xref: /freebsd/sys/vm/vm_map.c (revision 79483833d06343afe6b87b59b1332e186d1339f8)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62 
63 /*
64  *	Virtual memory mapping module.
65  */
66 
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/kernel.h>
73 #include <sys/ktr.h>
74 #include <sys/lock.h>
75 #include <sys/mutex.h>
76 #include <sys/proc.h>
77 #include <sys/vmmeter.h>
78 #include <sys/mman.h>
79 #include <sys/vnode.h>
80 #include <sys/racct.h>
81 #include <sys/resourcevar.h>
82 #include <sys/rwlock.h>
83 #include <sys/file.h>
84 #include <sys/sysctl.h>
85 #include <sys/sysent.h>
86 #include <sys/shm.h>
87 
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_object.h>
94 #include <vm/vm_pager.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_extern.h>
97 #include <vm/vnode_pager.h>
98 #include <vm/swap_pager.h>
99 #include <vm/uma.h>
100 
101 /*
102  *	Virtual memory maps provide for the mapping, protection,
103  *	and sharing of virtual memory objects.  In addition,
104  *	this module provides for an efficient virtual copy of
105  *	memory from one map to another.
106  *
107  *	Synchronization is required prior to most operations.
108  *
109  *	Maps consist of an ordered doubly-linked list of simple
110  *	entries; a self-adjusting binary search tree of these
111  *	entries is used to speed up lookups.
112  *
113  *	Since portions of maps are specified by start/end addresses,
114  *	which may not align with existing map entries, all
115  *	routines merely "clip" entries to these start/end values.
116  *	[That is, an entry is split into two, bordering at a
117  *	start or end value.]  Note that these clippings may not
118  *	always be necessary (as the two resulting entries are then
119  *	not changed); however, the clipping is done for convenience.
120  *
121  *	As mentioned above, virtual copy operations are performed
122  *	by copying VM object references from one map to
123  *	another, and then marking both regions as copy-on-write.
124  */
125 
126 static struct mtx map_sleep_mtx;
127 static uma_zone_t mapentzone;
128 static uma_zone_t kmapentzone;
129 static uma_zone_t mapzone;
130 static uma_zone_t vmspace_zone;
131 static int vmspace_zinit(void *mem, int size, int flags);
132 static int vm_map_zinit(void *mem, int ize, int flags);
133 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
134     vm_offset_t max);
135 static int vm_map_alignspace(vm_map_t map, vm_object_t object,
136     vm_ooffset_t offset, vm_offset_t *addr, vm_size_t length,
137     vm_offset_t max_addr, vm_offset_t alignment);
138 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
139 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
140 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
141 static int vm_map_growstack(vm_map_t map, vm_offset_t addr,
142     vm_map_entry_t gap_entry);
143 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
144     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
145 #ifdef INVARIANTS
146 static void vm_map_zdtor(void *mem, int size, void *arg);
147 static void vmspace_zdtor(void *mem, int size, void *arg);
148 #endif
149 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
150     vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
151     int cow);
152 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
153     vm_offset_t failed_addr);
154 
155 #define	ENTRY_CHARGED(e) ((e)->cred != NULL || \
156     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
157      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
158 
159 /*
160  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
161  * stable.
162  */
163 #define PROC_VMSPACE_LOCK(p) do { } while (0)
164 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
165 
166 /*
167  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
168  *
169  *	Asserts that the starting and ending region
170  *	addresses fall within the valid range of the map.
171  */
172 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
173 		{					\
174 		if (start < vm_map_min(map))		\
175 			start = vm_map_min(map);	\
176 		if (end > vm_map_max(map))		\
177 			end = vm_map_max(map);		\
178 		if (start > end)			\
179 			start = end;			\
180 		}
181 
182 /*
183  *	vm_map_startup:
184  *
185  *	Initialize the vm_map module.  Must be called before
186  *	any other vm_map routines.
187  *
188  *	Map and entry structures are allocated from the general
189  *	purpose memory pool with some exceptions:
190  *
191  *	- The kernel map and kmem submap are allocated statically.
192  *	- Kernel map entries are allocated out of a static pool.
193  *
194  *	These restrictions are necessary since malloc() uses the
195  *	maps and requires map entries.
196  */
197 
198 void
199 vm_map_startup(void)
200 {
201 	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
202 	mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
203 #ifdef INVARIANTS
204 	    vm_map_zdtor,
205 #else
206 	    NULL,
207 #endif
208 	    vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
209 	uma_prealloc(mapzone, MAX_KMAP);
210 	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
211 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
212 	    UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
213 	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
214 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
215 	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
216 #ifdef INVARIANTS
217 	    vmspace_zdtor,
218 #else
219 	    NULL,
220 #endif
221 	    vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
222 }
223 
224 static int
225 vmspace_zinit(void *mem, int size, int flags)
226 {
227 	struct vmspace *vm;
228 
229 	vm = (struct vmspace *)mem;
230 
231 	vm->vm_map.pmap = NULL;
232 	(void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
233 	PMAP_LOCK_INIT(vmspace_pmap(vm));
234 	return (0);
235 }
236 
237 static int
238 vm_map_zinit(void *mem, int size, int flags)
239 {
240 	vm_map_t map;
241 
242 	map = (vm_map_t)mem;
243 	memset(map, 0, sizeof(*map));
244 	mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
245 	sx_init(&map->lock, "vm map (user)");
246 	return (0);
247 }
248 
249 #ifdef INVARIANTS
250 static void
251 vmspace_zdtor(void *mem, int size, void *arg)
252 {
253 	struct vmspace *vm;
254 
255 	vm = (struct vmspace *)mem;
256 
257 	vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
258 }
259 static void
260 vm_map_zdtor(void *mem, int size, void *arg)
261 {
262 	vm_map_t map;
263 
264 	map = (vm_map_t)mem;
265 	KASSERT(map->nentries == 0,
266 	    ("map %p nentries == %d on free.",
267 	    map, map->nentries));
268 	KASSERT(map->size == 0,
269 	    ("map %p size == %lu on free.",
270 	    map, (unsigned long)map->size));
271 }
272 #endif	/* INVARIANTS */
273 
274 /*
275  * Allocate a vmspace structure, including a vm_map and pmap,
276  * and initialize those structures.  The refcnt is set to 1.
277  *
278  * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit().
279  */
280 struct vmspace *
281 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
282 {
283 	struct vmspace *vm;
284 
285 	vm = uma_zalloc(vmspace_zone, M_WAITOK);
286 	KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
287 	if (!pinit(vmspace_pmap(vm))) {
288 		uma_zfree(vmspace_zone, vm);
289 		return (NULL);
290 	}
291 	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
292 	_vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
293 	vm->vm_refcnt = 1;
294 	vm->vm_shm = NULL;
295 	vm->vm_swrss = 0;
296 	vm->vm_tsize = 0;
297 	vm->vm_dsize = 0;
298 	vm->vm_ssize = 0;
299 	vm->vm_taddr = 0;
300 	vm->vm_daddr = 0;
301 	vm->vm_maxsaddr = 0;
302 	return (vm);
303 }
304 
305 #ifdef RACCT
306 static void
307 vmspace_container_reset(struct proc *p)
308 {
309 
310 	PROC_LOCK(p);
311 	racct_set(p, RACCT_DATA, 0);
312 	racct_set(p, RACCT_STACK, 0);
313 	racct_set(p, RACCT_RSS, 0);
314 	racct_set(p, RACCT_MEMLOCK, 0);
315 	racct_set(p, RACCT_VMEM, 0);
316 	PROC_UNLOCK(p);
317 }
318 #endif
319 
320 static inline void
321 vmspace_dofree(struct vmspace *vm)
322 {
323 
324 	CTR1(KTR_VM, "vmspace_free: %p", vm);
325 
326 	/*
327 	 * Make sure any SysV shm is freed, it might not have been in
328 	 * exit1().
329 	 */
330 	shmexit(vm);
331 
332 	/*
333 	 * Lock the map, to wait out all other references to it.
334 	 * Delete all of the mappings and pages they hold, then call
335 	 * the pmap module to reclaim anything left.
336 	 */
337 	(void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map),
338 	    vm_map_max(&vm->vm_map));
339 
340 	pmap_release(vmspace_pmap(vm));
341 	vm->vm_map.pmap = NULL;
342 	uma_zfree(vmspace_zone, vm);
343 }
344 
345 void
346 vmspace_free(struct vmspace *vm)
347 {
348 
349 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
350 	    "vmspace_free() called");
351 
352 	if (vm->vm_refcnt == 0)
353 		panic("vmspace_free: attempt to free already freed vmspace");
354 
355 	if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
356 		vmspace_dofree(vm);
357 }
358 
359 void
360 vmspace_exitfree(struct proc *p)
361 {
362 	struct vmspace *vm;
363 
364 	PROC_VMSPACE_LOCK(p);
365 	vm = p->p_vmspace;
366 	p->p_vmspace = NULL;
367 	PROC_VMSPACE_UNLOCK(p);
368 	KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
369 	vmspace_free(vm);
370 }
371 
372 void
373 vmspace_exit(struct thread *td)
374 {
375 	int refcnt;
376 	struct vmspace *vm;
377 	struct proc *p;
378 
379 	/*
380 	 * Release user portion of address space.
381 	 * This releases references to vnodes,
382 	 * which could cause I/O if the file has been unlinked.
383 	 * Need to do this early enough that we can still sleep.
384 	 *
385 	 * The last exiting process to reach this point releases as
386 	 * much of the environment as it can. vmspace_dofree() is the
387 	 * slower fallback in case another process had a temporary
388 	 * reference to the vmspace.
389 	 */
390 
391 	p = td->td_proc;
392 	vm = p->p_vmspace;
393 	atomic_add_int(&vmspace0.vm_refcnt, 1);
394 	refcnt = vm->vm_refcnt;
395 	do {
396 		if (refcnt > 1 && p->p_vmspace != &vmspace0) {
397 			/* Switch now since other proc might free vmspace */
398 			PROC_VMSPACE_LOCK(p);
399 			p->p_vmspace = &vmspace0;
400 			PROC_VMSPACE_UNLOCK(p);
401 			pmap_activate(td);
402 		}
403 	} while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt - 1));
404 	if (refcnt == 1) {
405 		if (p->p_vmspace != vm) {
406 			/* vmspace not yet freed, switch back */
407 			PROC_VMSPACE_LOCK(p);
408 			p->p_vmspace = vm;
409 			PROC_VMSPACE_UNLOCK(p);
410 			pmap_activate(td);
411 		}
412 		pmap_remove_pages(vmspace_pmap(vm));
413 		/* Switch now since this proc will free vmspace */
414 		PROC_VMSPACE_LOCK(p);
415 		p->p_vmspace = &vmspace0;
416 		PROC_VMSPACE_UNLOCK(p);
417 		pmap_activate(td);
418 		vmspace_dofree(vm);
419 	}
420 #ifdef RACCT
421 	if (racct_enable)
422 		vmspace_container_reset(p);
423 #endif
424 }
425 
426 /* Acquire reference to vmspace owned by another process. */
427 
428 struct vmspace *
429 vmspace_acquire_ref(struct proc *p)
430 {
431 	struct vmspace *vm;
432 	int refcnt;
433 
434 	PROC_VMSPACE_LOCK(p);
435 	vm = p->p_vmspace;
436 	if (vm == NULL) {
437 		PROC_VMSPACE_UNLOCK(p);
438 		return (NULL);
439 	}
440 	refcnt = vm->vm_refcnt;
441 	do {
442 		if (refcnt <= 0) { 	/* Avoid 0->1 transition */
443 			PROC_VMSPACE_UNLOCK(p);
444 			return (NULL);
445 		}
446 	} while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt + 1));
447 	if (vm != p->p_vmspace) {
448 		PROC_VMSPACE_UNLOCK(p);
449 		vmspace_free(vm);
450 		return (NULL);
451 	}
452 	PROC_VMSPACE_UNLOCK(p);
453 	return (vm);
454 }
455 
456 /*
457  * Switch between vmspaces in an AIO kernel process.
458  *
459  * The AIO kernel processes switch to and from a user process's
460  * vmspace while performing an I/O operation on behalf of a user
461  * process.  The new vmspace is either the vmspace of a user process
462  * obtained from an active AIO request or the initial vmspace of the
463  * AIO kernel process (when it is idling).  Because user processes
464  * will block to drain any active AIO requests before proceeding in
465  * exit() or execve(), the vmspace reference count for these vmspaces
466  * can never be 0.  This allows for a much simpler implementation than
467  * the loop in vmspace_acquire_ref() above.  Similarly, AIO kernel
468  * processes hold an extra reference on their initial vmspace for the
469  * life of the process so that this guarantee is true for any vmspace
470  * passed as 'newvm'.
471  */
472 void
473 vmspace_switch_aio(struct vmspace *newvm)
474 {
475 	struct vmspace *oldvm;
476 
477 	/* XXX: Need some way to assert that this is an aio daemon. */
478 
479 	KASSERT(newvm->vm_refcnt > 0,
480 	    ("vmspace_switch_aio: newvm unreferenced"));
481 
482 	oldvm = curproc->p_vmspace;
483 	if (oldvm == newvm)
484 		return;
485 
486 	/*
487 	 * Point to the new address space and refer to it.
488 	 */
489 	curproc->p_vmspace = newvm;
490 	atomic_add_int(&newvm->vm_refcnt, 1);
491 
492 	/* Activate the new mapping. */
493 	pmap_activate(curthread);
494 
495 	/* Remove the daemon's reference to the old address space. */
496 	KASSERT(oldvm->vm_refcnt > 1,
497 	    ("vmspace_switch_aio: oldvm dropping last reference"));
498 	vmspace_free(oldvm);
499 }
500 
501 void
502 _vm_map_lock(vm_map_t map, const char *file, int line)
503 {
504 
505 	if (map->system_map)
506 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
507 	else
508 		sx_xlock_(&map->lock, file, line);
509 	map->timestamp++;
510 }
511 
512 static void
513 vm_map_process_deferred(void)
514 {
515 	struct thread *td;
516 	vm_map_entry_t entry, next;
517 	vm_object_t object;
518 
519 	td = curthread;
520 	entry = td->td_map_def_user;
521 	td->td_map_def_user = NULL;
522 	while (entry != NULL) {
523 		next = entry->next;
524 		if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) {
525 			/*
526 			 * Decrement the object's writemappings and
527 			 * possibly the vnode's v_writecount.
528 			 */
529 			KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
530 			    ("Submap with writecount"));
531 			object = entry->object.vm_object;
532 			KASSERT(object != NULL, ("No object for writecount"));
533 			vnode_pager_release_writecount(object, entry->start,
534 			    entry->end);
535 		}
536 		vm_map_entry_deallocate(entry, FALSE);
537 		entry = next;
538 	}
539 }
540 
541 void
542 _vm_map_unlock(vm_map_t map, const char *file, int line)
543 {
544 
545 	if (map->system_map)
546 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
547 	else {
548 		sx_xunlock_(&map->lock, file, line);
549 		vm_map_process_deferred();
550 	}
551 }
552 
553 void
554 _vm_map_lock_read(vm_map_t map, const char *file, int line)
555 {
556 
557 	if (map->system_map)
558 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
559 	else
560 		sx_slock_(&map->lock, file, line);
561 }
562 
563 void
564 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
565 {
566 
567 	if (map->system_map)
568 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
569 	else {
570 		sx_sunlock_(&map->lock, file, line);
571 		vm_map_process_deferred();
572 	}
573 }
574 
575 int
576 _vm_map_trylock(vm_map_t map, const char *file, int line)
577 {
578 	int error;
579 
580 	error = map->system_map ?
581 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
582 	    !sx_try_xlock_(&map->lock, file, line);
583 	if (error == 0)
584 		map->timestamp++;
585 	return (error == 0);
586 }
587 
588 int
589 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
590 {
591 	int error;
592 
593 	error = map->system_map ?
594 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
595 	    !sx_try_slock_(&map->lock, file, line);
596 	return (error == 0);
597 }
598 
599 /*
600  *	_vm_map_lock_upgrade:	[ internal use only ]
601  *
602  *	Tries to upgrade a read (shared) lock on the specified map to a write
603  *	(exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
604  *	non-zero value if the upgrade fails.  If the upgrade fails, the map is
605  *	returned without a read or write lock held.
606  *
607  *	Requires that the map be read locked.
608  */
609 int
610 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
611 {
612 	unsigned int last_timestamp;
613 
614 	if (map->system_map) {
615 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
616 	} else {
617 		if (!sx_try_upgrade_(&map->lock, file, line)) {
618 			last_timestamp = map->timestamp;
619 			sx_sunlock_(&map->lock, file, line);
620 			vm_map_process_deferred();
621 			/*
622 			 * If the map's timestamp does not change while the
623 			 * map is unlocked, then the upgrade succeeds.
624 			 */
625 			sx_xlock_(&map->lock, file, line);
626 			if (last_timestamp != map->timestamp) {
627 				sx_xunlock_(&map->lock, file, line);
628 				return (1);
629 			}
630 		}
631 	}
632 	map->timestamp++;
633 	return (0);
634 }
635 
636 void
637 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
638 {
639 
640 	if (map->system_map) {
641 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
642 	} else
643 		sx_downgrade_(&map->lock, file, line);
644 }
645 
646 /*
647  *	vm_map_locked:
648  *
649  *	Returns a non-zero value if the caller holds a write (exclusive) lock
650  *	on the specified map and the value "0" otherwise.
651  */
652 int
653 vm_map_locked(vm_map_t map)
654 {
655 
656 	if (map->system_map)
657 		return (mtx_owned(&map->system_mtx));
658 	else
659 		return (sx_xlocked(&map->lock));
660 }
661 
662 #ifdef INVARIANTS
663 static void
664 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
665 {
666 
667 	if (map->system_map)
668 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
669 	else
670 		sx_assert_(&map->lock, SA_XLOCKED, file, line);
671 }
672 
673 #define	VM_MAP_ASSERT_LOCKED(map) \
674     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
675 #else
676 #define	VM_MAP_ASSERT_LOCKED(map)
677 #endif
678 
679 /*
680  *	_vm_map_unlock_and_wait:
681  *
682  *	Atomically releases the lock on the specified map and puts the calling
683  *	thread to sleep.  The calling thread will remain asleep until either
684  *	vm_map_wakeup() is performed on the map or the specified timeout is
685  *	exceeded.
686  *
687  *	WARNING!  This function does not perform deferred deallocations of
688  *	objects and map	entries.  Therefore, the calling thread is expected to
689  *	reacquire the map lock after reawakening and later perform an ordinary
690  *	unlock operation, such as vm_map_unlock(), before completing its
691  *	operation on the map.
692  */
693 int
694 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
695 {
696 
697 	mtx_lock(&map_sleep_mtx);
698 	if (map->system_map)
699 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
700 	else
701 		sx_xunlock_(&map->lock, file, line);
702 	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
703 	    timo));
704 }
705 
706 /*
707  *	vm_map_wakeup:
708  *
709  *	Awaken any threads that have slept on the map using
710  *	vm_map_unlock_and_wait().
711  */
712 void
713 vm_map_wakeup(vm_map_t map)
714 {
715 
716 	/*
717 	 * Acquire and release map_sleep_mtx to prevent a wakeup()
718 	 * from being performed (and lost) between the map unlock
719 	 * and the msleep() in _vm_map_unlock_and_wait().
