1 /*- 2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * The Mach Operating System project at Carnegie-Mellon University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 35 * 36 * 37 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 38 * All rights reserved. 39 * 40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 41 * 42 * Permission to use, copy, modify and distribute this software and 43 * its documentation is hereby granted, provided that both the copyright 44 * notice and this permission notice appear in all copies of the 45 * software, derivative works or modified versions, and any portions 46 * thereof, and that both notices appear in supporting documentation. 47 * 48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 51 * 52 * Carnegie Mellon requests users of this software to return to 53 * 54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 55 * School of Computer Science 56 * Carnegie Mellon University 57 * Pittsburgh PA 15213-3890 58 * 59 * any improvements or extensions that they make and grant Carnegie the 60 * rights to redistribute these changes. 61 */ 62 63 /* 64 * Virtual memory mapping module. 65 */ 66 67 #include <sys/cdefs.h> 68 __FBSDID("$FreeBSD$"); 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/kernel.h> 73 #include <sys/ktr.h> 74 #include <sys/lock.h> 75 #include <sys/mutex.h> 76 #include <sys/proc.h> 77 #include <sys/vmmeter.h> 78 #include <sys/mman.h> 79 #include <sys/vnode.h> 80 #include <sys/racct.h> 81 #include <sys/resourcevar.h> 82 #include <sys/rwlock.h> 83 #include <sys/file.h> 84 #include <sys/sysctl.h> 85 #include <sys/sysent.h> 86 #include <sys/shm.h> 87 88 #include <vm/vm.h> 89 #include <vm/vm_param.h> 90 #include <vm/pmap.h> 91 #include <vm/vm_map.h> 92 #include <vm/vm_page.h> 93 #include <vm/vm_pageout.h> 94 #include <vm/vm_object.h> 95 #include <vm/vm_pager.h> 96 #include <vm/vm_kern.h> 97 #include <vm/vm_extern.h> 98 #include <vm/vnode_pager.h> 99 #include <vm/swap_pager.h> 100 #include <vm/uma.h> 101 102 /* 103 * Virtual memory maps provide for the mapping, protection, 104 * and sharing of virtual memory objects. In addition, 105 * this module provides for an efficient virtual copy of 106 * memory from one map to another. 107 * 108 * Synchronization is required prior to most operations. 109 * 110 * Maps consist of an ordered doubly-linked list of simple 111 * entries; a self-adjusting binary search tree of these 112 * entries is used to speed up lookups. 113 * 114 * Since portions of maps are specified by start/end addresses, 115 * which may not align with existing map entries, all 116 * routines merely "clip" entries to these start/end values. 117 * [That is, an entry is split into two, bordering at a 118 * start or end value.] Note that these clippings may not 119 * always be necessary (as the two resulting entries are then 120 * not changed); however, the clipping is done for convenience. 121 * 122 * As mentioned above, virtual copy operations are performed 123 * by copying VM object references from one map to 124 * another, and then marking both regions as copy-on-write. 125 */ 126 127 static struct mtx map_sleep_mtx; 128 static uma_zone_t mapentzone; 129 static uma_zone_t kmapentzone; 130 static uma_zone_t mapzone; 131 static uma_zone_t vmspace_zone; 132 static int vmspace_zinit(void *mem, int size, int flags); 133 static int vm_map_zinit(void *mem, int ize, int flags); 134 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, 135 vm_offset_t max); 136 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map); 137 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry); 138 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry); 139 static int vm_map_growstack(vm_map_t map, vm_offset_t addr, 140 vm_map_entry_t gap_entry); 141 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 142 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags); 143 #ifdef INVARIANTS 144 static void vm_map_zdtor(void *mem, int size, void *arg); 145 static void vmspace_zdtor(void *mem, int size, void *arg); 146 #endif 147 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, 148 vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max, 149 int cow); 150 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry, 151 vm_offset_t failed_addr); 152 153 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \ 154 ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \ 155 !((e)->eflags & MAP_ENTRY_NEEDS_COPY))) 156 157 /* 158 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type 159 * stable. 160 */ 161 #define PROC_VMSPACE_LOCK(p) do { } while (0) 162 #define PROC_VMSPACE_UNLOCK(p) do { } while (0) 163 164 /* 165 * VM_MAP_RANGE_CHECK: [ internal use only ] 166 * 167 * Asserts that the starting and ending region 168 * addresses fall within the valid range of the map. 169 */ 170 #define VM_MAP_RANGE_CHECK(map, start, end) \ 171 { \ 172 if (start < vm_map_min(map)) \ 173 start = vm_map_min(map); \ 174 if (end > vm_map_max(map)) \ 175 end = vm_map_max(map); \ 176 if (start > end) \ 177 start = end; \ 178 } 179 180 /* 181 * vm_map_startup: 182 * 183 * Initialize the vm_map module. Must be called before 184 * any other vm_map routines. 185 * 186 * Map and entry structures are allocated from the general 187 * purpose memory pool with some exceptions: 188 * 189 * - The kernel map and kmem submap are allocated statically. 190 * - Kernel map entries are allocated out of a static pool. 191 * 192 * These restrictions are necessary since malloc() uses the 193 * maps and requires map entries. 194 */ 195 196 void 197 vm_map_startup(void) 198 { 199 mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF); 200 mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL, 201 #ifdef INVARIANTS 202 vm_map_zdtor, 203 #else 204 NULL, 205 #endif 206 vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 207 uma_prealloc(mapzone, MAX_KMAP); 208 kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry), 209 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 210 UMA_ZONE_MTXCLASS | UMA_ZONE_VM); 211 mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry), 212 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 213 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL, 214 #ifdef INVARIANTS 215 vmspace_zdtor, 216 #else 217 NULL, 218 #endif 219 vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 220 } 221 222 static int 223 vmspace_zinit(void *mem, int size, int flags) 224 { 225 struct vmspace *vm; 226 227 vm = (struct vmspace *)mem; 228 229 vm->vm_map.pmap = NULL; 230 (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags); 231 PMAP_LOCK_INIT(vmspace_pmap(vm)); 232 return (0); 233 } 234 235 static int 236 vm_map_zinit(void *mem, int size, int flags) 237 { 238 vm_map_t map; 239 240 map = (vm_map_t)mem; 241 memset(map, 0, sizeof(*map)); 242 mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK); 243 sx_init(&map->lock, "vm map (user)"); 244 return (0); 245 } 246 247 #ifdef INVARIANTS 248 static void 249 vmspace_zdtor(void *mem, int size, void *arg) 250 { 251 struct vmspace *vm; 252 253 vm = (struct vmspace *)mem; 254 255 vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg); 256 } 257 static void 258 vm_map_zdtor(void *mem, int size, void *arg) 259 { 260 vm_map_t map; 261 262 map = (vm_map_t)mem; 263 KASSERT(map->nentries == 0, 264 ("map %p nentries == %d on free.", 265 map, map->nentries)); 266 KASSERT(map->size == 0, 267 ("map %p size == %lu on free.", 268 map, (unsigned long)map->size)); 269 } 270 #endif /* INVARIANTS */ 271 272 /* 273 * Allocate a vmspace structure, including a vm_map and pmap, 274 * and initialize those structures. The refcnt is set to 1. 275 * 276 * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit(). 277 */ 278 struct vmspace * 279 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit) 280 { 281 struct vmspace *vm; 282 283 vm = uma_zalloc(vmspace_zone, M_WAITOK); 284 KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL")); 285 if (!pinit(vmspace_pmap(vm))) { 286 uma_zfree(vmspace_zone, vm); 287 return (NULL); 288 } 289 CTR1(KTR_VM, "vmspace_alloc: %p", vm); 290 _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max); 291 vm->vm_refcnt = 1; 292 vm->vm_shm = NULL; 293 vm->vm_swrss = 0; 294 vm->vm_tsize = 0; 295 vm->vm_dsize = 0; 296 vm->vm_ssize = 0; 297 vm->vm_taddr = 0; 298 vm->vm_daddr = 0; 299 vm->vm_maxsaddr = 0; 300 return (vm); 301 } 302 303 #ifdef RACCT 304 static void 305 vmspace_container_reset(struct proc *p) 306 { 307 308 PROC_LOCK(p); 309 racct_set(p, RACCT_DATA, 0); 310 racct_set(p, RACCT_STACK, 0); 311 racct_set(p, RACCT_RSS, 0); 312 racct_set(p, RACCT_MEMLOCK, 0); 313 racct_set(p, RACCT_VMEM, 0); 314 PROC_UNLOCK(p); 315 } 316 #endif 317 318 static inline void 319 vmspace_dofree(struct vmspace *vm) 320 { 321 322 CTR1(KTR_VM, "vmspace_free: %p", vm); 323 324 /* 325 * Make sure any SysV shm is freed, it might not have been in 326 * exit1(). 327 */ 328 shmexit(vm); 329 330 /* 331 * Lock the map, to wait out all other references to it. 332 * Delete all of the mappings and pages they hold, then call 333 * the pmap module to reclaim anything left. 334 */ 335 (void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map), 336 vm_map_max(&vm->vm_map)); 337 338 pmap_release(vmspace_pmap(vm)); 339 vm->vm_map.pmap = NULL; 340 uma_zfree(vmspace_zone, vm); 341 } 342 343 void 344 vmspace_free(struct vmspace *vm) 345 { 346 347 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 348 "vmspace_free() called"); 349 350 if (vm->vm_refcnt == 0) 351 panic("vmspace_free: attempt to free already freed vmspace"); 352 353 if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1) 354 vmspace_dofree(vm); 355 } 356 357 void 358 vmspace_exitfree(struct proc *p) 359 { 360 struct vmspace *vm; 361 362 PROC_VMSPACE_LOCK(p); 363 vm = p->p_vmspace; 364 p->p_vmspace = NULL; 365 PROC_VMSPACE_UNLOCK(p); 366 KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace")); 367 vmspace_free(vm); 368 } 369 370 void 371 vmspace_exit(struct thread *td) 372 { 373 int refcnt; 374 struct vmspace *vm; 375 struct proc *p; 376 377 /* 378 * Release user portion of address space. 379 * This releases references to vnodes, 380 * which could cause I/O if the file has been unlinked. 381 * Need to do this early enough that we can still sleep. 382 * 383 * The last exiting process to reach this point releases as 384 * much of the environment as it can. vmspace_dofree() is the 385 * slower fallback in case another process had a temporary 386 * reference to the vmspace. 387 */ 388 389 p = td->td_proc; 390 vm = p->p_vmspace; 391 atomic_add_int(&vmspace0.vm_refcnt, 1); 392 refcnt = vm->vm_refcnt; 393 do { 394 if (refcnt > 1 && p->p_vmspace != &vmspace0) { 395 /* Switch now since other proc might free vmspace */ 396 PROC_VMSPACE_LOCK(p); 397 p->p_vmspace = &vmspace0; 398 PROC_VMSPACE_UNLOCK(p); 399 pmap_activate(td); 400 } 401 } while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt - 1)); 402 if (refcnt == 1) { 403 if (p->p_vmspace != vm) { 404 /* vmspace not yet freed, switch back */ 405 PROC_VMSPACE_LOCK(p); 406 p->p_vmspace = vm; 407 PROC_VMSPACE_UNLOCK(p); 408 pmap_activate(td); 409 } 410 pmap_remove_pages(vmspace_pmap(vm)); 411 /* Switch now since this proc will free vmspace */ 412 PROC_VMSPACE_LOCK(p); 413 p->p_vmspace = &vmspace0; 414 PROC_VMSPACE_UNLOCK(p); 415 pmap_activate(td); 416 vmspace_dofree(vm); 417 } 418 #ifdef RACCT 419 if (racct_enable) 420 vmspace_container_reset(p); 421 #endif 422 } 423 424 /* Acquire reference to vmspace owned by another process. */ 425 426 struct vmspace * 427 vmspace_acquire_ref(struct proc *p) 428 { 429 struct vmspace *vm; 430 int refcnt; 431 432 PROC_VMSPACE_LOCK(p); 433 vm = p->p_vmspace; 434 if (vm == NULL) { 435 PROC_VMSPACE_UNLOCK(p); 436 return (NULL); 437 } 438 refcnt = vm->vm_refcnt; 439 do { 440 if (refcnt <= 0) { /* Avoid 0->1 transition */ 441 PROC_VMSPACE_UNLOCK(p); 442 return (NULL); 443 } 444 } while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt + 1)); 445 if (vm != p->p_vmspace) { 446 PROC_VMSPACE_UNLOCK(p); 447 vmspace_free(vm); 448 return (NULL); 449 } 450 PROC_VMSPACE_UNLOCK(p); 451 return (vm); 452 } 453 454 /* 455 * Switch between vmspaces in an AIO kernel process. 456 * 457 * The AIO kernel processes switch to and from a user process's 458 * vmspace while performing an I/O operation on behalf of a user 459 * process. The new vmspace is either the vmspace of a user process 460 * obtained from an active AIO request or the initial vmspace of the 461 * AIO kernel process (when it is idling). Because user processes 462 * will block to drain any active AIO requests before proceeding in 463 * exit() or execve(), the vmspace reference count for these vmspaces 464 * can never be 0. This allows for a much simpler implementation than 465 * the loop in vmspace_acquire_ref() above. Similarly, AIO kernel 466 * processes hold an extra reference on their initial vmspace for the 467 * life of the process so that this guarantee is true for any vmspace 468 * passed as 'newvm'. 469 */ 470 void 471 vmspace_switch_aio(struct vmspace *newvm) 472 { 473 struct vmspace *oldvm; 474 475 /* XXX: Need some way to assert that this is an aio daemon. */ 476 477 KASSERT(newvm->vm_refcnt > 0, 478 ("vmspace_switch_aio: newvm unreferenced")); 479 480 oldvm = curproc->p_vmspace; 481 if (oldvm == newvm) 482 return; 483 484 /* 485 * Point to the new address space and refer to it. 486 */ 487 curproc->p_vmspace = newvm; 488 atomic_add_int(&newvm->vm_refcnt, 1); 489 490 /* Activate the new mapping. */ 491 pmap_activate(curthread); 492 493 /* Remove the daemon's reference to the old address space. */ 494 KASSERT(oldvm->vm_refcnt > 1, 495 ("vmspace_switch_aio: oldvm dropping last reference")); 496 vmspace_free(oldvm); 497 } 498 499 void 500 _vm_map_lock(vm_map_t map, const char *file, int line) 501 { 502 503 if (map->system_map) 504 mtx_lock_flags_(&map->system_mtx, 0, file, line); 505 else 506 sx_xlock_(&map->lock, file, line); 507 map->timestamp++; 508 } 509 510 void 511 vm_map_entry_set_vnode_text(vm_map_entry_t entry, bool add) 512 { 513 vm_object_t object, object1; 514 struct vnode *vp; 515 516 if ((entry->eflags & MAP_ENTRY_VN_EXEC) == 0) 517 return; 518 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 519 ("Submap with execs")); 520 object = entry->object.vm_object; 521 KASSERT(object != NULL, ("No object for text, entry %p", entry)); 522 VM_OBJECT_RLOCK(object); 523 while ((object1 = object->backing_object) != NULL) { 524 VM_OBJECT_RLOCK(object1); 525 VM_OBJECT_RUNLOCK(object); 526 object = object1; 527 } 528 529 /* 530 * For OBJT_DEAD objects, v_writecount was handled in 531 * vnode_pager_dealloc(). 532 */ 533 if (object->type != OBJT_DEAD) { 534 KASSERT(((object->flags & OBJ_TMPFS) == 0 && 535 object->type == OBJT_VNODE) || 536 ((object->flags & OBJ_TMPFS) != 0 && 537 object->type == OBJT_SWAP), 538 ("vm_map_entry_set_vnode_text: wrong object type, " 539 "entry %p, object %p, add %d", entry, object, add)); 540 vp = (object->flags & OBJ_TMPFS) == 0 ? object->handle : 541 object->un_pager.swp.swp_tmpfs; 542 if (add) 543 VOP_SET_TEXT_CHECKED(vp); 544 else 545 VOP_UNSET_TEXT_CHECKED(vp); 546 } 547 VM_OBJECT_RUNLOCK(object); 548 } 549 550 static void 551 vm_map_process_deferred(void) 552 { 553 struct thread *td; 554 vm_map_entry_t entry, next; 555 vm_object_t object; 556 557 td = curthread; 558 entry = td->td_map_def_user; 559 td->td_map_def_user = NULL; 560 while (entry != NULL) { 561 next = entry->next; 562 MPASS((entry->eflags & (MAP_ENTRY_VN_WRITECNT | 563 MAP_ENTRY_VN_EXEC)) != (MAP_ENTRY_VN_WRITECNT | 564 MAP_ENTRY_VN_EXEC)); 565 if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) { 566 /* 567 * Decrement the object's writemappings and 568 * possibly the vnode's v_writecount. 569 */ 570 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 571 ("Submap with writecount")); 572 object = entry->object.vm_object; 573 KASSERT(object != NULL, ("No object for writecount")); 574 vnode_pager_release_writecount(object, entry->start, 575 entry->end); 576 } 577 vm_map_entry_set_vnode_text(entry, false); 578 vm_map_entry_deallocate(entry, FALSE); 579 entry = next; 580 } 581 } 582 583 void 584 _vm_map_unlock(vm_map_t map, const char *file, int line) 585 { 586 587 if (map->system_map) 588 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 589 else { 590 sx_xunlock_(&map->lock, file, line); 591 vm_map_process_deferred(); 592 } 593 } 594 595 void 596 _vm_map_lock_read(vm_map_t map, const char *file, int line) 597 { 598 599 if (map->system_map) 600 mtx_lock_flags_(&map->system_mtx, 0, file, line); 601 else 602 sx_slock_(&map->lock, file, line); 603 } 604 605 void 606 _vm_map_unlock_read(vm_map_t map, const char *file, int line) 607 { 608 609 if (map->system_map) 610 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 611 else { 612 sx_sunlock_(&map->lock, file, line); 613 vm_map_process_deferred(); 614 } 615 } 616 617 int 618 _vm_map_trylock(vm_map_t map, const char *file, int line) 619 { 620 int error; 621 622 error = map->system_map ? 623 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 624 !sx_try_xlock_(&map->lock, file, line); 625 if (error == 0) 626 map->timestamp++; 627 return (error == 0); 628 } 629 630 int 631 _vm_map_trylock_read(vm_map_t map, const char *file, int line) 632 { 633 int error; 634 635 error = map->system_map ? 636 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 637 !sx_try_slock_(&map->lock, file, line); 638 return (error == 0); 639 } 640 641 /* 642 * _vm_map_lock_upgrade: [ internal use only ] 643 * 644 * Tries to upgrade a read (shared) lock on the specified map to a write 645 * (exclusive) lock. Returns the value "0" if the upgrade succeeds and a 646 * non-zero value if the upgrade fails. If the upgrade fails, the map is 647 * returned without a read or write lock held. 648 * 649 * Requires that the map be read locked. 650 */ 651 int 652 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line) 653 { 654 unsigned int last_timestamp; 655 656 if (map->system_map) { 657 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 658 } else { 659 if (!sx_try_upgrade_(&map->lock, file, line)) { 660 last_timestamp = map->timestamp; 661 sx_sunlock_(&map->lock, file, line); 662 vm_map_process_deferred(); 663 /* 664 * If the map's timestamp does not change while the 665 * map is unlocked, then the upgrade succeeds. 