, 996 vm_map_entry_t entry) 997 { 998 vm_map_entry_t next, prev, root; 999 1000 VM_MAP_ASSERT_LOCKED(map); 1001 if (entry != map->root) 1002 vm_map_entry_splay(entry->start, map->root); 1003 if (entry->left == NULL) 1004 root = entry->right; 1005 else { 1006 root = vm_map_entry_splay(entry->start, entry->left); 1007 root->right = entry->right; 1008 root->adj_free = (entry->next == &map->header ? map->max_offset : 1009 entry->next->start) - root->end; 1010 vm_map_entry_set_max_free(root); 1011 } 1012 map->root = root; 1013 1014 prev = entry->prev; 1015 next = entry->next; 1016 next->prev = prev; 1017 prev->next = next; 1018 map->nentries--; 1019 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map, 1020 map->nentries, entry); 1021 } 1022 1023 /* 1024 * vm_map_entry_resize_free: 1025 * 1026 * Recompute the amount of free space following a vm_map_entry 1027 * and propagate that value up the tree. Call this function after 1028 * resizing a map entry in-place, that is, without a call to 1029 * vm_map_entry_link() or _unlink(). 1030 * 1031 * The map must be locked, and leaves it so. 1032 */ 1033 static void 1034 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry) 1035 { 1036 1037 /* 1038 * Using splay trees without parent pointers, propagating 1039 * max_free up the tree is done by moving the entry to the 1040 * root and making the change there. 1041 */ 1042 if (entry != map->root) 1043 map->root = vm_map_entry_splay(entry->start, map->root); 1044 1045 entry->adj_free = (entry->next == &map->header ? map->max_offset : 1046 entry->next->start) - entry->end; 1047 vm_map_entry_set_max_free(entry); 1048 } 1049 1050 /* 1051 * vm_map_lookup_entry: [ internal use only ] 1052 * 1053 * Finds the map entry containing (or 1054 * immediately preceding) the specified address 1055 * in the given map; the entry is returned 1056 * in the "entry" parameter. The boolean 1057 * result indicates whether the address is 1058 * actually contained in the map. 1059 */ 1060 boolean_t 1061 vm_map_lookup_entry( 1062 vm_map_t map, 1063 vm_offset_t address, 1064 vm_map_entry_t *entry) /* OUT */ 1065 { 1066 vm_map_entry_t cur; 1067 boolean_t locked; 1068 1069 /* 1070 * If the map is empty, then the map entry immediately preceding 1071 * "address" is the map's header. 1072 */ 1073 cur = map->root; 1074 if (cur == NULL) 1075 *entry = &map->header; 1076 else if (address >= cur->start && cur->end > address) { 1077 *entry = cur; 1078 return (TRUE); 1079 } else if ((locked = vm_map_locked(map)) || 1080 sx_try_upgrade(&map->lock)) { 1081 /* 1082 * Splay requires a write lock on the map. However, it only 1083 * restructures the binary search tree; it does not otherwise 1084 * change the map. Thus, the map's timestamp need not change 1085 * on a temporary upgrade. 1086 */ 1087 map->root = cur = vm_map_entry_splay(address, cur); 1088 if (!locked) 1089 sx_downgrade(&map->lock); 1090 1091 /* 1092 * If "address" is contained within a map entry, the new root 1093 * is that map entry. Otherwise, the new root is a map entry 1094 * immediately before or after "address". 1095 */ 1096 if (address >= cur->start) { 1097 *entry = cur; 1098 if (cur->end > address) 1099 return (TRUE); 1100 } else 1101 *entry = cur->prev; 1102 } else 1103 /* 1104 * Since the map is only locked for read access, perform a 1105 * standard binary search tree lookup for "address". 1106 */ 1107 for (;;) { 1108 if (address < cur->start) { 1109 if (cur->left == NULL) { 1110 *entry = cur->prev; 1111 break; 1112 } 1113 cur = cur->left; 1114 } else if (cur->end > address) { 1115 *entry = cur; 1116 return (TRUE); 1117 } else { 1118 if (cur->right == NULL) { 1119 *entry = cur; 1120 break; 1121 } 1122 cur = cur->right; 1123 } 1124 } 1125 return (FALSE); 1126 } 1127 1128 /* 1129 * vm_map_insert: 1130 * 1131 * Inserts the given whole VM object into the target 1132 * map at the specified address range. The object's 1133 * size should match that of the address range. 1134 * 1135 * Requires that the map be locked, and leaves it so. 1136 * 1137 * If object is non-NULL, ref count must be bumped by caller 1138 * prior to making call to account for the new entry. 1139 */ 1140 int 1141 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1142 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, 1143 int cow) 1144 { 1145 vm_map_entry_t new_entry; 1146 vm_map_entry_t prev_entry; 1147 vm_map_entry_t temp_entry; 1148 vm_eflags_t protoeflags; 1149 struct ucred *cred; 1150 boolean_t charge_prev_obj; 1151 1152 VM_MAP_ASSERT_LOCKED(map); 1153 1154 /* 1155 * Check that the start and end points are not bogus. 1156 */ 1157 if ((start < map->min_offset) || (end > map->max_offset) || 1158 (start >= end)) 1159 return (KERN_INVALID_ADDRESS); 1160 1161 /* 1162 * Find the entry prior to the proposed starting address; if it's part 1163 * of an existing entry, this range is bogus. 1164 */ 1165 if (vm_map_lookup_entry(map, start, &temp_entry)) 1166 return (KERN_NO_SPACE); 1167 1168 prev_entry = temp_entry; 1169 1170 /* 1171 * Assert that the next entry doesn't overlap the end point. 1172 */ 1173 if ((prev_entry->next != &map->header) && 1174 (prev_entry->next->start < end)) 1175 return (KERN_NO_SPACE); 1176 1177 protoeflags = 0; 1178 charge_prev_obj = FALSE; 1179 1180 if (cow & MAP_COPY_ON_WRITE) 1181 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY; 1182 1183 if (cow & MAP_NOFAULT) { 1184 protoeflags |= MAP_ENTRY_NOFAULT; 1185 1186 KASSERT(object == NULL, 1187 ("vm_map_insert: paradoxical MAP_NOFAULT request")); 1188 } 1189 if (cow & MAP_DISABLE_SYNCER) 1190 protoeflags |= MAP_ENTRY_NOSYNC; 1191 if (cow & MAP_DISABLE_COREDUMP) 1192 protoeflags |= MAP_ENTRY_NOCOREDUMP; 1193 1194 cred = NULL; 1195 KASSERT((object != kmem_object && object != kernel_object) || 1196 ((object == kmem_object || object == kernel_object) && 1197 !(protoeflags & MAP_ENTRY_NEEDS_COPY)), 1198 ("kmem or kernel object and cow")); 1199 if (cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT)) 1200 goto charged; 1201 if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) && 1202 ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) { 1203 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start)) 1204 return (KERN_RESOURCE_SHORTAGE); 1205 KASSERT(object == NULL || (protoeflags & MAP_ENTRY_NEEDS_COPY) || 1206 object->cred == NULL, 1207 ("OVERCOMMIT: vm_map_insert o %p", object)); 1208 cred = curthread->td_ucred; 1209 crhold(cred); 1210 if (object == NULL && !(protoeflags & MAP_ENTRY_NEEDS_COPY)) 1211 charge_prev_obj = TRUE; 1212 } 1213 1214 charged: 1215 /* Expand the kernel pmap, if necessary. */ 1216 if (map == kernel_map && end > kernel_vm_end) 1217 pmap_growkernel(end); 1218 if (object != NULL) { 1219 /* 1220 * OBJ_ONEMAPPING must be cleared unless this mapping 1221 * is trivially proven to be the only mapping for any 1222 * of the object's pages. (Object granularity 1223 * reference counting is insufficient to recognize 1224 * aliases with precision.) 1225 */ 1226 VM_OBJECT_LOCK(object); 1227 if (object->ref_count > 1 || object->shadow_count != 0) 1228 vm_object_clear_flag(object, OBJ_ONEMAPPING); 1229 VM_OBJECT_UNLOCK(object); 1230 } 1231 else if ((prev_entry != &map->header) && 1232 (prev_entry->eflags == protoeflags) && 1233 (prev_entry->end == start) && 1234 (prev_entry->wired_count == 0) && 1235 (prev_entry->cred == cred || 1236 (prev_entry->object.vm_object != NULL && 1237 (prev_entry->object.vm_object->cred == cred))) && 1238 vm_object_coalesce(prev_entry->object.vm_object, 1239 prev_entry->offset, 1240 (vm_size_t)(prev_entry->end - prev_entry->start), 1241 (vm_size_t)(end - prev_entry->end), charge_prev_obj)) { 1242 /* 1243 * We were able to extend the object. Determine if we 1244 * can extend the previous map entry to include the 1245 * new range as well. 1246 */ 1247 if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) && 1248 (prev_entry->protection == prot) && 1249 (prev_entry->max_protection == max)) { 1250 map->size += (end - prev_entry->end); 1251 prev_entry->end = end; 1252 vm_map_entry_resize_free(map, prev_entry); 1253 vm_map_simplify_entry(map, prev_entry); 1254 if (cred != NULL) 1255 crfree(cred); 1256 return (KERN_SUCCESS); 1257 } 1258 1259 /* 1260 * If we can extend the object but cannot extend the 1261 * map entry, we have to create a new map entry. We 1262 * must bump the ref count on the extended object to 1263 * account for it. object may be NULL. 1264 */ 1265 object = prev_entry->object.vm_object; 1266 offset = prev_entry->offset + 1267 (prev_entry->end - prev_entry->start); 1268 vm_object_reference(object); 1269 if (cred != NULL && object != NULL && object->cred != NULL && 1270 !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 1271 /* Object already accounts for this uid. */ 1272 crfree(cred); 1273 cred = NULL; 1274 } 1275 } 1276 1277 /* 1278 * NOTE: if conditionals fail, object can be NULL here. This occurs 1279 * in things like the buffer map where we manage kva but do not manage 1280 * backing objects. 1281 */ 1282 1283 /* 1284 * Create a new entry 1285 */ 1286 new_entry = vm_map_entry_create(map); 1287 new_entry->start = start; 1288 new_entry->end = end; 1289 new_entry->cred = NULL; 1290 1291 new_entry->eflags = protoeflags; 1292 new_entry->object.vm_object = object; 1293 new_entry->offset = offset; 1294 new_entry->avail_ssize = 0; 1295 1296 new_entry->inheritance = VM_INHERIT_DEFAULT; 1297 new_entry->protection = prot; 1298 new_entry->max_protection = max; 1299 new_entry->wired_count = 0; 1300 1301 KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry), 1302 ("OVERCOMMIT: vm_map_insert leaks vm_map %p", new_entry)); 1303 new_entry->cred = cred; 1304 1305 /* 1306 * Insert the new entry into the list 1307 */ 1308 vm_map_entry_link(map, prev_entry, new_entry); 1309 map->size += new_entry->end - new_entry->start; 1310 1311 /* 1312 * It may be possible to merge the new entry with the next and/or 1313 * previous entries. However, due to MAP_STACK_* being a hack, a 1314 * panic can result from merging such entries. 1315 */ 1316 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0) 1317 vm_map_simplify_entry(map, new_entry); 1318 1319 if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) { 1320 vm_map_pmap_enter(map, start, prot, 1321 object, OFF_TO_IDX(offset), end - start, 1322 cow & MAP_PREFAULT_PARTIAL); 1323 } 1324 1325 return (KERN_SUCCESS); 1326 } 1327 1328 /* 1329 * vm_map_findspace: 1330 * 1331 * Find the first fit (lowest VM address) for "length" free bytes 1332 * beginning at address >= start in the given map. 1333 * 1334 * In a vm_map_entry, "adj_free" is the amount of free space 1335 * adjacent (higher address) to this entry, and "max_free" is the 1336 * maximum amount of contiguous free space in its subtree. This 1337 * allows finding a free region in one path down the tree, so 1338 * O(log n) amortized with splay trees. 1339 * 1340 * The map must be locked, and leaves it so. 1341 * 1342 * Returns: 0 on success, and starting address in *addr, 1343 * 1 if insufficient space. 