720 	 */
721 	mtx_lock(&map_sleep_mtx);
722 	mtx_unlock(&map_sleep_mtx);
723 	wakeup(&map->root);
724 }
725 
726 void
727 vm_map_busy(vm_map_t map)
728 {
729 
730 	VM_MAP_ASSERT_LOCKED(map);
731 	map->busy++;
732 }
733 
734 void
735 vm_map_unbusy(vm_map_t map)
736 {
737 
738 	VM_MAP_ASSERT_LOCKED(map);
739 	KASSERT(map->busy, ("vm_map_unbusy: not busy"));
740 	if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
741 		vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
742 		wakeup(&map->busy);
743 	}
744 }
745 
746 void
747 vm_map_wait_busy(vm_map_t map)
748 {
749 
750 	VM_MAP_ASSERT_LOCKED(map);
751 	while (map->busy) {
752 		vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
753 		if (map->system_map)
754 			msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
755 		else
756 			sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
757 	}
758 	map->timestamp++;
759 }
760 
761 long
762 vmspace_resident_count(struct vmspace *vmspace)
763 {
764 	return pmap_resident_count(vmspace_pmap(vmspace));
765 }
766 
767 /*
768  *	vm_map_create:
769  *
770  *	Creates and returns a new empty VM map with
771  *	the given physical map structure, and having
772  *	the given lower and upper address bounds.
773  */
774 vm_map_t
775 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
776 {
777 	vm_map_t result;
778 
779 	result = uma_zalloc(mapzone, M_WAITOK);
780 	CTR1(KTR_VM, "vm_map_create: %p", result);
781 	_vm_map_init(result, pmap, min, max);
782 	return (result);
783 }
784 
785 /*
786  * Initialize an existing vm_map structure
787  * such as that in the vmspace structure.
788  */
789 static void
790 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
791 {
792 
793 	map->header.next = map->header.prev = &map->header;
794 	map->header.eflags = MAP_ENTRY_HEADER;
795 	map->needs_wakeup = FALSE;
796 	map->system_map = 0;
797 	map->pmap = pmap;
798 	map->header.end = min;
799 	map->header.start = max;
800 	map->flags = 0;
801 	map->root = NULL;
802 	map->timestamp = 0;
803 	map->busy = 0;
804 	map->anon_loc = 0;
805 }
806 
807 void
808 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
809 {
810 
811 	_vm_map_init(map, pmap, min, max);
812 	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
813 	sx_init(&map->lock, "user map");
814 }
815 
816 /*
817  *	vm_map_entry_dispose:	[ internal use only ]
818  *
819  *	Inverse of vm_map_entry_create.
820  */
821 static void
822 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
823 {
824 	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
825 }
826 
827 /*
828  *	vm_map_entry_create:	[ internal use only ]
829  *
830  *	Allocates a VM map entry for insertion.
831  *	No entry fields are filled in.
832  */
833 static vm_map_entry_t
834 vm_map_entry_create(vm_map_t map)
835 {
836 	vm_map_entry_t new_entry;
837 
838 	if (map->system_map)
839 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
840 	else
841 		new_entry = uma_zalloc(mapentzone, M_WAITOK);
842 	if (new_entry == NULL)
843 		panic("vm_map_entry_create: kernel resources exhausted");
844 	return (new_entry);
845 }
846 
847 /*
848  *	vm_map_entry_set_behavior:
849  *
850  *	Set the expected access behavior, either normal, random, or
851  *	sequential.
852  */
853 static inline void
854 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
855 {
856 	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
857 	    (behavior & MAP_ENTRY_BEHAV_MASK);
858 }
859 
860 /*
861  *	vm_map_entry_set_max_free:
862  *
863  *	Set the max_free field in a vm_map_entry.
864  */
865 static inline void
866 vm_map_entry_set_max_free(vm_map_entry_t entry)
867 {
868 
869 	entry->max_free = entry->adj_free;
870 	if (entry->left != NULL && entry->left->max_free > entry->max_free)
871 		entry->max_free = entry->left->max_free;
872 	if (entry->right != NULL && entry->right->max_free > entry->max_free)
873 		entry->max_free = entry->right->max_free;
874 }
875 
876 /*
877  *	vm_map_entry_splay:
878  *
879  *	The Sleator and Tarjan top-down splay algorithm with the
880  *	following variation.  Max_free must be computed bottom-up, so
881  *	on the downward pass, maintain the left and right spines in
882  *	reverse order.  Then, make a second pass up each side to fix
883  *	the pointers and compute max_free.  The time bound is O(log n)
884  *	amortized.
885  *
886  *	The new root is the vm_map_entry containing "addr", or else an
887  *	adjacent entry (lower or higher) if addr is not in the tree.
888  *
889  *	The map must be locked, and leaves it so.
890  *
891  *	Returns: the new root.
892  */
893 static vm_map_entry_t
894 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
895 {
896 	vm_map_entry_t llist, rlist;
897 	vm_map_entry_t ltree, rtree;
898 	vm_map_entry_t y;
899 
900 	/* Special case of empty tree. */
901 	if (root == NULL)
902 		return (root);
903 
904 	/*
905 	 * Pass One: Splay down the tree until we find addr or a NULL
906 	 * pointer where addr would go.  llist and rlist are the two
907 	 * sides in reverse order (bottom-up), with llist linked by
908 	 * the right pointer and rlist linked by the left pointer in
909 	 * the vm_map_entry.  Wait until Pass Two to set max_free on
910 	 * the two spines.
911 	 */
912 	llist = NULL;
913 	rlist = NULL;
914 	for (;;) {
915 		/* root is never NULL in here. */
916 		if (addr < root->start) {
917 			y = root->left;
918 			if (y == NULL)
919 				break;
920 			if (addr < y->start && y->left != NULL) {
921 				/* Rotate right and put y on rlist. */
922 				root->left = y->right;
923 				y->right = root;
924 				vm_map_entry_set_max_free(root);
925 				root = y->left;
926 				y->left = rlist;
927 				rlist = y;
928 			} else {
929 				/* Put root on rlist. */
930 				root->left = rlist;
931 				rlist = root;
932 				root = y;
933 			}
934 		} else if (addr >= root->end) {
935 			y = root->right;
936 			if (y == NULL)
937 				break;
938 			if (addr >= y->end && y->right != NULL) {
939 				/* Rotate left and put y on llist. */
940 				root->right = y->left;
941 				y->left = root;
942 				vm_map_entry_set_max_free(root);
943 				root = y->right;
944 				y->right = llist;
945 				llist = y;
946 			} else {
947 				/* Put root on llist. */
948 				root->right = llist;
949 				llist = root;
950 				root = y;
951 			}
952 		} else
953 			break;
954 	}
955 
956 	/*
957 	 * Pass Two: Walk back up the two spines, flip the pointers
958 	 * and set max_free.  The subtrees of the root go at the
959 	 * bottom of llist and rlist.
960 	 */
961 	ltree = root->left;
962 	while (llist != NULL) {
963 		y = llist->right;
964 		llist->right = ltree;
965 		vm_map_entry_set_max_free(llist);
966 		ltree = llist;
967 		llist = y;
968 	}
969 	rtree = root->right;
970 	while (rlist != NULL) {
971 		y = rlist->left;
972 		rlist->left = rtree;
973 		vm_map_entry_set_max_free(rlist);
974 		rtree = rlist;
975 		rlist = y;
976 	}
977 
978 	/*
979 	 * Final assembly: add ltree and rtree as subtrees of root.
980 	 */
981 	root->left = ltree;
982 	root->right = rtree;
983 	vm_map_entry_set_max_free(root);
984 
985 	return (root);
986 }
987 
988 /*
989  *	vm_map_entry_{un,}link:
990  *
991  *	Insert/remove entries from maps.
992  */
993 static void
994 vm_map_entry_link(vm_map_t map,
995 		  vm_map_entry_t after_where,
996 		  vm_map_entry_t entry)
997 {
998 
999 	CTR4(KTR_VM,
1000 	    "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
1001 	    map->nentries, entry, after_where);
1002 	VM_MAP_ASSERT_LOCKED(map);
1003 	KASSERT(after_where->end <= entry->start,
1004 	    ("vm_map_entry_link: prev end %jx new start %jx overlap",
1005 	    (uintmax_t)after_where->end, (uintmax_t)entry->start));
1006 	KASSERT(entry->end <= after_where->next->start,
1007 	    ("vm_map_entry_link: new end %jx next start %jx overlap",
1008 	    (uintmax_t)entry->end, (uintmax_t)after_where->next->start));
1009 
1010 	map->nentries++;
1011 	entry->prev = after_where;
1012 	entry->next = after_where->next;
1013 	entry->next->prev = entry;
1014 	after_where->next = entry;
1015 
1016 	if (after_where != &map->header) {
1017 		if (after_where != map->root)
1018 			vm_map_entry_splay(after_where->start, map->root);
1019 		entry->right = after_where->right;
1020 		entry->left = after_where;
1021 		after_where->right = NULL;
1022 		after_where->adj_free = entry->start - after_where->end;
1023 		vm_map_entry_set_max_free(after_where);
1024 	} else {
1025 		entry->right = map->root;
1026 		entry->left = NULL;
1027 	}
1028 	entry->adj_free = entry->next->start - entry->end;
1029 	vm_map_entry_set_max_free(entry);
1030 	map->root = entry;
1031 }
1032 
1033 static void
1034 vm_map_entry_unlink(vm_map_t map,
1035 		    vm_map_entry_t entry)
1036 {
1037 	vm_map_entry_t next, prev, root;
1038 
1039 	VM_MAP_ASSERT_LOCKED(map);
1040 	if (entry != map->root)
1041 		vm_map_entry_splay(entry->start, map->root);
1042 	if (entry->left == NULL)
1043 		root = entry->right;
1044 	else {
1045 		root = vm_map_entry_splay(entry->start, entry->left);
1046 		root->right = entry->right;
1047 		root->adj_free = entry->next->start - root->end;
1048 		vm_map_entry_set_max_free(root);
1049 	}
1050 	map->root = root;
1051 
1052 	prev = entry->prev;
1053 	next = entry->next;
1054 	next->prev = prev;
1055 	prev->next = next;
1056 	map->nentries--;
1057 	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1058 	    map->nentries, entry);
1059 }
1060 
1061 /*
1062  *	vm_map_entry_resize_free:
1063  *
1064  *	Recompute the amount of free space following a vm_map_entry
1065  *	and propagate that value up the tree.  Call this function after
1066  *	resizing a map entry in-place, that is, without a call to
1067  *	vm_map_entry_link() or _unlink().
1068  *
1069  *	The map must be locked, and leaves it so.
1070  */
1071 static void
1072 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
1073 {
1074 
1075 	/*
1076 	 * Using splay trees without parent pointers, propagating
1077 	 * max_free up the tree is done by moving the entry to the
1078 	 * root and making the change there.
1079 	 */
1080 	if (entry != map->root)
1081 		map->root = vm_map_entry_splay(entry->start, map->root);
1082 
1083 	entry->adj_free = entry->next->start - entry->end;
1084 	vm_map_entry_set_max_free(entry);
1085 }
1086 
1087 /*
1088  *	vm_map_lookup_entry:	[ internal use only ]
1089  *
1090  *	Finds the map entry containing (or
1091  *	immediately preceding) the specified address
1092  *	in the given map; the entry is returned
1093  *	in the "entry" parameter.  The boolean
1094  *	result indicates whether the address is
1095  *	actually contained in the map.
1096  */
1097 boolean_t
1098 vm_map_lookup_entry(
1099 	vm_map_t map,
1100 	vm_offset_t address,
1101 	vm_map_entry_t *entry)	/* OUT */
1102 {
1103 	vm_map_entry_t cur;
1104 	boolean_t locked;
1105 
1106 	/*
1107 	 * If the map is empty, then the map entry immediately preceding
1108 	 * "address" is the map's header.
1109 	 */
1110 	cur = map->root;
1111 	if (cur == NULL)
1112 		*entry = &map->header;
1113 	else if (address >= cur->start && cur->end > address) {
1114 		*entry = cur;
1115 		return (TRUE);
1116 	} else if ((locked = vm_map_locked(map)) ||
1117 	    sx_try_upgrade(&map->lock)) {
1118 		/*
1119 		 * Splay requires a write lock on the map.  However, it only
1120 		 * restructures the binary search tree; it does not otherwise
1121 		 * change the map.  Thus, the map's timestamp need not change
1122 		 * on a temporary upgrade.
1123 		 */
1124 		map->root = cur = vm_map_entry_splay(address, cur);
1125 		if (!locked)
1126 			sx_downgrade(&map->lock);
1127 
1128 		/*
1129 		 * If "address" is contained within a map entry, the new root
1130 		 * is that map entry.  Otherwise, the new root is a map entry
1131 		 * immediately before or after "address".
1132 		 */
1133 		if (address >= cur->start) {
1134 			*entry = cur;
1135 			if (cur->end > address)
1136 				return (TRUE);
1137 		} else
1138 			*entry = cur->prev;
1139 	} else
1140 		/*
1141 		 * Since the map is only locked for read access, perform a
1142 		 * standard binary search tree lookup for "address".
1143 		 */
1144 		for (;;) {
1145 			if (address < cur->start) {
1146 				if (cur->left == NULL) {
1147 					*entry = cur->prev;
1148 					break;
1149 				}
1150 				cur = cur->left;
1151 			} else if (cur->end > address) {
1152 				*entry = cur;
1153 				return (TRUE);
1154 			} else {
1155 				if (cur->right == NULL) {
1156 					*entry = cur;
1157 					break;
1158 				}
1159 				cur = cur->right;
1160 			}
1161 		}
1162 	return (FALSE);
1163 }
1164 
1165 /*
1166  *	vm_map_insert:
1167  *
1168  *	Inserts the given whole VM object into the target
1169  *	map at the specified address range.  The object's
1170  *	size should match that of the address range.
1171  *
1172  *	Requires that the map be locked, and leaves it so.
1173  *
1174  *	If object is non-NULL, ref count must be bumped by caller
1175  *	prior to making call to account for the new entry.
1176  */
1177 int
1178 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1179     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1180 {
1181 	vm_map_entry_t new_entry, prev_entry, temp_entry;
1182 	struct ucred *cred;
1183 	vm_eflags_t protoeflags;
1184 	vm_inherit_t inheritance;
1185 
1186 	VM_MAP_ASSERT_LOCKED(map);
1187 	KASSERT(object != kernel_object ||
1188 	    (cow & MAP_COPY_ON_WRITE) == 0,
1189 	    ("vm_map_insert: kernel object and COW"));
1190 	KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0,
1191 	    ("vm_map_insert: paradoxical MAP_NOFAULT request"));
1192 	KASSERT((prot & ~max) == 0,
1193 	    ("prot %#x is not subset of max_prot %#x", prot, max));
1194 
1195 	/*
1196 	 * Check that the start and end points are not bogus.
1197 	 */
1198 	if (start < vm_map_min(map) || end > vm_map_max(map) ||
1199 	    start >= end)
1200 		return (KERN_INVALID_ADDRESS);
1201 
1202 	/*
1203 	 * Find the entry prior to the proposed starting address; if it's part
1204 	 * of an existing entry, this range is bogus.
1205 	 */
1206 	if (vm_map_lookup_entry(map, start, &temp_entry))
1207 		return (KERN_NO_SPACE);
1208 
1209 	prev_entry = temp_entry;
1210 
1211 	/*
1212 	 * Assert that the next entry doesn't overlap the end point.
1213 	 */
1214 	if (prev_entry->next->start < end)
1215 		return (KERN_NO_SPACE);
1216 
1217 	if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL ||
1218 	    max != VM_PROT_NONE))
1219 		return (KERN_INVALID_ARGUMENT);
1220 
1221 	protoeflags = 0;
1222 	if (cow & MAP_COPY_ON_WRITE)
1223 		protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1224 	if (cow & MAP_NOFAULT)
1225 		protoeflags |= MAP_ENTRY_NOFAULT;
1226 	if (cow & MAP_DISABLE_SYNCER)
1227 		protoeflags |= MAP_ENTRY_NOSYNC;
1228 	if (cow & MAP_DISABLE_COREDUMP)
1229 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1230 	if (cow & MAP_STACK_GROWS_DOWN)
1231 		protoeflags |= MAP_ENTRY_GROWS_DOWN;
1232 	if (cow & MAP_STACK_GROWS_UP)
1233 		protoeflags |= MAP_ENTRY_GROWS_UP;
1234 	if (cow & MAP_VN_WRITECOUNT)
1235 		protoeflags |= MAP_ENTRY_VN_WRITECNT;
1236 	if ((cow & MAP_CREATE_GUARD) != 0)
1237 		protoeflags |= MAP_ENTRY_GUARD;
1238 	if ((cow & MAP_CREATE_STACK_GAP_DN) != 0)
1239 		protoeflags |= MAP_ENTRY_STACK_GAP_DN;
1240 	if ((cow & MAP_CREATE_STACK_GAP_UP) != 0)
1241 		protoeflags |= MAP_ENTRY_STACK_GAP_UP;
1242 	if (cow & MAP_INHERIT_SHARE)
1243 		inheritance = VM_INHERIT_SHARE;
1244 	else
1245 		inheritance = VM_INHERIT_DEFAULT;
1246 
1247 	cred = NULL;
1248 	if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0)
1249 		goto charged;
1250 	if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1251 	    ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1252 		if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1253 			return (KERN_RESOURCE_SHORTAGE);
1254 		KASSERT(object == NULL ||
1255 		    (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
1256 		    object->cred == NULL,
1257 		    ("overcommit: vm_map_insert o %p", object));
1258 		cred = curthread->td_ucred;
1259 	}
1260 
1261 charged:
1262 	/* Expand the kernel pmap, if necessary. */
1263 	if (map == kernel_map && end > kernel_vm_end)
1264 		pmap_growkernel(end);
1265 	if (object != NULL) {
1266 		/*
1267 		 * OBJ_ONEMAPPING must be cleared unless this mapping
1268 		 * is trivially proven to be the only mapping for any
1269 		 * of the object's pages.  (Object granularity
1270 		 * reference counting is insufficient to recognize
1271 		 * aliases with precision.)
1272 		 */
1273 		VM_OBJECT_WLOCK(object);
1274 		if (object->ref_count > 1 || object->shadow_count != 0)
1275 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
1276 		VM_OBJECT_WUNLOCK(object);
1277 	} else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) ==
1278 	    protoeflags &&
1279 	    (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 &&
1280 	    prev_entry->end == start && (prev_entry->cred == cred ||
1281 	    (prev_entry->object.vm_object != NULL &&
1282 	    prev_entry->object.vm_object->cred == cred)) &&
1283 	    vm_object_coalesce(prev_entry->object.vm_object,
1284 	    prev_entry->offset,
1285 	    (vm_size_t)(prev_entry->end - prev_entry->start),
1286 	    (vm_size_t)(end - prev_entry->end), cred != NULL &&
1287 	    (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1288 		/*
1289 		 * We were able to extend the object.  Determine if we
1290 		 * can extend the previous map entry to include the
1291 		 * new range as well.