666 */ 667 sx_xlock_(&map->lock, file, line); 668 if (last_timestamp != map->timestamp) { 669 sx_xunlock_(&map->lock, file, line); 670 return (1); 671 } 672 } 673 } 674 map->timestamp++; 675 return (0); 676 } 677 678 void 679 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line) 680 { 681 682 if (map->system_map) { 683 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 684 } else 685 sx_downgrade_(&map->lock, file, line); 686 } 687 688 /* 689 * vm_map_locked: 690 * 691 * Returns a non-zero value if the caller holds a write (exclusive) lock 692 * on the specified map and the value "0" otherwise. 693 */ 694 int 695 vm_map_locked(vm_map_t map) 696 { 697 698 if (map->system_map) 699 return (mtx_owned(&map->system_mtx)); 700 else 701 return (sx_xlocked(&map->lock)); 702 } 703 704 #ifdef INVARIANTS 705 static void 706 _vm_map_assert_locked(vm_map_t map, const char *file, int line) 707 { 708 709 if (map->system_map) 710 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 711 else 712 sx_assert_(&map->lock, SA_XLOCKED, file, line); 713 } 714 715 #define VM_MAP_ASSERT_LOCKED(map) \ 716 _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE) 717 718 #ifdef DIAGNOSTIC 719 static int enable_vmmap_check = 1; 720 #else 721 static int enable_vmmap_check = 0; 722 #endif 723 SYSCTL_INT(_debug, OID_AUTO, vmmap_check, CTLFLAG_RWTUN, 724 &enable_vmmap_check, 0, "Enable vm map consistency checking"); 725 726 static void 727 _vm_map_assert_consistent(vm_map_t map) 728 { 729 vm_map_entry_t entry; 730 vm_map_entry_t child; 731 vm_size_t max_left, max_right; 732 733 if (!enable_vmmap_check) 734 return; 735 736 for (entry = map->header.next; entry != &map->header; 737 entry = entry->next) { 738 KASSERT(entry->prev->end <= entry->start, 739 ("map %p prev->end = %jx, start = %jx", map, 740 (uintmax_t)entry->prev->end, (uintmax_t)entry->start)); 741 KASSERT(entry->start < entry->end, 742 ("map %p start = %jx, end = %jx", map, 743 (uintmax_t)entry->start, (uintmax_t)entry->end)); 744 KASSERT(entry->end <= entry->next->start, 745 ("map %p end = %jx, next->start = %jx", map, 746 (uintmax_t)entry->end, (uintmax_t)entry->next->start)); 747 KASSERT(entry->left == NULL || 748 entry->left->start < entry->start, 749 ("map %p left->start = %jx, start = %jx", map, 750 (uintmax_t)entry->left->start, (uintmax_t)entry->start)); 751 KASSERT(entry->right == NULL || 752 entry->start < entry->right->start, 753 ("map %p start = %jx, right->start = %jx", map, 754 (uintmax_t)entry->start, (uintmax_t)entry->right->start)); 755 child = entry->left; 756 max_left = (child != NULL) ? child->max_free : 757 entry->start - entry->prev->end; 758 child = entry->right; 759 max_right = (child != NULL) ? child->max_free : 760 entry->next->start - entry->end; 761 KASSERT(entry->max_free == MAX(max_left, max_right), 762 ("map %p max = %jx, max_left = %jx, max_right = %jx", map, 763 (uintmax_t)entry->max_free, 764 (uintmax_t)max_left, (uintmax_t)max_right)); 765 } 766 } 767 768 #define VM_MAP_ASSERT_CONSISTENT(map) \ 769 _vm_map_assert_consistent(map) 770 #else 771 #define VM_MAP_ASSERT_LOCKED(map) 772 #define VM_MAP_ASSERT_CONSISTENT(map) 773 #endif /* INVARIANTS */ 774 775 /* 776 * _vm_map_unlock_and_wait: 777 * 778 * Atomically releases the lock on the specified map and puts the calling 779 * thread to sleep. The calling thread will remain asleep until either 780 * vm_map_wakeup() is performed on the map or the specified timeout is 781 * exceeded. 782 * 783 * WARNING! This function does not perform deferred deallocations of 784 * objects and map entries. Therefore, the calling thread is expected to 785 * reacquire the map lock after reawakening and later perform an ordinary 786 * unlock operation, such as vm_map_unlock(), before completing its 787 * operation on the map. 788 */ 789 int 790 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line) 791 { 792 793 mtx_lock(&map_sleep_mtx); 794 if (map->system_map) 795 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 796 else 797 sx_xunlock_(&map->lock, file, line); 798 return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps", 799 timo)); 800 } 801 802 /* 803 * vm_map_wakeup: 804 * 805 * Awaken any threads that have slept on the map using 806 * vm_map_unlock_and_wait(). 807 */ 808 void 809 vm_map_wakeup(vm_map_t map) 810 { 811 812 /* 813 * Acquire and release map_sleep_mtx to prevent a wakeup() 814 * from being performed (and lost) between the map unlock 815 * and the msleep() in _vm_map_unlock_and_wait(). 816 */ 817 mtx_lock(&map_sleep_mtx); 818 mtx_unlock(&map_sleep_mtx); 819 wakeup(&map->root); 820 } 821 822 void 823 vm_map_busy(vm_map_t map) 824 { 825 826 VM_MAP_ASSERT_LOCKED(map); 827 map->busy++; 828 } 829 830 void 831 vm_map_unbusy(vm_map_t map) 832 { 833 834 VM_MAP_ASSERT_LOCKED(map); 835 KASSERT(map->busy, ("vm_map_unbusy: not busy")); 836 if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) { 837 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP); 838 wakeup(&map->busy); 839 } 840 } 841 842 void 843 vm_map_wait_busy(vm_map_t map) 844 { 845 846 VM_MAP_ASSERT_LOCKED(map); 847 while (map->busy) { 848 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0); 849 if (map->system_map) 850 msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0); 851 else 852 sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0); 853 } 854 map->timestamp++; 855 } 856 857 long 858 vmspace_resident_count(struct vmspace *vmspace) 859 { 860 return pmap_resident_count(vmspace_pmap(vmspace)); 861 } 862 863 /* 864 * vm_map_create: 865 * 866 * Creates and returns a new empty VM map with 867 * the given physical map structure, and having 868 * the given lower and upper address bounds. 869 */ 870 vm_map_t 871 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max) 872 { 873 vm_map_t result; 874 875 result = uma_zalloc(mapzone, M_WAITOK); 876 CTR1(KTR_VM, "vm_map_create: %p", result); 877 _vm_map_init(result, pmap, min, max); 878 return (result); 879 } 880 881 /* 882 * Initialize an existing vm_map structure 883 * such as that in the vmspace structure. 884 */ 885 static void 886 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 887 { 888 889 map->header.next = map->header.prev = &map->header; 890 map->header.eflags = MAP_ENTRY_HEADER; 891 map->needs_wakeup = FALSE; 892 map->system_map = 0; 893 map->pmap = pmap; 894 map->header.end = min; 895 map->header.start = max; 896 map->flags = 0; 897 map->root = NULL; 898 map->timestamp = 0; 899 map->busy = 0; 900 map->anon_loc = 0; 901 } 902 903 void 904 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 905 { 906 907 _vm_map_init(map, pmap, min, max); 908 mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK); 909 sx_init(&map->lock, "user map"); 910 } 911 912 /* 913 * vm_map_entry_dispose: [ internal use only ] 914 * 915 * Inverse of vm_map_entry_create. 916 */ 917 static void 918 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry) 919 { 920 uma_zfree(map->system_map ? kmapentzone : mapentzone, entry); 921 } 922 923 /* 924 * vm_map_entry_create: [ internal use only ] 925 * 926 * Allocates a VM map entry for insertion. 927 * No entry fields are filled in. 928 */ 929 static vm_map_entry_t 930 vm_map_entry_create(vm_map_t map) 931 { 932 vm_map_entry_t new_entry; 933 934 if (map->system_map) 935 new_entry = uma_zalloc(kmapentzone, M_NOWAIT); 936 else 937 new_entry = uma_zalloc(mapentzone, M_WAITOK); 938 if (new_entry == NULL) 939 panic("vm_map_entry_create: kernel resources exhausted"); 940 return (new_entry); 941 } 942 943 /* 944 * vm_map_entry_set_behavior: 945 * 946 * Set the expected access behavior, either normal, random, or 947 * sequential. 948 */ 949 static inline void 950 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior) 951 { 952 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) | 953 (behavior & MAP_ENTRY_BEHAV_MASK); 954 } 955 956 /* 957 * vm_map_entry_set_max_free: 958 * 959 * Set the max_free field in a vm_map_entry. 960 */ 961 static inline void 962 vm_map_entry_set_max_free(vm_map_entry_t entry) 963 { 964 vm_map_entry_t child; 965 vm_size_t max_left, max_right; 966 967 child = entry->left; 968 max_left = (child != NULL) ? child->max_free : 969 entry->start - entry->prev->end; 970 child = entry->right; 971 max_right = (child != NULL) ? child->max_free : 972 entry->next->start - entry->end; 973 entry->max_free = MAX(max_left, max_right); 974 } 975 976 #define SPLAY_LEFT_STEP(root, y, rlist, test) do { \ 977 y = root->left; \ 978 if (y != NULL && (test)) { \ 979 /* Rotate right and make y root. */ \ 980 root->left = y->right; \ 981 y->right = root; \ 982 vm_map_entry_set_max_free(root); \ 983 root = y; \ 984 y = root->left; \ 985 } \ 986 /* Put root on rlist. */ \ 987 root->left = rlist; \ 988 rlist = root; \ 989 root = y; \ 990 } while (0) 991 992 #define SPLAY_RIGHT_STEP(root, y, llist, test) do { \ 993 y = root->right; \ 994 if (y != NULL && (test)) { \ 995 /* Rotate left and make y root. */ \ 996 root->right = y->left; \ 997 y->left = root; \ 998 vm_map_entry_set_max_free(root); \ 999 root = y; \ 1000 y = root->right; \ 1001 } \ 1002 /* Put root on llist. */ \ 1003 root->right = llist; \ 1004 llist = root; \ 1005 root = y; \ 1006 } while (0) 1007 1008 /* 1009 * Walk down the tree until we find addr or a NULL pointer where addr would go, 1010 * breaking off left and right subtrees of nodes less than, or greater than 1011 * addr. Treat pointers to nodes with max_free < length as NULL pointers. 1012 * llist and rlist are the two sides in reverse order (bottom-up), with llist 1013 * linked by the right pointer and rlist linked by the left pointer in the 1014 * vm_map_entry. 1015 */ 1016 static vm_map_entry_t 1017 vm_map_splay_split(vm_offset_t addr, vm_size_t length, 1018 vm_map_entry_t root, vm_map_entry_t *out_llist, vm_map_entry_t *out_rlist) 1019 { 1020 vm_map_entry_t llist, rlist; 1021 vm_map_entry_t y; 1022 1023 llist = NULL; 1024 rlist = NULL; 1025 while (root != NULL && root->max_free >= length) { 1026 if (addr < root->start) { 1027 SPLAY_LEFT_STEP(root, y, rlist, 1028 y->max_free >= length && addr < y->start); 1029 } else if (addr >= root->end) { 1030 SPLAY_RIGHT_STEP(root, y, llist, 1031 y->max_free >= length && addr >= y->end); 1032 } else 1033 break; 1034 } 1035 *out_llist = llist; 1036 *out_rlist = rlist; 1037 return (root); 1038 } 1039 1040 static void 1041 vm_map_splay_findnext(vm_map_entry_t root, vm_map_entry_t *iolist) 1042 { 1043 vm_map_entry_t rlist, y; 1044 1045 root = root->right; 1046 rlist = *iolist; 1047 while (root != NULL) 1048 SPLAY_LEFT_STEP(root, y, rlist, true); 1049 *iolist = rlist; 1050 } 1051 1052 static void 1053 vm_map_splay_findprev(vm_map_entry_t root, vm_map_entry_t *iolist) 1054 { 1055 vm_map_entry_t llist, y; 1056 1057 root = root->left; 1058 llist = *iolist; 1059 while (root != NULL) 1060 SPLAY_RIGHT_STEP(root, y, llist, true); 1061 *iolist = llist; 1062 } 1063 1064 /* 1065 * Walk back up the two spines, flip the pointers and set max_free. The 1066 * subtrees of the root go at the bottom of llist and rlist. 1067 */ 1068 static vm_map_entry_t 1069 vm_map_splay_merge(vm_map_entry_t root, 1070 vm_map_entry_t llist, vm_map_entry_t rlist, 1071 vm_map_entry_t ltree, vm_map_entry_t rtree) 1072 { 1073 vm_map_entry_t y; 1074 1075 while (llist != NULL) { 1076 y = llist->right; 1077 llist->right = ltree; 1078 vm_map_entry_set_max_free(llist); 1079 ltree = llist; 1080 llist = y; 1081 } 1082 while (rlist != NULL) { 1083 y = rlist->left; 1084 rlist->left = rtree; 1085 vm_map_entry_set_max_free(rlist); 1086 rtree = rlist; 1087 rlist = y; 1088 } 1089 1090 /* 1091 * Final assembly: add ltree and rtree as subtrees of root. 1092 */ 1093 root->left = ltree; 1094 root->right = rtree; 1095 vm_map_entry_set_max_free(root); 1096 1097 return (root); 1098 } 1099 1100 /* 1101 * vm_map_entry_splay: 1102 * 1103 * The Sleator and Tarjan top-down splay algorithm with the 1104 * following variation. Max_free must be computed bottom-up, so 1105 * on the downward pass, maintain the left and right spines in 1106 * reverse order. Then, make a second pass up each side to fix 1107 * the pointers and compute max_free. The time bound is O(log n) 1108 * amortized. 1109 * 1110 * The new root is the vm_map_entry containing "addr", or else an 1111 * adjacent entry (lower if possible) if addr is not in the tree. 1112 * 1113 * The map must be locked, and leaves it so. 1114 * 1115 * Returns: the new root. 1116 */ 1117 static vm_map_entry_t 1118 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root) 1119 { 1120 vm_map_entry_t llist, rlist; 1121 1122 root = vm_map_splay_split(addr, 0, root, &llist, &rlist); 1123 if (root != NULL) { 1124 /* do nothing */ 1125 } else if (llist != NULL) { 1126 /* 1127 * Recover the greatest node in the left 1128 * subtree and make it the root. 1129 */ 1130 root = llist; 1131 llist = root->right; 1132 root->right = NULL; 1133 } else if (rlist != NULL) { 1134 /* 1135 * Recover the least node in the right 1136 * subtree and make it the root. 1137 */ 1138 root = rlist; 1139 rlist = root->left; 1140 root->left = NULL; 1141 } else { 1142 /* There is no root. */ 1143 return (NULL); 1144 } 1145 return (vm_map_splay_merge(root, llist, rlist, 1146 root->left, root->right)); 1147 } 1148 1149 /* 1150 * vm_map_entry_{un,}link: 1151 * 1152 * Insert/remove entries from maps. 1153 */ 1154 static void 1155 vm_map_entry_link(vm_map_t map, 1156 vm_map_entry_t entry) 1157 { 1158 vm_map_entry_t llist, rlist, root; 1159 1160 CTR3(KTR_VM, 1161 "vm_map_entry_link: map %p, nentries %d, entry %p", map, 1162 map->nentries, entry); 1163 VM_MAP_ASSERT_LOCKED(map); 1164 map->nentries++; 1165 root = map->root; 1166 root = vm_map_splay_split(entry->start, 0, root, &llist, &rlist); 1167 KASSERT(root == NULL, 1168 ("vm_map_entry_link: link object already mapped")); 1169 entry->prev = (llist == NULL) ? &map->header : llist; 1170 entry->next = (rlist == NULL) ? &map->header : rlist; 1171 entry->prev->next = entry->next->prev = entry; 1172 root = vm_map_splay_merge(entry, llist, rlist, NULL, NULL); 1173 map->root = entry; 1174 VM_MAP_ASSERT_CONSISTENT(map); 1175 } 1176 1177 enum unlink_merge_type { 1178 UNLINK_MERGE_PREV, 1179 UNLINK_MERGE_NONE, 1180 UNLINK_MERGE_NEXT 1181 }; 1182 1183 static void 1184 vm_map_entry_unlink(vm_map_t map, 1185 vm_map_entry_t entry, 1186 enum unlink_merge_type op) 1187 { 1188 vm_map_entry_t llist, rlist, root, y; 1189 1190 VM_MAP_ASSERT_LOCKED(map); 1191 llist = entry->prev; 1192 rlist = entry->next; 1193 llist->next = rlist; 1194 rlist->prev = llist; 1195 root = map->root; 1196 root = vm_map_splay_split(entry->start, 0, root, &llist, &rlist); 1197 KASSERT(root != NULL, 1198 ("vm_map_entry_unlink: unlink object not mapped")); 1199 1200 switch (op) { 1201 case UNLINK_MERGE_PREV: 1202 vm_map_splay_findprev(root, &llist); 1203 llist->end = root->end; 1204 y = root->right; 1205 root = llist; 1206 llist = root->right; 1207 root->right = y; 1208 break; 1209 case UNLINK_MERGE_NEXT: 1210 vm_map_splay_findnext(root, &rlist); 1211 rlist->start = root->start; 1212 rlist->offset = root->offset; 1213 y = root->left; 1214 root = rlist; 1215 rlist = root->left; 1216 root->left = y; 1217 break; 1218 case UNLINK_MERGE_NONE: 1219 vm_map_splay_findprev(root, &llist); 1220 vm_map_splay_findnext(root, &rlist); 1221 if (llist != NULL) { 1222 root = llist; 1223 llist = root->right; 1224 root->right = NULL; 1225 } else if (rlist != NULL) { 1226 root = rlist; 1227 rlist = root->left; 1228 root->left = NULL; 1229 } else 1230 root = NULL; 1231 break; 1232 } 1233 if (root != NULL) 1234 root = vm_map_splay_merge(root, llist, rlist, 1235 root->left, root->right); 1236 map->root = root; 1237 VM_MAP_ASSERT_CONSISTENT(map); 1238 map->nentries--; 1239 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map, 1240 map->nentries, entry); 1241 } 1242 1243 /* 1244 * vm_map_entry_resize: 1245 * 1246 * Resize a vm_map_entry, recompute the amount of free space that 1247 * follows it and propagate that value up the tree. 1248 * 1249 * The map must be locked, and leaves it so. 1250 */ 1251 static void 1252 vm_map_entry_resize(vm_map_t map, vm_map_entry_t entry, vm_size_t grow_amount) 1253 { 1254 vm_map_entry_t llist, rlist, root; 1255 1256 VM_MAP_ASSERT_LOCKED(map); 1257 root = map->root; 1258 root = vm_map_splay_split(entry->start, 0, root, &llist, &rlist); 1259 KASSERT(root != NULL, 1260 ("%s: resize object not mapped", __func__)); 1261 vm_map_splay_findnext(root, &rlist); 1262 root->right = NULL; 1263 entry->end += grow_amount; 1264 map->root = vm_map_splay_merge(root, llist, rlist, 1265 root->left, root->right); 1266 VM_MAP_ASSERT_CONSISTENT(map); 1267 CTR4(KTR_VM, "%s: map %p, nentries %d, entry %p", 1268 __func__, map, map->nentries, entry); 1269 } 1270 1271 /* 1272 * vm_map_lookup_entry: [ internal use only ] 1273 * 1274 * Finds the map entry containing (or 1275 * immediately preceding) the specified address 1276 * in the given map; the entry is returned 1277 * in the "entry" parameter. The boolean 1278 * result indicates whether the address is 1279 * actually contained in the map. 1280 */ 1281 boolean_t 1282 vm_map_lookup_entry( 1283 vm_map_t map, 1284 vm_offset_t address, 1285 vm_map_entry_t *entry) /* OUT */ 1286 { 1287 vm_map_entry_t cur, lbound; 1288 boolean_t locked; 1289 1290 /* 1291 * If the map is empty, then the map entry immediately preceding 1292 * "address" is the map's header. 1293 */ 1294 cur = map->root; 1295 if (cur == NULL) { 1296 *entry = &map->header; 1297 return (FALSE); 1298 } 1299 if (address >= cur->start && cur->end > address) { 1300 *entry = cur; 1301 return (TRUE); 1302 } 1303 if ((locked = vm_map_locked(map)) || 1304 sx_try_upgrade(&map->lock)) { 1305 /* 1306 * Splay requires a write lock on the map. However, it only 1307 * restructures the binary search tree; it does not otherwise 1308 * change the map. Thus, the map's timestamp need not change 1309 * on a temporary upgrade. 