xref: /freebsd/sys/vm/vm_map.c (revision 884a2a699669ec61e2366e3e358342dbc94be24a)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60 
61 /*
62  *	Virtual memory mapping module.
63  */
64 
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67 
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/kernel.h>
71 #include <sys/ktr.h>
72 #include <sys/lock.h>
73 #include <sys/mutex.h>
74 #include <sys/proc.h>
75 #include <sys/vmmeter.h>
76 #include <sys/mman.h>
77 #include <sys/vnode.h>
78 #include <sys/racct.h>
79 #include <sys/resourcevar.h>
80 #include <sys/file.h>
81 #include <sys/sysctl.h>
82 #include <sys/sysent.h>
83 #include <sys/shm.h>
84 
85 #include <vm/vm.h>
86 #include <vm/vm_param.h>
87 #include <vm/pmap.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_page.h>
90 #include <vm/vm_object.h>
91 #include <vm/vm_pager.h>
92 #include <vm/vm_kern.h>
93 #include <vm/vm_extern.h>
94 #include <vm/swap_pager.h>
95 #include <vm/uma.h>
96 
97 /*
98  *	Virtual memory maps provide for the mapping, protection,
99  *	and sharing of virtual memory objects.  In addition,
100  *	this module provides for an efficient virtual copy of
101  *	memory from one map to another.
102  *
103  *	Synchronization is required prior to most operations.
104  *
105  *	Maps consist of an ordered doubly-linked list of simple
106  *	entries; a self-adjusting binary search tree of these
107  *	entries is used to speed up lookups.
108  *
109  *	Since portions of maps are specified by start/end addresses,
110  *	which may not align with existing map entries, all
111  *	routines merely "clip" entries to these start/end values.
112  *	[That is, an entry is split into two, bordering at a
113  *	start or end value.]  Note that these clippings may not
114  *	always be necessary (as the two resulting entries are then
115  *	not changed); however, the clipping is done for convenience.
116  *
117  *	As mentioned above, virtual copy operations are performed
118  *	by copying VM object references from one map to
119  *	another, and then marking both regions as copy-on-write.
120  */
121 
122 static struct mtx map_sleep_mtx;
123 static uma_zone_t mapentzone;
124 static uma_zone_t kmapentzone;
125 static uma_zone_t mapzone;
126 static uma_zone_t vmspace_zone;
127 static struct vm_object kmapentobj;
128 static int vmspace_zinit(void *mem, int size, int flags);
129 static void vmspace_zfini(void *mem, int size);
130 static int vm_map_zinit(void *mem, int ize, int flags);
131 static void vm_map_zfini(void *mem, int size);
132 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
133     vm_offset_t max);
134 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
135 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
136 #ifdef INVARIANTS
137 static void vm_map_zdtor(void *mem, int size, void *arg);
138 static void vmspace_zdtor(void *mem, int size, void *arg);
139 #endif
140 
141 #define	ENTRY_CHARGED(e) ((e)->cred != NULL || \
142     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
143      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
144 
145 /*
146  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
147  * stable.
148  */
149 #define PROC_VMSPACE_LOCK(p) do { } while (0)
150 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
151 
152 /*
153  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
154  *
155  *	Asserts that the starting and ending region
156  *	addresses fall within the valid range of the map.
157  */
158 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
159 		{					\
160 		if (start < vm_map_min(map))		\
161 			start = vm_map_min(map);	\
162 		if (end > vm_map_max(map))		\
163 			end = vm_map_max(map);		\
164 		if (start > end)			\
165 			start = end;			\
166 		}
167 
168 /*
169  *	vm_map_startup:
170  *
171  *	Initialize the vm_map module.  Must be called before
172  *	any other vm_map routines.
173  *
174  *	Map and entry structures are allocated from the general
175  *	purpose memory pool with some exceptions:
176  *
177  *	- The kernel map and kmem submap are allocated statically.
178  *	- Kernel map entries are allocated out of a static pool.
179  *
180  *	These restrictions are necessary since malloc() uses the
181  *	maps and requires map entries.
182  */
183 
184 void
185 vm_map_startup(void)
186 {
187 	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
188 	mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
189 #ifdef INVARIANTS
190 	    vm_map_zdtor,
191 #else
192 	    NULL,
193 #endif
194 	    vm_map_zinit, vm_map_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
195 	uma_prealloc(mapzone, MAX_KMAP);
196 	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
197 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
198 	    UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
199 	uma_prealloc(kmapentzone, MAX_KMAPENT);
200 	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
201 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
202 }
203 
204 static void
205 vmspace_zfini(void *mem, int size)
206 {
207 	struct vmspace *vm;
208 
209 	vm = (struct vmspace *)mem;
210 	vm_map_zfini(&vm->vm_map, sizeof(vm->vm_map));
211 }
212 
213 static int
214 vmspace_zinit(void *mem, int size, int flags)
215 {
216 	struct vmspace *vm;
217 
218 	vm = (struct vmspace *)mem;
219 
220 	vm->vm_map.pmap = NULL;
221 	(void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
222 	return (0);
223 }
224 
225 static void
226 vm_map_zfini(void *mem, int size)
227 {
228 	vm_map_t map;
229 
230 	map = (vm_map_t)mem;
231 	mtx_destroy(&map->system_mtx);
232 	sx_destroy(&map->lock);
233 }
234 
235 static int
236 vm_map_zinit(void *mem, int size, int flags)
237 {
238 	vm_map_t map;
239 
240 	map = (vm_map_t)mem;
241 	map->nentries = 0;
242 	map->size = 0;
243 	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
244 	sx_init(&map->lock, "user map");
245 	return (0);
246 }
247 
248 #ifdef INVARIANTS
249 static void
250 vmspace_zdtor(void *mem, int size, void *arg)
251 {
252 	struct vmspace *vm;
253 
254 	vm = (struct vmspace *)mem;
255 
256 	vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
257 }
258 static void
259 vm_map_zdtor(void *mem, int size, void *arg)
260 {
261 	vm_map_t map;
262 
263 	map = (vm_map_t)mem;
264 	KASSERT(map->nentries == 0,
265 	    ("map %p nentries == %d on free.",
266 	    map, map->nentries));
267 	KASSERT(map->size == 0,
268 	    ("map %p size == %lu on free.",
269 	    map, (unsigned long)map->size));
270 }
271 #endif	/* INVARIANTS */
272 
273 /*
274  * Allocate a vmspace structure, including a vm_map and pmap,
275  * and initialize those structures.  The refcnt is set to 1.
276  */
277 struct vmspace *
278 vmspace_alloc(min, max)
279 	vm_offset_t min, max;
280 {
281 	struct vmspace *vm;
282 
283 	vm = uma_zalloc(vmspace_zone, M_WAITOK);
284 	if (vm->vm_map.pmap == NULL && !pmap_pinit(vmspace_pmap(vm))) {
285 		uma_zfree(vmspace_zone, vm);
286 		return (NULL);
287 	}
288 	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
289 	_vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
290 	vm->vm_refcnt = 1;
291 	vm->vm_shm = NULL;
292 	vm->vm_swrss = 0;
293 	vm->vm_tsize = 0;
294 	vm->vm_dsize = 0;
295 	vm->vm_ssize = 0;
296 	vm->vm_taddr = 0;
297 	vm->vm_daddr = 0;
298 	vm->vm_maxsaddr = 0;
299 	return (vm);
300 }
301 
302 void
303 vm_init2(void)
304 {
305 	uma_zone_set_obj(kmapentzone, &kmapentobj, lmin(cnt.v_page_count,
306 	    (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) / PAGE_SIZE) / 8 +
307 	     maxproc * 2 + maxfiles);
308 	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
309 #ifdef INVARIANTS
310 	    vmspace_zdtor,
311 #else
312 	    NULL,
313 #endif
314 	    vmspace_zinit, vmspace_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
315 }
316 
317 static void
318 vmspace_container_reset(struct proc *p)
319 {
320 
321 	PROC_LOCK(p);
322 	racct_set(p, RACCT_DATA, 0);
323 	racct_set(p, RACCT_STACK, 0);
324 	racct_set(p, RACCT_RSS, 0);
325 	racct_set(p, RACCT_MEMLOCK, 0);
326 	racct_set(p, RACCT_VMEM, 0);
327 	PROC_UNLOCK(p);
328 }
329 
330 static inline void
331 vmspace_dofree(struct vmspace *vm)
332 {
333 
334 	CTR1(KTR_VM, "vmspace_free: %p", vm);
335 
336 	/*
337 	 * Make sure any SysV shm is freed, it might not have been in
338 	 * exit1().
339 	 */
340 	shmexit(vm);
341 
342 	/*
343 	 * Lock the map, to wait out all other references to it.
344 	 * Delete all of the mappings and pages they hold, then call
345 	 * the pmap module to reclaim anything left.
346 	 */
347 	(void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset,
348 	    vm->vm_map.max_offset);
349 
350 	pmap_release(vmspace_pmap(vm));
351 	vm->vm_map.pmap = NULL;
352 	uma_zfree(vmspace_zone, vm);
353 }
354 
355 void
356 vmspace_free(struct vmspace *vm)
357 {
358 
359 	if (vm->vm_refcnt == 0)
360 		panic("vmspace_free: attempt to free already freed vmspace");
361 
362 	if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
363 		vmspace_dofree(vm);
364 }
365 
366 void
367 vmspace_exitfree(struct proc *p)
368 {
369 	struct vmspace *vm;
370 
371 	PROC_VMSPACE_LOCK(p);
372 	vm = p->p_vmspace;
373 	p->p_vmspace = NULL;
374 	PROC_VMSPACE_UNLOCK(p);
375 	KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
376 	vmspace_free(vm);
377 }
378 
379 void
380 vmspace_exit(struct thread *td)
381 {
382 	int refcnt;
383 	struct vmspace *vm;
384 	struct proc *p;
385 
386 	/*
387 	 * Release user portion of address space.
388 	 * This releases references to vnodes,
389 	 * which could cause I/O if the file has been unlinked.
390 	 * Need to do this early enough that we can still sleep.
391 	 *
392 	 * The last exiting process to reach this point releases as
393 	 * much of the environment as it can. vmspace_dofree() is the
394 	 * slower fallback in case another process had a temporary
395 	 * reference to the vmspace.
396 	 */
397 
398 	p = td->td_proc;
399 	vm = p->p_vmspace;
400 	atomic_add_int(&vmspace0.vm_refcnt, 1);
401 	do {
402 		refcnt = vm->vm_refcnt;
403 		if (refcnt > 1 && p->p_vmspace != &vmspace0) {
404 			/* Switch now since other proc might free vmspace */
405 			PROC_VMSPACE_LOCK(p);
406 			p->p_vmspace = &vmspace0;
407 			PROC_VMSPACE_UNLOCK(p);
408 			pmap_activate(td);
409 		}
410 	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
411 	if (refcnt == 1) {
412 		if (p->p_vmspace != vm) {
413 			/* vmspace not yet freed, switch back */
414 			PROC_VMSPACE_LOCK(p);
415 			p->p_vmspace = vm;
416 			PROC_VMSPACE_UNLOCK(p);
417 			pmap_activate(td);
418 		}
419 		pmap_remove_pages(vmspace_pmap(vm));
420 		/* Switch now since this proc will free vmspace */
421 		PROC_VMSPACE_LOCK(p);
422 		p->p_vmspace = &vmspace0;
423 		PROC_VMSPACE_UNLOCK(p);
424 		pmap_activate(td);
425 		vmspace_dofree(vm);
426 	}
427 	vmspace_container_reset(p);
428 }
429 
430 /* Acquire reference to vmspace owned by another process. */
431 
432 struct vmspace *
433 vmspace_acquire_ref(struct proc *p)
434 {
435 	struct vmspace *vm;
436 	int refcnt;
437 
438 	PROC_VMSPACE_LOCK(p);
439 	vm = p->p_vmspace;
440 	if (vm == NULL) {
441 		PROC_VMSPACE_UNLOCK(p);
442 		return (NULL);
443 	}
444 	do {
445 		refcnt = vm->vm_refcnt;
446 		if (refcnt <= 0) { 	/* Avoid 0->1 transition */
447 			PROC_VMSPACE_UNLOCK(p);
448 			return (NULL);
449 		}
450 	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
451 	if (vm != p->p_vmspace) {
452 		PROC_VMSPACE_UNLOCK(p);
453 		vmspace_free(vm);
454 		return (NULL);
455 	}
456 	PROC_VMSPACE_UNLOCK(p);
457 	return (vm);
458 }
459 
460 void
461 _vm_map_lock(vm_map_t map, const char *file, int line)
462 {
463 
464 	if (map->system_map)
465 		_mtx_lock_flags(&map->system_mtx, 0, file, line);
466 	else
467 		(void)_sx_xlock(&map->lock, 0, file, line);
468 	map->timestamp++;
469 }
470 
471 static void
472 vm_map_process_deferred(void)
473 {
474 	struct thread *td;
475 	vm_map_entry_t entry;
476 
477 	td = curthread;
478 
479 	while ((entry = td->td_map_def_user) != NULL) {
480 		td->td_map_def_user = entry->next;
481 		vm_map_entry_deallocate(entry, FALSE);
482 	}
483 }
484 
485 void
486 _vm_map_unlock(vm_map_t map, const char *file, int line)
487 {
488 
489 	if (map->system_map)
490 		_mtx_unlock_flags(&map->system_mtx, 0, file, line);
491 	else {
492 		_sx_xunlock(&map->lock, file, line);
493 		vm_map_process_deferred();
494 	}
495 }
496 
497 void
498 _vm_map_lock_read(vm_map_t map, const char *file, int line)
499 {
500 
501 	if (map->system_map)
502 		_mtx_lock_flags(&map->system_mtx, 0, file, line);
503 	else
504 		(void)_sx_slock(&map->lock, 0, file, line);
505 }
506 
507 void
508 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
509 {
510 
511 	if (map->system_map)
512 		_mtx_unlock_flags(&map->system_mtx, 0, file, line);
513 	else {
514 		_sx_sunlock(&map->lock, file, line);
515 		vm_map_process_deferred();
516 	}
517 }
518 
519 int
520 _vm_map_trylock(vm_map_t map, const char *file, int line)
521 {
522 	int error;
523 
524 	error = map->system_map ?
525 	    !_mtx_trylock(&map->system_mtx, 0, file, line) :
526 	    !_sx_try_xlock(&map->lock, file, line);
527 	if (error == 0)
528 		map->timestamp++;
529 	return (error == 0);
530 }
531 
532 int
533 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
534 {
535 	int error;
536 
537 	error = map->system_map ?
538 	    !_mtx_trylock(&map->system_mtx, 0, file, line) :
539 	    !_sx_try_slock(&map->lock, file, line);
540 	return (error == 0);
541 }
542 
543 /*
544  *	_vm_map_lock_upgrade:	[ internal use only ]
545  *
546  *	Tries to upgrade a read (shared) lock on the specified map to a write
547  *	(exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
548  *	non-zero value if the upgrade fails.  If the upgrade fails, the map is
549  *	returned without a read or write lock held.
550  *
551  *	Requires that the map be read locked.
552  */
553 int
554 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
555 {
556 	unsigned int last_timestamp;
557 
558 	if (map->system_map) {
559 #ifdef INVARIANTS
560 		_mtx_assert(&map->system_mtx, MA_OWNED, file, line);
561 #endif
562 	} else {
563 		if (!_sx_try_upgrade(&map->lock, file, line)) {
564 			last_timestamp = map->timestamp;
565 			_sx_sunlock(&map->lock, file, line);
566 			vm_map_process_deferred();
567 			/*
568 			 * If the map's timestamp does not change while the
569 			 * map is unlocked, then the upgrade succeeds.
570 			 */
571 			(void)_sx_xlock(&map->lock, 0, file, line);
572 			if (last_timestamp != map->timestamp) {
573 				_sx_xunlock(&map->lock, file, line);
574 				return (1);
575 			}
576 		}
577 	}
578 	map->timestamp++;
579 	return (0);
580 }
581 
582 void
583 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
584 {
585 
586 	if (map->system_map) {
587 #ifdef INVARIANTS
588 		_mtx_assert(&map->system_mtx, MA_OWNED, file, line);
589 #endif
590 	} else
591 		_sx_downgrade(&map->lock, file, line);
592 }
593 
594 /*
595  *	vm_map_locked:
596  *
597  *	Returns a non-zero value if the caller holds a write (exclusive) lock
598  *	on the specified map and the value "0" otherwise.
