1 /*- 2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * The Mach Operating System project at Carnegie-Mellon University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 35 * 36 * 37 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 38 * All rights reserved. 39 * 40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 41 * 42 * Permission to use, copy, modify and distribute this software and 43 * its documentation is hereby granted, provided that both the copyright 44 * notice and this permission notice appear in all copies of the 45 * software, derivative works or modified versions, and any portions 46 * thereof, and that both notices appear in supporting documentation. 47 * 48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 51 * 52 * Carnegie Mellon requests users of this software to return to 53 * 54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 55 * School of Computer Science 56 * Carnegie Mellon University 57 * Pittsburgh PA 15213-3890 58 * 59 * any improvements or extensions that they make and grant Carnegie the 60 * rights to redistribute these changes. 61 */ 62 63 /* 64 * Virtual memory mapping module. 65 */ 66 67 #include <sys/cdefs.h> 68 __FBSDID("$FreeBSD$"); 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/kernel.h> 73 #include <sys/ktr.h> 74 #include <sys/lock.h> 75 #include <sys/mutex.h> 76 #include <sys/proc.h> 77 #include <sys/vmmeter.h> 78 #include <sys/mman.h> 79 #include <sys/vnode.h> 80 #include <sys/racct.h> 81 #include <sys/resourcevar.h> 82 #include <sys/rwlock.h> 83 #include <sys/file.h> 84 #include <sys/sysctl.h> 85 #include <sys/sysent.h> 86 #include <sys/shm.h> 87 88 #include <vm/vm.h> 89 #include <vm/vm_param.h> 90 #include <vm/pmap.h> 91 #include <vm/vm_map.h> 92 #include <vm/vm_page.h> 93 #include <vm/vm_object.h> 94 #include <vm/vm_pager.h> 95 #include <vm/vm_kern.h> 96 #include <vm/vm_extern.h> 97 #include <vm/vnode_pager.h> 98 #include <vm/swap_pager.h> 99 #include <vm/uma.h> 100 101 /* 102 * Virtual memory maps provide for the mapping, protection, 103 * and sharing of virtual memory objects. In addition, 104 * this module provides for an efficient virtual copy of 105 * memory from one map to another. 106 * 107 * Synchronization is required prior to most operations. 108 * 109 * Maps consist of an ordered doubly-linked list of simple 110 * entries; a self-adjusting binary search tree of these 111 * entries is used to speed up lookups. 112 * 113 * Since portions of maps are specified by start/end addresses, 114 * which may not align with existing map entries, all 115 * routines merely "clip" entries to these start/end values. 116 * [That is, an entry is split into two, bordering at a 117 * start or end value.] Note that these clippings may not 118 * always be necessary (as the two resulting entries are then 119 * not changed); however, the clipping is done for convenience. 120 * 121 * As mentioned above, virtual copy operations are performed 122 * by copying VM object references from one map to 123 * another, and then marking both regions as copy-on-write. 124 */ 125 126 static struct mtx map_sleep_mtx; 127 static uma_zone_t mapentzone; 128 static uma_zone_t kmapentzone; 129 static uma_zone_t mapzone; 130 static uma_zone_t vmspace_zone; 131 static int vmspace_zinit(void *mem, int size, int flags); 132 static int vm_map_zinit(void *mem, int ize, int flags); 133 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, 134 vm_offset_t max); 135 static int vm_map_alignspace(vm_map_t map, vm_object_t object, 136 vm_ooffset_t offset, vm_offset_t *addr, vm_size_t length, 137 vm_offset_t max_addr, vm_offset_t alignment); 138 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map); 139 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry); 140 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry); 141 static int vm_map_growstack(vm_map_t map, vm_offset_t addr, 142 vm_map_entry_t gap_entry); 143 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 144 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags); 145 #ifdef INVARIANTS 146 static void vm_map_zdtor(void *mem, int size, void *arg); 147 static void vmspace_zdtor(void *mem, int size, void *arg); 148 #endif 149 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, 150 vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max, 151 int cow); 152 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry, 153 vm_offset_t failed_addr); 154 155 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \ 156 ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \ 157 !((e)->eflags & MAP_ENTRY_NEEDS_COPY))) 158 159 /* 160 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type 161 * stable. 162 */ 163 #define PROC_VMSPACE_LOCK(p) do { } while (0) 164 #define PROC_VMSPACE_UNLOCK(p) do { } while (0) 165 166 /* 167 * VM_MAP_RANGE_CHECK: [ internal use only ] 168 * 169 * Asserts that the starting and ending region 170 * addresses fall within the valid range of the map. 171 */ 172 #define VM_MAP_RANGE_CHECK(map, start, end) \ 173 { \ 174 if (start < vm_map_min(map)) \ 175 start = vm_map_min(map); \ 176 if (end > vm_map_max(map)) \ 177 end = vm_map_max(map); \ 178 if (start > end) \ 179 start = end; \ 180 } 181 182 /* 183 * vm_map_startup: 184 * 185 * Initialize the vm_map module. Must be called before 186 * any other vm_map routines. 187 * 188 * Map and entry structures are allocated from the general 189 * purpose memory pool with some exceptions: 190 * 191 * - The kernel map and kmem submap are allocated statically. 192 * - Kernel map entries are allocated out of a static pool. 193 * 194 * These restrictions are necessary since malloc() uses the 195 * maps and requires map entries. 196 */ 197 198 void 199 vm_map_startup(void) 200 { 201 mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF); 202 mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL, 203 #ifdef INVARIANTS 204 vm_map_zdtor, 205 #else 206 NULL, 207 #endif 208 vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 209 uma_prealloc(mapzone, MAX_KMAP); 210 kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry), 211 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 212 UMA_ZONE_MTXCLASS | UMA_ZONE_VM); 213 mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry), 214 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 215 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL, 216 #ifdef INVARIANTS 217 vmspace_zdtor, 218 #else 219 NULL, 220 #endif 221 vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 222 } 223 224 static int 225 vmspace_zinit(void *mem, int size, int flags) 226 { 227 struct vmspace *vm; 228 229 vm = (struct vmspace *)mem; 230 231 vm->vm_map.pmap = NULL; 232 (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags); 233 PMAP_LOCK_INIT(vmspace_pmap(vm)); 234 return (0); 235 } 236 237 static int 238 vm_map_zinit(void *mem, int size, int flags) 239 { 240 vm_map_t map; 241 242 map = (vm_map_t)mem; 243 memset(map, 0, sizeof(*map)); 244 mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK); 245 sx_init(&map->lock, "vm map (user)"); 246 return (0); 247 } 248 249 #ifdef INVARIANTS 250 static void 251 vmspace_zdtor(void *mem, int size, void *arg) 252 { 253 struct vmspace *vm; 254 255 vm = (struct vmspace *)mem; 256 257 vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg); 258 } 259 static void 260 vm_map_zdtor(void *mem, int size, void *arg) 261 { 262 vm_map_t map; 263 264 map = (vm_map_t)mem; 265 KASSERT(map->nentries == 0, 266 ("map %p nentries == %d on free.", 267 map, map->nentries)); 268 KASSERT(map->size == 0, 269 ("map %p size == %lu on free.", 270 map, (unsigned long)map->size)); 271 } 272 #endif /* INVARIANTS */ 273 274 /* 275 * Allocate a vmspace structure, including a vm_map and pmap, 276 * and initialize those structures. The refcnt is set to 1. 277 * 278 * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit(). 279 */ 280 struct vmspace * 281 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit) 282 { 283 struct vmspace *vm; 284 285 vm = uma_zalloc(vmspace_zone, M_WAITOK); 286 KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL")); 287 if (!pinit(vmspace_pmap(vm))) { 288 uma_zfree(vmspace_zone, vm); 289 return (NULL); 290 } 291 CTR1(KTR_VM, "vmspace_alloc: %p", vm); 292 _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max); 293 vm->vm_refcnt = 1; 294 vm->vm_shm = NULL; 295 vm->vm_swrss = 0; 296 vm->vm_tsize = 0; 297 vm->vm_dsize = 0; 298 vm->vm_ssize = 0; 299 vm->vm_taddr = 0; 300 vm->vm_daddr = 0; 301 vm->vm_maxsaddr = 0; 302 return (vm); 303 } 304 305 #ifdef RACCT 306 static void 307 vmspace_container_reset(struct proc *p) 308 { 309 310 PROC_LOCK(p); 311 racct_set(p, RACCT_DATA, 0); 312 racct_set(p, RACCT_STACK, 0); 313 racct_set(p, RACCT_RSS, 0); 314 racct_set(p, RACCT_MEMLOCK, 0); 315 racct_set(p, RACCT_VMEM, 0); 316 PROC_UNLOCK(p); 317 } 318 #endif 319 320 static inline void 321 vmspace_dofree(struct vmspace *vm) 322 { 323 324 CTR1(KTR_VM, "vmspace_free: %p", vm); 325 326 /* 327 * Make sure any SysV shm is freed, it might not have been in 328 * exit1(). 329 */ 330 shmexit(vm); 331 332 /* 333 * Lock the map, to wait out all other references to it. 334 * Delete all of the mappings and pages they hold, then call 335 * the pmap module to reclaim anything left. 336 */ 337 (void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map), 338 vm_map_max(&vm->vm_map)); 339 340 pmap_release(vmspace_pmap(vm)); 341 vm->vm_map.pmap = NULL; 342 uma_zfree(vmspace_zone, vm); 343 } 344 345 void 346 vmspace_free(struct vmspace *vm) 347 { 348 349 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 350 "vmspace_free() called"); 351 352 if (vm->vm_refcnt == 0) 353 panic("vmspace_free: attempt to free already freed vmspace"); 354 355 if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1) 356 vmspace_dofree(vm); 357 } 358 359 void 360 vmspace_exitfree(struct proc *p) 361 { 362 struct vmspace *vm; 363 364 PROC_VMSPACE_LOCK(p); 365 vm = p->p_vmspace; 366 p->p_vmspace = NULL; 367 PROC_VMSPACE_UNLOCK(p); 368 KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace")); 369 vmspace_free(vm); 370 } 371 372 void 373 vmspace_exit(struct thread *td) 374 { 375 int refcnt; 376 struct vmspace *vm; 377 struct proc *p; 378 379 /* 380 * Release user portion of address space. 381 * This releases references to vnodes, 382 * which could cause I/O if the file has been unlinked. 383 * Need to do this early enough that we can still sleep. 384 * 385 * The last exiting process to reach this point releases as 386 * much of the environment as it can. vmspace_dofree() is the 387 * slower fallback in case another process had a temporary 388 * reference to the vmspace. 389 */ 390 391 p = td->td_proc; 392 vm = p->p_vmspace; 393 atomic_add_int(&vmspace0.vm_refcnt, 1); 394 refcnt = vm->vm_refcnt; 395 do { 396 if (refcnt > 1 && p->p_vmspace != &vmspace0) { 397 /* Switch now since other proc might free vmspace */ 398 PROC_VMSPACE_LOCK(p); 399 p->p_vmspace = &vmspace0; 400 PROC_VMSPACE_UNLOCK(p); 401 pmap_activate(td); 402 } 403 } while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt - 1)); 404 if (refcnt == 1) { 405 if (p->p_vmspace != vm) { 406 /* vmspace not yet freed, switch back */ 407 PROC_VMSPACE_LOCK(p); 408 p->p_vmspace = vm; 409 PROC_VMSPACE_UNLOCK(p); 410 pmap_activate(td); 411 } 412 pmap_remove_pages(vmspace_pmap(vm)); 413 /* Switch now since this proc will free vmspace */ 414 PROC_VMSPACE_LOCK(p); 415 p->p_vmspace = &vmspace0; 416 PROC_VMSPACE_UNLOCK(p); 417 pmap_activate(td); 418 vmspace_dofree(vm); 419 } 420 #ifdef RACCT 421 if (racct_enable) 422 vmspace_container_reset(p); 423 #endif 424 } 425 426 /* Acquire reference to vmspace owned by another process. */ 427 428 struct vmspace * 429 vmspace_acquire_ref(struct proc *p) 430 { 431 struct vmspace *vm; 432 int refcnt; 433 434 PROC_VMSPACE_LOCK(p); 435 vm = p->p_vmspace; 436 if (vm == NULL) { 437 PROC_VMSPACE_UNLOCK(p); 438 return (NULL); 439 } 440 refcnt = vm->vm_refcnt; 441 do { 442 if (refcnt <= 0) { /* Avoid 0->1 transition */ 443 PROC_VMSPACE_UNLOCK(p); 444 return (NULL); 445 } 446 } while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt + 1)); 447 if (vm != p->p_vmspace) { 448 PROC_VMSPACE_UNLOCK(p); 449 vmspace_free(vm); 450 return (NULL); 451 } 452 PROC_VMSPACE_UNLOCK(p); 453 return (vm); 454 } 455 456 /* 457 * Switch between vmspaces in an AIO kernel process. 458 * 459 * The AIO kernel processes switch to and from a user process's 460 * vmspace while performing an I/O operation on behalf of a user 461 * process. The new vmspace is either the vmspace of a user process 462 * obtained from an active AIO request or the initial vmspace of the 463 * AIO kernel process (when it is idling). Because user processes 464 * will block to drain any active AIO requests before proceeding in 465 * exit() or execve(), the vmspace reference count for these vmspaces 466 * can never be 0. This allows for a much simpler implementation than 467 * the loop in vmspace_acquire_ref() above. Similarly, AIO kernel 468 * processes hold an extra reference on their initial vmspace for the 469 * life of the process so that this guarantee is true for any vmspace 470 * passed as 'newvm'. 471 */ 472 void 473 vmspace_switch_aio(struct vmspace *newvm) 474 { 475 struct vmspace *oldvm; 476 477 /* XXX: Need some way to assert that this is an aio daemon. */ 478 479 KASSERT(newvm->vm_refcnt > 0, 480 ("vmspace_switch_aio: newvm unreferenced")); 481 482 oldvm = curproc->p_vmspace; 483 if (oldvm == newvm) 484 return; 485 486 /* 487 * Point to the new address space and refer to it. 488 */ 489 curproc->p_vmspace = newvm; 490 atomic_add_int(&newvm->vm_refcnt, 1); 491 492 /* Activate the new mapping. */ 493 pmap_activate(curthread); 494 495 /* Remove the daemon's reference to the old address space. */ 496 KASSERT(oldvm->vm_refcnt > 1, 497 ("vmspace_switch_aio: oldvm dropping last reference")); 498 vmspace_free(oldvm); 499 } 500 501 void 502 _vm_map_lock(vm_map_t map, const char *file, int line) 503 { 504 505 if (map->system_map) 506 mtx_lock_flags_(&map->system_mtx, 0, file, line); 507 else 508 sx_xlock_(&map->lock, file, line); 509 map->timestamp++; 510 } 511 512 static void 513 vm_map_process_deferred(void) 514 { 515 struct thread *td; 516 vm_map_entry_t entry, next; 517 vm_object_t object; 518 519 td = curthread; 520 entry = td->td_map_def_user; 521 td->td_map_def_user = NULL; 522 while (entry != NULL) { 523 next = entry->next; 524 if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) { 525 /* 526 * Decrement the object's writemappings and 527 * possibly the vnode's v_writecount. 528 */ 529 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 530 ("Submap with writecount")); 531 object = entry->object.vm_object; 532 KASSERT(object != NULL, ("No object for writecount")); 533 vnode_pager_release_writecount(object, entry->start, 534 entry->end); 535 } 536 vm_map_entry_deallocate(entry, FALSE); 537 entry = next; 538 } 539 } 540 541 void 542 _vm_map_unlock(vm_map_t map, const char *file, int line) 543 { 544 545 if (map->system_map) 546 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 547 else { 548 sx_xunlock_(&map->lock, file, line); 549 vm_map_process_deferred(); 550 } 551 } 552 553 void 554 _vm_map_lock_read(vm_map_t map, const char *file, int line) 555 { 556 557 if (map->system_map) 558 mtx_lock_flags_(&map->system_mtx, 0, file, line); 559 else 560 sx_slock_(&map->lock, file, line); 561 } 562 563 void 564 _vm_map_unlock_read(vm_map_t map, const char *file, int line) 565 { 566 567 if (map->system_map) 568 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 569 else { 570 sx_sunlock_(&map->lock, file, line); 571 vm_map_process_deferred(); 572 } 573 } 574 575 int 576 _vm_map_trylock(vm_map_t map, const char *file, int line) 577 { 578 int error; 579 580 error = map->system_map ? 581 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 582 !sx_try_xlock_(&map->lock, file, line); 583 if (error == 0) 584 map->timestamp++; 585 return (error == 0); 586 } 587 588 int 589 _vm_map_trylock_read(vm_map_t map, const char *file, int line) 590 { 591 int error; 592 593 error = map->system_map ? 594 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 595 !sx_try_slock_(&map->lock, file, line); 596 return (error == 0); 597 } 598 599 /* 600 * _vm_map_lock_upgrade: [ internal use only ] 601 * 602 * Tries to upgrade a read (shared) lock on the specified map to a write 603 * (exclusive) lock. Returns the value "0" if the upgrade succeeds and a 604 * non-zero value if the upgrade fails. If the upgrade fails, the map is 605 * returned without a read or write lock held. 606 * 607 * Requires that the map be read locked. 608 */ 609 int 610 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line) 611 { 612 unsigned int last_timestamp; 613 614 if (map->system_map) { 615 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 616 } else { 617 if (!sx_try_upgrade_(&map->lock, file, line)) { 618 last_timestamp = map->timestamp; 619 sx_sunlock_(&map->lock, file, line); 620 vm_map_process_deferred(); 621 /* 622 * If the map's timestamp does not change while the 623 * map is unlocked, then the upgrade succeeds. 