1310 */ 1311 map->root = cur = vm_map_entry_splay(address, cur); 1312 VM_MAP_ASSERT_CONSISTENT(map); 1313 if (!locked) 1314 sx_downgrade(&map->lock); 1315 1316 /* 1317 * If "address" is contained within a map entry, the new root 1318 * is that map entry. Otherwise, the new root is a map entry 1319 * immediately before or after "address". 1320 */ 1321 if (address < cur->start) { 1322 *entry = &map->header; 1323 return (FALSE); 1324 } 1325 *entry = cur; 1326 return (address < cur->end); 1327 } 1328 /* 1329 * Since the map is only locked for read access, perform a 1330 * standard binary search tree lookup for "address". 1331 */ 1332 lbound = &map->header; 1333 do { 1334 if (address < cur->start) { 1335 cur = cur->left; 1336 } else if (cur->end <= address) { 1337 lbound = cur; 1338 cur = cur->right; 1339 } else { 1340 *entry = cur; 1341 return (TRUE); 1342 } 1343 } while (cur != NULL); 1344 *entry = lbound; 1345 return (FALSE); 1346 } 1347 1348 /* 1349 * vm_map_insert: 1350 * 1351 * Inserts the given whole VM object into the target 1352 * map at the specified address range. The object's 1353 * size should match that of the address range. 1354 * 1355 * Requires that the map be locked, and leaves it so. 1356 * 1357 * If object is non-NULL, ref count must be bumped by caller 1358 * prior to making call to account for the new entry. 1359 */ 1360 int 1361 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1362 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow) 1363 { 1364 vm_map_entry_t new_entry, prev_entry, temp_entry; 1365 struct ucred *cred; 1366 vm_eflags_t protoeflags; 1367 vm_inherit_t inheritance; 1368 1369 VM_MAP_ASSERT_LOCKED(map); 1370 KASSERT(object != kernel_object || 1371 (cow & MAP_COPY_ON_WRITE) == 0, 1372 ("vm_map_insert: kernel object and COW")); 1373 KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0, 1374 ("vm_map_insert: paradoxical MAP_NOFAULT request")); 1375 KASSERT((prot & ~max) == 0, 1376 ("prot %#x is not subset of max_prot %#x", prot, max)); 1377 1378 /* 1379 * Check that the start and end points are not bogus. 1380 */ 1381 if (start < vm_map_min(map) || end > vm_map_max(map) || 1382 start >= end) 1383 return (KERN_INVALID_ADDRESS); 1384 1385 /* 1386 * Find the entry prior to the proposed starting address; if it's part 1387 * of an existing entry, this range is bogus. 1388 */ 1389 if (vm_map_lookup_entry(map, start, &temp_entry)) 1390 return (KERN_NO_SPACE); 1391 1392 prev_entry = temp_entry; 1393 1394 /* 1395 * Assert that the next entry doesn't overlap the end point. 1396 */ 1397 if (prev_entry->next->start < end) 1398 return (KERN_NO_SPACE); 1399 1400 if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL || 1401 max != VM_PROT_NONE)) 1402 return (KERN_INVALID_ARGUMENT); 1403 1404 protoeflags = 0; 1405 if (cow & MAP_COPY_ON_WRITE) 1406 protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY; 1407 if (cow & MAP_NOFAULT) 1408 protoeflags |= MAP_ENTRY_NOFAULT; 1409 if (cow & MAP_DISABLE_SYNCER) 1410 protoeflags |= MAP_ENTRY_NOSYNC; 1411 if (cow & MAP_DISABLE_COREDUMP) 1412 protoeflags |= MAP_ENTRY_NOCOREDUMP; 1413 if (cow & MAP_STACK_GROWS_DOWN) 1414 protoeflags |= MAP_ENTRY_GROWS_DOWN; 1415 if (cow & MAP_STACK_GROWS_UP) 1416 protoeflags |= MAP_ENTRY_GROWS_UP; 1417 if (cow & MAP_VN_WRITECOUNT) 1418 protoeflags |= MAP_ENTRY_VN_WRITECNT; 1419 if (cow & MAP_VN_EXEC) 1420 protoeflags |= MAP_ENTRY_VN_EXEC; 1421 if ((cow & MAP_CREATE_GUARD) != 0) 1422 protoeflags |= MAP_ENTRY_GUARD; 1423 if ((cow & MAP_CREATE_STACK_GAP_DN) != 0) 1424 protoeflags |= MAP_ENTRY_STACK_GAP_DN; 1425 if ((cow & MAP_CREATE_STACK_GAP_UP) != 0) 1426 protoeflags |= MAP_ENTRY_STACK_GAP_UP; 1427 if (cow & MAP_INHERIT_SHARE) 1428 inheritance = VM_INHERIT_SHARE; 1429 else 1430 inheritance = VM_INHERIT_DEFAULT; 1431 1432 cred = NULL; 1433 if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0) 1434 goto charged; 1435 if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) && 1436 ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) { 1437 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start)) 1438 return (KERN_RESOURCE_SHORTAGE); 1439 KASSERT(object == NULL || 1440 (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 || 1441 object->cred == NULL, 1442 ("overcommit: vm_map_insert o %p", object)); 1443 cred = curthread->td_ucred; 1444 } 1445 1446 charged: 1447 /* Expand the kernel pmap, if necessary. */ 1448 if (map == kernel_map && end > kernel_vm_end) 1449 pmap_growkernel(end); 1450 if (object != NULL) { 1451 /* 1452 * OBJ_ONEMAPPING must be cleared unless this mapping 1453 * is trivially proven to be the only mapping for any 1454 * of the object's pages. (Object granularity 1455 * reference counting is insufficient to recognize 1456 * aliases with precision.) 1457 */ 1458 VM_OBJECT_WLOCK(object); 1459 if (object->ref_count > 1 || object->shadow_count != 0) 1460 vm_object_clear_flag(object, OBJ_ONEMAPPING); 1461 VM_OBJECT_WUNLOCK(object); 1462 } else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) == 1463 protoeflags && 1464 (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP | 1465 MAP_VN_EXEC)) == 0 && 1466 prev_entry->end == start && (prev_entry->cred == cred || 1467 (prev_entry->object.vm_object != NULL && 1468 prev_entry->object.vm_object->cred == cred)) && 1469 vm_object_coalesce(prev_entry->object.vm_object, 1470 prev_entry->offset, 1471 (vm_size_t)(prev_entry->end - prev_entry->start), 1472 (vm_size_t)(end - prev_entry->end), cred != NULL && 1473 (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) { 1474 /* 1475 * We were able to extend the object. Determine if we 1476 * can extend the previous map entry to include the 1477 * new range as well. 1478 */ 1479 if (prev_entry->inheritance == inheritance && 1480 prev_entry->protection == prot && 1481 prev_entry->max_protection == max && 1482 prev_entry->wired_count == 0) { 1483 KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) == 1484 0, ("prev_entry %p has incoherent wiring", 1485 prev_entry)); 1486 if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0) 1487 map->size += end - prev_entry->end; 1488 vm_map_entry_resize(map, prev_entry, 1489 end - prev_entry->end); 1490 vm_map_simplify_entry(map, prev_entry); 1491 return (KERN_SUCCESS); 1492 } 1493 1494 /* 1495 * If we can extend the object but cannot extend the 1496 * map entry, we have to create a new map entry. We 1497 * must bump the ref count on the extended object to 1498 * account for it. object may be NULL. 1499 */ 1500 object = prev_entry->object.vm_object; 1501 offset = prev_entry->offset + 1502 (prev_entry->end - prev_entry->start); 1503 vm_object_reference(object); 1504 if (cred != NULL && object != NULL && object->cred != NULL && 1505 !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 1506 /* Object already accounts for this uid. */ 1507 cred = NULL; 1508 } 1509 } 1510 if (cred != NULL) 1511 crhold(cred); 1512 1513 /* 1514 * Create a new entry 1515 */ 1516 new_entry = vm_map_entry_create(map); 1517 new_entry->start = start; 1518 new_entry->end = end; 1519 new_entry->cred = NULL; 1520 1521 new_entry->eflags = protoeflags; 1522 new_entry->object.vm_object = object; 1523 new_entry->offset = offset; 1524 1525 new_entry->inheritance = inheritance; 1526 new_entry->protection = prot; 1527 new_entry->max_protection = max; 1528 new_entry->wired_count = 0; 1529 new_entry->wiring_thread = NULL; 1530 new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT; 1531 new_entry->next_read = start; 1532 1533 KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry), 1534 ("overcommit: vm_map_insert leaks vm_map %p", new_entry)); 1535 new_entry->cred = cred; 1536 1537 /* 1538 * Insert the new entry into the list 1539 */ 1540 vm_map_entry_link(map, new_entry); 1541 if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0) 1542 map->size += new_entry->end - new_entry->start; 1543 1544 /* 1545 * Try to coalesce the new entry with both the previous and next 1546 * entries in the list. Previously, we only attempted to coalesce 1547 * with the previous entry when object is NULL. Here, we handle the 1548 * other cases, which are less common. 1549 */ 1550 vm_map_simplify_entry(map, new_entry); 1551 1552 if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) { 1553 vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset), 1554 end - start, cow & MAP_PREFAULT_PARTIAL); 1555 } 1556 1557 return (KERN_SUCCESS); 1558 } 1559 1560 /* 1561 * vm_map_findspace: 1562 * 1563 * Find the first fit (lowest VM address) for "length" free bytes 1564 * beginning at address >= start in the given map. 1565 * 1566 * In a vm_map_entry, "max_free" is the maximum amount of 1567 * contiguous free space between an entry in its subtree and a 1568 * neighbor of that entry. This allows finding a free region in 1569 * one path down the tree, so O(log n) amortized with splay 1570 * trees. 1571 * 1572 * The map must be locked, and leaves it so. 1573 * 1574 * Returns: starting address if sufficient space, 1575 * vm_map_max(map)-length+1 if insufficient space. 1576 */ 1577 vm_offset_t 1578 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length) 1579 { 1580 vm_map_entry_t llist, rlist, root, y; 1581 vm_size_t left_length; 1582 1583 /* 1584 * Request must fit within min/max VM address and must avoid 1585 * address wrap. 1586 */ 1587 start = MAX(start, vm_map_min(map)); 1588 if (start + length > vm_map_max(map) || start + length < start) 1589 return (vm_map_max(map) - length + 1); 1590 1591 /* Empty tree means wide open address space. */ 1592 if (map->root == NULL) 1593 return (start); 1594 1595 /* 1596 * After splay, if start comes before root node, then there 1597 * must be a gap from start to the root. 1598 */ 1599 root = vm_map_splay_split(start, length, map->root, 1600 &llist, &rlist); 1601 if (root != NULL) 1602 start = root->end; 1603 else if (rlist != NULL) { 1604 root = rlist; 1605 rlist = root->left; 1606 root->left = NULL; 1607 } else { 1608 root = llist; 1609 llist = root->right; 1610 root->right = NULL; 1611 } 1612 map->root = vm_map_splay_merge(root, llist, rlist, 1613 root->left, root->right); 1614 VM_MAP_ASSERT_CONSISTENT(map); 1615 if (start + length <= root->start) 1616 return (start); 1617 1618 /* 1619 * Root is the last node that might begin its gap before 1620 * start, and this is the last comparison where address 1621 * wrap might be a problem. 1622 */ 1623 if (root->right == NULL && 1624 start + length <= vm_map_max(map)) 1625 return (start); 1626 1627 /* With max_free, can immediately tell if no solution. */ 1628 if (root->right == NULL || length > root->right->max_free) 1629 return (vm_map_max(map) - length + 1); 1630 1631 /* 1632 * Splay for the least large-enough gap in the right subtree. 1633 */ 1634 llist = NULL; 1635 rlist = NULL; 1636 for (left_length = 0; ; 1637 left_length = root->left != NULL ? 1638 root->left->max_free : root->start - llist->end) { 1639 if (length <= left_length) 1640 SPLAY_LEFT_STEP(root, y, rlist, 1641 length <= (y->left != NULL ? 1642 y->left->max_free : y->start - llist->end)); 1643 else 1644 SPLAY_RIGHT_STEP(root, y, llist, 1645 length > (y->left != NULL ? 1646 y->left->max_free : y->start - root->end)); 1647 if (root == NULL) 1648 break; 1649 } 1650 root = llist; 1651 llist = root->right; 1652 if ((y = rlist) == NULL) 1653 root->right = NULL; 1654 else { 1655 rlist = y->left; 1656 y->left = NULL; 1657 root->right = y->right; 1658 } 1659 root = vm_map_splay_merge(root, llist, rlist, 1660 root->left, root->right); 1661 if (y != NULL) { 1662 y->right = root->right; 1663 vm_map_entry_set_max_free(y); 1664 root->right = y; 1665 vm_map_entry_set_max_free(root); 1666 } 1667 map->root = root; 1668 VM_MAP_ASSERT_CONSISTENT(map); 1669 return (root->end); 1670 } 1671 1672 int 1673 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1674 vm_offset_t start, vm_size_t length, vm_prot_t prot, 1675 vm_prot_t max, int cow) 1676 { 1677 vm_offset_t end; 1678 int result; 1679 1680 end = start + length; 1681 KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 || 1682 object == NULL, 1683 ("vm_map_fixed: non-NULL backing object for stack")); 1684 vm_map_lock(map); 1685 VM_MAP_RANGE_CHECK(map, start, end); 1686 if ((cow & MAP_CHECK_EXCL) == 0) 1687 vm_map_delete(map, start, end); 1688 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) { 1689 result = vm_map_stack_locked(map, start, length, sgrowsiz, 1690 prot, max, cow); 1691 } else { 1692 result = vm_map_insert(map, object, offset, start, end, 1693 prot, max, cow); 1694 } 1695 vm_map_unlock(map); 1696 return (result); 1697 } 1698 1699 static const int aslr_pages_rnd_64[2] = {0x1000, 0x10}; 1700 static const int aslr_pages_rnd_32[2] = {0x100, 0x4}; 1701 1702 static int cluster_anon = 1; 1703 SYSCTL_INT(_vm, OID_AUTO, cluster_anon, CTLFLAG_RW, 1704 &cluster_anon, 0, 1705 "Cluster anonymous mappings: 0 = no, 1 = yes if no hint, 2 = always"); 1706 1707 static bool 1708 clustering_anon_allowed(vm_offset_t addr) 1709 { 1710 1711 switch (cluster_anon) { 1712 case 0: 1713 return (false); 1714 case 1: 1715 return (addr == 0); 1716 case 2: 1717 default: 1718 return (true); 1719 } 1720 } 1721 1722 static long aslr_restarts; 1723 SYSCTL_LONG(_vm, OID_AUTO, aslr_restarts, CTLFLAG_RD, 1724 &aslr_restarts, 0, 1725 "Number of aslr failures"); 1726 1727 #define MAP_32BIT_MAX_ADDR ((vm_offset_t)1 << 31) 1728 1729 /* 1730 * Searches for the specified amount of free space in the given map with the 1731 * specified alignment. Performs an address-ordered, first-fit search from 1732 * the given address "*addr", with an optional upper bound "max_addr". If the 1733 * parameter "alignment" is zero, then the alignment is computed from the 1734 * given (object, offset) pair so as to enable the greatest possible use of 1735 * superpage mappings. Returns KERN_SUCCESS and the address of the free space 1736 * in "*addr" if successful. Otherwise, returns KERN_NO_SPACE. 1737 * 1738 * The map must be locked. Initially, there must be at least "length" bytes 1739 * of free space at the given address. 1740 */ 1741 static int 1742 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1743 vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr, 1744 vm_offset_t alignment) 1745 { 1746 vm_offset_t aligned_addr, free_addr; 1747 1748 VM_MAP_ASSERT_LOCKED(map); 1749 free_addr = *addr; 1750 KASSERT(free_addr == vm_map_findspace(map, free_addr, length), 1751 ("caller failed to provide space %d at address %p", 1752 (int)length, (void*)free_addr)); 1753 for (;;) { 1754 /* 1755 * At the start of every iteration, the free space at address 1756 * "*addr" is at least "length" bytes. 1757 */ 1758 if (alignment == 0) 1759 pmap_align_superpage(object, offset, addr, length); 1760 else if ((*addr & (alignment - 1)) != 0) { 1761 *addr &= ~(alignment - 1); 1762 *addr += alignment; 1763 } 1764 aligned_addr = *addr; 1765 if (aligned_addr == free_addr) { 1766 /* 1767 * Alignment did not change "*addr", so "*addr" must 1768 * still provide sufficient free space. 1769 */ 1770 return (KERN_SUCCESS); 1771 } 1772 1773 /* 1774 * Test for address wrap on "*addr". A wrapped "*addr" could 1775 * be a valid address, in which case vm_map_findspace() cannot 1776 * be relied upon to fail. 1777 */ 1778 if (aligned_addr < free_addr) 1779 return (KERN_NO_SPACE); 1780 *addr = vm_map_findspace(map, aligned_addr, length); 1781 if (*addr + length > vm_map_max(map) || 1782 (max_addr != 0 && *addr + length > max_addr)) 1783 return (KERN_NO_SPACE); 1784 free_addr = *addr; 1785 if (free_addr == aligned_addr) { 1786 /* 1787 * If a successful call to vm_map_findspace() did not 1788 * change "*addr", then "*addr" must still be aligned 1789 * and provide sufficient free space. 1790 */ 1791 return (KERN_SUCCESS); 1792 } 1793 } 1794 } 1795 1796 /* 1797 * vm_map_find finds an unallocated region in the target address 1798 * map with the given length. The search is defined to be 1799 * first-fit from the specified address; the region found is 1800 * returned in the same parameter. 1801 * 1802 * If object is non-NULL, ref count must be bumped by caller 1803 * prior to making call to account for the new entry. 1804 */ 1805 int 1806 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1807 vm_offset_t *addr, /* IN/OUT */ 1808 vm_size_t length, vm_offset_t max_addr, int find_space, 1809 vm_prot_t prot, vm_prot_t max, int cow) 1810 { 1811 vm_offset_t alignment, curr_min_addr, min_addr; 1812 int gap, pidx, rv, try; 1813 bool cluster, en_aslr, update_anon; 1814 1815 KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 || 1816 object == NULL, 1817 ("vm_map_find: non-NULL backing object for stack")); 1818 MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE && 1819 (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0)); 1820 if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL || 1821 (object->flags & OBJ_COLORED) == 0)) 1822 find_space = VMFS_ANY_SPACE; 1823 if (find_space >> 8 != 0) { 1824 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags")); 1825 alignment = (vm_offset_t)1 << (find_space >> 8); 1826 } else 1827 alignment = 0; 1828 en_aslr = (map->flags & MAP_ASLR) != 0; 1829 update_anon = cluster = clustering_anon_allowed(*addr) && 1830 (map->flags & MAP_IS_SUB_MAP) == 0 && max_addr == 0 && 1831 find_space != VMFS_NO_SPACE && object == NULL && 1832 (cow & (MAP_INHERIT_SHARE | MAP_STACK_GROWS_UP | 1833 MAP_STACK_GROWS_DOWN)) == 0 && prot != PROT_NONE; 1834 curr_min_addr = min_addr = *addr; 1835 if (en_aslr && min_addr == 0 && !cluster && 1836 find_space != VMFS_NO_SPACE && 1837 (map->flags & MAP_ASLR_IGNSTART) != 0) 1838 curr_min_addr = min_addr = vm_map_min(map); 1839 try = 0; 1840 vm_map_lock(map); 1841 if (cluster) { 1842 curr_min_addr = map->anon_loc; 1843 if (curr_min_addr == 0) 1844 cluster = false; 1845 } 1846 if (find_space != VMFS_NO_SPACE) { 1847 KASSERT(find_space == VMFS_ANY_SPACE || 1848 find_space == VMFS_OPTIMAL_SPACE || 1849 find_space == VMFS_SUPER_SPACE || 1850 alignment != 0, ("unexpected VMFS flag")); 1851 again: 1852 /* 1853 * When creating an anonymous mapping, try clustering 1854 * with an existing anonymous mapping first. 1855 * 1856 * We make up to two attempts to find address space 1857 * for a given find_space value. The first attempt may 1858 * apply randomization or may cluster with an existing 1859 * anonymous mapping. If this first attempt fails, 1860 * perform a first-fit search of the available address 1861 * space. 