1 /* 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by the University of 19 * California, Berkeley and its contributors. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 37 * 38 * 39 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 40 * All rights reserved. 41 * 42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 43 * 44 * Permission to use, copy, modify and distribute this software and 45 * its documentation is hereby granted, provided that both the copyright 46 * notice and this permission notice appear in all copies of the 47 * software, derivative works or modified versions, and any portions 48 * thereof, and that both notices appear in supporting documentation. 49 * 50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 53 * 54 * Carnegie Mellon requests users of this software to return to 55 * 56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 57 * School of Computer Science 58 * Carnegie Mellon University 59 * Pittsburgh PA 15213-3890 60 * 61 * any improvements or extensions that they make and grant Carnegie the 62 * rights to redistribute these changes. 63 * 64 * $FreeBSD$ 65 */ 66 67 /* 68 * Virtual memory mapping module. 69 */ 70 71 #include <sys/param.h> 72 #include <sys/systm.h> 73 #include <sys/malloc.h> 74 #include <sys/proc.h> 75 #include <sys/vmmeter.h> 76 #include <sys/mman.h> 77 #include <sys/vnode.h> 78 #include <sys/resourcevar.h> 79 80 #include <vm/vm.h> 81 #include <vm/vm_param.h> 82 #include <sys/lock.h> 83 #include <vm/pmap.h> 84 #include <vm/vm_map.h> 85 #include <vm/vm_page.h> 86 #include <vm/vm_object.h> 87 #include <vm/vm_pager.h> 88 #include <vm/vm_kern.h> 89 #include <vm/vm_extern.h> 90 #include <vm/default_pager.h> 91 #include <vm/swap_pager.h> 92 #include <vm/vm_zone.h> 93 94 /* 95 * Virtual memory maps provide for the mapping, protection, 96 * and sharing of virtual memory objects. In addition, 97 * this module provides for an efficient virtual copy of 98 * memory from one map to another. 99 * 100 * Synchronization is required prior to most operations. 101 * 102 * Maps consist of an ordered doubly-linked list of simple 103 * entries; a single hint is used to speed up lookups. 104 * 105 * Since portions of maps are specified by start/end addreses, 106 * which may not align with existing map entries, all 107 * routines merely "clip" entries to these start/end values. 108 * [That is, an entry is split into two, bordering at a 109 * start or end value.] Note that these clippings may not 110 * always be necessary (as the two resulting entries are then 111 * not changed); however, the clipping is done for convenience. 112 * 113 * As mentioned above, virtual copy operations are performed 114 * by copying VM object references from one map to 115 * another, and then marking both regions as copy-on-write. 116 */ 117 118 /* 119 * vm_map_startup: 120 * 121 * Initialize the vm_map module. Must be called before 122 * any other vm_map routines. 123 * 124 * Map and entry structures are allocated from the general 125 * purpose memory pool with some exceptions: 126 * 127 * - The kernel map and kmem submap are allocated statically. 128 * - Kernel map entries are allocated out of a static pool. 129 * 130 * These restrictions are necessary since malloc() uses the 131 * maps and requires map entries. 132 */ 133 134 static struct vm_zone kmapentzone_store, mapentzone_store, mapzone_store; 135 static vm_zone_t mapentzone, kmapentzone, mapzone, vmspace_zone; 136 static struct vm_object kmapentobj, mapentobj, mapobj; 137 138 static struct vm_map_entry map_entry_init[MAX_MAPENT]; 139 static struct vm_map_entry kmap_entry_init[MAX_KMAPENT]; 140 static struct vm_map map_init[MAX_KMAP]; 141 142 static void _vm_map_clip_end __P((vm_map_t, vm_map_entry_t, vm_offset_t)); 143 static void _vm_map_clip_start __P((vm_map_t, vm_map_entry_t, vm_offset_t)); 144 static vm_map_entry_t vm_map_entry_create __P((vm_map_t)); 145 static void vm_map_entry_delete __P((vm_map_t, vm_map_entry_t)); 146 static void vm_map_entry_dispose __P((vm_map_t, vm_map_entry_t)); 147 static void vm_map_entry_unwire __P((vm_map_t, vm_map_entry_t)); 148 static void vm_map_copy_entry __P((vm_map_t, vm_map_t, vm_map_entry_t, 149 vm_map_entry_t)); 150 static void vm_map_split __P((vm_map_entry_t)); 151 152 void 153 vm_map_startup() 154 { 155 mapzone = &mapzone_store; 156 zbootinit(mapzone, "MAP", sizeof (struct vm_map), 157 map_init, MAX_KMAP); 158 kmapentzone = &kmapentzone_store; 159 zbootinit(kmapentzone, "KMAP ENTRY", sizeof (struct vm_map_entry), 160 kmap_entry_init, MAX_KMAPENT); 161 mapentzone = &mapentzone_store; 162 zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry), 163 map_entry_init, MAX_MAPENT); 164 } 165 166 /* 167 * Allocate a vmspace structure, including a vm_map and pmap, 168 * and initialize those structures. The refcnt is set to 1. 169 * The remaining fields must be initialized by the caller. 170 */ 171 struct vmspace * 172 vmspace_alloc(min, max) 173 vm_offset_t min, max; 174 { 175 struct vmspace *vm; 176 177 vm = zalloc(vmspace_zone); 178 vm_map_init(&vm->vm_map, min, max); 179 pmap_pinit(vmspace_pmap(vm)); 180 vm->vm_map.pmap = vmspace_pmap(vm); /* XXX */ 181 vm->vm_refcnt = 1; 182 vm->vm_shm = NULL; 183 return (vm); 184 } 185 186 void 187 vm_init2(void) { 188 zinitna(kmapentzone, &kmapentobj, 189 NULL, 0, cnt.v_page_count / 4, ZONE_INTERRUPT, 1); 190 zinitna(mapentzone, &mapentobj, 191 NULL, 0, 0, 0, 1); 192 zinitna(mapzone, &mapobj, 193 NULL, 0, 0, 0, 1); 194 vmspace_zone = zinit("VMSPACE", sizeof (struct vmspace), 0, 0, 3); 195 pmap_init2(); 196 vm_object_init2(); 197 } 198 199 void 200 vmspace_free(vm) 201 struct vmspace *vm; 202 { 203 204 if (vm->vm_refcnt == 0) 205 panic("vmspace_free: attempt to free already freed vmspace"); 206 207 if (--vm->vm_refcnt == 0) { 208 209 /* 210 * Lock the map, to wait out all other references to it. 211 * Delete all of the mappings and pages they hold, then call 212 * the pmap module to reclaim anything left. 213 */ 214 vm_map_lock(&vm->vm_map); 215 (void) vm_map_delete(&vm->vm_map, vm->vm_map.min_offset, 216 vm->vm_map.max_offset); 217 vm_map_unlock(&vm->vm_map); 218 219 pmap_release(vmspace_pmap(vm)); 220 zfree(vmspace_zone, vm); 221 } 222 } 223 224 /* 225 * vm_map_create: 226 * 227 * Creates and returns a new empty VM map with 228 * the given physical map structure, and having 229 * the given lower and upper address bounds. 230 */ 231 vm_map_t 232 vm_map_create(pmap, min, max) 233 pmap_t pmap; 234 vm_offset_t min, max; 235 { 236 vm_map_t result; 237 238 result = zalloc(mapzone); 239 vm_map_init(result, min, max); 240 result->pmap = pmap; 241 return (result); 242 } 243 244 /* 245 * Initialize an existing vm_map structure 246 * such as that in the vmspace structure. 247 * The pmap is set elsewhere. 248 */ 249 void 250 vm_map_init(map, min, max) 251 struct vm_map *map; 252 vm_offset_t min, max; 253 { 254 map->header.next = map->header.prev = &map->header; 255 map->nentries = 0; 256 map->size = 0; 257 map->system_map = 0; 258 map->min_offset = min; 259 map->max_offset = max; 260 map->first_free = &map->header; 261 map->hint = &map->header; 262 map->timestamp = 0; 263 lockinit(&map->lock, PVM, "thrd_sleep", 0, LK_NOPAUSE); 264 } 265 266 /* 267 * vm_map_entry_dispose: [ internal use only ] 268 * 269 * Inverse of vm_map_entry_create. 270 */ 271 static void 272 vm_map_entry_dispose(map, entry) 273 vm_map_t map; 274 vm_map_entry_t entry; 275 { 276 zfree((map->system_map || !mapentzone) ? kmapentzone : mapentzone, entry); 277 } 278 279 /* 280 * vm_map_entry_create: [ internal use only ] 281 * 282 * Allocates a VM map entry for insertion. 283 * No entry fields are filled in. This routine is 284 */ 285 static vm_map_entry_t 286 vm_map_entry_create(map) 287 vm_map_t map; 288 { 289 return zalloc((map->system_map || !mapentzone) ? kmapentzone : mapentzone); 290 } 291 292 /* 293 * vm_map_entry_{un,}link: 294 * 295 * Insert/remove entries from maps. 296 */ 297 static __inline void 298 vm_map_entry_link(vm_map_t map, 299 vm_map_entry_t after_where, 300 vm_map_entry_t entry) 301 { 302 map->nentries++; 303 entry->prev = after_where; 304 entry->next = after_where->next; 305 entry->next->prev = entry; 306 after_where->next = entry; 307 } 308 309 static __inline void 310 vm_map_entry_unlink(vm_map_t map, 311 vm_map_entry_t entry) 312 { 313 vm_map_entry_t prev = entry->prev; 314 vm_map_entry_t next = entry->next; 315 316 next->prev = prev; 317 prev->next = next; 318 map->nentries--; 319 } 320 321 /* 322 * SAVE_HINT: 323 * 324 * Saves the specified entry as the hint for 325 * future lookups. 326 */ 327 #define SAVE_HINT(map,value) \ 328 (map)->hint = (value); 329 330 /* 331 * vm_map_lookup_entry: [ internal use only ] 332 * 333 * Finds the map entry containing (or 334 * immediately preceding) the specified address 335 * in the given map; the entry is returned 336 * in the "entry" parameter. The boolean 337 * result indicates whether the address is 338 * actually contained in the map. 339 */ 340 boolean_t 341 vm_map_lookup_entry(map, address, entry) 342 vm_map_t map; 343 vm_offset_t address; 344 vm_map_entry_t *entry; /* OUT */ 345 { 346 vm_map_entry_t cur; 347 vm_map_entry_t last; 348 349 /* 350 * Start looking either from the head of the list, or from the hint. 351 */ 352 353 cur = map->hint; 354 355 if (cur == &map->header) 356 cur = cur->next; 357 358 if (address >= cur->start) { 359 /* 360 * Go from hint to end of list. 361 * 362 * But first, make a quick check to see if we are already looking 363 * at the entry we want (which is usually the case). Note also 364 * that we don't need to save the hint here... it is the same 365 * hint (unless we are at the header, in which case the hint 366 * didn't buy us anything anyway). 367 */ 368 last = &map->header; 369 if ((cur != last) && (cur->end > address)) { 370 *entry = cur; 371 return (TRUE); 372 } 373 } else { 374 /* 375 * Go from start to hint, *inclusively* 376 */ 377 last = cur->next; 378 cur = map->header.next; 379 } 380 381 /* 382 * Search linearly 383 */ 384 385 while (cur != last) { 386 if (cur->end > address) { 387 if (address >= cur->start) { 388 /* 389 * Save this lookup for future hints, and 390 * return 391 */ 392 393 *entry = cur; 394 SAVE_HINT(map, cur); 395 return (TRUE); 396 } 397 break; 398 } 399 cur = cur->next; 400 } 401 *entry = cur->prev; 402 SAVE_HINT(map, *entry); 403 return (FALSE); 404 } 405 406 /* 407 * vm_map_insert: 408 * 409 * Inserts the given whole VM object into the target 410 * map at the specified address range. The object's 411 * size should match that of the address range. 