624 */ 625 sx_xlock_(&map->lock, file, line); 626 if (last_timestamp != map->timestamp) { 627 sx_xunlock_(&map->lock, file, line); 628 return (1); 629 } 630 } 631 } 632 map->timestamp++; 633 return (0); 634 } 635 636 void 637 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line) 638 { 639 640 if (map->system_map) { 641 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 642 } else 643 sx_downgrade_(&map->lock, file, line); 644 } 645 646 /* 647 * vm_map_locked: 648 * 649 * Returns a non-zero value if the caller holds a write (exclusive) lock 650 * on the specified map and the value "0" otherwise. 651 */ 652 int 653 vm_map_locked(vm_map_t map) 654 { 655 656 if (map->system_map) 657 return (mtx_owned(&map->system_mtx)); 658 else 659 return (sx_xlocked(&map->lock)); 660 } 661 662 #ifdef INVARIANTS 663 static void 664 _vm_map_assert_locked(vm_map_t map, const char *file, int line) 665 { 666 667 if (map->system_map) 668 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 669 else 670 sx_assert_(&map->lock, SA_XLOCKED, file, line); 671 } 672 673 #define VM_MAP_ASSERT_LOCKED(map) \ 674 _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE) 675 #else 676 #define VM_MAP_ASSERT_LOCKED(map) 677 #endif 678 679 /* 680 * _vm_map_unlock_and_wait: 681 * 682 * Atomically releases the lock on the specified map and puts the calling 683 * thread to sleep. The calling thread will remain asleep until either 684 * vm_map_wakeup() is performed on the map or the specified timeout is 685 * exceeded. 686 * 687 * WARNING! This function does not perform deferred deallocations of 688 * objects and map entries. Therefore, the calling thread is expected to 689 * reacquire the map lock after reawakening and later perform an ordinary 690 * unlock operation, such as vm_map_unlock(), before completing its 691 * operation on the map. 692 */ 693 int 694 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line) 695 { 696 697 mtx_lock(&map_sleep_mtx); 698 if (map->system_map) 699 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 700 else 701 sx_xunlock_(&map->lock, file, line); 702 return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps", 703 timo)); 704 } 705 706 /* 707 * vm_map_wakeup: 708 * 709 * Awaken any threads that have slept on the map using 710 * vm_map_unlock_and_wait(). 711 */ 712 void 713 vm_map_wakeup(vm_map_t map) 714 { 715 716 /* 717 * Acquire and release map_sleep_mtx to prevent a wakeup() 718 * from being performed (and lost) between the map unlock 719 * and the msleep() in _vm_map_unlock_and_wait(). 720 */ 721 mtx_lock(&map_sleep_mtx); 722 mtx_unlock(&map_sleep_mtx); 723 wakeup(&map->root); 724 } 725 726 void 727 vm_map_busy(vm_map_t map) 728 { 729 730 VM_MAP_ASSERT_LOCKED(map); 731 map->busy++; 732 } 733 734 void 735 vm_map_unbusy(vm_map_t map) 736 { 737 738 VM_MAP_ASSERT_LOCKED(map); 739 KASSERT(map->busy, ("vm_map_unbusy: not busy")); 740 if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) { 741 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP); 742 wakeup(&map->busy); 743 } 744 } 745 746 void 747 vm_map_wait_busy(vm_map_t map) 748 { 749 750 VM_MAP_ASSERT_LOCKED(map); 751 while (map->busy) { 752 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0); 753 if (map->system_map) 754 msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0); 755 else 756 sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0); 757 } 758 map->timestamp++; 759 } 760 761 long 762 vmspace_resident_count(struct vmspace *vmspace) 763 { 764 return pmap_resident_count(vmspace_pmap(vmspace)); 765 } 766 767 /* 768 * vm_map_create: 769 * 770 * Creates and returns a new empty VM map with 771 * the given physical map structure, and having 772 * the given lower and upper address bounds. 773 */ 774 vm_map_t 775 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max) 776 { 777 vm_map_t result; 778 779 result = uma_zalloc(mapzone, M_WAITOK); 780 CTR1(KTR_VM, "vm_map_create: %p", result); 781 _vm_map_init(result, pmap, min, max); 782 return (result); 783 } 784 785 /* 786 * Initialize an existing vm_map structure 787 * such as that in the vmspace structure. 788 */ 789 static void 790 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 791 { 792 793 map->header.next = map->header.prev = &map->header; 794 map->header.eflags = MAP_ENTRY_HEADER; 795 map->needs_wakeup = FALSE; 796 map->system_map = 0; 797 map->pmap = pmap; 798 map->header.end = min; 799 map->header.start = max; 800 map->flags = 0; 801 map->root = NULL; 802 map->timestamp = 0; 803 map->busy = 0; 804 map->anon_loc = 0; 805 } 806 807 void 808 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 809 { 810 811 _vm_map_init(map, pmap, min, max); 812 mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK); 813 sx_init(&map->lock, "user map"); 814 } 815 816 /* 817 * vm_map_entry_dispose: [ internal use only ] 818 * 819 * Inverse of vm_map_entry_create. 820 */ 821 static void 822 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry) 823 { 824 uma_zfree(map->system_map ? kmapentzone : mapentzone, entry); 825 } 826 827 /* 828 * vm_map_entry_create: [ internal use only ] 829 * 830 * Allocates a VM map entry for insertion. 831 * No entry fields are filled in. 832 */ 833 static vm_map_entry_t 834 vm_map_entry_create(vm_map_t map) 835 { 836 vm_map_entry_t new_entry; 837 838 if (map->system_map) 839 new_entry = uma_zalloc(kmapentzone, M_NOWAIT); 840 else 841 new_entry = uma_zalloc(mapentzone, M_WAITOK); 842 if (new_entry == NULL) 843 panic("vm_map_entry_create: kernel resources exhausted"); 844 return (new_entry); 845 } 846 847 /* 848 * vm_map_entry_set_behavior: 849 * 850 * Set the expected access behavior, either normal, random, or 851 * sequential. 852 */ 853 static inline void 854 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior) 855 { 856 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) | 857 (behavior & MAP_ENTRY_BEHAV_MASK); 858 } 859 860 /* 861 * vm_map_entry_set_max_free: 862 * 863 * Set the max_free field in a vm_map_entry. 864 */ 865 static inline void 866 vm_map_entry_set_max_free(vm_map_entry_t entry) 867 { 868 869 entry->max_free = entry->adj_free; 870 if (entry->left != NULL && entry->left->max_free > entry->max_free) 871 entry->max_free = entry->left->max_free; 872 if (entry->right != NULL && entry->right->max_free > entry->max_free) 873 entry->max_free = entry->right->max_free; 874 } 875 876 /* 877 * vm_map_entry_splay: 878 * 879 * The Sleator and Tarjan top-down splay algorithm with the 880 * following variation. Max_free must be computed bottom-up, so 881 * on the downward pass, maintain the left and right spines in 882 * reverse order. Then, make a second pass up each side to fix 883 * the pointers and compute max_free. The time bound is O(log n) 884 * amortized. 885 * 886 * The new root is the vm_map_entry containing "addr", or else an 887 * adjacent entry (lower or higher) if addr is not in the tree. 888 * 889 * The map must be locked, and leaves it so. 890 * 891 * Returns: the new root. 892 */ 893 static vm_map_entry_t 894 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root) 895 { 896 vm_map_entry_t llist, rlist; 897 vm_map_entry_t ltree, rtree; 898 vm_map_entry_t y; 899 900 /* Special case of empty tree. */ 901 if (root == NULL) 902 return (root); 903 904 /* 905 * Pass One: Splay down the tree until we find addr or a NULL 906 * pointer where addr would go. llist and rlist are the two 907 * sides in reverse order (bottom-up), with llist linked by 908 * the right pointer and rlist linked by the left pointer in 909 * the vm_map_entry. Wait until Pass Two to set max_free on 910 * the two spines. 911 */ 912 llist = NULL; 913 rlist = NULL; 914 for (;;) { 915 /* root is never NULL in here. */ 916 if (addr < root->start) { 917 y = root->left; 918 if (y == NULL) 919 break; 920 if (addr < y->start && y->left != NULL) { 921 /* Rotate right and put y on rlist. */ 922 root->left = y->right; 923 y->right = root; 924 vm_map_entry_set_max_free(root); 925 root = y->left; 926 y->left = rlist; 927 rlist = y; 928 } else { 929 /* Put root on rlist. */ 930 root->left = rlist; 931 rlist = root; 932 root = y; 933 } 934 } else if (addr >= root->end) { 935 y = root->right; 936 if (y == NULL) 937 break; 938 if (addr >= y->end && y->right != NULL) { 939 /* Rotate left and put y on llist. */ 940 root->right = y->left; 941 y->left = root; 942 vm_map_entry_set_max_free(root); 943 root = y->right; 944 y->right = llist; 945 llist = y; 946 } else { 947 /* Put root on llist. */ 948 root->right = llist; 949 llist = root; 950 root = y; 951 } 952 } else 953 break; 954 } 955 956 /* 957 * Pass Two: Walk back up the two spines, flip the pointers 958 * and set max_free. The subtrees of the root go at the 959 * bottom of llist and rlist. 960 */ 961 ltree = root->left; 962 while (llist != NULL) { 963 y = llist->right; 964 llist->right = ltree; 965 vm_map_entry_set_max_free(llist); 966 ltree = llist; 967 llist = y; 968 } 969 rtree = root->right; 970 while (rlist != NULL) { 971 y = rlist->left; 972 rlist->left = rtree; 973 vm_map_entry_set_max_free(rlist); 974 rtree = rlist; 975 rlist = y; 976 } 977 978 /* 979 * Final assembly: add ltree and rtree as subtrees of root. 980 */ 981 root->left = ltree; 982 root->right = rtree; 983 vm_map_entry_set_max_free(root); 984 985 return (root); 986 } 987 988 /* 989 * vm_map_entry_{un,}link: 990 * 991 * Insert/remove entries from maps. 992 */ 993 static void 994 vm_map_entry_link(vm_map_t map, 995 vm_map_entry_t after_where, 996 vm_map_entry_t entry) 997 { 998 999 CTR4(KTR_VM, 1000 "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map, 1001 map->nentries, entry, after_where); 1002 VM_MAP_ASSERT_LOCKED(map); 1003 KASSERT(after_where->end <= entry->start, 1004 ("vm_map_entry_link: prev end %jx new start %jx overlap", 1005 (uintmax_t)after_where->end, (uintmax_t)entry->start)); 1006 KASSERT(entry->end <= after_where->next->start, 1007 ("vm_map_entry_link: new end %jx next start %jx overlap", 1008 (uintmax_t)entry->end, (uintmax_t)after_where->next->start)); 1009 1010 map->nentries++; 1011 entry->prev = after_where; 1012 entry->next = after_where->next; 1013 entry->next->prev = entry; 1014 after_where->next = entry; 1015 1016 if (after_where != &map->header) { 1017 if (after_where != map->root) 1018 vm_map_entry_splay(after_where->start, map->root); 1019 entry->right = after_where->right; 1020 entry->left = after_where; 1021 after_where->right = NULL; 1022 after_where->adj_free = entry->start - after_where->end; 1023 vm_map_entry_set_max_free(after_where); 1024 } else { 1025 entry->right = map->root; 1026 entry->left = NULL; 1027 } 1028 entry->adj_free = entry->next->start - entry->end; 1029 vm_map_entry_set_max_free(entry); 1030 map->root = entry; 1031 } 1032 1033 static void 1034 vm_map_entry_unlink(vm_map_t map, 1035 vm_map_entry_t entry) 1036 { 1037 vm_map_entry_t next, prev, root; 1038 1039 VM_MAP_ASSERT_LOCKED(map); 1040 if (entry != map->root) 1041 vm_map_entry_splay(entry->start, map->root); 1042 if (entry->left == NULL) 1043 root = entry->right; 1044 else { 1045 root = vm_map_entry_splay(entry->start, entry->left); 1046 root->right = entry->right; 1047 root->adj_free = entry->next->start - root->end; 1048 vm_map_entry_set_max_free(root); 1049 } 1050 map->root = root; 1051 1052 prev = entry->prev; 1053 next = entry->next; 1054 next->prev = prev; 1055 prev->next = next; 1056 map->nentries--; 1057 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map, 1058 map->nentries, entry); 1059 } 1060 1061 /* 1062 * vm_map_entry_resize_free: 1063 * 1064 * Recompute the amount of free space following a vm_map_entry 1065 * and propagate that value up the tree. Call this function after 1066 * resizing a map entry in-place, that is, without a call to 1067 * vm_map_entry_link() or _unlink(). 1068 * 1069 * The map must be locked, and leaves it so. 1070 */ 1071 static void 1072 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry) 1073 { 1074 1075 /* 1076 * Using splay trees without parent pointers, propagating 1077 * max_free up the tree is done by moving the entry to the 1078 * root and making the change there. 1079 */ 1080 if (entry != map->root) 1081 map->root = vm_map_entry_splay(entry->start, map->root); 1082 1083 entry->adj_free = entry->next->start - entry->end; 1084 vm_map_entry_set_max_free(entry); 1085 } 1086 1087 /* 1088 * vm_map_lookup_entry: [ internal use only ] 1089 * 1090 * Finds the map entry containing (or 1091 * immediately preceding) the specified address 1092 * in the given map; the entry is returned 1093 * in the "entry" parameter. The boolean 1094 * result indicates whether the address is 1095 * actually contained in the map. 1096 */ 1097 boolean_t 1098 vm_map_lookup_entry( 1099 vm_map_t map, 1100 vm_offset_t address, 1101 vm_map_entry_t *entry) /* OUT */ 1102 { 1103 vm_map_entry_t cur; 1104 boolean_t locked; 1105 1106 /* 1107 * If the map is empty, then the map entry immediately preceding 1108 * "address" is the map's header. 1109 */ 1110 cur = map->root; 1111 if (cur == NULL) 1112 *entry = &map->header; 1113 else if (address >= cur->start && cur->end > address) { 1114 *entry = cur; 1115 return (TRUE); 1116 } else if ((locked = vm_map_locked(map)) || 1117 sx_try_upgrade(&map->lock)) { 1118 /* 1119 * Splay requires a write lock on the map. However, it only 1120 * restructures the binary search tree; it does not otherwise 1121 * change the map. Thus, the map's timestamp need not change 1122 * on a temporary upgrade. 1123 */ 1124 map->root = cur = vm_map_entry_splay(address, cur); 1125 if (!locked) 1126 sx_downgrade(&map->lock); 1127 1128 /* 1129 * If "address" is contained within a map entry, the new root 1130 * is that map entry. Otherwise, the new root is a map entry 1131 * immediately before or after "address". 1132 */ 1133 if (address >= cur->start) { 1134 *entry = cur; 1135 if (cur->end > address) 1136 return (TRUE); 1137 } else 1138 *entry = cur->prev; 1139 } else 1140 /* 1141 * Since the map is only locked for read access, perform a 1142 * standard binary search tree lookup for "address". 1143 */ 1144 for (;;) { 1145 if (address < cur->start) { 1146 if (cur->left == NULL) { 1147 *entry = cur->prev; 1148 break; 1149 } 1150 cur = cur->left; 1151 } else if (cur->end > address) { 1152 *entry = cur; 1153 return (TRUE); 1154 } else { 1155 if (cur->right == NULL) { 1156 *entry = cur; 1157 break; 1158 } 1159 cur = cur->right; 1160 } 1161 } 1162 return (FALSE); 1163 } 1164 1165 /* 1166 * vm_map_insert: 1167 * 1168 * Inserts the given whole VM object into the target 1169 * map at the specified address range. The object's 1170 * size should match that of the address range. 1171 * 1172 * Requires that the map be locked, and leaves it so. 1173 * 1174 * If object is non-NULL, ref count must be bumped by caller 1175 * prior to making call to account for the new entry. 1176 */ 1177 int 1178 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1179 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow) 1180 { 1181 vm_map_entry_t new_entry, prev_entry, temp_entry; 1182 struct ucred *cred; 1183 vm_eflags_t protoeflags; 1184 vm_inherit_t inheritance; 1185 1186 VM_MAP_ASSERT_LOCKED(map); 1187 KASSERT(object != kernel_object || 1188 (cow & MAP_COPY_ON_WRITE) == 0, 1189 ("vm_map_insert: kernel object and COW")); 1190 KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0, 1191 ("vm_map_insert: paradoxical MAP_NOFAULT request")); 1192 KASSERT((prot & ~max) == 0, 1193 ("prot %#x is not subset of max_prot %#x", prot, max)); 1194 1195 /* 1196 * Check that the start and end points are not bogus. 1197 */ 1198 if (start < vm_map_min(map) || end > vm_map_max(map) || 1199 start >= end) 1200 return (KERN_INVALID_ADDRESS); 1201 1202 /* 1203 * Find the entry prior to the proposed starting address; if it's part 1204 * of an existing entry, this range is bogus. 1205 */ 1206 if (vm_map_lookup_entry(map, start, &temp_entry)) 1207 return (KERN_NO_SPACE); 1208 1209 prev_entry = temp_entry; 1210 1211 /* 1212 * Assert that the next entry doesn't overlap the end point. 1213 */ 1214 if (prev_entry->next->start < end) 1215 return (KERN_NO_SPACE); 1216 1217 if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL || 1218 max != VM_PROT_NONE)) 1219 return (KERN_INVALID_ARGUMENT); 1220 1221 protoeflags = 0; 1222 if (cow & MAP_COPY_ON_WRITE) 1223 protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY; 1224 if (cow & MAP_NOFAULT) 1225 protoeflags |= MAP_ENTRY_NOFAULT; 1226 if (cow & MAP_DISABLE_SYNCER) 1227 protoeflags |= MAP_ENTRY_NOSYNC; 1228 if (cow & MAP_DISABLE_COREDUMP) 1229 protoeflags |= MAP_ENTRY_NOCOREDUMP; 1230 if (cow & MAP_STACK_GROWS_DOWN) 1231 protoeflags |= MAP_ENTRY_GROWS_DOWN; 1232 if (cow & MAP_STACK_GROWS_UP) 1233 protoeflags |= MAP_ENTRY_GROWS_UP; 1234 if (cow & MAP_VN_WRITECOUNT) 1235 protoeflags |= MAP_ENTRY_VN_WRITECNT; 1236 if ((cow & MAP_CREATE_GUARD) != 0) 1237 protoeflags |= MAP_ENTRY_GUARD; 1238 if ((cow & MAP_CREATE_STACK_GAP_DN) != 0) 1239 protoeflags |= MAP_ENTRY_STACK_GAP_DN; 1240 if ((cow & MAP_CREATE_STACK_GAP_UP) != 0) 1241 protoeflags |= MAP_ENTRY_STACK_GAP_UP; 1242 if (cow & MAP_INHERIT_SHARE) 1243 inheritance = VM_INHERIT_SHARE; 1244 else 1245 inheritance = VM_INHERIT_DEFAULT; 1246 1247 cred = NULL; 1248 if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0) 1249 goto charged; 1250 if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) && 1251 ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) { 1252 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start)) 1253 return (KERN_RESOURCE_SHORTAGE); 1254 KASSERT(object == NULL || 1255 (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 || 1256 object->cred == NULL, 1257 ("overcommit: vm_map_insert o %p", object)); 1258 cred = curthread->td_ucred; 1259 } 1260 1261 charged: 1262 /* Expand the kernel pmap, if necessary. */ 1263 if (map == kernel_map && end > kernel_vm_end) 1264 pmap_growkernel(end); 1265 if (object != NULL) { 1266 /* 1267 * OBJ_ONEMAPPING must be cleared unless this mapping 1268 * is trivially proven to be the only mapping for any 1269 * of the object's pages. (Object granularity 1270 * reference counting is insufficient to recognize 1271 * aliases with precision.) 