xref: /freebsd/sys/vm/vm_map.c (revision 7899f917b1c0ea178f1d2be0cfb452086d079d23)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60 
61 /*
62  *	Virtual memory mapping module.
63  */
64 
65 #include <sys/param.h>
66 #include <sys/systm.h>
67 #include <sys/elf.h>
68 #include <sys/kernel.h>
69 #include <sys/ktr.h>
70 #include <sys/lock.h>
71 #include <sys/mutex.h>
72 #include <sys/proc.h>
73 #include <sys/vmmeter.h>
74 #include <sys/mman.h>
75 #include <sys/vnode.h>
76 #include <sys/racct.h>
77 #include <sys/resourcevar.h>
78 #include <sys/rwlock.h>
79 #include <sys/file.h>
80 #include <sys/sysctl.h>
81 #include <sys/sysent.h>
82 #include <sys/shm.h>
83 
84 #include <vm/vm.h>
85 #include <vm/vm_param.h>
86 #include <vm/pmap.h>
87 #include <vm/vm_map.h>
88 #include <vm/vm_page.h>
89 #include <vm/vm_pageout.h>
90 #include <vm/vm_object.h>
91 #include <vm/vm_pager.h>
92 #include <vm/vm_kern.h>
93 #include <vm/vm_extern.h>
94 #include <vm/vnode_pager.h>
95 #include <vm/swap_pager.h>
96 #include <vm/uma.h>
97 
98 /*
99  *	Virtual memory maps provide for the mapping, protection,
100  *	and sharing of virtual memory objects.  In addition,
101  *	this module provides for an efficient virtual copy of
102  *	memory from one map to another.
103  *
104  *	Synchronization is required prior to most operations.
105  *
106  *	Maps consist of an ordered doubly-linked list of simple
107  *	entries; a self-adjusting binary search tree of these
108  *	entries is used to speed up lookups.
109  *
110  *	Since portions of maps are specified by start/end addresses,
111  *	which may not align with existing map entries, all
112  *	routines merely "clip" entries to these start/end values.
113  *	[That is, an entry is split into two, bordering at a
114  *	start or end value.]  Note that these clippings may not
115  *	always be necessary (as the two resulting entries are then
116  *	not changed); however, the clipping is done for convenience.
117  *
118  *	As mentioned above, virtual copy operations are performed
119  *	by copying VM object references from one map to
120  *	another, and then marking both regions as copy-on-write.
121  */
122 
123 static struct mtx map_sleep_mtx;
124 static uma_zone_t mapentzone;
125 static uma_zone_t kmapentzone;
126 static uma_zone_t vmspace_zone;
127 static int vmspace_zinit(void *mem, int size, int flags);
128 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
129     vm_offset_t max);
130 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
131 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
132 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
133 static int vm_map_growstack(vm_map_t map, vm_offset_t addr,
134     vm_map_entry_t gap_entry);
135 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
136     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
137 #ifdef INVARIANTS
138 static void vmspace_zdtor(void *mem, int size, void *arg);
139 #endif
140 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
141     vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
142     int cow);
143 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
144     vm_offset_t failed_addr);
145 
146 #define	CONTAINS_BITS(set, bits)	((~(set) & (bits)) == 0)
147 
148 #define	ENTRY_CHARGED(e) ((e)->cred != NULL || \
149     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
150      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
151 
152 /*
153  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
154  * stable.
155  */
156 #define PROC_VMSPACE_LOCK(p) do { } while (0)
157 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
158 
159 /*
160  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
161  *
162  *	Asserts that the starting and ending region
163  *	addresses fall within the valid range of the map.
164  */
165 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
166 		{					\
167 		if (start < vm_map_min(map))		\
168 			start = vm_map_min(map);	\
169 		if (end > vm_map_max(map))		\
170 			end = vm_map_max(map);		\
171 		if (start > end)			\
172 			start = end;			\
173 		}
174 
175 #ifndef UMA_USE_DMAP
176 
177 /*
178  * Allocate a new slab for kernel map entries.  The kernel map may be locked or
179  * unlocked, depending on whether the request is coming from the kernel map or a
180  * submap.  This function allocates a virtual address range directly from the
181  * kernel map instead of the kmem_* layer to avoid recursion on the kernel map
182  * lock and also to avoid triggering allocator recursion in the vmem boundary
183  * tag allocator.
184  */
185 static void *
186 kmapent_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
187     int wait)
188 {
189 	vm_offset_t addr;
190 	int error, locked;
191 
192 	*pflag = UMA_SLAB_PRIV;
193 
194 	if (!(locked = vm_map_locked(kernel_map)))
195 		vm_map_lock(kernel_map);
196 	addr = vm_map_findspace(kernel_map, vm_map_min(kernel_map), bytes);
197 	if (addr + bytes < addr || addr + bytes > vm_map_max(kernel_map))
198 		panic("%s: kernel map is exhausted", __func__);
199 	error = vm_map_insert(kernel_map, NULL, 0, addr, addr + bytes,
200 	    VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT);
201 	if (error != KERN_SUCCESS)
202 		panic("%s: vm_map_insert() failed: %d", __func__, error);
203 	if (!locked)
204 		vm_map_unlock(kernel_map);
205 	error = kmem_back_domain(domain, kernel_object, addr, bytes, M_NOWAIT |
206 	    M_USE_RESERVE | (wait & M_ZERO));
207 	if (error == KERN_SUCCESS) {
208 		return ((void *)addr);
209 	} else {
210 		if (!locked)
211 			vm_map_lock(kernel_map);
212 		vm_map_delete(kernel_map, addr, bytes);
213 		if (!locked)
214 			vm_map_unlock(kernel_map);
215 		return (NULL);
216 	}
217 }
218 
219 static void
220 kmapent_free(void *item, vm_size_t size, uint8_t pflag)
221 {
222 	vm_offset_t addr;
223 	int error __diagused;
224 
225 	if ((pflag & UMA_SLAB_PRIV) == 0)
226 		/* XXX leaked */
227 		return;
228 
229 	addr = (vm_offset_t)item;
230 	kmem_unback(kernel_object, addr, size);
231 	error = vm_map_remove(kernel_map, addr, addr + size);
232 	KASSERT(error == KERN_SUCCESS,
233 	    ("%s: vm_map_remove failed: %d", __func__, error));
234 }
235 
236 /*
237  * The worst-case upper bound on the number of kernel map entries that may be
238  * created before the zone must be replenished in _vm_map_unlock().
239  */
240 #define	KMAPENT_RESERVE		1
241 
242 #endif /* !UMD_MD_SMALL_ALLOC */
243 
244 /*
245  *	vm_map_startup:
246  *
247  *	Initialize the vm_map module.  Must be called before any other vm_map
248  *	routines.
249  *
250  *	User map and entry structures are allocated from the general purpose
251  *	memory pool.  Kernel maps are statically defined.  Kernel map entries
252  *	require special handling to avoid recursion; see the comments above
253  *	kmapent_alloc() and in vm_map_entry_create().
254  */
255 void
256 vm_map_startup(void)
257 {
258 	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
259 
260 	/*
261 	 * Disable the use of per-CPU buckets: map entry allocation is
262 	 * serialized by the kernel map lock.
263 	 */
264 	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
265 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
266 	    UMA_ZONE_VM | UMA_ZONE_NOBUCKET);
267 #ifndef UMA_USE_DMAP
268 	/* Reserve an extra map entry for use when replenishing the reserve. */
269 	uma_zone_reserve(kmapentzone, KMAPENT_RESERVE + 1);
270 	uma_prealloc(kmapentzone, KMAPENT_RESERVE + 1);
271 	uma_zone_set_allocf(kmapentzone, kmapent_alloc);
272 	uma_zone_set_freef(kmapentzone, kmapent_free);
273 #endif
274 
275 	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
276 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
277 	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
278 #ifdef INVARIANTS
279 	    vmspace_zdtor,
280 #else
281 	    NULL,
282 #endif
283 	    vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
284 }
285 
286 static int
287 vmspace_zinit(void *mem, int size, int flags)
288 {
289 	struct vmspace *vm;
290 	vm_map_t map;
291 
292 	vm = (struct vmspace *)mem;
293 	map = &vm->vm_map;
294 
295 	memset(map, 0, sizeof(*map));
296 	mtx_init(&map->system_mtx, "vm map (system)", NULL,
297 	    MTX_DEF | MTX_DUPOK);
298 	sx_init(&map->lock, "vm map (user)");
299 	PMAP_LOCK_INIT(vmspace_pmap(vm));
300 	return (0);
301 }
302 
303 #ifdef INVARIANTS
304 static void
305 vmspace_zdtor(void *mem, int size, void *arg)
306 {
307 	struct vmspace *vm;
308 
309 	vm = (struct vmspace *)mem;
310 	KASSERT(vm->vm_map.nentries == 0,
311 	    ("vmspace %p nentries == %d on free", vm, vm->vm_map.nentries));
312 	KASSERT(vm->vm_map.size == 0,
313 	    ("vmspace %p size == %ju on free", vm, (uintmax_t)vm->vm_map.size));
314 }
315 #endif	/* INVARIANTS */
316 
317 /*
318  * Allocate a vmspace structure, including a vm_map and pmap,
319  * and initialize those structures.  The refcnt is set to 1.
320  */
321 struct vmspace *
322 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
323 {
324 	struct vmspace *vm;
325 
326 	vm = uma_zalloc(vmspace_zone, M_WAITOK);
327 	KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
328 	if (!pinit(vmspace_pmap(vm))) {
329 		uma_zfree(vmspace_zone, vm);
330 		return (NULL);
331 	}
332 	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
333 	_vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
334 	refcount_init(&vm->vm_refcnt, 1);
335 	vm->vm_shm = NULL;
336 	vm->vm_swrss = 0;
337 	vm->vm_tsize = 0;
338 	vm->vm_dsize = 0;
339 	vm->vm_ssize = 0;
340 	vm->vm_taddr = 0;
341 	vm->vm_daddr = 0;
342 	vm->vm_maxsaddr = 0;
343 	return (vm);
344 }
345 
346 #ifdef RACCT
347 static void
348 vmspace_container_reset(struct proc *p)
349 {
350 
351 	PROC_LOCK(p);
352 	racct_set(p, RACCT_DATA, 0);
353 	racct_set(p, RACCT_STACK, 0);
354 	racct_set(p, RACCT_RSS, 0);
355 	racct_set(p, RACCT_MEMLOCK, 0);
356 	racct_set(p, RACCT_VMEM, 0);
357 	PROC_UNLOCK(p);
358 }
359 #endif
360 
361 static inline void
362 vmspace_dofree(struct vmspace *vm)
363 {
364 
365 	CTR1(KTR_VM, "vmspace_free: %p", vm);
366 
367 	/*
368 	 * Make sure any SysV shm is freed, it might not have been in
369 	 * exit1().
370 	 */
371 	shmexit(vm);
372 
373 	/*
374 	 * Lock the map, to wait out all other references to it.
375 	 * Delete all of the mappings and pages they hold, then call
376 	 * the pmap module to reclaim anything left.
377 	 */
378 	(void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map),
379 	    vm_map_max(&vm->vm_map));
380 
381 	pmap_release(vmspace_pmap(vm));
382 	vm->vm_map.pmap = NULL;
383 	uma_zfree(vmspace_zone, vm);
384 }
385 
386 void
387 vmspace_free(struct vmspace *vm)
388 {
389 
390 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
391 	    "vmspace_free() called");
392 
393 	if (refcount_release(&vm->vm_refcnt))
394 		vmspace_dofree(vm);
395 }
396 
397 void
398 vmspace_exitfree(struct proc *p)
399 {
400 	struct vmspace *vm;
401 
402 	PROC_VMSPACE_LOCK(p);
403 	vm = p->p_vmspace;
404 	p->p_vmspace = NULL;
405 	PROC_VMSPACE_UNLOCK(p);
406 	KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
407 	vmspace_free(vm);
408 }
409 
410 void
411 vmspace_exit(struct thread *td)
412 {
413 	struct vmspace *vm;
414 	struct proc *p;
415 	bool released;
416 
417 	p = td->td_proc;
418 	vm = p->p_vmspace;
419 
420 	/*
421 	 * Prepare to release the vmspace reference.  The thread that releases
422 	 * the last reference is responsible for tearing down the vmspace.
423 	 * However, threads not releasing the final reference must switch to the
424 	 * kernel's vmspace0 before the decrement so that the subsequent pmap
425 	 * deactivation does not modify a freed vmspace.
426 	 */
427 	refcount_acquire(&vmspace0.vm_refcnt);
428 	if (!(released = refcount_release_if_last(&vm->vm_refcnt))) {
429 		if (p->p_vmspace != &vmspace0) {
430 			PROC_VMSPACE_LOCK(p);
431 			p->p_vmspace = &vmspace0;
432 			PROC_VMSPACE_UNLOCK(p);
433 			pmap_activate(td);
434 		}
435 		released = refcount_release(&vm->vm_refcnt);
436 	}
437 	if (released) {
438 		/*
439 		 * pmap_remove_pages() expects the pmap to be active, so switch
440 		 * back first if necessary.
441 		 */
442 		if (p->p_vmspace != vm) {
443 			PROC_VMSPACE_LOCK(p);
444 			p->p_vmspace = vm;
445 			PROC_VMSPACE_UNLOCK(p);
446 			pmap_activate(td);
447 		}
448 		pmap_remove_pages(vmspace_pmap(vm));
449 		PROC_VMSPACE_LOCK(p);
450 		p->p_vmspace = &vmspace0;
451 		PROC_VMSPACE_UNLOCK(p);
452 		pmap_activate(td);
453 		vmspace_dofree(vm);
454 	}
455 #ifdef RACCT
456 	if (racct_enable)
457 		vmspace_container_reset(p);
458 #endif
459 }
460 
461 /* Acquire reference to vmspace owned by another process. */
462 
463 struct vmspace *
464 vmspace_acquire_ref(struct proc *p)
465 {
466 	struct vmspace *vm;
467 
468 	PROC_VMSPACE_LOCK(p);
469 	vm = p->p_vmspace;
470 	if (vm == NULL || !refcount_acquire_if_not_zero(&vm->vm_refcnt)) {
471 		PROC_VMSPACE_UNLOCK(p);
472 		return (NULL);
473 	}
474 	if (vm != p->p_vmspace) {
475 		PROC_VMSPACE_UNLOCK(p);
476 		vmspace_free(vm);
477 		return (NULL);
478 	}
479 	PROC_VMSPACE_UNLOCK(p);
480 	return (vm);
481 }
482 
483 /*
484  * Switch between vmspaces in an AIO kernel process.
485  *
486  * The new vmspace is either the vmspace of a user process obtained
487  * from an active AIO request or the initial vmspace of the AIO kernel
488  * process (when it is idling).  Because user processes will block to
489  * drain any active AIO requests before proceeding in exit() or
490  * execve(), the reference count for vmspaces from AIO requests can
491  * never be 0.  Similarly, AIO kernel processes hold an extra
492  * reference on their initial vmspace for the life of the process.  As
493  * a result, the 'newvm' vmspace always has a non-zero reference
494  * count.  This permits an additional reference on 'newvm' to be
495  * acquired via a simple atomic increment rather than the loop in
496  * vmspace_acquire_ref() above.
497  */
498 void
499 vmspace_switch_aio(struct vmspace *newvm)
500 {
501 	struct vmspace *oldvm;
502 
503 	/* XXX: Need some way to assert that this is an aio daemon. */
504 
505 	KASSERT(refcount_load(&newvm->vm_refcnt) > 0,
506 	    ("vmspace_switch_aio: newvm unreferenced"));
507 
508 	oldvm = curproc->p_vmspace;
509 	if (oldvm == newvm)
510 		return;
511 
512 	/*
513 	 * Point to the new address space and refer to it.
514 	 */
515 	curproc->p_vmspace = newvm;
516 	refcount_acquire(&newvm->vm_refcnt);
517 
518 	/* Activate the new mapping. */
519 	pmap_activate(curthread);
520 
521 	vmspace_free(oldvm);
522 }
523 
524 void
525 _vm_map_lock(vm_map_t map, const char *file, int line)
526 {
527 
528 	if (map->system_map)
529 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
530 	else
531 		sx_xlock_(&map->lock, file, line);
532 	map->timestamp++;
533 }
534 
535 void
536 vm_map_entry_set_vnode_text(vm_map_entry_t entry, bool add)
537 {
538 	vm_object_t object;
539 	struct vnode *vp;
540 	bool vp_held;
541 
542 	if ((entry->eflags & MAP_ENTRY_VN_EXEC) == 0)
543 		return;
544 	KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
545 	    ("Submap with execs"));
546 	object = entry->object.vm_object;
547 	KASSERT(object != NULL, ("No object for text, entry %p", entry));
548 	if ((object->flags & OBJ_ANON) != 0)
549 		object = object->handle;
550 	else
551 		KASSERT(object->backing_object == NULL,
552 		    ("non-anon object %p shadows", object));
553 	KASSERT(object != NULL, ("No content object for text, entry %p obj %p",
554 	    entry, entry->object.vm_object));
555 
556 	/*
557 	 * Mostly, we do not lock the backing object.  It is
558 	 * referenced by the entry we are processing, so it cannot go
559 	 * away.
560 	 */
561 	vm_pager_getvp(object, &vp, &vp_held);
562 	if (vp != NULL) {
563 		if (add) {
564 			VOP_SET_TEXT_CHECKED(vp);
565 		} else {
566 			vn_lock(vp, LK_SHARED | LK_RETRY);
567 			VOP_UNSET_TEXT_CHECKED(vp);
568 			VOP_UNLOCK(vp);
569 		}
570 		if (vp_held)
571 			vdrop(vp);
572 	}
573 }
574 
575 /*
576  * Use a different name for this vm_map_entry field when it's use
577  * is not consistent with its use as part of an ordered search tree.
578  */
579 #define defer_next right
580 
581 static void
582 vm_map_process_deferred(void)
583 {
584 	struct thread *td;
585 	vm_map_entry_t entry, next;
586 	vm_object_t object;
587 
588 	td = curthread;
589 	entry = td->td_map_def_user;
590 	td->td_map_def_user = NULL;
591 	while (entry != NULL) {
592 		next = entry->defer_next;
593 		MPASS((entry->eflags & (MAP_ENTRY_WRITECNT |
594 		    MAP_ENTRY_VN_EXEC)) != (MAP_ENTRY_WRITECNT |
595 		    MAP_ENTRY_VN_EXEC));
596 		if ((entry->eflags & MAP_ENTRY_WRITECNT) != 0) {
597 			/*
598 			 * Decrement the object's writemappings and
599 			 * possibly the vnode's v_writecount.
600 			 */
601 			KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
602 			    ("Submap with writecount"));
603 			object = entry->object.vm_object;
604 			KASSERT(object != NULL, ("No object for writecount"));
605 			vm_pager_release_writecount(object, entry->start,
606 			    entry->end);
607 		}
608 		vm_map_entry_set_vnode_text(entry, false);
609 		vm_map_entry_deallocate(entry, FALSE);
610 		entry = next;
611 	}
612 }
613 
614 #ifdef INVARIANTS
615 static void
616 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
617 {
618 
619 	if (map->system_map)
620 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
621 	else
622 		sx_assert_(&map->lock, SA_XLOCKED, file, line);
623 }
624 
625 #define	VM_MAP_ASSERT_LOCKED(map) \
626     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
627 
628 enum { VMMAP_CHECK_NONE, VMMAP_CHECK_UNLOCK, VMMAP_CHECK_ALL };
629 #ifdef DIAGNOSTIC
630 static int enable_vmmap_check = VMMAP_CHECK_UNLOCK;
631 #else
632 static int enable_vmmap_check = VMMAP_CHECK_NONE;
633 #endif
634 SYSCTL_INT(_debug, OID_AUTO, vmmap_check, CTLFLAG_RWTUN,
635     &enable_vmmap_check, 0, "Enable vm map consistency checking");
636 
637 static void _vm_map_assert_consistent(vm_map_t map, int check);
638 
639 #define VM_MAP_ASSERT_CONSISTENT(map) \
640     _vm_map_assert_consistent(map, VMMAP_CHECK_ALL)
641 #ifdef DIAGNOSTIC
642 #define VM_MAP_UNLOCK_CONSISTENT(map) do {				\
643 	if (map->nupdates > map->nentries) {				\
644 		_vm_map_assert_consistent(map, VMMAP_CHECK_UNLOCK);	\
645 		map->nupdates = 0;					\
646 	}								\
647 } while (0)
648 #else
649 #define VM_MAP_UNLOCK_CONSISTENT(map)
650 #endif
651 #else
652 #define	VM_MAP_ASSERT_LOCKED(map)
653 #define VM_MAP_ASSERT_CONSISTENT(map)
654 #define VM_MAP_UNLOCK_CONSISTENT(map)
655 #endif /* INVARIANTS */
656 
657 void
658 _vm_map_unlock(vm_map_t map, const char *file, int line)
659 {
660 
661 	VM_MAP_UNLOCK_CONSISTENT(map);
662 	if (map->system_map) {
663 #ifndef UMA_USE_DMAP
664 		if (map == kernel_map && (map->flags & MAP_REPLENISH) != 0) {
665 			uma_prealloc(kmapentzone, 1);
666 			map->flags &= ~MAP_REPLENISH;
667 		}
668 #endif
669 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
670 	} else {
671 		sx_xunlock_(&map->lock, file, line);
672 		vm_map_process_deferred();
673 	}
674 }
675 
676 void
677 _vm_map_lock_read(vm_map_t map, const char *file, int line)
678 {
679 
680 	if (map->system_map)
681 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
682 	else
683 		sx_slock_(&map->lock, file, line);
684 }
685 
686 void
687 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
688 {
689 
690 	if (map->system_map) {
691 		KASSERT((map->flags & MAP_REPLENISH) == 0,
692 		    ("%s: MAP_REPLENISH leaked", __func__));
693 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
694 	} else {
695 		sx_sunlock_(&map->lock, file, line);
696 		vm_map_process_deferred();
697 	}
698 }
699 
700 int
701 _vm_map_trylock(vm_map_t map, const char *file, int line)
702 {
703 	int error;
704 
705 	error = map->system_map ?
706 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
707 	    !sx_try_xlock_(&map->lock, file, line);
708 	if (error == 0)
709 		map->timestamp++;
710 	return (error == 0);
711 }
712 
713 int
714 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
715 {
716 	int error;
717 
718 	error = map->system_map ?
719 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
720 	    !sx_try_slock_(&map->lock, file, line);
721 	return (error == 0);
722 }
723 
724 /*
725  *	_vm_map_lock_upgrade:	[ internal use only ]
726  *
727  *	Tries to upgrade a read (shared) lock on the specified map to a write
728  *	(exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
729  *	non-zero value if the upgrade fails.  If the upgrade fails, the map is
730  *	returned without a read or write lock held.
731  *
732  *	Requires that the map be read locked.
733  */
734 int
735 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
736 {
737 	unsigned int last_timestamp;
738 
739 	if (map->system_map) {
740 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
741 	} else {
742 		if (!sx_try_upgrade_(&map->lock, file, line)) {
743 			last_timestamp = map->timestamp;
744 			sx_sunlock_(&map->lock, file, line);
745 			vm_map_process_deferred();
746 			/*
747 			 * If the map's timestamp does not change while the
748 			 * map is unlocked, then the upgrade succeeds.
749 			 */
750 			sx_xlock_(&map->lock, file, line);
751 			if (last_timestamp != map->timestamp) {
752 				sx_xunlock_(&map->lock, file, line);
753 				return (1);
754 			}
755 		}
756 	}
757 	map->timestamp++;
758 	return (0);
759 }
760 
761 void
762 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
763 {
764 
765 	if (map->system_map) {
766 		KASSERT((map->flags & MAP_REPLENISH) == 0,
767 		    ("%s: MAP_REPLENISH leaked", __func__));
768 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
769 	} else {
770 		VM_MAP_UNLOCK_CONSISTENT(map);
771 		sx_downgrade_(&map->lock, file, line);
772 	}
773 }
774 
775 /*
776  *	vm_map_locked:
777  *
778  *	Returns a non-zero value if the caller holds a write (exclusive) lock
779  *	on the specified map and the value "0" otherwise.
780  */
781 int
782 vm_map_locked(vm_map_t map)
783 {
784 
785 	if (map->system_map)
786 		return (mtx_owned(&map->system_mtx));
787 	else
788 		return (sx_xlocked(&map->lock));
789 }
790 
791 /*
792  *	_vm_map_unlock_and_wait:
793  *
794  *	Atomically releases the lock on the specified map and puts the calling
795  *	thread to sleep.  The calling thread will remain asleep until either
796  *	vm_map_wakeup() is performed on the map or the specified timeout is
797  *	exceeded.
798  *
799  *	WARNING!  This function does not perform deferred deallocations of
800  *	objects and map	entries.  Therefore, the calling thread is expected to
801  *	reacquire the map lock after reawakening and later perform an ordinary
802  *	unlock operation, such as vm_map_unlock(), before completing its
803  *	operation on the map.
