1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 */ 60 61 /* 62 * Virtual memory mapping module. 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include <sys/param.h> 69 #include <sys/systm.h> 70 #include <sys/kernel.h> 71 #include <sys/ktr.h> 72 #include <sys/lock.h> 73 #include <sys/mutex.h> 74 #include <sys/proc.h> 75 #include <sys/vmmeter.h> 76 #include <sys/mman.h> 77 #include <sys/vnode.h> 78 #include <sys/racct.h> 79 #include <sys/resourcevar.h> 80 #include <sys/rwlock.h> 81 #include <sys/file.h> 82 #include <sys/sysctl.h> 83 #include <sys/sysent.h> 84 #include <sys/shm.h> 85 86 #include <vm/vm.h> 87 #include <vm/vm_param.h> 88 #include <vm/pmap.h> 89 #include <vm/vm_map.h> 90 #include <vm/vm_page.h> 91 #include <vm/vm_object.h> 92 #include <vm/vm_pager.h> 93 #include <vm/vm_kern.h> 94 #include <vm/vm_extern.h> 95 #include <vm/vnode_pager.h> 96 #include <vm/swap_pager.h> 97 #include <vm/uma.h> 98 99 /* 100 * Virtual memory maps provide for the mapping, protection, 101 * and sharing of virtual memory objects. In addition, 102 * this module provides for an efficient virtual copy of 103 * memory from one map to another. 104 * 105 * Synchronization is required prior to most operations. 106 * 107 * Maps consist of an ordered doubly-linked list of simple 108 * entries; a self-adjusting binary search tree of these 109 * entries is used to speed up lookups. 110 * 111 * Since portions of maps are specified by start/end addresses, 112 * which may not align with existing map entries, all 113 * routines merely "clip" entries to these start/end values. 114 * [That is, an entry is split into two, bordering at a 115 * start or end value.] Note that these clippings may not 116 * always be necessary (as the two resulting entries are then 117 * not changed); however, the clipping is done for convenience. 118 * 119 * As mentioned above, virtual copy operations are performed 120 * by copying VM object references from one map to 121 * another, and then marking both regions as copy-on-write. 122 */ 123 124 static struct mtx map_sleep_mtx; 125 static uma_zone_t mapentzone; 126 static uma_zone_t kmapentzone; 127 static uma_zone_t mapzone; 128 static uma_zone_t vmspace_zone; 129 static int vmspace_zinit(void *mem, int size, int flags); 130 static int vm_map_zinit(void *mem, int ize, int flags); 131 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, 132 vm_offset_t max); 133 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map); 134 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry); 135 #ifdef INVARIANTS 136 static void vm_map_zdtor(void *mem, int size, void *arg); 137 static void vmspace_zdtor(void *mem, int size, void *arg); 138 #endif 139 140 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \ 141 ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \ 142 !((e)->eflags & MAP_ENTRY_NEEDS_COPY))) 143 144 /* 145 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type 146 * stable. 147 */ 148 #define PROC_VMSPACE_LOCK(p) do { } while (0) 149 #define PROC_VMSPACE_UNLOCK(p) do { } while (0) 150 151 /* 152 * VM_MAP_RANGE_CHECK: [ internal use only ] 153 * 154 * Asserts that the starting and ending region 155 * addresses fall within the valid range of the map. 156 */ 157 #define VM_MAP_RANGE_CHECK(map, start, end) \ 158 { \ 159 if (start < vm_map_min(map)) \ 160 start = vm_map_min(map); \ 161 if (end > vm_map_max(map)) \ 162 end = vm_map_max(map); \ 163 if (start > end) \ 164 start = end; \ 165 } 166 167 /* 168 * vm_map_startup: 169 * 170 * Initialize the vm_map module. Must be called before 171 * any other vm_map routines. 172 * 173 * Map and entry structures are allocated from the general 174 * purpose memory pool with some exceptions: 175 * 176 * - The kernel map and kmem submap are allocated statically. 177 * - Kernel map entries are allocated out of a static pool. 178 * 179 * These restrictions are necessary since malloc() uses the 180 * maps and requires map entries. 181 */ 182 183 void 184 vm_map_startup(void) 185 { 186 mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF); 187 mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL, 188 #ifdef INVARIANTS 189 vm_map_zdtor, 190 #else 191 NULL, 192 #endif 193 vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 194 uma_prealloc(mapzone, MAX_KMAP); 195 kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry), 196 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 197 UMA_ZONE_MTXCLASS | UMA_ZONE_VM); 198 mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry), 199 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 200 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL, 201 #ifdef INVARIANTS 202 vmspace_zdtor, 203 #else 204 NULL, 205 #endif 206 vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 207 } 208 209 static int 210 vmspace_zinit(void *mem, int size, int flags) 211 { 212 struct vmspace *vm; 213 214 vm = (struct vmspace *)mem; 215 216 vm->vm_map.pmap = NULL; 217 (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags); 218 PMAP_LOCK_INIT(vmspace_pmap(vm)); 219 return (0); 220 } 221 222 static int 223 vm_map_zinit(void *mem, int size, int flags) 224 { 225 vm_map_t map; 226 227 map = (vm_map_t)mem; 228 memset(map, 0, sizeof(*map)); 229 mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK); 230 sx_init(&map->lock, "vm map (user)"); 231 return (0); 232 } 233 234 #ifdef INVARIANTS 235 static void 236 vmspace_zdtor(void *mem, int size, void *arg) 237 { 238 struct vmspace *vm; 239 240 vm = (struct vmspace *)mem; 241 242 vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg); 243 } 244 static void 245 vm_map_zdtor(void *mem, int size, void *arg) 246 { 247 vm_map_t map; 248 249 map = (vm_map_t)mem; 250 KASSERT(map->nentries == 0, 251 ("map %p nentries == %d on free.", 252 map, map->nentries)); 253 KASSERT(map->size == 0, 254 ("map %p size == %lu on free.", 255 map, (unsigned long)map->size)); 256 } 257 #endif /* INVARIANTS */ 258 259 /* 260 * Allocate a vmspace structure, including a vm_map and pmap, 261 * and initialize those structures. The refcnt is set to 1. 262 * 263 * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit(). 264 */ 265 struct vmspace * 266 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit) 267 { 268 struct vmspace *vm; 269 270 vm = uma_zalloc(vmspace_zone, M_WAITOK); 271 272 KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL")); 273 274 if (pinit == NULL) 275 pinit = &pmap_pinit; 276 277 if (!pinit(vmspace_pmap(vm))) { 278 uma_zfree(vmspace_zone, vm); 279 return (NULL); 280 } 281 CTR1(KTR_VM, "vmspace_alloc: %p", vm); 282 _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max); 283 vm->vm_refcnt = 1; 284 vm->vm_shm = NULL; 285 vm->vm_swrss = 0; 286 vm->vm_tsize = 0; 287 vm->vm_dsize = 0; 288 vm->vm_ssize = 0; 289 vm->vm_taddr = 0; 290 vm->vm_daddr = 0; 291 vm->vm_maxsaddr = 0; 292 return (vm); 293 } 294 295 static void 296 vmspace_container_reset(struct proc *p) 297 { 298 299 #ifdef RACCT 300 PROC_LOCK(p); 301 racct_set(p, RACCT_DATA, 0); 302 racct_set(p, RACCT_STACK, 0); 303 racct_set(p, RACCT_RSS, 0); 304 racct_set(p, RACCT_MEMLOCK, 0); 305 racct_set(p, RACCT_VMEM, 0); 306 PROC_UNLOCK(p); 307 #endif 308 } 309 310 static inline void 311 vmspace_dofree(struct vmspace *vm) 312 { 313 314 CTR1(KTR_VM, "vmspace_free: %p", vm); 315 316 /* 317 * Make sure any SysV shm is freed, it might not have been in 318 * exit1(). 319 */ 320 shmexit(vm); 321 322 /* 323 * Lock the map, to wait out all other references to it. 324 * Delete all of the mappings and pages they hold, then call 325 * the pmap module to reclaim anything left. 326 */ 327 (void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset, 328 vm->vm_map.max_offset); 329 330 pmap_release(vmspace_pmap(vm)); 331 vm->vm_map.pmap = NULL; 332 uma_zfree(vmspace_zone, vm); 333 } 334 335 void 336 vmspace_free(struct vmspace *vm) 337 { 338 339 if (vm->vm_refcnt == 0) 340 panic("vmspace_free: attempt to free already freed vmspace"); 341 342 if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1) 343 vmspace_dofree(vm); 344 } 345 346 void 347 vmspace_exitfree(struct proc *p) 348 { 349 struct vmspace *vm; 350 351 PROC_VMSPACE_LOCK(p); 352 vm = p->p_vmspace; 353 p->p_vmspace = NULL; 354 PROC_VMSPACE_UNLOCK(p); 355 KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace")); 356 vmspace_free(vm); 357 } 358 359 void 360 vmspace_exit(struct thread *td) 361 { 362 int refcnt; 363 struct vmspace *vm; 364 struct proc *p; 365 366 /* 367 * Release user portion of address space. 368 * This releases references to vnodes, 369 * which could cause I/O if the file has been unlinked. 370 * Need to do this early enough that we can still sleep. 371 * 372 * The last exiting process to reach this point releases as 373 * much of the environment as it can. vmspace_dofree() is the 374 * slower fallback in case another process had a temporary 375 * reference to the vmspace. 376 */ 377 378 p = td->td_proc; 379 vm = p->p_vmspace; 380 atomic_add_int(&vmspace0.vm_refcnt, 1); 381 do { 382 refcnt = vm->vm_refcnt; 383 if (refcnt > 1 && p->p_vmspace != &vmspace0) { 384 /* Switch now since other proc might free vmspace */ 385 PROC_VMSPACE_LOCK(p); 386 p->p_vmspace = &vmspace0; 387 PROC_VMSPACE_UNLOCK(p); 388 pmap_activate(td); 389 } 390 } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1)); 391 if (refcnt == 1) { 392 if (p->p_vmspace != vm) { 393 /* vmspace not yet freed, switch back */ 394 PROC_VMSPACE_LOCK(p); 395 p->p_vmspace = vm; 396 PROC_VMSPACE_UNLOCK(p); 397 pmap_activate(td); 398 } 399 pmap_remove_pages(vmspace_pmap(vm)); 400 /* Switch now since this proc will free vmspace */ 401 PROC_VMSPACE_LOCK(p); 402 p->p_vmspace = &vmspace0; 403 PROC_VMSPACE_UNLOCK(p); 404 pmap_activate(td); 405 vmspace_dofree(vm); 406 } 407 vmspace_container_reset(p); 408 } 409 410 /* Acquire reference to vmspace owned by another process. */ 411 412 struct vmspace * 413 vmspace_acquire_ref(struct proc *p) 414 { 415 struct vmspace *vm; 416 int refcnt; 417 418 PROC_VMSPACE_LOCK(p); 419 vm = p->p_vmspace; 420 if (vm == NULL) { 421 PROC_VMSPACE_UNLOCK(p); 422 return (NULL); 423 } 424 do { 425 refcnt = vm->vm_refcnt; 426 if (refcnt <= 0) { /* Avoid 0->1 transition */ 427 PROC_VMSPACE_UNLOCK(p); 428 return (NULL); 429 } 430 } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1)); 431 if (vm != p->p_vmspace) { 432 PROC_VMSPACE_UNLOCK(p); 433 vmspace_free(vm); 434 return (NULL); 435 } 436 PROC_VMSPACE_UNLOCK(p); 437 return (vm); 438 } 439 440 void 441 _vm_map_lock(vm_map_t map, const char *file, int line) 442 { 443 444 if (map->system_map) 445 mtx_lock_flags_(&map->system_mtx, 0, file, line); 446 else 447 sx_xlock_(&map->lock, file, line); 448 map->timestamp++; 449 } 450 451 static void 452 vm_map_process_deferred(void) 453 { 454 struct thread *td; 455 vm_map_entry_t entry, next; 456 vm_object_t object; 457 458 td = curthread; 459 entry = td->td_map_def_user; 460 td->td_map_def_user = NULL; 461 while (entry != NULL) { 462 next = entry->next; 463 if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) { 464 /* 465 * Decrement the object's writemappings and 466 * possibly the vnode's v_writecount. 467 */ 468 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 469 ("Submap with writecount")); 470 object = entry->object.vm_object; 471 KASSERT(object != NULL, ("No object for writecount")); 472 vnode_pager_release_writecount(object, entry->start, 473 entry->end); 474 } 475 vm_map_entry_deallocate(entry, FALSE); 476 entry = next; 477 } 478 } 479 480 void 481 _vm_map_unlock(vm_map_t map, const char *file, int line) 482 { 483 484 if (map->system_map) 485 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 486 else { 487 sx_xunlock_(&map->lock, file, line); 488 vm_map_process_deferred(); 489 } 490 } 491 492 void 493 _vm_map_lock_read(vm_map_t map, const char *file, int line) 494 { 495 496 if (map->system_map) 497 mtx_lock_flags_(&map->system_mtx, 0, file, line); 498 else 499 sx_slock_(&map->lock, file, line); 500 } 501 502 void 503 _vm_map_unlock_read(vm_map_t map, const char *file, int line) 504 { 505 506 if (map->system_map) 507 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 508 else { 509 sx_sunlock_(&map->lock, file, line); 510 vm_map_process_deferred(); 511 } 512 } 513 514 int 515 _vm_map_trylock(vm_map_t map, const char *file, int line) 516 { 517 int error; 518 519 error = map->system_map ? 520 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 521 !sx_try_xlock_(&map->lock, file, line); 522 if (error == 0) 523 map->timestamp++; 524 return (error == 0); 525 } 526 527 int 528 _vm_map_trylock_read(vm_map_t map, const char *file, int line) 529 { 530 int error; 531 532 error = map->system_map ? 533 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 534 !sx_try_slock_(&map->lock, file, line); 535 return (error == 0); 536 } 537 538 /* 539 * _vm_map_lock_upgrade: [ internal use only ] 540 * 541 * Tries to upgrade a read (shared) lock on the specified map to a write 542 * (exclusive) lock. Returns the value "0" if the upgrade succeeds and a 543 * non-zero value if the upgrade fails. If the upgrade fails, the map is 544 * returned without a read or write lock held. 545 * 546 * Requires that the map be read locked. 547 */ 548 int 549 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line) 550 { 551 unsigned int last_timestamp; 552 553 if (map->system_map) { 554 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 555 } else { 556 if (!sx_try_upgrade_(&map->lock, file, line)) { 557 last_timestamp = map->timestamp; 558 sx_sunlock_(&map->lock, file, line); 559 vm_map_process_deferred(); 560 /* 561 * If the map's timestamp does not change while the 562 * map is unlocked, then the upgrade succeeds. 563 */ 564 sx_xlock_(&map->lock, file, line); 565 if (last_timestamp != map->timestamp) { 566 sx_xunlock_(&map->lock, file, line); 567 return (1); 568 } 569 } 570 } 571 map->timestamp++; 572 return (0); 573 } 574 575 void 576 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line) 577 { 578 579 if (map->system_map) { 580 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 581 } else 582 sx_downgrade_(&map->lock, file, line); 583 } 584 585 /* 586 * vm_map_locked: 587 * 588 * Returns a non-zero value if the caller holds a write (exclusive) lock 589 * on the specified map and the value "0" otherwise. 590 */ 591 int 592 vm_map_locked(vm_map_t map) 593 { 594 595 if (map->system_map) 596 return (mtx_owned(&map->system_mtx)); 597 else 598 return (sx_xlocked(&map->lock)); 599 } 600 601 #ifdef INVARIANTS 602 static void 603 _vm_map_assert_locked(vm_map_t map, const char *file, int line) 604 { 605 606 if (map->system_map) 607 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 608 else 609 sx_assert_(&map->lock, SA_XLOCKED, file, line); 610 } 611 612 #define VM_MAP_ASSERT_LOCKED(map) \ 613 _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE) 614 #else 615 #define VM_MAP_ASSERT_LOCKED(map) 616 #endif 617 618 /* 619 * _vm_map_unlock_and_wait: 620 * 621 * Atomically releases the lock on the specified map and puts the calling 622 * thread to sleep. The calling thread will remain asleep until either 623 * vm_map_wakeup() is performed on the map or the specified timeout is 624 * exceeded. 