412 * 413 * Requires that the map be locked, and leaves it so. 414 * 415 * If object is non-NULL, ref count must be bumped by caller 416 * prior to making call to account for the new entry. 417 */ 418 int 419 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 420 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, 421 int cow) 422 { 423 vm_map_entry_t new_entry; 424 vm_map_entry_t prev_entry; 425 vm_map_entry_t temp_entry; 426 u_char protoeflags; 427 428 /* 429 * Check that the start and end points are not bogus. 430 */ 431 432 if ((start < map->min_offset) || (end > map->max_offset) || 433 (start >= end)) 434 return (KERN_INVALID_ADDRESS); 435 436 /* 437 * Find the entry prior to the proposed starting address; if it's part 438 * of an existing entry, this range is bogus. 439 */ 440 441 if (vm_map_lookup_entry(map, start, &temp_entry)) 442 return (KERN_NO_SPACE); 443 444 prev_entry = temp_entry; 445 446 /* 447 * Assert that the next entry doesn't overlap the end point. 448 */ 449 450 if ((prev_entry->next != &map->header) && 451 (prev_entry->next->start < end)) 452 return (KERN_NO_SPACE); 453 454 protoeflags = 0; 455 456 if (cow & MAP_COPY_ON_WRITE) 457 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY; 458 459 if (cow & MAP_NOFAULT) { 460 protoeflags |= MAP_ENTRY_NOFAULT; 461 462 KASSERT(object == NULL, 463 ("vm_map_insert: paradoxical MAP_NOFAULT request")); 464 } 465 if (object) { 466 /* 467 * When object is non-NULL, it could be shared with another 468 * process. We have to set or clear OBJ_ONEMAPPING 469 * appropriately. 470 */ 471 if ((object->ref_count > 1) || (object->shadow_count != 0)) { 472 vm_object_clear_flag(object, OBJ_ONEMAPPING); 473 } 474 } 475 else if ((prev_entry != &map->header) && 476 (prev_entry->eflags == protoeflags) && 477 (prev_entry->end == start) && 478 (prev_entry->wired_count == 0) && 479 ((prev_entry->object.vm_object == NULL) || 480 vm_object_coalesce(prev_entry->object.vm_object, 481 OFF_TO_IDX(prev_entry->offset), 482 (vm_size_t)(prev_entry->end - prev_entry->start), 483 (vm_size_t)(end - prev_entry->end)))) { 484 /* 485 * We were able to extend the object. Determine if we 486 * can extend the previous map entry to include the 487 * new range as well. 488 */ 489 if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) && 490 (prev_entry->protection == prot) && 491 (prev_entry->max_protection == max)) { 492 map->size += (end - prev_entry->end); 493 prev_entry->end = end; 494 return (KERN_SUCCESS); 495 } 496 497 /* 498 * If we can extend the object but cannot extend the 499 * map entry, we have to create a new map entry. We 500 * must bump the ref count on the extended object to 501 * account for it. 502 */ 503 object = prev_entry->object.vm_object; 504 offset = prev_entry->offset + 505 (prev_entry->end - prev_entry->start); 506 vm_object_reference(object); 507 } 508 509 /* 510 * NOTE: if conditionals fail, object can be NULL here. This occurs 511 * in things like the buffer map where we manage kva but do not manage 512 * backing objects. 513 */ 514 515 /* 516 * Create a new entry 517 */ 518 519 new_entry = vm_map_entry_create(map); 520 new_entry->start = start; 521 new_entry->end = end; 522 523 new_entry->eflags = protoeflags; 524 new_entry->object.vm_object = object; 525 new_entry->offset = offset; 526 new_entry->avail_ssize = 0; 527 528 new_entry->inheritance = VM_INHERIT_DEFAULT; 529 new_entry->protection = prot; 530 new_entry->max_protection = max; 531 new_entry->wired_count = 0; 532 533 /* 534 * Insert the new entry into the list 535 */ 536 537 vm_map_entry_link(map, prev_entry, new_entry); 538 map->size += new_entry->end - new_entry->start; 539 540 /* 541 * Update the free space hint 542 */ 543 if ((map->first_free == prev_entry) && 544 (prev_entry->end >= new_entry->start)) 545 map->first_free = new_entry; 546 547 if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) 548 pmap_object_init_pt(map->pmap, start, 549 object, OFF_TO_IDX(offset), end - start, 550 cow & MAP_PREFAULT_PARTIAL); 551 552 return (KERN_SUCCESS); 553 } 554 555 /* 556 * Find sufficient space for `length' bytes in the given map, starting at 557 * `start'. The map must be locked. Returns 0 on success, 1 on no space. 558 */ 559 int 560 vm_map_findspace(map, start, length, addr) 561 vm_map_t map; 562 vm_offset_t start; 563 vm_size_t length; 564 vm_offset_t *addr; 565 { 566 vm_map_entry_t entry, next; 567 vm_offset_t end; 568 569 if (start < map->min_offset) 570 start = map->min_offset; 571 if (start > map->max_offset) 572 return (1); 573 574 /* 575 * Look for the first possible address; if there's already something 576 * at this address, we have to start after it. 577 */ 578 if (start == map->min_offset) { 579 if ((entry = map->first_free) != &map->header) 580 start = entry->end; 581 } else { 582 vm_map_entry_t tmp; 583 584 if (vm_map_lookup_entry(map, start, &tmp)) 585 start = tmp->end; 586 entry = tmp; 587 } 588 589 /* 590 * Look through the rest of the map, trying to fit a new region in the 591 * gap between existing regions, or after the very last region. 592 */ 593 for (;; start = (entry = next)->end) { 594 /* 595 * Find the end of the proposed new region. Be sure we didn't 596 * go beyond the end of the map, or wrap around the address; 597 * if so, we lose. Otherwise, if this is the last entry, or 598 * if the proposed new region fits before the next entry, we 599 * win. 600 */ 601 end = start + length; 602 if (end > map->max_offset || end < start) 603 return (1); 604 next = entry->next; 605 if (next == &map->header || next->start >= end) 606 break; 607 } 608 SAVE_HINT(map, entry); 609 *addr = start; 610 if (map == kernel_map) { 611 vm_offset_t ksize; 612 if ((ksize = round_page(start + length)) > kernel_vm_end) { 613 pmap_growkernel(ksize); 614 } 615 } 616 return (0); 617 } 618 619 /* 620 * vm_map_find finds an unallocated region in the target address 621 * map with the given length. The search is defined to be 622 * first-fit from the specified address; the region found is 623 * returned in the same parameter. 624 * 625 * If object is non-NULL, ref count must be bumped by caller 626 * prior to making call to account for the new entry. 627 */ 628 int 629 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 630 vm_offset_t *addr, /* IN/OUT */ 631 vm_size_t length, boolean_t find_space, vm_prot_t prot, 632 vm_prot_t max, int cow) 633 { 634 vm_offset_t start; 635 int result, s = 0; 636 637 start = *addr; 638 639 if (map == kmem_map || map == mb_map) 640 s = splvm(); 641 642 vm_map_lock(map); 643 if (find_space) { 644 if (vm_map_findspace(map, start, length, addr)) { 645 vm_map_unlock(map); 646 if (map == kmem_map || map == mb_map) 647 splx(s); 648 return (KERN_NO_SPACE); 649 } 650 start = *addr; 651 } 652 result = vm_map_insert(map, object, offset, 653 start, start + length, prot, max, cow); 654 vm_map_unlock(map); 655 656 if (map == kmem_map || map == mb_map) 657 splx(s); 658 659 return (result); 660 } 661 662 /* 663 * vm_map_simplify_entry: 664 * 665 * Simplify the given map entry by merging with either neighbor. 666 */ 667 void 668 vm_map_simplify_entry(map, entry) 669 vm_map_t map; 670 vm_map_entry_t entry; 671 { 672 vm_map_entry_t next, prev; 673 vm_size_t prevsize, esize; 674 675 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 676 return; 677 678 prev = entry->prev; 679 if (prev != &map->header) { 680 prevsize = prev->end - prev->start; 681 if ( (prev->end == entry->start) && 682 (prev->object.vm_object == entry->object.vm_object) && 683 (!prev->object.vm_object || 684 (prev->offset + prevsize == entry->offset)) && 685 (prev->eflags == entry->eflags) && 686 (prev->protection == entry->protection) && 687 (prev->max_protection == entry->max_protection) && 688 (prev->inheritance == entry->inheritance) && 689 (prev->wired_count == entry->wired_count)) { 690 if (map->first_free == prev) 691 map->first_free = entry; 692 if (map->hint == prev) 693 map->hint = entry; 694 vm_map_entry_unlink(map, prev); 695 entry->start = prev->start; 696 entry->offset = prev->offset; 697 if (prev->object.vm_object) 698 vm_object_deallocate(prev->object.vm_object); 699 vm_map_entry_dispose(map, prev); 700 } 701 } 702 703 next = entry->next; 704 if (next != &map->header) { 705 esize = entry->end - entry->start; 706 if ((entry->end == next->start) && 707 (next->object.vm_object == entry->object.vm_object) && 708 (!entry->object.vm_object || 709 (entry->offset + esize == next->offset)) && 710 (next->eflags == entry->eflags) && 711 (next->protection == entry->protection) && 712 (next->max_protection == entry->max_protection) && 713 (next->inheritance == entry->inheritance) && 714 (next->wired_count == entry->wired_count)) { 715 if (map->first_free == next) 716 map->first_free = entry; 717 if (map->hint == next) 718 map->hint = entry; 719 vm_map_entry_unlink(map, next); 720 entry->end = next->end; 721 if (next->object.vm_object) 722 vm_object_deallocate(next->object.vm_object); 723 vm_map_entry_dispose(map, next); 724 } 725 } 726 } 727 /* 728 * vm_map_clip_start: [ internal use only ] 729 * 730 * Asserts that the given entry begins at or after 731 * the specified address; if necessary, 732 * it splits the entry into two. 733 */ 734 #define vm_map_clip_start(map, entry, startaddr) \ 735 { \ 736 if (startaddr > entry->start) \ 737 _vm_map_clip_start(map, entry, startaddr); \ 738 } 739 740 /* 741 * This routine is called only when it is known that 742 * the entry must be split. 743 */ 744 static void 745 _vm_map_clip_start(map, entry, start) 746 vm_map_t map; 747 vm_map_entry_t entry; 748 vm_offset_t start; 749 { 750 vm_map_entry_t new_entry; 751 752 /* 753 * Split off the front portion -- note that we must insert the new 754 * entry BEFORE this one, so that this entry has the specified 755 * starting address. 756 */ 757 758 vm_map_simplify_entry(map, entry); 759 760 /* 761 * If there is no object backing this entry, we might as well create 762 * one now. If we defer it, an object can get created after the map 763 * is clipped, and individual objects will be created for the split-up 764 * map. This is a bit of a hack, but is also about the best place to 765 * put this improvement. 