1344 */ 1345 int 1346 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length, 1347 vm_offset_t *addr) /* OUT */ 1348 { 1349 vm_map_entry_t entry; 1350 vm_offset_t st; 1351 1352 /* 1353 * Request must fit within min/max VM address and must avoid 1354 * address wrap. 1355 */ 1356 if (start < map->min_offset) 1357 start = map->min_offset; 1358 if (start + length > map->max_offset || start + length < start) 1359 return (1); 1360 1361 /* Empty tree means wide open address space. */ 1362 if (map->root == NULL) { 1363 *addr = start; 1364 return (0); 1365 } 1366 1367 /* 1368 * After splay, if start comes before root node, then there 1369 * must be a gap from start to the root. 1370 */ 1371 map->root = vm_map_entry_splay(start, map->root); 1372 if (start + length <= map->root->start) { 1373 *addr = start; 1374 return (0); 1375 } 1376 1377 /* 1378 * Root is the last node that might begin its gap before 1379 * start, and this is the last comparison where address 1380 * wrap might be a problem. 1381 */ 1382 st = (start > map->root->end) ? start : map->root->end; 1383 if (length <= map->root->end + map->root->adj_free - st) { 1384 *addr = st; 1385 return (0); 1386 } 1387 1388 /* With max_free, can immediately tell if no solution. */ 1389 entry = map->root->right; 1390 if (entry == NULL || length > entry->max_free) 1391 return (1); 1392 1393 /* 1394 * Search the right subtree in the order: left subtree, root, 1395 * right subtree (first fit). The previous splay implies that 1396 * all regions in the right subtree have addresses > start. 1397 */ 1398 while (entry != NULL) { 1399 if (entry->left != NULL && entry->left->max_free >= length) 1400 entry = entry->left; 1401 else if (entry->adj_free >= length) { 1402 *addr = entry->end; 1403 return (0); 1404 } else 1405 entry = entry->right; 1406 } 1407 1408 /* Can't get here, so panic if we do. */ 1409 panic("vm_map_findspace: max_free corrupt"); 1410 } 1411 1412 int 1413 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1414 vm_offset_t start, vm_size_t length, vm_prot_t prot, 1415 vm_prot_t max, int cow) 1416 { 1417 vm_offset_t end; 1418 int result; 1419 1420 end = start + length; 1421 vm_map_lock(map); 1422 VM_MAP_RANGE_CHECK(map, start, end); 1423 (void) vm_map_delete(map, start, end); 1424 result = vm_map_insert(map, object, offset, start, end, prot, 1425 max, cow); 1426 vm_map_unlock(map); 1427 return (result); 1428 } 1429 1430 /* 1431 * vm_map_find finds an unallocated region in the target address 1432 * map with the given length. The search is defined to be 1433 * first-fit from the specified address; the region found is 1434 * returned in the same parameter. 1435 * 1436 * If object is non-NULL, ref count must be bumped by caller 1437 * prior to making call to account for the new entry. 1438 */ 1439 int 1440 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1441 vm_offset_t *addr, /* IN/OUT */ 1442 vm_size_t length, int find_space, vm_prot_t prot, 1443 vm_prot_t max, int cow) 1444 { 1445 vm_offset_t start; 1446 int result; 1447 1448 start = *addr; 1449 vm_map_lock(map); 1450 do { 1451 if (find_space != VMFS_NO_SPACE) { 1452 if (vm_map_findspace(map, start, length, addr)) { 1453 vm_map_unlock(map); 1454 return (KERN_NO_SPACE); 1455 } 1456 switch (find_space) { 1457 case VMFS_ALIGNED_SPACE: 1458 pmap_align_superpage(object, offset, addr, 1459 length); 1460 break; 1461 #ifdef VMFS_TLB_ALIGNED_SPACE 1462 case VMFS_TLB_ALIGNED_SPACE: 1463 pmap_align_tlb(addr); 1464 break; 1465 #endif 1466 default: 1467 break; 1468 } 1469 1470 start = *addr; 1471 } 1472 result = vm_map_insert(map, object, offset, start, start + 1473 length, prot, max, cow); 1474 } while (result == KERN_NO_SPACE && (find_space == VMFS_ALIGNED_SPACE 1475 #ifdef VMFS_TLB_ALIGNED_SPACE 1476 || find_space == VMFS_TLB_ALIGNED_SPACE 1477 #endif 1478 )); 1479 vm_map_unlock(map); 1480 return (result); 1481 } 1482 1483 /* 1484 * vm_map_simplify_entry: 1485 * 1486 * Simplify the given map entry by merging with either neighbor. This 1487 * routine also has the ability to merge with both neighbors. 1488 * 1489 * The map must be locked. 1490 * 1491 * This routine guarentees that the passed entry remains valid (though 1492 * possibly extended). When merging, this routine may delete one or 1493 * both neighbors. 1494 */ 1495 void 1496 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry) 1497 { 1498 vm_map_entry_t next, prev; 1499 vm_size_t prevsize, esize; 1500 1501 if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) 1502 return; 1503 1504 prev = entry->prev; 1505 if (prev != &map->header) { 1506 prevsize = prev->end - prev->start; 1507 if ( (prev->end == entry->start) && 1508 (prev->object.vm_object == entry->object.vm_object) && 1509 (!prev->object.vm_object || 1510 (prev->offset + prevsize == entry->offset)) && 1511 (prev->eflags == entry->eflags) && 1512 (prev->protection == entry->protection) && 1513 (prev->max_protection == entry->max_protection) && 1514 (prev->inheritance == entry->inheritance) && 1515 (prev->wired_count == entry->wired_count) && 1516 (prev->cred == entry->cred)) { 1517 vm_map_entry_unlink(map, prev); 1518 entry->start = prev->start; 1519 entry->offset = prev->offset; 1520 if (entry->prev != &map->header) 1521 vm_map_entry_resize_free(map, entry->prev); 1522 1523 /* 1524 * If the backing object is a vnode object, 1525 * vm_object_deallocate() calls vrele(). 1526 * However, vrele() does not lock the vnode 1527 * because the vnode has additional 1528 * references. Thus, the map lock can be kept 1529 * without causing a lock-order reversal with 1530 * the vnode lock. 1531 */ 1532 if (prev->object.vm_object) 1533 vm_object_deallocate(prev->object.vm_object); 1534 if (prev->cred != NULL) 1535 crfree(prev->cred); 1536 vm_map_entry_dispose(map, prev); 1537 } 1538 } 1539 1540 next = entry->next; 1541 if (next != &map->header) { 1542 esize = entry->end - entry->start; 1543 if ((entry->end == next->start) && 1544 (next->object.vm_object == entry->object.vm_object) && 1545 (!entry->object.vm_object || 1546 (entry->offset + esize == next->offset)) && 1547 (next->eflags == entry->eflags) && 1548 (next->protection == entry->protection) && 1549 (next->max_protection == entry->max_protection) && 1550 (next->inheritance == entry->inheritance) && 1551 (next->wired_count == entry->wired_count) && 1552 (next->cred == entry->cred)) { 1553 vm_map_entry_unlink(map, next); 1554 entry->end = next->end; 1555 vm_map_entry_resize_free(map, entry); 1556 1557 /* 1558 * See comment above. 1559 */ 1560 if (next->object.vm_object) 1561 vm_object_deallocate(next->object.vm_object); 1562 if (next->cred != NULL) 1563 crfree(next->cred); 1564 vm_map_entry_dispose(map, next); 1565 } 1566 } 1567 } 1568 /* 1569 * vm_map_clip_start: [ internal use only ] 1570 * 1571 * Asserts that the given entry begins at or after 1572 * the specified address; if necessary, 1573 * it splits the entry into two. 1574 */ 1575 #define vm_map_clip_start(map, entry, startaddr) \ 1576 { \ 1577 if (startaddr > entry->start) \ 1578 _vm_map_clip_start(map, entry, startaddr); \ 1579 } 1580 1581 /* 1582 * This routine is called only when it is known that 1583 * the entry must be split. 1584 */ 1585 static void 1586 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start) 1587 { 1588 vm_map_entry_t new_entry; 1589 1590 VM_MAP_ASSERT_LOCKED(map); 1591 1592 /* 1593 * Split off the front portion -- note that we must insert the new 1594 * entry BEFORE this one, so that this entry has the specified 1595 * starting address. 1596 */ 1597 vm_map_simplify_entry(map, entry); 1598 1599 /* 1600 * If there is no object backing this entry, we might as well create 1601 * one now. If we defer it, an object can get created after the map 1602 * is clipped, and individual objects will be created for the split-up 1603 * map. This is a bit of a hack, but is also about the best place to 1604 * put this improvement. 1605 */ 1606 if (entry->object.vm_object == NULL && !map->system_map) { 1607 vm_object_t object; 1608 object = vm_object_allocate(OBJT_DEFAULT, 1609 atop(entry->end - entry->start)); 1610 entry->object.vm_object = object; 1611 entry->offset = 0; 1612 if (entry->cred != NULL) { 1613 object->cred = entry->cred; 1614 object->charge = entry->end - entry->start; 1615 entry->cred = NULL; 1616 } 1617 } else if (entry->object.vm_object != NULL && 1618 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 1619 entry->cred != NULL) { 1620 VM_OBJECT_LOCK(entry->object.vm_object); 1621 KASSERT(entry->object.vm_object->cred == NULL, 1622 ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry)); 1623 entry->object.vm_object->cred = entry->cred; 1624 entry->object.vm_object->charge = entry->end - entry->start; 1625 VM_OBJECT_UNLOCK(entry->object.vm_object); 1626 entry->cred = NULL; 1627 } 1628 1629 new_entry = vm_map_entry_create(map); 1630 *new_entry = *entry; 1631 1632 new_entry->end = start; 1633 entry->offset += (start - entry->start); 1634 entry->start = start; 1635 if (new_entry->cred != NULL) 1636 crhold(entry->cred); 1637 1638 vm_map_entry_link(map, entry->prev, new_entry); 1639 1640 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1641 vm_object_reference(new_entry->object.vm_object); 1642 } 1643 } 1644 1645 /* 1646 * vm_map_clip_end: [ internal use only ] 1647 * 1648 * Asserts that the given entry ends at or before 1649 * the specified address; if necessary, 1650 * it splits the entry into two. 1651 */ 1652 #define vm_map_clip_end(map, entry, endaddr) \ 1653 { \ 1654 if ((endaddr) < (entry->end)) \ 1655 _vm_map_clip_end((map), (entry), (endaddr)); \ 1656 } 1657 1658 /* 1659 * This routine is called only when it is known that 1660 * the entry must be split. 1661 */ 1662 static void 1663 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end) 1664 { 1665 vm_map_entry_t new_entry; 1666 1667 VM_MAP_ASSERT_LOCKED(map); 1668 1669 /* 1670 * If there is no object backing this entry, we might as well create 1671 * one now. If we defer it, an object can get created after the map 1672 * is clipped, and individual objects will be created for the split-up 1673 * map. This is a bit of a hack, but is also about the best place to 1674 * put this improvement. 1675 */ 1676 if (entry->object.vm_object == NULL && !map->system_map) { 1677 vm_object_t object; 1678 object = vm_object_allocate(OBJT_DEFAULT, 1679 atop(entry->end - entry->start)); 1680 entry->object.vm_object = object; 1681 entry->offset = 0; 1682 if (entry->cred != NULL) { 1683 object->cred = entry->cred; 1684 object->charge = entry->end - entry->start; 1685 entry->cred = NULL; 1686 } 1687 } else if (entry->object.vm_object != NULL && 1688 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 1689 entry->cred != NULL) { 1690 VM_OBJECT_LOCK(entry->object.vm_object); 1691 KASSERT(entry->object.vm_object->cred == NULL, 1692 ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry)); 1693 entry->object.vm_object->cred = entry->cred; 1694 entry->object.vm_object->charge = entry->end - entry->start; 1695 VM_OBJECT_UNLOCK(entry->object.vm_object); 1696 entry->cred = NULL; 1697 } 1698 1699 /* 1700 * Create a new entry and insert it AFTER the specified entry 1701 */ 1702 new_entry = vm_map_entry_create(map); 1703 *new_entry = *entry; 1704 1705 new_entry->start = entry->end = end; 1706 new_entry->offset += (end - entry->start); 1707 if (new_entry->cred != NULL) 1708 crhold(entry->cred); 1709 1710 vm_map_entry_link(map, entry, new_entry); 1711 1712 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1713 vm_object_reference(new_entry->object.vm_object); 1714 } 1715 } 1716 1717 /* 1718 * vm_map_submap: [ kernel use only ] 1719 * 1720 * Mark the given range as handled by a subordinate map. 1721 * 1722 * This range must have been created with vm_map_find, 1723 * and no other operations may have been performed on this 1724 * range prior to calling vm_map_submap. 