804  */
805 int
806 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
807 {
808 
809 	VM_MAP_UNLOCK_CONSISTENT(map);
810 	mtx_lock(&map_sleep_mtx);
811 	if (map->system_map) {
812 		KASSERT((map->flags & MAP_REPLENISH) == 0,
813 		    ("%s: MAP_REPLENISH leaked", __func__));
814 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
815 	} else {
816 		sx_xunlock_(&map->lock, file, line);
817 	}
818 	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
819 	    timo));
820 }
821 
822 /*
823  *	vm_map_wakeup:
824  *
825  *	Awaken any threads that have slept on the map using
826  *	vm_map_unlock_and_wait().
827  */
828 void
829 vm_map_wakeup(vm_map_t map)
830 {
831 
832 	/*
833 	 * Acquire and release map_sleep_mtx to prevent a wakeup()
834 	 * from being performed (and lost) between the map unlock
835 	 * and the msleep() in _vm_map_unlock_and_wait().
836 	 */
837 	mtx_lock(&map_sleep_mtx);
838 	mtx_unlock(&map_sleep_mtx);
839 	wakeup(&map->root);
840 }
841 
842 void
843 vm_map_busy(vm_map_t map)
844 {
845 
846 	VM_MAP_ASSERT_LOCKED(map);
847 	map->busy++;
848 }
849 
850 void
851 vm_map_unbusy(vm_map_t map)
852 {
853 
854 	VM_MAP_ASSERT_LOCKED(map);
855 	KASSERT(map->busy, ("vm_map_unbusy: not busy"));
856 	if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
857 		vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
858 		wakeup(&map->busy);
859 	}
860 }
861 
862 void
863 vm_map_wait_busy(vm_map_t map)
864 {
865 
866 	VM_MAP_ASSERT_LOCKED(map);
867 	while (map->busy) {
868 		vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
869 		if (map->system_map)
870 			msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
871 		else
872 			sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
873 	}
874 	map->timestamp++;
875 }
876 
877 long
878 vmspace_resident_count(struct vmspace *vmspace)
879 {
880 	return pmap_resident_count(vmspace_pmap(vmspace));
881 }
882 
883 /*
884  * Initialize an existing vm_map structure
885  * such as that in the vmspace structure.
886  */
887 static void
888 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
889 {
890 
891 	map->header.eflags = MAP_ENTRY_HEADER;
892 	map->needs_wakeup = FALSE;
893 	map->system_map = 0;
894 	map->pmap = pmap;
895 	map->header.end = min;
896 	map->header.start = max;
897 	map->flags = 0;
898 	map->header.left = map->header.right = &map->header;
899 	map->root = NULL;
900 	map->timestamp = 0;
901 	map->busy = 0;
902 	map->anon_loc = 0;
903 #ifdef DIAGNOSTIC
904 	map->nupdates = 0;
905 #endif
906 }
907 
908 void
909 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
910 {
911 
912 	_vm_map_init(map, pmap, min, max);
913 	mtx_init(&map->system_mtx, "vm map (system)", NULL,
914 	    MTX_DEF | MTX_DUPOK);
915 	sx_init(&map->lock, "vm map (user)");
916 }
917 
918 /*
919  *	vm_map_entry_dispose:	[ internal use only ]
920  *
921  *	Inverse of vm_map_entry_create.
922  */
923 static void
924 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
925 {
926 	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
927 }
928 
929 /*
930  *	vm_map_entry_create:	[ internal use only ]
931  *
932  *	Allocates a VM map entry for insertion.
933  *	No entry fields are filled in.
934  */
935 static vm_map_entry_t
936 vm_map_entry_create(vm_map_t map)
937 {
938 	vm_map_entry_t new_entry;
939 
940 #ifndef UMA_USE_DMAP
941 	if (map == kernel_map) {
942 		VM_MAP_ASSERT_LOCKED(map);
943 
944 		/*
945 		 * A new slab of kernel map entries cannot be allocated at this
946 		 * point because the kernel map has not yet been updated to
947 		 * reflect the caller's request.  Therefore, we allocate a new
948 		 * map entry, dipping into the reserve if necessary, and set a
949 		 * flag indicating that the reserve must be replenished before
950 		 * the map is unlocked.
951 		 */
952 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT | M_NOVM);
953 		if (new_entry == NULL) {
954 			new_entry = uma_zalloc(kmapentzone,
955 			    M_NOWAIT | M_NOVM | M_USE_RESERVE);
956 			kernel_map->flags |= MAP_REPLENISH;
957 		}
958 	} else
959 #endif
960 	if (map->system_map) {
961 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
962 	} else {
963 		new_entry = uma_zalloc(mapentzone, M_WAITOK);
964 	}
965 	KASSERT(new_entry != NULL,
966 	    ("vm_map_entry_create: kernel resources exhausted"));
967 	return (new_entry);
968 }
969 
970 /*
971  *	vm_map_entry_set_behavior:
972  *
973  *	Set the expected access behavior, either normal, random, or
974  *	sequential.
975  */
976 static inline void
977 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
978 {
979 	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
980 	    (behavior & MAP_ENTRY_BEHAV_MASK);
981 }
982 
983 /*
984  *	vm_map_entry_max_free_{left,right}:
985  *
986  *	Compute the size of the largest free gap between two entries,
987  *	one the root of a tree and the other the ancestor of that root
988  *	that is the least or greatest ancestor found on the search path.
989  */
990 static inline vm_size_t
991 vm_map_entry_max_free_left(vm_map_entry_t root, vm_map_entry_t left_ancestor)
992 {
993 
994 	return (root->left != left_ancestor ?
995 	    root->left->max_free : root->start - left_ancestor->end);
996 }
997 
998 static inline vm_size_t
999 vm_map_entry_max_free_right(vm_map_entry_t root, vm_map_entry_t right_ancestor)
1000 {
1001 
1002 	return (root->right != right_ancestor ?
1003 	    root->right->max_free : right_ancestor->start - root->end);
1004 }
1005 
1006 /*
1007  *	vm_map_entry_{pred,succ}:
1008  *
1009  *	Find the {predecessor, successor} of the entry by taking one step
1010  *	in the appropriate direction and backtracking as much as necessary.
1011  *	vm_map_entry_succ is defined in vm_map.h.
1012  */
1013 static inline vm_map_entry_t
1014 vm_map_entry_pred(vm_map_entry_t entry)
1015 {
1016 	vm_map_entry_t prior;
1017 
1018 	prior = entry->left;
1019 	if (prior->right->start < entry->start) {
1020 		do
1021 			prior = prior->right;
1022 		while (prior->right != entry);
1023 	}
1024 	return (prior);
1025 }
1026 
1027 static inline vm_size_t
1028 vm_size_max(vm_size_t a, vm_size_t b)
1029 {
1030 
1031 	return (a > b ? a : b);
1032 }
1033 
1034 #define SPLAY_LEFT_STEP(root, y, llist, rlist, test) do {		\
1035 	vm_map_entry_t z;						\
1036 	vm_size_t max_free;						\
1037 									\
1038 	/*								\
1039 	 * Infer root->right->max_free == root->max_free when		\
1040 	 * y->max_free < root->max_free || root->max_free == 0.		\
1041 	 * Otherwise, look right to find it.				\
1042 	 */								\
1043 	y = root->left;							\
1044 	max_free = root->max_free;					\
1045 	KASSERT(max_free == vm_size_max(				\
1046 	    vm_map_entry_max_free_left(root, llist),			\
1047 	    vm_map_entry_max_free_right(root, rlist)),			\
1048 	    ("%s: max_free invariant fails", __func__));		\
1049 	if (max_free - 1 < vm_map_entry_max_free_left(root, llist))	\
1050 		max_free = vm_map_entry_max_free_right(root, rlist);	\
1051 	if (y != llist && (test)) {					\
1052 		/* Rotate right and make y root. */			\
1053 		z = y->right;						\
1054 		if (z != root) {					\
1055 			root->left = z;					\
1056 			y->right = root;				\
1057 			if (max_free < y->max_free)			\
1058 			    root->max_free = max_free =			\
1059 			    vm_size_max(max_free, z->max_free);		\
1060 		} else if (max_free < y->max_free)			\
1061 			root->max_free = max_free =			\
1062 			    vm_size_max(max_free, root->start - y->end);\
1063 		root = y;						\
1064 		y = root->left;						\
1065 	}								\
1066 	/* Copy right->max_free.  Put root on rlist. */			\
1067 	root->max_free = max_free;					\
1068 	KASSERT(max_free == vm_map_entry_max_free_right(root, rlist),	\
1069 	    ("%s: max_free not copied from right", __func__));		\
1070 	root->left = rlist;						\
1071 	rlist = root;							\
1072 	root = y != llist ? y : NULL;					\
1073 } while (0)
1074 
1075 #define SPLAY_RIGHT_STEP(root, y, llist, rlist, test) do {		\
1076 	vm_map_entry_t z;						\
1077 	vm_size_t max_free;						\
1078 									\
1079 	/*								\
1080 	 * Infer root->left->max_free == root->max_free when		\
1081 	 * y->max_free < root->max_free || root->max_free == 0.		\
1082 	 * Otherwise, look left to find it.				\
1083 	 */								\
1084 	y = root->right;						\
1085 	max_free = root->max_free;					\
1086 	KASSERT(max_free == vm_size_max(				\
1087 	    vm_map_entry_max_free_left(root, llist),			\
1088 	    vm_map_entry_max_free_right(root, rlist)),			\
1089 	    ("%s: max_free invariant fails", __func__));		\
1090 	if (max_free - 1 < vm_map_entry_max_free_right(root, rlist))	\
1091 		max_free = vm_map_entry_max_free_left(root, llist);	\
1092 	if (y != rlist && (test)) {					\
1093 		/* Rotate left and make y root. */			\
1094 		z = y->left;						\
1095 		if (z != root) {					\
1096 			root->right = z;				\
1097 			y->left = root;					\
1098 			if (max_free < y->max_free)			\
1099 			    root->max_free = max_free =			\
1100 			    vm_size_max(max_free, z->max_free);		\
1101 		} else if (max_free < y->max_free)			\
1102 			root->max_free = max_free =			\
1103 			    vm_size_max(max_free, y->start - root->end);\
1104 		root = y;						\
1105 		y = root->right;					\
1106 	}								\
1107 	/* Copy left->max_free.  Put root on llist. */			\
1108 	root->max_free = max_free;					\
1109 	KASSERT(max_free == vm_map_entry_max_free_left(root, llist),	\
1110 	    ("%s: max_free not copied from left", __func__));		\
1111 	root->right = llist;						\
1112 	llist = root;							\
1113 	root = y != rlist ? y : NULL;					\
1114 } while (0)
1115 
1116 /*
1117  * Walk down the tree until we find addr or a gap where addr would go, breaking
1118  * off left and right subtrees of nodes less than, or greater than addr.  Treat
1119  * subtrees with root->max_free < length as empty trees.  llist and rlist are
1120  * the two sides in reverse order (bottom-up), with llist linked by the right
1121  * pointer and rlist linked by the left pointer in the vm_map_entry, and both
1122  * lists terminated by &map->header.  This function, and the subsequent call to
1123  * vm_map_splay_merge_{left,right,pred,succ}, rely on the start and end address
1124  * values in &map->header.
1125  */
1126 static __always_inline vm_map_entry_t
1127 vm_map_splay_split(vm_map_t map, vm_offset_t addr, vm_size_t length,
1128     vm_map_entry_t *llist, vm_map_entry_t *rlist)
1129 {
1130 	vm_map_entry_t left, right, root, y;
1131 
1132 	left = right = &map->header;
1133 	root = map->root;
1134 	while (root != NULL && root->max_free >= length) {
1135 		KASSERT(left->end <= root->start &&
1136 		    root->end <= right->start,
1137 		    ("%s: root not within tree bounds", __func__));
1138 		if (addr < root->start) {
1139 			SPLAY_LEFT_STEP(root, y, left, right,
1140 			    y->max_free >= length && addr < y->start);
1141 		} else if (addr >= root->end) {
1142 			SPLAY_RIGHT_STEP(root, y, left, right,
1143 			    y->max_free >= length && addr >= y->end);
1144 		} else
1145 			break;
1146 	}
1147 	*llist = left;
1148 	*rlist = right;
1149 	return (root);
1150 }
1151 
1152 static __always_inline void
1153 vm_map_splay_findnext(vm_map_entry_t root, vm_map_entry_t *rlist)
1154 {
1155 	vm_map_entry_t hi, right, y;
1156 
1157 	right = *rlist;
1158 	hi = root->right == right ? NULL : root->right;
1159 	if (hi == NULL)
1160 		return;
1161 	do
1162 		SPLAY_LEFT_STEP(hi, y, root, right, true);
1163 	while (hi != NULL);
1164 	*rlist = right;
1165 }
1166 
1167 static __always_inline void
1168 vm_map_splay_findprev(vm_map_entry_t root, vm_map_entry_t *llist)
1169 {
1170 	vm_map_entry_t left, lo, y;
1171 
1172 	left = *llist;
1173 	lo = root->left == left ? NULL : root->left;
1174 	if (lo == NULL)
1175 		return;
1176 	do
1177 		SPLAY_RIGHT_STEP(lo, y, left, root, true);
1178 	while (lo != NULL);
1179 	*llist = left;
1180 }
1181 
1182 static inline void
1183 vm_map_entry_swap(vm_map_entry_t *a, vm_map_entry_t *b)
1184 {
1185 	vm_map_entry_t tmp;
1186 
1187 	tmp = *b;
1188 	*b = *a;
1189 	*a = tmp;
1190 }
1191 
1192 /*
1193  * Walk back up the two spines, flip the pointers and set max_free.  The
1194  * subtrees of the root go at the bottom of llist and rlist.
1195  */
1196 static vm_size_t
1197 vm_map_splay_merge_left_walk(vm_map_entry_t header, vm_map_entry_t root,
1198     vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t llist)
1199 {
1200 	do {
1201 		/*
1202 		 * The max_free values of the children of llist are in
1203 		 * llist->max_free and max_free.  Update with the
1204 		 * max value.
1205 		 */
1206 		llist->max_free = max_free =
1207 		    vm_size_max(llist->max_free, max_free);
1208 		vm_map_entry_swap(&llist->right, &tail);
1209 		vm_map_entry_swap(&tail, &llist);
1210 	} while (llist != header);
1211 	root->left = tail;
1212 	return (max_free);
1213 }
1214 
1215 /*
1216  * When llist is known to be the predecessor of root.
1217  */
1218 static inline vm_size_t
1219 vm_map_splay_merge_pred(vm_map_entry_t header, vm_map_entry_t root,
1220     vm_map_entry_t llist)
1221 {
1222 	vm_size_t max_free;
1223 
1224 	max_free = root->start - llist->end;
1225 	if (llist != header) {
1226 		max_free = vm_map_splay_merge_left_walk(header, root,
1227 		    root, max_free, llist);
1228 	} else {
1229 		root->left = header;
1230 		header->right = root;
1231 	}
1232 	return (max_free);
1233 }
1234 
1235 /*
1236  * When llist may or may not be the predecessor of root.
1237  */
1238 static inline vm_size_t
1239 vm_map_splay_merge_left(vm_map_entry_t header, vm_map_entry_t root,
1240     vm_map_entry_t llist)
1241 {
1242 	vm_size_t max_free;
1243 
1244 	max_free = vm_map_entry_max_free_left(root, llist);
1245 	if (llist != header) {
1246 		max_free = vm_map_splay_merge_left_walk(header, root,
1247 		    root->left == llist ? root : root->left,
1248 		    max_free, llist);
1249 	}
1250 	return (max_free);
1251 }
1252 
1253 static vm_size_t
1254 vm_map_splay_merge_right_walk(vm_map_entry_t header, vm_map_entry_t root,
1255     vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t rlist)
1256 {
1257 	do {
1258 		/*
1259 		 * The max_free values of the children of rlist are in
1260 		 * rlist->max_free and max_free.  Update with the
1261 		 * max value.
1262 		 */
1263 		rlist->max_free = max_free =
1264 		    vm_size_max(rlist->max_free, max_free);
1265 		vm_map_entry_swap(&rlist->left, &tail);
1266 		vm_map_entry_swap(&tail, &rlist);
1267 	} while (rlist != header);
1268 	root->right = tail;
1269 	return (max_free);
1270 }
1271 
1272 /*
1273  * When rlist is known to be the succecessor of root.
1274  */
1275 static inline vm_size_t
1276 vm_map_splay_merge_succ(vm_map_entry_t header, vm_map_entry_t root,
1277     vm_map_entry_t rlist)
1278 {
1279 	vm_size_t max_free;
1280 
1281 	max_free = rlist->start - root->end;
1282 	if (rlist != header) {
1283 		max_free = vm_map_splay_merge_right_walk(header, root,
1284 		    root, max_free, rlist);
1285 	} else {
1286 		root->right = header;
1287 		header->left = root;
1288 	}
1289 	return (max_free);
1290 }
1291 
1292 /*
1293  * When rlist may or may not be the succecessor of root.
1294  */
1295 static inline vm_size_t
1296 vm_map_splay_merge_right(vm_map_entry_t header, vm_map_entry_t root,
1297     vm_map_entry_t rlist)
1298 {
1299 	vm_size_t max_free;
1300 
1301 	max_free = vm_map_entry_max_free_right(root, rlist);
1302 	if (rlist != header) {
1303 		max_free = vm_map_splay_merge_right_walk(header, root,
1304 		    root->right == rlist ? root : root->right,
1305 		    max_free, rlist);
1306 	}
1307 	return (max_free);
1308 }
1309 
1310 /*
1311  *	vm_map_splay:
1312  *
1313  *	The Sleator and Tarjan top-down splay algorithm with the
1314  *	following variation.  Max_free must be computed bottom-up, so
1315  *	on the downward pass, maintain the left and right spines in
1316  *	reverse order.  Then, make a second pass up each side to fix
1317  *	the pointers and compute max_free.  The time bound is O(log n)
1318  *	amortized.
1319  *
1320  *	The tree is threaded, which means that there are no null pointers.
1321  *	When a node has no left child, its left pointer points to its
1322  *	predecessor, which the last ancestor on the search path from the root
1323  *	where the search branched right.  Likewise, when a node has no right
1324  *	child, its right pointer points to its successor.  The map header node
1325  *	is the predecessor of the first map entry, and the successor of the
1326  *	last.
1327  *
1328  *	The new root is the vm_map_entry containing "addr", or else an
1329  *	adjacent entry (lower if possible) if addr is not in the tree.
1330  *
1331  *	The map must be locked, and leaves it so.
1332  *
1333  *	Returns: the new root.
1334  */
1335 static vm_map_entry_t
1336 vm_map_splay(vm_map_t map, vm_offset_t addr)
1337 {
1338 	vm_map_entry_t header, llist, rlist, root;
1339 	vm_size_t max_free_left, max_free_right;
1340 
1341 	header = &map->header;
1342 	root = vm_map_splay_split(map, addr, 0, &llist, &rlist);
1343 	if (root != NULL) {
1344 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1345 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1346 	} else if (llist != header) {
1347 		/*
1348 		 * Recover the greatest node in the left
1349 		 * subtree and make it the root.
1350 		 */
1351 		root = llist;
1352 		llist = root->right;
1353 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1354 		max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1355 	} else if (rlist != header) {
1356 		/*
1357 		 * Recover the least node in the right
1358 		 * subtree and make it the root.
1359 		 */
1360 		root = rlist;
1361 		rlist = root->left;
1362 		max_free_left = vm_map_splay_merge_pred(header, root, llist);
1363 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1364 	} else {
1365 		/* There is no root. */
1366 		return (NULL);
1367 	}
1368 	root->max_free = vm_size_max(max_free_left, max_free_right);
1369 	map->root = root;
1370 	VM_MAP_ASSERT_CONSISTENT(map);
1371 	return (root);
1372 }
1373 
1374 /*
1375  *	vm_map_entry_{un,}link:
1376  *
1377  *	Insert/remove entries from maps.  On linking, if new entry clips
1378  *	existing entry, trim existing entry to avoid overlap, and manage
1379  *	offsets.  On unlinking, merge disappearing entry with neighbor, if
1380  *	called for, and manage offsets.  Callers should not modify fields in
1381  *	entries already mapped.
1382  */
1383 static void
1384 vm_map_entry_link(vm_map_t map, vm_map_entry_t entry)
1385 {
1386 	vm_map_entry_t header, llist, rlist, root;
1387 	vm_size_t max_free_left, max_free_right;
1388 
1389 	CTR3(KTR_VM,
1390 	    "vm_map_entry_link: map %p, nentries %d, entry %p", map,
1391 	    map->nentries, entry);
1392 	VM_MAP_ASSERT_LOCKED(map);
1393 	map->nentries++;
1394 	header = &map->header;
1395 	root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1396 	if (root == NULL) {
1397 		/*
1398 		 * The new entry does not overlap any existing entry in the
1399 		 * map, so it becomes the new root of the map tree.
1400 		 */
1401 		max_free_left = vm_map_splay_merge_pred(header, entry, llist);
1402 		max_free_right = vm_map_splay_merge_succ(header, entry, rlist);
1403 	} else if (entry->start == root->start) {
1404 		/*
1405 		 * The new entry is a clone of root, with only the end field
1406 		 * changed.  The root entry will be shrunk to abut the new
1407 		 * entry, and will be the right child of the new root entry in
1408 		 * the modified map.
1409 		 */
1410 		KASSERT(entry->end < root->end,
1411 		    ("%s: clip_start not within entry", __func__));
1412 		vm_map_splay_findprev(root, &llist);
1413 		if ((root->eflags & (MAP_ENTRY_STACK_GAP_DN |
1414 		    MAP_ENTRY_STACK_GAP_UP)) == 0)
1415 			root->offset += entry->end - root->start;
1416 		root->start = entry->end;
1417 		max_free_left = vm_map_splay_merge_pred(header, entry, llist);
1418 		max_free_right = root->max_free = vm_size_max(
1419 		    vm_map_splay_merge_pred(entry, root, entry),
1420 		    vm_map_splay_merge_right(header, root, rlist));
1421 	} else {
1422 		/*
1423 		 * The new entry is a clone of root, with only the start field
1424 		 * changed.  The root entry will be shrunk to abut the new
1425 		 * entry, and will be the left child of the new root entry in
1426 		 * the modified map.
1427 		 */
1428 		KASSERT(entry->end == root->end,
1429 		    ("%s: clip_start not within entry", __func__));
1430 		vm_map_splay_findnext(root, &rlist);
1431 		if ((entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
1432 		    MAP_ENTRY_STACK_GAP_UP)) == 0)
1433 			entry->offset += entry->start - root->start;
1434 		root->end = entry->start;
1435 		max_free_left = root->max_free = vm_size_max(
1436 		    vm_map_splay_merge_left(header, root, llist),
1437 		    vm_map_splay_merge_succ(entry, root, entry));
1438 		max_free_right = vm_map_splay_merge_succ(header, entry, rlist);
1439 	}
1440 	entry->max_free = vm_size_max(max_free_left, max_free_right);
1441 	map->root = entry;
1442 	VM_MAP_ASSERT_CONSISTENT(map);
1443 }
1444 
1445 enum unlink_merge_type {
1446 	UNLINK_MERGE_NONE,
1447 	UNLINK_MERGE_NEXT
1448 };
1449 
1450 static void
1451 vm_map_entry_unlink(vm_map_t map, vm_map_entry_t entry,
1452     enum unlink_merge_type op)
1453 {
1454 	vm_map_entry_t header, llist, rlist, root;
1455 	vm_size_t max_free_left, max_free_right;
1456 
1457 	VM_MAP_ASSERT_LOCKED(map);
1458 	header = &map->header;
1459 	root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1460 	KASSERT(root != NULL,
1461 	    ("vm_map_entry_unlink: unlink object not mapped"));
1462 
1463 	vm_map_splay_findprev(root, &llist);
1464 	vm_map_splay_findnext(root, &rlist);
1465 	if (op == UNLINK_MERGE_NEXT) {
1466 		rlist->start = root->start;
1467 		MPASS((rlist->eflags & (MAP_ENTRY_STACK_GAP_DN |
1468 		    MAP_ENTRY_STACK_GAP_UP)) == 0);
1469 		rlist->offset = root->offset;
1470 	}
1471 	if (llist != header) {
1472 		root = llist;
1473 		llist = root->right;
1474 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1475 		max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1476 	} else if (rlist != header) {
1477 		root = rlist;
1478 		rlist = root->left;
1479 		max_free_left = vm_map_splay_merge_pred(header, root, llist);
1480 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1481 	} else {
1482 		header->left = header->right = header;
1483 		root = NULL;
1484 	}
1485 	if (root != NULL)
1486 		root->max_free = vm_size_max(max_free_left, max_free_right);
1487 	map->root = root;
1488 	VM_MAP_ASSERT_CONSISTENT(map);
1489 	map->nentries--;
1490 	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1491 	    map->nentries, entry);
1492 }
1493 
1494 /*
1495  *	vm_map_entry_resize:
1496  *
1497  *	Resize a vm_map_entry, recompute the amount of free space that
1498  *	follows it and propagate that value up the tree.
