xref: /freebsd/sys/vm/vm_map.c (revision 7aa65846327fe5bc7e5961c2f7fd0c61f2ec0b01)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60 
61 /*
62  *	Virtual memory mapping module.
63  */
64 
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67 
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/kernel.h>
71 #include <sys/ktr.h>
72 #include <sys/lock.h>
73 #include <sys/mutex.h>
74 #include <sys/proc.h>
75 #include <sys/vmmeter.h>
76 #include <sys/mman.h>
77 #include <sys/vnode.h>
78 #include <sys/racct.h>
79 #include <sys/resourcevar.h>
80 #include <sys/file.h>
81 #include <sys/sysctl.h>
82 #include <sys/sysent.h>
83 #include <sys/shm.h>
84 
85 #include <vm/vm.h>
86 #include <vm/vm_param.h>
87 #include <vm/pmap.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_page.h>
90 #include <vm/vm_object.h>
91 #include <vm/vm_pager.h>
92 #include <vm/vm_kern.h>
93 #include <vm/vm_extern.h>
94 #include <vm/vnode_pager.h>
95 #include <vm/swap_pager.h>
96 #include <vm/uma.h>
97 
98 /*
99  *	Virtual memory maps provide for the mapping, protection,
100  *	and sharing of virtual memory objects.  In addition,
101  *	this module provides for an efficient virtual copy of
102  *	memory from one map to another.
103  *
104  *	Synchronization is required prior to most operations.
105  *
106  *	Maps consist of an ordered doubly-linked list of simple
107  *	entries; a self-adjusting binary search tree of these
108  *	entries is used to speed up lookups.
109  *
110  *	Since portions of maps are specified by start/end addresses,
111  *	which may not align with existing map entries, all
112  *	routines merely "clip" entries to these start/end values.
113  *	[That is, an entry is split into two, bordering at a
114  *	start or end value.]  Note that these clippings may not
115  *	always be necessary (as the two resulting entries are then
116  *	not changed); however, the clipping is done for convenience.
117  *
118  *	As mentioned above, virtual copy operations are performed
119  *	by copying VM object references from one map to
120  *	another, and then marking both regions as copy-on-write.
121  */
122 
123 static struct mtx map_sleep_mtx;
124 static uma_zone_t mapentzone;
125 static uma_zone_t kmapentzone;
126 static uma_zone_t mapzone;
127 static uma_zone_t vmspace_zone;
128 static struct vm_object kmapentobj;
129 static int vmspace_zinit(void *mem, int size, int flags);
130 static void vmspace_zfini(void *mem, int size);
131 static int vm_map_zinit(void *mem, int ize, int flags);
132 static void vm_map_zfini(void *mem, int size);
133 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
134     vm_offset_t max);
135 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
136 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
137 #ifdef INVARIANTS
138 static void vm_map_zdtor(void *mem, int size, void *arg);
139 static void vmspace_zdtor(void *mem, int size, void *arg);
140 #endif
141 
142 #define	ENTRY_CHARGED(e) ((e)->cred != NULL || \
143     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
144      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
145 
146 /*
147  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
148  * stable.
149  */
150 #define PROC_VMSPACE_LOCK(p) do { } while (0)
151 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
152 
153 /*
154  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
155  *
156  *	Asserts that the starting and ending region
157  *	addresses fall within the valid range of the map.
158  */
159 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
160 		{					\
161 		if (start < vm_map_min(map))		\
162 			start = vm_map_min(map);	\
163 		if (end > vm_map_max(map))		\
164 			end = vm_map_max(map);		\
165 		if (start > end)			\
166 			start = end;			\
167 		}
168 
169 /*
170  *	vm_map_startup:
171  *
172  *	Initialize the vm_map module.  Must be called before
173  *	any other vm_map routines.
174  *
175  *	Map and entry structures are allocated from the general
176  *	purpose memory pool with some exceptions:
177  *
178  *	- The kernel map and kmem submap are allocated statically.
179  *	- Kernel map entries are allocated out of a static pool.
180  *
181  *	These restrictions are necessary since malloc() uses the
182  *	maps and requires map entries.
183  */
184 
185 void
186 vm_map_startup(void)
187 {
188 	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
189 	mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
190 #ifdef INVARIANTS
191 	    vm_map_zdtor,
192 #else
193 	    NULL,
194 #endif
195 	    vm_map_zinit, vm_map_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
196 	uma_prealloc(mapzone, MAX_KMAP);
197 	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
198 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
199 	    UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
200 	uma_prealloc(kmapentzone, MAX_KMAPENT);
201 	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
202 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
203 }
204 
205 static void
206 vmspace_zfini(void *mem, int size)
207 {
208 	struct vmspace *vm;
209 
210 	vm = (struct vmspace *)mem;
211 	vm_map_zfini(&vm->vm_map, sizeof(vm->vm_map));
212 }
213 
214 static int
215 vmspace_zinit(void *mem, int size, int flags)
216 {
217 	struct vmspace *vm;
218 
219 	vm = (struct vmspace *)mem;
220 
221 	vm->vm_map.pmap = NULL;
222 	(void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
223 	return (0);
224 }
225 
226 static void
227 vm_map_zfini(void *mem, int size)
228 {
229 	vm_map_t map;
230 
231 	map = (vm_map_t)mem;
232 	mtx_destroy(&map->system_mtx);
233 	sx_destroy(&map->lock);
234 }
235 
236 static int
237 vm_map_zinit(void *mem, int size, int flags)
238 {
239 	vm_map_t map;
240 
241 	map = (vm_map_t)mem;
242 	map->nentries = 0;
243 	map->size = 0;
244 	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
245 	sx_init(&map->lock, "user map");
246 	return (0);
247 }
248 
249 #ifdef INVARIANTS
250 static void
251 vmspace_zdtor(void *mem, int size, void *arg)
252 {
253 	struct vmspace *vm;
254 
255 	vm = (struct vmspace *)mem;
256 
257 	vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
258 }
259 static void
260 vm_map_zdtor(void *mem, int size, void *arg)
261 {
262 	vm_map_t map;
263 
264 	map = (vm_map_t)mem;
265 	KASSERT(map->nentries == 0,
266 	    ("map %p nentries == %d on free.",
267 	    map, map->nentries));
268 	KASSERT(map->size == 0,
269 	    ("map %p size == %lu on free.",
270 	    map, (unsigned long)map->size));
271 }
272 #endif	/* INVARIANTS */
273 
274 /*
275  * Allocate a vmspace structure, including a vm_map and pmap,
276  * and initialize those structures.  The refcnt is set to 1.
277  */
278 struct vmspace *
279 vmspace_alloc(min, max)
280 	vm_offset_t min, max;
281 {
282 	struct vmspace *vm;
283 
284 	vm = uma_zalloc(vmspace_zone, M_WAITOK);
285 	if (vm->vm_map.pmap == NULL && !pmap_pinit(vmspace_pmap(vm))) {
286 		uma_zfree(vmspace_zone, vm);
287 		return (NULL);
288 	}
289 	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
290 	_vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
291 	vm->vm_refcnt = 1;
292 	vm->vm_shm = NULL;
293 	vm->vm_swrss = 0;
294 	vm->vm_tsize = 0;
295 	vm->vm_dsize = 0;
296 	vm->vm_ssize = 0;
297 	vm->vm_taddr = 0;
298 	vm->vm_daddr = 0;
299 	vm->vm_maxsaddr = 0;
300 	return (vm);
301 }
302 
303 void
304 vm_init2(void)
305 {
306 	uma_zone_set_obj(kmapentzone, &kmapentobj, lmin(cnt.v_page_count,
307 	    (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) / PAGE_SIZE) / 8 +
308 	     maxproc * 2 + maxfiles);
309 	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
310 #ifdef INVARIANTS
311 	    vmspace_zdtor,
312 #else
313 	    NULL,
314 #endif
315 	    vmspace_zinit, vmspace_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
316 }
317 
318 static void
319 vmspace_container_reset(struct proc *p)
320 {
321 
322 #ifdef RACCT
323 	PROC_LOCK(p);
324 	racct_set(p, RACCT_DATA, 0);
325 	racct_set(p, RACCT_STACK, 0);
326 	racct_set(p, RACCT_RSS, 0);
327 	racct_set(p, RACCT_MEMLOCK, 0);
328 	racct_set(p, RACCT_VMEM, 0);
329 	PROC_UNLOCK(p);
330 #endif
331 }
332 
333 static inline void
334 vmspace_dofree(struct vmspace *vm)
335 {
336 
337 	CTR1(KTR_VM, "vmspace_free: %p", vm);
338 
339 	/*
340 	 * Make sure any SysV shm is freed, it might not have been in
341 	 * exit1().
342 	 */
343 	shmexit(vm);
344 
345 	/*
346 	 * Lock the map, to wait out all other references to it.
347 	 * Delete all of the mappings and pages they hold, then call
348 	 * the pmap module to reclaim anything left.
349 	 */
350 	(void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset,
351 	    vm->vm_map.max_offset);
352 
353 	pmap_release(vmspace_pmap(vm));
354 	vm->vm_map.pmap = NULL;
355 	uma_zfree(vmspace_zone, vm);
356 }
357 
358 void
359 vmspace_free(struct vmspace *vm)
360 {
361 
362 	if (vm->vm_refcnt == 0)
363 		panic("vmspace_free: attempt to free already freed vmspace");
364 
365 	if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
366 		vmspace_dofree(vm);
367 }
368 
369 void
370 vmspace_exitfree(struct proc *p)
371 {
372 	struct vmspace *vm;
373 
374 	PROC_VMSPACE_LOCK(p);
375 	vm = p->p_vmspace;
376 	p->p_vmspace = NULL;
377 	PROC_VMSPACE_UNLOCK(p);
378 	KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
379 	vmspace_free(vm);
380 }
381 
382 void
383 vmspace_exit(struct thread *td)
384 {
385 	int refcnt;
386 	struct vmspace *vm;
387 	struct proc *p;
388 
389 	/*
390 	 * Release user portion of address space.
391 	 * This releases references to vnodes,
392 	 * which could cause I/O if the file has been unlinked.
393 	 * Need to do this early enough that we can still sleep.
394 	 *
395 	 * The last exiting process to reach this point releases as
396 	 * much of the environment as it can. vmspace_dofree() is the
397 	 * slower fallback in case another process had a temporary
398 	 * reference to the vmspace.
399 	 */
400 
401 	p = td->td_proc;
402 	vm = p->p_vmspace;
403 	atomic_add_int(&vmspace0.vm_refcnt, 1);
404 	do {
405 		refcnt = vm->vm_refcnt;
406 		if (refcnt > 1 && p->p_vmspace != &vmspace0) {
407 			/* Switch now since other proc might free vmspace */
408 			PROC_VMSPACE_LOCK(p);
409 			p->p_vmspace = &vmspace0;
410 			PROC_VMSPACE_UNLOCK(p);
411 			pmap_activate(td);
412 		}
413 	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
414 	if (refcnt == 1) {
415 		if (p->p_vmspace != vm) {
416 			/* vmspace not yet freed, switch back */
417 			PROC_VMSPACE_LOCK(p);
418 			p->p_vmspace = vm;
419 			PROC_VMSPACE_UNLOCK(p);
420 			pmap_activate(td);
421 		}
422 		pmap_remove_pages(vmspace_pmap(vm));
423 		/* Switch now since this proc will free vmspace */
424 		PROC_VMSPACE_LOCK(p);
425 		p->p_vmspace = &vmspace0;
426 		PROC_VMSPACE_UNLOCK(p);
427 		pmap_activate(td);
428 		vmspace_dofree(vm);
429 	}
430 	vmspace_container_reset(p);
431 }
432 
433 /* Acquire reference to vmspace owned by another process. */
434 
435 struct vmspace *
436 vmspace_acquire_ref(struct proc *p)
437 {
438 	struct vmspace *vm;
439 	int refcnt;
440 
441 	PROC_VMSPACE_LOCK(p);
442 	vm = p->p_vmspace;
443 	if (vm == NULL) {
444 		PROC_VMSPACE_UNLOCK(p);
445 		return (NULL);
446 	}
447 	do {
448 		refcnt = vm->vm_refcnt;
449 		if (refcnt <= 0) { 	/* Avoid 0->1 transition */
450 			PROC_VMSPACE_UNLOCK(p);
451 			return (NULL);
452 		}
453 	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
454 	if (vm != p->p_vmspace) {
455 		PROC_VMSPACE_UNLOCK(p);
456 		vmspace_free(vm);
457 		return (NULL);
458 	}
459 	PROC_VMSPACE_UNLOCK(p);
460 	return (vm);
461 }
462 
463 void
464 _vm_map_lock(vm_map_t map, const char *file, int line)
465 {
466 
467 	if (map->system_map)
468 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
469 	else
470 		sx_xlock_(&map->lock, file, line);
471 	map->timestamp++;
472 }
473 
474 static void
475 vm_map_process_deferred(void)
476 {
477 	struct thread *td;
478 	vm_map_entry_t entry;
479 	vm_object_t object;
480 
481 	td = curthread;
482 	while ((entry = td->td_map_def_user) != NULL) {
483 		td->td_map_def_user = entry->next;
484 		if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) {
485 			/*
486 			 * Decrement the object's writemappings and
487 			 * possibly the vnode's v_writecount.
488 			 */
489 			KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
490 			    ("Submap with writecount"));
491 			object = entry->object.vm_object;
492 			KASSERT(object != NULL, ("No object for writecount"));
493 			vnode_pager_release_writecount(object, entry->start,
494 			    entry->end);
495 		}
496 		vm_map_entry_deallocate(entry, FALSE);
497 	}
498 }
499 
500 void
501 _vm_map_unlock(vm_map_t map, const char *file, int line)
502 {
503 
504 	if (map->system_map)
505 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
506 	else {
507 		sx_xunlock_(&map->lock, file, line);
508 		vm_map_process_deferred();
509 	}
510 }
511 
512 void
513 _vm_map_lock_read(vm_map_t map, const char *file, int line)
514 {
515 
516 	if (map->system_map)
517 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
518 	else
519 		sx_slock_(&map->lock, file, line);
520 }
521 
522 void
523 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
524 {
525 
526 	if (map->system_map)
527 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
528 	else {
529 		sx_sunlock_(&map->lock, file, line);
530 		vm_map_process_deferred();
531 	}
532 }
533 
534 int
535 _vm_map_trylock(vm_map_t map, const char *file, int line)
536 {
537 	int error;
538 
539 	error = map->system_map ?
540 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
541 	    !sx_try_xlock_(&map->lock, file, line);
542 	if (error == 0)
543 		map->timestamp++;
544 	return (error == 0);
545 }
546 
547 int
548 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
549 {
550 	int error;
551 
552 	error = map->system_map ?
553 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
554 	    !sx_try_slock_(&map->lock, file, line);
555 	return (error == 0);
556 }
557 
558 /*
559  *	_vm_map_lock_upgrade:	[ internal use only ]
560  *
561  *	Tries to upgrade a read (shared) lock on the specified map to a write
562  *	(exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
563  *	non-zero value if the upgrade fails.  If the upgrade fails, the map is
564  *	returned without a read or write lock held.
565  *
566  *	Requires that the map be read locked.
567  */
568 int
569 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
570 {
571 	unsigned int last_timestamp;
572 
573 	if (map->system_map) {
574 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
575 	} else {
576 		if (!sx_try_upgrade_(&map->lock, file, line)) {
577 			last_timestamp = map->timestamp;
578 			sx_sunlock_(&map->lock, file, line);
579 			vm_map_process_deferred();
580 			/*
581 			 * If the map's timestamp does not change while the
582 			 * map is unlocked, then the upgrade succeeds.
583 			 */
584 			sx_xlock_(&map->lock, file, line);
585 			if (last_timestamp != map->timestamp) {
586 				sx_xunlock_(&map->lock, file, line);
587 				return (1);
588 			}
589 		}
590 	}
591 	map->timestamp++;
592 	return (0);
593 }
594 
595 void
596 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
597 {
598 
599 	if (map->system_map) {
600 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
601 	} else
602 		sx_downgrade_(&map->lock, file, line);
603 }
604 
605 /*
606  *	vm_map_locked:
607  *
608  *	Returns a non-zero value if the caller holds a write (exclusive) lock
609  *	on the specified map and the value "0" otherwise.
610  */
611 int
612 vm_map_locked(vm_map_t map)
613 {
614 
615 	if (map->system_map)
616 		return (mtx_owned(&map->system_mtx));
617 	else
618 		return (sx_xlocked(&map->lock));
619 }
620 
621 #ifdef INVARIANTS
622 static void
623 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
624 {
625 
626 	if (map->system_map)
627 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
628 	else
629 		sx_assert_(&map->lock, SA_XLOCKED, file, line);
630 }
631 
632 #define	VM_MAP_ASSERT_LOCKED(map) \
633     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
634 #else
635 #define	VM_MAP_ASSERT_LOCKED(map)
636 #endif
637 
638 /*
639  *	_vm_map_unlock_and_wait:
640  *
641  *	Atomically releases the lock on the specified map and puts the calling
642  *	thread to sleep.  The calling thread will remain asleep until either
643  *	vm_map_wakeup() is performed on the map or the specified timeout is
644  *	exceeded.