625 * 626 * WARNING! This function does not perform deferred deallocations of 627 * objects and map entries. Therefore, the calling thread is expected to 628 * reacquire the map lock after reawakening and later perform an ordinary 629 * unlock operation, such as vm_map_unlock(), before completing its 630 * operation on the map. 631 */ 632 int 633 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line) 634 { 635 636 mtx_lock(&map_sleep_mtx); 637 if (map->system_map) 638 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 639 else 640 sx_xunlock_(&map->lock, file, line); 641 return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps", 642 timo)); 643 } 644 645 /* 646 * vm_map_wakeup: 647 * 648 * Awaken any threads that have slept on the map using 649 * vm_map_unlock_and_wait(). 650 */ 651 void 652 vm_map_wakeup(vm_map_t map) 653 { 654 655 /* 656 * Acquire and release map_sleep_mtx to prevent a wakeup() 657 * from being performed (and lost) between the map unlock 658 * and the msleep() in _vm_map_unlock_and_wait(). 659 */ 660 mtx_lock(&map_sleep_mtx); 661 mtx_unlock(&map_sleep_mtx); 662 wakeup(&map->root); 663 } 664 665 void 666 vm_map_busy(vm_map_t map) 667 { 668 669 VM_MAP_ASSERT_LOCKED(map); 670 map->busy++; 671 } 672 673 void 674 vm_map_unbusy(vm_map_t map) 675 { 676 677 VM_MAP_ASSERT_LOCKED(map); 678 KASSERT(map->busy, ("vm_map_unbusy: not busy")); 679 if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) { 680 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP); 681 wakeup(&map->busy); 682 } 683 } 684 685 void 686 vm_map_wait_busy(vm_map_t map) 687 { 688 689 VM_MAP_ASSERT_LOCKED(map); 690 while (map->busy) { 691 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0); 692 if (map->system_map) 693 msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0); 694 else 695 sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0); 696 } 697 map->timestamp++; 698 } 699 700 long 701 vmspace_resident_count(struct vmspace *vmspace) 702 { 703 return pmap_resident_count(vmspace_pmap(vmspace)); 704 } 705 706 /* 707 * vm_map_create: 708 * 709 * Creates and returns a new empty VM map with 710 * the given physical map structure, and having 711 * the given lower and upper address bounds. 712 */ 713 vm_map_t 714 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max) 715 { 716 vm_map_t result; 717 718 result = uma_zalloc(mapzone, M_WAITOK); 719 CTR1(KTR_VM, "vm_map_create: %p", result); 720 _vm_map_init(result, pmap, min, max); 721 return (result); 722 } 723 724 /* 725 * Initialize an existing vm_map structure 726 * such as that in the vmspace structure. 727 */ 728 static void 729 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 730 { 731 732 map->header.next = map->header.prev = &map->header; 733 map->needs_wakeup = FALSE; 734 map->system_map = 0; 735 map->pmap = pmap; 736 map->min_offset = min; 737 map->max_offset = max; 738 map->flags = 0; 739 map->root = NULL; 740 map->timestamp = 0; 741 map->busy = 0; 742 } 743 744 void 745 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 746 { 747 748 _vm_map_init(map, pmap, min, max); 749 mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK); 750 sx_init(&map->lock, "user map"); 751 } 752 753 /* 754 * vm_map_entry_dispose: [ internal use only ] 755 * 756 * Inverse of vm_map_entry_create. 757 */ 758 static void 759 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry) 760 { 761 uma_zfree(map->system_map ? kmapentzone : mapentzone, entry); 762 } 763 764 /* 765 * vm_map_entry_create: [ internal use only ] 766 * 767 * Allocates a VM map entry for insertion. 768 * No entry fields are filled in. 769 */ 770 static vm_map_entry_t 771 vm_map_entry_create(vm_map_t map) 772 { 773 vm_map_entry_t new_entry; 774 775 if (map->system_map) 776 new_entry = uma_zalloc(kmapentzone, M_NOWAIT); 777 else 778 new_entry = uma_zalloc(mapentzone, M_WAITOK); 779 if (new_entry == NULL) 780 panic("vm_map_entry_create: kernel resources exhausted"); 781 return (new_entry); 782 } 783 784 /* 785 * vm_map_entry_set_behavior: 786 * 787 * Set the expected access behavior, either normal, random, or 788 * sequential. 789 */ 790 static inline void 791 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior) 792 { 793 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) | 794 (behavior & MAP_ENTRY_BEHAV_MASK); 795 } 796 797 /* 798 * vm_map_entry_set_max_free: 799 * 800 * Set the max_free field in a vm_map_entry. 801 */ 802 static inline void 803 vm_map_entry_set_max_free(vm_map_entry_t entry) 804 { 805 806 entry->max_free = entry->adj_free; 807 if (entry->left != NULL && entry->left->max_free > entry->max_free) 808 entry->max_free = entry->left->max_free; 809 if (entry->right != NULL && entry->right->max_free > entry->max_free) 810 entry->max_free = entry->right->max_free; 811 } 812 813 /* 814 * vm_map_entry_splay: 815 * 816 * The Sleator and Tarjan top-down splay algorithm with the 817 * following variation. Max_free must be computed bottom-up, so 818 * on the downward pass, maintain the left and right spines in 819 * reverse order. Then, make a second pass up each side to fix 820 * the pointers and compute max_free. The time bound is O(log n) 821 * amortized. 822 * 823 * The new root is the vm_map_entry containing "addr", or else an 824 * adjacent entry (lower or higher) if addr is not in the tree. 825 * 826 * The map must be locked, and leaves it so. 827 * 828 * Returns: the new root. 829 */ 830 static vm_map_entry_t 831 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root) 832 { 833 vm_map_entry_t llist, rlist; 834 vm_map_entry_t ltree, rtree; 835 vm_map_entry_t y; 836 837 /* Special case of empty tree. */ 838 if (root == NULL) 839 return (root); 840 841 /* 842 * Pass One: Splay down the tree until we find addr or a NULL 843 * pointer where addr would go. llist and rlist are the two 844 * sides in reverse order (bottom-up), with llist linked by 845 * the right pointer and rlist linked by the left pointer in 846 * the vm_map_entry. Wait until Pass Two to set max_free on 847 * the two spines. 848 */ 849 llist = NULL; 850 rlist = NULL; 851 for (;;) { 852 /* root is never NULL in here. */ 853 if (addr < root->start) { 854 y = root->left; 855 if (y == NULL) 856 break; 857 if (addr < y->start && y->left != NULL) { 858 /* Rotate right and put y on rlist. */ 859 root->left = y->right; 860 y->right = root; 861 vm_map_entry_set_max_free(root); 862 root = y->left; 863 y->left = rlist; 864 rlist = y; 865 } else { 866 /* Put root on rlist. */ 867 root->left = rlist; 868 rlist = root; 869 root = y; 870 } 871 } else if (addr >= root->end) { 872 y = root->right; 873 if (y == NULL) 874 break; 875 if (addr >= y->end && y->right != NULL) { 876 /* Rotate left and put y on llist. */ 877 root->right = y->left; 878 y->left = root; 879 vm_map_entry_set_max_free(root); 880 root = y->right; 881 y->right = llist; 882 llist = y; 883 } else { 884 /* Put root on llist. */ 885 root->right = llist; 886 llist = root; 887 root = y; 888 } 889 } else 890 break; 891 } 892 893 /* 894 * Pass Two: Walk back up the two spines, flip the pointers 895 * and set max_free. The subtrees of the root go at the 896 * bottom of llist and rlist. 897 */ 898 ltree = root->left; 899 while (llist != NULL) { 900 y = llist->right; 901 llist->right = ltree; 902 vm_map_entry_set_max_free(llist); 903 ltree = llist; 904 llist = y; 905 } 906 rtree = root->right; 907 while (rlist != NULL) { 908 y = rlist->left; 909 rlist->left = rtree; 910 vm_map_entry_set_max_free(rlist); 911 rtree = rlist; 912 rlist = y; 913 } 914 915 /* 916 * Final assembly: add ltree and rtree as subtrees of root. 917 */ 918 root->left = ltree; 919 root->right = rtree; 920 vm_map_entry_set_max_free(root); 921 922 return (root); 923 } 924 925 /* 926 * vm_map_entry_{un,}link: 927 * 928 * Insert/remove entries from maps. 929 */ 930 static void 931 vm_map_entry_link(vm_map_t map, 932 vm_map_entry_t after_where, 933 vm_map_entry_t entry) 934 { 935 936 CTR4(KTR_VM, 937 "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map, 938 map->nentries, entry, after_where); 939 VM_MAP_ASSERT_LOCKED(map); 940 map->nentries++; 941 entry->prev = after_where; 942 entry->next = after_where->next; 943 entry->next->prev = entry; 944 after_where->next = entry; 945 946 if (after_where != &map->header) { 947 if (after_where != map->root) 948 vm_map_entry_splay(after_where->start, map->root); 949 entry->right = after_where->right; 950 entry->left = after_where; 951 after_where->right = NULL; 952 after_where->adj_free = entry->start - after_where->end; 953 vm_map_entry_set_max_free(after_where); 954 } else { 955 entry->right = map->root; 956 entry->left = NULL; 957 } 958 entry->adj_free = (entry->next == &map->header ? map->max_offset : 959 entry->next->start) - entry->end; 960 vm_map_entry_set_max_free(entry); 961 map->root = entry; 962 } 963 964 static void 965 vm_map_entry_unlink(vm_map_t map, 966 vm_map_entry_t entry) 967 { 968 vm_map_entry_t next, prev, root; 969 970 VM_MAP_ASSERT_LOCKED(map); 971 if (entry != map->root) 972 vm_map_entry_splay(entry->start, map->root); 973 if (entry->left == NULL) 974 root = entry->right; 975 else { 976 root = vm_map_entry_splay(entry->start, entry->left); 977 root->right = entry->right; 978 root->adj_free = (entry->next == &map->header ? map->max_offset : 979 entry->next->start) - root->end; 980 vm_map_entry_set_max_free(root); 981 } 982 map->root = root; 983 984 prev = entry->prev; 985 next = entry->next; 986 next->prev = prev; 987 prev->next = next; 988 map->nentries--; 989 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map, 990 map->nentries, entry); 991 } 992 993 /* 994 * vm_map_entry_resize_free: 995 * 996 * Recompute the amount of free space following a vm_map_entry 997 * and propagate that value up the tree. Call this function after 998 * resizing a map entry in-place, that is, without a call to 999 * vm_map_entry_link() or _unlink(). 1000 * 1001 * The map must be locked, and leaves it so. 1002 */ 1003 static void 1004 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry) 1005 { 1006 1007 /* 1008 * Using splay trees without parent pointers, propagating 1009 * max_free up the tree is done by moving the entry to the 1010 * root and making the change there. 1011 */ 1012 if (entry != map->root) 1013 map->root = vm_map_entry_splay(entry->start, map->root); 1014 1015 entry->adj_free = (entry->next == &map->header ? map->max_offset : 1016 entry->next->start) - entry->end; 1017 vm_map_entry_set_max_free(entry); 1018 } 1019 1020 /* 1021 * vm_map_lookup_entry: [ internal use only ] 1022 * 1023 * Finds the map entry containing (or 1024 * immediately preceding) the specified address 1025 * in the given map; the entry is returned 1026 * in the "entry" parameter. The boolean 1027 * result indicates whether the address is 1028 * actually contained in the map. 1029 */ 1030 boolean_t 1031 vm_map_lookup_entry( 1032 vm_map_t map, 1033 vm_offset_t address, 1034 vm_map_entry_t *entry) /* OUT */ 1035 { 1036 vm_map_entry_t cur; 1037 boolean_t locked; 1038 1039 /* 1040 * If the map is empty, then the map entry immediately preceding 1041 * "address" is the map's header. 1042 */ 1043 cur = map->root; 1044 if (cur == NULL) 1045 *entry = &map->header; 1046 else if (address >= cur->start && cur->end > address) { 1047 *entry = cur; 1048 return (TRUE); 1049 } else if ((locked = vm_map_locked(map)) || 1050 sx_try_upgrade(&map->lock)) { 1051 /* 1052 * Splay requires a write lock on the map. However, it only 1053 * restructures the binary search tree; it does not otherwise 1054 * change the map. Thus, the map's timestamp need not change 1055 * on a temporary upgrade. 1056 */ 1057 map->root = cur = vm_map_entry_splay(address, cur); 1058 if (!locked) 1059 sx_downgrade(&map->lock); 1060 1061 /* 1062 * If "address" is contained within a map entry, the new root 1063 * is that map entry. Otherwise, the new root is a map entry 1064 * immediately before or after "address". 1065 */ 1066 if (address >= cur->start) { 1067 *entry = cur; 1068 if (cur->end > address) 1069 return (TRUE); 1070 } else 1071 *entry = cur->prev; 1072 } else 1073 /* 1074 * Since the map is only locked for read access, perform a 1075 * standard binary search tree lookup for "address". 1076 */ 1077 for (;;) { 1078 if (address < cur->start) { 1079 if (cur->left == NULL) { 1080 *entry = cur->prev; 1081 break; 1082 } 1083 cur = cur->left; 1084 } else if (cur->end > address) { 1085 *entry = cur; 1086 return (TRUE); 1087 } else { 1088 if (cur->right == NULL) { 1089 *entry = cur; 1090 break; 1091 } 1092 cur = cur->right; 1093 } 1094 } 1095 return (FALSE); 1096 } 1097 1098 /* 1099 * vm_map_insert: 1100 * 1101 * Inserts the given whole VM object into the target 1102 * map at the specified address range. The object's 1103 * size should match that of the address range. 1104 * 1105 * Requires that the map be locked, and leaves it so. 1106 * 1107 * If object is non-NULL, ref count must be bumped by caller 1108 * prior to making call to account for the new entry. 1109 */ 1110 int 1111 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1112 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, 1113 int cow) 1114 { 1115 vm_map_entry_t new_entry; 1116 vm_map_entry_t prev_entry; 1117 vm_map_entry_t temp_entry; 1118 vm_eflags_t protoeflags; 1119 struct ucred *cred; 1120 vm_inherit_t inheritance; 1121 boolean_t charge_prev_obj; 1122 1123 VM_MAP_ASSERT_LOCKED(map); 1124 1125 /* 1126 * Check that the start and end points are not bogus. 1127 */ 1128 if ((start < map->min_offset) || (end > map->max_offset) || 1129 (start >= end)) 1130 return (KERN_INVALID_ADDRESS); 1131 1132 /* 1133 * Find the entry prior to the proposed starting address; if it's part 1134 * of an existing entry, this range is bogus. 1135 */ 1136 if (vm_map_lookup_entry(map, start, &temp_entry)) 1137 return (KERN_NO_SPACE); 1138 1139 prev_entry = temp_entry; 1140 1141 /* 1142 * Assert that the next entry doesn't overlap the end point. 1143 */ 1144 if ((prev_entry->next != &map->header) && 1145 (prev_entry->next->start < end)) 1146 return (KERN_NO_SPACE); 1147 1148 protoeflags = 0; 1149 charge_prev_obj = FALSE; 1150 1151 if (cow & MAP_COPY_ON_WRITE) 1152 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY; 1153 1154 if (cow & MAP_NOFAULT) { 1155 protoeflags |= MAP_ENTRY_NOFAULT; 1156 1157 KASSERT(object == NULL, 1158 ("vm_map_insert: paradoxical MAP_NOFAULT request")); 1159 } 1160 if (cow & MAP_DISABLE_SYNCER) 1161 protoeflags |= MAP_ENTRY_NOSYNC; 1162 if (cow & MAP_DISABLE_COREDUMP) 1163 protoeflags |= MAP_ENTRY_NOCOREDUMP; 1164 if (cow & MAP_VN_WRITECOUNT) 1165 protoeflags |= MAP_ENTRY_VN_WRITECNT; 1166 if (cow & MAP_INHERIT_SHARE) 1167 inheritance = VM_INHERIT_SHARE; 1168 else 1169 inheritance = VM_INHERIT_DEFAULT; 1170 1171 cred = NULL; 1172 KASSERT((object != kmem_object && object != kernel_object) || 1173 ((object == kmem_object || object == kernel_object) && 1174 !(protoeflags & MAP_ENTRY_NEEDS_COPY)), 1175 ("kmem or kernel object and cow")); 1176 if (cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT)) 1177 goto charged; 1178 if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) && 1179 ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) { 1180 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start)) 1181 return (KERN_RESOURCE_SHORTAGE); 1182 KASSERT(object == NULL || (protoeflags & MAP_ENTRY_NEEDS_COPY) || 1183 object->cred == NULL, 1184 ("OVERCOMMIT: vm_map_insert o %p", object)); 1185 cred = curthread->td_ucred; 1186 crhold(cred); 1187 if (object == NULL && !