1272 */ 1273 VM_OBJECT_WLOCK(object); 1274 if (object->ref_count > 1 || object->shadow_count != 0) 1275 vm_object_clear_flag(object, OBJ_ONEMAPPING); 1276 VM_OBJECT_WUNLOCK(object); 1277 } else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) == 1278 protoeflags && 1279 (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 && 1280 prev_entry->end == start && (prev_entry->cred == cred || 1281 (prev_entry->object.vm_object != NULL && 1282 prev_entry->object.vm_object->cred == cred)) && 1283 vm_object_coalesce(prev_entry->object.vm_object, 1284 prev_entry->offset, 1285 (vm_size_t)(prev_entry->end - prev_entry->start), 1286 (vm_size_t)(end - prev_entry->end), cred != NULL && 1287 (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) { 1288 /* 1289 * We were able to extend the object. Determine if we 1290 * can extend the previous map entry to include the 1291 * new range as well. 1292 */ 1293 if (prev_entry->inheritance == inheritance && 1294 prev_entry->protection == prot && 1295 prev_entry->max_protection == max && 1296 prev_entry->wired_count == 0) { 1297 KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) == 1298 0, ("prev_entry %p has incoherent wiring", 1299 prev_entry)); 1300 if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0) 1301 map->size += end - prev_entry->end; 1302 prev_entry->end = end; 1303 vm_map_entry_resize_free(map, prev_entry); 1304 vm_map_simplify_entry(map, prev_entry); 1305 return (KERN_SUCCESS); 1306 } 1307 1308 /* 1309 * If we can extend the object but cannot extend the 1310 * map entry, we have to create a new map entry. We 1311 * must bump the ref count on the extended object to 1312 * account for it. object may be NULL. 1313 */ 1314 object = prev_entry->object.vm_object; 1315 offset = prev_entry->offset + 1316 (prev_entry->end - prev_entry->start); 1317 vm_object_reference(object); 1318 if (cred != NULL && object != NULL && object->cred != NULL && 1319 !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 1320 /* Object already accounts for this uid. */ 1321 cred = NULL; 1322 } 1323 } 1324 if (cred != NULL) 1325 crhold(cred); 1326 1327 /* 1328 * Create a new entry 1329 */ 1330 new_entry = vm_map_entry_create(map); 1331 new_entry->start = start; 1332 new_entry->end = end; 1333 new_entry->cred = NULL; 1334 1335 new_entry->eflags = protoeflags; 1336 new_entry->object.vm_object = object; 1337 new_entry->offset = offset; 1338 1339 new_entry->inheritance = inheritance; 1340 new_entry->protection = prot; 1341 new_entry->max_protection = max; 1342 new_entry->wired_count = 0; 1343 new_entry->wiring_thread = NULL; 1344 new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT; 1345 new_entry->next_read = start; 1346 1347 KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry), 1348 ("overcommit: vm_map_insert leaks vm_map %p", new_entry)); 1349 new_entry->cred = cred; 1350 1351 /* 1352 * Insert the new entry into the list 1353 */ 1354 vm_map_entry_link(map, prev_entry, new_entry); 1355 if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0) 1356 map->size += new_entry->end - new_entry->start; 1357 1358 /* 1359 * Try to coalesce the new entry with both the previous and next 1360 * entries in the list. Previously, we only attempted to coalesce 1361 * with the previous entry when object is NULL. Here, we handle the 1362 * other cases, which are less common. 1363 */ 1364 vm_map_simplify_entry(map, new_entry); 1365 1366 if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) { 1367 vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset), 1368 end - start, cow & MAP_PREFAULT_PARTIAL); 1369 } 1370 1371 return (KERN_SUCCESS); 1372 } 1373 1374 /* 1375 * vm_map_findspace: 1376 * 1377 * Find the first fit (lowest VM address) for "length" free bytes 1378 * beginning at address >= start in the given map. 1379 * 1380 * In a vm_map_entry, "adj_free" is the amount of free space 1381 * adjacent (higher address) to this entry, and "max_free" is the 1382 * maximum amount of contiguous free space in its subtree. This 1383 * allows finding a free region in one path down the tree, so 1384 * O(log n) amortized with splay trees. 1385 * 1386 * The map must be locked, and leaves it so. 1387 * 1388 * Returns: 0 on success, and starting address in *addr, 1389 * 1 if insufficient space. 1390 */ 1391 int 1392 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length, 1393 vm_offset_t *addr) /* OUT */ 1394 { 1395 vm_map_entry_t entry; 1396 vm_offset_t st; 1397 1398 /* 1399 * Request must fit within min/max VM address and must avoid 1400 * address wrap. 1401 */ 1402 start = MAX(start, vm_map_min(map)); 1403 if (start + length > vm_map_max(map) || start + length < start) 1404 return (1); 1405 1406 /* Empty tree means wide open address space. */ 1407 if (map->root == NULL) { 1408 *addr = start; 1409 return (0); 1410 } 1411 1412 /* 1413 * After splay, if start comes before root node, then there 1414 * must be a gap from start to the root. 1415 */ 1416 map->root = vm_map_entry_splay(start, map->root); 1417 if (start + length <= map->root->start) { 1418 *addr = start; 1419 return (0); 1420 } 1421 1422 /* 1423 * Root is the last node that might begin its gap before 1424 * start, and this is the last comparison where address 1425 * wrap might be a problem. 1426 */ 1427 st = (start > map->root->end) ? start : map->root->end; 1428 if (length <= map->root->end + map->root->adj_free - st) { 1429 *addr = st; 1430 return (0); 1431 } 1432 1433 /* With max_free, can immediately tell if no solution. */ 1434 entry = map->root->right; 1435 if (entry == NULL || length > entry->max_free) 1436 return (1); 1437 1438 /* 1439 * Search the right subtree in the order: left subtree, root, 1440 * right subtree (first fit). The previous splay implies that 1441 * all regions in the right subtree have addresses > start. 1442 */ 1443 while (entry != NULL) { 1444 if (entry->left != NULL && entry->left->max_free >= length) 1445 entry = entry->left; 1446 else if (entry->adj_free >= length) { 1447 *addr = entry->end; 1448 return (0); 1449 } else 1450 entry = entry->right; 1451 } 1452 1453 /* Can't get here, so panic if we do. */ 1454 panic("vm_map_findspace: max_free corrupt"); 1455 } 1456 1457 int 1458 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1459 vm_offset_t start, vm_size_t length, vm_prot_t prot, 1460 vm_prot_t max, int cow) 1461 { 1462 vm_offset_t end; 1463 int result; 1464 1465 end = start + length; 1466 KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 || 1467 object == NULL, 1468 ("vm_map_fixed: non-NULL backing object for stack")); 1469 vm_map_lock(map); 1470 VM_MAP_RANGE_CHECK(map, start, end); 1471 if ((cow & MAP_CHECK_EXCL) == 0) 1472 vm_map_delete(map, start, end); 1473 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) { 1474 result = vm_map_stack_locked(map, start, length, sgrowsiz, 1475 prot, max, cow); 1476 } else { 1477 result = vm_map_insert(map, object, offset, start, end, 1478 prot, max, cow); 1479 } 1480 vm_map_unlock(map); 1481 return (result); 1482 } 1483 1484 static const int aslr_pages_rnd_64[2] = {0x1000, 0x10}; 1485 static const int aslr_pages_rnd_32[2] = {0x100, 0x4}; 1486 1487 static int cluster_anon = 1; 1488 SYSCTL_INT(_vm, OID_AUTO, cluster_anon, CTLFLAG_RW, 1489 &cluster_anon, 0, 1490 "Cluster anonymous mappings: 0 = no, 1 = yes if no hint, 2 = always"); 1491 1492 static bool 1493 clustering_anon_allowed(vm_offset_t addr) 1494 { 1495 1496 switch (cluster_anon) { 1497 case 0: 1498 return (false); 1499 case 1: 1500 return (addr == 0); 1501 case 2: 1502 default: 1503 return (true); 1504 } 1505 } 1506 1507 static long aslr_restarts; 1508 SYSCTL_LONG(_vm, OID_AUTO, aslr_restarts, CTLFLAG_RD, 1509 &aslr_restarts, 0, 1510 "Number of aslr failures"); 1511 1512 #define MAP_32BIT_MAX_ADDR ((vm_offset_t)1 << 31) 1513 1514 /* 1515 * Searches for the specified amount of free space in the given map with the 1516 * specified alignment. Performs an address-ordered, first-fit search from 1517 * the given address "*addr", with an optional upper bound "max_addr". If the 1518 * parameter "alignment" is zero, then the alignment is computed from the 1519 * given (object, offset) pair so as to enable the greatest possible use of 1520 * superpage mappings. Returns KERN_SUCCESS and the address of the free space 1521 * in "*addr" if successful. Otherwise, returns KERN_NO_SPACE. 1522 * 1523 * The map must be locked. Initially, there must be at least "length" bytes 1524 * of free space at the given address. 1525 */ 1526 static int 1527 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1528 vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr, 1529 vm_offset_t alignment) 1530 { 1531 vm_offset_t aligned_addr, free_addr; 1532 1533 VM_MAP_ASSERT_LOCKED(map); 1534 free_addr = *addr; 1535 KASSERT(!vm_map_findspace(map, free_addr, length, addr) && 1536 free_addr == *addr, ("caller provided insufficient free space")); 1537 for (;;) { 1538 /* 1539 * At the start of every iteration, the free space at address 1540 * "*addr" is at least "length" bytes. 1541 */ 1542 if (alignment == 0) 1543 pmap_align_superpage(object, offset, addr, length); 1544 else if ((*addr & (alignment - 1)) != 0) { 1545 *addr &= ~(alignment - 1); 1546 *addr += alignment; 1547 } 1548 aligned_addr = *addr; 1549 if (aligned_addr == free_addr) { 1550 /* 1551 * Alignment did not change "*addr", so "*addr" must 1552 * still provide sufficient free space. 1553 */ 1554 return (KERN_SUCCESS); 1555 } 1556 1557 /* 1558 * Test for address wrap on "*addr". A wrapped "*addr" could 1559 * be a valid address, in which case vm_map_findspace() cannot 1560 * be relied upon to fail. 1561 */ 1562 if (aligned_addr < free_addr || 1563 vm_map_findspace(map, aligned_addr, length, addr) || 1564 (max_addr != 0 && *addr + length > max_addr)) 1565 return (KERN_NO_SPACE); 1566 free_addr = *addr; 1567 if (free_addr == aligned_addr) { 1568 /* 1569 * If a successful call to vm_map_findspace() did not 1570 * change "*addr", then "*addr" must still be aligned 1571 * and provide sufficient free space. 1572 */ 1573 return (KERN_SUCCESS); 1574 } 1575 } 1576 } 1577 1578 /* 1579 * vm_map_find finds an unallocated region in the target address 1580 * map with the given length. The search is defined to be 1581 * first-fit from the specified address; the region found is 1582 * returned in the same parameter. 1583 * 1584 * If object is non-NULL, ref count must be bumped by caller 1585 * prior to making call to account for the new entry. 1586 */ 1587 int 1588 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1589 vm_offset_t *addr, /* IN/OUT */ 1590 vm_size_t length, vm_offset_t max_addr, int find_space, 1591 vm_prot_t prot, vm_prot_t max, int cow) 1592 { 1593 vm_offset_t alignment, curr_min_addr, min_addr; 1594 int gap, pidx, rv, try; 1595 bool cluster, en_aslr, update_anon; 1596 1597 KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 || 1598 object == NULL, 1599 ("vm_map_find: non-NULL backing object for stack")); 1600 MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE && 1601 (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0)); 1602 if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL || 1603 (object->flags & OBJ_COLORED) == 0)) 1604 find_space = VMFS_ANY_SPACE; 1605 if (find_space >> 8 != 0) { 1606 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags")); 1607 alignment = (vm_offset_t)1 << (find_space >> 8); 1608 } else 1609 alignment = 0; 1610 en_aslr = (map->flags & MAP_ASLR) != 0; 1611 update_anon = cluster = clustering_anon_allowed(*addr) && 1612 (map->flags & MAP_IS_SUB_MAP) == 0 && max_addr == 0 && 1613 find_space != VMFS_NO_SPACE && object == NULL && 1614 (cow & (MAP_INHERIT_SHARE | MAP_STACK_GROWS_UP | 1615 MAP_STACK_GROWS_DOWN)) == 0 && prot != PROT_NONE; 1616 curr_min_addr = min_addr = *addr; 1617 if (en_aslr && min_addr == 0 && !cluster && 1618 find_space != VMFS_NO_SPACE && 1619 (map->flags & MAP_ASLR_IGNSTART) != 0) 1620 curr_min_addr = min_addr = vm_map_min(map); 1621 try = 0; 1622 vm_map_lock(map); 1623 if (cluster) { 1624 curr_min_addr = map->anon_loc; 1625 if (curr_min_addr == 0) 1626 cluster = false; 1627 } 1628 if (find_space != VMFS_NO_SPACE) { 1629 KASSERT(find_space == VMFS_ANY_SPACE || 1630 find_space == VMFS_OPTIMAL_SPACE || 1631 find_space == VMFS_SUPER_SPACE || 1632 alignment != 0, ("unexpected VMFS flag")); 1633 again: 1634 /* 1635 * When creating an anonymous mapping, try clustering 1636 * with an existing anonymous mapping first. 1637 * 1638 * We make up to two attempts to find address space 1639 * for a given find_space value. The first attempt may 1640 * apply randomization or may cluster with an existing 1641 * anonymous mapping. If this first attempt fails, 1642 * perform a first-fit search of the available address 1643 * space. 1644 * 1645 * If all tries failed, and find_space is 1646 * VMFS_OPTIMAL_SPACE, fallback to VMFS_ANY_SPACE. 1647 * Again enable clustering and randomization. 1648 */ 1649 try++; 1650 MPASS(try <= 2); 1651 1652 if (try == 2) { 1653 /* 1654 * Second try: we failed either to find a 1655 * suitable region for randomizing the 1656 * allocation, or to cluster with an existing 1657 * mapping. Retry with free run. 1658 */ 1659 curr_min_addr = (map->flags & MAP_ASLR_IGNSTART) != 0 ? 1660 vm_map_min(map) : min_addr; 1661 atomic_add_long(&aslr_restarts, 1); 1662 } 1663 1664 if (try == 1 && en_aslr && !cluster) { 1665 /* 1666 * Find space for allocation, including 1667 * gap needed for later randomization. 1668 */ 1669 pidx = MAXPAGESIZES > 1 && pagesizes[1] != 0 && 1670 (find_space == VMFS_SUPER_SPACE || find_space == 1671 VMFS_OPTIMAL_SPACE) ? 1 : 0; 1672 gap = vm_map_max(map) > MAP_32BIT_MAX_ADDR && 1673 (max_addr == 0 || max_addr > MAP_32BIT_MAX_ADDR) ? 1674 aslr_pages_rnd_64[pidx] : aslr_pages_rnd_32[pidx]; 1675 if (vm_map_findspace(map, curr_min_addr, length + 1676 gap * pagesizes[pidx], addr)) 1677 goto again; 1678 /* And randomize the start address. */ 1679 *addr += (arc4random() % gap) * pagesizes[pidx]; 1680 if (max_addr != 0 && *addr + length > max_addr) 1681 goto again; 1682 } else if (vm_map_findspace(map, curr_min_addr, length, addr) || 1683 (max_addr != 0 && *addr + length > max_addr)) { 1684 if (cluster) { 1685 cluster = false; 1686 MPASS(try == 1); 1687 goto again; 1688 } 1689 rv = KERN_NO_SPACE; 1690 goto done; 1691 } 1692 1693 if (find_space != VMFS_ANY_SPACE && 1694 (rv = vm_map_alignspace(map, object, offset, addr, length, 1695 max_addr, alignment)) != KERN_SUCCESS) { 1696 if (find_space == VMFS_OPTIMAL_SPACE) { 1697 find_space = VMFS_ANY_SPACE; 1698 curr_min_addr = min_addr; 1699 cluster = update_anon; 1700 try = 0; 1701 goto again; 1702 } 1703 goto done; 1704 } 1705 } else if ((cow & MAP_REMAP) != 0) { 1706 if (*addr < vm_map_min(map) || 1707 *addr + length > vm_map_max(map) || 1708 *addr + length <= length) { 1709 rv = KERN_INVALID_ADDRESS; 1710 goto done; 1711 } 1712 vm_map_delete(map, *addr, *addr + length); 1713 } 1714 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) { 1715 rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot, 1716 max, cow); 1717 } else { 1718 rv = vm_map_insert(map, object, offset, *addr, *addr + length, 1719 prot, max, cow); 1720 } 1721 if (rv == KERN_SUCCESS && update_anon) 1722 map->anon_loc = *addr + length; 1723 done: 1724 vm_map_unlock(map); 1725 return (rv); 1726 } 1727 1728 /* 1729 * vm_map_find_min() is a variant of vm_map_find() that takes an 1730 * additional parameter (min_addr) and treats the given address 1731 * (*addr) differently. Specifically, it treats *addr as a hint 1732 * and not as the minimum address where the mapping is created. 1733 * 1734 * This function works in two phases. First, it tries to 1735 * allocate above the hint. If that fails and the hint is 1736 * greater than min_addr, it performs a second pass, replacing 1737 * the hint with min_addr as the minimum address for the 1738 * allocation. 