1862 * 1863 * If all tries failed, and find_space is 1864 * VMFS_OPTIMAL_SPACE, fallback to VMFS_ANY_SPACE. 1865 * Again enable clustering and randomization. 1866 */ 1867 try++; 1868 MPASS(try <= 2); 1869 1870 if (try == 2) { 1871 /* 1872 * Second try: we failed either to find a 1873 * suitable region for randomizing the 1874 * allocation, or to cluster with an existing 1875 * mapping. Retry with free run. 1876 */ 1877 curr_min_addr = (map->flags & MAP_ASLR_IGNSTART) != 0 ? 1878 vm_map_min(map) : min_addr; 1879 atomic_add_long(&aslr_restarts, 1); 1880 } 1881 1882 if (try == 1 && en_aslr && !cluster) { 1883 /* 1884 * Find space for allocation, including 1885 * gap needed for later randomization. 1886 */ 1887 pidx = MAXPAGESIZES > 1 && pagesizes[1] != 0 && 1888 (find_space == VMFS_SUPER_SPACE || find_space == 1889 VMFS_OPTIMAL_SPACE) ? 1 : 0; 1890 gap = vm_map_max(map) > MAP_32BIT_MAX_ADDR && 1891 (max_addr == 0 || max_addr > MAP_32BIT_MAX_ADDR) ? 1892 aslr_pages_rnd_64[pidx] : aslr_pages_rnd_32[pidx]; 1893 *addr = vm_map_findspace(map, curr_min_addr, 1894 length + gap * pagesizes[pidx]); 1895 if (*addr + length + gap * pagesizes[pidx] > 1896 vm_map_max(map)) 1897 goto again; 1898 /* And randomize the start address. */ 1899 *addr += (arc4random() % gap) * pagesizes[pidx]; 1900 if (max_addr != 0 && *addr + length > max_addr) 1901 goto again; 1902 } else { 1903 *addr = vm_map_findspace(map, curr_min_addr, length); 1904 if (*addr + length > vm_map_max(map) || 1905 (max_addr != 0 && *addr + length > max_addr)) { 1906 if (cluster) { 1907 cluster = false; 1908 MPASS(try == 1); 1909 goto again; 1910 } 1911 rv = KERN_NO_SPACE; 1912 goto done; 1913 } 1914 } 1915 1916 if (find_space != VMFS_ANY_SPACE && 1917 (rv = vm_map_alignspace(map, object, offset, addr, length, 1918 max_addr, alignment)) != KERN_SUCCESS) { 1919 if (find_space == VMFS_OPTIMAL_SPACE) { 1920 find_space = VMFS_ANY_SPACE; 1921 curr_min_addr = min_addr; 1922 cluster = update_anon; 1923 try = 0; 1924 goto again; 1925 } 1926 goto done; 1927 } 1928 } else if ((cow & MAP_REMAP) != 0) { 1929 if (*addr < vm_map_min(map) || 1930 *addr + length > vm_map_max(map) || 1931 *addr + length <= length) { 1932 rv = KERN_INVALID_ADDRESS; 1933 goto done; 1934 } 1935 vm_map_delete(map, *addr, *addr + length); 1936 } 1937 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) { 1938 rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot, 1939 max, cow); 1940 } else { 1941 rv = vm_map_insert(map, object, offset, *addr, *addr + length, 1942 prot, max, cow); 1943 } 1944 if (rv == KERN_SUCCESS && update_anon) 1945 map->anon_loc = *addr + length; 1946 done: 1947 vm_map_unlock(map); 1948 return (rv); 1949 } 1950 1951 /* 1952 * vm_map_find_min() is a variant of vm_map_find() that takes an 1953 * additional parameter (min_addr) and treats the given address 1954 * (*addr) differently. Specifically, it treats *addr as a hint 1955 * and not as the minimum address where the mapping is created. 1956 * 1957 * This function works in two phases. First, it tries to 1958 * allocate above the hint. If that fails and the hint is 1959 * greater than min_addr, it performs a second pass, replacing 1960 * the hint with min_addr as the minimum address for the 1961 * allocation. 1962 */ 1963 int 1964 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1965 vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr, 1966 vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max, 1967 int cow) 1968 { 1969 vm_offset_t hint; 1970 int rv; 1971 1972 hint = *addr; 1973 for (;;) { 1974 rv = vm_map_find(map, object, offset, addr, length, max_addr, 1975 find_space, prot, max, cow); 1976 if (rv == KERN_SUCCESS || min_addr >= hint) 1977 return (rv); 1978 *addr = hint = min_addr; 1979 } 1980 } 1981 1982 /* 1983 * A map entry with any of the following flags set must not be merged with 1984 * another entry. 1985 */ 1986 #define MAP_ENTRY_NOMERGE_MASK (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | \ 1987 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP | MAP_ENTRY_VN_EXEC) 1988 1989 static bool 1990 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry) 1991 { 1992 1993 KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 || 1994 (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0, 1995 ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable", 1996 prev, entry)); 1997 return (prev->end == entry->start && 1998 prev->object.vm_object == entry->object.vm_object && 1999 (prev->object.vm_object == NULL || 2000 prev->offset + (prev->end - prev->start) == entry->offset) && 2001 prev->eflags == entry->eflags && 2002 prev->protection == entry->protection && 2003 prev->max_protection == entry->max_protection && 2004 prev->inheritance == entry->inheritance && 2005 prev->wired_count == entry->wired_count && 2006 prev->cred == entry->cred); 2007 } 2008 2009 static void 2010 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry) 2011 { 2012 2013 /* 2014 * If the backing object is a vnode object, vm_object_deallocate() 2015 * calls vrele(). However, vrele() does not lock the vnode because 2016 * the vnode has additional references. Thus, the map lock can be 2017 * kept without causing a lock-order reversal with the vnode lock. 2018 * 2019 * Since we count the number of virtual page mappings in 2020 * object->un_pager.vnp.writemappings, the writemappings value 2021 * should not be adjusted when the entry is disposed of. 2022 */ 2023 if (entry->object.vm_object != NULL) 2024 vm_object_deallocate(entry->object.vm_object); 2025 if (entry->cred != NULL) 2026 crfree(entry->cred); 2027 vm_map_entry_dispose(map, entry); 2028 } 2029 2030 /* 2031 * vm_map_simplify_entry: 2032 * 2033 * Simplify the given map entry by merging with either neighbor. This 2034 * routine also has the ability to merge with both neighbors. 2035 * 2036 * The map must be locked. 2037 * 2038 * This routine guarantees that the passed entry remains valid (though 2039 * possibly extended). When merging, this routine may delete one or 2040 * both neighbors. 2041 */ 2042 void 2043 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry) 2044 { 2045 vm_map_entry_t next, prev; 2046 2047 if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) != 0) 2048 return; 2049 prev = entry->prev; 2050 if (vm_map_mergeable_neighbors(prev, entry)) { 2051 vm_map_entry_unlink(map, prev, UNLINK_MERGE_NEXT); 2052 vm_map_merged_neighbor_dispose(map, prev); 2053 } 2054 next = entry->next; 2055 if (vm_map_mergeable_neighbors(entry, next)) { 2056 vm_map_entry_unlink(map, next, UNLINK_MERGE_PREV); 2057 vm_map_merged_neighbor_dispose(map, next); 2058 } 2059 } 2060 2061 /* 2062 * vm_map_clip_start: [ internal use only ] 2063 * 2064 * Asserts that the given entry begins at or after 2065 * the specified address; if necessary, 2066 * it splits the entry into two. 2067 */ 2068 #define vm_map_clip_start(map, entry, startaddr) \ 2069 { \ 2070 if (startaddr > entry->start) \ 2071 _vm_map_clip_start(map, entry, startaddr); \ 2072 } 2073 2074 /* 2075 * This routine is called only when it is known that 2076 * the entry must be split. 2077 */ 2078 static void 2079 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start) 2080 { 2081 vm_map_entry_t new_entry; 2082 2083 VM_MAP_ASSERT_LOCKED(map); 2084 KASSERT(entry->end > start && entry->start < start, 2085 ("_vm_map_clip_start: invalid clip of entry %p", entry)); 2086 2087 /* 2088 * Split off the front portion -- note that we must insert the new 2089 * entry BEFORE this one, so that this entry has the specified 2090 * starting address. 2091 */ 2092 vm_map_simplify_entry(map, entry); 2093 2094 /* 2095 * If there is no object backing this entry, we might as well create 2096 * one now. If we defer it, an object can get created after the map 2097 * is clipped, and individual objects will be created for the split-up 2098 * map. This is a bit of a hack, but is also about the best place to 2099 * put this improvement. 2100 */ 2101 if (entry->object.vm_object == NULL && !map->system_map && 2102 (entry->eflags & MAP_ENTRY_GUARD) == 0) { 2103 vm_object_t object; 2104 object = vm_object_allocate(OBJT_DEFAULT, 2105 atop(entry->end - entry->start)); 2106 entry->object.vm_object = object; 2107 entry->offset = 0; 2108 if (entry->cred != NULL) { 2109 object->cred = entry->cred; 2110 object->charge = entry->end - entry->start; 2111 entry->cred = NULL; 2112 } 2113 } else if (entry->object.vm_object != NULL && 2114 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 2115 entry->cred != NULL) { 2116 VM_OBJECT_WLOCK(entry->object.vm_object); 2117 KASSERT(entry->object.vm_object->cred == NULL, 2118 ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry)); 2119 entry->object.vm_object->cred = entry->cred; 2120 entry->object.vm_object->charge = entry->end - entry->start; 2121 VM_OBJECT_WUNLOCK(entry->object.vm_object); 2122 entry->cred = NULL; 2123 } 2124 2125 new_entry = vm_map_entry_create(map); 2126 *new_entry = *entry; 2127 2128 new_entry->end = start; 2129 entry->offset += (start - entry->start); 2130 entry->start = start; 2131 if (new_entry->cred != NULL) 2132 crhold(entry->cred); 2133 2134 vm_map_entry_link(map, new_entry); 2135 2136 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 2137 vm_object_reference(new_entry->object.vm_object); 2138 vm_map_entry_set_vnode_text(new_entry, true); 2139 /* 2140 * The object->un_pager.vnp.writemappings for the 2141 * object of MAP_ENTRY_VN_WRITECNT type entry shall be 2142 * kept as is here. The virtual pages are 2143 * re-distributed among the clipped entries, so the sum is 2144 * left the same. 2145 */ 2146 } 2147 } 2148 2149 /* 2150 * vm_map_clip_end: [ internal use only ] 2151 * 2152 * Asserts that the given entry ends at or before 2153 * the specified address; if necessary, 2154 * it splits the entry into two. 2155 */ 2156 #define vm_map_clip_end(map, entry, endaddr) \ 2157 { \ 2158 if ((endaddr) < (entry->end)) \ 2159 _vm_map_clip_end((map), (entry), (endaddr)); \ 2160 } 2161 2162 /* 2163 * This routine is called only when it is known that 2164 * the entry must be split. 2165 */ 2166 static void 2167 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end) 2168 { 2169 vm_map_entry_t new_entry; 2170 2171 VM_MAP_ASSERT_LOCKED(map); 2172 KASSERT(entry->start < end && entry->end > end, 2173 ("_vm_map_clip_end: invalid clip of entry %p", entry)); 2174 2175 /* 2176 * If there is no object backing this entry, we might as well create 2177 * one now. If we defer it, an object can get created after the map 2178 * is clipped, and individual objects will be created for the split-up 2179 * map. This is a bit of a hack, but is also about the best place to 2180 * put this improvement. 2181 */ 2182 if (entry->object.vm_object == NULL && !map->system_map && 2183 (entry->eflags & MAP_ENTRY_GUARD) == 0) { 2184 vm_object_t object; 2185 object = vm_object_allocate(OBJT_DEFAULT, 2186 atop(entry->end - entry->start)); 2187 entry->object.vm_object = object; 2188 entry->offset = 0; 2189 if (entry->cred != NULL) { 2190 object->cred = entry->cred; 2191 object->charge = entry->end - entry->start; 2192 entry->cred = NULL; 2193 } 2194 } else if (entry->object.vm_object != NULL && 2195 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 2196 entry->cred != NULL) { 2197 VM_OBJECT_WLOCK(entry->object.vm_object); 2198 KASSERT(entry->object.vm_object->cred == NULL, 2199 ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry)); 2200 entry->object.vm_object->cred = entry->cred; 2201 entry->object.vm_object->charge = entry->end - entry->start; 2202 VM_OBJECT_WUNLOCK(entry->object.vm_object); 2203 entry->cred = NULL; 2204 } 2205 2206 /* 2207 * Create a new entry and insert it AFTER the specified entry 2208 */ 2209 new_entry = vm_map_entry_create(map); 2210 *new_entry = *entry; 2211 2212 new_entry->start = entry->end = end; 2213 new_entry->offset += (end - entry->start); 2214 if (new_entry->cred != NULL) 2215 crhold(entry->cred); 2216 2217 vm_map_entry_link(map, new_entry); 2218 2219 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 2220 vm_object_reference(new_entry->object.vm_object); 2221 vm_map_entry_set_vnode_text(new_entry, true); 2222 } 2223 } 2224 2225 /* 2226 * vm_map_submap: [ kernel use only ] 2227 * 2228 * Mark the given range as handled by a subordinate map. 2229 * 2230 * This range must have been created with vm_map_find, 2231 * and no other operations may have been performed on this 2232 * range prior to calling vm_map_submap. 2233 * 2234 * Only a limited number of operations can be performed 2235 * within this rage after calling vm_map_submap: 2236 * vm_fault 2237 * [Don't try vm_map_copy!] 2238 * 2239 * To remove a submapping, one must first remove the 2240 * range from the superior map, and then destroy the 2241 * submap (if desired). [Better yet, don't try it.] 2242 */ 2243 int 2244 vm_map_submap( 2245 vm_map_t map, 2246 vm_offset_t start, 2247 vm_offset_t end, 2248 vm_map_t submap) 2249 { 2250 vm_map_entry_t entry; 2251 int result; 2252 2253 result = KERN_INVALID_ARGUMENT; 2254 2255 vm_map_lock(submap); 2256 submap->flags |= MAP_IS_SUB_MAP; 2257 vm_map_unlock(submap); 2258 2259 vm_map_lock(map); 2260 2261 VM_MAP_RANGE_CHECK(map, start, end); 2262 2263 if (vm_map_lookup_entry(map, start, &entry)) { 2264 vm_map_clip_start(map, entry, start); 2265 } else 2266 entry = entry->next; 2267 2268 vm_map_clip_end(map, entry, end); 2269 2270 if ((entry->start == start) && (entry->end == end) && 2271 ((entry->eflags & MAP_ENTRY_COW) == 0) && 2272 (entry->object.vm_object == NULL)) { 2273 entry->object.sub_map = submap; 2274 entry->eflags |= MAP_ENTRY_IS_SUB_MAP; 2275 result = KERN_SUCCESS; 2276 } 2277 vm_map_unlock(map); 2278 2279 if (result != KERN_SUCCESS) { 2280 vm_map_lock(submap); 2281 submap->flags &= ~MAP_IS_SUB_MAP; 2282 vm_map_unlock(submap); 2283 } 2284 return (result); 2285 } 2286 2287 /* 2288 * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified 2289 */ 2290 #define MAX_INIT_PT 96 2291 2292 /* 2293 * vm_map_pmap_enter: 2294 * 2295 * Preload the specified map's pmap with mappings to the specified 2296 * object's memory-resident pages. No further physical pages are 2297 * allocated, and no further virtual pages are retrieved from secondary 2298 * storage. If the specified flags include MAP_PREFAULT_PARTIAL, then a 2299 * limited number of page mappings are created at the low-end of the 2300 * specified address range. (For this purpose, a superpage mapping 2301 * counts as one page mapping.) Otherwise, all resident pages within 2302 * the specified address range are mapped. 2303 */ 2304 static void 2305 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 2306 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags) 2307 { 2308 vm_offset_t start; 2309 vm_page_t p, p_start; 2310 vm_pindex_t mask, psize, threshold, tmpidx; 2311 2312 if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL) 2313 return; 2314 VM_OBJECT_RLOCK(object); 2315 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 2316 VM_OBJECT_RUNLOCK(object); 2317 VM_OBJECT_WLOCK(object); 2318 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 2319 pmap_object_init_pt(map->pmap, addr, object, pindex, 2320 size); 2321 VM_OBJECT_WUNLOCK(object); 2322 return; 2323 } 2324 VM_OBJECT_LOCK_DOWNGRADE(object); 2325 } 2326 2327 psize = atop(size); 2328 if (psize + pindex > object->size) { 2329 if (object->size < pindex) { 2330 VM_OBJECT_RUNLOCK(object); 2331 return; 2332 } 2333 psize = object->size - pindex; 2334 } 2335 2336 start = 0; 2337 p_start = NULL; 2338 threshold = MAX_INIT_PT; 2339 2340 p = vm_page_find_least(object, pindex); 2341 /* 2342 * Assert: the variable p is either (1) the page with the 2343 * least pindex greater than or equal to the parameter pindex 2344 * or (2) NULL. 2345 */ 2346 for (; 2347 p != NULL && (tmpidx = p->pindex - pindex) < psize; 2348 p = TAILQ_NEXT(p, listq)) { 2349 /* 2350 * don't allow an madvise to blow away our really 2351 * free pages allocating pv entries. 2352 */ 2353 if (((flags & MAP_PREFAULT_MADVISE) != 0 && 2354 vm_page_count_severe()) || 2355 ((flags & MAP_PREFAULT_PARTIAL) != 0 && 2356 tmpidx >= threshold)) { 2357 psize = tmpidx; 2358 break; 2359 } 2360 if (p->valid == VM_PAGE_BITS_ALL) { 2361 if (p_start == NULL) { 2362 start = addr + ptoa(tmpidx); 2363 p_start = p; 2364 } 2365 /* Jump ahead if a superpage mapping is possible. */ 2366 if (p->psind > 0 && ((addr + ptoa(tmpidx)) & 2367 (pagesizes[p->psind] - 1)) == 0) { 2368 mask = atop(pagesizes[p->psind]) - 1; 2369 if (tmpidx + mask < psize && 2370 vm_page_ps_test(p, PS_ALL_VALID, NULL)) { 2371 p += mask; 2372 threshold += mask; 2373 } 2374 } 2375 } else if (p_start != NULL) { 2376 pmap_enter_object(map->pmap, start, addr + 2377 ptoa(tmpidx), p_start, prot); 2378 p_start = NULL; 2379 } 2380 } 2381 if (p_start != NULL) 2382 pmap_enter_object(map->pmap, start, addr + ptoa(psize), 2383 p_start, prot); 2384 VM_OBJECT_RUNLOCK(object); 2385 } 2386 2387 /* 2388 * vm_map_protect: 2389 * 2390 * Sets the protection of the specified address 2391 * region in the target map. If "set_max" is 2392 * specified, the maximum protection is to be set; 2393 * otherwise, only the current protection is affected. 2394 */ 2395 int 2396 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 2397 vm_prot_t new_prot, boolean_t set_max) 2398 { 2399 vm_map_entry_t current, entry, in_tran; 2400 vm_object_t obj; 2401 struct ucred *cred; 2402 vm_prot_t old_prot; 2403 2404 if (start == end) 2405 return (KERN_SUCCESS); 2406 2407 again: 2408 in_tran = NULL; 2409 vm_map_lock(map); 2410 2411 /* 2412 * Ensure that we are not concurrently wiring pages. vm_map_wire() may 2413 * need to fault pages into the map and will drop the map lock while 2414 * doing so, and the VM object may end up in an inconsistent state if we 2415 * update the protection on the map entry in between faults. 2416 */ 2417 vm_map_wait_busy(map); 2418 2419 VM_MAP_RANGE_CHECK(map, start, end); 2420 2421 if (vm_map_lookup_entry(map, start, &entry)) { 2422 vm_map_clip_start(map, entry, start); 2423 } else { 2424 entry = entry->next; 2425 } 2426 2427 /* 2428 * Make a first pass to check for protection violations. 