xref: /freebsd/sys/vm/vm_map.c (revision 7d0d268b8a67f28ccefdd0b8ce6fb38acac78d80)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60 
61 /*
62  *	Virtual memory mapping module.
63  */
64 
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67 
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/ktr.h>
71 #include <sys/lock.h>
72 #include <sys/mutex.h>
73 #include <sys/proc.h>
74 #include <sys/vmmeter.h>
75 #include <sys/mman.h>
76 #include <sys/vnode.h>
77 #include <sys/resourcevar.h>
78 #include <sys/file.h>
79 #include <sys/sysent.h>
80 #include <sys/shm.h>
81 
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <vm/pmap.h>
85 #include <vm/vm_map.h>
86 #include <vm/vm_page.h>
87 #include <vm/vm_object.h>
88 #include <vm/vm_pager.h>
89 #include <vm/vm_kern.h>
90 #include <vm/vm_extern.h>
91 #include <vm/swap_pager.h>
92 #include <vm/uma.h>
93 
94 /*
95  *	Virtual memory maps provide for the mapping, protection,
96  *	and sharing of virtual memory objects.  In addition,
97  *	this module provides for an efficient virtual copy of
98  *	memory from one map to another.
99  *
100  *	Synchronization is required prior to most operations.
101  *
102  *	Maps consist of an ordered doubly-linked list of simple
103  *	entries; a self-adjusting binary search tree of these
104  *	entries is used to speed up lookups.
105  *
106  *	Since portions of maps are specified by start/end addresses,
107  *	which may not align with existing map entries, all
108  *	routines merely "clip" entries to these start/end values.
109  *	[That is, an entry is split into two, bordering at a
110  *	start or end value.]  Note that these clippings may not
111  *	always be necessary (as the two resulting entries are then
112  *	not changed); however, the clipping is done for convenience.
113  *
114  *	As mentioned above, virtual copy operations are performed
115  *	by copying VM object references from one map to
116  *	another, and then marking both regions as copy-on-write.
117  */
118 
119 /*
120  *	vm_map_startup:
121  *
122  *	Initialize the vm_map module.  Must be called before
123  *	any other vm_map routines.
124  *
125  *	Map and entry structures are allocated from the general
126  *	purpose memory pool with some exceptions:
127  *
128  *	- The kernel map and kmem submap are allocated statically.
129  *	- Kernel map entries are allocated out of a static pool.
130  *
131  *	These restrictions are necessary since malloc() uses the
132  *	maps and requires map entries.
133  */
134 
135 static struct mtx map_sleep_mtx;
136 static uma_zone_t mapentzone;
137 static uma_zone_t kmapentzone;
138 static uma_zone_t mapzone;
139 static uma_zone_t vmspace_zone;
140 static struct vm_object kmapentobj;
141 static int vmspace_zinit(void *mem, int size, int flags);
142 static void vmspace_zfini(void *mem, int size);
143 static int vm_map_zinit(void *mem, int ize, int flags);
144 static void vm_map_zfini(void *mem, int size);
145 static void _vm_map_init(vm_map_t map, vm_offset_t min, vm_offset_t max);
146 
147 #ifdef INVARIANTS
148 static void vm_map_zdtor(void *mem, int size, void *arg);
149 static void vmspace_zdtor(void *mem, int size, void *arg);
150 #endif
151 
152 /*
153  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
154  * stable.
155  */
156 #define PROC_VMSPACE_LOCK(p) do { } while (0)
157 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
158 
159 /*
160  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
161  *
162  *	Asserts that the starting and ending region
163  *	addresses fall within the valid range of the map.
164  */
165 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
166 		{					\
167 		if (start < vm_map_min(map))		\
168 			start = vm_map_min(map);	\
169 		if (end > vm_map_max(map))		\
170 			end = vm_map_max(map);		\
171 		if (start > end)			\
172 			start = end;			\
173 		}
174 
175 void
176 vm_map_startup(void)
177 {
178 	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
179 	mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
180 #ifdef INVARIANTS
181 	    vm_map_zdtor,
182 #else
183 	    NULL,
184 #endif
185 	    vm_map_zinit, vm_map_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
186 	uma_prealloc(mapzone, MAX_KMAP);
187 	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
188 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
189 	    UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
190 	uma_prealloc(kmapentzone, MAX_KMAPENT);
191 	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
192 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
193 }
194 
195 static void
196 vmspace_zfini(void *mem, int size)
197 {
198 	struct vmspace *vm;
199 
200 	vm = (struct vmspace *)mem;
201 	vm_map_zfini(&vm->vm_map, sizeof(vm->vm_map));
202 }
203 
204 static int
205 vmspace_zinit(void *mem, int size, int flags)
206 {
207 	struct vmspace *vm;
208 
209 	vm = (struct vmspace *)mem;
210 
211 	vm->vm_map.pmap = NULL;
212 	(void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
213 	return (0);
214 }
215 
216 static void
217 vm_map_zfini(void *mem, int size)
218 {
219 	vm_map_t map;
220 
221 	map = (vm_map_t)mem;
222 	mtx_destroy(&map->system_mtx);
223 	sx_destroy(&map->lock);
224 }
225 
226 static int
227 vm_map_zinit(void *mem, int size, int flags)
228 {
229 	vm_map_t map;
230 
231 	map = (vm_map_t)mem;
232 	map->nentries = 0;
233 	map->size = 0;
234 	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
235 	sx_init(&map->lock, "user map");
236 	return (0);
237 }
238 
239 #ifdef INVARIANTS
240 static void
241 vmspace_zdtor(void *mem, int size, void *arg)
242 {
243 	struct vmspace *vm;
244 
245 	vm = (struct vmspace *)mem;
246 
247 	vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
248 }
249 static void
250 vm_map_zdtor(void *mem, int size, void *arg)
251 {
252 	vm_map_t map;
253 
254 	map = (vm_map_t)mem;
255 	KASSERT(map->nentries == 0,
256 	    ("map %p nentries == %d on free.",
257 	    map, map->nentries));
258 	KASSERT(map->size == 0,
259 	    ("map %p size == %lu on free.",
260 	    map, (unsigned long)map->size));
261 }
262 #endif	/* INVARIANTS */
263 
264 /*
265  * Allocate a vmspace structure, including a vm_map and pmap,
266  * and initialize those structures.  The refcnt is set to 1.
267  */
268 struct vmspace *
269 vmspace_alloc(min, max)
270 	vm_offset_t min, max;
271 {
272 	struct vmspace *vm;
273 
274 	vm = uma_zalloc(vmspace_zone, M_WAITOK);
275 	if (vm->vm_map.pmap == NULL && !pmap_pinit(vmspace_pmap(vm))) {
276 		uma_zfree(vmspace_zone, vm);
277 		return (NULL);
278 	}
279 	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
280 	_vm_map_init(&vm->vm_map, min, max);
281 	vm->vm_map.pmap = vmspace_pmap(vm);		/* XXX */
282 	vm->vm_refcnt = 1;
283 	vm->vm_shm = NULL;
284 	vm->vm_swrss = 0;
285 	vm->vm_tsize = 0;
286 	vm->vm_dsize = 0;
287 	vm->vm_ssize = 0;
288 	vm->vm_taddr = 0;
289 	vm->vm_daddr = 0;
290 	vm->vm_maxsaddr = 0;
291 	return (vm);
292 }
293 
294 void
295 vm_init2(void)
296 {
297 	uma_zone_set_obj(kmapentzone, &kmapentobj, lmin(cnt.v_page_count,
298 	    (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) / PAGE_SIZE) / 8 +
299 	     maxproc * 2 + maxfiles);
300 	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
301 #ifdef INVARIANTS
302 	    vmspace_zdtor,
303 #else
304 	    NULL,
305 #endif
306 	    vmspace_zinit, vmspace_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
307 }
308 
309 static inline void
310 vmspace_dofree(struct vmspace *vm)
311 {
312 	CTR1(KTR_VM, "vmspace_free: %p", vm);
313 
314 	/*
315 	 * Make sure any SysV shm is freed, it might not have been in
316 	 * exit1().
317 	 */
318 	shmexit(vm);
319 
320 	/*
321 	 * Lock the map, to wait out all other references to it.
322 	 * Delete all of the mappings and pages they hold, then call
323 	 * the pmap module to reclaim anything left.
324 	 */
325 	(void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset,
326 	    vm->vm_map.max_offset);
327 
328 	/*
329 	 * XXX Comment out the pmap_release call for now. The
330 	 * vmspace_zone is marked as UMA_ZONE_NOFREE, and bugs cause
331 	 * pmap.resident_count to be != 0 on exit sometimes.
332 	 */
333 /* 	pmap_release(vmspace_pmap(vm)); */
334 	uma_zfree(vmspace_zone, vm);
335 }
336 
337 void
338 vmspace_free(struct vmspace *vm)
339 {
340 	int refcnt;
341 
342 	if (vm->vm_refcnt == 0)
343 		panic("vmspace_free: attempt to free already freed vmspace");
344 
345 	do
346 		refcnt = vm->vm_refcnt;
347 	while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
348 	if (refcnt == 1)
349 		vmspace_dofree(vm);
350 }
351 
352 void
353 vmspace_exitfree(struct proc *p)
354 {
355 	struct vmspace *vm;
356 
357 	PROC_VMSPACE_LOCK(p);
358 	vm = p->p_vmspace;
359 	p->p_vmspace = NULL;
360 	PROC_VMSPACE_UNLOCK(p);
361 	KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
362 	vmspace_free(vm);
363 }
364 
365 void
366 vmspace_exit(struct thread *td)
367 {
368 	int refcnt;
369 	struct vmspace *vm;
370 	struct proc *p;
371 
372 	/*
373 	 * Release user portion of address space.
374 	 * This releases references to vnodes,
375 	 * which could cause I/O if the file has been unlinked.
376 	 * Need to do this early enough that we can still sleep.
377 	 *
378 	 * The last exiting process to reach this point releases as
379 	 * much of the environment as it can. vmspace_dofree() is the
380 	 * slower fallback in case another process had a temporary
381 	 * reference to the vmspace.
382 	 */
383 
384 	p = td->td_proc;
385 	vm = p->p_vmspace;
386 	atomic_add_int(&vmspace0.vm_refcnt, 1);
387 	do {
388 		refcnt = vm->vm_refcnt;
389 		if (refcnt > 1 && p->p_vmspace != &vmspace0) {
390 			/* Switch now since other proc might free vmspace */
391 			PROC_VMSPACE_LOCK(p);
392 			p->p_vmspace = &vmspace0;
393 			PROC_VMSPACE_UNLOCK(p);
394 			pmap_activate(td);
395 		}
396 	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
397 	if (refcnt == 1) {
398 		if (p->p_vmspace != vm) {
399 			/* vmspace not yet freed, switch back */
400 			PROC_VMSPACE_LOCK(p);
401 			p->p_vmspace = vm;
402 			PROC_VMSPACE_UNLOCK(p);
403 			pmap_activate(td);
404 		}
405 		pmap_remove_pages(vmspace_pmap(vm));
406 		/* Switch now since this proc will free vmspace */
407 		PROC_VMSPACE_LOCK(p);
408 		p->p_vmspace = &vmspace0;
409 		PROC_VMSPACE_UNLOCK(p);
410 		pmap_activate(td);
411 		vmspace_dofree(vm);
412 	}
413 }
414 
415 /* Acquire reference to vmspace owned by another process. */
416 
417 struct vmspace *
418 vmspace_acquire_ref(struct proc *p)
419 {
420 	struct vmspace *vm;
421 	int refcnt;
422 
423 	PROC_VMSPACE_LOCK(p);
424 	vm = p->p_vmspace;
425 	if (vm == NULL) {
426 		PROC_VMSPACE_UNLOCK(p);
427 		return (NULL);
428 	}
429 	do {
430 		refcnt = vm->vm_refcnt;
431 		if (refcnt <= 0) { 	/* Avoid 0->1 transition */
432 			PROC_VMSPACE_UNLOCK(p);
433 			return (NULL);
434 		}
435 	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
436 	if (vm != p->p_vmspace) {
437 		PROC_VMSPACE_UNLOCK(p);
438 		vmspace_free(vm);
439 		return (NULL);
440 	}
441 	PROC_VMSPACE_UNLOCK(p);
442 	return (vm);
443 }
444 
445 void
446 _vm_map_lock(vm_map_t map, const char *file, int line)
447 {
448 
449 	if (map->system_map)
450 		_mtx_lock_flags(&map->system_mtx, 0, file, line);
451 	else
452 		(void)_sx_xlock(&map->lock, 0, file, line);
453 	map->timestamp++;
454 }
455 
456 void
457 _vm_map_unlock(vm_map_t map, const char *file, int line)
458 {
459 
460 	if (map->system_map)
461 		_mtx_unlock_flags(&map->system_mtx, 0, file, line);
462 	else
463 		_sx_xunlock(&map->lock, file, line);
464 }
465 
466 void
467 _vm_map_lock_read(vm_map_t map, const char *file, int line)
468 {
469 
470 	if (map->system_map)
471 		_mtx_lock_flags(&map->system_mtx, 0, file, line);
472 	else
473 		(void)_sx_slock(&map->lock, 0, file, line);
474 }
475 
476 void
477 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
478 {
479 
480 	if (map->system_map)
481 		_mtx_unlock_flags(&map->system_mtx, 0, file, line);
482 	else
483 		_sx_sunlock(&map->lock, file, line);
484 }
485 
486 int
487 _vm_map_trylock(vm_map_t map, const char *file, int line)
488 {
489 	int error;
490 
491 	error = map->system_map ?
492 	    !_mtx_trylock(&map->system_mtx, 0, file, line) :
493 	    !_sx_try_xlock(&map->lock, file, line);
494 	if (error == 0)
495 		map->timestamp++;
496 	return (error == 0);
497 }
498 
499 int
500 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
501 {
502 	int error;
503 
504 	error = map->system_map ?
505 	    !_mtx_trylock(&map->system_mtx, 0, file, line) :
506 	    !_sx_try_slock(&map->lock, file, line);
507 	return (error == 0);
508 }
509 
510 /*
511  *	_vm_map_lock_upgrade:	[ internal use only ]
512  *
513  *	Tries to upgrade a read (shared) lock on the specified map to a write
514  *	(exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
515  *	non-zero value if the upgrade fails.  If the upgrade fails, the map is
516  *	returned without a read or write lock held.
517  *
518  *	Requires that the map be read locked.
519  */
520 int
521 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
522 {
523 	unsigned int last_timestamp;
524 
525 	if (map->system_map) {
526 #ifdef INVARIANTS
527 		_mtx_assert(&map->system_mtx, MA_OWNED, file, line);
528 #endif
529 	} else {
530 		if (!_sx_try_upgrade(&map->lock, file, line)) {
531 			last_timestamp = map->timestamp;
532 			_sx_sunlock(&map->lock, file, line);
533 			/*
534 			 * If the map's timestamp does not change while the
535 			 * map is unlocked, then the upgrade succeeds.