1499  *
1500  *	The map must be locked, and leaves it so.
1501  */
1502 static void
1503 vm_map_entry_resize(vm_map_t map, vm_map_entry_t entry, vm_size_t grow_amount)
1504 {
1505 	vm_map_entry_t header, llist, rlist, root;
1506 
1507 	VM_MAP_ASSERT_LOCKED(map);
1508 	header = &map->header;
1509 	root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1510 	KASSERT(root != NULL, ("%s: resize object not mapped", __func__));
1511 	vm_map_splay_findnext(root, &rlist);
1512 	entry->end += grow_amount;
1513 	root->max_free = vm_size_max(
1514 	    vm_map_splay_merge_left(header, root, llist),
1515 	    vm_map_splay_merge_succ(header, root, rlist));
1516 	map->root = root;
1517 	VM_MAP_ASSERT_CONSISTENT(map);
1518 	CTR4(KTR_VM, "%s: map %p, nentries %d, entry %p",
1519 	    __func__, map, map->nentries, entry);
1520 }
1521 
1522 /*
1523  *	vm_map_lookup_entry:	[ internal use only ]
1524  *
1525  *	Finds the map entry containing (or
1526  *	immediately preceding) the specified address
1527  *	in the given map; the entry is returned
1528  *	in the "entry" parameter.  The boolean
1529  *	result indicates whether the address is
1530  *	actually contained in the map.
1531  */
1532 boolean_t
1533 vm_map_lookup_entry(
1534 	vm_map_t map,
1535 	vm_offset_t address,
1536 	vm_map_entry_t *entry)	/* OUT */
1537 {
1538 	vm_map_entry_t cur, header, lbound, ubound;
1539 	boolean_t locked;
1540 
1541 	/*
1542 	 * If the map is empty, then the map entry immediately preceding
1543 	 * "address" is the map's header.
1544 	 */
1545 	header = &map->header;
1546 	cur = map->root;
1547 	if (cur == NULL) {
1548 		*entry = header;
1549 		return (FALSE);
1550 	}
1551 	if (address >= cur->start && cur->end > address) {
1552 		*entry = cur;
1553 		return (TRUE);
1554 	}
1555 	if ((locked = vm_map_locked(map)) ||
1556 	    sx_try_upgrade(&map->lock)) {
1557 		/*
1558 		 * Splay requires a write lock on the map.  However, it only
1559 		 * restructures the binary search tree; it does not otherwise
1560 		 * change the map.  Thus, the map's timestamp need not change
1561 		 * on a temporary upgrade.
1562 		 */
1563 		cur = vm_map_splay(map, address);
1564 		if (!locked) {
1565 			VM_MAP_UNLOCK_CONSISTENT(map);
1566 			sx_downgrade(&map->lock);
1567 		}
1568 
1569 		/*
1570 		 * If "address" is contained within a map entry, the new root
1571 		 * is that map entry.  Otherwise, the new root is a map entry
1572 		 * immediately before or after "address".
1573 		 */
1574 		if (address < cur->start) {
1575 			*entry = header;
1576 			return (FALSE);
1577 		}
1578 		*entry = cur;
1579 		return (address < cur->end);
1580 	}
1581 	/*
1582 	 * Since the map is only locked for read access, perform a
1583 	 * standard binary search tree lookup for "address".
1584 	 */
1585 	lbound = ubound = header;
1586 	for (;;) {
1587 		if (address < cur->start) {
1588 			ubound = cur;
1589 			cur = cur->left;
1590 			if (cur == lbound)
1591 				break;
1592 		} else if (cur->end <= address) {
1593 			lbound = cur;
1594 			cur = cur->right;
1595 			if (cur == ubound)
1596 				break;
1597 		} else {
1598 			*entry = cur;
1599 			return (TRUE);
1600 		}
1601 	}
1602 	*entry = lbound;
1603 	return (FALSE);
1604 }
1605 
1606 /*
1607  * vm_map_insert1() is identical to vm_map_insert() except that it
1608  * returns the newly inserted map entry in '*res'.  In case the new
1609  * entry is coalesced with a neighbor or an existing entry was
1610  * resized, that entry is returned.  In any case, the returned entry
1611  * covers the specified address range.
1612  */
1613 static int
1614 vm_map_insert1(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1615     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow,
1616     vm_map_entry_t *res)
1617 {
1618 	vm_map_entry_t new_entry, next_entry, prev_entry;
1619 	struct ucred *cred;
1620 	vm_eflags_t protoeflags;
1621 	vm_inherit_t inheritance;
1622 	u_long bdry;
1623 	u_int bidx;
1624 
1625 	VM_MAP_ASSERT_LOCKED(map);
1626 	KASSERT(object != kernel_object ||
1627 	    (cow & MAP_COPY_ON_WRITE) == 0,
1628 	    ("vm_map_insert: kernel object and COW"));
1629 	KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0 ||
1630 	    (cow & MAP_SPLIT_BOUNDARY_MASK) != 0,
1631 	    ("vm_map_insert: paradoxical MAP_NOFAULT request, obj %p cow %#x",
1632 	    object, cow));
1633 	KASSERT((prot & ~max) == 0,
1634 	    ("prot %#x is not subset of max_prot %#x", prot, max));
1635 
1636 	/*
1637 	 * Check that the start and end points are not bogus.
1638 	 */
1639 	if (start == end || !vm_map_range_valid(map, start, end))
1640 		return (KERN_INVALID_ADDRESS);
1641 
1642 	if ((map->flags & MAP_WXORX) != 0 && (prot & (VM_PROT_WRITE |
1643 	    VM_PROT_EXECUTE)) == (VM_PROT_WRITE | VM_PROT_EXECUTE))
1644 		return (KERN_PROTECTION_FAILURE);
1645 
1646 	/*
1647 	 * Find the entry prior to the proposed starting address; if it's part
1648 	 * of an existing entry, this range is bogus.
1649 	 */
1650 	if (vm_map_lookup_entry(map, start, &prev_entry))
1651 		return (KERN_NO_SPACE);
1652 
1653 	/*
1654 	 * Assert that the next entry doesn't overlap the end point.
1655 	 */
1656 	next_entry = vm_map_entry_succ(prev_entry);
1657 	if (next_entry->start < end)
1658 		return (KERN_NO_SPACE);
1659 
1660 	if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL ||
1661 	    max != VM_PROT_NONE))
1662 		return (KERN_INVALID_ARGUMENT);
1663 
1664 	protoeflags = 0;
1665 	if (cow & MAP_COPY_ON_WRITE)
1666 		protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1667 	if (cow & MAP_NOFAULT)
1668 		protoeflags |= MAP_ENTRY_NOFAULT;
1669 	if (cow & MAP_DISABLE_SYNCER)
1670 		protoeflags |= MAP_ENTRY_NOSYNC;
1671 	if (cow & MAP_DISABLE_COREDUMP)
1672 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1673 	if (cow & MAP_STACK_GROWS_DOWN)
1674 		protoeflags |= MAP_ENTRY_GROWS_DOWN;
1675 	if (cow & MAP_STACK_GROWS_UP)
1676 		protoeflags |= MAP_ENTRY_GROWS_UP;
1677 	if (cow & MAP_WRITECOUNT)
1678 		protoeflags |= MAP_ENTRY_WRITECNT;
1679 	if (cow & MAP_VN_EXEC)
1680 		protoeflags |= MAP_ENTRY_VN_EXEC;
1681 	if ((cow & MAP_CREATE_GUARD) != 0)
1682 		protoeflags |= MAP_ENTRY_GUARD;
1683 	if ((cow & MAP_CREATE_STACK_GAP_DN) != 0)
1684 		protoeflags |= MAP_ENTRY_STACK_GAP_DN;
1685 	if ((cow & MAP_CREATE_STACK_GAP_UP) != 0)
1686 		protoeflags |= MAP_ENTRY_STACK_GAP_UP;
1687 	if (cow & MAP_INHERIT_SHARE)
1688 		inheritance = VM_INHERIT_SHARE;
1689 	else
1690 		inheritance = VM_INHERIT_DEFAULT;
1691 	if ((cow & MAP_SPLIT_BOUNDARY_MASK) != 0) {
1692 		/* This magically ignores index 0, for usual page size. */
1693 		bidx = (cow & MAP_SPLIT_BOUNDARY_MASK) >>
1694 		    MAP_SPLIT_BOUNDARY_SHIFT;
1695 		if (bidx >= MAXPAGESIZES)
1696 			return (KERN_INVALID_ARGUMENT);
1697 		bdry = pagesizes[bidx] - 1;
1698 		if ((start & bdry) != 0 || (end & bdry) != 0)
1699 			return (KERN_INVALID_ARGUMENT);
1700 		protoeflags |= bidx << MAP_ENTRY_SPLIT_BOUNDARY_SHIFT;
1701 	}
1702 
1703 	cred = NULL;
1704 	if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0)
1705 		goto charged;
1706 	if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1707 	    ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1708 		if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1709 			return (KERN_RESOURCE_SHORTAGE);
1710 		KASSERT(object == NULL ||
1711 		    (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
1712 		    object->cred == NULL,
1713 		    ("overcommit: vm_map_insert o %p", object));
1714 		cred = curthread->td_ucred;
1715 	}
1716 
1717 charged:
1718 	/* Expand the kernel pmap, if necessary. */
1719 	if (map == kernel_map && end > kernel_vm_end)
1720 		pmap_growkernel(end);
1721 	if (object != NULL) {
1722 		/*
1723 		 * OBJ_ONEMAPPING must be cleared unless this mapping
1724 		 * is trivially proven to be the only mapping for any
1725 		 * of the object's pages.  (Object granularity
1726 		 * reference counting is insufficient to recognize
1727 		 * aliases with precision.)
1728 		 */
1729 		if ((object->flags & OBJ_ANON) != 0) {
1730 			VM_OBJECT_WLOCK(object);
1731 			if (object->ref_count > 1 || object->shadow_count != 0)
1732 				vm_object_clear_flag(object, OBJ_ONEMAPPING);
1733 			VM_OBJECT_WUNLOCK(object);
1734 		}
1735 	} else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) ==
1736 	    protoeflags &&
1737 	    (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP |
1738 	    MAP_VN_EXEC)) == 0 &&
1739 	    prev_entry->end == start && (prev_entry->cred == cred ||
1740 	    (prev_entry->object.vm_object != NULL &&
1741 	    prev_entry->object.vm_object->cred == cred)) &&
1742 	    vm_object_coalesce(prev_entry->object.vm_object,
1743 	    prev_entry->offset,
1744 	    (vm_size_t)(prev_entry->end - prev_entry->start),
1745 	    (vm_size_t)(end - prev_entry->end), cred != NULL &&
1746 	    (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1747 		/*
1748 		 * We were able to extend the object.  Determine if we
1749 		 * can extend the previous map entry to include the
1750 		 * new range as well.
1751 		 */
1752 		if (prev_entry->inheritance == inheritance &&
1753 		    prev_entry->protection == prot &&
1754 		    prev_entry->max_protection == max &&
1755 		    prev_entry->wired_count == 0) {
1756 			KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) ==
1757 			    0, ("prev_entry %p has incoherent wiring",
1758 			    prev_entry));
1759 			if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0)
1760 				map->size += end - prev_entry->end;
1761 			vm_map_entry_resize(map, prev_entry,
1762 			    end - prev_entry->end);
1763 			*res = vm_map_try_merge_entries(map, prev_entry,
1764 			    next_entry);
1765 			return (KERN_SUCCESS);
1766 		}
1767 
1768 		/*
1769 		 * If we can extend the object but cannot extend the
1770 		 * map entry, we have to create a new map entry.  We
1771 		 * must bump the ref count on the extended object to
1772 		 * account for it.  object may be NULL.
1773 		 */
1774 		object = prev_entry->object.vm_object;
1775 		offset = prev_entry->offset +
1776 		    (prev_entry->end - prev_entry->start);
1777 		vm_object_reference(object);
1778 		if (cred != NULL && object != NULL && object->cred != NULL &&
1779 		    !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1780 			/* Object already accounts for this uid. */
1781 			cred = NULL;
1782 		}
1783 	}
1784 	if (cred != NULL)
1785 		crhold(cred);
1786 
1787 	/*
1788 	 * Create a new entry
1789 	 */
1790 	new_entry = vm_map_entry_create(map);
1791 	new_entry->start = start;
1792 	new_entry->end = end;
1793 	new_entry->cred = NULL;
1794 
1795 	new_entry->eflags = protoeflags;
1796 	new_entry->object.vm_object = object;
1797 	new_entry->offset = offset;
1798 
1799 	new_entry->inheritance = inheritance;
1800 	new_entry->protection = prot;
1801 	new_entry->max_protection = max;
1802 	new_entry->wired_count = 0;
1803 	new_entry->wiring_thread = NULL;
1804 	new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1805 	new_entry->next_read = start;
1806 
1807 	KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1808 	    ("overcommit: vm_map_insert leaks vm_map %p", new_entry));
1809 	new_entry->cred = cred;
1810 
1811 	/*
1812 	 * Insert the new entry into the list
1813 	 */
1814 	vm_map_entry_link(map, new_entry);
1815 	if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0)
1816 		map->size += new_entry->end - new_entry->start;
1817 
1818 	/*
1819 	 * Try to coalesce the new entry with both the previous and next
1820 	 * entries in the list.  Previously, we only attempted to coalesce
1821 	 * with the previous entry when object is NULL.  Here, we handle the
1822 	 * other cases, which are less common.
1823 	 */
1824 	vm_map_try_merge_entries(map, prev_entry, new_entry);
1825 	*res = vm_map_try_merge_entries(map, new_entry, next_entry);
1826 
1827 	if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) {
1828 		vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset),
1829 		    end - start, cow & MAP_PREFAULT_PARTIAL);
1830 	}
1831 
1832 	return (KERN_SUCCESS);
1833 }
1834 
1835 /*
1836  *	vm_map_insert:
1837  *
1838  *	Inserts the given VM object into the target map at the
1839  *	specified address range.
1840  *
1841  *	Requires that the map be locked, and leaves it so.
1842  *
1843  *	If object is non-NULL, ref count must be bumped by caller
1844  *	prior to making call to account for the new entry.
1845  */
1846 int
1847 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1848     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1849 {
1850 	vm_map_entry_t res;
1851 
1852 	return (vm_map_insert1(map, object, offset, start, end, prot, max,
1853 	    cow, &res));
1854 }
1855 
1856 /*
1857  *	vm_map_findspace:
1858  *
1859  *	Find the first fit (lowest VM address) for "length" free bytes
1860  *	beginning at address >= start in the given map.
1861  *
1862  *	In a vm_map_entry, "max_free" is the maximum amount of
1863  *	contiguous free space between an entry in its subtree and a
1864  *	neighbor of that entry.  This allows finding a free region in
1865  *	one path down the tree, so O(log n) amortized with splay
1866  *	trees.
1867  *
1868  *	The map must be locked, and leaves it so.
1869  *
1870  *	Returns: starting address if sufficient space,
1871  *		 vm_map_max(map)-length+1 if insufficient space.
1872  */
1873 vm_offset_t
1874 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length)
1875 {
1876 	vm_map_entry_t header, llist, rlist, root, y;
1877 	vm_size_t left_length, max_free_left, max_free_right;
1878 	vm_offset_t gap_end;
1879 
1880 	VM_MAP_ASSERT_LOCKED(map);
1881 
1882 	/*
1883 	 * Request must fit within min/max VM address and must avoid
1884 	 * address wrap.
1885 	 */
1886 	start = MAX(start, vm_map_min(map));
1887 	if (start >= vm_map_max(map) || length > vm_map_max(map) - start)
1888 		return (vm_map_max(map) - length + 1);
1889 
1890 	/* Empty tree means wide open address space. */
1891 	if (map->root == NULL)
1892 		return (start);
1893 
1894 	/*
1895 	 * After splay_split, if start is within an entry, push it to the start
1896 	 * of the following gap.  If rlist is at the end of the gap containing
1897 	 * start, save the end of that gap in gap_end to see if the gap is big
1898 	 * enough; otherwise set gap_end to start skip gap-checking and move
1899 	 * directly to a search of the right subtree.
1900 	 */
1901 	header = &map->header;
1902 	root = vm_map_splay_split(map, start, length, &llist, &rlist);
1903 	gap_end = rlist->start;
1904 	if (root != NULL) {
1905 		start = root->end;
1906 		if (root->right != rlist)
1907 			gap_end = start;
1908 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1909 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1910 	} else if (rlist != header) {
1911 		root = rlist;
1912 		rlist = root->left;
1913 		max_free_left = vm_map_splay_merge_pred(header, root, llist);
1914 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1915 	} else {
1916 		root = llist;
1917 		llist = root->right;
1918 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1919 		max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1920 	}
1921 	root->max_free = vm_size_max(max_free_left, max_free_right);
1922 	map->root = root;
1923 	VM_MAP_ASSERT_CONSISTENT(map);
1924 	if (length <= gap_end - start)
1925 		return (start);
1926 
1927 	/* With max_free, can immediately tell if no solution. */
1928 	if (root->right == header || length > root->right->max_free)
1929 		return (vm_map_max(map) - length + 1);
1930 
1931 	/*
1932 	 * Splay for the least large-enough gap in the right subtree.
1933 	 */
1934 	llist = rlist = header;
1935 	for (left_length = 0;;
1936 	    left_length = vm_map_entry_max_free_left(root, llist)) {
1937 		if (length <= left_length)
1938 			SPLAY_LEFT_STEP(root, y, llist, rlist,
1939 			    length <= vm_map_entry_max_free_left(y, llist));
1940 		else
1941 			SPLAY_RIGHT_STEP(root, y, llist, rlist,
1942 			    length > vm_map_entry_max_free_left(y, root));
1943 		if (root == NULL)
1944 			break;
1945 	}
1946 	root = llist;
1947 	llist = root->right;
1948 	max_free_left = vm_map_splay_merge_left(header, root, llist);
1949 	if (rlist == header) {
1950 		root->max_free = vm_size_max(max_free_left,
1951 		    vm_map_splay_merge_succ(header, root, rlist));
1952 	} else {
1953 		y = rlist;
1954 		rlist = y->left;
1955 		y->max_free = vm_size_max(
1956 		    vm_map_splay_merge_pred(root, y, root),
1957 		    vm_map_splay_merge_right(header, y, rlist));
1958 		root->max_free = vm_size_max(max_free_left, y->max_free);
1959 	}
1960 	map->root = root;
1961 	VM_MAP_ASSERT_CONSISTENT(map);
1962 	return (root->end);
1963 }
1964 
1965 int
1966 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1967     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1968     vm_prot_t max, int cow)
1969 {
1970 	vm_offset_t end;
1971 	int result;
1972 
1973 	end = start + length;
1974 	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1975 	    object == NULL,
1976 	    ("vm_map_fixed: non-NULL backing object for stack"));
1977 	vm_map_lock(map);
1978 	VM_MAP_RANGE_CHECK(map, start, end);
1979 	if ((cow & MAP_CHECK_EXCL) == 0) {
1980 		result = vm_map_delete(map, start, end);
1981 		if (result != KERN_SUCCESS)
1982 			goto out;
1983 	}
1984 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1985 		result = vm_map_stack_locked(map, start, length, sgrowsiz,
1986 		    prot, max, cow);
1987 	} else {
1988 		result = vm_map_insert(map, object, offset, start, end,
1989 		    prot, max, cow);
1990 	}
1991 out:
1992 	vm_map_unlock(map);
1993 	return (result);
1994 }
1995 
1996 #if VM_NRESERVLEVEL <= 1
1997 static const int aslr_pages_rnd_64[2] = {0x1000, 0x10};
1998 static const int aslr_pages_rnd_32[2] = {0x100, 0x4};
1999 #elif VM_NRESERVLEVEL == 2
2000 static const int aslr_pages_rnd_64[3] = {0x1000, 0x1000, 0x10};
2001 static const int aslr_pages_rnd_32[3] = {0x100, 0x100, 0x4};
2002 #else
2003 #error "Unsupported VM_NRESERVLEVEL"
2004 #endif
2005 
2006 static int cluster_anon = 1;
2007 SYSCTL_INT(_vm, OID_AUTO, cluster_anon, CTLFLAG_RW,
2008     &cluster_anon, 0,
2009     "Cluster anonymous mappings: 0 = no, 1 = yes if no hint, 2 = always");
2010 
2011 static bool
2012 clustering_anon_allowed(vm_offset_t addr, int cow)
2013 {
2014 
2015 	switch (cluster_anon) {
2016 	case 0:
2017 		return (false);
2018 	case 1:
2019 		return (addr == 0 || (cow & MAP_NO_HINT) != 0);
2020 	case 2:
2021 	default:
2022 		return (true);
2023 	}
2024 }
2025 
2026 static long aslr_restarts;
2027 SYSCTL_LONG(_vm, OID_AUTO, aslr_restarts, CTLFLAG_RD,
2028     &aslr_restarts, 0,
2029     "Number of aslr failures");
2030 
2031 /*
2032  * Searches for the specified amount of free space in the given map with the
2033  * specified alignment.  Performs an address-ordered, first-fit search from
2034  * the given address "*addr", with an optional upper bound "max_addr".  If the
2035  * parameter "alignment" is zero, then the alignment is computed from the
2036  * given (object, offset) pair so as to enable the greatest possible use of
2037  * superpage mappings.  Returns KERN_SUCCESS and the address of the free space
2038  * in "*addr" if successful.  Otherwise, returns KERN_NO_SPACE.
2039  *
2040  * The map must be locked.  Initially, there must be at least "length" bytes
2041  * of free space at the given address.
2042  */
2043 static int
2044 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2045     vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr,
2046     vm_offset_t alignment)
2047 {
2048 	vm_offset_t aligned_addr, free_addr;
2049 
2050 	VM_MAP_ASSERT_LOCKED(map);
2051 	free_addr = *addr;
2052 	KASSERT(free_addr == vm_map_findspace(map, free_addr, length),
2053 	    ("caller failed to provide space %#jx at address %p",
2054 	     (uintmax_t)length, (void *)free_addr));
2055 	for (;;) {
2056 		/*
2057 		 * At the start of every iteration, the free space at address
2058 		 * "*addr" is at least "length" bytes.
2059 		 */
2060 		if (alignment == 0)
2061 			pmap_align_superpage(object, offset, addr, length);
2062 		else
2063 			*addr = roundup2(*addr, alignment);
2064 		aligned_addr = *addr;
2065 		if (aligned_addr == free_addr) {
2066 			/*
2067 			 * Alignment did not change "*addr", so "*addr" must
2068 			 * still provide sufficient free space.
2069 			 */
2070 			return (KERN_SUCCESS);
2071 		}
2072 
2073 		/*
2074 		 * Test for address wrap on "*addr".  A wrapped "*addr" could
2075 		 * be a valid address, in which case vm_map_findspace() cannot
2076 		 * be relied upon to fail.
2077 		 */
2078 		if (aligned_addr < free_addr)
2079 			return (KERN_NO_SPACE);
2080 		*addr = vm_map_findspace(map, aligned_addr, length);
2081 		if (*addr + length > vm_map_max(map) ||
2082 		    (max_addr != 0 && *addr + length > max_addr))
2083 			return (KERN_NO_SPACE);
2084 		free_addr = *addr;
2085 		if (free_addr == aligned_addr) {
2086 			/*
2087 			 * If a successful call to vm_map_findspace() did not
2088 			 * change "*addr", then "*addr" must still be aligned
2089 			 * and provide sufficient free space.
2090 			 */
2091 			return (KERN_SUCCESS);
2092 		}
2093 	}
2094 }
2095 
2096 int
2097 vm_map_find_aligned(vm_map_t map, vm_offset_t *addr, vm_size_t length,
2098     vm_offset_t max_addr, vm_offset_t alignment)
2099 {
2100 	/* XXXKIB ASLR eh ? */
2101 	*addr = vm_map_findspace(map, *addr, length);
2102 	if (*addr + length > vm_map_max(map) ||
2103 	    (max_addr != 0 && *addr + length > max_addr))
2104 		return (KERN_NO_SPACE);
2105 	return (vm_map_alignspace(map, NULL, 0, addr, length, max_addr,
2106 	    alignment));
2107 }
2108 
2109 /*
2110  *	vm_map_find finds an unallocated region in the target address
2111  *	map with the given length.  The search is defined to be
2112  *	first-fit from the specified address; the region found is
2113  *	returned in the same parameter.
2114  *
2115  *	If object is non-NULL, ref count must be bumped by caller
2116  *	prior to making call to account for the new entry.