599  */
600 int
601 vm_map_locked(vm_map_t map)
602 {
603 
604 	if (map->system_map)
605 		return (mtx_owned(&map->system_mtx));
606 	else
607 		return (sx_xlocked(&map->lock));
608 }
609 
610 #ifdef INVARIANTS
611 static void
612 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
613 {
614 
615 	if (map->system_map)
616 		_mtx_assert(&map->system_mtx, MA_OWNED, file, line);
617 	else
618 		_sx_assert(&map->lock, SA_XLOCKED, file, line);
619 }
620 
621 #if 0
622 static void
623 _vm_map_assert_locked_read(vm_map_t map, const char *file, int line)
624 {
625 
626 	if (map->system_map)
627 		_mtx_assert(&map->system_mtx, MA_OWNED, file, line);
628 	else
629 		_sx_assert(&map->lock, SA_SLOCKED, file, line);
630 }
631 #endif
632 
633 #define	VM_MAP_ASSERT_LOCKED(map) \
634     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
635 #define	VM_MAP_ASSERT_LOCKED_READ(map) \
636     _vm_map_assert_locked_read(map, LOCK_FILE, LOCK_LINE)
637 #else
638 #define	VM_MAP_ASSERT_LOCKED(map)
639 #define	VM_MAP_ASSERT_LOCKED_READ(map)
640 #endif
641 
642 /*
643  *	_vm_map_unlock_and_wait:
644  *
645  *	Atomically releases the lock on the specified map and puts the calling
646  *	thread to sleep.  The calling thread will remain asleep until either
647  *	vm_map_wakeup() is performed on the map or the specified timeout is
648  *	exceeded.
649  *
650  *	WARNING!  This function does not perform deferred deallocations of
651  *	objects and map	entries.  Therefore, the calling thread is expected to
652  *	reacquire the map lock after reawakening and later perform an ordinary
653  *	unlock operation, such as vm_map_unlock(), before completing its
654  *	operation on the map.
655  */
656 int
657 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
658 {
659 
660 	mtx_lock(&map_sleep_mtx);
661 	if (map->system_map)
662 		_mtx_unlock_flags(&map->system_mtx, 0, file, line);
663 	else
664 		_sx_xunlock(&map->lock, file, line);
665 	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
666 	    timo));
667 }
668 
669 /*
670  *	vm_map_wakeup:
671  *
672  *	Awaken any threads that have slept on the map using
673  *	vm_map_unlock_and_wait().
674  */
675 void
676 vm_map_wakeup(vm_map_t map)
677 {
678 
679 	/*
680 	 * Acquire and release map_sleep_mtx to prevent a wakeup()
681 	 * from being performed (and lost) between the map unlock
682 	 * and the msleep() in _vm_map_unlock_and_wait().
683 	 */
684 	mtx_lock(&map_sleep_mtx);
685 	mtx_unlock(&map_sleep_mtx);
686 	wakeup(&map->root);
687 }
688 
689 void
690 vm_map_busy(vm_map_t map)
691 {
692 
693 	VM_MAP_ASSERT_LOCKED(map);
694 	map->busy++;
695 }
696 
697 void
698 vm_map_unbusy(vm_map_t map)
699 {
700 
701 	VM_MAP_ASSERT_LOCKED(map);
702 	KASSERT(map->busy, ("vm_map_unbusy: not busy"));
703 	if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
704 		vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
705 		wakeup(&map->busy);
706 	}
707 }
708 
709 void
710 vm_map_wait_busy(vm_map_t map)
711 {
712 
713 	VM_MAP_ASSERT_LOCKED(map);
714 	while (map->busy) {
715 		vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
716 		if (map->system_map)
717 			msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
718 		else
719 			sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
720 	}
721 	map->timestamp++;
722 }
723 
724 long
725 vmspace_resident_count(struct vmspace *vmspace)
726 {
727 	return pmap_resident_count(vmspace_pmap(vmspace));
728 }
729 
730 long
731 vmspace_wired_count(struct vmspace *vmspace)
732 {
733 	return pmap_wired_count(vmspace_pmap(vmspace));
734 }
735 
736 /*
737  *	vm_map_create:
738  *
739  *	Creates and returns a new empty VM map with
740  *	the given physical map structure, and having
741  *	the given lower and upper address bounds.
742  */
743 vm_map_t
744 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
745 {
746 	vm_map_t result;
747 
748 	result = uma_zalloc(mapzone, M_WAITOK);
749 	CTR1(KTR_VM, "vm_map_create: %p", result);
750 	_vm_map_init(result, pmap, min, max);
751 	return (result);
752 }
753 
754 /*
755  * Initialize an existing vm_map structure
756  * such as that in the vmspace structure.
757  */
758 static void
759 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
760 {
761 
762 	map->header.next = map->header.prev = &map->header;
763 	map->needs_wakeup = FALSE;
764 	map->system_map = 0;
765 	map->pmap = pmap;
766 	map->min_offset = min;
767 	map->max_offset = max;
768 	map->flags = 0;
769 	map->root = NULL;
770 	map->timestamp = 0;
771 	map->busy = 0;
772 }
773 
774 void
775 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
776 {
777 
778 	_vm_map_init(map, pmap, min, max);
779 	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
780 	sx_init(&map->lock, "user map");
781 }
782 
783 /*
784  *	vm_map_entry_dispose:	[ internal use only ]
785  *
786  *	Inverse of vm_map_entry_create.
787  */
788 static void
789 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
790 {
791 	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
792 }
793 
794 /*
795  *	vm_map_entry_create:	[ internal use only ]
796  *
797  *	Allocates a VM map entry for insertion.
798  *	No entry fields are filled in.
799  */
800 static vm_map_entry_t
801 vm_map_entry_create(vm_map_t map)
802 {
803 	vm_map_entry_t new_entry;
804 
805 	if (map->system_map)
806 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
807 	else
808 		new_entry = uma_zalloc(mapentzone, M_WAITOK);
809 	if (new_entry == NULL)
810 		panic("vm_map_entry_create: kernel resources exhausted");
811 	return (new_entry);
812 }
813 
814 /*
815  *	vm_map_entry_set_behavior:
816  *
817  *	Set the expected access behavior, either normal, random, or
818  *	sequential.
819  */
820 static inline void
821 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
822 {
823 	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
824 	    (behavior & MAP_ENTRY_BEHAV_MASK);
825 }
826 
827 /*
828  *	vm_map_entry_set_max_free:
829  *
830  *	Set the max_free field in a vm_map_entry.
831  */
832 static inline void
833 vm_map_entry_set_max_free(vm_map_entry_t entry)
834 {
835 
836 	entry->max_free = entry->adj_free;
837 	if (entry->left != NULL && entry->left->max_free > entry->max_free)
838 		entry->max_free = entry->left->max_free;
839 	if (entry->right != NULL && entry->right->max_free > entry->max_free)
840 		entry->max_free = entry->right->max_free;
841 }
842 
843 /*
844  *	vm_map_entry_splay:
845  *
846  *	The Sleator and Tarjan top-down splay algorithm with the
847  *	following variation.  Max_free must be computed bottom-up, so
848  *	on the downward pass, maintain the left and right spines in
849  *	reverse order.  Then, make a second pass up each side to fix
850  *	the pointers and compute max_free.  The time bound is O(log n)
851  *	amortized.
852  *
853  *	The new root is the vm_map_entry containing "addr", or else an
854  *	adjacent entry (lower or higher) if addr is not in the tree.
855  *
856  *	The map must be locked, and leaves it so.
857  *
858  *	Returns: the new root.
859  */
860 static vm_map_entry_t
861 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
862 {
863 	vm_map_entry_t llist, rlist;
864 	vm_map_entry_t ltree, rtree;
865 	vm_map_entry_t y;
866 
867 	/* Special case of empty tree. */
868 	if (root == NULL)
869 		return (root);
870 
871 	/*
872 	 * Pass One: Splay down the tree until we find addr or a NULL
873 	 * pointer where addr would go.  llist and rlist are the two
874 	 * sides in reverse order (bottom-up), with llist linked by
875 	 * the right pointer and rlist linked by the left pointer in
876 	 * the vm_map_entry.  Wait until Pass Two to set max_free on
877 	 * the two spines.
878 	 */
879 	llist = NULL;
880 	rlist = NULL;
881 	for (;;) {
882 		/* root is never NULL in here. */
883 		if (addr < root->start) {
884 			y = root->left;
885 			if (y == NULL)
886 				break;
887 			if (addr < y->start && y->left != NULL) {
888 				/* Rotate right and put y on rlist. */
889 				root->left = y->right;
890 				y->right = root;
891 				vm_map_entry_set_max_free(root);
892 				root = y->left;
893 				y->left = rlist;
894 				rlist = y;
895 			} else {
896 				/* Put root on rlist. */
897 				root->left = rlist;
898 				rlist = root;
899 				root = y;
900 			}
901 		} else if (addr >= root->end) {
902 			y = root->right;
903 			if (y == NULL)
904 				break;
905 			if (addr >= y->end && y->right != NULL) {
906 				/* Rotate left and put y on llist. */
907 				root->right = y->left;
908 				y->left = root;
909 				vm_map_entry_set_max_free(root);
910 				root = y->right;
911 				y->right = llist;
912 				llist = y;
913 			} else {
914 				/* Put root on llist. */
915 				root->right = llist;
916 				llist = root;
917 				root = y;
918 			}
919 		} else
920 			break;
921 	}
922 
923 	/*
924 	 * Pass Two: Walk back up the two spines, flip the pointers
925 	 * and set max_free.  The subtrees of the root go at the
926 	 * bottom of llist and rlist.
927 	 */
928 	ltree = root->left;
929 	while (llist != NULL) {
930 		y = llist->right;
931 		llist->right = ltree;
932 		vm_map_entry_set_max_free(llist);
933 		ltree = llist;
934 		llist = y;
935 	}
936 	rtree = root->right;
937 	while (rlist != NULL) {
938 		y = rlist->left;
939 		rlist->left = rtree;
940 		vm_map_entry_set_max_free(rlist);
941 		rtree = rlist;
942 		rlist = y;
943 	}
944 
945 	/*
946 	 * Final assembly: add ltree and rtree as subtrees of root.
947 	 */
948 	root->left = ltree;
949 	root->right = rtree;
950 	vm_map_entry_set_max_free(root);
951 
952 	return (root);
953 }
954 
955 /*
956  *	vm_map_entry_{un,}link:
957  *
958  *	Insert/remove entries from maps.
959  */
960 static void
961 vm_map_entry_link(vm_map_t map,
962 		  vm_map_entry_t after_where,
963 		  vm_map_entry_t entry)
964 {
965 
966 	CTR4(KTR_VM,
967 	    "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
968 	    map->nentries, entry, after_where);
969 	VM_MAP_ASSERT_LOCKED(map);
970 	map->nentries++;
971 	entry->prev = after_where;
972 	entry->next = after_where->next;
973 	entry->next->prev = entry;
974 	after_where->next = entry;
975 
976 	if (after_where != &map->header) {
977 		if (after_where != map->root)
978 			vm_map_entry_splay(after_where->start, map->root);
979 		entry->right = after_where->right;
980 		entry->left = after_where;
981 		after_where->right = NULL;
982 		after_where->adj_free = entry->start - after_where->end;
983 		vm_map_entry_set_max_free(after_where);
984 	} else {
985 		entry->right = map->root;
986 		entry->left = NULL;
987 	}
988 	entry->adj_free = (entry->next == &map->header ? map->max_offset :
989 	    entry->next->start) - entry->end;
990 	vm_map_entry_set_max_free(entry);
991 	map->root = entry;
992 }
993 
994 static void
995 vm_map_entry_unlink(vm_map_t map,
996 		    vm_map_entry_t entry)
997 {
998 	vm_map_entry_t next, prev, root;
999 
1000 	VM_MAP_ASSERT_LOCKED(map);
1001 	if (entry != map->root)
1002 		vm_map_entry_splay(entry->start, map->root);
1003 	if (entry->left == NULL)
1004 		root = entry->right;
1005 	else {
1006 		root = vm_map_entry_splay(entry->start, entry->left);
1007 		root->right = entry->right;
1008 		root->adj_free = (entry->next == &map->header ? map->max_offset :
1009 		    entry->next->start) - root->end;
1010 		vm_map_entry_set_max_free(root);
1011 	}
1012 	map->root = root;
1013 
1014 	prev = entry->prev;
1015 	next = entry->next;
1016 	next->prev = prev;
1017 	prev->next = next;
1018 	map->nentries--;
1019 	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1020 	    map->nentries, entry);
1021 }
1022 
1023 /*
1024  *	vm_map_entry_resize_free:
1025  *
1026  *	Recompute the amount of free space following a vm_map_entry
1027  *	and propagate that value up the tree.  Call this function after
1028  *	resizing a map entry in-place, that is, without a call to
1029  *	vm_map_entry_link() or _unlink().
1030  *
1031  *	The map must be locked, and leaves it so.
1032  */
1033 static void
1034 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
1035 {
1036 
1037 	/*
1038 	 * Using splay trees without parent pointers, propagating
1039 	 * max_free up the tree is done by moving the entry to the
1040 	 * root and making the change there.
1041 	 */
1042 	if (entry != map->root)
1043 		map->root = vm_map_entry_splay(entry->start, map->root);
1044 
1045 	entry->adj_free = (entry->next == &map->header ? map->max_offset :
1046 	    entry->next->start) - entry->end;
1047 	vm_map_entry_set_max_free(entry);
1048 }
1049 
1050 /*
1051  *	vm_map_lookup_entry:	[ internal use only ]
1052  *
1053  *	Finds the map entry containing (or
1054  *	immediately preceding) the specified address
1055  *	in the given map; the entry is returned
1056  *	in the "entry" parameter.  The boolean
1057  *	result indicates whether the address is
1058  *	actually contained in the map.
1059  */
1060 boolean_t
1061 vm_map_lookup_entry(
1062 	vm_map_t map,
1063 	vm_offset_t address,
1064 	vm_map_entry_t *entry)	/* OUT */
1065 {
1066 	vm_map_entry_t cur;
1067 	boolean_t locked;
1068 
1069 	/*
1070 	 * If the map is empty, then the map entry immediately preceding
1071 	 * "address" is the map's header.
1072 	 */
1073 	cur = map->root;
1074 	if (cur == NULL)
1075 		*entry = &map->header;
1076 	else if (address >= cur->start && cur->end > address) {
1077 		*entry = cur;
1078 		return (TRUE);
1079 	} else if ((locked = vm_map_locked(map)) ||
1080 	    sx_try_upgrade(&map->lock)) {
1081 		/*
1082 		 * Splay requires a write lock on the map.  However, it only
1083 		 * restructures the binary search tree; it does not otherwise
1084 		 * change the map.  Thus, the map's timestamp need not change
1085 		 * on a temporary upgrade.
1086 		 */
1087 		map->root = cur = vm_map_entry_splay(address, cur);
1088 		if (!locked)
1089 			sx_downgrade(&map->lock);
1090 
1091 		/*
1092 		 * If "address" is contained within a map entry, the new root
1093 		 * is that map entry.  Otherwise, the new root is a map entry
1094 		 * immediately before or after "address".
1095 		 */
1096 		if (address >= cur->start) {
1097 			*entry = cur;
1098 			if (cur->end > address)
1099 				return (TRUE);
1100 		} else
1101 			*entry = cur->prev;
1102 	} else
1103 		/*
1104 		 * Since the map is only locked for read access, perform a
1105 		 * standard binary search tree lookup for "address".
1106 		 */
1107 		for (;;) {
1108 			if (address < cur->start) {
1109 				if (cur->left == NULL) {
1110 					*entry = cur->prev;
1111 					break;
1112 				}
1113 				cur = cur->left;
1114 			} else if (cur->end > address) {
1115 				*entry = cur;
1116 				return (TRUE);
1117 			} else {
1118 				if (cur->right == NULL) {
1119 					*entry = cur;
1120 					break;
1121 				}
1122 				cur = cur->right;
1123 			}
1124 		}
1125 	return (FALSE);
1126 }
1127 
1128 /*
1129  *	vm_map_insert:
1130  *
1131  *	Inserts the given whole VM object into the target
1132  *	map at the specified address range.  The object's
1133  *	size should match that of the address range.
1134  *
1135  *	Requires that the map be locked, and leaves it so.
1136  *
1137  *	If object is non-NULL, ref count must be bumped by caller
1138  *	prior to making call to account for the new entry.
1139  */
1140 int
1141 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1142 	      vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max,
1143 	      int cow)
1144 {
1145 	vm_map_entry_t new_entry;
1146 	vm_map_entry_t prev_entry;
1147 	vm_map_entry_t temp_entry;
1148 	vm_eflags_t protoeflags;
1149 	struct ucred *cred;
1150 	boolean_t charge_prev_obj;
1151 
1152 	VM_MAP_ASSERT_LOCKED(map);
1153 
1154 	/*
1155 	 * Check that the start and end points are not bogus.