1725 * 1726 * Only a limited number of operations can be performed 1727 * within this rage after calling vm_map_submap: 1728 * vm_fault 1729 * [Don't try vm_map_copy!] 1730 * 1731 * To remove a submapping, one must first remove the 1732 * range from the superior map, and then destroy the 1733 * submap (if desired). [Better yet, don't try it.] 1734 */ 1735 int 1736 vm_map_submap( 1737 vm_map_t map, 1738 vm_offset_t start, 1739 vm_offset_t end, 1740 vm_map_t submap) 1741 { 1742 vm_map_entry_t entry; 1743 int result = KERN_INVALID_ARGUMENT; 1744 1745 vm_map_lock(map); 1746 1747 VM_MAP_RANGE_CHECK(map, start, end); 1748 1749 if (vm_map_lookup_entry(map, start, &entry)) { 1750 vm_map_clip_start(map, entry, start); 1751 } else 1752 entry = entry->next; 1753 1754 vm_map_clip_end(map, entry, end); 1755 1756 if ((entry->start == start) && (entry->end == end) && 1757 ((entry->eflags & MAP_ENTRY_COW) == 0) && 1758 (entry->object.vm_object == NULL)) { 1759 entry->object.sub_map = submap; 1760 entry->eflags |= MAP_ENTRY_IS_SUB_MAP; 1761 result = KERN_SUCCESS; 1762 } 1763 vm_map_unlock(map); 1764 1765 return (result); 1766 } 1767 1768 /* 1769 * The maximum number of pages to map 1770 */ 1771 #define MAX_INIT_PT 96 1772 1773 /* 1774 * vm_map_pmap_enter: 1775 * 1776 * Preload read-only mappings for the given object's resident pages into 1777 * the given map. This eliminates the soft faults on process startup and 1778 * immediately after an mmap(2). Because these are speculative mappings, 1779 * cached pages are not reactivated and mapped. 1780 */ 1781 void 1782 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 1783 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags) 1784 { 1785 vm_offset_t start; 1786 vm_page_t p, p_start; 1787 vm_pindex_t psize, tmpidx; 1788 1789 if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL) 1790 return; 1791 VM_OBJECT_LOCK(object); 1792 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 1793 pmap_object_init_pt(map->pmap, addr, object, pindex, size); 1794 goto unlock_return; 1795 } 1796 1797 psize = atop(size); 1798 1799 if ((flags & MAP_PREFAULT_PARTIAL) && psize > MAX_INIT_PT && 1800 object->resident_page_count > MAX_INIT_PT) 1801 goto unlock_return; 1802 1803 if (psize + pindex > object->size) { 1804 if (object->size < pindex) 1805 goto unlock_return; 1806 psize = object->size - pindex; 1807 } 1808 1809 start = 0; 1810 p_start = NULL; 1811 1812 p = vm_page_find_least(object, pindex); 1813 /* 1814 * Assert: the variable p is either (1) the page with the 1815 * least pindex greater than or equal to the parameter pindex 1816 * or (2) NULL. 1817 */ 1818 for (; 1819 p != NULL && (tmpidx = p->pindex - pindex) < psize; 1820 p = TAILQ_NEXT(p, listq)) { 1821 /* 1822 * don't allow an madvise to blow away our really 1823 * free pages allocating pv entries. 1824 */ 1825 if ((flags & MAP_PREFAULT_MADVISE) && 1826 cnt.v_free_count < cnt.v_free_reserved) { 1827 psize = tmpidx; 1828 break; 1829 } 1830 if (p->valid == VM_PAGE_BITS_ALL) { 1831 if (p_start == NULL) { 1832 start = addr + ptoa(tmpidx); 1833 p_start = p; 1834 } 1835 } else if (p_start != NULL) { 1836 pmap_enter_object(map->pmap, start, addr + 1837 ptoa(tmpidx), p_start, prot); 1838 p_start = NULL; 1839 } 1840 } 1841 if (p_start != NULL) 1842 pmap_enter_object(map->pmap, start, addr + ptoa(psize), 1843 p_start, prot); 1844 unlock_return: 1845 VM_OBJECT_UNLOCK(object); 1846 } 1847 1848 /* 1849 * vm_map_protect: 1850 * 1851 * Sets the protection of the specified address 1852 * region in the target map. If "set_max" is 1853 * specified, the maximum protection is to be set; 1854 * otherwise, only the current protection is affected. 1855 */ 1856 int 1857 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 1858 vm_prot_t new_prot, boolean_t set_max) 1859 { 1860 vm_map_entry_t current, entry; 1861 vm_object_t obj; 1862 struct ucred *cred; 1863 vm_prot_t old_prot; 1864 1865 vm_map_lock(map); 1866 1867 VM_MAP_RANGE_CHECK(map, start, end); 1868 1869 if (vm_map_lookup_entry(map, start, &entry)) { 1870 vm_map_clip_start(map, entry, start); 1871 } else { 1872 entry = entry->next; 1873 } 1874 1875 /* 1876 * Make a first pass to check for protection violations. 1877 */ 1878 current = entry; 1879 while ((current != &map->header) && (current->start < end)) { 1880 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 1881 vm_map_unlock(map); 1882 return (KERN_INVALID_ARGUMENT); 1883 } 1884 if ((new_prot & current->max_protection) != new_prot) { 1885 vm_map_unlock(map); 1886 return (KERN_PROTECTION_FAILURE); 1887 } 1888 current = current->next; 1889 } 1890 1891 1892 /* 1893 * Do an accounting pass for private read-only mappings that 1894 * now will do cow due to allowed write (e.g. debugger sets 1895 * breakpoint on text segment) 1896 */ 1897 for (current = entry; (current != &map->header) && 1898 (current->start < end); current = current->next) { 1899 1900 vm_map_clip_end(map, current, end); 1901 1902 if (set_max || 1903 ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 || 1904 ENTRY_CHARGED(current)) { 1905 continue; 1906 } 1907 1908 cred = curthread->td_ucred; 1909 obj = current->object.vm_object; 1910 1911 if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) { 1912 if (!swap_reserve(current->end - current->start)) { 1913 vm_map_unlock(map); 1914 return (KERN_RESOURCE_SHORTAGE); 1915 } 1916 crhold(cred); 1917 current->cred = cred; 1918 continue; 1919 } 1920 1921 VM_OBJECT_LOCK(obj); 1922 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) { 1923 VM_OBJECT_UNLOCK(obj); 1924 continue; 1925 } 1926 1927 /* 1928 * Charge for the whole object allocation now, since 1929 * we cannot distinguish between non-charged and 1930 * charged clipped mapping of the same object later. 1931 */ 1932 KASSERT(obj->charge == 0, 1933 ("vm_map_protect: object %p overcharged\n", obj)); 1934 if (!swap_reserve(ptoa(obj->size))) { 1935 VM_OBJECT_UNLOCK(obj); 1936 vm_map_unlock(map); 1937 return (KERN_RESOURCE_SHORTAGE); 1938 } 1939 1940 crhold(cred); 1941 obj->cred = cred; 1942 obj->charge = ptoa(obj->size); 1943 VM_OBJECT_UNLOCK(obj); 1944 } 1945 1946 /* 1947 * Go back and fix up protections. [Note that clipping is not 1948 * necessary the second time.] 1949 */ 1950 current = entry; 1951 while ((current != &map->header) && (current->start < end)) { 1952 old_prot = current->protection; 1953 1954 if (set_max) 1955 current->protection = 1956 (current->max_protection = new_prot) & 1957 old_prot; 1958 else 1959 current->protection = new_prot; 1960 1961 if ((current->eflags & (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED)) 1962 == (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED) && 1963 (current->protection & VM_PROT_WRITE) != 0 && 1964 (old_prot & VM_PROT_WRITE) == 0) { 1965 vm_fault_copy_entry(map, map, current, current, NULL); 1966 } 1967 1968 /* 1969 * When restricting access, update the physical map. Worry 1970 * about copy-on-write here. 1971 */ 1972 if ((old_prot & ~current->protection) != 0) { 1973 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 1974 VM_PROT_ALL) 1975 pmap_protect(map->pmap, current->start, 1976 current->end, 1977 current->protection & MASK(current)); 1978 #undef MASK 1979 } 1980 vm_map_simplify_entry(map, current); 1981 current = current->next; 1982 } 1983 vm_map_unlock(map); 1984 return (KERN_SUCCESS); 1985 } 1986 1987 /* 1988 * vm_map_madvise: 1989 * 1990 * This routine traverses a processes map handling the madvise 1991 * system call. Advisories are classified as either those effecting 1992 * the vm_map_entry structure, or those effecting the underlying 1993 * objects. 1994 */ 1995 int 1996 vm_map_madvise( 1997 vm_map_t map, 1998 vm_offset_t start, 1999 vm_offset_t end, 2000 int behav) 2001 { 2002 vm_map_entry_t current, entry; 2003 int modify_map = 0; 2004 2005 /* 2006 * Some madvise calls directly modify the vm_map_entry, in which case 2007 * we need to use an exclusive lock on the map and we need to perform 2008 * various clipping operations. Otherwise we only need a read-lock 2009 * on the map. 2010 */ 2011 switch(behav) { 2012 case MADV_NORMAL: 2013 case MADV_SEQUENTIAL: 2014 case MADV_RANDOM: 2015 case MADV_NOSYNC: 2016 case MADV_AUTOSYNC: 2017 case MADV_NOCORE: 2018 case MADV_CORE: 2019 modify_map = 1; 2020 vm_map_lock(map); 2021 break; 2022 case MADV_WILLNEED: 2023 case MADV_DONTNEED: 2024 case MADV_FREE: 2025 vm_map_lock_read(map); 2026 break; 2027 default: 2028 return (KERN_INVALID_ARGUMENT); 2029 } 2030 2031 /* 2032 * Locate starting entry and clip if necessary. 2033 */ 2034 VM_MAP_RANGE_CHECK(map, start, end); 2035 2036 if (vm_map_lookup_entry(map, start, &entry)) { 2037 if (modify_map) 2038 vm_map_clip_start(map, entry, start); 2039 } else { 2040 entry = entry->next; 2041 } 2042 2043 if (modify_map) { 2044 /* 2045 * madvise behaviors that are implemented in the vm_map_entry. 2046 * 2047 * We clip the vm_map_entry so that behavioral changes are 2048 * limited to the specified address range. 2049 */ 2050 for (current = entry; 2051 (current != &map->header) && (current->start < end); 2052 current = current->next 2053 ) { 2054 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2055 continue; 2056 2057 vm_map_clip_end(map, current, end); 2058 2059 switch (behav) { 2060 case MADV_NORMAL: 2061 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL); 2062 break; 2063 case MADV_SEQUENTIAL: 2064 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL); 2065 break; 2066 case MADV_RANDOM: 2067 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM); 2068 break; 2069 case MADV_NOSYNC: 2070 current->eflags |= MAP_ENTRY_NOSYNC; 2071 break; 2072 case MADV_AUTOSYNC: 2073 current->eflags &= ~MAP_ENTRY_NOSYNC; 2074 break; 2075 case MADV_NOCORE: 2076 current->eflags |= MAP_ENTRY_NOCOREDUMP; 2077 break; 2078 case MADV_CORE: 2079 current->eflags &= ~MAP_ENTRY_NOCOREDUMP; 2080 break; 2081 default: 2082 break; 2083 } 2084 vm_map_simplify_entry(map, current); 2085 } 2086 vm_map_unlock(map); 2087 } else { 2088 vm_pindex_t pindex; 2089 int count; 2090 2091 /* 2092 * madvise behaviors that are implemented in the underlying 2093 * vm_object. 2094 * 2095 * Since we don't clip the vm_map_entry, we have to clip 2096 * the vm_object pindex and count. 