766 */ 767 768 if (entry->object.vm_object == NULL) { 769 vm_object_t object; 770 object = vm_object_allocate(OBJT_DEFAULT, 771 atop(entry->end - entry->start)); 772 entry->object.vm_object = object; 773 entry->offset = 0; 774 } 775 776 new_entry = vm_map_entry_create(map); 777 *new_entry = *entry; 778 779 new_entry->end = start; 780 entry->offset += (start - entry->start); 781 entry->start = start; 782 783 vm_map_entry_link(map, entry->prev, new_entry); 784 785 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 786 vm_object_reference(new_entry->object.vm_object); 787 } 788 } 789 790 /* 791 * vm_map_clip_end: [ internal use only ] 792 * 793 * Asserts that the given entry ends at or before 794 * the specified address; if necessary, 795 * it splits the entry into two. 796 */ 797 798 #define vm_map_clip_end(map, entry, endaddr) \ 799 { \ 800 if (endaddr < entry->end) \ 801 _vm_map_clip_end(map, entry, endaddr); \ 802 } 803 804 /* 805 * This routine is called only when it is known that 806 * the entry must be split. 807 */ 808 static void 809 _vm_map_clip_end(map, entry, end) 810 vm_map_t map; 811 vm_map_entry_t entry; 812 vm_offset_t end; 813 { 814 vm_map_entry_t new_entry; 815 816 /* 817 * If there is no object backing this entry, we might as well create 818 * one now. If we defer it, an object can get created after the map 819 * is clipped, and individual objects will be created for the split-up 820 * map. This is a bit of a hack, but is also about the best place to 821 * put this improvement. 822 */ 823 824 if (entry->object.vm_object == NULL) { 825 vm_object_t object; 826 object = vm_object_allocate(OBJT_DEFAULT, 827 atop(entry->end - entry->start)); 828 entry->object.vm_object = object; 829 entry->offset = 0; 830 } 831 832 /* 833 * Create a new entry and insert it AFTER the specified entry 834 */ 835 836 new_entry = vm_map_entry_create(map); 837 *new_entry = *entry; 838 839 new_entry->start = entry->end = end; 840 new_entry->offset += (end - entry->start); 841 842 vm_map_entry_link(map, entry, new_entry); 843 844 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 845 vm_object_reference(new_entry->object.vm_object); 846 } 847 } 848 849 /* 850 * VM_MAP_RANGE_CHECK: [ internal use only ] 851 * 852 * Asserts that the starting and ending region 853 * addresses fall within the valid range of the map. 854 */ 855 #define VM_MAP_RANGE_CHECK(map, start, end) \ 856 { \ 857 if (start < vm_map_min(map)) \ 858 start = vm_map_min(map); \ 859 if (end > vm_map_max(map)) \ 860 end = vm_map_max(map); \ 861 if (start > end) \ 862 start = end; \ 863 } 864 865 /* 866 * vm_map_submap: [ kernel use only ] 867 * 868 * Mark the given range as handled by a subordinate map. 869 * 870 * This range must have been created with vm_map_find, 871 * and no other operations may have been performed on this 872 * range prior to calling vm_map_submap. 873 * 874 * Only a limited number of operations can be performed 875 * within this rage after calling vm_map_submap: 876 * vm_fault 877 * [Don't try vm_map_copy!] 878 * 879 * To remove a submapping, one must first remove the 880 * range from the superior map, and then destroy the 881 * submap (if desired). [Better yet, don't try it.] 882 */ 883 int 884 vm_map_submap(map, start, end, submap) 885 vm_map_t map; 886 vm_offset_t start; 887 vm_offset_t end; 888 vm_map_t submap; 889 { 890 vm_map_entry_t entry; 891 int result = KERN_INVALID_ARGUMENT; 892 893 vm_map_lock(map); 894 895 VM_MAP_RANGE_CHECK(map, start, end); 896 897 if (vm_map_lookup_entry(map, start, &entry)) { 898 vm_map_clip_start(map, entry, start); 899 } else 900 entry = entry->next; 901 902 vm_map_clip_end(map, entry, end); 903 904 if ((entry->start == start) && (entry->end == end) && 905 ((entry->eflags & MAP_ENTRY_COW) == 0) && 906 (entry->object.vm_object == NULL)) { 907 entry->object.sub_map = submap; 908 entry->eflags |= MAP_ENTRY_IS_SUB_MAP; 909 result = KERN_SUCCESS; 910 } 911 vm_map_unlock(map); 912 913 return (result); 914 } 915 916 /* 917 * vm_map_protect: 918 * 919 * Sets the protection of the specified address 920 * region in the target map. If "set_max" is 921 * specified, the maximum protection is to be set; 922 * otherwise, only the current protection is affected. 923 */ 924 int 925 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 926 vm_prot_t new_prot, boolean_t set_max) 927 { 928 vm_map_entry_t current; 929 vm_map_entry_t entry; 930 931 vm_map_lock(map); 932 933 VM_MAP_RANGE_CHECK(map, start, end); 934 935 if (vm_map_lookup_entry(map, start, &entry)) { 936 vm_map_clip_start(map, entry, start); 937 } else { 938 entry = entry->next; 939 } 940 941 /* 942 * Make a first pass to check for protection violations. 943 */ 944 945 current = entry; 946 while ((current != &map->header) && (current->start < end)) { 947 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 948 vm_map_unlock(map); 949 return (KERN_INVALID_ARGUMENT); 950 } 951 if ((new_prot & current->max_protection) != new_prot) { 952 vm_map_unlock(map); 953 return (KERN_PROTECTION_FAILURE); 954 } 955 current = current->next; 956 } 957 958 /* 959 * Go back and fix up protections. [Note that clipping is not 960 * necessary the second time.] 961 */ 962 963 current = entry; 964 965 while ((current != &map->header) && (current->start < end)) { 966 vm_prot_t old_prot; 967 968 vm_map_clip_end(map, current, end); 969 970 old_prot = current->protection; 971 if (set_max) 972 current->protection = 973 (current->max_protection = new_prot) & 974 old_prot; 975 else 976 current->protection = new_prot; 977 978 /* 979 * Update physical map if necessary. Worry about copy-on-write 980 * here -- CHECK THIS XXX 981 */ 982 983 if (current->protection != old_prot) { 984 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 985 VM_PROT_ALL) 986 987 pmap_protect(map->pmap, current->start, 988 current->end, 989 current->protection & MASK(current)); 990 #undef MASK 991 } 992 993 vm_map_simplify_entry(map, current); 994 995 current = current->next; 996 } 997 998 vm_map_unlock(map); 999 return (KERN_SUCCESS); 1000 } 1001 1002 /* 1003 * vm_map_madvise: 1004 * 1005 * This routine traverses a processes map handling the madvise 1006 * system call. Advisories are classified as either those effecting 1007 * the vm_map_entry structure, or those effecting the underlying 1008 * objects. 1009 */ 1010 1011 int 1012 vm_map_madvise(map, start, end, behav) 1013 vm_map_t map; 1014 vm_offset_t start, end; 1015 int behav; 1016 { 1017 vm_map_entry_t current, entry; 1018 int modify_map = 0; 1019 1020 /* 1021 * Some madvise calls directly modify the vm_map_entry, in which case 1022 * we need to use an exclusive lock on the map and we need to perform 1023 * various clipping operations. Otherwise we only need a read-lock 1024 * on the map. 1025 */ 1026 1027 switch(behav) { 1028 case MADV_NORMAL: 1029 case MADV_SEQUENTIAL: 1030 case MADV_RANDOM: 1031 modify_map = 1; 1032 vm_map_lock(map); 1033 break; 1034 case MADV_WILLNEED: 1035 case MADV_DONTNEED: 1036 case MADV_FREE: 1037 vm_map_lock_read(map); 1038 break; 1039 default: 1040 return (KERN_INVALID_ARGUMENT); 1041 } 1042 1043 /* 1044 * Locate starting entry and clip if necessary. 1045 */ 1046 1047 VM_MAP_RANGE_CHECK(map, start, end); 1048 1049 if (vm_map_lookup_entry(map, start, &entry)) { 1050 if (modify_map) 1051 vm_map_clip_start(map, entry, start); 1052 } else { 1053 entry = entry->next; 1054 } 1055 1056 if (modify_map) { 1057 /* 1058 * madvise behaviors that are implemented in the vm_map_entry. 1059 * 1060 * We clip the vm_map_entry so that behavioral changes are 1061 * limited to the specified address range. 1062 */ 1063 for (current = entry; 1064 (current != &map->header) && (current->start < end); 1065 current = current->next 1066 ) { 1067 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 1068 continue; 1069 1070 vm_map_clip_end(map, current, end); 1071 1072 switch (behav) { 1073 case MADV_NORMAL: 1074 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL); 1075 break; 1076 case MADV_SEQUENTIAL: 1077 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL); 1078 break; 1079 case MADV_RANDOM: 1080 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM); 1081 break; 1082 default: 1083 break; 1084 } 1085 vm_map_simplify_entry(map, current); 1086 } 1087 vm_map_unlock(map); 1088 } else { 1089 vm_pindex_t pindex; 1090 int count; 1091 1092 /* 1093 * madvise behaviors that are implemented in the underlying 1094 * vm_object. 1095 * 1096 * Since we don't clip the vm_map_entry, we have to clip 1097 * the vm_object pindex and count. 1098 */ 1099 for (current = entry; 1100 (current != &map->header) && (current->start < end); 1101 current = current->next 1102 ) { 1103 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 1104 continue; 1105 1106 pindex = OFF_TO_IDX(current->offset); 1107 count = atop(current->end - current->start); 1108 1109 if (current->start < start) { 1110 pindex += atop(start - current->start); 1111 count -= atop(start - current->start); 1112 } 1113 if (current->end > end) 1114 count -= atop(current->end - end); 1115 1116 if (count <= 0) 1117 continue; 1118 1119 vm_object_madvise(current->object.vm_object, 1120 pindex, count, behav); 1121 if (behav == MADV_WILLNEED) { 1122 pmap_object_init_pt( 1123 map->pmap, 1124 current->start, 1125 current->object.vm_object, 1126 pindex, 1127 (count << PAGE_SHIFT), 1128 0 1129 ); 1130 } 1131 } 1132 vm_map_unlock_read(map); 1133 } 1134 return(0); 1135 } 1136 1137 1138 /* 1139 * vm_map_inherit: 1140 * 1141 * Sets the inheritance of the specified address 1142 * range in the target map. Inheritance 1143 * affects how the map will be shared with 1144 * child maps at the time of vm_map_fork. 1145 */ 1146 int 1147 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 1148 vm_inherit_t new_inheritance) 1149 { 1150 vm_map_entry_t entry; 1151 vm_map_entry_t temp_entry; 1152 1153 switch (new_inheritance) { 1154 case VM_INHERIT_NONE: 1155 case VM_INHERIT_COPY: 1156 case VM_INHERIT_SHARE: 1157 break; 1158 default: 1159 return (KERN_INVALID_ARGUMENT); 1160 } 1161 1162 vm_map_lock(map); 1163 1164 VM_MAP_RANGE_CHECK(map, start, end); 1165 1166 if (vm_map_lookup_entry(map, start, &temp_entry)) { 1167 entry = temp_entry; 1168 vm_map_clip_start(map, entry, start); 1169 } else 1170 entry = temp_entry->next; 1171 1172 while ((entry != &map->header) && (entry->start < end)) { 1173 vm_map_clip_end(map, entry, end); 1174 1175 entry->inheritance = new_inheritance; 1176 1177 vm_map_simplify_entry(map, entry); 1178 1179 entry = entry->next; 1180 } 1181 1182 vm_map_unlock(map); 1183 return (KERN_SUCCESS); 1184 } 1185 1186 /* 1187 * Implement the semantics of mlock 1188 */ 1189 int 1190 vm_map_user_pageable(map, start, end, new_pageable) 1191 vm_map_t map; 1192 vm_offset_t start; 1193 vm_offset_t end; 1194 boolean_t new_pageable; 1195 { 1196 vm_map_entry_t entry; 1197 vm_map_entry_t start_entry; 1198 vm_offset_t estart; 1199 int rv; 1200 1201 vm_map_lock(map); 1202 VM_MAP_RANGE_CHECK(map, start, end); 1203 1204 if (vm_map_lookup_entry(map, start, &start_entry) == FALSE) { 1205 vm_map_unlock(map); 1206 return (KERN_INVALID_ADDRESS); 1207 } 1208 1209 if (new_pageable) { 1210 1211 entry = start_entry; 1212 vm_map_clip_start(map, entry, start); 1213 1214 /* 1215 * Now decrement the wiring count for each region. If a region 1216 * becomes completely unwired, unwire its physical pages and 1217 * mappings. 