536 			 */
537 			(void)_sx_xlock(&map->lock, 0, file, line);
538 			if (last_timestamp != map->timestamp) {
539 				_sx_xunlock(&map->lock, file, line);
540 				return (1);
541 			}
542 		}
543 	}
544 	map->timestamp++;
545 	return (0);
546 }
547 
548 void
549 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
550 {
551 
552 	if (map->system_map) {
553 #ifdef INVARIANTS
554 		_mtx_assert(&map->system_mtx, MA_OWNED, file, line);
555 #endif
556 	} else
557 		_sx_downgrade(&map->lock, file, line);
558 }
559 
560 /*
561  *	vm_map_locked:
562  *
563  *	Returns a non-zero value if the caller holds a write (exclusive) lock
564  *	on the specified map and the value "0" otherwise.
565  */
566 int
567 vm_map_locked(vm_map_t map)
568 {
569 
570 	if (map->system_map)
571 		return (mtx_owned(&map->system_mtx));
572 	else
573 		return (sx_xlocked(&map->lock));
574 }
575 
576 /*
577  *	vm_map_unlock_and_wait:
578  */
579 int
580 vm_map_unlock_and_wait(vm_map_t map, int timo)
581 {
582 
583 	mtx_lock(&map_sleep_mtx);
584 	vm_map_unlock(map);
585 	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps", timo));
586 }
587 
588 /*
589  *	vm_map_wakeup:
590  */
591 void
592 vm_map_wakeup(vm_map_t map)
593 {
594 
595 	/*
596 	 * Acquire and release map_sleep_mtx to prevent a wakeup()
597 	 * from being performed (and lost) between the vm_map_unlock()
598 	 * and the msleep() in vm_map_unlock_and_wait().
599 	 */
600 	mtx_lock(&map_sleep_mtx);
601 	mtx_unlock(&map_sleep_mtx);
602 	wakeup(&map->root);
603 }
604 
605 long
606 vmspace_resident_count(struct vmspace *vmspace)
607 {
608 	return pmap_resident_count(vmspace_pmap(vmspace));
609 }
610 
611 long
612 vmspace_wired_count(struct vmspace *vmspace)
613 {
614 	return pmap_wired_count(vmspace_pmap(vmspace));
615 }
616 
617 /*
618  *	vm_map_create:
619  *
620  *	Creates and returns a new empty VM map with
621  *	the given physical map structure, and having
622  *	the given lower and upper address bounds.
623  */
624 vm_map_t
625 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
626 {
627 	vm_map_t result;
628 
629 	result = uma_zalloc(mapzone, M_WAITOK);
630 	CTR1(KTR_VM, "vm_map_create: %p", result);
631 	_vm_map_init(result, min, max);
632 	result->pmap = pmap;
633 	return (result);
634 }
635 
636 /*
637  * Initialize an existing vm_map structure
638  * such as that in the vmspace structure.
639  * The pmap is set elsewhere.
640  */
641 static void
642 _vm_map_init(vm_map_t map, vm_offset_t min, vm_offset_t max)
643 {
644 
645 	map->header.next = map->header.prev = &map->header;
646 	map->needs_wakeup = FALSE;
647 	map->system_map = 0;
648 	map->min_offset = min;
649 	map->max_offset = max;
650 	map->flags = 0;
651 	map->root = NULL;
652 	map->timestamp = 0;
653 }
654 
655 void
656 vm_map_init(vm_map_t map, vm_offset_t min, vm_offset_t max)
657 {
658 	_vm_map_init(map, min, max);
659 	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
660 	sx_init(&map->lock, "user map");
661 }
662 
663 /*
664  *	vm_map_entry_dispose:	[ internal use only ]
665  *
666  *	Inverse of vm_map_entry_create.
667  */
668 static void
669 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
670 {
671 	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
672 }
673 
674 /*
675  *	vm_map_entry_create:	[ internal use only ]
676  *
677  *	Allocates a VM map entry for insertion.
678  *	No entry fields are filled in.
679  */
680 static vm_map_entry_t
681 vm_map_entry_create(vm_map_t map)
682 {
683 	vm_map_entry_t new_entry;
684 
685 	if (map->system_map)
686 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
687 	else
688 		new_entry = uma_zalloc(mapentzone, M_WAITOK);
689 	if (new_entry == NULL)
690 		panic("vm_map_entry_create: kernel resources exhausted");
691 	return (new_entry);
692 }
693 
694 /*
695  *	vm_map_entry_set_behavior:
696  *
697  *	Set the expected access behavior, either normal, random, or
698  *	sequential.
699  */
700 static inline void
701 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
702 {
703 	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
704 	    (behavior & MAP_ENTRY_BEHAV_MASK);
705 }
706 
707 /*
708  *	vm_map_entry_set_max_free:
709  *
710  *	Set the max_free field in a vm_map_entry.
711  */
712 static inline void
713 vm_map_entry_set_max_free(vm_map_entry_t entry)
714 {
715 
716 	entry->max_free = entry->adj_free;
717 	if (entry->left != NULL && entry->left->max_free > entry->max_free)
718 		entry->max_free = entry->left->max_free;
719 	if (entry->right != NULL && entry->right->max_free > entry->max_free)
720 		entry->max_free = entry->right->max_free;
721 }
722 
723 /*
724  *	vm_map_entry_splay:
725  *
726  *	The Sleator and Tarjan top-down splay algorithm with the
727  *	following variation.  Max_free must be computed bottom-up, so
728  *	on the downward pass, maintain the left and right spines in
729  *	reverse order.  Then, make a second pass up each side to fix
730  *	the pointers and compute max_free.  The time bound is O(log n)
731  *	amortized.
732  *
733  *	The new root is the vm_map_entry containing "addr", or else an
734  *	adjacent entry (lower or higher) if addr is not in the tree.
735  *
736  *	The map must be locked, and leaves it so.
737  *
738  *	Returns: the new root.
739  */
740 static vm_map_entry_t
741 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
742 {
743 	vm_map_entry_t llist, rlist;
744 	vm_map_entry_t ltree, rtree;
745 	vm_map_entry_t y;
746 
747 	/* Special case of empty tree. */
748 	if (root == NULL)
749 		return (root);
750 
751 	/*
752 	 * Pass One: Splay down the tree until we find addr or a NULL
753 	 * pointer where addr would go.  llist and rlist are the two
754 	 * sides in reverse order (bottom-up), with llist linked by
755 	 * the right pointer and rlist linked by the left pointer in
756 	 * the vm_map_entry.  Wait until Pass Two to set max_free on
757 	 * the two spines.
758 	 */
759 	llist = NULL;
760 	rlist = NULL;
761 	for (;;) {
762 		/* root is never NULL in here. */
763 		if (addr < root->start) {
764 			y = root->left;
765 			if (y == NULL)
766 				break;
767 			if (addr < y->start && y->left != NULL) {
768 				/* Rotate right and put y on rlist. */
769 				root->left = y->right;
770 				y->right = root;
771 				vm_map_entry_set_max_free(root);
772 				root = y->left;
773 				y->left = rlist;
774 				rlist = y;
775 			} else {
776 				/* Put root on rlist. */
777 				root->left = rlist;
778 				rlist = root;
779 				root = y;
780 			}
781 		} else if (addr >= root->end) {
782 			y = root->right;
783 			if (y == NULL)
784 				break;
785 			if (addr >= y->end && y->right != NULL) {
786 				/* Rotate left and put y on llist. */
787 				root->right = y->left;
788 				y->left = root;
789 				vm_map_entry_set_max_free(root);
790 				root = y->right;
791 				y->right = llist;
792 				llist = y;
793 			} else {
794 				/* Put root on llist. */
795 				root->right = llist;
796 				llist = root;
797 				root = y;
798 			}
799 		} else
800 			break;
801 	}
802 
803 	/*
804 	 * Pass Two: Walk back up the two spines, flip the pointers
805 	 * and set max_free.  The subtrees of the root go at the
806 	 * bottom of llist and rlist.
807 	 */
808 	ltree = root->left;
809 	while (llist != NULL) {
810 		y = llist->right;
811 		llist->right = ltree;
812 		vm_map_entry_set_max_free(llist);
813 		ltree = llist;
814 		llist = y;
815 	}
816 	rtree = root->right;
817 	while (rlist != NULL) {
818 		y = rlist->left;
819 		rlist->left = rtree;
820 		vm_map_entry_set_max_free(rlist);
821 		rtree = rlist;
822 		rlist = y;
823 	}
824 
825 	/*
826 	 * Final assembly: add ltree and rtree as subtrees of root.
827 	 */
828 	root->left = ltree;
829 	root->right = rtree;
830 	vm_map_entry_set_max_free(root);
831 
832 	return (root);
833 }
834 
835 /*
836  *	vm_map_entry_{un,}link:
837  *
838  *	Insert/remove entries from maps.
839  */
840 static void
841 vm_map_entry_link(vm_map_t map,
842 		  vm_map_entry_t after_where,
843 		  vm_map_entry_t entry)
844 {
845 
846 	CTR4(KTR_VM,
847 	    "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
848 	    map->nentries, entry, after_where);
849 	map->nentries++;
850 	entry->prev = after_where;
851 	entry->next = after_where->next;
852 	entry->next->prev = entry;
853 	after_where->next = entry;
854 
855 	if (after_where != &map->header) {
856 		if (after_where != map->root)
857 			vm_map_entry_splay(after_where->start, map->root);
858 		entry->right = after_where->right;
859 		entry->left = after_where;
860 		after_where->right = NULL;
861 		after_where->adj_free = entry->start - after_where->end;
862 		vm_map_entry_set_max_free(after_where);
863 	} else {
864 		entry->right = map->root;
865 		entry->left = NULL;
866 	}
867 	entry->adj_free = (entry->next == &map->header ? map->max_offset :
868 	    entry->next->start) - entry->end;
869 	vm_map_entry_set_max_free(entry);
870 	map->root = entry;
871 }
872 
873 static void
874 vm_map_entry_unlink(vm_map_t map,
875 		    vm_map_entry_t entry)
876 {
877 	vm_map_entry_t next, prev, root;
878 
879 	if (entry != map->root)
880 		vm_map_entry_splay(entry->start, map->root);
881 	if (entry->left == NULL)
882 		root = entry->right;
883 	else {
884 		root = vm_map_entry_splay(entry->start, entry->left);
885 		root->right = entry->right;
886 		root->adj_free = (entry->next == &map->header ? map->max_offset :
887 		    entry->next->start) - root->end;
888 		vm_map_entry_set_max_free(root);
889 	}
890 	map->root = root;
891 
892 	prev = entry->prev;
893 	next = entry->next;
894 	next->prev = prev;
895 	prev->next = next;
896 	map->nentries--;
897 	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
898 	    map->nentries, entry);
899 }
900 
901 /*
902  *	vm_map_entry_resize_free:
903  *
904  *	Recompute the amount of free space following a vm_map_entry
905  *	and propagate that value up the tree.  Call this function after
906  *	resizing a map entry in-place, that is, without a call to
907  *	vm_map_entry_link() or _unlink().
908  *
909  *	The map must be locked, and leaves it so.
910  */
911 static void
912 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
913 {
914 
915 	/*
916 	 * Using splay trees without parent pointers, propagating
917 	 * max_free up the tree is done by moving the entry to the
918 	 * root and making the change there.
919 	 */
920 	if (entry != map->root)
921 		map->root = vm_map_entry_splay(entry->start, map->root);
922 
923 	entry->adj_free = (entry->next == &map->header ? map->max_offset :
924 	    entry->next->start) - entry->end;
925 	vm_map_entry_set_max_free(entry);
926 }
927 
928 /*
929  *	vm_map_lookup_entry:	[ internal use only ]
930  *
931  *	Finds the map entry containing (or
932  *	immediately preceding) the specified address
933  *	in the given map; the entry is returned
934  *	in the "entry" parameter.  The boolean
935  *	result indicates whether the address is
936  *	actually contained in the map.
937  */
938 boolean_t
939 vm_map_lookup_entry(
940 	vm_map_t map,
941 	vm_offset_t address,
942 	vm_map_entry_t *entry)	/* OUT */
943 {
944 	vm_map_entry_t cur;
945 	boolean_t locked;
946 
947 	/*
948 	 * If the map is empty, then the map entry immediately preceding
949 	 * "address" is the map's header.
950 	 */
951 	cur = map->root;
952 	if (cur == NULL)
953 		*entry = &map->header;
954 	else if (address >= cur->start && cur->end > address) {
955 		*entry = cur;
956 		return (TRUE);
957 	} else if ((locked = vm_map_locked(map)) ||
958 	    sx_try_upgrade(&map->lock)) {
959 		/*
960 		 * Splay requires a write lock on the map.  However, it only
961 		 * restructures the binary search tree; it does not otherwise
962 		 * change the map.  Thus, the map's timestamp need not change
963 		 * on a temporary upgrade.
964 		 */
965 		map->root = cur = vm_map_entry_splay(address, cur);
966 		if (!locked)
967 			sx_downgrade(&map->lock);
968 
969 		/*
970 		 * If "address" is contained within a map entry, the new root
971 		 * is that map entry.  Otherwise, the new root is a map entry
972 		 * immediately before or after "address".
973 		 */
974 		if (address >= cur->start) {
975 			*entry = cur;
976 			if (cur->end > address)
977 				return (TRUE);
978 		} else
979 			*entry = cur->prev;
980 	} else
981 		/*
982 		 * Since the map is only locked for read access, perform a
983 		 * standard binary search tree lookup for "address".
984 		 */
985 		for (;;) {
986 			if (address < cur->start) {
987 				if (cur->left == NULL) {
988 					*entry = cur->prev;
989 					break;
990 				}
991 				cur = cur->left;
992 			} else if (cur->end > address) {
993 				*entry = cur;
994 				return (TRUE);
995 			} else {
996 				if (cur->right == NULL) {
997 					*entry = cur;
998 					break;
999 				}
1000 				cur = cur->right;
1001 			}
1002 		}
1003 	return (FALSE);
1004 }
1005 
1006 /*
1007  *	vm_map_insert:
1008  *
1009  *	Inserts the given whole VM object into the target
1010  *	map at the specified address range.  The object's
1011  *	size should match that of the address range.
1012  *
1013  *	Requires that the map be locked, and leaves it so.
1014  *
1015  *	If object is non-NULL, ref count must be bumped by caller
1016  *	prior to making call to account for the new entry.
1017  */
1018 int
1019 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1020 	      vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max,
1021 	      int cow)
1022 {
1023 	vm_map_entry_t new_entry;
1024 	vm_map_entry_t prev_entry;
1025 	vm_map_entry_t temp_entry;
1026 	vm_eflags_t protoeflags;
1027 
1028 	/*
1029 	 * Check that the start and end points are not bogus.