2117  */
2118 int
2119 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2120 	    vm_offset_t *addr,	/* IN/OUT */
2121 	    vm_size_t length, vm_offset_t max_addr, int find_space,
2122 	    vm_prot_t prot, vm_prot_t max, int cow)
2123 {
2124 	vm_offset_t alignment, curr_min_addr, min_addr;
2125 	int gap, pidx, rv, try;
2126 	bool cluster, en_aslr, update_anon;
2127 
2128 	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
2129 	    object == NULL,
2130 	    ("vm_map_find: non-NULL backing object for stack"));
2131 	MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE &&
2132 	    (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0));
2133 	if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
2134 	    (object->flags & OBJ_COLORED) == 0))
2135 		find_space = VMFS_ANY_SPACE;
2136 	if (find_space >> 8 != 0) {
2137 		KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
2138 		alignment = (vm_offset_t)1 << (find_space >> 8);
2139 	} else
2140 		alignment = 0;
2141 	en_aslr = (map->flags & MAP_ASLR) != 0;
2142 	update_anon = cluster = clustering_anon_allowed(*addr, cow) &&
2143 	    (map->flags & MAP_IS_SUB_MAP) == 0 && max_addr == 0 &&
2144 	    find_space != VMFS_NO_SPACE && object == NULL &&
2145 	    (cow & (MAP_INHERIT_SHARE | MAP_STACK_GROWS_UP |
2146 	    MAP_STACK_GROWS_DOWN)) == 0 && prot != PROT_NONE;
2147 	curr_min_addr = min_addr = *addr;
2148 	if (en_aslr && min_addr == 0 && !cluster &&
2149 	    find_space != VMFS_NO_SPACE &&
2150 	    (map->flags & MAP_ASLR_IGNSTART) != 0)
2151 		curr_min_addr = min_addr = vm_map_min(map);
2152 	try = 0;
2153 	vm_map_lock(map);
2154 	if (cluster) {
2155 		curr_min_addr = map->anon_loc;
2156 		if (curr_min_addr == 0)
2157 			cluster = false;
2158 	}
2159 	if (find_space != VMFS_NO_SPACE) {
2160 		KASSERT(find_space == VMFS_ANY_SPACE ||
2161 		    find_space == VMFS_OPTIMAL_SPACE ||
2162 		    find_space == VMFS_SUPER_SPACE ||
2163 		    alignment != 0, ("unexpected VMFS flag"));
2164 again:
2165 		/*
2166 		 * When creating an anonymous mapping, try clustering
2167 		 * with an existing anonymous mapping first.
2168 		 *
2169 		 * We make up to two attempts to find address space
2170 		 * for a given find_space value. The first attempt may
2171 		 * apply randomization or may cluster with an existing
2172 		 * anonymous mapping. If this first attempt fails,
2173 		 * perform a first-fit search of the available address
2174 		 * space.
2175 		 *
2176 		 * If all tries failed, and find_space is
2177 		 * VMFS_OPTIMAL_SPACE, fallback to VMFS_ANY_SPACE.
2178 		 * Again enable clustering and randomization.
2179 		 */
2180 		try++;
2181 		MPASS(try <= 2);
2182 
2183 		if (try == 2) {
2184 			/*
2185 			 * Second try: we failed either to find a
2186 			 * suitable region for randomizing the
2187 			 * allocation, or to cluster with an existing
2188 			 * mapping.  Retry with free run.
2189 			 */
2190 			curr_min_addr = (map->flags & MAP_ASLR_IGNSTART) != 0 ?
2191 			    vm_map_min(map) : min_addr;
2192 			atomic_add_long(&aslr_restarts, 1);
2193 		}
2194 
2195 		if (try == 1 && en_aslr && !cluster) {
2196 			/*
2197 			 * Find space for allocation, including
2198 			 * gap needed for later randomization.
2199 			 */
2200 			pidx = 0;
2201 #if VM_NRESERVLEVEL > 0
2202 			if ((find_space == VMFS_SUPER_SPACE ||
2203 			    find_space == VMFS_OPTIMAL_SPACE) &&
2204 			    pagesizes[VM_NRESERVLEVEL] != 0) {
2205 				/*
2206 				 * Do not pointlessly increase the space that
2207 				 * is requested from vm_map_findspace().
2208 				 * pmap_align_superpage() will only change a
2209 				 * mapping's alignment if that mapping is at
2210 				 * least a superpage in size.
2211 				 */
2212 				pidx = VM_NRESERVLEVEL;
2213 				while (pidx > 0 && length < pagesizes[pidx])
2214 					pidx--;
2215 			}
2216 #endif
2217 			gap = vm_map_max(map) > MAP_32BIT_MAX_ADDR &&
2218 			    (max_addr == 0 || max_addr > MAP_32BIT_MAX_ADDR) ?
2219 			    aslr_pages_rnd_64[pidx] : aslr_pages_rnd_32[pidx];
2220 			*addr = vm_map_findspace(map, curr_min_addr,
2221 			    length + gap * pagesizes[pidx]);
2222 			if (*addr + length + gap * pagesizes[pidx] >
2223 			    vm_map_max(map))
2224 				goto again;
2225 			/* And randomize the start address. */
2226 			*addr += (arc4random() % gap) * pagesizes[pidx];
2227 			if (max_addr != 0 && *addr + length > max_addr)
2228 				goto again;
2229 		} else {
2230 			*addr = vm_map_findspace(map, curr_min_addr, length);
2231 			if (*addr + length > vm_map_max(map) ||
2232 			    (max_addr != 0 && *addr + length > max_addr)) {
2233 				if (cluster) {
2234 					cluster = false;
2235 					MPASS(try == 1);
2236 					goto again;
2237 				}
2238 				rv = KERN_NO_SPACE;
2239 				goto done;
2240 			}
2241 		}
2242 
2243 		if (find_space != VMFS_ANY_SPACE &&
2244 		    (rv = vm_map_alignspace(map, object, offset, addr, length,
2245 		    max_addr, alignment)) != KERN_SUCCESS) {
2246 			if (find_space == VMFS_OPTIMAL_SPACE) {
2247 				find_space = VMFS_ANY_SPACE;
2248 				curr_min_addr = min_addr;
2249 				cluster = update_anon;
2250 				try = 0;
2251 				goto again;
2252 			}
2253 			goto done;
2254 		}
2255 	} else if ((cow & MAP_REMAP) != 0) {
2256 		if (!vm_map_range_valid(map, *addr, *addr + length)) {
2257 			rv = KERN_INVALID_ADDRESS;
2258 			goto done;
2259 		}
2260 		rv = vm_map_delete(map, *addr, *addr + length);
2261 		if (rv != KERN_SUCCESS)
2262 			goto done;
2263 	}
2264 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
2265 		rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot,
2266 		    max, cow);
2267 	} else {
2268 		rv = vm_map_insert(map, object, offset, *addr, *addr + length,
2269 		    prot, max, cow);
2270 	}
2271 
2272 	/*
2273 	 * Update the starting address for clustered anonymous memory mappings
2274 	 * if a starting address was not previously defined or an ASLR restart
2275 	 * placed an anonymous memory mapping at a lower address.
2276 	 */
2277 	if (update_anon && rv == KERN_SUCCESS && (map->anon_loc == 0 ||
2278 	    *addr < map->anon_loc))
2279 		map->anon_loc = *addr;
2280 done:
2281 	vm_map_unlock(map);
2282 	return (rv);
2283 }
2284 
2285 /*
2286  *	vm_map_find_min() is a variant of vm_map_find() that takes an
2287  *	additional parameter ("default_addr") and treats the given address
2288  *	("*addr") differently.  Specifically, it treats "*addr" as a hint
2289  *	and not as the minimum address where the mapping is created.
2290  *
2291  *	This function works in two phases.  First, it tries to
2292  *	allocate above the hint.  If that fails and the hint is
2293  *	greater than "default_addr", it performs a second pass, replacing
2294  *	the hint with "default_addr" as the minimum address for the
2295  *	allocation.
2296  */
2297 int
2298 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2299     vm_offset_t *addr, vm_size_t length, vm_offset_t default_addr,
2300     vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max,
2301     int cow)
2302 {
2303 	vm_offset_t hint;
2304 	int rv;
2305 
2306 	hint = *addr;
2307 	if (hint == 0) {
2308 		cow |= MAP_NO_HINT;
2309 		*addr = hint = default_addr;
2310 	}
2311 	for (;;) {
2312 		rv = vm_map_find(map, object, offset, addr, length, max_addr,
2313 		    find_space, prot, max, cow);
2314 		if (rv == KERN_SUCCESS || default_addr >= hint)
2315 			return (rv);
2316 		*addr = hint = default_addr;
2317 	}
2318 }
2319 
2320 /*
2321  * A map entry with any of the following flags set must not be merged with
2322  * another entry.
2323  */
2324 #define	MAP_ENTRY_NOMERGE_MASK	(MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | \
2325     MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP | MAP_ENTRY_VN_EXEC | \
2326     MAP_ENTRY_STACK_GAP_UP | MAP_ENTRY_STACK_GAP_DN)
2327 
2328 static bool
2329 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry)
2330 {
2331 
2332 	KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 ||
2333 	    (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0,
2334 	    ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable",
2335 	    prev, entry));
2336 	return (prev->end == entry->start &&
2337 	    prev->object.vm_object == entry->object.vm_object &&
2338 	    (prev->object.vm_object == NULL ||
2339 	    prev->offset + (prev->end - prev->start) == entry->offset) &&
2340 	    prev->eflags == entry->eflags &&
2341 	    prev->protection == entry->protection &&
2342 	    prev->max_protection == entry->max_protection &&
2343 	    prev->inheritance == entry->inheritance &&
2344 	    prev->wired_count == entry->wired_count &&
2345 	    prev->cred == entry->cred);
2346 }
2347 
2348 static void
2349 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry)
2350 {
2351 
2352 	/*
2353 	 * If the backing object is a vnode object, vm_object_deallocate()
2354 	 * calls vrele().  However, vrele() does not lock the vnode because
2355 	 * the vnode has additional references.  Thus, the map lock can be
2356 	 * kept without causing a lock-order reversal with the vnode lock.
2357 	 *
2358 	 * Since we count the number of virtual page mappings in
2359 	 * object->un_pager.vnp.writemappings, the writemappings value
2360 	 * should not be adjusted when the entry is disposed of.
2361 	 */
2362 	if (entry->object.vm_object != NULL)
2363 		vm_object_deallocate(entry->object.vm_object);
2364 	if (entry->cred != NULL)
2365 		crfree(entry->cred);
2366 	vm_map_entry_dispose(map, entry);
2367 }
2368 
2369 /*
2370  *	vm_map_try_merge_entries:
2371  *
2372  *	Compare two map entries that represent consecutive ranges. If
2373  *	the entries can be merged, expand the range of the second to
2374  *	cover the range of the first and delete the first. Then return
2375  *	the map entry that includes the first range.
2376  *
2377  *	The map must be locked.
2378  */
2379 vm_map_entry_t
2380 vm_map_try_merge_entries(vm_map_t map, vm_map_entry_t prev_entry,
2381     vm_map_entry_t entry)
2382 {
2383 
2384 	VM_MAP_ASSERT_LOCKED(map);
2385 	if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 &&
2386 	    vm_map_mergeable_neighbors(prev_entry, entry)) {
2387 		vm_map_entry_unlink(map, prev_entry, UNLINK_MERGE_NEXT);
2388 		vm_map_merged_neighbor_dispose(map, prev_entry);
2389 		return (entry);
2390 	}
2391 	return (prev_entry);
2392 }
2393 
2394 /*
2395  *	vm_map_entry_back:
2396  *
2397  *	Allocate an object to back a map entry.
2398  */
2399 static inline void
2400 vm_map_entry_back(vm_map_entry_t entry)
2401 {
2402 	vm_object_t object;
2403 
2404 	KASSERT(entry->object.vm_object == NULL,
2405 	    ("map entry %p has backing object", entry));
2406 	KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
2407 	    ("map entry %p is a submap", entry));
2408 	object = vm_object_allocate_anon(atop(entry->end - entry->start), NULL,
2409 	    entry->cred, entry->end - entry->start);
2410 	entry->object.vm_object = object;
2411 	entry->offset = 0;
2412 	entry->cred = NULL;
2413 }
2414 
2415 /*
2416  *	vm_map_entry_charge_object
2417  *
2418  *	If there is no object backing this entry, create one.  Otherwise, if
2419  *	the entry has cred, give it to the backing object.
2420  */
2421 static inline void
2422 vm_map_entry_charge_object(vm_map_t map, vm_map_entry_t entry)
2423 {
2424 
2425 	VM_MAP_ASSERT_LOCKED(map);
2426 	KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
2427 	    ("map entry %p is a submap", entry));
2428 	if (entry->object.vm_object == NULL && !map->system_map &&
2429 	    (entry->eflags & MAP_ENTRY_GUARD) == 0)
2430 		vm_map_entry_back(entry);
2431 	else if (entry->object.vm_object != NULL &&
2432 	    ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
2433 	    entry->cred != NULL) {
2434 		VM_OBJECT_WLOCK(entry->object.vm_object);
2435 		KASSERT(entry->object.vm_object->cred == NULL,
2436 		    ("OVERCOMMIT: %s: both cred e %p", __func__, entry));
2437 		entry->object.vm_object->cred = entry->cred;
2438 		entry->object.vm_object->charge = entry->end - entry->start;
2439 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
2440 		entry->cred = NULL;
2441 	}
2442 }
2443 
2444 /*
2445  *	vm_map_entry_clone
2446  *
2447  *	Create a duplicate map entry for clipping.
2448  */
2449 static vm_map_entry_t
2450 vm_map_entry_clone(vm_map_t map, vm_map_entry_t entry)
2451 {
2452 	vm_map_entry_t new_entry;
2453 
2454 	VM_MAP_ASSERT_LOCKED(map);
2455 
2456 	/*
2457 	 * Create a backing object now, if none exists, so that more individual
2458 	 * objects won't be created after the map entry is split.
2459 	 */
2460 	vm_map_entry_charge_object(map, entry);
2461 
2462 	/* Clone the entry. */
2463 	new_entry = vm_map_entry_create(map);
2464 	*new_entry = *entry;
2465 	if (new_entry->cred != NULL)
2466 		crhold(entry->cred);
2467 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2468 		vm_object_reference(new_entry->object.vm_object);
2469 		vm_map_entry_set_vnode_text(new_entry, true);
2470 		/*
2471 		 * The object->un_pager.vnp.writemappings for the object of
2472 		 * MAP_ENTRY_WRITECNT type entry shall be kept as is here.  The
2473 		 * virtual pages are re-distributed among the clipped entries,
2474 		 * so the sum is left the same.
2475 		 */
2476 	}
2477 	return (new_entry);
2478 }
2479 
2480 /*
2481  *	vm_map_clip_start:	[ internal use only ]
2482  *
2483  *	Asserts that the given entry begins at or after
2484  *	the specified address; if necessary,
2485  *	it splits the entry into two.
2486  */
2487 static int
2488 vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t startaddr)
2489 {
2490 	vm_map_entry_t new_entry;
2491 	int bdry_idx;
2492 
2493 	if (!map->system_map)
2494 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2495 		    "%s: map %p entry %p start 0x%jx", __func__, map, entry,
2496 		    (uintmax_t)startaddr);
2497 
2498 	if (startaddr <= entry->start)
2499 		return (KERN_SUCCESS);
2500 
2501 	VM_MAP_ASSERT_LOCKED(map);
2502 	KASSERT(entry->end > startaddr && entry->start < startaddr,
2503 	    ("%s: invalid clip of entry %p", __func__, entry));
2504 
2505 	bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry);
2506 	if (bdry_idx != 0) {
2507 		if ((startaddr & (pagesizes[bdry_idx] - 1)) != 0)
2508 			return (KERN_INVALID_ARGUMENT);
2509 	}
2510 
2511 	new_entry = vm_map_entry_clone(map, entry);
2512 
2513 	/*
2514 	 * Split off the front portion.  Insert the new entry BEFORE this one,
2515 	 * so that this entry has the specified starting address.
2516 	 */
2517 	new_entry->end = startaddr;
2518 	vm_map_entry_link(map, new_entry);
2519 	return (KERN_SUCCESS);
2520 }
2521 
2522 /*
2523  *	vm_map_lookup_clip_start:
2524  *
2525  *	Find the entry at or just after 'start', and clip it if 'start' is in
2526  *	the interior of the entry.  Return entry after 'start', and in
2527  *	prev_entry set the entry before 'start'.
2528  */
2529 static int
2530 vm_map_lookup_clip_start(vm_map_t map, vm_offset_t start,
2531     vm_map_entry_t *res_entry, vm_map_entry_t *prev_entry)
2532 {
2533 	vm_map_entry_t entry;
2534 	int rv;
2535 
2536 	if (!map->system_map)
2537 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2538 		    "%s: map %p start 0x%jx prev %p", __func__, map,
2539 		    (uintmax_t)start, prev_entry);
2540 
2541 	if (vm_map_lookup_entry(map, start, prev_entry)) {
2542 		entry = *prev_entry;
2543 		rv = vm_map_clip_start(map, entry, start);
2544 		if (rv != KERN_SUCCESS)
2545 			return (rv);
2546 		*prev_entry = vm_map_entry_pred(entry);
2547 	} else
2548 		entry = vm_map_entry_succ(*prev_entry);
2549 	*res_entry = entry;
2550 	return (KERN_SUCCESS);
2551 }
2552 
2553 /*
2554  *	vm_map_clip_end:	[ internal use only ]
2555  *
2556  *	Asserts that the given entry ends at or before
2557  *	the specified address; if necessary,
2558  *	it splits the entry into two.
2559  */
2560 static int
2561 vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t endaddr)
2562 {
2563 	vm_map_entry_t new_entry;
2564 	int bdry_idx;
2565 
2566 	if (!map->system_map)
2567 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2568 		    "%s: map %p entry %p end 0x%jx", __func__, map, entry,
2569 		    (uintmax_t)endaddr);
2570 
2571 	if (endaddr >= entry->end)
2572 		return (KERN_SUCCESS);
2573 
2574 	VM_MAP_ASSERT_LOCKED(map);
2575 	KASSERT(entry->start < endaddr && entry->end > endaddr,
2576 	    ("%s: invalid clip of entry %p", __func__, entry));
2577 
2578 	bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry);
2579 	if (bdry_idx != 0) {
2580 		if ((endaddr & (pagesizes[bdry_idx] - 1)) != 0)
2581 			return (KERN_INVALID_ARGUMENT);
2582 	}
2583 
2584 	new_entry = vm_map_entry_clone(map, entry);
2585 
2586 	/*
2587 	 * Split off the back portion.  Insert the new entry AFTER this one,
2588 	 * so that this entry has the specified ending address.
2589 	 */
2590 	new_entry->start = endaddr;
2591 	vm_map_entry_link(map, new_entry);
2592 
2593 	return (KERN_SUCCESS);
2594 }
2595 
2596 /*
2597  *	vm_map_submap:		[ kernel use only ]
2598  *
2599  *	Mark the given range as handled by a subordinate map.
2600  *
2601  *	This range must have been created with vm_map_find,
2602  *	and no other operations may have been performed on this
2603  *	range prior to calling vm_map_submap.
2604  *
2605  *	Only a limited number of operations can be performed
2606  *	within this rage after calling vm_map_submap:
2607  *		vm_fault
2608  *	[Don't try vm_map_copy!]
2609  *
2610  *	To remove a submapping, one must first remove the
2611  *	range from the superior map, and then destroy the
2612  *	submap (if desired).  [Better yet, don't try it.]
2613  */
2614 int
2615 vm_map_submap(
2616 	vm_map_t map,
2617 	vm_offset_t start,
2618 	vm_offset_t end,
2619 	vm_map_t submap)
2620 {
2621 	vm_map_entry_t entry;
2622 	int result;
2623 
2624 	result = KERN_INVALID_ARGUMENT;
2625 
2626 	vm_map_lock(submap);
2627 	submap->flags |= MAP_IS_SUB_MAP;
2628 	vm_map_unlock(submap);
2629 
2630 	vm_map_lock(map);
2631 	VM_MAP_RANGE_CHECK(map, start, end);
2632 	if (vm_map_lookup_entry(map, start, &entry) && entry->end >= end &&
2633 	    (entry->eflags & MAP_ENTRY_COW) == 0 &&
2634 	    entry->object.vm_object == NULL) {
2635 		result = vm_map_clip_start(map, entry, start);
2636 		if (result != KERN_SUCCESS)
2637 			goto unlock;
2638 		result = vm_map_clip_end(map, entry, end);
2639 		if (result != KERN_SUCCESS)
2640 			goto unlock;
2641 		entry->object.sub_map = submap;
2642 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
2643 		result = KERN_SUCCESS;
2644 	}
2645 unlock:
2646 	vm_map_unlock(map);
2647 
2648 	if (result != KERN_SUCCESS) {
2649 		vm_map_lock(submap);
2650 		submap->flags &= ~MAP_IS_SUB_MAP;
2651 		vm_map_unlock(submap);
2652 	}
2653 	return (result);
2654 }
2655 
2656 /*
2657  * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
2658  */
2659 #define	MAX_INIT_PT	96
2660 
2661 /*
2662  *	vm_map_pmap_enter:
2663  *
2664  *	Preload the specified map's pmap with mappings to the specified
2665  *	object's memory-resident pages.  No further physical pages are
2666  *	allocated, and no further virtual pages are retrieved from secondary
2667  *	storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
2668  *	limited number of page mappings are created at the low-end of the
2669  *	specified address range.  (For this purpose, a superpage mapping
2670  *	counts as one page mapping.)  Otherwise, all resident pages within
2671  *	the specified address range are mapped.
2672  */
2673 static void
2674 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
2675     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
2676 {
2677 	vm_offset_t start;
2678 	vm_page_t p, p_start;
2679 	vm_pindex_t mask, psize, threshold, tmpidx;
2680 	int psind;
2681 
2682 	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
2683 		return;
2684 	if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2685 		VM_OBJECT_WLOCK(object);
2686 		if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2687 			pmap_object_init_pt(map->pmap, addr, object, pindex,
2688 			    size);
2689 			VM_OBJECT_WUNLOCK(object);
2690 			return;
2691 		}
2692 		VM_OBJECT_LOCK_DOWNGRADE(object);
2693 	} else
2694 		VM_OBJECT_RLOCK(object);
2695 
2696 	psize = atop(size);
2697 	if (psize + pindex > object->size) {
2698 		if (pindex >= object->size) {
2699 			VM_OBJECT_RUNLOCK(object);
2700 			return;
2701 		}
2702 		psize = object->size - pindex;
2703 	}
2704 
2705 	start = 0;
2706 	p_start = NULL;
2707 	threshold = MAX_INIT_PT;
2708 
2709 	p = vm_page_find_least(object, pindex);
2710 	/*
2711 	 * Assert: the variable p is either (1) the page with the
2712 	 * least pindex greater than or equal to the parameter pindex
2713 	 * or (2) NULL.
2714 	 */
2715 	for (;
2716 	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
2717 	     p = TAILQ_NEXT(p, listq)) {
2718 		/*
2719 		 * don't allow an madvise to blow away our really
2720 		 * free pages allocating pv entries.
2721 		 */
2722 		if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
2723 		    vm_page_count_severe()) ||
2724 		    ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
2725 		    tmpidx >= threshold)) {
2726 			psize = tmpidx;
2727 			break;
2728 		}
2729 		if (vm_page_all_valid(p)) {
2730 			if (p_start == NULL) {
2731 				start = addr + ptoa(tmpidx);
2732 				p_start = p;
2733 			}
2734 			/* Jump ahead if a superpage mapping is possible. */
2735 			for (psind = p->psind; psind > 0; psind--) {
2736 				if (((addr + ptoa(tmpidx)) &
2737 				    (pagesizes[psind] - 1)) == 0) {
2738 					mask = atop(pagesizes[psind]) - 1;
2739 					if (tmpidx + mask < psize &&
2740 					    vm_page_ps_test(p, psind,
2741 					    PS_ALL_VALID, NULL)) {
2742 						p += mask;
2743 						threshold += mask;
2744 						break;
2745 					}
2746 				}
2747 			}
2748 		} else if (p_start != NULL) {
2749 			pmap_enter_object(map->pmap, start, addr +
2750 			    ptoa(tmpidx), p_start, prot);
2751 			p_start = NULL;
2752 		}
2753 	}
2754 	if (p_start != NULL)
2755 		pmap_enter_object(map->pmap, start, addr + ptoa(psize),
2756 		    p_start, prot);
2757 	VM_OBJECT_RUNLOCK(object);
2758 }
2759 
2760 static void
2761 vm_map_protect_guard(vm_map_entry_t entry, vm_prot_t new_prot,
2762     vm_prot_t new_maxprot, int flags)
2763 {
2764 	vm_prot_t old_prot;
2765 
2766 	MPASS((entry->eflags & MAP_ENTRY_GUARD) != 0);
2767 	if ((entry->eflags & (MAP_ENTRY_STACK_GAP_UP |
2768 	    MAP_ENTRY_STACK_GAP_DN)) == 0)
2769 		return;
2770 
2771 	old_prot = PROT_EXTRACT(entry->offset);
2772 	if ((flags & VM_MAP_PROTECT_SET_MAXPROT) != 0) {
2773 		entry->offset = PROT_MAX(new_maxprot) |
2774 		    (new_maxprot & old_prot);
2775 	}
2776 	if ((flags & VM_MAP_PROTECT_SET_PROT) != 0) {
2777 		entry->offset = new_prot | PROT_MAX(
2778 		    PROT_MAX_EXTRACT(entry->offset));
2779 	}
2780 }
2781 
2782 /*
2783  *	vm_map_protect:
2784  *
2785  *	Sets the protection and/or the maximum protection of the
2786  *	specified address region in the target map.