2429 */ 2430 for (current = entry; current->start < end; current = current->next) { 2431 if ((current->eflags & MAP_ENTRY_GUARD) != 0) 2432 continue; 2433 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 2434 vm_map_unlock(map); 2435 return (KERN_INVALID_ARGUMENT); 2436 } 2437 if ((new_prot & current->max_protection) != new_prot) { 2438 vm_map_unlock(map); 2439 return (KERN_PROTECTION_FAILURE); 2440 } 2441 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0) 2442 in_tran = entry; 2443 } 2444 2445 /* 2446 * Postpone the operation until all in transition map entries 2447 * are stabilized. In-transition entry might already have its 2448 * pages wired and wired_count incremented, but 2449 * MAP_ENTRY_USER_WIRED flag not yet set, and visible to other 2450 * threads because the map lock is dropped. In this case we 2451 * would miss our call to vm_fault_copy_entry(). 2452 */ 2453 if (in_tran != NULL) { 2454 in_tran->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2455 vm_map_unlock_and_wait(map, 0); 2456 goto again; 2457 } 2458 2459 /* 2460 * Do an accounting pass for private read-only mappings that 2461 * now will do cow due to allowed write (e.g. debugger sets 2462 * breakpoint on text segment) 2463 */ 2464 for (current = entry; current->start < end; current = current->next) { 2465 2466 vm_map_clip_end(map, current, end); 2467 2468 if (set_max || 2469 ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 || 2470 ENTRY_CHARGED(current) || 2471 (current->eflags & MAP_ENTRY_GUARD) != 0) { 2472 continue; 2473 } 2474 2475 cred = curthread->td_ucred; 2476 obj = current->object.vm_object; 2477 2478 if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) { 2479 if (!swap_reserve(current->end - current->start)) { 2480 vm_map_unlock(map); 2481 return (KERN_RESOURCE_SHORTAGE); 2482 } 2483 crhold(cred); 2484 current->cred = cred; 2485 continue; 2486 } 2487 2488 VM_OBJECT_WLOCK(obj); 2489 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) { 2490 VM_OBJECT_WUNLOCK(obj); 2491 continue; 2492 } 2493 2494 /* 2495 * Charge for the whole object allocation now, since 2496 * we cannot distinguish between non-charged and 2497 * charged clipped mapping of the same object later. 2498 */ 2499 KASSERT(obj->charge == 0, 2500 ("vm_map_protect: object %p overcharged (entry %p)", 2501 obj, current)); 2502 if (!swap_reserve(ptoa(obj->size))) { 2503 VM_OBJECT_WUNLOCK(obj); 2504 vm_map_unlock(map); 2505 return (KERN_RESOURCE_SHORTAGE); 2506 } 2507 2508 crhold(cred); 2509 obj->cred = cred; 2510 obj->charge = ptoa(obj->size); 2511 VM_OBJECT_WUNLOCK(obj); 2512 } 2513 2514 /* 2515 * Go back and fix up protections. [Note that clipping is not 2516 * necessary the second time.] 2517 */ 2518 for (current = entry; current->start < end; current = current->next) { 2519 if ((current->eflags & MAP_ENTRY_GUARD) != 0) 2520 continue; 2521 2522 old_prot = current->protection; 2523 2524 if (set_max) 2525 current->protection = 2526 (current->max_protection = new_prot) & 2527 old_prot; 2528 else 2529 current->protection = new_prot; 2530 2531 /* 2532 * For user wired map entries, the normal lazy evaluation of 2533 * write access upgrades through soft page faults is 2534 * undesirable. Instead, immediately copy any pages that are 2535 * copy-on-write and enable write access in the physical map. 2536 */ 2537 if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 && 2538 (current->protection & VM_PROT_WRITE) != 0 && 2539 (old_prot & VM_PROT_WRITE) == 0) 2540 vm_fault_copy_entry(map, map, current, current, NULL); 2541 2542 /* 2543 * When restricting access, update the physical map. Worry 2544 * about copy-on-write here. 2545 */ 2546 if ((old_prot & ~current->protection) != 0) { 2547 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 2548 VM_PROT_ALL) 2549 pmap_protect(map->pmap, current->start, 2550 current->end, 2551 current->protection & MASK(current)); 2552 #undef MASK 2553 } 2554 vm_map_simplify_entry(map, current); 2555 } 2556 vm_map_unlock(map); 2557 return (KERN_SUCCESS); 2558 } 2559 2560 /* 2561 * vm_map_madvise: 2562 * 2563 * This routine traverses a processes map handling the madvise 2564 * system call. Advisories are classified as either those effecting 2565 * the vm_map_entry structure, or those effecting the underlying 2566 * objects. 2567 */ 2568 int 2569 vm_map_madvise( 2570 vm_map_t map, 2571 vm_offset_t start, 2572 vm_offset_t end, 2573 int behav) 2574 { 2575 vm_map_entry_t current, entry; 2576 bool modify_map; 2577 2578 /* 2579 * Some madvise calls directly modify the vm_map_entry, in which case 2580 * we need to use an exclusive lock on the map and we need to perform 2581 * various clipping operations. Otherwise we only need a read-lock 2582 * on the map. 2583 */ 2584 switch(behav) { 2585 case MADV_NORMAL: 2586 case MADV_SEQUENTIAL: 2587 case MADV_RANDOM: 2588 case MADV_NOSYNC: 2589 case MADV_AUTOSYNC: 2590 case MADV_NOCORE: 2591 case MADV_CORE: 2592 if (start == end) 2593 return (0); 2594 modify_map = true; 2595 vm_map_lock(map); 2596 break; 2597 case MADV_WILLNEED: 2598 case MADV_DONTNEED: 2599 case MADV_FREE: 2600 if (start == end) 2601 return (0); 2602 modify_map = false; 2603 vm_map_lock_read(map); 2604 break; 2605 default: 2606 return (EINVAL); 2607 } 2608 2609 /* 2610 * Locate starting entry and clip if necessary. 2611 */ 2612 VM_MAP_RANGE_CHECK(map, start, end); 2613 2614 if (vm_map_lookup_entry(map, start, &entry)) { 2615 if (modify_map) 2616 vm_map_clip_start(map, entry, start); 2617 } else { 2618 entry = entry->next; 2619 } 2620 2621 if (modify_map) { 2622 /* 2623 * madvise behaviors that are implemented in the vm_map_entry. 2624 * 2625 * We clip the vm_map_entry so that behavioral changes are 2626 * limited to the specified address range. 2627 */ 2628 for (current = entry; current->start < end; 2629 current = current->next) { 2630 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2631 continue; 2632 2633 vm_map_clip_end(map, current, end); 2634 2635 switch (behav) { 2636 case MADV_NORMAL: 2637 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL); 2638 break; 2639 case MADV_SEQUENTIAL: 2640 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL); 2641 break; 2642 case MADV_RANDOM: 2643 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM); 2644 break; 2645 case MADV_NOSYNC: 2646 current->eflags |= MAP_ENTRY_NOSYNC; 2647 break; 2648 case MADV_AUTOSYNC: 2649 current->eflags &= ~MAP_ENTRY_NOSYNC; 2650 break; 2651 case MADV_NOCORE: 2652 current->eflags |= MAP_ENTRY_NOCOREDUMP; 2653 break; 2654 case MADV_CORE: 2655 current->eflags &= ~MAP_ENTRY_NOCOREDUMP; 2656 break; 2657 default: 2658 break; 2659 } 2660 vm_map_simplify_entry(map, current); 2661 } 2662 vm_map_unlock(map); 2663 } else { 2664 vm_pindex_t pstart, pend; 2665 2666 /* 2667 * madvise behaviors that are implemented in the underlying 2668 * vm_object. 2669 * 2670 * Since we don't clip the vm_map_entry, we have to clip 2671 * the vm_object pindex and count. 2672 */ 2673 for (current = entry; current->start < end; 2674 current = current->next) { 2675 vm_offset_t useEnd, useStart; 2676 2677 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2678 continue; 2679 2680 pstart = OFF_TO_IDX(current->offset); 2681 pend = pstart + atop(current->end - current->start); 2682 useStart = current->start; 2683 useEnd = current->end; 2684 2685 if (current->start < start) { 2686 pstart += atop(start - current->start); 2687 useStart = start; 2688 } 2689 if (current->end > end) { 2690 pend -= atop(current->end - end); 2691 useEnd = end; 2692 } 2693 2694 if (pstart >= pend) 2695 continue; 2696 2697 /* 2698 * Perform the pmap_advise() before clearing 2699 * PGA_REFERENCED in vm_page_advise(). Otherwise, a 2700 * concurrent pmap operation, such as pmap_remove(), 2701 * could clear a reference in the pmap and set 2702 * PGA_REFERENCED on the page before the pmap_advise() 2703 * had completed. Consequently, the page would appear 2704 * referenced based upon an old reference that 2705 * occurred before this pmap_advise() ran. 2706 */ 2707 if (behav == MADV_DONTNEED || behav == MADV_FREE) 2708 pmap_advise(map->pmap, useStart, useEnd, 2709 behav); 2710 2711 vm_object_madvise(current->object.vm_object, pstart, 2712 pend, behav); 2713 2714 /* 2715 * Pre-populate paging structures in the 2716 * WILLNEED case. For wired entries, the 2717 * paging structures are already populated. 2718 */ 2719 if (behav == MADV_WILLNEED && 2720 current->wired_count == 0) { 2721 vm_map_pmap_enter(map, 2722 useStart, 2723 current->protection, 2724 current->object.vm_object, 2725 pstart, 2726 ptoa(pend - pstart), 2727 MAP_PREFAULT_MADVISE 2728 ); 2729 } 2730 } 2731 vm_map_unlock_read(map); 2732 } 2733 return (0); 2734 } 2735 2736 2737 /* 2738 * vm_map_inherit: 2739 * 2740 * Sets the inheritance of the specified address 2741 * range in the target map. Inheritance 2742 * affects how the map will be shared with 2743 * child maps at the time of vmspace_fork. 2744 */ 2745 int 2746 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 2747 vm_inherit_t new_inheritance) 2748 { 2749 vm_map_entry_t entry; 2750 vm_map_entry_t temp_entry; 2751 2752 switch (new_inheritance) { 2753 case VM_INHERIT_NONE: 2754 case VM_INHERIT_COPY: 2755 case VM_INHERIT_SHARE: 2756 case VM_INHERIT_ZERO: 2757 break; 2758 default: 2759 return (KERN_INVALID_ARGUMENT); 2760 } 2761 if (start == end) 2762 return (KERN_SUCCESS); 2763 vm_map_lock(map); 2764 VM_MAP_RANGE_CHECK(map, start, end); 2765 if (vm_map_lookup_entry(map, start, &temp_entry)) { 2766 entry = temp_entry; 2767 vm_map_clip_start(map, entry, start); 2768 } else 2769 entry = temp_entry->next; 2770 while (entry->start < end) { 2771 vm_map_clip_end(map, entry, end); 2772 if ((entry->eflags & MAP_ENTRY_GUARD) == 0 || 2773 new_inheritance != VM_INHERIT_ZERO) 2774 entry->inheritance = new_inheritance; 2775 vm_map_simplify_entry(map, entry); 2776 entry = entry->next; 2777 } 2778 vm_map_unlock(map); 2779 return (KERN_SUCCESS); 2780 } 2781 2782 /* 2783 * vm_map_unwire: 2784 * 2785 * Implements both kernel and user unwiring. 2786 */ 2787 int 2788 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2789 int flags) 2790 { 2791 vm_map_entry_t entry, first_entry, tmp_entry; 2792 vm_offset_t saved_start; 2793 unsigned int last_timestamp; 2794 int rv; 2795 boolean_t need_wakeup, result, user_unwire; 2796 2797 if (start == end) 2798 return (KERN_SUCCESS); 2799 user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 2800 vm_map_lock(map); 2801 VM_MAP_RANGE_CHECK(map, start, end); 2802 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2803 if (flags & VM_MAP_WIRE_HOLESOK) 2804 first_entry = first_entry->next; 2805 else { 2806 vm_map_unlock(map); 2807 return (KERN_INVALID_ADDRESS); 2808 } 2809 } 2810 last_timestamp = map->timestamp; 2811 entry = first_entry; 2812 while (entry->start < end) { 2813 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2814 /* 2815 * We have not yet clipped the entry. 2816 */ 2817 saved_start = (start >= entry->start) ? start : 2818 entry->start; 2819 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2820 if (vm_map_unlock_and_wait(map, 0)) { 2821 /* 2822 * Allow interruption of user unwiring? 2823 */ 2824 } 2825 vm_map_lock(map); 2826 if (last_timestamp+1 != map->timestamp) { 2827 /* 2828 * Look again for the entry because the map was 2829 * modified while it was unlocked. 2830 * Specifically, the entry may have been 2831 * clipped, merged, or deleted. 2832 */ 2833 if (!vm_map_lookup_entry(map, saved_start, 2834 &tmp_entry)) { 2835 if (flags & VM_MAP_WIRE_HOLESOK) 2836 tmp_entry = tmp_entry->next; 2837 else { 2838 if (saved_start == start) { 2839 /* 2840 * First_entry has been deleted. 2841 */ 2842 vm_map_unlock(map); 2843 return (KERN_INVALID_ADDRESS); 2844 } 2845 end = saved_start; 2846 rv = KERN_INVALID_ADDRESS; 2847 goto done; 2848 } 2849 } 2850 if (entry == first_entry) 2851 first_entry = tmp_entry; 2852 else 2853 first_entry = NULL; 2854 entry = tmp_entry; 2855 } 2856 last_timestamp = map->timestamp; 2857 continue; 2858 } 2859 vm_map_clip_start(map, entry, start); 2860 vm_map_clip_end(map, entry, end); 2861 /* 2862 * Mark the entry in case the map lock is released. (See 2863 * above.) 2864 */ 2865 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 2866 entry->wiring_thread == NULL, 2867 ("owned map entry %p", entry)); 2868 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 2869 entry->wiring_thread = curthread; 2870 /* 2871 * Check the map for holes in the specified region. 2872 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 2873 */ 2874 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) && 2875 (entry->end < end && entry->next->start > entry->end)) { 2876 end = entry->end; 2877 rv = KERN_INVALID_ADDRESS; 2878 goto done; 2879 } 2880 /* 2881 * If system unwiring, require that the entry is system wired. 2882 */ 2883 if (!user_unwire && 2884 vm_map_entry_system_wired_count(entry) == 0) { 2885 end = entry->end; 2886 rv = KERN_INVALID_ARGUMENT; 2887 goto done; 2888 } 2889 entry = entry->next; 2890 } 2891 rv = KERN_SUCCESS; 2892 done: 2893 need_wakeup = FALSE; 2894 if (first_entry == NULL) { 2895 result = vm_map_lookup_entry(map, start, &first_entry); 2896 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 2897 first_entry = first_entry->next; 2898 else 2899 KASSERT(result, ("vm_map_unwire: lookup failed")); 2900 } 2901 for (entry = first_entry; entry->start < end; entry = entry->next) { 2902 /* 2903 * If VM_MAP_WIRE_HOLESOK was specified, an empty 2904 * space in the unwired region could have been mapped 2905 * while the map lock was dropped for draining 2906 * MAP_ENTRY_IN_TRANSITION. Moreover, another thread 2907 * could be simultaneously wiring this new mapping 2908 * entry. Detect these cases and skip any entries 2909 * marked as in transition by us. 2910 */ 2911 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 2912 entry->wiring_thread != curthread) { 2913 KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0, 2914 ("vm_map_unwire: !HOLESOK and new/changed entry")); 2915 continue; 2916 } 2917 2918 if (rv == KERN_SUCCESS && (!user_unwire || 2919 (entry->eflags & MAP_ENTRY_USER_WIRED))) { 2920 if (entry->wired_count == 1) 2921 vm_map_entry_unwire(map, entry); 2922 else 2923 entry->wired_count--; 2924 if (user_unwire) 2925 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2926 } 2927 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 2928 ("vm_map_unwire: in-transition flag missing %p", entry)); 2929 KASSERT(entry->wiring_thread == curthread, 2930 ("vm_map_unwire: alien wire %p", entry)); 2931 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 2932 entry->wiring_thread = NULL; 2933 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 2934 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 2935 need_wakeup = TRUE; 2936 } 2937 vm_map_simplify_entry(map, entry); 2938 } 2939 vm_map_unlock(map); 2940 if (need_wakeup) 2941 vm_map_wakeup(map); 2942 return (rv); 2943 } 2944 2945 static void 2946 vm_map_wire_user_count_sub(u_long npages) 2947 { 2948 2949 atomic_subtract_long(&vm_user_wire_count, npages); 2950 } 2951 2952 static bool 2953 vm_map_wire_user_count_add(u_long npages) 2954 { 2955 u_long wired; 2956 2957 wired = vm_user_wire_count; 2958 do { 2959 if (npages + wired > vm_page_max_user_wired) 2960 return (false); 2961 } while (!atomic_fcmpset_long(&vm_user_wire_count, &wired, 2962 npages + wired)); 2963 2964 return (true); 2965 } 2966 2967 /* 2968 * vm_map_wire_entry_failure: 2969 * 2970 * Handle a wiring failure on the given entry. 2971 * 2972 * The map should be locked. 2973 */ 2974 static void 2975 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry, 2976 vm_offset_t failed_addr) 2977 { 2978 2979 VM_MAP_ASSERT_LOCKED(map); 2980 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 && 2981 entry->wired_count == 1, 2982 ("vm_map_wire_entry_failure: entry %p isn't being wired", entry)); 2983 KASSERT(failed_addr < entry->end, 2984 ("vm_map_wire_entry_failure: entry %p was fully wired", entry)); 2985 2986 /* 2987 * If any pages at the start of this entry were successfully wired, 2988 * then unwire them. 2989 */ 2990 if (failed_addr > entry->start) { 2991 pmap_unwire(map->pmap, entry->start, failed_addr); 2992 vm_object_unwire(entry->object.vm_object, entry->offset, 2993 failed_addr - entry->start, PQ_ACTIVE); 2994 } 2995 2996 /* 2997 * Assign an out-of-range value to represent the failure to wire this 2998 * entry. 2999 */ 3000 entry->wired_count = -1; 3001 } 3002 3003 int 3004 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags) 3005 { 3006 int rv; 3007 3008 vm_map_lock(map); 3009 rv = vm_map_wire_locked(map, start, end, flags); 3010 vm_map_unlock(map); 3011 return (rv); 3012 } 3013 3014 3015 /* 3016 * vm_map_wire_locked: 3017 * 3018 * Implements both kernel and user wiring. Returns with the map locked, 3019 * the map lock may be dropped. 3020 */ 3021 int 3022 vm_map_wire_locked(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags) 3023 { 3024 vm_map_entry_t entry, first_entry, tmp_entry; 3025 vm_offset_t faddr, saved_end, saved_start; 3026 u_long npages; 3027 u_int last_timestamp; 3028 int rv; 3029 boolean_t need_wakeup, result, user_wire; 3030 vm_prot_t prot; 3031 3032 VM_MAP_ASSERT_LOCKED(map); 3033 3034 if (start == end) 3035 return (KERN_SUCCESS); 3036 prot = 0; 3037 if (flags & VM_MAP_WIRE_WRITE) 3038 prot |= VM_PROT_WRITE; 3039 user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 3040 VM_MAP_RANGE_CHECK(map, start, end); 3041 if (!vm_map_lookup_entry(map, start, &first_entry)) { 3042 if (flags & VM_MAP_WIRE_HOLESOK) 3043 first_entry = first_entry->next; 3044 else 3045 return (KERN_INVALID_ADDRESS); 3046 } 3047 last_timestamp = map->timestamp; 3048 entry = first_entry; 3049 while (entry->start < end) { 3050 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 3051 /* 3052 * We have not yet clipped the entry. 3053 */ 3054 saved_start = (start >= entry->start) ? start : 3055 entry->start; 3056 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 3057 if (vm_map_unlock_and_wait(map, 0)) { 3058 /* 3059 * Allow interruption of user wiring? 3060 */ 3061 } 3062 vm_map_lock(map); 3063 if (last_timestamp + 1 != map->timestamp) { 3064 /* 3065 * Look again for the entry because the map was 3066 * modified while it was unlocked. 