1030 	 */
1031 	if ((start < map->min_offset) || (end > map->max_offset) ||
1032 	    (start >= end))
1033 		return (KERN_INVALID_ADDRESS);
1034 
1035 	/*
1036 	 * Find the entry prior to the proposed starting address; if it's part
1037 	 * of an existing entry, this range is bogus.
1038 	 */
1039 	if (vm_map_lookup_entry(map, start, &temp_entry))
1040 		return (KERN_NO_SPACE);
1041 
1042 	prev_entry = temp_entry;
1043 
1044 	/*
1045 	 * Assert that the next entry doesn't overlap the end point.
1046 	 */
1047 	if ((prev_entry->next != &map->header) &&
1048 	    (prev_entry->next->start < end))
1049 		return (KERN_NO_SPACE);
1050 
1051 	protoeflags = 0;
1052 
1053 	if (cow & MAP_COPY_ON_WRITE)
1054 		protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
1055 
1056 	if (cow & MAP_NOFAULT) {
1057 		protoeflags |= MAP_ENTRY_NOFAULT;
1058 
1059 		KASSERT(object == NULL,
1060 			("vm_map_insert: paradoxical MAP_NOFAULT request"));
1061 	}
1062 	if (cow & MAP_DISABLE_SYNCER)
1063 		protoeflags |= MAP_ENTRY_NOSYNC;
1064 	if (cow & MAP_DISABLE_COREDUMP)
1065 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1066 
1067 	if (object != NULL) {
1068 		/*
1069 		 * OBJ_ONEMAPPING must be cleared unless this mapping
1070 		 * is trivially proven to be the only mapping for any
1071 		 * of the object's pages.  (Object granularity
1072 		 * reference counting is insufficient to recognize
1073 		 * aliases with precision.)
1074 		 */
1075 		VM_OBJECT_LOCK(object);
1076 		if (object->ref_count > 1 || object->shadow_count != 0)
1077 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
1078 		VM_OBJECT_UNLOCK(object);
1079 	}
1080 	else if ((prev_entry != &map->header) &&
1081 		 (prev_entry->eflags == protoeflags) &&
1082 		 (prev_entry->end == start) &&
1083 		 (prev_entry->wired_count == 0) &&
1084 		 ((prev_entry->object.vm_object == NULL) ||
1085 		  vm_object_coalesce(prev_entry->object.vm_object,
1086 				     prev_entry->offset,
1087 				     (vm_size_t)(prev_entry->end - prev_entry->start),
1088 				     (vm_size_t)(end - prev_entry->end)))) {
1089 		/*
1090 		 * We were able to extend the object.  Determine if we
1091 		 * can extend the previous map entry to include the
1092 		 * new range as well.
1093 		 */
1094 		if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
1095 		    (prev_entry->protection == prot) &&
1096 		    (prev_entry->max_protection == max)) {
1097 			map->size += (end - prev_entry->end);
1098 			prev_entry->end = end;
1099 			vm_map_entry_resize_free(map, prev_entry);
1100 			vm_map_simplify_entry(map, prev_entry);
1101 			return (KERN_SUCCESS);
1102 		}
1103 
1104 		/*
1105 		 * If we can extend the object but cannot extend the
1106 		 * map entry, we have to create a new map entry.  We
1107 		 * must bump the ref count on the extended object to
1108 		 * account for it.  object may be NULL.
1109 		 */
1110 		object = prev_entry->object.vm_object;
1111 		offset = prev_entry->offset +
1112 			(prev_entry->end - prev_entry->start);
1113 		vm_object_reference(object);
1114 	}
1115 
1116 	/*
1117 	 * NOTE: if conditionals fail, object can be NULL here.  This occurs
1118 	 * in things like the buffer map where we manage kva but do not manage
1119 	 * backing objects.
1120 	 */
1121 
1122 	/*
1123 	 * Create a new entry
1124 	 */
1125 	new_entry = vm_map_entry_create(map);
1126 	new_entry->start = start;
1127 	new_entry->end = end;
1128 
1129 	new_entry->eflags = protoeflags;
1130 	new_entry->object.vm_object = object;
1131 	new_entry->offset = offset;
1132 	new_entry->avail_ssize = 0;
1133 
1134 	new_entry->inheritance = VM_INHERIT_DEFAULT;
1135 	new_entry->protection = prot;
1136 	new_entry->max_protection = max;
1137 	new_entry->wired_count = 0;
1138 
1139 	/*
1140 	 * Insert the new entry into the list
1141 	 */
1142 	vm_map_entry_link(map, prev_entry, new_entry);
1143 	map->size += new_entry->end - new_entry->start;
1144 
1145 #if 0
1146 	/*
1147 	 * Temporarily removed to avoid MAP_STACK panic, due to
1148 	 * MAP_STACK being a huge hack.  Will be added back in
1149 	 * when MAP_STACK (and the user stack mapping) is fixed.
1150 	 */
1151 	/*
1152 	 * It may be possible to simplify the entry
1153 	 */
1154 	vm_map_simplify_entry(map, new_entry);
1155 #endif
1156 
1157 	if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
1158 		vm_map_pmap_enter(map, start, prot,
1159 				    object, OFF_TO_IDX(offset), end - start,
1160 				    cow & MAP_PREFAULT_PARTIAL);
1161 	}
1162 
1163 	return (KERN_SUCCESS);
1164 }
1165 
1166 /*
1167  *	vm_map_findspace:
1168  *
1169  *	Find the first fit (lowest VM address) for "length" free bytes
1170  *	beginning at address >= start in the given map.
1171  *
1172  *	In a vm_map_entry, "adj_free" is the amount of free space
1173  *	adjacent (higher address) to this entry, and "max_free" is the
1174  *	maximum amount of contiguous free space in its subtree.  This
1175  *	allows finding a free region in one path down the tree, so
1176  *	O(log n) amortized with splay trees.
1177  *
1178  *	The map must be locked, and leaves it so.
1179  *
1180  *	Returns: 0 on success, and starting address in *addr,
1181  *		 1 if insufficient space.
1182  */
1183 int
1184 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1185     vm_offset_t *addr)	/* OUT */
1186 {
1187 	vm_map_entry_t entry;
1188 	vm_offset_t end, st;
1189 
1190 	/*
1191 	 * Request must fit within min/max VM address and must avoid
1192 	 * address wrap.
1193 	 */
1194 	if (start < map->min_offset)
1195 		start = map->min_offset;
1196 	if (start + length > map->max_offset || start + length < start)
1197 		return (1);
1198 
1199 	/* Empty tree means wide open address space. */
1200 	if (map->root == NULL) {
1201 		*addr = start;
1202 		goto found;
1203 	}
1204 
1205 	/*
1206 	 * After splay, if start comes before root node, then there
1207 	 * must be a gap from start to the root.
1208 	 */
1209 	map->root = vm_map_entry_splay(start, map->root);
1210 	if (start + length <= map->root->start) {
1211 		*addr = start;
1212 		goto found;
1213 	}
1214 
1215 	/*
1216 	 * Root is the last node that might begin its gap before
1217 	 * start, and this is the last comparison where address
1218 	 * wrap might be a problem.
1219 	 */
1220 	st = (start > map->root->end) ? start : map->root->end;
1221 	if (length <= map->root->end + map->root->adj_free - st) {
1222 		*addr = st;
1223 		goto found;
1224 	}
1225 
1226 	/* With max_free, can immediately tell if no solution. */
1227 	entry = map->root->right;
1228 	if (entry == NULL || length > entry->max_free)
1229 		return (1);
1230 
1231 	/*
1232 	 * Search the right subtree in the order: left subtree, root,
1233 	 * right subtree (first fit).  The previous splay implies that
1234 	 * all regions in the right subtree have addresses > start.
1235 	 */
1236 	while (entry != NULL) {
1237 		if (entry->left != NULL && entry->left->max_free >= length)
1238 			entry = entry->left;
1239 		else if (entry->adj_free >= length) {
1240 			*addr = entry->end;
1241 			goto found;
1242 		} else
1243 			entry = entry->right;
1244 	}
1245 
1246 	/* Can't get here, so panic if we do. */
1247 	panic("vm_map_findspace: max_free corrupt");
1248 
1249 found:
1250 	/* Expand the kernel pmap, if necessary. */
1251 	if (map == kernel_map) {
1252 		end = round_page(*addr + length);
1253 		if (end > kernel_vm_end)
1254 			pmap_growkernel(end);
1255 	}
1256 	return (0);
1257 }
1258 
1259 int
1260 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1261     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1262     vm_prot_t max, int cow)
1263 {
1264 	vm_map_entry_t freelist;
1265 	vm_offset_t end;
1266 	int result;
1267 
1268 	end = start + length;
1269 	freelist = NULL;
1270 	vm_map_lock(map);
1271 	VM_MAP_RANGE_CHECK(map, start, end);
1272 	(void) vm_map_delete(map, start, end, &freelist);
1273 	result = vm_map_insert(map, object, offset, start, end, prot,
1274 	    max, cow);
1275 	vm_map_unlock(map);
1276 	vm_map_entry_free_freelist(map, freelist);
1277 	return (result);
1278 }
1279 
1280 /*
1281  *	vm_map_find finds an unallocated region in the target address
1282  *	map with the given length.  The search is defined to be
1283  *	first-fit from the specified address; the region found is
1284  *	returned in the same parameter.
1285  *
1286  *	If object is non-NULL, ref count must be bumped by caller
1287  *	prior to making call to account for the new entry.
1288  */
1289 int
1290 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1291 	    vm_offset_t *addr,	/* IN/OUT */
1292 	    vm_size_t length, int find_space, vm_prot_t prot,
1293 	    vm_prot_t max, int cow)
1294 {
1295 	vm_offset_t start;
1296 	int result;
1297 
1298 	start = *addr;
1299 	vm_map_lock(map);
1300 	do {
1301 		if (find_space != VMFS_NO_SPACE) {
1302 			if (vm_map_findspace(map, start, length, addr)) {
1303 				vm_map_unlock(map);
1304 				return (KERN_NO_SPACE);
1305 			}
1306 			if (find_space == VMFS_ALIGNED_SPACE)
1307 				pmap_align_superpage(object, offset, addr,
1308 				    length);
1309 			start = *addr;
1310 		}
1311 		result = vm_map_insert(map, object, offset, start, start +
1312 		    length, prot, max, cow);
1313 	} while (result == KERN_NO_SPACE && find_space == VMFS_ALIGNED_SPACE);
1314 	vm_map_unlock(map);
1315 	return (result);
1316 }
1317 
1318 /*
1319  *	vm_map_simplify_entry:
1320  *
1321  *	Simplify the given map entry by merging with either neighbor.  This
1322  *	routine also has the ability to merge with both neighbors.
1323  *
1324  *	The map must be locked.
1325  *
1326  *	This routine guarentees that the passed entry remains valid (though
1327  *	possibly extended).  When merging, this routine may delete one or
1328  *	both neighbors.
1329  */
1330 void
1331 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1332 {
1333 	vm_map_entry_t next, prev;
1334 	vm_size_t prevsize, esize;
1335 
1336 	if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP))
1337 		return;
1338 
1339 	prev = entry->prev;
1340 	if (prev != &map->header) {
1341 		prevsize = prev->end - prev->start;
1342 		if ( (prev->end == entry->start) &&
1343 		     (prev->object.vm_object == entry->object.vm_object) &&
1344 		     (!prev->object.vm_object ||
1345 			(prev->offset + prevsize == entry->offset)) &&
1346 		     (prev->eflags == entry->eflags) &&
1347 		     (prev->protection == entry->protection) &&
1348 		     (prev->max_protection == entry->max_protection) &&
1349 		     (prev->inheritance == entry->inheritance) &&
1350 		     (prev->wired_count == entry->wired_count)) {
1351 			vm_map_entry_unlink(map, prev);
1352 			entry->start = prev->start;
1353 			entry->offset = prev->offset;
1354 			if (entry->prev != &map->header)
1355 				vm_map_entry_resize_free(map, entry->prev);
1356 
1357 			/*
1358 			 * If the backing object is a vnode object,
1359 			 * vm_object_deallocate() calls vrele().
1360 			 * However, vrele() does not lock the vnode
1361 			 * because the vnode has additional
1362 			 * references.  Thus, the map lock can be kept
1363 			 * without causing a lock-order reversal with
1364 			 * the vnode lock.
1365 			 */
1366 			if (prev->object.vm_object)
1367 				vm_object_deallocate(prev->object.vm_object);
1368 			vm_map_entry_dispose(map, prev);
1369 		}
1370 	}
1371 
1372 	next = entry->next;
1373 	if (next != &map->header) {
1374 		esize = entry->end - entry->start;
1375 		if ((entry->end == next->start) &&
1376 		    (next->object.vm_object == entry->object.vm_object) &&
1377 		     (!entry->object.vm_object ||
1378 			(entry->offset + esize == next->offset)) &&
1379 		    (next->eflags == entry->eflags) &&
1380 		    (next->protection == entry->protection) &&
1381 		    (next->max_protection == entry->max_protection) &&
1382 		    (next->inheritance == entry->inheritance) &&
1383 		    (next->wired_count == entry->wired_count)) {
1384 			vm_map_entry_unlink(map, next);
1385 			entry->end = next->end;
1386 			vm_map_entry_resize_free(map, entry);
1387 
1388 			/*
1389 			 * See comment above.
1390 			 */
1391 			if (next->object.vm_object)
1392 				vm_object_deallocate(next->object.vm_object);
1393 			vm_map_entry_dispose(map, next);
1394 		}
1395 	}
1396 }
1397 /*
1398  *	vm_map_clip_start:	[ internal use only ]
1399  *
1400  *	Asserts that the given entry begins at or after
1401  *	the specified address; if necessary,
1402  *	it splits the entry into two.
1403  */
1404 #define vm_map_clip_start(map, entry, startaddr) \
1405 { \
1406 	if (startaddr > entry->start) \
1407 		_vm_map_clip_start(map, entry, startaddr); \
1408 }
1409 
1410 /*
1411  *	This routine is called only when it is known that
1412  *	the entry must be split.
1413  */
1414 static void
1415 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1416 {
1417 	vm_map_entry_t new_entry;
1418 
1419 	/*
1420 	 * Split off the front portion -- note that we must insert the new
1421 	 * entry BEFORE this one, so that this entry has the specified
1422 	 * starting address.
1423 	 */
1424 	vm_map_simplify_entry(map, entry);
1425 
1426 	/*
1427 	 * If there is no object backing this entry, we might as well create
1428 	 * one now.  If we defer it, an object can get created after the map
1429 	 * is clipped, and individual objects will be created for the split-up
1430 	 * map.  This is a bit of a hack, but is also about the best place to
1431 	 * put this improvement.