2787  */
2788 int
2789 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
2790     vm_prot_t new_prot, vm_prot_t new_maxprot, int flags)
2791 {
2792 	vm_map_entry_t entry, first_entry, in_tran, prev_entry;
2793 	vm_object_t obj;
2794 	struct ucred *cred;
2795 	vm_offset_t orig_start;
2796 	vm_prot_t check_prot, max_prot, old_prot;
2797 	int rv;
2798 
2799 	if (start == end)
2800 		return (KERN_SUCCESS);
2801 
2802 	if (CONTAINS_BITS(flags, VM_MAP_PROTECT_SET_PROT |
2803 	    VM_MAP_PROTECT_SET_MAXPROT) &&
2804 	    !CONTAINS_BITS(new_maxprot, new_prot))
2805 		return (KERN_OUT_OF_BOUNDS);
2806 
2807 	orig_start = start;
2808 again:
2809 	in_tran = NULL;
2810 	start = orig_start;
2811 	vm_map_lock(map);
2812 
2813 	if ((map->flags & MAP_WXORX) != 0 &&
2814 	    (flags & VM_MAP_PROTECT_SET_PROT) != 0 &&
2815 	    CONTAINS_BITS(new_prot, VM_PROT_WRITE | VM_PROT_EXECUTE)) {
2816 		vm_map_unlock(map);
2817 		return (KERN_PROTECTION_FAILURE);
2818 	}
2819 
2820 	/*
2821 	 * Ensure that we are not concurrently wiring pages.  vm_map_wire() may
2822 	 * need to fault pages into the map and will drop the map lock while
2823 	 * doing so, and the VM object may end up in an inconsistent state if we
2824 	 * update the protection on the map entry in between faults.
2825 	 */
2826 	vm_map_wait_busy(map);
2827 
2828 	VM_MAP_RANGE_CHECK(map, start, end);
2829 
2830 	if (!vm_map_lookup_entry(map, start, &first_entry))
2831 		first_entry = vm_map_entry_succ(first_entry);
2832 
2833 	if ((flags & VM_MAP_PROTECT_GROWSDOWN) != 0 &&
2834 	    (first_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0) {
2835 		/*
2836 		 * Handle Linux's PROT_GROWSDOWN flag.
2837 		 * It means that protection is applied down to the
2838 		 * whole stack, including the specified range of the
2839 		 * mapped region, and the grow down region (AKA
2840 		 * guard).
2841 		 */
2842 		while (!CONTAINS_BITS(first_entry->eflags,
2843 		    MAP_ENTRY_GUARD | MAP_ENTRY_STACK_GAP_DN) &&
2844 		    first_entry != vm_map_entry_first(map))
2845 			first_entry = vm_map_entry_pred(first_entry);
2846 		start = first_entry->start;
2847 	}
2848 
2849 	/*
2850 	 * Make a first pass to check for protection violations.
2851 	 */
2852 	check_prot = 0;
2853 	if ((flags & VM_MAP_PROTECT_SET_PROT) != 0)
2854 		check_prot |= new_prot;
2855 	if ((flags & VM_MAP_PROTECT_SET_MAXPROT) != 0)
2856 		check_prot |= new_maxprot;
2857 	for (entry = first_entry; entry->start < end;
2858 	    entry = vm_map_entry_succ(entry)) {
2859 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) {
2860 			vm_map_unlock(map);
2861 			return (KERN_INVALID_ARGUMENT);
2862 		}
2863 		if ((entry->eflags & (MAP_ENTRY_GUARD |
2864 		    MAP_ENTRY_STACK_GAP_DN | MAP_ENTRY_STACK_GAP_UP)) ==
2865 		    MAP_ENTRY_GUARD)
2866 			continue;
2867 		max_prot = (entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
2868 		    MAP_ENTRY_STACK_GAP_UP)) != 0 ?
2869 		    PROT_MAX_EXTRACT(entry->offset) : entry->max_protection;
2870 		if (!CONTAINS_BITS(max_prot, check_prot)) {
2871 			vm_map_unlock(map);
2872 			return (KERN_PROTECTION_FAILURE);
2873 		}
2874 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0)
2875 			in_tran = entry;
2876 	}
2877 
2878 	/*
2879 	 * Postpone the operation until all in-transition map entries have
2880 	 * stabilized.  An in-transition entry might already have its pages
2881 	 * wired and wired_count incremented, but not yet have its
2882 	 * MAP_ENTRY_USER_WIRED flag set.  In which case, we would fail to call
2883 	 * vm_fault_copy_entry() in the final loop below.
2884 	 */
2885 	if (in_tran != NULL) {
2886 		in_tran->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2887 		vm_map_unlock_and_wait(map, 0);
2888 		goto again;
2889 	}
2890 
2891 	/*
2892 	 * Before changing the protections, try to reserve swap space for any
2893 	 * private (i.e., copy-on-write) mappings that are transitioning from
2894 	 * read-only to read/write access.  If a reservation fails, break out
2895 	 * of this loop early and let the next loop simplify the entries, since
2896 	 * some may now be mergeable.
2897 	 */
2898 	rv = vm_map_clip_start(map, first_entry, start);
2899 	if (rv != KERN_SUCCESS) {
2900 		vm_map_unlock(map);
2901 		return (rv);
2902 	}
2903 	for (entry = first_entry; entry->start < end;
2904 	    entry = vm_map_entry_succ(entry)) {
2905 		rv = vm_map_clip_end(map, entry, end);
2906 		if (rv != KERN_SUCCESS) {
2907 			vm_map_unlock(map);
2908 			return (rv);
2909 		}
2910 
2911 		if ((flags & VM_MAP_PROTECT_SET_PROT) == 0 ||
2912 		    ((new_prot & ~entry->protection) & VM_PROT_WRITE) == 0 ||
2913 		    ENTRY_CHARGED(entry) ||
2914 		    (entry->eflags & MAP_ENTRY_GUARD) != 0)
2915 			continue;
2916 
2917 		cred = curthread->td_ucred;
2918 		obj = entry->object.vm_object;
2919 
2920 		if (obj == NULL ||
2921 		    (entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0) {
2922 			if (!swap_reserve(entry->end - entry->start)) {
2923 				rv = KERN_RESOURCE_SHORTAGE;
2924 				end = entry->end;
2925 				break;
2926 			}
2927 			crhold(cred);
2928 			entry->cred = cred;
2929 			continue;
2930 		}
2931 
2932 		VM_OBJECT_WLOCK(obj);
2933 		if ((obj->flags & OBJ_SWAP) == 0) {
2934 			VM_OBJECT_WUNLOCK(obj);
2935 			continue;
2936 		}
2937 
2938 		/*
2939 		 * Charge for the whole object allocation now, since
2940 		 * we cannot distinguish between non-charged and
2941 		 * charged clipped mapping of the same object later.
2942 		 */
2943 		KASSERT(obj->charge == 0,
2944 		    ("vm_map_protect: object %p overcharged (entry %p)",
2945 		    obj, entry));
2946 		if (!swap_reserve(ptoa(obj->size))) {
2947 			VM_OBJECT_WUNLOCK(obj);
2948 			rv = KERN_RESOURCE_SHORTAGE;
2949 			end = entry->end;
2950 			break;
2951 		}
2952 
2953 		crhold(cred);
2954 		obj->cred = cred;
2955 		obj->charge = ptoa(obj->size);
2956 		VM_OBJECT_WUNLOCK(obj);
2957 	}
2958 
2959 	/*
2960 	 * If enough swap space was available, go back and fix up protections.
2961 	 * Otherwise, just simplify entries, since some may have been modified.
2962 	 * [Note that clipping is not necessary the second time.]
2963 	 */
2964 	for (prev_entry = vm_map_entry_pred(first_entry), entry = first_entry;
2965 	    entry->start < end;
2966 	    vm_map_try_merge_entries(map, prev_entry, entry),
2967 	    prev_entry = entry, entry = vm_map_entry_succ(entry)) {
2968 		if (rv != KERN_SUCCESS)
2969 			continue;
2970 
2971 		if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
2972 			vm_map_protect_guard(entry, new_prot, new_maxprot,
2973 			    flags);
2974 			continue;
2975 		}
2976 
2977 		old_prot = entry->protection;
2978 
2979 		if ((flags & VM_MAP_PROTECT_SET_MAXPROT) != 0) {
2980 			entry->max_protection = new_maxprot;
2981 			entry->protection = new_maxprot & old_prot;
2982 		}
2983 		if ((flags & VM_MAP_PROTECT_SET_PROT) != 0)
2984 			entry->protection = new_prot;
2985 
2986 		/*
2987 		 * For user wired map entries, the normal lazy evaluation of
2988 		 * write access upgrades through soft page faults is
2989 		 * undesirable.  Instead, immediately copy any pages that are
2990 		 * copy-on-write and enable write access in the physical map.
2991 		 */
2992 		if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2993 		    (entry->protection & VM_PROT_WRITE) != 0 &&
2994 		    (old_prot & VM_PROT_WRITE) == 0)
2995 			vm_fault_copy_entry(map, map, entry, entry, NULL);
2996 
2997 		/*
2998 		 * When restricting access, update the physical map.  Worry
2999 		 * about copy-on-write here.
3000 		 */
3001 		if ((old_prot & ~entry->protection) != 0) {
3002 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
3003 							VM_PROT_ALL)
3004 			pmap_protect(map->pmap, entry->start,
3005 			    entry->end,
3006 			    entry->protection & MASK(entry));
3007 #undef	MASK
3008 		}
3009 	}
3010 	vm_map_try_merge_entries(map, prev_entry, entry);
3011 	vm_map_unlock(map);
3012 	return (rv);
3013 }
3014 
3015 /*
3016  *	vm_map_madvise:
3017  *
3018  *	This routine traverses a processes map handling the madvise
3019  *	system call.  Advisories are classified as either those effecting
3020  *	the vm_map_entry structure, or those effecting the underlying
3021  *	objects.
3022  */
3023 int
3024 vm_map_madvise(
3025 	vm_map_t map,
3026 	vm_offset_t start,
3027 	vm_offset_t end,
3028 	int behav)
3029 {
3030 	vm_map_entry_t entry, prev_entry;
3031 	int rv;
3032 	bool modify_map;
3033 
3034 	/*
3035 	 * Some madvise calls directly modify the vm_map_entry, in which case
3036 	 * we need to use an exclusive lock on the map and we need to perform
3037 	 * various clipping operations.  Otherwise we only need a read-lock
3038 	 * on the map.
3039 	 */
3040 	switch(behav) {
3041 	case MADV_NORMAL:
3042 	case MADV_SEQUENTIAL:
3043 	case MADV_RANDOM:
3044 	case MADV_NOSYNC:
3045 	case MADV_AUTOSYNC:
3046 	case MADV_NOCORE:
3047 	case MADV_CORE:
3048 		if (start == end)
3049 			return (0);
3050 		modify_map = true;
3051 		vm_map_lock(map);
3052 		break;
3053 	case MADV_WILLNEED:
3054 	case MADV_DONTNEED:
3055 	case MADV_FREE:
3056 		if (start == end)
3057 			return (0);
3058 		modify_map = false;
3059 		vm_map_lock_read(map);
3060 		break;
3061 	default:
3062 		return (EINVAL);
3063 	}
3064 
3065 	/*
3066 	 * Locate starting entry and clip if necessary.
3067 	 */
3068 	VM_MAP_RANGE_CHECK(map, start, end);
3069 
3070 	if (modify_map) {
3071 		/*
3072 		 * madvise behaviors that are implemented in the vm_map_entry.
3073 		 *
3074 		 * We clip the vm_map_entry so that behavioral changes are
3075 		 * limited to the specified address range.
3076 		 */
3077 		rv = vm_map_lookup_clip_start(map, start, &entry, &prev_entry);
3078 		if (rv != KERN_SUCCESS) {
3079 			vm_map_unlock(map);
3080 			return (vm_mmap_to_errno(rv));
3081 		}
3082 
3083 		for (; entry->start < end; prev_entry = entry,
3084 		    entry = vm_map_entry_succ(entry)) {
3085 			if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
3086 				continue;
3087 
3088 			rv = vm_map_clip_end(map, entry, end);
3089 			if (rv != KERN_SUCCESS) {
3090 				vm_map_unlock(map);
3091 				return (vm_mmap_to_errno(rv));
3092 			}
3093 
3094 			switch (behav) {
3095 			case MADV_NORMAL:
3096 				vm_map_entry_set_behavior(entry,
3097 				    MAP_ENTRY_BEHAV_NORMAL);
3098 				break;
3099 			case MADV_SEQUENTIAL:
3100 				vm_map_entry_set_behavior(entry,
3101 				    MAP_ENTRY_BEHAV_SEQUENTIAL);
3102 				break;
3103 			case MADV_RANDOM:
3104 				vm_map_entry_set_behavior(entry,
3105 				    MAP_ENTRY_BEHAV_RANDOM);
3106 				break;
3107 			case MADV_NOSYNC:
3108 				entry->eflags |= MAP_ENTRY_NOSYNC;
3109 				break;
3110 			case MADV_AUTOSYNC:
3111 				entry->eflags &= ~MAP_ENTRY_NOSYNC;
3112 				break;
3113 			case MADV_NOCORE:
3114 				entry->eflags |= MAP_ENTRY_NOCOREDUMP;
3115 				break;
3116 			case MADV_CORE:
3117 				entry->eflags &= ~MAP_ENTRY_NOCOREDUMP;
3118 				break;
3119 			default:
3120 				break;
3121 			}
3122 			vm_map_try_merge_entries(map, prev_entry, entry);
3123 		}
3124 		vm_map_try_merge_entries(map, prev_entry, entry);
3125 		vm_map_unlock(map);
3126 	} else {
3127 		vm_pindex_t pstart, pend;
3128 
3129 		/*
3130 		 * madvise behaviors that are implemented in the underlying
3131 		 * vm_object.
3132 		 *
3133 		 * Since we don't clip the vm_map_entry, we have to clip
3134 		 * the vm_object pindex and count.
3135 		 */
3136 		if (!vm_map_lookup_entry(map, start, &entry))
3137 			entry = vm_map_entry_succ(entry);
3138 		for (; entry->start < end;
3139 		    entry = vm_map_entry_succ(entry)) {
3140 			vm_offset_t useEnd, useStart;
3141 
3142 			if ((entry->eflags & (MAP_ENTRY_IS_SUB_MAP |
3143 			    MAP_ENTRY_GUARD)) != 0)
3144 				continue;
3145 
3146 			/*
3147 			 * MADV_FREE would otherwise rewind time to
3148 			 * the creation of the shadow object.  Because
3149 			 * we hold the VM map read-locked, neither the
3150 			 * entry's object nor the presence of a
3151 			 * backing object can change.
3152 			 */
3153 			if (behav == MADV_FREE &&
3154 			    entry->object.vm_object != NULL &&
3155 			    entry->object.vm_object->backing_object != NULL)
3156 				continue;
3157 
3158 			pstart = OFF_TO_IDX(entry->offset);
3159 			pend = pstart + atop(entry->end - entry->start);
3160 			useStart = entry->start;
3161 			useEnd = entry->end;
3162 
3163 			if (entry->start < start) {
3164 				pstart += atop(start - entry->start);
3165 				useStart = start;
3166 			}
3167 			if (entry->end > end) {
3168 				pend -= atop(entry->end - end);
3169 				useEnd = end;
3170 			}
3171 
3172 			if (pstart >= pend)
3173 				continue;
3174 
3175 			/*
3176 			 * Perform the pmap_advise() before clearing
3177 			 * PGA_REFERENCED in vm_page_advise().  Otherwise, a
3178 			 * concurrent pmap operation, such as pmap_remove(),
3179 			 * could clear a reference in the pmap and set
3180 			 * PGA_REFERENCED on the page before the pmap_advise()
3181 			 * had completed.  Consequently, the page would appear
3182 			 * referenced based upon an old reference that
3183 			 * occurred before this pmap_advise() ran.
3184 			 */
3185 			if (behav == MADV_DONTNEED || behav == MADV_FREE)
3186 				pmap_advise(map->pmap, useStart, useEnd,
3187 				    behav);
3188 
3189 			vm_object_madvise(entry->object.vm_object, pstart,
3190 			    pend, behav);
3191 
3192 			/*
3193 			 * Pre-populate paging structures in the
3194 			 * WILLNEED case.  For wired entries, the
3195 			 * paging structures are already populated.
3196 			 */
3197 			if (behav == MADV_WILLNEED &&
3198 			    entry->wired_count == 0) {
3199 				vm_map_pmap_enter(map,
3200 				    useStart,
3201 				    entry->protection,
3202 				    entry->object.vm_object,
3203 				    pstart,
3204 				    ptoa(pend - pstart),
3205 				    MAP_PREFAULT_MADVISE
3206 				);
3207 			}
3208 		}
3209 		vm_map_unlock_read(map);
3210 	}
3211 	return (0);
3212 }
3213 
3214 /*
3215  *	vm_map_inherit:
3216  *
3217  *	Sets the inheritance of the specified address
3218  *	range in the target map.  Inheritance
3219  *	affects how the map will be shared with
3220  *	child maps at the time of vmspace_fork.
3221  */
3222 int
3223 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
3224 	       vm_inherit_t new_inheritance)
3225 {
3226 	vm_map_entry_t entry, lentry, prev_entry, start_entry;
3227 	int rv;
3228 
3229 	switch (new_inheritance) {
3230 	case VM_INHERIT_NONE:
3231 	case VM_INHERIT_COPY:
3232 	case VM_INHERIT_SHARE:
3233 	case VM_INHERIT_ZERO:
3234 		break;
3235 	default:
3236 		return (KERN_INVALID_ARGUMENT);
3237 	}
3238 	if (start == end)
3239 		return (KERN_SUCCESS);
3240 	vm_map_lock(map);
3241 	VM_MAP_RANGE_CHECK(map, start, end);
3242 	rv = vm_map_lookup_clip_start(map, start, &start_entry, &prev_entry);
3243 	if (rv != KERN_SUCCESS)
3244 		goto unlock;
3245 	if (vm_map_lookup_entry(map, end - 1, &lentry)) {
3246 		rv = vm_map_clip_end(map, lentry, end);
3247 		if (rv != KERN_SUCCESS)
3248 			goto unlock;
3249 	}
3250 	if (new_inheritance == VM_INHERIT_COPY) {
3251 		for (entry = start_entry; entry->start < end;
3252 		    prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3253 			if ((entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK)
3254 			    != 0) {
3255 				rv = KERN_INVALID_ARGUMENT;
3256 				goto unlock;
3257 			}
3258 		}
3259 	}
3260 	for (entry = start_entry; entry->start < end; prev_entry = entry,
3261 	    entry = vm_map_entry_succ(entry)) {
3262 		KASSERT(entry->end <= end, ("non-clipped entry %p end %jx %jx",
3263 		    entry, (uintmax_t)entry->end, (uintmax_t)end));
3264 		if ((entry->eflags & MAP_ENTRY_GUARD) == 0 ||
3265 		    new_inheritance != VM_INHERIT_ZERO)
3266 			entry->inheritance = new_inheritance;
3267 		vm_map_try_merge_entries(map, prev_entry, entry);
3268 	}
3269 	vm_map_try_merge_entries(map, prev_entry, entry);
3270 unlock:
3271 	vm_map_unlock(map);
3272 	return (rv);
3273 }
3274 
3275 /*
3276  *	vm_map_entry_in_transition:
3277  *
3278  *	Release the map lock, and sleep until the entry is no longer in
3279  *	transition.  Awake and acquire the map lock.  If the map changed while
3280  *	another held the lock, lookup a possibly-changed entry at or after the
3281  *	'start' position of the old entry.
3282  */
3283 static vm_map_entry_t
3284 vm_map_entry_in_transition(vm_map_t map, vm_offset_t in_start,
3285     vm_offset_t *io_end, bool holes_ok, vm_map_entry_t in_entry)
3286 {
3287 	vm_map_entry_t entry;
3288 	vm_offset_t start;
3289 	u_int last_timestamp;
3290 
3291 	VM_MAP_ASSERT_LOCKED(map);
3292 	KASSERT((in_entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3293 	    ("not in-tranition map entry %p", in_entry));
3294 	/*
3295 	 * We have not yet clipped the entry.
3296 	 */
3297 	start = MAX(in_start, in_entry->start);
3298 	in_entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3299 	last_timestamp = map->timestamp;
3300 	if (vm_map_unlock_and_wait(map, 0)) {
3301 		/*
3302 		 * Allow interruption of user wiring/unwiring?
3303 		 */
3304 	}
3305 	vm_map_lock(map);
3306 	if (last_timestamp + 1 == map->timestamp)
3307 		return (in_entry);
3308 
3309 	/*
3310 	 * Look again for the entry because the map was modified while it was
3311 	 * unlocked.  Specifically, the entry may have been clipped, merged, or
3312 	 * deleted.
3313 	 */
3314 	if (!vm_map_lookup_entry(map, start, &entry)) {
3315 		if (!holes_ok) {
3316 			*io_end = start;
3317 			return (NULL);
3318 		}
3319 		entry = vm_map_entry_succ(entry);
3320 	}
3321 	return (entry);
3322 }
3323 
3324 /*
3325  *	vm_map_unwire:
3326  *
3327  *	Implements both kernel and user unwiring.
3328  */
3329 int
3330 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
3331     int flags)
3332 {
3333 	vm_map_entry_t entry, first_entry, next_entry, prev_entry;
3334 	int rv;
3335 	bool holes_ok, need_wakeup, user_unwire;
3336 
3337 	if (start == end)
3338 		return (KERN_SUCCESS);
3339 	holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0;
3340 	user_unwire = (flags & VM_MAP_WIRE_USER) != 0;
3341 	vm_map_lock(map);
3342 	VM_MAP_RANGE_CHECK(map, start, end);
3343 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
3344 		if (holes_ok)
3345 			first_entry = vm_map_entry_succ(first_entry);
3346 		else {
3347 			vm_map_unlock(map);
3348 			return (KERN_INVALID_ADDRESS);
3349 		}
3350 	}
3351 	rv = KERN_SUCCESS;
3352 	for (entry = first_entry; entry->start < end; entry = next_entry) {
3353 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
3354 			/*
3355 			 * We have not yet clipped the entry.
3356 			 */
3357 			next_entry = vm_map_entry_in_transition(map, start,
3358 			    &end, holes_ok, entry);
3359 			if (next_entry == NULL) {
3360 				if (entry == first_entry) {
3361 					vm_map_unlock(map);
3362 					return (KERN_INVALID_ADDRESS);
3363 				}
3364 				rv = KERN_INVALID_ADDRESS;
3365 				break;
3366 			}
3367 			first_entry = (entry == first_entry) ?
3368 			    next_entry : NULL;
3369 			continue;
3370 		}
3371 		rv = vm_map_clip_start(map, entry, start);
3372 		if (rv != KERN_SUCCESS)
3373 			break;
3374 		rv = vm_map_clip_end(map, entry, end);
3375 		if (rv != KERN_SUCCESS)
3376 			break;
3377 
3378 		/*
3379 		 * Mark the entry in case the map lock is released.  (See
3380 		 * above.)
3381 		 */
3382 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
3383 		    entry->wiring_thread == NULL,
3384 		    ("owned map entry %p", entry));
3385 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
3386 		entry->wiring_thread = curthread;
3387 		next_entry = vm_map_entry_succ(entry);
3388 		/*
3389 		 * Check the map for holes in the specified region.
3390 		 * If holes_ok, skip this check.
3391 		 */
3392 		if (!holes_ok &&
3393 		    entry->end < end && next_entry->start > entry->end) {
3394 			end = entry->end;
3395 			rv = KERN_INVALID_ADDRESS;
3396 			break;
3397 		}
3398 		/*
3399 		 * If system unwiring, require that the entry is system wired.
3400 		 */
3401 		if (!user_unwire &&
3402 		    vm_map_entry_system_wired_count(entry) == 0) {
3403 			end = entry->end;
3404 			rv = KERN_INVALID_ARGUMENT;
3405 			break;
3406 		}
3407 	}
3408 	need_wakeup = false;
3409 	if (first_entry == NULL &&
3410 	    !vm_map_lookup_entry(map, start, &first_entry)) {
3411 		KASSERT(holes_ok, ("vm_map_unwire: lookup failed"));
3412 		prev_entry = first_entry;
3413 		entry = vm_map_entry_succ(first_entry);
3414 	} else {
3415 		prev_entry = vm_map_entry_pred(first_entry);
3416 		entry = first_entry;
3417 	}
3418 	for (; entry->start < end;
3419 	    prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3420 		/*
3421 		 * If holes_ok was specified, an empty
3422 		 * space in the unwired region could have been mapped
3423 		 * while the map lock was dropped for draining
3424 		 * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
3425 		 * could be simultaneously wiring this new mapping
3426 		 * entry.  Detect these cases and skip any entries
3427 		 * marked as in transition by us.
