1 /* 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by the University of 19 * California, Berkeley and its contributors. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 37 * 38 * 39 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 40 * All rights reserved. 41 * 42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 43 * 44 * Permission to use, copy, modify and distribute this software and 45 * its documentation is hereby granted, provided that both the copyright 46 * notice and this permission notice appear in all copies of the 47 * software, derivative works or modified versions, and any portions 48 * thereof, and that both notices appear in supporting documentation. 49 * 50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 53 * 54 * Carnegie Mellon requests users of this software to return to 55 * 56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 57 * School of Computer Science 58 * Carnegie Mellon University 59 * Pittsburgh PA 15213-3890 60 * 61 * any improvements or extensions that they make and grant Carnegie the 62 * rights to redistribute these changes. 63 * 64 * $Id: vm_map.c,v 1.36 1996/03/04 02:04:24 dyson Exp $ 65 */ 66 67 /* 68 * Virtual memory mapping module. 69 */ 70 #include "opt_ddb.h" 71 72 #include <sys/param.h> 73 #include <sys/systm.h> 74 #include <sys/malloc.h> 75 #include <sys/proc.h> 76 #include <sys/queue.h> 77 #include <sys/vmmeter.h> 78 79 #include <vm/vm.h> 80 #include <vm/vm_param.h> 81 #include <vm/vm_prot.h> 82 #include <vm/vm_inherit.h> 83 #include <vm/lock.h> 84 #include <vm/pmap.h> 85 #include <vm/vm_map.h> 86 #include <vm/vm_page.h> 87 #include <vm/vm_object.h> 88 #include <vm/vm_kern.h> 89 #include <vm/vm_pager.h> 90 #include <vm/vm_extern.h> 91 92 /* 93 * Virtual memory maps provide for the mapping, protection, 94 * and sharing of virtual memory objects. In addition, 95 * this module provides for an efficient virtual copy of 96 * memory from one map to another. 97 * 98 * Synchronization is required prior to most operations. 99 * 100 * Maps consist of an ordered doubly-linked list of simple 101 * entries; a single hint is used to speed up lookups. 102 * 103 * In order to properly represent the sharing of virtual 104 * memory regions among maps, the map structure is bi-level. 105 * Top-level ("address") maps refer to regions of sharable 106 * virtual memory. These regions are implemented as 107 * ("sharing") maps, which then refer to the actual virtual 108 * memory objects. When two address maps "share" memory, 109 * their top-level maps both have references to the same 110 * sharing map. When memory is virtual-copied from one 111 * address map to another, the references in the sharing 112 * maps are actually copied -- no copying occurs at the 113 * virtual memory object level. 114 * 115 * Since portions of maps are specified by start/end addreses, 116 * which may not align with existing map entries, all 117 * routines merely "clip" entries to these start/end values. 118 * [That is, an entry is split into two, bordering at a 119 * start or end value.] Note that these clippings may not 120 * always be necessary (as the two resulting entries are then 121 * not changed); however, the clipping is done for convenience. 122 * No attempt is currently made to "glue back together" two 123 * abutting entries. 