xref: /freebsd/sys/vm/vm_map.c (revision 864c53ead899f7838cd2e1cca3b485a4a82f5cdc)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60 
61 /*
62  *	Virtual memory mapping module.
63  */
64 
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67 
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/kernel.h>
71 #include <sys/ktr.h>
72 #include <sys/lock.h>
73 #include <sys/mutex.h>
74 #include <sys/proc.h>
75 #include <sys/vmmeter.h>
76 #include <sys/mman.h>
77 #include <sys/vnode.h>
78 #include <sys/racct.h>
79 #include <sys/resourcevar.h>
80 #include <sys/rwlock.h>
81 #include <sys/file.h>
82 #include <sys/sysctl.h>
83 #include <sys/sysent.h>
84 #include <sys/shm.h>
85 
86 #include <vm/vm.h>
87 #include <vm/vm_param.h>
88 #include <vm/pmap.h>
89 #include <vm/vm_map.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_pager.h>
93 #include <vm/vm_kern.h>
94 #include <vm/vm_extern.h>
95 #include <vm/vnode_pager.h>
96 #include <vm/swap_pager.h>
97 #include <vm/uma.h>
98 
99 /*
100  *	Virtual memory maps provide for the mapping, protection,
101  *	and sharing of virtual memory objects.  In addition,
102  *	this module provides for an efficient virtual copy of
103  *	memory from one map to another.
104  *
105  *	Synchronization is required prior to most operations.
106  *
107  *	Maps consist of an ordered doubly-linked list of simple
108  *	entries; a self-adjusting binary search tree of these
109  *	entries is used to speed up lookups.
110  *
111  *	Since portions of maps are specified by start/end addresses,
112  *	which may not align with existing map entries, all
113  *	routines merely "clip" entries to these start/end values.
114  *	[That is, an entry is split into two, bordering at a
115  *	start or end value.]  Note that these clippings may not
116  *	always be necessary (as the two resulting entries are then
117  *	not changed); however, the clipping is done for convenience.
118  *
119  *	As mentioned above, virtual copy operations are performed
120  *	by copying VM object references from one map to
121  *	another, and then marking both regions as copy-on-write.
122  */
123 
124 static struct mtx map_sleep_mtx;
125 static uma_zone_t mapentzone;
126 static uma_zone_t kmapentzone;
127 static uma_zone_t mapzone;
128 static uma_zone_t vmspace_zone;
129 static int vmspace_zinit(void *mem, int size, int flags);
130 static int vm_map_zinit(void *mem, int ize, int flags);
131 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
132     vm_offset_t max);
133 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
134 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
135 #ifdef INVARIANTS
136 static void vm_map_zdtor(void *mem, int size, void *arg);
137 static void vmspace_zdtor(void *mem, int size, void *arg);
138 #endif
139 
140 #define	ENTRY_CHARGED(e) ((e)->cred != NULL || \
141     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
142      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
143 
144 /*
145  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
146  * stable.
147  */
148 #define PROC_VMSPACE_LOCK(p) do { } while (0)
149 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
150 
151 /*
152  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
153  *
154  *	Asserts that the starting and ending region
155  *	addresses fall within the valid range of the map.
156  */
157 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
158 		{					\
159 		if (start < vm_map_min(map))		\
160 			start = vm_map_min(map);	\
161 		if (end > vm_map_max(map))		\
162 			end = vm_map_max(map);		\
163 		if (start > end)			\
164 			start = end;			\
165 		}
166 
167 /*
168  *	vm_map_startup:
169  *
170  *	Initialize the vm_map module.  Must be called before
171  *	any other vm_map routines.
172  *
173  *	Map and entry structures are allocated from the general
174  *	purpose memory pool with some exceptions:
175  *
176  *	- The kernel map and kmem submap are allocated statically.
177  *	- Kernel map entries are allocated out of a static pool.
178  *
179  *	These restrictions are necessary since malloc() uses the
180  *	maps and requires map entries.
181  */
182 
183 void
184 vm_map_startup(void)
185 {
186 	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
187 	mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
188 #ifdef INVARIANTS
189 	    vm_map_zdtor,
190 #else
191 	    NULL,
192 #endif
193 	    vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
194 	uma_prealloc(mapzone, MAX_KMAP);
195 	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
196 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
197 	    UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
198 	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
199 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
200 	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
201 #ifdef INVARIANTS
202 	    vmspace_zdtor,
203 #else
204 	    NULL,
205 #endif
206 	    vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
207 }
208 
209 static int
210 vmspace_zinit(void *mem, int size, int flags)
211 {
212 	struct vmspace *vm;
213 
214 	vm = (struct vmspace *)mem;
215 
216 	vm->vm_map.pmap = NULL;
217 	(void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
218 	PMAP_LOCK_INIT(vmspace_pmap(vm));
219 	return (0);
220 }
221 
222 static int
223 vm_map_zinit(void *mem, int size, int flags)
224 {
225 	vm_map_t map;
226 
227 	map = (vm_map_t)mem;
228 	memset(map, 0, sizeof(*map));
229 	mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
230 	sx_init(&map->lock, "vm map (user)");
231 	return (0);
232 }
233 
234 #ifdef INVARIANTS
235 static void
236 vmspace_zdtor(void *mem, int size, void *arg)
237 {
238 	struct vmspace *vm;
239 
240 	vm = (struct vmspace *)mem;
241 
242 	vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
243 }
244 static void
245 vm_map_zdtor(void *mem, int size, void *arg)
246 {
247 	vm_map_t map;
248 
249 	map = (vm_map_t)mem;
250 	KASSERT(map->nentries == 0,
251 	    ("map %p nentries == %d on free.",
252 	    map, map->nentries));
253 	KASSERT(map->size == 0,
254 	    ("map %p size == %lu on free.",
255 	    map, (unsigned long)map->size));
256 }
257 #endif	/* INVARIANTS */
258 
259 /*
260  * Allocate a vmspace structure, including a vm_map and pmap,
261  * and initialize those structures.  The refcnt is set to 1.
262  *
263  * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit().
264  */
265 struct vmspace *
266 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
267 {
268 	struct vmspace *vm;
269 
270 	vm = uma_zalloc(vmspace_zone, M_WAITOK);
271 
272 	KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
273 
274 	if (pinit == NULL)
275 		pinit = &pmap_pinit;
276 
277 	if (!pinit(vmspace_pmap(vm))) {
278 		uma_zfree(vmspace_zone, vm);
279 		return (NULL);
280 	}
281 	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
282 	_vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
283 	vm->vm_refcnt = 1;
284 	vm->vm_shm = NULL;
285 	vm->vm_swrss = 0;
286 	vm->vm_tsize = 0;
287 	vm->vm_dsize = 0;
288 	vm->vm_ssize = 0;
289 	vm->vm_taddr = 0;
290 	vm->vm_daddr = 0;
291 	vm->vm_maxsaddr = 0;
292 	return (vm);
293 }
294 
295 static void
296 vmspace_container_reset(struct proc *p)
297 {
298 
299 #ifdef RACCT
300 	PROC_LOCK(p);
301 	racct_set(p, RACCT_DATA, 0);
302 	racct_set(p, RACCT_STACK, 0);
303 	racct_set(p, RACCT_RSS, 0);
304 	racct_set(p, RACCT_MEMLOCK, 0);
305 	racct_set(p, RACCT_VMEM, 0);
306 	PROC_UNLOCK(p);
307 #endif
308 }
309 
310 static inline void
311 vmspace_dofree(struct vmspace *vm)
312 {
313 
314 	CTR1(KTR_VM, "vmspace_free: %p", vm);
315 
316 	/*
317 	 * Make sure any SysV shm is freed, it might not have been in
318 	 * exit1().
319 	 */
320 	shmexit(vm);
321 
322 	/*
323 	 * Lock the map, to wait out all other references to it.
324 	 * Delete all of the mappings and pages they hold, then call
325 	 * the pmap module to reclaim anything left.
326 	 */
327 	(void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset,
328 	    vm->vm_map.max_offset);
329 
330 	pmap_release(vmspace_pmap(vm));
331 	vm->vm_map.pmap = NULL;
332 	uma_zfree(vmspace_zone, vm);
333 }
334 
335 void
336 vmspace_free(struct vmspace *vm)
337 {
338 
339 	if (vm->vm_refcnt == 0)
340 		panic("vmspace_free: attempt to free already freed vmspace");
341 
342 	if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
343 		vmspace_dofree(vm);
344 }
345 
346 void
347 vmspace_exitfree(struct proc *p)
348 {
349 	struct vmspace *vm;
350 
351 	PROC_VMSPACE_LOCK(p);
352 	vm = p->p_vmspace;
353 	p->p_vmspace = NULL;
354 	PROC_VMSPACE_UNLOCK(p);
355 	KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
356 	vmspace_free(vm);
357 }
358 
359 void
360 vmspace_exit(struct thread *td)
361 {
362 	int refcnt;
363 	struct vmspace *vm;
364 	struct proc *p;
365 
366 	/*
367 	 * Release user portion of address space.
368 	 * This releases references to vnodes,
369 	 * which could cause I/O if the file has been unlinked.
370 	 * Need to do this early enough that we can still sleep.
371 	 *
372 	 * The last exiting process to reach this point releases as
373 	 * much of the environment as it can. vmspace_dofree() is the
374 	 * slower fallback in case another process had a temporary
375 	 * reference to the vmspace.
376 	 */
377 
378 	p = td->td_proc;
379 	vm = p->p_vmspace;
380 	atomic_add_int(&vmspace0.vm_refcnt, 1);
381 	do {
382 		refcnt = vm->vm_refcnt;
383 		if (refcnt > 1 && p->p_vmspace != &vmspace0) {
384 			/* Switch now since other proc might free vmspace */
385 			PROC_VMSPACE_LOCK(p);
386 			p->p_vmspace = &vmspace0;
387 			PROC_VMSPACE_UNLOCK(p);
388 			pmap_activate(td);
389 		}
390 	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
391 	if (refcnt == 1) {
392 		if (p->p_vmspace != vm) {
393 			/* vmspace not yet freed, switch back */
394 			PROC_VMSPACE_LOCK(p);
395 			p->p_vmspace = vm;
396 			PROC_VMSPACE_UNLOCK(p);
397 			pmap_activate(td);
398 		}
399 		pmap_remove_pages(vmspace_pmap(vm));
400 		/* Switch now since this proc will free vmspace */
401 		PROC_VMSPACE_LOCK(p);
402 		p->p_vmspace = &vmspace0;
403 		PROC_VMSPACE_UNLOCK(p);
404 		pmap_activate(td);
405 		vmspace_dofree(vm);
406 	}
407 	vmspace_container_reset(p);
408 }
409 
410 /* Acquire reference to vmspace owned by another process. */
411 
412 struct vmspace *
413 vmspace_acquire_ref(struct proc *p)
414 {
415 	struct vmspace *vm;
416 	int refcnt;
417 
418 	PROC_VMSPACE_LOCK(p);
419 	vm = p->p_vmspace;
420 	if (vm == NULL) {
421 		PROC_VMSPACE_UNLOCK(p);
422 		return (NULL);
423 	}
424 	do {
425 		refcnt = vm->vm_refcnt;
426 		if (refcnt <= 0) { 	/* Avoid 0->1 transition */
427 			PROC_VMSPACE_UNLOCK(p);
428 			return (NULL);
429 		}
430 	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
431 	if (vm != p->p_vmspace) {
432 		PROC_VMSPACE_UNLOCK(p);
433 		vmspace_free(vm);
434 		return (NULL);
435 	}
436 	PROC_VMSPACE_UNLOCK(p);
437 	return (vm);
438 }
439 
440 void
441 _vm_map_lock(vm_map_t map, const char *file, int line)
442 {
443 
444 	if (map->system_map)
445 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
446 	else
447 		sx_xlock_(&map->lock, file, line);
448 	map->timestamp++;
449 }
450 
451 static void
452 vm_map_process_deferred(void)
453 {
454 	struct thread *td;
455 	vm_map_entry_t entry, next;
456 	vm_object_t object;
457 
458 	td = curthread;
459 	entry = td->td_map_def_user;
460 	td->td_map_def_user = NULL;
461 	while (entry != NULL) {
462 		next = entry->next;
463 		if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) {
464 			/*
465 			 * Decrement the object's writemappings and
466 			 * possibly the vnode's v_writecount.
467 			 */
468 			KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
469 			    ("Submap with writecount"));
470 			object = entry->object.vm_object;
471 			KASSERT(object != NULL, ("No object for writecount"));
472 			vnode_pager_release_writecount(object, entry->start,
473 			    entry->end);
474 		}
475 		vm_map_entry_deallocate(entry, FALSE);
476 		entry = next;
477 	}
478 }
479 
480 void
481 _vm_map_unlock(vm_map_t map, const char *file, int line)
482 {
483 
484 	if (map->system_map)
485 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
486 	else {
487 		sx_xunlock_(&map->lock, file, line);
488 		vm_map_process_deferred();
489 	}
490 }
491 
492 void
493 _vm_map_lock_read(vm_map_t map, const char *file, int line)
494 {
495 
496 	if (map->system_map)
497 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
498 	else
499 		sx_slock_(&map->lock, file, line);
500 }
501 
502 void
503 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
504 {
505 
506 	if (map->system_map)
507 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
508 	else {
509 		sx_sunlock_(&map->lock, file, line);
510 		vm_map_process_deferred();
511 	}
512 }
513 
514 int
515 _vm_map_trylock(vm_map_t map, const char *file, int line)
516 {
517 	int error;
518 
519 	error = map->system_map ?
520 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
521 	    !sx_try_xlock_(&map->lock, file, line);
522 	if (error == 0)
523 		map->timestamp++;
524 	return (error == 0);
525 }
526 
527 int
528 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
529 {
530 	int error;
531 
532 	error = map->system_map ?
533 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
534 	    !sx_try_slock_(&map->lock, file, line);
535 	return (error == 0);
536 }
537 
538 /*
539  *	_vm_map_lock_upgrade:	[ internal use only ]
540  *
541  *	Tries to upgrade a read (shared) lock on the specified map to a write
542  *	(exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
543  *	non-zero value if the upgrade fails.  If the upgrade fails, the map is
544  *	returned without a read or write lock held.
545  *
546  *	Requires that the map be read locked.
547  */
548 int
549 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
550 {
551 	unsigned int last_timestamp;
552 
553 	if (map->system_map) {
554 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
555 	} else {
556 		if (!sx_try_upgrade_(&map->lock, file, line)) {
557 			last_timestamp = map->timestamp;
558 			sx_sunlock_(&map->lock, file, line);
559 			vm_map_process_deferred();
560 			/*
561 			 * If the map's timestamp does not change while the
562 			 * map is unlocked, then the upgrade succeeds.
563 			 */
564 			sx_xlock_(&map->lock, file, line);
565 			if (last_timestamp != map->timestamp) {
566 				sx_xunlock_(&map->lock, file, line);
567 				return (1);
568 			}
569 		}
570 	}
571 	map->timestamp++;
572 	return (0);
573 }
574 
575 void
576 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
577 {
578 
579 	if (map->system_map) {
580 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
581 	} else
582 		sx_downgrade_(&map->lock, file, line);
583 }
584 
585 /*
586  *	vm_map_locked:
587  *
588  *	Returns a non-zero value if the caller holds a write (exclusive) lock
589  *	on the specified map and the value "0" otherwise.
590  */
591 int
592 vm_map_locked(vm_map_t map)
593 {
594 
595 	if (map->system_map)
596 		return (mtx_owned(&map->system_mtx));
597 	else
598 		return (sx_xlocked(&map->lock));
599 }
600 
601 #ifdef INVARIANTS
602 static void
603 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
604 {
605 
606 	if (map->system_map)
607 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
608 	else
609 		sx_assert_(&map->lock, SA_XLOCKED, file, line);
610 }
611 
612 #define	VM_MAP_ASSERT_LOCKED(map) \
613     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
614 #else
615 #define	VM_MAP_ASSERT_LOCKED(map)
616 #endif
617 
618 /*
619  *	_vm_map_unlock_and_wait:
620  *
621  *	Atomically releases the lock on the specified map and puts the calling
622  *	thread to sleep.  The calling thread will remain asleep until either
623  *	vm_map_wakeup() is performed on the map or the specified timeout is
624  *	exceeded.
625  *
626  *	WARNING!  This function does not perform deferred deallocations of
627  *	objects and map	entries.  Therefore, the calling thread is expected to
628  *	reacquire the map lock after reawakening and later perform an ordinary
629  *	unlock operation, such as vm_map_unlock(), before completing its
630  *	operation on the map.
631  */
632 int
633 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
634 {
635 
636 	mtx_lock(&map_sleep_mtx);
637 	if (map->system_map)
638 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
639 	else
640 		sx_xunlock_(&map->lock, file, line);
641 	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
642 	    timo));
643 }
644 
645 /*
646  *	vm_map_wakeup:
647  *
648  *	Awaken any threads that have slept on the map using
649  *	vm_map_unlock_and_wait().
650  */
651 void
652 vm_map_wakeup(vm_map_t map)
653 {
654 
655 	/*
656 	 * Acquire and release map_sleep_mtx to prevent a wakeup()
657 	 * from being performed (and lost) between the map unlock
658 	 * and the msleep() in _vm_map_unlock_and_wait().