1156 	 */
1157 	if ((start < map->min_offset) || (end > map->max_offset) ||
1158 	    (start >= end))
1159 		return (KERN_INVALID_ADDRESS);
1160 
1161 	/*
1162 	 * Find the entry prior to the proposed starting address; if it's part
1163 	 * of an existing entry, this range is bogus.
1164 	 */
1165 	if (vm_map_lookup_entry(map, start, &temp_entry))
1166 		return (KERN_NO_SPACE);
1167 
1168 	prev_entry = temp_entry;
1169 
1170 	/*
1171 	 * Assert that the next entry doesn't overlap the end point.
1172 	 */
1173 	if ((prev_entry->next != &map->header) &&
1174 	    (prev_entry->next->start < end))
1175 		return (KERN_NO_SPACE);
1176 
1177 	protoeflags = 0;
1178 	charge_prev_obj = FALSE;
1179 
1180 	if (cow & MAP_COPY_ON_WRITE)
1181 		protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
1182 
1183 	if (cow & MAP_NOFAULT) {
1184 		protoeflags |= MAP_ENTRY_NOFAULT;
1185 
1186 		KASSERT(object == NULL,
1187 			("vm_map_insert: paradoxical MAP_NOFAULT request"));
1188 	}
1189 	if (cow & MAP_DISABLE_SYNCER)
1190 		protoeflags |= MAP_ENTRY_NOSYNC;
1191 	if (cow & MAP_DISABLE_COREDUMP)
1192 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1193 
1194 	cred = NULL;
1195 	KASSERT((object != kmem_object && object != kernel_object) ||
1196 	    ((object == kmem_object || object == kernel_object) &&
1197 		!(protoeflags & MAP_ENTRY_NEEDS_COPY)),
1198 	    ("kmem or kernel object and cow"));
1199 	if (cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT))
1200 		goto charged;
1201 	if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1202 	    ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1203 		if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1204 			return (KERN_RESOURCE_SHORTAGE);
1205 		KASSERT(object == NULL || (protoeflags & MAP_ENTRY_NEEDS_COPY) ||
1206 		    object->cred == NULL,
1207 		    ("OVERCOMMIT: vm_map_insert o %p", object));
1208 		cred = curthread->td_ucred;
1209 		crhold(cred);
1210 		if (object == NULL && !(protoeflags & MAP_ENTRY_NEEDS_COPY))
1211 			charge_prev_obj = TRUE;
1212 	}
1213 
1214 charged:
1215 	/* Expand the kernel pmap, if necessary. */
1216 	if (map == kernel_map && end > kernel_vm_end)
1217 		pmap_growkernel(end);
1218 	if (object != NULL) {
1219 		/*
1220 		 * OBJ_ONEMAPPING must be cleared unless this mapping
1221 		 * is trivially proven to be the only mapping for any
1222 		 * of the object's pages.  (Object granularity
1223 		 * reference counting is insufficient to recognize
1224 		 * aliases with precision.)
1225 		 */
1226 		VM_OBJECT_LOCK(object);
1227 		if (object->ref_count > 1 || object->shadow_count != 0)
1228 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
1229 		VM_OBJECT_UNLOCK(object);
1230 	}
1231 	else if ((prev_entry != &map->header) &&
1232 		 (prev_entry->eflags == protoeflags) &&
1233 		 (prev_entry->end == start) &&
1234 		 (prev_entry->wired_count == 0) &&
1235 		 (prev_entry->cred == cred ||
1236 		  (prev_entry->object.vm_object != NULL &&
1237 		   (prev_entry->object.vm_object->cred == cred))) &&
1238 		   vm_object_coalesce(prev_entry->object.vm_object,
1239 		       prev_entry->offset,
1240 		       (vm_size_t)(prev_entry->end - prev_entry->start),
1241 		       (vm_size_t)(end - prev_entry->end), charge_prev_obj)) {
1242 		/*
1243 		 * We were able to extend the object.  Determine if we
1244 		 * can extend the previous map entry to include the
1245 		 * new range as well.
1246 		 */
1247 		if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
1248 		    (prev_entry->protection == prot) &&
1249 		    (prev_entry->max_protection == max)) {
1250 			map->size += (end - prev_entry->end);
1251 			prev_entry->end = end;
1252 			vm_map_entry_resize_free(map, prev_entry);
1253 			vm_map_simplify_entry(map, prev_entry);
1254 			if (cred != NULL)
1255 				crfree(cred);
1256 			return (KERN_SUCCESS);
1257 		}
1258 
1259 		/*
1260 		 * If we can extend the object but cannot extend the
1261 		 * map entry, we have to create a new map entry.  We
1262 		 * must bump the ref count on the extended object to
1263 		 * account for it.  object may be NULL.
1264 		 */
1265 		object = prev_entry->object.vm_object;
1266 		offset = prev_entry->offset +
1267 			(prev_entry->end - prev_entry->start);
1268 		vm_object_reference(object);
1269 		if (cred != NULL && object != NULL && object->cred != NULL &&
1270 		    !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1271 			/* Object already accounts for this uid. */
1272 			crfree(cred);
1273 			cred = NULL;
1274 		}
1275 	}
1276 
1277 	/*
1278 	 * NOTE: if conditionals fail, object can be NULL here.  This occurs
1279 	 * in things like the buffer map where we manage kva but do not manage
1280 	 * backing objects.
1281 	 */
1282 
1283 	/*
1284 	 * Create a new entry
1285 	 */
1286 	new_entry = vm_map_entry_create(map);
1287 	new_entry->start = start;
1288 	new_entry->end = end;
1289 	new_entry->cred = NULL;
1290 
1291 	new_entry->eflags = protoeflags;
1292 	new_entry->object.vm_object = object;
1293 	new_entry->offset = offset;
1294 	new_entry->avail_ssize = 0;
1295 
1296 	new_entry->inheritance = VM_INHERIT_DEFAULT;
1297 	new_entry->protection = prot;
1298 	new_entry->max_protection = max;
1299 	new_entry->wired_count = 0;
1300 
1301 	KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1302 	    ("OVERCOMMIT: vm_map_insert leaks vm_map %p", new_entry));
1303 	new_entry->cred = cred;
1304 
1305 	/*
1306 	 * Insert the new entry into the list
1307 	 */
1308 	vm_map_entry_link(map, prev_entry, new_entry);
1309 	map->size += new_entry->end - new_entry->start;
1310 
1311 	/*
1312 	 * It may be possible to merge the new entry with the next and/or
1313 	 * previous entries.  However, due to MAP_STACK_* being a hack, a
1314 	 * panic can result from merging such entries.
1315 	 */
1316 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0)
1317 		vm_map_simplify_entry(map, new_entry);
1318 
1319 	if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
1320 		vm_map_pmap_enter(map, start, prot,
1321 				    object, OFF_TO_IDX(offset), end - start,
1322 				    cow & MAP_PREFAULT_PARTIAL);
1323 	}
1324 
1325 	return (KERN_SUCCESS);
1326 }
1327 
1328 /*
1329  *	vm_map_findspace:
1330  *
1331  *	Find the first fit (lowest VM address) for "length" free bytes
1332  *	beginning at address >= start in the given map.
1333  *
1334  *	In a vm_map_entry, "adj_free" is the amount of free space
1335  *	adjacent (higher address) to this entry, and "max_free" is the
1336  *	maximum amount of contiguous free space in its subtree.  This
1337  *	allows finding a free region in one path down the tree, so
1338  *	O(log n) amortized with splay trees.
1339  *
1340  *	The map must be locked, and leaves it so.
1341  *
1342  *	Returns: 0 on success, and starting address in *addr,
1343  *		 1 if insufficient space.
1344  */
1345 int
1346 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1347     vm_offset_t *addr)	/* OUT */
1348 {
1349 	vm_map_entry_t entry;
1350 	vm_offset_t st;
1351 
1352 	/*
1353 	 * Request must fit within min/max VM address and must avoid
1354 	 * address wrap.
1355 	 */
1356 	if (start < map->min_offset)
1357 		start = map->min_offset;
1358 	if (start + length > map->max_offset || start + length < start)
1359 		return (1);
1360 
1361 	/* Empty tree means wide open address space. */
1362 	if (map->root == NULL) {
1363 		*addr = start;
1364 		return (0);
1365 	}
1366 
1367 	/*
1368 	 * After splay, if start comes before root node, then there
1369 	 * must be a gap from start to the root.
1370 	 */
1371 	map->root = vm_map_entry_splay(start, map->root);
1372 	if (start + length <= map->root->start) {
1373 		*addr = start;
1374 		return (0);
1375 	}
1376 
1377 	/*
1378 	 * Root is the last node that might begin its gap before
1379 	 * start, and this is the last comparison where address
1380 	 * wrap might be a problem.
1381 	 */
1382 	st = (start > map->root->end) ? start : map->root->end;
1383 	if (length <= map->root->end + map->root->adj_free - st) {
1384 		*addr = st;
1385 		return (0);
1386 	}
1387 
1388 	/* With max_free, can immediately tell if no solution. */
1389 	entry = map->root->right;
1390 	if (entry == NULL || length > entry->max_free)
1391 		return (1);
1392 
1393 	/*
1394 	 * Search the right subtree in the order: left subtree, root,
1395 	 * right subtree (first fit).  The previous splay implies that
1396 	 * all regions in the right subtree have addresses > start.
1397 	 */
1398 	while (entry != NULL) {
1399 		if (entry->left != NULL && entry->left->max_free >= length)
1400 			entry = entry->left;
1401 		else if (entry->adj_free >= length) {
1402 			*addr = entry->end;
1403 			return (0);
1404 		} else
1405 			entry = entry->right;
1406 	}
1407 
1408 	/* Can't get here, so panic if we do. */
1409 	panic("vm_map_findspace: max_free corrupt");
1410 }
1411 
1412 int
1413 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1414     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1415     vm_prot_t max, int cow)
1416 {
1417 	vm_offset_t end;
1418 	int result;
1419 
1420 	end = start + length;
1421 	vm_map_lock(map);
1422 	VM_MAP_RANGE_CHECK(map, start, end);
1423 	(void) vm_map_delete(map, start, end);
1424 	result = vm_map_insert(map, object, offset, start, end, prot,
1425 	    max, cow);
1426 	vm_map_unlock(map);
1427 	return (result);
1428 }
1429 
1430 /*
1431  *	vm_map_find finds an unallocated region in the target address
1432  *	map with the given length.  The search is defined to be
1433  *	first-fit from the specified address; the region found is
1434  *	returned in the same parameter.
1435  *
1436  *	If object is non-NULL, ref count must be bumped by caller
1437  *	prior to making call to account for the new entry.
1438  */
1439 int
1440 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1441 	    vm_offset_t *addr,	/* IN/OUT */
1442 	    vm_size_t length, int find_space, vm_prot_t prot,
1443 	    vm_prot_t max, int cow)
1444 {
1445 	vm_offset_t start;
1446 	int result;
1447 
1448 	start = *addr;
1449 	vm_map_lock(map);
1450 	do {
1451 		if (find_space != VMFS_NO_SPACE) {
1452 			if (vm_map_findspace(map, start, length, addr)) {
1453 				vm_map_unlock(map);
1454 				return (KERN_NO_SPACE);
1455 			}
1456 			switch (find_space) {
1457 			case VMFS_ALIGNED_SPACE:
1458 				pmap_align_superpage(object, offset, addr,
1459 				    length);
1460 				break;
1461 #ifdef VMFS_TLB_ALIGNED_SPACE
1462 			case VMFS_TLB_ALIGNED_SPACE:
1463 				pmap_align_tlb(addr);
1464 				break;
1465 #endif
1466 			default:
1467 				break;
1468 			}
1469 
1470 			start = *addr;
1471 		}
1472 		result = vm_map_insert(map, object, offset, start, start +
1473 		    length, prot, max, cow);
1474 	} while (result == KERN_NO_SPACE && (find_space == VMFS_ALIGNED_SPACE
1475 #ifdef VMFS_TLB_ALIGNED_SPACE
1476 	    || find_space == VMFS_TLB_ALIGNED_SPACE
1477 #endif
1478 	    ));
1479 	vm_map_unlock(map);
1480 	return (result);
1481 }
1482 
1483 /*
1484  *	vm_map_simplify_entry:
1485  *
1486  *	Simplify the given map entry by merging with either neighbor.  This
1487  *	routine also has the ability to merge with both neighbors.
1488  *
1489  *	The map must be locked.
1490  *
1491  *	This routine guarentees that the passed entry remains valid (though
1492  *	possibly extended).  When merging, this routine may delete one or
1493  *	both neighbors.
1494  */
1495 void
1496 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1497 {
1498 	vm_map_entry_t next, prev;
1499 	vm_size_t prevsize, esize;
1500 
1501 	if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP))
1502 		return;
1503 
1504 	prev = entry->prev;
1505 	if (prev != &map->header) {
1506 		prevsize = prev->end - prev->start;
1507 		if ( (prev->end == entry->start) &&
1508 		     (prev->object.vm_object == entry->object.vm_object) &&
1509 		     (!prev->object.vm_object ||
1510 			(prev->offset + prevsize == entry->offset)) &&
1511 		     (prev->eflags == entry->eflags) &&
1512 		     (prev->protection == entry->protection) &&
1513 		     (prev->max_protection == entry->max_protection) &&
1514 		     (prev->inheritance == entry->inheritance) &&
1515 		     (prev->wired_count == entry->wired_count) &&
1516 		     (prev->cred == entry->cred)) {
1517 			vm_map_entry_unlink(map, prev);
1518 			entry->start = prev->start;
1519 			entry->offset = prev->offset;
1520 			if (entry->prev != &map->header)
1521 				vm_map_entry_resize_free(map, entry->prev);
1522 
1523 			/*
1524 			 * If the backing object is a vnode object,
1525 			 * vm_object_deallocate() calls vrele().
1526 			 * However, vrele() does not lock the vnode
1527 			 * because the vnode has additional
1528 			 * references.  Thus, the map lock can be kept
1529 			 * without causing a lock-order reversal with
1530 			 * the vnode lock.
1531 			 */
1532 			if (prev->object.vm_object)
1533 				vm_object_deallocate(prev->object.vm_object);
1534 			if (prev->cred != NULL)
1535 				crfree(prev->cred);
1536 			vm_map_entry_dispose(map, prev);
1537 		}
1538 	}
1539 
1540 	next = entry->next;
1541 	if (next != &map->header) {
1542 		esize = entry->end - entry->start;
1543 		if ((entry->end == next->start) &&
1544 		    (next->object.vm_object == entry->object.vm_object) &&
1545 		     (!entry->object.vm_object ||
1546 			(entry->offset + esize == next->offset)) &&
1547 		    (next->eflags == entry->eflags) &&
1548 		    (next->protection == entry->protection) &&
1549 		    (next->max_protection == entry->max_protection) &&
1550 		    (next->inheritance == entry->inheritance) &&
1551 		    (next->wired_count == entry->wired_count) &&
1552 		    (next->cred == entry->cred)) {
1553 			vm_map_entry_unlink(map, next);
1554 			entry->end = next->end;
1555 			vm_map_entry_resize_free(map, entry);
1556 
1557 			/*
1558 			 * See comment above.
1559 			 */
1560 			if (next->object.vm_object)
1561 				vm_object_deallocate(next->object.vm_object);
1562 			if (next->cred != NULL)
1563 				crfree(next->cred);
1564 			vm_map_entry_dispose(map, next);
1565 		}
1566 	}
1567 }
1568 /*
1569  *	vm_map_clip_start:	[ internal use only ]
1570  *
1571  *	Asserts that the given entry begins at or after
1572  *	the specified address; if necessary,
1573  *	it splits the entry into two.
1574  */
1575 #define vm_map_clip_start(map, entry, startaddr) \
1576 { \
1577 	if (startaddr > entry->start) \
1578 		_vm_map_clip_start(map, entry, startaddr); \
1579 }
1580 
1581 /*
1582  *	This routine is called only when it is known that
1583  *	the entry must be split.
1584  */
1585 static void
1586 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1587 {
1588 	vm_map_entry_t new_entry;
1589 
1590 	VM_MAP_ASSERT_LOCKED(map);
1591 
1592 	/*
1593 	 * Split off the front portion -- note that we must insert the new
1594 	 * entry BEFORE this one, so that this entry has the specified
1595 	 * starting address.
1596 	 */
1597 	vm_map_simplify_entry(map, entry);
1598 
1599 	/*
1600 	 * If there is no object backing this entry, we might as well create
1601 	 * one now.  If we defer it, an object can get created after the map
1602 	 * is clipped, and individual objects will be created for the split-up
1603 	 * map.  This is a bit of a hack, but is also about the best place to
1604 	 * put this improvement.