1432 	 */
1433 	if (entry->object.vm_object == NULL && !map->system_map) {
1434 		vm_object_t object;
1435 		object = vm_object_allocate(OBJT_DEFAULT,
1436 				atop(entry->end - entry->start));
1437 		entry->object.vm_object = object;
1438 		entry->offset = 0;
1439 	}
1440 
1441 	new_entry = vm_map_entry_create(map);
1442 	*new_entry = *entry;
1443 
1444 	new_entry->end = start;
1445 	entry->offset += (start - entry->start);
1446 	entry->start = start;
1447 
1448 	vm_map_entry_link(map, entry->prev, new_entry);
1449 
1450 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1451 		vm_object_reference(new_entry->object.vm_object);
1452 	}
1453 }
1454 
1455 /*
1456  *	vm_map_clip_end:	[ internal use only ]
1457  *
1458  *	Asserts that the given entry ends at or before
1459  *	the specified address; if necessary,
1460  *	it splits the entry into two.
1461  */
1462 #define vm_map_clip_end(map, entry, endaddr) \
1463 { \
1464 	if ((endaddr) < (entry->end)) \
1465 		_vm_map_clip_end((map), (entry), (endaddr)); \
1466 }
1467 
1468 /*
1469  *	This routine is called only when it is known that
1470  *	the entry must be split.
1471  */
1472 static void
1473 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1474 {
1475 	vm_map_entry_t new_entry;
1476 
1477 	/*
1478 	 * If there is no object backing this entry, we might as well create
1479 	 * one now.  If we defer it, an object can get created after the map
1480 	 * is clipped, and individual objects will be created for the split-up
1481 	 * map.  This is a bit of a hack, but is also about the best place to
1482 	 * put this improvement.
1483 	 */
1484 	if (entry->object.vm_object == NULL && !map->system_map) {
1485 		vm_object_t object;
1486 		object = vm_object_allocate(OBJT_DEFAULT,
1487 				atop(entry->end - entry->start));
1488 		entry->object.vm_object = object;
1489 		entry->offset = 0;
1490 	}
1491 
1492 	/*
1493 	 * Create a new entry and insert it AFTER the specified entry
1494 	 */
1495 	new_entry = vm_map_entry_create(map);
1496 	*new_entry = *entry;
1497 
1498 	new_entry->start = entry->end = end;
1499 	new_entry->offset += (end - entry->start);
1500 
1501 	vm_map_entry_link(map, entry, new_entry);
1502 
1503 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1504 		vm_object_reference(new_entry->object.vm_object);
1505 	}
1506 }
1507 
1508 /*
1509  *	vm_map_submap:		[ kernel use only ]
1510  *
1511  *	Mark the given range as handled by a subordinate map.
1512  *
1513  *	This range must have been created with vm_map_find,
1514  *	and no other operations may have been performed on this
1515  *	range prior to calling vm_map_submap.
1516  *
1517  *	Only a limited number of operations can be performed
1518  *	within this rage after calling vm_map_submap:
1519  *		vm_fault
1520  *	[Don't try vm_map_copy!]
1521  *
1522  *	To remove a submapping, one must first remove the
1523  *	range from the superior map, and then destroy the
1524  *	submap (if desired).  [Better yet, don't try it.]
1525  */
1526 int
1527 vm_map_submap(
1528 	vm_map_t map,
1529 	vm_offset_t start,
1530 	vm_offset_t end,
1531 	vm_map_t submap)
1532 {
1533 	vm_map_entry_t entry;
1534 	int result = KERN_INVALID_ARGUMENT;
1535 
1536 	vm_map_lock(map);
1537 
1538 	VM_MAP_RANGE_CHECK(map, start, end);
1539 
1540 	if (vm_map_lookup_entry(map, start, &entry)) {
1541 		vm_map_clip_start(map, entry, start);
1542 	} else
1543 		entry = entry->next;
1544 
1545 	vm_map_clip_end(map, entry, end);
1546 
1547 	if ((entry->start == start) && (entry->end == end) &&
1548 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1549 	    (entry->object.vm_object == NULL)) {
1550 		entry->object.sub_map = submap;
1551 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1552 		result = KERN_SUCCESS;
1553 	}
1554 	vm_map_unlock(map);
1555 
1556 	return (result);
1557 }
1558 
1559 /*
1560  * The maximum number of pages to map
1561  */
1562 #define	MAX_INIT_PT	96
1563 
1564 /*
1565  *	vm_map_pmap_enter:
1566  *
1567  *	Preload read-only mappings for the given object's resident pages into
1568  *	the given map.  This eliminates the soft faults on process startup and
1569  *	immediately after an mmap(2).  Because these are speculative mappings,
1570  *	cached pages are not reactivated and mapped.
1571  */
1572 void
1573 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
1574     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
1575 {
1576 	vm_offset_t start;
1577 	vm_page_t p, p_start;
1578 	vm_pindex_t psize, tmpidx;
1579 	boolean_t are_queues_locked;
1580 
1581 	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
1582 		return;
1583 	VM_OBJECT_LOCK(object);
1584 	if (object->type == OBJT_DEVICE) {
1585 		pmap_object_init_pt(map->pmap, addr, object, pindex, size);
1586 		goto unlock_return;
1587 	}
1588 
1589 	psize = atop(size);
1590 
1591 	if (object->type != OBJT_VNODE ||
1592 	    ((flags & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
1593 	     (object->resident_page_count > MAX_INIT_PT))) {
1594 		goto unlock_return;
1595 	}
1596 
1597 	if (psize + pindex > object->size) {
1598 		if (object->size < pindex)
1599 			goto unlock_return;
1600 		psize = object->size - pindex;
1601 	}
1602 
1603 	are_queues_locked = FALSE;
1604 	start = 0;
1605 	p_start = NULL;
1606 
1607 	if ((p = TAILQ_FIRST(&object->memq)) != NULL) {
1608 		if (p->pindex < pindex) {
1609 			p = vm_page_splay(pindex, object->root);
1610 			if ((object->root = p)->pindex < pindex)
1611 				p = TAILQ_NEXT(p, listq);
1612 		}
1613 	}
1614 	/*
1615 	 * Assert: the variable p is either (1) the page with the
1616 	 * least pindex greater than or equal to the parameter pindex
1617 	 * or (2) NULL.
1618 	 */
1619 	for (;
1620 	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
1621 	     p = TAILQ_NEXT(p, listq)) {
1622 		/*
1623 		 * don't allow an madvise to blow away our really
1624 		 * free pages allocating pv entries.
1625 		 */
1626 		if ((flags & MAP_PREFAULT_MADVISE) &&
1627 		    cnt.v_free_count < cnt.v_free_reserved) {
1628 			psize = tmpidx;
1629 			break;
1630 		}
1631 		if ((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL &&
1632 		    (p->busy == 0)) {
1633 			if (p_start == NULL) {
1634 				start = addr + ptoa(tmpidx);
1635 				p_start = p;
1636 			}
1637 		} else if (p_start != NULL) {
1638 			if (!are_queues_locked) {
1639 				are_queues_locked = TRUE;
1640 				vm_page_lock_queues();
1641 			}
1642 			pmap_enter_object(map->pmap, start, addr +
1643 			    ptoa(tmpidx), p_start, prot);
1644 			p_start = NULL;
1645 		}
1646 	}
1647 	if (p_start != NULL) {
1648 		if (!are_queues_locked) {
1649 			are_queues_locked = TRUE;
1650 			vm_page_lock_queues();
1651 		}
1652 		pmap_enter_object(map->pmap, start, addr + ptoa(psize),
1653 		    p_start, prot);
1654 	}
1655 	if (are_queues_locked)
1656 		vm_page_unlock_queues();
1657 unlock_return:
1658 	VM_OBJECT_UNLOCK(object);
1659 }
1660 
1661 /*
1662  *	vm_map_protect:
1663  *
1664  *	Sets the protection of the specified address
1665  *	region in the target map.  If "set_max" is
1666  *	specified, the maximum protection is to be set;
1667  *	otherwise, only the current protection is affected.
1668  */
1669 int
1670 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1671 	       vm_prot_t new_prot, boolean_t set_max)
1672 {
1673 	vm_map_entry_t current;
1674 	vm_map_entry_t entry;
1675 
1676 	vm_map_lock(map);
1677 
1678 	VM_MAP_RANGE_CHECK(map, start, end);
1679 
1680 	if (vm_map_lookup_entry(map, start, &entry)) {
1681 		vm_map_clip_start(map, entry, start);
1682 	} else {
1683 		entry = entry->next;
1684 	}
1685 
1686 	/*
1687 	 * Make a first pass to check for protection violations.
1688 	 */
1689 	current = entry;
1690 	while ((current != &map->header) && (current->start < end)) {
1691 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1692 			vm_map_unlock(map);
1693 			return (KERN_INVALID_ARGUMENT);
1694 		}
1695 		if ((new_prot & current->max_protection) != new_prot) {
1696 			vm_map_unlock(map);
1697 			return (KERN_PROTECTION_FAILURE);
1698 		}
1699 		current = current->next;
1700 	}
1701 
1702 	/*
1703 	 * Go back and fix up protections. [Note that clipping is not
1704 	 * necessary the second time.]
1705 	 */
1706 	current = entry;
1707 	while ((current != &map->header) && (current->start < end)) {
1708 		vm_prot_t old_prot;
1709 
1710 		vm_map_clip_end(map, current, end);
1711 
1712 		old_prot = current->protection;
1713 		if (set_max)
1714 			current->protection =
1715 			    (current->max_protection = new_prot) &
1716 			    old_prot;
1717 		else
1718 			current->protection = new_prot;
1719 
1720 		/*
1721 		 * Update physical map if necessary. Worry about copy-on-write
1722 		 * here.
1723 		 */
1724 		if (current->protection != old_prot) {
1725 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1726 							VM_PROT_ALL)
1727 			pmap_protect(map->pmap, current->start,
1728 			    current->end,
1729 			    current->protection & MASK(current));
1730 #undef	MASK
1731 		}
1732 		vm_map_simplify_entry(map, current);
1733 		current = current->next;
1734 	}
1735 	vm_map_unlock(map);
1736 	return (KERN_SUCCESS);
1737 }
1738 
1739 /*
1740  *	vm_map_madvise:
1741  *
1742  *	This routine traverses a processes map handling the madvise
1743  *	system call.  Advisories are classified as either those effecting
1744  *	the vm_map_entry structure, or those effecting the underlying
1745  *	objects.
1746  */
1747 int
1748 vm_map_madvise(
1749 	vm_map_t map,
1750 	vm_offset_t start,
1751 	vm_offset_t end,
1752 	int behav)
1753 {
1754 	vm_map_entry_t current, entry;
1755 	int modify_map = 0;
1756 
1757 	/*
1758 	 * Some madvise calls directly modify the vm_map_entry, in which case
1759 	 * we need to use an exclusive lock on the map and we need to perform
1760 	 * various clipping operations.  Otherwise we only need a read-lock
1761 	 * on the map.
1762 	 */
1763 	switch(behav) {
1764 	case MADV_NORMAL:
1765 	case MADV_SEQUENTIAL:
1766 	case MADV_RANDOM:
1767 	case MADV_NOSYNC:
1768 	case MADV_AUTOSYNC:
1769 	case MADV_NOCORE:
1770 	case MADV_CORE:
1771 		modify_map = 1;
1772 		vm_map_lock(map);
1773 		break;
1774 	case MADV_WILLNEED:
1775 	case MADV_DONTNEED:
1776 	case MADV_FREE:
1777 		vm_map_lock_read(map);
1778 		break;
1779 	default:
1780 		return (KERN_INVALID_ARGUMENT);
1781 	}
1782 
1783 	/*
1784 	 * Locate starting entry and clip if necessary.
1785 	 */
1786 	VM_MAP_RANGE_CHECK(map, start, end);
1787 
1788 	if (vm_map_lookup_entry(map, start, &entry)) {
1789 		if (modify_map)
1790 			vm_map_clip_start(map, entry, start);
1791 	} else {
1792 		entry = entry->next;
1793 	}
1794 
1795 	if (modify_map) {
1796 		/*
1797 		 * madvise behaviors that are implemented in the vm_map_entry.
1798 		 *
1799 		 * We clip the vm_map_entry so that behavioral changes are
1800 		 * limited to the specified address range.
1801 		 */
1802 		for (current = entry;
1803 		     (current != &map->header) && (current->start < end);
1804 		     current = current->next
1805 		) {
1806 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
1807 				continue;
1808 
1809 			vm_map_clip_end(map, current, end);
1810 
1811 			switch (behav) {
1812 			case MADV_NORMAL:
1813 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
1814 				break;
1815 			case MADV_SEQUENTIAL:
1816 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
1817 				break;
1818 			case MADV_RANDOM:
1819 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
1820 				break;
1821 			case MADV_NOSYNC:
1822 				current->eflags |= MAP_ENTRY_NOSYNC;
1823 				break;
1824 			case MADV_AUTOSYNC:
1825 				current->eflags &= ~MAP_ENTRY_NOSYNC;
1826 				break;
1827 			case MADV_NOCORE:
1828 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
1829 				break;
1830 			case MADV_CORE:
1831 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
1832 				break;
1833 			default:
1834 				break;
1835 			}
1836 			vm_map_simplify_entry(map, current);
1837 		}
1838 		vm_map_unlock(map);
1839 	} else {
1840 		vm_pindex_t pindex;
1841 		int count;
1842 
1843 		/*
1844 		 * madvise behaviors that are implemented in the underlying
1845 		 * vm_object.
1846 		 *
1847 		 * Since we don't clip the vm_map_entry, we have to clip
1848 		 * the vm_object pindex and count.
1849 		 */
1850 		for (current = entry;
1851 		     (current != &map->header) && (current->start < end);
1852 		     current = current->next
1853 		) {
1854 			vm_offset_t useStart;
1855 
1856 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
1857 				continue;
1858 
1859 			pindex = OFF_TO_IDX(current->offset);
1860 			count = atop(current->end - current->start);
1861 			useStart = current->start;
1862 
1863 			if (current->start < start) {
1864 				pindex += atop(start - current->start);
1865 				count -= atop(start - current->start);
1866 				useStart = start;
1867 			}
1868 			if (current->end > end)
1869 				count -= atop(current->end - end);
1870 
1871 			if (count <= 0)
1872 				continue;
1873 
1874 			vm_object_madvise(current->object.vm_object,
1875 					  pindex, count, behav);
1876 			if (behav == MADV_WILLNEED) {
1877 				vm_map_pmap_enter(map,
1878 				    useStart,
1879 				    current->protection,
1880 				    current->object.vm_object,
1881 				    pindex,
1882 				    (count << PAGE_SHIFT),
1883 				    MAP_PREFAULT_MADVISE
1884 				);
1885 			}
1886 		}
1887 		vm_map_unlock_read(map);
1888 	}
1889 	return (0);
1890 }
1891 
1892 
1893 /*
1894  *	vm_map_inherit:
1895  *
1896  *	Sets the inheritance of the specified address
1897  *	range in the target map.  Inheritance
1898  *	affects how the map will be shared with
1899  *	child maps at the time of vmspace_fork.