645  *
646  *	WARNING!  This function does not perform deferred deallocations of
647  *	objects and map	entries.  Therefore, the calling thread is expected to
648  *	reacquire the map lock after reawakening and later perform an ordinary
649  *	unlock operation, such as vm_map_unlock(), before completing its
650  *	operation on the map.
651  */
652 int
653 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
654 {
655 
656 	mtx_lock(&map_sleep_mtx);
657 	if (map->system_map)
658 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
659 	else
660 		sx_xunlock_(&map->lock, file, line);
661 	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
662 	    timo));
663 }
664 
665 /*
666  *	vm_map_wakeup:
667  *
668  *	Awaken any threads that have slept on the map using
669  *	vm_map_unlock_and_wait().
670  */
671 void
672 vm_map_wakeup(vm_map_t map)
673 {
674 
675 	/*
676 	 * Acquire and release map_sleep_mtx to prevent a wakeup()
677 	 * from being performed (and lost) between the map unlock
678 	 * and the msleep() in _vm_map_unlock_and_wait().
679 	 */
680 	mtx_lock(&map_sleep_mtx);
681 	mtx_unlock(&map_sleep_mtx);
682 	wakeup(&map->root);
683 }
684 
685 void
686 vm_map_busy(vm_map_t map)
687 {
688 
689 	VM_MAP_ASSERT_LOCKED(map);
690 	map->busy++;
691 }
692 
693 void
694 vm_map_unbusy(vm_map_t map)
695 {
696 
697 	VM_MAP_ASSERT_LOCKED(map);
698 	KASSERT(map->busy, ("vm_map_unbusy: not busy"));
699 	if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
700 		vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
701 		wakeup(&map->busy);
702 	}
703 }
704 
705 void
706 vm_map_wait_busy(vm_map_t map)
707 {
708 
709 	VM_MAP_ASSERT_LOCKED(map);
710 	while (map->busy) {
711 		vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
712 		if (map->system_map)
713 			msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
714 		else
715 			sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
716 	}
717 	map->timestamp++;
718 }
719 
720 long
721 vmspace_resident_count(struct vmspace *vmspace)
722 {
723 	return pmap_resident_count(vmspace_pmap(vmspace));
724 }
725 
726 long
727 vmspace_wired_count(struct vmspace *vmspace)
728 {
729 	return pmap_wired_count(vmspace_pmap(vmspace));
730 }
731 
732 /*
733  *	vm_map_create:
734  *
735  *	Creates and returns a new empty VM map with
736  *	the given physical map structure, and having
737  *	the given lower and upper address bounds.
738  */
739 vm_map_t
740 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
741 {
742 	vm_map_t result;
743 
744 	result = uma_zalloc(mapzone, M_WAITOK);
745 	CTR1(KTR_VM, "vm_map_create: %p", result);
746 	_vm_map_init(result, pmap, min, max);
747 	return (result);
748 }
749 
750 /*
751  * Initialize an existing vm_map structure
752  * such as that in the vmspace structure.
753  */
754 static void
755 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
756 {
757 
758 	map->header.next = map->header.prev = &map->header;
759 	map->needs_wakeup = FALSE;
760 	map->system_map = 0;
761 	map->pmap = pmap;
762 	map->min_offset = min;
763 	map->max_offset = max;
764 	map->flags = 0;
765 	map->root = NULL;
766 	map->timestamp = 0;
767 	map->busy = 0;
768 }
769 
770 void
771 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
772 {
773 
774 	_vm_map_init(map, pmap, min, max);
775 	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
776 	sx_init(&map->lock, "user map");
777 }
778 
779 /*
780  *	vm_map_entry_dispose:	[ internal use only ]
781  *
782  *	Inverse of vm_map_entry_create.
783  */
784 static void
785 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
786 {
787 	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
788 }
789 
790 /*
791  *	vm_map_entry_create:	[ internal use only ]
792  *
793  *	Allocates a VM map entry for insertion.
794  *	No entry fields are filled in.
795  */
796 static vm_map_entry_t
797 vm_map_entry_create(vm_map_t map)
798 {
799 	vm_map_entry_t new_entry;
800 
801 	if (map->system_map)
802 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
803 	else
804 		new_entry = uma_zalloc(mapentzone, M_WAITOK);
805 	if (new_entry == NULL)
806 		panic("vm_map_entry_create: kernel resources exhausted");
807 	return (new_entry);
808 }
809 
810 /*
811  *	vm_map_entry_set_behavior:
812  *
813  *	Set the expected access behavior, either normal, random, or
814  *	sequential.
815  */
816 static inline void
817 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
818 {
819 	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
820 	    (behavior & MAP_ENTRY_BEHAV_MASK);
821 }
822 
823 /*
824  *	vm_map_entry_set_max_free:
825  *
826  *	Set the max_free field in a vm_map_entry.
827  */
828 static inline void
829 vm_map_entry_set_max_free(vm_map_entry_t entry)
830 {
831 
832 	entry->max_free = entry->adj_free;
833 	if (entry->left != NULL && entry->left->max_free > entry->max_free)
834 		entry->max_free = entry->left->max_free;
835 	if (entry->right != NULL && entry->right->max_free > entry->max_free)
836 		entry->max_free = entry->right->max_free;
837 }
838 
839 /*
840  *	vm_map_entry_splay:
841  *
842  *	The Sleator and Tarjan top-down splay algorithm with the
843  *	following variation.  Max_free must be computed bottom-up, so
844  *	on the downward pass, maintain the left and right spines in
845  *	reverse order.  Then, make a second pass up each side to fix
846  *	the pointers and compute max_free.  The time bound is O(log n)
847  *	amortized.
848  *
849  *	The new root is the vm_map_entry containing "addr", or else an
850  *	adjacent entry (lower or higher) if addr is not in the tree.
851  *
852  *	The map must be locked, and leaves it so.
853  *
854  *	Returns: the new root.
855  */
856 static vm_map_entry_t
857 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
858 {
859 	vm_map_entry_t llist, rlist;
860 	vm_map_entry_t ltree, rtree;
861 	vm_map_entry_t y;
862 
863 	/* Special case of empty tree. */
864 	if (root == NULL)
865 		return (root);
866 
867 	/*
868 	 * Pass One: Splay down the tree until we find addr or a NULL
869 	 * pointer where addr would go.  llist and rlist are the two
870 	 * sides in reverse order (bottom-up), with llist linked by
871 	 * the right pointer and rlist linked by the left pointer in
872 	 * the vm_map_entry.  Wait until Pass Two to set max_free on
873 	 * the two spines.
874 	 */
875 	llist = NULL;
876 	rlist = NULL;
877 	for (;;) {
878 		/* root is never NULL in here. */
879 		if (addr < root->start) {
880 			y = root->left;
881 			if (y == NULL)
882 				break;
883 			if (addr < y->start && y->left != NULL) {
884 				/* Rotate right and put y on rlist. */
885 				root->left = y->right;
886 				y->right = root;
887 				vm_map_entry_set_max_free(root);
888 				root = y->left;
889 				y->left = rlist;
890 				rlist = y;
891 			} else {
892 				/* Put root on rlist. */
893 				root->left = rlist;
894 				rlist = root;
895 				root = y;
896 			}
897 		} else if (addr >= root->end) {
898 			y = root->right;
899 			if (y == NULL)
900 				break;
901 			if (addr >= y->end && y->right != NULL) {
902 				/* Rotate left and put y on llist. */
903 				root->right = y->left;
904 				y->left = root;
905 				vm_map_entry_set_max_free(root);
906 				root = y->right;
907 				y->right = llist;
908 				llist = y;
909 			} else {
910 				/* Put root on llist. */
911 				root->right = llist;
912 				llist = root;
913 				root = y;
914 			}
915 		} else
916 			break;
917 	}
918 
919 	/*
920 	 * Pass Two: Walk back up the two spines, flip the pointers
921 	 * and set max_free.  The subtrees of the root go at the
922 	 * bottom of llist and rlist.
923 	 */
924 	ltree = root->left;
925 	while (llist != NULL) {
926 		y = llist->right;
927 		llist->right = ltree;
928 		vm_map_entry_set_max_free(llist);
929 		ltree = llist;
930 		llist = y;
931 	}
932 	rtree = root->right;
933 	while (rlist != NULL) {
934 		y = rlist->left;
935 		rlist->left = rtree;
936 		vm_map_entry_set_max_free(rlist);
937 		rtree = rlist;
938 		rlist = y;
939 	}
940 
941 	/*
942 	 * Final assembly: add ltree and rtree as subtrees of root.
943 	 */
944 	root->left = ltree;
945 	root->right = rtree;
946 	vm_map_entry_set_max_free(root);
947 
948 	return (root);
949 }
950 
951 /*
952  *	vm_map_entry_{un,}link:
953  *
954  *	Insert/remove entries from maps.
955  */
956 static void
957 vm_map_entry_link(vm_map_t map,
958 		  vm_map_entry_t after_where,
959 		  vm_map_entry_t entry)
960 {
961 
962 	CTR4(KTR_VM,
963 	    "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
964 	    map->nentries, entry, after_where);
965 	VM_MAP_ASSERT_LOCKED(map);
966 	map->nentries++;
967 	entry->prev = after_where;
968 	entry->next = after_where->next;
969 	entry->next->prev = entry;
970 	after_where->next = entry;
971 
972 	if (after_where != &map->header) {
973 		if (after_where != map->root)
974 			vm_map_entry_splay(after_where->start, map->root);
975 		entry->right = after_where->right;
976 		entry->left = after_where;
977 		after_where->right = NULL;
978 		after_where->adj_free = entry->start - after_where->end;
979 		vm_map_entry_set_max_free(after_where);
980 	} else {
981 		entry->right = map->root;
982 		entry->left = NULL;
983 	}
984 	entry->adj_free = (entry->next == &map->header ? map->max_offset :
985 	    entry->next->start) - entry->end;
986 	vm_map_entry_set_max_free(entry);
987 	map->root = entry;
988 }
989 
990 static void
991 vm_map_entry_unlink(vm_map_t map,
992 		    vm_map_entry_t entry)
993 {
994 	vm_map_entry_t next, prev, root;
995 
996 	VM_MAP_ASSERT_LOCKED(map);
997 	if (entry != map->root)
998 		vm_map_entry_splay(entry->start, map->root);
999 	if (entry->left == NULL)
1000 		root = entry->right;
1001 	else {
1002 		root = vm_map_entry_splay(entry->start, entry->left);
1003 		root->right = entry->right;
1004 		root->adj_free = (entry->next == &map->header ? map->max_offset :
1005 		    entry->next->start) - root->end;
1006 		vm_map_entry_set_max_free(root);
1007 	}
1008 	map->root = root;
1009 
1010 	prev = entry->prev;
1011 	next = entry->next;
1012 	next->prev = prev;
1013 	prev->next = next;
1014 	map->nentries--;
1015 	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1016 	    map->nentries, entry);
1017 }
1018 
1019 /*
1020  *	vm_map_entry_resize_free:
1021  *
1022  *	Recompute the amount of free space following a vm_map_entry
1023  *	and propagate that value up the tree.  Call this function after
1024  *	resizing a map entry in-place, that is, without a call to
1025  *	vm_map_entry_link() or _unlink().
1026  *
1027  *	The map must be locked, and leaves it so.
1028  */
1029 static void
1030 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
1031 {
1032 
1033 	/*
1034 	 * Using splay trees without parent pointers, propagating
1035 	 * max_free up the tree is done by moving the entry to the
1036 	 * root and making the change there.
1037 	 */
1038 	if (entry != map->root)
1039 		map->root = vm_map_entry_splay(entry->start, map->root);
1040 
1041 	entry->adj_free = (entry->next == &map->header ? map->max_offset :
1042 	    entry->next->start) - entry->end;
1043 	vm_map_entry_set_max_free(entry);
1044 }
1045 
1046 /*
1047  *	vm_map_lookup_entry:	[ internal use only ]
1048  *
1049  *	Finds the map entry containing (or
1050  *	immediately preceding) the specified address
1051  *	in the given map; the entry is returned
1052  *	in the "entry" parameter.  The boolean
1053  *	result indicates whether the address is
1054  *	actually contained in the map.
1055  */
1056 boolean_t
1057 vm_map_lookup_entry(
1058 	vm_map_t map,
1059 	vm_offset_t address,
1060 	vm_map_entry_t *entry)	/* OUT */
1061 {
1062 	vm_map_entry_t cur;
1063 	boolean_t locked;
1064 
1065 	/*
1066 	 * If the map is empty, then the map entry immediately preceding
1067 	 * "address" is the map's header.
1068 	 */
1069 	cur = map->root;
1070 	if (cur == NULL)
1071 		*entry = &map->header;
1072 	else if (address >= cur->start && cur->end > address) {
1073 		*entry = cur;
1074 		return (TRUE);
1075 	} else if ((locked = vm_map_locked(map)) ||
1076 	    sx_try_upgrade(&map->lock)) {
1077 		/*
1078 		 * Splay requires a write lock on the map.  However, it only
1079 		 * restructures the binary search tree; it does not otherwise
1080 		 * change the map.  Thus, the map's timestamp need not change
1081 		 * on a temporary upgrade.
1082 		 */
1083 		map->root = cur = vm_map_entry_splay(address, cur);
1084 		if (!locked)
1085 			sx_downgrade(&map->lock);
1086 
1087 		/*
1088 		 * If "address" is contained within a map entry, the new root
1089 		 * is that map entry.  Otherwise, the new root is a map entry
1090 		 * immediately before or after "address".
1091 		 */
1092 		if (address >= cur->start) {
1093 			*entry = cur;
1094 			if (cur->end > address)
1095 				return (TRUE);
1096 		} else
1097 			*entry = cur->prev;
1098 	} else
1099 		/*
1100 		 * Since the map is only locked for read access, perform a
1101 		 * standard binary search tree lookup for "address".
1102 		 */
1103 		for (;;) {
1104 			if (address < cur->start) {
1105 				if (cur->left == NULL) {
1106 					*entry = cur->prev;
1107 					break;
1108 				}
1109 				cur = cur->left;
1110 			} else if (cur->end > address) {
1111 				*entry = cur;
1112 				return (TRUE);
1113 			} else {
1114 				if (cur->right == NULL) {
1115 					*entry = cur;
1116 					break;
1117 				}
1118 				cur = cur->right;
1119 			}
1120 		}
1121 	return (FALSE);
1122 }
1123 
1124 /*
1125  *	vm_map_insert:
1126  *
1127  *	Inserts the given whole VM object into the target
1128  *	map at the specified address range.  The object's
1129  *	size should match that of the address range.
1130  *
1131  *	Requires that the map be locked, and leaves it so.
1132  *
1133  *	If object is non-NULL, ref count must be bumped by caller
1134  *	prior to making call to account for the new entry.
1135  */
1136 int
1137 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1138 	      vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max,
1139 	      int cow)
1140 {
1141 	vm_map_entry_t new_entry;
1142 	vm_map_entry_t prev_entry;
1143 	vm_map_entry_t temp_entry;
1144 	vm_eflags_t protoeflags;
1145 	struct ucred *cred;
1146 	vm_inherit_t inheritance;
1147 	boolean_t charge_prev_obj;
1148 
1149 	VM_MAP_ASSERT_LOCKED(map);
1150 
1151 	/*
1152 	 * Check that the start and end points are not bogus.
1153 	 */
1154 	if ((start < map->min_offset) || (end > map->max_offset) ||
1155 	    (start >= end))
1156 		return (KERN_INVALID_ADDRESS);
1157 
1158 	/*
1159 	 * Find the entry prior to the proposed starting address; if it's part
1160 	 * of an existing entry, this range is bogus.
1161 	 */
1162 	if (vm_map_lookup_entry(map, start, &temp_entry))
1163 		return (KERN_NO_SPACE);
1164 
1165 	prev_entry = temp_entry;
1166 
1167 	/*
1168 	 * Assert that the next entry doesn't overlap the end point.