(protoeflags & MAP_ENTRY_NEEDS_COPY)) 1188 charge_prev_obj = TRUE; 1189 } 1190 1191 charged: 1192 /* Expand the kernel pmap, if necessary. */ 1193 if (map == kernel_map && end > kernel_vm_end) 1194 pmap_growkernel(end); 1195 if (object != NULL) { 1196 /* 1197 * OBJ_ONEMAPPING must be cleared unless this mapping 1198 * is trivially proven to be the only mapping for any 1199 * of the object's pages. (Object granularity 1200 * reference counting is insufficient to recognize 1201 * aliases with precision.) 1202 */ 1203 VM_OBJECT_WLOCK(object); 1204 if (object->ref_count > 1 || object->shadow_count != 0) 1205 vm_object_clear_flag(object, OBJ_ONEMAPPING); 1206 VM_OBJECT_WUNLOCK(object); 1207 } 1208 else if ((prev_entry != &map->header) && 1209 (prev_entry->eflags == protoeflags) && 1210 (cow & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) == 0 && 1211 (prev_entry->end == start) && 1212 (prev_entry->wired_count == 0) && 1213 (prev_entry->cred == cred || 1214 (prev_entry->object.vm_object != NULL && 1215 (prev_entry->object.vm_object->cred == cred))) && 1216 vm_object_coalesce(prev_entry->object.vm_object, 1217 prev_entry->offset, 1218 (vm_size_t)(prev_entry->end - prev_entry->start), 1219 (vm_size_t)(end - prev_entry->end), charge_prev_obj)) { 1220 /* 1221 * We were able to extend the object. Determine if we 1222 * can extend the previous map entry to include the 1223 * new range as well. 1224 */ 1225 if ((prev_entry->inheritance == inheritance) && 1226 (prev_entry->protection == prot) && 1227 (prev_entry->max_protection == max)) { 1228 map->size += (end - prev_entry->end); 1229 prev_entry->end = end; 1230 vm_map_entry_resize_free(map, prev_entry); 1231 vm_map_simplify_entry(map, prev_entry); 1232 if (cred != NULL) 1233 crfree(cred); 1234 return (KERN_SUCCESS); 1235 } 1236 1237 /* 1238 * If we can extend the object but cannot extend the 1239 * map entry, we have to create a new map entry. We 1240 * must bump the ref count on the extended object to 1241 * account for it. object may be NULL. 1242 */ 1243 object = prev_entry->object.vm_object; 1244 offset = prev_entry->offset + 1245 (prev_entry->end - prev_entry->start); 1246 vm_object_reference(object); 1247 if (cred != NULL && object != NULL && object->cred != NULL && 1248 !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 1249 /* Object already accounts for this uid. */ 1250 crfree(cred); 1251 cred = NULL; 1252 } 1253 } 1254 1255 /* 1256 * NOTE: if conditionals fail, object can be NULL here. This occurs 1257 * in things like the buffer map where we manage kva but do not manage 1258 * backing objects. 1259 */ 1260 1261 /* 1262 * Create a new entry 1263 */ 1264 new_entry = vm_map_entry_create(map); 1265 new_entry->start = start; 1266 new_entry->end = end; 1267 new_entry->cred = NULL; 1268 1269 new_entry->eflags = protoeflags; 1270 new_entry->object.vm_object = object; 1271 new_entry->offset = offset; 1272 new_entry->avail_ssize = 0; 1273 1274 new_entry->inheritance = inheritance; 1275 new_entry->protection = prot; 1276 new_entry->max_protection = max; 1277 new_entry->wired_count = 0; 1278 new_entry->wiring_thread = NULL; 1279 new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT; 1280 new_entry->next_read = OFF_TO_IDX(offset); 1281 1282 KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry), 1283 ("OVERCOMMIT: vm_map_insert leaks vm_map %p", new_entry)); 1284 new_entry->cred = cred; 1285 1286 /* 1287 * Insert the new entry into the list 1288 */ 1289 vm_map_entry_link(map, prev_entry, new_entry); 1290 map->size += new_entry->end - new_entry->start; 1291 1292 /* 1293 * It may be possible to merge the new entry with the next and/or 1294 * previous entries. However, due to MAP_STACK_* being a hack, a 1295 * panic can result from merging such entries. 1296 */ 1297 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0) 1298 vm_map_simplify_entry(map, new_entry); 1299 1300 if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) { 1301 vm_map_pmap_enter(map, start, prot, 1302 object, OFF_TO_IDX(offset), end - start, 1303 cow & MAP_PREFAULT_PARTIAL); 1304 } 1305 1306 return (KERN_SUCCESS); 1307 } 1308 1309 /* 1310 * vm_map_findspace: 1311 * 1312 * Find the first fit (lowest VM address) for "length" free bytes 1313 * beginning at address >= start in the given map. 1314 * 1315 * In a vm_map_entry, "adj_free" is the amount of free space 1316 * adjacent (higher address) to this entry, and "max_free" is the 1317 * maximum amount of contiguous free space in its subtree. This 1318 * allows finding a free region in one path down the tree, so 1319 * O(log n) amortized with splay trees. 1320 * 1321 * The map must be locked, and leaves it so. 1322 * 1323 * Returns: 0 on success, and starting address in *addr, 1324 * 1 if insufficient space. 1325 */ 1326 int 1327 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length, 1328 vm_offset_t *addr) /* OUT */ 1329 { 1330 vm_map_entry_t entry; 1331 vm_offset_t st; 1332 1333 /* 1334 * Request must fit within min/max VM address and must avoid 1335 * address wrap. 1336 */ 1337 if (start < map->min_offset) 1338 start = map->min_offset; 1339 if (start + length > map->max_offset || start + length < start) 1340 return (1); 1341 1342 /* Empty tree means wide open address space. */ 1343 if (map->root == NULL) { 1344 *addr = start; 1345 return (0); 1346 } 1347 1348 /* 1349 * After splay, if start comes before root node, then there 1350 * must be a gap from start to the root. 1351 */ 1352 map->root = vm_map_entry_splay(start, map->root); 1353 if (start + length <= map->root->start) { 1354 *addr = start; 1355 return (0); 1356 } 1357 1358 /* 1359 * Root is the last node that might begin its gap before 1360 * start, and this is the last comparison where address 1361 * wrap might be a problem. 1362 */ 1363 st = (start > map->root->end) ? start : map->root->end; 1364 if (length <= map->root->end + map->root->adj_free - st) { 1365 *addr = st; 1366 return (0); 1367 } 1368 1369 /* With max_free, can immediately tell if no solution. */ 1370 entry = map->root->right; 1371 if (entry == NULL || length > entry->max_free) 1372 return (1); 1373 1374 /* 1375 * Search the right subtree in the order: left subtree, root, 1376 * right subtree (first fit). The previous splay implies that 1377 * all regions in the right subtree have addresses > start. 1378 */ 1379 while (entry != NULL) { 1380 if (entry->left != NULL && entry->left->max_free >= length) 1381 entry = entry->left; 1382 else if (entry->adj_free >= length) { 1383 *addr = entry->end; 1384 return (0); 1385 } else 1386 entry = entry->right; 1387 } 1388 1389 /* Can't get here, so panic if we do. */ 1390 panic("vm_map_findspace: max_free corrupt"); 1391 } 1392 1393 int 1394 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1395 vm_offset_t start, vm_size_t length, vm_prot_t prot, 1396 vm_prot_t max, int cow) 1397 { 1398 vm_offset_t end; 1399 int result; 1400 1401 end = start + length; 1402 vm_map_lock(map); 1403 VM_MAP_RANGE_CHECK(map, start, end); 1404 (void) vm_map_delete(map, start, end); 1405 result = vm_map_insert(map, object, offset, start, end, prot, 1406 max, cow); 1407 vm_map_unlock(map); 1408 return (result); 1409 } 1410 1411 /* 1412 * vm_map_find finds an unallocated region in the target address 1413 * map with the given length. The search is defined to be 1414 * first-fit from the specified address; the region found is 1415 * returned in the same parameter. 1416 * 1417 * If object is non-NULL, ref count must be bumped by caller 1418 * prior to making call to account for the new entry. 1419 */ 1420 int 1421 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1422 vm_offset_t *addr, /* IN/OUT */ 1423 vm_size_t length, vm_offset_t max_addr, int find_space, 1424 vm_prot_t prot, vm_prot_t max, int cow) 1425 { 1426 vm_offset_t alignment, initial_addr, start; 1427 int result; 1428 1429 if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL || 1430 (object->flags & OBJ_COLORED) == 0)) 1431 find_space = VMFS_ANY_SPACE; 1432 if (find_space >> 8 != 0) { 1433 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags")); 1434 alignment = (vm_offset_t)1 << (find_space >> 8); 1435 } else 1436 alignment = 0; 1437 initial_addr = *addr; 1438 again: 1439 start = initial_addr; 1440 vm_map_lock(map); 1441 do { 1442 if (find_space != VMFS_NO_SPACE) { 1443 if (vm_map_findspace(map, start, length, addr) || 1444 (max_addr != 0 && *addr + length > max_addr)) { 1445 vm_map_unlock(map); 1446 if (find_space == VMFS_OPTIMAL_SPACE) { 1447 find_space = VMFS_ANY_SPACE; 1448 goto again; 1449 } 1450 return (KERN_NO_SPACE); 1451 } 1452 switch (find_space) { 1453 case VMFS_SUPER_SPACE: 1454 case VMFS_OPTIMAL_SPACE: 1455 pmap_align_superpage(object, offset, addr, 1456 length); 1457 break; 1458 case VMFS_ANY_SPACE: 1459 break; 1460 default: 1461 if ((*addr & (alignment - 1)) != 0) { 1462 *addr &= ~(alignment - 1); 1463 *addr += alignment; 1464 } 1465 break; 1466 } 1467 1468 start = *addr; 1469 } 1470 result = vm_map_insert(map, object, offset, start, start + 1471 length, prot, max, cow); 1472 } while (result == KERN_NO_SPACE && find_space != VMFS_NO_SPACE && 1473 find_space != VMFS_ANY_SPACE); 1474 vm_map_unlock(map); 1475 return (result); 1476 } 1477 1478 /* 1479 * vm_map_simplify_entry: 1480 * 1481 * Simplify the given map entry by merging with either neighbor. This 1482 * routine also has the ability to merge with both neighbors. 1483 * 1484 * The map must be locked. 1485 * 1486 * This routine guarentees that the passed entry remains valid (though 1487 * possibly extended). When merging, this routine may delete one or 1488 * both neighbors. 1489 */ 1490 void 1491 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry) 1492 { 1493 vm_map_entry_t next, prev; 1494 vm_size_t prevsize, esize; 1495 1496 if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) 1497 return; 1498 1499 prev = entry->prev; 1500 if (prev != &map->header) { 1501 prevsize = prev->end - prev->start; 1502 if ( (prev->end == entry->start) && 1503 (prev->object.vm_object == entry->object.vm_object) && 1504 (!prev->object.vm_object || 1505 (prev->offset + prevsize == entry->offset)) && 1506 (prev->eflags == entry->eflags) && 1507 (prev->protection == entry->protection) && 1508 (prev->max_protection == entry->max_protection) && 1509 (prev->inheritance == entry->inheritance) && 1510 (prev->wired_count == entry->wired_count) && 1511 (prev->cred == entry->cred)) { 1512 vm_map_entry_unlink(map, prev); 1513 entry->start = prev->start; 1514 entry->offset = prev->offset; 1515 if (entry->prev != &map->header) 1516 vm_map_entry_resize_free(map, entry->prev); 1517 1518 /* 1519 * If the backing object is a vnode object, 1520 * vm_object_deallocate() calls vrele(). 1521 * However, vrele() does not lock the vnode 1522 * because the vnode has additional 1523 * references. Thus, the map lock can be kept 1524 * without causing a lock-order reversal with 1525 * the vnode lock. 1526 * 1527 * Since we count the number of virtual page 1528 * mappings in object->un_pager.vnp.writemappings, 1529 * the writemappings value should not be adjusted 1530 * when the entry is disposed of. 1531 */ 1532 if (prev->object.vm_object) 1533 vm_object_deallocate(prev->object.vm_object); 1534 if (prev->cred != NULL) 1535 crfree(prev->cred); 1536 vm_map_entry_dispose(map, prev); 1537 } 1538 } 1539 1540 next = entry->next; 1541 if (next != &map->header) { 1542 esize = entry->end - entry->start; 1543 if ((entry->end == next->start) && 1544 (next->object.vm_object == entry->object.vm_object) && 1545 (!entry->object.vm_object || 1546 (entry->offset + esize == next->offset)) && 1547 (next->eflags == entry->eflags) && 1548 (next->protection == entry->protection) && 1549 (next->max_protection == entry->max_protection) && 1550 (next->inheritance == entry->inheritance) && 1551 (next->wired_count == entry->wired_count) && 1552 (next->cred == entry->cred)) { 1553 vm_map_entry_unlink(map, next); 1554 entry->end = next->end; 1555 vm_map_entry_resize_free(map, entry); 1556 1557 /* 1558 * See comment above. 1559 */ 1560 if (next->object.vm_object) 1561 vm_object_deallocate(next->object.vm_object); 1562 if (next->cred != NULL) 1563 crfree(next->cred); 1564 vm_map_entry_dispose(map, next); 1565 } 1566 } 1567 } 1568 /* 1569 * vm_map_clip_start: [ internal use only ] 1570 * 1571 * Asserts that the given entry begins at or after 1572 * the specified address; if necessary, 1573 * it splits the entry into two. 1574 */ 1575 #define vm_map_clip_start(map, entry, startaddr) \ 1576 { \ 1577 if (startaddr > entry->start) \ 1578 _vm_map_clip_start(map, entry, startaddr); \ 1579 } 1580 1581 /* 1582 * This routine is called only when it is known that 1583 * the entry must be split. 1584 */ 1585 static void 1586 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start) 1587 { 1588 vm_map_entry_t new_entry; 1589 1590 VM_MAP_ASSERT_LOCKED(map); 1591 1592 /* 1593 * Split off the front portion -- note that we must insert the new 1594 * entry BEFORE this one, so that this entry has the specified 1595 * starting address. 1596 */ 1597 vm_map_simplify_entry(map, entry); 1598 1599 /* 1600 * If there is no object backing this entry, we might as well create 1601 * one now. If we defer it, an object can get created after the map 1602 * is clipped, and individual objects will be created for the split-up 1603 * map. This is a bit of a hack, but is also about the best place to 1604 * put this improvement. 1605 */ 1606 if (entry->object.vm_object == NULL && !map->system_map) { 1607 vm_object_t object; 1608 object = vm_object_allocate(OBJT_DEFAULT, 1609 atop(entry->end - entry->start)); 1610 entry->object.vm_object = object; 1611 entry->offset = 0; 1612 if (entry->cred != NULL) { 1613 object->cred = entry->cred; 1614 object->charge = entry->end - entry->start; 1615 entry->cred = NULL; 1616 } 1617 } else if (entry->object.vm_object != NULL && 1618 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 1619 entry->cred != NULL) { 1620 VM_OBJECT_WLOCK(entry->object.vm_object); 1621 KASSERT(entry->object.vm_object->cred == NULL, 1622 ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry)); 1623 entry->object.vm_object->cred = entry->cred; 1624 entry->object.vm_object->charge = entry->end - entry->start; 1625 VM_OBJECT_WUNLOCK(entry->object.vm_object); 1626 entry->cred = NULL; 1627 } 1628 1629 new_entry = vm_map_entry_create(map); 1630 *new_entry = *entry; 1631 1632 new_entry->end = start; 1633 entry->offset += (start - entry->start); 1634 entry->start = start; 1635 if (new_entry->cred != NULL) 1636 crhold(entry->cred); 1637 1638 vm_map_entry_link(map, entry->prev, new_entry); 1639 1640 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1641 vm_object_reference(new_entry->object.vm_object); 1642 /* 1643 * The object->un_pager.vnp.writemappings for the 1644 * object of MAP_ENTRY_VN_WRITECNT type entry shall be 1645 * kept as is here. The virtual pages are 1646 * re-distributed among the clipped entries, so the sum is 1647 * left the same. 1648 */ 1649 } 1650 } 1651 1652 /* 1653 * vm_map_clip_end: [ internal use only ] 1654 * 1655 * Asserts that the given entry ends at or before 1656 * the specified address; if necessary, 1657 * it splits the entry into two. 1658 */ 1659 #define vm_map_clip_end(map, entry, endaddr) \ 1660 { \ 1661 if ((endaddr) < (entry->end)) \ 1662 _vm_map_clip_end((map), (entry), (endaddr)); \ 1663 } 1664 1665 /* 1666 * This routine is called only when it is known that 1667 * the entry must be split. 