2097 */ 2098 for (current = entry; 2099 (current != &map->header) && (current->start < end); 2100 current = current->next 2101 ) { 2102 vm_offset_t useStart; 2103 2104 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2105 continue; 2106 2107 pindex = OFF_TO_IDX(current->offset); 2108 count = atop(current->end - current->start); 2109 useStart = current->start; 2110 2111 if (current->start < start) { 2112 pindex += atop(start - current->start); 2113 count -= atop(start - current->start); 2114 useStart = start; 2115 } 2116 if (current->end > end) 2117 count -= atop(current->end - end); 2118 2119 if (count <= 0) 2120 continue; 2121 2122 vm_object_madvise(current->object.vm_object, 2123 pindex, count, behav); 2124 if (behav == MADV_WILLNEED) { 2125 vm_map_pmap_enter(map, 2126 useStart, 2127 current->protection, 2128 current->object.vm_object, 2129 pindex, 2130 (count << PAGE_SHIFT), 2131 MAP_PREFAULT_MADVISE 2132 ); 2133 } 2134 } 2135 vm_map_unlock_read(map); 2136 } 2137 return (0); 2138 } 2139 2140 2141 /* 2142 * vm_map_inherit: 2143 * 2144 * Sets the inheritance of the specified address 2145 * range in the target map. Inheritance 2146 * affects how the map will be shared with 2147 * child maps at the time of vmspace_fork. 2148 */ 2149 int 2150 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 2151 vm_inherit_t new_inheritance) 2152 { 2153 vm_map_entry_t entry; 2154 vm_map_entry_t temp_entry; 2155 2156 switch (new_inheritance) { 2157 case VM_INHERIT_NONE: 2158 case VM_INHERIT_COPY: 2159 case VM_INHERIT_SHARE: 2160 break; 2161 default: 2162 return (KERN_INVALID_ARGUMENT); 2163 } 2164 vm_map_lock(map); 2165 VM_MAP_RANGE_CHECK(map, start, end); 2166 if (vm_map_lookup_entry(map, start, &temp_entry)) { 2167 entry = temp_entry; 2168 vm_map_clip_start(map, entry, start); 2169 } else 2170 entry = temp_entry->next; 2171 while ((entry != &map->header) && (entry->start < end)) { 2172 vm_map_clip_end(map, entry, end); 2173 entry->inheritance = new_inheritance; 2174 vm_map_simplify_entry(map, entry); 2175 entry = entry->next; 2176 } 2177 vm_map_unlock(map); 2178 return (KERN_SUCCESS); 2179 } 2180 2181 /* 2182 * vm_map_unwire: 2183 * 2184 * Implements both kernel and user unwiring. 2185 */ 2186 int 2187 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2188 int flags) 2189 { 2190 vm_map_entry_t entry, first_entry, tmp_entry; 2191 vm_offset_t saved_start; 2192 unsigned int last_timestamp; 2193 int rv; 2194 boolean_t need_wakeup, result, user_unwire; 2195 2196 user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 2197 vm_map_lock(map); 2198 VM_MAP_RANGE_CHECK(map, start, end); 2199 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2200 if (flags & VM_MAP_WIRE_HOLESOK) 2201 first_entry = first_entry->next; 2202 else { 2203 vm_map_unlock(map); 2204 return (KERN_INVALID_ADDRESS); 2205 } 2206 } 2207 last_timestamp = map->timestamp; 2208 entry = first_entry; 2209 while (entry != &map->header && entry->start < end) { 2210 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2211 /* 2212 * We have not yet clipped the entry. 2213 */ 2214 saved_start = (start >= entry->start) ? start : 2215 entry->start; 2216 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2217 if (vm_map_unlock_and_wait(map, 0)) { 2218 /* 2219 * Allow interruption of user unwiring? 2220 */ 2221 } 2222 vm_map_lock(map); 2223 if (last_timestamp+1 != map->timestamp) { 2224 /* 2225 * Look again for the entry because the map was 2226 * modified while it was unlocked. 2227 * Specifically, the entry may have been 2228 * clipped, merged, or deleted. 2229 */ 2230 if (!vm_map_lookup_entry(map, saved_start, 2231 &tmp_entry)) { 2232 if (flags & VM_MAP_WIRE_HOLESOK) 2233 tmp_entry = tmp_entry->next; 2234 else { 2235 if (saved_start == start) { 2236 /* 2237 * First_entry has been deleted. 2238 */ 2239 vm_map_unlock(map); 2240 return (KERN_INVALID_ADDRESS); 2241 } 2242 end = saved_start; 2243 rv = KERN_INVALID_ADDRESS; 2244 goto done; 2245 } 2246 } 2247 if (entry == first_entry) 2248 first_entry = tmp_entry; 2249 else 2250 first_entry = NULL; 2251 entry = tmp_entry; 2252 } 2253 last_timestamp = map->timestamp; 2254 continue; 2255 } 2256 vm_map_clip_start(map, entry, start); 2257 vm_map_clip_end(map, entry, end); 2258 /* 2259 * Mark the entry in case the map lock is released. (See 2260 * above.) 2261 */ 2262 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 2263 /* 2264 * Check the map for holes in the specified region. 2265 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 2266 */ 2267 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) && 2268 (entry->end < end && (entry->next == &map->header || 2269 entry->next->start > entry->end))) { 2270 end = entry->end; 2271 rv = KERN_INVALID_ADDRESS; 2272 goto done; 2273 } 2274 /* 2275 * If system unwiring, require that the entry is system wired. 2276 */ 2277 if (!user_unwire && 2278 vm_map_entry_system_wired_count(entry) == 0) { 2279 end = entry->end; 2280 rv = KERN_INVALID_ARGUMENT; 2281 goto done; 2282 } 2283 entry = entry->next; 2284 } 2285 rv = KERN_SUCCESS; 2286 done: 2287 need_wakeup = FALSE; 2288 if (first_entry == NULL) { 2289 result = vm_map_lookup_entry(map, start, &first_entry); 2290 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 2291 first_entry = first_entry->next; 2292 else 2293 KASSERT(result, ("vm_map_unwire: lookup failed")); 2294 } 2295 entry = first_entry; 2296 while (entry != &map->header && entry->start < end) { 2297 if (rv == KERN_SUCCESS && (!user_unwire || 2298 (entry->eflags & MAP_ENTRY_USER_WIRED))) { 2299 if (user_unwire) 2300 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2301 entry->wired_count--; 2302 if (entry->wired_count == 0) { 2303 /* 2304 * Retain the map lock. 2305 */ 2306 vm_fault_unwire(map, entry->start, entry->end, 2307 entry->object.vm_object != NULL && 2308 (entry->object.vm_object->type == OBJT_DEVICE || 2309 entry->object.vm_object->type == OBJT_SG)); 2310 } 2311 } 2312 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, 2313 ("vm_map_unwire: in-transition flag missing")); 2314 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 2315 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 2316 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 2317 need_wakeup = TRUE; 2318 } 2319 vm_map_simplify_entry(map, entry); 2320 entry = entry->next; 2321 } 2322 vm_map_unlock(map); 2323 if (need_wakeup) 2324 vm_map_wakeup(map); 2325 return (rv); 2326 } 2327 2328 /* 2329 * vm_map_wire: 2330 * 2331 * Implements both kernel and user wiring. 2332 */ 2333 int 2334 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2335 int flags) 2336 { 2337 vm_map_entry_t entry, first_entry, tmp_entry; 2338 vm_offset_t saved_end, saved_start; 2339 unsigned int last_timestamp; 2340 int rv; 2341 boolean_t fictitious, need_wakeup, result, user_wire; 2342 vm_prot_t prot; 2343 2344 prot = 0; 2345 if (flags & VM_MAP_WIRE_WRITE) 2346 prot |= VM_PROT_WRITE; 2347 user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 2348 vm_map_lock(map); 2349 VM_MAP_RANGE_CHECK(map, start, end); 2350 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2351 if (flags & VM_MAP_WIRE_HOLESOK) 2352 first_entry = first_entry->next; 2353 else { 2354 vm_map_unlock(map); 2355 return (KERN_INVALID_ADDRESS); 2356 } 2357 } 2358 last_timestamp = map->timestamp; 2359 entry = first_entry; 2360 while (entry != &map->header && entry->start < end) { 2361 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2362 /* 2363 * We have not yet clipped the entry. 2364 */ 2365 saved_start = (start >= entry->start) ? start : 2366 entry->start; 2367 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2368 if (vm_map_unlock_and_wait(map, 0)) { 2369 /* 2370 * Allow interruption of user wiring? 2371 */ 2372 } 2373 vm_map_lock(map); 2374 if (last_timestamp + 1 != map->timestamp) { 2375 /* 2376 * Look again for the entry because the map was 2377 * modified while it was unlocked. 2378 * Specifically, the entry may have been 2379 * clipped, merged, or deleted. 2380 */ 2381 if (!vm_map_lookup_entry(map, saved_start, 2382 &tmp_entry)) { 2383 if (flags & VM_MAP_WIRE_HOLESOK) 2384 tmp_entry = tmp_entry->next; 2385 else { 2386 if (saved_start == start) { 2387 /* 2388 * first_entry has been deleted. 2389 */ 2390 vm_map_unlock(map); 2391 return (KERN_INVALID_ADDRESS); 2392 } 2393 end = saved_start; 2394 rv = KERN_INVALID_ADDRESS; 2395 goto done; 2396 } 2397 } 2398 if (entry == first_entry) 2399 first_entry = tmp_entry; 2400 else 2401 first_entry = NULL; 2402 entry = tmp_entry; 2403 } 2404 last_timestamp = map->timestamp; 2405 continue; 2406 } 2407 vm_map_clip_start(map, entry, start); 2408 vm_map_clip_end(map, entry, end); 2409 /* 2410 * Mark the entry in case the map lock is released. (See 2411 * above.) 2412 */ 2413 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 2414 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 2415 || (entry->protection & prot) != prot) { 2416 entry->eflags |= MAP_ENTRY_WIRE_SKIPPED; 2417 if ((flags & VM_MAP_WIRE_HOLESOK) == 0) { 2418 end = entry->end; 2419 rv = KERN_INVALID_ADDRESS; 2420 goto done; 2421 } 2422 goto next_entry; 2423 } 2424 if (entry->wired_count == 0) { 2425 entry->wired_count++; 2426 saved_start = entry->start; 2427 saved_end = entry->end; 2428 fictitious = entry->object.vm_object != NULL && 2429 (entry->object.vm_object->type == OBJT_DEVICE || 2430 entry->object.vm_object->type == OBJT_SG); 2431 /* 2432 * Release the map lock, relying on the in-transition 2433 * mark. Mark the map busy for fork. 2434 */ 2435 vm_map_busy(map); 2436 vm_map_unlock(map); 2437 rv = vm_fault_wire(map, saved_start, saved_end, 2438 fictitious); 2439 vm_map_lock(map); 2440 vm_map_unbusy(map); 2441 if (last_timestamp + 1 != map->timestamp) { 2442 /* 2443 * Look again for the entry because the map was 2444 * modified while it was unlocked. The entry 2445 * may have been clipped, but NOT merged or 2446 * deleted. 2447 */ 2448 result = vm_map_lookup_entry(map, saved_start, 2449 &tmp_entry); 2450 KASSERT(result, ("vm_map_wire: lookup failed")); 2451 if (entry == first_entry) 2452 first_entry = tmp_entry; 2453 else 2454 first_entry = NULL; 2455 entry = tmp_entry; 2456 while (entry->end < saved_end) { 2457 if (rv != KERN_SUCCESS) { 2458 KASSERT(entry->wired_count == 1, 2459 ("vm_map_wire: bad count")); 2460 entry->wired_count = -1; 2461 } 2462 entry = entry->next; 2463 } 2464 } 2465 last_timestamp = map->timestamp; 2466 if (rv != KERN_SUCCESS) { 2467 KASSERT(entry->wired_count == 1, 2468 ("vm_map_wire: bad count")); 2469 /* 2470 * Assign an out-of-range value to represent 2471 * the failure to wire this entry. 2472 */ 2473 entry->wired_count = -1; 2474 end = entry->end; 2475 goto done; 2476 } 2477 } else if (!user_wire || 2478 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 2479 entry->wired_count++; 2480 } 2481 /* 2482 * Check the map for holes in the specified region. 2483 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 2484 */ 2485 next_entry: 2486 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) && 2487 (entry->end < end && (entry->next == &map->header || 2488 entry->next->start > entry->end))) { 2489 end = entry->end; 2490 rv = KERN_INVALID_ADDRESS; 2491 goto done; 2492 } 2493 entry = entry->next; 2494 } 2495 rv = KERN_SUCCESS; 2496 done: 2497 need_wakeup = FALSE; 2498 if (first_entry == NULL) { 2499 result = vm_map_lookup_entry(map, start, &first_entry); 2500 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 2501 first_entry = first_entry->next; 2502 else 2503 KASSERT(result, ("vm_map_wire: lookup failed")); 2504 } 2505 entry = first_entry; 2506 while (entry != &map->header && entry->start < end) { 2507 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) 2508 goto next_entry_done; 2509 if (rv == KERN_SUCCESS) { 2510 if (user_wire) 2511 entry->eflags |= MAP_ENTRY_USER_WIRED; 2512 } else if (entry->wired_count == -1) { 2513 /* 2514 * Wiring failed on this entry. Thus, unwiring is 2515 * unnecessary. 