1169 	 */
1170 	if ((prev_entry->next != &map->header) &&
1171 	    (prev_entry->next->start < end))
1172 		return (KERN_NO_SPACE);
1173 
1174 	protoeflags = 0;
1175 	charge_prev_obj = FALSE;
1176 
1177 	if (cow & MAP_COPY_ON_WRITE)
1178 		protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
1179 
1180 	if (cow & MAP_NOFAULT) {
1181 		protoeflags |= MAP_ENTRY_NOFAULT;
1182 
1183 		KASSERT(object == NULL,
1184 			("vm_map_insert: paradoxical MAP_NOFAULT request"));
1185 	}
1186 	if (cow & MAP_DISABLE_SYNCER)
1187 		protoeflags |= MAP_ENTRY_NOSYNC;
1188 	if (cow & MAP_DISABLE_COREDUMP)
1189 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1190 	if (cow & MAP_VN_WRITECOUNT)
1191 		protoeflags |= MAP_ENTRY_VN_WRITECNT;
1192 	if (cow & MAP_INHERIT_SHARE)
1193 		inheritance = VM_INHERIT_SHARE;
1194 	else
1195 		inheritance = VM_INHERIT_DEFAULT;
1196 
1197 	cred = NULL;
1198 	KASSERT((object != kmem_object && object != kernel_object) ||
1199 	    ((object == kmem_object || object == kernel_object) &&
1200 		!(protoeflags & MAP_ENTRY_NEEDS_COPY)),
1201 	    ("kmem or kernel object and cow"));
1202 	if (cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT))
1203 		goto charged;
1204 	if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1205 	    ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1206 		if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1207 			return (KERN_RESOURCE_SHORTAGE);
1208 		KASSERT(object == NULL || (protoeflags & MAP_ENTRY_NEEDS_COPY) ||
1209 		    object->cred == NULL,
1210 		    ("OVERCOMMIT: vm_map_insert o %p", object));
1211 		cred = curthread->td_ucred;
1212 		crhold(cred);
1213 		if (object == NULL && !(protoeflags & MAP_ENTRY_NEEDS_COPY))
1214 			charge_prev_obj = TRUE;
1215 	}
1216 
1217 charged:
1218 	/* Expand the kernel pmap, if necessary. */
1219 	if (map == kernel_map && end > kernel_vm_end)
1220 		pmap_growkernel(end);
1221 	if (object != NULL) {
1222 		/*
1223 		 * OBJ_ONEMAPPING must be cleared unless this mapping
1224 		 * is trivially proven to be the only mapping for any
1225 		 * of the object's pages.  (Object granularity
1226 		 * reference counting is insufficient to recognize
1227 		 * aliases with precision.)
1228 		 */
1229 		VM_OBJECT_LOCK(object);
1230 		if (object->ref_count > 1 || object->shadow_count != 0)
1231 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
1232 		VM_OBJECT_UNLOCK(object);
1233 	}
1234 	else if ((prev_entry != &map->header) &&
1235 		 (prev_entry->eflags == protoeflags) &&
1236 		 (prev_entry->end == start) &&
1237 		 (prev_entry->wired_count == 0) &&
1238 		 (prev_entry->cred == cred ||
1239 		  (prev_entry->object.vm_object != NULL &&
1240 		   (prev_entry->object.vm_object->cred == cred))) &&
1241 		   vm_object_coalesce(prev_entry->object.vm_object,
1242 		       prev_entry->offset,
1243 		       (vm_size_t)(prev_entry->end - prev_entry->start),
1244 		       (vm_size_t)(end - prev_entry->end), charge_prev_obj)) {
1245 		/*
1246 		 * We were able to extend the object.  Determine if we
1247 		 * can extend the previous map entry to include the
1248 		 * new range as well.
1249 		 */
1250 		if ((prev_entry->inheritance == inheritance) &&
1251 		    (prev_entry->protection == prot) &&
1252 		    (prev_entry->max_protection == max)) {
1253 			map->size += (end - prev_entry->end);
1254 			prev_entry->end = end;
1255 			vm_map_entry_resize_free(map, prev_entry);
1256 			vm_map_simplify_entry(map, prev_entry);
1257 			if (cred != NULL)
1258 				crfree(cred);
1259 			return (KERN_SUCCESS);
1260 		}
1261 
1262 		/*
1263 		 * If we can extend the object but cannot extend the
1264 		 * map entry, we have to create a new map entry.  We
1265 		 * must bump the ref count on the extended object to
1266 		 * account for it.  object may be NULL.
1267 		 */
1268 		object = prev_entry->object.vm_object;
1269 		offset = prev_entry->offset +
1270 			(prev_entry->end - prev_entry->start);
1271 		vm_object_reference(object);
1272 		if (cred != NULL && object != NULL && object->cred != NULL &&
1273 		    !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1274 			/* Object already accounts for this uid. */
1275 			crfree(cred);
1276 			cred = NULL;
1277 		}
1278 	}
1279 
1280 	/*
1281 	 * NOTE: if conditionals fail, object can be NULL here.  This occurs
1282 	 * in things like the buffer map where we manage kva but do not manage
1283 	 * backing objects.
1284 	 */
1285 
1286 	/*
1287 	 * Create a new entry
1288 	 */
1289 	new_entry = vm_map_entry_create(map);
1290 	new_entry->start = start;
1291 	new_entry->end = end;
1292 	new_entry->cred = NULL;
1293 
1294 	new_entry->eflags = protoeflags;
1295 	new_entry->object.vm_object = object;
1296 	new_entry->offset = offset;
1297 	new_entry->avail_ssize = 0;
1298 
1299 	new_entry->inheritance = inheritance;
1300 	new_entry->protection = prot;
1301 	new_entry->max_protection = max;
1302 	new_entry->wired_count = 0;
1303 
1304 	KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1305 	    ("OVERCOMMIT: vm_map_insert leaks vm_map %p", new_entry));
1306 	new_entry->cred = cred;
1307 
1308 	/*
1309 	 * Insert the new entry into the list
1310 	 */
1311 	vm_map_entry_link(map, prev_entry, new_entry);
1312 	map->size += new_entry->end - new_entry->start;
1313 
1314 	/*
1315 	 * It may be possible to merge the new entry with the next and/or
1316 	 * previous entries.  However, due to MAP_STACK_* being a hack, a
1317 	 * panic can result from merging such entries.
1318 	 */
1319 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0)
1320 		vm_map_simplify_entry(map, new_entry);
1321 
1322 	if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
1323 		vm_map_pmap_enter(map, start, prot,
1324 				    object, OFF_TO_IDX(offset), end - start,
1325 				    cow & MAP_PREFAULT_PARTIAL);
1326 	}
1327 
1328 	return (KERN_SUCCESS);
1329 }
1330 
1331 /*
1332  *	vm_map_findspace:
1333  *
1334  *	Find the first fit (lowest VM address) for "length" free bytes
1335  *	beginning at address >= start in the given map.
1336  *
1337  *	In a vm_map_entry, "adj_free" is the amount of free space
1338  *	adjacent (higher address) to this entry, and "max_free" is the
1339  *	maximum amount of contiguous free space in its subtree.  This
1340  *	allows finding a free region in one path down the tree, so
1341  *	O(log n) amortized with splay trees.
1342  *
1343  *	The map must be locked, and leaves it so.
1344  *
1345  *	Returns: 0 on success, and starting address in *addr,
1346  *		 1 if insufficient space.
1347  */
1348 int
1349 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1350     vm_offset_t *addr)	/* OUT */
1351 {
1352 	vm_map_entry_t entry;
1353 	vm_offset_t st;
1354 
1355 	/*
1356 	 * Request must fit within min/max VM address and must avoid
1357 	 * address wrap.
1358 	 */
1359 	if (start < map->min_offset)
1360 		start = map->min_offset;
1361 	if (start + length > map->max_offset || start + length < start)
1362 		return (1);
1363 
1364 	/* Empty tree means wide open address space. */
1365 	if (map->root == NULL) {
1366 		*addr = start;
1367 		return (0);
1368 	}
1369 
1370 	/*
1371 	 * After splay, if start comes before root node, then there
1372 	 * must be a gap from start to the root.
1373 	 */
1374 	map->root = vm_map_entry_splay(start, map->root);
1375 	if (start + length <= map->root->start) {
1376 		*addr = start;
1377 		return (0);
1378 	}
1379 
1380 	/*
1381 	 * Root is the last node that might begin its gap before
1382 	 * start, and this is the last comparison where address
1383 	 * wrap might be a problem.
1384 	 */
1385 	st = (start > map->root->end) ? start : map->root->end;
1386 	if (length <= map->root->end + map->root->adj_free - st) {
1387 		*addr = st;
1388 		return (0);
1389 	}
1390 
1391 	/* With max_free, can immediately tell if no solution. */
1392 	entry = map->root->right;
1393 	if (entry == NULL || length > entry->max_free)
1394 		return (1);
1395 
1396 	/*
1397 	 * Search the right subtree in the order: left subtree, root,
1398 	 * right subtree (first fit).  The previous splay implies that
1399 	 * all regions in the right subtree have addresses > start.
1400 	 */
1401 	while (entry != NULL) {
1402 		if (entry->left != NULL && entry->left->max_free >= length)
1403 			entry = entry->left;
1404 		else if (entry->adj_free >= length) {
1405 			*addr = entry->end;
1406 			return (0);
1407 		} else
1408 			entry = entry->right;
1409 	}
1410 
1411 	/* Can't get here, so panic if we do. */
1412 	panic("vm_map_findspace: max_free corrupt");
1413 }
1414 
1415 int
1416 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1417     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1418     vm_prot_t max, int cow)
1419 {
1420 	vm_offset_t end;
1421 	int result;
1422 
1423 	end = start + length;
1424 	vm_map_lock(map);
1425 	VM_MAP_RANGE_CHECK(map, start, end);
1426 	(void) vm_map_delete(map, start, end);
1427 	result = vm_map_insert(map, object, offset, start, end, prot,
1428 	    max, cow);
1429 	vm_map_unlock(map);
1430 	return (result);
1431 }
1432 
1433 /*
1434  *	vm_map_find finds an unallocated region in the target address
1435  *	map with the given length.  The search is defined to be
1436  *	first-fit from the specified address; the region found is
1437  *	returned in the same parameter.
1438  *
1439  *	If object is non-NULL, ref count must be bumped by caller
1440  *	prior to making call to account for the new entry.
1441  */
1442 int
1443 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1444 	    vm_offset_t *addr,	/* IN/OUT */
1445 	    vm_size_t length, int find_space, vm_prot_t prot,
1446 	    vm_prot_t max, int cow)
1447 {
1448 	vm_offset_t start;
1449 	int result;
1450 
1451 	start = *addr;
1452 	vm_map_lock(map);
1453 	do {
1454 		if (find_space != VMFS_NO_SPACE) {
1455 			if (vm_map_findspace(map, start, length, addr)) {
1456 				vm_map_unlock(map);
1457 				return (KERN_NO_SPACE);
1458 			}
1459 			switch (find_space) {
1460 			case VMFS_ALIGNED_SPACE:
1461 				pmap_align_superpage(object, offset, addr,
1462 				    length);
1463 				break;
1464 #ifdef VMFS_TLB_ALIGNED_SPACE
1465 			case VMFS_TLB_ALIGNED_SPACE:
1466 				pmap_align_tlb(addr);
1467 				break;
1468 #endif
1469 			default:
1470 				break;
1471 			}
1472 
1473 			start = *addr;
1474 		}
1475 		result = vm_map_insert(map, object, offset, start, start +
1476 		    length, prot, max, cow);
1477 	} while (result == KERN_NO_SPACE && (find_space == VMFS_ALIGNED_SPACE
1478 #ifdef VMFS_TLB_ALIGNED_SPACE
1479 	    || find_space == VMFS_TLB_ALIGNED_SPACE
1480 #endif
1481 	    ));
1482 	vm_map_unlock(map);
1483 	return (result);
1484 }
1485 
1486 /*
1487  *	vm_map_simplify_entry:
1488  *
1489  *	Simplify the given map entry by merging with either neighbor.  This
1490  *	routine also has the ability to merge with both neighbors.
1491  *
1492  *	The map must be locked.
1493  *
1494  *	This routine guarentees that the passed entry remains valid (though
1495  *	possibly extended).  When merging, this routine may delete one or
1496  *	both neighbors.
1497  */
1498 void
1499 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1500 {
1501 	vm_map_entry_t next, prev;
1502 	vm_size_t prevsize, esize;
1503 
1504 	if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP))
1505 		return;
1506 
1507 	prev = entry->prev;
1508 	if (prev != &map->header) {
1509 		prevsize = prev->end - prev->start;
1510 		if ( (prev->end == entry->start) &&
1511 		     (prev->object.vm_object == entry->object.vm_object) &&
1512 		     (!prev->object.vm_object ||
1513 			(prev->offset + prevsize == entry->offset)) &&
1514 		     (prev->eflags == entry->eflags) &&
1515 		     (prev->protection == entry->protection) &&
1516 		     (prev->max_protection == entry->max_protection) &&
1517 		     (prev->inheritance == entry->inheritance) &&
1518 		     (prev->wired_count == entry->wired_count) &&
1519 		     (prev->cred == entry->cred)) {
1520 			vm_map_entry_unlink(map, prev);
1521 			entry->start = prev->start;
1522 			entry->offset = prev->offset;
1523 			if (entry->prev != &map->header)
1524 				vm_map_entry_resize_free(map, entry->prev);
1525 
1526 			/*
1527 			 * If the backing object is a vnode object,
1528 			 * vm_object_deallocate() calls vrele().
1529 			 * However, vrele() does not lock the vnode
1530 			 * because the vnode has additional
1531 			 * references.  Thus, the map lock can be kept
1532 			 * without causing a lock-order reversal with
1533 			 * the vnode lock.
1534 			 *
1535 			 * Since we count the number of virtual page
1536 			 * mappings in object->un_pager.vnp.writemappings,
1537 			 * the writemappings value should not be adjusted
1538 			 * when the entry is disposed of.
1539 			 */
1540 			if (prev->object.vm_object)
1541 				vm_object_deallocate(prev->object.vm_object);
1542 			if (prev->cred != NULL)
1543 				crfree(prev->cred);
1544 			vm_map_entry_dispose(map, prev);
1545 		}
1546 	}
1547 
1548 	next = entry->next;
1549 	if (next != &map->header) {
1550 		esize = entry->end - entry->start;
1551 		if ((entry->end == next->start) &&
1552 		    (next->object.vm_object == entry->object.vm_object) &&
1553 		     (!entry->object.vm_object ||
1554 			(entry->offset + esize == next->offset)) &&
1555 		    (next->eflags == entry->eflags) &&
1556 		    (next->protection == entry->protection) &&
1557 		    (next->max_protection == entry->max_protection) &&
1558 		    (next->inheritance == entry->inheritance) &&
1559 		    (next->wired_count == entry->wired_count) &&
1560 		    (next->cred == entry->cred)) {
1561 			vm_map_entry_unlink(map, next);
1562 			entry->end = next->end;
1563 			vm_map_entry_resize_free(map, entry);
1564 
1565 			/*
1566 			 * See comment above.
1567 			 */
1568 			if (next->object.vm_object)
1569 				vm_object_deallocate(next->object.vm_object);
1570 			if (next->cred != NULL)
1571 				crfree(next->cred);
1572 			vm_map_entry_dispose(map, next);
1573 		}
1574 	}
1575 }
1576 /*
1577  *	vm_map_clip_start:	[ internal use only ]
1578  *
1579  *	Asserts that the given entry begins at or after
1580  *	the specified address; if necessary,
1581  *	it splits the entry into two.
1582  */
1583 #define vm_map_clip_start(map, entry, startaddr) \
1584 { \
1585 	if (startaddr > entry->start) \
1586 		_vm_map_clip_start(map, entry, startaddr); \
1587 }
1588 
1589 /*
1590  *	This routine is called only when it is known that
1591  *	the entry must be split.
1592  */
1593 static void
1594 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1595 {
1596 	vm_map_entry_t new_entry;
1597 
1598 	VM_MAP_ASSERT_LOCKED(map);
1599 
1600 	/*
1601 	 * Split off the front portion -- note that we must insert the new
1602 	 * entry BEFORE this one, so that this entry has the specified
1603 	 * starting address.
1604 	 */
1605 	vm_map_simplify_entry(map, entry);
1606 
1607 	/*
1608 	 * If there is no object backing this entry, we might as well create
1609 	 * one now.  If we defer it, an object can get created after the map
1610 	 * is clipped, and individual objects will be created for the split-up
1611 	 * map.  This is a bit of a hack, but is also about the best place to
1612 	 * put this improvement.
1613 	 */
1614 	if (entry->object.vm_object == NULL && !map->system_map) {
1615 		vm_object_t object;
1616 		object = vm_object_allocate(OBJT_DEFAULT,
1617 				atop(entry->end - entry->start));
1618 		entry->object.vm_object = object;
1619 		entry->offset = 0;
1620 		if (entry->cred != NULL) {
1621 			object->cred = entry->cred;
1622 			object->charge = entry->end - entry->start;
1623 			entry->cred = NULL;
1624 		}
1625 	} else if (entry->object.vm_object != NULL &&
1626 		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1627 		   entry->cred != NULL) {
1628 		VM_OBJECT_LOCK(entry->object.vm_object);
1629 		KASSERT(entry->object.vm_object->cred == NULL,
1630 		    ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
1631 		entry->object.vm_object->cred = entry->cred;
1632 		entry->object.vm_object->charge = entry->end - entry->start;
1633 		VM_OBJECT_UNLOCK(entry->object.vm_object);
1634 		entry->cred = NULL;
1635 	}
1636 
1637 	new_entry = vm_map_entry_create(map);
1638 	*new_entry = *entry;
1639 
1640 	new_entry->end = start;
1641 	entry->offset += (start - entry->start);
1642 	entry->start = start;
1643 	if (new_entry->cred != NULL)
1644 		crhold(entry->cred);
1645 
1646 	vm_map_entry_link(map, entry->prev, new_entry);
1647 
1648 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1649 		vm_object_reference(new_entry->object.vm_object);
1650 		/*
1651 		 * The object->un_pager.vnp.writemappings for the
1652 		 * object of MAP_ENTRY_VN_WRITECNT type entry shall be
1653 		 * kept as is here.  The virtual pages are
1654 		 * re-distributed among the clipped entries, so the sum is
1655 		 * left the same.