1900  */
1901 int
1902 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
1903 	       vm_inherit_t new_inheritance)
1904 {
1905 	vm_map_entry_t entry;
1906 	vm_map_entry_t temp_entry;
1907 
1908 	switch (new_inheritance) {
1909 	case VM_INHERIT_NONE:
1910 	case VM_INHERIT_COPY:
1911 	case VM_INHERIT_SHARE:
1912 		break;
1913 	default:
1914 		return (KERN_INVALID_ARGUMENT);
1915 	}
1916 	vm_map_lock(map);
1917 	VM_MAP_RANGE_CHECK(map, start, end);
1918 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
1919 		entry = temp_entry;
1920 		vm_map_clip_start(map, entry, start);
1921 	} else
1922 		entry = temp_entry->next;
1923 	while ((entry != &map->header) && (entry->start < end)) {
1924 		vm_map_clip_end(map, entry, end);
1925 		entry->inheritance = new_inheritance;
1926 		vm_map_simplify_entry(map, entry);
1927 		entry = entry->next;
1928 	}
1929 	vm_map_unlock(map);
1930 	return (KERN_SUCCESS);
1931 }
1932 
1933 /*
1934  *	vm_map_unwire:
1935  *
1936  *	Implements both kernel and user unwiring.
1937  */
1938 int
1939 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1940     int flags)
1941 {
1942 	vm_map_entry_t entry, first_entry, tmp_entry;
1943 	vm_offset_t saved_start;
1944 	unsigned int last_timestamp;
1945 	int rv;
1946 	boolean_t need_wakeup, result, user_unwire;
1947 
1948 	user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
1949 	vm_map_lock(map);
1950 	VM_MAP_RANGE_CHECK(map, start, end);
1951 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
1952 		if (flags & VM_MAP_WIRE_HOLESOK)
1953 			first_entry = first_entry->next;
1954 		else {
1955 			vm_map_unlock(map);
1956 			return (KERN_INVALID_ADDRESS);
1957 		}
1958 	}
1959 	last_timestamp = map->timestamp;
1960 	entry = first_entry;
1961 	while (entry != &map->header && entry->start < end) {
1962 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1963 			/*
1964 			 * We have not yet clipped the entry.
1965 			 */
1966 			saved_start = (start >= entry->start) ? start :
1967 			    entry->start;
1968 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1969 			if (vm_map_unlock_and_wait(map, 0)) {
1970 				/*
1971 				 * Allow interruption of user unwiring?
1972 				 */
1973 			}
1974 			vm_map_lock(map);
1975 			if (last_timestamp+1 != map->timestamp) {
1976 				/*
1977 				 * Look again for the entry because the map was
1978 				 * modified while it was unlocked.
1979 				 * Specifically, the entry may have been
1980 				 * clipped, merged, or deleted.
1981 				 */
1982 				if (!vm_map_lookup_entry(map, saved_start,
1983 				    &tmp_entry)) {
1984 					if (flags & VM_MAP_WIRE_HOLESOK)
1985 						tmp_entry = tmp_entry->next;
1986 					else {
1987 						if (saved_start == start) {
1988 							/*
1989 							 * First_entry has been deleted.
1990 							 */
1991 							vm_map_unlock(map);
1992 							return (KERN_INVALID_ADDRESS);
1993 						}
1994 						end = saved_start;
1995 						rv = KERN_INVALID_ADDRESS;
1996 						goto done;
1997 					}
1998 				}
1999 				if (entry == first_entry)
2000 					first_entry = tmp_entry;
2001 				else
2002 					first_entry = NULL;
2003 				entry = tmp_entry;
2004 			}
2005 			last_timestamp = map->timestamp;
2006 			continue;
2007 		}
2008 		vm_map_clip_start(map, entry, start);
2009 		vm_map_clip_end(map, entry, end);
2010 		/*
2011 		 * Mark the entry in case the map lock is released.  (See
2012 		 * above.)
2013 		 */
2014 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2015 		/*
2016 		 * Check the map for holes in the specified region.
2017 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2018 		 */
2019 		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2020 		    (entry->end < end && (entry->next == &map->header ||
2021 		    entry->next->start > entry->end))) {
2022 			end = entry->end;
2023 			rv = KERN_INVALID_ADDRESS;
2024 			goto done;
2025 		}
2026 		/*
2027 		 * If system unwiring, require that the entry is system wired.
2028 		 */
2029 		if (!user_unwire &&
2030 		    vm_map_entry_system_wired_count(entry) == 0) {
2031 			end = entry->end;
2032 			rv = KERN_INVALID_ARGUMENT;
2033 			goto done;
2034 		}
2035 		entry = entry->next;
2036 	}
2037 	rv = KERN_SUCCESS;
2038 done:
2039 	need_wakeup = FALSE;
2040 	if (first_entry == NULL) {
2041 		result = vm_map_lookup_entry(map, start, &first_entry);
2042 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2043 			first_entry = first_entry->next;
2044 		else
2045 			KASSERT(result, ("vm_map_unwire: lookup failed"));
2046 	}
2047 	entry = first_entry;
2048 	while (entry != &map->header && entry->start < end) {
2049 		if (rv == KERN_SUCCESS && (!user_unwire ||
2050 		    (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2051 			if (user_unwire)
2052 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2053 			entry->wired_count--;
2054 			if (entry->wired_count == 0) {
2055 				/*
2056 				 * Retain the map lock.
2057 				 */
2058 				vm_fault_unwire(map, entry->start, entry->end,
2059 				    entry->object.vm_object != NULL &&
2060 				    entry->object.vm_object->type == OBJT_DEVICE);
2061 			}
2062 		}
2063 		KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
2064 			("vm_map_unwire: in-transition flag missing"));
2065 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2066 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2067 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2068 			need_wakeup = TRUE;
2069 		}
2070 		vm_map_simplify_entry(map, entry);
2071 		entry = entry->next;
2072 	}
2073 	vm_map_unlock(map);
2074 	if (need_wakeup)
2075 		vm_map_wakeup(map);
2076 	return (rv);
2077 }
2078 
2079 /*
2080  *	vm_map_wire:
2081  *
2082  *	Implements both kernel and user wiring.
2083  */
2084 int
2085 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2086     int flags)
2087 {
2088 	vm_map_entry_t entry, first_entry, tmp_entry;
2089 	vm_offset_t saved_end, saved_start;
2090 	unsigned int last_timestamp;
2091 	int rv;
2092 	boolean_t fictitious, need_wakeup, result, user_wire;
2093 
2094 	user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2095 	vm_map_lock(map);
2096 	VM_MAP_RANGE_CHECK(map, start, end);
2097 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2098 		if (flags & VM_MAP_WIRE_HOLESOK)
2099 			first_entry = first_entry->next;
2100 		else {
2101 			vm_map_unlock(map);
2102 			return (KERN_INVALID_ADDRESS);
2103 		}
2104 	}
2105 	last_timestamp = map->timestamp;
2106 	entry = first_entry;
2107 	while (entry != &map->header && entry->start < end) {
2108 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2109 			/*
2110 			 * We have not yet clipped the entry.
2111 			 */
2112 			saved_start = (start >= entry->start) ? start :
2113 			    entry->start;
2114 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2115 			if (vm_map_unlock_and_wait(map, 0)) {
2116 				/*
2117 				 * Allow interruption of user wiring?
2118 				 */
2119 			}
2120 			vm_map_lock(map);
2121 			if (last_timestamp + 1 != map->timestamp) {
2122 				/*
2123 				 * Look again for the entry because the map was
2124 				 * modified while it was unlocked.
2125 				 * Specifically, the entry may have been
2126 				 * clipped, merged, or deleted.
2127 				 */
2128 				if (!vm_map_lookup_entry(map, saved_start,
2129 				    &tmp_entry)) {
2130 					if (flags & VM_MAP_WIRE_HOLESOK)
2131 						tmp_entry = tmp_entry->next;
2132 					else {
2133 						if (saved_start == start) {
2134 							/*
2135 							 * first_entry has been deleted.
2136 							 */
2137 							vm_map_unlock(map);
2138 							return (KERN_INVALID_ADDRESS);
2139 						}
2140 						end = saved_start;
2141 						rv = KERN_INVALID_ADDRESS;
2142 						goto done;
2143 					}
2144 				}
2145 				if (entry == first_entry)
2146 					first_entry = tmp_entry;
2147 				else
2148 					first_entry = NULL;
2149 				entry = tmp_entry;
2150 			}
2151 			last_timestamp = map->timestamp;
2152 			continue;
2153 		}
2154 		vm_map_clip_start(map, entry, start);
2155 		vm_map_clip_end(map, entry, end);
2156 		/*
2157 		 * Mark the entry in case the map lock is released.  (See
2158 		 * above.)
2159 		 */
2160 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2161 		/*
2162 		 *
2163 		 */
2164 		if (entry->wired_count == 0) {
2165 			entry->wired_count++;
2166 			saved_start = entry->start;
2167 			saved_end = entry->end;
2168 			fictitious = entry->object.vm_object != NULL &&
2169 			    entry->object.vm_object->type == OBJT_DEVICE;
2170 			/*
2171 			 * Release the map lock, relying on the in-transition
2172 			 * mark.
2173 			 */
2174 			vm_map_unlock(map);
2175 			rv = vm_fault_wire(map, saved_start, saved_end,
2176 			    user_wire, fictitious);
2177 			vm_map_lock(map);
2178 			if (last_timestamp + 1 != map->timestamp) {
2179 				/*
2180 				 * Look again for the entry because the map was
2181 				 * modified while it was unlocked.  The entry
2182 				 * may have been clipped, but NOT merged or
2183 				 * deleted.
2184 				 */
2185 				result = vm_map_lookup_entry(map, saved_start,
2186 				    &tmp_entry);
2187 				KASSERT(result, ("vm_map_wire: lookup failed"));
2188 				if (entry == first_entry)
2189 					first_entry = tmp_entry;
2190 				else
2191 					first_entry = NULL;
2192 				entry = tmp_entry;
2193 				while (entry->end < saved_end) {
2194 					if (rv != KERN_SUCCESS) {
2195 						KASSERT(entry->wired_count == 1,
2196 						    ("vm_map_wire: bad count"));
2197 						entry->wired_count = -1;
2198 					}
2199 					entry = entry->next;
2200 				}
2201 			}
2202 			last_timestamp = map->timestamp;
2203 			if (rv != KERN_SUCCESS) {
2204 				KASSERT(entry->wired_count == 1,
2205 				    ("vm_map_wire: bad count"));
2206 				/*
2207 				 * Assign an out-of-range value to represent
2208 				 * the failure to wire this entry.
2209 				 */
2210 				entry->wired_count = -1;
2211 				end = entry->end;
2212 				goto done;
2213 			}
2214 		} else if (!user_wire ||
2215 			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2216 			entry->wired_count++;
2217 		}
2218 		/*
2219 		 * Check the map for holes in the specified region.
2220 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2221 		 */
2222 		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2223 		    (entry->end < end && (entry->next == &map->header ||
2224 		    entry->next->start > entry->end))) {
2225 			end = entry->end;
2226 			rv = KERN_INVALID_ADDRESS;
2227 			goto done;
2228 		}
2229 		entry = entry->next;
2230 	}
2231 	rv = KERN_SUCCESS;
2232 done:
2233 	need_wakeup = FALSE;
2234 	if (first_entry == NULL) {
2235 		result = vm_map_lookup_entry(map, start, &first_entry);
2236 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2237 			first_entry = first_entry->next;
2238 		else
2239 			KASSERT(result, ("vm_map_wire: lookup failed"));
2240 	}
2241 	entry = first_entry;
2242 	while (entry != &map->header && entry->start < end) {
2243 		if (rv == KERN_SUCCESS) {
2244 			if (user_wire)
2245 				entry->eflags |= MAP_ENTRY_USER_WIRED;
2246 		} else if (entry->wired_count == -1) {
2247 			/*
2248 			 * Wiring failed on this entry.  Thus, unwiring is
2249 			 * unnecessary.
2250 			 */
2251 			entry->wired_count = 0;
2252 		} else {
2253 			if (!user_wire ||
2254 			    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0)
2255 				entry->wired_count--;
2256 			if (entry->wired_count == 0) {
2257 				/*
2258 				 * Retain the map lock.
2259 				 */
2260 				vm_fault_unwire(map, entry->start, entry->end,
2261 				    entry->object.vm_object != NULL &&
2262 				    entry->object.vm_object->type == OBJT_DEVICE);
2263 			}
2264 		}
2265 		KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
2266 			("vm_map_wire: in-transition flag missing"));
2267 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2268 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2269 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2270 			need_wakeup = TRUE;
2271 		}
2272 		vm_map_simplify_entry(map, entry);
2273 		entry = entry->next;
2274 	}
2275 	vm_map_unlock(map);
2276 	if (need_wakeup)
2277 		vm_map_wakeup(map);
2278 	return (rv);
2279 }
2280 
2281 /*
2282  * vm_map_sync
2283  *
2284  * Push any dirty cached pages in the address range to their pager.
2285  * If syncio is TRUE, dirty pages are written synchronously.
2286  * If invalidate is TRUE, any cached pages are freed as well.
2287  *
2288  * If the size of the region from start to end is zero, we are
2289  * supposed to flush all modified pages within the region containing
2290  * start.  Unfortunately, a region can be split or coalesced with
2291  * neighboring regions, making it difficult to determine what the
2292  * original region was.  Therefore, we approximate this requirement by
2293  * flushing the current region containing start.
2294  *
2295  * Returns an error if any part of the specified range is not mapped.
2296  */
2297 int
2298 vm_map_sync(
2299 	vm_map_t map,
2300 	vm_offset_t start,
2301 	vm_offset_t end,
2302 	boolean_t syncio,
2303 	boolean_t invalidate)
2304 {
2305 	vm_map_entry_t current;
2306 	vm_map_entry_t entry;
2307 	vm_size_t size;
2308 	vm_object_t object;
2309 	vm_ooffset_t offset;
2310 	unsigned int last_timestamp;
2311 
2312 	vm_map_lock_read(map);
2313 	VM_MAP_RANGE_CHECK(map, start, end);
2314 	if (!vm_map_lookup_entry(map, start, &entry)) {
2315 		vm_map_unlock_read(map);
2316 		return (KERN_INVALID_ADDRESS);
2317 	} else if (start == end) {
2318 		start = entry->start;
2319 		end = entry->end;
2320 	}
2321 	/*
2322 	 * Make a first pass to check for user-wired memory and holes.