1218 */ 1219 while ((entry != &map->header) && (entry->start < end)) { 1220 if (entry->eflags & MAP_ENTRY_USER_WIRED) { 1221 vm_map_clip_end(map, entry, end); 1222 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 1223 entry->wired_count--; 1224 if (entry->wired_count == 0) 1225 vm_fault_unwire(map, entry->start, entry->end); 1226 } 1227 vm_map_simplify_entry(map,entry); 1228 entry = entry->next; 1229 } 1230 } else { 1231 1232 entry = start_entry; 1233 1234 while ((entry != &map->header) && (entry->start < end)) { 1235 1236 if (entry->eflags & MAP_ENTRY_USER_WIRED) { 1237 entry = entry->next; 1238 continue; 1239 } 1240 1241 if (entry->wired_count != 0) { 1242 entry->wired_count++; 1243 entry->eflags |= MAP_ENTRY_USER_WIRED; 1244 entry = entry->next; 1245 continue; 1246 } 1247 1248 /* Here on entry being newly wired */ 1249 1250 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1251 int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY; 1252 if (copyflag && ((entry->protection & VM_PROT_WRITE) != 0)) { 1253 1254 vm_object_shadow(&entry->object.vm_object, 1255 &entry->offset, 1256 atop(entry->end - entry->start)); 1257 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 1258 1259 } else if (entry->object.vm_object == NULL) { 1260 1261 entry->object.vm_object = 1262 vm_object_allocate(OBJT_DEFAULT, 1263 atop(entry->end - entry->start)); 1264 entry->offset = (vm_offset_t) 0; 1265 1266 } 1267 } 1268 1269 vm_map_clip_start(map, entry, start); 1270 vm_map_clip_end(map, entry, end); 1271 1272 entry->wired_count++; 1273 entry->eflags |= MAP_ENTRY_USER_WIRED; 1274 estart = entry->start; 1275 1276 /* First we need to allow map modifications */ 1277 vm_map_set_recursive(map); 1278 vm_map_lock_downgrade(map); 1279 map->timestamp++; 1280 1281 rv = vm_fault_user_wire(map, entry->start, entry->end); 1282 if (rv) { 1283 1284 entry->wired_count--; 1285 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 1286 1287 vm_map_clear_recursive(map); 1288 vm_map_unlock(map); 1289 1290 (void) vm_map_user_pageable(map, start, entry->start, TRUE); 1291 return rv; 1292 } 1293 1294 vm_map_clear_recursive(map); 1295 if (vm_map_lock_upgrade(map)) { 1296 vm_map_lock(map); 1297 if (vm_map_lookup_entry(map, estart, &entry) 1298 == FALSE) { 1299 vm_map_unlock(map); 1300 (void) vm_map_user_pageable(map, 1301 start, 1302 estart, 1303 TRUE); 1304 return (KERN_INVALID_ADDRESS); 1305 } 1306 } 1307 vm_map_simplify_entry(map,entry); 1308 } 1309 } 1310 map->timestamp++; 1311 vm_map_unlock(map); 1312 return KERN_SUCCESS; 1313 } 1314 1315 /* 1316 * vm_map_pageable: 1317 * 1318 * Sets the pageability of the specified address 1319 * range in the target map. Regions specified 1320 * as not pageable require locked-down physical 1321 * memory and physical page maps. 1322 * 1323 * The map must not be locked, but a reference 1324 * must remain to the map throughout the call. 1325 */ 1326 int 1327 vm_map_pageable(map, start, end, new_pageable) 1328 vm_map_t map; 1329 vm_offset_t start; 1330 vm_offset_t end; 1331 boolean_t new_pageable; 1332 { 1333 vm_map_entry_t entry; 1334 vm_map_entry_t start_entry; 1335 vm_offset_t failed = 0; 1336 int rv; 1337 1338 vm_map_lock(map); 1339 1340 VM_MAP_RANGE_CHECK(map, start, end); 1341 1342 /* 1343 * Only one pageability change may take place at one time, since 1344 * vm_fault assumes it will be called only once for each 1345 * wiring/unwiring. Therefore, we have to make sure we're actually 1346 * changing the pageability for the entire region. We do so before 1347 * making any changes. 1348 */ 1349 1350 if (vm_map_lookup_entry(map, start, &start_entry) == FALSE) { 1351 vm_map_unlock(map); 1352 return (KERN_INVALID_ADDRESS); 1353 } 1354 entry = start_entry; 1355 1356 /* 1357 * Actions are rather different for wiring and unwiring, so we have 1358 * two separate cases. 1359 */ 1360 1361 if (new_pageable) { 1362 1363 vm_map_clip_start(map, entry, start); 1364 1365 /* 1366 * Unwiring. First ensure that the range to be unwired is 1367 * really wired down and that there are no holes. 1368 */ 1369 while ((entry != &map->header) && (entry->start < end)) { 1370 1371 if (entry->wired_count == 0 || 1372 (entry->end < end && 1373 (entry->next == &map->header || 1374 entry->next->start > entry->end))) { 1375 vm_map_unlock(map); 1376 return (KERN_INVALID_ARGUMENT); 1377 } 1378 entry = entry->next; 1379 } 1380 1381 /* 1382 * Now decrement the wiring count for each region. If a region 1383 * becomes completely unwired, unwire its physical pages and 1384 * mappings. 1385 */ 1386 entry = start_entry; 1387 while ((entry != &map->header) && (entry->start < end)) { 1388 vm_map_clip_end(map, entry, end); 1389 1390 entry->wired_count--; 1391 if (entry->wired_count == 0) 1392 vm_fault_unwire(map, entry->start, entry->end); 1393 1394 vm_map_simplify_entry(map, entry); 1395 1396 entry = entry->next; 1397 } 1398 } else { 1399 /* 1400 * Wiring. We must do this in two passes: 1401 * 1402 * 1. Holding the write lock, we create any shadow or zero-fill 1403 * objects that need to be created. Then we clip each map 1404 * entry to the region to be wired and increment its wiring 1405 * count. We create objects before clipping the map entries 1406 * to avoid object proliferation. 1407 * 1408 * 2. We downgrade to a read lock, and call vm_fault_wire to 1409 * fault in the pages for any newly wired area (wired_count is 1410 * 1). 1411 * 1412 * Downgrading to a read lock for vm_fault_wire avoids a possible 1413 * deadlock with another process that may have faulted on one 1414 * of the pages to be wired (it would mark the page busy, 1415 * blocking us, then in turn block on the map lock that we 1416 * hold). Because of problems in the recursive lock package, 1417 * we cannot upgrade to a write lock in vm_map_lookup. Thus, 1418 * any actions that require the write lock must be done 1419 * beforehand. Because we keep the read lock on the map, the 1420 * copy-on-write status of the entries we modify here cannot 1421 * change. 1422 */ 1423 1424 /* 1425 * Pass 1. 1426 */ 1427 while ((entry != &map->header) && (entry->start < end)) { 1428 if (entry->wired_count == 0) { 1429 1430 /* 1431 * Perform actions of vm_map_lookup that need 1432 * the write lock on the map: create a shadow 1433 * object for a copy-on-write region, or an 1434 * object for a zero-fill region. 1435 * 1436 * We don't have to do this for entries that 1437 * point to sub maps, because we won't 1438 * hold the lock on the sub map. 1439 */ 1440 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1441 int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY; 1442 if (copyflag && 1443 ((entry->protection & VM_PROT_WRITE) != 0)) { 1444 1445 vm_object_shadow(&entry->object.vm_object, 1446 &entry->offset, 1447 atop(entry->end - entry->start)); 1448 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 1449 } else if (entry->object.vm_object == NULL) { 1450 entry->object.vm_object = 1451 vm_object_allocate(OBJT_DEFAULT, 1452 atop(entry->end - entry->start)); 1453 entry->offset = (vm_offset_t) 0; 1454 } 1455 } 1456 } 1457 vm_map_clip_start(map, entry, start); 1458 vm_map_clip_end(map, entry, end); 1459 entry->wired_count++; 1460 1461 /* 1462 * Check for holes 1463 */ 1464 if (entry->end < end && 1465 (entry->next == &map->header || 1466 entry->next->start > entry->end)) { 1467 /* 1468 * Found one. Object creation actions do not 1469 * need to be undone, but the wired counts 1470 * need to be restored. 1471 */ 1472 while (entry != &map->header && entry->end > start) { 1473 entry->wired_count--; 1474 entry = entry->prev; 1475 } 1476 vm_map_unlock(map); 1477 return (KERN_INVALID_ARGUMENT); 1478 } 1479 entry = entry->next; 1480 } 1481 1482 /* 1483 * Pass 2. 1484 */ 1485 1486 /* 1487 * HACK HACK HACK HACK 1488 * 1489 * If we are wiring in the kernel map or a submap of it, 1490 * unlock the map to avoid deadlocks. We trust that the 1491 * kernel is well-behaved, and therefore will not do 1492 * anything destructive to this region of the map while 1493 * we have it unlocked. We cannot trust user processes 1494 * to do the same. 1495 * 1496 * HACK HACK HACK HACK 1497 */ 1498 if (vm_map_pmap(map) == kernel_pmap) { 1499 vm_map_unlock(map); /* trust me ... */ 1500 } else { 1501 vm_map_set_recursive(map); 1502 vm_map_lock_downgrade(map); 1503 } 1504 1505 rv = 0; 1506 entry = start_entry; 1507 while (entry != &map->header && entry->start < end) { 1508 /* 1509 * If vm_fault_wire fails for any page we need to undo 1510 * what has been done. We decrement the wiring count 1511 * for those pages which have not yet been wired (now) 1512 * and unwire those that have (later). 1513 * 1514 * XXX this violates the locking protocol on the map, 1515 * needs to be fixed. 1516 */ 1517 if (rv) 1518 entry->wired_count--; 1519 else if (entry->wired_count == 1) { 1520 rv = vm_fault_wire(map, entry->start, entry->end); 1521 if (rv) { 1522 failed = entry->start; 1523 entry->wired_count--; 1524 } 1525 } 1526 entry = entry->next; 1527 } 1528 1529 if (vm_map_pmap(map) == kernel_pmap) { 1530 vm_map_lock(map); 1531 } else { 1532 vm_map_clear_recursive(map); 1533 } 1534 if (rv) { 1535 vm_map_unlock(map); 1536 (void) vm_map_pageable(map, start, failed, TRUE); 1537 return (rv); 1538 } 1539 vm_map_simplify_entry(map, start_entry); 1540 } 1541 1542 vm_map_unlock(map); 1543 1544 return (KERN_SUCCESS); 1545 } 1546 1547 /* 1548 * vm_map_clean 1549 * 1550 * Push any dirty cached pages in the address range to their pager. 