1668 */ 1669 static void 1670 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end) 1671 { 1672 vm_map_entry_t new_entry; 1673 1674 VM_MAP_ASSERT_LOCKED(map); 1675 1676 /* 1677 * If there is no object backing this entry, we might as well create 1678 * one now. If we defer it, an object can get created after the map 1679 * is clipped, and individual objects will be created for the split-up 1680 * map. This is a bit of a hack, but is also about the best place to 1681 * put this improvement. 1682 */ 1683 if (entry->object.vm_object == NULL && !map->system_map) { 1684 vm_object_t object; 1685 object = vm_object_allocate(OBJT_DEFAULT, 1686 atop(entry->end - entry->start)); 1687 entry->object.vm_object = object; 1688 entry->offset = 0; 1689 if (entry->cred != NULL) { 1690 object->cred = entry->cred; 1691 object->charge = entry->end - entry->start; 1692 entry->cred = NULL; 1693 } 1694 } else if (entry->object.vm_object != NULL && 1695 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 1696 entry->cred != NULL) { 1697 VM_OBJECT_WLOCK(entry->object.vm_object); 1698 KASSERT(entry->object.vm_object->cred == NULL, 1699 ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry)); 1700 entry->object.vm_object->cred = entry->cred; 1701 entry->object.vm_object->charge = entry->end - entry->start; 1702 VM_OBJECT_WUNLOCK(entry->object.vm_object); 1703 entry->cred = NULL; 1704 } 1705 1706 /* 1707 * Create a new entry and insert it AFTER the specified entry 1708 */ 1709 new_entry = vm_map_entry_create(map); 1710 *new_entry = *entry; 1711 1712 new_entry->start = entry->end = end; 1713 new_entry->offset += (end - entry->start); 1714 if (new_entry->cred != NULL) 1715 crhold(entry->cred); 1716 1717 vm_map_entry_link(map, entry, new_entry); 1718 1719 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1720 vm_object_reference(new_entry->object.vm_object); 1721 } 1722 } 1723 1724 /* 1725 * vm_map_submap: [ kernel use only ] 1726 * 1727 * Mark the given range as handled by a subordinate map. 1728 * 1729 * This range must have been created with vm_map_find, 1730 * and no other operations may have been performed on this 1731 * range prior to calling vm_map_submap. 1732 * 1733 * Only a limited number of operations can be performed 1734 * within this rage after calling vm_map_submap: 1735 * vm_fault 1736 * [Don't try vm_map_copy!] 1737 * 1738 * To remove a submapping, one must first remove the 1739 * range from the superior map, and then destroy the 1740 * submap (if desired). [Better yet, don't try it.] 1741 */ 1742 int 1743 vm_map_submap( 1744 vm_map_t map, 1745 vm_offset_t start, 1746 vm_offset_t end, 1747 vm_map_t submap) 1748 { 1749 vm_map_entry_t entry; 1750 int result = KERN_INVALID_ARGUMENT; 1751 1752 vm_map_lock(map); 1753 1754 VM_MAP_RANGE_CHECK(map, start, end); 1755 1756 if (vm_map_lookup_entry(map, start, &entry)) { 1757 vm_map_clip_start(map, entry, start); 1758 } else 1759 entry = entry->next; 1760 1761 vm_map_clip_end(map, entry, end); 1762 1763 if ((entry->start == start) && (entry->end == end) && 1764 ((entry->eflags & MAP_ENTRY_COW) == 0) && 1765 (entry->object.vm_object == NULL)) { 1766 entry->object.sub_map = submap; 1767 entry->eflags |= MAP_ENTRY_IS_SUB_MAP; 1768 result = KERN_SUCCESS; 1769 } 1770 vm_map_unlock(map); 1771 1772 return (result); 1773 } 1774 1775 /* 1776 * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified 1777 */ 1778 #define MAX_INIT_PT 96 1779 1780 /* 1781 * vm_map_pmap_enter: 1782 * 1783 * Preload the specified map's pmap with mappings to the specified 1784 * object's memory-resident pages. No further physical pages are 1785 * allocated, and no further virtual pages are retrieved from secondary 1786 * storage. If the specified flags include MAP_PREFAULT_PARTIAL, then a 1787 * limited number of page mappings are created at the low-end of the 1788 * specified address range. (For this purpose, a superpage mapping 1789 * counts as one page mapping.) Otherwise, all resident pages within 1790 * the specified address range are mapped. Because these mappings are 1791 * being created speculatively, cached pages are not reactivated and 1792 * mapped. 1793 */ 1794 void 1795 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 1796 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags) 1797 { 1798 vm_offset_t start; 1799 vm_page_t p, p_start; 1800 vm_pindex_t mask, psize, threshold, tmpidx; 1801 1802 if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL) 1803 return; 1804 VM_OBJECT_RLOCK(object); 1805 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 1806 VM_OBJECT_RUNLOCK(object); 1807 VM_OBJECT_WLOCK(object); 1808 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 1809 pmap_object_init_pt(map->pmap, addr, object, pindex, 1810 size); 1811 VM_OBJECT_WUNLOCK(object); 1812 return; 1813 } 1814 VM_OBJECT_LOCK_DOWNGRADE(object); 1815 } 1816 1817 psize = atop(size); 1818 if (psize + pindex > object->size) { 1819 if (object->size < pindex) { 1820 VM_OBJECT_RUNLOCK(object); 1821 return; 1822 } 1823 psize = object->size - pindex; 1824 } 1825 1826 start = 0; 1827 p_start = NULL; 1828 threshold = MAX_INIT_PT; 1829 1830 p = vm_page_find_least(object, pindex); 1831 /* 1832 * Assert: the variable p is either (1) the page with the 1833 * least pindex greater than or equal to the parameter pindex 1834 * or (2) NULL. 1835 */ 1836 for (; 1837 p != NULL && (tmpidx = p->pindex - pindex) < psize; 1838 p = TAILQ_NEXT(p, listq)) { 1839 /* 1840 * don't allow an madvise to blow away our really 1841 * free pages allocating pv entries. 1842 */ 1843 if (((flags & MAP_PREFAULT_MADVISE) != 0 && 1844 vm_cnt.v_free_count < vm_cnt.v_free_reserved) || 1845 ((flags & MAP_PREFAULT_PARTIAL) != 0 && 1846 tmpidx >= threshold)) { 1847 psize = tmpidx; 1848 break; 1849 } 1850 if (p->valid == VM_PAGE_BITS_ALL) { 1851 if (p_start == NULL) { 1852 start = addr + ptoa(tmpidx); 1853 p_start = p; 1854 } 1855 /* Jump ahead if a superpage mapping is possible. */ 1856 if (p->psind > 0 && ((addr + ptoa(tmpidx)) & 1857 (pagesizes[p->psind] - 1)) == 0) { 1858 mask = atop(pagesizes[p->psind]) - 1; 1859 if (tmpidx + mask < psize && 1860 vm_page_ps_is_valid(p)) { 1861 p += mask; 1862 threshold += mask; 1863 } 1864 } 1865 } else if (p_start != NULL) { 1866 pmap_enter_object(map->pmap, start, addr + 1867 ptoa(tmpidx), p_start, prot); 1868 p_start = NULL; 1869 } 1870 } 1871 if (p_start != NULL) 1872 pmap_enter_object(map->pmap, start, addr + ptoa(psize), 1873 p_start, prot); 1874 VM_OBJECT_RUNLOCK(object); 1875 } 1876 1877 /* 1878 * vm_map_protect: 1879 * 1880 * Sets the protection of the specified address 1881 * region in the target map. If "set_max" is 1882 * specified, the maximum protection is to be set; 1883 * otherwise, only the current protection is affected. 1884 */ 1885 int 1886 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 1887 vm_prot_t new_prot, boolean_t set_max) 1888 { 1889 vm_map_entry_t current, entry; 1890 vm_object_t obj; 1891 struct ucred *cred; 1892 vm_prot_t old_prot; 1893 1894 if (start == end) 1895 return (KERN_SUCCESS); 1896 1897 vm_map_lock(map); 1898 1899 VM_MAP_RANGE_CHECK(map, start, end); 1900 1901 if (vm_map_lookup_entry(map, start, &entry)) { 1902 vm_map_clip_start(map, entry, start); 1903 } else { 1904 entry = entry->next; 1905 } 1906 1907 /* 1908 * Make a first pass to check for protection violations. 1909 */ 1910 current = entry; 1911 while ((current != &map->header) && (current->start < end)) { 1912 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 1913 vm_map_unlock(map); 1914 return (KERN_INVALID_ARGUMENT); 1915 } 1916 if ((new_prot & current->max_protection) != new_prot) { 1917 vm_map_unlock(map); 1918 return (KERN_PROTECTION_FAILURE); 1919 } 1920 current = current->next; 1921 } 1922 1923 1924 /* 1925 * Do an accounting pass for private read-only mappings that 1926 * now will do cow due to allowed write (e.g. debugger sets 1927 * breakpoint on text segment) 1928 */ 1929 for (current = entry; (current != &map->header) && 1930 (current->start < end); current = current->next) { 1931 1932 vm_map_clip_end(map, current, end); 1933 1934 if (set_max || 1935 ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 || 1936 ENTRY_CHARGED(current)) { 1937 continue; 1938 } 1939 1940 cred = curthread->td_ucred; 1941 obj = current->object.vm_object; 1942 1943 if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) { 1944 if (!swap_reserve(current->end - current->start)) { 1945 vm_map_unlock(map); 1946 return (KERN_RESOURCE_SHORTAGE); 1947 } 1948 crhold(cred); 1949 current->cred = cred; 1950 continue; 1951 } 1952 1953 VM_OBJECT_WLOCK(obj); 1954 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) { 1955 VM_OBJECT_WUNLOCK(obj); 1956 continue; 1957 } 1958 1959 /* 1960 * Charge for the whole object allocation now, since 1961 * we cannot distinguish between non-charged and 1962 * charged clipped mapping of the same object later. 1963 */ 1964 KASSERT(obj->charge == 0, 1965 ("vm_map_protect: object %p overcharged (entry %p)", 1966 obj, current)); 1967 if (!swap_reserve(ptoa(obj->size))) { 1968 VM_OBJECT_WUNLOCK(obj); 1969 vm_map_unlock(map); 1970 return (KERN_RESOURCE_SHORTAGE); 1971 } 1972 1973 crhold(cred); 1974 obj->cred = cred; 1975 obj->charge = ptoa(obj->size); 1976 VM_OBJECT_WUNLOCK(obj); 1977 } 1978 1979 /* 1980 * Go back and fix up protections. [Note that clipping is not 1981 * necessary the second time.] 1982 */ 1983 current = entry; 1984 while ((current != &map->header) && (current->start < end)) { 1985 old_prot = current->protection; 1986 1987 if (set_max) 1988 current->protection = 1989 (current->max_protection = new_prot) & 1990 old_prot; 1991 else 1992 current->protection = new_prot; 1993 1994 /* 1995 * For user wired map entries, the normal lazy evaluation of 1996 * write access upgrades through soft page faults is 1997 * undesirable. Instead, immediately copy any pages that are 1998 * copy-on-write and enable write access in the physical map. 1999 */ 2000 if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 && 2001 (current->protection & VM_PROT_WRITE) != 0 && 2002 (old_prot & VM_PROT_WRITE) == 0) 2003 vm_fault_copy_entry(map, map, current, current, NULL); 2004 2005 /* 2006 * When restricting access, update the physical map. Worry 2007 * about copy-on-write here. 2008 */ 2009 if ((old_prot & ~current->protection) != 0) { 2010 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 2011 VM_PROT_ALL) 2012 pmap_protect(map->pmap, current->start, 2013 current->end, 2014 current->protection & MASK(current)); 2015 #undef MASK 2016 } 2017 vm_map_simplify_entry(map, current); 2018 current = current->next; 2019 } 2020 vm_map_unlock(map); 2021 return (KERN_SUCCESS); 2022 } 2023 2024 /* 2025 * vm_map_madvise: 2026 * 2027 * This routine traverses a processes map handling the madvise 2028 * system call. Advisories are classified as either those effecting 2029 * the vm_map_entry structure, or those effecting the underlying 2030 * objects. 2031 */ 2032 int 2033 vm_map_madvise( 2034 vm_map_t map, 2035 vm_offset_t start, 2036 vm_offset_t end, 2037 int behav) 2038 { 2039 vm_map_entry_t current, entry; 2040 int modify_map = 0; 2041 2042 /* 2043 * Some madvise calls directly modify the vm_map_entry, in which case 2044 * we need to use an exclusive lock on the map and we need to perform 2045 * various clipping operations. Otherwise we only need a read-lock 2046 * on the map. 2047 */ 2048 switch(behav) { 2049 case MADV_NORMAL: 2050 case MADV_SEQUENTIAL: 2051 case MADV_RANDOM: 2052 case MADV_NOSYNC: 2053 case MADV_AUTOSYNC: 2054 case MADV_NOCORE: 2055 case MADV_CORE: 2056 if (start == end) 2057 return (KERN_SUCCESS); 2058 modify_map = 1; 2059 vm_map_lock(map); 2060 break; 2061 case MADV_WILLNEED: 2062 case MADV_DONTNEED: 2063 case MADV_FREE: 2064 if (start == end) 2065 return (KERN_SUCCESS); 2066 vm_map_lock_read(map); 2067 break; 2068 default: 2069 return (KERN_INVALID_ARGUMENT); 2070 } 2071 2072 /* 2073 * Locate starting entry and clip if necessary. 2074 */ 2075 VM_MAP_RANGE_CHECK(map, start, end); 2076 2077 if (vm_map_lookup_entry(map, start, &entry)) { 2078 if (modify_map) 2079 vm_map_clip_start(map, entry, start); 2080 } else { 2081 entry = entry->next; 2082 } 2083 2084 if (modify_map) { 2085 /* 2086 * madvise behaviors that are implemented in the vm_map_entry. 2087 * 2088 * We clip the vm_map_entry so that behavioral changes are 2089 * limited to the specified address range. 2090 */ 2091 for (current = entry; 2092 (current != &map->header) && (current->start < end); 2093 current = current->next 2094 ) { 2095 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2096 continue; 2097 2098 vm_map_clip_end(map, current, end); 2099 2100 switch (behav) { 2101 case MADV_NORMAL: 2102 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL); 2103 break; 2104 case MADV_SEQUENTIAL: 2105 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL); 2106 break; 2107 case MADV_RANDOM: 2108 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM); 2109 break; 2110 case MADV_NOSYNC: 2111 current->eflags |= MAP_ENTRY_NOSYNC; 2112 break; 2113 case MADV_AUTOSYNC: 2114 current->eflags &= ~MAP_ENTRY_NOSYNC; 2115 break; 2116 case MADV_NOCORE: 2117 current->eflags |= MAP_ENTRY_NOCOREDUMP; 2118 break; 2119 case MADV_CORE: 2120 current->eflags &= ~MAP_ENTRY_NOCOREDUMP; 2121 break; 2122 default: 2123 break; 2124 } 2125 vm_map_simplify_entry(map, current); 2126 } 2127 vm_map_unlock(map); 2128 } else { 2129 vm_pindex_t pstart, pend; 2130 2131 /* 2132 * madvise behaviors that are implemented in the underlying 2133 * vm_object. 2134 * 2135 * Since we don't clip the vm_map_entry, we have to clip 2136 * the vm_object pindex and count. 2137 */ 2138 for (current = entry; 2139 (current != &map->header) && (current->start < end); 2140 current = current->next 2141 ) { 2142 vm_offset_t useEnd, useStart; 2143 2144 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2145 continue; 2146 2147 pstart = OFF_TO_IDX(current->offset); 2148 pend = pstart + atop(current->end - current->start); 2149 useStart = current->start; 2150 useEnd = current->end; 2151 2152 if (current->start < start) { 2153 pstart += atop(start - current->start); 2154 useStart = start; 2155 } 2156 if (current->end > end) { 2157 pend -= atop(current->end - end); 2158 useEnd = end; 2159 } 2160 2161 if (pstart >= pend) 2162 continue; 2163 2164 /* 2165 * Perform the pmap_advise() before clearing 2166 * PGA_REFERENCED in vm_page_advise(). Otherwise, a 2167 * concurrent pmap operation, such as pmap_remove(), 2168 * could clear a reference in the pmap and set 2169 * PGA_REFERENCED on the page before the pmap_advise() 2170 * had completed. Consequently, the page would appear 2171 * referenced based upon an old reference that 2172 * occurred before this pmap_advise() ran. 2173 */ 2174 if (behav == MADV_DONTNEED || behav == MADV_FREE) 2175 pmap_advise(map->pmap, useStart, useEnd, 2176 behav); 2177 2178 vm_object_madvise(current->object.vm_object, pstart, 2179 pend, behav); 2180 if (behav == MADV_WILLNEED) { 2181 vm_map_pmap_enter(map, 2182 useStart, 2183 current->protection, 2184 current->object.vm_object, 2185 pstart, 2186 ptoa(pend - pstart), 2187 MAP_PREFAULT_MADVISE 2188 ); 2189 } 2190 } 2191 vm_map_unlock_read(map); 2192 } 2193 return (0); 2194 } 2195 2196 2197 /* 2198 * vm_map_inherit: 2199 * 2200 * Sets the inheritance of the specified address 2201 * range in the target map. Inheritance 2202 * affects how the map will be shared with 2203 * child maps at the time of vmspace_fork. 2204 */ 2205 int 2206 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 2207 vm_inherit_t new_inheritance) 2208 { 2209 vm_map_entry_t entry; 2210 vm_map_entry_t temp_entry; 2211 2212 switch (new_inheritance) { 2213 case VM_INHERIT_NONE: 2214 case VM_INHERIT_COPY: 2215 case VM_INHERIT_SHARE: 2216 break; 2217 default: 2218 return (KERN_INVALID_ARGUMENT); 2219 } 2220 if (start == end) 2221 return (KERN_SUCCESS); 2222 vm_map_lock(map); 2223 VM_MAP_RANGE_CHECK(map, start, end); 2224 if (vm_map_lookup_entry(map, start, &temp_entry)) { 2225 entry = temp_entry; 2226 vm_map_clip_start(map, entry, start); 2227 } else 2228 entry = temp_entry->next; 2229 while ((entry != &map->header) && (entry->start < end)) { 2230 vm_map_clip_end(map, entry, end); 2231 entry->inheritance = new_inheritance; 2232 vm_map_simplify_entry(map, entry); 2233 entry = entry->next; 2234 } 2235 vm_map_unlock(map); 2236 return (KERN_SUCCESS); 2237 } 2238 2239 /* 2240 * vm_map_unwire: 2241 * 2242 * Implements both kernel and user unwiring. 