2323 	 */
2324 	for (current = entry; current != &map->header && current->start < end;
2325 	    current = current->next) {
2326 		if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
2327 			vm_map_unlock_read(map);
2328 			return (KERN_INVALID_ARGUMENT);
2329 		}
2330 		if (end > current->end &&
2331 		    (current->next == &map->header ||
2332 			current->end != current->next->start)) {
2333 			vm_map_unlock_read(map);
2334 			return (KERN_INVALID_ADDRESS);
2335 		}
2336 	}
2337 
2338 	if (invalidate)
2339 		pmap_remove(map->pmap, start, end);
2340 
2341 	/*
2342 	 * Make a second pass, cleaning/uncaching pages from the indicated
2343 	 * objects as we go.
2344 	 */
2345 	for (current = entry; current != &map->header && current->start < end;) {
2346 		offset = current->offset + (start - current->start);
2347 		size = (end <= current->end ? end : current->end) - start;
2348 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2349 			vm_map_t smap;
2350 			vm_map_entry_t tentry;
2351 			vm_size_t tsize;
2352 
2353 			smap = current->object.sub_map;
2354 			vm_map_lock_read(smap);
2355 			(void) vm_map_lookup_entry(smap, offset, &tentry);
2356 			tsize = tentry->end - offset;
2357 			if (tsize < size)
2358 				size = tsize;
2359 			object = tentry->object.vm_object;
2360 			offset = tentry->offset + (offset - tentry->start);
2361 			vm_map_unlock_read(smap);
2362 		} else {
2363 			object = current->object.vm_object;
2364 		}
2365 		vm_object_reference(object);
2366 		last_timestamp = map->timestamp;
2367 		vm_map_unlock_read(map);
2368 		vm_object_sync(object, offset, size, syncio, invalidate);
2369 		start += size;
2370 		vm_object_deallocate(object);
2371 		vm_map_lock_read(map);
2372 		if (last_timestamp == map->timestamp ||
2373 		    !vm_map_lookup_entry(map, start, &current))
2374 			current = current->next;
2375 	}
2376 
2377 	vm_map_unlock_read(map);
2378 	return (KERN_SUCCESS);
2379 }
2380 
2381 /*
2382  *	vm_map_entry_unwire:	[ internal use only ]
2383  *
2384  *	Make the region specified by this entry pageable.
2385  *
2386  *	The map in question should be locked.
2387  *	[This is the reason for this routine's existence.]
2388  */
2389 static void
2390 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2391 {
2392 	vm_fault_unwire(map, entry->start, entry->end,
2393 	    entry->object.vm_object != NULL &&
2394 	    entry->object.vm_object->type == OBJT_DEVICE);
2395 	entry->wired_count = 0;
2396 }
2397 
2398 void
2399 vm_map_entry_free_freelist(vm_map_t map, vm_map_entry_t freelist)
2400 {
2401 	vm_map_entry_t e;
2402 	vm_object_t object;
2403 
2404 	while (freelist != NULL) {
2405 		e = freelist;
2406 		freelist = freelist->next;
2407 		if ((e->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2408 			object = e->object.vm_object;
2409 			vm_object_deallocate(object);
2410 		}
2411 		vm_map_entry_dispose(map, e);
2412 	}
2413 }
2414 
2415 /*
2416  *	vm_map_entry_delete:	[ internal use only ]
2417  *
2418  *	Deallocate the given entry from the target map.
2419  */
2420 static void
2421 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
2422 {
2423 	vm_object_t object;
2424 	vm_pindex_t offidxstart, offidxend, count;
2425 
2426 	vm_map_entry_unlink(map, entry);
2427 	map->size -= entry->end - entry->start;
2428 
2429 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2430 	    (object = entry->object.vm_object) != NULL) {
2431 		count = OFF_TO_IDX(entry->end - entry->start);
2432 		offidxstart = OFF_TO_IDX(entry->offset);
2433 		offidxend = offidxstart + count;
2434 		VM_OBJECT_LOCK(object);
2435 		if (object->ref_count != 1 &&
2436 		    ((object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
2437 		    object == kernel_object || object == kmem_object)) {
2438 			vm_object_collapse(object);
2439 			vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2440 			if (object->type == OBJT_SWAP)
2441 				swap_pager_freespace(object, offidxstart, count);
2442 			if (offidxend >= object->size &&
2443 			    offidxstart < object->size)
2444 				object->size = offidxstart;
2445 		}
2446 		VM_OBJECT_UNLOCK(object);
2447 	} else
2448 		entry->object.vm_object = NULL;
2449 }
2450 
2451 /*
2452  *	vm_map_delete:	[ internal use only ]
2453  *
2454  *	Deallocates the given address range from the target
2455  *	map.
2456  */
2457 int
2458 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end,
2459     vm_map_entry_t *freelist)
2460 {
2461 	vm_map_entry_t entry;
2462 	vm_map_entry_t first_entry;
2463 
2464 	/*
2465 	 * Find the start of the region, and clip it
2466 	 */
2467 	if (!vm_map_lookup_entry(map, start, &first_entry))
2468 		entry = first_entry->next;
2469 	else {
2470 		entry = first_entry;
2471 		vm_map_clip_start(map, entry, start);
2472 	}
2473 
2474 	/*
2475 	 * Step through all entries in this region
2476 	 */
2477 	while ((entry != &map->header) && (entry->start < end)) {
2478 		vm_map_entry_t next;
2479 
2480 		/*
2481 		 * Wait for wiring or unwiring of an entry to complete.
2482 		 * Also wait for any system wirings to disappear on
2483 		 * user maps.
2484 		 */
2485 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
2486 		    (vm_map_pmap(map) != kernel_pmap &&
2487 		    vm_map_entry_system_wired_count(entry) != 0)) {
2488 			unsigned int last_timestamp;
2489 			vm_offset_t saved_start;
2490 			vm_map_entry_t tmp_entry;
2491 
2492 			saved_start = entry->start;
2493 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2494 			last_timestamp = map->timestamp;
2495 			(void) vm_map_unlock_and_wait(map, 0);
2496 			vm_map_lock(map);
2497 			if (last_timestamp + 1 != map->timestamp) {
2498 				/*
2499 				 * Look again for the entry because the map was
2500 				 * modified while it was unlocked.
2501 				 * Specifically, the entry may have been
2502 				 * clipped, merged, or deleted.
2503 				 */
2504 				if (!vm_map_lookup_entry(map, saved_start,
2505 							 &tmp_entry))
2506 					entry = tmp_entry->next;
2507 				else {
2508 					entry = tmp_entry;
2509 					vm_map_clip_start(map, entry,
2510 							  saved_start);
2511 				}
2512 			}
2513 			continue;
2514 		}
2515 		vm_map_clip_end(map, entry, end);
2516 
2517 		next = entry->next;
2518 
2519 		/*
2520 		 * Unwire before removing addresses from the pmap; otherwise,
2521 		 * unwiring will put the entries back in the pmap.
2522 		 */
2523 		if (entry->wired_count != 0) {
2524 			vm_map_entry_unwire(map, entry);
2525 		}
2526 
2527 		pmap_remove(map->pmap, entry->start, entry->end);
2528 
2529 		/*
2530 		 * Delete the entry (which may delete the object) only after
2531 		 * removing all pmap entries pointing to its pages.
2532 		 * (Otherwise, its page frames may be reallocated, and any
2533 		 * modify bits will be set in the wrong object!)
2534 		 */
2535 		vm_map_entry_delete(map, entry);
2536 		entry->next = *freelist;
2537 		*freelist = entry;
2538 		entry = next;
2539 	}
2540 	return (KERN_SUCCESS);
2541 }
2542 
2543 /*
2544  *	vm_map_remove:
2545  *
2546  *	Remove the given address range from the target map.
2547  *	This is the exported form of vm_map_delete.
2548  */
2549 int
2550 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2551 {
2552 	vm_map_entry_t freelist;
2553 	int result;
2554 
2555 	freelist = NULL;
2556 	vm_map_lock(map);
2557 	VM_MAP_RANGE_CHECK(map, start, end);
2558 	result = vm_map_delete(map, start, end, &freelist);
2559 	vm_map_unlock(map);
2560 	vm_map_entry_free_freelist(map, freelist);
2561 	return (result);
2562 }
2563 
2564 /*
2565  *	vm_map_check_protection:
2566  *
2567  *	Assert that the target map allows the specified privilege on the
2568  *	entire address region given.  The entire region must be allocated.
2569  *
2570  *	WARNING!  This code does not and should not check whether the
2571  *	contents of the region is accessible.  For example a smaller file
2572  *	might be mapped into a larger address space.
2573  *
2574  *	NOTE!  This code is also called by munmap().
2575  *
2576  *	The map must be locked.  A read lock is sufficient.
2577  */
2578 boolean_t
2579 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2580 			vm_prot_t protection)
2581 {
2582 	vm_map_entry_t entry;
2583 	vm_map_entry_t tmp_entry;
2584 
2585 	if (!vm_map_lookup_entry(map, start, &tmp_entry))
2586 		return (FALSE);
2587 	entry = tmp_entry;
2588 
2589 	while (start < end) {
2590 		if (entry == &map->header)
2591 			return (FALSE);
2592 		/*
2593 		 * No holes allowed!
2594 		 */
2595 		if (start < entry->start)
2596 			return (FALSE);
2597 		/*
2598 		 * Check protection associated with entry.
2599 		 */
2600 		if ((entry->protection & protection) != protection)
2601 			return (FALSE);
2602 		/* go to next entry */
2603 		start = entry->end;
2604 		entry = entry->next;
2605 	}
2606 	return (TRUE);
2607 }
2608 
2609 /*
2610  *	vm_map_copy_entry:
2611  *
2612  *	Copies the contents of the source entry to the destination
2613  *	entry.  The entries *must* be aligned properly.
2614  */
2615 static void
2616 vm_map_copy_entry(
2617 	vm_map_t src_map,
2618 	vm_map_t dst_map,
2619 	vm_map_entry_t src_entry,
2620 	vm_map_entry_t dst_entry)
2621 {
2622 	vm_object_t src_object;
2623 
2624 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
2625 		return;
2626 
2627 	if (src_entry->wired_count == 0) {
2628 
2629 		/*
2630 		 * If the source entry is marked needs_copy, it is already
2631 		 * write-protected.
2632 		 */
2633 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2634 			pmap_protect(src_map->pmap,
2635 			    src_entry->start,
2636 			    src_entry->end,
2637 			    src_entry->protection & ~VM_PROT_WRITE);
2638 		}
2639 
2640 		/*
2641 		 * Make a copy of the object.
2642 		 */
2643 		if ((src_object = src_entry->object.vm_object) != NULL) {
2644 			VM_OBJECT_LOCK(src_object);
2645 			if ((src_object->handle == NULL) &&
2646 				(src_object->type == OBJT_DEFAULT ||
2647 				 src_object->type == OBJT_SWAP)) {
2648 				vm_object_collapse(src_object);
2649 				if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
2650 					vm_object_split(src_entry);
2651 					src_object = src_entry->object.vm_object;
2652 				}
2653 			}
2654 			vm_object_reference_locked(src_object);
2655 			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
2656 			VM_OBJECT_UNLOCK(src_object);
2657 			dst_entry->object.vm_object = src_object;
2658 			src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2659 			dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2660 			dst_entry->offset = src_entry->offset;
2661 		} else {
2662 			dst_entry->object.vm_object = NULL;
2663 			dst_entry->offset = 0;
2664 		}
2665 
2666 		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
2667 		    dst_entry->end - dst_entry->start, src_entry->start);
2668 	} else {
2669 		/*
2670 		 * Of course, wired down pages can't be set copy-on-write.
2671 		 * Cause wired pages to be copied into the new map by
2672 		 * simulating faults (the new pages are pageable)
2673 		 */
2674 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
2675 	}
2676 }
2677 
2678 /*
2679  * vmspace_map_entry_forked:
2680  * Update the newly-forked vmspace each time a map entry is inherited
2681  * or copied.  The values for vm_dsize and vm_tsize are approximate
2682  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
2683  */
2684 static void
2685 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
2686     vm_map_entry_t entry)
2687 {
2688 	vm_size_t entrysize;
2689 	vm_offset_t newend;
2690 
2691 	entrysize = entry->end - entry->start;
2692 	vm2->vm_map.size += entrysize;
2693 	if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
2694 		vm2->vm_ssize += btoc(entrysize);
2695 	} else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
2696 	    entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
2697 		newend = MIN(entry->end,
2698 		    (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
2699 		vm2->vm_dsize += btoc(newend - entry->start);
2700 	} else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
2701 	    entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
2702 		newend = MIN(entry->end,
2703 		    (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
2704 		vm2->vm_tsize += btoc(newend - entry->start);
2705 	}
2706 }
2707 
2708 /*
2709  * vmspace_fork:
2710  * Create a new process vmspace structure and vm_map
2711  * based on those of an existing process.  The new map
2712  * is based on the old map, according to the inheritance
2713  * values on the regions in that map.
2714  *
2715  * XXX It might be worth coalescing the entries added to the new vmspace.
2716  *
2717  * The source map must not be locked.
2718  */
2719 struct vmspace *
2720 vmspace_fork(struct vmspace *vm1)
2721 {
2722 	struct vmspace *vm2;
2723 	vm_map_t old_map = &vm1->vm_map;
2724 	vm_map_t new_map;
2725 	vm_map_entry_t old_entry;
2726 	vm_map_entry_t new_entry;
2727 	vm_object_t object;
2728 	int locked;
2729 
2730 	vm_map_lock(old_map);
2731 
2732 	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
2733 	if (vm2 == NULL)
2734 		goto unlock_and_return;
2735 	vm2->vm_taddr = vm1->vm_taddr;
2736 	vm2->vm_daddr = vm1->vm_daddr;
2737 	vm2->vm_maxsaddr = vm1->vm_maxsaddr;
2738 	new_map = &vm2->vm_map;	/* XXX */
2739 	locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
2740 	KASSERT(locked, ("vmspace_fork: lock failed"));
2741 	new_map->timestamp = 1;
2742 
2743 	old_entry = old_map->header.next;
2744 
2745 	while (old_entry != &old_map->header) {
2746 		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2747 			panic("vm_map_fork: encountered a submap");
2748 
2749 		switch (old_entry->inheritance) {
2750 		case VM_INHERIT_NONE:
2751 			break;
2752 
2753 		case VM_INHERIT_SHARE:
2754 			/*
2755 			 * Clone the entry, creating the shared object if necessary.