1739 */ 1740 int 1741 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1742 vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr, 1743 vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max, 1744 int cow) 1745 { 1746 vm_offset_t hint; 1747 int rv; 1748 1749 hint = *addr; 1750 for (;;) { 1751 rv = vm_map_find(map, object, offset, addr, length, max_addr, 1752 find_space, prot, max, cow); 1753 if (rv == KERN_SUCCESS || min_addr >= hint) 1754 return (rv); 1755 *addr = hint = min_addr; 1756 } 1757 } 1758 1759 /* 1760 * A map entry with any of the following flags set must not be merged with 1761 * another entry. 1762 */ 1763 #define MAP_ENTRY_NOMERGE_MASK (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | \ 1764 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP) 1765 1766 static bool 1767 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry) 1768 { 1769 1770 KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 || 1771 (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0, 1772 ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable", 1773 prev, entry)); 1774 return (prev->end == entry->start && 1775 prev->object.vm_object == entry->object.vm_object && 1776 (prev->object.vm_object == NULL || 1777 prev->offset + (prev->end - prev->start) == entry->offset) && 1778 prev->eflags == entry->eflags && 1779 prev->protection == entry->protection && 1780 prev->max_protection == entry->max_protection && 1781 prev->inheritance == entry->inheritance && 1782 prev->wired_count == entry->wired_count && 1783 prev->cred == entry->cred); 1784 } 1785 1786 static void 1787 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry) 1788 { 1789 1790 /* 1791 * If the backing object is a vnode object, vm_object_deallocate() 1792 * calls vrele(). However, vrele() does not lock the vnode because 1793 * the vnode has additional references. Thus, the map lock can be 1794 * kept without causing a lock-order reversal with the vnode lock. 1795 * 1796 * Since we count the number of virtual page mappings in 1797 * object->un_pager.vnp.writemappings, the writemappings value 1798 * should not be adjusted when the entry is disposed of. 1799 */ 1800 if (entry->object.vm_object != NULL) 1801 vm_object_deallocate(entry->object.vm_object); 1802 if (entry->cred != NULL) 1803 crfree(entry->cred); 1804 vm_map_entry_dispose(map, entry); 1805 } 1806 1807 /* 1808 * vm_map_simplify_entry: 1809 * 1810 * Simplify the given map entry by merging with either neighbor. This 1811 * routine also has the ability to merge with both neighbors. 1812 * 1813 * The map must be locked. 1814 * 1815 * This routine guarantees that the passed entry remains valid (though 1816 * possibly extended). When merging, this routine may delete one or 1817 * both neighbors. 1818 */ 1819 void 1820 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry) 1821 { 1822 vm_map_entry_t next, prev; 1823 1824 if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) != 0) 1825 return; 1826 prev = entry->prev; 1827 if (vm_map_mergeable_neighbors(prev, entry)) { 1828 vm_map_entry_unlink(map, prev); 1829 entry->start = prev->start; 1830 entry->offset = prev->offset; 1831 if (entry->prev != &map->header) 1832 vm_map_entry_resize_free(map, entry->prev); 1833 vm_map_merged_neighbor_dispose(map, prev); 1834 } 1835 next = entry->next; 1836 if (vm_map_mergeable_neighbors(entry, next)) { 1837 vm_map_entry_unlink(map, next); 1838 entry->end = next->end; 1839 vm_map_entry_resize_free(map, entry); 1840 vm_map_merged_neighbor_dispose(map, next); 1841 } 1842 } 1843 1844 /* 1845 * vm_map_clip_start: [ internal use only ] 1846 * 1847 * Asserts that the given entry begins at or after 1848 * the specified address; if necessary, 1849 * it splits the entry into two. 1850 */ 1851 #define vm_map_clip_start(map, entry, startaddr) \ 1852 { \ 1853 if (startaddr > entry->start) \ 1854 _vm_map_clip_start(map, entry, startaddr); \ 1855 } 1856 1857 /* 1858 * This routine is called only when it is known that 1859 * the entry must be split. 1860 */ 1861 static void 1862 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start) 1863 { 1864 vm_map_entry_t new_entry; 1865 1866 VM_MAP_ASSERT_LOCKED(map); 1867 KASSERT(entry->end > start && entry->start < start, 1868 ("_vm_map_clip_start: invalid clip of entry %p", entry)); 1869 1870 /* 1871 * Split off the front portion -- note that we must insert the new 1872 * entry BEFORE this one, so that this entry has the specified 1873 * starting address. 1874 */ 1875 vm_map_simplify_entry(map, entry); 1876 1877 /* 1878 * If there is no object backing this entry, we might as well create 1879 * one now. If we defer it, an object can get created after the map 1880 * is clipped, and individual objects will be created for the split-up 1881 * map. This is a bit of a hack, but is also about the best place to 1882 * put this improvement. 1883 */ 1884 if (entry->object.vm_object == NULL && !map->system_map && 1885 (entry->eflags & MAP_ENTRY_GUARD) == 0) { 1886 vm_object_t object; 1887 object = vm_object_allocate(OBJT_DEFAULT, 1888 atop(entry->end - entry->start)); 1889 entry->object.vm_object = object; 1890 entry->offset = 0; 1891 if (entry->cred != NULL) { 1892 object->cred = entry->cred; 1893 object->charge = entry->end - entry->start; 1894 entry->cred = NULL; 1895 } 1896 } else if (entry->object.vm_object != NULL && 1897 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 1898 entry->cred != NULL) { 1899 VM_OBJECT_WLOCK(entry->object.vm_object); 1900 KASSERT(entry->object.vm_object->cred == NULL, 1901 ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry)); 1902 entry->object.vm_object->cred = entry->cred; 1903 entry->object.vm_object->charge = entry->end - entry->start; 1904 VM_OBJECT_WUNLOCK(entry->object.vm_object); 1905 entry->cred = NULL; 1906 } 1907 1908 new_entry = vm_map_entry_create(map); 1909 *new_entry = *entry; 1910 1911 new_entry->end = start; 1912 entry->offset += (start - entry->start); 1913 entry->start = start; 1914 if (new_entry->cred != NULL) 1915 crhold(entry->cred); 1916 1917 vm_map_entry_link(map, entry->prev, new_entry); 1918 1919 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1920 vm_object_reference(new_entry->object.vm_object); 1921 /* 1922 * The object->un_pager.vnp.writemappings for the 1923 * object of MAP_ENTRY_VN_WRITECNT type entry shall be 1924 * kept as is here. The virtual pages are 1925 * re-distributed among the clipped entries, so the sum is 1926 * left the same. 1927 */ 1928 } 1929 } 1930 1931 /* 1932 * vm_map_clip_end: [ internal use only ] 1933 * 1934 * Asserts that the given entry ends at or before 1935 * the specified address; if necessary, 1936 * it splits the entry into two. 1937 */ 1938 #define vm_map_clip_end(map, entry, endaddr) \ 1939 { \ 1940 if ((endaddr) < (entry->end)) \ 1941 _vm_map_clip_end((map), (entry), (endaddr)); \ 1942 } 1943 1944 /* 1945 * This routine is called only when it is known that 1946 * the entry must be split. 1947 */ 1948 static void 1949 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end) 1950 { 1951 vm_map_entry_t new_entry; 1952 1953 VM_MAP_ASSERT_LOCKED(map); 1954 KASSERT(entry->start < end && entry->end > end, 1955 ("_vm_map_clip_end: invalid clip of entry %p", entry)); 1956 1957 /* 1958 * If there is no object backing this entry, we might as well create 1959 * one now. If we defer it, an object can get created after the map 1960 * is clipped, and individual objects will be created for the split-up 1961 * map. This is a bit of a hack, but is also about the best place to 1962 * put this improvement. 1963 */ 1964 if (entry->object.vm_object == NULL && !map->system_map && 1965 (entry->eflags & MAP_ENTRY_GUARD) == 0) { 1966 vm_object_t object; 1967 object = vm_object_allocate(OBJT_DEFAULT, 1968 atop(entry->end - entry->start)); 1969 entry->object.vm_object = object; 1970 entry->offset = 0; 1971 if (entry->cred != NULL) { 1972 object->cred = entry->cred; 1973 object->charge = entry->end - entry->start; 1974 entry->cred = NULL; 1975 } 1976 } else if (entry->object.vm_object != NULL && 1977 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 1978 entry->cred != NULL) { 1979 VM_OBJECT_WLOCK(entry->object.vm_object); 1980 KASSERT(entry->object.vm_object->cred == NULL, 1981 ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry)); 1982 entry->object.vm_object->cred = entry->cred; 1983 entry->object.vm_object->charge = entry->end - entry->start; 1984 VM_OBJECT_WUNLOCK(entry->object.vm_object); 1985 entry->cred = NULL; 1986 } 1987 1988 /* 1989 * Create a new entry and insert it AFTER the specified entry 1990 */ 1991 new_entry = vm_map_entry_create(map); 1992 *new_entry = *entry; 1993 1994 new_entry->start = entry->end = end; 1995 new_entry->offset += (end - entry->start); 1996 if (new_entry->cred != NULL) 1997 crhold(entry->cred); 1998 1999 vm_map_entry_link(map, entry, new_entry); 2000 2001 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 2002 vm_object_reference(new_entry->object.vm_object); 2003 } 2004 } 2005 2006 /* 2007 * vm_map_submap: [ kernel use only ] 2008 * 2009 * Mark the given range as handled by a subordinate map. 2010 * 2011 * This range must have been created with vm_map_find, 2012 * and no other operations may have been performed on this 2013 * range prior to calling vm_map_submap. 2014 * 2015 * Only a limited number of operations can be performed 2016 * within this rage after calling vm_map_submap: 2017 * vm_fault 2018 * [Don't try vm_map_copy!] 2019 * 2020 * To remove a submapping, one must first remove the 2021 * range from the superior map, and then destroy the 2022 * submap (if desired). [Better yet, don't try it.] 2023 */ 2024 int 2025 vm_map_submap( 2026 vm_map_t map, 2027 vm_offset_t start, 2028 vm_offset_t end, 2029 vm_map_t submap) 2030 { 2031 vm_map_entry_t entry; 2032 int result; 2033 2034 result = KERN_INVALID_ARGUMENT; 2035 2036 vm_map_lock(submap); 2037 submap->flags |= MAP_IS_SUB_MAP; 2038 vm_map_unlock(submap); 2039 2040 vm_map_lock(map); 2041 2042 VM_MAP_RANGE_CHECK(map, start, end); 2043 2044 if (vm_map_lookup_entry(map, start, &entry)) { 2045 vm_map_clip_start(map, entry, start); 2046 } else 2047 entry = entry->next; 2048 2049 vm_map_clip_end(map, entry, end); 2050 2051 if ((entry->start == start) && (entry->end == end) && 2052 ((entry->eflags & MAP_ENTRY_COW) == 0) && 2053 (entry->object.vm_object == NULL)) { 2054 entry->object.sub_map = submap; 2055 entry->eflags |= MAP_ENTRY_IS_SUB_MAP; 2056 result = KERN_SUCCESS; 2057 } 2058 vm_map_unlock(map); 2059 2060 if (result != KERN_SUCCESS) { 2061 vm_map_lock(submap); 2062 submap->flags &= ~MAP_IS_SUB_MAP; 2063 vm_map_unlock(submap); 2064 } 2065 return (result); 2066 } 2067 2068 /* 2069 * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified 2070 */ 2071 #define MAX_INIT_PT 96 2072 2073 /* 2074 * vm_map_pmap_enter: 2075 * 2076 * Preload the specified map's pmap with mappings to the specified 2077 * object's memory-resident pages. No further physical pages are 2078 * allocated, and no further virtual pages are retrieved from secondary 2079 * storage. If the specified flags include MAP_PREFAULT_PARTIAL, then a 2080 * limited number of page mappings are created at the low-end of the 2081 * specified address range. (For this purpose, a superpage mapping 2082 * counts as one page mapping.) Otherwise, all resident pages within 2083 * the specified address range are mapped. 2084 */ 2085 static void 2086 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 2087 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags) 2088 { 2089 vm_offset_t start; 2090 vm_page_t p, p_start; 2091 vm_pindex_t mask, psize, threshold, tmpidx; 2092 2093 if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL) 2094 return; 2095 VM_OBJECT_RLOCK(object); 2096 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 2097 VM_OBJECT_RUNLOCK(object); 2098 VM_OBJECT_WLOCK(object); 2099 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 2100 pmap_object_init_pt(map->pmap, addr, object, pindex, 2101 size); 2102 VM_OBJECT_WUNLOCK(object); 2103 return; 2104 } 2105 VM_OBJECT_LOCK_DOWNGRADE(object); 2106 } 2107 2108 psize = atop(size); 2109 if (psize + pindex > object->size) { 2110 if (object->size < pindex) { 2111 VM_OBJECT_RUNLOCK(object); 2112 return; 2113 } 2114 psize = object->size - pindex; 2115 } 2116 2117 start = 0; 2118 p_start = NULL; 2119 threshold = MAX_INIT_PT; 2120 2121 p = vm_page_find_least(object, pindex); 2122 /* 2123 * Assert: the variable p is either (1) the page with the 2124 * least pindex greater than or equal to the parameter pindex 2125 * or (2) NULL. 2126 */ 2127 for (; 2128 p != NULL && (tmpidx = p->pindex - pindex) < psize; 2129 p = TAILQ_NEXT(p, listq)) { 2130 /* 2131 * don't allow an madvise to blow away our really 2132 * free pages allocating pv entries. 2133 */ 2134 if (((flags & MAP_PREFAULT_MADVISE) != 0 && 2135 vm_page_count_severe()) || 2136 ((flags & MAP_PREFAULT_PARTIAL) != 0 && 2137 tmpidx >= threshold)) { 2138 psize = tmpidx; 2139 break; 2140 } 2141 if (p->valid == VM_PAGE_BITS_ALL) { 2142 if (p_start == NULL) { 2143 start = addr + ptoa(tmpidx); 2144 p_start = p; 2145 } 2146 /* Jump ahead if a superpage mapping is possible. */ 2147 if (p->psind > 0 && ((addr + ptoa(tmpidx)) & 2148 (pagesizes[p->psind] - 1)) == 0) { 2149 mask = atop(pagesizes[p->psind]) - 1; 2150 if (tmpidx + mask < psize && 2151 vm_page_ps_test(p, PS_ALL_VALID, NULL)) { 2152 p += mask; 2153 threshold += mask; 2154 } 2155 } 2156 } else if (p_start != NULL) { 2157 pmap_enter_object(map->pmap, start, addr + 2158 ptoa(tmpidx), p_start, prot); 2159 p_start = NULL; 2160 } 2161 } 2162 if (p_start != NULL) 2163 pmap_enter_object(map->pmap, start, addr + ptoa(psize), 2164 p_start, prot); 2165 VM_OBJECT_RUNLOCK(object); 2166 } 2167 2168 /* 2169 * vm_map_protect: 2170 * 2171 * Sets the protection of the specified address 2172 * region in the target map. If "set_max" is 2173 * specified, the maximum protection is to be set; 2174 * otherwise, only the current protection is affected. 2175 */ 2176 int 2177 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 2178 vm_prot_t new_prot, boolean_t set_max) 2179 { 2180 vm_map_entry_t current, entry; 2181 vm_object_t obj; 2182 struct ucred *cred; 2183 vm_prot_t old_prot; 2184 2185 if (start == end) 2186 return (KERN_SUCCESS); 2187 2188 vm_map_lock(map); 2189 2190 /* 2191 * Ensure that we are not concurrently wiring pages. vm_map_wire() may 2192 * need to fault pages into the map and will drop the map lock while 2193 * doing so, and the VM object may end up in an inconsistent state if we 2194 * update the protection on the map entry in between faults. 2195 */ 2196 vm_map_wait_busy(map); 2197 2198 VM_MAP_RANGE_CHECK(map, start, end); 2199 2200 if (vm_map_lookup_entry(map, start, &entry)) { 2201 vm_map_clip_start(map, entry, start); 2202 } else { 2203 entry = entry->next; 2204 } 2205 2206 /* 2207 * Make a first pass to check for protection violations. 2208 */ 2209 for (current = entry; current->start < end; current = current->next) { 2210 if ((current->eflags & MAP_ENTRY_GUARD) != 0) 2211 continue; 2212 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 2213 vm_map_unlock(map); 2214 return (KERN_INVALID_ARGUMENT); 2215 } 2216 if ((new_prot & current->max_protection) != new_prot) { 2217 vm_map_unlock(map); 2218 return (KERN_PROTECTION_FAILURE); 2219 } 2220 } 2221 2222 /* 2223 * Do an accounting pass for private read-only mappings that 2224 * now will do cow due to allowed write (e.g. debugger sets 2225 * breakpoint on text segment) 2226 */ 2227 for (current = entry; current->start < end; current = current->next) { 2228 2229 vm_map_clip_end(map, current, end); 2230 2231 if (set_max || 2232 ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 || 2233 ENTRY_CHARGED(current) || 2234 (current->eflags & MAP_ENTRY_GUARD) != 0) { 2235 continue; 2236 } 2237 2238 cred = curthread->td_ucred; 2239 obj = current->object.vm_object; 2240 2241 if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) { 2242 if (!swap_reserve(current->end - current->start)) { 2243 vm_map_unlock(map); 2244 return (KERN_RESOURCE_SHORTAGE); 2245 } 2246 crhold(cred); 2247 current->cred = cred; 2248 continue; 2249 } 2250 2251 VM_OBJECT_WLOCK(obj); 2252 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) { 2253 VM_OBJECT_WUNLOCK(obj); 2254 continue; 2255 } 2256 2257 /* 2258 * Charge for the whole object allocation now, since 2259 * we cannot distinguish between non-charged and 2260 * charged clipped mapping of the same object later. 