2516 */ 2517 entry->wired_count = 0; 2518 } else { 2519 if (!user_wire || 2520 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) 2521 entry->wired_count--; 2522 if (entry->wired_count == 0) { 2523 /* 2524 * Retain the map lock. 2525 */ 2526 vm_fault_unwire(map, entry->start, entry->end, 2527 entry->object.vm_object != NULL && 2528 (entry->object.vm_object->type == OBJT_DEVICE || 2529 entry->object.vm_object->type == OBJT_SG)); 2530 } 2531 } 2532 next_entry_done: 2533 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, 2534 ("vm_map_wire: in-transition flag missing")); 2535 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION|MAP_ENTRY_WIRE_SKIPPED); 2536 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 2537 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 2538 need_wakeup = TRUE; 2539 } 2540 vm_map_simplify_entry(map, entry); 2541 entry = entry->next; 2542 } 2543 vm_map_unlock(map); 2544 if (need_wakeup) 2545 vm_map_wakeup(map); 2546 return (rv); 2547 } 2548 2549 /* 2550 * vm_map_sync 2551 * 2552 * Push any dirty cached pages in the address range to their pager. 2553 * If syncio is TRUE, dirty pages are written synchronously. 2554 * If invalidate is TRUE, any cached pages are freed as well. 2555 * 2556 * If the size of the region from start to end is zero, we are 2557 * supposed to flush all modified pages within the region containing 2558 * start. Unfortunately, a region can be split or coalesced with 2559 * neighboring regions, making it difficult to determine what the 2560 * original region was. Therefore, we approximate this requirement by 2561 * flushing the current region containing start. 2562 * 2563 * Returns an error if any part of the specified range is not mapped. 2564 */ 2565 int 2566 vm_map_sync( 2567 vm_map_t map, 2568 vm_offset_t start, 2569 vm_offset_t end, 2570 boolean_t syncio, 2571 boolean_t invalidate) 2572 { 2573 vm_map_entry_t current; 2574 vm_map_entry_t entry; 2575 vm_size_t size; 2576 vm_object_t object; 2577 vm_ooffset_t offset; 2578 unsigned int last_timestamp; 2579 2580 vm_map_lock_read(map); 2581 VM_MAP_RANGE_CHECK(map, start, end); 2582 if (!vm_map_lookup_entry(map, start, &entry)) { 2583 vm_map_unlock_read(map); 2584 return (KERN_INVALID_ADDRESS); 2585 } else if (start == end) { 2586 start = entry->start; 2587 end = entry->end; 2588 } 2589 /* 2590 * Make a first pass to check for user-wired memory and holes. 2591 */ 2592 for (current = entry; current != &map->header && current->start < end; 2593 current = current->next) { 2594 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) { 2595 vm_map_unlock_read(map); 2596 return (KERN_INVALID_ARGUMENT); 2597 } 2598 if (end > current->end && 2599 (current->next == &map->header || 2600 current->end != current->next->start)) { 2601 vm_map_unlock_read(map); 2602 return (KERN_INVALID_ADDRESS); 2603 } 2604 } 2605 2606 if (invalidate) 2607 pmap_remove(map->pmap, start, end); 2608 2609 /* 2610 * Make a second pass, cleaning/uncaching pages from the indicated 2611 * objects as we go. 2612 */ 2613 for (current = entry; current != &map->header && current->start < end;) { 2614 offset = current->offset + (start - current->start); 2615 size = (end <= current->end ? end : current->end) - start; 2616 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 2617 vm_map_t smap; 2618 vm_map_entry_t tentry; 2619 vm_size_t tsize; 2620 2621 smap = current->object.sub_map; 2622 vm_map_lock_read(smap); 2623 (void) vm_map_lookup_entry(smap, offset, &tentry); 2624 tsize = tentry->end - offset; 2625 if (tsize < size) 2626 size = tsize; 2627 object = tentry->object.vm_object; 2628 offset = tentry->offset + (offset - tentry->start); 2629 vm_map_unlock_read(smap); 2630 } else { 2631 object = current->object.vm_object; 2632 } 2633 vm_object_reference(object); 2634 last_timestamp = map->timestamp; 2635 vm_map_unlock_read(map); 2636 vm_object_sync(object, offset, size, syncio, invalidate); 2637 start += size; 2638 vm_object_deallocate(object); 2639 vm_map_lock_read(map); 2640 if (last_timestamp == map->timestamp || 2641 !vm_map_lookup_entry(map, start, ¤t)) 2642 current = current->next; 2643 } 2644 2645 vm_map_unlock_read(map); 2646 return (KERN_SUCCESS); 2647 } 2648 2649 /* 2650 * vm_map_entry_unwire: [ internal use only ] 2651 * 2652 * Make the region specified by this entry pageable. 2653 * 2654 * The map in question should be locked. 2655 * [This is the reason for this routine's existence.] 2656 */ 2657 static void 2658 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 2659 { 2660 vm_fault_unwire(map, entry->start, entry->end, 2661 entry->object.vm_object != NULL && 2662 (entry->object.vm_object->type == OBJT_DEVICE || 2663 entry->object.vm_object->type == OBJT_SG)); 2664 entry->wired_count = 0; 2665 } 2666 2667 static void 2668 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map) 2669 { 2670 2671 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) 2672 vm_object_deallocate(entry->object.vm_object); 2673 uma_zfree(system_map ? kmapentzone : mapentzone, entry); 2674 } 2675 2676 /* 2677 * vm_map_entry_delete: [ internal use only ] 2678 * 2679 * Deallocate the given entry from the target map. 2680 */ 2681 static void 2682 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry) 2683 { 2684 vm_object_t object; 2685 vm_pindex_t offidxstart, offidxend, count, size1; 2686 vm_ooffset_t size; 2687 2688 vm_map_entry_unlink(map, entry); 2689 object = entry->object.vm_object; 2690 size = entry->end - entry->start; 2691 map->size -= size; 2692 2693 if (entry->cred != NULL) { 2694 swap_release_by_cred(size, entry->cred); 2695 crfree(entry->cred); 2696 } 2697 2698 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 && 2699 (object != NULL)) { 2700 KASSERT(entry->cred == NULL || object->cred == NULL || 2701 (entry->eflags & MAP_ENTRY_NEEDS_COPY), 2702 ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry)); 2703 count = OFF_TO_IDX(size); 2704 offidxstart = OFF_TO_IDX(entry->offset); 2705 offidxend = offidxstart + count; 2706 VM_OBJECT_LOCK(object); 2707 if (object->ref_count != 1 && 2708 ((object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING || 2709 object == kernel_object || object == kmem_object)) { 2710 vm_object_collapse(object); 2711 vm_object_page_remove(object, offidxstart, offidxend, FALSE); 2712 if (object->type == OBJT_SWAP) 2713 swap_pager_freespace(object, offidxstart, count); 2714 if (offidxend >= object->size && 2715 offidxstart < object->size) { 2716 size1 = object->size; 2717 object->size = offidxstart; 2718 if (object->cred != NULL) { 2719 size1 -= object->size; 2720 KASSERT(object->charge >= ptoa(size1), 2721 ("vm_map_entry_delete: object->charge < 0")); 2722 swap_release_by_cred(ptoa(size1), object->cred); 2723 object->charge -= ptoa(size1); 2724 } 2725 } 2726 } 2727 VM_OBJECT_UNLOCK(object); 2728 } else 2729 entry->object.vm_object = NULL; 2730 if (map->system_map) 2731 vm_map_entry_deallocate(entry, TRUE); 2732 else { 2733 entry->next = curthread->td_map_def_user; 2734 curthread->td_map_def_user = entry; 2735 } 2736 } 2737 2738 /* 2739 * vm_map_delete: [ internal use only ] 2740 * 2741 * Deallocates the given address range from the target 2742 * map. 2743 */ 2744 int 2745 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end) 2746 { 2747 vm_map_entry_t entry; 2748 vm_map_entry_t first_entry; 2749 2750 VM_MAP_ASSERT_LOCKED(map); 2751 2752 /* 2753 * Find the start of the region, and clip it 2754 */ 2755 if (!vm_map_lookup_entry(map, start, &first_entry)) 2756 entry = first_entry->next; 2757 else { 2758 entry = first_entry; 2759 vm_map_clip_start(map, entry, start); 2760 } 2761 2762 /* 2763 * Step through all entries in this region 2764 */ 2765 while ((entry != &map->header) && (entry->start < end)) { 2766 vm_map_entry_t next; 2767 2768 /* 2769 * Wait for wiring or unwiring of an entry to complete. 2770 * Also wait for any system wirings to disappear on 2771 * user maps. 2772 */ 2773 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 || 2774 (vm_map_pmap(map) != kernel_pmap && 2775 vm_map_entry_system_wired_count(entry) != 0)) { 2776 unsigned int last_timestamp; 2777 vm_offset_t saved_start; 2778 vm_map_entry_t tmp_entry; 2779 2780 saved_start = entry->start; 2781 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2782 last_timestamp = map->timestamp; 2783 (void) vm_map_unlock_and_wait(map, 0); 2784 vm_map_lock(map); 2785 if (last_timestamp + 1 != map->timestamp) { 2786 /* 2787 * Look again for the entry because the map was 2788 * modified while it was unlocked. 2789 * Specifically, the entry may have been 2790 * clipped, merged, or deleted. 2791 */ 2792 if (!vm_map_lookup_entry(map, saved_start, 2793 &tmp_entry)) 2794 entry = tmp_entry->next; 2795 else { 2796 entry = tmp_entry; 2797 vm_map_clip_start(map, entry, 2798 saved_start); 2799 } 2800 } 2801 continue; 2802 } 2803 vm_map_clip_end(map, entry, end); 2804 2805 next = entry->next; 2806 2807 /* 2808 * Unwire before removing addresses from the pmap; otherwise, 2809 * unwiring will put the entries back in the pmap. 2810 */ 2811 if (entry->wired_count != 0) { 2812 vm_map_entry_unwire(map, entry); 2813 } 2814 2815 pmap_remove(map->pmap, entry->start, entry->end); 2816 2817 /* 2818 * Delete the entry only after removing all pmap 2819 * entries pointing to its pages. (Otherwise, its 2820 * page frames may be reallocated, and any modify bits 2821 * will be set in the wrong object!) 2822 */ 2823 vm_map_entry_delete(map, entry); 2824 entry = next; 2825 } 2826 return (KERN_SUCCESS); 2827 } 2828 2829 /* 2830 * vm_map_remove: 2831 * 2832 * Remove the given address range from the target map. 2833 * This is the exported form of vm_map_delete. 2834 */ 2835 int 2836 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 2837 { 2838 int result; 2839 2840 vm_map_lock(map); 2841 VM_MAP_RANGE_CHECK(map, start, end); 2842 result = vm_map_delete(map, start, end); 2843 vm_map_unlock(map); 2844 return (result); 2845 } 2846 2847 /* 2848 * vm_map_check_protection: 2849 * 2850 * Assert that the target map allows the specified privilege on the 2851 * entire address region given. The entire region must be allocated. 2852 * 2853 * WARNING! This code does not and should not check whether the 2854 * contents of the region is accessible. For example a smaller file 2855 * might be mapped into a larger address space. 2856 * 2857 * NOTE! This code is also called by munmap(). 2858 * 2859 * The map must be locked. A read lock is sufficient. 2860 */ 2861 boolean_t 2862 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 2863 vm_prot_t protection) 2864 { 2865 vm_map_entry_t entry; 2866 vm_map_entry_t tmp_entry; 2867 2868 if (!vm_map_lookup_entry(map, start, &tmp_entry)) 2869 return (FALSE); 2870 entry = tmp_entry; 2871 2872 while (start < end) { 2873 if (entry == &map->header) 2874 return (FALSE); 2875 /* 2876 * No holes allowed! 2877 */ 2878 if (start < entry->start) 2879 return (FALSE); 2880 /* 2881 * Check protection associated with entry. 2882 */ 2883 if ((entry->protection & protection) != protection) 2884 return (FALSE); 2885 /* go to next entry */ 2886 start = entry->end; 2887 entry = entry->next; 2888 } 2889 return (TRUE); 2890 } 2891 2892 /* 2893 * vm_map_copy_entry: 2894 * 2895 * Copies the contents of the source entry to the destination 2896 * entry. The entries *must* be aligned properly. 