1292 		 */
1293 		if (prev_entry->inheritance == inheritance &&
1294 		    prev_entry->protection == prot &&
1295 		    prev_entry->max_protection == max &&
1296 		    prev_entry->wired_count == 0) {
1297 			KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) ==
1298 			    0, ("prev_entry %p has incoherent wiring",
1299 			    prev_entry));
1300 			if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0)
1301 				map->size += end - prev_entry->end;
1302 			prev_entry->end = end;
1303 			vm_map_entry_resize_free(map, prev_entry);
1304 			vm_map_simplify_entry(map, prev_entry);
1305 			return (KERN_SUCCESS);
1306 		}
1307 
1308 		/*
1309 		 * If we can extend the object but cannot extend the
1310 		 * map entry, we have to create a new map entry.  We
1311 		 * must bump the ref count on the extended object to
1312 		 * account for it.  object may be NULL.
1313 		 */
1314 		object = prev_entry->object.vm_object;
1315 		offset = prev_entry->offset +
1316 		    (prev_entry->end - prev_entry->start);
1317 		vm_object_reference(object);
1318 		if (cred != NULL && object != NULL && object->cred != NULL &&
1319 		    !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1320 			/* Object already accounts for this uid. */
1321 			cred = NULL;
1322 		}
1323 	}
1324 	if (cred != NULL)
1325 		crhold(cred);
1326 
1327 	/*
1328 	 * Create a new entry
1329 	 */
1330 	new_entry = vm_map_entry_create(map);
1331 	new_entry->start = start;
1332 	new_entry->end = end;
1333 	new_entry->cred = NULL;
1334 
1335 	new_entry->eflags = protoeflags;
1336 	new_entry->object.vm_object = object;
1337 	new_entry->offset = offset;
1338 
1339 	new_entry->inheritance = inheritance;
1340 	new_entry->protection = prot;
1341 	new_entry->max_protection = max;
1342 	new_entry->wired_count = 0;
1343 	new_entry->wiring_thread = NULL;
1344 	new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1345 	new_entry->next_read = start;
1346 
1347 	KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1348 	    ("overcommit: vm_map_insert leaks vm_map %p", new_entry));
1349 	new_entry->cred = cred;
1350 
1351 	/*
1352 	 * Insert the new entry into the list
1353 	 */
1354 	vm_map_entry_link(map, prev_entry, new_entry);
1355 	if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0)
1356 		map->size += new_entry->end - new_entry->start;
1357 
1358 	/*
1359 	 * Try to coalesce the new entry with both the previous and next
1360 	 * entries in the list.  Previously, we only attempted to coalesce
1361 	 * with the previous entry when object is NULL.  Here, we handle the
1362 	 * other cases, which are less common.
1363 	 */
1364 	vm_map_simplify_entry(map, new_entry);
1365 
1366 	if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) {
1367 		vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset),
1368 		    end - start, cow & MAP_PREFAULT_PARTIAL);
1369 	}
1370 
1371 	return (KERN_SUCCESS);
1372 }
1373 
1374 /*
1375  *	vm_map_findspace:
1376  *
1377  *	Find the first fit (lowest VM address) for "length" free bytes
1378  *	beginning at address >= start in the given map.
1379  *
1380  *	In a vm_map_entry, "adj_free" is the amount of free space
1381  *	adjacent (higher address) to this entry, and "max_free" is the
1382  *	maximum amount of contiguous free space in its subtree.  This
1383  *	allows finding a free region in one path down the tree, so
1384  *	O(log n) amortized with splay trees.
1385  *
1386  *	The map must be locked, and leaves it so.
1387  *
1388  *	Returns: 0 on success, and starting address in *addr,
1389  *		 1 if insufficient space.
1390  */
1391 int
1392 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1393     vm_offset_t *addr)	/* OUT */
1394 {
1395 	vm_map_entry_t entry;
1396 	vm_offset_t st;
1397 
1398 	/*
1399 	 * Request must fit within min/max VM address and must avoid
1400 	 * address wrap.
1401 	 */
1402 	start = MAX(start, vm_map_min(map));
1403 	if (start + length > vm_map_max(map) || start + length < start)
1404 		return (1);
1405 
1406 	/* Empty tree means wide open address space. */
1407 	if (map->root == NULL) {
1408 		*addr = start;
1409 		return (0);
1410 	}
1411 
1412 	/*
1413 	 * After splay, if start comes before root node, then there
1414 	 * must be a gap from start to the root.
1415 	 */
1416 	map->root = vm_map_entry_splay(start, map->root);
1417 	if (start + length <= map->root->start) {
1418 		*addr = start;
1419 		return (0);
1420 	}
1421 
1422 	/*
1423 	 * Root is the last node that might begin its gap before
1424 	 * start, and this is the last comparison where address
1425 	 * wrap might be a problem.
1426 	 */
1427 	st = (start > map->root->end) ? start : map->root->end;
1428 	if (length <= map->root->end + map->root->adj_free - st) {
1429 		*addr = st;
1430 		return (0);
1431 	}
1432 
1433 	/* With max_free, can immediately tell if no solution. */
1434 	entry = map->root->right;
1435 	if (entry == NULL || length > entry->max_free)
1436 		return (1);
1437 
1438 	/*
1439 	 * Search the right subtree in the order: left subtree, root,
1440 	 * right subtree (first fit).  The previous splay implies that
1441 	 * all regions in the right subtree have addresses > start.
1442 	 */
1443 	while (entry != NULL) {
1444 		if (entry->left != NULL && entry->left->max_free >= length)
1445 			entry = entry->left;
1446 		else if (entry->adj_free >= length) {
1447 			*addr = entry->end;
1448 			return (0);
1449 		} else
1450 			entry = entry->right;
1451 	}
1452 
1453 	/* Can't get here, so panic if we do. */
1454 	panic("vm_map_findspace: max_free corrupt");
1455 }
1456 
1457 int
1458 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1459     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1460     vm_prot_t max, int cow)
1461 {
1462 	vm_offset_t end;
1463 	int result;
1464 
1465 	end = start + length;
1466 	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1467 	    object == NULL,
1468 	    ("vm_map_fixed: non-NULL backing object for stack"));
1469 	vm_map_lock(map);
1470 	VM_MAP_RANGE_CHECK(map, start, end);
1471 	if ((cow & MAP_CHECK_EXCL) == 0)
1472 		vm_map_delete(map, start, end);
1473 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1474 		result = vm_map_stack_locked(map, start, length, sgrowsiz,
1475 		    prot, max, cow);
1476 	} else {
1477 		result = vm_map_insert(map, object, offset, start, end,
1478 		    prot, max, cow);
1479 	}
1480 	vm_map_unlock(map);
1481 	return (result);
1482 }
1483 
1484 static const int aslr_pages_rnd_64[2] = {0x1000, 0x10};
1485 static const int aslr_pages_rnd_32[2] = {0x100, 0x4};
1486 
1487 static int cluster_anon = 1;
1488 SYSCTL_INT(_vm, OID_AUTO, cluster_anon, CTLFLAG_RW,
1489     &cluster_anon, 0,
1490     "Cluster anonymous mappings: 0 = no, 1 = yes if no hint, 2 = always");
1491 
1492 static bool
1493 clustering_anon_allowed(vm_offset_t addr)
1494 {
1495 
1496 	switch (cluster_anon) {
1497 	case 0:
1498 		return (false);
1499 	case 1:
1500 		return (addr == 0);
1501 	case 2:
1502 	default:
1503 		return (true);
1504 	}
1505 }
1506 
1507 static long aslr_restarts;
1508 SYSCTL_LONG(_vm, OID_AUTO, aslr_restarts, CTLFLAG_RD,
1509     &aslr_restarts, 0,
1510     "Number of aslr failures");
1511 
1512 #define	MAP_32BIT_MAX_ADDR	((vm_offset_t)1 << 31)
1513 
1514 /*
1515  * Searches for the specified amount of free space in the given map with the
1516  * specified alignment.  Performs an address-ordered, first-fit search from
1517  * the given address "*addr", with an optional upper bound "max_addr".  If the
1518  * parameter "alignment" is zero, then the alignment is computed from the
1519  * given (object, offset) pair so as to enable the greatest possible use of
1520  * superpage mappings.  Returns KERN_SUCCESS and the address of the free space
1521  * in "*addr" if successful.  Otherwise, returns KERN_NO_SPACE.
1522  *
1523  * The map must be locked.  Initially, there must be at least "length" bytes
1524  * of free space at the given address.
1525  */
1526 static int
1527 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1528     vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr,
1529     vm_offset_t alignment)
1530 {
1531 	vm_offset_t aligned_addr, free_addr;
1532 
1533 	VM_MAP_ASSERT_LOCKED(map);
1534 	free_addr = *addr;
1535 	KASSERT(!vm_map_findspace(map, free_addr, length, addr) &&
1536 	    free_addr == *addr, ("caller provided insufficient free space"));
1537 	for (;;) {
1538 		/*
1539 		 * At the start of every iteration, the free space at address
1540 		 * "*addr" is at least "length" bytes.
1541 		 */
1542 		if (alignment == 0)
1543 			pmap_align_superpage(object, offset, addr, length);
1544 		else if ((*addr & (alignment - 1)) != 0) {
1545 			*addr &= ~(alignment - 1);
1546 			*addr += alignment;
1547 		}
1548 		aligned_addr = *addr;
1549 		if (aligned_addr == free_addr) {
1550 			/*
1551 			 * Alignment did not change "*addr", so "*addr" must
1552 			 * still provide sufficient free space.
1553 			 */
1554 			return (KERN_SUCCESS);
1555 		}
1556 
1557 		/*
1558 		 * Test for address wrap on "*addr".  A wrapped "*addr" could
1559 		 * be a valid address, in which case vm_map_findspace() cannot
1560 		 * be relied upon to fail.
1561 		 */
1562 		if (aligned_addr < free_addr ||
1563 		    vm_map_findspace(map, aligned_addr, length, addr) ||
1564 		    (max_addr != 0 && *addr + length > max_addr))
1565 			return (KERN_NO_SPACE);
1566 		free_addr = *addr;
1567 		if (free_addr == aligned_addr) {
1568 			/*
1569 			 * If a successful call to vm_map_findspace() did not
1570 			 * change "*addr", then "*addr" must still be aligned
1571 			 * and provide sufficient free space.
1572 			 */
1573 			return (KERN_SUCCESS);
1574 		}
1575 	}
1576 }
1577 
1578 /*
1579  *	vm_map_find finds an unallocated region in the target address
1580  *	map with the given length.  The search is defined to be
1581  *	first-fit from the specified address; the region found is
1582  *	returned in the same parameter.
1583  *
1584  *	If object is non-NULL, ref count must be bumped by caller
1585  *	prior to making call to account for the new entry.
1586  */
1587 int
1588 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1589 	    vm_offset_t *addr,	/* IN/OUT */
1590 	    vm_size_t length, vm_offset_t max_addr, int find_space,
1591 	    vm_prot_t prot, vm_prot_t max, int cow)
1592 {
1593 	vm_offset_t alignment, curr_min_addr, min_addr;
1594 	int gap, pidx, rv, try;
1595 	bool cluster, en_aslr, update_anon;
1596 
1597 	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1598 	    object == NULL,
1599 	    ("vm_map_find: non-NULL backing object for stack"));
1600 	MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE &&
1601 	    (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0));
1602 	if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
1603 	    (object->flags & OBJ_COLORED) == 0))
1604 		find_space = VMFS_ANY_SPACE;
1605 	if (find_space >> 8 != 0) {
1606 		KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
1607 		alignment = (vm_offset_t)1 << (find_space >> 8);
1608 	} else
1609 		alignment = 0;
1610 	en_aslr = (map->flags & MAP_ASLR) != 0;
1611 	update_anon = cluster = clustering_anon_allowed(*addr) &&
1612 	    (map->flags & MAP_IS_SUB_MAP) == 0 && max_addr == 0 &&
1613 	    find_space != VMFS_NO_SPACE && object == NULL &&
1614 	    (cow & (MAP_INHERIT_SHARE | MAP_STACK_GROWS_UP |
1615 	    MAP_STACK_GROWS_DOWN)) == 0 && prot != PROT_NONE;
1616 	curr_min_addr = min_addr = *addr;
1617 	if (en_aslr && min_addr == 0 && !cluster &&
1618 	    find_space != VMFS_NO_SPACE &&
1619 	    (map->flags & MAP_ASLR_IGNSTART) != 0)
1620 		curr_min_addr = min_addr = vm_map_min(map);
1621 	try = 0;
1622 	vm_map_lock(map);
1623 	if (cluster) {
1624 		curr_min_addr = map->anon_loc;
1625 		if (curr_min_addr == 0)
1626 			cluster = false;
1627 	}
1628 	if (find_space != VMFS_NO_SPACE) {
1629 		KASSERT(find_space == VMFS_ANY_SPACE ||
1630 		    find_space == VMFS_OPTIMAL_SPACE ||
1631 		    find_space == VMFS_SUPER_SPACE ||
1632 		    alignment != 0, ("unexpected VMFS flag"));
1633 again:
1634 		/*
1635 		 * When creating an anonymous mapping, try clustering
1636 		 * with an existing anonymous mapping first.
1637 		 *
1638 		 * We make up to two attempts to find address space
1639 		 * for a given find_space value. The first attempt may
1640 		 * apply randomization or may cluster with an existing
1641 		 * anonymous mapping. If this first attempt fails,
1642 		 * perform a first-fit search of the available address
1643 		 * space.
1644 		 *
1645 		 * If all tries failed, and find_space is
1646 		 * VMFS_OPTIMAL_SPACE, fallback to VMFS_ANY_SPACE.
1647 		 * Again enable clustering and randomization.
1648 		 */
1649 		try++;
1650 		MPASS(try <= 2);
1651 
1652 		if (try == 2) {
1653 			/*
1654 			 * Second try: we failed either to find a
1655 			 * suitable region for randomizing the
1656 			 * allocation, or to cluster with an existing
1657 			 * mapping.  Retry with free run.
1658 			 */
1659 			curr_min_addr = (map->flags & MAP_ASLR_IGNSTART) != 0 ?
1660 			    vm_map_min(map) : min_addr;
1661 			atomic_add_long(&aslr_restarts, 1);
1662 		}
1663 
1664 		if (try == 1 && en_aslr && !cluster) {
1665 			/*
1666 			 * Find space for allocation, including
1667 			 * gap needed for later randomization.
1668 			 */
1669 			pidx = MAXPAGESIZES > 1 && pagesizes[1] != 0 &&
1670 			    (find_space == VMFS_SUPER_SPACE || find_space ==
1671 			    VMFS_OPTIMAL_SPACE) ? 1 : 0;
1672 			gap = vm_map_max(map) > MAP_32BIT_MAX_ADDR &&
1673 			    (max_addr == 0 || max_addr > MAP_32BIT_MAX_ADDR) ?
1674 			    aslr_pages_rnd_64[pidx] : aslr_pages_rnd_32[pidx];
1675 			if (vm_map_findspace(map, curr_min_addr, length +
1676 			    gap * pagesizes[pidx], addr))
1677 				goto again;
1678 			/* And randomize the start address. */
1679 			*addr += (arc4random() % gap) * pagesizes[pidx];
1680 			if (max_addr != 0 && *addr + length > max_addr)
1681 				goto again;
1682 		} else if (vm_map_findspace(map, curr_min_addr, length, addr) ||
1683 		    (max_addr != 0 && *addr + length > max_addr)) {
1684 			if (cluster) {
1685 				cluster = false;
1686 				MPASS(try == 1);
1687 				goto again;
1688 			}
1689 			rv = KERN_NO_SPACE;
1690 			goto done;
1691 		}
1692 
1693 		if (find_space != VMFS_ANY_SPACE &&
1694 		    (rv = vm_map_alignspace(map, object, offset, addr, length,
1695 		    max_addr, alignment)) != KERN_SUCCESS) {
1696 			if (find_space == VMFS_OPTIMAL_SPACE) {
1697 				find_space = VMFS_ANY_SPACE;
1698 				curr_min_addr = min_addr;
1699 				cluster = update_anon;
1700 				try = 0;
1701 				goto again;
1702 			}
1703 			goto done;
1704 		}
1705 	} else if ((cow & MAP_REMAP) != 0) {
1706 		if (*addr < vm_map_min(map) ||
1707 		    *addr + length > vm_map_max(map) ||
1708 		    *addr + length <= length) {
1709 			rv = KERN_INVALID_ADDRESS;
1710 			goto done;
1711 		}
1712 		vm_map_delete(map, *addr, *addr + length);
1713 	}
1714 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1715 		rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot,
1716 		    max, cow);
1717 	} else {
1718 		rv = vm_map_insert(map, object, offset, *addr, *addr + length,
1719 		    prot, max, cow);
1720 	}
1721 	if (rv == KERN_SUCCESS && update_anon)
1722 		map->anon_loc = *addr + length;
1723 done:
1724 	vm_map_unlock(map);
1725 	return (rv);
1726 }
1727 
1728 /*
1729  *	vm_map_find_min() is a variant of vm_map_find() that takes an
1730  *	additional parameter (min_addr) and treats the given address
1731  *	(*addr) differently.  Specifically, it treats *addr as a hint
1732  *	and not as the minimum address where the mapping is created.
1733  *
1734  *	This function works in two phases.  First, it tries to
1735  *	allocate above the hint.  If that fails and the hint is
1736  *	greater than min_addr, it performs a second pass, replacing
1737  *	the hint with min_addr as the minimum address for the
1738  *	allocation.
1739  */
1740 int
1741 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1742     vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr,
1743     vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max,
1744     int cow)
1745 {
1746 	vm_offset_t hint;
1747 	int rv;
1748 
1749 	hint = *addr;
1750 	for (;;) {
1751 		rv = vm_map_find(map, object, offset, addr, length, max_addr,
1752 		    find_space, prot, max, cow);
1753 		if (rv == KERN_SUCCESS || min_addr >= hint)
1754 			return (rv);
1755 		*addr = hint = min_addr;
1756 	}
1757 }
1758 
1759 /*
1760  * A map entry with any of the following flags set must not be merged with
1761  * another entry.
1762  */
1763 #define	MAP_ENTRY_NOMERGE_MASK	(MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | \
1764 	    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)
1765 
1766 static bool
1767 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry)
1768 {
1769 
1770 	KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 ||
1771 	    (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0,
1772 	    ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable",
1773 	    prev, entry));
1774 	return (prev->end == entry->start &&
1775 	    prev->object.vm_object == entry->object.vm_object &&
1776 	    (prev->object.vm_object == NULL ||
1777 	    prev->offset + (prev->end - prev->start) == entry->offset) &&
1778 	    prev->eflags == entry->eflags &&
1779 	    prev->protection == entry->protection &&
1780 	    prev->max_protection == entry->max_protection &&
1781 	    prev->inheritance == entry->inheritance &&
1782 	    prev->wired_count == entry->wired_count &&
1783 	    prev->cred == entry->cred);
1784 }
1785 
1786 static void
1787 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry)
1788 {
1789 
1790 	/*
1791 	 * If the backing object is a vnode object, vm_object_deallocate()
1792 	 * calls vrele().  However, vrele() does not lock the vnode because
1793 	 * the vnode has additional references.  Thus, the map lock can be
1794 	 * kept without causing a lock-order reversal with the vnode lock.
1795 	 *
1796 	 * Since we count the number of virtual page mappings in
1797 	 * object->un_pager.vnp.writemappings, the writemappings value
1798 	 * should not be adjusted when the entry is disposed of.