1656 		 */
1657 	}
1658 }
1659 
1660 /*
1661  *	vm_map_clip_end:	[ internal use only ]
1662  *
1663  *	Asserts that the given entry ends at or before
1664  *	the specified address; if necessary,
1665  *	it splits the entry into two.
1666  */
1667 #define vm_map_clip_end(map, entry, endaddr) \
1668 { \
1669 	if ((endaddr) < (entry->end)) \
1670 		_vm_map_clip_end((map), (entry), (endaddr)); \
1671 }
1672 
1673 /*
1674  *	This routine is called only when it is known that
1675  *	the entry must be split.
1676  */
1677 static void
1678 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1679 {
1680 	vm_map_entry_t new_entry;
1681 
1682 	VM_MAP_ASSERT_LOCKED(map);
1683 
1684 	/*
1685 	 * If there is no object backing this entry, we might as well create
1686 	 * one now.  If we defer it, an object can get created after the map
1687 	 * is clipped, and individual objects will be created for the split-up
1688 	 * map.  This is a bit of a hack, but is also about the best place to
1689 	 * put this improvement.
1690 	 */
1691 	if (entry->object.vm_object == NULL && !map->system_map) {
1692 		vm_object_t object;
1693 		object = vm_object_allocate(OBJT_DEFAULT,
1694 				atop(entry->end - entry->start));
1695 		entry->object.vm_object = object;
1696 		entry->offset = 0;
1697 		if (entry->cred != NULL) {
1698 			object->cred = entry->cred;
1699 			object->charge = entry->end - entry->start;
1700 			entry->cred = NULL;
1701 		}
1702 	} else if (entry->object.vm_object != NULL &&
1703 		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1704 		   entry->cred != NULL) {
1705 		VM_OBJECT_LOCK(entry->object.vm_object);
1706 		KASSERT(entry->object.vm_object->cred == NULL,
1707 		    ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
1708 		entry->object.vm_object->cred = entry->cred;
1709 		entry->object.vm_object->charge = entry->end - entry->start;
1710 		VM_OBJECT_UNLOCK(entry->object.vm_object);
1711 		entry->cred = NULL;
1712 	}
1713 
1714 	/*
1715 	 * Create a new entry and insert it AFTER the specified entry
1716 	 */
1717 	new_entry = vm_map_entry_create(map);
1718 	*new_entry = *entry;
1719 
1720 	new_entry->start = entry->end = end;
1721 	new_entry->offset += (end - entry->start);
1722 	if (new_entry->cred != NULL)
1723 		crhold(entry->cred);
1724 
1725 	vm_map_entry_link(map, entry, new_entry);
1726 
1727 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1728 		vm_object_reference(new_entry->object.vm_object);
1729 	}
1730 }
1731 
1732 /*
1733  *	vm_map_submap:		[ kernel use only ]
1734  *
1735  *	Mark the given range as handled by a subordinate map.
1736  *
1737  *	This range must have been created with vm_map_find,
1738  *	and no other operations may have been performed on this
1739  *	range prior to calling vm_map_submap.
1740  *
1741  *	Only a limited number of operations can be performed
1742  *	within this rage after calling vm_map_submap:
1743  *		vm_fault
1744  *	[Don't try vm_map_copy!]
1745  *
1746  *	To remove a submapping, one must first remove the
1747  *	range from the superior map, and then destroy the
1748  *	submap (if desired).  [Better yet, don't try it.]
1749  */
1750 int
1751 vm_map_submap(
1752 	vm_map_t map,
1753 	vm_offset_t start,
1754 	vm_offset_t end,
1755 	vm_map_t submap)
1756 {
1757 	vm_map_entry_t entry;
1758 	int result = KERN_INVALID_ARGUMENT;
1759 
1760 	vm_map_lock(map);
1761 
1762 	VM_MAP_RANGE_CHECK(map, start, end);
1763 
1764 	if (vm_map_lookup_entry(map, start, &entry)) {
1765 		vm_map_clip_start(map, entry, start);
1766 	} else
1767 		entry = entry->next;
1768 
1769 	vm_map_clip_end(map, entry, end);
1770 
1771 	if ((entry->start == start) && (entry->end == end) &&
1772 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1773 	    (entry->object.vm_object == NULL)) {
1774 		entry->object.sub_map = submap;
1775 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1776 		result = KERN_SUCCESS;
1777 	}
1778 	vm_map_unlock(map);
1779 
1780 	return (result);
1781 }
1782 
1783 /*
1784  * The maximum number of pages to map
1785  */
1786 #define	MAX_INIT_PT	96
1787 
1788 /*
1789  *	vm_map_pmap_enter:
1790  *
1791  *	Preload read-only mappings for the given object's resident pages into
1792  *	the given map.  This eliminates the soft faults on process startup and
1793  *	immediately after an mmap(2).  Because these are speculative mappings,
1794  *	cached pages are not reactivated and mapped.
1795  */
1796 void
1797 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
1798     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
1799 {
1800 	vm_offset_t start;
1801 	vm_page_t p, p_start;
1802 	vm_pindex_t psize, tmpidx;
1803 
1804 	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
1805 		return;
1806 	VM_OBJECT_LOCK(object);
1807 	if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1808 		pmap_object_init_pt(map->pmap, addr, object, pindex, size);
1809 		goto unlock_return;
1810 	}
1811 
1812 	psize = atop(size);
1813 
1814 	if ((flags & MAP_PREFAULT_PARTIAL) && psize > MAX_INIT_PT &&
1815 	    object->resident_page_count > MAX_INIT_PT)
1816 		goto unlock_return;
1817 
1818 	if (psize + pindex > object->size) {
1819 		if (object->size < pindex)
1820 			goto unlock_return;
1821 		psize = object->size - pindex;
1822 	}
1823 
1824 	start = 0;
1825 	p_start = NULL;
1826 
1827 	p = vm_page_find_least(object, pindex);
1828 	/*
1829 	 * Assert: the variable p is either (1) the page with the
1830 	 * least pindex greater than or equal to the parameter pindex
1831 	 * or (2) NULL.
1832 	 */
1833 	for (;
1834 	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
1835 	     p = TAILQ_NEXT(p, listq)) {
1836 		/*
1837 		 * don't allow an madvise to blow away our really
1838 		 * free pages allocating pv entries.
1839 		 */
1840 		if ((flags & MAP_PREFAULT_MADVISE) &&
1841 		    cnt.v_free_count < cnt.v_free_reserved) {
1842 			psize = tmpidx;
1843 			break;
1844 		}
1845 		if (p->valid == VM_PAGE_BITS_ALL) {
1846 			if (p_start == NULL) {
1847 				start = addr + ptoa(tmpidx);
1848 				p_start = p;
1849 			}
1850 		} else if (p_start != NULL) {
1851 			pmap_enter_object(map->pmap, start, addr +
1852 			    ptoa(tmpidx), p_start, prot);
1853 			p_start = NULL;
1854 		}
1855 	}
1856 	if (p_start != NULL)
1857 		pmap_enter_object(map->pmap, start, addr + ptoa(psize),
1858 		    p_start, prot);
1859 unlock_return:
1860 	VM_OBJECT_UNLOCK(object);
1861 }
1862 
1863 /*
1864  *	vm_map_protect:
1865  *
1866  *	Sets the protection of the specified address
1867  *	region in the target map.  If "set_max" is
1868  *	specified, the maximum protection is to be set;
1869  *	otherwise, only the current protection is affected.
1870  */
1871 int
1872 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1873 	       vm_prot_t new_prot, boolean_t set_max)
1874 {
1875 	vm_map_entry_t current, entry;
1876 	vm_object_t obj;
1877 	struct ucred *cred;
1878 	vm_prot_t old_prot;
1879 
1880 	vm_map_lock(map);
1881 
1882 	VM_MAP_RANGE_CHECK(map, start, end);
1883 
1884 	if (vm_map_lookup_entry(map, start, &entry)) {
1885 		vm_map_clip_start(map, entry, start);
1886 	} else {
1887 		entry = entry->next;
1888 	}
1889 
1890 	/*
1891 	 * Make a first pass to check for protection violations.
1892 	 */
1893 	current = entry;
1894 	while ((current != &map->header) && (current->start < end)) {
1895 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1896 			vm_map_unlock(map);
1897 			return (KERN_INVALID_ARGUMENT);
1898 		}
1899 		if ((new_prot & current->max_protection) != new_prot) {
1900 			vm_map_unlock(map);
1901 			return (KERN_PROTECTION_FAILURE);
1902 		}
1903 		current = current->next;
1904 	}
1905 
1906 
1907 	/*
1908 	 * Do an accounting pass for private read-only mappings that
1909 	 * now will do cow due to allowed write (e.g. debugger sets
1910 	 * breakpoint on text segment)
1911 	 */
1912 	for (current = entry; (current != &map->header) &&
1913 	     (current->start < end); current = current->next) {
1914 
1915 		vm_map_clip_end(map, current, end);
1916 
1917 		if (set_max ||
1918 		    ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
1919 		    ENTRY_CHARGED(current)) {
1920 			continue;
1921 		}
1922 
1923 		cred = curthread->td_ucred;
1924 		obj = current->object.vm_object;
1925 
1926 		if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
1927 			if (!swap_reserve(current->end - current->start)) {
1928 				vm_map_unlock(map);
1929 				return (KERN_RESOURCE_SHORTAGE);
1930 			}
1931 			crhold(cred);
1932 			current->cred = cred;
1933 			continue;
1934 		}
1935 
1936 		VM_OBJECT_LOCK(obj);
1937 		if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
1938 			VM_OBJECT_UNLOCK(obj);
1939 			continue;
1940 		}
1941 
1942 		/*
1943 		 * Charge for the whole object allocation now, since
1944 		 * we cannot distinguish between non-charged and
1945 		 * charged clipped mapping of the same object later.
1946 		 */
1947 		KASSERT(obj->charge == 0,
1948 		    ("vm_map_protect: object %p overcharged\n", obj));
1949 		if (!swap_reserve(ptoa(obj->size))) {
1950 			VM_OBJECT_UNLOCK(obj);
1951 			vm_map_unlock(map);
1952 			return (KERN_RESOURCE_SHORTAGE);
1953 		}
1954 
1955 		crhold(cred);
1956 		obj->cred = cred;
1957 		obj->charge = ptoa(obj->size);
1958 		VM_OBJECT_UNLOCK(obj);
1959 	}
1960 
1961 	/*
1962 	 * Go back and fix up protections. [Note that clipping is not
1963 	 * necessary the second time.]
1964 	 */
1965 	current = entry;
1966 	while ((current != &map->header) && (current->start < end)) {
1967 		old_prot = current->protection;
1968 
1969 		if (set_max)
1970 			current->protection =
1971 			    (current->max_protection = new_prot) &
1972 			    old_prot;
1973 		else
1974 			current->protection = new_prot;
1975 
1976 		if ((current->eflags & (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED))
1977 		     == (MAP_ENTRY_COW | MAP_ENTRY_USER_WIRED) &&
1978 		    (current->protection & VM_PROT_WRITE) != 0 &&
1979 		    (old_prot & VM_PROT_WRITE) == 0) {
1980 			vm_fault_copy_entry(map, map, current, current, NULL);
1981 		}
1982 
1983 		/*
1984 		 * When restricting access, update the physical map.  Worry
1985 		 * about copy-on-write here.
1986 		 */
1987 		if ((old_prot & ~current->protection) != 0) {
1988 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1989 							VM_PROT_ALL)
1990 			pmap_protect(map->pmap, current->start,
1991 			    current->end,
1992 			    current->protection & MASK(current));
1993 #undef	MASK
1994 		}
1995 		vm_map_simplify_entry(map, current);
1996 		current = current->next;
1997 	}
1998 	vm_map_unlock(map);
1999 	return (KERN_SUCCESS);
2000 }
2001 
2002 /*
2003  *	vm_map_madvise:
2004  *
2005  *	This routine traverses a processes map handling the madvise
2006  *	system call.  Advisories are classified as either those effecting
2007  *	the vm_map_entry structure, or those effecting the underlying
2008  *	objects.
2009  */
2010 int
2011 vm_map_madvise(
2012 	vm_map_t map,
2013 	vm_offset_t start,
2014 	vm_offset_t end,
2015 	int behav)
2016 {
2017 	vm_map_entry_t current, entry;
2018 	int modify_map = 0;
2019 
2020 	/*
2021 	 * Some madvise calls directly modify the vm_map_entry, in which case
2022 	 * we need to use an exclusive lock on the map and we need to perform
2023 	 * various clipping operations.  Otherwise we only need a read-lock
2024 	 * on the map.
2025 	 */
2026 	switch(behav) {
2027 	case MADV_NORMAL:
2028 	case MADV_SEQUENTIAL:
2029 	case MADV_RANDOM:
2030 	case MADV_NOSYNC:
2031 	case MADV_AUTOSYNC:
2032 	case MADV_NOCORE:
2033 	case MADV_CORE:
2034 		modify_map = 1;
2035 		vm_map_lock(map);
2036 		break;
2037 	case MADV_WILLNEED:
2038 	case MADV_DONTNEED:
2039 	case MADV_FREE:
2040 		vm_map_lock_read(map);
2041 		break;
2042 	default:
2043 		return (KERN_INVALID_ARGUMENT);
2044 	}
2045 
2046 	/*
2047 	 * Locate starting entry and clip if necessary.
2048 	 */
2049 	VM_MAP_RANGE_CHECK(map, start, end);
2050 
2051 	if (vm_map_lookup_entry(map, start, &entry)) {
2052 		if (modify_map)
2053 			vm_map_clip_start(map, entry, start);
2054 	} else {
2055 		entry = entry->next;
2056 	}
2057 
2058 	if (modify_map) {
2059 		/*
2060 		 * madvise behaviors that are implemented in the vm_map_entry.
2061 		 *
2062 		 * We clip the vm_map_entry so that behavioral changes are
2063 		 * limited to the specified address range.
2064 		 */
2065 		for (current = entry;
2066 		     (current != &map->header) && (current->start < end);
2067 		     current = current->next
2068 		) {
2069 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2070 				continue;
2071 
2072 			vm_map_clip_end(map, current, end);
2073 
2074 			switch (behav) {
2075 			case MADV_NORMAL:
2076 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2077 				break;
2078 			case MADV_SEQUENTIAL:
2079 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2080 				break;
2081 			case MADV_RANDOM:
2082 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2083 				break;
2084 			case MADV_NOSYNC:
2085 				current->eflags |= MAP_ENTRY_NOSYNC;
2086 				break;
2087 			case MADV_AUTOSYNC:
2088 				current->eflags &= ~MAP_ENTRY_NOSYNC;
2089 				break;
2090 			case MADV_NOCORE:
2091 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
2092 				break;
2093 			case MADV_CORE:
2094 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2095 				break;
2096 			default:
2097 				break;
2098 			}
2099 			vm_map_simplify_entry(map, current);
2100 		}
2101 		vm_map_unlock(map);
2102 	} else {
2103 		vm_pindex_t pstart, pend;
2104 
2105 		/*
2106 		 * madvise behaviors that are implemented in the underlying
2107 		 * vm_object.
2108 		 *
2109 		 * Since we don't clip the vm_map_entry, we have to clip
2110 		 * the vm_object pindex and count.
2111 		 */
2112 		for (current = entry;
2113 		     (current != &map->header) && (current->start < end);
2114 		     current = current->next
2115 		) {
2116 			vm_offset_t useStart;
2117 
2118 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2119 				continue;
2120 
2121 			pstart = OFF_TO_IDX(current->offset);
2122 			pend = pstart + atop(current->end - current->start);
2123 			useStart = current->start;
2124 
2125 			if (current->start < start) {
2126 				pstart += atop(start - current->start);
2127 				useStart = start;
2128 			}
2129 			if (current->end > end)
2130 				pend -= atop(current->end - end);
2131 
2132 			if (pstart >= pend)
2133 				continue;
2134 
2135 			vm_object_madvise(current->object.vm_object, pstart,
2136 			    pend, behav);
2137 			if (behav == MADV_WILLNEED) {
2138 				vm_map_pmap_enter(map,
2139 				    useStart,
2140 				    current->protection,
2141 				    current->object.vm_object,
2142 				    pstart,
2143 				    ptoa(pend - pstart),
2144 				    MAP_PREFAULT_MADVISE
2145 				);
2146 			}
2147 		}
2148 		vm_map_unlock_read(map);
2149 	}
2150 	return (0);
2151 }
2152 
2153 
2154 /*
2155  *	vm_map_inherit:
2156  *
2157  *	Sets the inheritance of the specified address
2158  *	range in the target map.  Inheritance
2159  *	affects how the map will be shared with
2160  *	child maps at the time of vmspace_fork.