2261 */ 2262 KASSERT(obj->charge == 0, 2263 ("vm_map_protect: object %p overcharged (entry %p)", 2264 obj, current)); 2265 if (!swap_reserve(ptoa(obj->size))) { 2266 VM_OBJECT_WUNLOCK(obj); 2267 vm_map_unlock(map); 2268 return (KERN_RESOURCE_SHORTAGE); 2269 } 2270 2271 crhold(cred); 2272 obj->cred = cred; 2273 obj->charge = ptoa(obj->size); 2274 VM_OBJECT_WUNLOCK(obj); 2275 } 2276 2277 /* 2278 * Go back and fix up protections. [Note that clipping is not 2279 * necessary the second time.] 2280 */ 2281 for (current = entry; current->start < end; current = current->next) { 2282 if ((current->eflags & MAP_ENTRY_GUARD) != 0) 2283 continue; 2284 2285 old_prot = current->protection; 2286 2287 if (set_max) 2288 current->protection = 2289 (current->max_protection = new_prot) & 2290 old_prot; 2291 else 2292 current->protection = new_prot; 2293 2294 /* 2295 * For user wired map entries, the normal lazy evaluation of 2296 * write access upgrades through soft page faults is 2297 * undesirable. Instead, immediately copy any pages that are 2298 * copy-on-write and enable write access in the physical map. 2299 */ 2300 if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 && 2301 (current->protection & VM_PROT_WRITE) != 0 && 2302 (old_prot & VM_PROT_WRITE) == 0) 2303 vm_fault_copy_entry(map, map, current, current, NULL); 2304 2305 /* 2306 * When restricting access, update the physical map. Worry 2307 * about copy-on-write here. 2308 */ 2309 if ((old_prot & ~current->protection) != 0) { 2310 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 2311 VM_PROT_ALL) 2312 pmap_protect(map->pmap, current->start, 2313 current->end, 2314 current->protection & MASK(current)); 2315 #undef MASK 2316 } 2317 vm_map_simplify_entry(map, current); 2318 } 2319 vm_map_unlock(map); 2320 return (KERN_SUCCESS); 2321 } 2322 2323 /* 2324 * vm_map_madvise: 2325 * 2326 * This routine traverses a processes map handling the madvise 2327 * system call. Advisories are classified as either those effecting 2328 * the vm_map_entry structure, or those effecting the underlying 2329 * objects. 2330 */ 2331 int 2332 vm_map_madvise( 2333 vm_map_t map, 2334 vm_offset_t start, 2335 vm_offset_t end, 2336 int behav) 2337 { 2338 vm_map_entry_t current, entry; 2339 bool modify_map; 2340 2341 /* 2342 * Some madvise calls directly modify the vm_map_entry, in which case 2343 * we need to use an exclusive lock on the map and we need to perform 2344 * various clipping operations. Otherwise we only need a read-lock 2345 * on the map. 2346 */ 2347 switch(behav) { 2348 case MADV_NORMAL: 2349 case MADV_SEQUENTIAL: 2350 case MADV_RANDOM: 2351 case MADV_NOSYNC: 2352 case MADV_AUTOSYNC: 2353 case MADV_NOCORE: 2354 case MADV_CORE: 2355 if (start == end) 2356 return (0); 2357 modify_map = true; 2358 vm_map_lock(map); 2359 break; 2360 case MADV_WILLNEED: 2361 case MADV_DONTNEED: 2362 case MADV_FREE: 2363 if (start == end) 2364 return (0); 2365 modify_map = false; 2366 vm_map_lock_read(map); 2367 break; 2368 default: 2369 return (EINVAL); 2370 } 2371 2372 /* 2373 * Locate starting entry and clip if necessary. 2374 */ 2375 VM_MAP_RANGE_CHECK(map, start, end); 2376 2377 if (vm_map_lookup_entry(map, start, &entry)) { 2378 if (modify_map) 2379 vm_map_clip_start(map, entry, start); 2380 } else { 2381 entry = entry->next; 2382 } 2383 2384 if (modify_map) { 2385 /* 2386 * madvise behaviors that are implemented in the vm_map_entry. 2387 * 2388 * We clip the vm_map_entry so that behavioral changes are 2389 * limited to the specified address range. 2390 */ 2391 for (current = entry; current->start < end; 2392 current = current->next) { 2393 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2394 continue; 2395 2396 vm_map_clip_end(map, current, end); 2397 2398 switch (behav) { 2399 case MADV_NORMAL: 2400 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL); 2401 break; 2402 case MADV_SEQUENTIAL: 2403 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL); 2404 break; 2405 case MADV_RANDOM: 2406 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM); 2407 break; 2408 case MADV_NOSYNC: 2409 current->eflags |= MAP_ENTRY_NOSYNC; 2410 break; 2411 case MADV_AUTOSYNC: 2412 current->eflags &= ~MAP_ENTRY_NOSYNC; 2413 break; 2414 case MADV_NOCORE: 2415 current->eflags |= MAP_ENTRY_NOCOREDUMP; 2416 break; 2417 case MADV_CORE: 2418 current->eflags &= ~MAP_ENTRY_NOCOREDUMP; 2419 break; 2420 default: 2421 break; 2422 } 2423 vm_map_simplify_entry(map, current); 2424 } 2425 vm_map_unlock(map); 2426 } else { 2427 vm_pindex_t pstart, pend; 2428 2429 /* 2430 * madvise behaviors that are implemented in the underlying 2431 * vm_object. 2432 * 2433 * Since we don't clip the vm_map_entry, we have to clip 2434 * the vm_object pindex and count. 2435 */ 2436 for (current = entry; current->start < end; 2437 current = current->next) { 2438 vm_offset_t useEnd, useStart; 2439 2440 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2441 continue; 2442 2443 pstart = OFF_TO_IDX(current->offset); 2444 pend = pstart + atop(current->end - current->start); 2445 useStart = current->start; 2446 useEnd = current->end; 2447 2448 if (current->start < start) { 2449 pstart += atop(start - current->start); 2450 useStart = start; 2451 } 2452 if (current->end > end) { 2453 pend -= atop(current->end - end); 2454 useEnd = end; 2455 } 2456 2457 if (pstart >= pend) 2458 continue; 2459 2460 /* 2461 * Perform the pmap_advise() before clearing 2462 * PGA_REFERENCED in vm_page_advise(). Otherwise, a 2463 * concurrent pmap operation, such as pmap_remove(), 2464 * could clear a reference in the pmap and set 2465 * PGA_REFERENCED on the page before the pmap_advise() 2466 * had completed. Consequently, the page would appear 2467 * referenced based upon an old reference that 2468 * occurred before this pmap_advise() ran. 2469 */ 2470 if (behav == MADV_DONTNEED || behav == MADV_FREE) 2471 pmap_advise(map->pmap, useStart, useEnd, 2472 behav); 2473 2474 vm_object_madvise(current->object.vm_object, pstart, 2475 pend, behav); 2476 2477 /* 2478 * Pre-populate paging structures in the 2479 * WILLNEED case. For wired entries, the 2480 * paging structures are already populated. 2481 */ 2482 if (behav == MADV_WILLNEED && 2483 current->wired_count == 0) { 2484 vm_map_pmap_enter(map, 2485 useStart, 2486 current->protection, 2487 current->object.vm_object, 2488 pstart, 2489 ptoa(pend - pstart), 2490 MAP_PREFAULT_MADVISE 2491 ); 2492 } 2493 } 2494 vm_map_unlock_read(map); 2495 } 2496 return (0); 2497 } 2498 2499 2500 /* 2501 * vm_map_inherit: 2502 * 2503 * Sets the inheritance of the specified address 2504 * range in the target map. Inheritance 2505 * affects how the map will be shared with 2506 * child maps at the time of vmspace_fork. 2507 */ 2508 int 2509 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 2510 vm_inherit_t new_inheritance) 2511 { 2512 vm_map_entry_t entry; 2513 vm_map_entry_t temp_entry; 2514 2515 switch (new_inheritance) { 2516 case VM_INHERIT_NONE: 2517 case VM_INHERIT_COPY: 2518 case VM_INHERIT_SHARE: 2519 case VM_INHERIT_ZERO: 2520 break; 2521 default: 2522 return (KERN_INVALID_ARGUMENT); 2523 } 2524 if (start == end) 2525 return (KERN_SUCCESS); 2526 vm_map_lock(map); 2527 VM_MAP_RANGE_CHECK(map, start, end); 2528 if (vm_map_lookup_entry(map, start, &temp_entry)) { 2529 entry = temp_entry; 2530 vm_map_clip_start(map, entry, start); 2531 } else 2532 entry = temp_entry->next; 2533 while (entry->start < end) { 2534 vm_map_clip_end(map, entry, end); 2535 if ((entry->eflags & MAP_ENTRY_GUARD) == 0 || 2536 new_inheritance != VM_INHERIT_ZERO) 2537 entry->inheritance = new_inheritance; 2538 vm_map_simplify_entry(map, entry); 2539 entry = entry->next; 2540 } 2541 vm_map_unlock(map); 2542 return (KERN_SUCCESS); 2543 } 2544 2545 /* 2546 * vm_map_unwire: 2547 * 2548 * Implements both kernel and user unwiring. 2549 */ 2550 int 2551 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2552 int flags) 2553 { 2554 vm_map_entry_t entry, first_entry, tmp_entry; 2555 vm_offset_t saved_start; 2556 unsigned int last_timestamp; 2557 int rv; 2558 boolean_t need_wakeup, result, user_unwire; 2559 2560 if (start == end) 2561 return (KERN_SUCCESS); 2562 user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 2563 vm_map_lock(map); 2564 VM_MAP_RANGE_CHECK(map, start, end); 2565 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2566 if (flags & VM_MAP_WIRE_HOLESOK) 2567 first_entry = first_entry->next; 2568 else { 2569 vm_map_unlock(map); 2570 return (KERN_INVALID_ADDRESS); 2571 } 2572 } 2573 last_timestamp = map->timestamp; 2574 entry = first_entry; 2575 while (entry->start < end) { 2576 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2577 /* 2578 * We have not yet clipped the entry. 2579 */ 2580 saved_start = (start >= entry->start) ? start : 2581 entry->start; 2582 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2583 if (vm_map_unlock_and_wait(map, 0)) { 2584 /* 2585 * Allow interruption of user unwiring? 2586 */ 2587 } 2588 vm_map_lock(map); 2589 if (last_timestamp+1 != map->timestamp) { 2590 /* 2591 * Look again for the entry because the map was 2592 * modified while it was unlocked. 2593 * Specifically, the entry may have been 2594 * clipped, merged, or deleted. 2595 */ 2596 if (!vm_map_lookup_entry(map, saved_start, 2597 &tmp_entry)) { 2598 if (flags & VM_MAP_WIRE_HOLESOK) 2599 tmp_entry = tmp_entry->next; 2600 else { 2601 if (saved_start == start) { 2602 /* 2603 * First_entry has been deleted. 2604 */ 2605 vm_map_unlock(map); 2606 return (KERN_INVALID_ADDRESS); 2607 } 2608 end = saved_start; 2609 rv = KERN_INVALID_ADDRESS; 2610 goto done; 2611 } 2612 } 2613 if (entry == first_entry) 2614 first_entry = tmp_entry; 2615 else 2616 first_entry = NULL; 2617 entry = tmp_entry; 2618 } 2619 last_timestamp = map->timestamp; 2620 continue; 2621 } 2622 vm_map_clip_start(map, entry, start); 2623 vm_map_clip_end(map, entry, end); 2624 /* 2625 * Mark the entry in case the map lock is released. (See 2626 * above.) 2627 */ 2628 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 2629 entry->wiring_thread == NULL, 2630 ("owned map entry %p", entry)); 2631 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 2632 entry->wiring_thread = curthread; 2633 /* 2634 * Check the map for holes in the specified region. 2635 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 2636 */ 2637 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) && 2638 (entry->end < end && entry->next->start > entry->end)) { 2639 end = entry->end; 2640 rv = KERN_INVALID_ADDRESS; 2641 goto done; 2642 } 2643 /* 2644 * If system unwiring, require that the entry is system wired. 2645 */ 2646 if (!user_unwire && 2647 vm_map_entry_system_wired_count(entry) == 0) { 2648 end = entry->end; 2649 rv = KERN_INVALID_ARGUMENT; 2650 goto done; 2651 } 2652 entry = entry->next; 2653 } 2654 rv = KERN_SUCCESS; 2655 done: 2656 need_wakeup = FALSE; 2657 if (first_entry == NULL) { 2658 result = vm_map_lookup_entry(map, start, &first_entry); 2659 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 2660 first_entry = first_entry->next; 2661 else 2662 KASSERT(result, ("vm_map_unwire: lookup failed")); 2663 } 2664 for (entry = first_entry; entry->start < end; entry = entry->next) { 2665 /* 2666 * If VM_MAP_WIRE_HOLESOK was specified, an empty 2667 * space in the unwired region could have been mapped 2668 * while the map lock was dropped for draining 2669 * MAP_ENTRY_IN_TRANSITION. Moreover, another thread 2670 * could be simultaneously wiring this new mapping 2671 * entry. Detect these cases and skip any entries 2672 * marked as in transition by us. 2673 */ 2674 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 2675 entry->wiring_thread != curthread) { 2676 KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0, 2677 ("vm_map_unwire: !HOLESOK and new/changed entry")); 2678 continue; 2679 } 2680 2681 if (rv == KERN_SUCCESS && (!user_unwire || 2682 (entry->eflags & MAP_ENTRY_USER_WIRED))) { 2683 if (user_unwire) 2684 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2685 if (entry->wired_count == 1) 2686 vm_map_entry_unwire(map, entry); 2687 else 2688 entry->wired_count--; 2689 } 2690 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 2691 ("vm_map_unwire: in-transition flag missing %p", entry)); 2692 KASSERT(entry->wiring_thread == curthread, 2693 ("vm_map_unwire: alien wire %p", entry)); 2694 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 2695 entry->wiring_thread = NULL; 2696 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 2697 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 2698 need_wakeup = TRUE; 2699 } 2700 vm_map_simplify_entry(map, entry); 2701 } 2702 vm_map_unlock(map); 2703 if (need_wakeup) 2704 vm_map_wakeup(map); 2705 return (rv); 2706 } 2707 2708 /* 2709 * vm_map_wire_entry_failure: 2710 * 2711 * Handle a wiring failure on the given entry. 2712 * 2713 * The map should be locked. 2714 */ 2715 static void 2716 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry, 2717 vm_offset_t failed_addr) 2718 { 2719 2720 VM_MAP_ASSERT_LOCKED(map); 2721 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 && 2722 entry->wired_count == 1, 2723 ("vm_map_wire_entry_failure: entry %p isn't being wired", entry)); 2724 KASSERT(failed_addr < entry->end, 2725 ("vm_map_wire_entry_failure: entry %p was fully wired", entry)); 2726 2727 /* 2728 * If any pages at the start of this entry were successfully wired, 2729 * then unwire them. 2730 */ 2731 if (failed_addr > entry->start) { 2732 pmap_unwire(map->pmap, entry->start, failed_addr); 2733 vm_object_unwire(entry->object.vm_object, entry->offset, 2734 failed_addr - entry->start, PQ_ACTIVE); 2735 } 2736 2737 /* 2738 * Assign an out-of-range value to represent the failure to wire this 2739 * entry. 2740 */ 2741 entry->wired_count = -1; 2742 } 2743 2744 /* 2745 * vm_map_wire: 2746 * 2747 * Implements both kernel and user wiring. 2748 */ 2749 int 2750 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2751 int flags) 2752 { 2753 vm_map_entry_t entry, first_entry, tmp_entry; 2754 vm_offset_t faddr, saved_end, saved_start; 2755 unsigned int last_timestamp; 2756 int rv; 2757 boolean_t need_wakeup, result, user_wire; 2758 vm_prot_t prot; 2759 2760 if (start == end) 2761 return (KERN_SUCCESS); 2762 prot = 0; 2763 if (flags & VM_MAP_WIRE_WRITE) 2764 prot |= VM_PROT_WRITE; 2765 user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 2766 vm_map_lock(map); 2767 VM_MAP_RANGE_CHECK(map, start, end); 2768 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2769 if (flags & VM_MAP_WIRE_HOLESOK) 2770 first_entry = first_entry->next; 2771 else { 2772 vm_map_unlock(map); 2773 return (KERN_INVALID_ADDRESS); 2774 } 2775 } 2776 last_timestamp = map->timestamp; 2777 entry = first_entry; 2778 while (entry->start < end) { 2779 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2780 /* 2781 * We have not yet clipped the entry. 2782 */ 2783 saved_start = (start >= entry->start) ? start : 2784 entry->start; 2785 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2786 if (vm_map_unlock_and_wait(map, 0)) { 2787 /* 2788 * Allow interruption of user wiring? 2789 */ 2790 } 2791 vm_map_lock(map); 2792 if (last_timestamp + 1 != map->timestamp) { 2793 /* 2794 * Look again for the entry because the map was 2795 * modified while it was unlocked. 2796 * Specifically, the entry may have been 2797 * clipped, merged, or deleted. 2798 */ 2799 if (!vm_map_lookup_entry(map, saved_start, 2800 &tmp_entry)) { 2801 if (flags & VM_MAP_WIRE_HOLESOK) 2802 tmp_entry = tmp_entry->next; 2803 else { 2804 if (saved_start == start) { 2805 /* 2806 * first_entry has been deleted. 2807 */ 2808 vm_map_unlock(map); 2809 return (KERN_INVALID_ADDRESS); 2810 } 2811 end = saved_start; 2812 rv = KERN_INVALID_ADDRESS; 2813 goto done; 2814 } 2815 } 2816 if (entry == first_entry) 2817 first_entry = tmp_entry; 2818 else 2819 first_entry = NULL; 2820 entry = tmp_entry; 2821 } 2822 last_timestamp = map->timestamp; 2823 continue; 2824 } 2825 vm_map_clip_start(map, entry, start); 2826 vm_map_clip_end(map, entry, end); 2827 /* 2828 * Mark the entry in case the map lock is released. (See 2829 * above.) 2830 */ 2831 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 2832 entry->wiring_thread == NULL, 2833 ("owned map entry %p", entry)); 2834 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 2835 entry->wiring_thread = curthread; 2836 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 2837 || (entry->protection & prot) != prot) { 2838 entry->eflags |= MAP_ENTRY_WIRE_SKIPPED; 2839 if ((flags & VM_MAP_WIRE_HOLESOK) == 0) { 2840 end = entry->end; 2841 rv = KERN_INVALID_ADDRESS; 2842 goto done; 2843 } 2844 goto next_entry; 2845 } 2846 if (entry->wired_count == 0) { 2847 entry->wired_count++; 2848 saved_start = entry->start; 2849 saved_end = entry->end; 2850 2851 /* 2852 * Release the map lock, relying on the in-transition 2853 * mark. Mark the map busy for fork. 2854 */ 2855 vm_map_busy(map); 2856 vm_map_unlock(map); 2857 2858 faddr = saved_start; 2859 do { 2860 /* 2861 * Simulate a fault to get the page and enter 2862 * it into the physical map. 2863 */ 2864 if ((rv = vm_fault(map, faddr, VM_PROT_NONE, 2865 VM_FAULT_WIRE)) != KERN_SUCCESS) 2866 break; 2867 } while ((faddr += PAGE_SIZE) < saved_end); 2868 vm_map_lock(map); 2869 vm_map_unbusy(map); 2870 if (last_timestamp + 1 != map->timestamp) { 2871 /* 2872 * Look again for the entry because the map was 2873 * modified while it was unlocked. The entry 2874 * may have been clipped, but NOT merged or 2875 * deleted. 2876 */ 2877 result = vm_map_lookup_entry(map, saved_start, 2878 &tmp_entry); 2879 KASSERT(result, ("vm_map_wire: lookup failed")); 2880 if (entry == first_entry) 2881 first_entry = tmp_entry; 2882 else 2883 first_entry = NULL; 2884 entry = tmp_entry; 2885 while (entry->end < saved_end) { 2886 /* 2887 * In case of failure, handle entries 2888 * that were not fully wired here; 2889 * fully wired entries are handled 2890 * later. 