659 	 */
660 	mtx_lock(&map_sleep_mtx);
661 	mtx_unlock(&map_sleep_mtx);
662 	wakeup(&map->root);
663 }
664 
665 void
666 vm_map_busy(vm_map_t map)
667 {
668 
669 	VM_MAP_ASSERT_LOCKED(map);
670 	map->busy++;
671 }
672 
673 void
674 vm_map_unbusy(vm_map_t map)
675 {
676 
677 	VM_MAP_ASSERT_LOCKED(map);
678 	KASSERT(map->busy, ("vm_map_unbusy: not busy"));
679 	if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
680 		vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
681 		wakeup(&map->busy);
682 	}
683 }
684 
685 void
686 vm_map_wait_busy(vm_map_t map)
687 {
688 
689 	VM_MAP_ASSERT_LOCKED(map);
690 	while (map->busy) {
691 		vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
692 		if (map->system_map)
693 			msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
694 		else
695 			sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
696 	}
697 	map->timestamp++;
698 }
699 
700 long
701 vmspace_resident_count(struct vmspace *vmspace)
702 {
703 	return pmap_resident_count(vmspace_pmap(vmspace));
704 }
705 
706 /*
707  *	vm_map_create:
708  *
709  *	Creates and returns a new empty VM map with
710  *	the given physical map structure, and having
711  *	the given lower and upper address bounds.
712  */
713 vm_map_t
714 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
715 {
716 	vm_map_t result;
717 
718 	result = uma_zalloc(mapzone, M_WAITOK);
719 	CTR1(KTR_VM, "vm_map_create: %p", result);
720 	_vm_map_init(result, pmap, min, max);
721 	return (result);
722 }
723 
724 /*
725  * Initialize an existing vm_map structure
726  * such as that in the vmspace structure.
727  */
728 static void
729 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
730 {
731 
732 	map->header.next = map->header.prev = &map->header;
733 	map->needs_wakeup = FALSE;
734 	map->system_map = 0;
735 	map->pmap = pmap;
736 	map->min_offset = min;
737 	map->max_offset = max;
738 	map->flags = 0;
739 	map->root = NULL;
740 	map->timestamp = 0;
741 	map->busy = 0;
742 }
743 
744 void
745 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
746 {
747 
748 	_vm_map_init(map, pmap, min, max);
749 	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
750 	sx_init(&map->lock, "user map");
751 }
752 
753 /*
754  *	vm_map_entry_dispose:	[ internal use only ]
755  *
756  *	Inverse of vm_map_entry_create.
757  */
758 static void
759 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
760 {
761 	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
762 }
763 
764 /*
765  *	vm_map_entry_create:	[ internal use only ]
766  *
767  *	Allocates a VM map entry for insertion.
768  *	No entry fields are filled in.
769  */
770 static vm_map_entry_t
771 vm_map_entry_create(vm_map_t map)
772 {
773 	vm_map_entry_t new_entry;
774 
775 	if (map->system_map)
776 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
777 	else
778 		new_entry = uma_zalloc(mapentzone, M_WAITOK);
779 	if (new_entry == NULL)
780 		panic("vm_map_entry_create: kernel resources exhausted");
781 	return (new_entry);
782 }
783 
784 /*
785  *	vm_map_entry_set_behavior:
786  *
787  *	Set the expected access behavior, either normal, random, or
788  *	sequential.
789  */
790 static inline void
791 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
792 {
793 	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
794 	    (behavior & MAP_ENTRY_BEHAV_MASK);
795 }
796 
797 /*
798  *	vm_map_entry_set_max_free:
799  *
800  *	Set the max_free field in a vm_map_entry.
801  */
802 static inline void
803 vm_map_entry_set_max_free(vm_map_entry_t entry)
804 {
805 
806 	entry->max_free = entry->adj_free;
807 	if (entry->left != NULL && entry->left->max_free > entry->max_free)
808 		entry->max_free = entry->left->max_free;
809 	if (entry->right != NULL && entry->right->max_free > entry->max_free)
810 		entry->max_free = entry->right->max_free;
811 }
812 
813 /*
814  *	vm_map_entry_splay:
815  *
816  *	The Sleator and Tarjan top-down splay algorithm with the
817  *	following variation.  Max_free must be computed bottom-up, so
818  *	on the downward pass, maintain the left and right spines in
819  *	reverse order.  Then, make a second pass up each side to fix
820  *	the pointers and compute max_free.  The time bound is O(log n)
821  *	amortized.
822  *
823  *	The new root is the vm_map_entry containing "addr", or else an
824  *	adjacent entry (lower or higher) if addr is not in the tree.
825  *
826  *	The map must be locked, and leaves it so.
827  *
828  *	Returns: the new root.
829  */
830 static vm_map_entry_t
831 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
832 {
833 	vm_map_entry_t llist, rlist;
834 	vm_map_entry_t ltree, rtree;
835 	vm_map_entry_t y;
836 
837 	/* Special case of empty tree. */
838 	if (root == NULL)
839 		return (root);
840 
841 	/*
842 	 * Pass One: Splay down the tree until we find addr or a NULL
843 	 * pointer where addr would go.  llist and rlist are the two
844 	 * sides in reverse order (bottom-up), with llist linked by
845 	 * the right pointer and rlist linked by the left pointer in
846 	 * the vm_map_entry.  Wait until Pass Two to set max_free on
847 	 * the two spines.
848 	 */
849 	llist = NULL;
850 	rlist = NULL;
851 	for (;;) {
852 		/* root is never NULL in here. */
853 		if (addr < root->start) {
854 			y = root->left;
855 			if (y == NULL)
856 				break;
857 			if (addr < y->start && y->left != NULL) {
858 				/* Rotate right and put y on rlist. */
859 				root->left = y->right;
860 				y->right = root;
861 				vm_map_entry_set_max_free(root);
862 				root = y->left;
863 				y->left = rlist;
864 				rlist = y;
865 			} else {
866 				/* Put root on rlist. */
867 				root->left = rlist;
868 				rlist = root;
869 				root = y;
870 			}
871 		} else if (addr >= root->end) {
872 			y = root->right;
873 			if (y == NULL)
874 				break;
875 			if (addr >= y->end && y->right != NULL) {
876 				/* Rotate left and put y on llist. */
877 				root->right = y->left;
878 				y->left = root;
879 				vm_map_entry_set_max_free(root);
880 				root = y->right;
881 				y->right = llist;
882 				llist = y;
883 			} else {
884 				/* Put root on llist. */
885 				root->right = llist;
886 				llist = root;
887 				root = y;
888 			}
889 		} else
890 			break;
891 	}
892 
893 	/*
894 	 * Pass Two: Walk back up the two spines, flip the pointers
895 	 * and set max_free.  The subtrees of the root go at the
896 	 * bottom of llist and rlist.
897 	 */
898 	ltree = root->left;
899 	while (llist != NULL) {
900 		y = llist->right;
901 		llist->right = ltree;
902 		vm_map_entry_set_max_free(llist);
903 		ltree = llist;
904 		llist = y;
905 	}
906 	rtree = root->right;
907 	while (rlist != NULL) {
908 		y = rlist->left;
909 		rlist->left = rtree;
910 		vm_map_entry_set_max_free(rlist);
911 		rtree = rlist;
912 		rlist = y;
913 	}
914 
915 	/*
916 	 * Final assembly: add ltree and rtree as subtrees of root.
917 	 */
918 	root->left = ltree;
919 	root->right = rtree;
920 	vm_map_entry_set_max_free(root);
921 
922 	return (root);
923 }
924 
925 /*
926  *	vm_map_entry_{un,}link:
927  *
928  *	Insert/remove entries from maps.
929  */
930 static void
931 vm_map_entry_link(vm_map_t map,
932 		  vm_map_entry_t after_where,
933 		  vm_map_entry_t entry)
934 {
935 
936 	CTR4(KTR_VM,
937 	    "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
938 	    map->nentries, entry, after_where);
939 	VM_MAP_ASSERT_LOCKED(map);
940 	map->nentries++;
941 	entry->prev = after_where;
942 	entry->next = after_where->next;
943 	entry->next->prev = entry;
944 	after_where->next = entry;
945 
946 	if (after_where != &map->header) {
947 		if (after_where != map->root)
948 			vm_map_entry_splay(after_where->start, map->root);
949 		entry->right = after_where->right;
950 		entry->left = after_where;
951 		after_where->right = NULL;
952 		after_where->adj_free = entry->start - after_where->end;
953 		vm_map_entry_set_max_free(after_where);
954 	} else {
955 		entry->right = map->root;
956 		entry->left = NULL;
957 	}
958 	entry->adj_free = (entry->next == &map->header ? map->max_offset :
959 	    entry->next->start) - entry->end;
960 	vm_map_entry_set_max_free(entry);
961 	map->root = entry;
962 }
963 
964 static void
965 vm_map_entry_unlink(vm_map_t map,
966 		    vm_map_entry_t entry)
967 {
968 	vm_map_entry_t next, prev, root;
969 
970 	VM_MAP_ASSERT_LOCKED(map);
971 	if (entry != map->root)
972 		vm_map_entry_splay(entry->start, map->root);
973 	if (entry->left == NULL)
974 		root = entry->right;
975 	else {
976 		root = vm_map_entry_splay(entry->start, entry->left);
977 		root->right = entry->right;
978 		root->adj_free = (entry->next == &map->header ? map->max_offset :
979 		    entry->next->start) - root->end;
980 		vm_map_entry_set_max_free(root);
981 	}
982 	map->root = root;
983 
984 	prev = entry->prev;
985 	next = entry->next;
986 	next->prev = prev;
987 	prev->next = next;
988 	map->nentries--;
989 	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
990 	    map->nentries, entry);
991 }
992 
993 /*
994  *	vm_map_entry_resize_free:
995  *
996  *	Recompute the amount of free space following a vm_map_entry
997  *	and propagate that value up the tree.  Call this function after
998  *	resizing a map entry in-place, that is, without a call to
999  *	vm_map_entry_link() or _unlink().
1000  *
1001  *	The map must be locked, and leaves it so.
1002  */
1003 static void
1004 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
1005 {
1006 
1007 	/*
1008 	 * Using splay trees without parent pointers, propagating
1009 	 * max_free up the tree is done by moving the entry to the
1010 	 * root and making the change there.
1011 	 */
1012 	if (entry != map->root)
1013 		map->root = vm_map_entry_splay(entry->start, map->root);
1014 
1015 	entry->adj_free = (entry->next == &map->header ? map->max_offset :
1016 	    entry->next->start) - entry->end;
1017 	vm_map_entry_set_max_free(entry);
1018 }
1019 
1020 /*
1021  *	vm_map_lookup_entry:	[ internal use only ]
1022  *
1023  *	Finds the map entry containing (or
1024  *	immediately preceding) the specified address
1025  *	in the given map; the entry is returned
1026  *	in the "entry" parameter.  The boolean
1027  *	result indicates whether the address is
1028  *	actually contained in the map.
1029  */
1030 boolean_t
1031 vm_map_lookup_entry(
1032 	vm_map_t map,
1033 	vm_offset_t address,
1034 	vm_map_entry_t *entry)	/* OUT */
1035 {
1036 	vm_map_entry_t cur;
1037 	boolean_t locked;
1038 
1039 	/*
1040 	 * If the map is empty, then the map entry immediately preceding
1041 	 * "address" is the map's header.
1042 	 */
1043 	cur = map->root;
1044 	if (cur == NULL)
1045 		*entry = &map->header;
1046 	else if (address >= cur->start && cur->end > address) {
1047 		*entry = cur;
1048 		return (TRUE);
1049 	} else if ((locked = vm_map_locked(map)) ||
1050 	    sx_try_upgrade(&map->lock)) {
1051 		/*
1052 		 * Splay requires a write lock on the map.  However, it only
1053 		 * restructures the binary search tree; it does not otherwise
1054 		 * change the map.  Thus, the map's timestamp need not change
1055 		 * on a temporary upgrade.
1056 		 */
1057 		map->root = cur = vm_map_entry_splay(address, cur);
1058 		if (!locked)
1059 			sx_downgrade(&map->lock);
1060 
1061 		/*
1062 		 * If "address" is contained within a map entry, the new root
1063 		 * is that map entry.  Otherwise, the new root is a map entry
1064 		 * immediately before or after "address".
1065 		 */
1066 		if (address >= cur->start) {
1067 			*entry = cur;
1068 			if (cur->end > address)
1069 				return (TRUE);
1070 		} else
1071 			*entry = cur->prev;
1072 	} else
1073 		/*
1074 		 * Since the map is only locked for read access, perform a
1075 		 * standard binary search tree lookup for "address".
1076 		 */
1077 		for (;;) {
1078 			if (address < cur->start) {
1079 				if (cur->left == NULL) {
1080 					*entry = cur->prev;
1081 					break;
1082 				}
1083 				cur = cur->left;
1084 			} else if (cur->end > address) {
1085 				*entry = cur;
1086 				return (TRUE);
1087 			} else {
1088 				if (cur->right == NULL) {
1089 					*entry = cur;
1090 					break;
1091 				}
1092 				cur = cur->right;
1093 			}
1094 		}
1095 	return (FALSE);
1096 }
1097 
1098 /*
1099  *	vm_map_insert:
1100  *
1101  *	Inserts the given whole VM object into the target
1102  *	map at the specified address range.  The object's
1103  *	size should match that of the address range.
1104  *
1105  *	Requires that the map be locked, and leaves it so.
1106  *
1107  *	If object is non-NULL, ref count must be bumped by caller
1108  *	prior to making call to account for the new entry.
1109  */
1110 int
1111 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1112 	      vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max,
1113 	      int cow)
1114 {
1115 	vm_map_entry_t new_entry;
1116 	vm_map_entry_t prev_entry;
1117 	vm_map_entry_t temp_entry;
1118 	vm_eflags_t protoeflags;
1119 	struct ucred *cred;
1120 	vm_inherit_t inheritance;
1121 	boolean_t charge_prev_obj;
1122 
1123 	VM_MAP_ASSERT_LOCKED(map);
1124 
1125 	/*
1126 	 * Check that the start and end points are not bogus.
1127 	 */
1128 	if ((start < map->min_offset) || (end > map->max_offset) ||
1129 	    (start >= end))
1130 		return (KERN_INVALID_ADDRESS);
1131 
1132 	/*
1133 	 * Find the entry prior to the proposed starting address; if it's part
1134 	 * of an existing entry, this range is bogus.
1135 	 */
1136 	if (vm_map_lookup_entry(map, start, &temp_entry))
1137 		return (KERN_NO_SPACE);
1138 
1139 	prev_entry = temp_entry;
1140 
1141 	/*
1142 	 * Assert that the next entry doesn't overlap the end point.
1143 	 */
1144 	if ((prev_entry->next != &map->header) &&
1145 	    (prev_entry->next->start < end))
1146 		return (KERN_NO_SPACE);
1147 
1148 	protoeflags = 0;
1149 	charge_prev_obj = FALSE;
1150 
1151 	if (cow & MAP_COPY_ON_WRITE)
1152 		protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
1153 
1154 	if (cow & MAP_NOFAULT) {
1155 		protoeflags |= MAP_ENTRY_NOFAULT;
1156 
1157 		KASSERT(object == NULL,
1158 			("vm_map_insert: paradoxical MAP_NOFAULT request"));
1159 	}
1160 	if (cow & MAP_DISABLE_SYNCER)
1161 		protoeflags |= MAP_ENTRY_NOSYNC;
1162 	if (cow & MAP_DISABLE_COREDUMP)
1163 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1164 	if (cow & MAP_VN_WRITECOUNT)
1165 		protoeflags |= MAP_ENTRY_VN_WRITECNT;
1166 	if (cow & MAP_INHERIT_SHARE)
1167 		inheritance = VM_INHERIT_SHARE;
1168 	else
1169 		inheritance = VM_INHERIT_DEFAULT;
1170 
1171 	cred = NULL;
1172 	KASSERT((object != kmem_object && object != kernel_object) ||
1173 	    ((object == kmem_object || object == kernel_object) &&
1174 		!(protoeflags & MAP_ENTRY_NEEDS_COPY)),
1175 	    ("kmem or kernel object and cow"));
1176 	if (cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT))
1177 		goto charged;
1178 	if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1179 	    ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1180 		if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1181 			return (KERN_RESOURCE_SHORTAGE);
1182 		KASSERT(object == NULL || (protoeflags & MAP_ENTRY_NEEDS_COPY) ||
1183 		    object->cred == NULL,
1184 		    ("OVERCOMMIT: vm_map_insert o %p", object));
1185 		cred = curthread->td_ucred;
1186 		crhold(cred);
1187 		if (object == NULL && !(protoeflags & MAP_ENTRY_NEEDS_COPY))
1188 			charge_prev_obj = TRUE;
1189 	}
1190 
1191 charged:
1192 	/* Expand the kernel pmap, if necessary. */
1193 	if (map == kernel_map && end > kernel_vm_end)
1194 		pmap_growkernel(end);
1195 	if (object != NULL) {
1196 		/*
1197 		 * OBJ_ONEMAPPING must be cleared unless this mapping
1198 		 * is trivially proven to be the only mapping for any
1199 		 * of the object's pages.  (Object granularity
1200 		 * reference counting is insufficient to recognize
1201 		 * aliases with precision.)
1202 		 */
1203 		VM_OBJECT_WLOCK(object);
1204 		if (object->ref_count > 1 || object->shadow_count != 0)
1205 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
1206 		VM_OBJECT_WUNLOCK(object);
1207 	}
1208 	else if ((prev_entry != &map->header) &&
1209 		 (prev_entry->eflags == protoeflags) &&
1210 		 (cow & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) == 0 &&
1211 		 (prev_entry->end == start) &&
1212 		 (prev_entry->wired_count == 0) &&
1213 		 (prev_entry->cred == cred ||
1214 		  (prev_entry->object.vm_object != NULL &&
1215 		   (prev_entry->object.vm_object->cred == cred))) &&
1216 		   vm_object_coalesce(prev_entry->object.vm_object,
1217 		       prev_entry->offset,
1218 		       (vm_size_t)(prev_entry->end - prev_entry->start),
1219 		       (vm_size_t)(end - prev_entry->end), charge_prev_obj)) {
1220 		/*
1221 		 * We were able to extend the object.  Determine if we
1222 		 * can extend the previous map entry to include the
1223 		 * new range as well.