1605 	 */
1606 	if (entry->object.vm_object == NULL && !map->system_map) {
1607 		vm_object_t object;
1608 		object = vm_object_allocate(OBJT_DEFAULT,
1609 				atop(entry->end - entry->start));
1610 		entry->object.vm_object = object;
1611 		entry->offset = 0;
1612 		if (entry->cred != NULL) {
1613 			object->cred = entry->cred;
1614 			object->charge = entry->end - entry->start;
1615 			entry->cred = NULL;
1616 		}
1617 	} else if (entry->object.vm_object != NULL &&
1618 		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1619 		   entry->cred != NULL) {
1620 		VM_OBJECT_LOCK(entry->object.vm_object);
1621 		KASSERT(entry->object.vm_object->cred == NULL,
1622 		    ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
1623 		entry->object.vm_object->cred = entry->cred;
1624 		entry->object.vm_object->charge = entry->end - entry->start;
1625 		VM_OBJECT_UNLOCK(entry->object.vm_object);
1626 		entry->cred = NULL;
1627 	}
1628 
1629 	new_entry = vm_map_entry_create(map);
1630 	*new_entry = *entry;
1631 
1632 	new_entry->end = start;
1633 	entry->offset += (start - entry->start);
1634 	entry->start = start;
1635 	if (new_entry->cred != NULL)
1636 		crhold(entry->cred);
1637 
1638 	vm_map_entry_link(map, entry->prev, new_entry);
1639 
1640 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1641 		vm_object_reference(new_entry->object.vm_object);
1642 	}
1643 }
1644 
1645 /*
1646  *	vm_map_clip_end:	[ internal use only ]
1647  *
1648  *	Asserts that the given entry ends at or before
1649  *	the specified address; if necessary,
1650  *	it splits the entry into two.
1651  */
1652 #define vm_map_clip_end(map, entry, endaddr) \
1653 { \
1654 	if ((endaddr) < (entry->end)) \
1655 		_vm_map_clip_end((map), (entry), (endaddr)); \
1656 }
1657 
1658 /*
1659  *	This routine is called only when it is known that
1660  *	the entry must be split.
1661  */
1662 static void
1663 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1664 {
1665 	vm_map_entry_t new_entry;
1666 
1667 	VM_MAP_ASSERT_LOCKED(map);
1668 
1669 	/*
1670 	 * If there is no object backing this entry, we might as well create
1671 	 * one now.  If we defer it, an object can get created after the map
1672 	 * is clipped, and individual objects will be created for the split-up
1673 	 * map.  This is a bit of a hack, but is also about the best place to
1674 	 * put this improvement.
1675 	 */
1676 	if (entry->object.vm_object == NULL && !map->system_map) {
1677 		vm_object_t object;
1678 		object = vm_object_allocate(OBJT_DEFAULT,
1679 				atop(entry->end - entry->start));
1680 		entry->object.vm_object = object;
1681 		entry->offset = 0;
1682 		if (entry->cred != NULL) {
1683 			object->cred = entry->cred;
1684 			object->charge = entry->end - entry->start;
1685 			entry->cred = NULL;
1686 		}
1687 	} else if (entry->object.vm_object != NULL &&
1688 		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1689 		   entry->cred != NULL) {
1690 		VM_OBJECT_LOCK(entry->object.vm_object);
1691 		KASSERT(entry->object.vm_object->cred == NULL,
1692 		    ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
1693 		entry->object.vm_object->cred = entry->cred;
1694 		entry->object.vm_object->charge = entry->end - entry->start;
1695 		VM_OBJECT_UNLOCK(entry->object.vm_object);
1696 		entry->cred = NULL;
1697 	}
1698 
1699 	/*
1700 	 * Create a new entry and insert it AFTER the specified entry
1701 	 */
1702 	new_entry = vm_map_entry_create(map);
1703 	*new_entry = *entry;
1704 
1705 	new_entry->start = entry->end = end;
1706 	new_entry->offset += (end - entry->start);
1707 	if (new_entry->cred != NULL)
1708 		crhold(entry->cred);
1709 
1710 	vm_map_entry_link(map, entry, new_entry);
1711 
1712 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1713 		vm_object_reference(new_entry->object.vm_object);
1714 	}
1715 }
1716 
1717 /*
1718  *	vm_map_submap:		[ kernel use only ]
1719  *
1720  *	Mark the given range as handled by a subordinate map.
1721  *
1722  *	This range must have been created with vm_map_find,
1723  *	and no other operations may have been performed on this
1724  *	range prior to calling vm_map_submap.
1725  *
1726  *	Only a limited number of operations can be performed
1727  *	within this rage after calling vm_map_submap:
1728  *		vm_fault
1729  *	[Don't try vm_map_copy!]
1730  *
1731  *	To remove a submapping, one must first remove the
1732  *	range from the superior map, and then destroy the
1733  *	submap (if desired).  [Better yet, don't try it.]
1734  */
1735 int
1736 vm_map_submap(
1737 	vm_map_t map,
1738 	vm_offset_t start,
1739 	vm_offset_t end,
1740 	vm_map_t submap)
1741 {
1742 	vm_map_entry_t entry;
1743 	int result = KERN_INVALID_ARGUMENT;
1744 
1745 	vm_map_lock(map);
1746 
1747 	VM_MAP_RANGE_CHECK(map, start, end);
1748 
1749 	if (vm_map_lookup_entry(map, start, &entry)) {
1750 		vm_map_clip_start(map, entry, start);
1751 	} else
1752 		entry = entry->next;
1753 
1754 	vm_map_clip_end(map, entry, end);
1755 
1756 	if ((entry->start == start) && (entry->end == end) &&
1757 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1758 	    (entry->object.vm_object == NULL)) {
1759 		entry->object.sub_map = submap;
1760 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1761 		result = KERN_SUCCESS;
1762 	}
1763 	vm_map_unlock(map);
1764 
1765 	return (result);
1766 }
1767 
1768 /*
1769  * The maximum number of pages to map
1770  */
1771 #define	MAX_INIT_PT	96
1772 
1773 /*
1774  *	vm_map_pmap_enter:
1775  *
1776  *	Preload read-only mappings for the given object's resident pages into
1777  *	the given map.  This eliminates the soft faults on process startup and
1778  *	immediately after an mmap(2).  Because these are speculative mappings,
1779  *	cached pages are not reactivated and mapped.
1780  */
1781 void
1782 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
1783     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
1784 {
1785 	vm_offset_t start;
1786 	vm_page_t p, p_start;
1787 	vm_pindex_t psize, tmpidx;
1788 
1789 	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
1790 		return;
1791 	VM_OBJECT_LOCK(object);
1792 	if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1793 		pmap_object_init_pt(map->pmap, addr, object, pindex, size);
1794 		goto unlock_return;
1795 	}
1796 
1797 	psize = atop(size);
1798 
1799 	if ((flags & MAP_PREFAULT_PARTIAL) && psize > MAX_INIT_PT &&
1800 	    object->resident_page_count > MAX_INIT_PT)
1801 		goto unlock_return;
1802 
1803 	if (psize + pindex > object->size) {
1804 		if (object->size < pindex)
1805 			goto unlock_return;
1806 		psize = object->size - pindex;
1807 	}
1808 
1809 	start = 0;
1810 	p_start = NULL;
1811 
1812 	p = vm_page_find_least(object, pindex);
1813 	/*
1814 	 * Assert: the variable p is either (1) the page with the
1815 	 * least pindex greater than or equal to the parameter pindex
1816 	 * or (2) NULL.
1817 	 */
1818 	for (;
1819 	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
1820 	     p = TAILQ_NEXT(p, listq)) {
1821 		/*
1822 		 * don't allow an madvise to blow away our really
1823 		 * free pages allocating pv entries.
1824 		 */
1825 		if ((flags & MAP_PREFAULT_MADVISE) &&
1826 		    cnt.v_free_count < cnt.v_free_reserved) {
1827 			psize = tmpidx;
1828 			break;
1829 		}
1830 		if (p->valid == VM_PAGE_BITS_ALL) {
1831 			if (p_start == NULL) {
1832 				start = addr + ptoa(tmpidx);
1833 				p_start = p;
1834 			}
1835 		} else if (p_start != NULL) {
1836 			pmap_enter_object(map->pmap, start, addr +
1837 			    ptoa(tmpidx), p_start, prot);
1838 			p_start = NULL;
1839 		}
1840 	}
1841 	if (p_start != NULL)
1842 		pmap_enter_object(map->pmap, start, addr + ptoa(psize),
1843 		    p_start, prot);
1844 unlock_return:
1845 	VM_OBJECT_UNLOCK(object);
1846 }
1847 
1848 /*
1849  *	vm_map_protect:
1850  *
1851  *	Sets the protection of the specified address
1852  *	region in the target map.  If "set_max" is
1853  *	specified, the maximum protection is to be set;
1854  *	otherwise, only the current protection is affected.
1855  */
1856 int
1857 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1858 	       vm_prot_t new_prot, boolean_t set_max)
1859 {
1860 	vm_map_entry_t current, entry;
1861 	vm_object_t obj;
1862 	struct ucred *cred;
1863 	vm_prot_t old_prot;
1864 
1865 	vm_map_lock(map);
1866 
1867 	VM_MAP_RANGE_CHECK(map, start, end);
1868 
1869 	if (vm_map_lookup_entry(map, start, &entry)) {
1870 		vm_map_clip_start(map, entry, start);
1871 	} else {
1872 		entry = entry->next;
1873 	}
1874 
1875 	/*
1876 	 * Make a first pass to check for protection violations.
1877 	 */
1878 	current = entry;
1879 	while ((current != &map->header) && (current->start < end)) {
1880 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1881 			vm_map_unlock(map);
1882 			return (KERN_INVALID_ARGUMENT);
1883 		}
1884 		if ((new_prot & current->max_protection) != new_prot) {
1885 			vm_map_unlock(map);
1886 			return (KERN_PROTECTION_FAILURE);
1887 		}
1888 		current = current->next;
1889 	}
1890 
1891 
1892 	/*
1893 	 * Do an accounting pass for private read-only mappings that
1894 	 * now will do cow due to allowed write (e.g. debugger sets
1895 	 * breakpoint on text segment)
1896 	 */
1897 	for (current = entry; (current != &map->header) &&
1898 	     (current->start < end); current = current->next) {
1899 
1900 		vm_map_clip_end(map, current, end);
1901 
1902 		if (set_max ||
1903 		    ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
1904 		    ENTRY_CHARGED(current)) {
1905 			continue;
1906 		}
1907 
1908 		cred = curthread->td_ucred;
1909 		obj = current->object.vm_object;
1910 
1911 		if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
1912 			if (!swap_reserve(current->end - current->start)) {
1913 				vm_map_unlock(map);
1914 				return (KERN_RESOURCE_SHORTAGE);
1915 			}
1916 			crhold(cred);
1917 			current->cred = cred;
1918 			continue;
1919 		}
1920 
1921 		VM_OBJECT_LOCK(obj);
1922 		if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
1923 			VM_OBJECT_UNLOCK(obj);
1924 			continue;
1925 		}
1926 
1927 		/*
1928 		 * Charge for the whole object allocation now, since
1929 		 * we cannot distinguish between non-charged and
1930 		 * charged clipped mapping of the same object later.
1931 		 */
1932 		KASSERT(obj->charge == 0,
1933 		    ("vm_map_protect: object %p overcharged\n", obj));
1934 		if (!swap_reserve(ptoa(obj->size))) {
1935 			VM_OBJECT_UNLOCK(obj);
1936 			vm_map_unlock(map);
1937 			return (KERN_RESOURCE_SHORTAGE);
1938 		}
1939 
1940 		crhold(cred);
1941 		obj->cred = cred;
1942 		obj->charge = ptoa(obj->size);
1943 		VM_OBJECT_UNLOCK(obj);
1944 	}
1945 
1946 	/*
1947 	 * Go back and fix up protections. [Note that clipping is not
1948 	 * necessary the second time.]
1949 	 */
1950 	current = entry;
1951 	while ((current != &map->header) && (current->start < end)) {
1952 		old_prot = current->protection;
1953 
1954 		if (set_max)
1955 			current->protection =
1956 			    (current->max_protection = new_prot) &
1957 			    old_prot;
1958 		else
1959 			current->protection = new_prot;
1960 
1961 		if ((current->eflags & (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED))
1962 		     == (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED) &&
1963 		    (current->protection & VM_PROT_WRITE) != 0 &&
1964 		    (old_prot & VM_PROT_WRITE) == 0) {
1965 			vm_fault_copy_entry(map, map, current, current, NULL);
1966 		}
1967 
1968 		/*
1969 		 * When restricting access, update the physical map.  Worry
1970 		 * about copy-on-write here.
1971 		 */
1972 		if ((old_prot & ~current->protection) != 0) {
1973 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1974 							VM_PROT_ALL)
1975 			pmap_protect(map->pmap, current->start,
1976 			    current->end,
1977 			    current->protection & MASK(current));
1978 #undef	MASK
1979 		}
1980 		vm_map_simplify_entry(map, current);
1981 		current = current->next;
1982 	}
1983 	vm_map_unlock(map);
1984 	return (KERN_SUCCESS);
1985 }
1986 
1987 /*
1988  *	vm_map_madvise:
1989  *
1990  *	This routine traverses a processes map handling the madvise
1991  *	system call.  Advisories are classified as either those effecting
1992  *	the vm_map_entry structure, or those effecting the underlying
1993  *	objects.
1994  */
1995 int
1996 vm_map_madvise(
1997 	vm_map_t map,
1998 	vm_offset_t start,
1999 	vm_offset_t end,
2000 	int behav)
2001 {
2002 	vm_map_entry_t current, entry;
2003 	int modify_map = 0;
2004 
2005 	/*
2006 	 * Some madvise calls directly modify the vm_map_entry, in which case
2007 	 * we need to use an exclusive lock on the map and we need to perform
2008 	 * various clipping operations.  Otherwise we only need a read-lock
2009 	 * on the map.
2010 	 */
2011 	switch(behav) {
2012 	case MADV_NORMAL:
2013 	case MADV_SEQUENTIAL:
2014 	case MADV_RANDOM:
2015 	case MADV_NOSYNC:
2016 	case MADV_AUTOSYNC:
2017 	case MADV_NOCORE:
2018 	case MADV_CORE:
2019 		modify_map = 1;
2020 		vm_map_lock(map);
2021 		break;
2022 	case MADV_WILLNEED:
2023 	case MADV_DONTNEED:
2024 	case MADV_FREE:
2025 		vm_map_lock_read(map);
2026 		break;
2027 	default:
2028 		return (KERN_INVALID_ARGUMENT);
2029 	}
2030 
2031 	/*
2032 	 * Locate starting entry and clip if necessary.
2033 	 */
2034 	VM_MAP_RANGE_CHECK(map, start, end);
2035 
2036 	if (vm_map_lookup_entry(map, start, &entry)) {
2037 		if (modify_map)
2038 			vm_map_clip_start(map, entry, start);
2039 	} else {
2040 		entry = entry->next;
2041 	}
2042 
2043 	if (modify_map) {
2044 		/*
2045 		 * madvise behaviors that are implemented in the vm_map_entry.
2046 		 *
2047 		 * We clip the vm_map_entry so that behavioral changes are
2048 		 * limited to the specified address range.
2049 		 */
2050 		for (current = entry;
2051 		     (current != &map->header) && (current->start < end);
2052 		     current = current->next
2053 		) {
2054 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2055 				continue;
2056 
2057 			vm_map_clip_end(map, current, end);
2058 
2059 			switch (behav) {
2060 			case MADV_NORMAL:
2061 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2062 				break;
2063 			case MADV_SEQUENTIAL:
2064 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2065 				break;
2066 			case MADV_RANDOM:
2067 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2068 				break;
2069 			case MADV_NOSYNC:
2070 				current->eflags |= MAP_ENTRY_NOSYNC;
2071 				break;
2072 			case MADV_AUTOSYNC:
2073 				current->eflags &= ~MAP_ENTRY_NOSYNC;
2074 				break;
2075 			case MADV_NOCORE:
2076 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
2077 				break;
2078 			case MADV_CORE:
2079 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2080 				break;
2081 			default:
2082 				break;
2083 			}
2084 			vm_map_simplify_entry(map, current);
2085 		}
2086 		vm_map_unlock(map);
2087 	} else {
2088 		vm_pindex_t pindex;
2089 		int count;
2090 
2091 		/*
2092 		 * madvise behaviors that are implemented in the underlying
2093 		 * vm_object.
2094 		 *
2095 		 * Since we don't clip the vm_map_entry, we have to clip
2096 		 * the vm_object pindex and count.