2161  */
2162 int
2163 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2164 	       vm_inherit_t new_inheritance)
2165 {
2166 	vm_map_entry_t entry;
2167 	vm_map_entry_t temp_entry;
2168 
2169 	switch (new_inheritance) {
2170 	case VM_INHERIT_NONE:
2171 	case VM_INHERIT_COPY:
2172 	case VM_INHERIT_SHARE:
2173 		break;
2174 	default:
2175 		return (KERN_INVALID_ARGUMENT);
2176 	}
2177 	vm_map_lock(map);
2178 	VM_MAP_RANGE_CHECK(map, start, end);
2179 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
2180 		entry = temp_entry;
2181 		vm_map_clip_start(map, entry, start);
2182 	} else
2183 		entry = temp_entry->next;
2184 	while ((entry != &map->header) && (entry->start < end)) {
2185 		vm_map_clip_end(map, entry, end);
2186 		entry->inheritance = new_inheritance;
2187 		vm_map_simplify_entry(map, entry);
2188 		entry = entry->next;
2189 	}
2190 	vm_map_unlock(map);
2191 	return (KERN_SUCCESS);
2192 }
2193 
2194 /*
2195  *	vm_map_unwire:
2196  *
2197  *	Implements both kernel and user unwiring.
2198  */
2199 int
2200 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2201     int flags)
2202 {
2203 	vm_map_entry_t entry, first_entry, tmp_entry;
2204 	vm_offset_t saved_start;
2205 	unsigned int last_timestamp;
2206 	int rv;
2207 	boolean_t need_wakeup, result, user_unwire;
2208 
2209 	user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2210 	vm_map_lock(map);
2211 	VM_MAP_RANGE_CHECK(map, start, end);
2212 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2213 		if (flags & VM_MAP_WIRE_HOLESOK)
2214 			first_entry = first_entry->next;
2215 		else {
2216 			vm_map_unlock(map);
2217 			return (KERN_INVALID_ADDRESS);
2218 		}
2219 	}
2220 	last_timestamp = map->timestamp;
2221 	entry = first_entry;
2222 	while (entry != &map->header && entry->start < end) {
2223 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2224 			/*
2225 			 * We have not yet clipped the entry.
2226 			 */
2227 			saved_start = (start >= entry->start) ? start :
2228 			    entry->start;
2229 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2230 			if (vm_map_unlock_and_wait(map, 0)) {
2231 				/*
2232 				 * Allow interruption of user unwiring?
2233 				 */
2234 			}
2235 			vm_map_lock(map);
2236 			if (last_timestamp+1 != map->timestamp) {
2237 				/*
2238 				 * Look again for the entry because the map was
2239 				 * modified while it was unlocked.
2240 				 * Specifically, the entry may have been
2241 				 * clipped, merged, or deleted.
2242 				 */
2243 				if (!vm_map_lookup_entry(map, saved_start,
2244 				    &tmp_entry)) {
2245 					if (flags & VM_MAP_WIRE_HOLESOK)
2246 						tmp_entry = tmp_entry->next;
2247 					else {
2248 						if (saved_start == start) {
2249 							/*
2250 							 * First_entry has been deleted.
2251 							 */
2252 							vm_map_unlock(map);
2253 							return (KERN_INVALID_ADDRESS);
2254 						}
2255 						end = saved_start;
2256 						rv = KERN_INVALID_ADDRESS;
2257 						goto done;
2258 					}
2259 				}
2260 				if (entry == first_entry)
2261 					first_entry = tmp_entry;
2262 				else
2263 					first_entry = NULL;
2264 				entry = tmp_entry;
2265 			}
2266 			last_timestamp = map->timestamp;
2267 			continue;
2268 		}
2269 		vm_map_clip_start(map, entry, start);
2270 		vm_map_clip_end(map, entry, end);
2271 		/*
2272 		 * Mark the entry in case the map lock is released.  (See
2273 		 * above.)
2274 		 */
2275 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2276 		/*
2277 		 * Check the map for holes in the specified region.
2278 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2279 		 */
2280 		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2281 		    (entry->end < end && (entry->next == &map->header ||
2282 		    entry->next->start > entry->end))) {
2283 			end = entry->end;
2284 			rv = KERN_INVALID_ADDRESS;
2285 			goto done;
2286 		}
2287 		/*
2288 		 * If system unwiring, require that the entry is system wired.
2289 		 */
2290 		if (!user_unwire &&
2291 		    vm_map_entry_system_wired_count(entry) == 0) {
2292 			end = entry->end;
2293 			rv = KERN_INVALID_ARGUMENT;
2294 			goto done;
2295 		}
2296 		entry = entry->next;
2297 	}
2298 	rv = KERN_SUCCESS;
2299 done:
2300 	need_wakeup = FALSE;
2301 	if (first_entry == NULL) {
2302 		result = vm_map_lookup_entry(map, start, &first_entry);
2303 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2304 			first_entry = first_entry->next;
2305 		else
2306 			KASSERT(result, ("vm_map_unwire: lookup failed"));
2307 	}
2308 	entry = first_entry;
2309 	while (entry != &map->header && entry->start < end) {
2310 		if (rv == KERN_SUCCESS && (!user_unwire ||
2311 		    (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2312 			if (user_unwire)
2313 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2314 			entry->wired_count--;
2315 			if (entry->wired_count == 0) {
2316 				/*
2317 				 * Retain the map lock.
2318 				 */
2319 				vm_fault_unwire(map, entry->start, entry->end,
2320 				    entry->object.vm_object != NULL &&
2321 				    (entry->object.vm_object->type == OBJT_DEVICE ||
2322 				    entry->object.vm_object->type == OBJT_SG));
2323 			}
2324 		}
2325 		KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
2326 			("vm_map_unwire: in-transition flag missing"));
2327 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2328 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2329 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2330 			need_wakeup = TRUE;
2331 		}
2332 		vm_map_simplify_entry(map, entry);
2333 		entry = entry->next;
2334 	}
2335 	vm_map_unlock(map);
2336 	if (need_wakeup)
2337 		vm_map_wakeup(map);
2338 	return (rv);
2339 }
2340 
2341 /*
2342  *	vm_map_wire:
2343  *
2344  *	Implements both kernel and user wiring.
2345  */
2346 int
2347 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2348     int flags)
2349 {
2350 	vm_map_entry_t entry, first_entry, tmp_entry;
2351 	vm_offset_t saved_end, saved_start;
2352 	unsigned int last_timestamp;
2353 	int rv;
2354 	boolean_t fictitious, need_wakeup, result, user_wire;
2355 	vm_prot_t prot;
2356 
2357 	prot = 0;
2358 	if (flags & VM_MAP_WIRE_WRITE)
2359 		prot |= VM_PROT_WRITE;
2360 	user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2361 	vm_map_lock(map);
2362 	VM_MAP_RANGE_CHECK(map, start, end);
2363 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2364 		if (flags & VM_MAP_WIRE_HOLESOK)
2365 			first_entry = first_entry->next;
2366 		else {
2367 			vm_map_unlock(map);
2368 			return (KERN_INVALID_ADDRESS);
2369 		}
2370 	}
2371 	last_timestamp = map->timestamp;
2372 	entry = first_entry;
2373 	while (entry != &map->header && entry->start < end) {
2374 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2375 			/*
2376 			 * We have not yet clipped the entry.
2377 			 */
2378 			saved_start = (start >= entry->start) ? start :
2379 			    entry->start;
2380 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2381 			if (vm_map_unlock_and_wait(map, 0)) {
2382 				/*
2383 				 * Allow interruption of user wiring?
2384 				 */
2385 			}
2386 			vm_map_lock(map);
2387 			if (last_timestamp + 1 != map->timestamp) {
2388 				/*
2389 				 * Look again for the entry because the map was
2390 				 * modified while it was unlocked.
2391 				 * Specifically, the entry may have been
2392 				 * clipped, merged, or deleted.
2393 				 */
2394 				if (!vm_map_lookup_entry(map, saved_start,
2395 				    &tmp_entry)) {
2396 					if (flags & VM_MAP_WIRE_HOLESOK)
2397 						tmp_entry = tmp_entry->next;
2398 					else {
2399 						if (saved_start == start) {
2400 							/*
2401 							 * first_entry has been deleted.
2402 							 */
2403 							vm_map_unlock(map);
2404 							return (KERN_INVALID_ADDRESS);
2405 						}
2406 						end = saved_start;
2407 						rv = KERN_INVALID_ADDRESS;
2408 						goto done;
2409 					}
2410 				}
2411 				if (entry == first_entry)
2412 					first_entry = tmp_entry;
2413 				else
2414 					first_entry = NULL;
2415 				entry = tmp_entry;
2416 			}
2417 			last_timestamp = map->timestamp;
2418 			continue;
2419 		}
2420 		vm_map_clip_start(map, entry, start);
2421 		vm_map_clip_end(map, entry, end);
2422 		/*
2423 		 * Mark the entry in case the map lock is released.  (See
2424 		 * above.)
2425 		 */
2426 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2427 		if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
2428 		    || (entry->protection & prot) != prot) {
2429 			entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
2430 			if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
2431 				end = entry->end;
2432 				rv = KERN_INVALID_ADDRESS;
2433 				goto done;
2434 			}
2435 			goto next_entry;
2436 		}
2437 		if (entry->wired_count == 0) {
2438 			entry->wired_count++;
2439 			saved_start = entry->start;
2440 			saved_end = entry->end;
2441 			fictitious = entry->object.vm_object != NULL &&
2442 			    (entry->object.vm_object->type == OBJT_DEVICE ||
2443 			    entry->object.vm_object->type == OBJT_SG);
2444 			/*
2445 			 * Release the map lock, relying on the in-transition
2446 			 * mark.  Mark the map busy for fork.
2447 			 */
2448 			vm_map_busy(map);
2449 			vm_map_unlock(map);
2450 			rv = vm_fault_wire(map, saved_start, saved_end,
2451 			    fictitious);
2452 			vm_map_lock(map);
2453 			vm_map_unbusy(map);
2454 			if (last_timestamp + 1 != map->timestamp) {
2455 				/*
2456 				 * Look again for the entry because the map was
2457 				 * modified while it was unlocked.  The entry
2458 				 * may have been clipped, but NOT merged or
2459 				 * deleted.
2460 				 */
2461 				result = vm_map_lookup_entry(map, saved_start,
2462 				    &tmp_entry);
2463 				KASSERT(result, ("vm_map_wire: lookup failed"));
2464 				if (entry == first_entry)
2465 					first_entry = tmp_entry;
2466 				else
2467 					first_entry = NULL;
2468 				entry = tmp_entry;
2469 				while (entry->end < saved_end) {
2470 					if (rv != KERN_SUCCESS) {
2471 						KASSERT(entry->wired_count == 1,
2472 						    ("vm_map_wire: bad count"));
2473 						entry->wired_count = -1;
2474 					}
2475 					entry = entry->next;
2476 				}
2477 			}
2478 			last_timestamp = map->timestamp;
2479 			if (rv != KERN_SUCCESS) {
2480 				KASSERT(entry->wired_count == 1,
2481 				    ("vm_map_wire: bad count"));
2482 				/*
2483 				 * Assign an out-of-range value to represent
2484 				 * the failure to wire this entry.
2485 				 */
2486 				entry->wired_count = -1;
2487 				end = entry->end;
2488 				goto done;
2489 			}
2490 		} else if (!user_wire ||
2491 			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2492 			entry->wired_count++;
2493 		}
2494 		/*
2495 		 * Check the map for holes in the specified region.
2496 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2497 		 */
2498 	next_entry:
2499 		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2500 		    (entry->end < end && (entry->next == &map->header ||
2501 		    entry->next->start > entry->end))) {
2502 			end = entry->end;
2503 			rv = KERN_INVALID_ADDRESS;
2504 			goto done;
2505 		}
2506 		entry = entry->next;
2507 	}
2508 	rv = KERN_SUCCESS;
2509 done:
2510 	need_wakeup = FALSE;
2511 	if (first_entry == NULL) {
2512 		result = vm_map_lookup_entry(map, start, &first_entry);
2513 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2514 			first_entry = first_entry->next;
2515 		else
2516 			KASSERT(result, ("vm_map_wire: lookup failed"));
2517 	}
2518 	entry = first_entry;
2519 	while (entry != &map->header && entry->start < end) {
2520 		if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
2521 			goto next_entry_done;
2522 		if (rv == KERN_SUCCESS) {
2523 			if (user_wire)
2524 				entry->eflags |= MAP_ENTRY_USER_WIRED;
2525 		} else if (entry->wired_count == -1) {
2526 			/*
2527 			 * Wiring failed on this entry.  Thus, unwiring is
2528 			 * unnecessary.
2529 			 */
2530 			entry->wired_count = 0;
2531 		} else {
2532 			if (!user_wire ||
2533 			    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0)
2534 				entry->wired_count--;
2535 			if (entry->wired_count == 0) {
2536 				/*
2537 				 * Retain the map lock.
2538 				 */
2539 				vm_fault_unwire(map, entry->start, entry->end,
2540 				    entry->object.vm_object != NULL &&
2541 				    (entry->object.vm_object->type == OBJT_DEVICE ||
2542 				    entry->object.vm_object->type == OBJT_SG));
2543 			}
2544 		}
2545 	next_entry_done:
2546 		KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
2547 			("vm_map_wire: in-transition flag missing"));
2548 		entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION|MAP_ENTRY_WIRE_SKIPPED);
2549 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2550 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2551 			need_wakeup = TRUE;
2552 		}
2553 		vm_map_simplify_entry(map, entry);
2554 		entry = entry->next;
2555 	}
2556 	vm_map_unlock(map);
2557 	if (need_wakeup)
2558 		vm_map_wakeup(map);
2559 	return (rv);
2560 }
2561 
2562 /*
2563  * vm_map_sync
2564  *
2565  * Push any dirty cached pages in the address range to their pager.
2566  * If syncio is TRUE, dirty pages are written synchronously.
2567  * If invalidate is TRUE, any cached pages are freed as well.
2568  *
2569  * If the size of the region from start to end is zero, we are
2570  * supposed to flush all modified pages within the region containing
2571  * start.  Unfortunately, a region can be split or coalesced with
2572  * neighboring regions, making it difficult to determine what the
2573  * original region was.  Therefore, we approximate this requirement by
2574  * flushing the current region containing start.
2575  *
2576  * Returns an error if any part of the specified range is not mapped.
2577  */
2578 int
2579 vm_map_sync(
2580 	vm_map_t map,
2581 	vm_offset_t start,
2582 	vm_offset_t end,
2583 	boolean_t syncio,
2584 	boolean_t invalidate)
2585 {
2586 	vm_map_entry_t current;
2587 	vm_map_entry_t entry;
2588 	vm_size_t size;
2589 	vm_object_t object;
2590 	vm_ooffset_t offset;
2591 	unsigned int last_timestamp;
2592 	boolean_t failed;
2593 
2594 	vm_map_lock_read(map);
2595 	VM_MAP_RANGE_CHECK(map, start, end);
2596 	if (!vm_map_lookup_entry(map, start, &entry)) {
2597 		vm_map_unlock_read(map);
2598 		return (KERN_INVALID_ADDRESS);
2599 	} else if (start == end) {
2600 		start = entry->start;
2601 		end = entry->end;
2602 	}
2603 	/*
2604 	 * Make a first pass to check for user-wired memory and holes.
2605 	 */
2606 	for (current = entry; current != &map->header && current->start < end;
2607 	    current = current->next) {
2608 		if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
2609 			vm_map_unlock_read(map);
2610 			return (KERN_INVALID_ARGUMENT);
2611 		}
2612 		if (end > current->end &&
2613 		    (current->next == &map->header ||
2614 			current->end != current->next->start)) {
2615 			vm_map_unlock_read(map);
2616 			return (KERN_INVALID_ADDRESS);
2617 		}
2618 	}
2619 
2620 	if (invalidate)
2621 		pmap_remove(map->pmap, start, end);
2622 	failed = FALSE;
2623 
2624 	/*
2625 	 * Make a second pass, cleaning/uncaching pages from the indicated
2626 	 * objects as we go.