2891 */ 2892 if (rv != KERN_SUCCESS && 2893 faddr < entry->end) 2894 vm_map_wire_entry_failure(map, 2895 entry, faddr); 2896 entry = entry->next; 2897 } 2898 } 2899 last_timestamp = map->timestamp; 2900 if (rv != KERN_SUCCESS) { 2901 vm_map_wire_entry_failure(map, entry, faddr); 2902 end = entry->end; 2903 goto done; 2904 } 2905 } else if (!user_wire || 2906 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 2907 entry->wired_count++; 2908 } 2909 /* 2910 * Check the map for holes in the specified region. 2911 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 2912 */ 2913 next_entry: 2914 if ((flags & VM_MAP_WIRE_HOLESOK) == 0 && 2915 entry->end < end && entry->next->start > entry->end) { 2916 end = entry->end; 2917 rv = KERN_INVALID_ADDRESS; 2918 goto done; 2919 } 2920 entry = entry->next; 2921 } 2922 rv = KERN_SUCCESS; 2923 done: 2924 need_wakeup = FALSE; 2925 if (first_entry == NULL) { 2926 result = vm_map_lookup_entry(map, start, &first_entry); 2927 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 2928 first_entry = first_entry->next; 2929 else 2930 KASSERT(result, ("vm_map_wire: lookup failed")); 2931 } 2932 for (entry = first_entry; entry->start < end; entry = entry->next) { 2933 /* 2934 * If VM_MAP_WIRE_HOLESOK was specified, an empty 2935 * space in the unwired region could have been mapped 2936 * while the map lock was dropped for faulting in the 2937 * pages or draining MAP_ENTRY_IN_TRANSITION. 2938 * Moreover, another thread could be simultaneously 2939 * wiring this new mapping entry. Detect these cases 2940 * and skip any entries marked as in transition not by us. 2941 */ 2942 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 2943 entry->wiring_thread != curthread) { 2944 KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0, 2945 ("vm_map_wire: !HOLESOK and new/changed entry")); 2946 continue; 2947 } 2948 2949 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) 2950 goto next_entry_done; 2951 2952 if (rv == KERN_SUCCESS) { 2953 if (user_wire) 2954 entry->eflags |= MAP_ENTRY_USER_WIRED; 2955 } else if (entry->wired_count == -1) { 2956 /* 2957 * Wiring failed on this entry. Thus, unwiring is 2958 * unnecessary. 2959 */ 2960 entry->wired_count = 0; 2961 } else if (!user_wire || 2962 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 2963 /* 2964 * Undo the wiring. Wiring succeeded on this entry 2965 * but failed on a later entry. 2966 */ 2967 if (entry->wired_count == 1) 2968 vm_map_entry_unwire(map, entry); 2969 else 2970 entry->wired_count--; 2971 } 2972 next_entry_done: 2973 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 2974 ("vm_map_wire: in-transition flag missing %p", entry)); 2975 KASSERT(entry->wiring_thread == curthread, 2976 ("vm_map_wire: alien wire %p", entry)); 2977 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION | 2978 MAP_ENTRY_WIRE_SKIPPED); 2979 entry->wiring_thread = NULL; 2980 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 2981 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 2982 need_wakeup = TRUE; 2983 } 2984 vm_map_simplify_entry(map, entry); 2985 } 2986 vm_map_unlock(map); 2987 if (need_wakeup) 2988 vm_map_wakeup(map); 2989 return (rv); 2990 } 2991 2992 /* 2993 * vm_map_sync 2994 * 2995 * Push any dirty cached pages in the address range to their pager. 2996 * If syncio is TRUE, dirty pages are written synchronously. 2997 * If invalidate is TRUE, any cached pages are freed as well. 2998 * 2999 * If the size of the region from start to end is zero, we are 3000 * supposed to flush all modified pages within the region containing 3001 * start. Unfortunately, a region can be split or coalesced with 3002 * neighboring regions, making it difficult to determine what the 3003 * original region was. Therefore, we approximate this requirement by 3004 * flushing the current region containing start. 3005 * 3006 * Returns an error if any part of the specified range is not mapped. 3007 */ 3008 int 3009 vm_map_sync( 3010 vm_map_t map, 3011 vm_offset_t start, 3012 vm_offset_t end, 3013 boolean_t syncio, 3014 boolean_t invalidate) 3015 { 3016 vm_map_entry_t current; 3017 vm_map_entry_t entry; 3018 vm_size_t size; 3019 vm_object_t object; 3020 vm_ooffset_t offset; 3021 unsigned int last_timestamp; 3022 boolean_t failed; 3023 3024 vm_map_lock_read(map); 3025 VM_MAP_RANGE_CHECK(map, start, end); 3026 if (!vm_map_lookup_entry(map, start, &entry)) { 3027 vm_map_unlock_read(map); 3028 return (KERN_INVALID_ADDRESS); 3029 } else if (start == end) { 3030 start = entry->start; 3031 end = entry->end; 3032 } 3033 /* 3034 * Make a first pass to check for user-wired memory and holes. 3035 */ 3036 for (current = entry; current->start < end; current = current->next) { 3037 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) { 3038 vm_map_unlock_read(map); 3039 return (KERN_INVALID_ARGUMENT); 3040 } 3041 if (end > current->end && 3042 current->end != current->next->start) { 3043 vm_map_unlock_read(map); 3044 return (KERN_INVALID_ADDRESS); 3045 } 3046 } 3047 3048 if (invalidate) 3049 pmap_remove(map->pmap, start, end); 3050 failed = FALSE; 3051 3052 /* 3053 * Make a second pass, cleaning/uncaching pages from the indicated 3054 * objects as we go. 3055 */ 3056 for (current = entry; current->start < end;) { 3057 offset = current->offset + (start - current->start); 3058 size = (end <= current->end ? end : current->end) - start; 3059 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 3060 vm_map_t smap; 3061 vm_map_entry_t tentry; 3062 vm_size_t tsize; 3063 3064 smap = current->object.sub_map; 3065 vm_map_lock_read(smap); 3066 (void) vm_map_lookup_entry(smap, offset, &tentry); 3067 tsize = tentry->end - offset; 3068 if (tsize < size) 3069 size = tsize; 3070 object = tentry->object.vm_object; 3071 offset = tentry->offset + (offset - tentry->start); 3072 vm_map_unlock_read(smap); 3073 } else { 3074 object = current->object.vm_object; 3075 } 3076 vm_object_reference(object); 3077 last_timestamp = map->timestamp; 3078 vm_map_unlock_read(map); 3079 if (!vm_object_sync(object, offset, size, syncio, invalidate)) 3080 failed = TRUE; 3081 start += size; 3082 vm_object_deallocate(object); 3083 vm_map_lock_read(map); 3084 if (last_timestamp == map->timestamp || 3085 !vm_map_lookup_entry(map, start, ¤t)) 3086 current = current->next; 3087 } 3088 3089 vm_map_unlock_read(map); 3090 return (failed ? KERN_FAILURE : KERN_SUCCESS); 3091 } 3092 3093 /* 3094 * vm_map_entry_unwire: [ internal use only ] 3095 * 3096 * Make the region specified by this entry pageable. 3097 * 3098 * The map in question should be locked. 3099 * [This is the reason for this routine's existence.] 3100 */ 3101 static void 3102 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 3103 { 3104 3105 VM_MAP_ASSERT_LOCKED(map); 3106 KASSERT(entry->wired_count > 0, 3107 ("vm_map_entry_unwire: entry %p isn't wired", entry)); 3108 pmap_unwire(map->pmap, entry->start, entry->end); 3109 vm_object_unwire(entry->object.vm_object, entry->offset, entry->end - 3110 entry->start, PQ_ACTIVE); 3111 entry->wired_count = 0; 3112 } 3113 3114 static void 3115 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map) 3116 { 3117 3118 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) 3119 vm_object_deallocate(entry->object.vm_object); 3120 uma_zfree(system_map ? kmapentzone : mapentzone, entry); 3121 } 3122 3123 /* 3124 * vm_map_entry_delete: [ internal use only ] 3125 * 3126 * Deallocate the given entry from the target map. 3127 */ 3128 static void 3129 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry) 3130 { 3131 vm_object_t object; 3132 vm_pindex_t offidxstart, offidxend, count, size1; 3133 vm_size_t size; 3134 3135 vm_map_entry_unlink(map, entry); 3136 object = entry->object.vm_object; 3137 3138 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) { 3139 MPASS(entry->cred == NULL); 3140 MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0); 3141 MPASS(object == NULL); 3142 vm_map_entry_deallocate(entry, map->system_map); 3143 return; 3144 } 3145 3146 size = entry->end - entry->start; 3147 map->size -= size; 3148 3149 if (entry->cred != NULL) { 3150 swap_release_by_cred(size, entry->cred); 3151 crfree(entry->cred); 3152 } 3153 3154 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 && 3155 (object != NULL)) { 3156 KASSERT(entry->cred == NULL || object->cred == NULL || 3157 (entry->eflags & MAP_ENTRY_NEEDS_COPY), 3158 ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry)); 3159 count = atop(size); 3160 offidxstart = OFF_TO_IDX(entry->offset); 3161 offidxend = offidxstart + count; 3162 VM_OBJECT_WLOCK(object); 3163 if (object->ref_count != 1 && ((object->flags & (OBJ_NOSPLIT | 3164 OBJ_ONEMAPPING)) == OBJ_ONEMAPPING || 3165 object == kernel_object)) { 3166 vm_object_collapse(object); 3167 3168 /* 3169 * The option OBJPR_NOTMAPPED can be passed here 3170 * because vm_map_delete() already performed 3171 * pmap_remove() on the only mapping to this range 3172 * of pages. 3173 */ 3174 vm_object_page_remove(object, offidxstart, offidxend, 3175 OBJPR_NOTMAPPED); 3176 if (object->type == OBJT_SWAP) 3177 swap_pager_freespace(object, offidxstart, 3178 count); 3179 if (offidxend >= object->size && 3180 offidxstart < object->size) { 3181 size1 = object->size; 3182 object->size = offidxstart; 3183 if (object->cred != NULL) { 3184 size1 -= object->size; 3185 KASSERT(object->charge >= ptoa(size1), 3186 ("object %p charge < 0", object)); 3187 swap_release_by_cred(ptoa(size1), 3188 object->cred); 3189 object->charge -= ptoa(size1); 3190 } 3191 } 3192 } 3193 VM_OBJECT_WUNLOCK(object); 3194 } else 3195 entry->object.vm_object = NULL; 3196 if (map->system_map) 3197 vm_map_entry_deallocate(entry, TRUE); 3198 else { 3199 entry->next = curthread->td_map_def_user; 3200 curthread->td_map_def_user = entry; 3201 } 3202 } 3203 3204 /* 3205 * vm_map_delete: [ internal use only ] 3206 * 3207 * Deallocates the given address range from the target 3208 * map. 3209 */ 3210 int 3211 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end) 3212 { 3213 vm_map_entry_t entry; 3214 vm_map_entry_t first_entry; 3215 3216 VM_MAP_ASSERT_LOCKED(map); 3217 if (start == end) 3218 return (KERN_SUCCESS); 3219 3220 /* 3221 * Find the start of the region, and clip it 3222 */ 3223 if (!vm_map_lookup_entry(map, start, &first_entry)) 3224 entry = first_entry->next; 3225 else { 3226 entry = first_entry; 3227 vm_map_clip_start(map, entry, start); 3228 } 3229 3230 /* 3231 * Step through all entries in this region 3232 */ 3233 while (entry->start < end) { 3234 vm_map_entry_t next; 3235 3236 /* 3237 * Wait for wiring or unwiring of an entry to complete. 3238 * Also wait for any system wirings to disappear on 3239 * user maps. 3240 */ 3241 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 || 3242 (vm_map_pmap(map) != kernel_pmap && 3243 vm_map_entry_system_wired_count(entry) != 0)) { 3244 unsigned int last_timestamp; 3245 vm_offset_t saved_start; 3246 vm_map_entry_t tmp_entry; 3247 3248 saved_start = entry->start; 3249 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 3250 last_timestamp = map->timestamp; 3251 (void) vm_map_unlock_and_wait(map, 0); 3252 vm_map_lock(map); 3253 if (last_timestamp + 1 != map->timestamp) { 3254 /* 3255 * Look again for the entry because the map was 3256 * modified while it was unlocked. 3257 * Specifically, the entry may have been 3258 * clipped, merged, or deleted. 3259 */ 3260 if (!vm_map_lookup_entry(map, saved_start, 3261 &tmp_entry)) 3262 entry = tmp_entry->next; 3263 else { 3264 entry = tmp_entry; 3265 vm_map_clip_start(map, entry, 3266 saved_start); 3267 } 3268 } 3269 continue; 3270 } 3271 vm_map_clip_end(map, entry, end); 3272 3273 next = entry->next; 3274 3275 /* 3276 * Unwire before removing addresses from the pmap; otherwise, 3277 * unwiring will put the entries back in the pmap. 3278 */ 3279 if (entry->wired_count != 0) 3280 vm_map_entry_unwire(map, entry); 3281 3282 /* 3283 * Remove mappings for the pages, but only if the 3284 * mappings could exist. For instance, it does not 3285 * make sense to call pmap_remove() for guard entries. 3286 */ 3287 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || 3288 entry->object.vm_object != NULL) 3289 pmap_remove(map->pmap, entry->start, entry->end); 3290 3291 if (entry->end == map->anon_loc) 3292 map->anon_loc = entry->start; 3293 3294 /* 3295 * Delete the entry only after removing all pmap 3296 * entries pointing to its pages. (Otherwise, its 3297 * page frames may be reallocated, and any modify bits 3298 * will be set in the wrong object!) 3299 */ 3300 vm_map_entry_delete(map, entry); 3301 entry = next; 3302 } 3303 return (KERN_SUCCESS); 3304 } 3305 3306 /* 3307 * vm_map_remove: 3308 * 3309 * Remove the given address range from the target map. 3310 * This is the exported form of vm_map_delete. 3311 */ 3312 int 3313 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 3314 { 3315 int result; 3316 3317 vm_map_lock(map); 3318 VM_MAP_RANGE_CHECK(map, start, end); 3319 result = vm_map_delete(map, start, end); 3320 vm_map_unlock(map); 3321 return (result); 3322 } 3323 3324 /* 3325 * vm_map_check_protection: 3326 * 3327 * Assert that the target map allows the specified privilege on the 3328 * entire address region given. The entire region must be allocated. 3329 * 3330 * WARNING! This code does not and should not check whether the 3331 * contents of the region is accessible. For example a smaller file 3332 * might be mapped into a larger address space. 3333 * 3334 * NOTE! This code is also called by munmap(). 3335 * 3336 * The map must be locked. A read lock is sufficient. 3337 */ 3338 boolean_t 3339 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 3340 vm_prot_t protection) 3341 { 3342 vm_map_entry_t entry; 3343 vm_map_entry_t tmp_entry; 3344 3345 if (!vm_map_lookup_entry(map, start, &tmp_entry)) 3346 return (FALSE); 3347 entry = tmp_entry; 3348 3349 while (start < end) { 3350 /* 3351 * No holes allowed! 3352 */ 3353 if (start < entry->start) 3354 return (FALSE); 3355 /* 3356 * Check protection associated with entry. 3357 */ 3358 if ((entry->protection & protection) != protection) 3359 return (FALSE); 3360 /* go to next entry */ 3361 start = entry->end; 3362 entry = entry->next; 3363 } 3364 return (TRUE); 3365 } 3366 3367 /* 3368 * vm_map_copy_entry: 3369 * 3370 * Copies the contents of the source entry to the destination 3371 * entry. The entries *must* be aligned properly. 3372 */ 3373 static void 3374 vm_map_copy_entry( 3375 vm_map_t src_map, 3376 vm_map_t dst_map, 3377 vm_map_entry_t src_entry, 3378 vm_map_entry_t dst_entry, 3379 vm_ooffset_t *fork_charge) 3380 { 3381 vm_object_t src_object; 3382 vm_map_entry_t fake_entry; 3383 vm_offset_t size; 3384 struct ucred *cred; 3385 int charged; 3386 3387 VM_MAP_ASSERT_LOCKED(dst_map); 3388 3389 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP) 3390 return; 3391 3392 if (src_entry->wired_count == 0 || 3393 (src_entry->protection & VM_PROT_WRITE) == 0) { 3394 /* 3395 * If the source entry is marked needs_copy, it is already 3396 * write-protected. 3397 */ 3398 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 && 3399 (src_entry->protection & VM_PROT_WRITE) != 0) { 3400 pmap_protect(src_map->pmap, 3401 src_entry->start, 3402 src_entry->end, 3403 src_entry->protection & ~VM_PROT_WRITE); 3404 } 3405 3406 /* 3407 * Make a copy of the object. 3408 */ 3409 size = src_entry->end - src_entry->start; 3410 if ((src_object = src_entry->object.vm_object) != NULL) { 3411 VM_OBJECT_WLOCK(src_object); 3412 charged = ENTRY_CHARGED(src_entry); 3413 if (src_object->handle == NULL && 3414 (src_object->type == OBJT_DEFAULT || 3415 src_object->type == OBJT_SWAP)) { 3416 vm_object_collapse(src_object); 3417 if ((src_object->flags & (OBJ_NOSPLIT | 3418 OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) { 3419 vm_object_split(src_entry); 3420 src_object = 3421 src_entry->object.vm_object; 3422 } 3423 } 3424 vm_object_reference_locked(src_object); 3425 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 3426 if (src_entry->cred != NULL && 3427 !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 3428 KASSERT(src_object->cred == NULL, 3429 ("OVERCOMMIT: vm_map_copy_entry: cred %p", 3430 src_object)); 3431 src_object->cred = src_entry->cred; 3432 src_object->charge = size; 3433 } 3434 VM_OBJECT_WUNLOCK(src_object); 3435 dst_entry->object.vm_object = src_object; 3436 if (charged) { 3437 cred = curthread->td_ucred; 3438 crhold(cred); 3439 dst_entry->cred = cred; 3440 *fork_charge += size; 3441 if (!