124 * 125 * As mentioned above, virtual copy operations are performed 126 * by copying VM object references from one sharing map to 127 * another, and then marking both regions as copy-on-write. 128 * It is important to note that only one writeable reference 129 * to a VM object region exists in any map -- this means that 130 * shadow object creation can be delayed until a write operation 131 * occurs. 132 */ 133 134 /* 135 * vm_map_startup: 136 * 137 * Initialize the vm_map module. Must be called before 138 * any other vm_map routines. 139 * 140 * Map and entry structures are allocated from the general 141 * purpose memory pool with some exceptions: 142 * 143 * - The kernel map and kmem submap are allocated statically. 144 * - Kernel map entries are allocated out of a static pool. 145 * 146 * These restrictions are necessary since malloc() uses the 147 * maps and requires map entries. 148 */ 149 150 vm_offset_t kentry_data; 151 vm_size_t kentry_data_size; 152 static vm_map_entry_t kentry_free; 153 static vm_map_t kmap_free; 154 extern char kstack[]; 155 156 static int kentry_count; 157 static vm_offset_t mapvm_start, mapvm, mapvmmax; 158 static int mapvmpgcnt; 159 160 static void _vm_map_clip_end __P((vm_map_t, vm_map_entry_t, vm_offset_t)); 161 static void _vm_map_clip_start __P((vm_map_t, vm_map_entry_t, vm_offset_t)); 162 static vm_map_entry_t vm_map_entry_create __P((vm_map_t)); 163 static void vm_map_entry_delete __P((vm_map_t, vm_map_entry_t)); 164 static void vm_map_entry_dispose __P((vm_map_t, vm_map_entry_t)); 165 static void vm_map_entry_unwire __P((vm_map_t, vm_map_entry_t)); 166 static void vm_map_copy_entry __P((vm_map_t, vm_map_t, vm_map_entry_t, 167 vm_map_entry_t)); 168 static void vm_map_simplify_entry __P((vm_map_t, vm_map_entry_t)); 169 170 void 171 vm_map_startup() 172 { 173 register int i; 174 register vm_map_entry_t mep; 175 vm_map_t mp; 176 177 /* 178 * Static map structures for allocation before initialization of 179 * kernel map or kmem map. vm_map_create knows how to deal with them. 180 */ 181 kmap_free = mp = (vm_map_t) kentry_data; 182 i = MAX_KMAP; 183 while (--i > 0) { 184 mp->header.next = (vm_map_entry_t) (mp + 1); 185 mp++; 186 } 187 mp++->header.next = NULL; 188 189 /* 190 * Form a free list of statically allocated kernel map entries with 191 * the rest. 192 */ 193 kentry_free = mep = (vm_map_entry_t) mp; 194 kentry_count = i = (kentry_data_size - MAX_KMAP * sizeof *mp) / sizeof *mep; 195 while (--i > 0) { 196 mep->next = mep + 1; 197 mep++; 198 } 199 mep->next = NULL; 200 } 201 202 /* 203 * Allocate a vmspace structure, including a vm_map and pmap, 204 * and initialize those structures. The refcnt is set to 1. 205 * The remaining fields must be initialized by the caller. 206 */ 207 struct vmspace * 208 vmspace_alloc(min, max, pageable) 209 vm_offset_t min, max; 210 int pageable; 211 { 212 register struct vmspace *vm; 213 214 if (mapvmpgcnt == 0 && mapvm == 0) { 215 int s; 216 217 mapvmpgcnt = (cnt.v_page_count * sizeof(struct vm_map_entry) + PAGE_SIZE - 1) / PAGE_SIZE; 218 s = splhigh(); 219 mapvm_start = mapvm = kmem_alloc_pageable(kmem_map, mapvmpgcnt * PAGE_SIZE); 220 mapvmmax = mapvm_start + mapvmpgcnt * PAGE_SIZE; 221 splx(s); 222 if (!mapvm) 223 mapvmpgcnt = 0; 224 } 225 MALLOC(vm, struct vmspace *, sizeof(struct vmspace), M_VMMAP, M_WAITOK); 226 bzero(vm, (caddr_t) &vm->vm_startcopy - (caddr_t) vm); 227 vm_map_init(&vm->vm_map, min, max, pageable); 228 pmap_pinit(&vm->vm_pmap); 229 vm->vm_map.pmap = &vm->vm_pmap; /* XXX */ 230 vm->vm_refcnt = 1; 231 return (vm); 232 } 233 234 void 235 vmspace_free(vm) 236 register struct vmspace *vm; 237 { 238 239 if (vm->vm_refcnt == 0) 240 panic("vmspace_free: attempt to free already freed vmspace"); 241 242 if (--vm->vm_refcnt == 0) { 243 int s, i; 244 245 pmap_remove(&vm->vm_pmap, (vm_offset_t) kstack, (vm_offset_t) kstack+UPAGES*PAGE_SIZE); 246 247 /* 248 * Lock the map, to wait out all other references to it. 249 * Delete all of the mappings and pages they hold, then call 250 * the pmap module to reclaim anything left. 251 */ 252 vm_map_lock(&vm->vm_map); 253 vm_object_deallocate(vm->vm_upages_obj); 254 (void) vm_map_delete(&vm->vm_map, vm->vm_map.min_offset, 255 vm->vm_map.max_offset); 256 vm_map_unlock(&vm->vm_map); 257 while( vm->vm_map.ref_count != 1) 258 tsleep(&vm->vm_map.ref_count, PVM, "vmsfre", 0); 259 --vm->vm_map.ref_count; 260 pmap_release(&vm->vm_pmap); 261 FREE(vm, M_VMMAP); 262 } 263 } 264 265 /* 266 * vm_map_create: 267 * 268 * Creates and returns a new empty VM map with 269 * the given physical map structure, and having 270 * the given lower and upper address bounds. 271 */ 272 vm_map_t 273 vm_map_create(pmap, min, max, pageable) 274 pmap_t pmap; 275 vm_offset_t min, max; 276 boolean_t pageable; 277 { 278 register vm_map_t result; 279 280 if (kmem_map == NULL) { 281 result = kmap_free; 282 kmap_free = (vm_map_t) result->header.next; 283 if (result == NULL) 284 panic("vm_map_create: out of maps"); 285 } else 286 MALLOC(result, vm_map_t, sizeof(struct vm_map), 287 M_VMMAP, M_WAITOK); 288 289 vm_map_init(result, min, max, pageable); 290 result->pmap = pmap; 291 return (result); 292 } 293 294 /* 295 * Initialize an existing vm_map structure 296 * such as that in the vmspace structure. 297 * The pmap is set elsewhere. 298 */ 299 void 300 vm_map_init(map, min, max, pageable) 301 register struct vm_map *map; 302 vm_offset_t min, max; 303 boolean_t pageable; 304 { 305 map->header.next = map->header.prev = &map->header; 306 map->nentries = 0; 307 map->size = 0; 308 map->ref_count = 1; 309 map->is_main_map = TRUE; 310 map->min_offset = min; 311 map->max_offset = max; 312 map->entries_pageable = pageable; 313 map->first_free = &map->header; 314 map->hint = &map->header; 315 map->timestamp = 0; 316 lock_init(&map->lock, TRUE); 317 } 318 319 /* 320 * vm_map_entry_create: [ internal use only ] 321 * 322 * Allocates a VM map entry for insertion. 323 * No entry fields are filled in. This routine is 324 */ 325 static struct vm_map_entry *mappool; 326 static int mappoolcnt; 327 328 static vm_map_entry_t 329 vm_map_entry_create(map) 330 vm_map_t map; 331 { 332 vm_map_entry_t entry; 333 int i; 334 335 #define KENTRY_LOW_WATER 64 336 #define MAPENTRY_LOW_WATER 128 337 338 /* 339 * This is a *very* nasty (and sort of incomplete) hack!!!! 340 */ 341 if (kentry_count < KENTRY_LOW_WATER) { 342 if (mapvmpgcnt && mapvm) { 343 vm_page_t m; 344 345 m = vm_page_alloc(kmem_object, 346 OFF_TO_IDX(mapvm - vm_map_min(kmem_map)), 347 (map == kmem_map) ? VM_ALLOC_INTERRUPT : VM_ALLOC_NORMAL); 348 if (m) { 349 int newentries; 350 351 newentries = (PAGE_SIZE / sizeof(struct vm_map_entry)); 352 vm_page_wire(m); 353 m->flags &= ~PG_BUSY; 354 