2756 			 */
2757 			object = old_entry->object.vm_object;
2758 			if (object == NULL) {
2759 				object = vm_object_allocate(OBJT_DEFAULT,
2760 					atop(old_entry->end - old_entry->start));
2761 				old_entry->object.vm_object = object;
2762 				old_entry->offset = 0;
2763 			}
2764 
2765 			/*
2766 			 * Add the reference before calling vm_object_shadow
2767 			 * to insure that a shadow object is created.
2768 			 */
2769 			vm_object_reference(object);
2770 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
2771 				vm_object_shadow(&old_entry->object.vm_object,
2772 					&old_entry->offset,
2773 					atop(old_entry->end - old_entry->start));
2774 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
2775 				/* Transfer the second reference too. */
2776 				vm_object_reference(
2777 				    old_entry->object.vm_object);
2778 
2779 				/*
2780 				 * As in vm_map_simplify_entry(), the
2781 				 * vnode lock will not be acquired in
2782 				 * this call to vm_object_deallocate().
2783 				 */
2784 				vm_object_deallocate(object);
2785 				object = old_entry->object.vm_object;
2786 			}
2787 			VM_OBJECT_LOCK(object);
2788 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
2789 			VM_OBJECT_UNLOCK(object);
2790 
2791 			/*
2792 			 * Clone the entry, referencing the shared object.
2793 			 */
2794 			new_entry = vm_map_entry_create(new_map);
2795 			*new_entry = *old_entry;
2796 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
2797 			    MAP_ENTRY_IN_TRANSITION);
2798 			new_entry->wired_count = 0;
2799 
2800 			/*
2801 			 * Insert the entry into the new map -- we know we're
2802 			 * inserting at the end of the new map.
2803 			 */
2804 			vm_map_entry_link(new_map, new_map->header.prev,
2805 			    new_entry);
2806 			vmspace_map_entry_forked(vm1, vm2, new_entry);
2807 
2808 			/*
2809 			 * Update the physical map
2810 			 */
2811 			pmap_copy(new_map->pmap, old_map->pmap,
2812 			    new_entry->start,
2813 			    (old_entry->end - old_entry->start),
2814 			    old_entry->start);
2815 			break;
2816 
2817 		case VM_INHERIT_COPY:
2818 			/*
2819 			 * Clone the entry and link into the map.
2820 			 */
2821 			new_entry = vm_map_entry_create(new_map);
2822 			*new_entry = *old_entry;
2823 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
2824 			    MAP_ENTRY_IN_TRANSITION);
2825 			new_entry->wired_count = 0;
2826 			new_entry->object.vm_object = NULL;
2827 			vm_map_entry_link(new_map, new_map->header.prev,
2828 			    new_entry);
2829 			vmspace_map_entry_forked(vm1, vm2, new_entry);
2830 			vm_map_copy_entry(old_map, new_map, old_entry,
2831 			    new_entry);
2832 			break;
2833 		}
2834 		old_entry = old_entry->next;
2835 	}
2836 unlock_and_return:
2837 	vm_map_unlock(old_map);
2838 	if (vm2 != NULL)
2839 		vm_map_unlock(new_map);
2840 
2841 	return (vm2);
2842 }
2843 
2844 int
2845 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
2846     vm_prot_t prot, vm_prot_t max, int cow)
2847 {
2848 	vm_map_entry_t new_entry, prev_entry;
2849 	vm_offset_t bot, top;
2850 	vm_size_t init_ssize;
2851 	int orient, rv;
2852 	rlim_t vmemlim;
2853 
2854 	/*
2855 	 * The stack orientation is piggybacked with the cow argument.
2856 	 * Extract it into orient and mask the cow argument so that we
2857 	 * don't pass it around further.
2858 	 * NOTE: We explicitly allow bi-directional stacks.
2859 	 */
2860 	orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP);
2861 	cow &= ~orient;
2862 	KASSERT(orient != 0, ("No stack grow direction"));
2863 
2864 	if (addrbos < vm_map_min(map) ||
2865 	    addrbos > vm_map_max(map) ||
2866 	    addrbos + max_ssize < addrbos)
2867 		return (KERN_NO_SPACE);
2868 
2869 	init_ssize = (max_ssize < sgrowsiz) ? max_ssize : sgrowsiz;
2870 
2871 	PROC_LOCK(curthread->td_proc);
2872 	vmemlim = lim_cur(curthread->td_proc, RLIMIT_VMEM);
2873 	PROC_UNLOCK(curthread->td_proc);
2874 
2875 	vm_map_lock(map);
2876 
2877 	/* If addr is already mapped, no go */
2878 	if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
2879 		vm_map_unlock(map);
2880 		return (KERN_NO_SPACE);
2881 	}
2882 
2883 	/* If we would blow our VMEM resource limit, no go */
2884 	if (map->size + init_ssize > vmemlim) {
2885 		vm_map_unlock(map);
2886 		return (KERN_NO_SPACE);
2887 	}
2888 
2889 	/*
2890 	 * If we can't accomodate max_ssize in the current mapping, no go.
2891 	 * However, we need to be aware that subsequent user mappings might
2892 	 * map into the space we have reserved for stack, and currently this
2893 	 * space is not protected.
2894 	 *
2895 	 * Hopefully we will at least detect this condition when we try to
2896 	 * grow the stack.
2897 	 */
2898 	if ((prev_entry->next != &map->header) &&
2899 	    (prev_entry->next->start < addrbos + max_ssize)) {
2900 		vm_map_unlock(map);
2901 		return (KERN_NO_SPACE);
2902 	}
2903 
2904 	/*
2905 	 * We initially map a stack of only init_ssize.  We will grow as
2906 	 * needed later.  Depending on the orientation of the stack (i.e.
2907 	 * the grow direction) we either map at the top of the range, the
2908 	 * bottom of the range or in the middle.
2909 	 *
2910 	 * Note: we would normally expect prot and max to be VM_PROT_ALL,
2911 	 * and cow to be 0.  Possibly we should eliminate these as input
2912 	 * parameters, and just pass these values here in the insert call.
2913 	 */
2914 	if (orient == MAP_STACK_GROWS_DOWN)
2915 		bot = addrbos + max_ssize - init_ssize;
2916 	else if (orient == MAP_STACK_GROWS_UP)
2917 		bot = addrbos;
2918 	else
2919 		bot = round_page(addrbos + max_ssize/2 - init_ssize/2);
2920 	top = bot + init_ssize;
2921 	rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
2922 
2923 	/* Now set the avail_ssize amount. */
2924 	if (rv == KERN_SUCCESS) {
2925 		if (prev_entry != &map->header)
2926 			vm_map_clip_end(map, prev_entry, bot);
2927 		new_entry = prev_entry->next;
2928 		if (new_entry->end != top || new_entry->start != bot)
2929 			panic("Bad entry start/end for new stack entry");
2930 
2931 		new_entry->avail_ssize = max_ssize - init_ssize;
2932 		if (orient & MAP_STACK_GROWS_DOWN)
2933 			new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
2934 		if (orient & MAP_STACK_GROWS_UP)
2935 			new_entry->eflags |= MAP_ENTRY_GROWS_UP;
2936 	}
2937 
2938 	vm_map_unlock(map);
2939 	return (rv);
2940 }
2941 
2942 /* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
2943  * desired address is already mapped, or if we successfully grow
2944  * the stack.  Also returns KERN_SUCCESS if addr is outside the
2945  * stack range (this is strange, but preserves compatibility with
2946  * the grow function in vm_machdep.c).
2947  */
2948 int
2949 vm_map_growstack(struct proc *p, vm_offset_t addr)
2950 {
2951 	vm_map_entry_t next_entry, prev_entry;
2952 	vm_map_entry_t new_entry, stack_entry;
2953 	struct vmspace *vm = p->p_vmspace;
2954 	vm_map_t map = &vm->vm_map;
2955 	vm_offset_t end;
2956 	size_t grow_amount, max_grow;
2957 	rlim_t stacklim, vmemlim;
2958 	int is_procstack, rv;
2959 
2960 Retry:
2961 	PROC_LOCK(p);
2962 	stacklim = lim_cur(p, RLIMIT_STACK);
2963 	vmemlim = lim_cur(p, RLIMIT_VMEM);
2964 	PROC_UNLOCK(p);
2965 
2966 	vm_map_lock_read(map);
2967 
2968 	/* If addr is already in the entry range, no need to grow.*/
2969 	if (vm_map_lookup_entry(map, addr, &prev_entry)) {
2970 		vm_map_unlock_read(map);
2971 		return (KERN_SUCCESS);
2972 	}
2973 
2974 	next_entry = prev_entry->next;
2975 	if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) {
2976 		/*
2977 		 * This entry does not grow upwards. Since the address lies
2978 		 * beyond this entry, the next entry (if one exists) has to
2979 		 * be a downward growable entry. The entry list header is
2980 		 * never a growable entry, so it suffices to check the flags.
2981 		 */
2982 		if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) {
2983 			vm_map_unlock_read(map);
2984 			return (KERN_SUCCESS);
2985 		}
2986 		stack_entry = next_entry;
2987 	} else {
2988 		/*
2989 		 * This entry grows upward. If the next entry does not at
2990 		 * least grow downwards, this is the entry we need to grow.
2991 		 * otherwise we have two possible choices and we have to
2992 		 * select one.
2993 		 */
2994 		if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) {
2995 			/*
2996 			 * We have two choices; grow the entry closest to
2997 			 * the address to minimize the amount of growth.
2998 			 */
2999 			if (addr - prev_entry->end <= next_entry->start - addr)
3000 				stack_entry = prev_entry;
3001 			else
3002 				stack_entry = next_entry;
3003 		} else
3004 			stack_entry = prev_entry;
3005 	}
3006 
3007 	if (stack_entry == next_entry) {
3008 		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo"));
3009 		KASSERT(addr < stack_entry->start, ("foo"));
3010 		end = (prev_entry != &map->header) ? prev_entry->end :
3011 		    stack_entry->start - stack_entry->avail_ssize;
3012 		grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE);
3013 		max_grow = stack_entry->start - end;
3014 	} else {
3015 		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo"));
3016 		KASSERT(addr >= stack_entry->end, ("foo"));
3017 		end = (next_entry != &map->header) ? next_entry->start :
3018 		    stack_entry->end + stack_entry->avail_ssize;
3019 		grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE);
3020 		max_grow = end - stack_entry->end;
3021 	}
3022 
3023 	if (grow_amount > stack_entry->avail_ssize) {
3024 		vm_map_unlock_read(map);
3025 		return (KERN_NO_SPACE);
3026 	}
3027 
3028 	/*
3029 	 * If there is no longer enough space between the entries nogo, and
3030 	 * adjust the available space.  Note: this  should only happen if the
3031 	 * user has mapped into the stack area after the stack was created,
3032 	 * and is probably an error.
3033 	 *
3034 	 * This also effectively destroys any guard page the user might have
3035 	 * intended by limiting the stack size.
3036 	 */
3037 	if (grow_amount > max_grow) {
3038 		if (vm_map_lock_upgrade(map))
3039 			goto Retry;
3040 
3041 		stack_entry->avail_ssize = max_grow;
3042 
3043 		vm_map_unlock(map);
3044 		return (KERN_NO_SPACE);
3045 	}
3046 
3047 	is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr) ? 1 : 0;
3048 
3049 	/*
3050 	 * If this is the main process stack, see if we're over the stack
3051 	 * limit.
3052 	 */
3053 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3054 		vm_map_unlock_read(map);
3055 		return (KERN_NO_SPACE);
3056 	}
3057 
3058 	/* Round up the grow amount modulo SGROWSIZ */
3059 	grow_amount = roundup (grow_amount, sgrowsiz);
3060 	if (grow_amount > stack_entry->avail_ssize)
3061 		grow_amount = stack_entry->avail_ssize;
3062 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3063 		grow_amount = stacklim - ctob(vm->vm_ssize);
3064 	}
3065 
3066 	/* If we would blow our VMEM resource limit, no go */
3067 	if (map->size + grow_amount > vmemlim) {
3068 		vm_map_unlock_read(map);
3069 		return (KERN_NO_SPACE);
3070 	}
3071 
3072 	if (vm_map_lock_upgrade(map))
3073 		goto Retry;
3074 
3075 	if (stack_entry == next_entry) {
3076 		/*
3077 		 * Growing downward.
3078 		 */
3079 		/* Get the preliminary new entry start value */
3080 		addr = stack_entry->start - grow_amount;
3081 
3082 		/*
3083 		 * If this puts us into the previous entry, cut back our
3084 		 * growth to the available space. Also, see the note above.
3085 		 */
3086 		if (addr < end) {
3087 			stack_entry->avail_ssize = max_grow;
3088 			addr = end;
3089 		}
3090 
3091 		rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start,
3092 		    p->p_sysent->sv_stackprot, VM_PROT_ALL, 0);
3093 
3094 		/* Adjust the available stack space by the amount we grew. */
3095 		if (rv == KERN_SUCCESS) {
3096 			if (prev_entry != &map->header)
3097 				vm_map_clip_end(map, prev_entry, addr);
3098 			new_entry = prev_entry->next;
3099 			KASSERT(new_entry == stack_entry->prev, ("foo"));
3100 			KASSERT(new_entry->end == stack_entry->start, ("foo"));
3101 			KASSERT(new_entry->start == addr, ("foo"));
3102 			grow_amount = new_entry->end - new_entry->start;
3103 			new_entry->avail_ssize = stack_entry->avail_ssize -
3104 			    grow_amount;
3105 			stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN;
3106 			new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
3107 		}
3108 	} else {
3109 		/*
3110 		 * Growing upward.
3111 		 */
3112 		addr = stack_entry->end + grow_amount;
3113 
3114 		/*
3115 		 * If this puts us into the next entry, cut back our growth
3116 		 * to the available space. Also, see the note above.
3117 		 */
3118 		if (addr > end) {
3119 			stack_entry->avail_ssize = end - stack_entry->end;
3120 			addr = end;
3121 		}
3122 
3123 		grow_amount = addr - stack_entry->end;
3124 
3125 		/* Grow the underlying object if applicable. */
3126 		if (stack_entry->object.vm_object == NULL ||
3127 		    vm_object_coalesce(stack_entry->object.vm_object,
3128 		    stack_entry->offset,
3129 		    (vm_size_t)(stack_entry->end - stack_entry->start),
3130 		    (vm_size_t)grow_amount)) {
3131 			map->size += (addr - stack_entry->end);
3132 			/* Update the current entry. */
3133 			stack_entry->end = addr;
3134 			stack_entry->avail_ssize -= grow_amount;
3135 			vm_map_entry_resize_free(map, stack_entry);
3136 			rv = KERN_SUCCESS;
3137 
3138 			if (next_entry != &map->header)
3139 				vm_map_clip_start(map, next_entry, addr);
3140 		} else
3141 			rv = KERN_FAILURE;
3142 	}
3143 
3144 	if (rv == KERN_SUCCESS && is_procstack)
3145 		vm->vm_ssize += btoc(grow_amount);
3146 
3147 	vm_map_unlock(map);
3148 
3149 	/*
3150 	 * Heed the MAP_WIREFUTURE flag if it was set for this process.