3428 		 */
3429 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
3430 		    entry->wiring_thread != curthread) {
3431 			KASSERT(holes_ok,
3432 			    ("vm_map_unwire: !HOLESOK and new/changed entry"));
3433 			continue;
3434 		}
3435 
3436 		if (rv == KERN_SUCCESS && (!user_unwire ||
3437 		    (entry->eflags & MAP_ENTRY_USER_WIRED))) {
3438 			if (entry->wired_count == 1)
3439 				vm_map_entry_unwire(map, entry);
3440 			else
3441 				entry->wired_count--;
3442 			if (user_unwire)
3443 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3444 		}
3445 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3446 		    ("vm_map_unwire: in-transition flag missing %p", entry));
3447 		KASSERT(entry->wiring_thread == curthread,
3448 		    ("vm_map_unwire: alien wire %p", entry));
3449 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
3450 		entry->wiring_thread = NULL;
3451 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3452 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3453 			need_wakeup = true;
3454 		}
3455 		vm_map_try_merge_entries(map, prev_entry, entry);
3456 	}
3457 	vm_map_try_merge_entries(map, prev_entry, entry);
3458 	vm_map_unlock(map);
3459 	if (need_wakeup)
3460 		vm_map_wakeup(map);
3461 	return (rv);
3462 }
3463 
3464 static void
3465 vm_map_wire_user_count_sub(u_long npages)
3466 {
3467 
3468 	atomic_subtract_long(&vm_user_wire_count, npages);
3469 }
3470 
3471 static bool
3472 vm_map_wire_user_count_add(u_long npages)
3473 {
3474 	u_long wired;
3475 
3476 	wired = vm_user_wire_count;
3477 	do {
3478 		if (npages + wired > vm_page_max_user_wired)
3479 			return (false);
3480 	} while (!atomic_fcmpset_long(&vm_user_wire_count, &wired,
3481 	    npages + wired));
3482 
3483 	return (true);
3484 }
3485 
3486 /*
3487  *	vm_map_wire_entry_failure:
3488  *
3489  *	Handle a wiring failure on the given entry.
3490  *
3491  *	The map should be locked.
3492  */
3493 static void
3494 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
3495     vm_offset_t failed_addr)
3496 {
3497 
3498 	VM_MAP_ASSERT_LOCKED(map);
3499 	KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
3500 	    entry->wired_count == 1,
3501 	    ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
3502 	KASSERT(failed_addr < entry->end,
3503 	    ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
3504 
3505 	/*
3506 	 * If any pages at the start of this entry were successfully wired,
3507 	 * then unwire them.
3508 	 */
3509 	if (failed_addr > entry->start) {
3510 		pmap_unwire(map->pmap, entry->start, failed_addr);
3511 		vm_object_unwire(entry->object.vm_object, entry->offset,
3512 		    failed_addr - entry->start, PQ_ACTIVE);
3513 	}
3514 
3515 	/*
3516 	 * Assign an out-of-range value to represent the failure to wire this
3517 	 * entry.
3518 	 */
3519 	entry->wired_count = -1;
3520 }
3521 
3522 int
3523 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3524 {
3525 	int rv;
3526 
3527 	vm_map_lock(map);
3528 	rv = vm_map_wire_locked(map, start, end, flags);
3529 	vm_map_unlock(map);
3530 	return (rv);
3531 }
3532 
3533 /*
3534  *	vm_map_wire_locked:
3535  *
3536  *	Implements both kernel and user wiring.  Returns with the map locked,
3537  *	the map lock may be dropped.
3538  */
3539 int
3540 vm_map_wire_locked(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3541 {
3542 	vm_map_entry_t entry, first_entry, next_entry, prev_entry;
3543 	vm_offset_t faddr, saved_end, saved_start;
3544 	u_long incr, npages;
3545 	u_int bidx, last_timestamp;
3546 	int rv;
3547 	bool holes_ok, need_wakeup, user_wire;
3548 	vm_prot_t prot;
3549 
3550 	VM_MAP_ASSERT_LOCKED(map);
3551 
3552 	if (start == end)
3553 		return (KERN_SUCCESS);
3554 	prot = 0;
3555 	if (flags & VM_MAP_WIRE_WRITE)
3556 		prot |= VM_PROT_WRITE;
3557 	holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0;
3558 	user_wire = (flags & VM_MAP_WIRE_USER) != 0;
3559 	VM_MAP_RANGE_CHECK(map, start, end);
3560 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
3561 		if (holes_ok)
3562 			first_entry = vm_map_entry_succ(first_entry);
3563 		else
3564 			return (KERN_INVALID_ADDRESS);
3565 	}
3566 	for (entry = first_entry; entry->start < end; entry = next_entry) {
3567 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
3568 			/*
3569 			 * We have not yet clipped the entry.
3570 			 */
3571 			next_entry = vm_map_entry_in_transition(map, start,
3572 			    &end, holes_ok, entry);
3573 			if (next_entry == NULL) {
3574 				if (entry == first_entry)
3575 					return (KERN_INVALID_ADDRESS);
3576 				rv = KERN_INVALID_ADDRESS;
3577 				goto done;
3578 			}
3579 			first_entry = (entry == first_entry) ?
3580 			    next_entry : NULL;
3581 			continue;
3582 		}
3583 		rv = vm_map_clip_start(map, entry, start);
3584 		if (rv != KERN_SUCCESS)
3585 			goto done;
3586 		rv = vm_map_clip_end(map, entry, end);
3587 		if (rv != KERN_SUCCESS)
3588 			goto done;
3589 
3590 		/*
3591 		 * Mark the entry in case the map lock is released.  (See
3592 		 * above.)
3593 		 */
3594 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
3595 		    entry->wiring_thread == NULL,
3596 		    ("owned map entry %p", entry));
3597 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
3598 		entry->wiring_thread = curthread;
3599 		if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
3600 		    || (entry->protection & prot) != prot) {
3601 			entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
3602 			if (!holes_ok) {
3603 				end = entry->end;
3604 				rv = KERN_INVALID_ADDRESS;
3605 				goto done;
3606 			}
3607 		} else if (entry->wired_count == 0) {
3608 			entry->wired_count++;
3609 
3610 			npages = atop(entry->end - entry->start);
3611 			if (user_wire && !vm_map_wire_user_count_add(npages)) {
3612 				vm_map_wire_entry_failure(map, entry,
3613 				    entry->start);
3614 				end = entry->end;
3615 				rv = KERN_RESOURCE_SHORTAGE;
3616 				goto done;
3617 			}
3618 
3619 			/*
3620 			 * Release the map lock, relying on the in-transition
3621 			 * mark.  Mark the map busy for fork.
3622 			 */
3623 			saved_start = entry->start;
3624 			saved_end = entry->end;
3625 			last_timestamp = map->timestamp;
3626 			bidx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry);
3627 			incr =  pagesizes[bidx];
3628 			vm_map_busy(map);
3629 			vm_map_unlock(map);
3630 
3631 			for (faddr = saved_start; faddr < saved_end;
3632 			    faddr += incr) {
3633 				/*
3634 				 * Simulate a fault to get the page and enter
3635 				 * it into the physical map.
3636 				 */
3637 				rv = vm_fault(map, faddr, VM_PROT_NONE,
3638 				    VM_FAULT_WIRE, NULL);
3639 				if (rv != KERN_SUCCESS)
3640 					break;
3641 			}
3642 			vm_map_lock(map);
3643 			vm_map_unbusy(map);
3644 			if (last_timestamp + 1 != map->timestamp) {
3645 				/*
3646 				 * Look again for the entry because the map was
3647 				 * modified while it was unlocked.  The entry
3648 				 * may have been clipped, but NOT merged or
3649 				 * deleted.
3650 				 */
3651 				if (!vm_map_lookup_entry(map, saved_start,
3652 				    &next_entry))
3653 					KASSERT(false,
3654 					    ("vm_map_wire: lookup failed"));
3655 				first_entry = (entry == first_entry) ?
3656 				    next_entry : NULL;
3657 				for (entry = next_entry; entry->end < saved_end;
3658 				    entry = vm_map_entry_succ(entry)) {
3659 					/*
3660 					 * In case of failure, handle entries
3661 					 * that were not fully wired here;
3662 					 * fully wired entries are handled
3663 					 * later.
3664 					 */
3665 					if (rv != KERN_SUCCESS &&
3666 					    faddr < entry->end)
3667 						vm_map_wire_entry_failure(map,
3668 						    entry, faddr);
3669 				}
3670 			}
3671 			if (rv != KERN_SUCCESS) {
3672 				vm_map_wire_entry_failure(map, entry, faddr);
3673 				if (user_wire)
3674 					vm_map_wire_user_count_sub(npages);
3675 				end = entry->end;
3676 				goto done;
3677 			}
3678 		} else if (!user_wire ||
3679 			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3680 			entry->wired_count++;
3681 		}
3682 		/*
3683 		 * Check the map for holes in the specified region.
3684 		 * If holes_ok was specified, skip this check.
3685 		 */
3686 		next_entry = vm_map_entry_succ(entry);
3687 		if (!holes_ok &&
3688 		    entry->end < end && next_entry->start > entry->end) {
3689 			end = entry->end;
3690 			rv = KERN_INVALID_ADDRESS;
3691 			goto done;
3692 		}
3693 	}
3694 	rv = KERN_SUCCESS;
3695 done:
3696 	need_wakeup = false;
3697 	if (first_entry == NULL &&
3698 	    !vm_map_lookup_entry(map, start, &first_entry)) {
3699 		KASSERT(holes_ok, ("vm_map_wire: lookup failed"));
3700 		prev_entry = first_entry;
3701 		entry = vm_map_entry_succ(first_entry);
3702 	} else {
3703 		prev_entry = vm_map_entry_pred(first_entry);
3704 		entry = first_entry;
3705 	}
3706 	for (; entry->start < end;
3707 	    prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3708 		/*
3709 		 * If holes_ok was specified, an empty
3710 		 * space in the unwired region could have been mapped
3711 		 * while the map lock was dropped for faulting in the
3712 		 * pages or draining MAP_ENTRY_IN_TRANSITION.
3713 		 * Moreover, another thread could be simultaneously
3714 		 * wiring this new mapping entry.  Detect these cases
3715 		 * and skip any entries marked as in transition not by us.
3716 		 *
3717 		 * Another way to get an entry not marked with
3718 		 * MAP_ENTRY_IN_TRANSITION is after failed clipping,
3719 		 * which set rv to KERN_INVALID_ARGUMENT.
3720 		 */
3721 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
3722 		    entry->wiring_thread != curthread) {
3723 			KASSERT(holes_ok || rv == KERN_INVALID_ARGUMENT,
3724 			    ("vm_map_wire: !HOLESOK and new/changed entry"));
3725 			continue;
3726 		}
3727 
3728 		if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) {
3729 			/* do nothing */
3730 		} else if (rv == KERN_SUCCESS) {
3731 			if (user_wire)
3732 				entry->eflags |= MAP_ENTRY_USER_WIRED;
3733 		} else if (entry->wired_count == -1) {
3734 			/*
3735 			 * Wiring failed on this entry.  Thus, unwiring is
3736 			 * unnecessary.
3737 			 */
3738 			entry->wired_count = 0;
3739 		} else if (!user_wire ||
3740 		    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3741 			/*
3742 			 * Undo the wiring.  Wiring succeeded on this entry
3743 			 * but failed on a later entry.
3744 			 */
3745 			if (entry->wired_count == 1) {
3746 				vm_map_entry_unwire(map, entry);
3747 				if (user_wire)
3748 					vm_map_wire_user_count_sub(
3749 					    atop(entry->end - entry->start));
3750 			} else
3751 				entry->wired_count--;
3752 		}
3753 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3754 		    ("vm_map_wire: in-transition flag missing %p", entry));
3755 		KASSERT(entry->wiring_thread == curthread,
3756 		    ("vm_map_wire: alien wire %p", entry));
3757 		entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
3758 		    MAP_ENTRY_WIRE_SKIPPED);
3759 		entry->wiring_thread = NULL;
3760 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3761 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3762 			need_wakeup = true;
3763 		}
3764 		vm_map_try_merge_entries(map, prev_entry, entry);
3765 	}
3766 	vm_map_try_merge_entries(map, prev_entry, entry);
3767 	if (need_wakeup)
3768 		vm_map_wakeup(map);
3769 	return (rv);
3770 }
3771 
3772 /*
3773  * vm_map_sync
3774  *
3775  * Push any dirty cached pages in the address range to their pager.
3776  * If syncio is TRUE, dirty pages are written synchronously.
3777  * If invalidate is TRUE, any cached pages are freed as well.
3778  *
3779  * If the size of the region from start to end is zero, we are
3780  * supposed to flush all modified pages within the region containing
3781  * start.  Unfortunately, a region can be split or coalesced with
3782  * neighboring regions, making it difficult to determine what the
3783  * original region was.  Therefore, we approximate this requirement by
3784  * flushing the current region containing start.
3785  *
3786  * Returns an error if any part of the specified range is not mapped.
3787  */
3788 int
3789 vm_map_sync(
3790 	vm_map_t map,
3791 	vm_offset_t start,
3792 	vm_offset_t end,
3793 	boolean_t syncio,
3794 	boolean_t invalidate)
3795 {
3796 	vm_map_entry_t entry, first_entry, next_entry;
3797 	vm_size_t size;
3798 	vm_object_t object;
3799 	vm_ooffset_t offset;
3800 	unsigned int last_timestamp;
3801 	int bdry_idx;
3802 	boolean_t failed;
3803 
3804 	vm_map_lock_read(map);
3805 	VM_MAP_RANGE_CHECK(map, start, end);
3806 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
3807 		vm_map_unlock_read(map);
3808 		return (KERN_INVALID_ADDRESS);
3809 	} else if (start == end) {
3810 		start = first_entry->start;
3811 		end = first_entry->end;
3812 	}
3813 
3814 	/*
3815 	 * Make a first pass to check for user-wired memory, holes,
3816 	 * and partial invalidation of largepage mappings.
3817 	 */
3818 	for (entry = first_entry; entry->start < end; entry = next_entry) {
3819 		if (invalidate) {
3820 			if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0) {
3821 				vm_map_unlock_read(map);
3822 				return (KERN_INVALID_ARGUMENT);
3823 			}
3824 			bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry);
3825 			if (bdry_idx != 0 &&
3826 			    ((start & (pagesizes[bdry_idx] - 1)) != 0 ||
3827 			    (end & (pagesizes[bdry_idx] - 1)) != 0)) {
3828 				vm_map_unlock_read(map);
3829 				return (KERN_INVALID_ARGUMENT);
3830 			}
3831 		}
3832 		next_entry = vm_map_entry_succ(entry);
3833 		if (end > entry->end &&
3834 		    entry->end != next_entry->start) {
3835 			vm_map_unlock_read(map);
3836 			return (KERN_INVALID_ADDRESS);
3837 		}
3838 	}
3839 
3840 	if (invalidate)
3841 		pmap_remove(map->pmap, start, end);
3842 	failed = FALSE;
3843 
3844 	/*
3845 	 * Make a second pass, cleaning/uncaching pages from the indicated
3846 	 * objects as we go.
3847 	 */
3848 	for (entry = first_entry; entry->start < end;) {
3849 		offset = entry->offset + (start - entry->start);
3850 		size = (end <= entry->end ? end : entry->end) - start;
3851 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) {
3852 			vm_map_t smap;
3853 			vm_map_entry_t tentry;
3854 			vm_size_t tsize;
3855 
3856 			smap = entry->object.sub_map;
3857 			vm_map_lock_read(smap);
3858 			(void) vm_map_lookup_entry(smap, offset, &tentry);
3859 			tsize = tentry->end - offset;
3860 			if (tsize < size)
3861 				size = tsize;
3862 			object = tentry->object.vm_object;
3863 			offset = tentry->offset + (offset - tentry->start);
3864 			vm_map_unlock_read(smap);
3865 		} else {
3866 			object = entry->object.vm_object;
3867 		}
3868 		vm_object_reference(object);
3869 		last_timestamp = map->timestamp;
3870 		vm_map_unlock_read(map);
3871 		if (!vm_object_sync(object, offset, size, syncio, invalidate))
3872 			failed = TRUE;
3873 		start += size;
3874 		vm_object_deallocate(object);
3875 		vm_map_lock_read(map);
3876 		if (last_timestamp == map->timestamp ||
3877 		    !vm_map_lookup_entry(map, start, &entry))
3878 			entry = vm_map_entry_succ(entry);
3879 	}
3880 
3881 	vm_map_unlock_read(map);
3882 	return (failed ? KERN_FAILURE : KERN_SUCCESS);
3883 }
3884 
3885 /*
3886  *	vm_map_entry_unwire:	[ internal use only ]
3887  *
3888  *	Make the region specified by this entry pageable.
3889  *
3890  *	The map in question should be locked.
3891  *	[This is the reason for this routine's existence.]
3892  */
3893 static void
3894 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
3895 {
3896 	vm_size_t size;
3897 
3898 	VM_MAP_ASSERT_LOCKED(map);
3899 	KASSERT(entry->wired_count > 0,
3900 	    ("vm_map_entry_unwire: entry %p isn't wired", entry));
3901 
3902 	size = entry->end - entry->start;
3903 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0)
3904 		vm_map_wire_user_count_sub(atop(size));
3905 	pmap_unwire(map->pmap, entry->start, entry->end);
3906 	vm_object_unwire(entry->object.vm_object, entry->offset, size,
3907 	    PQ_ACTIVE);
3908 	entry->wired_count = 0;
3909 }
3910 
3911 static void
3912 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
3913 {
3914 
3915 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
3916 		vm_object_deallocate(entry->object.vm_object);
3917 	uma_zfree(system_map ? kmapentzone : mapentzone, entry);
3918 }
3919 
3920 /*
3921  *	vm_map_entry_delete:	[ internal use only ]
3922  *
3923  *	Deallocate the given entry from the target map.
3924  */
3925 static void
3926 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
3927 {
3928 	vm_object_t object;
3929 	vm_pindex_t offidxstart, offidxend, size1;
3930 	vm_size_t size;
3931 
3932 	vm_map_entry_unlink(map, entry, UNLINK_MERGE_NONE);
3933 	object = entry->object.vm_object;
3934 
3935 	if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
3936 		MPASS(entry->cred == NULL);
3937 		MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0);
3938 		MPASS(object == NULL);
3939 		vm_map_entry_deallocate(entry, map->system_map);
3940 		return;
3941 	}
3942 
3943 	size = entry->end - entry->start;
3944 	map->size -= size;
3945 
3946 	if (entry->cred != NULL) {
3947 		swap_release_by_cred(size, entry->cred);
3948 		crfree(entry->cred);
3949 	}
3950 
3951 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || object == NULL) {
3952 		entry->object.vm_object = NULL;
3953 	} else if ((object->flags & OBJ_ANON) != 0 ||
3954 	    object == kernel_object) {
3955 		KASSERT(entry->cred == NULL || object->cred == NULL ||
3956 		    (entry->eflags & MAP_ENTRY_NEEDS_COPY),
3957 		    ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
3958 		offidxstart = OFF_TO_IDX(entry->offset);
3959 		offidxend = offidxstart + atop(size);
3960 		VM_OBJECT_WLOCK(object);
3961 		if (object->ref_count != 1 &&
3962 		    ((object->flags & OBJ_ONEMAPPING) != 0 ||
3963 		    object == kernel_object)) {
3964 			vm_object_collapse(object);
3965 
3966 			/*
3967 			 * The option OBJPR_NOTMAPPED can be passed here
3968 			 * because vm_map_delete() already performed
3969 			 * pmap_remove() on the only mapping to this range
3970 			 * of pages.
3971 			 */
3972 			vm_object_page_remove(object, offidxstart, offidxend,
3973 			    OBJPR_NOTMAPPED);
3974 			if (offidxend >= object->size &&
3975 			    offidxstart < object->size) {
3976 				size1 = object->size;
3977 				object->size = offidxstart;
3978 				if (object->cred != NULL) {
3979 					size1 -= object->size;
3980 					KASSERT(object->charge >= ptoa(size1),
3981 					    ("object %p charge < 0", object));
3982 					swap_release_by_cred(ptoa(size1),
3983 					    object->cred);
3984 					object->charge -= ptoa(size1);
3985 				}
3986 			}
3987 		}
3988 		VM_OBJECT_WUNLOCK(object);
3989 	}
3990 	if (map->system_map)
3991 		vm_map_entry_deallocate(entry, TRUE);
3992 	else {
3993 		entry->defer_next = curthread->td_map_def_user;
3994 		curthread->td_map_def_user = entry;
3995 	}
3996 }
3997 
3998 /*
3999  *	vm_map_delete:	[ internal use only ]
4000  *
4001  *	Deallocates the given address range from the target
4002  *	map.
4003  */
4004 int
4005 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
4006 {
4007 	vm_map_entry_t entry, next_entry, scratch_entry;
4008 	int rv;
4009 
4010 	VM_MAP_ASSERT_LOCKED(map);
4011 
4012 	if (start == end)
4013 		return (KERN_SUCCESS);
4014 
4015 	/*
4016 	 * Find the start of the region, and clip it.
4017 	 * Step through all entries in this region.
4018 	 */
4019 	rv = vm_map_lookup_clip_start(map, start, &entry, &scratch_entry);
4020 	if (rv != KERN_SUCCESS)
4021 		return (rv);
4022 	for (; entry->start < end; entry = next_entry) {
4023 		/*
4024 		 * Wait for wiring or unwiring of an entry to complete.
4025 		 * Also wait for any system wirings to disappear on
4026 		 * user maps.
4027 		 */
4028 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
4029 		    (vm_map_pmap(map) != kernel_pmap &&
4030 		    vm_map_entry_system_wired_count(entry) != 0)) {
4031 			unsigned int last_timestamp;
4032 			vm_offset_t saved_start;
4033 
4034 			saved_start = entry->start;
4035 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
4036 			last_timestamp = map->timestamp;
4037 			(void) vm_map_unlock_and_wait(map, 0);
4038 			vm_map_lock(map);
4039 			if (last_timestamp + 1 != map->timestamp) {
4040 				/*
4041 				 * Look again for the entry because the map was
4042 				 * modified while it was unlocked.
4043 				 * Specifically, the entry may have been
4044 				 * clipped, merged, or deleted.
4045 				 */
4046 				rv = vm_map_lookup_clip_start(map, saved_start,
4047 				    &next_entry, &scratch_entry);
4048 				if (rv != KERN_SUCCESS)
4049 					break;
4050 			} else
4051 				next_entry = entry;
4052 			continue;
4053 		}
4054 
4055 		/* XXXKIB or delete to the upper superpage boundary ? */
4056 		rv = vm_map_clip_end(map, entry, end);
4057 		if (rv != KERN_SUCCESS)
4058 			break;
4059 		next_entry = vm_map_entry_succ(entry);
4060 
4061 		/*
4062 		 * Unwire before removing addresses from the pmap; otherwise,
4063 		 * unwiring will put the entries back in the pmap.
4064 		 */
4065 		if (entry->wired_count != 0)
4066 			vm_map_entry_unwire(map, entry);
4067 
4068 		/*
4069 		 * Remove mappings for the pages, but only if the
4070 		 * mappings could exist.  For instance, it does not
4071 		 * make sense to call pmap_remove() for guard entries.
4072 		 */
4073 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 ||
4074 		    entry->object.vm_object != NULL)
4075 			pmap_map_delete(map->pmap, entry->start, entry->end);
4076 
4077 		/*
4078 		 * Delete the entry only after removing all pmap
4079 		 * entries pointing to its pages.  (Otherwise, its
4080 		 * page frames may be reallocated, and any modify bits
4081 		 * will be set in the wrong object!)
4082 		 */
4083 		vm_map_entry_delete(map, entry);
4084 	}
4085 	return (rv);
4086 }
4087 
4088 /*
4089  *	vm_map_remove:
4090  *
4091  *	Remove the given address range from the target map.
4092  *	This is the exported form of vm_map_delete.
4093  */
4094 int
4095 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
4096 {
4097 	int result;
4098 
4099 	vm_map_lock(map);
4100 	VM_MAP_RANGE_CHECK(map, start, end);
4101 	result = vm_map_delete(map, start, end);
4102 	vm_map_unlock(map);
4103 	return (result);
4104 }
4105 
4106 /*
4107  *	vm_map_check_protection:
4108  *
4109  *	Assert that the target map allows the specified privilege on the
4110  *	entire address region given.  The entire region must be allocated.
4111  *
4112  *	WARNING!  This code does not and should not check whether the
4113  *	contents of the region is accessible.  For example a smaller file
4114  *	might be mapped into a larger address space.
4115  *
4116  *	NOTE!  This code is also called by munmap().
4117  *
4118  *	The map must be locked.  A read lock is sufficient.
4119  */
4120 boolean_t
4121 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
4122 			vm_prot_t protection)
4123 {
4124 	vm_map_entry_t entry;
4125 	vm_map_entry_t tmp_entry;
4126 
4127 	if (!vm_map_lookup_entry(map, start, &tmp_entry))
4128 		return (FALSE);
4129 	entry = tmp_entry;
4130 
4131 	while (start < end) {
4132 		/*
4133 		 * No holes allowed!