m->valid = VM_PAGE_BITS_ALL; 355 pmap_enter(vm_map_pmap(kmem_map), mapvm, 356 VM_PAGE_TO_PHYS(m), VM_PROT_DEFAULT, 1); 357 m->flags |= PG_WRITEABLE|PG_MAPPED; 358 359 entry = (vm_map_entry_t) mapvm; 360 mapvm += PAGE_SIZE; 361 --mapvmpgcnt; 362 363 for (i = 0; i < newentries; i++) { 364 vm_map_entry_dispose(kernel_map, entry); 365 entry++; 366 } 367 } 368 } 369 } 370 if (map == kernel_map || map == kmem_map || map == pager_map) { 371 372 entry = kentry_free; 373 if (entry) { 374 kentry_free = entry->next; 375 --kentry_count; 376 return entry; 377 } 378 entry = mappool; 379 if (entry) { 380 mappool = entry->next; 381 --mappoolcnt; 382 return entry; 383 } 384 } else { 385 entry = mappool; 386 if (entry) { 387 mappool = entry->next; 388 --mappoolcnt; 389 return entry; 390 } 391 MALLOC(entry, vm_map_entry_t, sizeof(struct vm_map_entry), 392 M_VMMAPENT, M_WAITOK); 393 } 394 if (entry == NULL) 395 panic("vm_map_entry_create: out of map entries"); 396 397 return (entry); 398 } 399 400 /* 401 * vm_map_entry_dispose: [ internal use only ] 402 * 403 * Inverse of vm_map_entry_create. 404 */ 405 static void 406 vm_map_entry_dispose(map, entry) 407 vm_map_t map; 408 vm_map_entry_t entry; 409 { 410 if ((kentry_count < KENTRY_LOW_WATER) || 411 ((vm_offset_t) entry >= kentry_data && (vm_offset_t) entry < (kentry_data + kentry_data_size)) || 412 ((vm_offset_t) entry >= mapvm_start && (vm_offset_t) entry < mapvmmax)) { 413 entry->next = kentry_free; 414 kentry_free = entry; 415 ++kentry_count; 416 return; 417 } else { 418 if (mappoolcnt < MAPENTRY_LOW_WATER) { 419 entry->next = mappool; 420 mappool = entry; 421 ++mappoolcnt; 422 return; 423 } 424 FREE(entry, M_VMMAPENT); 425 } 426 } 427 428 /* 429 * vm_map_entry_{un,}link: 430 * 431 * Insert/remove entries from maps. 432 */ 433 #define vm_map_entry_link(map, after_where, entry) \ 434 { \ 435 (map)->nentries++; \ 436 (entry)->prev = (after_where); \ 437 (entry)->next = (after_where)->next; \ 438 (entry)->prev->next = (entry); \ 439 (entry)->next->prev = (entry); \ 440 } 441 #define vm_map_entry_unlink(map, entry) \ 442 { \ 443 (map)->nentries--; \ 444 (entry)->next->prev = (entry)->prev; \ 445 (entry)->prev->next = (entry)->next; \ 446 } 447 448 /* 449 * vm_map_reference: 450 * 451 * Creates another valid reference to the given map. 452 * 453 */ 454 void 455 vm_map_reference(map) 456 register vm_map_t map; 457 { 458 if (map == NULL) 459 return; 460 461 map->ref_count++; 462 } 463 464 /* 465 * vm_map_deallocate: 466 * 467 * Removes a reference from the specified map, 468 * destroying it if no references remain. 469 * The map should not be locked. 470 */ 471 void 472 vm_map_deallocate(map) 473 register vm_map_t map; 474 { 475 register int c; 476 477 if (map == NULL) 478 return; 479 480 c = map->ref_count; 481 482 if (c == 0) 483 panic("vm_map_deallocate: deallocating already freed map"); 484 485 if (c != 1) { 486 --map->ref_count; 487 wakeup(&map->ref_count); 488 return; 489 } 490 /* 491 * Lock the map, to wait out all other references to it. 492 */ 493 494 vm_map_lock(map); 495 (void) vm_map_delete(map, map->min_offset, map->max_offset); 496 --map->ref_count; 497 if( map->ref_count != 0) { 498 vm_map_unlock(map); 499 return; 500 } 501 502 pmap_destroy(map->pmap); 503 FREE(map, M_VMMAP); 504 } 505 506 /* 507 * vm_map_insert: 508 * 509 * Inserts the given whole VM object into the target 510 * map at the specified address range. The object's 511 * size should match that of the address range. 