(src_entry->eflags & 3442 MAP_ENTRY_NEEDS_COPY)) { 3443 crhold(cred); 3444 src_entry->cred = cred; 3445 *fork_charge += size; 3446 } 3447 } 3448 src_entry->eflags |= MAP_ENTRY_COW | 3449 MAP_ENTRY_NEEDS_COPY; 3450 dst_entry->eflags |= MAP_ENTRY_COW | 3451 MAP_ENTRY_NEEDS_COPY; 3452 dst_entry->offset = src_entry->offset; 3453 if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) { 3454 /* 3455 * MAP_ENTRY_VN_WRITECNT cannot 3456 * indicate write reference from 3457 * src_entry, since the entry is 3458 * marked as needs copy. Allocate a 3459 * fake entry that is used to 3460 * decrement object->un_pager.vnp.writecount 3461 * at the appropriate time. Attach 3462 * fake_entry to the deferred list. 3463 */ 3464 fake_entry = vm_map_entry_create(dst_map); 3465 fake_entry->eflags = MAP_ENTRY_VN_WRITECNT; 3466 src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT; 3467 vm_object_reference(src_object); 3468 fake_entry->object.vm_object = src_object; 3469 fake_entry->start = src_entry->start; 3470 fake_entry->end = src_entry->end; 3471 fake_entry->next = curthread->td_map_def_user; 3472 curthread->td_map_def_user = fake_entry; 3473 } 3474 3475 pmap_copy(dst_map->pmap, src_map->pmap, 3476 dst_entry->start, dst_entry->end - dst_entry->start, 3477 src_entry->start); 3478 } else { 3479 dst_entry->object.vm_object = NULL; 3480 dst_entry->offset = 0; 3481 if (src_entry->cred != NULL) { 3482 dst_entry->cred = curthread->td_ucred; 3483 crhold(dst_entry->cred); 3484 *fork_charge += size; 3485 } 3486 } 3487 } else { 3488 /* 3489 * We don't want to make writeable wired pages copy-on-write. 3490 * Immediately copy these pages into the new map by simulating 3491 * page faults. The new pages are pageable. 3492 */ 3493 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry, 3494 fork_charge); 3495 } 3496 } 3497 3498 /* 3499 * vmspace_map_entry_forked: 3500 * Update the newly-forked vmspace each time a map entry is inherited 3501 * or copied. The values for vm_dsize and vm_tsize are approximate 3502 * (and mostly-obsolete ideas in the face of mmap(2) et al.) 3503 */ 3504 static void 3505 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2, 3506 vm_map_entry_t entry) 3507 { 3508 vm_size_t entrysize; 3509 vm_offset_t newend; 3510 3511 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) 3512 return; 3513 entrysize = entry->end - entry->start; 3514 vm2->vm_map.size += entrysize; 3515 if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) { 3516 vm2->vm_ssize += btoc(entrysize); 3517 } else if (entry->start >= (vm_offset_t)vm1->vm_daddr && 3518 entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) { 3519 newend = MIN(entry->end, 3520 (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)); 3521 vm2->vm_dsize += btoc(newend - entry->start); 3522 } else if (entry->start >= (vm_offset_t)vm1->vm_taddr && 3523 entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) { 3524 newend = MIN(entry->end, 3525 (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)); 3526 vm2->vm_tsize += btoc(newend - entry->start); 3527 } 3528 } 3529 3530 /* 3531 * vmspace_fork: 3532 * Create a new process vmspace structure and vm_map 3533 * based on those of an existing process. The new map 3534 * is based on the old map, according to the inheritance 3535 * values on the regions in that map. 3536 * 3537 * XXX It might be worth coalescing the entries added to the new vmspace. 3538 * 3539 * The source map must not be locked. 3540 */ 3541 struct vmspace * 3542 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge) 3543 { 3544 struct vmspace *vm2; 3545 vm_map_t new_map, old_map; 3546 vm_map_entry_t new_entry, old_entry; 3547 vm_object_t object; 3548 int error, locked; 3549 vm_inherit_t inh; 3550 3551 old_map = &vm1->vm_map; 3552 /* Copy immutable fields of vm1 to vm2. */ 3553 vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map), 3554 pmap_pinit); 3555 if (vm2 == NULL) 3556 return (NULL); 3557 3558 vm2->vm_taddr = vm1->vm_taddr; 3559 vm2->vm_daddr = vm1->vm_daddr; 3560 vm2->vm_maxsaddr = vm1->vm_maxsaddr; 3561 vm_map_lock(old_map); 3562 if (old_map->busy) 3563 vm_map_wait_busy(old_map); 3564 new_map = &vm2->vm_map; 3565 locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */ 3566 KASSERT(locked, ("vmspace_fork: lock failed")); 3567 3568 error = pmap_vmspace_copy(new_map->pmap, old_map->pmap); 3569 if (error != 0) { 3570 sx_xunlock(&old_map->lock); 3571 sx_xunlock(&new_map->lock); 3572 vm_map_process_deferred(); 3573 vmspace_free(vm2); 3574 return (NULL); 3575 } 3576 3577 new_map->anon_loc = old_map->anon_loc; 3578 3579 old_entry = old_map->header.next; 3580 3581 while (old_entry != &old_map->header) { 3582 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) 3583 panic("vm_map_fork: encountered a submap"); 3584 3585 inh = old_entry->inheritance; 3586 if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 && 3587 inh != VM_INHERIT_NONE) 3588 inh = VM_INHERIT_COPY; 3589 3590 switch (inh) { 3591 case VM_INHERIT_NONE: 3592 break; 3593 3594 case VM_INHERIT_SHARE: 3595 /* 3596 * Clone the entry, creating the shared object if necessary. 3597 */ 3598 object = old_entry->object.vm_object; 3599 if (object == NULL) { 3600 object = vm_object_allocate(OBJT_DEFAULT, 3601 atop(old_entry->end - old_entry->start)); 3602 old_entry->object.vm_object = object; 3603 old_entry->offset = 0; 3604 if (old_entry->cred != NULL) { 3605 object->cred = old_entry->cred; 3606 object->charge = old_entry->end - 3607 old_entry->start; 3608 old_entry->cred = NULL; 3609 } 3610 } 3611 3612 /* 3613 * Add the reference before calling vm_object_shadow 3614 * to insure that a shadow object is created. 3615 */ 3616 vm_object_reference(object); 3617 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3618 vm_object_shadow(&old_entry->object.vm_object, 3619 &old_entry->offset, 3620 old_entry->end - old_entry->start); 3621 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 3622 /* Transfer the second reference too. */ 3623 vm_object_reference( 3624 old_entry->object.vm_object); 3625 3626 /* 3627 * As in vm_map_simplify_entry(), the 3628 * vnode lock will not be acquired in 3629 * this call to vm_object_deallocate(). 3630 */ 3631 vm_object_deallocate(object); 3632 object = old_entry->object.vm_object; 3633 } 3634 VM_OBJECT_WLOCK(object); 3635 vm_object_clear_flag(object, OBJ_ONEMAPPING); 3636 if (old_entry->cred != NULL) { 3637 KASSERT(object->cred == NULL, ("vmspace_fork both cred")); 3638 object->cred = old_entry->cred; 3639 object->charge = old_entry->end - old_entry->start; 3640 old_entry->cred = NULL; 3641 } 3642 3643 /* 3644 * Assert the correct state of the vnode 3645 * v_writecount while the object is locked, to 3646 * not relock it later for the assertion 3647 * correctness. 3648 */ 3649 if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT && 3650 object->type == OBJT_VNODE) { 3651 KASSERT(((struct vnode *)object->handle)-> 3652 v_writecount > 0, 3653 ("vmspace_fork: v_writecount %p", object)); 3654 KASSERT(object->un_pager.vnp.writemappings > 0, 3655 ("vmspace_fork: vnp.writecount %p", 3656 object)); 3657 } 3658 VM_OBJECT_WUNLOCK(object); 3659 3660 /* 3661 * Clone the entry, referencing the shared object. 3662 */ 3663 new_entry = vm_map_entry_create(new_map); 3664 *new_entry = *old_entry; 3665 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 3666 MAP_ENTRY_IN_TRANSITION); 3667 new_entry->wiring_thread = NULL; 3668 new_entry->wired_count = 0; 3669 if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) { 3670 vnode_pager_update_writecount(object, 3671 new_entry->start, new_entry->end); 3672 } 3673 3674 /* 3675 * Insert the entry into the new map -- we know we're 3676 * inserting at the end of the new map. 3677 */ 3678 vm_map_entry_link(new_map, new_map->header.prev, 3679 new_entry); 3680 vmspace_map_entry_forked(vm1, vm2, new_entry); 3681 3682 /* 3683 * Update the physical map 3684 */ 3685 pmap_copy(new_map->pmap, old_map->pmap, 3686 new_entry->start, 3687 (old_entry->end - old_entry->start), 3688 old_entry->start); 3689 break; 3690 3691 case VM_INHERIT_COPY: 3692 /* 3693 * Clone the entry and link into the map. 3694 */ 3695 new_entry = vm_map_entry_create(new_map); 3696 *new_entry = *old_entry; 3697 /* 3698 * Copied entry is COW over the old object. 3699 */ 3700 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 3701 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT); 3702 new_entry->wiring_thread = NULL; 3703 new_entry->wired_count = 0; 3704 new_entry->object.vm_object = NULL; 3705 new_entry->cred = NULL; 3706 vm_map_entry_link(new_map, new_map->header.prev, 3707 new_entry); 3708 vmspace_map_entry_forked(vm1, vm2, new_entry); 3709 vm_map_copy_entry(old_map, new_map, old_entry, 3710 new_entry, fork_charge); 3711 break; 3712 3713 case VM_INHERIT_ZERO: 3714 /* 3715 * Create a new anonymous mapping entry modelled from 3716 * the old one. 3717 */ 3718 new_entry = vm_map_entry_create(new_map); 3719 memset(new_entry, 0, sizeof(*new_entry)); 3720 3721 new_entry->start = old_entry->start; 3722 new_entry->end = old_entry->end; 3723 new_entry->eflags = old_entry->eflags & 3724 ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION | 3725 MAP_ENTRY_VN_WRITECNT); 3726 new_entry->protection = old_entry->protection; 3727 new_entry->max_protection = old_entry->max_protection; 3728 new_entry->inheritance = VM_INHERIT_ZERO; 3729 3730 vm_map_entry_link(new_map, new_map->header.prev, 3731 new_entry); 3732 vmspace_map_entry_forked(vm1, vm2, new_entry); 3733 3734 new_entry->cred = curthread->td_ucred; 3735 crhold(new_entry->cred); 3736 *fork_charge += (new_entry->end - new_entry->start); 3737 3738 break; 3739 } 3740 old_entry = old_entry->next; 3741 } 3742 /* 3743 * Use inlined vm_map_unlock() to postpone handling the deferred 3744 * map entries, which cannot be done until both old_map and 3745 * new_map locks are released. 3746 */ 3747 sx_xunlock(&old_map->lock); 3748 sx_xunlock(&new_map->lock); 3749 vm_map_process_deferred(); 3750 3751 return (vm2); 3752 } 3753 3754 /* 3755 * Create a process's stack for exec_new_vmspace(). This function is never 3756 * asked to wire the newly created stack. 3757 */ 3758 int 3759 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 3760 vm_prot_t prot, vm_prot_t max, int cow) 3761 { 3762 vm_size_t growsize, init_ssize; 3763 rlim_t vmemlim; 3764 int rv; 3765 3766 MPASS((map->flags & MAP_WIREFUTURE) == 0); 3767 growsize = sgrowsiz; 3768 init_ssize = (max_ssize < growsize) ? max_ssize : growsize; 3769 vm_map_lock(map); 3770 vmemlim = lim_cur(curthread, RLIMIT_VMEM); 3771 /* If we would blow our VMEM resource limit, no go */ 3772 if (map->size + init_ssize > vmemlim) { 3773 rv = KERN_NO_SPACE; 3774 goto out; 3775 } 3776 rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot, 3777 max, cow); 3778 out: 3779 vm_map_unlock(map); 3780 return (rv); 3781 } 3782 3783 static int stack_guard_page = 1; 3784 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN, 3785 &stack_guard_page, 0, 3786 "Specifies the number of guard pages for a stack that grows"); 3787 3788 static int 3789 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 3790 vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow) 3791 { 3792 vm_map_entry_t new_entry, prev_entry; 3793 vm_offset_t bot, gap_bot, gap_top, top; 3794 vm_size_t init_ssize, sgp; 3795 int orient, rv; 3796 3797 /* 3798 * The stack orientation is piggybacked with the cow argument. 3799 * Extract it into orient and mask the cow argument so that we 3800 * don't pass it around further. 3801 */ 3802 orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP); 3803 KASSERT(orient != 0, ("No stack grow direction")); 3804 KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP), 3805 ("bi-dir stack")); 3806 3807 if (addrbos < vm_map_min(map) || 3808 addrbos + max_ssize > vm_map_max(map) || 3809 addrbos + max_ssize <= addrbos) 3810 return (KERN_INVALID_ADDRESS); 3811 sgp = (vm_size_t)stack_guard_page * PAGE_SIZE; 3812 if (sgp >= max_ssize) 3813 return (KERN_INVALID_ARGUMENT); 3814 3815 init_ssize = growsize; 3816 if (max_ssize < init_ssize + sgp) 3817 init_ssize = max_ssize - sgp; 3818 3819 /* If addr is already mapped, no go */ 3820 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) 3821 return (KERN_NO_SPACE); 3822 3823 /* 3824 * If we can't accommodate max_ssize in the current mapping, no go. 3825 */ 3826 if (prev_entry->next->start < addrbos + max_ssize) 3827 return (KERN_NO_SPACE); 3828 3829 /* 3830 * We initially map a stack of only init_ssize. We will grow as 3831 * needed later. Depending on the orientation of the stack (i.e. 3832 * the grow direction) we either map at the top of the range, the 3833 * bottom of the range or in the middle. 3834 * 3835 * Note: we would normally expect prot and max to be VM_PROT_ALL, 3836 * and cow to be 0. Possibly we should eliminate these as input 3837 * parameters, and just pass these values here in the insert call. 3838 */ 3839 if (orient == MAP_STACK_GROWS_DOWN) { 3840 bot = addrbos + max_ssize - init_ssize; 3841 top = bot + init_ssize; 3842 gap_bot = addrbos; 3843 gap_top = bot; 3844 } else /* if (orient == MAP_STACK_GROWS_UP) */ { 3845 bot = addrbos; 3846 top = bot + init_ssize; 3847 gap_bot = top; 3848 gap_top = addrbos + max_ssize; 3849 } 3850 rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow); 3851 if (rv != KERN_SUCCESS) 3852 return (rv); 3853 new_entry = prev_entry->next; 3854 KASSERT(new_entry->end == top || new_entry->start == bot, 3855 ("Bad entry start/end for new stack entry")); 3856 KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 || 3857 (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0, 3858 ("new entry lacks MAP_ENTRY_GROWS_DOWN")); 3859 KASSERT((orient & MAP_STACK_GROWS_UP) == 0 || 3860 (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0, 3861 ("new entry lacks MAP_ENTRY_GROWS_UP")); 3862 rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE, 3863 VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ? 3864 MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP)); 3865 if (rv != KERN_SUCCESS) 3866 (void)vm_map_delete(map, bot, top); 3867 return (rv); 3868 } 3869 3870 /* 3871 * Attempts to grow a vm stack entry. Returns KERN_SUCCESS if we 3872 * successfully grow the stack. 3873 */ 3874 static int 3875 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry) 3876 { 3877 vm_map_entry_t stack_entry; 3878 struct proc *p; 3879 struct vmspace *vm; 3880 struct ucred *cred; 3881 vm_offset_t gap_end, gap_start, grow_start; 3882 size_t grow_amount, guard, max_grow; 3883 rlim_t lmemlim, stacklim, vmemlim; 3884 int rv, rv1; 3885 bool gap_deleted, grow_down, is_procstack; 3886 #ifdef notyet 3887 uint64_t limit; 3888 #endif 3889 #ifdef RACCT 3890 int error; 3891 #endif 3892 3893 p = curproc; 3894 vm = p->p_vmspace; 3895 3896 /* 3897 * Disallow stack growth when the access is performed by a 3898 * debugger or AIO daemon. The reason is that the wrong 3899 * resource limits are applied. 3900 */ 3901 if (map != &p->p_vmspace->vm_map || p->p_textvp == NULL) 3902 return (KERN_FAILURE); 3903 3904 MPASS(!map->system_map); 3905 3906 guard = stack_guard_page * PAGE_SIZE; 3907 lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK); 3908 stacklim = lim_cur(curthread, RLIMIT_STACK); 3909 vmemlim = lim_cur(curthread, RLIMIT_VMEM); 3910 retry: 3911 /* If addr is not in a hole for a stack grow area, no need to grow. */ 3912 if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry)) 3913 return (KERN_FAILURE); 3914 if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0) 3915 return (KERN_SUCCESS); 3916 if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) { 3917 stack_entry = gap_entry->next; 3918 if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 || 3919 stack_entry->start != gap_entry->end) 3920 return (KERN_FAILURE); 3921 grow_amount = round_page(stack_entry->start - addr); 3922 grow_down = true; 3923 } else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) { 3924 stack_entry = gap_entry->prev; 3925 if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 || 3926 stack_entry->end != gap_entry->start) 3927 return (KERN_FAILURE); 3928 grow_amount = round_page(addr + 1 - stack_entry->end); 3929 grow_down = false; 3930 } else { 3931 return (KERN_FAILURE); 3932 } 3933 max_grow = gap_entry->end - gap_entry->start; 3934 if (guard > max_grow) 3935 return (KERN_NO_SPACE); 3936 max_grow -= guard; 3937 if (grow_amount > max_grow) 3938 return (KERN_NO_SPACE); 3939 3940 /* 3941 * If this is the main process stack, see if we're over the stack 3942 * limit. 