1224 		 */
1225 		if ((prev_entry->inheritance == inheritance) &&
1226 		    (prev_entry->protection == prot) &&
1227 		    (prev_entry->max_protection == max)) {
1228 			map->size += (end - prev_entry->end);
1229 			prev_entry->end = end;
1230 			vm_map_entry_resize_free(map, prev_entry);
1231 			vm_map_simplify_entry(map, prev_entry);
1232 			if (cred != NULL)
1233 				crfree(cred);
1234 			return (KERN_SUCCESS);
1235 		}
1236 
1237 		/*
1238 		 * If we can extend the object but cannot extend the
1239 		 * map entry, we have to create a new map entry.  We
1240 		 * must bump the ref count on the extended object to
1241 		 * account for it.  object may be NULL.
1242 		 */
1243 		object = prev_entry->object.vm_object;
1244 		offset = prev_entry->offset +
1245 			(prev_entry->end - prev_entry->start);
1246 		vm_object_reference(object);
1247 		if (cred != NULL && object != NULL && object->cred != NULL &&
1248 		    !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1249 			/* Object already accounts for this uid. */
1250 			crfree(cred);
1251 			cred = NULL;
1252 		}
1253 	}
1254 
1255 	/*
1256 	 * NOTE: if conditionals fail, object can be NULL here.  This occurs
1257 	 * in things like the buffer map where we manage kva but do not manage
1258 	 * backing objects.
1259 	 */
1260 
1261 	/*
1262 	 * Create a new entry
1263 	 */
1264 	new_entry = vm_map_entry_create(map);
1265 	new_entry->start = start;
1266 	new_entry->end = end;
1267 	new_entry->cred = NULL;
1268 
1269 	new_entry->eflags = protoeflags;
1270 	new_entry->object.vm_object = object;
1271 	new_entry->offset = offset;
1272 	new_entry->avail_ssize = 0;
1273 
1274 	new_entry->inheritance = inheritance;
1275 	new_entry->protection = prot;
1276 	new_entry->max_protection = max;
1277 	new_entry->wired_count = 0;
1278 	new_entry->wiring_thread = NULL;
1279 	new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1280 	new_entry->next_read = OFF_TO_IDX(offset);
1281 
1282 	KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1283 	    ("OVERCOMMIT: vm_map_insert leaks vm_map %p", new_entry));
1284 	new_entry->cred = cred;
1285 
1286 	/*
1287 	 * Insert the new entry into the list
1288 	 */
1289 	vm_map_entry_link(map, prev_entry, new_entry);
1290 	map->size += new_entry->end - new_entry->start;
1291 
1292 	/*
1293 	 * It may be possible to merge the new entry with the next and/or
1294 	 * previous entries.  However, due to MAP_STACK_* being a hack, a
1295 	 * panic can result from merging such entries.
1296 	 */
1297 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0)
1298 		vm_map_simplify_entry(map, new_entry);
1299 
1300 	if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
1301 		vm_map_pmap_enter(map, start, prot,
1302 				    object, OFF_TO_IDX(offset), end - start,
1303 				    cow & MAP_PREFAULT_PARTIAL);
1304 	}
1305 
1306 	return (KERN_SUCCESS);
1307 }
1308 
1309 /*
1310  *	vm_map_findspace:
1311  *
1312  *	Find the first fit (lowest VM address) for "length" free bytes
1313  *	beginning at address >= start in the given map.
1314  *
1315  *	In a vm_map_entry, "adj_free" is the amount of free space
1316  *	adjacent (higher address) to this entry, and "max_free" is the
1317  *	maximum amount of contiguous free space in its subtree.  This
1318  *	allows finding a free region in one path down the tree, so
1319  *	O(log n) amortized with splay trees.
1320  *
1321  *	The map must be locked, and leaves it so.
1322  *
1323  *	Returns: 0 on success, and starting address in *addr,
1324  *		 1 if insufficient space.
1325  */
1326 int
1327 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1328     vm_offset_t *addr)	/* OUT */
1329 {
1330 	vm_map_entry_t entry;
1331 	vm_offset_t st;
1332 
1333 	/*
1334 	 * Request must fit within min/max VM address and must avoid
1335 	 * address wrap.
1336 	 */
1337 	if (start < map->min_offset)
1338 		start = map->min_offset;
1339 	if (start + length > map->max_offset || start + length < start)
1340 		return (1);
1341 
1342 	/* Empty tree means wide open address space. */
1343 	if (map->root == NULL) {
1344 		*addr = start;
1345 		return (0);
1346 	}
1347 
1348 	/*
1349 	 * After splay, if start comes before root node, then there
1350 	 * must be a gap from start to the root.
1351 	 */
1352 	map->root = vm_map_entry_splay(start, map->root);
1353 	if (start + length <= map->root->start) {
1354 		*addr = start;
1355 		return (0);
1356 	}
1357 
1358 	/*
1359 	 * Root is the last node that might begin its gap before
1360 	 * start, and this is the last comparison where address
1361 	 * wrap might be a problem.
1362 	 */
1363 	st = (start > map->root->end) ? start : map->root->end;
1364 	if (length <= map->root->end + map->root->adj_free - st) {
1365 		*addr = st;
1366 		return (0);
1367 	}
1368 
1369 	/* With max_free, can immediately tell if no solution. */
1370 	entry = map->root->right;
1371 	if (entry == NULL || length > entry->max_free)
1372 		return (1);
1373 
1374 	/*
1375 	 * Search the right subtree in the order: left subtree, root,
1376 	 * right subtree (first fit).  The previous splay implies that
1377 	 * all regions in the right subtree have addresses > start.
1378 	 */
1379 	while (entry != NULL) {
1380 		if (entry->left != NULL && entry->left->max_free >= length)
1381 			entry = entry->left;
1382 		else if (entry->adj_free >= length) {
1383 			*addr = entry->end;
1384 			return (0);
1385 		} else
1386 			entry = entry->right;
1387 	}
1388 
1389 	/* Can't get here, so panic if we do. */
1390 	panic("vm_map_findspace: max_free corrupt");
1391 }
1392 
1393 int
1394 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1395     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1396     vm_prot_t max, int cow)
1397 {
1398 	vm_offset_t end;
1399 	int result;
1400 
1401 	end = start + length;
1402 	vm_map_lock(map);
1403 	VM_MAP_RANGE_CHECK(map, start, end);
1404 	(void) vm_map_delete(map, start, end);
1405 	result = vm_map_insert(map, object, offset, start, end, prot,
1406 	    max, cow);
1407 	vm_map_unlock(map);
1408 	return (result);
1409 }
1410 
1411 /*
1412  *	vm_map_find finds an unallocated region in the target address
1413  *	map with the given length.  The search is defined to be
1414  *	first-fit from the specified address; the region found is
1415  *	returned in the same parameter.
1416  *
1417  *	If object is non-NULL, ref count must be bumped by caller
1418  *	prior to making call to account for the new entry.
1419  */
1420 int
1421 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1422 	    vm_offset_t *addr,	/* IN/OUT */
1423 	    vm_size_t length, vm_offset_t max_addr, int find_space,
1424 	    vm_prot_t prot, vm_prot_t max, int cow)
1425 {
1426 	vm_offset_t alignment, initial_addr, start;
1427 	int result;
1428 
1429 	if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
1430 	    (object->flags & OBJ_COLORED) == 0))
1431 		find_space = VMFS_ANY_SPACE;
1432 	if (find_space >> 8 != 0) {
1433 		KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
1434 		alignment = (vm_offset_t)1 << (find_space >> 8);
1435 	} else
1436 		alignment = 0;
1437 	initial_addr = *addr;
1438 again:
1439 	start = initial_addr;
1440 	vm_map_lock(map);
1441 	do {
1442 		if (find_space != VMFS_NO_SPACE) {
1443 			if (vm_map_findspace(map, start, length, addr) ||
1444 			    (max_addr != 0 && *addr + length > max_addr)) {
1445 				vm_map_unlock(map);
1446 				if (find_space == VMFS_OPTIMAL_SPACE) {
1447 					find_space = VMFS_ANY_SPACE;
1448 					goto again;
1449 				}
1450 				return (KERN_NO_SPACE);
1451 			}
1452 			switch (find_space) {
1453 			case VMFS_SUPER_SPACE:
1454 			case VMFS_OPTIMAL_SPACE:
1455 				pmap_align_superpage(object, offset, addr,
1456 				    length);
1457 				break;
1458 			case VMFS_ANY_SPACE:
1459 				break;
1460 			default:
1461 				if ((*addr & (alignment - 1)) != 0) {
1462 					*addr &= ~(alignment - 1);
1463 					*addr += alignment;
1464 				}
1465 				break;
1466 			}
1467 
1468 			start = *addr;
1469 		}
1470 		result = vm_map_insert(map, object, offset, start, start +
1471 		    length, prot, max, cow);
1472 	} while (result == KERN_NO_SPACE && find_space != VMFS_NO_SPACE &&
1473 	    find_space != VMFS_ANY_SPACE);
1474 	vm_map_unlock(map);
1475 	return (result);
1476 }
1477 
1478 /*
1479  *	vm_map_simplify_entry:
1480  *
1481  *	Simplify the given map entry by merging with either neighbor.  This
1482  *	routine also has the ability to merge with both neighbors.
1483  *
1484  *	The map must be locked.
1485  *
1486  *	This routine guarentees that the passed entry remains valid (though
1487  *	possibly extended).  When merging, this routine may delete one or
1488  *	both neighbors.
1489  */
1490 void
1491 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1492 {
1493 	vm_map_entry_t next, prev;
1494 	vm_size_t prevsize, esize;
1495 
1496 	if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP))
1497 		return;
1498 
1499 	prev = entry->prev;
1500 	if (prev != &map->header) {
1501 		prevsize = prev->end - prev->start;
1502 		if ( (prev->end == entry->start) &&
1503 		     (prev->object.vm_object == entry->object.vm_object) &&
1504 		     (!prev->object.vm_object ||
1505 			(prev->offset + prevsize == entry->offset)) &&
1506 		     (prev->eflags == entry->eflags) &&
1507 		     (prev->protection == entry->protection) &&
1508 		     (prev->max_protection == entry->max_protection) &&
1509 		     (prev->inheritance == entry->inheritance) &&
1510 		     (prev->wired_count == entry->wired_count) &&
1511 		     (prev->cred == entry->cred)) {
1512 			vm_map_entry_unlink(map, prev);
1513 			entry->start = prev->start;
1514 			entry->offset = prev->offset;
1515 			if (entry->prev != &map->header)
1516 				vm_map_entry_resize_free(map, entry->prev);
1517 
1518 			/*
1519 			 * If the backing object is a vnode object,
1520 			 * vm_object_deallocate() calls vrele().
1521 			 * However, vrele() does not lock the vnode
1522 			 * because the vnode has additional
1523 			 * references.  Thus, the map lock can be kept
1524 			 * without causing a lock-order reversal with
1525 			 * the vnode lock.
1526 			 *
1527 			 * Since we count the number of virtual page
1528 			 * mappings in object->un_pager.vnp.writemappings,
1529 			 * the writemappings value should not be adjusted
1530 			 * when the entry is disposed of.
1531 			 */
1532 			if (prev->object.vm_object)
1533 				vm_object_deallocate(prev->object.vm_object);
1534 			if (prev->cred != NULL)
1535 				crfree(prev->cred);
1536 			vm_map_entry_dispose(map, prev);
1537 		}
1538 	}
1539 
1540 	next = entry->next;
1541 	if (next != &map->header) {
1542 		esize = entry->end - entry->start;
1543 		if ((entry->end == next->start) &&
1544 		    (next->object.vm_object == entry->object.vm_object) &&
1545 		     (!entry->object.vm_object ||
1546 			(entry->offset + esize == next->offset)) &&
1547 		    (next->eflags == entry->eflags) &&
1548 		    (next->protection == entry->protection) &&
1549 		    (next->max_protection == entry->max_protection) &&
1550 		    (next->inheritance == entry->inheritance) &&
1551 		    (next->wired_count == entry->wired_count) &&
1552 		    (next->cred == entry->cred)) {
1553 			vm_map_entry_unlink(map, next);
1554 			entry->end = next->end;
1555 			vm_map_entry_resize_free(map, entry);
1556 
1557 			/*
1558 			 * See comment above.
1559 			 */
1560 			if (next->object.vm_object)
1561 				vm_object_deallocate(next->object.vm_object);
1562 			if (next->cred != NULL)
1563 				crfree(next->cred);
1564 			vm_map_entry_dispose(map, next);
1565 		}
1566 	}
1567 }
1568 /*
1569  *	vm_map_clip_start:	[ internal use only ]
1570  *
1571  *	Asserts that the given entry begins at or after
1572  *	the specified address; if necessary,
1573  *	it splits the entry into two.
1574  */
1575 #define vm_map_clip_start(map, entry, startaddr) \
1576 { \
1577 	if (startaddr > entry->start) \
1578 		_vm_map_clip_start(map, entry, startaddr); \
1579 }
1580 
1581 /*
1582  *	This routine is called only when it is known that
1583  *	the entry must be split.
1584  */
1585 static void
1586 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1587 {
1588 	vm_map_entry_t new_entry;
1589 
1590 	VM_MAP_ASSERT_LOCKED(map);
1591 
1592 	/*
1593 	 * Split off the front portion -- note that we must insert the new
1594 	 * entry BEFORE this one, so that this entry has the specified
1595 	 * starting address.
1596 	 */
1597 	vm_map_simplify_entry(map, entry);
1598 
1599 	/*
1600 	 * If there is no object backing this entry, we might as well create
1601 	 * one now.  If we defer it, an object can get created after the map
1602 	 * is clipped, and individual objects will be created for the split-up
1603 	 * map.  This is a bit of a hack, but is also about the best place to
1604 	 * put this improvement.
1605 	 */
1606 	if (entry->object.vm_object == NULL && !map->system_map) {
1607 		vm_object_t object;
1608 		object = vm_object_allocate(OBJT_DEFAULT,
1609 				atop(entry->end - entry->start));
1610 		entry->object.vm_object = object;
1611 		entry->offset = 0;
1612 		if (entry->cred != NULL) {
1613 			object->cred = entry->cred;
1614 			object->charge = entry->end - entry->start;
1615 			entry->cred = NULL;
1616 		}
1617 	} else if (entry->object.vm_object != NULL &&
1618 		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1619 		   entry->cred != NULL) {
1620 		VM_OBJECT_WLOCK(entry->object.vm_object);
1621 		KASSERT(entry->object.vm_object->cred == NULL,
1622 		    ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
1623 		entry->object.vm_object->cred = entry->cred;
1624 		entry->object.vm_object->charge = entry->end - entry->start;
1625 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
1626 		entry->cred = NULL;
1627 	}
1628 
1629 	new_entry = vm_map_entry_create(map);
1630 	*new_entry = *entry;
1631 
1632 	new_entry->end = start;
1633 	entry->offset += (start - entry->start);
1634 	entry->start = start;
1635 	if (new_entry->cred != NULL)
1636 		crhold(entry->cred);
1637 
1638 	vm_map_entry_link(map, entry->prev, new_entry);
1639 
1640 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1641 		vm_object_reference(new_entry->object.vm_object);
1642 		/*
1643 		 * The object->un_pager.vnp.writemappings for the
1644 		 * object of MAP_ENTRY_VN_WRITECNT type entry shall be
1645 		 * kept as is here.  The virtual pages are
1646 		 * re-distributed among the clipped entries, so the sum is
1647 		 * left the same.
1648 		 */
1649 	}
1650 }
1651 
1652 /*
1653  *	vm_map_clip_end:	[ internal use only ]
1654  *
1655  *	Asserts that the given entry ends at or before
1656  *	the specified address; if necessary,
1657  *	it splits the entry into two.
1658  */
1659 #define vm_map_clip_end(map, entry, endaddr) \
1660 { \
1661 	if ((endaddr) < (entry->end)) \
1662 		_vm_map_clip_end((map), (entry), (endaddr)); \
1663 }
1664 
1665 /*
1666  *	This routine is called only when it is known that
1667  *	the entry must be split.
1668  */
1669 static void
1670 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1671 {
1672 	vm_map_entry_t new_entry;
1673 
1674 	VM_MAP_ASSERT_LOCKED(map);
1675 
1676 	/*
1677 	 * If there is no object backing this entry, we might as well create
1678 	 * one now.  If we defer it, an object can get created after the map
1679 	 * is clipped, and individual objects will be created for the split-up
1680 	 * map.  This is a bit of a hack, but is also about the best place to
1681 	 * put this improvement.