512 * 513 * Requires that the map be locked, and leaves it so. 514 */ 515 int 516 vm_map_insert(map, object, offset, start, end, prot, max, cow) 517 vm_map_t map; 518 vm_object_t object; 519 vm_ooffset_t offset; 520 vm_offset_t start; 521 vm_offset_t end; 522 vm_prot_t prot, max; 523 int cow; 524 { 525 register vm_map_entry_t new_entry; 526 register vm_map_entry_t prev_entry; 527 vm_map_entry_t temp_entry; 528 529 /* 530 * Check that the start and end points are not bogus. 531 */ 532 533 if ((start < map->min_offset) || (end > map->max_offset) || 534 (start >= end)) 535 return (KERN_INVALID_ADDRESS); 536 537 /* 538 * Find the entry prior to the proposed starting address; if it's part 539 * of an existing entry, this range is bogus. 540 */ 541 542 if (vm_map_lookup_entry(map, start, &temp_entry)) 543 return (KERN_NO_SPACE); 544 545 prev_entry = temp_entry; 546 547 /* 548 * Assert that the next entry doesn't overlap the end point. 549 */ 550 551 if ((prev_entry->next != &map->header) && 552 (prev_entry->next->start < end)) 553 return (KERN_NO_SPACE); 554 555 /* 556 * See if we can avoid creating a new entry by extending one of our 557 * neighbors. 558 */ 559 560 if (object == NULL) { 561 if ((prev_entry != &map->header) && 562 (prev_entry->end == start) && 563 (map->is_main_map) && 564 (prev_entry->is_a_map == FALSE) && 565 (prev_entry->is_sub_map == FALSE) && 566 (prev_entry->inheritance == VM_INHERIT_DEFAULT) && 567 (prev_entry->protection == prot) && 568 (prev_entry->max_protection == max) && 569 (prev_entry->wired_count == 0)) { 570 571 if (vm_object_coalesce(prev_entry->object.vm_object, 572 OFF_TO_IDX(prev_entry->offset), 573 (vm_size_t) (prev_entry->end 574 - prev_entry->start), 575 (vm_size_t) (end - prev_entry->end))) { 576 /* 577 * Coalesced the two objects - can extend the 578 * previous map entry to include the new 579 * range. 580 */ 581 map->size += (end - prev_entry->end); 582 prev_entry->end = end; 583 return (KERN_SUCCESS); 584 } 585 } 586 } 587 /* 588 * Create a new entry 589 */ 590 591 new_entry = vm_map_entry_create(map); 592 new_entry->start = start; 593 new_entry->end = end; 594 595 new_entry->is_a_map = FALSE; 596 new_entry->is_sub_map = FALSE; 597 new_entry->object.vm_object = object; 598 new_entry->offset = offset; 599 600 if (cow & MAP_COPY_NEEDED) 601 new_entry->needs_copy = TRUE; 602 else 603 new_entry->needs_copy = FALSE; 604 605 if (cow & MAP_COPY_ON_WRITE) 606 new_entry->copy_on_write = TRUE; 607 else 608 new_entry->copy_on_write = FALSE; 609 610 if (map->is_main_map) { 611 new_entry->inheritance = VM_INHERIT_DEFAULT; 612 new_entry->protection = prot; 613 new_entry->max_protection = max; 614 new_entry->wired_count = 0; 615 } 616 /* 617 * Insert the new entry into the list 618 */ 619 620 vm_map_entry_link(map, prev_entry, new_entry); 621 map->size += new_entry->end - new_entry->start; 622 623 /* 624 * Update the free space hint 625 */ 626 627 if ((map->first_free == prev_entry) && 628 (prev_entry->end >= new_entry->start)) 629 map->first_free = new_entry; 630 631 return (KERN_SUCCESS); 632 } 633 634 /* 635 * SAVE_HINT: 636 * 637 * Saves the specified entry as the hint for 638 * future lookups. 