3067 * Specifically, the entry may have been 3068 * clipped, merged, or deleted. 3069 */ 3070 if (!vm_map_lookup_entry(map, saved_start, 3071 &tmp_entry)) { 3072 if (flags & VM_MAP_WIRE_HOLESOK) 3073 tmp_entry = tmp_entry->next; 3074 else { 3075 if (saved_start == start) { 3076 /* 3077 * first_entry has been deleted. 3078 */ 3079 return (KERN_INVALID_ADDRESS); 3080 } 3081 end = saved_start; 3082 rv = KERN_INVALID_ADDRESS; 3083 goto done; 3084 } 3085 } 3086 if (entry == first_entry) 3087 first_entry = tmp_entry; 3088 else 3089 first_entry = NULL; 3090 entry = tmp_entry; 3091 } 3092 last_timestamp = map->timestamp; 3093 continue; 3094 } 3095 vm_map_clip_start(map, entry, start); 3096 vm_map_clip_end(map, entry, end); 3097 /* 3098 * Mark the entry in case the map lock is released. (See 3099 * above.) 3100 */ 3101 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 3102 entry->wiring_thread == NULL, 3103 ("owned map entry %p", entry)); 3104 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 3105 entry->wiring_thread = curthread; 3106 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 3107 || (entry->protection & prot) != prot) { 3108 entry->eflags |= MAP_ENTRY_WIRE_SKIPPED; 3109 if ((flags & VM_MAP_WIRE_HOLESOK) == 0) { 3110 end = entry->end; 3111 rv = KERN_INVALID_ADDRESS; 3112 goto done; 3113 } 3114 goto next_entry; 3115 } 3116 if (entry->wired_count == 0) { 3117 entry->wired_count++; 3118 3119 npages = atop(entry->end - entry->start); 3120 if (user_wire && !vm_map_wire_user_count_add(npages)) { 3121 vm_map_wire_entry_failure(map, entry, 3122 entry->start); 3123 end = entry->end; 3124 rv = KERN_RESOURCE_SHORTAGE; 3125 goto done; 3126 } 3127 3128 /* 3129 * Release the map lock, relying on the in-transition 3130 * mark. Mark the map busy for fork. 3131 */ 3132 saved_start = entry->start; 3133 saved_end = entry->end; 3134 vm_map_busy(map); 3135 vm_map_unlock(map); 3136 3137 faddr = saved_start; 3138 do { 3139 /* 3140 * Simulate a fault to get the page and enter 3141 * it into the physical map. 3142 */ 3143 if ((rv = vm_fault(map, faddr, VM_PROT_NONE, 3144 VM_FAULT_WIRE)) != KERN_SUCCESS) 3145 break; 3146 } while ((faddr += PAGE_SIZE) < saved_end); 3147 vm_map_lock(map); 3148 vm_map_unbusy(map); 3149 if (last_timestamp + 1 != map->timestamp) { 3150 /* 3151 * Look again for the entry because the map was 3152 * modified while it was unlocked. The entry 3153 * may have been clipped, but NOT merged or 3154 * deleted. 3155 */ 3156 result = vm_map_lookup_entry(map, saved_start, 3157 &tmp_entry); 3158 KASSERT(result, ("vm_map_wire: lookup failed")); 3159 if (entry == first_entry) 3160 first_entry = tmp_entry; 3161 else 3162 first_entry = NULL; 3163 entry = tmp_entry; 3164 while (entry->end < saved_end) { 3165 /* 3166 * In case of failure, handle entries 3167 * that were not fully wired here; 3168 * fully wired entries are handled 3169 * later. 3170 */ 3171 if (rv != KERN_SUCCESS && 3172 faddr < entry->end) 3173 vm_map_wire_entry_failure(map, 3174 entry, faddr); 3175 entry = entry->next; 3176 } 3177 } 3178 last_timestamp = map->timestamp; 3179 if (rv != KERN_SUCCESS) { 3180 vm_map_wire_entry_failure(map, entry, faddr); 3181 if (user_wire) 3182 vm_map_wire_user_count_sub(npages); 3183 end = entry->end; 3184 goto done; 3185 } 3186 } else if (!user_wire || 3187 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 3188 entry->wired_count++; 3189 } 3190 /* 3191 * Check the map for holes in the specified region. 3192 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 3193 */ 3194 next_entry: 3195 if ((flags & VM_MAP_WIRE_HOLESOK) == 0 && 3196 entry->end < end && entry->next->start > entry->end) { 3197 end = entry->end; 3198 rv = KERN_INVALID_ADDRESS; 3199 goto done; 3200 } 3201 entry = entry->next; 3202 } 3203 rv = KERN_SUCCESS; 3204 done: 3205 need_wakeup = FALSE; 3206 if (first_entry == NULL) { 3207 result = vm_map_lookup_entry(map, start, &first_entry); 3208 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 3209 first_entry = first_entry->next; 3210 else 3211 KASSERT(result, ("vm_map_wire: lookup failed")); 3212 } 3213 for (entry = first_entry; entry->start < end; entry = entry->next) { 3214 /* 3215 * If VM_MAP_WIRE_HOLESOK was specified, an empty 3216 * space in the unwired region could have been mapped 3217 * while the map lock was dropped for faulting in the 3218 * pages or draining MAP_ENTRY_IN_TRANSITION. 3219 * Moreover, another thread could be simultaneously 3220 * wiring this new mapping entry. Detect these cases 3221 * and skip any entries marked as in transition not by us. 3222 */ 3223 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 3224 entry->wiring_thread != curthread) { 3225 KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0, 3226 ("vm_map_wire: !HOLESOK and new/changed entry")); 3227 continue; 3228 } 3229 3230 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) 3231 goto next_entry_done; 3232 3233 if (rv == KERN_SUCCESS) { 3234 if (user_wire) 3235 entry->eflags |= MAP_ENTRY_USER_WIRED; 3236 } else if (entry->wired_count == -1) { 3237 /* 3238 * Wiring failed on this entry. Thus, unwiring is 3239 * unnecessary. 3240 */ 3241 entry->wired_count = 0; 3242 } else if (!user_wire || 3243 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 3244 /* 3245 * Undo the wiring. Wiring succeeded on this entry 3246 * but failed on a later entry. 3247 */ 3248 if (entry->wired_count == 1) { 3249 vm_map_entry_unwire(map, entry); 3250 if (user_wire) 3251 vm_map_wire_user_count_sub( 3252 atop(entry->end - entry->start)); 3253 } else 3254 entry->wired_count--; 3255 } 3256 next_entry_done: 3257 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 3258 ("vm_map_wire: in-transition flag missing %p", entry)); 3259 KASSERT(entry->wiring_thread == curthread, 3260 ("vm_map_wire: alien wire %p", entry)); 3261 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION | 3262 MAP_ENTRY_WIRE_SKIPPED); 3263 entry->wiring_thread = NULL; 3264 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 3265 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 3266 need_wakeup = TRUE; 3267 } 3268 vm_map_simplify_entry(map, entry); 3269 } 3270 if (need_wakeup) 3271 vm_map_wakeup(map); 3272 return (rv); 3273 } 3274 3275 /* 3276 * vm_map_sync 3277 * 3278 * Push any dirty cached pages in the address range to their pager. 3279 * If syncio is TRUE, dirty pages are written synchronously. 3280 * If invalidate is TRUE, any cached pages are freed as well. 3281 * 3282 * If the size of the region from start to end is zero, we are 3283 * supposed to flush all modified pages within the region containing 3284 * start. Unfortunately, a region can be split or coalesced with 3285 * neighboring regions, making it difficult to determine what the 3286 * original region was. Therefore, we approximate this requirement by 3287 * flushing the current region containing start. 3288 * 3289 * Returns an error if any part of the specified range is not mapped. 3290 */ 3291 int 3292 vm_map_sync( 3293 vm_map_t map, 3294 vm_offset_t start, 3295 vm_offset_t end, 3296 boolean_t syncio, 3297 boolean_t invalidate) 3298 { 3299 vm_map_entry_t current; 3300 vm_map_entry_t entry; 3301 vm_size_t size; 3302 vm_object_t object; 3303 vm_ooffset_t offset; 3304 unsigned int last_timestamp; 3305 boolean_t failed; 3306 3307 vm_map_lock_read(map); 3308 VM_MAP_RANGE_CHECK(map, start, end); 3309 if (!vm_map_lookup_entry(map, start, &entry)) { 3310 vm_map_unlock_read(map); 3311 return (KERN_INVALID_ADDRESS); 3312 } else if (start == end) { 3313 start = entry->start; 3314 end = entry->end; 3315 } 3316 /* 3317 * Make a first pass to check for user-wired memory and holes. 3318 */ 3319 for (current = entry; current->start < end; current = current->next) { 3320 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) { 3321 vm_map_unlock_read(map); 3322 return (KERN_INVALID_ARGUMENT); 3323 } 3324 if (end > current->end && 3325 current->end != current->next->start) { 3326 vm_map_unlock_read(map); 3327 return (KERN_INVALID_ADDRESS); 3328 } 3329 } 3330 3331 if (invalidate) 3332 pmap_remove(map->pmap, start, end); 3333 failed = FALSE; 3334 3335 /* 3336 * Make a second pass, cleaning/uncaching pages from the indicated 3337 * objects as we go. 3338 */ 3339 for (current = entry; current->start < end;) { 3340 offset = current->offset + (start - current->start); 3341 size = (end <= current->end ? end : current->end) - start; 3342 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 3343 vm_map_t smap; 3344 vm_map_entry_t tentry; 3345 vm_size_t tsize; 3346 3347 smap = current->object.sub_map; 3348 vm_map_lock_read(smap); 3349 (void) vm_map_lookup_entry(smap, offset, &tentry); 3350 tsize = tentry->end - offset; 3351 if (tsize < size) 3352 size = tsize; 3353 object = tentry->object.vm_object; 3354 offset = tentry->offset + (offset - tentry->start); 3355 vm_map_unlock_read(smap); 3356 } else { 3357 object = current->object.vm_object; 3358 } 3359 vm_object_reference(object); 3360 last_timestamp = map->timestamp; 3361 vm_map_unlock_read(map); 3362 if (!vm_object_sync(object, offset, size, syncio, invalidate)) 3363 failed = TRUE; 3364 start += size; 3365 vm_object_deallocate(object); 3366 vm_map_lock_read(map); 3367 if (last_timestamp == map->timestamp || 3368 !vm_map_lookup_entry(map, start, ¤t)) 3369 current = current->next; 3370 } 3371 3372 vm_map_unlock_read(map); 3373 return (failed ? KERN_FAILURE : KERN_SUCCESS); 3374 } 3375 3376 /* 3377 * vm_map_entry_unwire: [ internal use only ] 3378 * 3379 * Make the region specified by this entry pageable. 3380 * 3381 * The map in question should be locked. 3382 * [This is the reason for this routine's existence.] 3383 */ 3384 static void 3385 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 3386 { 3387 vm_size_t size; 3388 3389 VM_MAP_ASSERT_LOCKED(map); 3390 KASSERT(entry->wired_count > 0, 3391 ("vm_map_entry_unwire: entry %p isn't wired", entry)); 3392 3393 size = entry->end - entry->start; 3394 if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0) 3395 vm_map_wire_user_count_sub(atop(size)); 3396 pmap_unwire(map->pmap, entry->start, entry->end); 3397 vm_object_unwire(entry->object.vm_object, entry->offset, size, 3398 PQ_ACTIVE); 3399 entry->wired_count = 0; 3400 } 3401 3402 static void 3403 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map) 3404 { 3405 3406 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) 3407 vm_object_deallocate(entry->object.vm_object); 3408 uma_zfree(system_map ? kmapentzone : mapentzone, entry); 3409 } 3410 3411 /* 3412 * vm_map_entry_delete: [ internal use only ] 3413 * 3414 * Deallocate the given entry from the target map. 3415 */ 3416 static void 3417 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry) 3418 { 3419 vm_object_t object; 3420 vm_pindex_t offidxstart, offidxend, count, size1; 3421 vm_size_t size; 3422 3423 vm_map_entry_unlink(map, entry, UNLINK_MERGE_NONE); 3424 object = entry->object.vm_object; 3425 3426 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) { 3427 MPASS(entry->cred == NULL); 3428 MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0); 3429 MPASS(object == NULL); 3430 vm_map_entry_deallocate(entry, map->system_map); 3431 return; 3432 } 3433 3434 size = entry->end - entry->start; 3435 map->size -= size; 3436 3437 if (entry->cred != NULL) { 3438 swap_release_by_cred(size, entry->cred); 3439 crfree(entry->cred); 3440 } 3441 3442 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 && 3443 (object != NULL)) { 3444 KASSERT(entry->cred == NULL || object->cred == NULL || 3445 (entry->eflags & MAP_ENTRY_NEEDS_COPY), 3446 ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry)); 3447 count = atop(size); 3448 offidxstart = OFF_TO_IDX(entry->offset); 3449 offidxend = offidxstart + count; 3450 VM_OBJECT_WLOCK(object); 3451 if (object->ref_count != 1 && ((object->flags & (OBJ_NOSPLIT | 3452 OBJ_ONEMAPPING)) == OBJ_ONEMAPPING || 3453 object == kernel_object)) { 3454 vm_object_collapse(object); 3455 3456 /* 3457 * The option OBJPR_NOTMAPPED can be passed here 3458 * because vm_map_delete() already performed 3459 * pmap_remove() on the only mapping to this range 3460 * of pages. 3461 */ 3462 vm_object_page_remove(object, offidxstart, offidxend, 3463 OBJPR_NOTMAPPED); 3464 if (object->type == OBJT_SWAP) 3465 swap_pager_freespace(object, offidxstart, 3466 count); 3467 if (offidxend >= object->size && 3468 offidxstart < object->size) { 3469 size1 = object->size; 3470 object->size = offidxstart; 3471 if (object->cred != NULL) { 3472 size1 -= object->size; 3473 KASSERT(object->charge >= ptoa(size1), 3474 ("object %p charge < 0", object)); 3475 swap_release_by_cred(ptoa(size1), 3476 object->cred); 3477 object->charge -= ptoa(size1); 3478 } 3479 } 3480 } 3481 VM_OBJECT_WUNLOCK(object); 3482 } else 3483 entry->object.vm_object = NULL; 3484 if (map->system_map) 3485 vm_map_entry_deallocate(entry, TRUE); 3486 else { 3487 entry->next = curthread->td_map_def_user; 3488 curthread->td_map_def_user = entry; 3489 } 3490 } 3491 3492 /* 3493 * vm_map_delete: [ internal use only ] 3494 * 3495 * Deallocates the given address range from the target 3496 * map. 3497 */ 3498 int 3499 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end) 3500 { 3501 vm_map_entry_t entry; 3502 vm_map_entry_t first_entry; 3503 3504 VM_MAP_ASSERT_LOCKED(map); 3505 if (start == end) 3506 return (KERN_SUCCESS); 3507 3508 /* 3509 * Find the start of the region, and clip it 3510 */ 3511 if (!vm_map_lookup_entry(map, start, &first_entry)) 3512 entry = first_entry->next; 3513 else { 3514 entry = first_entry; 3515 vm_map_clip_start(map, entry, start); 3516 } 3517 3518 /* 3519 * Step through all entries in this region 3520 */ 3521 while (entry->start < end) { 3522 vm_map_entry_t next; 3523 3524 /* 3525 * Wait for wiring or unwiring of an entry to complete. 3526 * Also wait for any system wirings to disappear on 3527 * user maps. 3528 */ 3529 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 || 3530 (vm_map_pmap(map) != kernel_pmap && 3531 vm_map_entry_system_wired_count(entry) != 0)) { 3532 unsigned int last_timestamp; 3533 vm_offset_t saved_start; 3534 vm_map_entry_t tmp_entry; 3535 3536 saved_start = entry->start; 3537 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 3538 last_timestamp = map->timestamp; 3539 (void) vm_map_unlock_and_wait(map, 0); 3540 vm_map_lock(map); 3541 if (last_timestamp + 1 != map->timestamp) { 3542 /* 3543 * Look again for the entry because the map was 3544 * modified while it was unlocked. 3545 * Specifically, the entry may have been 3546 * clipped, merged, or deleted. 3547 */ 3548 if (!vm_map_lookup_entry(map, saved_start, 3549 &tmp_entry)) 3550 entry = tmp_entry->next; 3551 else { 3552 entry = tmp_entry; 3553 vm_map_clip_start(map, entry, 3554 saved_start); 3555 } 3556 } 3557 continue; 3558 } 3559 vm_map_clip_end(map, entry, end); 3560 3561 next = entry->next; 3562 3563 /* 3564 * Unwire before removing addresses from the pmap; otherwise, 3565 * unwiring will put the entries back in the pmap. 3566 */ 3567 if (entry->wired_count != 0) 3568 vm_map_entry_unwire(map, entry); 3569 3570 /* 3571 * Remove mappings for the pages, but only if the 3572 * mappings could exist. For instance, it does not 3573 * make sense to call pmap_remove() for guard entries. 3574 */ 3575 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || 3576 entry->object.vm_object != NULL) 3577 pmap_remove(map->pmap, entry->start, entry->end); 3578 3579 if (entry->end == map->anon_loc) 3580 map->anon_loc = entry->start; 3581 3582 /* 3583 * Delete the entry only after removing all pmap 3584 * entries pointing to its pages. (Otherwise, its 3585 * page frames may be reallocated, and any modify bits 3586 * will be set in the wrong object!) 3587 */ 3588 vm_map_entry_delete(map, entry); 3589 entry = next; 3590 } 3591 return (KERN_SUCCESS); 3592 } 3593 3594 /* 3595 * vm_map_remove: 3596 * 3597 * Remove the given address range from the target map. 3598 * This is the exported form of vm_map_delete. 3599 */ 3600 int 3601 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 3602 { 3603 int result; 3604 3605 vm_map_lock(map); 3606 VM_MAP_RANGE_CHECK(map, start, end); 3607 result = vm_map_delete(map, start, end); 3608 vm_map_unlock(map); 3609 return (result); 3610 } 3611 3612 /* 3613 * vm_map_check_protection: 3614 * 3615 * Assert that the target map allows the specified privilege on the 3616 * entire address region given. The entire region must be allocated. 3617 * 3618 * WARNING! This code does not and should not check whether the 3619 * contents of the region is accessible. For example a smaller file 3620 * might be mapped into a larger address space. 3621 * 3622 * NOTE! This code is also called by munmap(). 3623 * 3624 * The map must be locked. A read lock is sufficient. 3625 */ 3626 boolean_t 3627 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 3628 vm_prot_t protection) 3629 { 3630 vm_map_entry_t entry; 3631 vm_map_entry_t tmp_entry; 3632 3633 if (!vm_map_lookup_entry(map, start, &tmp_entry)) 3634 return (FALSE); 3635 entry = tmp_entry; 3636 3637 while (start < end) { 3638 /* 3639 * No holes allowed! 3640 */ 3641 if (start < entry->start) 3642 return (FALSE); 3643 /* 3644 * Check protection associated with entry. 3645 */ 3646 if ((entry->protection & protection) != protection) 3647 return (FALSE); 3648 /* go to next entry */ 3649 start = entry->end; 3650 entry = entry->next; 3651 } 3652 return (TRUE); 3653 } 3654 3655 /* 3656 * vm_map_copy_entry: 3657 * 3658 * Copies the contents of the source entry to the destination 3659 * entry. The entries *must* be aligned properly. 3660 */ 3661 static void 3662 vm_map_copy_entry( 3663 vm_map_t src_map, 3664 vm_map_t dst_map, 3665 vm_map_entry_t src_entry, 3666 vm_map_entry_t dst_entry, 3667 vm_ooffset_t *fork_charge) 3668 { 3669 vm_object_t src_object; 3670 vm_map_entry_t fake_entry; 3671 vm_offset_t size; 3672 struct ucred *cred; 3673 int charged; 3674 3675 VM_MAP_ASSERT_LOCKED(dst_map); 3676 3677 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP) 3678 return; 3679 3680 if (src_entry->wired_count == 0 || 3681 (src_entry->protection & VM_PROT_WRITE) == 0) { 3682 /* 3683 * If the source entry is marked needs_copy, it is already 3684 * write-protected. 