1799 	 */
1800 	if (entry->object.vm_object != NULL)
1801 		vm_object_deallocate(entry->object.vm_object);
1802 	if (entry->cred != NULL)
1803 		crfree(entry->cred);
1804 	vm_map_entry_dispose(map, entry);
1805 }
1806 
1807 /*
1808  *	vm_map_simplify_entry:
1809  *
1810  *	Simplify the given map entry by merging with either neighbor.  This
1811  *	routine also has the ability to merge with both neighbors.
1812  *
1813  *	The map must be locked.
1814  *
1815  *	This routine guarantees that the passed entry remains valid (though
1816  *	possibly extended).  When merging, this routine may delete one or
1817  *	both neighbors.
1818  */
1819 void
1820 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1821 {
1822 	vm_map_entry_t next, prev;
1823 
1824 	if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) != 0)
1825 		return;
1826 	prev = entry->prev;
1827 	if (vm_map_mergeable_neighbors(prev, entry)) {
1828 		vm_map_entry_unlink(map, prev);
1829 		entry->start = prev->start;
1830 		entry->offset = prev->offset;
1831 		if (entry->prev != &map->header)
1832 			vm_map_entry_resize_free(map, entry->prev);
1833 		vm_map_merged_neighbor_dispose(map, prev);
1834 	}
1835 	next = entry->next;
1836 	if (vm_map_mergeable_neighbors(entry, next)) {
1837 		vm_map_entry_unlink(map, next);
1838 		entry->end = next->end;
1839 		vm_map_entry_resize_free(map, entry);
1840 		vm_map_merged_neighbor_dispose(map, next);
1841 	}
1842 }
1843 
1844 /*
1845  *	vm_map_clip_start:	[ internal use only ]
1846  *
1847  *	Asserts that the given entry begins at or after
1848  *	the specified address; if necessary,
1849  *	it splits the entry into two.
1850  */
1851 #define vm_map_clip_start(map, entry, startaddr) \
1852 { \
1853 	if (startaddr > entry->start) \
1854 		_vm_map_clip_start(map, entry, startaddr); \
1855 }
1856 
1857 /*
1858  *	This routine is called only when it is known that
1859  *	the entry must be split.
1860  */
1861 static void
1862 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1863 {
1864 	vm_map_entry_t new_entry;
1865 
1866 	VM_MAP_ASSERT_LOCKED(map);
1867 	KASSERT(entry->end > start && entry->start < start,
1868 	    ("_vm_map_clip_start: invalid clip of entry %p", entry));
1869 
1870 	/*
1871 	 * Split off the front portion -- note that we must insert the new
1872 	 * entry BEFORE this one, so that this entry has the specified
1873 	 * starting address.
1874 	 */
1875 	vm_map_simplify_entry(map, entry);
1876 
1877 	/*
1878 	 * If there is no object backing this entry, we might as well create
1879 	 * one now.  If we defer it, an object can get created after the map
1880 	 * is clipped, and individual objects will be created for the split-up
1881 	 * map.  This is a bit of a hack, but is also about the best place to
1882 	 * put this improvement.
1883 	 */
1884 	if (entry->object.vm_object == NULL && !map->system_map &&
1885 	    (entry->eflags & MAP_ENTRY_GUARD) == 0) {
1886 		vm_object_t object;
1887 		object = vm_object_allocate(OBJT_DEFAULT,
1888 				atop(entry->end - entry->start));
1889 		entry->object.vm_object = object;
1890 		entry->offset = 0;
1891 		if (entry->cred != NULL) {
1892 			object->cred = entry->cred;
1893 			object->charge = entry->end - entry->start;
1894 			entry->cred = NULL;
1895 		}
1896 	} else if (entry->object.vm_object != NULL &&
1897 		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1898 		   entry->cred != NULL) {
1899 		VM_OBJECT_WLOCK(entry->object.vm_object);
1900 		KASSERT(entry->object.vm_object->cred == NULL,
1901 		    ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
1902 		entry->object.vm_object->cred = entry->cred;
1903 		entry->object.vm_object->charge = entry->end - entry->start;
1904 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
1905 		entry->cred = NULL;
1906 	}
1907 
1908 	new_entry = vm_map_entry_create(map);
1909 	*new_entry = *entry;
1910 
1911 	new_entry->end = start;
1912 	entry->offset += (start - entry->start);
1913 	entry->start = start;
1914 	if (new_entry->cred != NULL)
1915 		crhold(entry->cred);
1916 
1917 	vm_map_entry_link(map, entry->prev, new_entry);
1918 
1919 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1920 		vm_object_reference(new_entry->object.vm_object);
1921 		/*
1922 		 * The object->un_pager.vnp.writemappings for the
1923 		 * object of MAP_ENTRY_VN_WRITECNT type entry shall be
1924 		 * kept as is here.  The virtual pages are
1925 		 * re-distributed among the clipped entries, so the sum is
1926 		 * left the same.
1927 		 */
1928 	}
1929 }
1930 
1931 /*
1932  *	vm_map_clip_end:	[ internal use only ]
1933  *
1934  *	Asserts that the given entry ends at or before
1935  *	the specified address; if necessary,
1936  *	it splits the entry into two.
1937  */
1938 #define vm_map_clip_end(map, entry, endaddr) \
1939 { \
1940 	if ((endaddr) < (entry->end)) \
1941 		_vm_map_clip_end((map), (entry), (endaddr)); \
1942 }
1943 
1944 /*
1945  *	This routine is called only when it is known that
1946  *	the entry must be split.
1947  */
1948 static void
1949 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1950 {
1951 	vm_map_entry_t new_entry;
1952 
1953 	VM_MAP_ASSERT_LOCKED(map);
1954 	KASSERT(entry->start < end && entry->end > end,
1955 	    ("_vm_map_clip_end: invalid clip of entry %p", entry));
1956 
1957 	/*
1958 	 * If there is no object backing this entry, we might as well create
1959 	 * one now.  If we defer it, an object can get created after the map
1960 	 * is clipped, and individual objects will be created for the split-up
1961 	 * map.  This is a bit of a hack, but is also about the best place to
1962 	 * put this improvement.
1963 	 */
1964 	if (entry->object.vm_object == NULL && !map->system_map &&
1965 	    (entry->eflags & MAP_ENTRY_GUARD) == 0) {
1966 		vm_object_t object;
1967 		object = vm_object_allocate(OBJT_DEFAULT,
1968 				atop(entry->end - entry->start));
1969 		entry->object.vm_object = object;
1970 		entry->offset = 0;
1971 		if (entry->cred != NULL) {
1972 			object->cred = entry->cred;
1973 			object->charge = entry->end - entry->start;
1974 			entry->cred = NULL;
1975 		}
1976 	} else if (entry->object.vm_object != NULL &&
1977 		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1978 		   entry->cred != NULL) {
1979 		VM_OBJECT_WLOCK(entry->object.vm_object);
1980 		KASSERT(entry->object.vm_object->cred == NULL,
1981 		    ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
1982 		entry->object.vm_object->cred = entry->cred;
1983 		entry->object.vm_object->charge = entry->end - entry->start;
1984 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
1985 		entry->cred = NULL;
1986 	}
1987 
1988 	/*
1989 	 * Create a new entry and insert it AFTER the specified entry
1990 	 */
1991 	new_entry = vm_map_entry_create(map);
1992 	*new_entry = *entry;
1993 
1994 	new_entry->start = entry->end = end;
1995 	new_entry->offset += (end - entry->start);
1996 	if (new_entry->cred != NULL)
1997 		crhold(entry->cred);
1998 
1999 	vm_map_entry_link(map, entry, new_entry);
2000 
2001 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2002 		vm_object_reference(new_entry->object.vm_object);
2003 	}
2004 }
2005 
2006 /*
2007  *	vm_map_submap:		[ kernel use only ]
2008  *
2009  *	Mark the given range as handled by a subordinate map.
2010  *
2011  *	This range must have been created with vm_map_find,
2012  *	and no other operations may have been performed on this
2013  *	range prior to calling vm_map_submap.
2014  *
2015  *	Only a limited number of operations can be performed
2016  *	within this rage after calling vm_map_submap:
2017  *		vm_fault
2018  *	[Don't try vm_map_copy!]
2019  *
2020  *	To remove a submapping, one must first remove the
2021  *	range from the superior map, and then destroy the
2022  *	submap (if desired).  [Better yet, don't try it.]
2023  */
2024 int
2025 vm_map_submap(
2026 	vm_map_t map,
2027 	vm_offset_t start,
2028 	vm_offset_t end,
2029 	vm_map_t submap)
2030 {
2031 	vm_map_entry_t entry;
2032 	int result;
2033 
2034 	result = KERN_INVALID_ARGUMENT;
2035 
2036 	vm_map_lock(submap);
2037 	submap->flags |= MAP_IS_SUB_MAP;
2038 	vm_map_unlock(submap);
2039 
2040 	vm_map_lock(map);
2041 
2042 	VM_MAP_RANGE_CHECK(map, start, end);
2043 
2044 	if (vm_map_lookup_entry(map, start, &entry)) {
2045 		vm_map_clip_start(map, entry, start);
2046 	} else
2047 		entry = entry->next;
2048 
2049 	vm_map_clip_end(map, entry, end);
2050 
2051 	if ((entry->start == start) && (entry->end == end) &&
2052 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
2053 	    (entry->object.vm_object == NULL)) {
2054 		entry->object.sub_map = submap;
2055 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
2056 		result = KERN_SUCCESS;
2057 	}
2058 	vm_map_unlock(map);
2059 
2060 	if (result != KERN_SUCCESS) {
2061 		vm_map_lock(submap);
2062 		submap->flags &= ~MAP_IS_SUB_MAP;
2063 		vm_map_unlock(submap);
2064 	}
2065 	return (result);
2066 }
2067 
2068 /*
2069  * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
2070  */
2071 #define	MAX_INIT_PT	96
2072 
2073 /*
2074  *	vm_map_pmap_enter:
2075  *
2076  *	Preload the specified map's pmap with mappings to the specified
2077  *	object's memory-resident pages.  No further physical pages are
2078  *	allocated, and no further virtual pages are retrieved from secondary
2079  *	storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
2080  *	limited number of page mappings are created at the low-end of the
2081  *	specified address range.  (For this purpose, a superpage mapping
2082  *	counts as one page mapping.)  Otherwise, all resident pages within
2083  *	the specified address range are mapped.
2084  */
2085 static void
2086 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
2087     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
2088 {
2089 	vm_offset_t start;
2090 	vm_page_t p, p_start;
2091 	vm_pindex_t mask, psize, threshold, tmpidx;
2092 
2093 	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
2094 		return;
2095 	VM_OBJECT_RLOCK(object);
2096 	if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2097 		VM_OBJECT_RUNLOCK(object);
2098 		VM_OBJECT_WLOCK(object);
2099 		if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2100 			pmap_object_init_pt(map->pmap, addr, object, pindex,
2101 			    size);
2102 			VM_OBJECT_WUNLOCK(object);
2103 			return;
2104 		}
2105 		VM_OBJECT_LOCK_DOWNGRADE(object);
2106 	}
2107 
2108 	psize = atop(size);
2109 	if (psize + pindex > object->size) {
2110 		if (object->size < pindex) {
2111 			VM_OBJECT_RUNLOCK(object);
2112 			return;
2113 		}
2114 		psize = object->size - pindex;
2115 	}
2116 
2117 	start = 0;
2118 	p_start = NULL;
2119 	threshold = MAX_INIT_PT;
2120 
2121 	p = vm_page_find_least(object, pindex);
2122 	/*
2123 	 * Assert: the variable p is either (1) the page with the
2124 	 * least pindex greater than or equal to the parameter pindex
2125 	 * or (2) NULL.
2126 	 */
2127 	for (;
2128 	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
2129 	     p = TAILQ_NEXT(p, listq)) {
2130 		/*
2131 		 * don't allow an madvise to blow away our really
2132 		 * free pages allocating pv entries.
2133 		 */
2134 		if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
2135 		    vm_page_count_severe()) ||
2136 		    ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
2137 		    tmpidx >= threshold)) {
2138 			psize = tmpidx;
2139 			break;
2140 		}
2141 		if (p->valid == VM_PAGE_BITS_ALL) {
2142 			if (p_start == NULL) {
2143 				start = addr + ptoa(tmpidx);
2144 				p_start = p;
2145 			}
2146 			/* Jump ahead if a superpage mapping is possible. */
2147 			if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
2148 			    (pagesizes[p->psind] - 1)) == 0) {
2149 				mask = atop(pagesizes[p->psind]) - 1;
2150 				if (tmpidx + mask < psize &&
2151 				    vm_page_ps_test(p, PS_ALL_VALID, NULL)) {
2152 					p += mask;
2153 					threshold += mask;
2154 				}
2155 			}
2156 		} else if (p_start != NULL) {
2157 			pmap_enter_object(map->pmap, start, addr +
2158 			    ptoa(tmpidx), p_start, prot);
2159 			p_start = NULL;
2160 		}
2161 	}
2162 	if (p_start != NULL)
2163 		pmap_enter_object(map->pmap, start, addr + ptoa(psize),
2164 		    p_start, prot);
2165 	VM_OBJECT_RUNLOCK(object);
2166 }
2167 
2168 /*
2169  *	vm_map_protect:
2170  *
2171  *	Sets the protection of the specified address
2172  *	region in the target map.  If "set_max" is
2173  *	specified, the maximum protection is to be set;
2174  *	otherwise, only the current protection is affected.
2175  */
2176 int
2177 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
2178 	       vm_prot_t new_prot, boolean_t set_max)
2179 {
2180 	vm_map_entry_t current, entry;
2181 	vm_object_t obj;
2182 	struct ucred *cred;
2183 	vm_prot_t old_prot;
2184 
2185 	if (start == end)
2186 		return (KERN_SUCCESS);
2187 
2188 	vm_map_lock(map);
2189 
2190 	/*
2191 	 * Ensure that we are not concurrently wiring pages.  vm_map_wire() may
2192 	 * need to fault pages into the map and will drop the map lock while
2193 	 * doing so, and the VM object may end up in an inconsistent state if we
2194 	 * update the protection on the map entry in between faults.
2195 	 */
2196 	vm_map_wait_busy(map);
2197 
2198 	VM_MAP_RANGE_CHECK(map, start, end);
2199 
2200 	if (vm_map_lookup_entry(map, start, &entry)) {
2201 		vm_map_clip_start(map, entry, start);
2202 	} else {
2203 		entry = entry->next;
2204 	}
2205 
2206 	/*
2207 	 * Make a first pass to check for protection violations.
2208 	 */
2209 	for (current = entry; current->start < end; current = current->next) {
2210 		if ((current->eflags & MAP_ENTRY_GUARD) != 0)
2211 			continue;
2212 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2213 			vm_map_unlock(map);
2214 			return (KERN_INVALID_ARGUMENT);
2215 		}
2216 		if ((new_prot & current->max_protection) != new_prot) {
2217 			vm_map_unlock(map);
2218 			return (KERN_PROTECTION_FAILURE);
2219 		}
2220 	}
2221 
2222 	/*
2223 	 * Do an accounting pass for private read-only mappings that
2224 	 * now will do cow due to allowed write (e.g. debugger sets
2225 	 * breakpoint on text segment)
2226 	 */
2227 	for (current = entry; current->start < end; current = current->next) {
2228 
2229 		vm_map_clip_end(map, current, end);
2230 
2231 		if (set_max ||
2232 		    ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
2233 		    ENTRY_CHARGED(current) ||
2234 		    (current->eflags & MAP_ENTRY_GUARD) != 0) {
2235 			continue;
2236 		}
2237 
2238 		cred = curthread->td_ucred;
2239 		obj = current->object.vm_object;
2240 
2241 		if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
2242 			if (!swap_reserve(current->end - current->start)) {
2243 				vm_map_unlock(map);
2244 				return (KERN_RESOURCE_SHORTAGE);
2245 			}
2246 			crhold(cred);
2247 			current->cred = cred;
2248 			continue;
2249 		}
2250 
2251 		VM_OBJECT_WLOCK(obj);
2252 		if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
2253 			VM_OBJECT_WUNLOCK(obj);
2254 			continue;
2255 		}
2256 
2257 		/*
2258 		 * Charge for the whole object allocation now, since
2259 		 * we cannot distinguish between non-charged and
2260 		 * charged clipped mapping of the same object later.
2261 		 */
2262 		KASSERT(obj->charge == 0,
2263 		    ("vm_map_protect: object %p overcharged (entry %p)",
2264 		    obj, current));
2265 		if (!swap_reserve(ptoa(obj->size))) {
2266 			VM_OBJECT_WUNLOCK(obj);
2267 			vm_map_unlock(map);
2268 			return (KERN_RESOURCE_SHORTAGE);
2269 		}
2270 
2271 		crhold(cred);
2272 		obj->cred = cred;
2273 		obj->charge = ptoa(obj->size);
2274 		VM_OBJECT_WUNLOCK(obj);
2275 	}
2276 
2277 	/*
2278 	 * Go back and fix up protections. [Note that clipping is not
2279 	 * necessary the second time.]
2280 	 */
2281 	for (current = entry; current->start < end; current = current->next) {
2282 		if ((current->eflags & MAP_ENTRY_GUARD) != 0)
2283 			continue;
2284 
2285 		old_prot = current->protection;
2286 
2287 		if (set_max)
2288 			current->protection =
2289 			    (current->max_protection = new_prot) &
2290 			    old_prot;
2291 		else
2292 			current->protection = new_prot;
2293 
2294 		/*
2295 		 * For user wired map entries, the normal lazy evaluation of
2296 		 * write access upgrades through soft page faults is
2297 		 * undesirable.  Instead, immediately copy any pages that are
2298 		 * copy-on-write and enable write access in the physical map.
2299 		 */
2300 		if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2301 		    (current->protection & VM_PROT_WRITE) != 0 &&
2302 		    (old_prot & VM_PROT_WRITE) == 0)
2303 			vm_fault_copy_entry(map, map, current, current, NULL);
2304 
2305 		/*
2306 		 * When restricting access, update the physical map.  Worry
2307 		 * about copy-on-write here.
2308 		 */
2309 		if ((old_prot & ~current->protection) != 0) {
2310 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2311 							VM_PROT_ALL)
2312 			pmap_protect(map->pmap, current->start,
2313 			    current->end,
2314 			    current->protection & MASK(current));
2315 #undef	MASK
2316 		}
2317 		vm_map_simplify_entry(map, current);
2318 	}
2319 	vm_map_unlock(map);
2320 	return (KERN_SUCCESS);
2321 }
2322 
2323 /*
2324  *	vm_map_madvise:
2325  *
2326  *	This routine traverses a processes map handling the madvise
2327  *	system call.  Advisories are classified as either those effecting
2328  *	the vm_map_entry structure, or those effecting the underlying
2329  *	objects.
2330  */
2331 int
2332 vm_map_madvise(
2333 	vm_map_t map,
2334 	vm_offset_t start,
2335 	vm_offset_t end,
2336 	int behav)
2337 {
2338 	vm_map_entry_t current, entry;
2339 	bool modify_map;
2340 
2341 	/*
2342 	 * Some madvise calls directly modify the vm_map_entry, in which case
2343 	 * we need to use an exclusive lock on the map and we need to perform
2344 	 * various clipping operations.  Otherwise we only need a read-lock
2345 	 * on the map.