639 */ 640 #define SAVE_HINT(map,value) \ 641 (map)->hint = (value); 642 643 /* 644 * vm_map_lookup_entry: [ internal use only ] 645 * 646 * Finds the map entry containing (or 647 * immediately preceding) the specified address 648 * in the given map; the entry is returned 649 * in the "entry" parameter. The boolean 650 * result indicates whether the address is 651 * actually contained in the map. 652 */ 653 boolean_t 654 vm_map_lookup_entry(map, address, entry) 655 register vm_map_t map; 656 register vm_offset_t address; 657 vm_map_entry_t *entry; /* OUT */ 658 { 659 register vm_map_entry_t cur; 660 register vm_map_entry_t last; 661 662 /* 663 * Start looking either from the head of the list, or from the hint. 664 */ 665 666 cur = map->hint; 667 668 if (cur == &map->header) 669 cur = cur->next; 670 671 if (address >= cur->start) { 672 /* 673 * Go from hint to end of list. 674 * 675 * But first, make a quick check to see if we are already looking 676 * at the entry we want (which is usually the case). Note also 677 * that we don't need to save the hint here... it is the same 678 * hint (unless we are at the header, in which case the hint 679 * didn't buy us anything anyway). 680 */ 681 last = &map->header; 682 if ((cur != last) && (cur->end > address)) { 683 *entry = cur; 684 return (TRUE); 685 } 686 } else { 687 /* 688 * Go from start to hint, *inclusively* 689 */ 690 last = cur->next; 691 cur = map->header.next; 692 } 693 694 /* 695 * Search linearly 696 */ 697 698 while (cur != last) { 699 if (cur->end > address) { 700 if (address >= cur->start) { 701 /* 702 * Save this lookup for future hints, and 703 * return 704 */ 705 706 *entry = cur; 707 SAVE_HINT(map, cur); 708 return (TRUE); 709 } 710 break; 711 } 712 cur = cur->next; 713 } 714 *entry = cur->prev; 715 SAVE_HINT(map, *entry); 716 return (FALSE); 717 } 718 719 /* 720 * Find sufficient space for `length' bytes in the given map, starting at 721 * `start'. The map must be locked. Returns 0 on success, 1 on no space. 722 */ 723 int 724 vm_map_findspace(map, start, length, addr) 725 register vm_map_t map; 726 register vm_offset_t start; 727 vm_size_t length; 728 vm_offset_t *addr; 729 { 730 register vm_map_entry_t entry, next; 731 register vm_offset_t end; 732 733 if (start < map->min_offset) 734 start = map->min_offset; 735 if (start > map->max_offset) 736 return (1); 737 738 /* 739 * Look for the first possible address; if there's already something 740 * at this address, we have to start after it. 741 */ 742 if (start == map->min_offset) { 743 if ((entry = map->first_free) != &map->header) 744 start = entry->end; 745 } else { 746 vm_map_entry_t tmp; 747 748 if (vm_map_lookup_entry(map, start, &tmp)) 749 start = tmp->end; 750 entry = tmp; 751 } 752 753 /* 754 * Look through the rest of the map, trying to fit a new region in the 755 * gap between existing regions, or after the very last region. 756 */ 757 for (;; start = (entry = next)->end) { 758 /* 759 * Find the end of the proposed new region. Be sure we didn't 760 * go beyond the end of the map, or wrap around the address; 761 * if so, we lose. Otherwise, if this is the last entry, or 762 * if the proposed new region fits before the next entry, we 763 * win. 764 */ 765 end = start + length; 766 if (end > map->max_offset || end < start) 767 return (1); 768 next = entry->next; 769 if (next == &map->header || next->start >= end) 770 break; 771 } 772 SAVE_HINT(map, entry); 773 *addr = start; 774 if (map == kernel_map && round_page(start + length) > kernel_vm_end) 775 pmap_growkernel(round_page(start + length)); 776 return (0); 777 } 778 779 /* 780 * vm_map_find finds an unallocated region in the target address 781 * map with the given length. The search is defined to be 782 * first-fit from the specified address; the region found is 783 * returned in the same parameter. 