2897 */ 2898 static void 2899 vm_map_copy_entry( 2900 vm_map_t src_map, 2901 vm_map_t dst_map, 2902 vm_map_entry_t src_entry, 2903 vm_map_entry_t dst_entry, 2904 vm_ooffset_t *fork_charge) 2905 { 2906 vm_object_t src_object; 2907 vm_offset_t size; 2908 struct ucred *cred; 2909 int charged; 2910 2911 VM_MAP_ASSERT_LOCKED(dst_map); 2912 2913 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP) 2914 return; 2915 2916 if (src_entry->wired_count == 0) { 2917 2918 /* 2919 * If the source entry is marked needs_copy, it is already 2920 * write-protected. 2921 */ 2922 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) { 2923 pmap_protect(src_map->pmap, 2924 src_entry->start, 2925 src_entry->end, 2926 src_entry->protection & ~VM_PROT_WRITE); 2927 } 2928 2929 /* 2930 * Make a copy of the object. 2931 */ 2932 size = src_entry->end - src_entry->start; 2933 if ((src_object = src_entry->object.vm_object) != NULL) { 2934 VM_OBJECT_LOCK(src_object); 2935 charged = ENTRY_CHARGED(src_entry); 2936 if ((src_object->handle == NULL) && 2937 (src_object->type == OBJT_DEFAULT || 2938 src_object->type == OBJT_SWAP)) { 2939 vm_object_collapse(src_object); 2940 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) { 2941 vm_object_split(src_entry); 2942 src_object = src_entry->object.vm_object; 2943 } 2944 } 2945 vm_object_reference_locked(src_object); 2946 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 2947 if (src_entry->cred != NULL && 2948 !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 2949 KASSERT(src_object->cred == NULL, 2950 ("OVERCOMMIT: vm_map_copy_entry: cred %p", 2951 src_object)); 2952 src_object->cred = src_entry->cred; 2953 src_object->charge = size; 2954 } 2955 VM_OBJECT_UNLOCK(src_object); 2956 dst_entry->object.vm_object = src_object; 2957 if (charged) { 2958 cred = curthread->td_ucred; 2959 crhold(cred); 2960 dst_entry->cred = cred; 2961 *fork_charge += size; 2962 if (!(src_entry->eflags & 2963 MAP_ENTRY_NEEDS_COPY)) { 2964 crhold(cred); 2965 src_entry->cred = cred; 2966 *fork_charge += size; 2967 } 2968 } 2969 src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 2970 dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 2971 dst_entry->offset = src_entry->offset; 2972 } else { 2973 dst_entry->object.vm_object = NULL; 2974 dst_entry->offset = 0; 2975 if (src_entry->cred != NULL) { 2976 dst_entry->cred = curthread->td_ucred; 2977 crhold(dst_entry->cred); 2978 *fork_charge += size; 2979 } 2980 } 2981 2982 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start, 2983 dst_entry->end - dst_entry->start, src_entry->start); 2984 } else { 2985 /* 2986 * Of course, wired down pages can't be set copy-on-write. 2987 * Cause wired pages to be copied into the new map by 2988 * simulating faults (the new pages are pageable) 2989 */ 2990 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry, 2991 fork_charge); 2992 } 2993 } 2994 2995 /* 2996 * vmspace_map_entry_forked: 2997 * Update the newly-forked vmspace each time a map entry is inherited 2998 * or copied. The values for vm_dsize and vm_tsize are approximate 2999 * (and mostly-obsolete ideas in the face of mmap(2) et al.) 3000 */ 3001 static void 3002 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2, 3003 vm_map_entry_t entry) 3004 { 3005 vm_size_t entrysize; 3006 vm_offset_t newend; 3007 3008 entrysize = entry->end - entry->start; 3009 vm2->vm_map.size += entrysize; 3010 if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) { 3011 vm2->vm_ssize += btoc(entrysize); 3012 } else if (entry->start >= (vm_offset_t)vm1->vm_daddr && 3013 entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) { 3014 newend = MIN(entry->end, 3015 (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)); 3016 vm2->vm_dsize += btoc(newend - entry->start); 3017 } else if (entry->start >= (vm_offset_t)vm1->vm_taddr && 3018 entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) { 3019 newend = MIN(entry->end, 3020 (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)); 3021 vm2->vm_tsize += btoc(newend - entry->start); 3022 } 3023 } 3024 3025 /* 3026 * vmspace_fork: 3027 * Create a new process vmspace structure and vm_map 3028 * based on those of an existing process. The new map 3029 * is based on the old map, according to the inheritance 3030 * values on the regions in that map. 3031 * 3032 * XXX It might be worth coalescing the entries added to the new vmspace. 3033 * 3034 * The source map must not be locked. 3035 */ 3036 struct vmspace * 3037 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge) 3038 { 3039 struct vmspace *vm2; 3040 vm_map_t old_map = &vm1->vm_map; 3041 vm_map_t new_map; 3042 vm_map_entry_t old_entry; 3043 vm_map_entry_t new_entry; 3044 vm_object_t object; 3045 int locked; 3046 3047 vm_map_lock(old_map); 3048 if (old_map->busy) 3049 vm_map_wait_busy(old_map); 3050 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset); 3051 if (vm2 == NULL) 3052 goto unlock_and_return; 3053 vm2->vm_taddr = vm1->vm_taddr; 3054 vm2->vm_daddr = vm1->vm_daddr; 3055 vm2->vm_maxsaddr = vm1->vm_maxsaddr; 3056 new_map = &vm2->vm_map; /* XXX */ 3057 locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */ 3058 KASSERT(locked, ("vmspace_fork: lock failed")); 3059 new_map->timestamp = 1; 3060 3061 old_entry = old_map->header.next; 3062 3063 while (old_entry != &old_map->header) { 3064 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) 3065 panic("vm_map_fork: encountered a submap"); 3066 3067 switch (old_entry->inheritance) { 3068 case VM_INHERIT_NONE: 3069 break; 3070 3071 case VM_INHERIT_SHARE: 3072 /* 3073 * Clone the entry, creating the shared object if necessary. 3074 */ 3075 object = old_entry->object.vm_object; 3076 if (object == NULL) { 3077 object = vm_object_allocate(OBJT_DEFAULT, 3078 atop(old_entry->end - old_entry->start)); 3079 old_entry->object.vm_object = object; 3080 old_entry->offset = 0; 3081 if (old_entry->cred != NULL) { 3082 object->cred = old_entry->cred; 3083 object->charge = old_entry->end - 3084 old_entry->start; 3085 old_entry->cred = NULL; 3086 } 3087 } 3088 3089 /* 3090 * Add the reference before calling vm_object_shadow 3091 * to insure that a shadow object is created. 3092 */ 3093 vm_object_reference(object); 3094 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3095 vm_object_shadow(&old_entry->object.vm_object, 3096 &old_entry->offset, 3097 old_entry->end - old_entry->start); 3098 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 3099 /* Transfer the second reference too. */ 3100 vm_object_reference( 3101 old_entry->object.vm_object); 3102 3103 /* 3104 * As in vm_map_simplify_entry(), the 3105 * vnode lock will not be acquired in 3106 * this call to vm_object_deallocate(). 3107 */ 3108 vm_object_deallocate(object); 3109 object = old_entry->object.vm_object; 3110 } 3111 VM_OBJECT_LOCK(object); 3112 vm_object_clear_flag(object, OBJ_ONEMAPPING); 3113 if (old_entry->cred != NULL) { 3114 KASSERT(object->cred == NULL, ("vmspace_fork both cred")); 3115 object->cred = old_entry->cred; 3116 object->charge = old_entry->end - old_entry->start; 3117 old_entry->cred = NULL; 3118 } 3119 VM_OBJECT_UNLOCK(object); 3120 3121 /* 3122 * Clone the entry, referencing the shared object. 3123 */ 3124 new_entry = vm_map_entry_create(new_map); 3125 *new_entry = *old_entry; 3126 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 3127 MAP_ENTRY_IN_TRANSITION); 3128 new_entry->wired_count = 0; 3129 3130 /* 3131 * Insert the entry into the new map -- we know we're 3132 * inserting at the end of the new map. 3133 */ 3134 vm_map_entry_link(new_map, new_map->header.prev, 3135 new_entry); 3136 vmspace_map_entry_forked(vm1, vm2, new_entry); 3137 3138 /* 3139 * Update the physical map 3140 */ 3141 pmap_copy(new_map->pmap, old_map->pmap, 3142 new_entry->start, 3143 (old_entry->end - old_entry->start), 3144 old_entry->start); 3145 break; 3146 3147 case VM_INHERIT_COPY: 3148 /* 3149 * Clone the entry and link into the map. 3150 */ 3151 new_entry = vm_map_entry_create(new_map); 3152 *new_entry = *old_entry; 3153 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 3154 MAP_ENTRY_IN_TRANSITION); 3155 new_entry->wired_count = 0; 3156 new_entry->object.vm_object = NULL; 3157 new_entry->cred = NULL; 3158 vm_map_entry_link(new_map, new_map->header.prev, 3159 new_entry); 3160 vmspace_map_entry_forked(vm1, vm2, new_entry); 3161 vm_map_copy_entry(old_map, new_map, old_entry, 3162 new_entry, fork_charge); 3163 break; 3164 } 3165 old_entry = old_entry->next; 3166 } 3167 unlock_and_return: 3168 vm_map_unlock(old_map); 3169 if (vm2 != NULL) 3170 vm_map_unlock(new_map); 3171 3172 return (vm2); 3173 } 3174 3175 int 3176 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 3177 vm_prot_t prot, vm_prot_t max, int cow) 3178 { 3179 vm_map_entry_t new_entry, prev_entry; 3180 vm_offset_t bot, top; 3181 vm_size_t init_ssize; 3182 int orient, rv; 3183 rlim_t vmemlim; 3184 3185 /* 3186 * The stack orientation is piggybacked with the cow argument. 3187 * Extract it into orient and mask the cow argument so that we 3188 * don't pass it around further. 3189 * NOTE: We explicitly allow bi-directional stacks. 3190 */ 3191 orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP); 3192 cow &= ~orient; 3193 KASSERT(orient != 0, ("No stack grow direction")); 3194 3195 if (addrbos < vm_map_min(map) || 3196 addrbos > vm_map_max(map) || 3197 addrbos + max_ssize < addrbos) 3198 return (KERN_NO_SPACE); 3199 3200 init_ssize = (max_ssize < sgrowsiz) ? max_ssize : sgrowsiz; 3201 3202 PROC_LOCK(curthread->td_proc); 3203 vmemlim = lim_cur(curthread->td_proc, RLIMIT_VMEM); 3204 PROC_UNLOCK(curthread->td_proc); 3205 3206 vm_map_lock(map); 3207 3208 /* If addr is already mapped, no go */ 3209 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) { 3210 vm_map_unlock(map); 3211 return (KERN_NO_SPACE); 3212 } 3213 3214 /* If we would blow our VMEM resource limit, no go */ 3215 if (map->size + init_ssize > vmemlim) { 3216 vm_map_unlock(map); 3217 return (KERN_NO_SPACE); 3218 } 3219 3220 /* 3221 * If we can't accomodate max_ssize in the current mapping, no go. 3222 * However, we need to be aware that subsequent user mappings might 3223 * map into the space we have reserved for stack, and currently this 3224 * space is not protected. 3225 * 3226 * Hopefully we will at least detect this condition when we try to 3227 * grow the stack. 3228 */ 3229 if ((prev_entry->next != &map->header) && 3230 (prev_entry->next->start < addrbos + max_ssize)) { 3231 vm_map_unlock(map); 3232 return (KERN_NO_SPACE); 3233 } 3234 3235 /* 3236 * We initially map a stack of only init_ssize. We will grow as 3237 * needed later. Depending on the orientation of the stack (i.e. 3238 * the grow direction) we either map at the top of the range, the 3239 * bottom of the range or in the middle. 