2243 */ 2244 int 2245 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2246 int flags) 2247 { 2248 vm_map_entry_t entry, first_entry, tmp_entry; 2249 vm_offset_t saved_start; 2250 unsigned int last_timestamp; 2251 int rv; 2252 boolean_t need_wakeup, result, user_unwire; 2253 2254 if (start == end) 2255 return (KERN_SUCCESS); 2256 user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 2257 vm_map_lock(map); 2258 VM_MAP_RANGE_CHECK(map, start, end); 2259 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2260 if (flags & VM_MAP_WIRE_HOLESOK) 2261 first_entry = first_entry->next; 2262 else { 2263 vm_map_unlock(map); 2264 return (KERN_INVALID_ADDRESS); 2265 } 2266 } 2267 last_timestamp = map->timestamp; 2268 entry = first_entry; 2269 while (entry != &map->header && entry->start < end) { 2270 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2271 /* 2272 * We have not yet clipped the entry. 2273 */ 2274 saved_start = (start >= entry->start) ? start : 2275 entry->start; 2276 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2277 if (vm_map_unlock_and_wait(map, 0)) { 2278 /* 2279 * Allow interruption of user unwiring? 2280 */ 2281 } 2282 vm_map_lock(map); 2283 if (last_timestamp+1 != map->timestamp) { 2284 /* 2285 * Look again for the entry because the map was 2286 * modified while it was unlocked. 2287 * Specifically, the entry may have been 2288 * clipped, merged, or deleted. 2289 */ 2290 if (!vm_map_lookup_entry(map, saved_start, 2291 &tmp_entry)) { 2292 if (flags & VM_MAP_WIRE_HOLESOK) 2293 tmp_entry = tmp_entry->next; 2294 else { 2295 if (saved_start == start) { 2296 /* 2297 * First_entry has been deleted. 2298 */ 2299 vm_map_unlock(map); 2300 return (KERN_INVALID_ADDRESS); 2301 } 2302 end = saved_start; 2303 rv = KERN_INVALID_ADDRESS; 2304 goto done; 2305 } 2306 } 2307 if (entry == first_entry) 2308 first_entry = tmp_entry; 2309 else 2310 first_entry = NULL; 2311 entry = tmp_entry; 2312 } 2313 last_timestamp = map->timestamp; 2314 continue; 2315 } 2316 vm_map_clip_start(map, entry, start); 2317 vm_map_clip_end(map, entry, end); 2318 /* 2319 * Mark the entry in case the map lock is released. (See 2320 * above.) 2321 */ 2322 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 2323 entry->wiring_thread == NULL, 2324 ("owned map entry %p", entry)); 2325 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 2326 entry->wiring_thread = curthread; 2327 /* 2328 * Check the map for holes in the specified region. 2329 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 2330 */ 2331 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) && 2332 (entry->end < end && (entry->next == &map->header || 2333 entry->next->start > entry->end))) { 2334 end = entry->end; 2335 rv = KERN_INVALID_ADDRESS; 2336 goto done; 2337 } 2338 /* 2339 * If system unwiring, require that the entry is system wired. 2340 */ 2341 if (!user_unwire && 2342 vm_map_entry_system_wired_count(entry) == 0) { 2343 end = entry->end; 2344 rv = KERN_INVALID_ARGUMENT; 2345 goto done; 2346 } 2347 entry = entry->next; 2348 } 2349 rv = KERN_SUCCESS; 2350 done: 2351 need_wakeup = FALSE; 2352 if (first_entry == NULL) { 2353 result = vm_map_lookup_entry(map, start, &first_entry); 2354 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 2355 first_entry = first_entry->next; 2356 else 2357 KASSERT(result, ("vm_map_unwire: lookup failed")); 2358 } 2359 for (entry = first_entry; entry != &map->header && entry->start < end; 2360 entry = entry->next) { 2361 /* 2362 * If VM_MAP_WIRE_HOLESOK was specified, an empty 2363 * space in the unwired region could have been mapped 2364 * while the map lock was dropped for draining 2365 * MAP_ENTRY_IN_TRANSITION. Moreover, another thread 2366 * could be simultaneously wiring this new mapping 2367 * entry. Detect these cases and skip any entries 2368 * marked as in transition by us. 2369 */ 2370 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 2371 entry->wiring_thread != curthread) { 2372 KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0, 2373 ("vm_map_unwire: !HOLESOK and new/changed entry")); 2374 continue; 2375 } 2376 2377 if (rv == KERN_SUCCESS && (!user_unwire || 2378 (entry->eflags & MAP_ENTRY_USER_WIRED))) { 2379 if (user_unwire) 2380 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2381 entry->wired_count--; 2382 if (entry->wired_count == 0) { 2383 /* 2384 * Retain the map lock. 2385 */ 2386 vm_fault_unwire(map, entry->start, entry->end, 2387 entry->object.vm_object != NULL && 2388 (entry->object.vm_object->flags & 2389 OBJ_FICTITIOUS) != 0); 2390 } 2391 } 2392 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 2393 ("vm_map_unwire: in-transition flag missing %p", entry)); 2394 KASSERT(entry->wiring_thread == curthread, 2395 ("vm_map_unwire: alien wire %p", entry)); 2396 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 2397 entry->wiring_thread = NULL; 2398 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 2399 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 2400 need_wakeup = TRUE; 2401 } 2402 vm_map_simplify_entry(map, entry); 2403 } 2404 vm_map_unlock(map); 2405 if (need_wakeup) 2406 vm_map_wakeup(map); 2407 return (rv); 2408 } 2409 2410 /* 2411 * vm_map_wire: 2412 * 2413 * Implements both kernel and user wiring. 2414 */ 2415 int 2416 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2417 int flags) 2418 { 2419 vm_map_entry_t entry, first_entry, tmp_entry; 2420 vm_offset_t saved_end, saved_start; 2421 unsigned int last_timestamp; 2422 int rv; 2423 boolean_t fictitious, need_wakeup, result, user_wire; 2424 vm_prot_t prot; 2425 2426 if (start == end) 2427 return (KERN_SUCCESS); 2428 prot = 0; 2429 if (flags & VM_MAP_WIRE_WRITE) 2430 prot |= VM_PROT_WRITE; 2431 user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 2432 vm_map_lock(map); 2433 VM_MAP_RANGE_CHECK(map, start, end); 2434 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2435 if (flags & VM_MAP_WIRE_HOLESOK) 2436 first_entry = first_entry->next; 2437 else { 2438 vm_map_unlock(map); 2439 return (KERN_INVALID_ADDRESS); 2440 } 2441 } 2442 last_timestamp = map->timestamp; 2443 entry = first_entry; 2444 while (entry != &map->header && entry->start < end) { 2445 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2446 /* 2447 * We have not yet clipped the entry. 2448 */ 2449 saved_start = (start >= entry->start) ? start : 2450 entry->start; 2451 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2452 if (vm_map_unlock_and_wait(map, 0)) { 2453 /* 2454 * Allow interruption of user wiring? 2455 */ 2456 } 2457 vm_map_lock(map); 2458 if (last_timestamp + 1 != map->timestamp) { 2459 /* 2460 * Look again for the entry because the map was 2461 * modified while it was unlocked. 2462 * Specifically, the entry may have been 2463 * clipped, merged, or deleted. 2464 */ 2465 if (!vm_map_lookup_entry(map, saved_start, 2466 &tmp_entry)) { 2467 if (flags & VM_MAP_WIRE_HOLESOK) 2468 tmp_entry = tmp_entry->next; 2469 else { 2470 if (saved_start == start) { 2471 /* 2472 * first_entry has been deleted. 2473 */ 2474 vm_map_unlock(map); 2475 return (KERN_INVALID_ADDRESS); 2476 } 2477 end = saved_start; 2478 rv = KERN_INVALID_ADDRESS; 2479 goto done; 2480 } 2481 } 2482 if (entry == first_entry) 2483 first_entry = tmp_entry; 2484 else 2485 first_entry = NULL; 2486 entry = tmp_entry; 2487 } 2488 last_timestamp = map->timestamp; 2489 continue; 2490 } 2491 vm_map_clip_start(map, entry, start); 2492 vm_map_clip_end(map, entry, end); 2493 /* 2494 * Mark the entry in case the map lock is released. (See 2495 * above.) 2496 */ 2497 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 2498 entry->wiring_thread == NULL, 2499 ("owned map entry %p", entry)); 2500 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 2501 entry->wiring_thread = curthread; 2502 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 2503 || (entry->protection & prot) != prot) { 2504 entry->eflags |= MAP_ENTRY_WIRE_SKIPPED; 2505 if ((flags & VM_MAP_WIRE_HOLESOK) == 0) { 2506 end = entry->end; 2507 rv = KERN_INVALID_ADDRESS; 2508 goto done; 2509 } 2510 goto next_entry; 2511 } 2512 if (entry->wired_count == 0) { 2513 entry->wired_count++; 2514 saved_start = entry->start; 2515 saved_end = entry->end; 2516 fictitious = entry->object.vm_object != NULL && 2517 (entry->object.vm_object->flags & 2518 OBJ_FICTITIOUS) != 0; 2519 /* 2520 * Release the map lock, relying on the in-transition 2521 * mark. Mark the map busy for fork. 2522 */ 2523 vm_map_busy(map); 2524 vm_map_unlock(map); 2525 rv = vm_fault_wire(map, saved_start, saved_end, 2526 fictitious); 2527 vm_map_lock(map); 2528 vm_map_unbusy(map); 2529 if (last_timestamp + 1 != map->timestamp) { 2530 /* 2531 * Look again for the entry because the map was 2532 * modified while it was unlocked. The entry 2533 * may have been clipped, but NOT merged or 2534 * deleted. 2535 */ 2536 result = vm_map_lookup_entry(map, saved_start, 2537 &tmp_entry); 2538 KASSERT(result, ("vm_map_wire: lookup failed")); 2539 if (entry == first_entry) 2540 first_entry = tmp_entry; 2541 else 2542 first_entry = NULL; 2543 entry = tmp_entry; 2544 while (entry->end < saved_end) { 2545 if (rv != KERN_SUCCESS) { 2546 KASSERT(entry->wired_count == 1, 2547 ("vm_map_wire: bad count")); 2548 entry->wired_count = -1; 2549 } 2550 entry = entry->next; 2551 } 2552 } 2553 last_timestamp = map->timestamp; 2554 if (rv != KERN_SUCCESS) { 2555 KASSERT(entry->wired_count == 1, 2556 ("vm_map_wire: bad count")); 2557 /* 2558 * Assign an out-of-range value to represent 2559 * the failure to wire this entry. 2560 */ 2561 entry->wired_count = -1; 2562 end = entry->end; 2563 goto done; 2564 } 2565 } else if (!user_wire || 2566 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 2567 entry->wired_count++; 2568 } 2569 /* 2570 * Check the map for holes in the specified region. 2571 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 2572 */ 2573 next_entry: 2574 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) && 2575 (entry->end < end && (entry->next == &map->header || 2576 entry->next->start > entry->end))) { 2577 end = entry->end; 2578 rv = KERN_INVALID_ADDRESS; 2579 goto done; 2580 } 2581 entry = entry->next; 2582 } 2583 rv = KERN_SUCCESS; 2584 done: 2585 need_wakeup = FALSE; 2586 if (first_entry == NULL) { 2587 result = vm_map_lookup_entry(map, start, &first_entry); 2588 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 2589 first_entry = first_entry->next; 2590 else 2591 KASSERT(result, ("vm_map_wire: lookup failed")); 2592 } 2593 for (entry = first_entry; entry != &map->header && entry->start < end; 2594 entry = entry->next) { 2595 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) 2596 goto next_entry_done; 2597 2598 /* 2599 * If VM_MAP_WIRE_HOLESOK was specified, an empty 2600 * space in the unwired region could have been mapped 2601 * while the map lock was dropped for faulting in the 2602 * pages or draining MAP_ENTRY_IN_TRANSITION. 2603 * Moreover, another thread could be simultaneously 2604 * wiring this new mapping entry. Detect these cases 2605 * and skip any entries marked as in transition by us. 2606 */ 2607 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 2608 entry->wiring_thread != curthread) { 2609 KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0, 2610 ("vm_map_wire: !HOLESOK and new/changed entry")); 2611 continue; 2612 } 2613 2614 if (rv == KERN_SUCCESS) { 2615 if (user_wire) 2616 entry->eflags |= MAP_ENTRY_USER_WIRED; 2617 } else if (entry->wired_count == -1) { 2618 /* 2619 * Wiring failed on this entry. Thus, unwiring is 2620 * unnecessary. 2621 */ 2622 entry->wired_count = 0; 2623 } else { 2624 if (!user_wire || 2625 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) 2626 entry->wired_count--; 2627 if (entry->wired_count == 0) { 2628 /* 2629 * Retain the map lock. 2630 */ 2631 vm_fault_unwire(map, entry->start, entry->end, 2632 entry->object.vm_object != NULL && 2633 (entry->object.vm_object->flags & 2634 OBJ_FICTITIOUS) != 0); 2635 } 2636 } 2637 next_entry_done: 2638 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 2639 ("vm_map_wire: in-transition flag missing %p", entry)); 2640 KASSERT(entry->wiring_thread == curthread, 2641 ("vm_map_wire: alien wire %p", entry)); 2642 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION | 2643 MAP_ENTRY_WIRE_SKIPPED); 2644 entry->wiring_thread = NULL; 2645 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 2646 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 2647 need_wakeup = TRUE; 2648 } 2649 vm_map_simplify_entry(map, entry); 2650 } 2651 vm_map_unlock(map); 2652 if (need_wakeup) 2653 vm_map_wakeup(map); 2654 return (rv); 2655 } 2656 2657 /* 2658 * vm_map_sync 2659 * 2660 * Push any dirty cached pages in the address range to their pager. 2661 * If syncio is TRUE, dirty pages are written synchronously. 2662 * If invalidate is TRUE, any cached pages are freed as well. 2663 * 2664 * If the size of the region from start to end is zero, we are 2665 * supposed to flush all modified pages within the region containing 2666 * start. Unfortunately, a region can be split or coalesced with 2667 * neighboring regions, making it difficult to determine what the 2668 * original region was. Therefore, we approximate this requirement by 2669 * flushing the current region containing start. 2670 * 2671 * Returns an error if any part of the specified range is not mapped. 2672 */ 2673 int 2674 vm_map_sync( 2675 vm_map_t map, 2676 vm_offset_t start, 2677 vm_offset_t end, 2678 boolean_t syncio, 2679 boolean_t invalidate) 2680 { 2681 vm_map_entry_t current; 2682 vm_map_entry_t entry; 2683 vm_size_t size; 2684 vm_object_t object; 2685 vm_ooffset_t offset; 2686 unsigned int last_timestamp; 2687 boolean_t failed; 2688 2689 vm_map_lock_read(map); 2690 VM_MAP_RANGE_CHECK(map, start, end); 2691 if (!vm_map_lookup_entry(map, start, &entry)) { 2692 vm_map_unlock_read(map); 2693 return (KERN_INVALID_ADDRESS); 2694 } else if (start == end) { 2695 start = entry->start; 2696 end = entry->end; 2697 } 2698 /* 2699 * Make a first pass to check for user-wired memory and holes. 