2346 	 */
2347 	switch(behav) {
2348 	case MADV_NORMAL:
2349 	case MADV_SEQUENTIAL:
2350 	case MADV_RANDOM:
2351 	case MADV_NOSYNC:
2352 	case MADV_AUTOSYNC:
2353 	case MADV_NOCORE:
2354 	case MADV_CORE:
2355 		if (start == end)
2356 			return (0);
2357 		modify_map = true;
2358 		vm_map_lock(map);
2359 		break;
2360 	case MADV_WILLNEED:
2361 	case MADV_DONTNEED:
2362 	case MADV_FREE:
2363 		if (start == end)
2364 			return (0);
2365 		modify_map = false;
2366 		vm_map_lock_read(map);
2367 		break;
2368 	default:
2369 		return (EINVAL);
2370 	}
2371 
2372 	/*
2373 	 * Locate starting entry and clip if necessary.
2374 	 */
2375 	VM_MAP_RANGE_CHECK(map, start, end);
2376 
2377 	if (vm_map_lookup_entry(map, start, &entry)) {
2378 		if (modify_map)
2379 			vm_map_clip_start(map, entry, start);
2380 	} else {
2381 		entry = entry->next;
2382 	}
2383 
2384 	if (modify_map) {
2385 		/*
2386 		 * madvise behaviors that are implemented in the vm_map_entry.
2387 		 *
2388 		 * We clip the vm_map_entry so that behavioral changes are
2389 		 * limited to the specified address range.
2390 		 */
2391 		for (current = entry; current->start < end;
2392 		    current = current->next) {
2393 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2394 				continue;
2395 
2396 			vm_map_clip_end(map, current, end);
2397 
2398 			switch (behav) {
2399 			case MADV_NORMAL:
2400 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2401 				break;
2402 			case MADV_SEQUENTIAL:
2403 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2404 				break;
2405 			case MADV_RANDOM:
2406 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2407 				break;
2408 			case MADV_NOSYNC:
2409 				current->eflags |= MAP_ENTRY_NOSYNC;
2410 				break;
2411 			case MADV_AUTOSYNC:
2412 				current->eflags &= ~MAP_ENTRY_NOSYNC;
2413 				break;
2414 			case MADV_NOCORE:
2415 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
2416 				break;
2417 			case MADV_CORE:
2418 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2419 				break;
2420 			default:
2421 				break;
2422 			}
2423 			vm_map_simplify_entry(map, current);
2424 		}
2425 		vm_map_unlock(map);
2426 	} else {
2427 		vm_pindex_t pstart, pend;
2428 
2429 		/*
2430 		 * madvise behaviors that are implemented in the underlying
2431 		 * vm_object.
2432 		 *
2433 		 * Since we don't clip the vm_map_entry, we have to clip
2434 		 * the vm_object pindex and count.
2435 		 */
2436 		for (current = entry; current->start < end;
2437 		    current = current->next) {
2438 			vm_offset_t useEnd, useStart;
2439 
2440 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2441 				continue;
2442 
2443 			pstart = OFF_TO_IDX(current->offset);
2444 			pend = pstart + atop(current->end - current->start);
2445 			useStart = current->start;
2446 			useEnd = current->end;
2447 
2448 			if (current->start < start) {
2449 				pstart += atop(start - current->start);
2450 				useStart = start;
2451 			}
2452 			if (current->end > end) {
2453 				pend -= atop(current->end - end);
2454 				useEnd = end;
2455 			}
2456 
2457 			if (pstart >= pend)
2458 				continue;
2459 
2460 			/*
2461 			 * Perform the pmap_advise() before clearing
2462 			 * PGA_REFERENCED in vm_page_advise().  Otherwise, a
2463 			 * concurrent pmap operation, such as pmap_remove(),
2464 			 * could clear a reference in the pmap and set
2465 			 * PGA_REFERENCED on the page before the pmap_advise()
2466 			 * had completed.  Consequently, the page would appear
2467 			 * referenced based upon an old reference that
2468 			 * occurred before this pmap_advise() ran.
2469 			 */
2470 			if (behav == MADV_DONTNEED || behav == MADV_FREE)
2471 				pmap_advise(map->pmap, useStart, useEnd,
2472 				    behav);
2473 
2474 			vm_object_madvise(current->object.vm_object, pstart,
2475 			    pend, behav);
2476 
2477 			/*
2478 			 * Pre-populate paging structures in the
2479 			 * WILLNEED case.  For wired entries, the
2480 			 * paging structures are already populated.
2481 			 */
2482 			if (behav == MADV_WILLNEED &&
2483 			    current->wired_count == 0) {
2484 				vm_map_pmap_enter(map,
2485 				    useStart,
2486 				    current->protection,
2487 				    current->object.vm_object,
2488 				    pstart,
2489 				    ptoa(pend - pstart),
2490 				    MAP_PREFAULT_MADVISE
2491 				);
2492 			}
2493 		}
2494 		vm_map_unlock_read(map);
2495 	}
2496 	return (0);
2497 }
2498 
2499 
2500 /*
2501  *	vm_map_inherit:
2502  *
2503  *	Sets the inheritance of the specified address
2504  *	range in the target map.  Inheritance
2505  *	affects how the map will be shared with
2506  *	child maps at the time of vmspace_fork.
2507  */
2508 int
2509 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2510 	       vm_inherit_t new_inheritance)
2511 {
2512 	vm_map_entry_t entry;
2513 	vm_map_entry_t temp_entry;
2514 
2515 	switch (new_inheritance) {
2516 	case VM_INHERIT_NONE:
2517 	case VM_INHERIT_COPY:
2518 	case VM_INHERIT_SHARE:
2519 	case VM_INHERIT_ZERO:
2520 		break;
2521 	default:
2522 		return (KERN_INVALID_ARGUMENT);
2523 	}
2524 	if (start == end)
2525 		return (KERN_SUCCESS);
2526 	vm_map_lock(map);
2527 	VM_MAP_RANGE_CHECK(map, start, end);
2528 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
2529 		entry = temp_entry;
2530 		vm_map_clip_start(map, entry, start);
2531 	} else
2532 		entry = temp_entry->next;
2533 	while (entry->start < end) {
2534 		vm_map_clip_end(map, entry, end);
2535 		if ((entry->eflags & MAP_ENTRY_GUARD) == 0 ||
2536 		    new_inheritance != VM_INHERIT_ZERO)
2537 			entry->inheritance = new_inheritance;
2538 		vm_map_simplify_entry(map, entry);
2539 		entry = entry->next;
2540 	}
2541 	vm_map_unlock(map);
2542 	return (KERN_SUCCESS);
2543 }
2544 
2545 /*
2546  *	vm_map_unwire:
2547  *
2548  *	Implements both kernel and user unwiring.
2549  */
2550 int
2551 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2552     int flags)
2553 {
2554 	vm_map_entry_t entry, first_entry, tmp_entry;
2555 	vm_offset_t saved_start;
2556 	unsigned int last_timestamp;
2557 	int rv;
2558 	boolean_t need_wakeup, result, user_unwire;
2559 
2560 	if (start == end)
2561 		return (KERN_SUCCESS);
2562 	user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2563 	vm_map_lock(map);
2564 	VM_MAP_RANGE_CHECK(map, start, end);
2565 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2566 		if (flags & VM_MAP_WIRE_HOLESOK)
2567 			first_entry = first_entry->next;
2568 		else {
2569 			vm_map_unlock(map);
2570 			return (KERN_INVALID_ADDRESS);
2571 		}
2572 	}
2573 	last_timestamp = map->timestamp;
2574 	entry = first_entry;
2575 	while (entry->start < end) {
2576 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2577 			/*
2578 			 * We have not yet clipped the entry.
2579 			 */
2580 			saved_start = (start >= entry->start) ? start :
2581 			    entry->start;
2582 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2583 			if (vm_map_unlock_and_wait(map, 0)) {
2584 				/*
2585 				 * Allow interruption of user unwiring?
2586 				 */
2587 			}
2588 			vm_map_lock(map);
2589 			if (last_timestamp+1 != map->timestamp) {
2590 				/*
2591 				 * Look again for the entry because the map was
2592 				 * modified while it was unlocked.
2593 				 * Specifically, the entry may have been
2594 				 * clipped, merged, or deleted.
2595 				 */
2596 				if (!vm_map_lookup_entry(map, saved_start,
2597 				    &tmp_entry)) {
2598 					if (flags & VM_MAP_WIRE_HOLESOK)
2599 						tmp_entry = tmp_entry->next;
2600 					else {
2601 						if (saved_start == start) {
2602 							/*
2603 							 * First_entry has been deleted.
2604 							 */
2605 							vm_map_unlock(map);
2606 							return (KERN_INVALID_ADDRESS);
2607 						}
2608 						end = saved_start;
2609 						rv = KERN_INVALID_ADDRESS;
2610 						goto done;
2611 					}
2612 				}
2613 				if (entry == first_entry)
2614 					first_entry = tmp_entry;
2615 				else
2616 					first_entry = NULL;
2617 				entry = tmp_entry;
2618 			}
2619 			last_timestamp = map->timestamp;
2620 			continue;
2621 		}
2622 		vm_map_clip_start(map, entry, start);
2623 		vm_map_clip_end(map, entry, end);
2624 		/*
2625 		 * Mark the entry in case the map lock is released.  (See
2626 		 * above.)
2627 		 */
2628 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2629 		    entry->wiring_thread == NULL,
2630 		    ("owned map entry %p", entry));
2631 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2632 		entry->wiring_thread = curthread;
2633 		/*
2634 		 * Check the map for holes in the specified region.
2635 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2636 		 */
2637 		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2638 		    (entry->end < end && entry->next->start > entry->end)) {
2639 			end = entry->end;
2640 			rv = KERN_INVALID_ADDRESS;
2641 			goto done;
2642 		}
2643 		/*
2644 		 * If system unwiring, require that the entry is system wired.
2645 		 */
2646 		if (!user_unwire &&
2647 		    vm_map_entry_system_wired_count(entry) == 0) {
2648 			end = entry->end;
2649 			rv = KERN_INVALID_ARGUMENT;
2650 			goto done;
2651 		}
2652 		entry = entry->next;
2653 	}
2654 	rv = KERN_SUCCESS;
2655 done:
2656 	need_wakeup = FALSE;
2657 	if (first_entry == NULL) {
2658 		result = vm_map_lookup_entry(map, start, &first_entry);
2659 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2660 			first_entry = first_entry->next;
2661 		else
2662 			KASSERT(result, ("vm_map_unwire: lookup failed"));
2663 	}
2664 	for (entry = first_entry; entry->start < end; entry = entry->next) {
2665 		/*
2666 		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2667 		 * space in the unwired region could have been mapped
2668 		 * while the map lock was dropped for draining
2669 		 * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
2670 		 * could be simultaneously wiring this new mapping
2671 		 * entry.  Detect these cases and skip any entries
2672 		 * marked as in transition by us.
2673 		 */
2674 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2675 		    entry->wiring_thread != curthread) {
2676 			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2677 			    ("vm_map_unwire: !HOLESOK and new/changed entry"));
2678 			continue;
2679 		}
2680 
2681 		if (rv == KERN_SUCCESS && (!user_unwire ||
2682 		    (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2683 			if (user_unwire)
2684 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2685 			if (entry->wired_count == 1)
2686 				vm_map_entry_unwire(map, entry);
2687 			else
2688 				entry->wired_count--;
2689 		}
2690 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2691 		    ("vm_map_unwire: in-transition flag missing %p", entry));
2692 		KASSERT(entry->wiring_thread == curthread,
2693 		    ("vm_map_unwire: alien wire %p", entry));
2694 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2695 		entry->wiring_thread = NULL;
2696 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2697 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2698 			need_wakeup = TRUE;
2699 		}
2700 		vm_map_simplify_entry(map, entry);
2701 	}
2702 	vm_map_unlock(map);
2703 	if (need_wakeup)
2704 		vm_map_wakeup(map);
2705 	return (rv);
2706 }
2707 
2708 /*
2709  *	vm_map_wire_entry_failure:
2710  *
2711  *	Handle a wiring failure on the given entry.
2712  *
2713  *	The map should be locked.
2714  */
2715 static void
2716 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
2717     vm_offset_t failed_addr)
2718 {
2719 
2720 	VM_MAP_ASSERT_LOCKED(map);
2721 	KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
2722 	    entry->wired_count == 1,
2723 	    ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
2724 	KASSERT(failed_addr < entry->end,
2725 	    ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
2726 
2727 	/*
2728 	 * If any pages at the start of this entry were successfully wired,
2729 	 * then unwire them.
2730 	 */
2731 	if (failed_addr > entry->start) {
2732 		pmap_unwire(map->pmap, entry->start, failed_addr);
2733 		vm_object_unwire(entry->object.vm_object, entry->offset,
2734 		    failed_addr - entry->start, PQ_ACTIVE);
2735 	}
2736 
2737 	/*
2738 	 * Assign an out-of-range value to represent the failure to wire this
2739 	 * entry.
2740 	 */
2741 	entry->wired_count = -1;
2742 }
2743 
2744 /*
2745  *	vm_map_wire:
2746  *
2747  *	Implements both kernel and user wiring.
2748  */
2749 int
2750 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2751     int flags)
2752 {
2753 	vm_map_entry_t entry, first_entry, tmp_entry;
2754 	vm_offset_t faddr, saved_end, saved_start;
2755 	unsigned int last_timestamp;
2756 	int rv;
2757 	boolean_t need_wakeup, result, user_wire;
2758 	vm_prot_t prot;
2759 
2760 	if (start == end)
2761 		return (KERN_SUCCESS);
2762 	prot = 0;
2763 	if (flags & VM_MAP_WIRE_WRITE)
2764 		prot |= VM_PROT_WRITE;
2765 	user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2766 	vm_map_lock(map);
2767 	VM_MAP_RANGE_CHECK(map, start, end);
2768 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2769 		if (flags & VM_MAP_WIRE_HOLESOK)
2770 			first_entry = first_entry->next;
2771 		else {
2772 			vm_map_unlock(map);
2773 			return (KERN_INVALID_ADDRESS);
2774 		}
2775 	}
2776 	last_timestamp = map->timestamp;
2777 	entry = first_entry;
2778 	while (entry->start < end) {
2779 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2780 			/*
2781 			 * We have not yet clipped the entry.
2782 			 */
2783 			saved_start = (start >= entry->start) ? start :
2784 			    entry->start;
2785 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2786 			if (vm_map_unlock_and_wait(map, 0)) {
2787 				/*
2788 				 * Allow interruption of user wiring?
2789 				 */
2790 			}
2791 			vm_map_lock(map);
2792 			if (last_timestamp + 1 != map->timestamp) {
2793 				/*
2794 				 * Look again for the entry because the map was
2795 				 * modified while it was unlocked.
2796 				 * Specifically, the entry may have been
2797 				 * clipped, merged, or deleted.
2798 				 */
2799 				if (!vm_map_lookup_entry(map, saved_start,
2800 				    &tmp_entry)) {
2801 					if (flags & VM_MAP_WIRE_HOLESOK)
2802 						tmp_entry = tmp_entry->next;
2803 					else {
2804 						if (saved_start == start) {
2805 							/*
2806 							 * first_entry has been deleted.
2807 							 */
2808 							vm_map_unlock(map);
2809 							return (KERN_INVALID_ADDRESS);
2810 						}
2811 						end = saved_start;
2812 						rv = KERN_INVALID_ADDRESS;
2813 						goto done;
2814 					}
2815 				}
2816 				if (entry == first_entry)
2817 					first_entry = tmp_entry;
2818 				else
2819 					first_entry = NULL;
2820 				entry = tmp_entry;
2821 			}
2822 			last_timestamp = map->timestamp;
2823 			continue;
2824 		}
2825 		vm_map_clip_start(map, entry, start);
2826 		vm_map_clip_end(map, entry, end);
2827 		/*
2828 		 * Mark the entry in case the map lock is released.  (See
2829 		 * above.)
2830 		 */
2831 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2832 		    entry->wiring_thread == NULL,
2833 		    ("owned map entry %p", entry));
2834 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2835 		entry->wiring_thread = curthread;
2836 		if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
2837 		    || (entry->protection & prot) != prot) {
2838 			entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
2839 			if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
2840 				end = entry->end;
2841 				rv = KERN_INVALID_ADDRESS;
2842 				goto done;
2843 			}
2844 			goto next_entry;
2845 		}
2846 		if (entry->wired_count == 0) {
2847 			entry->wired_count++;
2848 			saved_start = entry->start;
2849 			saved_end = entry->end;
2850 
2851 			/*
2852 			 * Release the map lock, relying on the in-transition
2853 			 * mark.  Mark the map busy for fork.
2854 			 */
2855 			vm_map_busy(map);
2856 			vm_map_unlock(map);
2857 
2858 			faddr = saved_start;
2859 			do {
2860 				/*
2861 				 * Simulate a fault to get the page and enter
2862 				 * it into the physical map.
2863 				 */
2864 				if ((rv = vm_fault(map, faddr, VM_PROT_NONE,
2865 				    VM_FAULT_WIRE)) != KERN_SUCCESS)
2866 					break;
2867 			} while ((faddr += PAGE_SIZE) < saved_end);
2868 			vm_map_lock(map);
2869 			vm_map_unbusy(map);
2870 			if (last_timestamp + 1 != map->timestamp) {
2871 				/*
2872 				 * Look again for the entry because the map was
2873 				 * modified while it was unlocked.  The entry
2874 				 * may have been clipped, but NOT merged or
2875 				 * deleted.
2876 				 */
2877 				result = vm_map_lookup_entry(map, saved_start,
2878 				    &tmp_entry);
2879 				KASSERT(result, ("vm_map_wire: lookup failed"));
2880 				if (entry == first_entry)
2881 					first_entry = tmp_entry;
2882 				else
2883 					first_entry = NULL;
2884 				entry = tmp_entry;
2885 				while (entry->end < saved_end) {
2886 					/*
2887 					 * In case of failure, handle entries
2888 					 * that were not fully wired here;
2889 					 * fully wired entries are handled
2890 					 * later.
2891 					 */
2892 					if (rv != KERN_SUCCESS &&
2893 					    faddr < entry->end)
2894 						vm_map_wire_entry_failure(map,
2895 						    entry, faddr);
2896 					entry = entry->next;
2897 				}
2898 			}
2899 			last_timestamp = map->timestamp;
2900 			if (rv != KERN_SUCCESS) {
2901 				vm_map_wire_entry_failure(map, entry, faddr);
2902 				end = entry->end;
2903 				goto done;
2904 			}
2905 		} else if (!user_wire ||
2906 			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2907 			entry->wired_count++;
2908 		}
2909 		/*
2910 		 * Check the map for holes in the specified region.
2911 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2912 		 */
2913 	next_entry:
2914 		if ((flags & VM_MAP_WIRE_HOLESOK) == 0 &&
2915 		    entry->end < end && entry->next->start > entry->end) {
2916 			end = entry->end;
2917 			rv = KERN_INVALID_ADDRESS;
2918 			goto done;
2919 		}
2920 		entry = entry->next;
2921 	}
2922 	rv = KERN_SUCCESS;
2923 done:
2924 	need_wakeup = FALSE;
2925 	if (first_entry == NULL) {
2926 		result = vm_map_lookup_entry(map, start, &first_entry);
2927 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2928 			first_entry = first_entry->next;
2929 		else
2930 			KASSERT(result, ("vm_map_wire: lookup failed"));
2931 	}
2932 	for (entry = first_entry; entry->start < end; entry = entry->next) {
2933 		/*
2934 		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2935 		 * space in the unwired region could have been mapped
2936 		 * while the map lock was dropped for faulting in the
2937 		 * pages or draining MAP_ENTRY_IN_TRANSITION.