784 * 785 */ 786 int 787 vm_map_find(map, object, offset, addr, length, find_space, prot, max, cow) 788 vm_map_t map; 789 vm_object_t object; 790 vm_ooffset_t offset; 791 vm_offset_t *addr; /* IN/OUT */ 792 vm_size_t length; 793 boolean_t find_space; 794 vm_prot_t prot, max; 795 int cow; 796 { 797 register vm_offset_t start; 798 int result, s = 0; 799 800 start = *addr; 801 802 if (map == kmem_map) 803 s = splhigh(); 804 805 vm_map_lock(map); 806 if (find_space) { 807 if (vm_map_findspace(map, start, length, addr)) { 808 vm_map_unlock(map); 809 if (map == kmem_map) 810 splx(s); 811 return (KERN_NO_SPACE); 812 } 813 start = *addr; 814 } 815 result = vm_map_insert(map, object, offset, 816 start, start + length, prot, max, cow); 817 vm_map_unlock(map); 818 819 if (map == kmem_map) 820 splx(s); 821 822 return (result); 823 } 824 825 /* 826 * vm_map_simplify_entry: [ internal use only ] 827 * 828 * Simplify the given map entry by: 829 * removing extra sharing maps 830 * [XXX maybe later] merging with a neighbor 831 */ 832 static void 833 vm_map_simplify_entry(map, entry) 834 vm_map_t map; 835 vm_map_entry_t entry; 836 { 837 vm_map_entry_t prev, next; 838 vm_size_t prevsize, nextsize, esize; 839 840 /* 841 * If this entry corresponds to a sharing map, then see if we can 842 * remove the level of indirection. If it's not a sharing map, then it 843 * points to a VM object, so see if we can merge with either of our 844 * neighbors. 845 */ 846 847 if (entry->is_sub_map) 848 return; 849 if (entry->is_a_map) { 850 return; 851 } else { 852 if (entry->wired_count) 853 return; 854 855 prev = entry->prev; 856 prevsize = prev->end - prev->start; 857 next = entry->next; 858 nextsize = next->end - next->start; 859 esize = entry->end - entry->start; 860 861 if (prev != &map->header && 862 prev->end == entry->start && 863 prev->is_a_map == FALSE && 864 prev->is_sub_map == FALSE && 865 prev->object.vm_object == entry->object.vm_object && 866 prev->protection == entry->protection && 867 prev->max_protection == entry->max_protection && 868 prev->inheritance == entry->inheritance && 869 prev->needs_copy == entry->needs_copy && 870 prev->copy_on_write == entry->copy_on_write && 871 prev->offset + prevsize == entry->offset && 872 prev->wired_count == 0) { 873 vm_map_entry_unlink(map, prev); 874 entry->start = prev->start; 875 entry->offset = prev->offset; 876 vm_object_deallocate(prev->object.vm_object); 877 vm_map_entry_dispose(map, prev); 878 esize = entry->end - entry->start; 879 } 880 881 if (next != &map->header && 882 entry->end == next->start && 883 next->is_a_map == FALSE && 884 next->is_sub_map == FALSE && 885 next->object.vm_object == entry->object.vm_object && 886 next->protection == entry->protection && 887 next->max_protection == entry->max_protection && 888 next->inheritance == entry->inheritance && 889 next->needs_copy == entry->needs_copy && 890 