1551 * If syncio is TRUE, dirty pages are written synchronously. 1552 * If invalidate is TRUE, any cached pages are freed as well. 1553 * 1554 * Returns an error if any part of the specified range is not mapped. 1555 */ 1556 int 1557 vm_map_clean(map, start, end, syncio, invalidate) 1558 vm_map_t map; 1559 vm_offset_t start; 1560 vm_offset_t end; 1561 boolean_t syncio; 1562 boolean_t invalidate; 1563 { 1564 vm_map_entry_t current; 1565 vm_map_entry_t entry; 1566 vm_size_t size; 1567 vm_object_t object; 1568 vm_ooffset_t offset; 1569 1570 vm_map_lock_read(map); 1571 VM_MAP_RANGE_CHECK(map, start, end); 1572 if (!vm_map_lookup_entry(map, start, &entry)) { 1573 vm_map_unlock_read(map); 1574 return (KERN_INVALID_ADDRESS); 1575 } 1576 /* 1577 * Make a first pass to check for holes. 1578 */ 1579 for (current = entry; current->start < end; current = current->next) { 1580 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 1581 vm_map_unlock_read(map); 1582 return (KERN_INVALID_ARGUMENT); 1583 } 1584 if (end > current->end && 1585 (current->next == &map->header || 1586 current->end != current->next->start)) { 1587 vm_map_unlock_read(map); 1588 return (KERN_INVALID_ADDRESS); 1589 } 1590 } 1591 1592 if (invalidate) 1593 pmap_remove(vm_map_pmap(map), start, end); 1594 /* 1595 * Make a second pass, cleaning/uncaching pages from the indicated 1596 * objects as we go. 1597 */ 1598 for (current = entry; current->start < end; current = current->next) { 1599 offset = current->offset + (start - current->start); 1600 size = (end <= current->end ? end : current->end) - start; 1601 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 1602 vm_map_t smap; 1603 vm_map_entry_t tentry; 1604 vm_size_t tsize; 1605 1606 smap = current->object.sub_map; 1607 vm_map_lock_read(smap); 1608 (void) vm_map_lookup_entry(smap, offset, &tentry); 1609 tsize = tentry->end - offset; 1610 if (tsize < size) 1611 size = tsize; 1612 object = tentry->object.vm_object; 1613 offset = tentry->offset + (offset - tentry->start); 1614 vm_map_unlock_read(smap); 1615 } else { 1616 object = current->object.vm_object; 1617 } 1618 /* 1619 * Note that there is absolutely no sense in writing out 1620 * anonymous objects, so we track down the vnode object 1621 * to write out. 1622 * We invalidate (remove) all pages from the address space 1623 * anyway, for semantic correctness. 1624 */ 1625 while (object->backing_object) { 1626 object = object->backing_object; 1627 offset += object->backing_object_offset; 1628 if (object->size < OFF_TO_IDX( offset + size)) 1629 size = IDX_TO_OFF(object->size) - offset; 1630 } 1631 if (object && (object->type == OBJT_VNODE)) { 1632 /* 1633 * Flush pages if writing is allowed. XXX should we continue 1634 * on an error? 1635 * 1636 * XXX Doing async I/O and then removing all the pages from 1637 * the object before it completes is probably a very bad 1638 * idea. 1639 */ 1640 if (current->protection & VM_PROT_WRITE) { 1641 int flags; 1642 if (object->type == OBJT_VNODE) 1643 vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY, curproc); 1644 flags = (syncio || invalidate) ? OBJPC_SYNC : 0; 1645 flags |= invalidate ? OBJPC_INVAL : 0; 1646 vm_object_page_clean(object, 1647 OFF_TO_IDX(offset), 1648 OFF_TO_IDX(offset + size + PAGE_MASK), 1649 flags); 1650 if (invalidate) { 1651 vm_object_pip_wait(object, "objmcl"); 1652 vm_object_page_remove(object, 1653 OFF_TO_IDX(offset), 1654 OFF_TO_IDX(offset + size + PAGE_MASK), 1655 FALSE); 1656 } 1657 if (object->type == OBJT_VNODE) 1658 VOP_UNLOCK(object->handle, 0, curproc); 1659 } 1660 } 1661 start += size; 1662 } 1663 1664 vm_map_unlock_read(map); 1665 return (KERN_SUCCESS); 1666 } 1667 1668 /* 1669 * vm_map_entry_unwire: [ internal use only ] 1670 * 1671 * Make the region specified by this entry pageable. 1672 * 1673 * The map in question should be locked. 1674 * [This is the reason for this routine's existence.] 1675 */ 1676 static void 1677 vm_map_entry_unwire(map, entry) 1678 vm_map_t map; 1679 vm_map_entry_t entry; 1680 { 1681 vm_fault_unwire(map, entry->start, entry->end); 1682 entry->wired_count = 0; 1683 } 1684 1685 /* 1686 * vm_map_entry_delete: [ internal use only ] 1687 * 1688 * Deallocate the given entry from the target map. 1689 */ 1690 static void 1691 vm_map_entry_delete(map, entry) 1692 vm_map_t map; 1693 vm_map_entry_t entry; 1694 { 1695 vm_map_entry_unlink(map, entry); 1696 map->size -= entry->end - entry->start; 1697 1698 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1699 vm_object_deallocate(entry->object.vm_object); 1700 } 1701 1702 vm_map_entry_dispose(map, entry); 1703 } 1704 1705 /* 1706 * vm_map_delete: [ internal use only ] 1707 * 1708 * Deallocates the given address range from the target 1709 * map. 1710 */ 1711 int 1712 vm_map_delete(map, start, end) 1713 vm_map_t map; 1714 vm_offset_t start; 1715 vm_offset_t end; 1716 { 1717 vm_object_t object; 1718 vm_map_entry_t entry; 1719 vm_map_entry_t first_entry; 1720 1721 /* 1722 * Find the start of the region, and clip it 1723 */ 1724 1725 if (!vm_map_lookup_entry(map, start, &first_entry)) 1726 entry = first_entry->next; 1727 else { 1728 entry = first_entry; 1729 vm_map_clip_start(map, entry, start); 1730 /* 1731 * Fix the lookup hint now, rather than each time though the 1732 * loop. 1733 */ 1734 SAVE_HINT(map, entry->prev); 1735 } 1736 1737 /* 1738 * Save the free space hint 1739 */ 1740 1741 if (entry == &map->header) { 1742 map->first_free = &map->header; 1743 } else if (map->first_free->start >= start) { 1744 map->first_free = entry->prev; 1745 } 1746 1747 /* 1748 * Step through all entries in this region 1749 */ 1750 1751 while ((entry != &map->header) && (entry->start < end)) { 1752 vm_map_entry_t next; 1753 vm_offset_t s, e; 1754 vm_pindex_t offidxstart, offidxend, count; 1755 1756 vm_map_clip_end(map, entry, end); 1757 1758 s = entry->start; 1759 e = entry->end; 1760 next = entry->next; 1761 1762 offidxstart = OFF_TO_IDX(entry->offset); 1763 count = OFF_TO_IDX(e - s); 1764 object = entry->object.vm_object; 1765 1766 /* 1767 * Unwire before removing addresses from the pmap; otherwise, 1768 * unwiring will put the entries back in the pmap. 1769 */ 1770 if (entry->wired_count != 0) { 1771 vm_map_entry_unwire(map, entry); 1772 } 1773 1774 offidxend = offidxstart + count; 1775 1776 if ((object == kernel_object) || (object == kmem_object)) { 1777 vm_object_page_remove(object, offidxstart, offidxend, FALSE); 1778 } else { 1779 pmap_remove(map->pmap, s, e); 1780 if (object != NULL && 1781 object->ref_count != 1 && 1782 (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING && 1783 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) { 1784 vm_object_collapse(object); 1785 vm_object_page_remove(object, offidxstart, offidxend, FALSE); 1786 if (object->type == OBJT_SWAP) { 1787 swap_pager_freespace(object, offidxstart, count); 1788 } 1789 if (offidxend >= object->size && 1790 offidxstart < object->size) { 1791 object->size = offidxstart; 1792 } 1793 } 1794 } 1795 1796 /* 1797 * Delete the entry (which may delete the object) only after 1798 * removing all pmap entries pointing to its pages. 1799 * (Otherwise, its page frames may be reallocated, and any 1800 * modify bits will be set in the wrong object!) 1801 */ 1802 vm_map_entry_delete(map, entry); 1803 entry = next; 1804 } 1805 return (KERN_SUCCESS); 1806 } 1807 1808 /* 1809 * vm_map_remove: 1810 * 1811 * Remove the given address range from the target map. 1812 * This is the exported form of vm_map_delete. 1813 */ 1814 int 1815 vm_map_remove(map, start, end) 1816 vm_map_t map; 1817 vm_offset_t start; 1818 vm_offset_t end; 1819 { 1820 int result, s = 0; 1821 1822 if (map == kmem_map || map == mb_map) 1823 s = splvm(); 1824 1825 vm_map_lock(map); 1826 VM_MAP_RANGE_CHECK(map, start, end); 1827 result = vm_map_delete(map, start, end); 1828 vm_map_unlock(map); 1829 1830 if (map == kmem_map || map == mb_map) 1831 splx(s); 1832 1833 return (result); 1834 } 1835 1836 /* 1837 * vm_map_check_protection: 1838 * 1839 * Assert that the target map allows the specified 1840 * privilege on the entire address region given. 1841 * The entire region must be allocated. 1842 */ 1843 boolean_t 1844 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 1845 vm_prot_t protection) 1846 { 1847 vm_map_entry_t entry; 1848 vm_map_entry_t tmp_entry; 1849 1850 if (!vm_map_lookup_entry(map, start, &tmp_entry)) { 1851 return (FALSE); 1852 } 1853 entry = tmp_entry; 1854 1855 while (start < end) { 1856 if (entry == &map->header) { 1857 return (FALSE); 1858 } 1859 /* 1860 * No holes allowed! 1861 */ 1862 1863 if (start < entry->start) { 1864 return (FALSE); 1865 } 1866 /* 1867 * Check protection associated with entry. 1868 */ 1869 1870 if ((entry->protection & protection) != protection) { 1871 return (FALSE); 1872 } 1873 /* go to next entry */ 1874 1875 start = entry->end; 1876 entry = entry->next; 1877 } 1878 return (TRUE); 1879 } 1880 1881 /* 1882 * Split the pages in a map entry into a new object. This affords 1883 * easier removal of unused pages, and keeps object inheritance from 1884 * being a negative impact on memory usage. 1885 */ 1886 static void 1887 vm_map_split(entry) 1888 vm_map_entry_t entry; 1889 { 1890 vm_page_t m; 1891 vm_object_t orig_object, new_object, source; 1892 vm_offset_t s, e; 1893 vm_pindex_t offidxstart, offidxend, idx; 1894 vm_size_t size; 1895 vm_ooffset_t offset; 1896 1897 orig_object = entry->object.vm_object; 1898 if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP) 1899 return; 1900 if (orig_object->ref_count <= 1) 1901 return; 1902 1903 offset = entry->offset; 1904 s = entry->start; 1905 e = entry->end; 1906 1907 offidxstart = OFF_TO_IDX(offset); 1908 offidxend = offidxstart + OFF_TO_IDX(e - s); 1909 size = offidxend - offidxstart; 1910 1911 new_object = vm_pager_allocate(orig_object->type, 1912 NULL, IDX_TO_OFF(size), VM_PROT_ALL, 0LL); 1913 if (new_object == NULL) 1914 return; 1915 1916 source = orig_object->backing_object; 1917 if (source != NULL) { 1918 vm_object_reference(source); /* Referenced by new_object */ 1919 TAILQ_INSERT_TAIL(&source->shadow_head, 1920 new_object, shadow_list); 1921 vm_object_clear_flag(source, OBJ_ONEMAPPING); 1922 new_object->backing_object_offset = 1923 orig_object->backing_object_offset + IDX_TO_OFF(offidxstart); 1924 new_object->backing_object = source; 1925 source->shadow_count++; 1926 source->generation++; 1927 } 1928 1929 for (idx = 0; idx < size; idx++) { 1930 vm_page_t m; 1931 1932 retry: 1933 m = vm_page_lookup(orig_object, offidxstart + idx); 1934 if (m == NULL) 1935 continue; 1936 1937 /* 1938 * We must wait for pending I/O to complete before we can 1939 * rename the page. 1940 * 1941 * We do not have to VM_PROT_NONE the page as mappings should 1942 * not be changed by this operation. 