3240 * 3241 * Note: we would normally expect prot and max to be VM_PROT_ALL, 3242 * and cow to be 0. Possibly we should eliminate these as input 3243 * parameters, and just pass these values here in the insert call. 3244 */ 3245 if (orient == MAP_STACK_GROWS_DOWN) 3246 bot = addrbos + max_ssize - init_ssize; 3247 else if (orient == MAP_STACK_GROWS_UP) 3248 bot = addrbos; 3249 else 3250 bot = round_page(addrbos + max_ssize/2 - init_ssize/2); 3251 top = bot + init_ssize; 3252 rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow); 3253 3254 /* Now set the avail_ssize amount. */ 3255 if (rv == KERN_SUCCESS) { 3256 if (prev_entry != &map->header) 3257 vm_map_clip_end(map, prev_entry, bot); 3258 new_entry = prev_entry->next; 3259 if (new_entry->end != top || new_entry->start != bot) 3260 panic("Bad entry start/end for new stack entry"); 3261 3262 new_entry->avail_ssize = max_ssize - init_ssize; 3263 if (orient & MAP_STACK_GROWS_DOWN) 3264 new_entry->eflags |= MAP_ENTRY_GROWS_DOWN; 3265 if (orient & MAP_STACK_GROWS_UP) 3266 new_entry->eflags |= MAP_ENTRY_GROWS_UP; 3267 } 3268 3269 vm_map_unlock(map); 3270 return (rv); 3271 } 3272 3273 static int stack_guard_page = 0; 3274 TUNABLE_INT("security.bsd.stack_guard_page", &stack_guard_page); 3275 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RW, 3276 &stack_guard_page, 0, 3277 "Insert stack guard page ahead of the growable segments."); 3278 3279 /* Attempts to grow a vm stack entry. Returns KERN_SUCCESS if the 3280 * desired address is already mapped, or if we successfully grow 3281 * the stack. Also returns KERN_SUCCESS if addr is outside the 3282 * stack range (this is strange, but preserves compatibility with 3283 * the grow function in vm_machdep.c). 3284 */ 3285 int 3286 vm_map_growstack(struct proc *p, vm_offset_t addr) 3287 { 3288 vm_map_entry_t next_entry, prev_entry; 3289 vm_map_entry_t new_entry, stack_entry; 3290 struct vmspace *vm = p->p_vmspace; 3291 vm_map_t map = &vm->vm_map; 3292 vm_offset_t end; 3293 size_t grow_amount, max_grow; 3294 rlim_t stacklim, vmemlim; 3295 int is_procstack, rv; 3296 struct ucred *cred; 3297 #ifdef notyet 3298 uint64_t limit; 3299 #endif 3300 int error; 3301 3302 Retry: 3303 PROC_LOCK(p); 3304 stacklim = lim_cur(p, RLIMIT_STACK); 3305 vmemlim = lim_cur(p, RLIMIT_VMEM); 3306 PROC_UNLOCK(p); 3307 3308 vm_map_lock_read(map); 3309 3310 /* If addr is already in the entry range, no need to grow.*/ 3311 if (vm_map_lookup_entry(map, addr, &prev_entry)) { 3312 vm_map_unlock_read(map); 3313 return (KERN_SUCCESS); 3314 } 3315 3316 next_entry = prev_entry->next; 3317 if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) { 3318 /* 3319 * This entry does not grow upwards. Since the address lies 3320 * beyond this entry, the next entry (if one exists) has to 3321 * be a downward growable entry. The entry list header is 3322 * never a growable entry, so it suffices to check the flags. 3323 */ 3324 if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) { 3325 vm_map_unlock_read(map); 3326 return (KERN_SUCCESS); 3327 } 3328 stack_entry = next_entry; 3329 } else { 3330 /* 3331 * This entry grows upward. If the next entry does not at 3332 * least grow downwards, this is the entry we need to grow. 3333 * otherwise we have two possible choices and we have to 3334 * select one. 3335 */ 3336 if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) { 3337 /* 3338 * We have two choices; grow the entry closest to 3339 * the address to minimize the amount of growth. 3340 */ 3341 if (addr - prev_entry->end <= next_entry->start - addr) 3342 stack_entry = prev_entry; 3343 else 3344 stack_entry = next_entry; 3345 } else 3346 stack_entry = prev_entry; 3347 } 3348 3349 if (stack_entry == next_entry) { 3350 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo")); 3351 KASSERT(addr < stack_entry->start, ("foo")); 3352 end = (prev_entry != &map->header) ? prev_entry->end : 3353 stack_entry->start - stack_entry->avail_ssize; 3354 grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE); 3355 max_grow = stack_entry->start - end; 3356 } else { 3357 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo")); 3358 KASSERT(addr >= stack_entry->end, ("foo")); 3359 end = (next_entry != &map->header) ? next_entry->start : 3360 stack_entry->end + stack_entry->avail_ssize; 3361 grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE); 3362 max_grow = end - stack_entry->end; 3363 } 3364 3365 if (grow_amount > stack_entry->avail_ssize) { 3366 vm_map_unlock_read(map); 3367 return (KERN_NO_SPACE); 3368 } 3369 3370 /* 3371 * If there is no longer enough space between the entries nogo, and 3372 * adjust the available space. Note: this should only happen if the 3373 * user has mapped into the stack area after the stack was created, 3374 * and is probably an error. 3375 * 3376 * This also effectively destroys any guard page the user might have 3377 * intended by limiting the stack size. 3378 */ 3379 if (grow_amount + (stack_guard_page ? PAGE_SIZE : 0) > max_grow) { 3380 if (vm_map_lock_upgrade(map)) 3381 goto Retry; 3382 3383 stack_entry->avail_ssize = max_grow; 3384 3385 vm_map_unlock(map); 3386 return (KERN_NO_SPACE); 3387 } 3388 3389 is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr) ? 1 : 0; 3390 3391 /* 3392 * If this is the main process stack, see if we're over the stack 3393 * limit. 3394 */ 3395 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 3396 vm_map_unlock_read(map); 3397 return (KERN_NO_SPACE); 3398 } 3399 PROC_LOCK(p); 3400 if (is_procstack && 3401 racct_set(p, RACCT_STACK, ctob(vm->vm_ssize) + grow_amount)) { 3402 PROC_UNLOCK(p); 3403 vm_map_unlock_read(map); 3404 return (KERN_NO_SPACE); 3405 } 3406 PROC_UNLOCK(p); 3407 3408 /* Round up the grow amount modulo SGROWSIZ */ 3409 grow_amount = roundup (grow_amount, sgrowsiz); 3410 if (grow_amount > stack_entry->avail_ssize) 3411 grow_amount = stack_entry->avail_ssize; 3412 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 3413 grow_amount = trunc_page((vm_size_t)stacklim) - 3414 ctob(vm->vm_ssize); 3415 } 3416 #ifdef notyet 3417 PROC_LOCK(p); 3418 limit = racct_get_available(p, RACCT_STACK); 3419 PROC_UNLOCK(p); 3420 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit)) 3421 grow_amount = limit - ctob(vm->vm_ssize); 3422 #endif 3423 3424 /* If we would blow our VMEM resource limit, no go */ 3425 if (map->size + grow_amount > vmemlim) { 3426 vm_map_unlock_read(map); 3427 rv = KERN_NO_SPACE; 3428 goto out; 3429 } 3430 PROC_LOCK(p); 3431 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) { 3432 PROC_UNLOCK(p); 3433 vm_map_unlock_read(map); 3434 rv = KERN_NO_SPACE; 3435 goto out; 3436 } 3437 PROC_UNLOCK(p); 3438 3439 if (vm_map_lock_upgrade(map)) 3440 goto Retry; 3441 3442 if (stack_entry == next_entry) { 3443 /* 3444 * Growing downward. 3445 */ 3446 /* Get the preliminary new entry start value */ 3447 addr = stack_entry->start - grow_amount; 3448 3449 /* 3450 * If this puts us into the previous entry, cut back our 3451 * growth to the available space. Also, see the note above. 3452 */ 3453 if (addr < end) { 3454 stack_entry->avail_ssize = max_grow; 3455 addr = end; 3456 if (stack_guard_page) 3457 addr += PAGE_SIZE; 3458 } 3459 3460 rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start, 3461 p->p_sysent->sv_stackprot, VM_PROT_ALL, 0); 3462 3463 /* Adjust the available stack space by the amount we grew. */ 3464 if (rv == KERN_SUCCESS) { 3465 if (prev_entry != &map->header) 3466 vm_map_clip_end(map, prev_entry, addr); 3467 new_entry = prev_entry->next; 3468 KASSERT(new_entry == stack_entry->prev, ("foo")); 3469 KASSERT(new_entry->end == stack_entry->start, ("foo")); 3470 KASSERT(new_entry->start == addr, ("foo")); 3471 grow_amount = new_entry->end - new_entry->start; 3472 new_entry->avail_ssize = stack_entry->avail_ssize - 3473 grow_amount; 3474 stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN; 3475 new_entry->eflags |= MAP_ENTRY_GROWS_DOWN; 3476 } 3477 } else { 3478 /* 3479 * Growing upward. 3480 */ 3481 addr = stack_entry->end + grow_amount; 3482 3483 /* 3484 * If this puts us into the next entry, cut back our growth 3485 * to the available space. Also, see the note above. 3486 */ 3487 if (addr > end) { 3488 stack_entry->avail_ssize = end - stack_entry->end; 3489 addr = end; 3490 if (stack_guard_page) 3491 addr -= PAGE_SIZE; 3492 } 3493 3494 grow_amount = addr - stack_entry->end; 3495 cred = stack_entry->cred; 3496 if (cred == NULL && stack_entry->object.vm_object != NULL) 3497 cred = stack_entry->object.vm_object->cred; 3498 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred)) 3499 rv = KERN_NO_SPACE; 3500 /* Grow the underlying object if applicable. */ 3501 else if (stack_entry->object.vm_object == NULL || 3502 vm_object_coalesce(stack_entry->object.vm_object, 3503 stack_entry->offset, 3504 (vm_size_t)(stack_entry->end - stack_entry->start), 3505 (vm_size_t)grow_amount, cred != NULL)) { 3506 map->size += (addr - stack_entry->end); 3507 /* Update the current entry. */ 3508 stack_entry->end = addr; 3509 stack_entry->avail_ssize -= grow_amount; 3510 vm_map_entry_resize_free(map, stack_entry); 3511 rv = KERN_SUCCESS; 3512 3513 if (next_entry != &map->header) 3514 vm_map_clip_start(map, next_entry, addr); 3515 } else 3516 rv = KERN_FAILURE; 3517 } 3518 3519 if (rv == KERN_SUCCESS && is_procstack) 3520 vm->vm_ssize += btoc(grow_amount); 3521 3522 vm_map_unlock(map); 3523 3524 /* 3525 * Heed the MAP_WIREFUTURE flag if it was set for this process. 3526 */ 3527 if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) { 3528 vm_map_wire(map, 3529 (stack_entry == next_entry) ? addr : addr - grow_amount, 3530 (stack_entry == next_entry) ? stack_entry->start : addr, 3531 (p->p_flag & P_SYSTEM) 3532 ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES 3533 : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES); 3534 } 3535 3536 out: 3537 if (rv != KERN_SUCCESS) { 3538 PROC_LOCK(p); 3539 error = racct_set(p, RACCT_VMEM, map->size); 3540 KASSERT(error == 0, ("decreasing RACCT_VMEM failed")); 3541 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize)); 3542 KASSERT(error == 0, ("decreasing RACCT_STACK failed")); 3543 PROC_UNLOCK(p); 3544 } 3545 3546 return (rv); 3547 } 3548 3549 /* 3550 * Unshare the specified VM space for exec. If other processes are 3551 * mapped to it, then create a new one. The new vmspace is null. 3552 */ 3553 int 3554 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser) 3555 { 3556 struct vmspace *oldvmspace = p->p_vmspace; 3557 struct vmspace *newvmspace; 3558 3559 newvmspace = vmspace_alloc(minuser, maxuser); 3560 if (newvmspace == NULL) 3561 return (ENOMEM); 3562 newvmspace->vm_swrss = oldvmspace->vm_swrss; 3563 /* 3564 * This code is written like this for prototype purposes. The 3565 * goal is to avoid running down the vmspace here, but let the 3566 * other process's that are still using the vmspace to finally 3567 * run it down. Even though there is little or no chance of blocking 3568 * here, it is a good idea to keep this form for future mods. 3569 */ 3570 PROC_VMSPACE_LOCK(p); 3571 p->p_vmspace = newvmspace; 3572 PROC_VMSPACE_UNLOCK(p); 3573 if (p == curthread->td_proc) 3574 pmap_activate(curthread); 3575 vmspace_free(oldvmspace); 3576 return (0); 3577 } 3578 3579 /* 3580 * Unshare the specified VM space for forcing COW. This 3581 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 3582 */ 3583 int 3584 vmspace_unshare(struct proc *p) 3585 { 3586 struct vmspace *oldvmspace = p->p_vmspace; 3587 struct vmspace *newvmspace; 3588 vm_ooffset_t fork_charge; 3589 3590 if (oldvmspace->vm_refcnt == 1) 3591 return (0); 3592 fork_charge = 0; 3593 newvmspace = vmspace_fork(oldvmspace, &fork_charge); 3594 if (newvmspace == NULL) 3595 return (ENOMEM); 3596 if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) { 3597 vmspace_free(newvmspace); 3598 return (ENOMEM); 3599 } 3600 PROC_VMSPACE_LOCK(p); 3601 p->p_vmspace = newvmspace; 3602 PROC_VMSPACE_UNLOCK(p); 3603 if (p == curthread->td_proc) 3604 pmap_activate(curthread); 3605 vmspace_free(oldvmspace); 3606 return (0); 3607 } 3608 3609 /* 3610 * vm_map_lookup: 3611 * 3612 * Finds the VM object, offset, and 3613 * protection for a given virtual address in the 3614 * specified map, assuming a page fault of the 3615 * type specified. 