2938 		 * Moreover, another thread could be simultaneously
2939 		 * wiring this new mapping entry.  Detect these cases
2940 		 * and skip any entries marked as in transition not by us.
2941 		 */
2942 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2943 		    entry->wiring_thread != curthread) {
2944 			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2945 			    ("vm_map_wire: !HOLESOK and new/changed entry"));
2946 			continue;
2947 		}
2948 
2949 		if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
2950 			goto next_entry_done;
2951 
2952 		if (rv == KERN_SUCCESS) {
2953 			if (user_wire)
2954 				entry->eflags |= MAP_ENTRY_USER_WIRED;
2955 		} else if (entry->wired_count == -1) {
2956 			/*
2957 			 * Wiring failed on this entry.  Thus, unwiring is
2958 			 * unnecessary.
2959 			 */
2960 			entry->wired_count = 0;
2961 		} else if (!user_wire ||
2962 		    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2963 			/*
2964 			 * Undo the wiring.  Wiring succeeded on this entry
2965 			 * but failed on a later entry.
2966 			 */
2967 			if (entry->wired_count == 1)
2968 				vm_map_entry_unwire(map, entry);
2969 			else
2970 				entry->wired_count--;
2971 		}
2972 	next_entry_done:
2973 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2974 		    ("vm_map_wire: in-transition flag missing %p", entry));
2975 		KASSERT(entry->wiring_thread == curthread,
2976 		    ("vm_map_wire: alien wire %p", entry));
2977 		entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
2978 		    MAP_ENTRY_WIRE_SKIPPED);
2979 		entry->wiring_thread = NULL;
2980 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2981 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2982 			need_wakeup = TRUE;
2983 		}
2984 		vm_map_simplify_entry(map, entry);
2985 	}
2986 	vm_map_unlock(map);
2987 	if (need_wakeup)
2988 		vm_map_wakeup(map);
2989 	return (rv);
2990 }
2991 
2992 /*
2993  * vm_map_sync
2994  *
2995  * Push any dirty cached pages in the address range to their pager.
2996  * If syncio is TRUE, dirty pages are written synchronously.
2997  * If invalidate is TRUE, any cached pages are freed as well.
2998  *
2999  * If the size of the region from start to end is zero, we are
3000  * supposed to flush all modified pages within the region containing
3001  * start.  Unfortunately, a region can be split or coalesced with
3002  * neighboring regions, making it difficult to determine what the
3003  * original region was.  Therefore, we approximate this requirement by
3004  * flushing the current region containing start.
3005  *
3006  * Returns an error if any part of the specified range is not mapped.
3007  */
3008 int
3009 vm_map_sync(
3010 	vm_map_t map,
3011 	vm_offset_t start,
3012 	vm_offset_t end,
3013 	boolean_t syncio,
3014 	boolean_t invalidate)
3015 {
3016 	vm_map_entry_t current;
3017 	vm_map_entry_t entry;
3018 	vm_size_t size;
3019 	vm_object_t object;
3020 	vm_ooffset_t offset;
3021 	unsigned int last_timestamp;
3022 	boolean_t failed;
3023 
3024 	vm_map_lock_read(map);
3025 	VM_MAP_RANGE_CHECK(map, start, end);
3026 	if (!vm_map_lookup_entry(map, start, &entry)) {
3027 		vm_map_unlock_read(map);
3028 		return (KERN_INVALID_ADDRESS);
3029 	} else if (start == end) {
3030 		start = entry->start;
3031 		end = entry->end;
3032 	}
3033 	/*
3034 	 * Make a first pass to check for user-wired memory and holes.
3035 	 */
3036 	for (current = entry; current->start < end; current = current->next) {
3037 		if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
3038 			vm_map_unlock_read(map);
3039 			return (KERN_INVALID_ARGUMENT);
3040 		}
3041 		if (end > current->end &&
3042 		    current->end != current->next->start) {
3043 			vm_map_unlock_read(map);
3044 			return (KERN_INVALID_ADDRESS);
3045 		}
3046 	}
3047 
3048 	if (invalidate)
3049 		pmap_remove(map->pmap, start, end);
3050 	failed = FALSE;
3051 
3052 	/*
3053 	 * Make a second pass, cleaning/uncaching pages from the indicated
3054 	 * objects as we go.
3055 	 */
3056 	for (current = entry; current->start < end;) {
3057 		offset = current->offset + (start - current->start);
3058 		size = (end <= current->end ? end : current->end) - start;
3059 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
3060 			vm_map_t smap;
3061 			vm_map_entry_t tentry;
3062 			vm_size_t tsize;
3063 
3064 			smap = current->object.sub_map;
3065 			vm_map_lock_read(smap);
3066 			(void) vm_map_lookup_entry(smap, offset, &tentry);
3067 			tsize = tentry->end - offset;
3068 			if (tsize < size)
3069 				size = tsize;
3070 			object = tentry->object.vm_object;
3071 			offset = tentry->offset + (offset - tentry->start);
3072 			vm_map_unlock_read(smap);
3073 		} else {
3074 			object = current->object.vm_object;
3075 		}
3076 		vm_object_reference(object);
3077 		last_timestamp = map->timestamp;
3078 		vm_map_unlock_read(map);
3079 		if (!vm_object_sync(object, offset, size, syncio, invalidate))
3080 			failed = TRUE;
3081 		start += size;
3082 		vm_object_deallocate(object);
3083 		vm_map_lock_read(map);
3084 		if (last_timestamp == map->timestamp ||
3085 		    !vm_map_lookup_entry(map, start, &current))
3086 			current = current->next;
3087 	}
3088 
3089 	vm_map_unlock_read(map);
3090 	return (failed ? KERN_FAILURE : KERN_SUCCESS);
3091 }
3092 
3093 /*
3094  *	vm_map_entry_unwire:	[ internal use only ]
3095  *
3096  *	Make the region specified by this entry pageable.
3097  *
3098  *	The map in question should be locked.
3099  *	[This is the reason for this routine's existence.]
3100  */
3101 static void
3102 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
3103 {
3104 
3105 	VM_MAP_ASSERT_LOCKED(map);
3106 	KASSERT(entry->wired_count > 0,
3107 	    ("vm_map_entry_unwire: entry %p isn't wired", entry));
3108 	pmap_unwire(map->pmap, entry->start, entry->end);
3109 	vm_object_unwire(entry->object.vm_object, entry->offset, entry->end -
3110 	    entry->start, PQ_ACTIVE);
3111 	entry->wired_count = 0;
3112 }
3113 
3114 static void
3115 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
3116 {
3117 
3118 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
3119 		vm_object_deallocate(entry->object.vm_object);
3120 	uma_zfree(system_map ? kmapentzone : mapentzone, entry);
3121 }
3122 
3123 /*
3124  *	vm_map_entry_delete:	[ internal use only ]
3125  *
3126  *	Deallocate the given entry from the target map.
3127  */
3128 static void
3129 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
3130 {
3131 	vm_object_t object;
3132 	vm_pindex_t offidxstart, offidxend, count, size1;
3133 	vm_size_t size;
3134 
3135 	vm_map_entry_unlink(map, entry);
3136 	object = entry->object.vm_object;
3137 
3138 	if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
3139 		MPASS(entry->cred == NULL);
3140 		MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0);
3141 		MPASS(object == NULL);
3142 		vm_map_entry_deallocate(entry, map->system_map);
3143 		return;
3144 	}
3145 
3146 	size = entry->end - entry->start;
3147 	map->size -= size;
3148 
3149 	if (entry->cred != NULL) {
3150 		swap_release_by_cred(size, entry->cred);
3151 		crfree(entry->cred);
3152 	}
3153 
3154 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
3155 	    (object != NULL)) {
3156 		KASSERT(entry->cred == NULL || object->cred == NULL ||
3157 		    (entry->eflags & MAP_ENTRY_NEEDS_COPY),
3158 		    ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
3159 		count = atop(size);
3160 		offidxstart = OFF_TO_IDX(entry->offset);
3161 		offidxend = offidxstart + count;
3162 		VM_OBJECT_WLOCK(object);
3163 		if (object->ref_count != 1 && ((object->flags & (OBJ_NOSPLIT |
3164 		    OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
3165 		    object == kernel_object)) {
3166 			vm_object_collapse(object);
3167 
3168 			/*
3169 			 * The option OBJPR_NOTMAPPED can be passed here
3170 			 * because vm_map_delete() already performed
3171 			 * pmap_remove() on the only mapping to this range
3172 			 * of pages.
3173 			 */
3174 			vm_object_page_remove(object, offidxstart, offidxend,
3175 			    OBJPR_NOTMAPPED);
3176 			if (object->type == OBJT_SWAP)
3177 				swap_pager_freespace(object, offidxstart,
3178 				    count);
3179 			if (offidxend >= object->size &&
3180 			    offidxstart < object->size) {
3181 				size1 = object->size;
3182 				object->size = offidxstart;
3183 				if (object->cred != NULL) {
3184 					size1 -= object->size;
3185 					KASSERT(object->charge >= ptoa(size1),
3186 					    ("object %p charge < 0", object));
3187 					swap_release_by_cred(ptoa(size1),
3188 					    object->cred);
3189 					object->charge -= ptoa(size1);
3190 				}
3191 			}
3192 		}
3193 		VM_OBJECT_WUNLOCK(object);
3194 	} else
3195 		entry->object.vm_object = NULL;
3196 	if (map->system_map)
3197 		vm_map_entry_deallocate(entry, TRUE);
3198 	else {
3199 		entry->next = curthread->td_map_def_user;
3200 		curthread->td_map_def_user = entry;
3201 	}
3202 }
3203 
3204 /*
3205  *	vm_map_delete:	[ internal use only ]
3206  *
3207  *	Deallocates the given address range from the target
3208  *	map.
3209  */
3210 int
3211 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
3212 {
3213 	vm_map_entry_t entry;
3214 	vm_map_entry_t first_entry;
3215 
3216 	VM_MAP_ASSERT_LOCKED(map);
3217 	if (start == end)
3218 		return (KERN_SUCCESS);
3219 
3220 	/*
3221 	 * Find the start of the region, and clip it
3222 	 */
3223 	if (!vm_map_lookup_entry(map, start, &first_entry))
3224 		entry = first_entry->next;
3225 	else {
3226 		entry = first_entry;
3227 		vm_map_clip_start(map, entry, start);
3228 	}
3229 
3230 	/*
3231 	 * Step through all entries in this region
3232 	 */
3233 	while (entry->start < end) {
3234 		vm_map_entry_t next;
3235 
3236 		/*
3237 		 * Wait for wiring or unwiring of an entry to complete.
3238 		 * Also wait for any system wirings to disappear on
3239 		 * user maps.
3240 		 */
3241 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
3242 		    (vm_map_pmap(map) != kernel_pmap &&
3243 		    vm_map_entry_system_wired_count(entry) != 0)) {
3244 			unsigned int last_timestamp;
3245 			vm_offset_t saved_start;
3246 			vm_map_entry_t tmp_entry;
3247 
3248 			saved_start = entry->start;
3249 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3250 			last_timestamp = map->timestamp;
3251 			(void) vm_map_unlock_and_wait(map, 0);
3252 			vm_map_lock(map);
3253 			if (last_timestamp + 1 != map->timestamp) {
3254 				/*
3255 				 * Look again for the entry because the map was
3256 				 * modified while it was unlocked.
3257 				 * Specifically, the entry may have been
3258 				 * clipped, merged, or deleted.
3259 				 */
3260 				if (!vm_map_lookup_entry(map, saved_start,
3261 							 &tmp_entry))
3262 					entry = tmp_entry->next;
3263 				else {
3264 					entry = tmp_entry;
3265 					vm_map_clip_start(map, entry,
3266 							  saved_start);
3267 				}
3268 			}
3269 			continue;
3270 		}
3271 		vm_map_clip_end(map, entry, end);
3272 
3273 		next = entry->next;
3274 
3275 		/*
3276 		 * Unwire before removing addresses from the pmap; otherwise,
3277 		 * unwiring will put the entries back in the pmap.
3278 		 */
3279 		if (entry->wired_count != 0)
3280 			vm_map_entry_unwire(map, entry);
3281 
3282 		/*
3283 		 * Remove mappings for the pages, but only if the
3284 		 * mappings could exist.  For instance, it does not
3285 		 * make sense to call pmap_remove() for guard entries.
3286 		 */
3287 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 ||
3288 		    entry->object.vm_object != NULL)
3289 			pmap_remove(map->pmap, entry->start, entry->end);
3290 
3291 		if (entry->end == map->anon_loc)
3292 			map->anon_loc = entry->start;
3293 
3294 		/*
3295 		 * Delete the entry only after removing all pmap
3296 		 * entries pointing to its pages.  (Otherwise, its
3297 		 * page frames may be reallocated, and any modify bits
3298 		 * will be set in the wrong object!)
3299 		 */
3300 		vm_map_entry_delete(map, entry);
3301 		entry = next;
3302 	}
3303 	return (KERN_SUCCESS);
3304 }
3305 
3306 /*
3307  *	vm_map_remove:
3308  *
3309  *	Remove the given address range from the target map.
3310  *	This is the exported form of vm_map_delete.
3311  */
3312 int
3313 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3314 {
3315 	int result;
3316 
3317 	vm_map_lock(map);
3318 	VM_MAP_RANGE_CHECK(map, start, end);
3319 	result = vm_map_delete(map, start, end);
3320 	vm_map_unlock(map);
3321 	return (result);
3322 }
3323 
3324 /*
3325  *	vm_map_check_protection:
3326  *
3327  *	Assert that the target map allows the specified privilege on the
3328  *	entire address region given.  The entire region must be allocated.
3329  *
3330  *	WARNING!  This code does not and should not check whether the
3331  *	contents of the region is accessible.  For example a smaller file
3332  *	might be mapped into a larger address space.
3333  *
3334  *	NOTE!  This code is also called by munmap().
3335  *
3336  *	The map must be locked.  A read lock is sufficient.
3337  */
3338 boolean_t
3339 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
3340 			vm_prot_t protection)
3341 {
3342 	vm_map_entry_t entry;
3343 	vm_map_entry_t tmp_entry;
3344 
3345 	if (!vm_map_lookup_entry(map, start, &tmp_entry))
3346 		return (FALSE);
3347 	entry = tmp_entry;
3348 
3349 	while (start < end) {
3350 		/*
3351 		 * No holes allowed!
3352 		 */
3353 		if (start < entry->start)
3354 			return (FALSE);
3355 		/*
3356 		 * Check protection associated with entry.
3357 		 */
3358 		if ((entry->protection & protection) != protection)
3359 			return (FALSE);
3360 		/* go to next entry */
3361 		start = entry->end;
3362 		entry = entry->next;
3363 	}
3364 	return (TRUE);
3365 }
3366 
3367 /*
3368  *	vm_map_copy_entry:
3369  *
3370  *	Copies the contents of the source entry to the destination
3371  *	entry.  The entries *must* be aligned properly.
3372  */
3373 static void
3374 vm_map_copy_entry(
3375 	vm_map_t src_map,
3376 	vm_map_t dst_map,
3377 	vm_map_entry_t src_entry,
3378 	vm_map_entry_t dst_entry,
3379 	vm_ooffset_t *fork_charge)
3380 {
3381 	vm_object_t src_object;
3382 	vm_map_entry_t fake_entry;
3383 	vm_offset_t size;
3384 	struct ucred *cred;
3385 	int charged;
3386 
3387 	VM_MAP_ASSERT_LOCKED(dst_map);
3388 
3389 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
3390 		return;
3391 
3392 	if (src_entry->wired_count == 0 ||
3393 	    (src_entry->protection & VM_PROT_WRITE) == 0) {
3394 		/*
3395 		 * If the source entry is marked needs_copy, it is already
3396 		 * write-protected.
3397 		 */
3398 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
3399 		    (src_entry->protection & VM_PROT_WRITE) != 0) {
3400 			pmap_protect(src_map->pmap,
3401 			    src_entry->start,
3402 			    src_entry->end,
3403 			    src_entry->protection & ~VM_PROT_WRITE);
3404 		}
3405 
3406 		/*
3407 		 * Make a copy of the object.
3408 		 */
3409 		size = src_entry->end - src_entry->start;
3410 		if ((src_object = src_entry->object.vm_object) != NULL) {
3411 			VM_OBJECT_WLOCK(src_object);
3412 			charged = ENTRY_CHARGED(src_entry);
3413 			if (src_object->handle == NULL &&
3414 			    (src_object->type == OBJT_DEFAULT ||
3415 			    src_object->type == OBJT_SWAP)) {
3416 				vm_object_collapse(src_object);
3417 				if ((src_object->flags & (OBJ_NOSPLIT |
3418 				    OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
3419 					vm_object_split(src_entry);
3420 					src_object =
3421 					    src_entry->object.vm_object;
3422 				}
3423 			}
3424 			vm_object_reference_locked(src_object);
3425 			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3426 			if (src_entry->cred != NULL &&
3427 			    !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3428 				KASSERT(src_object->cred == NULL,
3429 				    ("OVERCOMMIT: vm_map_copy_entry: cred %p",
3430 				     src_object));
3431 				src_object->cred = src_entry->cred;
3432 				src_object->charge = size;
3433 			}
3434 			VM_OBJECT_WUNLOCK(src_object);
3435 			dst_entry->object.vm_object = src_object;
3436 			if (charged) {
3437 				cred = curthread->td_ucred;
3438 				crhold(cred);
3439 				dst_entry->cred = cred;
3440 				*fork_charge += size;
3441 				if (!(src_entry->eflags &
3442 				      MAP_ENTRY_NEEDS_COPY)) {
3443 					crhold(cred);
3444 					src_entry->cred = cred;
3445 					*fork_charge += size;
3446 				}
3447 			}
3448 			src_entry->eflags |= MAP_ENTRY_COW |
3449 			    MAP_ENTRY_NEEDS_COPY;
3450 			dst_entry->eflags |= MAP_ENTRY_COW |
3451 			    MAP_ENTRY_NEEDS_COPY;
3452 			dst_entry->offset = src_entry->offset;
3453 			if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3454 				/*
3455 				 * MAP_ENTRY_VN_WRITECNT cannot
3456 				 * indicate write reference from
3457 				 * src_entry, since the entry is
3458 				 * marked as needs copy.  Allocate a
3459 				 * fake entry that is used to
3460 				 * decrement object->un_pager.vnp.writecount
3461 				 * at the appropriate time.  Attach
3462 				 * fake_entry to the deferred list.
3463 				 */
3464 				fake_entry = vm_map_entry_create(dst_map);
3465 				fake_entry->eflags = MAP_ENTRY_VN_WRITECNT;
3466 				src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT;
3467 				vm_object_reference(src_object);
3468 				fake_entry->object.vm_object = src_object;
3469 				fake_entry->start = src_entry->start;
3470 				fake_entry->end = src_entry->end;
3471 				fake_entry->next = curthread->td_map_def_user;
3472 				curthread->td_map_def_user = fake_entry;
3473 			}
3474 
3475 			pmap_copy(dst_map->pmap, src_map->pmap,
3476 			    dst_entry->start, dst_entry->end - dst_entry->start,
3477 			    src_entry->start);
3478 		} else {
3479 			dst_entry->object.vm_object = NULL;
3480 			dst_entry->offset = 0;
3481 			if (src_entry->cred != NULL) {
3482 				dst_entry->cred = curthread->td_ucred;
3483 				crhold(dst_entry->cred);
3484 				*fork_charge += size;
3485 			}
3486 		}
3487 	} else {
3488 		/*
3489 		 * We don't want to make writeable wired pages copy-on-write.