2097 		 */
2098 		for (current = entry;
2099 		     (current != &map->header) && (current->start < end);
2100 		     current = current->next
2101 		) {
2102 			vm_offset_t useStart;
2103 
2104 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2105 				continue;
2106 
2107 			pindex = OFF_TO_IDX(current->offset);
2108 			count = atop(current->end - current->start);
2109 			useStart = current->start;
2110 
2111 			if (current->start < start) {
2112 				pindex += atop(start - current->start);
2113 				count -= atop(start - current->start);
2114 				useStart = start;
2115 			}
2116 			if (current->end > end)
2117 				count -= atop(current->end - end);
2118 
2119 			if (count <= 0)
2120 				continue;
2121 
2122 			vm_object_madvise(current->object.vm_object,
2123 					  pindex, count, behav);
2124 			if (behav == MADV_WILLNEED) {
2125 				vm_map_pmap_enter(map,
2126 				    useStart,
2127 				    current->protection,
2128 				    current->object.vm_object,
2129 				    pindex,
2130 				    (count << PAGE_SHIFT),
2131 				    MAP_PREFAULT_MADVISE
2132 				);
2133 			}
2134 		}
2135 		vm_map_unlock_read(map);
2136 	}
2137 	return (0);
2138 }
2139 
2140 
2141 /*
2142  *	vm_map_inherit:
2143  *
2144  *	Sets the inheritance of the specified address
2145  *	range in the target map.  Inheritance
2146  *	affects how the map will be shared with
2147  *	child maps at the time of vmspace_fork.
2148  */
2149 int
2150 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2151 	       vm_inherit_t new_inheritance)
2152 {
2153 	vm_map_entry_t entry;
2154 	vm_map_entry_t temp_entry;
2155 
2156 	switch (new_inheritance) {
2157 	case VM_INHERIT_NONE:
2158 	case VM_INHERIT_COPY:
2159 	case VM_INHERIT_SHARE:
2160 		break;
2161 	default:
2162 		return (KERN_INVALID_ARGUMENT);
2163 	}
2164 	vm_map_lock(map);
2165 	VM_MAP_RANGE_CHECK(map, start, end);
2166 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
2167 		entry = temp_entry;
2168 		vm_map_clip_start(map, entry, start);
2169 	} else
2170 		entry = temp_entry->next;
2171 	while ((entry != &map->header) && (entry->start < end)) {
2172 		vm_map_clip_end(map, entry, end);
2173 		entry->inheritance = new_inheritance;
2174 		vm_map_simplify_entry(map, entry);
2175 		entry = entry->next;
2176 	}
2177 	vm_map_unlock(map);
2178 	return (KERN_SUCCESS);
2179 }
2180 
2181 /*
2182  *	vm_map_unwire:
2183  *
2184  *	Implements both kernel and user unwiring.
2185  */
2186 int
2187 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2188     int flags)
2189 {
2190 	vm_map_entry_t entry, first_entry, tmp_entry;
2191 	vm_offset_t saved_start;
2192 	unsigned int last_timestamp;
2193 	int rv;
2194 	boolean_t need_wakeup, result, user_unwire;
2195 
2196 	user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2197 	vm_map_lock(map);
2198 	VM_MAP_RANGE_CHECK(map, start, end);
2199 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2200 		if (flags & VM_MAP_WIRE_HOLESOK)
2201 			first_entry = first_entry->next;
2202 		else {
2203 			vm_map_unlock(map);
2204 			return (KERN_INVALID_ADDRESS);
2205 		}
2206 	}
2207 	last_timestamp = map->timestamp;
2208 	entry = first_entry;
2209 	while (entry != &map->header && entry->start < end) {
2210 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2211 			/*
2212 			 * We have not yet clipped the entry.
2213 			 */
2214 			saved_start = (start >= entry->start) ? start :
2215 			    entry->start;
2216 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2217 			if (vm_map_unlock_and_wait(map, 0)) {
2218 				/*
2219 				 * Allow interruption of user unwiring?
2220 				 */
2221 			}
2222 			vm_map_lock(map);
2223 			if (last_timestamp+1 != map->timestamp) {
2224 				/*
2225 				 * Look again for the entry because the map was
2226 				 * modified while it was unlocked.
2227 				 * Specifically, the entry may have been
2228 				 * clipped, merged, or deleted.
2229 				 */
2230 				if (!vm_map_lookup_entry(map, saved_start,
2231 				    &tmp_entry)) {
2232 					if (flags & VM_MAP_WIRE_HOLESOK)
2233 						tmp_entry = tmp_entry->next;
2234 					else {
2235 						if (saved_start == start) {
2236 							/*
2237 							 * First_entry has been deleted.
2238 							 */
2239 							vm_map_unlock(map);
2240 							return (KERN_INVALID_ADDRESS);
2241 						}
2242 						end = saved_start;
2243 						rv = KERN_INVALID_ADDRESS;
2244 						goto done;
2245 					}
2246 				}
2247 				if (entry == first_entry)
2248 					first_entry = tmp_entry;
2249 				else
2250 					first_entry = NULL;
2251 				entry = tmp_entry;
2252 			}
2253 			last_timestamp = map->timestamp;
2254 			continue;
2255 		}
2256 		vm_map_clip_start(map, entry, start);
2257 		vm_map_clip_end(map, entry, end);
2258 		/*
2259 		 * Mark the entry in case the map lock is released.  (See
2260 		 * above.)
2261 		 */
2262 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2263 		/*
2264 		 * Check the map for holes in the specified region.
2265 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2266 		 */
2267 		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2268 		    (entry->end < end && (entry->next == &map->header ||
2269 		    entry->next->start > entry->end))) {
2270 			end = entry->end;
2271 			rv = KERN_INVALID_ADDRESS;
2272 			goto done;
2273 		}
2274 		/*
2275 		 * If system unwiring, require that the entry is system wired.
2276 		 */
2277 		if (!user_unwire &&
2278 		    vm_map_entry_system_wired_count(entry) == 0) {
2279 			end = entry->end;
2280 			rv = KERN_INVALID_ARGUMENT;
2281 			goto done;
2282 		}
2283 		entry = entry->next;
2284 	}
2285 	rv = KERN_SUCCESS;
2286 done:
2287 	need_wakeup = FALSE;
2288 	if (first_entry == NULL) {
2289 		result = vm_map_lookup_entry(map, start, &first_entry);
2290 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2291 			first_entry = first_entry->next;
2292 		else
2293 			KASSERT(result, ("vm_map_unwire: lookup failed"));
2294 	}
2295 	entry = first_entry;
2296 	while (entry != &map->header && entry->start < end) {
2297 		if (rv == KERN_SUCCESS && (!user_unwire ||
2298 		    (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2299 			if (user_unwire)
2300 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2301 			entry->wired_count--;
2302 			if (entry->wired_count == 0) {
2303 				/*
2304 				 * Retain the map lock.
2305 				 */
2306 				vm_fault_unwire(map, entry->start, entry->end,
2307 				    entry->object.vm_object != NULL &&
2308 				    (entry->object.vm_object->type == OBJT_DEVICE ||
2309 				    entry->object.vm_object->type == OBJT_SG));
2310 			}
2311 		}
2312 		KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
2313 			("vm_map_unwire: in-transition flag missing"));
2314 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2315 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2316 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2317 			need_wakeup = TRUE;
2318 		}
2319 		vm_map_simplify_entry(map, entry);
2320 		entry = entry->next;
2321 	}
2322 	vm_map_unlock(map);
2323 	if (need_wakeup)
2324 		vm_map_wakeup(map);
2325 	return (rv);
2326 }
2327 
2328 /*
2329  *	vm_map_wire:
2330  *
2331  *	Implements both kernel and user wiring.
2332  */
2333 int
2334 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2335     int flags)
2336 {
2337 	vm_map_entry_t entry, first_entry, tmp_entry;
2338 	vm_offset_t saved_end, saved_start;
2339 	unsigned int last_timestamp;
2340 	int rv;
2341 	boolean_t fictitious, need_wakeup, result, user_wire;
2342 	vm_prot_t prot;
2343 
2344 	prot = 0;
2345 	if (flags & VM_MAP_WIRE_WRITE)
2346 		prot |= VM_PROT_WRITE;
2347 	user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2348 	vm_map_lock(map);
2349 	VM_MAP_RANGE_CHECK(map, start, end);
2350 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2351 		if (flags & VM_MAP_WIRE_HOLESOK)
2352 			first_entry = first_entry->next;
2353 		else {
2354 			vm_map_unlock(map);
2355 			return (KERN_INVALID_ADDRESS);
2356 		}
2357 	}
2358 	last_timestamp = map->timestamp;
2359 	entry = first_entry;
2360 	while (entry != &map->header && entry->start < end) {
2361 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2362 			/*
2363 			 * We have not yet clipped the entry.
2364 			 */
2365 			saved_start = (start >= entry->start) ? start :
2366 			    entry->start;
2367 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2368 			if (vm_map_unlock_and_wait(map, 0)) {
2369 				/*
2370 				 * Allow interruption of user wiring?
2371 				 */
2372 			}
2373 			vm_map_lock(map);
2374 			if (last_timestamp + 1 != map->timestamp) {
2375 				/*
2376 				 * Look again for the entry because the map was
2377 				 * modified while it was unlocked.
2378 				 * Specifically, the entry may have been
2379 				 * clipped, merged, or deleted.
2380 				 */
2381 				if (!vm_map_lookup_entry(map, saved_start,
2382 				    &tmp_entry)) {
2383 					if (flags & VM_MAP_WIRE_HOLESOK)
2384 						tmp_entry = tmp_entry->next;
2385 					else {
2386 						if (saved_start == start) {
2387 							/*
2388 							 * first_entry has been deleted.
2389 							 */
2390 							vm_map_unlock(map);
2391 							return (KERN_INVALID_ADDRESS);
2392 						}
2393 						end = saved_start;
2394 						rv = KERN_INVALID_ADDRESS;
2395 						goto done;
2396 					}
2397 				}
2398 				if (entry == first_entry)
2399 					first_entry = tmp_entry;
2400 				else
2401 					first_entry = NULL;
2402 				entry = tmp_entry;
2403 			}
2404 			last_timestamp = map->timestamp;
2405 			continue;
2406 		}
2407 		vm_map_clip_start(map, entry, start);
2408 		vm_map_clip_end(map, entry, end);
2409 		/*
2410 		 * Mark the entry in case the map lock is released.  (See
2411 		 * above.)
2412 		 */
2413 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2414 		if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
2415 		    || (entry->protection & prot) != prot) {
2416 			entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
2417 			if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
2418 				end = entry->end;
2419 				rv = KERN_INVALID_ADDRESS;
2420 				goto done;
2421 			}
2422 			goto next_entry;
2423 		}
2424 		if (entry->wired_count == 0) {
2425 			entry->wired_count++;
2426 			saved_start = entry->start;
2427 			saved_end = entry->end;
2428 			fictitious = entry->object.vm_object != NULL &&
2429 			    (entry->object.vm_object->type == OBJT_DEVICE ||
2430 			    entry->object.vm_object->type == OBJT_SG);
2431 			/*
2432 			 * Release the map lock, relying on the in-transition
2433 			 * mark.  Mark the map busy for fork.
2434 			 */
2435 			vm_map_busy(map);
2436 			vm_map_unlock(map);
2437 			rv = vm_fault_wire(map, saved_start, saved_end,
2438 			    fictitious);
2439 			vm_map_lock(map);
2440 			vm_map_unbusy(map);
2441 			if (last_timestamp + 1 != map->timestamp) {
2442 				/*
2443 				 * Look again for the entry because the map was
2444 				 * modified while it was unlocked.  The entry
2445 				 * may have been clipped, but NOT merged or
2446 				 * deleted.
2447 				 */
2448 				result = vm_map_lookup_entry(map, saved_start,
2449 				    &tmp_entry);
2450 				KASSERT(result, ("vm_map_wire: lookup failed"));
2451 				if (entry == first_entry)
2452 					first_entry = tmp_entry;
2453 				else
2454 					first_entry = NULL;
2455 				entry = tmp_entry;
2456 				while (entry->end < saved_end) {
2457 					if (rv != KERN_SUCCESS) {
2458 						KASSERT(entry->wired_count == 1,
2459 						    ("vm_map_wire: bad count"));
2460 						entry->wired_count = -1;
2461 					}
2462 					entry = entry->next;
2463 				}
2464 			}
2465 			last_timestamp = map->timestamp;
2466 			if (rv != KERN_SUCCESS) {
2467 				KASSERT(entry->wired_count == 1,
2468 				    ("vm_map_wire: bad count"));
2469 				/*
2470 				 * Assign an out-of-range value to represent
2471 				 * the failure to wire this entry.
2472 				 */
2473 				entry->wired_count = -1;
2474 				end = entry->end;
2475 				goto done;
2476 			}
2477 		} else if (!user_wire ||
2478 			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2479 			entry->wired_count++;
2480 		}
2481 		/*
2482 		 * Check the map for holes in the specified region.
2483 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2484 		 */
2485 	next_entry:
2486 		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2487 		    (entry->end < end && (entry->next == &map->header ||
2488 		    entry->next->start > entry->end))) {
2489 			end = entry->end;
2490 			rv = KERN_INVALID_ADDRESS;
2491 			goto done;
2492 		}
2493 		entry = entry->next;
2494 	}
2495 	rv = KERN_SUCCESS;
2496 done:
2497 	need_wakeup = FALSE;
2498 	if (first_entry == NULL) {
2499 		result = vm_map_lookup_entry(map, start, &first_entry);
2500 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2501 			first_entry = first_entry->next;
2502 		else
2503 			KASSERT(result, ("vm_map_wire: lookup failed"));
2504 	}
2505 	entry = first_entry;
2506 	while (entry != &map->header && entry->start < end) {
2507 		if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
2508 			goto next_entry_done;
2509 		if (rv == KERN_SUCCESS) {
2510 			if (user_wire)
2511 				entry->eflags |= MAP_ENTRY_USER_WIRED;
2512 		} else if (entry->wired_count == -1) {
2513 			/*
2514 			 * Wiring failed on this entry.  Thus, unwiring is
2515 			 * unnecessary.
2516 			 */
2517 			entry->wired_count = 0;
2518 		} else {
2519 			if (!user_wire ||
2520 			    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0)
2521 				entry->wired_count--;
2522 			if (entry->wired_count == 0) {
2523 				/*
2524 				 * Retain the map lock.
2525 				 */
2526 				vm_fault_unwire(map, entry->start, entry->end,
2527 				    entry->object.vm_object != NULL &&
2528 				    (entry->object.vm_object->type == OBJT_DEVICE ||
2529 				    entry->object.vm_object->type == OBJT_SG));
2530 			}
2531 		}
2532 	next_entry_done:
2533 		KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
2534 			("vm_map_wire: in-transition flag missing"));
2535 		entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION|MAP_ENTRY_WIRE_SKIPPED);
2536 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2537 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2538 			need_wakeup = TRUE;
2539 		}
2540 		vm_map_simplify_entry(map, entry);
2541 		entry = entry->next;
2542 	}
2543 	vm_map_unlock(map);
2544 	if (need_wakeup)
2545 		vm_map_wakeup(map);
2546 	return (rv);
2547 }
2548 
2549 /*
2550  * vm_map_sync
2551  *
2552  * Push any dirty cached pages in the address range to their pager.
2553  * If syncio is TRUE, dirty pages are written synchronously.
2554  * If invalidate is TRUE, any cached pages are freed as well.
2555  *
2556  * If the size of the region from start to end is zero, we are
2557  * supposed to flush all modified pages within the region containing
2558  * start.  Unfortunately, a region can be split or coalesced with
2559  * neighboring regions, making it difficult to determine what the
2560  * original region was.  Therefore, we approximate this requirement by
2561  * flushing the current region containing start.
2562  *
2563  * Returns an error if any part of the specified range is not mapped.
2564  */
2565 int
2566 vm_map_sync(
2567 	vm_map_t map,
2568 	vm_offset_t start,
2569 	vm_offset_t end,
2570 	boolean_t syncio,
2571 	boolean_t invalidate)
2572 {
2573 	vm_map_entry_t current;
2574 	vm_map_entry_t entry;
2575 	vm_size_t size;
2576 	vm_object_t object;
2577 	vm_ooffset_t offset;
2578 	unsigned int last_timestamp;
2579 
2580 	vm_map_lock_read(map);
2581 	VM_MAP_RANGE_CHECK(map, start, end);
2582 	if (!vm_map_lookup_entry(map, start, &entry)) {
2583 		vm_map_unlock_read(map);
2584 		return (KERN_INVALID_ADDRESS);
2585 	} else if (start == end) {
2586 		start = entry->start;
2587 		end = entry->end;
2588 	}
2589 	/*
2590 	 * Make a first pass to check for user-wired memory and holes.