3151 	 */
3152 	if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) {
3153 		vm_map_wire(map,
3154 		    (stack_entry == next_entry) ? addr : addr - grow_amount,
3155 		    (stack_entry == next_entry) ? stack_entry->start : addr,
3156 		    (p->p_flag & P_SYSTEM)
3157 		    ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES
3158 		    : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES);
3159 	}
3160 
3161 	return (rv);
3162 }
3163 
3164 /*
3165  * Unshare the specified VM space for exec.  If other processes are
3166  * mapped to it, then create a new one.  The new vmspace is null.
3167  */
3168 int
3169 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
3170 {
3171 	struct vmspace *oldvmspace = p->p_vmspace;
3172 	struct vmspace *newvmspace;
3173 
3174 	newvmspace = vmspace_alloc(minuser, maxuser);
3175 	if (newvmspace == NULL)
3176 		return (ENOMEM);
3177 	newvmspace->vm_swrss = oldvmspace->vm_swrss;
3178 	/*
3179 	 * This code is written like this for prototype purposes.  The
3180 	 * goal is to avoid running down the vmspace here, but let the
3181 	 * other process's that are still using the vmspace to finally
3182 	 * run it down.  Even though there is little or no chance of blocking
3183 	 * here, it is a good idea to keep this form for future mods.
3184 	 */
3185 	PROC_VMSPACE_LOCK(p);
3186 	p->p_vmspace = newvmspace;
3187 	PROC_VMSPACE_UNLOCK(p);
3188 	if (p == curthread->td_proc)
3189 		pmap_activate(curthread);
3190 	vmspace_free(oldvmspace);
3191 	return (0);
3192 }
3193 
3194 /*
3195  * Unshare the specified VM space for forcing COW.  This
3196  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3197  */
3198 int
3199 vmspace_unshare(struct proc *p)
3200 {
3201 	struct vmspace *oldvmspace = p->p_vmspace;
3202 	struct vmspace *newvmspace;
3203 
3204 	if (oldvmspace->vm_refcnt == 1)
3205 		return (0);
3206 	newvmspace = vmspace_fork(oldvmspace);
3207 	if (newvmspace == NULL)
3208 		return (ENOMEM);
3209 	PROC_VMSPACE_LOCK(p);
3210 	p->p_vmspace = newvmspace;
3211 	PROC_VMSPACE_UNLOCK(p);
3212 	if (p == curthread->td_proc)
3213 		pmap_activate(curthread);
3214 	vmspace_free(oldvmspace);
3215 	return (0);
3216 }
3217 
3218 /*
3219  *	vm_map_lookup:
3220  *
3221  *	Finds the VM object, offset, and
3222  *	protection for a given virtual address in the
3223  *	specified map, assuming a page fault of the
3224  *	type specified.
3225  *
3226  *	Leaves the map in question locked for read; return
3227  *	values are guaranteed until a vm_map_lookup_done
3228  *	call is performed.  Note that the map argument
3229  *	is in/out; the returned map must be used in
3230  *	the call to vm_map_lookup_done.
3231  *
3232  *	A handle (out_entry) is returned for use in
3233  *	vm_map_lookup_done, to make that fast.
3234  *
3235  *	If a lookup is requested with "write protection"
3236  *	specified, the map may be changed to perform virtual
3237  *	copying operations, although the data referenced will
3238  *	remain the same.
3239  */
3240 int
3241 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
3242 	      vm_offset_t vaddr,
3243 	      vm_prot_t fault_typea,
3244 	      vm_map_entry_t *out_entry,	/* OUT */
3245 	      vm_object_t *object,		/* OUT */
3246 	      vm_pindex_t *pindex,		/* OUT */
3247 	      vm_prot_t *out_prot,		/* OUT */
3248 	      boolean_t *wired)			/* OUT */
3249 {
3250 	vm_map_entry_t entry;
3251 	vm_map_t map = *var_map;
3252 	vm_prot_t prot;
3253 	vm_prot_t fault_type = fault_typea;
3254 
3255 RetryLookup:;
3256 
3257 	vm_map_lock_read(map);
3258 
3259 	/*
3260 	 * Lookup the faulting address.
3261 	 */
3262 	if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
3263 		vm_map_unlock_read(map);
3264 		return (KERN_INVALID_ADDRESS);
3265 	}
3266 
3267 	entry = *out_entry;
3268 
3269 	/*
3270 	 * Handle submaps.
3271 	 */
3272 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3273 		vm_map_t old_map = map;
3274 
3275 		*var_map = map = entry->object.sub_map;
3276 		vm_map_unlock_read(old_map);
3277 		goto RetryLookup;
3278 	}
3279 
3280 	/*
3281 	 * Check whether this task is allowed to have this page.
3282 	 * Note the special case for MAP_ENTRY_COW
3283 	 * pages with an override.  This is to implement a forced
3284 	 * COW for debuggers.
3285 	 */
3286 	if (fault_type & VM_PROT_OVERRIDE_WRITE)
3287 		prot = entry->max_protection;
3288 	else
3289 		prot = entry->protection;
3290 	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3291 	if ((fault_type & prot) != fault_type) {
3292 		vm_map_unlock_read(map);
3293 		return (KERN_PROTECTION_FAILURE);
3294 	}
3295 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3296 	    (entry->eflags & MAP_ENTRY_COW) &&
3297 	    (fault_type & VM_PROT_WRITE) &&
3298 	    (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
3299 		vm_map_unlock_read(map);
3300 		return (KERN_PROTECTION_FAILURE);
3301 	}
3302 
3303 	/*
3304 	 * If this page is not pageable, we have to get it for all possible
3305 	 * accesses.
3306 	 */
3307 	*wired = (entry->wired_count != 0);
3308 	if (*wired)
3309 		prot = fault_type = entry->protection;
3310 
3311 	/*
3312 	 * If the entry was copy-on-write, we either ...
3313 	 */
3314 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3315 		/*
3316 		 * If we want to write the page, we may as well handle that
3317 		 * now since we've got the map locked.
3318 		 *
3319 		 * If we don't need to write the page, we just demote the
3320 		 * permissions allowed.
3321 		 */
3322 		if (fault_type & VM_PROT_WRITE) {
3323 			/*
3324 			 * Make a new object, and place it in the object
3325 			 * chain.  Note that no new references have appeared
3326 			 * -- one just moved from the map to the new
3327 			 * object.
3328 			 */
3329 			if (vm_map_lock_upgrade(map))
3330 				goto RetryLookup;
3331 
3332 			vm_object_shadow(
3333 			    &entry->object.vm_object,
3334 			    &entry->offset,
3335 			    atop(entry->end - entry->start));
3336 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3337 
3338 			vm_map_lock_downgrade(map);
3339 		} else {
3340 			/*
3341 			 * We're attempting to read a copy-on-write page --
3342 			 * don't allow writes.
3343 			 */
3344 			prot &= ~VM_PROT_WRITE;
3345 		}
3346 	}
3347 
3348 	/*
3349 	 * Create an object if necessary.
3350 	 */
3351 	if (entry->object.vm_object == NULL &&
3352 	    !map->system_map) {
3353 		if (vm_map_lock_upgrade(map))
3354 			goto RetryLookup;
3355 		entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
3356 		    atop(entry->end - entry->start));
3357 		entry->offset = 0;
3358 		vm_map_lock_downgrade(map);
3359 	}
3360 
3361 	/*
3362 	 * Return the object/offset from this entry.  If the entry was
3363 	 * copy-on-write or empty, it has been fixed up.
3364 	 */
3365 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3366 	*object = entry->object.vm_object;
3367 
3368 	*out_prot = prot;
3369 	return (KERN_SUCCESS);
3370 }
3371 
3372 /*
3373  *	vm_map_lookup_locked:
3374  *
3375  *	Lookup the faulting address.  A version of vm_map_lookup that returns
3376  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
3377  */
3378 int
3379 vm_map_lookup_locked(vm_map_t *var_map,		/* IN/OUT */
3380 		     vm_offset_t vaddr,
3381 		     vm_prot_t fault_typea,
3382 		     vm_map_entry_t *out_entry,	/* OUT */
3383 		     vm_object_t *object,	/* OUT */
3384 		     vm_pindex_t *pindex,	/* OUT */
3385 		     vm_prot_t *out_prot,	/* OUT */
3386 		     boolean_t *wired)		/* OUT */
3387 {
3388 	vm_map_entry_t entry;
3389 	vm_map_t map = *var_map;
3390 	vm_prot_t prot;
3391 	vm_prot_t fault_type = fault_typea;
3392 
3393 	/*
3394 	 * Lookup the faulting address.
3395 	 */
3396 	if (!vm_map_lookup_entry(map, vaddr, out_entry))
3397 		return (KERN_INVALID_ADDRESS);
3398 
3399 	entry = *out_entry;
3400 
3401 	/*
3402 	 * Fail if the entry refers to a submap.
3403 	 */
3404 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3405 		return (KERN_FAILURE);
3406 
3407 	/*
3408 	 * Check whether this task is allowed to have this page.
3409 	 * Note the special case for MAP_ENTRY_COW
3410 	 * pages with an override.  This is to implement a forced
3411 	 * COW for debuggers.
3412 	 */
3413 	if (fault_type & VM_PROT_OVERRIDE_WRITE)
3414 		prot = entry->max_protection;
3415 	else
3416 		prot = entry->protection;
3417 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
3418 	if ((fault_type & prot) != fault_type)
3419 		return (KERN_PROTECTION_FAILURE);
3420 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3421 	    (entry->eflags & MAP_ENTRY_COW) &&
3422 	    (fault_type & VM_PROT_WRITE) &&
3423 	    (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0)
3424 		return (KERN_PROTECTION_FAILURE);
3425 
3426 	/*
3427 	 * If this page is not pageable, we have to get it for all possible
3428 	 * accesses.
3429 	 */
3430 	*wired = (entry->wired_count != 0);
3431 	if (*wired)
3432 		prot = fault_type = entry->protection;
3433 
3434 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3435 		/*
3436 		 * Fail if the entry was copy-on-write for a write fault.
3437 		 */
3438 		if (fault_type & VM_PROT_WRITE)
3439 			return (KERN_FAILURE);
3440 		/*
3441 		 * We're attempting to read a copy-on-write page --
3442 		 * don't allow writes.
3443 		 */
3444 		prot &= ~VM_PROT_WRITE;
3445 	}
3446 
3447 	/*
3448 	 * Fail if an object should be created.
3449 	 */
3450 	if (entry->object.vm_object == NULL && !map->system_map)
3451 		return (KERN_FAILURE);
3452 
3453 	/*
3454 	 * Return the object/offset from this entry.  If the entry was
3455 	 * copy-on-write or empty, it has been fixed up.
3456 	 */
3457 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3458 	*object = entry->object.vm_object;
3459 
3460 	*out_prot = prot;
3461 	return (KERN_SUCCESS);
3462 }
3463 
3464 /*
3465  *	vm_map_lookup_done:
3466  *
3467  *	Releases locks acquired by a vm_map_lookup
3468  *	(according to the handle returned by that lookup).
3469  */
3470 void
3471 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
3472 {
3473 	/*
3474 	 * Unlock the main-level map
3475 	 */
3476 	vm_map_unlock_read(map);
3477 }
3478 
3479 #include "opt_ddb.h"
3480 #ifdef DDB
3481 #include <sys/kernel.h>
3482 
3483 #include <ddb/ddb.h>
3484 
3485 /*
3486  *	vm_map_print:	[ debug ]
3487  */
3488 DB_SHOW_COMMAND(map, vm_map_print)
3489 {
3490 	static int nlines;
3491 	/* XXX convert args. */
3492 	vm_map_t map = (vm_map_t)addr;
3493 	boolean_t full = have_addr;
3494 
3495 	vm_map_entry_t entry;
3496 
3497 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
3498 	    (void *)map,
3499 	    (void *)map->pmap, map->nentries, map->timestamp);
3500 	nlines++;
3501 
3502 	if (!full && db_indent)
3503 		return;
3504 
3505 	db_indent += 2;
3506 	for (entry = map->header.next; entry != &map->header;
3507 	    entry = entry->next) {
3508 		db_iprintf("map entry %p: start=%p, end=%p\n",
3509 		    (void *)entry, (void *)entry->start, (void *)entry->end);
3510 		nlines++;
3511 		{
3512 			static char *inheritance_name[4] =
3513 			{"share", "copy", "none", "donate_copy"};
3514 
3515 			db_iprintf(" prot=%x/%x/%s",
3516 			    entry->protection,
3517 			    entry->max_protection,
3518 			    inheritance_name[(int)(unsigned char)entry->inheritance]);
3519 			if (entry->wired_count != 0)
3520 				db_printf(", wired");
3521 		}
3522 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3523 			db_printf(", share=%p, offset=0x%jx\n",
3524 			    (void *)entry->object.sub_map,
3525 			    (uintmax_t)entry->offset);
3526 			nlines++;
3527 			if ((entry->prev == &map->header) ||
3528 			    (entry->prev->object.sub_map !=
3529 				entry->object.sub_map)) {
3530 				db_indent += 2;
3531 				vm_map_print((db_expr_t)(intptr_t)
3532 					     entry->object.sub_map,
3533 					     full, 0, (char *)0);
3534 				db_indent -= 2;
3535 			}
3536 		} else {
3537 			db_printf(", object=%p, offset=0x%jx",
3538 			    (void *)entry->object.vm_object,
3539 			    (uintmax_t)entry->offset);
3540 			if (entry->eflags & MAP_ENTRY_COW)
3541 				db_printf(", copy (%s)",
3542 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
3543 			db_printf("\n");
3544 			nlines++;
3545 
3546 			if ((entry->prev == &map->header) ||
3547 			    (entry->prev->object.vm_object !=
3548 				entry->object.vm_object)) {
3549 				db_indent += 2;
3550 				vm_object_print((db_expr_t)(intptr_t)
3551 						entry->object.vm_object,
3552 						full, 0, (char *)0);
3553 				nlines += 4;
3554 				db_indent -= 2;
3555 			}
3556 		}
3557 	}
3558 	db_indent -= 2;
3559 	if (db_indent == 0)
3560 		nlines = 0;
3561 }
3562 
3563 
3564 DB_SHOW_COMMAND(procvm, procvm)
3565 {
3566 	struct proc *p;
3567 
3568 	if (have_addr) {
3569 		p = (struct proc *) addr;
3570 	} else {
3571 		p = curproc;
3572 	}
3573 
3574 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
3575 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
3576 	    (void *)vmspace_pmap(p->p_vmspace));
3577 
3578 	vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
3579 }
3580 
3581 #endif /* DDB */
3582