3490 		 * Immediately copy these pages into the new map by simulating
3491 		 * page faults.  The new pages are pageable.
3492 		 */
3493 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3494 		    fork_charge);
3495 	}
3496 }
3497 
3498 /*
3499  * vmspace_map_entry_forked:
3500  * Update the newly-forked vmspace each time a map entry is inherited
3501  * or copied.  The values for vm_dsize and vm_tsize are approximate
3502  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3503  */
3504 static void
3505 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3506     vm_map_entry_t entry)
3507 {
3508 	vm_size_t entrysize;
3509 	vm_offset_t newend;
3510 
3511 	if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
3512 		return;
3513 	entrysize = entry->end - entry->start;
3514 	vm2->vm_map.size += entrysize;
3515 	if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3516 		vm2->vm_ssize += btoc(entrysize);
3517 	} else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3518 	    entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3519 		newend = MIN(entry->end,
3520 		    (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3521 		vm2->vm_dsize += btoc(newend - entry->start);
3522 	} else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3523 	    entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3524 		newend = MIN(entry->end,
3525 		    (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3526 		vm2->vm_tsize += btoc(newend - entry->start);
3527 	}
3528 }
3529 
3530 /*
3531  * vmspace_fork:
3532  * Create a new process vmspace structure and vm_map
3533  * based on those of an existing process.  The new map
3534  * is based on the old map, according to the inheritance
3535  * values on the regions in that map.
3536  *
3537  * XXX It might be worth coalescing the entries added to the new vmspace.
3538  *
3539  * The source map must not be locked.
3540  */
3541 struct vmspace *
3542 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3543 {
3544 	struct vmspace *vm2;
3545 	vm_map_t new_map, old_map;
3546 	vm_map_entry_t new_entry, old_entry;
3547 	vm_object_t object;
3548 	int error, locked;
3549 	vm_inherit_t inh;
3550 
3551 	old_map = &vm1->vm_map;
3552 	/* Copy immutable fields of vm1 to vm2. */
3553 	vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map),
3554 	    pmap_pinit);
3555 	if (vm2 == NULL)
3556 		return (NULL);
3557 
3558 	vm2->vm_taddr = vm1->vm_taddr;
3559 	vm2->vm_daddr = vm1->vm_daddr;
3560 	vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3561 	vm_map_lock(old_map);
3562 	if (old_map->busy)
3563 		vm_map_wait_busy(old_map);
3564 	new_map = &vm2->vm_map;
3565 	locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3566 	KASSERT(locked, ("vmspace_fork: lock failed"));
3567 
3568 	error = pmap_vmspace_copy(new_map->pmap, old_map->pmap);
3569 	if (error != 0) {
3570 		sx_xunlock(&old_map->lock);
3571 		sx_xunlock(&new_map->lock);
3572 		vm_map_process_deferred();
3573 		vmspace_free(vm2);
3574 		return (NULL);
3575 	}
3576 
3577 	new_map->anon_loc = old_map->anon_loc;
3578 
3579 	old_entry = old_map->header.next;
3580 
3581 	while (old_entry != &old_map->header) {
3582 		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3583 			panic("vm_map_fork: encountered a submap");
3584 
3585 		inh = old_entry->inheritance;
3586 		if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 &&
3587 		    inh != VM_INHERIT_NONE)
3588 			inh = VM_INHERIT_COPY;
3589 
3590 		switch (inh) {
3591 		case VM_INHERIT_NONE:
3592 			break;
3593 
3594 		case VM_INHERIT_SHARE:
3595 			/*
3596 			 * Clone the entry, creating the shared object if necessary.
3597 			 */
3598 			object = old_entry->object.vm_object;
3599 			if (object == NULL) {
3600 				object = vm_object_allocate(OBJT_DEFAULT,
3601 					atop(old_entry->end - old_entry->start));
3602 				old_entry->object.vm_object = object;
3603 				old_entry->offset = 0;
3604 				if (old_entry->cred != NULL) {
3605 					object->cred = old_entry->cred;
3606 					object->charge = old_entry->end -
3607 					    old_entry->start;
3608 					old_entry->cred = NULL;
3609 				}
3610 			}
3611 
3612 			/*
3613 			 * Add the reference before calling vm_object_shadow
3614 			 * to insure that a shadow object is created.
3615 			 */
3616 			vm_object_reference(object);
3617 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3618 				vm_object_shadow(&old_entry->object.vm_object,
3619 				    &old_entry->offset,
3620 				    old_entry->end - old_entry->start);
3621 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3622 				/* Transfer the second reference too. */
3623 				vm_object_reference(
3624 				    old_entry->object.vm_object);
3625 
3626 				/*
3627 				 * As in vm_map_simplify_entry(), the
3628 				 * vnode lock will not be acquired in
3629 				 * this call to vm_object_deallocate().
3630 				 */
3631 				vm_object_deallocate(object);
3632 				object = old_entry->object.vm_object;
3633 			}
3634 			VM_OBJECT_WLOCK(object);
3635 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
3636 			if (old_entry->cred != NULL) {
3637 				KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3638 				object->cred = old_entry->cred;
3639 				object->charge = old_entry->end - old_entry->start;
3640 				old_entry->cred = NULL;
3641 			}
3642 
3643 			/*
3644 			 * Assert the correct state of the vnode
3645 			 * v_writecount while the object is locked, to
3646 			 * not relock it later for the assertion
3647 			 * correctness.
3648 			 */
3649 			if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT &&
3650 			    object->type == OBJT_VNODE) {
3651 				KASSERT(((struct vnode *)object->handle)->
3652 				    v_writecount > 0,
3653 				    ("vmspace_fork: v_writecount %p", object));
3654 				KASSERT(object->un_pager.vnp.writemappings > 0,
3655 				    ("vmspace_fork: vnp.writecount %p",
3656 				    object));
3657 			}
3658 			VM_OBJECT_WUNLOCK(object);
3659 
3660 			/*
3661 			 * Clone the entry, referencing the shared object.
3662 			 */
3663 			new_entry = vm_map_entry_create(new_map);
3664 			*new_entry = *old_entry;
3665 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3666 			    MAP_ENTRY_IN_TRANSITION);
3667 			new_entry->wiring_thread = NULL;
3668 			new_entry->wired_count = 0;
3669 			if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3670 				vnode_pager_update_writecount(object,
3671 				    new_entry->start, new_entry->end);
3672 			}
3673 
3674 			/*
3675 			 * Insert the entry into the new map -- we know we're
3676 			 * inserting at the end of the new map.
3677 			 */
3678 			vm_map_entry_link(new_map, new_map->header.prev,
3679 			    new_entry);
3680 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3681 
3682 			/*
3683 			 * Update the physical map
3684 			 */
3685 			pmap_copy(new_map->pmap, old_map->pmap,
3686 			    new_entry->start,
3687 			    (old_entry->end - old_entry->start),
3688 			    old_entry->start);
3689 			break;
3690 
3691 		case VM_INHERIT_COPY:
3692 			/*
3693 			 * Clone the entry and link into the map.
3694 			 */
3695 			new_entry = vm_map_entry_create(new_map);
3696 			*new_entry = *old_entry;
3697 			/*
3698 			 * Copied entry is COW over the old object.
3699 			 */
3700 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3701 			    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT);
3702 			new_entry->wiring_thread = NULL;
3703 			new_entry->wired_count = 0;
3704 			new_entry->object.vm_object = NULL;
3705 			new_entry->cred = NULL;
3706 			vm_map_entry_link(new_map, new_map->header.prev,
3707 			    new_entry);
3708 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3709 			vm_map_copy_entry(old_map, new_map, old_entry,
3710 			    new_entry, fork_charge);
3711 			break;
3712 
3713 		case VM_INHERIT_ZERO:
3714 			/*
3715 			 * Create a new anonymous mapping entry modelled from
3716 			 * the old one.
3717 			 */
3718 			new_entry = vm_map_entry_create(new_map);
3719 			memset(new_entry, 0, sizeof(*new_entry));
3720 
3721 			new_entry->start = old_entry->start;
3722 			new_entry->end = old_entry->end;
3723 			new_entry->eflags = old_entry->eflags &
3724 			    ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION |
3725 			    MAP_ENTRY_VN_WRITECNT);
3726 			new_entry->protection = old_entry->protection;
3727 			new_entry->max_protection = old_entry->max_protection;
3728 			new_entry->inheritance = VM_INHERIT_ZERO;
3729 
3730 			vm_map_entry_link(new_map, new_map->header.prev,
3731 			    new_entry);
3732 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3733 
3734 			new_entry->cred = curthread->td_ucred;
3735 			crhold(new_entry->cred);
3736 			*fork_charge += (new_entry->end - new_entry->start);
3737 
3738 			break;
3739 		}
3740 		old_entry = old_entry->next;
3741 	}
3742 	/*
3743 	 * Use inlined vm_map_unlock() to postpone handling the deferred
3744 	 * map entries, which cannot be done until both old_map and
3745 	 * new_map locks are released.
3746 	 */
3747 	sx_xunlock(&old_map->lock);
3748 	sx_xunlock(&new_map->lock);
3749 	vm_map_process_deferred();
3750 
3751 	return (vm2);
3752 }
3753 
3754 /*
3755  * Create a process's stack for exec_new_vmspace().  This function is never
3756  * asked to wire the newly created stack.
3757  */
3758 int
3759 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3760     vm_prot_t prot, vm_prot_t max, int cow)
3761 {
3762 	vm_size_t growsize, init_ssize;
3763 	rlim_t vmemlim;
3764 	int rv;
3765 
3766 	MPASS((map->flags & MAP_WIREFUTURE) == 0);
3767 	growsize = sgrowsiz;
3768 	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3769 	vm_map_lock(map);
3770 	vmemlim = lim_cur(curthread, RLIMIT_VMEM);
3771 	/* If we would blow our VMEM resource limit, no go */
3772 	if (map->size + init_ssize > vmemlim) {
3773 		rv = KERN_NO_SPACE;
3774 		goto out;
3775 	}
3776 	rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
3777 	    max, cow);
3778 out:
3779 	vm_map_unlock(map);
3780 	return (rv);
3781 }
3782 
3783 static int stack_guard_page = 1;
3784 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
3785     &stack_guard_page, 0,
3786     "Specifies the number of guard pages for a stack that grows");
3787 
3788 static int
3789 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3790     vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
3791 {
3792 	vm_map_entry_t new_entry, prev_entry;
3793 	vm_offset_t bot, gap_bot, gap_top, top;
3794 	vm_size_t init_ssize, sgp;
3795 	int orient, rv;
3796 
3797 	/*
3798 	 * The stack orientation is piggybacked with the cow argument.
3799 	 * Extract it into orient and mask the cow argument so that we
3800 	 * don't pass it around further.
3801 	 */
3802 	orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP);
3803 	KASSERT(orient != 0, ("No stack grow direction"));
3804 	KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP),
3805 	    ("bi-dir stack"));
3806 
3807 	if (addrbos < vm_map_min(map) ||
3808 	    addrbos + max_ssize > vm_map_max(map) ||
3809 	    addrbos + max_ssize <= addrbos)
3810 		return (KERN_INVALID_ADDRESS);
3811 	sgp = (vm_size_t)stack_guard_page * PAGE_SIZE;
3812 	if (sgp >= max_ssize)
3813 		return (KERN_INVALID_ARGUMENT);
3814 
3815 	init_ssize = growsize;
3816 	if (max_ssize < init_ssize + sgp)
3817 		init_ssize = max_ssize - sgp;
3818 
3819 	/* If addr is already mapped, no go */
3820 	if (vm_map_lookup_entry(map, addrbos, &prev_entry))
3821 		return (KERN_NO_SPACE);
3822 
3823 	/*
3824 	 * If we can't accommodate max_ssize in the current mapping, no go.
3825 	 */
3826 	if (prev_entry->next->start < addrbos + max_ssize)
3827 		return (KERN_NO_SPACE);
3828 
3829 	/*
3830 	 * We initially map a stack of only init_ssize.  We will grow as
3831 	 * needed later.  Depending on the orientation of the stack (i.e.
3832 	 * the grow direction) we either map at the top of the range, the
3833 	 * bottom of the range or in the middle.
3834 	 *
3835 	 * Note: we would normally expect prot and max to be VM_PROT_ALL,
3836 	 * and cow to be 0.  Possibly we should eliminate these as input
3837 	 * parameters, and just pass these values here in the insert call.
3838 	 */
3839 	if (orient == MAP_STACK_GROWS_DOWN) {
3840 		bot = addrbos + max_ssize - init_ssize;
3841 		top = bot + init_ssize;
3842 		gap_bot = addrbos;
3843 		gap_top = bot;
3844 	} else /* if (orient == MAP_STACK_GROWS_UP) */ {
3845 		bot = addrbos;
3846 		top = bot + init_ssize;
3847 		gap_bot = top;
3848 		gap_top = addrbos + max_ssize;
3849 	}
3850 	rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
3851 	if (rv != KERN_SUCCESS)
3852 		return (rv);
3853 	new_entry = prev_entry->next;
3854 	KASSERT(new_entry->end == top || new_entry->start == bot,
3855 	    ("Bad entry start/end for new stack entry"));
3856 	KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
3857 	    (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
3858 	    ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
3859 	KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
3860 	    (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
3861 	    ("new entry lacks MAP_ENTRY_GROWS_UP"));
3862 	rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE,
3863 	    VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ?
3864 	    MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP));
3865 	if (rv != KERN_SUCCESS)
3866 		(void)vm_map_delete(map, bot, top);
3867 	return (rv);
3868 }
3869 
3870 /*
3871  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if we
3872  * successfully grow the stack.
3873  */
3874 static int
3875 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry)
3876 {
3877 	vm_map_entry_t stack_entry;
3878 	struct proc *p;
3879 	struct vmspace *vm;
3880 	struct ucred *cred;
3881 	vm_offset_t gap_end, gap_start, grow_start;
3882 	size_t grow_amount, guard, max_grow;
3883 	rlim_t lmemlim, stacklim, vmemlim;
3884 	int rv, rv1;
3885 	bool gap_deleted, grow_down, is_procstack;
3886 #ifdef notyet
3887 	uint64_t limit;
3888 #endif
3889 #ifdef RACCT
3890 	int error;
3891 #endif
3892 
3893 	p = curproc;
3894 	vm = p->p_vmspace;
3895 
3896 	/*
3897 	 * Disallow stack growth when the access is performed by a
3898 	 * debugger or AIO daemon.  The reason is that the wrong
3899 	 * resource limits are applied.
3900 	 */
3901 	if (map != &p->p_vmspace->vm_map || p->p_textvp == NULL)
3902 		return (KERN_FAILURE);
3903 
3904 	MPASS(!map->system_map);
3905 
3906 	guard = stack_guard_page * PAGE_SIZE;
3907 	lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
3908 	stacklim = lim_cur(curthread, RLIMIT_STACK);
3909 	vmemlim = lim_cur(curthread, RLIMIT_VMEM);
3910 retry:
3911 	/* If addr is not in a hole for a stack grow area, no need to grow. */
3912 	if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry))
3913 		return (KERN_FAILURE);
3914 	if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0)
3915 		return (KERN_SUCCESS);
3916 	if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) {
3917 		stack_entry = gap_entry->next;
3918 		if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 ||
3919 		    stack_entry->start != gap_entry->end)
3920 			return (KERN_FAILURE);
3921 		grow_amount = round_page(stack_entry->start - addr);
3922 		grow_down = true;
3923 	} else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) {
3924 		stack_entry = gap_entry->prev;
3925 		if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 ||
3926 		    stack_entry->end != gap_entry->start)
3927 			return (KERN_FAILURE);
3928 		grow_amount = round_page(addr + 1 - stack_entry->end);
3929 		grow_down = false;
3930 	} else {
3931 		return (KERN_FAILURE);
3932 	}
3933 	max_grow = gap_entry->end - gap_entry->start;
3934 	if (guard > max_grow)
3935 		return (KERN_NO_SPACE);
3936 	max_grow -= guard;
3937 	if (grow_amount > max_grow)
3938 		return (KERN_NO_SPACE);
3939 
3940 	/*
3941 	 * If this is the main process stack, see if we're over the stack
3942 	 * limit.
3943 	 */
3944 	is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr &&
3945 	    addr < (vm_offset_t)p->p_sysent->sv_usrstack;
3946 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim))
3947 		return (KERN_NO_SPACE);
3948 
3949 #ifdef RACCT
3950 	if (racct_enable) {
3951 		PROC_LOCK(p);
3952 		if (is_procstack && racct_set(p, RACCT_STACK,
3953 		    ctob(vm->vm_ssize) + grow_amount)) {
3954 			PROC_UNLOCK(p);
3955 			return (KERN_NO_SPACE);
3956 		}
3957 		PROC_UNLOCK(p);
3958 	}
3959 #endif
3960 
3961 	grow_amount = roundup(grow_amount, sgrowsiz);
3962 	if (grow_amount > max_grow)
3963 		grow_amount = max_grow;
3964 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3965 		grow_amount = trunc_page((vm_size_t)stacklim) -
3966 		    ctob(vm->vm_ssize);
3967 	}
3968 
3969 #ifdef notyet
3970 	PROC_LOCK(p);
3971 	limit = racct_get_available(p, RACCT_STACK);
3972 	PROC_UNLOCK(p);
3973 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
3974 		grow_amount = limit - ctob(vm->vm_ssize);
3975 #endif
3976 
3977 	if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) {
3978 		if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
3979 			rv = KERN_NO_SPACE;
3980 			goto out;
3981 		}
3982 #ifdef RACCT
3983 		if (racct_enable) {
3984 			PROC_LOCK(p);
3985 			if (racct_set(p, RACCT_MEMLOCK,
3986 			    ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
3987 				PROC_UNLOCK(p);
3988 				rv = KERN_NO_SPACE;
3989 				goto out;
3990 			}
3991 			PROC_UNLOCK(p);
3992 		}
3993 #endif
3994 	}
3995 
3996 	/* If we would blow our VMEM resource limit, no go */
3997 	if (map->size + grow_amount > vmemlim) {
3998 		rv = KERN_NO_SPACE;
3999 		goto out;
4000 	}
4001 #ifdef RACCT
4002 	if (racct_enable) {
4003 		PROC_LOCK(p);
4004 		if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
4005 			PROC_UNLOCK(p);
4006 			rv = KERN_NO_SPACE;
4007 			goto out;
4008 		}
4009 		PROC_UNLOCK(p);
4010 	}
4011 #endif
4012 
4013 	if (vm_map_lock_upgrade(map)) {
4014 		gap_entry = NULL;
4015 		vm_map_lock_read(map);
4016 		goto retry;
4017 	}
4018 
4019 	if (grow_down) {
4020 		grow_start = gap_entry->end - grow_amount;
4021 		if (gap_entry->start + grow_amount == gap_entry->end) {
4022 			gap_start = gap_entry->start;
4023 			gap_end = gap_entry->end;
4024 			vm_map_entry_delete(map, gap_entry);
4025 			gap_deleted = true;
4026 		} else {
4027 			MPASS(gap_entry->start < gap_entry->end - grow_amount);
4028 			gap_entry->end -= grow_amount;
4029 			vm_map_entry_resize_free(map, gap_entry);
4030 			gap_deleted = false;
4031 		}
4032 		rv = vm_map_insert(map, NULL, 0, grow_start,
4033 		    grow_start + grow_amount,
4034 		    stack_entry->protection, stack_entry->max_protection,
4035 		    MAP_STACK_GROWS_DOWN);
4036 		if (rv != KERN_SUCCESS) {
4037 			if (gap_deleted) {
4038 				rv1 = vm_map_insert(map, NULL, 0, gap_start,
4039 				    gap_end, VM_PROT_NONE, VM_PROT_NONE,
4040 				    MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN);
4041 				MPASS(rv1 == KERN_SUCCESS);
4042 			} else {
4043 				gap_entry->end += grow_amount;
4044 				vm_map_entry_resize_free(map, gap_entry);
4045 			}
4046 		}
4047 	} else {
4048 		grow_start = stack_entry->end;
4049 		cred = stack_entry->cred;
4050 		if (cred == NULL && stack_entry->object.vm_object != NULL)
4051 			cred = stack_entry->object.vm_object->cred;
4052 		if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
4053 			rv = KERN_NO_SPACE;
4054 		/* Grow the underlying object if applicable. */
4055 		else if (stack_entry->object.vm_object == NULL ||
4056 		    vm_object_coalesce(stack_entry->object.vm_object,
4057 		    stack_entry->offset,
4058 		    (vm_size_t)(stack_entry->end - stack_entry->start),
4059 		    (vm_size_t)grow_amount, cred != NULL)) {
4060 			if (gap_entry->start + grow_amount == gap_entry->end)
4061 				vm_map_entry_delete(map, gap_entry);
4062 			else
4063 				gap_entry->start += grow_amount;
4064 			stack_entry->end += grow_amount;
4065 			map->size += grow_amount;
4066 			vm_map_entry_resize_free(map, stack_entry);
4067 			rv = KERN_SUCCESS;
4068 		} else
4069 			rv = KERN_FAILURE;
4070 	}
4071 	if (rv == KERN_SUCCESS && is_procstack)
4072 		vm->vm_ssize += btoc(grow_amount);
4073 
4074 	/*
4075 	 * Heed the MAP_WIREFUTURE flag if it was set for this process.