1682 	 */
1683 	if (entry->object.vm_object == NULL && !map->system_map) {
1684 		vm_object_t object;
1685 		object = vm_object_allocate(OBJT_DEFAULT,
1686 				atop(entry->end - entry->start));
1687 		entry->object.vm_object = object;
1688 		entry->offset = 0;
1689 		if (entry->cred != NULL) {
1690 			object->cred = entry->cred;
1691 			object->charge = entry->end - entry->start;
1692 			entry->cred = NULL;
1693 		}
1694 	} else if (entry->object.vm_object != NULL &&
1695 		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1696 		   entry->cred != NULL) {
1697 		VM_OBJECT_WLOCK(entry->object.vm_object);
1698 		KASSERT(entry->object.vm_object->cred == NULL,
1699 		    ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
1700 		entry->object.vm_object->cred = entry->cred;
1701 		entry->object.vm_object->charge = entry->end - entry->start;
1702 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
1703 		entry->cred = NULL;
1704 	}
1705 
1706 	/*
1707 	 * Create a new entry and insert it AFTER the specified entry
1708 	 */
1709 	new_entry = vm_map_entry_create(map);
1710 	*new_entry = *entry;
1711 
1712 	new_entry->start = entry->end = end;
1713 	new_entry->offset += (end - entry->start);
1714 	if (new_entry->cred != NULL)
1715 		crhold(entry->cred);
1716 
1717 	vm_map_entry_link(map, entry, new_entry);
1718 
1719 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1720 		vm_object_reference(new_entry->object.vm_object);
1721 	}
1722 }
1723 
1724 /*
1725  *	vm_map_submap:		[ kernel use only ]
1726  *
1727  *	Mark the given range as handled by a subordinate map.
1728  *
1729  *	This range must have been created with vm_map_find,
1730  *	and no other operations may have been performed on this
1731  *	range prior to calling vm_map_submap.
1732  *
1733  *	Only a limited number of operations can be performed
1734  *	within this rage after calling vm_map_submap:
1735  *		vm_fault
1736  *	[Don't try vm_map_copy!]
1737  *
1738  *	To remove a submapping, one must first remove the
1739  *	range from the superior map, and then destroy the
1740  *	submap (if desired).  [Better yet, don't try it.]
1741  */
1742 int
1743 vm_map_submap(
1744 	vm_map_t map,
1745 	vm_offset_t start,
1746 	vm_offset_t end,
1747 	vm_map_t submap)
1748 {
1749 	vm_map_entry_t entry;
1750 	int result = KERN_INVALID_ARGUMENT;
1751 
1752 	vm_map_lock(map);
1753 
1754 	VM_MAP_RANGE_CHECK(map, start, end);
1755 
1756 	if (vm_map_lookup_entry(map, start, &entry)) {
1757 		vm_map_clip_start(map, entry, start);
1758 	} else
1759 		entry = entry->next;
1760 
1761 	vm_map_clip_end(map, entry, end);
1762 
1763 	if ((entry->start == start) && (entry->end == end) &&
1764 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1765 	    (entry->object.vm_object == NULL)) {
1766 		entry->object.sub_map = submap;
1767 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1768 		result = KERN_SUCCESS;
1769 	}
1770 	vm_map_unlock(map);
1771 
1772 	return (result);
1773 }
1774 
1775 /*
1776  * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
1777  */
1778 #define	MAX_INIT_PT	96
1779 
1780 /*
1781  *	vm_map_pmap_enter:
1782  *
1783  *	Preload the specified map's pmap with mappings to the specified
1784  *	object's memory-resident pages.  No further physical pages are
1785  *	allocated, and no further virtual pages are retrieved from secondary
1786  *	storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
1787  *	limited number of page mappings are created at the low-end of the
1788  *	specified address range.  (For this purpose, a superpage mapping
1789  *	counts as one page mapping.)  Otherwise, all resident pages within
1790  *	the specified address range are mapped.  Because these mappings are
1791  *	being created speculatively, cached pages are not reactivated and
1792  *	mapped.
1793  */
1794 void
1795 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
1796     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
1797 {
1798 	vm_offset_t start;
1799 	vm_page_t p, p_start;
1800 	vm_pindex_t mask, psize, threshold, tmpidx;
1801 
1802 	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
1803 		return;
1804 	VM_OBJECT_RLOCK(object);
1805 	if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1806 		VM_OBJECT_RUNLOCK(object);
1807 		VM_OBJECT_WLOCK(object);
1808 		if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1809 			pmap_object_init_pt(map->pmap, addr, object, pindex,
1810 			    size);
1811 			VM_OBJECT_WUNLOCK(object);
1812 			return;
1813 		}
1814 		VM_OBJECT_LOCK_DOWNGRADE(object);
1815 	}
1816 
1817 	psize = atop(size);
1818 	if (psize + pindex > object->size) {
1819 		if (object->size < pindex) {
1820 			VM_OBJECT_RUNLOCK(object);
1821 			return;
1822 		}
1823 		psize = object->size - pindex;
1824 	}
1825 
1826 	start = 0;
1827 	p_start = NULL;
1828 	threshold = MAX_INIT_PT;
1829 
1830 	p = vm_page_find_least(object, pindex);
1831 	/*
1832 	 * Assert: the variable p is either (1) the page with the
1833 	 * least pindex greater than or equal to the parameter pindex
1834 	 * or (2) NULL.
1835 	 */
1836 	for (;
1837 	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
1838 	     p = TAILQ_NEXT(p, listq)) {
1839 		/*
1840 		 * don't allow an madvise to blow away our really
1841 		 * free pages allocating pv entries.
1842 		 */
1843 		if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
1844 		    vm_cnt.v_free_count < vm_cnt.v_free_reserved) ||
1845 		    ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
1846 		    tmpidx >= threshold)) {
1847 			psize = tmpidx;
1848 			break;
1849 		}
1850 		if (p->valid == VM_PAGE_BITS_ALL) {
1851 			if (p_start == NULL) {
1852 				start = addr + ptoa(tmpidx);
1853 				p_start = p;
1854 			}
1855 			/* Jump ahead if a superpage mapping is possible. */
1856 			if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
1857 			    (pagesizes[p->psind] - 1)) == 0) {
1858 				mask = atop(pagesizes[p->psind]) - 1;
1859 				if (tmpidx + mask < psize &&
1860 				    vm_page_ps_is_valid(p)) {
1861 					p += mask;
1862 					threshold += mask;
1863 				}
1864 			}
1865 		} else if (p_start != NULL) {
1866 			pmap_enter_object(map->pmap, start, addr +
1867 			    ptoa(tmpidx), p_start, prot);
1868 			p_start = NULL;
1869 		}
1870 	}
1871 	if (p_start != NULL)
1872 		pmap_enter_object(map->pmap, start, addr + ptoa(psize),
1873 		    p_start, prot);
1874 	VM_OBJECT_RUNLOCK(object);
1875 }
1876 
1877 /*
1878  *	vm_map_protect:
1879  *
1880  *	Sets the protection of the specified address
1881  *	region in the target map.  If "set_max" is
1882  *	specified, the maximum protection is to be set;
1883  *	otherwise, only the current protection is affected.
1884  */
1885 int
1886 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1887 	       vm_prot_t new_prot, boolean_t set_max)
1888 {
1889 	vm_map_entry_t current, entry;
1890 	vm_object_t obj;
1891 	struct ucred *cred;
1892 	vm_prot_t old_prot;
1893 
1894 	if (start == end)
1895 		return (KERN_SUCCESS);
1896 
1897 	vm_map_lock(map);
1898 
1899 	VM_MAP_RANGE_CHECK(map, start, end);
1900 
1901 	if (vm_map_lookup_entry(map, start, &entry)) {
1902 		vm_map_clip_start(map, entry, start);
1903 	} else {
1904 		entry = entry->next;
1905 	}
1906 
1907 	/*
1908 	 * Make a first pass to check for protection violations.
1909 	 */
1910 	current = entry;
1911 	while ((current != &map->header) && (current->start < end)) {
1912 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1913 			vm_map_unlock(map);
1914 			return (KERN_INVALID_ARGUMENT);
1915 		}
1916 		if ((new_prot & current->max_protection) != new_prot) {
1917 			vm_map_unlock(map);
1918 			return (KERN_PROTECTION_FAILURE);
1919 		}
1920 		current = current->next;
1921 	}
1922 
1923 
1924 	/*
1925 	 * Do an accounting pass for private read-only mappings that
1926 	 * now will do cow due to allowed write (e.g. debugger sets
1927 	 * breakpoint on text segment)
1928 	 */
1929 	for (current = entry; (current != &map->header) &&
1930 	     (current->start < end); current = current->next) {
1931 
1932 		vm_map_clip_end(map, current, end);
1933 
1934 		if (set_max ||
1935 		    ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
1936 		    ENTRY_CHARGED(current)) {
1937 			continue;
1938 		}
1939 
1940 		cred = curthread->td_ucred;
1941 		obj = current->object.vm_object;
1942 
1943 		if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
1944 			if (!swap_reserve(current->end - current->start)) {
1945 				vm_map_unlock(map);
1946 				return (KERN_RESOURCE_SHORTAGE);
1947 			}
1948 			crhold(cred);
1949 			current->cred = cred;
1950 			continue;
1951 		}
1952 
1953 		VM_OBJECT_WLOCK(obj);
1954 		if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
1955 			VM_OBJECT_WUNLOCK(obj);
1956 			continue;
1957 		}
1958 
1959 		/*
1960 		 * Charge for the whole object allocation now, since
1961 		 * we cannot distinguish between non-charged and
1962 		 * charged clipped mapping of the same object later.
1963 		 */
1964 		KASSERT(obj->charge == 0,
1965 		    ("vm_map_protect: object %p overcharged (entry %p)",
1966 		    obj, current));
1967 		if (!swap_reserve(ptoa(obj->size))) {
1968 			VM_OBJECT_WUNLOCK(obj);
1969 			vm_map_unlock(map);
1970 			return (KERN_RESOURCE_SHORTAGE);
1971 		}
1972 
1973 		crhold(cred);
1974 		obj->cred = cred;
1975 		obj->charge = ptoa(obj->size);
1976 		VM_OBJECT_WUNLOCK(obj);
1977 	}
1978 
1979 	/*
1980 	 * Go back and fix up protections. [Note that clipping is not
1981 	 * necessary the second time.]
1982 	 */
1983 	current = entry;
1984 	while ((current != &map->header) && (current->start < end)) {
1985 		old_prot = current->protection;
1986 
1987 		if (set_max)
1988 			current->protection =
1989 			    (current->max_protection = new_prot) &
1990 			    old_prot;
1991 		else
1992 			current->protection = new_prot;
1993 
1994 		/*
1995 		 * For user wired map entries, the normal lazy evaluation of
1996 		 * write access upgrades through soft page faults is
1997 		 * undesirable.  Instead, immediately copy any pages that are
1998 		 * copy-on-write and enable write access in the physical map.
1999 		 */
2000 		if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2001 		    (current->protection & VM_PROT_WRITE) != 0 &&
2002 		    (old_prot & VM_PROT_WRITE) == 0)
2003 			vm_fault_copy_entry(map, map, current, current, NULL);
2004 
2005 		/*
2006 		 * When restricting access, update the physical map.  Worry
2007 		 * about copy-on-write here.
2008 		 */
2009 		if ((old_prot & ~current->protection) != 0) {
2010 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2011 							VM_PROT_ALL)
2012 			pmap_protect(map->pmap, current->start,
2013 			    current->end,
2014 			    current->protection & MASK(current));
2015 #undef	MASK
2016 		}
2017 		vm_map_simplify_entry(map, current);
2018 		current = current->next;
2019 	}
2020 	vm_map_unlock(map);
2021 	return (KERN_SUCCESS);
2022 }
2023 
2024 /*
2025  *	vm_map_madvise:
2026  *
2027  *	This routine traverses a processes map handling the madvise
2028  *	system call.  Advisories are classified as either those effecting
2029  *	the vm_map_entry structure, or those effecting the underlying
2030  *	objects.
2031  */
2032 int
2033 vm_map_madvise(
2034 	vm_map_t map,
2035 	vm_offset_t start,
2036 	vm_offset_t end,
2037 	int behav)
2038 {
2039 	vm_map_entry_t current, entry;
2040 	int modify_map = 0;
2041 
2042 	/*
2043 	 * Some madvise calls directly modify the vm_map_entry, in which case
2044 	 * we need to use an exclusive lock on the map and we need to perform
2045 	 * various clipping operations.  Otherwise we only need a read-lock
2046 	 * on the map.
2047 	 */
2048 	switch(behav) {
2049 	case MADV_NORMAL:
2050 	case MADV_SEQUENTIAL:
2051 	case MADV_RANDOM:
2052 	case MADV_NOSYNC:
2053 	case MADV_AUTOSYNC:
2054 	case MADV_NOCORE:
2055 	case MADV_CORE:
2056 		if (start == end)
2057 			return (KERN_SUCCESS);
2058 		modify_map = 1;
2059 		vm_map_lock(map);
2060 		break;
2061 	case MADV_WILLNEED:
2062 	case MADV_DONTNEED:
2063 	case MADV_FREE:
2064 		if (start == end)
2065 			return (KERN_SUCCESS);
2066 		vm_map_lock_read(map);
2067 		break;
2068 	default:
2069 		return (KERN_INVALID_ARGUMENT);
2070 	}
2071 
2072 	/*
2073 	 * Locate starting entry and clip if necessary.
2074 	 */
2075 	VM_MAP_RANGE_CHECK(map, start, end);
2076 
2077 	if (vm_map_lookup_entry(map, start, &entry)) {
2078 		if (modify_map)
2079 			vm_map_clip_start(map, entry, start);
2080 	} else {
2081 		entry = entry->next;
2082 	}
2083 
2084 	if (modify_map) {
2085 		/*
2086 		 * madvise behaviors that are implemented in the vm_map_entry.
2087 		 *
2088 		 * We clip the vm_map_entry so that behavioral changes are
2089 		 * limited to the specified address range.
2090 		 */
2091 		for (current = entry;
2092 		     (current != &map->header) && (current->start < end);
2093 		     current = current->next
2094 		) {
2095 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2096 				continue;
2097 
2098 			vm_map_clip_end(map, current, end);
2099 
2100 			switch (behav) {
2101 			case MADV_NORMAL:
2102 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2103 				break;
2104 			case MADV_SEQUENTIAL:
2105 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2106 				break;
2107 			case MADV_RANDOM:
2108 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2109 				break;
2110 			case MADV_NOSYNC:
2111 				current->eflags |= MAP_ENTRY_NOSYNC;
2112 				break;
2113 			case MADV_AUTOSYNC:
2114 				current->eflags &= ~MAP_ENTRY_NOSYNC;
2115 				break;
2116 			case MADV_NOCORE:
2117 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
2118 				break;
2119 			case MADV_CORE:
2120 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2121 				break;
2122 			default:
2123 				break;
2124 			}
2125 			vm_map_simplify_entry(map, current);
2126 		}
2127 		vm_map_unlock(map);
2128 	} else {
2129 		vm_pindex_t pstart, pend;
2130 
2131 		/*
2132 		 * madvise behaviors that are implemented in the underlying
2133 		 * vm_object.
2134 		 *
2135 		 * Since we don't clip the vm_map_entry, we have to clip
2136 		 * the vm_object pindex and count.
2137 		 */
2138 		for (current = entry;
2139 		     (current != &map->header) && (current->start < end);
2140 		     current = current->next
2141 		) {
2142 			vm_offset_t useEnd, useStart;
2143 
2144 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2145 				continue;
2146 
2147 			pstart = OFF_TO_IDX(current->offset);
2148 			pend = pstart + atop(current->end - current->start);
2149 			useStart = current->start;
2150 			useEnd = current->end;
2151 
2152 			if (current->start < start) {
2153 				pstart += atop(start - current->start);
2154 				useStart = start;
2155 			}
2156 			if (current->end > end) {
2157 				pend -= atop(current->end - end);
2158 				useEnd = end;
2159 			}
2160 
2161 			if (pstart >= pend)
2162 				continue;
2163 
2164 			/*
2165 			 * Perform the pmap_advise() before clearing
2166 			 * PGA_REFERENCED in vm_page_advise().  Otherwise, a
2167 			 * concurrent pmap operation, such as pmap_remove(),
2168 			 * could clear a reference in the pmap and set
2169 			 * PGA_REFERENCED on the page before the pmap_advise()
2170 			 * had completed.  Consequently, the page would appear
2171 			 * referenced based upon an old reference that
2172 			 * occurred before this pmap_advise() ran.
2173 			 */
2174 			if (behav == MADV_DONTNEED || behav == MADV_FREE)
2175 				pmap_advise(map->pmap, useStart, useEnd,
2176 				    behav);
2177 
2178 			vm_object_madvise(current->object.vm_object, pstart,
2179 			    pend, behav);
2180 			if (behav == MADV_WILLNEED) {
2181 				vm_map_pmap_enter(map,
2182 				    useStart,
2183 				    current->protection,
2184 				    current->object.vm_object,
2185 				    pstart,
2186 				    ptoa(pend - pstart),
2187 				    MAP_PREFAULT_MADVISE
2188 				);
2189 			}
2190 		}
2191 		vm_map_unlock_read(map);
2192 	}
2193 	return (0);
2194 }
2195 
2196 
2197 /*
2198  *	vm_map_inherit:
2199  *
2200  *	Sets the inheritance of the specified address
2201  *	range in the target map.  Inheritance
2202  *	affects how the map will be shared with
2203  *	child maps at the time of vmspace_fork.
2204  */
2205 int
2206 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2207 	       vm_inherit_t new_inheritance)
2208 {
2209 	vm_map_entry_t entry;
2210 	vm_map_entry_t temp_entry;
2211 
2212 	switch (new_inheritance) {
2213 	case VM_INHERIT_NONE:
2214 	case VM_INHERIT_COPY:
2215 	case VM_INHERIT_SHARE:
2216 		break;
2217 	default:
2218 		return (KERN_INVALID_ARGUMENT);
2219 	}
2220 	if (start == end)
2221 		return (KERN_SUCCESS);
2222 	vm_map_lock(map);
2223 	VM_MAP_RANGE_CHECK(map, start, end);
2224 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
2225 		entry = temp_entry;
2226 		vm_map_clip_start(map, entry, start);
2227 	} else
2228 		entry = temp_entry->next;
2229 	while ((entry != &map->header) && (entry->start < end)) {
2230 		vm_map_clip_end(map, entry, end);
2231 		entry->inheritance = new_inheritance;
2232 		vm_map_simplify_entry(map, entry);
2233 		entry = entry->next;
2234 	}
2235 	vm_map_unlock(map);
2236 	return (KERN_SUCCESS);
2237 }
2238 
2239 /*
2240  *	vm_map_unwire:
2241  *
2242  *	Implements both kernel and user unwiring.