3943 */ 3944 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr && 3945 addr < (vm_offset_t)p->p_sysent->sv_usrstack; 3946 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) 3947 return (KERN_NO_SPACE); 3948 3949 #ifdef RACCT 3950 if (racct_enable) { 3951 PROC_LOCK(p); 3952 if (is_procstack && racct_set(p, RACCT_STACK, 3953 ctob(vm->vm_ssize) + grow_amount)) { 3954 PROC_UNLOCK(p); 3955 return (KERN_NO_SPACE); 3956 } 3957 PROC_UNLOCK(p); 3958 } 3959 #endif 3960 3961 grow_amount = roundup(grow_amount, sgrowsiz); 3962 if (grow_amount > max_grow) 3963 grow_amount = max_grow; 3964 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 3965 grow_amount = trunc_page((vm_size_t)stacklim) - 3966 ctob(vm->vm_ssize); 3967 } 3968 3969 #ifdef notyet 3970 PROC_LOCK(p); 3971 limit = racct_get_available(p, RACCT_STACK); 3972 PROC_UNLOCK(p); 3973 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit)) 3974 grow_amount = limit - ctob(vm->vm_ssize); 3975 #endif 3976 3977 if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) { 3978 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) { 3979 rv = KERN_NO_SPACE; 3980 goto out; 3981 } 3982 #ifdef RACCT 3983 if (racct_enable) { 3984 PROC_LOCK(p); 3985 if (racct_set(p, RACCT_MEMLOCK, 3986 ptoa(pmap_wired_count(map->pmap)) + grow_amount)) { 3987 PROC_UNLOCK(p); 3988 rv = KERN_NO_SPACE; 3989 goto out; 3990 } 3991 PROC_UNLOCK(p); 3992 } 3993 #endif 3994 } 3995 3996 /* If we would blow our VMEM resource limit, no go */ 3997 if (map->size + grow_amount > vmemlim) { 3998 rv = KERN_NO_SPACE; 3999 goto out; 4000 } 4001 #ifdef RACCT 4002 if (racct_enable) { 4003 PROC_LOCK(p); 4004 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) { 4005 PROC_UNLOCK(p); 4006 rv = KERN_NO_SPACE; 4007 goto out; 4008 } 4009 PROC_UNLOCK(p); 4010 } 4011 #endif 4012 4013 if (vm_map_lock_upgrade(map)) { 4014 gap_entry = NULL; 4015 vm_map_lock_read(map); 4016 goto retry; 4017 } 4018 4019 if (grow_down) { 4020 grow_start = gap_entry->end - grow_amount; 4021 if (gap_entry->start + grow_amount == gap_entry->end) { 4022 gap_start = gap_entry->start; 4023 gap_end = gap_entry->end; 4024 vm_map_entry_delete(map, gap_entry); 4025 gap_deleted = true; 4026 } else { 4027 MPASS(gap_entry->start < gap_entry->end - grow_amount); 4028 gap_entry->end -= grow_amount; 4029 vm_map_entry_resize_free(map, gap_entry); 4030 gap_deleted = false; 4031 } 4032 rv = vm_map_insert(map, NULL, 0, grow_start, 4033 grow_start + grow_amount, 4034 stack_entry->protection, stack_entry->max_protection, 4035 MAP_STACK_GROWS_DOWN); 4036 if (rv != KERN_SUCCESS) { 4037 if (gap_deleted) { 4038 rv1 = vm_map_insert(map, NULL, 0, gap_start, 4039 gap_end, VM_PROT_NONE, VM_PROT_NONE, 4040 MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN); 4041 MPASS(rv1 == KERN_SUCCESS); 4042 } else { 4043 gap_entry->end += grow_amount; 4044 vm_map_entry_resize_free(map, gap_entry); 4045 } 4046 } 4047 } else { 4048 grow_start = stack_entry->end; 4049 cred = stack_entry->cred; 4050 if (cred == NULL && stack_entry->object.vm_object != NULL) 4051 cred = stack_entry->object.vm_object->cred; 4052 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred)) 4053 rv = KERN_NO_SPACE; 4054 /* Grow the underlying object if applicable. */ 4055 else if (stack_entry->object.vm_object == NULL || 4056 vm_object_coalesce(stack_entry->object.vm_object, 4057 stack_entry->offset, 4058 (vm_size_t)(stack_entry->end - stack_entry->start), 4059 (vm_size_t)grow_amount, cred != NULL)) { 4060 if (gap_entry->start + grow_amount == gap_entry->end) 4061 vm_map_entry_delete(map, gap_entry); 4062 else 4063 gap_entry->start += grow_amount; 4064 stack_entry->end += grow_amount; 4065 map->size += grow_amount; 4066 vm_map_entry_resize_free(map, stack_entry); 4067 rv = KERN_SUCCESS; 4068 } else 4069 rv = KERN_FAILURE; 4070 } 4071 if (rv == KERN_SUCCESS && is_procstack) 4072 vm->vm_ssize += btoc(grow_amount); 4073 4074 /* 4075 * Heed the MAP_WIREFUTURE flag if it was set for this process. 4076 */ 4077 if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) { 4078 vm_map_unlock(map); 4079 vm_map_wire(map, grow_start, grow_start + grow_amount, 4080 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 4081 vm_map_lock_read(map); 4082 } else 4083 vm_map_lock_downgrade(map); 4084 4085 out: 4086 #ifdef RACCT 4087 if (racct_enable && rv != KERN_SUCCESS) { 4088 PROC_LOCK(p); 4089 error = racct_set(p, RACCT_VMEM, map->size); 4090 KASSERT(error == 0, ("decreasing RACCT_VMEM failed")); 4091 if (!old_mlock) { 4092 error = racct_set(p, RACCT_MEMLOCK, 4093 ptoa(pmap_wired_count(map->pmap))); 4094 KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed")); 4095 } 4096 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize)); 4097 KASSERT(error == 0, ("decreasing RACCT_STACK failed")); 4098 PROC_UNLOCK(p); 4099 } 4100 #endif 4101 4102 return (rv); 4103 } 4104 4105 /* 4106 * Unshare the specified VM space for exec. If other processes are 4107 * mapped to it, then create a new one. The new vmspace is null. 4108 */ 4109 int 4110 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser) 4111 { 4112 struct vmspace *oldvmspace = p->p_vmspace; 4113 struct vmspace *newvmspace; 4114 4115 KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0, 4116 ("vmspace_exec recursed")); 4117 newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit); 4118 if (newvmspace == NULL) 4119 return (ENOMEM); 4120 newvmspace->vm_swrss = oldvmspace->vm_swrss; 4121 /* 4122 * This code is written like this for prototype purposes. The 4123 * goal is to avoid running down the vmspace here, but let the 4124 * other process's that are still using the vmspace to finally 4125 * run it down. Even though there is little or no chance of blocking 4126 * here, it is a good idea to keep this form for future mods. 4127 */ 4128 PROC_VMSPACE_LOCK(p); 4129 p->p_vmspace = newvmspace; 4130 PROC_VMSPACE_UNLOCK(p); 4131 if (p == curthread->td_proc) 4132 pmap_activate(curthread); 4133 curthread->td_pflags |= TDP_EXECVMSPC; 4134 return (0); 4135 } 4136 4137 /* 4138 * Unshare the specified VM space for forcing COW. This 4139 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 4140 */ 4141 int 4142 vmspace_unshare(struct proc *p) 4143 { 4144 struct vmspace *oldvmspace = p->p_vmspace; 4145 struct vmspace *newvmspace; 4146 vm_ooffset_t fork_charge; 4147 4148 if (oldvmspace->vm_refcnt == 1) 4149 return (0); 4150 fork_charge = 0; 4151 newvmspace = vmspace_fork(oldvmspace, &fork_charge); 4152 if (newvmspace == NULL) 4153 return (ENOMEM); 4154 if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) { 4155 vmspace_free(newvmspace); 4156 return (ENOMEM); 4157 } 4158 PROC_VMSPACE_LOCK(p); 4159 p->p_vmspace = newvmspace; 4160 PROC_VMSPACE_UNLOCK(p); 4161 if (p == curthread->td_proc) 4162 pmap_activate(curthread); 4163 vmspace_free(oldvmspace); 4164 return (0); 4165 } 4166 4167 /* 4168 * vm_map_lookup: 4169 * 4170 * Finds the VM object, offset, and 4171 * protection for a given virtual address in the 4172 * specified map, assuming a page fault of the 4173 * type specified. 4174 * 4175 * Leaves the map in question locked for read; return 4176 * values are guaranteed until a vm_map_lookup_done 4177 * call is performed. Note that the map argument 4178 * is in/out; the returned map must be used in 4179 * the call to vm_map_lookup_done. 4180 * 4181 * A handle (out_entry) is returned for use in 4182 * vm_map_lookup_done, to make that fast. 4183 * 4184 * If a lookup is requested with "write protection" 4185 * specified, the map may be changed to perform virtual 4186 * copying operations, although the data referenced will 4187 * remain the same. 4188 */ 4189 int 4190 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 4191 vm_offset_t vaddr, 4192 vm_prot_t fault_typea, 4193 vm_map_entry_t *out_entry, /* OUT */ 4194 vm_object_t *object, /* OUT */ 4195 vm_pindex_t *pindex, /* OUT */ 4196 vm_prot_t *out_prot, /* OUT */ 4197 boolean_t *wired) /* OUT */ 4198 { 4199 vm_map_entry_t entry; 4200 vm_map_t map = *var_map; 4201 vm_prot_t prot; 4202 vm_prot_t fault_type = fault_typea; 4203 vm_object_t eobject; 4204 vm_size_t size; 4205 struct ucred *cred; 4206 4207 RetryLookup: 4208 4209 vm_map_lock_read(map); 4210 4211 RetryLookupLocked: 4212 /* 4213 * Lookup the faulting address. 4214 */ 4215 if (!vm_map_lookup_entry(map, vaddr, out_entry)) { 4216 vm_map_unlock_read(map); 4217 return (KERN_INVALID_ADDRESS); 4218 } 4219 4220 entry = *out_entry; 4221 4222 /* 4223 * Handle submaps. 4224 */ 4225 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 4226 vm_map_t old_map = map; 4227 4228 *var_map = map = entry->object.sub_map; 4229 vm_map_unlock_read(old_map); 4230 goto RetryLookup; 4231 } 4232 4233 /* 4234 * Check whether this task is allowed to have this page. 4235 */ 4236 prot = entry->protection; 4237 if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) { 4238 fault_typea &= ~VM_PROT_FAULT_LOOKUP; 4239 if (prot == VM_PROT_NONE && map != kernel_map && 4240 (entry->eflags & MAP_ENTRY_GUARD) != 0 && 4241 (entry->eflags & (MAP_ENTRY_STACK_GAP_DN | 4242 MAP_ENTRY_STACK_GAP_UP)) != 0 && 4243 vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS) 4244 goto RetryLookupLocked; 4245 } 4246 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; 4247 if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) { 4248 vm_map_unlock_read(map); 4249 return (KERN_PROTECTION_FAILURE); 4250 } 4251 KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags & 4252 (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) != 4253 (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY), 4254 ("entry %p flags %x", entry, entry->eflags)); 4255 if ((fault_typea & VM_PROT_COPY) != 0 && 4256 (entry->max_protection & VM_PROT_WRITE) == 0 && 4257 (entry->eflags & MAP_ENTRY_COW) == 0) { 4258 vm_map_unlock_read(map); 4259 return (KERN_PROTECTION_FAILURE); 4260 } 4261 4262 /* 4263 * If this page is not pageable, we have to get it for all possible 4264 * accesses. 4265 */ 4266 *wired = (entry->wired_count != 0); 4267 if (*wired) 4268 fault_type = entry->protection; 4269 size = entry->end - entry->start; 4270 /* 4271 * If the entry was copy-on-write, we either ... 4272 */ 4273 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 4274 /* 4275 * If we want to write the page, we may as well handle that 4276 * now since we've got the map locked. 4277 * 4278 * If we don't need to write the page, we just demote the 4279 * permissions allowed. 4280 */ 4281 if ((fault_type & VM_PROT_WRITE) != 0 || 4282 (fault_typea & VM_PROT_COPY) != 0) { 4283 /* 4284 * Make a new object, and place it in the object 4285 * chain. Note that no new references have appeared 4286 * -- one just moved from the map to the new 4287 * object. 4288 */ 4289 if (vm_map_lock_upgrade(map)) 4290 goto RetryLookup; 4291 4292 if (entry->cred == NULL) { 4293 /* 4294 * The debugger owner is charged for 4295 * the memory. 4296 */ 4297 cred = curthread->td_ucred; 4298 crhold(cred); 4299 if (!swap_reserve_by_cred(size, cred)) { 4300 crfree(cred); 4301 vm_map_unlock(map); 4302 return (KERN_RESOURCE_SHORTAGE); 4303 } 4304 entry->cred = cred; 4305 } 4306 vm_object_shadow(&entry->object.vm_object, 4307 &entry->offset, size); 4308 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 4309 eobject = entry->object.vm_object; 4310 if (eobject->cred != NULL) { 4311 /* 4312 * The object was not shadowed. 4313 */ 4314 swap_release_by_cred(size, entry->cred); 4315 crfree(entry->cred); 4316 entry->cred = NULL; 4317 } else if (entry->cred != NULL) { 4318 VM_OBJECT_WLOCK(eobject); 4319 eobject->cred = entry->cred; 4320 eobject->charge = size; 4321 VM_OBJECT_WUNLOCK(eobject); 4322 entry->cred = NULL; 4323 } 4324 4325 vm_map_lock_downgrade(map); 4326 } else { 4327 /* 4328 * We're attempting to read a copy-on-write page -- 4329 * don't allow writes. 4330 */ 4331 prot &= ~VM_PROT_WRITE; 4332 } 4333 } 4334 4335 /* 4336 * Create an object if necessary. 4337 */ 4338 if (entry->object.vm_object == NULL && 4339 !map->system_map) { 4340 if (vm_map_lock_upgrade(map)) 4341 goto RetryLookup; 4342 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT, 4343 atop(size)); 4344 entry->offset = 0; 4345 if (entry->cred != NULL) { 4346 VM_OBJECT_WLOCK(entry->object.vm_object); 4347 entry->object.vm_object->cred = entry->cred; 4348 entry->object.vm_object->charge = size; 4349 VM_OBJECT_WUNLOCK(entry->object.vm_object); 4350 entry->cred = NULL; 4351 } 4352 vm_map_lock_downgrade(map); 4353 } 4354 4355 /* 4356 * Return the object/offset from this entry. If the entry was 4357 * copy-on-write or empty, it has been fixed up. 4358 */ 4359 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 4360 *object = entry->object.vm_object; 4361 4362 *out_prot = prot; 4363 return (KERN_SUCCESS); 4364 } 4365 4366 /* 4367 * vm_map_lookup_locked: 4368 * 4369 * Lookup the faulting address. A version of vm_map_lookup that returns 4370 * KERN_FAILURE instead of blocking on map lock or memory allocation. 4371 */ 4372 int 4373 vm_map_lookup_locked(vm_map_t *var_map, /* IN/OUT */ 4374 vm_offset_t vaddr, 4375 vm_prot_t fault_typea, 4376 vm_map_entry_t *out_entry, /* OUT */ 4377 vm_object_t *object, /* OUT */ 4378 vm_pindex_t *pindex, /* OUT */ 4379 vm_prot_t *out_prot, /* OUT */ 4380 boolean_t *wired) /* OUT */ 4381 { 4382 vm_map_entry_t entry; 4383 vm_map_t map = *var_map; 4384 vm_prot_t prot; 4385 vm_prot_t fault_type = fault_typea; 4386 4387 /* 4388 * Lookup the faulting address. 4389 */ 4390 if (!vm_map_lookup_entry(map, vaddr, out_entry)) 4391 return (KERN_INVALID_ADDRESS); 4392 4393 entry = *out_entry; 4394 4395 /* 4396 * Fail if the entry refers to a submap. 4397 */ 4398 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 4399 return (KERN_FAILURE); 4400 4401 /* 4402 * Check whether this task is allowed to have this page. 4403 */ 4404 prot = entry->protection; 4405 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; 4406 if ((fault_type & prot) != fault_type) 4407 return (KERN_PROTECTION_FAILURE); 4408 4409 /* 4410 * If this page is not pageable, we have to get it for all possible 4411 * accesses. 4412 */ 4413 *wired = (entry->wired_count != 0); 4414 if (*wired) 4415 fault_type = entry->protection; 4416 4417 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 4418 /* 4419 * Fail if the entry was copy-on-write for a write fault. 4420 */ 4421 if (fault_type & VM_PROT_WRITE) 4422 return (KERN_FAILURE); 4423 /* 4424 * We're attempting to read a copy-on-write page -- 4425 * don't allow writes. 4426 */ 4427 prot &= ~VM_PROT_WRITE; 4428 } 4429 4430 /* 4431 * Fail if an object should be created. 4432 */ 4433 if (entry->object.vm_object == NULL && !map->system_map) 4434 return (KERN_FAILURE); 4435 4436 /* 4437 * Return the object/offset from this entry. If the entry was 4438 * copy-on-write or empty, it has been fixed up. 4439 */ 4440 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 4441 *object = entry->object.vm_object; 4442 4443 *out_prot = prot; 4444 return (KERN_SUCCESS); 4445 } 4446 4447 /* 4448 * vm_map_lookup_done: 4449 * 4450 * Releases locks acquired by a vm_map_lookup 4451 * (according to the handle returned by that lookup). 4452 */ 4453 void 4454 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry) 4455 { 4456 /* 4457 * Unlock the main-level map 4458 */ 4459 vm_map_unlock_read(map); 4460 } 4461 4462 vm_offset_t 4463 vm_map_max_KBI(const struct vm_map *map) 4464 { 4465 4466 return (vm_map_max(map)); 4467 } 4468 4469 vm_offset_t 4470 vm_map_min_KBI(const struct vm_map *map) 4471 { 4472 4473 return (vm_map_min(map)); 4474 } 4475 4476 pmap_t 4477 vm_map_pmap_KBI(vm_map_t map) 4478 { 4479 4480 return (map->pmap); 4481 } 4482 4483 #include "opt_ddb.h" 4484 #ifdef DDB 4485 #include <sys/kernel.h> 4486 4487 #include <ddb/ddb.h> 4488 4489 static void 4490 vm_map_print(vm_map_t map) 4491 { 4492 vm_map_entry_t entry; 4493 4494 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 4495 (void *)map, 4496 (void *)map->pmap, map->nentries, map->timestamp); 4497 4498 db_indent += 2; 4499 for (entry = map->header.next; entry != &map->header; 4500 entry = entry->next) { 4501 db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n", 4502 (void *)entry, (void *)entry->start, (void *)entry->end, 4503 entry->eflags); 4504 { 4505 static char *inheritance_name[4] = 4506 {"share", "copy", "none", "donate_copy"}; 4507 4508 db_iprintf(" prot=%x/%x/%s", 4509 entry->protection, 4510 entry->max_protection, 4511 inheritance_name[(int)(unsigned char)entry->inheritance]); 4512 if (entry->wired_count != 0) 4513 db_printf(", wired"); 4514 } 4515 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 4516 db_printf(", share=%p, offset=0x%jx\n", 4517 (void *)entry->object.sub_map, 4518 (uintmax_t)entry->offset); 4519 if ((entry->prev == &map->header) || 4520 (entry->prev->object.sub_map != 4521 entry->object.sub_map)) { 4522 db_indent += 2; 4523 vm_map_print((vm_map_t)entry->object.sub_map); 4524 db_indent -= 2; 4525 } 4526 } else { 4527 if (entry->cred != NULL) 4528 db_printf(", ruid %d", entry->cred->cr_ruid); 4529 db_printf(", object=%p, offset=0x%jx", 4530 (void *)entry->object.vm_object, 4531 (uintmax_t)entry->offset); 4532 if (entry->object.vm_object && entry->object.vm_object->cred) 4533 db_printf(", obj ruid %d charge %jx", 4534 entry->object.vm_object->cred->cr_ruid, 4535 (uintmax_t)entry->object.vm_object->charge); 4536 if (entry->eflags & MAP_ENTRY_COW) 4537 db_printf(", copy (%s)", 4538 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 4539 db_printf("\n"); 4540 4541 if ((entry->prev == &map->header) || 4542 (entry->prev->object.vm_object != 4543 entry->object.vm_object)) { 4544 db_indent += 2; 4545 vm_object_print((db_expr_t)(intptr_t) 4546 entry->object.vm_object, 4547 0, 0, (char *)0); 4548 db_indent -= 2; 4549 } 4550 } 4551 } 4552 db_indent -= 2; 4553 } 4554 4555 DB_SHOW_COMMAND(map, map) 4556 { 4557 4558 if (!have_addr) { 4559 db_printf("usage: show map <addr>\n"); 4560 return; 4561 } 4562 vm_map_print((vm_map_t)addr); 4563 } 4564 4565 DB_SHOW_COMMAND(procvm, procvm) 4566 { 4567 struct proc *p; 4568 4569 if (have_addr) { 4570 p = db_lookup_proc(addr); 4571 } else { 4572 p = curproc; 4573 } 4574 4575 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 4576 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 4577 (void *)vmspace_pmap(p->p_vmspace)); 4578 4579 vm_map_print((vm_map_t)&p->p_vmspace->vm_map); 4580 } 4581 4582 #endif /* DDB */ 4583