2700 */ 2701 for (current = entry; current != &map->header && current->start < end; 2702 current = current->next) { 2703 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) { 2704 vm_map_unlock_read(map); 2705 return (KERN_INVALID_ARGUMENT); 2706 } 2707 if (end > current->end && 2708 (current->next == &map->header || 2709 current->end != current->next->start)) { 2710 vm_map_unlock_read(map); 2711 return (KERN_INVALID_ADDRESS); 2712 } 2713 } 2714 2715 if (invalidate) 2716 pmap_remove(map->pmap, start, end); 2717 failed = FALSE; 2718 2719 /* 2720 * Make a second pass, cleaning/uncaching pages from the indicated 2721 * objects as we go. 2722 */ 2723 for (current = entry; current != &map->header && current->start < end;) { 2724 offset = current->offset + (start - current->start); 2725 size = (end <= current->end ? end : current->end) - start; 2726 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 2727 vm_map_t smap; 2728 vm_map_entry_t tentry; 2729 vm_size_t tsize; 2730 2731 smap = current->object.sub_map; 2732 vm_map_lock_read(smap); 2733 (void) vm_map_lookup_entry(smap, offset, &tentry); 2734 tsize = tentry->end - offset; 2735 if (tsize < size) 2736 size = tsize; 2737 object = tentry->object.vm_object; 2738 offset = tentry->offset + (offset - tentry->start); 2739 vm_map_unlock_read(smap); 2740 } else { 2741 object = current->object.vm_object; 2742 } 2743 vm_object_reference(object); 2744 last_timestamp = map->timestamp; 2745 vm_map_unlock_read(map); 2746 if (!vm_object_sync(object, offset, size, syncio, invalidate)) 2747 failed = TRUE; 2748 start += size; 2749 vm_object_deallocate(object); 2750 vm_map_lock_read(map); 2751 if (last_timestamp == map->timestamp || 2752 !vm_map_lookup_entry(map, start, ¤t)) 2753 current = current->next; 2754 } 2755 2756 vm_map_unlock_read(map); 2757 return (failed ? KERN_FAILURE : KERN_SUCCESS); 2758 } 2759 2760 /* 2761 * vm_map_entry_unwire: [ internal use only ] 2762 * 2763 * Make the region specified by this entry pageable. 2764 * 2765 * The map in question should be locked. 2766 * [This is the reason for this routine's existence.] 2767 */ 2768 static void 2769 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 2770 { 2771 vm_fault_unwire(map, entry->start, entry->end, 2772 entry->object.vm_object != NULL && 2773 (entry->object.vm_object->flags & OBJ_FICTITIOUS) != 0); 2774 entry->wired_count = 0; 2775 } 2776 2777 static void 2778 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map) 2779 { 2780 2781 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) 2782 vm_object_deallocate(entry->object.vm_object); 2783 uma_zfree(system_map ? kmapentzone : mapentzone, entry); 2784 } 2785 2786 /* 2787 * vm_map_entry_delete: [ internal use only ] 2788 * 2789 * Deallocate the given entry from the target map. 2790 */ 2791 static void 2792 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry) 2793 { 2794 vm_object_t object; 2795 vm_pindex_t offidxstart, offidxend, count, size1; 2796 vm_ooffset_t size; 2797 2798 vm_map_entry_unlink(map, entry); 2799 object = entry->object.vm_object; 2800 size = entry->end - entry->start; 2801 map->size -= size; 2802 2803 if (entry->cred != NULL) { 2804 swap_release_by_cred(size, entry->cred); 2805 crfree(entry->cred); 2806 } 2807 2808 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 && 2809 (object != NULL)) { 2810 KASSERT(entry->cred == NULL || object->cred == NULL || 2811 (entry->eflags & MAP_ENTRY_NEEDS_COPY), 2812 ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry)); 2813 count = OFF_TO_IDX(size); 2814 offidxstart = OFF_TO_IDX(entry->offset); 2815 offidxend = offidxstart + count; 2816 VM_OBJECT_WLOCK(object); 2817 if (object->ref_count != 1 && 2818 ((object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING || 2819 object == kernel_object || object == kmem_object)) { 2820 vm_object_collapse(object); 2821 2822 /* 2823 * The option OBJPR_NOTMAPPED can be passed here 2824 * because vm_map_delete() already performed 2825 * pmap_remove() on the only mapping to this range 2826 * of pages. 2827 */ 2828 vm_object_page_remove(object, offidxstart, offidxend, 2829 OBJPR_NOTMAPPED); 2830 if (object->type == OBJT_SWAP) 2831 swap_pager_freespace(object, offidxstart, count); 2832 if (offidxend >= object->size && 2833 offidxstart < object->size) { 2834 size1 = object->size; 2835 object->size = offidxstart; 2836 if (object->cred != NULL) { 2837 size1 -= object->size; 2838 KASSERT(object->charge >= ptoa(size1), 2839 ("vm_map_entry_delete: object->charge < 0")); 2840 swap_release_by_cred(ptoa(size1), object->cred); 2841 object->charge -= ptoa(size1); 2842 } 2843 } 2844 } 2845 VM_OBJECT_WUNLOCK(object); 2846 } else 2847 entry->object.vm_object = NULL; 2848 if (map->system_map) 2849 vm_map_entry_deallocate(entry, TRUE); 2850 else { 2851 entry->next = curthread->td_map_def_user; 2852 curthread->td_map_def_user = entry; 2853 } 2854 } 2855 2856 /* 2857 * vm_map_delete: [ internal use only ] 2858 * 2859 * Deallocates the given address range from the target 2860 * map. 2861 */ 2862 int 2863 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end) 2864 { 2865 vm_map_entry_t entry; 2866 vm_map_entry_t first_entry; 2867 2868 VM_MAP_ASSERT_LOCKED(map); 2869 if (start == end) 2870 return (KERN_SUCCESS); 2871 2872 /* 2873 * Find the start of the region, and clip it 2874 */ 2875 if (!vm_map_lookup_entry(map, start, &first_entry)) 2876 entry = first_entry->next; 2877 else { 2878 entry = first_entry; 2879 vm_map_clip_start(map, entry, start); 2880 } 2881 2882 /* 2883 * Step through all entries in this region 2884 */ 2885 while ((entry != &map->header) && (entry->start < end)) { 2886 vm_map_entry_t next; 2887 2888 /* 2889 * Wait for wiring or unwiring of an entry to complete. 2890 * Also wait for any system wirings to disappear on 2891 * user maps. 2892 */ 2893 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 || 2894 (vm_map_pmap(map) != kernel_pmap && 2895 vm_map_entry_system_wired_count(entry) != 0)) { 2896 unsigned int last_timestamp; 2897 vm_offset_t saved_start; 2898 vm_map_entry_t tmp_entry; 2899 2900 saved_start = entry->start; 2901 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2902 last_timestamp = map->timestamp; 2903 (void) vm_map_unlock_and_wait(map, 0); 2904 vm_map_lock(map); 2905 if (last_timestamp + 1 != map->timestamp) { 2906 /* 2907 * Look again for the entry because the map was 2908 * modified while it was unlocked. 2909 * Specifically, the entry may have been 2910 * clipped, merged, or deleted. 2911 */ 2912 if (!vm_map_lookup_entry(map, saved_start, 2913 &tmp_entry)) 2914 entry = tmp_entry->next; 2915 else { 2916 entry = tmp_entry; 2917 vm_map_clip_start(map, entry, 2918 saved_start); 2919 } 2920 } 2921 continue; 2922 } 2923 vm_map_clip_end(map, entry, end); 2924 2925 next = entry->next; 2926 2927 /* 2928 * Unwire before removing addresses from the pmap; otherwise, 2929 * unwiring will put the entries back in the pmap. 2930 */ 2931 if (entry->wired_count != 0) { 2932 vm_map_entry_unwire(map, entry); 2933 } 2934 2935 pmap_remove(map->pmap, entry->start, entry->end); 2936 2937 /* 2938 * Delete the entry only after removing all pmap 2939 * entries pointing to its pages. (Otherwise, its 2940 * page frames may be reallocated, and any modify bits 2941 * will be set in the wrong object!) 2942 */ 2943 vm_map_entry_delete(map, entry); 2944 entry = next; 2945 } 2946 return (KERN_SUCCESS); 2947 } 2948 2949 /* 2950 * vm_map_remove: 2951 * 2952 * Remove the given address range from the target map. 2953 * This is the exported form of vm_map_delete. 2954 */ 2955 int 2956 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 2957 { 2958 int result; 2959 2960 vm_map_lock(map); 2961 VM_MAP_RANGE_CHECK(map, start, end); 2962 result = vm_map_delete(map, start, end); 2963 vm_map_unlock(map); 2964 return (result); 2965 } 2966 2967 /* 2968 * vm_map_check_protection: 2969 * 2970 * Assert that the target map allows the specified privilege on the 2971 * entire address region given. The entire region must be allocated. 2972 * 2973 * WARNING! This code does not and should not check whether the 2974 * contents of the region is accessible. For example a smaller file 2975 * might be mapped into a larger address space. 2976 * 2977 * NOTE! This code is also called by munmap(). 2978 * 2979 * The map must be locked. A read lock is sufficient. 2980 */ 2981 boolean_t 2982 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 2983 vm_prot_t protection) 2984 { 2985 vm_map_entry_t entry; 2986 vm_map_entry_t tmp_entry; 2987 2988 if (!vm_map_lookup_entry(map, start, &tmp_entry)) 2989 return (FALSE); 2990 entry = tmp_entry; 2991 2992 while (start < end) { 2993 if (entry == &map->header) 2994 return (FALSE); 2995 /* 2996 * No holes allowed! 2997 */ 2998 if (start < entry->start) 2999 return (FALSE); 3000 /* 3001 * Check protection associated with entry. 3002 */ 3003 if ((entry->protection & protection) != protection) 3004 return (FALSE); 3005 /* go to next entry */ 3006 start = entry->end; 3007 entry = entry->next; 3008 } 3009 return (TRUE); 3010 } 3011 3012 /* 3013 * vm_map_copy_entry: 3014 * 3015 * Copies the contents of the source entry to the destination 3016 * entry. The entries *must* be aligned properly. 3017 */ 3018 static void 3019 vm_map_copy_entry( 3020 vm_map_t src_map, 3021 vm_map_t dst_map, 3022 vm_map_entry_t src_entry, 3023 vm_map_entry_t dst_entry, 3024 vm_ooffset_t *fork_charge) 3025 { 3026 vm_object_t src_object; 3027 vm_map_entry_t fake_entry; 3028 vm_offset_t size; 3029 struct ucred *cred; 3030 int charged; 3031 3032 VM_MAP_ASSERT_LOCKED(dst_map); 3033 3034 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP) 3035 return; 3036 3037 if (src_entry->wired_count == 0 || 3038 (src_entry->protection & VM_PROT_WRITE) == 0) { 3039 /* 3040 * If the source entry is marked needs_copy, it is already 3041 * write-protected. 3042 */ 3043 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 && 3044 (src_entry->protection & VM_PROT_WRITE) != 0) { 3045 pmap_protect(src_map->pmap, 3046 src_entry->start, 3047 src_entry->end, 3048 src_entry->protection & ~VM_PROT_WRITE); 3049 } 3050 3051 /* 3052 * Make a copy of the object. 3053 */ 3054 size = src_entry->end - src_entry->start; 3055 if ((src_object = src_entry->object.vm_object) != NULL) { 3056 VM_OBJECT_WLOCK(src_object); 3057 charged = ENTRY_CHARGED(src_entry); 3058 if ((src_object->handle == NULL) && 3059 (src_object->type == OBJT_DEFAULT || 3060 src_object->type == OBJT_SWAP)) { 3061 vm_object_collapse(src_object); 3062 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) { 3063 vm_object_split(src_entry); 3064 src_object = src_entry->object.vm_object; 3065 } 3066 } 3067 vm_object_reference_locked(src_object); 3068 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 3069 if (src_entry->cred != NULL && 3070 !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 3071 KASSERT(src_object->cred == NULL, 3072 ("OVERCOMMIT: vm_map_copy_entry: cred %p", 3073 src_object)); 3074 src_object->cred = src_entry->cred; 3075 src_object->charge = size; 3076 } 3077 VM_OBJECT_WUNLOCK(src_object); 3078 dst_entry->object.vm_object = src_object; 3079 if (charged) { 3080 cred = curthread->td_ucred; 3081 crhold(cred); 3082 dst_entry->cred = cred; 3083 *fork_charge += size; 3084 if (!(src_entry->eflags & 3085 MAP_ENTRY_NEEDS_COPY)) { 3086 crhold(cred); 3087 src_entry->cred = cred; 3088 *fork_charge += size; 3089 } 3090 } 3091 src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 3092 dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 3093 dst_entry->offset = src_entry->offset; 3094 if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) { 3095 /* 3096 * MAP_ENTRY_VN_WRITECNT cannot 3097 * indicate write reference from 3098 * src_entry, since the entry is 3099 * marked as needs copy. Allocate a 3100 * fake entry that is used to 3101 * decrement object->un_pager.vnp.writecount 3102 * at the appropriate time. Attach 3103 * fake_entry to the deferred list. 3104 */ 3105 fake_entry = vm_map_entry_create(dst_map); 3106 fake_entry->eflags = MAP_ENTRY_VN_WRITECNT; 3107 src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT; 3108 vm_object_reference(src_object); 3109 fake_entry->object.vm_object = src_object; 3110 fake_entry->start = src_entry->start; 3111 fake_entry->end = src_entry->end; 3112 fake_entry->next = curthread->td_map_def_user; 3113 curthread->td_map_def_user = fake_entry; 3114 } 3115 } else { 3116 dst_entry->object.vm_object = NULL; 3117 dst_entry->offset = 0; 3118 if (src_entry->cred != NULL) { 3119 dst_entry->cred = curthread->td_ucred; 3120 crhold(dst_entry->cred); 3121 *fork_charge += size; 3122 } 3123 } 3124 3125 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start, 3126 dst_entry->end - dst_entry->start, src_entry->start); 3127 } else { 3128 /* 3129 * We don't want to make writeable wired pages copy-on-write. 3130 * Immediately copy these pages into the new map by simulating 3131 * page faults. The new pages are pageable. 3132 */ 3133 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry, 3134 fork_charge); 3135 } 3136 } 3137 3138 /* 3139 * vmspace_map_entry_forked: 3140 * Update the newly-forked vmspace each time a map entry is inherited 3141 * or copied. The values for vm_dsize and vm_tsize are approximate 3142 * (and mostly-obsolete ideas in the face of mmap(2) et al.) 3143 */ 3144 static void 3145 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2, 3146 vm_map_entry_t entry) 3147 { 3148 vm_size_t entrysize; 3149 vm_offset_t newend; 3150 3151 entrysize = entry->end - entry->start; 3152 vm2->vm_map.size += entrysize; 3153 if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) { 3154 vm2->vm_ssize += btoc(entrysize); 3155 } else if (entry->start >= (vm_offset_t)vm1->vm_daddr && 3156 entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) { 3157 newend = MIN(entry->end, 3158 (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)); 3159 vm2->vm_dsize += btoc(newend - entry->start); 3160 } else if (entry->start >= (vm_offset_t)vm1->vm_taddr && 3161 entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) { 3162 newend = MIN(entry->end, 3163 (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)); 3164 vm2->vm_tsize += btoc(newend - entry->start); 3165 } 3166 } 3167 3168 /* 3169 * vmspace_fork: 3170 * Create a new process vmspace structure and vm_map 3171 * based on those of an existing process. The new map 3172 * is based on the old map, according to the inheritance 3173 * values on the regions in that map. 3174 * 3175 * XXX It might be worth coalescing the entries added to the new vmspace. 3176 * 3177 * The source map must not be locked. 3178 */ 3179 struct vmspace * 3180 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge) 3181 { 3182 struct vmspace *vm2; 3183 vm_map_t new_map, old_map; 3184 vm_map_entry_t new_entry, old_entry; 3185 vm_object_t object; 3186 int locked; 3187 3188 old_map = &vm1->vm_map; 3189 /* Copy immutable fields of vm1 to vm2. */ 3190 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset, NULL); 3191 if (vm2 == NULL) 3192 return (NULL); 3193 vm2->vm_taddr = vm1->vm_taddr; 3194 vm2->vm_daddr = vm1->vm_daddr; 3195 vm2->vm_maxsaddr = vm1->vm_maxsaddr; 3196 vm_map_lock(old_map); 3197 if (old_map->busy) 3198 vm_map_wait_busy(old_map); 3199 new_map = &vm2->vm_map; 3200 locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */ 3201 KASSERT(locked, ("vmspace_fork: lock failed")); 3202 3203 old_entry = old_map->header.next; 3204 3205 while (old_entry != &old_map->header) { 3206 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) 3207 panic("vm_map_fork: encountered a submap"); 3208 3209 switch (old_entry->inheritance) { 3210 case VM_INHERIT_NONE: 3211 break; 3212 3213 case VM_INHERIT_SHARE: 3214 /* 3215 * Clone the entry, creating the shared object if necessary. 