2627 	 */
2628 	for (current = entry; current != &map->header && current->start < end;) {
2629 		offset = current->offset + (start - current->start);
2630 		size = (end <= current->end ? end : current->end) - start;
2631 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2632 			vm_map_t smap;
2633 			vm_map_entry_t tentry;
2634 			vm_size_t tsize;
2635 
2636 			smap = current->object.sub_map;
2637 			vm_map_lock_read(smap);
2638 			(void) vm_map_lookup_entry(smap, offset, &tentry);
2639 			tsize = tentry->end - offset;
2640 			if (tsize < size)
2641 				size = tsize;
2642 			object = tentry->object.vm_object;
2643 			offset = tentry->offset + (offset - tentry->start);
2644 			vm_map_unlock_read(smap);
2645 		} else {
2646 			object = current->object.vm_object;
2647 		}
2648 		vm_object_reference(object);
2649 		last_timestamp = map->timestamp;
2650 		vm_map_unlock_read(map);
2651 		if (!vm_object_sync(object, offset, size, syncio, invalidate))
2652 			failed = TRUE;
2653 		start += size;
2654 		vm_object_deallocate(object);
2655 		vm_map_lock_read(map);
2656 		if (last_timestamp == map->timestamp ||
2657 		    !vm_map_lookup_entry(map, start, &current))
2658 			current = current->next;
2659 	}
2660 
2661 	vm_map_unlock_read(map);
2662 	return (failed ? KERN_FAILURE : KERN_SUCCESS);
2663 }
2664 
2665 /*
2666  *	vm_map_entry_unwire:	[ internal use only ]
2667  *
2668  *	Make the region specified by this entry pageable.
2669  *
2670  *	The map in question should be locked.
2671  *	[This is the reason for this routine's existence.]
2672  */
2673 static void
2674 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2675 {
2676 	vm_fault_unwire(map, entry->start, entry->end,
2677 	    entry->object.vm_object != NULL &&
2678 	    (entry->object.vm_object->type == OBJT_DEVICE ||
2679 	    entry->object.vm_object->type == OBJT_SG));
2680 	entry->wired_count = 0;
2681 }
2682 
2683 static void
2684 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
2685 {
2686 
2687 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
2688 		vm_object_deallocate(entry->object.vm_object);
2689 	uma_zfree(system_map ? kmapentzone : mapentzone, entry);
2690 }
2691 
2692 /*
2693  *	vm_map_entry_delete:	[ internal use only ]
2694  *
2695  *	Deallocate the given entry from the target map.
2696  */
2697 static void
2698 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
2699 {
2700 	vm_object_t object;
2701 	vm_pindex_t offidxstart, offidxend, count, size1;
2702 	vm_ooffset_t size;
2703 
2704 	vm_map_entry_unlink(map, entry);
2705 	object = entry->object.vm_object;
2706 	size = entry->end - entry->start;
2707 	map->size -= size;
2708 
2709 	if (entry->cred != NULL) {
2710 		swap_release_by_cred(size, entry->cred);
2711 		crfree(entry->cred);
2712 	}
2713 
2714 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2715 	    (object != NULL)) {
2716 		KASSERT(entry->cred == NULL || object->cred == NULL ||
2717 		    (entry->eflags & MAP_ENTRY_NEEDS_COPY),
2718 		    ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
2719 		count = OFF_TO_IDX(size);
2720 		offidxstart = OFF_TO_IDX(entry->offset);
2721 		offidxend = offidxstart + count;
2722 		VM_OBJECT_LOCK(object);
2723 		if (object->ref_count != 1 &&
2724 		    ((object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
2725 		    object == kernel_object || object == kmem_object)) {
2726 			vm_object_collapse(object);
2727 
2728 			/*
2729 			 * The option OBJPR_NOTMAPPED can be passed here
2730 			 * because vm_map_delete() already performed
2731 			 * pmap_remove() on the only mapping to this range
2732 			 * of pages.
2733 			 */
2734 			vm_object_page_remove(object, offidxstart, offidxend,
2735 			    OBJPR_NOTMAPPED);
2736 			if (object->type == OBJT_SWAP)
2737 				swap_pager_freespace(object, offidxstart, count);
2738 			if (offidxend >= object->size &&
2739 			    offidxstart < object->size) {
2740 				size1 = object->size;
2741 				object->size = offidxstart;
2742 				if (object->cred != NULL) {
2743 					size1 -= object->size;
2744 					KASSERT(object->charge >= ptoa(size1),
2745 					    ("vm_map_entry_delete: object->charge < 0"));
2746 					swap_release_by_cred(ptoa(size1), object->cred);
2747 					object->charge -= ptoa(size1);
2748 				}
2749 			}
2750 		}
2751 		VM_OBJECT_UNLOCK(object);
2752 	} else
2753 		entry->object.vm_object = NULL;
2754 	if (map->system_map)
2755 		vm_map_entry_deallocate(entry, TRUE);
2756 	else {
2757 		entry->next = curthread->td_map_def_user;
2758 		curthread->td_map_def_user = entry;
2759 	}
2760 }
2761 
2762 /*
2763  *	vm_map_delete:	[ internal use only ]
2764  *
2765  *	Deallocates the given address range from the target
2766  *	map.
2767  */
2768 int
2769 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
2770 {
2771 	vm_map_entry_t entry;
2772 	vm_map_entry_t first_entry;
2773 
2774 	VM_MAP_ASSERT_LOCKED(map);
2775 
2776 	/*
2777 	 * Find the start of the region, and clip it
2778 	 */
2779 	if (!vm_map_lookup_entry(map, start, &first_entry))
2780 		entry = first_entry->next;
2781 	else {
2782 		entry = first_entry;
2783 		vm_map_clip_start(map, entry, start);
2784 	}
2785 
2786 	/*
2787 	 * Step through all entries in this region
2788 	 */
2789 	while ((entry != &map->header) && (entry->start < end)) {
2790 		vm_map_entry_t next;
2791 
2792 		/*
2793 		 * Wait for wiring or unwiring of an entry to complete.
2794 		 * Also wait for any system wirings to disappear on
2795 		 * user maps.
2796 		 */
2797 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
2798 		    (vm_map_pmap(map) != kernel_pmap &&
2799 		    vm_map_entry_system_wired_count(entry) != 0)) {
2800 			unsigned int last_timestamp;
2801 			vm_offset_t saved_start;
2802 			vm_map_entry_t tmp_entry;
2803 
2804 			saved_start = entry->start;
2805 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2806 			last_timestamp = map->timestamp;
2807 			(void) vm_map_unlock_and_wait(map, 0);
2808 			vm_map_lock(map);
2809 			if (last_timestamp + 1 != map->timestamp) {
2810 				/*
2811 				 * Look again for the entry because the map was
2812 				 * modified while it was unlocked.
2813 				 * Specifically, the entry may have been
2814 				 * clipped, merged, or deleted.
2815 				 */
2816 				if (!vm_map_lookup_entry(map, saved_start,
2817 							 &tmp_entry))
2818 					entry = tmp_entry->next;
2819 				else {
2820 					entry = tmp_entry;
2821 					vm_map_clip_start(map, entry,
2822 							  saved_start);
2823 				}
2824 			}
2825 			continue;
2826 		}
2827 		vm_map_clip_end(map, entry, end);
2828 
2829 		next = entry->next;
2830 
2831 		/*
2832 		 * Unwire before removing addresses from the pmap; otherwise,
2833 		 * unwiring will put the entries back in the pmap.
2834 		 */
2835 		if (entry->wired_count != 0) {
2836 			vm_map_entry_unwire(map, entry);
2837 		}
2838 
2839 		pmap_remove(map->pmap, entry->start, entry->end);
2840 
2841 		/*
2842 		 * Delete the entry only after removing all pmap
2843 		 * entries pointing to its pages.  (Otherwise, its
2844 		 * page frames may be reallocated, and any modify bits
2845 		 * will be set in the wrong object!)
2846 		 */
2847 		vm_map_entry_delete(map, entry);
2848 		entry = next;
2849 	}
2850 	return (KERN_SUCCESS);
2851 }
2852 
2853 /*
2854  *	vm_map_remove:
2855  *
2856  *	Remove the given address range from the target map.
2857  *	This is the exported form of vm_map_delete.
2858  */
2859 int
2860 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2861 {
2862 	int result;
2863 
2864 	vm_map_lock(map);
2865 	VM_MAP_RANGE_CHECK(map, start, end);
2866 	result = vm_map_delete(map, start, end);
2867 	vm_map_unlock(map);
2868 	return (result);
2869 }
2870 
2871 /*
2872  *	vm_map_check_protection:
2873  *
2874  *	Assert that the target map allows the specified privilege on the
2875  *	entire address region given.  The entire region must be allocated.
2876  *
2877  *	WARNING!  This code does not and should not check whether the
2878  *	contents of the region is accessible.  For example a smaller file
2879  *	might be mapped into a larger address space.
2880  *
2881  *	NOTE!  This code is also called by munmap().
2882  *
2883  *	The map must be locked.  A read lock is sufficient.
2884  */
2885 boolean_t
2886 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2887 			vm_prot_t protection)
2888 {
2889 	vm_map_entry_t entry;
2890 	vm_map_entry_t tmp_entry;
2891 
2892 	if (!vm_map_lookup_entry(map, start, &tmp_entry))
2893 		return (FALSE);
2894 	entry = tmp_entry;
2895 
2896 	while (start < end) {
2897 		if (entry == &map->header)
2898 			return (FALSE);
2899 		/*
2900 		 * No holes allowed!
2901 		 */
2902 		if (start < entry->start)
2903 			return (FALSE);
2904 		/*
2905 		 * Check protection associated with entry.
2906 		 */
2907 		if ((entry->protection & protection) != protection)
2908 			return (FALSE);
2909 		/* go to next entry */
2910 		start = entry->end;
2911 		entry = entry->next;
2912 	}
2913 	return (TRUE);
2914 }
2915 
2916 /*
2917  *	vm_map_copy_entry:
2918  *
2919  *	Copies the contents of the source entry to the destination
2920  *	entry.  The entries *must* be aligned properly.
2921  */
2922 static void
2923 vm_map_copy_entry(
2924 	vm_map_t src_map,
2925 	vm_map_t dst_map,
2926 	vm_map_entry_t src_entry,
2927 	vm_map_entry_t dst_entry,
2928 	vm_ooffset_t *fork_charge)
2929 {
2930 	vm_object_t src_object;
2931 	vm_map_entry_t fake_entry;
2932 	vm_offset_t size;
2933 	struct ucred *cred;
2934 	int charged;
2935 
2936 	VM_MAP_ASSERT_LOCKED(dst_map);
2937 
2938 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
2939 		return;
2940 
2941 	if (src_entry->wired_count == 0) {
2942 
2943 		/*
2944 		 * If the source entry is marked needs_copy, it is already
2945 		 * write-protected.
2946 		 */
2947 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2948 			pmap_protect(src_map->pmap,
2949 			    src_entry->start,
2950 			    src_entry->end,
2951 			    src_entry->protection & ~VM_PROT_WRITE);
2952 		}
2953 
2954 		/*
2955 		 * Make a copy of the object.
2956 		 */
2957 		size = src_entry->end - src_entry->start;
2958 		if ((src_object = src_entry->object.vm_object) != NULL) {
2959 			VM_OBJECT_LOCK(src_object);
2960 			charged = ENTRY_CHARGED(src_entry);
2961 			if ((src_object->handle == NULL) &&
2962 				(src_object->type == OBJT_DEFAULT ||
2963 				 src_object->type == OBJT_SWAP)) {
2964 				vm_object_collapse(src_object);
2965 				if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
2966 					vm_object_split(src_entry);
2967 					src_object = src_entry->object.vm_object;
2968 				}
2969 			}
2970 			vm_object_reference_locked(src_object);
2971 			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
2972 			if (src_entry->cred != NULL &&
2973 			    !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
2974 				KASSERT(src_object->cred == NULL,
2975 				    ("OVERCOMMIT: vm_map_copy_entry: cred %p",
2976 				     src_object));
2977 				src_object->cred = src_entry->cred;
2978 				src_object->charge = size;
2979 			}
2980 			VM_OBJECT_UNLOCK(src_object);
2981 			dst_entry->object.vm_object = src_object;
2982 			if (charged) {
2983 				cred = curthread->td_ucred;
2984 				crhold(cred);
2985 				dst_entry->cred = cred;
2986 				*fork_charge += size;
2987 				if (!(src_entry->eflags &
2988 				      MAP_ENTRY_NEEDS_COPY)) {
2989 					crhold(cred);
2990 					src_entry->cred = cred;
2991 					*fork_charge += size;
2992 				}
2993 			}
2994 			src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2995 			dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2996 			dst_entry->offset = src_entry->offset;
2997 			if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
2998 				/*
2999 				 * MAP_ENTRY_VN_WRITECNT cannot
3000 				 * indicate write reference from
3001 				 * src_entry, since the entry is
3002 				 * marked as needs copy.  Allocate a
3003 				 * fake entry that is used to
3004 				 * decrement object->un_pager.vnp.writecount
3005 				 * at the appropriate time.  Attach
3006 				 * fake_entry to the deferred list.
3007 				 */
3008 				fake_entry = vm_map_entry_create(dst_map);
3009 				fake_entry->eflags = MAP_ENTRY_VN_WRITECNT;
3010 				src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT;
3011 				vm_object_reference(src_object);
3012 				fake_entry->object.vm_object = src_object;
3013 				fake_entry->start = src_entry->start;
3014 				fake_entry->end = src_entry->end;
3015 				fake_entry->next = curthread->td_map_def_user;
3016 				curthread->td_map_def_user = fake_entry;
3017 			}
3018 		} else {
3019 			dst_entry->object.vm_object = NULL;
3020 			dst_entry->offset = 0;
3021 			if (src_entry->cred != NULL) {
3022 				dst_entry->cred = curthread->td_ucred;
3023 				crhold(dst_entry->cred);
3024 				*fork_charge += size;
3025 			}
3026 		}
3027 
3028 		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
3029 		    dst_entry->end - dst_entry->start, src_entry->start);
3030 	} else {
3031 		/*
3032 		 * Of course, wired down pages can't be set copy-on-write.
3033 		 * Cause wired pages to be copied into the new map by
3034 		 * simulating faults (the new pages are pageable)
3035 		 */
3036 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3037 		    fork_charge);
3038 	}
3039 }
3040 
3041 /*
3042  * vmspace_map_entry_forked:
3043  * Update the newly-forked vmspace each time a map entry is inherited
3044  * or copied.  The values for vm_dsize and vm_tsize are approximate
3045  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3046  */
3047 static void
3048 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3049     vm_map_entry_t entry)
3050 {
3051 	vm_size_t entrysize;
3052 	vm_offset_t newend;
3053 
3054 	entrysize = entry->end - entry->start;
3055 	vm2->vm_map.size += entrysize;
3056 	if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3057 		vm2->vm_ssize += btoc(entrysize);
3058 	} else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3059 	    entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3060 		newend = MIN(entry->end,
3061 		    (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3062 		vm2->vm_dsize += btoc(newend - entry->start);
3063 	} else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3064 	    entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3065 		newend = MIN(entry->end,
3066 		    (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3067 		vm2->vm_tsize += btoc(newend - entry->start);
3068 	}
3069 }
3070 
3071 /*
3072  * vmspace_fork:
3073  * Create a new process vmspace structure and vm_map
3074  * based on those of an existing process.  The new map
3075  * is based on the old map, according to the inheritance
3076  * values on the regions in that map.
3077  *
3078  * XXX It might be worth coalescing the entries added to the new vmspace.
3079  *
3080  * The source map must not be locked.
3081  */
3082 struct vmspace *
3083 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3084 {
3085 	struct vmspace *vm2;
3086 	vm_map_t new_map, old_map;
3087 	vm_map_entry_t new_entry, old_entry;
3088 	vm_object_t object;
3089 	int locked;
3090 
3091 	old_map = &vm1->vm_map;
3092 	/* Copy immutable fields of vm1 to vm2. */
3093 	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
3094 	if (vm2 == NULL)
3095 		return (NULL);
3096 	vm2->vm_taddr = vm1->vm_taddr;
3097 	vm2->vm_daddr = vm1->vm_daddr;
3098 	vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3099 	vm_map_lock(old_map);
3100 	if (old_map->busy)
3101 		vm_map_wait_busy(old_map);
3102 	new_map = &vm2->vm_map;
3103 	locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3104 	KASSERT(locked, ("vmspace_fork: lock failed"));
3105 
3106 	old_entry = old_map->header.next;
3107 
3108 	while (old_entry != &old_map->header) {
3109 		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3110 			panic("vm_map_fork: encountered a submap");
3111 
3112 		switch (old_entry->inheritance) {
3113 		case VM_INHERIT_NONE:
3114 			break;
3115 
3116 		case VM_INHERIT_SHARE:
3117 			/*
3118 			 * Clone the entry, creating the shared object if necessary.
3119 			 */
3120 			object = old_entry->object.vm_object;
3121 			if (object == NULL) {
3122 				object = vm_object_allocate(OBJT_DEFAULT,
3123 					atop(old_entry->end - old_entry->start));
3124 				old_entry->object.vm_object = object;
3125 				old_entry->offset = 0;
3126 				if (old_entry->cred != NULL) {
3127 					object->cred = old_entry->cred;
3128 					object->charge = old_entry->end -
3129 					    old_entry->start;
3130 					old_entry->cred = NULL;
3131 				}
3132 			}
3133 
3134 			/*
3135 			 * Add the reference before calling vm_object_shadow
3136 			 * to insure that a shadow object is created.