2591 	 */
2592 	for (current = entry; current != &map->header && current->start < end;
2593 	    current = current->next) {
2594 		if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
2595 			vm_map_unlock_read(map);
2596 			return (KERN_INVALID_ARGUMENT);
2597 		}
2598 		if (end > current->end &&
2599 		    (current->next == &map->header ||
2600 			current->end != current->next->start)) {
2601 			vm_map_unlock_read(map);
2602 			return (KERN_INVALID_ADDRESS);
2603 		}
2604 	}
2605 
2606 	if (invalidate)
2607 		pmap_remove(map->pmap, start, end);
2608 
2609 	/*
2610 	 * Make a second pass, cleaning/uncaching pages from the indicated
2611 	 * objects as we go.
2612 	 */
2613 	for (current = entry; current != &map->header && current->start < end;) {
2614 		offset = current->offset + (start - current->start);
2615 		size = (end <= current->end ? end : current->end) - start;
2616 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2617 			vm_map_t smap;
2618 			vm_map_entry_t tentry;
2619 			vm_size_t tsize;
2620 
2621 			smap = current->object.sub_map;
2622 			vm_map_lock_read(smap);
2623 			(void) vm_map_lookup_entry(smap, offset, &tentry);
2624 			tsize = tentry->end - offset;
2625 			if (tsize < size)
2626 				size = tsize;
2627 			object = tentry->object.vm_object;
2628 			offset = tentry->offset + (offset - tentry->start);
2629 			vm_map_unlock_read(smap);
2630 		} else {
2631 			object = current->object.vm_object;
2632 		}
2633 		vm_object_reference(object);
2634 		last_timestamp = map->timestamp;
2635 		vm_map_unlock_read(map);
2636 		vm_object_sync(object, offset, size, syncio, invalidate);
2637 		start += size;
2638 		vm_object_deallocate(object);
2639 		vm_map_lock_read(map);
2640 		if (last_timestamp == map->timestamp ||
2641 		    !vm_map_lookup_entry(map, start, &current))
2642 			current = current->next;
2643 	}
2644 
2645 	vm_map_unlock_read(map);
2646 	return (KERN_SUCCESS);
2647 }
2648 
2649 /*
2650  *	vm_map_entry_unwire:	[ internal use only ]
2651  *
2652  *	Make the region specified by this entry pageable.
2653  *
2654  *	The map in question should be locked.
2655  *	[This is the reason for this routine's existence.]
2656  */
2657 static void
2658 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2659 {
2660 	vm_fault_unwire(map, entry->start, entry->end,
2661 	    entry->object.vm_object != NULL &&
2662 	    (entry->object.vm_object->type == OBJT_DEVICE ||
2663 	    entry->object.vm_object->type == OBJT_SG));
2664 	entry->wired_count = 0;
2665 }
2666 
2667 static void
2668 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
2669 {
2670 
2671 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
2672 		vm_object_deallocate(entry->object.vm_object);
2673 	uma_zfree(system_map ? kmapentzone : mapentzone, entry);
2674 }
2675 
2676 /*
2677  *	vm_map_entry_delete:	[ internal use only ]
2678  *
2679  *	Deallocate the given entry from the target map.
2680  */
2681 static void
2682 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
2683 {
2684 	vm_object_t object;
2685 	vm_pindex_t offidxstart, offidxend, count, size1;
2686 	vm_ooffset_t size;
2687 
2688 	vm_map_entry_unlink(map, entry);
2689 	object = entry->object.vm_object;
2690 	size = entry->end - entry->start;
2691 	map->size -= size;
2692 
2693 	if (entry->cred != NULL) {
2694 		swap_release_by_cred(size, entry->cred);
2695 		crfree(entry->cred);
2696 	}
2697 
2698 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2699 	    (object != NULL)) {
2700 		KASSERT(entry->cred == NULL || object->cred == NULL ||
2701 		    (entry->eflags & MAP_ENTRY_NEEDS_COPY),
2702 		    ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
2703 		count = OFF_TO_IDX(size);
2704 		offidxstart = OFF_TO_IDX(entry->offset);
2705 		offidxend = offidxstart + count;
2706 		VM_OBJECT_LOCK(object);
2707 		if (object->ref_count != 1 &&
2708 		    ((object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
2709 		    object == kernel_object || object == kmem_object)) {
2710 			vm_object_collapse(object);
2711 			vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2712 			if (object->type == OBJT_SWAP)
2713 				swap_pager_freespace(object, offidxstart, count);
2714 			if (offidxend >= object->size &&
2715 			    offidxstart < object->size) {
2716 				size1 = object->size;
2717 				object->size = offidxstart;
2718 				if (object->cred != NULL) {
2719 					size1 -= object->size;
2720 					KASSERT(object->charge >= ptoa(size1),
2721 					    ("vm_map_entry_delete: object->charge < 0"));
2722 					swap_release_by_cred(ptoa(size1), object->cred);
2723 					object->charge -= ptoa(size1);
2724 				}
2725 			}
2726 		}
2727 		VM_OBJECT_UNLOCK(object);
2728 	} else
2729 		entry->object.vm_object = NULL;
2730 	if (map->system_map)
2731 		vm_map_entry_deallocate(entry, TRUE);
2732 	else {
2733 		entry->next = curthread->td_map_def_user;
2734 		curthread->td_map_def_user = entry;
2735 	}
2736 }
2737 
2738 /*
2739  *	vm_map_delete:	[ internal use only ]
2740  *
2741  *	Deallocates the given address range from the target
2742  *	map.
2743  */
2744 int
2745 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
2746 {
2747 	vm_map_entry_t entry;
2748 	vm_map_entry_t first_entry;
2749 
2750 	VM_MAP_ASSERT_LOCKED(map);
2751 
2752 	/*
2753 	 * Find the start of the region, and clip it
2754 	 */
2755 	if (!vm_map_lookup_entry(map, start, &first_entry))
2756 		entry = first_entry->next;
2757 	else {
2758 		entry = first_entry;
2759 		vm_map_clip_start(map, entry, start);
2760 	}
2761 
2762 	/*
2763 	 * Step through all entries in this region
2764 	 */
2765 	while ((entry != &map->header) && (entry->start < end)) {
2766 		vm_map_entry_t next;
2767 
2768 		/*
2769 		 * Wait for wiring or unwiring of an entry to complete.
2770 		 * Also wait for any system wirings to disappear on
2771 		 * user maps.
2772 		 */
2773 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
2774 		    (vm_map_pmap(map) != kernel_pmap &&
2775 		    vm_map_entry_system_wired_count(entry) != 0)) {
2776 			unsigned int last_timestamp;
2777 			vm_offset_t saved_start;
2778 			vm_map_entry_t tmp_entry;
2779 
2780 			saved_start = entry->start;
2781 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2782 			last_timestamp = map->timestamp;
2783 			(void) vm_map_unlock_and_wait(map, 0);
2784 			vm_map_lock(map);
2785 			if (last_timestamp + 1 != map->timestamp) {
2786 				/*
2787 				 * Look again for the entry because the map was
2788 				 * modified while it was unlocked.
2789 				 * Specifically, the entry may have been
2790 				 * clipped, merged, or deleted.
2791 				 */
2792 				if (!vm_map_lookup_entry(map, saved_start,
2793 							 &tmp_entry))
2794 					entry = tmp_entry->next;
2795 				else {
2796 					entry = tmp_entry;
2797 					vm_map_clip_start(map, entry,
2798 							  saved_start);
2799 				}
2800 			}
2801 			continue;
2802 		}
2803 		vm_map_clip_end(map, entry, end);
2804 
2805 		next = entry->next;
2806 
2807 		/*
2808 		 * Unwire before removing addresses from the pmap; otherwise,
2809 		 * unwiring will put the entries back in the pmap.
2810 		 */
2811 		if (entry->wired_count != 0) {
2812 			vm_map_entry_unwire(map, entry);
2813 		}
2814 
2815 		pmap_remove(map->pmap, entry->start, entry->end);
2816 
2817 		/*
2818 		 * Delete the entry only after removing all pmap
2819 		 * entries pointing to its pages.  (Otherwise, its
2820 		 * page frames may be reallocated, and any modify bits
2821 		 * will be set in the wrong object!)
2822 		 */
2823 		vm_map_entry_delete(map, entry);
2824 		entry = next;
2825 	}
2826 	return (KERN_SUCCESS);
2827 }
2828 
2829 /*
2830  *	vm_map_remove:
2831  *
2832  *	Remove the given address range from the target map.
2833  *	This is the exported form of vm_map_delete.
2834  */
2835 int
2836 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2837 {
2838 	int result;
2839 
2840 	vm_map_lock(map);
2841 	VM_MAP_RANGE_CHECK(map, start, end);
2842 	result = vm_map_delete(map, start, end);
2843 	vm_map_unlock(map);
2844 	return (result);
2845 }
2846 
2847 /*
2848  *	vm_map_check_protection:
2849  *
2850  *	Assert that the target map allows the specified privilege on the
2851  *	entire address region given.  The entire region must be allocated.
2852  *
2853  *	WARNING!  This code does not and should not check whether the
2854  *	contents of the region is accessible.  For example a smaller file
2855  *	might be mapped into a larger address space.
2856  *
2857  *	NOTE!  This code is also called by munmap().
2858  *
2859  *	The map must be locked.  A read lock is sufficient.
2860  */
2861 boolean_t
2862 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2863 			vm_prot_t protection)
2864 {
2865 	vm_map_entry_t entry;
2866 	vm_map_entry_t tmp_entry;
2867 
2868 	if (!vm_map_lookup_entry(map, start, &tmp_entry))
2869 		return (FALSE);
2870 	entry = tmp_entry;
2871 
2872 	while (start < end) {
2873 		if (entry == &map->header)
2874 			return (FALSE);
2875 		/*
2876 		 * No holes allowed!
2877 		 */
2878 		if (start < entry->start)
2879 			return (FALSE);
2880 		/*
2881 		 * Check protection associated with entry.
2882 		 */
2883 		if ((entry->protection & protection) != protection)
2884 			return (FALSE);
2885 		/* go to next entry */
2886 		start = entry->end;
2887 		entry = entry->next;
2888 	}
2889 	return (TRUE);
2890 }
2891 
2892 /*
2893  *	vm_map_copy_entry:
2894  *
2895  *	Copies the contents of the source entry to the destination
2896  *	entry.  The entries *must* be aligned properly.
2897  */
2898 static void
2899 vm_map_copy_entry(
2900 	vm_map_t src_map,
2901 	vm_map_t dst_map,
2902 	vm_map_entry_t src_entry,
2903 	vm_map_entry_t dst_entry,
2904 	vm_ooffset_t *fork_charge)
2905 {
2906 	vm_object_t src_object;
2907 	vm_offset_t size;
2908 	struct ucred *cred;
2909 	int charged;
2910 
2911 	VM_MAP_ASSERT_LOCKED(dst_map);
2912 
2913 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
2914 		return;
2915 
2916 	if (src_entry->wired_count == 0) {
2917 
2918 		/*
2919 		 * If the source entry is marked needs_copy, it is already
2920 		 * write-protected.
2921 		 */
2922 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2923 			pmap_protect(src_map->pmap,
2924 			    src_entry->start,
2925 			    src_entry->end,
2926 			    src_entry->protection & ~VM_PROT_WRITE);
2927 		}
2928 
2929 		/*
2930 		 * Make a copy of the object.
2931 		 */
2932 		size = src_entry->end - src_entry->start;
2933 		if ((src_object = src_entry->object.vm_object) != NULL) {
2934 			VM_OBJECT_LOCK(src_object);
2935 			charged = ENTRY_CHARGED(src_entry);
2936 			if ((src_object->handle == NULL) &&
2937 				(src_object->type == OBJT_DEFAULT ||
2938 				 src_object->type == OBJT_SWAP)) {
2939 				vm_object_collapse(src_object);
2940 				if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
2941 					vm_object_split(src_entry);
2942 					src_object = src_entry->object.vm_object;
2943 				}
2944 			}
2945 			vm_object_reference_locked(src_object);
2946 			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
2947 			if (src_entry->cred != NULL &&
2948 			    !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
2949 				KASSERT(src_object->cred == NULL,
2950 				    ("OVERCOMMIT: vm_map_copy_entry: cred %p",
2951 				     src_object));
2952 				src_object->cred = src_entry->cred;
2953 				src_object->charge = size;
2954 			}
2955 			VM_OBJECT_UNLOCK(src_object);
2956 			dst_entry->object.vm_object = src_object;
2957 			if (charged) {
2958 				cred = curthread->td_ucred;
2959 				crhold(cred);
2960 				dst_entry->cred = cred;
2961 				*fork_charge += size;
2962 				if (!(src_entry->eflags &
2963 				      MAP_ENTRY_NEEDS_COPY)) {
2964 					crhold(cred);
2965 					src_entry->cred = cred;
2966 					*fork_charge += size;
2967 				}
2968 			}
2969 			src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2970 			dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2971 			dst_entry->offset = src_entry->offset;
2972 		} else {
2973 			dst_entry->object.vm_object = NULL;
2974 			dst_entry->offset = 0;
2975 			if (src_entry->cred != NULL) {
2976 				dst_entry->cred = curthread->td_ucred;
2977 				crhold(dst_entry->cred);
2978 				*fork_charge += size;
2979 			}
2980 		}
2981 
2982 		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
2983 		    dst_entry->end - dst_entry->start, src_entry->start);
2984 	} else {
2985 		/*
2986 		 * Of course, wired down pages can't be set copy-on-write.
2987 		 * Cause wired pages to be copied into the new map by
2988 		 * simulating faults (the new pages are pageable)
2989 		 */
2990 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
2991 		    fork_charge);
2992 	}
2993 }
2994 
2995 /*
2996  * vmspace_map_entry_forked:
2997  * Update the newly-forked vmspace each time a map entry is inherited
2998  * or copied.  The values for vm_dsize and vm_tsize are approximate
2999  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3000  */
3001 static void
3002 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3003     vm_map_entry_t entry)
3004 {
3005 	vm_size_t entrysize;
3006 	vm_offset_t newend;
3007 
3008 	entrysize = entry->end - entry->start;
3009 	vm2->vm_map.size += entrysize;
3010 	if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3011 		vm2->vm_ssize += btoc(entrysize);
3012 	} else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3013 	    entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3014 		newend = MIN(entry->end,
3015 		    (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3016 		vm2->vm_dsize += btoc(newend - entry->start);
3017 	} else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3018 	    entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3019 		newend = MIN(entry->end,
3020 		    (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3021 		vm2->vm_tsize += btoc(newend - entry->start);
3022 	}
3023 }
3024 
3025 /*
3026  * vmspace_fork:
3027  * Create a new process vmspace structure and vm_map
3028  * based on those of an existing process.  The new map
3029  * is based on the old map, according to the inheritance
3030  * values on the regions in that map.
3031  *
3032  * XXX It might be worth coalescing the entries added to the new vmspace.
3033  *
3034  * The source map must not be locked.
3035  */
3036 struct vmspace *
3037 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3038 {
3039 	struct vmspace *vm2;
3040 	vm_map_t old_map = &vm1->vm_map;
3041 	vm_map_t new_map;
3042 	vm_map_entry_t old_entry;
3043 	vm_map_entry_t new_entry;
3044 	vm_object_t object;
3045 	int locked;
3046 
3047 	vm_map_lock(old_map);
3048 	if (old_map->busy)
3049 		vm_map_wait_busy(old_map);
3050 	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
3051 	if (vm2 == NULL)
3052 		goto unlock_and_return;
3053 	vm2->vm_taddr = vm1->vm_taddr;
3054 	vm2->vm_daddr = vm1->vm_daddr;
3055 	vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3056 	new_map = &vm2->vm_map;	/* XXX */
3057 	locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3058 	KASSERT(locked, ("vmspace_fork: lock failed"));
3059 	new_map->timestamp = 1;
3060 
3061 	old_entry = old_map->header.next;
3062 
3063 	while (old_entry != &old_map->header) {
3064 		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3065 			panic("vm_map_fork: encountered a submap");
3066 
3067 		switch (old_entry->inheritance) {
3068 		case VM_INHERIT_NONE:
3069 			break;
3070 
3071 		case VM_INHERIT_SHARE:
3072 			/*
3073 			 * Clone the entry, creating the shared object if necessary.