4134 		 */
4135 		if (start < entry->start)
4136 			return (FALSE);
4137 		/*
4138 		 * Check protection associated with entry.
4139 		 */
4140 		if ((entry->protection & protection) != protection)
4141 			return (FALSE);
4142 		/* go to next entry */
4143 		start = entry->end;
4144 		entry = vm_map_entry_succ(entry);
4145 	}
4146 	return (TRUE);
4147 }
4148 
4149 /*
4150  *
4151  *	vm_map_copy_swap_object:
4152  *
4153  *	Copies a swap-backed object from an existing map entry to a
4154  *	new one.  Carries forward the swap charge.  May change the
4155  *	src object on return.
4156  */
4157 static void
4158 vm_map_copy_swap_object(vm_map_entry_t src_entry, vm_map_entry_t dst_entry,
4159     vm_offset_t size, vm_ooffset_t *fork_charge)
4160 {
4161 	vm_object_t src_object;
4162 	struct ucred *cred;
4163 	int charged;
4164 
4165 	src_object = src_entry->object.vm_object;
4166 	charged = ENTRY_CHARGED(src_entry);
4167 	if ((src_object->flags & OBJ_ANON) != 0) {
4168 		VM_OBJECT_WLOCK(src_object);
4169 		vm_object_collapse(src_object);
4170 		if ((src_object->flags & OBJ_ONEMAPPING) != 0) {
4171 			vm_object_split(src_entry);
4172 			src_object = src_entry->object.vm_object;
4173 		}
4174 		vm_object_reference_locked(src_object);
4175 		vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
4176 		VM_OBJECT_WUNLOCK(src_object);
4177 	} else
4178 		vm_object_reference(src_object);
4179 	if (src_entry->cred != NULL &&
4180 	    !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
4181 		KASSERT(src_object->cred == NULL,
4182 		    ("OVERCOMMIT: vm_map_copy_anon_entry: cred %p",
4183 		     src_object));
4184 		src_object->cred = src_entry->cred;
4185 		src_object->charge = size;
4186 	}
4187 	dst_entry->object.vm_object = src_object;
4188 	if (charged) {
4189 		cred = curthread->td_ucred;
4190 		crhold(cred);
4191 		dst_entry->cred = cred;
4192 		*fork_charge += size;
4193 		if (!(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
4194 			crhold(cred);
4195 			src_entry->cred = cred;
4196 			*fork_charge += size;
4197 		}
4198 	}
4199 }
4200 
4201 /*
4202  *	vm_map_copy_entry:
4203  *
4204  *	Copies the contents of the source entry to the destination
4205  *	entry.  The entries *must* be aligned properly.
4206  */
4207 static void
4208 vm_map_copy_entry(
4209 	vm_map_t src_map,
4210 	vm_map_t dst_map,
4211 	vm_map_entry_t src_entry,
4212 	vm_map_entry_t dst_entry,
4213 	vm_ooffset_t *fork_charge)
4214 {
4215 	vm_object_t src_object;
4216 	vm_map_entry_t fake_entry;
4217 	vm_offset_t size;
4218 
4219 	VM_MAP_ASSERT_LOCKED(dst_map);
4220 
4221 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
4222 		return;
4223 
4224 	if (src_entry->wired_count == 0 ||
4225 	    (src_entry->protection & VM_PROT_WRITE) == 0) {
4226 		/*
4227 		 * If the source entry is marked needs_copy, it is already
4228 		 * write-protected.
4229 		 */
4230 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
4231 		    (src_entry->protection & VM_PROT_WRITE) != 0) {
4232 			pmap_protect(src_map->pmap,
4233 			    src_entry->start,
4234 			    src_entry->end,
4235 			    src_entry->protection & ~VM_PROT_WRITE);
4236 		}
4237 
4238 		/*
4239 		 * Make a copy of the object.
4240 		 */
4241 		size = src_entry->end - src_entry->start;
4242 		if ((src_object = src_entry->object.vm_object) != NULL) {
4243 			if ((src_object->flags & OBJ_SWAP) != 0) {
4244 				vm_map_copy_swap_object(src_entry, dst_entry,
4245 				    size, fork_charge);
4246 				/* May have split/collapsed, reload obj. */
4247 				src_object = src_entry->object.vm_object;
4248 			} else {
4249 				vm_object_reference(src_object);
4250 				dst_entry->object.vm_object = src_object;
4251 			}
4252 			src_entry->eflags |= MAP_ENTRY_COW |
4253 			    MAP_ENTRY_NEEDS_COPY;
4254 			dst_entry->eflags |= MAP_ENTRY_COW |
4255 			    MAP_ENTRY_NEEDS_COPY;
4256 			dst_entry->offset = src_entry->offset;
4257 			if (src_entry->eflags & MAP_ENTRY_WRITECNT) {
4258 				/*
4259 				 * MAP_ENTRY_WRITECNT cannot
4260 				 * indicate write reference from
4261 				 * src_entry, since the entry is
4262 				 * marked as needs copy.  Allocate a
4263 				 * fake entry that is used to
4264 				 * decrement object->un_pager writecount
4265 				 * at the appropriate time.  Attach
4266 				 * fake_entry to the deferred list.
4267 				 */
4268 				fake_entry = vm_map_entry_create(dst_map);
4269 				fake_entry->eflags = MAP_ENTRY_WRITECNT;
4270 				src_entry->eflags &= ~MAP_ENTRY_WRITECNT;
4271 				vm_object_reference(src_object);
4272 				fake_entry->object.vm_object = src_object;
4273 				fake_entry->start = src_entry->start;
4274 				fake_entry->end = src_entry->end;
4275 				fake_entry->defer_next =
4276 				    curthread->td_map_def_user;
4277 				curthread->td_map_def_user = fake_entry;
4278 			}
4279 
4280 			pmap_copy(dst_map->pmap, src_map->pmap,
4281 			    dst_entry->start, dst_entry->end - dst_entry->start,
4282 			    src_entry->start);
4283 		} else {
4284 			dst_entry->object.vm_object = NULL;
4285 			if ((dst_entry->eflags & MAP_ENTRY_GUARD) == 0)
4286 				dst_entry->offset = 0;
4287 			if (src_entry->cred != NULL) {
4288 				dst_entry->cred = curthread->td_ucred;
4289 				crhold(dst_entry->cred);
4290 				*fork_charge += size;
4291 			}
4292 		}
4293 	} else {
4294 		/*
4295 		 * We don't want to make writeable wired pages copy-on-write.
4296 		 * Immediately copy these pages into the new map by simulating
4297 		 * page faults.  The new pages are pageable.
4298 		 */
4299 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
4300 		    fork_charge);
4301 	}
4302 }
4303 
4304 /*
4305  * vmspace_map_entry_forked:
4306  * Update the newly-forked vmspace each time a map entry is inherited
4307  * or copied.  The values for vm_dsize and vm_tsize are approximate
4308  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
4309  */
4310 static void
4311 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
4312     vm_map_entry_t entry)
4313 {
4314 	vm_size_t entrysize;
4315 	vm_offset_t newend;
4316 
4317 	if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
4318 		return;
4319 	entrysize = entry->end - entry->start;
4320 	vm2->vm_map.size += entrysize;
4321 	if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
4322 		vm2->vm_ssize += btoc(entrysize);
4323 	} else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
4324 	    entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
4325 		newend = MIN(entry->end,
4326 		    (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
4327 		vm2->vm_dsize += btoc(newend - entry->start);
4328 	} else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
4329 	    entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
4330 		newend = MIN(entry->end,
4331 		    (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
4332 		vm2->vm_tsize += btoc(newend - entry->start);
4333 	}
4334 }
4335 
4336 /*
4337  * vmspace_fork:
4338  * Create a new process vmspace structure and vm_map
4339  * based on those of an existing process.  The new map
4340  * is based on the old map, according to the inheritance
4341  * values on the regions in that map.
4342  *
4343  * XXX It might be worth coalescing the entries added to the new vmspace.
4344  *
4345  * The source map must not be locked.
4346  */
4347 struct vmspace *
4348 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
4349 {
4350 	struct vmspace *vm2;
4351 	vm_map_t new_map, old_map;
4352 	vm_map_entry_t new_entry, old_entry;
4353 	vm_object_t object;
4354 	int error, locked __diagused;
4355 	vm_inherit_t inh;
4356 
4357 	old_map = &vm1->vm_map;
4358 	/* Copy immutable fields of vm1 to vm2. */
4359 	vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map),
4360 	    pmap_pinit);
4361 	if (vm2 == NULL)
4362 		return (NULL);
4363 
4364 	vm2->vm_taddr = vm1->vm_taddr;
4365 	vm2->vm_daddr = vm1->vm_daddr;
4366 	vm2->vm_maxsaddr = vm1->vm_maxsaddr;
4367 	vm2->vm_stacktop = vm1->vm_stacktop;
4368 	vm2->vm_shp_base = vm1->vm_shp_base;
4369 	vm_map_lock(old_map);
4370 	if (old_map->busy)
4371 		vm_map_wait_busy(old_map);
4372 	new_map = &vm2->vm_map;
4373 	locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
4374 	KASSERT(locked, ("vmspace_fork: lock failed"));
4375 
4376 	error = pmap_vmspace_copy(new_map->pmap, old_map->pmap);
4377 	if (error != 0) {
4378 		sx_xunlock(&old_map->lock);
4379 		sx_xunlock(&new_map->lock);
4380 		vm_map_process_deferred();
4381 		vmspace_free(vm2);
4382 		return (NULL);
4383 	}
4384 
4385 	new_map->anon_loc = old_map->anon_loc;
4386 	new_map->flags |= old_map->flags & (MAP_ASLR | MAP_ASLR_IGNSTART |
4387 	    MAP_ASLR_STACK | MAP_WXORX);
4388 
4389 	VM_MAP_ENTRY_FOREACH(old_entry, old_map) {
4390 		if ((old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
4391 			panic("vm_map_fork: encountered a submap");
4392 
4393 		inh = old_entry->inheritance;
4394 		if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4395 		    inh != VM_INHERIT_NONE)
4396 			inh = VM_INHERIT_COPY;
4397 
4398 		switch (inh) {
4399 		case VM_INHERIT_NONE:
4400 			break;
4401 
4402 		case VM_INHERIT_SHARE:
4403 			/*
4404 			 * Clone the entry, creating the shared object if
4405 			 * necessary.
4406 			 */
4407 			object = old_entry->object.vm_object;
4408 			if (object == NULL) {
4409 				vm_map_entry_back(old_entry);
4410 				object = old_entry->object.vm_object;
4411 			}
4412 
4413 			/*
4414 			 * Add the reference before calling vm_object_shadow
4415 			 * to insure that a shadow object is created.
4416 			 */
4417 			vm_object_reference(object);
4418 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4419 				vm_object_shadow(&old_entry->object.vm_object,
4420 				    &old_entry->offset,
4421 				    old_entry->end - old_entry->start,
4422 				    old_entry->cred,
4423 				    /* Transfer the second reference too. */
4424 				    true);
4425 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4426 				old_entry->cred = NULL;
4427 
4428 				/*
4429 				 * As in vm_map_merged_neighbor_dispose(),
4430 				 * the vnode lock will not be acquired in
4431 				 * this call to vm_object_deallocate().
4432 				 */
4433 				vm_object_deallocate(object);
4434 				object = old_entry->object.vm_object;
4435 			} else {
4436 				VM_OBJECT_WLOCK(object);
4437 				vm_object_clear_flag(object, OBJ_ONEMAPPING);
4438 				if (old_entry->cred != NULL) {
4439 					KASSERT(object->cred == NULL,
4440 					    ("vmspace_fork both cred"));
4441 					object->cred = old_entry->cred;
4442 					object->charge = old_entry->end -
4443 					    old_entry->start;
4444 					old_entry->cred = NULL;
4445 				}
4446 
4447 				/*
4448 				 * Assert the correct state of the vnode
4449 				 * v_writecount while the object is locked, to
4450 				 * not relock it later for the assertion
4451 				 * correctness.
4452 				 */
4453 				if (old_entry->eflags & MAP_ENTRY_WRITECNT &&
4454 				    object->type == OBJT_VNODE) {
4455 					KASSERT(((struct vnode *)object->
4456 					    handle)->v_writecount > 0,
4457 					    ("vmspace_fork: v_writecount %p",
4458 					    object));
4459 					KASSERT(object->un_pager.vnp.
4460 					    writemappings > 0,
4461 					    ("vmspace_fork: vnp.writecount %p",
4462 					    object));
4463 				}
4464 				VM_OBJECT_WUNLOCK(object);
4465 			}
4466 
4467 			/*
4468 			 * Clone the entry, referencing the shared object.
4469 			 */
4470 			new_entry = vm_map_entry_create(new_map);
4471 			*new_entry = *old_entry;
4472 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
4473 			    MAP_ENTRY_IN_TRANSITION);
4474 			new_entry->wiring_thread = NULL;
4475 			new_entry->wired_count = 0;
4476 			if (new_entry->eflags & MAP_ENTRY_WRITECNT) {
4477 				vm_pager_update_writecount(object,
4478 				    new_entry->start, new_entry->end);
4479 			}
4480 			vm_map_entry_set_vnode_text(new_entry, true);
4481 
4482 			/*
4483 			 * Insert the entry into the new map -- we know we're
4484 			 * inserting at the end of the new map.
4485 			 */
4486 			vm_map_entry_link(new_map, new_entry);
4487 			vmspace_map_entry_forked(vm1, vm2, new_entry);
4488 
4489 			/*
4490 			 * Update the physical map
4491 			 */
4492 			pmap_copy(new_map->pmap, old_map->pmap,
4493 			    new_entry->start,
4494 			    (old_entry->end - old_entry->start),
4495 			    old_entry->start);
4496 			break;
4497 
4498 		case VM_INHERIT_COPY:
4499 			/*
4500 			 * Clone the entry and link into the map.
4501 			 */
4502 			new_entry = vm_map_entry_create(new_map);
4503 			*new_entry = *old_entry;
4504 			/*
4505 			 * Copied entry is COW over the old object.
4506 			 */
4507 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
4508 			    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_WRITECNT);
4509 			new_entry->wiring_thread = NULL;
4510 			new_entry->wired_count = 0;
4511 			new_entry->object.vm_object = NULL;
4512 			new_entry->cred = NULL;
4513 			vm_map_entry_link(new_map, new_entry);
4514 			vmspace_map_entry_forked(vm1, vm2, new_entry);
4515 			vm_map_copy_entry(old_map, new_map, old_entry,
4516 			    new_entry, fork_charge);
4517 			vm_map_entry_set_vnode_text(new_entry, true);
4518 			break;
4519 
4520 		case VM_INHERIT_ZERO:
4521 			/*
4522 			 * Create a new anonymous mapping entry modelled from
4523 			 * the old one.
4524 			 */
4525 			new_entry = vm_map_entry_create(new_map);
4526 			memset(new_entry, 0, sizeof(*new_entry));
4527 
4528 			new_entry->start = old_entry->start;
4529 			new_entry->end = old_entry->end;
4530 			new_entry->eflags = old_entry->eflags &
4531 			    ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION |
4532 			    MAP_ENTRY_WRITECNT | MAP_ENTRY_VN_EXEC |
4533 			    MAP_ENTRY_SPLIT_BOUNDARY_MASK);
4534 			new_entry->protection = old_entry->protection;
4535 			new_entry->max_protection = old_entry->max_protection;
4536 			new_entry->inheritance = VM_INHERIT_ZERO;
4537 
4538 			vm_map_entry_link(new_map, new_entry);
4539 			vmspace_map_entry_forked(vm1, vm2, new_entry);
4540 
4541 			new_entry->cred = curthread->td_ucred;
4542 			crhold(new_entry->cred);
4543 			*fork_charge += (new_entry->end - new_entry->start);
4544 
4545 			break;
4546 		}
4547 	}
4548 	/*
4549 	 * Use inlined vm_map_unlock() to postpone handling the deferred
4550 	 * map entries, which cannot be done until both old_map and
4551 	 * new_map locks are released.
4552 	 */
4553 	sx_xunlock(&old_map->lock);
4554 	sx_xunlock(&new_map->lock);
4555 	vm_map_process_deferred();
4556 
4557 	return (vm2);
4558 }
4559 
4560 /*
4561  * Create a process's stack for exec_new_vmspace().  This function is never
4562  * asked to wire the newly created stack.
4563  */
4564 int
4565 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4566     vm_prot_t prot, vm_prot_t max, int cow)
4567 {
4568 	vm_size_t growsize, init_ssize;
4569 	rlim_t vmemlim;
4570 	int rv;
4571 
4572 	MPASS((map->flags & MAP_WIREFUTURE) == 0);
4573 	growsize = sgrowsiz;
4574 	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
4575 	vm_map_lock(map);
4576 	vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4577 	/* If we would blow our VMEM resource limit, no go */
4578 	if (map->size + init_ssize > vmemlim) {
4579 		rv = KERN_NO_SPACE;
4580 		goto out;
4581 	}
4582 	rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
4583 	    max, cow);
4584 out:
4585 	vm_map_unlock(map);
4586 	return (rv);
4587 }
4588 
4589 static int stack_guard_page = 1;
4590 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
4591     &stack_guard_page, 0,
4592     "Specifies the number of guard pages for a stack that grows");
4593 
4594 static int
4595 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4596     vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
4597 {
4598 	vm_map_entry_t gap_entry, new_entry, prev_entry;
4599 	vm_offset_t bot, gap_bot, gap_top, top;
4600 	vm_size_t init_ssize, sgp;
4601 	int orient, rv;
4602 
4603 	/*
4604 	 * The stack orientation is piggybacked with the cow argument.
4605 	 * Extract it into orient and mask the cow argument so that we
4606 	 * don't pass it around further.
4607 	 */
4608 	orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP);
4609 	KASSERT(orient != 0, ("No stack grow direction"));
4610 	KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP),
4611 	    ("bi-dir stack"));
4612 
4613 	if (max_ssize == 0 ||
4614 	    !vm_map_range_valid(map, addrbos, addrbos + max_ssize))
4615 		return (KERN_INVALID_ADDRESS);
4616 	sgp = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ||
4617 	    (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 :
4618 	    (vm_size_t)stack_guard_page * PAGE_SIZE;
4619 	if (sgp >= max_ssize)
4620 		return (KERN_INVALID_ARGUMENT);
4621 
4622 	init_ssize = growsize;
4623 	if (max_ssize < init_ssize + sgp)
4624 		init_ssize = max_ssize - sgp;
4625 
4626 	/* If addr is already mapped, no go */
4627 	if (vm_map_lookup_entry(map, addrbos, &prev_entry))
4628 		return (KERN_NO_SPACE);
4629 
4630 	/*
4631 	 * If we can't accommodate max_ssize in the current mapping, no go.
4632 	 */
4633 	if (vm_map_entry_succ(prev_entry)->start < addrbos + max_ssize)
4634 		return (KERN_NO_SPACE);
4635 
4636 	/*
4637 	 * We initially map a stack of only init_ssize.  We will grow as
4638 	 * needed later.  Depending on the orientation of the stack (i.e.
4639 	 * the grow direction) we either map at the top of the range, the
4640 	 * bottom of the range or in the middle.
4641 	 *
4642 	 * Note: we would normally expect prot and max to be VM_PROT_ALL,
4643 	 * and cow to be 0.  Possibly we should eliminate these as input
4644 	 * parameters, and just pass these values here in the insert call.
4645 	 */
4646 	if (orient == MAP_STACK_GROWS_DOWN) {
4647 		bot = addrbos + max_ssize - init_ssize;
4648 		top = bot + init_ssize;
4649 		gap_bot = addrbos;
4650 		gap_top = bot;
4651 	} else /* if (orient == MAP_STACK_GROWS_UP) */ {
4652 		bot = addrbos;
4653 		top = bot + init_ssize;
4654 		gap_bot = top;
4655 		gap_top = addrbos + max_ssize;
4656 	}
4657 	rv = vm_map_insert1(map, NULL, 0, bot, top, prot, max, cow,
4658 	    &new_entry);
4659 	if (rv != KERN_SUCCESS)
4660 		return (rv);
4661 	KASSERT(new_entry->end == top || new_entry->start == bot,
4662 	    ("Bad entry start/end for new stack entry"));
4663 	KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
4664 	    (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
4665 	    ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
4666 	KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
4667 	    (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
4668 	    ("new entry lacks MAP_ENTRY_GROWS_UP"));
4669 	if (gap_bot == gap_top)
4670 		return (KERN_SUCCESS);
4671 	rv = vm_map_insert1(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE,
4672 	    VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ?
4673 	    MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP), &gap_entry);
4674 	if (rv == KERN_SUCCESS) {
4675 		KASSERT((gap_entry->eflags & MAP_ENTRY_GUARD) != 0,
4676 		    ("entry %p not gap %#x", gap_entry, gap_entry->eflags));
4677 		KASSERT((gap_entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
4678 		    MAP_ENTRY_STACK_GAP_UP)) != 0,
4679 		    ("entry %p not stack gap %#x", gap_entry,
4680 		    gap_entry->eflags));
4681 
4682 		/*
4683 		 * Gap can never successfully handle a fault, so
4684 		 * read-ahead logic is never used for it.  Re-use
4685 		 * next_read of the gap entry to store
4686 		 * stack_guard_page for vm_map_growstack().
4687 		 * Similarly, since a gap cannot have a backing object,
4688 		 * store the original stack protections in the
4689 		 * object offset.
4690 		 */
4691 		gap_entry->next_read = sgp;
4692 		gap_entry->offset = prot | PROT_MAX(max);
4693 	} else {
4694 		(void)vm_map_delete(map, bot, top);
4695 	}
4696 	return (rv);
4697 }
4698 
4699 /*
4700  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if we
4701  * successfully grow the stack.
4702  */
4703 static int
4704 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry)
4705 {
4706 	vm_map_entry_t stack_entry;
4707 	struct proc *p;
4708 	struct vmspace *vm;
4709 	struct ucred *cred;
4710 	vm_offset_t gap_end, gap_start, grow_start;
4711 	vm_size_t grow_amount, guard, max_grow, sgp;
4712 	vm_prot_t prot, max;
4713 	rlim_t lmemlim, stacklim, vmemlim;
4714 	int rv, rv1 __diagused;
4715 	bool gap_deleted, grow_down, is_procstack;
4716 #ifdef notyet
4717 	uint64_t limit;
4718 #endif
4719 #ifdef RACCT
4720 	int error __diagused;
4721 #endif
4722 
4723 	p = curproc;
4724 	vm = p->p_vmspace;
4725 
4726 	/*
4727 	 * Disallow stack growth when the access is performed by a
4728 	 * debugger or AIO daemon.  The reason is that the wrong
4729 	 * resource limits are applied.
4730 	 */
4731 	if (p != initproc && (map != &p->p_vmspace->vm_map ||
4732 	    p->p_textvp == NULL))
4733 		return (KERN_FAILURE);
4734 
4735 	MPASS(!map->system_map);
4736 
4737 	lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
4738 	stacklim = lim_cur(curthread, RLIMIT_STACK);
4739 	vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4740 retry:
4741 	/* If addr is not in a hole for a stack grow area, no need to grow. */
4742 	if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry))
4743 		return (KERN_FAILURE);
4744 	if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0)
4745 		return (KERN_SUCCESS);
4746 	if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) {
4747 		stack_entry = vm_map_entry_succ(gap_entry);
4748 		if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 ||
4749 		    stack_entry->start != gap_entry->end)
4750 			return (KERN_FAILURE);
4751 		grow_amount = round_page(stack_entry->start - addr);
4752 		grow_down = true;
4753 	} else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) {
4754 		stack_entry = vm_map_entry_pred(gap_entry);
4755 		if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 ||
4756 		    stack_entry->end != gap_entry->start)
4757 			return (KERN_FAILURE);
4758 		grow_amount = round_page(addr + 1 - stack_entry->end);
4759 		grow_down = false;
4760 	} else {
4761 		return (KERN_FAILURE);
4762 	}
4763 	guard = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ||
4764 	    (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 :
4765 	    gap_entry->next_read;
4766 	max_grow = gap_entry->end - gap_entry->start;
4767 	if (guard > max_grow)
4768 		return (KERN_NO_SPACE);
4769 	max_grow -= guard;
4770 	if (grow_amount > max_grow)
4771 		return (KERN_NO_SPACE);
4772 
4773 	/*
4774 	 * If this is the main process stack, see if we're over the stack
4775 	 * limit.