2243  */
2244 int
2245 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2246     int flags)
2247 {
2248 	vm_map_entry_t entry, first_entry, tmp_entry;
2249 	vm_offset_t saved_start;
2250 	unsigned int last_timestamp;
2251 	int rv;
2252 	boolean_t need_wakeup, result, user_unwire;
2253 
2254 	if (start == end)
2255 		return (KERN_SUCCESS);
2256 	user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2257 	vm_map_lock(map);
2258 	VM_MAP_RANGE_CHECK(map, start, end);
2259 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2260 		if (flags & VM_MAP_WIRE_HOLESOK)
2261 			first_entry = first_entry->next;
2262 		else {
2263 			vm_map_unlock(map);
2264 			return (KERN_INVALID_ADDRESS);
2265 		}
2266 	}
2267 	last_timestamp = map->timestamp;
2268 	entry = first_entry;
2269 	while (entry != &map->header && entry->start < end) {
2270 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2271 			/*
2272 			 * We have not yet clipped the entry.
2273 			 */
2274 			saved_start = (start >= entry->start) ? start :
2275 			    entry->start;
2276 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2277 			if (vm_map_unlock_and_wait(map, 0)) {
2278 				/*
2279 				 * Allow interruption of user unwiring?
2280 				 */
2281 			}
2282 			vm_map_lock(map);
2283 			if (last_timestamp+1 != map->timestamp) {
2284 				/*
2285 				 * Look again for the entry because the map was
2286 				 * modified while it was unlocked.
2287 				 * Specifically, the entry may have been
2288 				 * clipped, merged, or deleted.
2289 				 */
2290 				if (!vm_map_lookup_entry(map, saved_start,
2291 				    &tmp_entry)) {
2292 					if (flags & VM_MAP_WIRE_HOLESOK)
2293 						tmp_entry = tmp_entry->next;
2294 					else {
2295 						if (saved_start == start) {
2296 							/*
2297 							 * First_entry has been deleted.
2298 							 */
2299 							vm_map_unlock(map);
2300 							return (KERN_INVALID_ADDRESS);
2301 						}
2302 						end = saved_start;
2303 						rv = KERN_INVALID_ADDRESS;
2304 						goto done;
2305 					}
2306 				}
2307 				if (entry == first_entry)
2308 					first_entry = tmp_entry;
2309 				else
2310 					first_entry = NULL;
2311 				entry = tmp_entry;
2312 			}
2313 			last_timestamp = map->timestamp;
2314 			continue;
2315 		}
2316 		vm_map_clip_start(map, entry, start);
2317 		vm_map_clip_end(map, entry, end);
2318 		/*
2319 		 * Mark the entry in case the map lock is released.  (See
2320 		 * above.)
2321 		 */
2322 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2323 		    entry->wiring_thread == NULL,
2324 		    ("owned map entry %p", entry));
2325 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2326 		entry->wiring_thread = curthread;
2327 		/*
2328 		 * Check the map for holes in the specified region.
2329 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2330 		 */
2331 		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2332 		    (entry->end < end && (entry->next == &map->header ||
2333 		    entry->next->start > entry->end))) {
2334 			end = entry->end;
2335 			rv = KERN_INVALID_ADDRESS;
2336 			goto done;
2337 		}
2338 		/*
2339 		 * If system unwiring, require that the entry is system wired.
2340 		 */
2341 		if (!user_unwire &&
2342 		    vm_map_entry_system_wired_count(entry) == 0) {
2343 			end = entry->end;
2344 			rv = KERN_INVALID_ARGUMENT;
2345 			goto done;
2346 		}
2347 		entry = entry->next;
2348 	}
2349 	rv = KERN_SUCCESS;
2350 done:
2351 	need_wakeup = FALSE;
2352 	if (first_entry == NULL) {
2353 		result = vm_map_lookup_entry(map, start, &first_entry);
2354 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2355 			first_entry = first_entry->next;
2356 		else
2357 			KASSERT(result, ("vm_map_unwire: lookup failed"));
2358 	}
2359 	for (entry = first_entry; entry != &map->header && entry->start < end;
2360 	    entry = entry->next) {
2361 		/*
2362 		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2363 		 * space in the unwired region could have been mapped
2364 		 * while the map lock was dropped for draining
2365 		 * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
2366 		 * could be simultaneously wiring this new mapping
2367 		 * entry.  Detect these cases and skip any entries
2368 		 * marked as in transition by us.
2369 		 */
2370 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2371 		    entry->wiring_thread != curthread) {
2372 			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2373 			    ("vm_map_unwire: !HOLESOK and new/changed entry"));
2374 			continue;
2375 		}
2376 
2377 		if (rv == KERN_SUCCESS && (!user_unwire ||
2378 		    (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2379 			if (user_unwire)
2380 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2381 			entry->wired_count--;
2382 			if (entry->wired_count == 0) {
2383 				/*
2384 				 * Retain the map lock.
2385 				 */
2386 				vm_fault_unwire(map, entry->start, entry->end,
2387 				    entry->object.vm_object != NULL &&
2388 				    (entry->object.vm_object->flags &
2389 				    OBJ_FICTITIOUS) != 0);
2390 			}
2391 		}
2392 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2393 		    ("vm_map_unwire: in-transition flag missing %p", entry));
2394 		KASSERT(entry->wiring_thread == curthread,
2395 		    ("vm_map_unwire: alien wire %p", entry));
2396 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2397 		entry->wiring_thread = NULL;
2398 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2399 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2400 			need_wakeup = TRUE;
2401 		}
2402 		vm_map_simplify_entry(map, entry);
2403 	}
2404 	vm_map_unlock(map);
2405 	if (need_wakeup)
2406 		vm_map_wakeup(map);
2407 	return (rv);
2408 }
2409 
2410 /*
2411  *	vm_map_wire:
2412  *
2413  *	Implements both kernel and user wiring.
2414  */
2415 int
2416 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2417     int flags)
2418 {
2419 	vm_map_entry_t entry, first_entry, tmp_entry;
2420 	vm_offset_t saved_end, saved_start;
2421 	unsigned int last_timestamp;
2422 	int rv;
2423 	boolean_t fictitious, need_wakeup, result, user_wire;
2424 	vm_prot_t prot;
2425 
2426 	if (start == end)
2427 		return (KERN_SUCCESS);
2428 	prot = 0;
2429 	if (flags & VM_MAP_WIRE_WRITE)
2430 		prot |= VM_PROT_WRITE;
2431 	user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2432 	vm_map_lock(map);
2433 	VM_MAP_RANGE_CHECK(map, start, end);
2434 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2435 		if (flags & VM_MAP_WIRE_HOLESOK)
2436 			first_entry = first_entry->next;
2437 		else {
2438 			vm_map_unlock(map);
2439 			return (KERN_INVALID_ADDRESS);
2440 		}
2441 	}
2442 	last_timestamp = map->timestamp;
2443 	entry = first_entry;
2444 	while (entry != &map->header && entry->start < end) {
2445 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2446 			/*
2447 			 * We have not yet clipped the entry.
2448 			 */
2449 			saved_start = (start >= entry->start) ? start :
2450 			    entry->start;
2451 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2452 			if (vm_map_unlock_and_wait(map, 0)) {
2453 				/*
2454 				 * Allow interruption of user wiring?
2455 				 */
2456 			}
2457 			vm_map_lock(map);
2458 			if (last_timestamp + 1 != map->timestamp) {
2459 				/*
2460 				 * Look again for the entry because the map was
2461 				 * modified while it was unlocked.
2462 				 * Specifically, the entry may have been
2463 				 * clipped, merged, or deleted.
2464 				 */
2465 				if (!vm_map_lookup_entry(map, saved_start,
2466 				    &tmp_entry)) {
2467 					if (flags & VM_MAP_WIRE_HOLESOK)
2468 						tmp_entry = tmp_entry->next;
2469 					else {
2470 						if (saved_start == start) {
2471 							/*
2472 							 * first_entry has been deleted.
2473 							 */
2474 							vm_map_unlock(map);
2475 							return (KERN_INVALID_ADDRESS);
2476 						}
2477 						end = saved_start;
2478 						rv = KERN_INVALID_ADDRESS;
2479 						goto done;
2480 					}
2481 				}
2482 				if (entry == first_entry)
2483 					first_entry = tmp_entry;
2484 				else
2485 					first_entry = NULL;
2486 				entry = tmp_entry;
2487 			}
2488 			last_timestamp = map->timestamp;
2489 			continue;
2490 		}
2491 		vm_map_clip_start(map, entry, start);
2492 		vm_map_clip_end(map, entry, end);
2493 		/*
2494 		 * Mark the entry in case the map lock is released.  (See
2495 		 * above.)
2496 		 */
2497 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2498 		    entry->wiring_thread == NULL,
2499 		    ("owned map entry %p", entry));
2500 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2501 		entry->wiring_thread = curthread;
2502 		if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
2503 		    || (entry->protection & prot) != prot) {
2504 			entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
2505 			if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
2506 				end = entry->end;
2507 				rv = KERN_INVALID_ADDRESS;
2508 				goto done;
2509 			}
2510 			goto next_entry;
2511 		}
2512 		if (entry->wired_count == 0) {
2513 			entry->wired_count++;
2514 			saved_start = entry->start;
2515 			saved_end = entry->end;
2516 			fictitious = entry->object.vm_object != NULL &&
2517 			    (entry->object.vm_object->flags &
2518 			    OBJ_FICTITIOUS) != 0;
2519 			/*
2520 			 * Release the map lock, relying on the in-transition
2521 			 * mark.  Mark the map busy for fork.
2522 			 */
2523 			vm_map_busy(map);
2524 			vm_map_unlock(map);
2525 			rv = vm_fault_wire(map, saved_start, saved_end,
2526 			    fictitious);
2527 			vm_map_lock(map);
2528 			vm_map_unbusy(map);
2529 			if (last_timestamp + 1 != map->timestamp) {
2530 				/*
2531 				 * Look again for the entry because the map was
2532 				 * modified while it was unlocked.  The entry
2533 				 * may have been clipped, but NOT merged or
2534 				 * deleted.
2535 				 */
2536 				result = vm_map_lookup_entry(map, saved_start,
2537 				    &tmp_entry);
2538 				KASSERT(result, ("vm_map_wire: lookup failed"));
2539 				if (entry == first_entry)
2540 					first_entry = tmp_entry;
2541 				else
2542 					first_entry = NULL;
2543 				entry = tmp_entry;
2544 				while (entry->end < saved_end) {
2545 					if (rv != KERN_SUCCESS) {
2546 						KASSERT(entry->wired_count == 1,
2547 						    ("vm_map_wire: bad count"));
2548 						entry->wired_count = -1;
2549 					}
2550 					entry = entry->next;
2551 				}
2552 			}
2553 			last_timestamp = map->timestamp;
2554 			if (rv != KERN_SUCCESS) {
2555 				KASSERT(entry->wired_count == 1,
2556 				    ("vm_map_wire: bad count"));
2557 				/*
2558 				 * Assign an out-of-range value to represent
2559 				 * the failure to wire this entry.
2560 				 */
2561 				entry->wired_count = -1;
2562 				end = entry->end;
2563 				goto done;
2564 			}
2565 		} else if (!user_wire ||
2566 			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2567 			entry->wired_count++;
2568 		}
2569 		/*
2570 		 * Check the map for holes in the specified region.
2571 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2572 		 */
2573 	next_entry:
2574 		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2575 		    (entry->end < end && (entry->next == &map->header ||
2576 		    entry->next->start > entry->end))) {
2577 			end = entry->end;
2578 			rv = KERN_INVALID_ADDRESS;
2579 			goto done;
2580 		}
2581 		entry = entry->next;
2582 	}
2583 	rv = KERN_SUCCESS;
2584 done:
2585 	need_wakeup = FALSE;
2586 	if (first_entry == NULL) {
2587 		result = vm_map_lookup_entry(map, start, &first_entry);
2588 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2589 			first_entry = first_entry->next;
2590 		else
2591 			KASSERT(result, ("vm_map_wire: lookup failed"));
2592 	}
2593 	for (entry = first_entry; entry != &map->header && entry->start < end;
2594 	    entry = entry->next) {
2595 		if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
2596 			goto next_entry_done;
2597 
2598 		/*
2599 		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2600 		 * space in the unwired region could have been mapped
2601 		 * while the map lock was dropped for faulting in the
2602 		 * pages or draining MAP_ENTRY_IN_TRANSITION.
2603 		 * Moreover, another thread could be simultaneously
2604 		 * wiring this new mapping entry.  Detect these cases
2605 		 * and skip any entries marked as in transition by us.
2606 		 */
2607 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2608 		    entry->wiring_thread != curthread) {
2609 			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2610 			    ("vm_map_wire: !HOLESOK and new/changed entry"));
2611 			continue;
2612 		}
2613 
2614 		if (rv == KERN_SUCCESS) {
2615 			if (user_wire)
2616 				entry->eflags |= MAP_ENTRY_USER_WIRED;
2617 		} else if (entry->wired_count == -1) {
2618 			/*
2619 			 * Wiring failed on this entry.  Thus, unwiring is
2620 			 * unnecessary.
2621 			 */
2622 			entry->wired_count = 0;
2623 		} else {
2624 			if (!user_wire ||
2625 			    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0)
2626 				entry->wired_count--;
2627 			if (entry->wired_count == 0) {
2628 				/*
2629 				 * Retain the map lock.
2630 				 */
2631 				vm_fault_unwire(map, entry->start, entry->end,
2632 				    entry->object.vm_object != NULL &&
2633 				    (entry->object.vm_object->flags &
2634 				    OBJ_FICTITIOUS) != 0);
2635 			}
2636 		}
2637 	next_entry_done:
2638 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2639 		    ("vm_map_wire: in-transition flag missing %p", entry));
2640 		KASSERT(entry->wiring_thread == curthread,
2641 		    ("vm_map_wire: alien wire %p", entry));
2642 		entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
2643 		    MAP_ENTRY_WIRE_SKIPPED);
2644 		entry->wiring_thread = NULL;
2645 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2646 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2647 			need_wakeup = TRUE;
2648 		}
2649 		vm_map_simplify_entry(map, entry);
2650 	}
2651 	vm_map_unlock(map);
2652 	if (need_wakeup)
2653 		vm_map_wakeup(map);
2654 	return (rv);
2655 }
2656 
2657 /*
2658  * vm_map_sync
2659  *
2660  * Push any dirty cached pages in the address range to their pager.
2661  * If syncio is TRUE, dirty pages are written synchronously.
2662  * If invalidate is TRUE, any cached pages are freed as well.
2663  *
2664  * If the size of the region from start to end is zero, we are
2665  * supposed to flush all modified pages within the region containing
2666  * start.  Unfortunately, a region can be split or coalesced with
2667  * neighboring regions, making it difficult to determine what the
2668  * original region was.  Therefore, we approximate this requirement by
2669  * flushing the current region containing start.
2670  *
2671  * Returns an error if any part of the specified range is not mapped.
2672  */
2673 int
2674 vm_map_sync(
2675 	vm_map_t map,
2676 	vm_offset_t start,
2677 	vm_offset_t end,
2678 	boolean_t syncio,
2679 	boolean_t invalidate)
2680 {
2681 	vm_map_entry_t current;
2682 	vm_map_entry_t entry;
2683 	vm_size_t size;
2684 	vm_object_t object;
2685 	vm_ooffset_t offset;
2686 	unsigned int last_timestamp;
2687 	boolean_t failed;
2688 
2689 	vm_map_lock_read(map);
2690 	VM_MAP_RANGE_CHECK(map, start, end);
2691 	if (!vm_map_lookup_entry(map, start, &entry)) {
2692 		vm_map_unlock_read(map);
2693 		return (KERN_INVALID_ADDRESS);
2694 	} else if (start == end) {
2695 		start = entry->start;
2696 		end = entry->end;
2697 	}
2698 	/*
2699 	 * Make a first pass to check for user-wired memory and holes.
2700 	 */
2701 	for (current = entry; current != &map->header && current->start < end;
2702 	    current = current->next) {
2703 		if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
2704 			vm_map_unlock_read(map);
2705 			return (KERN_INVALID_ARGUMENT);
2706 		}
2707 		if (end > current->end &&
2708 		    (current->next == &map->header ||
2709 			current->end != current->next->start)) {
2710 			vm_map_unlock_read(map);
2711 			return (KERN_INVALID_ADDRESS);
2712 		}
2713 	}
2714 
2715 	if (invalidate)
2716 		pmap_remove(map->pmap, start, end);
2717 	failed = FALSE;
2718 
2719 	/*
2720 	 * Make a second pass, cleaning/uncaching pages from the indicated
2721 	 * objects as we go.