3074 			 */
3075 			object = old_entry->object.vm_object;
3076 			if (object == NULL) {
3077 				object = vm_object_allocate(OBJT_DEFAULT,
3078 					atop(old_entry->end - old_entry->start));
3079 				old_entry->object.vm_object = object;
3080 				old_entry->offset = 0;
3081 				if (old_entry->cred != NULL) {
3082 					object->cred = old_entry->cred;
3083 					object->charge = old_entry->end -
3084 					    old_entry->start;
3085 					old_entry->cred = NULL;
3086 				}
3087 			}
3088 
3089 			/*
3090 			 * Add the reference before calling vm_object_shadow
3091 			 * to insure that a shadow object is created.
3092 			 */
3093 			vm_object_reference(object);
3094 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3095 				vm_object_shadow(&old_entry->object.vm_object,
3096 				    &old_entry->offset,
3097 				    old_entry->end - old_entry->start);
3098 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3099 				/* Transfer the second reference too. */
3100 				vm_object_reference(
3101 				    old_entry->object.vm_object);
3102 
3103 				/*
3104 				 * As in vm_map_simplify_entry(), the
3105 				 * vnode lock will not be acquired in
3106 				 * this call to vm_object_deallocate().
3107 				 */
3108 				vm_object_deallocate(object);
3109 				object = old_entry->object.vm_object;
3110 			}
3111 			VM_OBJECT_LOCK(object);
3112 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
3113 			if (old_entry->cred != NULL) {
3114 				KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3115 				object->cred = old_entry->cred;
3116 				object->charge = old_entry->end - old_entry->start;
3117 				old_entry->cred = NULL;
3118 			}
3119 			VM_OBJECT_UNLOCK(object);
3120 
3121 			/*
3122 			 * Clone the entry, referencing the shared object.
3123 			 */
3124 			new_entry = vm_map_entry_create(new_map);
3125 			*new_entry = *old_entry;
3126 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3127 			    MAP_ENTRY_IN_TRANSITION);
3128 			new_entry->wired_count = 0;
3129 
3130 			/*
3131 			 * Insert the entry into the new map -- we know we're
3132 			 * inserting at the end of the new map.
3133 			 */
3134 			vm_map_entry_link(new_map, new_map->header.prev,
3135 			    new_entry);
3136 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3137 
3138 			/*
3139 			 * Update the physical map
3140 			 */
3141 			pmap_copy(new_map->pmap, old_map->pmap,
3142 			    new_entry->start,
3143 			    (old_entry->end - old_entry->start),
3144 			    old_entry->start);
3145 			break;
3146 
3147 		case VM_INHERIT_COPY:
3148 			/*
3149 			 * Clone the entry and link into the map.
3150 			 */
3151 			new_entry = vm_map_entry_create(new_map);
3152 			*new_entry = *old_entry;
3153 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3154 			    MAP_ENTRY_IN_TRANSITION);
3155 			new_entry->wired_count = 0;
3156 			new_entry->object.vm_object = NULL;
3157 			new_entry->cred = NULL;
3158 			vm_map_entry_link(new_map, new_map->header.prev,
3159 			    new_entry);
3160 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3161 			vm_map_copy_entry(old_map, new_map, old_entry,
3162 			    new_entry, fork_charge);
3163 			break;
3164 		}
3165 		old_entry = old_entry->next;
3166 	}
3167 unlock_and_return:
3168 	vm_map_unlock(old_map);
3169 	if (vm2 != NULL)
3170 		vm_map_unlock(new_map);
3171 
3172 	return (vm2);
3173 }
3174 
3175 int
3176 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3177     vm_prot_t prot, vm_prot_t max, int cow)
3178 {
3179 	vm_map_entry_t new_entry, prev_entry;
3180 	vm_offset_t bot, top;
3181 	vm_size_t init_ssize;
3182 	int orient, rv;
3183 	rlim_t vmemlim;
3184 
3185 	/*
3186 	 * The stack orientation is piggybacked with the cow argument.
3187 	 * Extract it into orient and mask the cow argument so that we
3188 	 * don't pass it around further.
3189 	 * NOTE: We explicitly allow bi-directional stacks.
3190 	 */
3191 	orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP);
3192 	cow &= ~orient;
3193 	KASSERT(orient != 0, ("No stack grow direction"));
3194 
3195 	if (addrbos < vm_map_min(map) ||
3196 	    addrbos > vm_map_max(map) ||
3197 	    addrbos + max_ssize < addrbos)
3198 		return (KERN_NO_SPACE);
3199 
3200 	init_ssize = (max_ssize < sgrowsiz) ? max_ssize : sgrowsiz;
3201 
3202 	PROC_LOCK(curthread->td_proc);
3203 	vmemlim = lim_cur(curthread->td_proc, RLIMIT_VMEM);
3204 	PROC_UNLOCK(curthread->td_proc);
3205 
3206 	vm_map_lock(map);
3207 
3208 	/* If addr is already mapped, no go */
3209 	if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
3210 		vm_map_unlock(map);
3211 		return (KERN_NO_SPACE);
3212 	}
3213 
3214 	/* If we would blow our VMEM resource limit, no go */
3215 	if (map->size + init_ssize > vmemlim) {
3216 		vm_map_unlock(map);
3217 		return (KERN_NO_SPACE);
3218 	}
3219 
3220 	/*
3221 	 * If we can't accomodate max_ssize in the current mapping, no go.
3222 	 * However, we need to be aware that subsequent user mappings might
3223 	 * map into the space we have reserved for stack, and currently this
3224 	 * space is not protected.
3225 	 *
3226 	 * Hopefully we will at least detect this condition when we try to
3227 	 * grow the stack.
3228 	 */
3229 	if ((prev_entry->next != &map->header) &&
3230 	    (prev_entry->next->start < addrbos + max_ssize)) {
3231 		vm_map_unlock(map);
3232 		return (KERN_NO_SPACE);
3233 	}
3234 
3235 	/*
3236 	 * We initially map a stack of only init_ssize.  We will grow as
3237 	 * needed later.  Depending on the orientation of the stack (i.e.
3238 	 * the grow direction) we either map at the top of the range, the
3239 	 * bottom of the range or in the middle.
3240 	 *
3241 	 * Note: we would normally expect prot and max to be VM_PROT_ALL,
3242 	 * and cow to be 0.  Possibly we should eliminate these as input
3243 	 * parameters, and just pass these values here in the insert call.
3244 	 */
3245 	if (orient == MAP_STACK_GROWS_DOWN)
3246 		bot = addrbos + max_ssize - init_ssize;
3247 	else if (orient == MAP_STACK_GROWS_UP)
3248 		bot = addrbos;
3249 	else
3250 		bot = round_page(addrbos + max_ssize/2 - init_ssize/2);
3251 	top = bot + init_ssize;
3252 	rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
3253 
3254 	/* Now set the avail_ssize amount. */
3255 	if (rv == KERN_SUCCESS) {
3256 		if (prev_entry != &map->header)
3257 			vm_map_clip_end(map, prev_entry, bot);
3258 		new_entry = prev_entry->next;
3259 		if (new_entry->end != top || new_entry->start != bot)
3260 			panic("Bad entry start/end for new stack entry");
3261 
3262 		new_entry->avail_ssize = max_ssize - init_ssize;
3263 		if (orient & MAP_STACK_GROWS_DOWN)
3264 			new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
3265 		if (orient & MAP_STACK_GROWS_UP)
3266 			new_entry->eflags |= MAP_ENTRY_GROWS_UP;
3267 	}
3268 
3269 	vm_map_unlock(map);
3270 	return (rv);
3271 }
3272 
3273 static int stack_guard_page = 0;
3274 TUNABLE_INT("security.bsd.stack_guard_page", &stack_guard_page);
3275 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RW,
3276     &stack_guard_page, 0,
3277     "Insert stack guard page ahead of the growable segments.");
3278 
3279 /* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
3280  * desired address is already mapped, or if we successfully grow
3281  * the stack.  Also returns KERN_SUCCESS if addr is outside the
3282  * stack range (this is strange, but preserves compatibility with
3283  * the grow function in vm_machdep.c).
3284  */
3285 int
3286 vm_map_growstack(struct proc *p, vm_offset_t addr)
3287 {
3288 	vm_map_entry_t next_entry, prev_entry;
3289 	vm_map_entry_t new_entry, stack_entry;
3290 	struct vmspace *vm = p->p_vmspace;
3291 	vm_map_t map = &vm->vm_map;
3292 	vm_offset_t end;
3293 	size_t grow_amount, max_grow;
3294 	rlim_t stacklim, vmemlim;
3295 	int is_procstack, rv;
3296 	struct ucred *cred;
3297 #ifdef notyet
3298 	uint64_t limit;
3299 #endif
3300 	int error;
3301 
3302 Retry:
3303 	PROC_LOCK(p);
3304 	stacklim = lim_cur(p, RLIMIT_STACK);
3305 	vmemlim = lim_cur(p, RLIMIT_VMEM);
3306 	PROC_UNLOCK(p);
3307 
3308 	vm_map_lock_read(map);
3309 
3310 	/* If addr is already in the entry range, no need to grow.*/
3311 	if (vm_map_lookup_entry(map, addr, &prev_entry)) {
3312 		vm_map_unlock_read(map);
3313 		return (KERN_SUCCESS);
3314 	}
3315 
3316 	next_entry = prev_entry->next;
3317 	if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) {
3318 		/*
3319 		 * This entry does not grow upwards. Since the address lies
3320 		 * beyond this entry, the next entry (if one exists) has to
3321 		 * be a downward growable entry. The entry list header is
3322 		 * never a growable entry, so it suffices to check the flags.
3323 		 */
3324 		if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) {
3325 			vm_map_unlock_read(map);
3326 			return (KERN_SUCCESS);
3327 		}
3328 		stack_entry = next_entry;
3329 	} else {
3330 		/*
3331 		 * This entry grows upward. If the next entry does not at
3332 		 * least grow downwards, this is the entry we need to grow.
3333 		 * otherwise we have two possible choices and we have to
3334 		 * select one.
3335 		 */
3336 		if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) {
3337 			/*
3338 			 * We have two choices; grow the entry closest to
3339 			 * the address to minimize the amount of growth.
3340 			 */
3341 			if (addr - prev_entry->end <= next_entry->start - addr)
3342 				stack_entry = prev_entry;
3343 			else
3344 				stack_entry = next_entry;
3345 		} else
3346 			stack_entry = prev_entry;
3347 	}
3348 
3349 	if (stack_entry == next_entry) {
3350 		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo"));
3351 		KASSERT(addr < stack_entry->start, ("foo"));
3352 		end = (prev_entry != &map->header) ? prev_entry->end :
3353 		    stack_entry->start - stack_entry->avail_ssize;
3354 		grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE);
3355 		max_grow = stack_entry->start - end;
3356 	} else {
3357 		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo"));
3358 		KASSERT(addr >= stack_entry->end, ("foo"));
3359 		end = (next_entry != &map->header) ? next_entry->start :
3360 		    stack_entry->end + stack_entry->avail_ssize;
3361 		grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE);
3362 		max_grow = end - stack_entry->end;
3363 	}
3364 
3365 	if (grow_amount > stack_entry->avail_ssize) {
3366 		vm_map_unlock_read(map);
3367 		return (KERN_NO_SPACE);
3368 	}
3369 
3370 	/*
3371 	 * If there is no longer enough space between the entries nogo, and
3372 	 * adjust the available space.  Note: this  should only happen if the
3373 	 * user has mapped into the stack area after the stack was created,
3374 	 * and is probably an error.
3375 	 *
3376 	 * This also effectively destroys any guard page the user might have
3377 	 * intended by limiting the stack size.
3378 	 */
3379 	if (grow_amount + (stack_guard_page ? PAGE_SIZE : 0) > max_grow) {
3380 		if (vm_map_lock_upgrade(map))
3381 			goto Retry;
3382 
3383 		stack_entry->avail_ssize = max_grow;
3384 
3385 		vm_map_unlock(map);
3386 		return (KERN_NO_SPACE);
3387 	}
3388 
3389 	is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr) ? 1 : 0;
3390 
3391 	/*
3392 	 * If this is the main process stack, see if we're over the stack
3393 	 * limit.
3394 	 */
3395 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3396 		vm_map_unlock_read(map);
3397 		return (KERN_NO_SPACE);
3398 	}
3399 	PROC_LOCK(p);
3400 	if (is_procstack &&
3401 	    racct_set(p, RACCT_STACK, ctob(vm->vm_ssize) + grow_amount)) {
3402 		PROC_UNLOCK(p);
3403 		vm_map_unlock_read(map);
3404 		return (KERN_NO_SPACE);
3405 	}
3406 	PROC_UNLOCK(p);
3407 
3408 	/* Round up the grow amount modulo SGROWSIZ */
3409 	grow_amount = roundup (grow_amount, sgrowsiz);
3410 	if (grow_amount > stack_entry->avail_ssize)
3411 		grow_amount = stack_entry->avail_ssize;
3412 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3413 		grow_amount = trunc_page((vm_size_t)stacklim) -
3414 		    ctob(vm->vm_ssize);
3415 	}
3416 #ifdef notyet
3417 	PROC_LOCK(p);
3418 	limit = racct_get_available(p, RACCT_STACK);
3419 	PROC_UNLOCK(p);
3420 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
3421 		grow_amount = limit - ctob(vm->vm_ssize);
3422 #endif
3423 
3424 	/* If we would blow our VMEM resource limit, no go */
3425 	if (map->size + grow_amount > vmemlim) {
3426 		vm_map_unlock_read(map);
3427 		rv = KERN_NO_SPACE;
3428 		goto out;
3429 	}
3430 	PROC_LOCK(p);
3431 	if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
3432 		PROC_UNLOCK(p);
3433 		vm_map_unlock_read(map);
3434 		rv = KERN_NO_SPACE;
3435 		goto out;
3436 	}
3437 	PROC_UNLOCK(p);
3438 
3439 	if (vm_map_lock_upgrade(map))
3440 		goto Retry;
3441 
3442 	if (stack_entry == next_entry) {
3443 		/*
3444 		 * Growing downward.
3445 		 */
3446 		/* Get the preliminary new entry start value */
3447 		addr = stack_entry->start - grow_amount;
3448 
3449 		/*
3450 		 * If this puts us into the previous entry, cut back our
3451 		 * growth to the available space. Also, see the note above.
3452 		 */
3453 		if (addr < end) {
3454 			stack_entry->avail_ssize = max_grow;
3455 			addr = end;
3456 			if (stack_guard_page)
3457 				addr += PAGE_SIZE;
3458 		}
3459 
3460 		rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start,
3461 		    p->p_sysent->sv_stackprot, VM_PROT_ALL, 0);
3462 
3463 		/* Adjust the available stack space by the amount we grew. */
3464 		if (rv == KERN_SUCCESS) {
3465 			if (prev_entry != &map->header)
3466 				vm_map_clip_end(map, prev_entry, addr);
3467 			new_entry = prev_entry->next;
3468 			KASSERT(new_entry == stack_entry->prev, ("foo"));
3469 			KASSERT(new_entry->end == stack_entry->start, ("foo"));
3470 			KASSERT(new_entry->start == addr, ("foo"));
3471 			grow_amount = new_entry->end - new_entry->start;
3472 			new_entry->avail_ssize = stack_entry->avail_ssize -
3473 			    grow_amount;
3474 			stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN;
3475 			new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
3476 		}
3477 	} else {
3478 		/*
3479 		 * Growing upward.
3480 		 */
3481 		addr = stack_entry->end + grow_amount;
3482 
3483 		/*
3484 		 * If this puts us into the next entry, cut back our growth
3485 		 * to the available space. Also, see the note above.
3486 		 */
3487 		if (addr > end) {
3488 			stack_entry->avail_ssize = end - stack_entry->end;
3489 			addr = end;
3490 			if (stack_guard_page)
3491 				addr -= PAGE_SIZE;
3492 		}
3493 
3494 		grow_amount = addr - stack_entry->end;
3495 		cred = stack_entry->cred;
3496 		if (cred == NULL && stack_entry->object.vm_object != NULL)
3497 			cred = stack_entry->object.vm_object->cred;
3498 		if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
3499 			rv = KERN_NO_SPACE;
3500 		/* Grow the underlying object if applicable. */
3501 		else if (stack_entry->object.vm_object == NULL ||
3502 			 vm_object_coalesce(stack_entry->object.vm_object,
3503 			 stack_entry->offset,
3504 			 (vm_size_t)(stack_entry->end - stack_entry->start),
3505 			 (vm_size_t)grow_amount, cred != NULL)) {
3506 			map->size += (addr - stack_entry->end);
3507 			/* Update the current entry. */
3508 			stack_entry->end = addr;
3509 			stack_entry->avail_ssize -= grow_amount;
3510 			vm_map_entry_resize_free(map, stack_entry);
3511 			rv = KERN_SUCCESS;
3512 
3513 			if (next_entry != &map->header)
3514 				vm_map_clip_start(map, next_entry, addr);
3515 		} else
3516 			rv = KERN_FAILURE;
3517 	}
3518 
3519 	if (rv == KERN_SUCCESS && is_procstack)
3520 		vm->vm_ssize += btoc(grow_amount);
3521 
3522 	vm_map_unlock(map);
3523 
3524 	/*
3525 	 * Heed the MAP_WIREFUTURE flag if it was set for this process.