3685 */ 3686 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 && 3687 (src_entry->protection & VM_PROT_WRITE) != 0) { 3688 pmap_protect(src_map->pmap, 3689 src_entry->start, 3690 src_entry->end, 3691 src_entry->protection & ~VM_PROT_WRITE); 3692 } 3693 3694 /* 3695 * Make a copy of the object. 3696 */ 3697 size = src_entry->end - src_entry->start; 3698 if ((src_object = src_entry->object.vm_object) != NULL) { 3699 VM_OBJECT_WLOCK(src_object); 3700 charged = ENTRY_CHARGED(src_entry); 3701 if (src_object->handle == NULL && 3702 (src_object->type == OBJT_DEFAULT || 3703 src_object->type == OBJT_SWAP)) { 3704 vm_object_collapse(src_object); 3705 if ((src_object->flags & (OBJ_NOSPLIT | 3706 OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) { 3707 vm_object_split(src_entry); 3708 src_object = 3709 src_entry->object.vm_object; 3710 } 3711 } 3712 vm_object_reference_locked(src_object); 3713 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 3714 if (src_entry->cred != NULL && 3715 !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 3716 KASSERT(src_object->cred == NULL, 3717 ("OVERCOMMIT: vm_map_copy_entry: cred %p", 3718 src_object)); 3719 src_object->cred = src_entry->cred; 3720 src_object->charge = size; 3721 } 3722 VM_OBJECT_WUNLOCK(src_object); 3723 dst_entry->object.vm_object = src_object; 3724 if (charged) { 3725 cred = curthread->td_ucred; 3726 crhold(cred); 3727 dst_entry->cred = cred; 3728 *fork_charge += size; 3729 if (!(src_entry->eflags & 3730 MAP_ENTRY_NEEDS_COPY)) { 3731 crhold(cred); 3732 src_entry->cred = cred; 3733 *fork_charge += size; 3734 } 3735 } 3736 src_entry->eflags |= MAP_ENTRY_COW | 3737 MAP_ENTRY_NEEDS_COPY; 3738 dst_entry->eflags |= MAP_ENTRY_COW | 3739 MAP_ENTRY_NEEDS_COPY; 3740 dst_entry->offset = src_entry->offset; 3741 if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) { 3742 /* 3743 * MAP_ENTRY_VN_WRITECNT cannot 3744 * indicate write reference from 3745 * src_entry, since the entry is 3746 * marked as needs copy. Allocate a 3747 * fake entry that is used to 3748 * decrement object->un_pager.vnp.writecount 3749 * at the appropriate time. Attach 3750 * fake_entry to the deferred list. 3751 */ 3752 fake_entry = vm_map_entry_create(dst_map); 3753 fake_entry->eflags = MAP_ENTRY_VN_WRITECNT; 3754 src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT; 3755 vm_object_reference(src_object); 3756 fake_entry->object.vm_object = src_object; 3757 fake_entry->start = src_entry->start; 3758 fake_entry->end = src_entry->end; 3759 fake_entry->next = curthread->td_map_def_user; 3760 curthread->td_map_def_user = fake_entry; 3761 } 3762 3763 pmap_copy(dst_map->pmap, src_map->pmap, 3764 dst_entry->start, dst_entry->end - dst_entry->start, 3765 src_entry->start); 3766 } else { 3767 dst_entry->object.vm_object = NULL; 3768 dst_entry->offset = 0; 3769 if (src_entry->cred != NULL) { 3770 dst_entry->cred = curthread->td_ucred; 3771 crhold(dst_entry->cred); 3772 *fork_charge += size; 3773 } 3774 } 3775 } else { 3776 /* 3777 * We don't want to make writeable wired pages copy-on-write. 3778 * Immediately copy these pages into the new map by simulating 3779 * page faults. The new pages are pageable. 3780 */ 3781 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry, 3782 fork_charge); 3783 } 3784 } 3785 3786 /* 3787 * vmspace_map_entry_forked: 3788 * Update the newly-forked vmspace each time a map entry is inherited 3789 * or copied. The values for vm_dsize and vm_tsize are approximate 3790 * (and mostly-obsolete ideas in the face of mmap(2) et al.) 3791 */ 3792 static void 3793 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2, 3794 vm_map_entry_t entry) 3795 { 3796 vm_size_t entrysize; 3797 vm_offset_t newend; 3798 3799 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) 3800 return; 3801 entrysize = entry->end - entry->start; 3802 vm2->vm_map.size += entrysize; 3803 if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) { 3804 vm2->vm_ssize += btoc(entrysize); 3805 } else if (entry->start >= (vm_offset_t)vm1->vm_daddr && 3806 entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) { 3807 newend = MIN(entry->end, 3808 (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)); 3809 vm2->vm_dsize += btoc(newend - entry->start); 3810 } else if (entry->start >= (vm_offset_t)vm1->vm_taddr && 3811 entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) { 3812 newend = MIN(entry->end, 3813 (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)); 3814 vm2->vm_tsize += btoc(newend - entry->start); 3815 } 3816 } 3817 3818 /* 3819 * vmspace_fork: 3820 * Create a new process vmspace structure and vm_map 3821 * based on those of an existing process. The new map 3822 * is based on the old map, according to the inheritance 3823 * values on the regions in that map. 3824 * 3825 * XXX It might be worth coalescing the entries added to the new vmspace. 3826 * 3827 * The source map must not be locked. 3828 */ 3829 struct vmspace * 3830 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge) 3831 { 3832 struct vmspace *vm2; 3833 vm_map_t new_map, old_map; 3834 vm_map_entry_t new_entry, old_entry; 3835 vm_object_t object; 3836 int error, locked; 3837 vm_inherit_t inh; 3838 3839 old_map = &vm1->vm_map; 3840 /* Copy immutable fields of vm1 to vm2. */ 3841 vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map), 3842 pmap_pinit); 3843 if (vm2 == NULL) 3844 return (NULL); 3845 3846 vm2->vm_taddr = vm1->vm_taddr; 3847 vm2->vm_daddr = vm1->vm_daddr; 3848 vm2->vm_maxsaddr = vm1->vm_maxsaddr; 3849 vm_map_lock(old_map); 3850 if (old_map->busy) 3851 vm_map_wait_busy(old_map); 3852 new_map = &vm2->vm_map; 3853 locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */ 3854 KASSERT(locked, ("vmspace_fork: lock failed")); 3855 3856 error = pmap_vmspace_copy(new_map->pmap, old_map->pmap); 3857 if (error != 0) { 3858 sx_xunlock(&old_map->lock); 3859 sx_xunlock(&new_map->lock); 3860 vm_map_process_deferred(); 3861 vmspace_free(vm2); 3862 return (NULL); 3863 } 3864 3865 new_map->anon_loc = old_map->anon_loc; 3866 3867 old_entry = old_map->header.next; 3868 3869 while (old_entry != &old_map->header) { 3870 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) 3871 panic("vm_map_fork: encountered a submap"); 3872 3873 inh = old_entry->inheritance; 3874 if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 && 3875 inh != VM_INHERIT_NONE) 3876 inh = VM_INHERIT_COPY; 3877 3878 switch (inh) { 3879 case VM_INHERIT_NONE: 3880 break; 3881 3882 case VM_INHERIT_SHARE: 3883 /* 3884 * Clone the entry, creating the shared object if necessary. 3885 */ 3886 object = old_entry->object.vm_object; 3887 if (object == NULL) { 3888 object = vm_object_allocate(OBJT_DEFAULT, 3889 atop(old_entry->end - old_entry->start)); 3890 old_entry->object.vm_object = object; 3891 old_entry->offset = 0; 3892 if (old_entry->cred != NULL) { 3893 object->cred = old_entry->cred; 3894 object->charge = old_entry->end - 3895 old_entry->start; 3896 old_entry->cred = NULL; 3897 } 3898 } 3899 3900 /* 3901 * Add the reference before calling vm_object_shadow 3902 * to insure that a shadow object is created. 3903 */ 3904 vm_object_reference(object); 3905 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3906 vm_object_shadow(&old_entry->object.vm_object, 3907 &old_entry->offset, 3908 old_entry->end - old_entry->start); 3909 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 3910 /* Transfer the second reference too. */ 3911 vm_object_reference( 3912 old_entry->object.vm_object); 3913 3914 /* 3915 * As in vm_map_simplify_entry(), the 3916 * vnode lock will not be acquired in 3917 * this call to vm_object_deallocate(). 3918 */ 3919 vm_object_deallocate(object); 3920 object = old_entry->object.vm_object; 3921 } 3922 VM_OBJECT_WLOCK(object); 3923 vm_object_clear_flag(object, OBJ_ONEMAPPING); 3924 if (old_entry->cred != NULL) { 3925 KASSERT(object->cred == NULL, ("vmspace_fork both cred")); 3926 object->cred = old_entry->cred; 3927 object->charge = old_entry->end - old_entry->start; 3928 old_entry->cred = NULL; 3929 } 3930 3931 /* 3932 * Assert the correct state of the vnode 3933 * v_writecount while the object is locked, to 3934 * not relock it later for the assertion 3935 * correctness. 3936 */ 3937 if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT && 3938 object->type == OBJT_VNODE) { 3939 KASSERT(((struct vnode *)object->handle)-> 3940 v_writecount > 0, 3941 ("vmspace_fork: v_writecount %p", object)); 3942 KASSERT(object->un_pager.vnp.writemappings > 0, 3943 ("vmspace_fork: vnp.writecount %p", 3944 object)); 3945 } 3946 VM_OBJECT_WUNLOCK(object); 3947 3948 /* 3949 * Clone the entry, referencing the shared object. 3950 */ 3951 new_entry = vm_map_entry_create(new_map); 3952 *new_entry = *old_entry; 3953 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 3954 MAP_ENTRY_IN_TRANSITION); 3955 new_entry->wiring_thread = NULL; 3956 new_entry->wired_count = 0; 3957 if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) { 3958 vnode_pager_update_writecount(object, 3959 new_entry->start, new_entry->end); 3960 } 3961 vm_map_entry_set_vnode_text(new_entry, true); 3962 3963 /* 3964 * Insert the entry into the new map -- we know we're 3965 * inserting at the end of the new map. 3966 */ 3967 vm_map_entry_link(new_map, new_entry); 3968 vmspace_map_entry_forked(vm1, vm2, new_entry); 3969 3970 /* 3971 * Update the physical map 3972 */ 3973 pmap_copy(new_map->pmap, old_map->pmap, 3974 new_entry->start, 3975 (old_entry->end - old_entry->start), 3976 old_entry->start); 3977 break; 3978 3979 case VM_INHERIT_COPY: 3980 /* 3981 * Clone the entry and link into the map. 3982 */ 3983 new_entry = vm_map_entry_create(new_map); 3984 *new_entry = *old_entry; 3985 /* 3986 * Copied entry is COW over the old object. 3987 */ 3988 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 3989 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT); 3990 new_entry->wiring_thread = NULL; 3991 new_entry->wired_count = 0; 3992 new_entry->object.vm_object = NULL; 3993 new_entry->cred = NULL; 3994 vm_map_entry_link(new_map, new_entry); 3995 vmspace_map_entry_forked(vm1, vm2, new_entry); 3996 vm_map_copy_entry(old_map, new_map, old_entry, 3997 new_entry, fork_charge); 3998 vm_map_entry_set_vnode_text(new_entry, true); 3999 break; 4000 4001 case VM_INHERIT_ZERO: 4002 /* 4003 * Create a new anonymous mapping entry modelled from 4004 * the old one. 4005 */ 4006 new_entry = vm_map_entry_create(new_map); 4007 memset(new_entry, 0, sizeof(*new_entry)); 4008 4009 new_entry->start = old_entry->start; 4010 new_entry->end = old_entry->end; 4011 new_entry->eflags = old_entry->eflags & 4012 ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION | 4013 MAP_ENTRY_VN_WRITECNT | MAP_ENTRY_VN_EXEC); 4014 new_entry->protection = old_entry->protection; 4015 new_entry->max_protection = old_entry->max_protection; 4016 new_entry->inheritance = VM_INHERIT_ZERO; 4017 4018 vm_map_entry_link(new_map, new_entry); 4019 vmspace_map_entry_forked(vm1, vm2, new_entry); 4020 4021 new_entry->cred = curthread->td_ucred; 4022 crhold(new_entry->cred); 4023 *fork_charge += (new_entry->end - new_entry->start); 4024 4025 break; 4026 } 4027 old_entry = old_entry->next; 4028 } 4029 /* 4030 * Use inlined vm_map_unlock() to postpone handling the deferred 4031 * map entries, which cannot be done until both old_map and 4032 * new_map locks are released. 4033 */ 4034 sx_xunlock(&old_map->lock); 4035 sx_xunlock(&new_map->lock); 4036 vm_map_process_deferred(); 4037 4038 return (vm2); 4039 } 4040 4041 /* 4042 * Create a process's stack for exec_new_vmspace(). This function is never 4043 * asked to wire the newly created stack. 4044 */ 4045 int 4046 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 4047 vm_prot_t prot, vm_prot_t max, int cow) 4048 { 4049 vm_size_t growsize, init_ssize; 4050 rlim_t vmemlim; 4051 int rv; 4052 4053 MPASS((map->flags & MAP_WIREFUTURE) == 0); 4054 growsize = sgrowsiz; 4055 init_ssize = (max_ssize < growsize) ? max_ssize : growsize; 4056 vm_map_lock(map); 4057 vmemlim = lim_cur(curthread, RLIMIT_VMEM); 4058 /* If we would blow our VMEM resource limit, no go */ 4059 if (map->size + init_ssize > vmemlim) { 4060 rv = KERN_NO_SPACE; 4061 goto out; 4062 } 4063 rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot, 4064 max, cow); 4065 out: 4066 vm_map_unlock(map); 4067 return (rv); 4068 } 4069 4070 static int stack_guard_page = 1; 4071 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN, 4072 &stack_guard_page, 0, 4073 "Specifies the number of guard pages for a stack that grows"); 4074 4075 static int 4076 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 4077 vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow) 4078 { 4079 vm_map_entry_t new_entry, prev_entry; 4080 vm_offset_t bot, gap_bot, gap_top, top; 4081 vm_size_t init_ssize, sgp; 4082 int orient, rv; 4083 4084 /* 4085 * The stack orientation is piggybacked with the cow argument. 4086 * Extract it into orient and mask the cow argument so that we 4087 * don't pass it around further. 4088 */ 4089 orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP); 4090 KASSERT(orient != 0, ("No stack grow direction")); 4091 KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP), 4092 ("bi-dir stack")); 4093 4094 if (addrbos < vm_map_min(map) || 4095 addrbos + max_ssize > vm_map_max(map) || 4096 addrbos + max_ssize <= addrbos) 4097 return (KERN_INVALID_ADDRESS); 4098 sgp = (vm_size_t)stack_guard_page * PAGE_SIZE; 4099 if (sgp >= max_ssize) 4100 return (KERN_INVALID_ARGUMENT); 4101 4102 init_ssize = growsize; 4103 if (max_ssize < init_ssize + sgp) 4104 init_ssize = max_ssize - sgp; 4105 4106 /* If addr is already mapped, no go */ 4107 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) 4108 return (KERN_NO_SPACE); 4109 4110 /* 4111 * If we can't accommodate max_ssize in the current mapping, no go. 4112 */ 4113 if (prev_entry->next->start < addrbos + max_ssize) 4114 return (KERN_NO_SPACE); 4115 4116 /* 4117 * We initially map a stack of only init_ssize. We will grow as 4118 * needed later. Depending on the orientation of the stack (i.e. 4119 * the grow direction) we either map at the top of the range, the 4120 * bottom of the range or in the middle. 4121 * 4122 * Note: we would normally expect prot and max to be VM_PROT_ALL, 4123 * and cow to be 0. Possibly we should eliminate these as input 4124 * parameters, and just pass these values here in the insert call. 4125 */ 4126 if (orient == MAP_STACK_GROWS_DOWN) { 4127 bot = addrbos + max_ssize - init_ssize; 4128 top = bot + init_ssize; 4129 gap_bot = addrbos; 4130 gap_top = bot; 4131 } else /* if (orient == MAP_STACK_GROWS_UP) */ { 4132 bot = addrbos; 4133 top = bot + init_ssize; 4134 gap_bot = top; 4135 gap_top = addrbos + max_ssize; 4136 } 4137 rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow); 4138 if (rv != KERN_SUCCESS) 4139 return (rv); 4140 new_entry = prev_entry->next; 4141 KASSERT(new_entry->end == top || new_entry->start == bot, 4142 ("Bad entry start/end for new stack entry")); 4143 KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 || 4144 (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0, 4145 ("new entry lacks MAP_ENTRY_GROWS_DOWN")); 4146 KASSERT((orient & MAP_STACK_GROWS_UP) == 0 || 4147 (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0, 4148 ("new entry lacks MAP_ENTRY_GROWS_UP")); 4149 rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE, 4150 VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ? 4151 MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP)); 4152 if (rv != KERN_SUCCESS) 4153 (void)vm_map_delete(map, bot, top); 4154 return (rv); 4155 } 4156 4157 /* 4158 * Attempts to grow a vm stack entry. Returns KERN_SUCCESS if we 4159 * successfully grow the stack. 4160 */ 4161 static int 4162 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry) 4163 { 4164 vm_map_entry_t stack_entry; 4165 struct proc *p; 4166 struct vmspace *vm; 4167 struct ucred *cred; 4168 vm_offset_t gap_end, gap_start, grow_start; 4169 vm_size_t grow_amount, guard, max_grow; 4170 rlim_t lmemlim, stacklim, vmemlim; 4171 int rv, rv1; 4172 bool gap_deleted, grow_down, is_procstack; 4173 #ifdef notyet 4174 uint64_t limit; 4175 #endif 4176 #ifdef RACCT 4177 int error; 4178 #endif 4179 4180 p = curproc; 4181 vm = p->p_vmspace; 4182 4183 /* 4184 * Disallow stack growth when the access is performed by a 4185 * debugger or AIO daemon. The reason is that the wrong 4186 * resource limits are applied. 4187 */ 4188 if (map != &p->p_vmspace->vm_map || p->p_textvp == NULL) 4189 return (KERN_FAILURE); 4190 4191 MPASS(!map->system_map); 4192 4193 guard = stack_guard_page * PAGE_SIZE; 4194 lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK); 4195 stacklim = lim_cur(curthread, RLIMIT_STACK); 4196 vmemlim = lim_cur(curthread, RLIMIT_VMEM); 4197 retry: 4198 /* If addr is not in a hole for a stack grow area, no need to grow. */ 4199 if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry)) 4200 return (KERN_FAILURE); 4201 if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0) 4202 return (KERN_SUCCESS); 4203 if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) { 4204 stack_entry = gap_entry->next; 4205 if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 || 4206 stack_entry->start != gap_entry->end) 4207 return (KERN_FAILURE); 4208 grow_amount = round_page(stack_entry->start - addr); 4209 grow_down = true; 4210 } else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) { 4211 stack_entry = gap_entry->prev; 4212 if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 || 4213 stack_entry->end != gap_entry->start) 4214 return (KERN_FAILURE); 4215 grow_amount = round_page(addr + 1 - stack_entry->end); 4216 grow_down = false; 4217 } else { 4218 return (KERN_FAILURE); 4219 } 4220 max_grow = gap_entry->end - gap_entry->start; 4221 if (guard > max_grow) 4222 return (KERN_NO_SPACE); 4223 max_grow -= guard; 4224 if (grow_amount > max_grow) 4225 return (KERN_NO_SPACE); 4226 4227 /* 4228 * If this is the main process stack, see if we're over the stack 4229 * limit. 