1943 */ 1944 if (vm_page_sleep_busy(m, TRUE, "spltwt")) 1945 goto retry; 1946 1947 vm_page_busy(m); 1948 vm_page_rename(m, new_object, idx); 1949 /* page automatically made dirty by rename and cache handled */ 1950 vm_page_busy(m); 1951 } 1952 1953 if (orig_object->type == OBJT_SWAP) { 1954 vm_object_pip_add(orig_object, 1); 1955 /* 1956 * copy orig_object pages into new_object 1957 * and destroy unneeded pages in 1958 * shadow object. 1959 */ 1960 swap_pager_copy(orig_object, new_object, offidxstart, 0); 1961 vm_object_pip_wakeup(orig_object); 1962 } 1963 1964 for (idx = 0; idx < size; idx++) { 1965 m = vm_page_lookup(new_object, idx); 1966 if (m) { 1967 vm_page_wakeup(m); 1968 } 1969 } 1970 1971 entry->object.vm_object = new_object; 1972 entry->offset = 0LL; 1973 vm_object_deallocate(orig_object); 1974 } 1975 1976 /* 1977 * vm_map_copy_entry: 1978 * 1979 * Copies the contents of the source entry to the destination 1980 * entry. The entries *must* be aligned properly. 1981 */ 1982 static void 1983 vm_map_copy_entry(src_map, dst_map, src_entry, dst_entry) 1984 vm_map_t src_map, dst_map; 1985 vm_map_entry_t src_entry, dst_entry; 1986 { 1987 vm_object_t src_object; 1988 1989 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP) 1990 return; 1991 1992 if (src_entry->wired_count == 0) { 1993 1994 /* 1995 * If the source entry is marked needs_copy, it is already 1996 * write-protected. 1997 */ 1998 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) { 1999 pmap_protect(src_map->pmap, 2000 src_entry->start, 2001 src_entry->end, 2002 src_entry->protection & ~VM_PROT_WRITE); 2003 } 2004 2005 /* 2006 * Make a copy of the object. 2007 */ 2008 if ((src_object = src_entry->object.vm_object) != NULL) { 2009 2010 if ((src_object->handle == NULL) && 2011 (src_object->type == OBJT_DEFAULT || 2012 src_object->type == OBJT_SWAP)) { 2013 vm_object_collapse(src_object); 2014 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) { 2015 vm_map_split(src_entry); 2016 src_object = src_entry->object.vm_object; 2017 } 2018 } 2019 2020 vm_object_reference(src_object); 2021 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 2022 dst_entry->object.vm_object = src_object; 2023 src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 2024 dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 2025 dst_entry->offset = src_entry->offset; 2026 } else { 2027 dst_entry->object.vm_object = NULL; 2028 dst_entry->offset = 0; 2029 } 2030 2031 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start, 2032 dst_entry->end - dst_entry->start, src_entry->start); 2033 } else { 2034 /* 2035 * Of course, wired down pages can't be set copy-on-write. 2036 * Cause wired pages to be copied into the new map by 2037 * simulating faults (the new pages are pageable) 2038 */ 2039 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry); 2040 } 2041 } 2042 2043 /* 2044 * vmspace_fork: 2045 * Create a new process vmspace structure and vm_map 2046 * based on those of an existing process. The new map 2047 * is based on the old map, according to the inheritance 2048 * values on the regions in that map. 2049 * 2050 * The source map must not be locked. 2051 */ 2052 struct vmspace * 2053 vmspace_fork(vm1) 2054 struct vmspace *vm1; 2055 { 2056 struct vmspace *vm2; 2057 vm_map_t old_map = &vm1->vm_map; 2058 vm_map_t new_map; 2059 vm_map_entry_t old_entry; 2060 vm_map_entry_t new_entry; 2061 vm_object_t object; 2062 2063 vm_map_lock(old_map); 2064 2065 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset); 2066 bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy, 2067 (caddr_t) (vm1 + 1) - (caddr_t) &vm1->vm_startcopy); 2068 new_map = &vm2->vm_map; /* XXX */ 2069 new_map->timestamp = 1; 2070 2071 old_entry = old_map->header.next; 2072 2073 while (old_entry != &old_map->header) { 2074 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2075 panic("vm_map_fork: encountered a submap"); 2076 2077 switch (old_entry->inheritance) { 2078 case VM_INHERIT_NONE: 2079 break; 2080 2081 case VM_INHERIT_SHARE: 2082 /* 2083 * Clone the entry, creating the shared object if necessary. 2084 */ 2085 object = old_entry->object.vm_object; 2086 if (object == NULL) { 2087 object = vm_object_allocate(OBJT_DEFAULT, 2088 atop(old_entry->end - old_entry->start)); 2089 old_entry->object.vm_object = object; 2090 old_entry->offset = (vm_offset_t) 0; 2091 } 2092 2093 /* 2094 * Add the reference before calling vm_object_shadow 2095 * to insure that a shadow object is created. 2096 */ 2097 vm_object_reference(object); 2098 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 2099 vm_object_shadow(&old_entry->object.vm_object, 2100 &old_entry->offset, 2101 atop(old_entry->end - old_entry->start)); 2102 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 2103 object = old_entry->object.vm_object; 2104 } 2105 vm_object_clear_flag(object, OBJ_ONEMAPPING); 2106 2107 /* 2108 * Clone the entry, referencing the shared object. 2109 */ 2110 new_entry = vm_map_entry_create(new_map); 2111 *new_entry = *old_entry; 2112 new_entry->wired_count = 0; 2113 2114 /* 2115 * Insert the entry into the new map -- we know we're 2116 * inserting at the end of the new map. 2117 */ 2118 2119 vm_map_entry_link(new_map, new_map->header.prev, 2120 new_entry); 2121 2122 /* 2123 * Update the physical map 2124 */ 2125 2126 pmap_copy(new_map->pmap, old_map->pmap, 2127 new_entry->start, 2128 (old_entry->end - old_entry->start), 2129 old_entry->start); 2130 break; 2131 2132 case VM_INHERIT_COPY: 2133 /* 2134 * Clone the entry and link into the map. 2135 */ 2136 new_entry = vm_map_entry_create(new_map); 2137 *new_entry = *old_entry; 2138 new_entry->wired_count = 0; 2139 new_entry->object.vm_object = NULL; 2140 vm_map_entry_link(new_map, new_map->header.prev, 2141 new_entry); 2142 vm_map_copy_entry(old_map, new_map, old_entry, 2143 new_entry); 2144 break; 2145 } 2146 old_entry = old_entry->next; 2147 } 2148 2149 new_map->size = old_map->size; 2150 vm_map_unlock(old_map); 2151 2152 return (vm2); 2153 } 2154 2155 int 2156 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 2157 vm_prot_t prot, vm_prot_t max, int cow) 2158 { 2159 vm_map_entry_t prev_entry; 2160 vm_map_entry_t new_stack_entry; 2161 vm_size_t init_ssize; 2162 int rv; 2163 2164 if (VM_MIN_ADDRESS > 0 && addrbos < VM_MIN_ADDRESS) 2165 return (KERN_NO_SPACE); 2166 2167 if (max_ssize < SGROWSIZ) 2168 init_ssize = max_ssize; 2169 else 2170 init_ssize = SGROWSIZ; 2171 2172 vm_map_lock(map); 2173 2174 /* If addr is already mapped, no go */ 2175 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) { 2176 vm_map_unlock(map); 2177 return (KERN_NO_SPACE); 2178 } 2179 2180 /* If we can't accomodate max_ssize in the current mapping, 2181 * no go. However, we need to be aware that subsequent user 2182 * mappings might map into the space we have reserved for 2183 * stack, and currently this space is not protected. 2184 * 2185 * Hopefully we will at least detect this condition 2186 * when we try to grow the stack. 2187 */ 2188 if ((prev_entry->next != &map->header) && 2189 (prev_entry->next->start < addrbos + max_ssize)) { 2190 vm_map_unlock(map); 2191 return (KERN_NO_SPACE); 2192 } 2193 2194 /* We initially map a stack of only init_ssize. We will 2195 * grow as needed later. Since this is to be a grow 2196 * down stack, we map at the top of the range. 2197 * 2198 * Note: we would normally expect prot and max to be 2199 * VM_PROT_ALL, and cow to be 0. Possibly we should 2200 * eliminate these as input parameters, and just 2201 * pass these values here in the insert call. 2202 */ 2203 rv = vm_map_insert(map, NULL, 0, addrbos + max_ssize - init_ssize, 2204 addrbos + max_ssize, prot, max, cow); 2205 2206 /* Now set the avail_ssize amount */ 2207 if (rv == KERN_SUCCESS){ 2208 if (prev_entry != &map->header) 2209 vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize); 2210 new_stack_entry = prev_entry->next; 2211 if (new_stack_entry->end != addrbos + max_ssize || 2212 new_stack_entry->start != addrbos + max_ssize - init_ssize) 2213 panic ("Bad entry start/end for new stack entry"); 2214 else 2215 new_stack_entry->avail_ssize = max_ssize - init_ssize; 2216 } 2217 2218 vm_map_unlock(map); 2219 return (rv); 2220 } 2221 2222 /* Attempts to grow a vm stack entry. Returns KERN_SUCCESS if the 2223 * desired address is already mapped, or if we successfully grow 2224 * the stack. Also returns KERN_SUCCESS if addr is outside the 2225 * stack range (this is strange, but preserves compatibility with 2226 * the grow function in vm_machdep.c). 2227 */ 2228 int 2229 vm_map_growstack (struct proc *p, vm_offset_t addr) 2230 { 2231 vm_map_entry_t prev_entry; 2232 vm_map_entry_t stack_entry; 2233 vm_map_entry_t new_stack_entry; 2234 struct vmspace *vm = p->p_vmspace; 2235 vm_map_t map = &vm->vm_map; 2236 vm_offset_t end; 2237 int grow_amount; 2238 int rv; 2239 int is_procstack; 2240 Retry: 2241 vm_map_lock_read(map); 2242 2243 /* If addr is already in the entry range, no need to grow.*/ 2244 if (vm_map_lookup_entry(map, addr, &prev_entry)) { 2245 vm_map_unlock_read(map); 2246 return (KERN_SUCCESS); 2247 } 2248 2249 if ((stack_entry = prev_entry->next) == &map->header) { 2250 vm_map_unlock_read(map); 2251 return (KERN_SUCCESS); 2252 } 2253 if (prev_entry == &map->header) 2254 end = stack_entry->start - stack_entry->avail_ssize; 2255 else 2256 end = prev_entry->end; 2257 2258 /* This next test mimics the old grow function in vm_machdep.c. 2259 * It really doesn't quite make sense, but we do it anyway 2260 * for compatibility. 