2722 	 */
2723 	for (current = entry; current != &map->header && current->start < end;) {
2724 		offset = current->offset + (start - current->start);
2725 		size = (end <= current->end ? end : current->end) - start;
2726 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2727 			vm_map_t smap;
2728 			vm_map_entry_t tentry;
2729 			vm_size_t tsize;
2730 
2731 			smap = current->object.sub_map;
2732 			vm_map_lock_read(smap);
2733 			(void) vm_map_lookup_entry(smap, offset, &tentry);
2734 			tsize = tentry->end - offset;
2735 			if (tsize < size)
2736 				size = tsize;
2737 			object = tentry->object.vm_object;
2738 			offset = tentry->offset + (offset - tentry->start);
2739 			vm_map_unlock_read(smap);
2740 		} else {
2741 			object = current->object.vm_object;
2742 		}
2743 		vm_object_reference(object);
2744 		last_timestamp = map->timestamp;
2745 		vm_map_unlock_read(map);
2746 		if (!vm_object_sync(object, offset, size, syncio, invalidate))
2747 			failed = TRUE;
2748 		start += size;
2749 		vm_object_deallocate(object);
2750 		vm_map_lock_read(map);
2751 		if (last_timestamp == map->timestamp ||
2752 		    !vm_map_lookup_entry(map, start, &current))
2753 			current = current->next;
2754 	}
2755 
2756 	vm_map_unlock_read(map);
2757 	return (failed ? KERN_FAILURE : KERN_SUCCESS);
2758 }
2759 
2760 /*
2761  *	vm_map_entry_unwire:	[ internal use only ]
2762  *
2763  *	Make the region specified by this entry pageable.
2764  *
2765  *	The map in question should be locked.
2766  *	[This is the reason for this routine's existence.]
2767  */
2768 static void
2769 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2770 {
2771 	vm_fault_unwire(map, entry->start, entry->end,
2772 	    entry->object.vm_object != NULL &&
2773 	    (entry->object.vm_object->flags & OBJ_FICTITIOUS) != 0);
2774 	entry->wired_count = 0;
2775 }
2776 
2777 static void
2778 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
2779 {
2780 
2781 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
2782 		vm_object_deallocate(entry->object.vm_object);
2783 	uma_zfree(system_map ? kmapentzone : mapentzone, entry);
2784 }
2785 
2786 /*
2787  *	vm_map_entry_delete:	[ internal use only ]
2788  *
2789  *	Deallocate the given entry from the target map.
2790  */
2791 static void
2792 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
2793 {
2794 	vm_object_t object;
2795 	vm_pindex_t offidxstart, offidxend, count, size1;
2796 	vm_ooffset_t size;
2797 
2798 	vm_map_entry_unlink(map, entry);
2799 	object = entry->object.vm_object;
2800 	size = entry->end - entry->start;
2801 	map->size -= size;
2802 
2803 	if (entry->cred != NULL) {
2804 		swap_release_by_cred(size, entry->cred);
2805 		crfree(entry->cred);
2806 	}
2807 
2808 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2809 	    (object != NULL)) {
2810 		KASSERT(entry->cred == NULL || object->cred == NULL ||
2811 		    (entry->eflags & MAP_ENTRY_NEEDS_COPY),
2812 		    ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
2813 		count = OFF_TO_IDX(size);
2814 		offidxstart = OFF_TO_IDX(entry->offset);
2815 		offidxend = offidxstart + count;
2816 		VM_OBJECT_WLOCK(object);
2817 		if (object->ref_count != 1 &&
2818 		    ((object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
2819 		    object == kernel_object || object == kmem_object)) {
2820 			vm_object_collapse(object);
2821 
2822 			/*
2823 			 * The option OBJPR_NOTMAPPED can be passed here
2824 			 * because vm_map_delete() already performed
2825 			 * pmap_remove() on the only mapping to this range
2826 			 * of pages.
2827 			 */
2828 			vm_object_page_remove(object, offidxstart, offidxend,
2829 			    OBJPR_NOTMAPPED);
2830 			if (object->type == OBJT_SWAP)
2831 				swap_pager_freespace(object, offidxstart, count);
2832 			if (offidxend >= object->size &&
2833 			    offidxstart < object->size) {
2834 				size1 = object->size;
2835 				object->size = offidxstart;
2836 				if (object->cred != NULL) {
2837 					size1 -= object->size;
2838 					KASSERT(object->charge >= ptoa(size1),
2839 					    ("vm_map_entry_delete: object->charge < 0"));
2840 					swap_release_by_cred(ptoa(size1), object->cred);
2841 					object->charge -= ptoa(size1);
2842 				}
2843 			}
2844 		}
2845 		VM_OBJECT_WUNLOCK(object);
2846 	} else
2847 		entry->object.vm_object = NULL;
2848 	if (map->system_map)
2849 		vm_map_entry_deallocate(entry, TRUE);
2850 	else {
2851 		entry->next = curthread->td_map_def_user;
2852 		curthread->td_map_def_user = entry;
2853 	}
2854 }
2855 
2856 /*
2857  *	vm_map_delete:	[ internal use only ]
2858  *
2859  *	Deallocates the given address range from the target
2860  *	map.
2861  */
2862 int
2863 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
2864 {
2865 	vm_map_entry_t entry;
2866 	vm_map_entry_t first_entry;
2867 
2868 	VM_MAP_ASSERT_LOCKED(map);
2869 	if (start == end)
2870 		return (KERN_SUCCESS);
2871 
2872 	/*
2873 	 * Find the start of the region, and clip it
2874 	 */
2875 	if (!vm_map_lookup_entry(map, start, &first_entry))
2876 		entry = first_entry->next;
2877 	else {
2878 		entry = first_entry;
2879 		vm_map_clip_start(map, entry, start);
2880 	}
2881 
2882 	/*
2883 	 * Step through all entries in this region
2884 	 */
2885 	while ((entry != &map->header) && (entry->start < end)) {
2886 		vm_map_entry_t next;
2887 
2888 		/*
2889 		 * Wait for wiring or unwiring of an entry to complete.
2890 		 * Also wait for any system wirings to disappear on
2891 		 * user maps.
2892 		 */
2893 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
2894 		    (vm_map_pmap(map) != kernel_pmap &&
2895 		    vm_map_entry_system_wired_count(entry) != 0)) {
2896 			unsigned int last_timestamp;
2897 			vm_offset_t saved_start;
2898 			vm_map_entry_t tmp_entry;
2899 
2900 			saved_start = entry->start;
2901 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2902 			last_timestamp = map->timestamp;
2903 			(void) vm_map_unlock_and_wait(map, 0);
2904 			vm_map_lock(map);
2905 			if (last_timestamp + 1 != map->timestamp) {
2906 				/*
2907 				 * Look again for the entry because the map was
2908 				 * modified while it was unlocked.
2909 				 * Specifically, the entry may have been
2910 				 * clipped, merged, or deleted.
2911 				 */
2912 				if (!vm_map_lookup_entry(map, saved_start,
2913 							 &tmp_entry))
2914 					entry = tmp_entry->next;
2915 				else {
2916 					entry = tmp_entry;
2917 					vm_map_clip_start(map, entry,
2918 							  saved_start);
2919 				}
2920 			}
2921 			continue;
2922 		}
2923 		vm_map_clip_end(map, entry, end);
2924 
2925 		next = entry->next;
2926 
2927 		/*
2928 		 * Unwire before removing addresses from the pmap; otherwise,
2929 		 * unwiring will put the entries back in the pmap.
2930 		 */
2931 		if (entry->wired_count != 0) {
2932 			vm_map_entry_unwire(map, entry);
2933 		}
2934 
2935 		pmap_remove(map->pmap, entry->start, entry->end);
2936 
2937 		/*
2938 		 * Delete the entry only after removing all pmap
2939 		 * entries pointing to its pages.  (Otherwise, its
2940 		 * page frames may be reallocated, and any modify bits
2941 		 * will be set in the wrong object!)
2942 		 */
2943 		vm_map_entry_delete(map, entry);
2944 		entry = next;
2945 	}
2946 	return (KERN_SUCCESS);
2947 }
2948 
2949 /*
2950  *	vm_map_remove:
2951  *
2952  *	Remove the given address range from the target map.
2953  *	This is the exported form of vm_map_delete.
2954  */
2955 int
2956 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2957 {
2958 	int result;
2959 
2960 	vm_map_lock(map);
2961 	VM_MAP_RANGE_CHECK(map, start, end);
2962 	result = vm_map_delete(map, start, end);
2963 	vm_map_unlock(map);
2964 	return (result);
2965 }
2966 
2967 /*
2968  *	vm_map_check_protection:
2969  *
2970  *	Assert that the target map allows the specified privilege on the
2971  *	entire address region given.  The entire region must be allocated.
2972  *
2973  *	WARNING!  This code does not and should not check whether the
2974  *	contents of the region is accessible.  For example a smaller file
2975  *	might be mapped into a larger address space.
2976  *
2977  *	NOTE!  This code is also called by munmap().
2978  *
2979  *	The map must be locked.  A read lock is sufficient.
2980  */
2981 boolean_t
2982 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2983 			vm_prot_t protection)
2984 {
2985 	vm_map_entry_t entry;
2986 	vm_map_entry_t tmp_entry;
2987 
2988 	if (!vm_map_lookup_entry(map, start, &tmp_entry))
2989 		return (FALSE);
2990 	entry = tmp_entry;
2991 
2992 	while (start < end) {
2993 		if (entry == &map->header)
2994 			return (FALSE);
2995 		/*
2996 		 * No holes allowed!
2997 		 */
2998 		if (start < entry->start)
2999 			return (FALSE);
3000 		/*
3001 		 * Check protection associated with entry.
3002 		 */
3003 		if ((entry->protection & protection) != protection)
3004 			return (FALSE);
3005 		/* go to next entry */
3006 		start = entry->end;
3007 		entry = entry->next;
3008 	}
3009 	return (TRUE);
3010 }
3011 
3012 /*
3013  *	vm_map_copy_entry:
3014  *
3015  *	Copies the contents of the source entry to the destination
3016  *	entry.  The entries *must* be aligned properly.
3017  */
3018 static void
3019 vm_map_copy_entry(
3020 	vm_map_t src_map,
3021 	vm_map_t dst_map,
3022 	vm_map_entry_t src_entry,
3023 	vm_map_entry_t dst_entry,
3024 	vm_ooffset_t *fork_charge)
3025 {
3026 	vm_object_t src_object;
3027 	vm_map_entry_t fake_entry;
3028 	vm_offset_t size;
3029 	struct ucred *cred;
3030 	int charged;
3031 
3032 	VM_MAP_ASSERT_LOCKED(dst_map);
3033 
3034 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
3035 		return;
3036 
3037 	if (src_entry->wired_count == 0 ||
3038 	    (src_entry->protection & VM_PROT_WRITE) == 0) {
3039 		/*
3040 		 * If the source entry is marked needs_copy, it is already
3041 		 * write-protected.
3042 		 */
3043 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
3044 		    (src_entry->protection & VM_PROT_WRITE) != 0) {
3045 			pmap_protect(src_map->pmap,
3046 			    src_entry->start,
3047 			    src_entry->end,
3048 			    src_entry->protection & ~VM_PROT_WRITE);
3049 		}
3050 
3051 		/*
3052 		 * Make a copy of the object.
3053 		 */
3054 		size = src_entry->end - src_entry->start;
3055 		if ((src_object = src_entry->object.vm_object) != NULL) {
3056 			VM_OBJECT_WLOCK(src_object);
3057 			charged = ENTRY_CHARGED(src_entry);
3058 			if ((src_object->handle == NULL) &&
3059 				(src_object->type == OBJT_DEFAULT ||
3060 				 src_object->type == OBJT_SWAP)) {
3061 				vm_object_collapse(src_object);
3062 				if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
3063 					vm_object_split(src_entry);
3064 					src_object = src_entry->object.vm_object;
3065 				}
3066 			}
3067 			vm_object_reference_locked(src_object);
3068 			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3069 			if (src_entry->cred != NULL &&
3070 			    !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3071 				KASSERT(src_object->cred == NULL,
3072 				    ("OVERCOMMIT: vm_map_copy_entry: cred %p",
3073 				     src_object));
3074 				src_object->cred = src_entry->cred;
3075 				src_object->charge = size;
3076 			}
3077 			VM_OBJECT_WUNLOCK(src_object);
3078 			dst_entry->object.vm_object = src_object;
3079 			if (charged) {
3080 				cred = curthread->td_ucred;
3081 				crhold(cred);
3082 				dst_entry->cred = cred;
3083 				*fork_charge += size;
3084 				if (!(src_entry->eflags &
3085 				      MAP_ENTRY_NEEDS_COPY)) {
3086 					crhold(cred);
3087 					src_entry->cred = cred;
3088 					*fork_charge += size;
3089 				}
3090 			}
3091 			src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
3092 			dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
3093 			dst_entry->offset = src_entry->offset;
3094 			if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3095 				/*
3096 				 * MAP_ENTRY_VN_WRITECNT cannot
3097 				 * indicate write reference from
3098 				 * src_entry, since the entry is
3099 				 * marked as needs copy.  Allocate a
3100 				 * fake entry that is used to
3101 				 * decrement object->un_pager.vnp.writecount
3102 				 * at the appropriate time.  Attach
3103 				 * fake_entry to the deferred list.
3104 				 */
3105 				fake_entry = vm_map_entry_create(dst_map);
3106 				fake_entry->eflags = MAP_ENTRY_VN_WRITECNT;
3107 				src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT;
3108 				vm_object_reference(src_object);
3109 				fake_entry->object.vm_object = src_object;
3110 				fake_entry->start = src_entry->start;
3111 				fake_entry->end = src_entry->end;
3112 				fake_entry->next = curthread->td_map_def_user;
3113 				curthread->td_map_def_user = fake_entry;
3114 			}
3115 		} else {
3116 			dst_entry->object.vm_object = NULL;
3117 			dst_entry->offset = 0;
3118 			if (src_entry->cred != NULL) {
3119 				dst_entry->cred = curthread->td_ucred;
3120 				crhold(dst_entry->cred);
3121 				*fork_charge += size;
3122 			}
3123 		}
3124 
3125 		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
3126 		    dst_entry->end - dst_entry->start, src_entry->start);
3127 	} else {
3128 		/*
3129 		 * We don't want to make writeable wired pages copy-on-write.
3130 		 * Immediately copy these pages into the new map by simulating
3131 		 * page faults.  The new pages are pageable.
3132 		 */
3133 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3134 		    fork_charge);
3135 	}
3136 }
3137 
3138 /*
3139  * vmspace_map_entry_forked:
3140  * Update the newly-forked vmspace each time a map entry is inherited
3141  * or copied.  The values for vm_dsize and vm_tsize are approximate
3142  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3143  */
3144 static void
3145 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3146     vm_map_entry_t entry)
3147 {
3148 	vm_size_t entrysize;
3149 	vm_offset_t newend;
3150 
3151 	entrysize = entry->end - entry->start;
3152 	vm2->vm_map.size += entrysize;
3153 	if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3154 		vm2->vm_ssize += btoc(entrysize);
3155 	} else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3156 	    entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3157 		newend = MIN(entry->end,
3158 		    (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3159 		vm2->vm_dsize += btoc(newend - entry->start);
3160 	} else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3161 	    entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3162 		newend = MIN(entry->end,
3163 		    (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3164 		vm2->vm_tsize += btoc(newend - entry->start);
3165 	}
3166 }
3167 
3168 /*
3169  * vmspace_fork:
3170  * Create a new process vmspace structure and vm_map
3171  * based on those of an existing process.  The new map
3172  * is based on the old map, according to the inheritance
3173  * values on the regions in that map.
3174  *
3175  * XXX It might be worth coalescing the entries added to the new vmspace.
3176  *
3177  * The source map must not be locked.
3178  */
3179 struct vmspace *
3180 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3181 {
3182 	struct vmspace *vm2;
3183 	vm_map_t new_map, old_map;
3184 	vm_map_entry_t new_entry, old_entry;
3185 	vm_object_t object;
3186 	int locked;
3187 
3188 	old_map = &vm1->vm_map;
3189 	/* Copy immutable fields of vm1 to vm2. */
3190 	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset, NULL);
3191 	if (vm2 == NULL)
3192 		return (NULL);
3193 	vm2->vm_taddr = vm1->vm_taddr;
3194 	vm2->vm_daddr = vm1->vm_daddr;
3195 	vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3196 	vm_map_lock(old_map);
3197 	if (old_map->busy)
3198 		vm_map_wait_busy(old_map);
3199 	new_map = &vm2->vm_map;
3200 	locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3201 	KASSERT(locked, ("vmspace_fork: lock failed"));
3202 
3203 	old_entry = old_map->header.next;
3204 
3205 	while (old_entry != &old_map->header) {
3206 		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3207 			panic("vm_map_fork: encountered a submap");
3208 
3209 		switch (old_entry->inheritance) {
3210 		case VM_INHERIT_NONE:
3211 			break;
3212 
3213 		case VM_INHERIT_SHARE:
3214 			/*
3215 			 * Clone the entry, creating the shared object if necessary.
3216 			 */
3217 			object = old_entry->object.vm_object;
3218 			if (object == NULL) {
3219 				object = vm_object_allocate(OBJT_DEFAULT,
3220 					atop(old_entry->end - old_entry->start));
3221 				old_entry->object.vm_object = object;
3222 				old_entry->offset = 0;
3223 				if (old_entry->cred != NULL) {
3224 					object->cred = old_entry->cred;
3225 					object->charge = old_entry->end -
3226 					    old_entry->start;
3227 					old_entry->cred = NULL;
3228 				}
3229 			}
3230 
3231 			/*
3232 			 * Add the reference before calling vm_object_shadow
3233 			 * to insure that a shadow object is created.
3234 			 */
3235 			vm_object_reference(object);
3236 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3237 				vm_object_shadow(&old_entry->object.vm_object,
3238 				    &old_entry->offset,
3239 				    old_entry->end - old_entry->start);
3240 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3241 				/* Transfer the second reference too. */
3242 				vm_object_reference(
3243 				    old_entry->object.vm_object);
3244 
3245 				/*
3246 				 * As in vm_map_simplify_entry(), the
3247 				 * vnode lock will not be acquired in
3248 				 * this call to vm_object_deallocate().