4230 */ 4231 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr && 4232 addr < (vm_offset_t)p->p_sysent->sv_usrstack; 4233 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) 4234 return (KERN_NO_SPACE); 4235 4236 #ifdef RACCT 4237 if (racct_enable) { 4238 PROC_LOCK(p); 4239 if (is_procstack && racct_set(p, RACCT_STACK, 4240 ctob(vm->vm_ssize) + grow_amount)) { 4241 PROC_UNLOCK(p); 4242 return (KERN_NO_SPACE); 4243 } 4244 PROC_UNLOCK(p); 4245 } 4246 #endif 4247 4248 grow_amount = roundup(grow_amount, sgrowsiz); 4249 if (grow_amount > max_grow) 4250 grow_amount = max_grow; 4251 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 4252 grow_amount = trunc_page((vm_size_t)stacklim) - 4253 ctob(vm->vm_ssize); 4254 } 4255 4256 #ifdef notyet 4257 PROC_LOCK(p); 4258 limit = racct_get_available(p, RACCT_STACK); 4259 PROC_UNLOCK(p); 4260 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit)) 4261 grow_amount = limit - ctob(vm->vm_ssize); 4262 #endif 4263 4264 if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) { 4265 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) { 4266 rv = KERN_NO_SPACE; 4267 goto out; 4268 } 4269 #ifdef RACCT 4270 if (racct_enable) { 4271 PROC_LOCK(p); 4272 if (racct_set(p, RACCT_MEMLOCK, 4273 ptoa(pmap_wired_count(map->pmap)) + grow_amount)) { 4274 PROC_UNLOCK(p); 4275 rv = KERN_NO_SPACE; 4276 goto out; 4277 } 4278 PROC_UNLOCK(p); 4279 } 4280 #endif 4281 } 4282 4283 /* If we would blow our VMEM resource limit, no go */ 4284 if (map->size + grow_amount > vmemlim) { 4285 rv = KERN_NO_SPACE; 4286 goto out; 4287 } 4288 #ifdef RACCT 4289 if (racct_enable) { 4290 PROC_LOCK(p); 4291 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) { 4292 PROC_UNLOCK(p); 4293 rv = KERN_NO_SPACE; 4294 goto out; 4295 } 4296 PROC_UNLOCK(p); 4297 } 4298 #endif 4299 4300 if (vm_map_lock_upgrade(map)) { 4301 gap_entry = NULL; 4302 vm_map_lock_read(map); 4303 goto retry; 4304 } 4305 4306 if (grow_down) { 4307 grow_start = gap_entry->end - grow_amount; 4308 if (gap_entry->start + grow_amount == gap_entry->end) { 4309 gap_start = gap_entry->start; 4310 gap_end = gap_entry->end; 4311 vm_map_entry_delete(map, gap_entry); 4312 gap_deleted = true; 4313 } else { 4314 MPASS(gap_entry->start < gap_entry->end - grow_amount); 4315 vm_map_entry_resize(map, gap_entry, -grow_amount); 4316 gap_deleted = false; 4317 } 4318 rv = vm_map_insert(map, NULL, 0, grow_start, 4319 grow_start + grow_amount, 4320 stack_entry->protection, stack_entry->max_protection, 4321 MAP_STACK_GROWS_DOWN); 4322 if (rv != KERN_SUCCESS) { 4323 if (gap_deleted) { 4324 rv1 = vm_map_insert(map, NULL, 0, gap_start, 4325 gap_end, VM_PROT_NONE, VM_PROT_NONE, 4326 MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN); 4327 MPASS(rv1 == KERN_SUCCESS); 4328 } else 4329 vm_map_entry_resize(map, gap_entry, 4330 grow_amount); 4331 } 4332 } else { 4333 grow_start = stack_entry->end; 4334 cred = stack_entry->cred; 4335 if (cred == NULL && stack_entry->object.vm_object != NULL) 4336 cred = stack_entry->object.vm_object->cred; 4337 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred)) 4338 rv = KERN_NO_SPACE; 4339 /* Grow the underlying object if applicable. */ 4340 else if (stack_entry->object.vm_object == NULL || 4341 vm_object_coalesce(stack_entry->object.vm_object, 4342 stack_entry->offset, 4343 (vm_size_t)(stack_entry->end - stack_entry->start), 4344 grow_amount, cred != NULL)) { 4345 if (gap_entry->start + grow_amount == gap_entry->end) { 4346 vm_map_entry_delete(map, gap_entry); 4347 vm_map_entry_resize(map, stack_entry, 4348 grow_amount); 4349 } else { 4350 gap_entry->start += grow_amount; 4351 stack_entry->end += grow_amount; 4352 } 4353 map->size += grow_amount; 4354 rv = KERN_SUCCESS; 4355 } else 4356 rv = KERN_FAILURE; 4357 } 4358 if (rv == KERN_SUCCESS && is_procstack) 4359 vm->vm_ssize += btoc(grow_amount); 4360 4361 /* 4362 * Heed the MAP_WIREFUTURE flag if it was set for this process. 4363 */ 4364 if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) { 4365 rv = vm_map_wire_locked(map, grow_start, 4366 grow_start + grow_amount, 4367 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 4368 } 4369 vm_map_lock_downgrade(map); 4370 4371 out: 4372 #ifdef RACCT 4373 if (racct_enable && rv != KERN_SUCCESS) { 4374 PROC_LOCK(p); 4375 error = racct_set(p, RACCT_VMEM, map->size); 4376 KASSERT(error == 0, ("decreasing RACCT_VMEM failed")); 4377 if (!old_mlock) { 4378 error = racct_set(p, RACCT_MEMLOCK, 4379 ptoa(pmap_wired_count(map->pmap))); 4380 KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed")); 4381 } 4382 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize)); 4383 KASSERT(error == 0, ("decreasing RACCT_STACK failed")); 4384 PROC_UNLOCK(p); 4385 } 4386 #endif 4387 4388 return (rv); 4389 } 4390 4391 /* 4392 * Unshare the specified VM space for exec. If other processes are 4393 * mapped to it, then create a new one. The new vmspace is null. 4394 */ 4395 int 4396 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser) 4397 { 4398 struct vmspace *oldvmspace = p->p_vmspace; 4399 struct vmspace *newvmspace; 4400 4401 KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0, 4402 ("vmspace_exec recursed")); 4403 newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit); 4404 if (newvmspace == NULL) 4405 return (ENOMEM); 4406 newvmspace->vm_swrss = oldvmspace->vm_swrss; 4407 /* 4408 * This code is written like this for prototype purposes. The 4409 * goal is to avoid running down the vmspace here, but let the 4410 * other process's that are still using the vmspace to finally 4411 * run it down. Even though there is little or no chance of blocking 4412 * here, it is a good idea to keep this form for future mods. 4413 */ 4414 PROC_VMSPACE_LOCK(p); 4415 p->p_vmspace = newvmspace; 4416 PROC_VMSPACE_UNLOCK(p); 4417 if (p == curthread->td_proc) 4418 pmap_activate(curthread); 4419 curthread->td_pflags |= TDP_EXECVMSPC; 4420 return (0); 4421 } 4422 4423 /* 4424 * Unshare the specified VM space for forcing COW. This 4425 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 4426 */ 4427 int 4428 vmspace_unshare(struct proc *p) 4429 { 4430 struct vmspace *oldvmspace = p->p_vmspace; 4431 struct vmspace *newvmspace; 4432 vm_ooffset_t fork_charge; 4433 4434 if (oldvmspace->vm_refcnt == 1) 4435 return (0); 4436 fork_charge = 0; 4437 newvmspace = vmspace_fork(oldvmspace, &fork_charge); 4438 if (newvmspace == NULL) 4439 return (ENOMEM); 4440 if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) { 4441 vmspace_free(newvmspace); 4442 return (ENOMEM); 4443 } 4444 PROC_VMSPACE_LOCK(p); 4445 p->p_vmspace = newvmspace; 4446 PROC_VMSPACE_UNLOCK(p); 4447 if (p == curthread->td_proc) 4448 pmap_activate(curthread); 4449 vmspace_free(oldvmspace); 4450 return (0); 4451 } 4452 4453 /* 4454 * vm_map_lookup: 4455 * 4456 * Finds the VM object, offset, and 4457 * protection for a given virtual address in the 4458 * specified map, assuming a page fault of the 4459 * type specified. 4460 * 4461 * Leaves the map in question locked for read; return 4462 * values are guaranteed until a vm_map_lookup_done 4463 * call is performed. Note that the map argument 4464 * is in/out; the returned map must be used in 4465 * the call to vm_map_lookup_done. 4466 * 4467 * A handle (out_entry) is returned for use in 4468 * vm_map_lookup_done, to make that fast. 4469 * 4470 * If a lookup is requested with "write protection" 4471 * specified, the map may be changed to perform virtual 4472 * copying operations, although the data referenced will 4473 * remain the same. 4474 */ 4475 int 4476 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 4477 vm_offset_t vaddr, 4478 vm_prot_t fault_typea, 4479 vm_map_entry_t *out_entry, /* OUT */ 4480 vm_object_t *object, /* OUT */ 4481 vm_pindex_t *pindex, /* OUT */ 4482 vm_prot_t *out_prot, /* OUT */ 4483 boolean_t *wired) /* OUT */ 4484 { 4485 vm_map_entry_t entry; 4486 vm_map_t map = *var_map; 4487 vm_prot_t prot; 4488 vm_prot_t fault_type = fault_typea; 4489 vm_object_t eobject; 4490 vm_size_t size; 4491 struct ucred *cred; 4492 4493 RetryLookup: 4494 4495 vm_map_lock_read(map); 4496 4497 RetryLookupLocked: 4498 /* 4499 * Lookup the faulting address. 4500 */ 4501 if (!vm_map_lookup_entry(map, vaddr, out_entry)) { 4502 vm_map_unlock_read(map); 4503 return (KERN_INVALID_ADDRESS); 4504 } 4505 4506 entry = *out_entry; 4507 4508 /* 4509 * Handle submaps. 4510 */ 4511 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 4512 vm_map_t old_map = map; 4513 4514 *var_map = map = entry->object.sub_map; 4515 vm_map_unlock_read(old_map); 4516 goto RetryLookup; 4517 } 4518 4519 /* 4520 * Check whether this task is allowed to have this page. 4521 */ 4522 prot = entry->protection; 4523 if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) { 4524 fault_typea &= ~VM_PROT_FAULT_LOOKUP; 4525 if (prot == VM_PROT_NONE && map != kernel_map && 4526 (entry->eflags & MAP_ENTRY_GUARD) != 0 && 4527 (entry->eflags & (MAP_ENTRY_STACK_GAP_DN | 4528 MAP_ENTRY_STACK_GAP_UP)) != 0 && 4529 vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS) 4530 goto RetryLookupLocked; 4531 } 4532 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; 4533 if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) { 4534 vm_map_unlock_read(map); 4535 return (KERN_PROTECTION_FAILURE); 4536 } 4537 KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags & 4538 (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) != 4539 (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY), 4540 ("entry %p flags %x", entry, entry->eflags)); 4541 if ((fault_typea & VM_PROT_COPY) != 0 && 4542 (entry->max_protection & VM_PROT_WRITE) == 0 && 4543 (entry->eflags & MAP_ENTRY_COW) == 0) { 4544 vm_map_unlock_read(map); 4545 return (KERN_PROTECTION_FAILURE); 4546 } 4547 4548 /* 4549 * If this page is not pageable, we have to get it for all possible 4550 * accesses. 4551 */ 4552 *wired = (entry->wired_count != 0); 4553 if (*wired) 4554 fault_type = entry->protection; 4555 size = entry->end - entry->start; 4556 /* 4557 * If the entry was copy-on-write, we either ... 4558 */ 4559 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 4560 /* 4561 * If we want to write the page, we may as well handle that 4562 * now since we've got the map locked. 4563 * 4564 * If we don't need to write the page, we just demote the 4565 * permissions allowed. 4566 */ 4567 if ((fault_type & VM_PROT_WRITE) != 0 || 4568 (fault_typea & VM_PROT_COPY) != 0) { 4569 /* 4570 * Make a new object, and place it in the object 4571 * chain. Note that no new references have appeared 4572 * -- one just moved from the map to the new 4573 * object. 4574 */ 4575 if (vm_map_lock_upgrade(map)) 4576 goto RetryLookup; 4577 4578 if (entry->cred == NULL) { 4579 /* 4580 * The debugger owner is charged for 4581 * the memory. 4582 */ 4583 cred = curthread->td_ucred; 4584 crhold(cred); 4585 if (!swap_reserve_by_cred(size, cred)) { 4586 crfree(cred); 4587 vm_map_unlock(map); 4588 return (KERN_RESOURCE_SHORTAGE); 4589 } 4590 entry->cred = cred; 4591 } 4592 vm_object_shadow(&entry->object.vm_object, 4593 &entry->offset, size); 4594 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 4595 eobject = entry->object.vm_object; 4596 if (eobject->cred != NULL) { 4597 /* 4598 * The object was not shadowed. 4599 */ 4600 swap_release_by_cred(size, entry->cred); 4601 crfree(entry->cred); 4602 entry->cred = NULL; 4603 } else if (entry->cred != NULL) { 4604 VM_OBJECT_WLOCK(eobject); 4605 eobject->cred = entry->cred; 4606 eobject->charge = size; 4607 VM_OBJECT_WUNLOCK(eobject); 4608 entry->cred = NULL; 4609 } 4610 4611 vm_map_lock_downgrade(map); 4612 } else { 4613 /* 4614 * We're attempting to read a copy-on-write page -- 4615 * don't allow writes. 4616 */ 4617 prot &= ~VM_PROT_WRITE; 4618 } 4619 } 4620 4621 /* 4622 * Create an object if necessary. 4623 */ 4624 if (entry->object.vm_object == NULL && 4625 !map->system_map) { 4626 if (vm_map_lock_upgrade(map)) 4627 goto RetryLookup; 4628 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT, 4629 atop(size)); 4630 entry->offset = 0; 4631 if (entry->cred != NULL) { 4632 VM_OBJECT_WLOCK(entry->object.vm_object); 4633 entry->object.vm_object->cred = entry->cred; 4634 entry->object.vm_object->charge = size; 4635 VM_OBJECT_WUNLOCK(entry->object.vm_object); 4636 entry->cred = NULL; 4637 } 4638 vm_map_lock_downgrade(map); 4639 } 4640 4641 /* 4642 * Return the object/offset from this entry. If the entry was 4643 * copy-on-write or empty, it has been fixed up. 4644 */ 4645 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 4646 *object = entry->object.vm_object; 4647 4648 *out_prot = prot; 4649 return (KERN_SUCCESS); 4650 } 4651 4652 /* 4653 * vm_map_lookup_locked: 4654 * 4655 * Lookup the faulting address. A version of vm_map_lookup that returns 4656 * KERN_FAILURE instead of blocking on map lock or memory allocation. 4657 */ 4658 int 4659 vm_map_lookup_locked(vm_map_t *var_map, /* IN/OUT */ 4660 vm_offset_t vaddr, 4661 vm_prot_t fault_typea, 4662 vm_map_entry_t *out_entry, /* OUT */ 4663 vm_object_t *object, /* OUT */ 4664 vm_pindex_t *pindex, /* OUT */ 4665 vm_prot_t *out_prot, /* OUT */ 4666 boolean_t *wired) /* OUT */ 4667 { 4668 vm_map_entry_t entry; 4669 vm_map_t map = *var_map; 4670 vm_prot_t prot; 4671 vm_prot_t fault_type = fault_typea; 4672 4673 /* 4674 * Lookup the faulting address. 4675 */ 4676 if (!vm_map_lookup_entry(map, vaddr, out_entry)) 4677 return (KERN_INVALID_ADDRESS); 4678 4679 entry = *out_entry; 4680 4681 /* 4682 * Fail if the entry refers to a submap. 4683 */ 4684 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 4685 return (KERN_FAILURE); 4686 4687 /* 4688 * Check whether this task is allowed to have this page. 4689 */ 4690 prot = entry->protection; 4691 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; 4692 if ((fault_type & prot) != fault_type) 4693 return (KERN_PROTECTION_FAILURE); 4694 4695 /* 4696 * If this page is not pageable, we have to get it for all possible 4697 * accesses. 4698 */ 4699 *wired = (entry->wired_count != 0); 4700 if (*wired) 4701 fault_type = entry->protection; 4702 4703 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 4704 /* 4705 * Fail if the entry was copy-on-write for a write fault. 4706 */ 4707 if (fault_type & VM_PROT_WRITE) 4708 return (KERN_FAILURE); 4709 /* 4710 * We're attempting to read a copy-on-write page -- 4711 * don't allow writes. 4712 */ 4713 prot &= ~VM_PROT_WRITE; 4714 } 4715 4716 /* 4717 * Fail if an object should be created. 4718 */ 4719 if (entry->object.vm_object == NULL && !map->system_map) 4720 return (KERN_FAILURE); 4721 4722 /* 4723 * Return the object/offset from this entry. If the entry was 4724 * copy-on-write or empty, it has been fixed up. 4725 */ 4726 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 4727 *object = entry->object.vm_object; 4728 4729 *out_prot = prot; 4730 return (KERN_SUCCESS); 4731 } 4732 4733 /* 4734 * vm_map_lookup_done: 4735 * 4736 * Releases locks acquired by a vm_map_lookup 4737 * (according to the handle returned by that lookup). 4738 */ 4739 void 4740 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry) 4741 { 4742 /* 4743 * Unlock the main-level map 4744 */ 4745 vm_map_unlock_read(map); 4746 } 4747 4748 vm_offset_t 4749 vm_map_max_KBI(const struct vm_map *map) 4750 { 4751 4752 return (vm_map_max(map)); 4753 } 4754 4755 vm_offset_t 4756 vm_map_min_KBI(const struct vm_map *map) 4757 { 4758 4759 return (vm_map_min(map)); 4760 } 4761 4762 pmap_t 4763 vm_map_pmap_KBI(vm_map_t map) 4764 { 4765 4766 return (map->pmap); 4767 } 4768 4769 #include "opt_ddb.h" 4770 #ifdef DDB 4771 #include <sys/kernel.h> 4772 4773 #include <ddb/ddb.h> 4774 4775 static void 4776 vm_map_print(vm_map_t map) 4777 { 4778 vm_map_entry_t entry; 4779 4780 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 4781 (void *)map, 4782 (void *)map->pmap, map->nentries, map->timestamp); 4783 4784 db_indent += 2; 4785 for (entry = map->header.next; entry != &map->header; 4786 entry = entry->next) { 4787 db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n", 4788 (void *)entry, (void *)entry->start, (void *)entry->end, 4789 entry->eflags); 4790 { 4791 static char *inheritance_name[4] = 4792 {"share", "copy", "none", "donate_copy"}; 4793 4794 db_iprintf(" prot=%x/%x/%s", 4795 entry->protection, 4796 entry->max_protection, 4797 inheritance_name[(int)(unsigned char)entry->inheritance]); 4798 if (entry->wired_count != 0) 4799 db_printf(", wired"); 4800 } 4801 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 4802 db_printf(", share=%p, offset=0x%jx\n", 4803 (void *)entry->object.sub_map, 4804 (uintmax_t)entry->offset); 4805 if ((entry->prev == &map->header) || 4806 (entry->prev->object.sub_map != 4807 entry->object.sub_map)) { 4808 db_indent += 2; 4809 vm_map_print((vm_map_t)entry->object.sub_map); 4810 db_indent -= 2; 4811 } 4812 } else { 4813 if (entry->cred != NULL) 4814 db_printf(", ruid %d", entry->cred->cr_ruid); 4815 db_printf(", object=%p, offset=0x%jx", 4816 (void *)entry->object.vm_object, 4817 (uintmax_t)entry->offset); 4818 if (entry->object.vm_object && entry->object.vm_object->cred) 4819 db_printf(", obj ruid %d charge %jx", 4820 entry->object.vm_object->cred->cr_ruid, 4821 (uintmax_t)entry->object.vm_object->charge); 4822 if (entry->eflags & MAP_ENTRY_COW) 4823 db_printf(", copy (%s)", 4824 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 4825 db_printf("\n"); 4826 4827 if ((entry->prev == &map->header) || 4828 (entry->prev->object.vm_object != 4829 entry->object.vm_object)) { 4830 db_indent += 2; 4831 vm_object_print((db_expr_t)(intptr_t) 4832 entry->object.vm_object, 4833 0, 0, (char *)0); 4834 db_indent -= 2; 4835 } 4836 } 4837 } 4838 db_indent -= 2; 4839 } 4840 4841 DB_SHOW_COMMAND(map, map) 4842 { 4843 4844 if (!have_addr) { 4845 db_printf("usage: show map <addr>\n"); 4846 return; 4847 } 4848 vm_map_print((vm_map_t)addr); 4849 } 4850 4851 DB_SHOW_COMMAND(procvm, procvm) 4852 { 4853 struct proc *p; 4854 4855 if (have_addr) { 4856 p = db_lookup_proc(addr); 4857 } else { 4858 p = curproc; 4859 } 4860 4861 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 4862 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 4863 (void *)vmspace_pmap(p->p_vmspace)); 4864 4865 vm_map_print((vm_map_t)&p->p_vmspace->vm_map); 4866 } 4867 4868 #endif /* DDB */ 4869