2261 * 2262 * If not growable stack, return success. This signals the 2263 * caller to proceed as he would normally with normal vm. 2264 */ 2265 if (stack_entry->avail_ssize < 1 || 2266 addr >= stack_entry->start || 2267 addr < stack_entry->start - stack_entry->avail_ssize) { 2268 vm_map_unlock_read(map); 2269 return (KERN_SUCCESS); 2270 } 2271 2272 /* Find the minimum grow amount */ 2273 grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE); 2274 if (grow_amount > stack_entry->avail_ssize) { 2275 vm_map_unlock_read(map); 2276 return (KERN_NO_SPACE); 2277 } 2278 2279 /* If there is no longer enough space between the entries 2280 * nogo, and adjust the available space. Note: this 2281 * should only happen if the user has mapped into the 2282 * stack area after the stack was created, and is 2283 * probably an error. 2284 * 2285 * This also effectively destroys any guard page the user 2286 * might have intended by limiting the stack size. 2287 */ 2288 if (grow_amount > stack_entry->start - end) { 2289 if (vm_map_lock_upgrade(map)) 2290 goto Retry; 2291 2292 stack_entry->avail_ssize = stack_entry->start - end; 2293 2294 vm_map_unlock(map); 2295 return (KERN_NO_SPACE); 2296 } 2297 2298 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr; 2299 2300 /* If this is the main process stack, see if we're over the 2301 * stack limit. 2302 */ 2303 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > 2304 p->p_rlimit[RLIMIT_STACK].rlim_cur)) { 2305 vm_map_unlock_read(map); 2306 return (KERN_NO_SPACE); 2307 } 2308 2309 /* Round up the grow amount modulo SGROWSIZ */ 2310 grow_amount = roundup (grow_amount, SGROWSIZ); 2311 if (grow_amount > stack_entry->avail_ssize) { 2312 grow_amount = stack_entry->avail_ssize; 2313 } 2314 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > 2315 p->p_rlimit[RLIMIT_STACK].rlim_cur)) { 2316 grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur - 2317 ctob(vm->vm_ssize); 2318 } 2319 2320 if (vm_map_lock_upgrade(map)) 2321 goto Retry; 2322 2323 /* Get the preliminary new entry start value */ 2324 addr = stack_entry->start - grow_amount; 2325 2326 /* If this puts us into the previous entry, cut back our growth 2327 * to the available space. Also, see the note above. 2328 */ 2329 if (addr < end) { 2330 stack_entry->avail_ssize = stack_entry->start - end; 2331 addr = end; 2332 } 2333 2334 rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start, 2335 VM_PROT_ALL, 2336 VM_PROT_ALL, 2337 0); 2338 2339 /* Adjust the available stack space by the amount we grew. */ 2340 if (rv == KERN_SUCCESS) { 2341 if (prev_entry != &map->header) 2342 vm_map_clip_end(map, prev_entry, addr); 2343 new_stack_entry = prev_entry->next; 2344 if (new_stack_entry->end != stack_entry->start || 2345 new_stack_entry->start != addr) 2346 panic ("Bad stack grow start/end in new stack entry"); 2347 else { 2348 new_stack_entry->avail_ssize = stack_entry->avail_ssize - 2349 (new_stack_entry->end - 2350 new_stack_entry->start); 2351 if (is_procstack) 2352 vm->vm_ssize += btoc(new_stack_entry->end - 2353 new_stack_entry->start); 2354 } 2355 } 2356 2357 vm_map_unlock(map); 2358 return (rv); 2359 2360 } 2361 2362 /* 2363 * Unshare the specified VM space for exec. If other processes are 2364 * mapped to it, then create a new one. The new vmspace is null. 2365 */ 2366 2367 void 2368 vmspace_exec(struct proc *p) { 2369 struct vmspace *oldvmspace = p->p_vmspace; 2370 struct vmspace *newvmspace; 2371 vm_map_t map = &p->p_vmspace->vm_map; 2372 2373 newvmspace = vmspace_alloc(map->min_offset, map->max_offset); 2374 bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy, 2375 (caddr_t) (newvmspace + 1) - (caddr_t) &newvmspace->vm_startcopy); 2376 /* 2377 * This code is written like this for prototype purposes. The 2378 * goal is to avoid running down the vmspace here, but let the 2379 * other process's that are still using the vmspace to finally 2380 * run it down. Even though there is little or no chance of blocking 2381 * here, it is a good idea to keep this form for future mods. 2382 */ 2383 vmspace_free(oldvmspace); 2384 p->p_vmspace = newvmspace; 2385 pmap_pinit2(vmspace_pmap(newvmspace)); 2386 if (p == curproc) 2387 pmap_activate(p); 2388 } 2389 2390 /* 2391 * Unshare the specified VM space for forcing COW. This 2392 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 2393 */ 2394 2395 void 2396 vmspace_unshare(struct proc *p) { 2397 struct vmspace *oldvmspace = p->p_vmspace; 2398 struct vmspace *newvmspace; 2399 2400 if (oldvmspace->vm_refcnt == 1) 2401 return; 2402 newvmspace = vmspace_fork(oldvmspace); 2403 vmspace_free(oldvmspace); 2404 p->p_vmspace = newvmspace; 2405 pmap_pinit2(vmspace_pmap(newvmspace)); 2406 if (p == curproc) 2407 pmap_activate(p); 2408 } 2409 2410 2411 /* 2412 * vm_map_lookup: 2413 * 2414 * Finds the VM object, offset, and 2415 * protection for a given virtual address in the 2416 * specified map, assuming a page fault of the 2417 * type specified. 2418 * 2419 * Leaves the map in question locked for read; return 2420 * values are guaranteed until a vm_map_lookup_done 2421 * call is performed. Note that the map argument 2422 * is in/out; the returned map must be used in 2423 * the call to vm_map_lookup_done. 2424 * 2425 * A handle (out_entry) is returned for use in 2426 * vm_map_lookup_done, to make that fast. 2427 * 2428 * If a lookup is requested with "write protection" 2429 * specified, the map may be changed to perform virtual 2430 * copying operations, although the data referenced will 2431 * remain the same. 2432 */ 2433 int 2434 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 2435 vm_offset_t vaddr, 2436 vm_prot_t fault_typea, 2437 vm_map_entry_t *out_entry, /* OUT */ 2438 vm_object_t *object, /* OUT */ 2439 vm_pindex_t *pindex, /* OUT */ 2440 vm_prot_t *out_prot, /* OUT */ 2441 boolean_t *wired) /* OUT */ 2442 { 2443 vm_map_entry_t entry; 2444 vm_map_t map = *var_map; 2445 vm_prot_t prot; 2446 vm_prot_t fault_type = fault_typea; 2447 2448 RetryLookup:; 2449 2450 /* 2451 * Lookup the faulting address. 2452 */ 2453 2454 vm_map_lock_read(map); 2455 2456 #define RETURN(why) \ 2457 { \ 2458 vm_map_unlock_read(map); \ 2459 return(why); \ 2460 } 2461 2462 /* 2463 * If the map has an interesting hint, try it before calling full 2464 * blown lookup routine. 2465 */ 2466 2467 entry = map->hint; 2468 2469 *out_entry = entry; 2470 2471 if ((entry == &map->header) || 2472 (vaddr < entry->start) || (vaddr >= entry->end)) { 2473 vm_map_entry_t tmp_entry; 2474 2475 /* 2476 * Entry was either not a valid hint, or the vaddr was not 2477 * contained in the entry, so do a full lookup. 2478 */ 2479 if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) 2480 RETURN(KERN_INVALID_ADDRESS); 2481 2482 entry = tmp_entry; 2483 *out_entry = entry; 2484 } 2485 2486 /* 2487 * Handle submaps. 2488 */ 2489 2490 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 2491 vm_map_t old_map = map; 2492 2493 *var_map = map = entry->object.sub_map; 2494 vm_map_unlock_read(old_map); 2495 goto RetryLookup; 2496 } 2497 2498 /* 2499 * Check whether this task is allowed to have this page. 2500 * Note the special case for MAP_ENTRY_COW 2501 * pages with an override. This is to implement a forced 2502 * COW for debuggers. 2503 */ 2504 2505 if (fault_type & VM_PROT_OVERRIDE_WRITE) 2506 prot = entry->max_protection; 2507 else 2508 prot = entry->protection; 2509 2510 fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE); 2511 if ((fault_type & prot) != fault_type) { 2512 RETURN(KERN_PROTECTION_FAILURE); 2513 } 2514 2515 if (entry->wired_count && (fault_type & VM_PROT_WRITE) && 2516 (entry->eflags & MAP_ENTRY_COW) && 2517 (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) { 2518 RETURN(KERN_PROTECTION_FAILURE); 2519 } 2520 2521 /* 2522 * If this page is not pageable, we have to get it for all possible 2523 * accesses. 2524 */ 2525 2526 *wired = (entry->wired_count != 0); 2527 if (*wired) 2528 prot = fault_type = entry->protection; 2529 2530 /* 2531 * If the entry was copy-on-write, we either ... 2532 */ 2533 2534 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 2535 /* 2536 * If we want to write the page, we may as well handle that 2537 * now since we've got the map locked. 2538 * 2539 * If we don't need to write the page, we just demote the 2540 * permissions allowed. 2541 */ 2542 2543 if (fault_type & VM_PROT_WRITE) { 2544 /* 2545 * Make a new object, and place it in the object 2546 * chain. Note that no new references have appeared 2547 * -- one just moved from the map to the new 2548 * object. 2549 */ 2550 2551 if (vm_map_lock_upgrade(map)) 2552 goto RetryLookup; 2553 2554 vm_object_shadow( 2555 &entry->object.vm_object, 2556 &entry->offset, 2557 atop(entry->end - entry->start)); 2558 2559 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 2560 vm_map_lock_downgrade(map); 2561 } else { 2562 /* 2563 * We're attempting to read a copy-on-write page -- 2564 * don't allow writes. 2565 */ 2566 2567 prot &= ~VM_PROT_WRITE; 2568 } 2569 } 2570 2571 /* 2572 * Create an object if necessary. 2573 */ 2574 if (entry->object.vm_object == NULL) { 2575 if (vm_map_lock_upgrade(map)) 2576 goto RetryLookup; 2577 2578 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT, 2579 atop(entry->end - entry->start)); 2580 entry->offset = 0; 2581 vm_map_lock_downgrade(map); 2582 } 2583 2584 /* 2585 * Return the object/offset from this entry. If the entry was 2586 * copy-on-write or empty, it has been fixed up. 2587 */ 2588 2589 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 2590 *object = entry->object.vm_object; 2591 2592 /* 2593 * Return whether this is the only map sharing this data. 2594 */ 2595 2596 *out_prot = prot; 2597 return (KERN_SUCCESS); 2598 2599 #undef RETURN 2600 } 2601 2602 /* 2603 * vm_map_lookup_done: 2604 * 2605 * Releases locks acquired by a vm_map_lookup 2606 * (according to the handle returned by that lookup). 2607 */ 2608 2609 void 2610 vm_map_lookup_done(map, entry) 2611 vm_map_t map; 2612 vm_map_entry_t entry; 2613 { 2614 /* 2615 * Unlock the main-level map 2616 */ 2617 2618 vm_map_unlock_read(map); 2619 } 2620 2621 /* 2622 * Implement uiomove with VM operations. This handles (and collateral changes) 2623 * support every combination of source object modification, and COW type 2624 * operations. 