3249 				 */
3250 				vm_object_deallocate(object);
3251 				object = old_entry->object.vm_object;
3252 			}
3253 			VM_OBJECT_WLOCK(object);
3254 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
3255 			if (old_entry->cred != NULL) {
3256 				KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3257 				object->cred = old_entry->cred;
3258 				object->charge = old_entry->end - old_entry->start;
3259 				old_entry->cred = NULL;
3260 			}
3261 
3262 			/*
3263 			 * Assert the correct state of the vnode
3264 			 * v_writecount while the object is locked, to
3265 			 * not relock it later for the assertion
3266 			 * correctness.
3267 			 */
3268 			if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT &&
3269 			    object->type == OBJT_VNODE) {
3270 				KASSERT(((struct vnode *)object->handle)->
3271 				    v_writecount > 0,
3272 				    ("vmspace_fork: v_writecount %p", object));
3273 				KASSERT(object->un_pager.vnp.writemappings > 0,
3274 				    ("vmspace_fork: vnp.writecount %p",
3275 				    object));
3276 			}
3277 			VM_OBJECT_WUNLOCK(object);
3278 
3279 			/*
3280 			 * Clone the entry, referencing the shared object.
3281 			 */
3282 			new_entry = vm_map_entry_create(new_map);
3283 			*new_entry = *old_entry;
3284 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3285 			    MAP_ENTRY_IN_TRANSITION);
3286 			new_entry->wiring_thread = NULL;
3287 			new_entry->wired_count = 0;
3288 			if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3289 				vnode_pager_update_writecount(object,
3290 				    new_entry->start, new_entry->end);
3291 			}
3292 
3293 			/*
3294 			 * Insert the entry into the new map -- we know we're
3295 			 * inserting at the end of the new map.
3296 			 */
3297 			vm_map_entry_link(new_map, new_map->header.prev,
3298 			    new_entry);
3299 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3300 
3301 			/*
3302 			 * Update the physical map
3303 			 */
3304 			pmap_copy(new_map->pmap, old_map->pmap,
3305 			    new_entry->start,
3306 			    (old_entry->end - old_entry->start),
3307 			    old_entry->start);
3308 			break;
3309 
3310 		case VM_INHERIT_COPY:
3311 			/*
3312 			 * Clone the entry and link into the map.
3313 			 */
3314 			new_entry = vm_map_entry_create(new_map);
3315 			*new_entry = *old_entry;
3316 			/*
3317 			 * Copied entry is COW over the old object.
3318 			 */
3319 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3320 			    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT);
3321 			new_entry->wiring_thread = NULL;
3322 			new_entry->wired_count = 0;
3323 			new_entry->object.vm_object = NULL;
3324 			new_entry->cred = NULL;
3325 			vm_map_entry_link(new_map, new_map->header.prev,
3326 			    new_entry);
3327 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3328 			vm_map_copy_entry(old_map, new_map, old_entry,
3329 			    new_entry, fork_charge);
3330 			break;
3331 		}
3332 		old_entry = old_entry->next;
3333 	}
3334 	/*
3335 	 * Use inlined vm_map_unlock() to postpone handling the deferred
3336 	 * map entries, which cannot be done until both old_map and
3337 	 * new_map locks are released.
3338 	 */
3339 	sx_xunlock(&old_map->lock);
3340 	sx_xunlock(&new_map->lock);
3341 	vm_map_process_deferred();
3342 
3343 	return (vm2);
3344 }
3345 
3346 int
3347 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3348     vm_prot_t prot, vm_prot_t max, int cow)
3349 {
3350 	vm_map_entry_t new_entry, prev_entry;
3351 	vm_offset_t bot, top;
3352 	vm_size_t growsize, init_ssize;
3353 	int orient, rv;
3354 	rlim_t lmemlim, vmemlim;
3355 
3356 	/*
3357 	 * The stack orientation is piggybacked with the cow argument.
3358 	 * Extract it into orient and mask the cow argument so that we
3359 	 * don't pass it around further.
3360 	 * NOTE: We explicitly allow bi-directional stacks.
3361 	 */
3362 	orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP);
3363 	KASSERT(orient != 0, ("No stack grow direction"));
3364 
3365 	if (addrbos < vm_map_min(map) ||
3366 	    addrbos > vm_map_max(map) ||
3367 	    addrbos + max_ssize < addrbos)
3368 		return (KERN_NO_SPACE);
3369 
3370 	growsize = sgrowsiz;
3371 	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3372 
3373 	PROC_LOCK(curproc);
3374 	lmemlim = lim_cur(curproc, RLIMIT_MEMLOCK);
3375 	vmemlim = lim_cur(curproc, RLIMIT_VMEM);
3376 	PROC_UNLOCK(curproc);
3377 
3378 	vm_map_lock(map);
3379 
3380 	/* If addr is already mapped, no go */
3381 	if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
3382 		vm_map_unlock(map);
3383 		return (KERN_NO_SPACE);
3384 	}
3385 
3386 	if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3387 		if (ptoa(pmap_wired_count(map->pmap)) + init_ssize > lmemlim) {
3388 			vm_map_unlock(map);
3389 			return (KERN_NO_SPACE);
3390 		}
3391 	}
3392 
3393 	/* If we would blow our VMEM resource limit, no go */
3394 	if (map->size + init_ssize > vmemlim) {
3395 		vm_map_unlock(map);
3396 		return (KERN_NO_SPACE);
3397 	}
3398 
3399 	/*
3400 	 * If we can't accomodate max_ssize in the current mapping, no go.
3401 	 * However, we need to be aware that subsequent user mappings might
3402 	 * map into the space we have reserved for stack, and currently this
3403 	 * space is not protected.
3404 	 *
3405 	 * Hopefully we will at least detect this condition when we try to
3406 	 * grow the stack.
3407 	 */
3408 	if ((prev_entry->next != &map->header) &&
3409 	    (prev_entry->next->start < addrbos + max_ssize)) {
3410 		vm_map_unlock(map);
3411 		return (KERN_NO_SPACE);
3412 	}
3413 
3414 	/*
3415 	 * We initially map a stack of only init_ssize.  We will grow as
3416 	 * needed later.  Depending on the orientation of the stack (i.e.
3417 	 * the grow direction) we either map at the top of the range, the
3418 	 * bottom of the range or in the middle.
3419 	 *
3420 	 * Note: we would normally expect prot and max to be VM_PROT_ALL,
3421 	 * and cow to be 0.  Possibly we should eliminate these as input
3422 	 * parameters, and just pass these values here in the insert call.
3423 	 */
3424 	if (orient == MAP_STACK_GROWS_DOWN)
3425 		bot = addrbos + max_ssize - init_ssize;
3426 	else if (orient == MAP_STACK_GROWS_UP)
3427 		bot = addrbos;
3428 	else
3429 		bot = round_page(addrbos + max_ssize/2 - init_ssize/2);
3430 	top = bot + init_ssize;
3431 	rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
3432 
3433 	/* Now set the avail_ssize amount. */
3434 	if (rv == KERN_SUCCESS) {
3435 		if (prev_entry != &map->header)
3436 			vm_map_clip_end(map, prev_entry, bot);
3437 		new_entry = prev_entry->next;
3438 		if (new_entry->end != top || new_entry->start != bot)
3439 			panic("Bad entry start/end for new stack entry");
3440 
3441 		new_entry->avail_ssize = max_ssize - init_ssize;
3442 		if (orient & MAP_STACK_GROWS_DOWN)
3443 			new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
3444 		if (orient & MAP_STACK_GROWS_UP)
3445 			new_entry->eflags |= MAP_ENTRY_GROWS_UP;
3446 	}
3447 
3448 	vm_map_unlock(map);
3449 	return (rv);
3450 }
3451 
3452 static int stack_guard_page = 0;
3453 TUNABLE_INT("security.bsd.stack_guard_page", &stack_guard_page);
3454 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RW,
3455     &stack_guard_page, 0,
3456     "Insert stack guard page ahead of the growable segments.");
3457 
3458 /* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
3459  * desired address is already mapped, or if we successfully grow
3460  * the stack.  Also returns KERN_SUCCESS if addr is outside the
3461  * stack range (this is strange, but preserves compatibility with
3462  * the grow function in vm_machdep.c).
3463  */
3464 int
3465 vm_map_growstack(struct proc *p, vm_offset_t addr)
3466 {
3467 	vm_map_entry_t next_entry, prev_entry;
3468 	vm_map_entry_t new_entry, stack_entry;
3469 	struct vmspace *vm = p->p_vmspace;
3470 	vm_map_t map = &vm->vm_map;
3471 	vm_offset_t end;
3472 	vm_size_t growsize;
3473 	size_t grow_amount, max_grow;
3474 	rlim_t lmemlim, stacklim, vmemlim;
3475 	int is_procstack, rv;
3476 	struct ucred *cred;
3477 #ifdef notyet
3478 	uint64_t limit;
3479 #endif
3480 #ifdef RACCT
3481 	int error;
3482 #endif
3483 
3484 Retry:
3485 	PROC_LOCK(p);
3486 	lmemlim = lim_cur(p, RLIMIT_MEMLOCK);
3487 	stacklim = lim_cur(p, RLIMIT_STACK);
3488 	vmemlim = lim_cur(p, RLIMIT_VMEM);
3489 	PROC_UNLOCK(p);
3490 
3491 	vm_map_lock_read(map);
3492 
3493 	/* If addr is already in the entry range, no need to grow.*/
3494 	if (vm_map_lookup_entry(map, addr, &prev_entry)) {
3495 		vm_map_unlock_read(map);
3496 		return (KERN_SUCCESS);
3497 	}
3498 
3499 	next_entry = prev_entry->next;
3500 	if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) {
3501 		/*
3502 		 * This entry does not grow upwards. Since the address lies
3503 		 * beyond this entry, the next entry (if one exists) has to
3504 		 * be a downward growable entry. The entry list header is
3505 		 * never a growable entry, so it suffices to check the flags.
3506 		 */
3507 		if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) {
3508 			vm_map_unlock_read(map);
3509 			return (KERN_SUCCESS);
3510 		}
3511 		stack_entry = next_entry;
3512 	} else {
3513 		/*
3514 		 * This entry grows upward. If the next entry does not at
3515 		 * least grow downwards, this is the entry we need to grow.
3516 		 * otherwise we have two possible choices and we have to
3517 		 * select one.
3518 		 */
3519 		if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) {
3520 			/*
3521 			 * We have two choices; grow the entry closest to
3522 			 * the address to minimize the amount of growth.
3523 			 */
3524 			if (addr - prev_entry->end <= next_entry->start - addr)
3525 				stack_entry = prev_entry;
3526 			else
3527 				stack_entry = next_entry;
3528 		} else
3529 			stack_entry = prev_entry;
3530 	}
3531 
3532 	if (stack_entry == next_entry) {
3533 		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo"));
3534 		KASSERT(addr < stack_entry->start, ("foo"));
3535 		end = (prev_entry != &map->header) ? prev_entry->end :
3536 		    stack_entry->start - stack_entry->avail_ssize;
3537 		grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE);
3538 		max_grow = stack_entry->start - end;
3539 	} else {
3540 		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo"));
3541 		KASSERT(addr >= stack_entry->end, ("foo"));
3542 		end = (next_entry != &map->header) ? next_entry->start :
3543 		    stack_entry->end + stack_entry->avail_ssize;
3544 		grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE);
3545 		max_grow = end - stack_entry->end;
3546 	}
3547 
3548 	if (grow_amount > stack_entry->avail_ssize) {
3549 		vm_map_unlock_read(map);
3550 		return (KERN_NO_SPACE);
3551 	}
3552 
3553 	/*
3554 	 * If there is no longer enough space between the entries nogo, and
3555 	 * adjust the available space.  Note: this  should only happen if the
3556 	 * user has mapped into the stack area after the stack was created,
3557 	 * and is probably an error.
3558 	 *
3559 	 * This also effectively destroys any guard page the user might have
3560 	 * intended by limiting the stack size.
3561 	 */
3562 	if (grow_amount + (stack_guard_page ? PAGE_SIZE : 0) > max_grow) {
3563 		if (vm_map_lock_upgrade(map))
3564 			goto Retry;
3565 
3566 		stack_entry->avail_ssize = max_grow;
3567 
3568 		vm_map_unlock(map);
3569 		return (KERN_NO_SPACE);
3570 	}
3571 
3572 	is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr) ? 1 : 0;
3573 
3574 	/*
3575 	 * If this is the main process stack, see if we're over the stack
3576 	 * limit.
3577 	 */
3578 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3579 		vm_map_unlock_read(map);
3580 		return (KERN_NO_SPACE);
3581 	}
3582 #ifdef RACCT
3583 	PROC_LOCK(p);
3584 	if (is_procstack &&
3585 	    racct_set(p, RACCT_STACK, ctob(vm->vm_ssize) + grow_amount)) {
3586 		PROC_UNLOCK(p);
3587 		vm_map_unlock_read(map);
3588 		return (KERN_NO_SPACE);
3589 	}
3590 	PROC_UNLOCK(p);
3591 #endif
3592 
3593 	/* Round up the grow amount modulo sgrowsiz */
3594 	growsize = sgrowsiz;
3595 	grow_amount = roundup(grow_amount, growsize);
3596 	if (grow_amount > stack_entry->avail_ssize)
3597 		grow_amount = stack_entry->avail_ssize;
3598 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3599 		grow_amount = trunc_page((vm_size_t)stacklim) -
3600 		    ctob(vm->vm_ssize);
3601 	}
3602 #ifdef notyet
3603 	PROC_LOCK(p);
3604 	limit = racct_get_available(p, RACCT_STACK);
3605 	PROC_UNLOCK(p);
3606 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
3607 		grow_amount = limit - ctob(vm->vm_ssize);
3608 #endif
3609 	if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3610 		if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
3611 			vm_map_unlock_read(map);
3612 			rv = KERN_NO_SPACE;
3613 			goto out;
3614 		}
3615 #ifdef RACCT
3616 		PROC_LOCK(p);
3617 		if (racct_set(p, RACCT_MEMLOCK,
3618 		    ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
3619 			PROC_UNLOCK(p);
3620 			vm_map_unlock_read(map);
3621 			rv = KERN_NO_SPACE;
3622 			goto out;
3623 		}
3624 		PROC_UNLOCK(p);
3625 #endif
3626 	}
3627 	/* If we would blow our VMEM resource limit, no go */
3628 	if (map->size + grow_amount > vmemlim) {
3629 		vm_map_unlock_read(map);
3630 		rv = KERN_NO_SPACE;
3631 		goto out;
3632 	}
3633 #ifdef RACCT
3634 	PROC_LOCK(p);
3635 	if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
3636 		PROC_UNLOCK(p);
3637 		vm_map_unlock_read(map);
3638 		rv = KERN_NO_SPACE;
3639 		goto out;
3640 	}
3641 	PROC_UNLOCK(p);
3642 #endif
3643 
3644 	if (vm_map_lock_upgrade(map))
3645 		goto Retry;
3646 
3647 	if (stack_entry == next_entry) {
3648 		/*
3649 		 * Growing downward.
3650 		 */
3651 		/* Get the preliminary new entry start value */
3652 		addr = stack_entry->start - grow_amount;
3653 
3654 		/*
3655 		 * If this puts us into the previous entry, cut back our
3656 		 * growth to the available space. Also, see the note above.
3657 		 */
3658 		if (addr < end) {
3659 			stack_entry->avail_ssize = max_grow;
3660 			addr = end;
3661 			if (stack_guard_page)
3662 				addr += PAGE_SIZE;
3663 		}
3664 
3665 		rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start,
3666 		    next_entry->protection, next_entry->max_protection, 0);
3667 
3668 		/* Adjust the available stack space by the amount we grew. */
3669 		if (rv == KERN_SUCCESS) {
3670 			if (prev_entry != &map->header)
3671 				vm_map_clip_end(map, prev_entry, addr);
3672 			new_entry = prev_entry->next;
3673 			KASSERT(new_entry == stack_entry->prev, ("foo"));
3674 			KASSERT(new_entry->end == stack_entry->start, ("foo"));
3675 			KASSERT(new_entry->start == addr, ("foo"));
3676 			grow_amount = new_entry->end - new_entry->start;
3677 			new_entry->avail_ssize = stack_entry->avail_ssize -
3678 			    grow_amount;
3679 			stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN;
3680 			new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
3681 		}
3682 	} else {
3683 		/*
3684 		 * Growing upward.
3685 		 */
3686 		addr = stack_entry->end + grow_amount;
3687 
3688 		/*
3689 		 * If this puts us into the next entry, cut back our growth
3690 		 * to the available space. Also, see the note above.