3616 * 3617 * Leaves the map in question locked for read; return 3618 * values are guaranteed until a vm_map_lookup_done 3619 * call is performed. Note that the map argument 3620 * is in/out; the returned map must be used in 3621 * the call to vm_map_lookup_done. 3622 * 3623 * A handle (out_entry) is returned for use in 3624 * vm_map_lookup_done, to make that fast. 3625 * 3626 * If a lookup is requested with "write protection" 3627 * specified, the map may be changed to perform virtual 3628 * copying operations, although the data referenced will 3629 * remain the same. 3630 */ 3631 int 3632 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 3633 vm_offset_t vaddr, 3634 vm_prot_t fault_typea, 3635 vm_map_entry_t *out_entry, /* OUT */ 3636 vm_object_t *object, /* OUT */ 3637 vm_pindex_t *pindex, /* OUT */ 3638 vm_prot_t *out_prot, /* OUT */ 3639 boolean_t *wired) /* OUT */ 3640 { 3641 vm_map_entry_t entry; 3642 vm_map_t map = *var_map; 3643 vm_prot_t prot; 3644 vm_prot_t fault_type = fault_typea; 3645 vm_object_t eobject; 3646 vm_size_t size; 3647 struct ucred *cred; 3648 3649 RetryLookup:; 3650 3651 vm_map_lock_read(map); 3652 3653 /* 3654 * Lookup the faulting address. 3655 */ 3656 if (!vm_map_lookup_entry(map, vaddr, out_entry)) { 3657 vm_map_unlock_read(map); 3658 return (KERN_INVALID_ADDRESS); 3659 } 3660 3661 entry = *out_entry; 3662 3663 /* 3664 * Handle submaps. 3665 */ 3666 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 3667 vm_map_t old_map = map; 3668 3669 *var_map = map = entry->object.sub_map; 3670 vm_map_unlock_read(old_map); 3671 goto RetryLookup; 3672 } 3673 3674 /* 3675 * Check whether this task is allowed to have this page. 3676 */ 3677 prot = entry->protection; 3678 fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE); 3679 if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) { 3680 vm_map_unlock_read(map); 3681 return (KERN_PROTECTION_FAILURE); 3682 } 3683 if ((entry->eflags & MAP_ENTRY_USER_WIRED) && 3684 (entry->eflags & MAP_ENTRY_COW) && 3685 (fault_type & VM_PROT_WRITE)) { 3686 vm_map_unlock_read(map); 3687 return (KERN_PROTECTION_FAILURE); 3688 } 3689 3690 /* 3691 * If this page is not pageable, we have to get it for all possible 3692 * accesses. 3693 */ 3694 *wired = (entry->wired_count != 0); 3695 if (*wired) 3696 fault_type = entry->protection; 3697 size = entry->end - entry->start; 3698 /* 3699 * If the entry was copy-on-write, we either ... 3700 */ 3701 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3702 /* 3703 * If we want to write the page, we may as well handle that 3704 * now since we've got the map locked. 3705 * 3706 * If we don't need to write the page, we just demote the 3707 * permissions allowed. 3708 */ 3709 if ((fault_type & VM_PROT_WRITE) != 0 || 3710 (fault_typea & VM_PROT_COPY) != 0) { 3711 /* 3712 * Make a new object, and place it in the object 3713 * chain. Note that no new references have appeared 3714 * -- one just moved from the map to the new 3715 * object. 3716 */ 3717 if (vm_map_lock_upgrade(map)) 3718 goto RetryLookup; 3719 3720 if (entry->cred == NULL) { 3721 /* 3722 * The debugger owner is charged for 3723 * the memory. 3724 */ 3725 cred = curthread->td_ucred; 3726 crhold(cred); 3727 if (!swap_reserve_by_cred(size, cred)) { 3728 crfree(cred); 3729 vm_map_unlock(map); 3730 return (KERN_RESOURCE_SHORTAGE); 3731 } 3732 entry->cred = cred; 3733 } 3734 vm_object_shadow(&entry->object.vm_object, 3735 &entry->offset, size); 3736 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 3737 eobject = entry->object.vm_object; 3738 if (eobject->cred != NULL) { 3739 /* 3740 * The object was not shadowed. 3741 */ 3742 swap_release_by_cred(size, entry->cred); 3743 crfree(entry->cred); 3744 entry->cred = NULL; 3745 } else if (entry->cred != NULL) { 3746 VM_OBJECT_LOCK(eobject); 3747 eobject->cred = entry->cred; 3748 eobject->charge = size; 3749 VM_OBJECT_UNLOCK(eobject); 3750 entry->cred = NULL; 3751 } 3752 3753 vm_map_lock_downgrade(map); 3754 } else { 3755 /* 3756 * We're attempting to read a copy-on-write page -- 3757 * don't allow writes. 3758 */ 3759 prot &= ~VM_PROT_WRITE; 3760 } 3761 } 3762 3763 /* 3764 * Create an object if necessary. 3765 */ 3766 if (entry->object.vm_object == NULL && 3767 !map->system_map) { 3768 if (vm_map_lock_upgrade(map)) 3769 goto RetryLookup; 3770 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT, 3771 atop(size)); 3772 entry->offset = 0; 3773 if (entry->cred != NULL) { 3774 VM_OBJECT_LOCK(entry->object.vm_object); 3775 entry->object.vm_object->cred = entry->cred; 3776 entry->object.vm_object->charge = size; 3777 VM_OBJECT_UNLOCK(entry->object.vm_object); 3778 entry->cred = NULL; 3779 } 3780 vm_map_lock_downgrade(map); 3781 } 3782 3783 /* 3784 * Return the object/offset from this entry. If the entry was 3785 * copy-on-write or empty, it has been fixed up. 3786 */ 3787 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 3788 *object = entry->object.vm_object; 3789 3790 *out_prot = prot; 3791 return (KERN_SUCCESS); 3792 } 3793 3794 /* 3795 * vm_map_lookup_locked: 3796 * 3797 * Lookup the faulting address. A version of vm_map_lookup that returns 3798 * KERN_FAILURE instead of blocking on map lock or memory allocation. 3799 */ 3800 int 3801 vm_map_lookup_locked(vm_map_t *var_map, /* IN/OUT */ 3802 vm_offset_t vaddr, 3803 vm_prot_t fault_typea, 3804 vm_map_entry_t *out_entry, /* OUT */ 3805 vm_object_t *object, /* OUT */ 3806 vm_pindex_t *pindex, /* OUT */ 3807 vm_prot_t *out_prot, /* OUT */ 3808 boolean_t *wired) /* OUT */ 3809 { 3810 vm_map_entry_t entry; 3811 vm_map_t map = *var_map; 3812 vm_prot_t prot; 3813 vm_prot_t fault_type = fault_typea; 3814 3815 /* 3816 * Lookup the faulting address. 3817 */ 3818 if (!vm_map_lookup_entry(map, vaddr, out_entry)) 3819 return (KERN_INVALID_ADDRESS); 3820 3821 entry = *out_entry; 3822 3823 /* 3824 * Fail if the entry refers to a submap. 3825 */ 3826 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 3827 return (KERN_FAILURE); 3828 3829 /* 3830 * Check whether this task is allowed to have this page. 3831 */ 3832 prot = entry->protection; 3833 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; 3834 if ((fault_type & prot) != fault_type) 3835 return (KERN_PROTECTION_FAILURE); 3836 if ((entry->eflags & MAP_ENTRY_USER_WIRED) && 3837 (entry->eflags & MAP_ENTRY_COW) && 3838 (fault_type & VM_PROT_WRITE)) 3839 return (KERN_PROTECTION_FAILURE); 3840 3841 /* 3842 * If this page is not pageable, we have to get it for all possible 3843 * accesses. 3844 */ 3845 *wired = (entry->wired_count != 0); 3846 if (*wired) 3847 fault_type = entry->protection; 3848 3849 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3850 /* 3851 * Fail if the entry was copy-on-write for a write fault. 3852 */ 3853 if (fault_type & VM_PROT_WRITE) 3854 return (KERN_FAILURE); 3855 /* 3856 * We're attempting to read a copy-on-write page -- 3857 * don't allow writes. 3858 */ 3859 prot &= ~VM_PROT_WRITE; 3860 } 3861 3862 /* 3863 * Fail if an object should be created. 3864 */ 3865 if (entry->object.vm_object == NULL && !map->system_map) 3866 return (KERN_FAILURE); 3867 3868 /* 3869 * Return the object/offset from this entry. If the entry was 3870 * copy-on-write or empty, it has been fixed up. 3871 */ 3872 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 3873 *object = entry->object.vm_object; 3874 3875 *out_prot = prot; 3876 return (KERN_SUCCESS); 3877 } 3878 3879 /* 3880 * vm_map_lookup_done: 3881 * 3882 * Releases locks acquired by a vm_map_lookup 3883 * (according to the handle returned by that lookup). 3884 */ 3885 void 3886 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry) 3887 { 3888 /* 3889 * Unlock the main-level map 3890 */ 3891 vm_map_unlock_read(map); 3892 } 3893 3894 #include "opt_ddb.h" 3895 #ifdef DDB 3896 #include <sys/kernel.h> 3897 3898 #include <ddb/ddb.h> 3899 3900 /* 3901 * vm_map_print: [ debug ] 3902 */ 3903 DB_SHOW_COMMAND(map, vm_map_print) 3904 { 3905 static int nlines; 3906 /* XXX convert args. */ 3907 vm_map_t map = (vm_map_t)addr; 3908 boolean_t full = have_addr; 3909 3910 vm_map_entry_t entry; 3911 3912 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 3913 (void *)map, 3914 (void *)map->pmap, map->nentries, map->timestamp); 3915 nlines++; 3916 3917 if (!full && db_indent) 3918 return; 3919 3920 db_indent += 2; 3921 for (entry = map->header.next; entry != &map->header; 3922 entry = entry->next) { 3923 db_iprintf("map entry %p: start=%p, end=%p\n", 3924 (void *)entry, (void *)entry->start, (void *)entry->end); 3925 nlines++; 3926 { 3927 static char *inheritance_name[4] = 3928 {"share", "copy", "none", "donate_copy"}; 3929 3930 db_iprintf(" prot=%x/%x/%s", 3931 entry->protection, 3932 entry->max_protection, 3933 inheritance_name[(int)(unsigned char)entry->inheritance]); 3934 if (entry->wired_count != 0) 3935 db_printf(", wired"); 3936 } 3937 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 3938 db_printf(", share=%p, offset=0x%jx\n", 3939 (void *)entry->object.sub_map, 3940 (uintmax_t)entry->offset); 3941 nlines++; 3942 if ((entry->prev == &map->header) || 3943 (entry->prev->object.sub_map != 3944 entry->object.sub_map)) { 3945 db_indent += 2; 3946 vm_map_print((db_expr_t)(intptr_t) 3947 entry->object.sub_map, 3948 full, 0, (char *)0); 3949 db_indent -= 2; 3950 } 3951 } else { 3952 if (entry->cred != NULL) 3953 db_printf(", ruid %d", entry->cred->cr_ruid); 3954 db_printf(", object=%p, offset=0x%jx", 3955 (void *)entry->object.vm_object, 3956 (uintmax_t)entry->offset); 3957 if (entry->object.vm_object && entry->object.vm_object->cred) 3958 db_printf(", obj ruid %d charge %jx", 3959 entry->object.vm_object->cred->cr_ruid, 3960 (uintmax_t)entry->object.vm_object->charge); 3961 if (entry->eflags & MAP_ENTRY_COW) 3962 db_printf(", copy (%s)", 3963 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 3964 db_printf("\n"); 3965 nlines++; 3966 3967 if ((entry->prev == &map->header) || 3968 (entry->prev->object.vm_object != 3969 entry->object.vm_object)) { 3970 db_indent += 2; 3971 vm_object_print((db_expr_t)(intptr_t) 3972 entry->object.vm_object, 3973 full, 0, (char *)0); 3974 nlines += 4; 3975 db_indent -= 2; 3976 } 3977 } 3978 } 3979 db_indent -= 2; 3980 if (db_indent == 0) 3981 nlines = 0; 3982 } 3983 3984 3985 DB_SHOW_COMMAND(procvm, procvm) 3986 { 3987 struct proc *p; 3988 3989 if (have_addr) { 3990 p = (struct proc *) addr; 3991 } else { 3992 p = curproc; 3993 } 3994 3995 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 3996 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 3997 (void *)vmspace_pmap(p->p_vmspace)); 3998 3999 vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL); 4000 } 4001 4002 #endif /* DDB */ 4003