4076 	 */
4077 	if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) {
4078 		vm_map_unlock(map);
4079 		vm_map_wire(map, grow_start, grow_start + grow_amount,
4080 		    VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
4081 		vm_map_lock_read(map);
4082 	} else
4083 		vm_map_lock_downgrade(map);
4084 
4085 out:
4086 #ifdef RACCT
4087 	if (racct_enable && rv != KERN_SUCCESS) {
4088 		PROC_LOCK(p);
4089 		error = racct_set(p, RACCT_VMEM, map->size);
4090 		KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
4091 		if (!old_mlock) {
4092 			error = racct_set(p, RACCT_MEMLOCK,
4093 			    ptoa(pmap_wired_count(map->pmap)));
4094 			KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
4095 		}
4096 	    	error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
4097 		KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
4098 		PROC_UNLOCK(p);
4099 	}
4100 #endif
4101 
4102 	return (rv);
4103 }
4104 
4105 /*
4106  * Unshare the specified VM space for exec.  If other processes are
4107  * mapped to it, then create a new one.  The new vmspace is null.
4108  */
4109 int
4110 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
4111 {
4112 	struct vmspace *oldvmspace = p->p_vmspace;
4113 	struct vmspace *newvmspace;
4114 
4115 	KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
4116 	    ("vmspace_exec recursed"));
4117 	newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit);
4118 	if (newvmspace == NULL)
4119 		return (ENOMEM);
4120 	newvmspace->vm_swrss = oldvmspace->vm_swrss;
4121 	/*
4122 	 * This code is written like this for prototype purposes.  The
4123 	 * goal is to avoid running down the vmspace here, but let the
4124 	 * other process's that are still using the vmspace to finally
4125 	 * run it down.  Even though there is little or no chance of blocking
4126 	 * here, it is a good idea to keep this form for future mods.
4127 	 */
4128 	PROC_VMSPACE_LOCK(p);
4129 	p->p_vmspace = newvmspace;
4130 	PROC_VMSPACE_UNLOCK(p);
4131 	if (p == curthread->td_proc)
4132 		pmap_activate(curthread);
4133 	curthread->td_pflags |= TDP_EXECVMSPC;
4134 	return (0);
4135 }
4136 
4137 /*
4138  * Unshare the specified VM space for forcing COW.  This
4139  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
4140  */
4141 int
4142 vmspace_unshare(struct proc *p)
4143 {
4144 	struct vmspace *oldvmspace = p->p_vmspace;
4145 	struct vmspace *newvmspace;
4146 	vm_ooffset_t fork_charge;
4147 
4148 	if (oldvmspace->vm_refcnt == 1)
4149 		return (0);
4150 	fork_charge = 0;
4151 	newvmspace = vmspace_fork(oldvmspace, &fork_charge);
4152 	if (newvmspace == NULL)
4153 		return (ENOMEM);
4154 	if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
4155 		vmspace_free(newvmspace);
4156 		return (ENOMEM);
4157 	}
4158 	PROC_VMSPACE_LOCK(p);
4159 	p->p_vmspace = newvmspace;
4160 	PROC_VMSPACE_UNLOCK(p);
4161 	if (p == curthread->td_proc)
4162 		pmap_activate(curthread);
4163 	vmspace_free(oldvmspace);
4164 	return (0);
4165 }
4166 
4167 /*
4168  *	vm_map_lookup:
4169  *
4170  *	Finds the VM object, offset, and
4171  *	protection for a given virtual address in the
4172  *	specified map, assuming a page fault of the
4173  *	type specified.
4174  *
4175  *	Leaves the map in question locked for read; return
4176  *	values are guaranteed until a vm_map_lookup_done
4177  *	call is performed.  Note that the map argument
4178  *	is in/out; the returned map must be used in
4179  *	the call to vm_map_lookup_done.
4180  *
4181  *	A handle (out_entry) is returned for use in
4182  *	vm_map_lookup_done, to make that fast.
4183  *
4184  *	If a lookup is requested with "write protection"
4185  *	specified, the map may be changed to perform virtual
4186  *	copying operations, although the data referenced will
4187  *	remain the same.
4188  */
4189 int
4190 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
4191 	      vm_offset_t vaddr,
4192 	      vm_prot_t fault_typea,
4193 	      vm_map_entry_t *out_entry,	/* OUT */
4194 	      vm_object_t *object,		/* OUT */
4195 	      vm_pindex_t *pindex,		/* OUT */
4196 	      vm_prot_t *out_prot,		/* OUT */
4197 	      boolean_t *wired)			/* OUT */
4198 {
4199 	vm_map_entry_t entry;
4200 	vm_map_t map = *var_map;
4201 	vm_prot_t prot;
4202 	vm_prot_t fault_type = fault_typea;
4203 	vm_object_t eobject;
4204 	vm_size_t size;
4205 	struct ucred *cred;
4206 
4207 RetryLookup:
4208 
4209 	vm_map_lock_read(map);
4210 
4211 RetryLookupLocked:
4212 	/*
4213 	 * Lookup the faulting address.
4214 	 */
4215 	if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
4216 		vm_map_unlock_read(map);
4217 		return (KERN_INVALID_ADDRESS);
4218 	}
4219 
4220 	entry = *out_entry;
4221 
4222 	/*
4223 	 * Handle submaps.
4224 	 */
4225 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4226 		vm_map_t old_map = map;
4227 
4228 		*var_map = map = entry->object.sub_map;
4229 		vm_map_unlock_read(old_map);
4230 		goto RetryLookup;
4231 	}
4232 
4233 	/*
4234 	 * Check whether this task is allowed to have this page.
4235 	 */
4236 	prot = entry->protection;
4237 	if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) {
4238 		fault_typea &= ~VM_PROT_FAULT_LOOKUP;
4239 		if (prot == VM_PROT_NONE && map != kernel_map &&
4240 		    (entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4241 		    (entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
4242 		    MAP_ENTRY_STACK_GAP_UP)) != 0 &&
4243 		    vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS)
4244 			goto RetryLookupLocked;
4245 	}
4246 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4247 	if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
4248 		vm_map_unlock_read(map);
4249 		return (KERN_PROTECTION_FAILURE);
4250 	}
4251 	KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
4252 	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
4253 	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
4254 	    ("entry %p flags %x", entry, entry->eflags));
4255 	if ((fault_typea & VM_PROT_COPY) != 0 &&
4256 	    (entry->max_protection & VM_PROT_WRITE) == 0 &&
4257 	    (entry->eflags & MAP_ENTRY_COW) == 0) {
4258 		vm_map_unlock_read(map);
4259 		return (KERN_PROTECTION_FAILURE);
4260 	}
4261 
4262 	/*
4263 	 * If this page is not pageable, we have to get it for all possible
4264 	 * accesses.
4265 	 */
4266 	*wired = (entry->wired_count != 0);
4267 	if (*wired)
4268 		fault_type = entry->protection;
4269 	size = entry->end - entry->start;
4270 	/*
4271 	 * If the entry was copy-on-write, we either ...
4272 	 */
4273 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4274 		/*
4275 		 * If we want to write the page, we may as well handle that
4276 		 * now since we've got the map locked.
4277 		 *
4278 		 * If we don't need to write the page, we just demote the
4279 		 * permissions allowed.
4280 		 */
4281 		if ((fault_type & VM_PROT_WRITE) != 0 ||
4282 		    (fault_typea & VM_PROT_COPY) != 0) {
4283 			/*
4284 			 * Make a new object, and place it in the object
4285 			 * chain.  Note that no new references have appeared
4286 			 * -- one just moved from the map to the new
4287 			 * object.
4288 			 */
4289 			if (vm_map_lock_upgrade(map))
4290 				goto RetryLookup;
4291 
4292 			if (entry->cred == NULL) {
4293 				/*
4294 				 * The debugger owner is charged for
4295 				 * the memory.
4296 				 */
4297 				cred = curthread->td_ucred;
4298 				crhold(cred);
4299 				if (!swap_reserve_by_cred(size, cred)) {
4300 					crfree(cred);
4301 					vm_map_unlock(map);
4302 					return (KERN_RESOURCE_SHORTAGE);
4303 				}
4304 				entry->cred = cred;
4305 			}
4306 			vm_object_shadow(&entry->object.vm_object,
4307 			    &entry->offset, size);
4308 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4309 			eobject = entry->object.vm_object;
4310 			if (eobject->cred != NULL) {
4311 				/*
4312 				 * The object was not shadowed.
4313 				 */
4314 				swap_release_by_cred(size, entry->cred);
4315 				crfree(entry->cred);
4316 				entry->cred = NULL;
4317 			} else if (entry->cred != NULL) {
4318 				VM_OBJECT_WLOCK(eobject);
4319 				eobject->cred = entry->cred;
4320 				eobject->charge = size;
4321 				VM_OBJECT_WUNLOCK(eobject);
4322 				entry->cred = NULL;
4323 			}
4324 
4325 			vm_map_lock_downgrade(map);
4326 		} else {
4327 			/*
4328 			 * We're attempting to read a copy-on-write page --
4329 			 * don't allow writes.
4330 			 */
4331 			prot &= ~VM_PROT_WRITE;
4332 		}
4333 	}
4334 
4335 	/*
4336 	 * Create an object if necessary.
4337 	 */
4338 	if (entry->object.vm_object == NULL &&
4339 	    !map->system_map) {
4340 		if (vm_map_lock_upgrade(map))
4341 			goto RetryLookup;
4342 		entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
4343 		    atop(size));
4344 		entry->offset = 0;
4345 		if (entry->cred != NULL) {
4346 			VM_OBJECT_WLOCK(entry->object.vm_object);
4347 			entry->object.vm_object->cred = entry->cred;
4348 			entry->object.vm_object->charge = size;
4349 			VM_OBJECT_WUNLOCK(entry->object.vm_object);
4350 			entry->cred = NULL;
4351 		}
4352 		vm_map_lock_downgrade(map);
4353 	}
4354 
4355 	/*
4356 	 * Return the object/offset from this entry.  If the entry was
4357 	 * copy-on-write or empty, it has been fixed up.
4358 	 */
4359 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4360 	*object = entry->object.vm_object;
4361 
4362 	*out_prot = prot;
4363 	return (KERN_SUCCESS);
4364 }
4365 
4366 /*
4367  *	vm_map_lookup_locked:
4368  *
4369  *	Lookup the faulting address.  A version of vm_map_lookup that returns
4370  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
4371  */
4372 int
4373 vm_map_lookup_locked(vm_map_t *var_map,		/* IN/OUT */
4374 		     vm_offset_t vaddr,
4375 		     vm_prot_t fault_typea,
4376 		     vm_map_entry_t *out_entry,	/* OUT */
4377 		     vm_object_t *object,	/* OUT */
4378 		     vm_pindex_t *pindex,	/* OUT */
4379 		     vm_prot_t *out_prot,	/* OUT */
4380 		     boolean_t *wired)		/* OUT */
4381 {
4382 	vm_map_entry_t entry;
4383 	vm_map_t map = *var_map;
4384 	vm_prot_t prot;
4385 	vm_prot_t fault_type = fault_typea;
4386 
4387 	/*
4388 	 * Lookup the faulting address.
4389 	 */
4390 	if (!vm_map_lookup_entry(map, vaddr, out_entry))
4391 		return (KERN_INVALID_ADDRESS);
4392 
4393 	entry = *out_entry;
4394 
4395 	/*
4396 	 * Fail if the entry refers to a submap.
4397 	 */
4398 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4399 		return (KERN_FAILURE);
4400 
4401 	/*
4402 	 * Check whether this task is allowed to have this page.
4403 	 */
4404 	prot = entry->protection;
4405 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4406 	if ((fault_type & prot) != fault_type)
4407 		return (KERN_PROTECTION_FAILURE);
4408 
4409 	/*
4410 	 * If this page is not pageable, we have to get it for all possible
4411 	 * accesses.
4412 	 */
4413 	*wired = (entry->wired_count != 0);
4414 	if (*wired)
4415 		fault_type = entry->protection;
4416 
4417 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4418 		/*
4419 		 * Fail if the entry was copy-on-write for a write fault.
4420 		 */
4421 		if (fault_type & VM_PROT_WRITE)
4422 			return (KERN_FAILURE);
4423 		/*
4424 		 * We're attempting to read a copy-on-write page --
4425 		 * don't allow writes.
4426 		 */
4427 		prot &= ~VM_PROT_WRITE;
4428 	}
4429 
4430 	/*
4431 	 * Fail if an object should be created.
4432 	 */
4433 	if (entry->object.vm_object == NULL && !map->system_map)
4434 		return (KERN_FAILURE);
4435 
4436 	/*
4437 	 * Return the object/offset from this entry.  If the entry was
4438 	 * copy-on-write or empty, it has been fixed up.
4439 	 */
4440 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4441 	*object = entry->object.vm_object;
4442 
4443 	*out_prot = prot;
4444 	return (KERN_SUCCESS);
4445 }
4446 
4447 /*
4448  *	vm_map_lookup_done:
4449  *
4450  *	Releases locks acquired by a vm_map_lookup
4451  *	(according to the handle returned by that lookup).
4452  */
4453 void
4454 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
4455 {
4456 	/*
4457 	 * Unlock the main-level map
4458 	 */
4459 	vm_map_unlock_read(map);
4460 }
4461 
4462 vm_offset_t
4463 vm_map_max_KBI(const struct vm_map *map)
4464 {
4465 
4466 	return (vm_map_max(map));
4467 }
4468 
4469 vm_offset_t
4470 vm_map_min_KBI(const struct vm_map *map)
4471 {
4472 
4473 	return (vm_map_min(map));
4474 }
4475 
4476 pmap_t
4477 vm_map_pmap_KBI(vm_map_t map)
4478 {
4479 
4480 	return (map->pmap);
4481 }
4482 
4483 #include "opt_ddb.h"
4484 #ifdef DDB
4485 #include <sys/kernel.h>
4486 
4487 #include <ddb/ddb.h>
4488 
4489 static void
4490 vm_map_print(vm_map_t map)
4491 {
4492 	vm_map_entry_t entry;
4493 
4494 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4495 	    (void *)map,
4496 	    (void *)map->pmap, map->nentries, map->timestamp);
4497 
4498 	db_indent += 2;
4499 	for (entry = map->header.next; entry != &map->header;
4500 	    entry = entry->next) {
4501 		db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n",
4502 		    (void *)entry, (void *)entry->start, (void *)entry->end,
4503 		    entry->eflags);
4504 		{
4505 			static char *inheritance_name[4] =
4506 			{"share", "copy", "none", "donate_copy"};
4507 
4508 			db_iprintf(" prot=%x/%x/%s",
4509 			    entry->protection,
4510 			    entry->max_protection,
4511 			    inheritance_name[(int)(unsigned char)entry->inheritance]);
4512 			if (entry->wired_count != 0)
4513 				db_printf(", wired");
4514 		}
4515 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4516 			db_printf(", share=%p, offset=0x%jx\n",
4517 			    (void *)entry->object.sub_map,
4518 			    (uintmax_t)entry->offset);
4519 			if ((entry->prev == &map->header) ||
4520 			    (entry->prev->object.sub_map !=
4521 				entry->object.sub_map)) {
4522 				db_indent += 2;
4523 				vm_map_print((vm_map_t)entry->object.sub_map);
4524 				db_indent -= 2;
4525 			}
4526 		} else {
4527 			if (entry->cred != NULL)
4528 				db_printf(", ruid %d", entry->cred->cr_ruid);
4529 			db_printf(", object=%p, offset=0x%jx",
4530 			    (void *)entry->object.vm_object,
4531 			    (uintmax_t)entry->offset);
4532 			if (entry->object.vm_object && entry->object.vm_object->cred)
4533 				db_printf(", obj ruid %d charge %jx",
4534 				    entry->object.vm_object->cred->cr_ruid,
4535 				    (uintmax_t)entry->object.vm_object->charge);
4536 			if (entry->eflags & MAP_ENTRY_COW)
4537 				db_printf(", copy (%s)",
4538 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4539 			db_printf("\n");
4540 
4541 			if ((entry->prev == &map->header) ||
4542 			    (entry->prev->object.vm_object !=
4543 				entry->object.vm_object)) {
4544 				db_indent += 2;
4545 				vm_object_print((db_expr_t)(intptr_t)
4546 						entry->object.vm_object,
4547 						0, 0, (char *)0);
4548 				db_indent -= 2;
4549 			}
4550 		}
4551 	}
4552 	db_indent -= 2;
4553 }
4554 
4555 DB_SHOW_COMMAND(map, map)
4556 {
4557 
4558 	if (!have_addr) {
4559 		db_printf("usage: show map <addr>\n");
4560 		return;
4561 	}
4562 	vm_map_print((vm_map_t)addr);
4563 }
4564 
4565 DB_SHOW_COMMAND(procvm, procvm)
4566 {
4567 	struct proc *p;
4568 
4569 	if (have_addr) {
4570 		p = db_lookup_proc(addr);
4571 	} else {
4572 		p = curproc;
4573 	}
4574 
4575 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4576 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4577 	    (void *)vmspace_pmap(p->p_vmspace));
4578 
4579 	vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
4580 }
4581 
4582 #endif /* DDB */
4583