3691 		 */
3692 		if (addr > end) {
3693 			stack_entry->avail_ssize = end - stack_entry->end;
3694 			addr = end;
3695 			if (stack_guard_page)
3696 				addr -= PAGE_SIZE;
3697 		}
3698 
3699 		grow_amount = addr - stack_entry->end;
3700 		cred = stack_entry->cred;
3701 		if (cred == NULL && stack_entry->object.vm_object != NULL)
3702 			cred = stack_entry->object.vm_object->cred;
3703 		if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
3704 			rv = KERN_NO_SPACE;
3705 		/* Grow the underlying object if applicable. */
3706 		else if (stack_entry->object.vm_object == NULL ||
3707 			 vm_object_coalesce(stack_entry->object.vm_object,
3708 			 stack_entry->offset,
3709 			 (vm_size_t)(stack_entry->end - stack_entry->start),
3710 			 (vm_size_t)grow_amount, cred != NULL)) {
3711 			map->size += (addr - stack_entry->end);
3712 			/* Update the current entry. */
3713 			stack_entry->end = addr;
3714 			stack_entry->avail_ssize -= grow_amount;
3715 			vm_map_entry_resize_free(map, stack_entry);
3716 			rv = KERN_SUCCESS;
3717 
3718 			if (next_entry != &map->header)
3719 				vm_map_clip_start(map, next_entry, addr);
3720 		} else
3721 			rv = KERN_FAILURE;
3722 	}
3723 
3724 	if (rv == KERN_SUCCESS && is_procstack)
3725 		vm->vm_ssize += btoc(grow_amount);
3726 
3727 	vm_map_unlock(map);
3728 
3729 	/*
3730 	 * Heed the MAP_WIREFUTURE flag if it was set for this process.
3731 	 */
3732 	if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) {
3733 		vm_map_wire(map,
3734 		    (stack_entry == next_entry) ? addr : addr - grow_amount,
3735 		    (stack_entry == next_entry) ? stack_entry->start : addr,
3736 		    (p->p_flag & P_SYSTEM)
3737 		    ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES
3738 		    : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES);
3739 	}
3740 
3741 out:
3742 #ifdef RACCT
3743 	if (rv != KERN_SUCCESS) {
3744 		PROC_LOCK(p);
3745 		error = racct_set(p, RACCT_VMEM, map->size);
3746 		KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
3747 		if (!old_mlock) {
3748 			error = racct_set(p, RACCT_MEMLOCK,
3749 			    ptoa(pmap_wired_count(map->pmap)));
3750 			KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
3751 		}
3752 	    	error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
3753 		KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
3754 		PROC_UNLOCK(p);
3755 	}
3756 #endif
3757 
3758 	return (rv);
3759 }
3760 
3761 /*
3762  * Unshare the specified VM space for exec.  If other processes are
3763  * mapped to it, then create a new one.  The new vmspace is null.
3764  */
3765 int
3766 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
3767 {
3768 	struct vmspace *oldvmspace = p->p_vmspace;
3769 	struct vmspace *newvmspace;
3770 
3771 	KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
3772 	    ("vmspace_exec recursed"));
3773 	newvmspace = vmspace_alloc(minuser, maxuser, NULL);
3774 	if (newvmspace == NULL)
3775 		return (ENOMEM);
3776 	newvmspace->vm_swrss = oldvmspace->vm_swrss;
3777 	/*
3778 	 * This code is written like this for prototype purposes.  The
3779 	 * goal is to avoid running down the vmspace here, but let the
3780 	 * other process's that are still using the vmspace to finally
3781 	 * run it down.  Even though there is little or no chance of blocking
3782 	 * here, it is a good idea to keep this form for future mods.
3783 	 */
3784 	PROC_VMSPACE_LOCK(p);
3785 	p->p_vmspace = newvmspace;
3786 	PROC_VMSPACE_UNLOCK(p);
3787 	if (p == curthread->td_proc)
3788 		pmap_activate(curthread);
3789 	curthread->td_pflags |= TDP_EXECVMSPC;
3790 	return (0);
3791 }
3792 
3793 /*
3794  * Unshare the specified VM space for forcing COW.  This
3795  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3796  */
3797 int
3798 vmspace_unshare(struct proc *p)
3799 {
3800 	struct vmspace *oldvmspace = p->p_vmspace;
3801 	struct vmspace *newvmspace;
3802 	vm_ooffset_t fork_charge;
3803 
3804 	if (oldvmspace->vm_refcnt == 1)
3805 		return (0);
3806 	fork_charge = 0;
3807 	newvmspace = vmspace_fork(oldvmspace, &fork_charge);
3808 	if (newvmspace == NULL)
3809 		return (ENOMEM);
3810 	if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
3811 		vmspace_free(newvmspace);
3812 		return (ENOMEM);
3813 	}
3814 	PROC_VMSPACE_LOCK(p);
3815 	p->p_vmspace = newvmspace;
3816 	PROC_VMSPACE_UNLOCK(p);
3817 	if (p == curthread->td_proc)
3818 		pmap_activate(curthread);
3819 	vmspace_free(oldvmspace);
3820 	return (0);
3821 }
3822 
3823 /*
3824  *	vm_map_lookup:
3825  *
3826  *	Finds the VM object, offset, and
3827  *	protection for a given virtual address in the
3828  *	specified map, assuming a page fault of the
3829  *	type specified.
3830  *
3831  *	Leaves the map in question locked for read; return
3832  *	values are guaranteed until a vm_map_lookup_done
3833  *	call is performed.  Note that the map argument
3834  *	is in/out; the returned map must be used in
3835  *	the call to vm_map_lookup_done.
3836  *
3837  *	A handle (out_entry) is returned for use in
3838  *	vm_map_lookup_done, to make that fast.
3839  *
3840  *	If a lookup is requested with "write protection"
3841  *	specified, the map may be changed to perform virtual
3842  *	copying operations, although the data referenced will
3843  *	remain the same.
3844  */
3845 int
3846 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
3847 	      vm_offset_t vaddr,
3848 	      vm_prot_t fault_typea,
3849 	      vm_map_entry_t *out_entry,	/* OUT */
3850 	      vm_object_t *object,		/* OUT */
3851 	      vm_pindex_t *pindex,		/* OUT */
3852 	      vm_prot_t *out_prot,		/* OUT */
3853 	      boolean_t *wired)			/* OUT */
3854 {
3855 	vm_map_entry_t entry;
3856 	vm_map_t map = *var_map;
3857 	vm_prot_t prot;
3858 	vm_prot_t fault_type = fault_typea;
3859 	vm_object_t eobject;
3860 	vm_size_t size;
3861 	struct ucred *cred;
3862 
3863 RetryLookup:;
3864 
3865 	vm_map_lock_read(map);
3866 
3867 	/*
3868 	 * Lookup the faulting address.
3869 	 */
3870 	if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
3871 		vm_map_unlock_read(map);
3872 		return (KERN_INVALID_ADDRESS);
3873 	}
3874 
3875 	entry = *out_entry;
3876 
3877 	/*
3878 	 * Handle submaps.
3879 	 */
3880 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3881 		vm_map_t old_map = map;
3882 
3883 		*var_map = map = entry->object.sub_map;
3884 		vm_map_unlock_read(old_map);
3885 		goto RetryLookup;
3886 	}
3887 
3888 	/*
3889 	 * Check whether this task is allowed to have this page.
3890 	 */
3891 	prot = entry->protection;
3892 	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3893 	if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
3894 		vm_map_unlock_read(map);
3895 		return (KERN_PROTECTION_FAILURE);
3896 	}
3897 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3898 	    (entry->eflags & MAP_ENTRY_COW) &&
3899 	    (fault_type & VM_PROT_WRITE)) {
3900 		vm_map_unlock_read(map);
3901 		return (KERN_PROTECTION_FAILURE);
3902 	}
3903 	if ((fault_typea & VM_PROT_COPY) != 0 &&
3904 	    (entry->max_protection & VM_PROT_WRITE) == 0 &&
3905 	    (entry->eflags & MAP_ENTRY_COW) == 0) {
3906 		vm_map_unlock_read(map);
3907 		return (KERN_PROTECTION_FAILURE);
3908 	}
3909 
3910 	/*
3911 	 * If this page is not pageable, we have to get it for all possible
3912 	 * accesses.
3913 	 */
3914 	*wired = (entry->wired_count != 0);
3915 	if (*wired)
3916 		fault_type = entry->protection;
3917 	size = entry->end - entry->start;
3918 	/*
3919 	 * If the entry was copy-on-write, we either ...
3920 	 */
3921 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3922 		/*
3923 		 * If we want to write the page, we may as well handle that
3924 		 * now since we've got the map locked.
3925 		 *
3926 		 * If we don't need to write the page, we just demote the
3927 		 * permissions allowed.
3928 		 */
3929 		if ((fault_type & VM_PROT_WRITE) != 0 ||
3930 		    (fault_typea & VM_PROT_COPY) != 0) {
3931 			/*
3932 			 * Make a new object, and place it in the object
3933 			 * chain.  Note that no new references have appeared
3934 			 * -- one just moved from the map to the new
3935 			 * object.
3936 			 */
3937 			if (vm_map_lock_upgrade(map))
3938 				goto RetryLookup;
3939 
3940 			if (entry->cred == NULL) {
3941 				/*
3942 				 * The debugger owner is charged for
3943 				 * the memory.
3944 				 */
3945 				cred = curthread->td_ucred;
3946 				crhold(cred);
3947 				if (!swap_reserve_by_cred(size, cred)) {
3948 					crfree(cred);
3949 					vm_map_unlock(map);
3950 					return (KERN_RESOURCE_SHORTAGE);
3951 				}
3952 				entry->cred = cred;
3953 			}
3954 			vm_object_shadow(&entry->object.vm_object,
3955 			    &entry->offset, size);
3956 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3957 			eobject = entry->object.vm_object;
3958 			if (eobject->cred != NULL) {
3959 				/*
3960 				 * The object was not shadowed.
3961 				 */
3962 				swap_release_by_cred(size, entry->cred);
3963 				crfree(entry->cred);
3964 				entry->cred = NULL;
3965 			} else if (entry->cred != NULL) {
3966 				VM_OBJECT_WLOCK(eobject);
3967 				eobject->cred = entry->cred;
3968 				eobject->charge = size;
3969 				VM_OBJECT_WUNLOCK(eobject);
3970 				entry->cred = NULL;
3971 			}
3972 
3973 			vm_map_lock_downgrade(map);
3974 		} else {
3975 			/*
3976 			 * We're attempting to read a copy-on-write page --
3977 			 * don't allow writes.
3978 			 */
3979 			prot &= ~VM_PROT_WRITE;
3980 		}
3981 	}
3982 
3983 	/*
3984 	 * Create an object if necessary.
3985 	 */
3986 	if (entry->object.vm_object == NULL &&
3987 	    !map->system_map) {
3988 		if (vm_map_lock_upgrade(map))
3989 			goto RetryLookup;
3990 		entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
3991 		    atop(size));
3992 		entry->offset = 0;
3993 		if (entry->cred != NULL) {
3994 			VM_OBJECT_WLOCK(entry->object.vm_object);
3995 			entry->object.vm_object->cred = entry->cred;
3996 			entry->object.vm_object->charge = size;
3997 			VM_OBJECT_WUNLOCK(entry->object.vm_object);
3998 			entry->cred = NULL;
3999 		}
4000 		vm_map_lock_downgrade(map);
4001 	}
4002 
4003 	/*
4004 	 * Return the object/offset from this entry.  If the entry was
4005 	 * copy-on-write or empty, it has been fixed up.
4006 	 */
4007 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4008 	*object = entry->object.vm_object;
4009 
4010 	*out_prot = prot;
4011 	return (KERN_SUCCESS);
4012 }
4013 
4014 /*
4015  *	vm_map_lookup_locked:
4016  *
4017  *	Lookup the faulting address.  A version of vm_map_lookup that returns
4018  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
4019  */
4020 int
4021 vm_map_lookup_locked(vm_map_t *var_map,		/* IN/OUT */
4022 		     vm_offset_t vaddr,
4023 		     vm_prot_t fault_typea,
4024 		     vm_map_entry_t *out_entry,	/* OUT */
4025 		     vm_object_t *object,	/* OUT */
4026 		     vm_pindex_t *pindex,	/* OUT */
4027 		     vm_prot_t *out_prot,	/* OUT */
4028 		     boolean_t *wired)		/* OUT */
4029 {
4030 	vm_map_entry_t entry;
4031 	vm_map_t map = *var_map;
4032 	vm_prot_t prot;
4033 	vm_prot_t fault_type = fault_typea;
4034 
4035 	/*
4036 	 * Lookup the faulting address.
4037 	 */
4038 	if (!vm_map_lookup_entry(map, vaddr, out_entry))
4039 		return (KERN_INVALID_ADDRESS);
4040 
4041 	entry = *out_entry;
4042 
4043 	/*
4044 	 * Fail if the entry refers to a submap.
4045 	 */
4046 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4047 		return (KERN_FAILURE);
4048 
4049 	/*
4050 	 * Check whether this task is allowed to have this page.
4051 	 */
4052 	prot = entry->protection;
4053 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4054 	if ((fault_type & prot) != fault_type)
4055 		return (KERN_PROTECTION_FAILURE);
4056 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
4057 	    (entry->eflags & MAP_ENTRY_COW) &&
4058 	    (fault_type & VM_PROT_WRITE))
4059 		return (KERN_PROTECTION_FAILURE);
4060 
4061 	/*
4062 	 * If this page is not pageable, we have to get it for all possible
4063 	 * accesses.
4064 	 */
4065 	*wired = (entry->wired_count != 0);
4066 	if (*wired)
4067 		fault_type = entry->protection;
4068 
4069 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4070 		/*
4071 		 * Fail if the entry was copy-on-write for a write fault.
4072 		 */
4073 		if (fault_type & VM_PROT_WRITE)
4074 			return (KERN_FAILURE);
4075 		/*
4076 		 * We're attempting to read a copy-on-write page --
4077 		 * don't allow writes.
4078 		 */
4079 		prot &= ~VM_PROT_WRITE;
4080 	}
4081 
4082 	/*
4083 	 * Fail if an object should be created.
4084 	 */
4085 	if (entry->object.vm_object == NULL && !map->system_map)
4086 		return (KERN_FAILURE);
4087 
4088 	/*
4089 	 * Return the object/offset from this entry.  If the entry was
4090 	 * copy-on-write or empty, it has been fixed up.
4091 	 */
4092 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4093 	*object = entry->object.vm_object;
4094 
4095 	*out_prot = prot;
4096 	return (KERN_SUCCESS);
4097 }
4098 
4099 /*
4100  *	vm_map_lookup_done:
4101  *
4102  *	Releases locks acquired by a vm_map_lookup
4103  *	(according to the handle returned by that lookup).
4104  */
4105 void
4106 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
4107 {
4108 	/*
4109 	 * Unlock the main-level map
4110 	 */
4111 	vm_map_unlock_read(map);
4112 }
4113 
4114 #include "opt_ddb.h"
4115 #ifdef DDB
4116 #include <sys/kernel.h>
4117 
4118 #include <ddb/ddb.h>
4119 
4120 static void
4121 vm_map_print(vm_map_t map)
4122 {
4123 	vm_map_entry_t entry;
4124 
4125 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4126 	    (void *)map,
4127 	    (void *)map->pmap, map->nentries, map->timestamp);
4128 
4129 	db_indent += 2;
4130 	for (entry = map->header.next; entry != &map->header;
4131 	    entry = entry->next) {
4132 		db_iprintf("map entry %p: start=%p, end=%p\n",
4133 		    (void *)entry, (void *)entry->start, (void *)entry->end);
4134 		{
4135 			static char *inheritance_name[4] =
4136 			{"share", "copy", "none", "donate_copy"};
4137 
4138 			db_iprintf(" prot=%x/%x/%s",
4139 			    entry->protection,
4140 			    entry->max_protection,
4141 			    inheritance_name[(int)(unsigned char)entry->inheritance]);
4142 			if (entry->wired_count != 0)
4143 				db_printf(", wired");
4144 		}
4145 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4146 			db_printf(", share=%p, offset=0x%jx\n",
4147 			    (void *)entry->object.sub_map,
4148 			    (uintmax_t)entry->offset);
4149 			if ((entry->prev == &map->header) ||
4150 			    (entry->prev->object.sub_map !=
4151 				entry->object.sub_map)) {
4152 				db_indent += 2;
4153 				vm_map_print((vm_map_t)entry->object.sub_map);
4154 				db_indent -= 2;
4155 			}
4156 		} else {
4157 			if (entry->cred != NULL)
4158 				db_printf(", ruid %d", entry->cred->cr_ruid);
4159 			db_printf(", object=%p, offset=0x%jx",
4160 			    (void *)entry->object.vm_object,
4161 			    (uintmax_t)entry->offset);
4162 			if (entry->object.vm_object && entry->object.vm_object->cred)
4163 				db_printf(", obj ruid %d charge %jx",
4164 				    entry->object.vm_object->cred->cr_ruid,
4165 				    (uintmax_t)entry->object.vm_object->charge);
4166 			if (entry->eflags & MAP_ENTRY_COW)
4167 				db_printf(", copy (%s)",
4168 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4169 			db_printf("\n");
4170 
4171 			if ((entry->prev == &map->header) ||
4172 			    (entry->prev->object.vm_object !=
4173 				entry->object.vm_object)) {
4174 				db_indent += 2;
4175 				vm_object_print((db_expr_t)(intptr_t)
4176 						entry->object.vm_object,
4177 						0, 0, (char *)0);
4178 				db_indent -= 2;
4179 			}
4180 		}
4181 	}
4182 	db_indent -= 2;
4183 }
4184 
4185 DB_SHOW_COMMAND(map, map)
4186 {
4187 
4188 	if (!have_addr) {
4189 		db_printf("usage: show map <addr>\n");
4190 		return;
4191 	}
4192 	vm_map_print((vm_map_t)addr);
4193 }
4194 
4195 DB_SHOW_COMMAND(procvm, procvm)
4196 {
4197 	struct proc *p;
4198 
4199 	if (have_addr) {
4200 		p = (struct proc *) addr;
4201 	} else {
4202 		p = curproc;
4203 	}
4204 
4205 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4206 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4207 	    (void *)vmspace_pmap(p->p_vmspace));
4208 
4209 	vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
4210 }
4211 
4212 #endif /* DDB */
4213