3526 	 */
3527 	if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) {
3528 		vm_map_wire(map,
3529 		    (stack_entry == next_entry) ? addr : addr - grow_amount,
3530 		    (stack_entry == next_entry) ? stack_entry->start : addr,
3531 		    (p->p_flag & P_SYSTEM)
3532 		    ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES
3533 		    : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES);
3534 	}
3535 
3536 out:
3537 	if (rv != KERN_SUCCESS) {
3538 		PROC_LOCK(p);
3539 		error = racct_set(p, RACCT_VMEM, map->size);
3540 		KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
3541 	    	error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
3542 		KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
3543 		PROC_UNLOCK(p);
3544 	}
3545 
3546 	return (rv);
3547 }
3548 
3549 /*
3550  * Unshare the specified VM space for exec.  If other processes are
3551  * mapped to it, then create a new one.  The new vmspace is null.
3552  */
3553 int
3554 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
3555 {
3556 	struct vmspace *oldvmspace = p->p_vmspace;
3557 	struct vmspace *newvmspace;
3558 
3559 	newvmspace = vmspace_alloc(minuser, maxuser);
3560 	if (newvmspace == NULL)
3561 		return (ENOMEM);
3562 	newvmspace->vm_swrss = oldvmspace->vm_swrss;
3563 	/*
3564 	 * This code is written like this for prototype purposes.  The
3565 	 * goal is to avoid running down the vmspace here, but let the
3566 	 * other process's that are still using the vmspace to finally
3567 	 * run it down.  Even though there is little or no chance of blocking
3568 	 * here, it is a good idea to keep this form for future mods.
3569 	 */
3570 	PROC_VMSPACE_LOCK(p);
3571 	p->p_vmspace = newvmspace;
3572 	PROC_VMSPACE_UNLOCK(p);
3573 	if (p == curthread->td_proc)
3574 		pmap_activate(curthread);
3575 	vmspace_free(oldvmspace);
3576 	return (0);
3577 }
3578 
3579 /*
3580  * Unshare the specified VM space for forcing COW.  This
3581  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3582  */
3583 int
3584 vmspace_unshare(struct proc *p)
3585 {
3586 	struct vmspace *oldvmspace = p->p_vmspace;
3587 	struct vmspace *newvmspace;
3588 	vm_ooffset_t fork_charge;
3589 
3590 	if (oldvmspace->vm_refcnt == 1)
3591 		return (0);
3592 	fork_charge = 0;
3593 	newvmspace = vmspace_fork(oldvmspace, &fork_charge);
3594 	if (newvmspace == NULL)
3595 		return (ENOMEM);
3596 	if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
3597 		vmspace_free(newvmspace);
3598 		return (ENOMEM);
3599 	}
3600 	PROC_VMSPACE_LOCK(p);
3601 	p->p_vmspace = newvmspace;
3602 	PROC_VMSPACE_UNLOCK(p);
3603 	if (p == curthread->td_proc)
3604 		pmap_activate(curthread);
3605 	vmspace_free(oldvmspace);
3606 	return (0);
3607 }
3608 
3609 /*
3610  *	vm_map_lookup:
3611  *
3612  *	Finds the VM object, offset, and
3613  *	protection for a given virtual address in the
3614  *	specified map, assuming a page fault of the
3615  *	type specified.
3616  *
3617  *	Leaves the map in question locked for read; return
3618  *	values are guaranteed until a vm_map_lookup_done
3619  *	call is performed.  Note that the map argument
3620  *	is in/out; the returned map must be used in
3621  *	the call to vm_map_lookup_done.
3622  *
3623  *	A handle (out_entry) is returned for use in
3624  *	vm_map_lookup_done, to make that fast.
3625  *
3626  *	If a lookup is requested with "write protection"
3627  *	specified, the map may be changed to perform virtual
3628  *	copying operations, although the data referenced will
3629  *	remain the same.
3630  */
3631 int
3632 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
3633 	      vm_offset_t vaddr,
3634 	      vm_prot_t fault_typea,
3635 	      vm_map_entry_t *out_entry,	/* OUT */
3636 	      vm_object_t *object,		/* OUT */
3637 	      vm_pindex_t *pindex,		/* OUT */
3638 	      vm_prot_t *out_prot,		/* OUT */
3639 	      boolean_t *wired)			/* OUT */
3640 {
3641 	vm_map_entry_t entry;
3642 	vm_map_t map = *var_map;
3643 	vm_prot_t prot;
3644 	vm_prot_t fault_type = fault_typea;
3645 	vm_object_t eobject;
3646 	vm_size_t size;
3647 	struct ucred *cred;
3648 
3649 RetryLookup:;
3650 
3651 	vm_map_lock_read(map);
3652 
3653 	/*
3654 	 * Lookup the faulting address.
3655 	 */
3656 	if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
3657 		vm_map_unlock_read(map);
3658 		return (KERN_INVALID_ADDRESS);
3659 	}
3660 
3661 	entry = *out_entry;
3662 
3663 	/*
3664 	 * Handle submaps.
3665 	 */
3666 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3667 		vm_map_t old_map = map;
3668 
3669 		*var_map = map = entry->object.sub_map;
3670 		vm_map_unlock_read(old_map);
3671 		goto RetryLookup;
3672 	}
3673 
3674 	/*
3675 	 * Check whether this task is allowed to have this page.
3676 	 */
3677 	prot = entry->protection;
3678 	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3679 	if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
3680 		vm_map_unlock_read(map);
3681 		return (KERN_PROTECTION_FAILURE);
3682 	}
3683 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3684 	    (entry->eflags & MAP_ENTRY_COW) &&
3685 	    (fault_type & VM_PROT_WRITE)) {
3686 		vm_map_unlock_read(map);
3687 		return (KERN_PROTECTION_FAILURE);
3688 	}
3689 
3690 	/*
3691 	 * If this page is not pageable, we have to get it for all possible
3692 	 * accesses.
3693 	 */
3694 	*wired = (entry->wired_count != 0);
3695 	if (*wired)
3696 		fault_type = entry->protection;
3697 	size = entry->end - entry->start;
3698 	/*
3699 	 * If the entry was copy-on-write, we either ...
3700 	 */
3701 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3702 		/*
3703 		 * If we want to write the page, we may as well handle that
3704 		 * now since we've got the map locked.
3705 		 *
3706 		 * If we don't need to write the page, we just demote the
3707 		 * permissions allowed.
3708 		 */
3709 		if ((fault_type & VM_PROT_WRITE) != 0 ||
3710 		    (fault_typea & VM_PROT_COPY) != 0) {
3711 			/*
3712 			 * Make a new object, and place it in the object
3713 			 * chain.  Note that no new references have appeared
3714 			 * -- one just moved from the map to the new
3715 			 * object.
3716 			 */
3717 			if (vm_map_lock_upgrade(map))
3718 				goto RetryLookup;
3719 
3720 			if (entry->cred == NULL) {
3721 				/*
3722 				 * The debugger owner is charged for
3723 				 * the memory.
3724 				 */
3725 				cred = curthread->td_ucred;
3726 				crhold(cred);
3727 				if (!swap_reserve_by_cred(size, cred)) {
3728 					crfree(cred);
3729 					vm_map_unlock(map);
3730 					return (KERN_RESOURCE_SHORTAGE);
3731 				}
3732 				entry->cred = cred;
3733 			}
3734 			vm_object_shadow(&entry->object.vm_object,
3735 			    &entry->offset, size);
3736 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3737 			eobject = entry->object.vm_object;
3738 			if (eobject->cred != NULL) {
3739 				/*
3740 				 * The object was not shadowed.
3741 				 */
3742 				swap_release_by_cred(size, entry->cred);
3743 				crfree(entry->cred);
3744 				entry->cred = NULL;
3745 			} else if (entry->cred != NULL) {
3746 				VM_OBJECT_LOCK(eobject);
3747 				eobject->cred = entry->cred;
3748 				eobject->charge = size;
3749 				VM_OBJECT_UNLOCK(eobject);
3750 				entry->cred = NULL;
3751 			}
3752 
3753 			vm_map_lock_downgrade(map);
3754 		} else {
3755 			/*
3756 			 * We're attempting to read a copy-on-write page --
3757 			 * don't allow writes.
3758 			 */
3759 			prot &= ~VM_PROT_WRITE;
3760 		}
3761 	}
3762 
3763 	/*
3764 	 * Create an object if necessary.
3765 	 */
3766 	if (entry->object.vm_object == NULL &&
3767 	    !map->system_map) {
3768 		if (vm_map_lock_upgrade(map))
3769 			goto RetryLookup;
3770 		entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
3771 		    atop(size));
3772 		entry->offset = 0;
3773 		if (entry->cred != NULL) {
3774 			VM_OBJECT_LOCK(entry->object.vm_object);
3775 			entry->object.vm_object->cred = entry->cred;
3776 			entry->object.vm_object->charge = size;
3777 			VM_OBJECT_UNLOCK(entry->object.vm_object);
3778 			entry->cred = NULL;
3779 		}
3780 		vm_map_lock_downgrade(map);
3781 	}
3782 
3783 	/*
3784 	 * Return the object/offset from this entry.  If the entry was
3785 	 * copy-on-write or empty, it has been fixed up.
3786 	 */
3787 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3788 	*object = entry->object.vm_object;
3789 
3790 	*out_prot = prot;
3791 	return (KERN_SUCCESS);
3792 }
3793 
3794 /*
3795  *	vm_map_lookup_locked:
3796  *
3797  *	Lookup the faulting address.  A version of vm_map_lookup that returns
3798  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
3799  */
3800 int
3801 vm_map_lookup_locked(vm_map_t *var_map,		/* IN/OUT */
3802 		     vm_offset_t vaddr,
3803 		     vm_prot_t fault_typea,
3804 		     vm_map_entry_t *out_entry,	/* OUT */
3805 		     vm_object_t *object,	/* OUT */
3806 		     vm_pindex_t *pindex,	/* OUT */
3807 		     vm_prot_t *out_prot,	/* OUT */
3808 		     boolean_t *wired)		/* OUT */
3809 {
3810 	vm_map_entry_t entry;
3811 	vm_map_t map = *var_map;
3812 	vm_prot_t prot;
3813 	vm_prot_t fault_type = fault_typea;
3814 
3815 	/*
3816 	 * Lookup the faulting address.
3817 	 */
3818 	if (!vm_map_lookup_entry(map, vaddr, out_entry))
3819 		return (KERN_INVALID_ADDRESS);
3820 
3821 	entry = *out_entry;
3822 
3823 	/*
3824 	 * Fail if the entry refers to a submap.
3825 	 */
3826 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3827 		return (KERN_FAILURE);
3828 
3829 	/*
3830 	 * Check whether this task is allowed to have this page.
3831 	 */
3832 	prot = entry->protection;
3833 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
3834 	if ((fault_type & prot) != fault_type)
3835 		return (KERN_PROTECTION_FAILURE);
3836 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3837 	    (entry->eflags & MAP_ENTRY_COW) &&
3838 	    (fault_type & VM_PROT_WRITE))
3839 		return (KERN_PROTECTION_FAILURE);
3840 
3841 	/*
3842 	 * If this page is not pageable, we have to get it for all possible
3843 	 * accesses.
3844 	 */
3845 	*wired = (entry->wired_count != 0);
3846 	if (*wired)
3847 		fault_type = entry->protection;
3848 
3849 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3850 		/*
3851 		 * Fail if the entry was copy-on-write for a write fault.
3852 		 */
3853 		if (fault_type & VM_PROT_WRITE)
3854 			return (KERN_FAILURE);
3855 		/*
3856 		 * We're attempting to read a copy-on-write page --
3857 		 * don't allow writes.
3858 		 */
3859 		prot &= ~VM_PROT_WRITE;
3860 	}
3861 
3862 	/*
3863 	 * Fail if an object should be created.
3864 	 */
3865 	if (entry->object.vm_object == NULL && !map->system_map)
3866 		return (KERN_FAILURE);
3867 
3868 	/*
3869 	 * Return the object/offset from this entry.  If the entry was
3870 	 * copy-on-write or empty, it has been fixed up.
3871 	 */
3872 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3873 	*object = entry->object.vm_object;
3874 
3875 	*out_prot = prot;
3876 	return (KERN_SUCCESS);
3877 }
3878 
3879 /*
3880  *	vm_map_lookup_done:
3881  *
3882  *	Releases locks acquired by a vm_map_lookup
3883  *	(according to the handle returned by that lookup).
3884  */
3885 void
3886 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
3887 {
3888 	/*
3889 	 * Unlock the main-level map
3890 	 */
3891 	vm_map_unlock_read(map);
3892 }
3893 
3894 #include "opt_ddb.h"
3895 #ifdef DDB
3896 #include <sys/kernel.h>
3897 
3898 #include <ddb/ddb.h>
3899 
3900 /*
3901  *	vm_map_print:	[ debug ]
3902  */
3903 DB_SHOW_COMMAND(map, vm_map_print)
3904 {
3905 	static int nlines;
3906 	/* XXX convert args. */
3907 	vm_map_t map = (vm_map_t)addr;
3908 	boolean_t full = have_addr;
3909 
3910 	vm_map_entry_t entry;
3911 
3912 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
3913 	    (void *)map,
3914 	    (void *)map->pmap, map->nentries, map->timestamp);
3915 	nlines++;
3916 
3917 	if (!full && db_indent)
3918 		return;
3919 
3920 	db_indent += 2;
3921 	for (entry = map->header.next; entry != &map->header;
3922 	    entry = entry->next) {
3923 		db_iprintf("map entry %p: start=%p, end=%p\n",
3924 		    (void *)entry, (void *)entry->start, (void *)entry->end);
3925 		nlines++;
3926 		{
3927 			static char *inheritance_name[4] =
3928 			{"share", "copy", "none", "donate_copy"};
3929 
3930 			db_iprintf(" prot=%x/%x/%s",
3931 			    entry->protection,
3932 			    entry->max_protection,
3933 			    inheritance_name[(int)(unsigned char)entry->inheritance]);
3934 			if (entry->wired_count != 0)
3935 				db_printf(", wired");
3936 		}
3937 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3938 			db_printf(", share=%p, offset=0x%jx\n",
3939 			    (void *)entry->object.sub_map,
3940 			    (uintmax_t)entry->offset);
3941 			nlines++;
3942 			if ((entry->prev == &map->header) ||
3943 			    (entry->prev->object.sub_map !=
3944 				entry->object.sub_map)) {
3945 				db_indent += 2;
3946 				vm_map_print((db_expr_t)(intptr_t)
3947 					     entry->object.sub_map,
3948 					     full, 0, (char *)0);
3949 				db_indent -= 2;
3950 			}
3951 		} else {
3952 			if (entry->cred != NULL)
3953 				db_printf(", ruid %d", entry->cred->cr_ruid);
3954 			db_printf(", object=%p, offset=0x%jx",
3955 			    (void *)entry->object.vm_object,
3956 			    (uintmax_t)entry->offset);
3957 			if (entry->object.vm_object && entry->object.vm_object->cred)
3958 				db_printf(", obj ruid %d charge %jx",
3959 				    entry->object.vm_object->cred->cr_ruid,
3960 				    (uintmax_t)entry->object.vm_object->charge);
3961 			if (entry->eflags & MAP_ENTRY_COW)
3962 				db_printf(", copy (%s)",
3963 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
3964 			db_printf("\n");
3965 			nlines++;
3966 
3967 			if ((entry->prev == &map->header) ||
3968 			    (entry->prev->object.vm_object !=
3969 				entry->object.vm_object)) {
3970 				db_indent += 2;
3971 				vm_object_print((db_expr_t)(intptr_t)
3972 						entry->object.vm_object,
3973 						full, 0, (char *)0);
3974 				nlines += 4;
3975 				db_indent -= 2;
3976 			}
3977 		}
3978 	}
3979 	db_indent -= 2;
3980 	if (db_indent == 0)
3981 		nlines = 0;
3982 }
3983 
3984 
3985 DB_SHOW_COMMAND(procvm, procvm)
3986 {
3987 	struct proc *p;
3988 
3989 	if (have_addr) {
3990 		p = (struct proc *) addr;
3991 	} else {
3992 		p = curproc;
3993 	}
3994 
3995 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
3996 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
3997 	    (void *)vmspace_pmap(p->p_vmspace));
3998 
3999 	vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
4000 }
4001 
4002 #endif /* DDB */
4003