4776 	 */
4777 	is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr &&
4778 	    addr < (vm_offset_t)vm->vm_stacktop;
4779 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim))
4780 		return (KERN_NO_SPACE);
4781 
4782 #ifdef RACCT
4783 	if (racct_enable) {
4784 		PROC_LOCK(p);
4785 		if (is_procstack && racct_set(p, RACCT_STACK,
4786 		    ctob(vm->vm_ssize) + grow_amount)) {
4787 			PROC_UNLOCK(p);
4788 			return (KERN_NO_SPACE);
4789 		}
4790 		PROC_UNLOCK(p);
4791 	}
4792 #endif
4793 
4794 	grow_amount = roundup(grow_amount, sgrowsiz);
4795 	if (grow_amount > max_grow)
4796 		grow_amount = max_grow;
4797 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
4798 		grow_amount = trunc_page((vm_size_t)stacklim) -
4799 		    ctob(vm->vm_ssize);
4800 	}
4801 
4802 #ifdef notyet
4803 	PROC_LOCK(p);
4804 	limit = racct_get_available(p, RACCT_STACK);
4805 	PROC_UNLOCK(p);
4806 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
4807 		grow_amount = limit - ctob(vm->vm_ssize);
4808 #endif
4809 
4810 	if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) {
4811 		if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
4812 			rv = KERN_NO_SPACE;
4813 			goto out;
4814 		}
4815 #ifdef RACCT
4816 		if (racct_enable) {
4817 			PROC_LOCK(p);
4818 			if (racct_set(p, RACCT_MEMLOCK,
4819 			    ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
4820 				PROC_UNLOCK(p);
4821 				rv = KERN_NO_SPACE;
4822 				goto out;
4823 			}
4824 			PROC_UNLOCK(p);
4825 		}
4826 #endif
4827 	}
4828 
4829 	/* If we would blow our VMEM resource limit, no go */
4830 	if (map->size + grow_amount > vmemlim) {
4831 		rv = KERN_NO_SPACE;
4832 		goto out;
4833 	}
4834 #ifdef RACCT
4835 	if (racct_enable) {
4836 		PROC_LOCK(p);
4837 		if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
4838 			PROC_UNLOCK(p);
4839 			rv = KERN_NO_SPACE;
4840 			goto out;
4841 		}
4842 		PROC_UNLOCK(p);
4843 	}
4844 #endif
4845 
4846 	if (vm_map_lock_upgrade(map)) {
4847 		gap_entry = NULL;
4848 		vm_map_lock_read(map);
4849 		goto retry;
4850 	}
4851 
4852 	if (grow_down) {
4853 		/*
4854 		 * The gap_entry "offset" field is overloaded.  See
4855 		 * vm_map_stack_locked().
4856 		 */
4857 		prot = PROT_EXTRACT(gap_entry->offset);
4858 		max = PROT_MAX_EXTRACT(gap_entry->offset);
4859 		sgp = gap_entry->next_read;
4860 
4861 		grow_start = gap_entry->end - grow_amount;
4862 		if (gap_entry->start + grow_amount == gap_entry->end) {
4863 			gap_start = gap_entry->start;
4864 			gap_end = gap_entry->end;
4865 			vm_map_entry_delete(map, gap_entry);
4866 			gap_deleted = true;
4867 		} else {
4868 			MPASS(gap_entry->start < gap_entry->end - grow_amount);
4869 			vm_map_entry_resize(map, gap_entry, -grow_amount);
4870 			gap_deleted = false;
4871 		}
4872 		rv = vm_map_insert(map, NULL, 0, grow_start,
4873 		    grow_start + grow_amount, prot, max, MAP_STACK_GROWS_DOWN);
4874 		if (rv != KERN_SUCCESS) {
4875 			if (gap_deleted) {
4876 				rv1 = vm_map_insert1(map, NULL, 0, gap_start,
4877 				    gap_end, VM_PROT_NONE, VM_PROT_NONE,
4878 				    MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN,
4879 				    &gap_entry);
4880 				MPASS(rv1 == KERN_SUCCESS);
4881 				gap_entry->next_read = sgp;
4882 				gap_entry->offset = prot | PROT_MAX(max);
4883 			} else
4884 				vm_map_entry_resize(map, gap_entry,
4885 				    grow_amount);
4886 		}
4887 	} else {
4888 		grow_start = stack_entry->end;
4889 		cred = stack_entry->cred;
4890 		if (cred == NULL && stack_entry->object.vm_object != NULL)
4891 			cred = stack_entry->object.vm_object->cred;
4892 		if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
4893 			rv = KERN_NO_SPACE;
4894 		/* Grow the underlying object if applicable. */
4895 		else if (stack_entry->object.vm_object == NULL ||
4896 		    vm_object_coalesce(stack_entry->object.vm_object,
4897 		    stack_entry->offset,
4898 		    (vm_size_t)(stack_entry->end - stack_entry->start),
4899 		    grow_amount, cred != NULL)) {
4900 			if (gap_entry->start + grow_amount == gap_entry->end) {
4901 				vm_map_entry_delete(map, gap_entry);
4902 				vm_map_entry_resize(map, stack_entry,
4903 				    grow_amount);
4904 			} else {
4905 				gap_entry->start += grow_amount;
4906 				stack_entry->end += grow_amount;
4907 			}
4908 			map->size += grow_amount;
4909 			rv = KERN_SUCCESS;
4910 		} else
4911 			rv = KERN_FAILURE;
4912 	}
4913 	if (rv == KERN_SUCCESS && is_procstack)
4914 		vm->vm_ssize += btoc(grow_amount);
4915 
4916 	/*
4917 	 * Heed the MAP_WIREFUTURE flag if it was set for this process.
4918 	 */
4919 	if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) {
4920 		rv = vm_map_wire_locked(map, grow_start,
4921 		    grow_start + grow_amount,
4922 		    VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
4923 	}
4924 	vm_map_lock_downgrade(map);
4925 
4926 out:
4927 #ifdef RACCT
4928 	if (racct_enable && rv != KERN_SUCCESS) {
4929 		PROC_LOCK(p);
4930 		error = racct_set(p, RACCT_VMEM, map->size);
4931 		KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
4932 		if (!old_mlock) {
4933 			error = racct_set(p, RACCT_MEMLOCK,
4934 			    ptoa(pmap_wired_count(map->pmap)));
4935 			KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
4936 		}
4937 	    	error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
4938 		KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
4939 		PROC_UNLOCK(p);
4940 	}
4941 #endif
4942 
4943 	return (rv);
4944 }
4945 
4946 /*
4947  * Unshare the specified VM space for exec.  If other processes are
4948  * mapped to it, then create a new one.  The new vmspace is null.
4949  */
4950 int
4951 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
4952 {
4953 	struct vmspace *oldvmspace = p->p_vmspace;
4954 	struct vmspace *newvmspace;
4955 
4956 	KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
4957 	    ("vmspace_exec recursed"));
4958 	newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit);
4959 	if (newvmspace == NULL)
4960 		return (ENOMEM);
4961 	newvmspace->vm_swrss = oldvmspace->vm_swrss;
4962 	/*
4963 	 * This code is written like this for prototype purposes.  The
4964 	 * goal is to avoid running down the vmspace here, but let the
4965 	 * other process's that are still using the vmspace to finally
4966 	 * run it down.  Even though there is little or no chance of blocking
4967 	 * here, it is a good idea to keep this form for future mods.
4968 	 */
4969 	PROC_VMSPACE_LOCK(p);
4970 	p->p_vmspace = newvmspace;
4971 	PROC_VMSPACE_UNLOCK(p);
4972 	if (p == curthread->td_proc)
4973 		pmap_activate(curthread);
4974 	curthread->td_pflags |= TDP_EXECVMSPC;
4975 	return (0);
4976 }
4977 
4978 /*
4979  * Unshare the specified VM space for forcing COW.  This
4980  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
4981  */
4982 int
4983 vmspace_unshare(struct proc *p)
4984 {
4985 	struct vmspace *oldvmspace = p->p_vmspace;
4986 	struct vmspace *newvmspace;
4987 	vm_ooffset_t fork_charge;
4988 
4989 	/*
4990 	 * The caller is responsible for ensuring that the reference count
4991 	 * cannot concurrently transition 1 -> 2.
4992 	 */
4993 	if (refcount_load(&oldvmspace->vm_refcnt) == 1)
4994 		return (0);
4995 	fork_charge = 0;
4996 	newvmspace = vmspace_fork(oldvmspace, &fork_charge);
4997 	if (newvmspace == NULL)
4998 		return (ENOMEM);
4999 	if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
5000 		vmspace_free(newvmspace);
5001 		return (ENOMEM);
5002 	}
5003 	PROC_VMSPACE_LOCK(p);
5004 	p->p_vmspace = newvmspace;
5005 	PROC_VMSPACE_UNLOCK(p);
5006 	if (p == curthread->td_proc)
5007 		pmap_activate(curthread);
5008 	vmspace_free(oldvmspace);
5009 	return (0);
5010 }
5011 
5012 /*
5013  *	vm_map_lookup:
5014  *
5015  *	Finds the VM object, offset, and
5016  *	protection for a given virtual address in the
5017  *	specified map, assuming a page fault of the
5018  *	type specified.
5019  *
5020  *	Leaves the map in question locked for read; return
5021  *	values are guaranteed until a vm_map_lookup_done
5022  *	call is performed.  Note that the map argument
5023  *	is in/out; the returned map must be used in
5024  *	the call to vm_map_lookup_done.
5025  *
5026  *	A handle (out_entry) is returned for use in
5027  *	vm_map_lookup_done, to make that fast.
5028  *
5029  *	If a lookup is requested with "write protection"
5030  *	specified, the map may be changed to perform virtual
5031  *	copying operations, although the data referenced will
5032  *	remain the same.
5033  */
5034 int
5035 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
5036 	      vm_offset_t vaddr,
5037 	      vm_prot_t fault_typea,
5038 	      vm_map_entry_t *out_entry,	/* OUT */
5039 	      vm_object_t *object,		/* OUT */
5040 	      vm_pindex_t *pindex,		/* OUT */
5041 	      vm_prot_t *out_prot,		/* OUT */
5042 	      boolean_t *wired)			/* OUT */
5043 {
5044 	vm_map_entry_t entry;
5045 	vm_map_t map = *var_map;
5046 	vm_prot_t prot;
5047 	vm_prot_t fault_type;
5048 	vm_object_t eobject;
5049 	vm_size_t size;
5050 	struct ucred *cred;
5051 
5052 RetryLookup:
5053 
5054 	vm_map_lock_read(map);
5055 
5056 RetryLookupLocked:
5057 	/*
5058 	 * Lookup the faulting address.
5059 	 */
5060 	if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
5061 		vm_map_unlock_read(map);
5062 		return (KERN_INVALID_ADDRESS);
5063 	}
5064 
5065 	entry = *out_entry;
5066 
5067 	/*
5068 	 * Handle submaps.
5069 	 */
5070 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
5071 		vm_map_t old_map = map;
5072 
5073 		*var_map = map = entry->object.sub_map;
5074 		vm_map_unlock_read(old_map);
5075 		goto RetryLookup;
5076 	}
5077 
5078 	/*
5079 	 * Check whether this task is allowed to have this page.
5080 	 */
5081 	prot = entry->protection;
5082 	if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) {
5083 		fault_typea &= ~VM_PROT_FAULT_LOOKUP;
5084 		if (prot == VM_PROT_NONE && map != kernel_map &&
5085 		    (entry->eflags & MAP_ENTRY_GUARD) != 0 &&
5086 		    (entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
5087 		    MAP_ENTRY_STACK_GAP_UP)) != 0 &&
5088 		    vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS)
5089 			goto RetryLookupLocked;
5090 	}
5091 	fault_type = fault_typea & VM_PROT_ALL;
5092 	if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
5093 		vm_map_unlock_read(map);
5094 		return (KERN_PROTECTION_FAILURE);
5095 	}
5096 	KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
5097 	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
5098 	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
5099 	    ("entry %p flags %x", entry, entry->eflags));
5100 	if ((fault_typea & VM_PROT_COPY) != 0 &&
5101 	    (entry->max_protection & VM_PROT_WRITE) == 0 &&
5102 	    (entry->eflags & MAP_ENTRY_COW) == 0) {
5103 		vm_map_unlock_read(map);
5104 		return (KERN_PROTECTION_FAILURE);
5105 	}
5106 
5107 	/*
5108 	 * If this page is not pageable, we have to get it for all possible
5109 	 * accesses.
5110 	 */
5111 	*wired = (entry->wired_count != 0);
5112 	if (*wired)
5113 		fault_type = entry->protection;
5114 	size = entry->end - entry->start;
5115 
5116 	/*
5117 	 * If the entry was copy-on-write, we either ...
5118 	 */
5119 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
5120 		/*
5121 		 * If we want to write the page, we may as well handle that
5122 		 * now since we've got the map locked.
5123 		 *
5124 		 * If we don't need to write the page, we just demote the
5125 		 * permissions allowed.
5126 		 */
5127 		if ((fault_type & VM_PROT_WRITE) != 0 ||
5128 		    (fault_typea & VM_PROT_COPY) != 0) {
5129 			/*
5130 			 * Make a new object, and place it in the object
5131 			 * chain.  Note that no new references have appeared
5132 			 * -- one just moved from the map to the new
5133 			 * object.
5134 			 */
5135 			if (vm_map_lock_upgrade(map))
5136 				goto RetryLookup;
5137 
5138 			if (entry->cred == NULL) {
5139 				/*
5140 				 * The debugger owner is charged for
5141 				 * the memory.
5142 				 */
5143 				cred = curthread->td_ucred;
5144 				crhold(cred);
5145 				if (!swap_reserve_by_cred(size, cred)) {
5146 					crfree(cred);
5147 					vm_map_unlock(map);
5148 					return (KERN_RESOURCE_SHORTAGE);
5149 				}
5150 				entry->cred = cred;
5151 			}
5152 			eobject = entry->object.vm_object;
5153 			vm_object_shadow(&entry->object.vm_object,
5154 			    &entry->offset, size, entry->cred, false);
5155 			if (eobject == entry->object.vm_object) {
5156 				/*
5157 				 * The object was not shadowed.
5158 				 */
5159 				swap_release_by_cred(size, entry->cred);
5160 				crfree(entry->cred);
5161 			}
5162 			entry->cred = NULL;
5163 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
5164 
5165 			vm_map_lock_downgrade(map);
5166 		} else {
5167 			/*
5168 			 * We're attempting to read a copy-on-write page --
5169 			 * don't allow writes.
5170 			 */
5171 			prot &= ~VM_PROT_WRITE;
5172 		}
5173 	}
5174 
5175 	/*
5176 	 * Create an object if necessary.
5177 	 */
5178 	if (entry->object.vm_object == NULL && !map->system_map) {
5179 		if (vm_map_lock_upgrade(map))
5180 			goto RetryLookup;
5181 		entry->object.vm_object = vm_object_allocate_anon(atop(size),
5182 		    NULL, entry->cred, size);
5183 		entry->offset = 0;
5184 		entry->cred = NULL;
5185 		vm_map_lock_downgrade(map);
5186 	}
5187 
5188 	/*
5189 	 * Return the object/offset from this entry.  If the entry was
5190 	 * copy-on-write or empty, it has been fixed up.
5191 	 */
5192 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
5193 	*object = entry->object.vm_object;
5194 
5195 	*out_prot = prot;
5196 	return (KERN_SUCCESS);
5197 }
5198 
5199 /*
5200  *	vm_map_lookup_locked:
5201  *
5202  *	Lookup the faulting address.  A version of vm_map_lookup that returns
5203  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
5204  */
5205 int
5206 vm_map_lookup_locked(vm_map_t *var_map,		/* IN/OUT */
5207 		     vm_offset_t vaddr,
5208 		     vm_prot_t fault_typea,
5209 		     vm_map_entry_t *out_entry,	/* OUT */
5210 		     vm_object_t *object,	/* OUT */
5211 		     vm_pindex_t *pindex,	/* OUT */
5212 		     vm_prot_t *out_prot,	/* OUT */
5213 		     boolean_t *wired)		/* OUT */
5214 {
5215 	vm_map_entry_t entry;
5216 	vm_map_t map = *var_map;
5217 	vm_prot_t prot;
5218 	vm_prot_t fault_type = fault_typea;
5219 
5220 	/*
5221 	 * Lookup the faulting address.
5222 	 */
5223 	if (!vm_map_lookup_entry(map, vaddr, out_entry))
5224 		return (KERN_INVALID_ADDRESS);
5225 
5226 	entry = *out_entry;
5227 
5228 	/*
5229 	 * Fail if the entry refers to a submap.
5230 	 */
5231 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
5232 		return (KERN_FAILURE);
5233 
5234 	/*
5235 	 * Check whether this task is allowed to have this page.
5236 	 */
5237 	prot = entry->protection;
5238 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
5239 	if ((fault_type & prot) != fault_type)
5240 		return (KERN_PROTECTION_FAILURE);
5241 
5242 	/*
5243 	 * If this page is not pageable, we have to get it for all possible
5244 	 * accesses.
5245 	 */
5246 	*wired = (entry->wired_count != 0);
5247 	if (*wired)
5248 		fault_type = entry->protection;
5249 
5250 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
5251 		/*
5252 		 * Fail if the entry was copy-on-write for a write fault.
5253 		 */
5254 		if (fault_type & VM_PROT_WRITE)
5255 			return (KERN_FAILURE);
5256 		/*
5257 		 * We're attempting to read a copy-on-write page --
5258 		 * don't allow writes.
5259 		 */
5260 		prot &= ~VM_PROT_WRITE;
5261 	}
5262 
5263 	/*
5264 	 * Fail if an object should be created.
5265 	 */
5266 	if (entry->object.vm_object == NULL && !map->system_map)
5267 		return (KERN_FAILURE);
5268 
5269 	/*
5270 	 * Return the object/offset from this entry.  If the entry was
5271 	 * copy-on-write or empty, it has been fixed up.
5272 	 */
5273 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
5274 	*object = entry->object.vm_object;
5275 
5276 	*out_prot = prot;
5277 	return (KERN_SUCCESS);
5278 }
5279 
5280 /*
5281  *	vm_map_lookup_done:
5282  *
5283  *	Releases locks acquired by a vm_map_lookup
5284  *	(according to the handle returned by that lookup).
5285  */
5286 void
5287 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
5288 {
5289 	/*
5290 	 * Unlock the main-level map
5291 	 */
5292 	vm_map_unlock_read(map);
5293 }
5294 
5295 vm_offset_t
5296 vm_map_max_KBI(const struct vm_map *map)
5297 {
5298 
5299 	return (vm_map_max(map));
5300 }
5301 
5302 vm_offset_t
5303 vm_map_min_KBI(const struct vm_map *map)
5304 {
5305 
5306 	return (vm_map_min(map));
5307 }
5308 
5309 pmap_t
5310 vm_map_pmap_KBI(vm_map_t map)
5311 {
5312 
5313 	return (map->pmap);
5314 }
5315 
5316 bool
5317 vm_map_range_valid_KBI(vm_map_t map, vm_offset_t start, vm_offset_t end)
5318 {
5319 
5320 	return (vm_map_range_valid(map, start, end));
5321 }
5322 
5323 #ifdef INVARIANTS
5324 static void
5325 _vm_map_assert_consistent(vm_map_t map, int check)
5326 {
5327 	vm_map_entry_t entry, prev;
5328 	vm_map_entry_t cur, header, lbound, ubound;
5329 	vm_size_t max_left, max_right;
5330 
5331 #ifdef DIAGNOSTIC
5332 	++map->nupdates;
5333 #endif
5334 	if (enable_vmmap_check != check)
5335 		return;
5336 
5337 	header = prev = &map->header;
5338 	VM_MAP_ENTRY_FOREACH(entry, map) {
5339 		KASSERT(prev->end <= entry->start,
5340 		    ("map %p prev->end = %jx, start = %jx", map,
5341 		    (uintmax_t)prev->end, (uintmax_t)entry->start));
5342 		KASSERT(entry->start < entry->end,
5343 		    ("map %p start = %jx, end = %jx", map,
5344 		    (uintmax_t)entry->start, (uintmax_t)entry->end));
5345 		KASSERT(entry->left == header ||
5346 		    entry->left->start < entry->start,
5347 		    ("map %p left->start = %jx, start = %jx", map,
5348 		    (uintmax_t)entry->left->start, (uintmax_t)entry->start));
5349 		KASSERT(entry->right == header ||
5350 		    entry->start < entry->right->start,
5351 		    ("map %p start = %jx, right->start = %jx", map,
5352 		    (uintmax_t)entry->start, (uintmax_t)entry->right->start));
5353 		cur = map->root;
5354 		lbound = ubound = header;
5355 		for (;;) {
5356 			if (entry->start < cur->start) {
5357 				ubound = cur;
5358 				cur = cur->left;
5359 				KASSERT(cur != lbound,
5360 				    ("map %p cannot find %jx",
5361 				    map, (uintmax_t)entry->start));
5362 			} else if (cur->end <= entry->start) {
5363 				lbound = cur;
5364 				cur = cur->right;
5365 				KASSERT(cur != ubound,
5366 				    ("map %p cannot find %jx",
5367 				    map, (uintmax_t)entry->start));
5368 			} else {
5369 				KASSERT(cur == entry,
5370 				    ("map %p cannot find %jx",
5371 				    map, (uintmax_t)entry->start));
5372 				break;
5373 			}
5374 		}
5375 		max_left = vm_map_entry_max_free_left(entry, lbound);
5376 		max_right = vm_map_entry_max_free_right(entry, ubound);
5377 		KASSERT(entry->max_free == vm_size_max(max_left, max_right),
5378 		    ("map %p max = %jx, max_left = %jx, max_right = %jx", map,
5379 		    (uintmax_t)entry->max_free,
5380 		    (uintmax_t)max_left, (uintmax_t)max_right));
5381 		prev = entry;
5382 	}
5383 	KASSERT(prev->end <= entry->start,
5384 	    ("map %p prev->end = %jx, start = %jx", map,
5385 	    (uintmax_t)prev->end, (uintmax_t)entry->start));
5386 }
5387 #endif
5388 
5389 #include "opt_ddb.h"
5390 #ifdef DDB
5391 #include <sys/kernel.h>
5392 
5393 #include <ddb/ddb.h>
5394 
5395 static void
5396 vm_map_print(vm_map_t map)
5397 {
5398 	vm_map_entry_t entry, prev;
5399 
5400 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
5401 	    (void *)map,
5402 	    (void *)map->pmap, map->nentries, map->timestamp);
5403 
5404 	db_indent += 2;
5405 	prev = &map->header;
5406 	VM_MAP_ENTRY_FOREACH(entry, map) {
5407 		db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n",
5408 		    (void *)entry, (void *)entry->start, (void *)entry->end,
5409 		    entry->eflags);
5410 		{
5411 			static const char * const inheritance_name[4] =
5412 			{"share", "copy", "none", "donate_copy"};
5413 
5414 			db_iprintf(" prot=%x/%x/%s",
5415 			    entry->protection,
5416 			    entry->max_protection,
5417 			    inheritance_name[(int)(unsigned char)
5418 			    entry->inheritance]);
5419 			if (entry->wired_count != 0)
5420 				db_printf(", wired");
5421 		}
5422 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
5423 			db_printf(", share=%p, offset=0x%jx\n",
5424 			    (void *)entry->object.sub_map,
5425 			    (uintmax_t)entry->offset);
5426 			if (prev == &map->header ||
5427 			    prev->object.sub_map !=
5428 				entry->object.sub_map) {
5429 				db_indent += 2;
5430 				vm_map_print((vm_map_t)entry->object.sub_map);
5431 				db_indent -= 2;
5432 			}
5433 		} else {
5434 			if (entry->cred != NULL)
5435 				db_printf(", ruid %d", entry->cred->cr_ruid);
5436 			db_printf(", object=%p, offset=0x%jx",
5437 			    (void *)entry->object.vm_object,
5438 			    (uintmax_t)entry->offset);
5439 			if (entry->object.vm_object && entry->object.vm_object->cred)
5440 				db_printf(", obj ruid %d charge %jx",
5441 				    entry->object.vm_object->cred->cr_ruid,
5442 				    (uintmax_t)entry->object.vm_object->charge);
5443 			if (entry->eflags & MAP_ENTRY_COW)
5444 				db_printf(", copy (%s)",
5445 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
5446 			db_printf("\n");
5447 
5448 			if (prev == &map->header ||
5449 			    prev->object.vm_object !=
5450 				entry->object.vm_object) {
5451 				db_indent += 2;
5452 				vm_object_print((db_expr_t)(intptr_t)
5453 						entry->object.vm_object,
5454 						0, 0, (char *)0);
5455 				db_indent -= 2;
5456 			}
5457 		}
5458 		prev = entry;
5459 	}
5460 	db_indent -= 2;
5461 }
5462 
5463 DB_SHOW_COMMAND(map, map)
5464 {
5465 
5466 	if (!have_addr) {
5467 		db_printf("usage: show map <addr>\n");
5468 		return;
5469 	}
5470 	vm_map_print((vm_map_t)addr);
5471 }
5472 
5473 DB_SHOW_COMMAND(procvm, procvm)
5474 {
5475 	struct proc *p;
5476 
5477 	if (have_addr) {
5478 		p = db_lookup_proc(addr);
5479 	} else {
5480 		p = curproc;
5481 	}
5482 
5483 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
5484 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
5485 	    (void *)vmspace_pmap(p->p_vmspace));
5486 
5487 	vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
5488 }
5489 
5490 #endif /* DDB */
5491