2625 */ 2626 int 2627 vm_uiomove(mapa, srcobject, cp, cnta, uaddra, npages) 2628 vm_map_t mapa; 2629 vm_object_t srcobject; 2630 off_t cp; 2631 int cnta; 2632 vm_offset_t uaddra; 2633 int *npages; 2634 { 2635 vm_map_t map; 2636 vm_object_t first_object, oldobject, object; 2637 vm_map_entry_t entry; 2638 vm_prot_t prot; 2639 boolean_t wired; 2640 int tcnt, rv; 2641 vm_offset_t uaddr, start, end, tend; 2642 vm_pindex_t first_pindex, osize, oindex; 2643 off_t ooffset; 2644 int cnt; 2645 2646 if (npages) 2647 *npages = 0; 2648 2649 cnt = cnta; 2650 uaddr = uaddra; 2651 2652 while (cnt > 0) { 2653 map = mapa; 2654 2655 if ((vm_map_lookup(&map, uaddr, 2656 VM_PROT_READ, &entry, &first_object, 2657 &first_pindex, &prot, &wired)) != KERN_SUCCESS) { 2658 return EFAULT; 2659 } 2660 2661 vm_map_clip_start(map, entry, uaddr); 2662 2663 tcnt = cnt; 2664 tend = uaddr + tcnt; 2665 if (tend > entry->end) { 2666 tcnt = entry->end - uaddr; 2667 tend = entry->end; 2668 } 2669 2670 vm_map_clip_end(map, entry, tend); 2671 2672 start = entry->start; 2673 end = entry->end; 2674 2675 osize = atop(tcnt); 2676 2677 oindex = OFF_TO_IDX(cp); 2678 if (npages) { 2679 vm_pindex_t idx; 2680 for (idx = 0; idx < osize; idx++) { 2681 vm_page_t m; 2682 if ((m = vm_page_lookup(srcobject, oindex + idx)) == NULL) { 2683 vm_map_lookup_done(map, entry); 2684 return 0; 2685 } 2686 /* 2687 * disallow busy or invalid pages, but allow 2688 * m->busy pages if they are entirely valid. 2689 */ 2690 if ((m->flags & PG_BUSY) || 2691 ((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL)) { 2692 vm_map_lookup_done(map, entry); 2693 return 0; 2694 } 2695 } 2696 } 2697 2698 /* 2699 * If we are changing an existing map entry, just redirect 2700 * the object, and change mappings. 2701 */ 2702 if ((first_object->type == OBJT_VNODE) && 2703 ((oldobject = entry->object.vm_object) == first_object)) { 2704 2705 if ((entry->offset != cp) || (oldobject != srcobject)) { 2706 /* 2707 * Remove old window into the file 2708 */ 2709 pmap_remove (map->pmap, uaddr, tend); 2710 2711 /* 2712 * Force copy on write for mmaped regions 2713 */ 2714 vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize); 2715 2716 /* 2717 * Point the object appropriately 2718 */ 2719 if (oldobject != srcobject) { 2720 2721 /* 2722 * Set the object optimization hint flag 2723 */ 2724 vm_object_set_flag(srcobject, OBJ_OPT); 2725 vm_object_reference(srcobject); 2726 entry->object.vm_object = srcobject; 2727 2728 if (oldobject) { 2729 vm_object_deallocate(oldobject); 2730 } 2731 } 2732 2733 entry->offset = cp; 2734 map->timestamp++; 2735 } else { 2736 pmap_remove (map->pmap, uaddr, tend); 2737 } 2738 2739 } else if ((first_object->ref_count == 1) && 2740 (first_object->size == osize) && 2741 ((first_object->type == OBJT_DEFAULT) || 2742 (first_object->type == OBJT_SWAP)) ) { 2743 2744 oldobject = first_object->backing_object; 2745 2746 if ((first_object->backing_object_offset != cp) || 2747 (oldobject != srcobject)) { 2748 /* 2749 * Remove old window into the file 2750 */ 2751 pmap_remove (map->pmap, uaddr, tend); 2752 2753 /* 2754 * Remove unneeded old pages 2755 */ 2756 vm_object_page_remove(first_object, 0, 0, 0); 2757 2758 /* 2759 * Invalidate swap space 2760 */ 2761 if (first_object->type == OBJT_SWAP) { 2762 swap_pager_freespace(first_object, 2763 0, 2764 first_object->size); 2765 } 2766 2767 /* 2768 * Force copy on write for mmaped regions 2769 */ 2770 vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize); 2771 2772 /* 2773 * Point the object appropriately 2774 */ 2775 if (oldobject != srcobject) { 2776 2777 /* 2778 * Set the object optimization hint flag 2779 */ 2780 vm_object_set_flag(srcobject, OBJ_OPT); 2781 vm_object_reference(srcobject); 2782 2783 if (oldobject) { 2784 TAILQ_REMOVE(&oldobject->shadow_head, 2785 first_object, shadow_list); 2786 oldobject->shadow_count--; 2787 /* XXX bump generation? */ 2788 vm_object_deallocate(oldobject); 2789 } 2790 2791 TAILQ_INSERT_TAIL(&srcobject->shadow_head, 2792 first_object, shadow_list); 2793 srcobject->shadow_count++; 2794 /* XXX bump generation? */ 2795 2796 first_object->backing_object = srcobject; 2797 } 2798 first_object->backing_object_offset = cp; 2799 map->timestamp++; 2800 } else { 2801 pmap_remove (map->pmap, uaddr, tend); 2802 } 2803 /* 2804 * Otherwise, we have to do a logical mmap. 2805 */ 2806 } else { 2807 2808 vm_object_set_flag(srcobject, OBJ_OPT); 2809 vm_object_reference(srcobject); 2810 2811 pmap_remove (map->pmap, uaddr, tend); 2812 2813 vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize); 2814 vm_map_lock_upgrade(map); 2815 2816 if (entry == &map->header) { 2817 map->first_free = &map->header; 2818 } else if (map->first_free->start >= start) { 2819 map->first_free = entry->prev; 2820 } 2821 2822 SAVE_HINT(map, entry->prev); 2823 vm_map_entry_delete(map, entry); 2824 2825 object = srcobject; 2826 ooffset = cp; 2827 2828 rv = vm_map_insert(map, object, ooffset, start, tend, 2829 VM_PROT_ALL, VM_PROT_ALL, MAP_COPY_ON_WRITE); 2830 2831 if (rv != KERN_SUCCESS) 2832 panic("vm_uiomove: could not insert new entry: %d", rv); 2833 } 2834 2835 /* 2836 * Map the window directly, if it is already in memory 2837 */ 2838 pmap_object_init_pt(map->pmap, uaddr, 2839 srcobject, oindex, tcnt, 0); 2840 2841 map->timestamp++; 2842 vm_map_unlock(map); 2843 2844 cnt -= tcnt; 2845 uaddr += tcnt; 2846 cp += tcnt; 2847 if (npages) 2848 *npages += osize; 2849 } 2850 return 0; 2851 } 2852 2853 /* 2854 * Performs the copy_on_write operations necessary to allow the virtual copies 2855 * into user space to work. This has to be called for write(2) system calls 2856 * from other processes, file unlinking, and file size shrinkage. 2857 */ 2858 void 2859 vm_freeze_copyopts(object, froma, toa) 2860 vm_object_t object; 2861 vm_pindex_t froma, toa; 2862 { 2863 int rv; 2864 vm_object_t robject; 2865 vm_pindex_t idx; 2866 2867 if ((object == NULL) || 2868 ((object->flags & OBJ_OPT) == 0)) 2869 return; 2870 2871 if (object->shadow_count > object->ref_count) 2872 panic("vm_freeze_copyopts: sc > rc"); 2873 2874 while((robject = TAILQ_FIRST(&object->shadow_head)) != NULL) { 2875 vm_pindex_t bo_pindex; 2876 vm_page_t m_in, m_out; 2877 2878 bo_pindex = OFF_TO_IDX(robject->backing_object_offset); 2879 2880 vm_object_reference(robject); 2881 2882 vm_object_pip_wait(robject, "objfrz"); 2883 2884 if (robject->ref_count == 1) { 2885 vm_object_deallocate(robject); 2886 continue; 2887 } 2888 2889 vm_object_pip_add(robject, 1); 2890 2891 for (idx = 0; idx < robject->size; idx++) { 2892 2893 m_out = vm_page_grab(robject, idx, 2894 VM_ALLOC_NORMAL | VM_ALLOC_RETRY); 2895 2896 if (m_out->valid == 0) { 2897 m_in = vm_page_grab(object, bo_pindex + idx, 2898 VM_ALLOC_NORMAL | VM_ALLOC_RETRY); 2899 if (m_in->valid == 0) { 2900 rv = vm_pager_get_pages(object, &m_in, 1, 0); 2901 if (rv != VM_PAGER_OK) { 2902 printf("vm_freeze_copyopts: cannot read page from file: %lx\n", (long)m_in->pindex); 2903 continue; 2904 } 2905 vm_page_deactivate(m_in); 2906 } 2907 2908 vm_page_protect(m_in, VM_PROT_NONE); 2909 pmap_copy_page(VM_PAGE_TO_PHYS(m_in), VM_PAGE_TO_PHYS(m_out)); 2910 m_out->valid = m_in->valid; 2911 vm_page_dirty(m_out); 2912 vm_page_activate(m_out); 2913 vm_page_wakeup(m_in); 2914 } 2915 vm_page_wakeup(m_out); 2916 } 2917 2918 object->shadow_count--; 2919 object->ref_count--; 2920 TAILQ_REMOVE(&object->shadow_head, robject, shadow_list); 2921 robject->backing_object = NULL; 2922 robject->backing_object_offset = 0; 2923 2924 vm_object_pip_wakeup(robject); 2925 vm_object_deallocate(robject); 2926 } 2927 2928 vm_object_clear_flag(object, OBJ_OPT); 2929 } 2930 2931 #include "opt_ddb.h" 2932 #ifdef DDB 2933 #include <sys/kernel.h> 2934 2935 #include <ddb/ddb.h> 2936 2937 /* 2938 * vm_map_print: [ debug ] 2939 */ 2940 DB_SHOW_COMMAND(map, vm_map_print) 2941 { 2942 static int nlines; 2943 /* XXX convert args. */ 2944 vm_map_t map = (vm_map_t)addr; 2945 boolean_t full = have_addr; 2946 2947 vm_map_entry_t entry; 2948 2949 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 2950 (void *)map, 2951 (void *)map->pmap, map->nentries, map->timestamp); 2952 nlines++; 2953 2954 if (!full && db_indent) 2955 return; 2956 2957 db_indent += 2; 2958 for (entry = map->header.next; entry != &map->header; 2959 entry = entry->next) { 2960 db_iprintf("map entry %p: start=%p, end=%p\n", 2961 (void *)entry, (void *)entry->start, (void *)entry->end); 2962 nlines++; 2963 { 2964 static char *inheritance_name[4] = 2965 {"share", "copy", "none", "donate_copy"}; 2966 2967 db_iprintf(" prot=%x/%x/%s", 2968 entry->protection, 2969 entry->max_protection, 2970 inheritance_name[(int)(unsigned char)entry->inheritance]); 2971 if (entry->wired_count != 0) 2972 db_printf(", wired"); 2973 } 2974 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 2975 /* XXX no %qd in kernel. Truncate entry->offset. */ 2976 db_printf(", share=%p, offset=0x%lx\n", 2977 (void *)entry->object.sub_map, 2978 (long)entry->offset); 2979 nlines++; 2980 if ((entry->prev == &map->header) || 2981 (entry->prev->object.sub_map != 2982 entry->object.sub_map)) { 2983 db_indent += 2; 2984 vm_map_print((db_expr_t)(intptr_t) 2985 entry->object.sub_map, 2986 full, 0, (char *)0); 2987 db_indent -= 2; 2988 } 2989 } else { 2990 /* XXX no %qd in kernel. Truncate entry->offset. */ 2991 db_printf(", object=%p, offset=0x%lx", 2992 (void *)entry->object.vm_object, 2993 (long)entry->offset); 2994 if (entry->eflags & MAP_ENTRY_COW) 2995 db_printf(", copy (%s)", 2996 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 2997 db_printf("\n"); 2998 nlines++; 2999 3000 if ((entry->prev == &map->header) || 3001 (entry->prev->object.vm_object != 3002 entry->object.vm_object)) { 3003 db_indent += 2; 3004 vm_object_print((db_expr_t)(intptr_t) 3005 entry->object.vm_object, 3006 full, 0, (char *)0); 3007 nlines += 4; 3008 db_indent -= 2; 3009 } 3010 } 3011 } 3012 db_indent -= 2; 3013 if (db_indent == 0) 3014 nlines = 0; 3015 } 3016 3017 3018 DB_SHOW_COMMAND(procvm, procvm) 3019 { 3020 struct proc *p; 3021 3022 if (have_addr) { 3023 p = (struct proc *) addr; 3024 } else { 3025 p = curproc; 3026 } 3027 3028 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 3029 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 3030 (void *)vmspace_pmap(p->p_vmspace)); 3031 3032 vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL); 3033 } 3034 3035 #endif /* DDB */ 3036