3216 */ 3217 object = old_entry->object.vm_object; 3218 if (object == NULL) { 3219 object = vm_object_allocate(OBJT_DEFAULT, 3220 atop(old_entry->end - old_entry->start)); 3221 old_entry->object.vm_object = object; 3222 old_entry->offset = 0; 3223 if (old_entry->cred != NULL) { 3224 object->cred = old_entry->cred; 3225 object->charge = old_entry->end - 3226 old_entry->start; 3227 old_entry->cred = NULL; 3228 } 3229 } 3230 3231 /* 3232 * Add the reference before calling vm_object_shadow 3233 * to insure that a shadow object is created. 3234 */ 3235 vm_object_reference(object); 3236 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3237 vm_object_shadow(&old_entry->object.vm_object, 3238 &old_entry->offset, 3239 old_entry->end - old_entry->start); 3240 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 3241 /* Transfer the second reference too. */ 3242 vm_object_reference( 3243 old_entry->object.vm_object); 3244 3245 /* 3246 * As in vm_map_simplify_entry(), the 3247 * vnode lock will not be acquired in 3248 * this call to vm_object_deallocate(). 3249 */ 3250 vm_object_deallocate(object); 3251 object = old_entry->object.vm_object; 3252 } 3253 VM_OBJECT_WLOCK(object); 3254 vm_object_clear_flag(object, OBJ_ONEMAPPING); 3255 if (old_entry->cred != NULL) { 3256 KASSERT(object->cred == NULL, ("vmspace_fork both cred")); 3257 object->cred = old_entry->cred; 3258 object->charge = old_entry->end - old_entry->start; 3259 old_entry->cred = NULL; 3260 } 3261 3262 /* 3263 * Assert the correct state of the vnode 3264 * v_writecount while the object is locked, to 3265 * not relock it later for the assertion 3266 * correctness. 3267 */ 3268 if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT && 3269 object->type == OBJT_VNODE) { 3270 KASSERT(((struct vnode *)object->handle)-> 3271 v_writecount > 0, 3272 ("vmspace_fork: v_writecount %p", object)); 3273 KASSERT(object->un_pager.vnp.writemappings > 0, 3274 ("vmspace_fork: vnp.writecount %p", 3275 object)); 3276 } 3277 VM_OBJECT_WUNLOCK(object); 3278 3279 /* 3280 * Clone the entry, referencing the shared object. 3281 */ 3282 new_entry = vm_map_entry_create(new_map); 3283 *new_entry = *old_entry; 3284 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 3285 MAP_ENTRY_IN_TRANSITION); 3286 new_entry->wiring_thread = NULL; 3287 new_entry->wired_count = 0; 3288 if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) { 3289 vnode_pager_update_writecount(object, 3290 new_entry->start, new_entry->end); 3291 } 3292 3293 /* 3294 * Insert the entry into the new map -- we know we're 3295 * inserting at the end of the new map. 3296 */ 3297 vm_map_entry_link(new_map, new_map->header.prev, 3298 new_entry); 3299 vmspace_map_entry_forked(vm1, vm2, new_entry); 3300 3301 /* 3302 * Update the physical map 3303 */ 3304 pmap_copy(new_map->pmap, old_map->pmap, 3305 new_entry->start, 3306 (old_entry->end - old_entry->start), 3307 old_entry->start); 3308 break; 3309 3310 case VM_INHERIT_COPY: 3311 /* 3312 * Clone the entry and link into the map. 3313 */ 3314 new_entry = vm_map_entry_create(new_map); 3315 *new_entry = *old_entry; 3316 /* 3317 * Copied entry is COW over the old object. 3318 */ 3319 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 3320 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT); 3321 new_entry->wiring_thread = NULL; 3322 new_entry->wired_count = 0; 3323 new_entry->object.vm_object = NULL; 3324 new_entry->cred = NULL; 3325 vm_map_entry_link(new_map, new_map->header.prev, 3326 new_entry); 3327 vmspace_map_entry_forked(vm1, vm2, new_entry); 3328 vm_map_copy_entry(old_map, new_map, old_entry, 3329 new_entry, fork_charge); 3330 break; 3331 } 3332 old_entry = old_entry->next; 3333 } 3334 /* 3335 * Use inlined vm_map_unlock() to postpone handling the deferred 3336 * map entries, which cannot be done until both old_map and 3337 * new_map locks are released. 3338 */ 3339 sx_xunlock(&old_map->lock); 3340 sx_xunlock(&new_map->lock); 3341 vm_map_process_deferred(); 3342 3343 return (vm2); 3344 } 3345 3346 int 3347 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 3348 vm_prot_t prot, vm_prot_t max, int cow) 3349 { 3350 vm_map_entry_t new_entry, prev_entry; 3351 vm_offset_t bot, top; 3352 vm_size_t growsize, init_ssize; 3353 int orient, rv; 3354 rlim_t lmemlim, vmemlim; 3355 3356 /* 3357 * The stack orientation is piggybacked with the cow argument. 3358 * Extract it into orient and mask the cow argument so that we 3359 * don't pass it around further. 3360 * NOTE: We explicitly allow bi-directional stacks. 3361 */ 3362 orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP); 3363 KASSERT(orient != 0, ("No stack grow direction")); 3364 3365 if (addrbos < vm_map_min(map) || 3366 addrbos > vm_map_max(map) || 3367 addrbos + max_ssize < addrbos) 3368 return (KERN_NO_SPACE); 3369 3370 growsize = sgrowsiz; 3371 init_ssize = (max_ssize < growsize) ? max_ssize : growsize; 3372 3373 PROC_LOCK(curproc); 3374 lmemlim = lim_cur(curproc, RLIMIT_MEMLOCK); 3375 vmemlim = lim_cur(curproc, RLIMIT_VMEM); 3376 PROC_UNLOCK(curproc); 3377 3378 vm_map_lock(map); 3379 3380 /* If addr is already mapped, no go */ 3381 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) { 3382 vm_map_unlock(map); 3383 return (KERN_NO_SPACE); 3384 } 3385 3386 if (!old_mlock && map->flags & MAP_WIREFUTURE) { 3387 if (ptoa(pmap_wired_count(map->pmap)) + init_ssize > lmemlim) { 3388 vm_map_unlock(map); 3389 return (KERN_NO_SPACE); 3390 } 3391 } 3392 3393 /* If we would blow our VMEM resource limit, no go */ 3394 if (map->size + init_ssize > vmemlim) { 3395 vm_map_unlock(map); 3396 return (KERN_NO_SPACE); 3397 } 3398 3399 /* 3400 * If we can't accomodate max_ssize in the current mapping, no go. 3401 * However, we need to be aware that subsequent user mappings might 3402 * map into the space we have reserved for stack, and currently this 3403 * space is not protected. 3404 * 3405 * Hopefully we will at least detect this condition when we try to 3406 * grow the stack. 3407 */ 3408 if ((prev_entry->next != &map->header) && 3409 (prev_entry->next->start < addrbos + max_ssize)) { 3410 vm_map_unlock(map); 3411 return (KERN_NO_SPACE); 3412 } 3413 3414 /* 3415 * We initially map a stack of only init_ssize. We will grow as 3416 * needed later. Depending on the orientation of the stack (i.e. 3417 * the grow direction) we either map at the top of the range, the 3418 * bottom of the range or in the middle. 3419 * 3420 * Note: we would normally expect prot and max to be VM_PROT_ALL, 3421 * and cow to be 0. Possibly we should eliminate these as input 3422 * parameters, and just pass these values here in the insert call. 3423 */ 3424 if (orient == MAP_STACK_GROWS_DOWN) 3425 bot = addrbos + max_ssize - init_ssize; 3426 else if (orient == MAP_STACK_GROWS_UP) 3427 bot = addrbos; 3428 else 3429 bot = round_page(addrbos + max_ssize/2 - init_ssize/2); 3430 top = bot + init_ssize; 3431 rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow); 3432 3433 /* Now set the avail_ssize amount. */ 3434 if (rv == KERN_SUCCESS) { 3435 if (prev_entry != &map->header) 3436 vm_map_clip_end(map, prev_entry, bot); 3437 new_entry = prev_entry->next; 3438 if (new_entry->end != top || new_entry->start != bot) 3439 panic("Bad entry start/end for new stack entry"); 3440 3441 new_entry->avail_ssize = max_ssize - init_ssize; 3442 if (orient & MAP_STACK_GROWS_DOWN) 3443 new_entry->eflags |= MAP_ENTRY_GROWS_DOWN; 3444 if (orient & MAP_STACK_GROWS_UP) 3445 new_entry->eflags |= MAP_ENTRY_GROWS_UP; 3446 } 3447 3448 vm_map_unlock(map); 3449 return (rv); 3450 } 3451 3452 static int stack_guard_page = 0; 3453 TUNABLE_INT("security.bsd.stack_guard_page", &stack_guard_page); 3454 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RW, 3455 &stack_guard_page, 0, 3456 "Insert stack guard page ahead of the growable segments."); 3457 3458 /* Attempts to grow a vm stack entry. Returns KERN_SUCCESS if the 3459 * desired address is already mapped, or if we successfully grow 3460 * the stack. Also returns KERN_SUCCESS if addr is outside the 3461 * stack range (this is strange, but preserves compatibility with 3462 * the grow function in vm_machdep.c). 3463 */ 3464 int 3465 vm_map_growstack(struct proc *p, vm_offset_t addr) 3466 { 3467 vm_map_entry_t next_entry, prev_entry; 3468 vm_map_entry_t new_entry, stack_entry; 3469 struct vmspace *vm = p->p_vmspace; 3470 vm_map_t map = &vm->vm_map; 3471 vm_offset_t end; 3472 vm_size_t growsize; 3473 size_t grow_amount, max_grow; 3474 rlim_t lmemlim, stacklim, vmemlim; 3475 int is_procstack, rv; 3476 struct ucred *cred; 3477 #ifdef notyet 3478 uint64_t limit; 3479 #endif 3480 #ifdef RACCT 3481 int error; 3482 #endif 3483 3484 Retry: 3485 PROC_LOCK(p); 3486 lmemlim = lim_cur(p, RLIMIT_MEMLOCK); 3487 stacklim = lim_cur(p, RLIMIT_STACK); 3488 vmemlim = lim_cur(p, RLIMIT_VMEM); 3489 PROC_UNLOCK(p); 3490 3491 vm_map_lock_read(map); 3492 3493 /* If addr is already in the entry range, no need to grow.*/ 3494 if (vm_map_lookup_entry(map, addr, &prev_entry)) { 3495 vm_map_unlock_read(map); 3496 return (KERN_SUCCESS); 3497 } 3498 3499 next_entry = prev_entry->next; 3500 if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) { 3501 /* 3502 * This entry does not grow upwards. Since the address lies 3503 * beyond this entry, the next entry (if one exists) has to 3504 * be a downward growable entry. The entry list header is 3505 * never a growable entry, so it suffices to check the flags. 3506 */ 3507 if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) { 3508 vm_map_unlock_read(map); 3509 return (KERN_SUCCESS); 3510 } 3511 stack_entry = next_entry; 3512 } else { 3513 /* 3514 * This entry grows upward. If the next entry does not at 3515 * least grow downwards, this is the entry we need to grow. 3516 * otherwise we have two possible choices and we have to 3517 * select one. 3518 */ 3519 if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) { 3520 /* 3521 * We have two choices; grow the entry closest to 3522 * the address to minimize the amount of growth. 3523 */ 3524 if (addr - prev_entry->end <= next_entry->start - addr) 3525 stack_entry = prev_entry; 3526 else 3527 stack_entry = next_entry; 3528 } else 3529 stack_entry = prev_entry; 3530 } 3531 3532 if (stack_entry == next_entry) { 3533 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo")); 3534 KASSERT(addr < stack_entry->start, ("foo")); 3535 end = (prev_entry != &map->header) ? prev_entry->end : 3536 stack_entry->start - stack_entry->avail_ssize; 3537 grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE); 3538 max_grow = stack_entry->start - end; 3539 } else { 3540 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo")); 3541 KASSERT(addr >= stack_entry->end, ("foo")); 3542 end = (next_entry != &map->header) ? next_entry->start : 3543 stack_entry->end + stack_entry->avail_ssize; 3544 grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE); 3545 max_grow = end - stack_entry->end; 3546 } 3547 3548 if (grow_amount > stack_entry->avail_ssize) { 3549 vm_map_unlock_read(map); 3550 return (KERN_NO_SPACE); 3551 } 3552 3553 /* 3554 * If there is no longer enough space between the entries nogo, and 3555 * adjust the available space. Note: this should only happen if the 3556 * user has mapped into the stack area after the stack was created, 3557 * and is probably an error. 3558 * 3559 * This also effectively destroys any guard page the user might have 3560 * intended by limiting the stack size. 3561 */ 3562 if (grow_amount + (stack_guard_page ? PAGE_SIZE : 0) > max_grow) { 3563 if (vm_map_lock_upgrade(map)) 3564 goto Retry; 3565 3566 stack_entry->avail_ssize = max_grow; 3567 3568 vm_map_unlock(map); 3569 return (KERN_NO_SPACE); 3570 } 3571 3572 is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr) ? 1 : 0; 3573 3574 /* 3575 * If this is the main process stack, see if we're over the stack 3576 * limit. 3577 */ 3578 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 3579 vm_map_unlock_read(map); 3580 return (KERN_NO_SPACE); 3581 } 3582 #ifdef RACCT 3583 PROC_LOCK(p); 3584 if (is_procstack && 3585 racct_set(p, RACCT_STACK, ctob(vm->vm_ssize) + grow_amount)) { 3586 PROC_UNLOCK(p); 3587 vm_map_unlock_read(map); 3588 return (KERN_NO_SPACE); 3589 } 3590 PROC_UNLOCK(p); 3591 #endif 3592 3593 /* Round up the grow amount modulo sgrowsiz */ 3594 growsize = sgrowsiz; 3595 grow_amount = roundup(grow_amount, growsize); 3596 if (grow_amount > stack_entry->avail_ssize) 3597 grow_amount = stack_entry->avail_ssize; 3598 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 3599 grow_amount = trunc_page((vm_size_t)stacklim) - 3600 ctob(vm->vm_ssize); 3601 } 3602 #ifdef notyet 3603 PROC_LOCK(p); 3604 limit = racct_get_available(p, RACCT_STACK); 3605 PROC_UNLOCK(p); 3606 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit)) 3607 grow_amount = limit - ctob(vm->vm_ssize); 3608 #endif 3609 if (!old_mlock && map->flags & MAP_WIREFUTURE) { 3610 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) { 3611 vm_map_unlock_read(map); 3612 rv = KERN_NO_SPACE; 3613 goto out; 3614 } 3615 #ifdef RACCT 3616 PROC_LOCK(p); 3617 if (racct_set(p, RACCT_MEMLOCK, 3618 ptoa(pmap_wired_count(map->pmap)) + grow_amount)) { 3619 PROC_UNLOCK(p); 3620 vm_map_unlock_read(map); 3621 rv = KERN_NO_SPACE; 3622 goto out; 3623 } 3624 PROC_UNLOCK(p); 3625 #endif 3626 } 3627 /* If we would blow our VMEM resource limit, no go */ 3628 if (map->size + grow_amount > vmemlim) { 3629 vm_map_unlock_read(map); 3630 rv = KERN_NO_SPACE; 3631 goto out; 3632 } 3633 #ifdef RACCT 3634 PROC_LOCK(p); 3635 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) { 3636 PROC_UNLOCK(p); 3637 vm_map_unlock_read(map); 3638 rv = KERN_NO_SPACE; 3639 goto out; 3640 } 3641 PROC_UNLOCK(p); 3642 #endif 3643 3644 if (vm_map_lock_upgrade(map)) 3645 goto Retry; 3646 3647 if (stack_entry == next_entry) { 3648 /* 3649 * Growing downward. 3650 */ 3651 /* Get the preliminary new entry start value */ 3652 addr = stack_entry->start - grow_amount; 3653 3654 /* 3655 * If this puts us into the previous entry, cut back our 3656 * growth to the available space. Also, see the note above. 3657 */ 3658 if (addr < end) { 3659 stack_entry->avail_ssize = max_grow; 3660 addr = end; 3661 if (stack_guard_page) 3662 addr += PAGE_SIZE; 3663 } 3664 3665 rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start, 3666 next_entry->protection, next_entry->max_protection, 0); 3667 3668 /* Adjust the available stack space by the amount we grew. */ 3669 if (rv == KERN_SUCCESS) { 3670 if (prev_entry != &map->header) 3671 vm_map_clip_end(map, prev_entry, addr); 3672 new_entry = prev_entry->next; 3673 KASSERT(new_entry == stack_entry->prev, ("foo")); 3674 KASSERT(new_entry->end == stack_entry->start, ("foo")); 3675 KASSERT(new_entry->start == addr, ("foo")); 3676 grow_amount = new_entry->end - new_entry->start; 3677 new_entry->avail_ssize = stack_entry->avail_ssize - 3678 grow_amount; 3679 stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN; 3680 new_entry->eflags |= MAP_ENTRY_GROWS_DOWN; 3681 } 3682 } else { 3683 /* 3684 * Growing upward. 