3137 			 */
3138 			vm_object_reference(object);
3139 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3140 				vm_object_shadow(&old_entry->object.vm_object,
3141 				    &old_entry->offset,
3142 				    old_entry->end - old_entry->start);
3143 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3144 				/* Transfer the second reference too. */
3145 				vm_object_reference(
3146 				    old_entry->object.vm_object);
3147 
3148 				/*
3149 				 * As in vm_map_simplify_entry(), the
3150 				 * vnode lock will not be acquired in
3151 				 * this call to vm_object_deallocate().
3152 				 */
3153 				vm_object_deallocate(object);
3154 				object = old_entry->object.vm_object;
3155 			}
3156 			VM_OBJECT_LOCK(object);
3157 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
3158 			if (old_entry->cred != NULL) {
3159 				KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3160 				object->cred = old_entry->cred;
3161 				object->charge = old_entry->end - old_entry->start;
3162 				old_entry->cred = NULL;
3163 			}
3164 			VM_OBJECT_UNLOCK(object);
3165 
3166 			/*
3167 			 * Clone the entry, referencing the shared object.
3168 			 */
3169 			new_entry = vm_map_entry_create(new_map);
3170 			*new_entry = *old_entry;
3171 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3172 			    MAP_ENTRY_IN_TRANSITION);
3173 			new_entry->wired_count = 0;
3174 			if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3175 				object = new_entry->object.vm_object;
3176 				KASSERT(((struct vnode *)object->handle)->
3177 				    v_writecount > 0,
3178 				    ("vmspace_fork: v_writecount"));
3179 				KASSERT(object->un_pager.vnp.writemappings > 0,
3180 				    ("vmspace_fork: vnp.writecount"));
3181 				vnode_pager_update_writecount(object,
3182 				    new_entry->start, new_entry->end);
3183 			}
3184 
3185 			/*
3186 			 * Insert the entry into the new map -- we know we're
3187 			 * inserting at the end of the new map.
3188 			 */
3189 			vm_map_entry_link(new_map, new_map->header.prev,
3190 			    new_entry);
3191 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3192 
3193 			/*
3194 			 * Update the physical map
3195 			 */
3196 			pmap_copy(new_map->pmap, old_map->pmap,
3197 			    new_entry->start,
3198 			    (old_entry->end - old_entry->start),
3199 			    old_entry->start);
3200 			break;
3201 
3202 		case VM_INHERIT_COPY:
3203 			/*
3204 			 * Clone the entry and link into the map.
3205 			 */
3206 			new_entry = vm_map_entry_create(new_map);
3207 			*new_entry = *old_entry;
3208 			/*
3209 			 * Copied entry is COW over the old object.
3210 			 */
3211 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3212 			    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT);
3213 			new_entry->wired_count = 0;
3214 			new_entry->object.vm_object = NULL;
3215 			new_entry->cred = NULL;
3216 			vm_map_entry_link(new_map, new_map->header.prev,
3217 			    new_entry);
3218 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3219 			vm_map_copy_entry(old_map, new_map, old_entry,
3220 			    new_entry, fork_charge);
3221 			break;
3222 		}
3223 		old_entry = old_entry->next;
3224 	}
3225 	/*
3226 	 * Use inlined vm_map_unlock() to postpone handling the deferred
3227 	 * map entries, which cannot be done until both old_map and
3228 	 * new_map locks are released.
3229 	 */
3230 	sx_xunlock(&old_map->lock);
3231 	sx_xunlock(&new_map->lock);
3232 	vm_map_process_deferred();
3233 
3234 	return (vm2);
3235 }
3236 
3237 int
3238 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3239     vm_prot_t prot, vm_prot_t max, int cow)
3240 {
3241 	vm_map_entry_t new_entry, prev_entry;
3242 	vm_offset_t bot, top;
3243 	vm_size_t init_ssize;
3244 	int orient, rv;
3245 	rlim_t vmemlim;
3246 
3247 	/*
3248 	 * The stack orientation is piggybacked with the cow argument.
3249 	 * Extract it into orient and mask the cow argument so that we
3250 	 * don't pass it around further.
3251 	 * NOTE: We explicitly allow bi-directional stacks.
3252 	 */
3253 	orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP);
3254 	cow &= ~orient;
3255 	KASSERT(orient != 0, ("No stack grow direction"));
3256 
3257 	if (addrbos < vm_map_min(map) ||
3258 	    addrbos > vm_map_max(map) ||
3259 	    addrbos + max_ssize < addrbos)
3260 		return (KERN_NO_SPACE);
3261 
3262 	init_ssize = (max_ssize < sgrowsiz) ? max_ssize : sgrowsiz;
3263 
3264 	PROC_LOCK(curthread->td_proc);
3265 	vmemlim = lim_cur(curthread->td_proc, RLIMIT_VMEM);
3266 	PROC_UNLOCK(curthread->td_proc);
3267 
3268 	vm_map_lock(map);
3269 
3270 	/* If addr is already mapped, no go */
3271 	if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
3272 		vm_map_unlock(map);
3273 		return (KERN_NO_SPACE);
3274 	}
3275 
3276 	/* If we would blow our VMEM resource limit, no go */
3277 	if (map->size + init_ssize > vmemlim) {
3278 		vm_map_unlock(map);
3279 		return (KERN_NO_SPACE);
3280 	}
3281 
3282 	/*
3283 	 * If we can't accomodate max_ssize in the current mapping, no go.
3284 	 * However, we need to be aware that subsequent user mappings might
3285 	 * map into the space we have reserved for stack, and currently this
3286 	 * space is not protected.
3287 	 *
3288 	 * Hopefully we will at least detect this condition when we try to
3289 	 * grow the stack.
3290 	 */
3291 	if ((prev_entry->next != &map->header) &&
3292 	    (prev_entry->next->start < addrbos + max_ssize)) {
3293 		vm_map_unlock(map);
3294 		return (KERN_NO_SPACE);
3295 	}
3296 
3297 	/*
3298 	 * We initially map a stack of only init_ssize.  We will grow as
3299 	 * needed later.  Depending on the orientation of the stack (i.e.
3300 	 * the grow direction) we either map at the top of the range, the
3301 	 * bottom of the range or in the middle.
3302 	 *
3303 	 * Note: we would normally expect prot and max to be VM_PROT_ALL,
3304 	 * and cow to be 0.  Possibly we should eliminate these as input
3305 	 * parameters, and just pass these values here in the insert call.
3306 	 */
3307 	if (orient == MAP_STACK_GROWS_DOWN)
3308 		bot = addrbos + max_ssize - init_ssize;
3309 	else if (orient == MAP_STACK_GROWS_UP)
3310 		bot = addrbos;
3311 	else
3312 		bot = round_page(addrbos + max_ssize/2 - init_ssize/2);
3313 	top = bot + init_ssize;
3314 	rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
3315 
3316 	/* Now set the avail_ssize amount. */
3317 	if (rv == KERN_SUCCESS) {
3318 		if (prev_entry != &map->header)
3319 			vm_map_clip_end(map, prev_entry, bot);
3320 		new_entry = prev_entry->next;
3321 		if (new_entry->end != top || new_entry->start != bot)
3322 			panic("Bad entry start/end for new stack entry");
3323 
3324 		new_entry->avail_ssize = max_ssize - init_ssize;
3325 		if (orient & MAP_STACK_GROWS_DOWN)
3326 			new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
3327 		if (orient & MAP_STACK_GROWS_UP)
3328 			new_entry->eflags |= MAP_ENTRY_GROWS_UP;
3329 	}
3330 
3331 	vm_map_unlock(map);
3332 	return (rv);
3333 }
3334 
3335 static int stack_guard_page = 0;
3336 TUNABLE_INT("security.bsd.stack_guard_page", &stack_guard_page);
3337 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RW,
3338     &stack_guard_page, 0,
3339     "Insert stack guard page ahead of the growable segments.");
3340 
3341 /* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
3342  * desired address is already mapped, or if we successfully grow
3343  * the stack.  Also returns KERN_SUCCESS if addr is outside the
3344  * stack range (this is strange, but preserves compatibility with
3345  * the grow function in vm_machdep.c).
3346  */
3347 int
3348 vm_map_growstack(struct proc *p, vm_offset_t addr)
3349 {
3350 	vm_map_entry_t next_entry, prev_entry;
3351 	vm_map_entry_t new_entry, stack_entry;
3352 	struct vmspace *vm = p->p_vmspace;
3353 	vm_map_t map = &vm->vm_map;
3354 	vm_offset_t end;
3355 	size_t grow_amount, max_grow;
3356 	rlim_t stacklim, vmemlim;
3357 	int is_procstack, rv;
3358 	struct ucred *cred;
3359 #ifdef notyet
3360 	uint64_t limit;
3361 #endif
3362 #ifdef RACCT
3363 	int error;
3364 #endif
3365 
3366 Retry:
3367 	PROC_LOCK(p);
3368 	stacklim = lim_cur(p, RLIMIT_STACK);
3369 	vmemlim = lim_cur(p, RLIMIT_VMEM);
3370 	PROC_UNLOCK(p);
3371 
3372 	vm_map_lock_read(map);
3373 
3374 	/* If addr is already in the entry range, no need to grow.*/
3375 	if (vm_map_lookup_entry(map, addr, &prev_entry)) {
3376 		vm_map_unlock_read(map);
3377 		return (KERN_SUCCESS);
3378 	}
3379 
3380 	next_entry = prev_entry->next;
3381 	if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) {
3382 		/*
3383 		 * This entry does not grow upwards. Since the address lies
3384 		 * beyond this entry, the next entry (if one exists) has to
3385 		 * be a downward growable entry. The entry list header is
3386 		 * never a growable entry, so it suffices to check the flags.
3387 		 */
3388 		if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) {
3389 			vm_map_unlock_read(map);
3390 			return (KERN_SUCCESS);
3391 		}
3392 		stack_entry = next_entry;
3393 	} else {
3394 		/*
3395 		 * This entry grows upward. If the next entry does not at
3396 		 * least grow downwards, this is the entry we need to grow.
3397 		 * otherwise we have two possible choices and we have to
3398 		 * select one.
3399 		 */
3400 		if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) {
3401 			/*
3402 			 * We have two choices; grow the entry closest to
3403 			 * the address to minimize the amount of growth.
3404 			 */
3405 			if (addr - prev_entry->end <= next_entry->start - addr)
3406 				stack_entry = prev_entry;
3407 			else
3408 				stack_entry = next_entry;
3409 		} else
3410 			stack_entry = prev_entry;
3411 	}
3412 
3413 	if (stack_entry == next_entry) {
3414 		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo"));
3415 		KASSERT(addr < stack_entry->start, ("foo"));
3416 		end = (prev_entry != &map->header) ? prev_entry->end :
3417 		    stack_entry->start - stack_entry->avail_ssize;
3418 		grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE);
3419 		max_grow = stack_entry->start - end;
3420 	} else {
3421 		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo"));
3422 		KASSERT(addr >= stack_entry->end, ("foo"));
3423 		end = (next_entry != &map->header) ? next_entry->start :
3424 		    stack_entry->end + stack_entry->avail_ssize;
3425 		grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE);
3426 		max_grow = end - stack_entry->end;
3427 	}
3428 
3429 	if (grow_amount > stack_entry->avail_ssize) {
3430 		vm_map_unlock_read(map);
3431 		return (KERN_NO_SPACE);
3432 	}
3433 
3434 	/*
3435 	 * If there is no longer enough space between the entries nogo, and
3436 	 * adjust the available space.  Note: this  should only happen if the
3437 	 * user has mapped into the stack area after the stack was created,
3438 	 * and is probably an error.
3439 	 *
3440 	 * This also effectively destroys any guard page the user might have
3441 	 * intended by limiting the stack size.
3442 	 */
3443 	if (grow_amount + (stack_guard_page ? PAGE_SIZE : 0) > max_grow) {
3444 		if (vm_map_lock_upgrade(map))
3445 			goto Retry;
3446 
3447 		stack_entry->avail_ssize = max_grow;
3448 
3449 		vm_map_unlock(map);
3450 		return (KERN_NO_SPACE);
3451 	}
3452 
3453 	is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr) ? 1 : 0;
3454 
3455 	/*
3456 	 * If this is the main process stack, see if we're over the stack
3457 	 * limit.
3458 	 */
3459 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3460 		vm_map_unlock_read(map);
3461 		return (KERN_NO_SPACE);
3462 	}
3463 #ifdef RACCT
3464 	PROC_LOCK(p);
3465 	if (is_procstack &&
3466 	    racct_set(p, RACCT_STACK, ctob(vm->vm_ssize) + grow_amount)) {
3467 		PROC_UNLOCK(p);
3468 		vm_map_unlock_read(map);
3469 		return (KERN_NO_SPACE);
3470 	}
3471 	PROC_UNLOCK(p);
3472 #endif
3473 
3474 	/* Round up the grow amount modulo SGROWSIZ */
3475 	grow_amount = roundup (grow_amount, sgrowsiz);
3476 	if (grow_amount > stack_entry->avail_ssize)
3477 		grow_amount = stack_entry->avail_ssize;
3478 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3479 		grow_amount = trunc_page((vm_size_t)stacklim) -
3480 		    ctob(vm->vm_ssize);
3481 	}
3482 #ifdef notyet
3483 	PROC_LOCK(p);
3484 	limit = racct_get_available(p, RACCT_STACK);
3485 	PROC_UNLOCK(p);
3486 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
3487 		grow_amount = limit - ctob(vm->vm_ssize);
3488 #endif
3489 
3490 	/* If we would blow our VMEM resource limit, no go */
3491 	if (map->size + grow_amount > vmemlim) {
3492 		vm_map_unlock_read(map);
3493 		rv = KERN_NO_SPACE;
3494 		goto out;
3495 	}
3496 #ifdef RACCT
3497 	PROC_LOCK(p);
3498 	if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
3499 		PROC_UNLOCK(p);
3500 		vm_map_unlock_read(map);
3501 		rv = KERN_NO_SPACE;
3502 		goto out;
3503 	}
3504 	PROC_UNLOCK(p);
3505 #endif
3506 
3507 	if (vm_map_lock_upgrade(map))
3508 		goto Retry;
3509 
3510 	if (stack_entry == next_entry) {
3511 		/*
3512 		 * Growing downward.
3513 		 */
3514 		/* Get the preliminary new entry start value */
3515 		addr = stack_entry->start - grow_amount;
3516 
3517 		/*
3518 		 * If this puts us into the previous entry, cut back our
3519 		 * growth to the available space. Also, see the note above.
3520 		 */
3521 		if (addr < end) {
3522 			stack_entry->avail_ssize = max_grow;
3523 			addr = end;
3524 			if (stack_guard_page)
3525 				addr += PAGE_SIZE;
3526 		}
3527 
3528 		rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start,
3529 		    p->p_sysent->sv_stackprot, VM_PROT_ALL, 0);
3530 
3531 		/* Adjust the available stack space by the amount we grew. */
3532 		if (rv == KERN_SUCCESS) {
3533 			if (prev_entry != &map->header)
3534 				vm_map_clip_end(map, prev_entry, addr);
3535 			new_entry = prev_entry->next;
3536 			KASSERT(new_entry == stack_entry->prev, ("foo"));
3537 			KASSERT(new_entry->end == stack_entry->start, ("foo"));
3538 			KASSERT(new_entry->start == addr, ("foo"));
3539 			grow_amount = new_entry->end - new_entry->start;
3540 			new_entry->avail_ssize = stack_entry->avail_ssize -
3541 			    grow_amount;
3542 			stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN;
3543 			new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
3544 		}
3545 	} else {
3546 		/*
3547 		 * Growing upward.
3548 		 */
3549 		addr = stack_entry->end + grow_amount;
3550 
3551 		/*
3552 		 * If this puts us into the next entry, cut back our growth
3553 		 * to the available space. Also, see the note above.
3554 		 */
3555 		if (addr > end) {
3556 			stack_entry->avail_ssize = end - stack_entry->end;
3557 			addr = end;
3558 			if (stack_guard_page)
3559 				addr -= PAGE_SIZE;
3560 		}
3561 
3562 		grow_amount = addr - stack_entry->end;
3563 		cred = stack_entry->cred;
3564 		if (cred == NULL && stack_entry->object.vm_object != NULL)
3565 			cred = stack_entry->object.vm_object->cred;
3566 		if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
3567 			rv = KERN_NO_SPACE;
3568 		/* Grow the underlying object if applicable. */
3569 		else if (stack_entry->object.vm_object == NULL ||
3570 			 vm_object_coalesce(stack_entry->object.vm_object,
3571 			 stack_entry->offset,
3572 			 (vm_size_t)(stack_entry->end - stack_entry->start),
3573 			 (vm_size_t)grow_amount, cred != NULL)) {
3574 			map->size += (addr - stack_entry->end);
3575 			/* Update the current entry. */
3576 			stack_entry->end = addr;
3577 			stack_entry->avail_ssize -= grow_amount;
3578 			vm_map_entry_resize_free(map, stack_entry);
3579 			rv = KERN_SUCCESS;
3580 
3581 			if (next_entry != &map->header)
3582 				vm_map_clip_start(map, next_entry, addr);
3583 		} else
3584 			rv = KERN_FAILURE;
3585 	}
3586 
3587 	if (rv == KERN_SUCCESS && is_procstack)
3588 		vm->vm_ssize += btoc(grow_amount);
3589 
3590 	vm_map_unlock(map);
3591 
3592 	/*
3593 	 * Heed the MAP_WIREFUTURE flag if it was set for this process.