3685 */ 3686 addr = stack_entry->end + grow_amount; 3687 3688 /* 3689 * If this puts us into the next entry, cut back our growth 3690 * to the available space. Also, see the note above. 3691 */ 3692 if (addr > end) { 3693 stack_entry->avail_ssize = end - stack_entry->end; 3694 addr = end; 3695 if (stack_guard_page) 3696 addr -= PAGE_SIZE; 3697 } 3698 3699 grow_amount = addr - stack_entry->end; 3700 cred = stack_entry->cred; 3701 if (cred == NULL && stack_entry->object.vm_object != NULL) 3702 cred = stack_entry->object.vm_object->cred; 3703 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred)) 3704 rv = KERN_NO_SPACE; 3705 /* Grow the underlying object if applicable. */ 3706 else if (stack_entry->object.vm_object == NULL || 3707 vm_object_coalesce(stack_entry->object.vm_object, 3708 stack_entry->offset, 3709 (vm_size_t)(stack_entry->end - stack_entry->start), 3710 (vm_size_t)grow_amount, cred != NULL)) { 3711 map->size += (addr - stack_entry->end); 3712 /* Update the current entry. */ 3713 stack_entry->end = addr; 3714 stack_entry->avail_ssize -= grow_amount; 3715 vm_map_entry_resize_free(map, stack_entry); 3716 rv = KERN_SUCCESS; 3717 3718 if (next_entry != &map->header) 3719 vm_map_clip_start(map, next_entry, addr); 3720 } else 3721 rv = KERN_FAILURE; 3722 } 3723 3724 if (rv == KERN_SUCCESS && is_procstack) 3725 vm->vm_ssize += btoc(grow_amount); 3726 3727 vm_map_unlock(map); 3728 3729 /* 3730 * Heed the MAP_WIREFUTURE flag if it was set for this process. 3731 */ 3732 if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) { 3733 vm_map_wire(map, 3734 (stack_entry == next_entry) ? addr : addr - grow_amount, 3735 (stack_entry == next_entry) ? stack_entry->start : addr, 3736 (p->p_flag & P_SYSTEM) 3737 ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES 3738 : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES); 3739 } 3740 3741 out: 3742 #ifdef RACCT 3743 if (rv != KERN_SUCCESS) { 3744 PROC_LOCK(p); 3745 error = racct_set(p, RACCT_VMEM, map->size); 3746 KASSERT(error == 0, ("decreasing RACCT_VMEM failed")); 3747 if (!old_mlock) { 3748 error = racct_set(p, RACCT_MEMLOCK, 3749 ptoa(pmap_wired_count(map->pmap))); 3750 KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed")); 3751 } 3752 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize)); 3753 KASSERT(error == 0, ("decreasing RACCT_STACK failed")); 3754 PROC_UNLOCK(p); 3755 } 3756 #endif 3757 3758 return (rv); 3759 } 3760 3761 /* 3762 * Unshare the specified VM space for exec. If other processes are 3763 * mapped to it, then create a new one. The new vmspace is null. 3764 */ 3765 int 3766 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser) 3767 { 3768 struct vmspace *oldvmspace = p->p_vmspace; 3769 struct vmspace *newvmspace; 3770 3771 KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0, 3772 ("vmspace_exec recursed")); 3773 newvmspace = vmspace_alloc(minuser, maxuser, NULL); 3774 if (newvmspace == NULL) 3775 return (ENOMEM); 3776 newvmspace->vm_swrss = oldvmspace->vm_swrss; 3777 /* 3778 * This code is written like this for prototype purposes. The 3779 * goal is to avoid running down the vmspace here, but let the 3780 * other process's that are still using the vmspace to finally 3781 * run it down. Even though there is little or no chance of blocking 3782 * here, it is a good idea to keep this form for future mods. 3783 */ 3784 PROC_VMSPACE_LOCK(p); 3785 p->p_vmspace = newvmspace; 3786 PROC_VMSPACE_UNLOCK(p); 3787 if (p == curthread->td_proc) 3788 pmap_activate(curthread); 3789 curthread->td_pflags |= TDP_EXECVMSPC; 3790 return (0); 3791 } 3792 3793 /* 3794 * Unshare the specified VM space for forcing COW. This 3795 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 3796 */ 3797 int 3798 vmspace_unshare(struct proc *p) 3799 { 3800 struct vmspace *oldvmspace = p->p_vmspace; 3801 struct vmspace *newvmspace; 3802 vm_ooffset_t fork_charge; 3803 3804 if (oldvmspace->vm_refcnt == 1) 3805 return (0); 3806 fork_charge = 0; 3807 newvmspace = vmspace_fork(oldvmspace, &fork_charge); 3808 if (newvmspace == NULL) 3809 return (ENOMEM); 3810 if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) { 3811 vmspace_free(newvmspace); 3812 return (ENOMEM); 3813 } 3814 PROC_VMSPACE_LOCK(p); 3815 p->p_vmspace = newvmspace; 3816 PROC_VMSPACE_UNLOCK(p); 3817 if (p == curthread->td_proc) 3818 pmap_activate(curthread); 3819 vmspace_free(oldvmspace); 3820 return (0); 3821 } 3822 3823 /* 3824 * vm_map_lookup: 3825 * 3826 * Finds the VM object, offset, and 3827 * protection for a given virtual address in the 3828 * specified map, assuming a page fault of the 3829 * type specified. 3830 * 3831 * Leaves the map in question locked for read; return 3832 * values are guaranteed until a vm_map_lookup_done 3833 * call is performed. Note that the map argument 3834 * is in/out; the returned map must be used in 3835 * the call to vm_map_lookup_done. 3836 * 3837 * A handle (out_entry) is returned for use in 3838 * vm_map_lookup_done, to make that fast. 3839 * 3840 * If a lookup is requested with "write protection" 3841 * specified, the map may be changed to perform virtual 3842 * copying operations, although the data referenced will 3843 * remain the same. 3844 */ 3845 int 3846 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 3847 vm_offset_t vaddr, 3848 vm_prot_t fault_typea, 3849 vm_map_entry_t *out_entry, /* OUT */ 3850 vm_object_t *object, /* OUT */ 3851 vm_pindex_t *pindex, /* OUT */ 3852 vm_prot_t *out_prot, /* OUT */ 3853 boolean_t *wired) /* OUT */ 3854 { 3855 vm_map_entry_t entry; 3856 vm_map_t map = *var_map; 3857 vm_prot_t prot; 3858 vm_prot_t fault_type = fault_typea; 3859 vm_object_t eobject; 3860 vm_size_t size; 3861 struct ucred *cred; 3862 3863 RetryLookup:; 3864 3865 vm_map_lock_read(map); 3866 3867 /* 3868 * Lookup the faulting address. 3869 */ 3870 if (!vm_map_lookup_entry(map, vaddr, out_entry)) { 3871 vm_map_unlock_read(map); 3872 return (KERN_INVALID_ADDRESS); 3873 } 3874 3875 entry = *out_entry; 3876 3877 /* 3878 * Handle submaps. 3879 */ 3880 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 3881 vm_map_t old_map = map; 3882 3883 *var_map = map = entry->object.sub_map; 3884 vm_map_unlock_read(old_map); 3885 goto RetryLookup; 3886 } 3887 3888 /* 3889 * Check whether this task is allowed to have this page. 3890 */ 3891 prot = entry->protection; 3892 fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE); 3893 if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) { 3894 vm_map_unlock_read(map); 3895 return (KERN_PROTECTION_FAILURE); 3896 } 3897 if ((entry->eflags & MAP_ENTRY_USER_WIRED) && 3898 (entry->eflags & MAP_ENTRY_COW) && 3899 (fault_type & VM_PROT_WRITE)) { 3900 vm_map_unlock_read(map); 3901 return (KERN_PROTECTION_FAILURE); 3902 } 3903 if ((fault_typea & VM_PROT_COPY) != 0 && 3904 (entry->max_protection & VM_PROT_WRITE) == 0 && 3905 (entry->eflags & MAP_ENTRY_COW) == 0) { 3906 vm_map_unlock_read(map); 3907 return (KERN_PROTECTION_FAILURE); 3908 } 3909 3910 /* 3911 * If this page is not pageable, we have to get it for all possible 3912 * accesses. 3913 */ 3914 *wired = (entry->wired_count != 0); 3915 if (*wired) 3916 fault_type = entry->protection; 3917 size = entry->end - entry->start; 3918 /* 3919 * If the entry was copy-on-write, we either ... 3920 */ 3921 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3922 /* 3923 * If we want to write the page, we may as well handle that 3924 * now since we've got the map locked. 3925 * 3926 * If we don't need to write the page, we just demote the 3927 * permissions allowed. 3928 */ 3929 if ((fault_type & VM_PROT_WRITE) != 0 || 3930 (fault_typea & VM_PROT_COPY) != 0) { 3931 /* 3932 * Make a new object, and place it in the object 3933 * chain. Note that no new references have appeared 3934 * -- one just moved from the map to the new 3935 * object. 3936 */ 3937 if (vm_map_lock_upgrade(map)) 3938 goto RetryLookup; 3939 3940 if (entry->cred == NULL) { 3941 /* 3942 * The debugger owner is charged for 3943 * the memory. 3944 */ 3945 cred = curthread->td_ucred; 3946 crhold(cred); 3947 if (!swap_reserve_by_cred(size, cred)) { 3948 crfree(cred); 3949 vm_map_unlock(map); 3950 return (KERN_RESOURCE_SHORTAGE); 3951 } 3952 entry->cred = cred; 3953 } 3954 vm_object_shadow(&entry->object.vm_object, 3955 &entry->offset, size); 3956 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 3957 eobject = entry->object.vm_object; 3958 if (eobject->cred != NULL) { 3959 /* 3960 * The object was not shadowed. 3961 */ 3962 swap_release_by_cred(size, entry->cred); 3963 crfree(entry->cred); 3964 entry->cred = NULL; 3965 } else if (entry->cred != NULL) { 3966 VM_OBJECT_WLOCK(eobject); 3967 eobject->cred = entry->cred; 3968 eobject->charge = size; 3969 VM_OBJECT_WUNLOCK(eobject); 3970 entry->cred = NULL; 3971 } 3972 3973 vm_map_lock_downgrade(map); 3974 } else { 3975 /* 3976 * We're attempting to read a copy-on-write page -- 3977 * don't allow writes. 3978 */ 3979 prot &= ~VM_PROT_WRITE; 3980 } 3981 } 3982 3983 /* 3984 * Create an object if necessary. 3985 */ 3986 if (entry->object.vm_object == NULL && 3987 !map->system_map) { 3988 if (vm_map_lock_upgrade(map)) 3989 goto RetryLookup; 3990 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT, 3991 atop(size)); 3992 entry->offset = 0; 3993 if (entry->cred != NULL) { 3994 VM_OBJECT_WLOCK(entry->object.vm_object); 3995 entry->object.vm_object->cred = entry->cred; 3996 entry->object.vm_object->charge = size; 3997 VM_OBJECT_WUNLOCK(entry->object.vm_object); 3998 entry->cred = NULL; 3999 } 4000 vm_map_lock_downgrade(map); 4001 } 4002 4003 /* 4004 * Return the object/offset from this entry. If the entry was 4005 * copy-on-write or empty, it has been fixed up. 4006 */ 4007 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 4008 *object = entry->object.vm_object; 4009 4010 *out_prot = prot; 4011 return (KERN_SUCCESS); 4012 } 4013 4014 /* 4015 * vm_map_lookup_locked: 4016 * 4017 * Lookup the faulting address. A version of vm_map_lookup that returns 4018 * KERN_FAILURE instead of blocking on map lock or memory allocation. 4019 */ 4020 int 4021 vm_map_lookup_locked(vm_map_t *var_map, /* IN/OUT */ 4022 vm_offset_t vaddr, 4023 vm_prot_t fault_typea, 4024 vm_map_entry_t *out_entry, /* OUT */ 4025 vm_object_t *object, /* OUT */ 4026 vm_pindex_t *pindex, /* OUT */ 4027 vm_prot_t *out_prot, /* OUT */ 4028 boolean_t *wired) /* OUT */ 4029 { 4030 vm_map_entry_t entry; 4031 vm_map_t map = *var_map; 4032 vm_prot_t prot; 4033 vm_prot_t fault_type = fault_typea; 4034 4035 /* 4036 * Lookup the faulting address. 4037 */ 4038 if (!vm_map_lookup_entry(map, vaddr, out_entry)) 4039 return (KERN_INVALID_ADDRESS); 4040 4041 entry = *out_entry; 4042 4043 /* 4044 * Fail if the entry refers to a submap. 4045 */ 4046 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 4047 return (KERN_FAILURE); 4048 4049 /* 4050 * Check whether this task is allowed to have this page. 4051 */ 4052 prot = entry->protection; 4053 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; 4054 if ((fault_type & prot) != fault_type) 4055 return (KERN_PROTECTION_FAILURE); 4056 if ((entry->eflags & MAP_ENTRY_USER_WIRED) && 4057 (entry->eflags & MAP_ENTRY_COW) && 4058 (fault_type & VM_PROT_WRITE)) 4059 return (KERN_PROTECTION_FAILURE); 4060 4061 /* 4062 * If this page is not pageable, we have to get it for all possible 4063 * accesses. 4064 */ 4065 *wired = (entry->wired_count != 0); 4066 if (*wired) 4067 fault_type = entry->protection; 4068 4069 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 4070 /* 4071 * Fail if the entry was copy-on-write for a write fault. 4072 */ 4073 if (fault_type & VM_PROT_WRITE) 4074 return (KERN_FAILURE); 4075 /* 4076 * We're attempting to read a copy-on-write page -- 4077 * don't allow writes. 4078 */ 4079 prot &= ~VM_PROT_WRITE; 4080 } 4081 4082 /* 4083 * Fail if an object should be created. 4084 */ 4085 if (entry->object.vm_object == NULL && !map->system_map) 4086 return (KERN_FAILURE); 4087 4088 /* 4089 * Return the object/offset from this entry. If the entry was 4090 * copy-on-write or empty, it has been fixed up. 4091 */ 4092 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 4093 *object = entry->object.vm_object; 4094 4095 *out_prot = prot; 4096 return (KERN_SUCCESS); 4097 } 4098 4099 /* 4100 * vm_map_lookup_done: 4101 * 4102 * Releases locks acquired by a vm_map_lookup 4103 * (according to the handle returned by that lookup). 4104 */ 4105 void 4106 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry) 4107 { 4108 /* 4109 * Unlock the main-level map 4110 */ 4111 vm_map_unlock_read(map); 4112 } 4113 4114 #include "opt_ddb.h" 4115 #ifdef DDB 4116 #include <sys/kernel.h> 4117 4118 #include <ddb/ddb.h> 4119 4120 static void 4121 vm_map_print(vm_map_t map) 4122 { 4123 vm_map_entry_t entry; 4124 4125 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 4126 (void *)map, 4127 (void *)map->pmap, map->nentries, map->timestamp); 4128 4129 db_indent += 2; 4130 for (entry = map->header.next; entry != &map->header; 4131 entry = entry->next) { 4132 db_iprintf("map entry %p: start=%p, end=%p\n", 4133 (void *)entry, (void *)entry->start, (void *)entry->end); 4134 { 4135 static char *inheritance_name[4] = 4136 {"share", "copy", "none", "donate_copy"}; 4137 4138 db_iprintf(" prot=%x/%x/%s", 4139 entry->protection, 4140 entry->max_protection, 4141 inheritance_name[(int)(unsigned char)entry->inheritance]); 4142 if (entry->wired_count != 0) 4143 db_printf(", wired"); 4144 } 4145 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 4146 db_printf(", share=%p, offset=0x%jx\n", 4147 (void *)entry->object.sub_map, 4148 (uintmax_t)entry->offset); 4149 if ((entry->prev == &map->header) || 4150 (entry->prev->object.sub_map != 4151 entry->object.sub_map)) { 4152 db_indent += 2; 4153 vm_map_print((vm_map_t)entry->object.sub_map); 4154 db_indent -= 2; 4155 } 4156 } else { 4157 if (entry->cred != NULL) 4158 db_printf(", ruid %d", entry->cred->cr_ruid); 4159 db_printf(", object=%p, offset=0x%jx", 4160 (void *)entry->object.vm_object, 4161 (uintmax_t)entry->offset); 4162 if (entry->object.vm_object && entry->object.vm_object->cred) 4163 db_printf(", obj ruid %d charge %jx", 4164 entry->object.vm_object->cred->cr_ruid, 4165 (uintmax_t)entry->object.vm_object->charge); 4166 if (entry->eflags & MAP_ENTRY_COW) 4167 db_printf(", copy (%s)", 4168 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 4169 db_printf("\n"); 4170 4171 if ((entry->prev == &map->header) || 4172 (entry->prev->object.vm_object != 4173 entry->object.vm_object)) { 4174 db_indent += 2; 4175 vm_object_print((db_expr_t)(intptr_t) 4176 entry->object.vm_object, 4177 0, 0, (char *)0); 4178 db_indent -= 2; 4179 } 4180 } 4181 } 4182 db_indent -= 2; 4183 } 4184 4185 DB_SHOW_COMMAND(map, map) 4186 { 4187 4188 if (!have_addr) { 4189 db_printf("usage: show map <addr>\n"); 4190 return; 4191 } 4192 vm_map_print((vm_map_t)addr); 4193 } 4194 4195 DB_SHOW_COMMAND(procvm, procvm) 4196 { 4197 struct proc *p; 4198 4199 if (have_addr) { 4200 p = (struct proc *) addr; 4201 } else { 4202 p = curproc; 4203 } 4204 4205 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 4206 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 4207 (void *)vmspace_pmap(p->p_vmspace)); 4208 4209 vm_map_print((vm_map_t)&p->p_vmspace->vm_map); 4210 } 4211 4212 #endif /* DDB */ 4213