3594 	 */
3595 	if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) {
3596 		vm_map_wire(map,
3597 		    (stack_entry == next_entry) ? addr : addr - grow_amount,
3598 		    (stack_entry == next_entry) ? stack_entry->start : addr,
3599 		    (p->p_flag & P_SYSTEM)
3600 		    ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES
3601 		    : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES);
3602 	}
3603 
3604 out:
3605 #ifdef RACCT
3606 	if (rv != KERN_SUCCESS) {
3607 		PROC_LOCK(p);
3608 		error = racct_set(p, RACCT_VMEM, map->size);
3609 		KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
3610 	    	error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
3611 		KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
3612 		PROC_UNLOCK(p);
3613 	}
3614 #endif
3615 
3616 	return (rv);
3617 }
3618 
3619 /*
3620  * Unshare the specified VM space for exec.  If other processes are
3621  * mapped to it, then create a new one.  The new vmspace is null.
3622  */
3623 int
3624 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
3625 {
3626 	struct vmspace *oldvmspace = p->p_vmspace;
3627 	struct vmspace *newvmspace;
3628 
3629 	newvmspace = vmspace_alloc(minuser, maxuser);
3630 	if (newvmspace == NULL)
3631 		return (ENOMEM);
3632 	newvmspace->vm_swrss = oldvmspace->vm_swrss;
3633 	/*
3634 	 * This code is written like this for prototype purposes.  The
3635 	 * goal is to avoid running down the vmspace here, but let the
3636 	 * other process's that are still using the vmspace to finally
3637 	 * run it down.  Even though there is little or no chance of blocking
3638 	 * here, it is a good idea to keep this form for future mods.
3639 	 */
3640 	PROC_VMSPACE_LOCK(p);
3641 	p->p_vmspace = newvmspace;
3642 	PROC_VMSPACE_UNLOCK(p);
3643 	if (p == curthread->td_proc)
3644 		pmap_activate(curthread);
3645 	vmspace_free(oldvmspace);
3646 	return (0);
3647 }
3648 
3649 /*
3650  * Unshare the specified VM space for forcing COW.  This
3651  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3652  */
3653 int
3654 vmspace_unshare(struct proc *p)
3655 {
3656 	struct vmspace *oldvmspace = p->p_vmspace;
3657 	struct vmspace *newvmspace;
3658 	vm_ooffset_t fork_charge;
3659 
3660 	if (oldvmspace->vm_refcnt == 1)
3661 		return (0);
3662 	fork_charge = 0;
3663 	newvmspace = vmspace_fork(oldvmspace, &fork_charge);
3664 	if (newvmspace == NULL)
3665 		return (ENOMEM);
3666 	if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
3667 		vmspace_free(newvmspace);
3668 		return (ENOMEM);
3669 	}
3670 	PROC_VMSPACE_LOCK(p);
3671 	p->p_vmspace = newvmspace;
3672 	PROC_VMSPACE_UNLOCK(p);
3673 	if (p == curthread->td_proc)
3674 		pmap_activate(curthread);
3675 	vmspace_free(oldvmspace);
3676 	return (0);
3677 }
3678 
3679 /*
3680  *	vm_map_lookup:
3681  *
3682  *	Finds the VM object, offset, and
3683  *	protection for a given virtual address in the
3684  *	specified map, assuming a page fault of the
3685  *	type specified.
3686  *
3687  *	Leaves the map in question locked for read; return
3688  *	values are guaranteed until a vm_map_lookup_done
3689  *	call is performed.  Note that the map argument
3690  *	is in/out; the returned map must be used in
3691  *	the call to vm_map_lookup_done.
3692  *
3693  *	A handle (out_entry) is returned for use in
3694  *	vm_map_lookup_done, to make that fast.
3695  *
3696  *	If a lookup is requested with "write protection"
3697  *	specified, the map may be changed to perform virtual
3698  *	copying operations, although the data referenced will
3699  *	remain the same.
3700  */
3701 int
3702 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
3703 	      vm_offset_t vaddr,
3704 	      vm_prot_t fault_typea,
3705 	      vm_map_entry_t *out_entry,	/* OUT */
3706 	      vm_object_t *object,		/* OUT */
3707 	      vm_pindex_t *pindex,		/* OUT */
3708 	      vm_prot_t *out_prot,		/* OUT */
3709 	      boolean_t *wired)			/* OUT */
3710 {
3711 	vm_map_entry_t entry;
3712 	vm_map_t map = *var_map;
3713 	vm_prot_t prot;
3714 	vm_prot_t fault_type = fault_typea;
3715 	vm_object_t eobject;
3716 	vm_size_t size;
3717 	struct ucred *cred;
3718 
3719 RetryLookup:;
3720 
3721 	vm_map_lock_read(map);
3722 
3723 	/*
3724 	 * Lookup the faulting address.
3725 	 */
3726 	if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
3727 		vm_map_unlock_read(map);
3728 		return (KERN_INVALID_ADDRESS);
3729 	}
3730 
3731 	entry = *out_entry;
3732 
3733 	/*
3734 	 * Handle submaps.
3735 	 */
3736 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3737 		vm_map_t old_map = map;
3738 
3739 		*var_map = map = entry->object.sub_map;
3740 		vm_map_unlock_read(old_map);
3741 		goto RetryLookup;
3742 	}
3743 
3744 	/*
3745 	 * Check whether this task is allowed to have this page.
3746 	 */
3747 	prot = entry->protection;
3748 	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3749 	if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
3750 		vm_map_unlock_read(map);
3751 		return (KERN_PROTECTION_FAILURE);
3752 	}
3753 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3754 	    (entry->eflags & MAP_ENTRY_COW) &&
3755 	    (fault_type & VM_PROT_WRITE)) {
3756 		vm_map_unlock_read(map);
3757 		return (KERN_PROTECTION_FAILURE);
3758 	}
3759 
3760 	/*
3761 	 * If this page is not pageable, we have to get it for all possible
3762 	 * accesses.
3763 	 */
3764 	*wired = (entry->wired_count != 0);
3765 	if (*wired)
3766 		fault_type = entry->protection;
3767 	size = entry->end - entry->start;
3768 	/*
3769 	 * If the entry was copy-on-write, we either ...
3770 	 */
3771 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3772 		/*
3773 		 * If we want to write the page, we may as well handle that
3774 		 * now since we've got the map locked.
3775 		 *
3776 		 * If we don't need to write the page, we just demote the
3777 		 * permissions allowed.
3778 		 */
3779 		if ((fault_type & VM_PROT_WRITE) != 0 ||
3780 		    (fault_typea & VM_PROT_COPY) != 0) {
3781 			/*
3782 			 * Make a new object, and place it in the object
3783 			 * chain.  Note that no new references have appeared
3784 			 * -- one just moved from the map to the new
3785 			 * object.
3786 			 */
3787 			if (vm_map_lock_upgrade(map))
3788 				goto RetryLookup;
3789 
3790 			if (entry->cred == NULL) {
3791 				/*
3792 				 * The debugger owner is charged for
3793 				 * the memory.
3794 				 */
3795 				cred = curthread->td_ucred;
3796 				crhold(cred);
3797 				if (!swap_reserve_by_cred(size, cred)) {
3798 					crfree(cred);
3799 					vm_map_unlock(map);
3800 					return (KERN_RESOURCE_SHORTAGE);
3801 				}
3802 				entry->cred = cred;
3803 			}
3804 			vm_object_shadow(&entry->object.vm_object,
3805 			    &entry->offset, size);
3806 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3807 			eobject = entry->object.vm_object;
3808 			if (eobject->cred != NULL) {
3809 				/*
3810 				 * The object was not shadowed.
3811 				 */
3812 				swap_release_by_cred(size, entry->cred);
3813 				crfree(entry->cred);
3814 				entry->cred = NULL;
3815 			} else if (entry->cred != NULL) {
3816 				VM_OBJECT_LOCK(eobject);
3817 				eobject->cred = entry->cred;
3818 				eobject->charge = size;
3819 				VM_OBJECT_UNLOCK(eobject);
3820 				entry->cred = NULL;
3821 			}
3822 
3823 			vm_map_lock_downgrade(map);
3824 		} else {
3825 			/*
3826 			 * We're attempting to read a copy-on-write page --
3827 			 * don't allow writes.
3828 			 */
3829 			prot &= ~VM_PROT_WRITE;
3830 		}
3831 	}
3832 
3833 	/*
3834 	 * Create an object if necessary.
3835 	 */
3836 	if (entry->object.vm_object == NULL &&
3837 	    !map->system_map) {
3838 		if (vm_map_lock_upgrade(map))
3839 			goto RetryLookup;
3840 		entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
3841 		    atop(size));
3842 		entry->offset = 0;
3843 		if (entry->cred != NULL) {
3844 			VM_OBJECT_LOCK(entry->object.vm_object);
3845 			entry->object.vm_object->cred = entry->cred;
3846 			entry->object.vm_object->charge = size;
3847 			VM_OBJECT_UNLOCK(entry->object.vm_object);
3848 			entry->cred = NULL;
3849 		}
3850 		vm_map_lock_downgrade(map);
3851 	}
3852 
3853 	/*
3854 	 * Return the object/offset from this entry.  If the entry was
3855 	 * copy-on-write or empty, it has been fixed up.
3856 	 */
3857 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3858 	*object = entry->object.vm_object;
3859 
3860 	*out_prot = prot;
3861 	return (KERN_SUCCESS);
3862 }
3863 
3864 /*
3865  *	vm_map_lookup_locked:
3866  *
3867  *	Lookup the faulting address.  A version of vm_map_lookup that returns
3868  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
3869  */
3870 int
3871 vm_map_lookup_locked(vm_map_t *var_map,		/* IN/OUT */
3872 		     vm_offset_t vaddr,
3873 		     vm_prot_t fault_typea,
3874 		     vm_map_entry_t *out_entry,	/* OUT */
3875 		     vm_object_t *object,	/* OUT */
3876 		     vm_pindex_t *pindex,	/* OUT */
3877 		     vm_prot_t *out_prot,	/* OUT */
3878 		     boolean_t *wired)		/* OUT */
3879 {
3880 	vm_map_entry_t entry;
3881 	vm_map_t map = *var_map;
3882 	vm_prot_t prot;
3883 	vm_prot_t fault_type = fault_typea;
3884 
3885 	/*
3886 	 * Lookup the faulting address.
3887 	 */
3888 	if (!vm_map_lookup_entry(map, vaddr, out_entry))
3889 		return (KERN_INVALID_ADDRESS);
3890 
3891 	entry = *out_entry;
3892 
3893 	/*
3894 	 * Fail if the entry refers to a submap.
3895 	 */
3896 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3897 		return (KERN_FAILURE);
3898 
3899 	/*
3900 	 * Check whether this task is allowed to have this page.
3901 	 */
3902 	prot = entry->protection;
3903 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
3904 	if ((fault_type & prot) != fault_type)
3905 		return (KERN_PROTECTION_FAILURE);
3906 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3907 	    (entry->eflags & MAP_ENTRY_COW) &&
3908 	    (fault_type & VM_PROT_WRITE))
3909 		return (KERN_PROTECTION_FAILURE);
3910 
3911 	/*
3912 	 * If this page is not pageable, we have to get it for all possible
3913 	 * accesses.
3914 	 */
3915 	*wired = (entry->wired_count != 0);
3916 	if (*wired)
3917 		fault_type = entry->protection;
3918 
3919 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3920 		/*
3921 		 * Fail if the entry was copy-on-write for a write fault.
3922 		 */
3923 		if (fault_type & VM_PROT_WRITE)
3924 			return (KERN_FAILURE);
3925 		/*
3926 		 * We're attempting to read a copy-on-write page --
3927 		 * don't allow writes.
3928 		 */
3929 		prot &= ~VM_PROT_WRITE;
3930 	}
3931 
3932 	/*
3933 	 * Fail if an object should be created.
3934 	 */
3935 	if (entry->object.vm_object == NULL && !map->system_map)
3936 		return (KERN_FAILURE);
3937 
3938 	/*
3939 	 * Return the object/offset from this entry.  If the entry was
3940 	 * copy-on-write or empty, it has been fixed up.
3941 	 */
3942 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3943 	*object = entry->object.vm_object;
3944 
3945 	*out_prot = prot;
3946 	return (KERN_SUCCESS);
3947 }
3948 
3949 /*
3950  *	vm_map_lookup_done:
3951  *
3952  *	Releases locks acquired by a vm_map_lookup
3953  *	(according to the handle returned by that lookup).
3954  */
3955 void
3956 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
3957 {
3958 	/*
3959 	 * Unlock the main-level map
3960 	 */
3961 	vm_map_unlock_read(map);
3962 }
3963 
3964 #include "opt_ddb.h"
3965 #ifdef DDB
3966 #include <sys/kernel.h>
3967 
3968 #include <ddb/ddb.h>
3969 
3970 /*
3971  *	vm_map_print:	[ debug ]
3972  */
3973 DB_SHOW_COMMAND(map, vm_map_print)
3974 {
3975 	static int nlines;
3976 	/* XXX convert args. */
3977 	vm_map_t map = (vm_map_t)addr;
3978 	boolean_t full = have_addr;
3979 
3980 	vm_map_entry_t entry;
3981 
3982 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
3983 	    (void *)map,
3984 	    (void *)map->pmap, map->nentries, map->timestamp);
3985 	nlines++;
3986 
3987 	if (!full && db_indent)
3988 		return;
3989 
3990 	db_indent += 2;
3991 	for (entry = map->header.next; entry != &map->header;
3992 	    entry = entry->next) {
3993 		db_iprintf("map entry %p: start=%p, end=%p\n",
3994 		    (void *)entry, (void *)entry->start, (void *)entry->end);
3995 		nlines++;
3996 		{
3997 			static char *inheritance_name[4] =
3998 			{"share", "copy", "none", "donate_copy"};
3999 
4000 			db_iprintf(" prot=%x/%x/%s",
4001 			    entry->protection,
4002 			    entry->max_protection,
4003 			    inheritance_name[(int)(unsigned char)entry->inheritance]);
4004 			if (entry->wired_count != 0)
4005 				db_printf(", wired");
4006 		}
4007 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4008 			db_printf(", share=%p, offset=0x%jx\n",
4009 			    (void *)entry->object.sub_map,
4010 			    (uintmax_t)entry->offset);
4011 			nlines++;
4012 			if ((entry->prev == &map->header) ||
4013 			    (entry->prev->object.sub_map !=
4014 				entry->object.sub_map)) {
4015 				db_indent += 2;
4016 				vm_map_print((db_expr_t)(intptr_t)
4017 					     entry->object.sub_map,
4018 					     full, 0, (char *)0);
4019 				db_indent -= 2;
4020 			}
4021 		} else {
4022 			if (entry->cred != NULL)
4023 				db_printf(", ruid %d", entry->cred->cr_ruid);
4024 			db_printf(", object=%p, offset=0x%jx",
4025 			    (void *)entry->object.vm_object,
4026 			    (uintmax_t)entry->offset);
4027 			if (entry->object.vm_object && entry->object.vm_object->cred)
4028 				db_printf(", obj ruid %d charge %jx",
4029 				    entry->object.vm_object->cred->cr_ruid,
4030 				    (uintmax_t)entry->object.vm_object->charge);
4031 			if (entry->eflags & MAP_ENTRY_COW)
4032 				db_printf(", copy (%s)",
4033 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4034 			db_printf("\n");
4035 			nlines++;
4036 
4037 			if ((entry->prev == &map->header) ||
4038 			    (entry->prev->object.vm_object !=
4039 				entry->object.vm_object)) {
4040 				db_indent += 2;
4041 				vm_object_print((db_expr_t)(intptr_t)
4042 						entry->object.vm_object,
4043 						full, 0, (char *)0);
4044 				nlines += 4;
4045 				db_indent -= 2;
4046 			}
4047 		}
4048 	}
4049 	db_indent -= 2;
4050 	if (db_indent == 0)
4051 		nlines = 0;
4052 }
4053 
4054 
4055 DB_SHOW_COMMAND(procvm, procvm)
4056 {
4057 	struct proc *p;
4058 
4059 	if (have_addr) {
4060 		p = (struct proc *) addr;
4061 	} else {
4062 		p = curproc;
4063 	}
4064 
4065 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4066 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4067 	    (void *)vmspace_pmap(p->p_vmspace));
4068 
4069 	vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
4070 }
4071 
4072 #endif /* DDB */
4073