next->copy_on_write == entry->copy_on_write && 891 entry->offset + esize == next->offset && 892 next->wired_count == 0) { 893 vm_map_entry_unlink(map, next); 894 entry->end = next->end; 895 vm_object_deallocate(next->object.vm_object); 896 vm_map_entry_dispose(map, next); 897 } 898 } 899 } 900 901 /* 902 * vm_map_clip_start: [ internal use only ] 903 * 904 * Asserts that the given entry begins at or after 905 * the specified address; if necessary, 906 * it splits the entry into two. 907 */ 908 #define vm_map_clip_start(map, entry, startaddr) \ 909 { \ 910 if (startaddr > entry->start) \ 911 _vm_map_clip_start(map, entry, startaddr); \ 912 } 913 914 /* 915 * This routine is called only when it is known that 916 * the entry must be split. 917 */ 918 static void 919 _vm_map_clip_start(map, entry, start) 920 register vm_map_t map; 921 register vm_map_entry_t entry; 922 register vm_offset_t start; 923 { 924 register vm_map_entry_t new_entry; 925 926 /* 927 * See if we can simplify this entry first 928 */ 929 930 vm_map_simplify_entry(map, entry); 931 932 /* 933 * Split off the front portion -- note that we must insert the new 934 * entry BEFORE this one, so that this entry has the specified 935 * starting address. 936 */ 937 938 new_entry = vm_map_entry_create(map); 939 *new_entry = *entry; 940 941 new_entry->end = start; 942 entry->offset += (start - entry->start); 943 entry->start = start; 944 945 vm_map_entry_link(map, entry->prev, new_entry); 946 947 if (entry->is_a_map || entry->is_sub_map) 948 vm_map_reference(new_entry->object.share_map); 949 else 950 vm_object_reference(new_entry->object.vm_object); 951 } 952 953 /* 954 * vm_map_clip_end: [ internal use only ] 955 * 956 * Asserts that the given entry ends at or before 957 * the specified address; if necessary, 958 * it splits the entry into two. 959 */ 960 961 #define vm_map_clip_end(map, entry, endaddr) \ 962 { \ 963 if (endaddr < entry->end) \ 964 _vm_map_clip_end(map, entry, endaddr); \ 965 } 966 967 /* 968 * This routine is called only when it is known that 969 * the entry must be split. 970 */ 971 static void 972 _vm_map_clip_end(map, entry, end) 973 register vm_map_t map; 974 register vm_map_entry_t entry; 975 register vm_offset_t end; 976 { 977 register vm_map_entry_t new_entry; 978 979 /* 980 * Create a new entry and insert it AFTER the specified entry 981 */ 982 983 new_entry = vm_map_entry_create(map); 984 *new_entry = *entry; 985 986 new_entry->start = entry->end = end; 987 new_entry->offset += (end - entry->start); 988 989 vm_map_entry_link(map, entry, new_entry); 990 991 if (entry->is_a_map || entry->is_sub_map) 992 vm_map_reference(new_entry->object.share_map); 993 else 994 vm_object_reference(new_entry->object.vm_object); 995 } 996 997 /* 998 * VM_MAP_RANGE_CHECK: [ internal use only ] 999 * 1000 * Asserts that the starting and ending region 1001 * addresses fall within the valid range of the map. 1002 */ 1003 #define VM_MAP_RANGE_CHECK(map, start, end) \ 1004 { \ 1005 if (start < vm_map_min(map)) \ 1006 start = vm_map_min(map); \ 1007 if (end > vm_map_max(map)) \ 1008 end = vm_map_max(map); \ 1009 if (start > end) \ 1010 start = end; \ 1011 } 1012 1013 /* 1014 * vm_map_submap: [ kernel use only ] 1015 * 1016 * Mark the given range as handled by a subordinate map. 1017 * 1018 * This range must have been created with vm_map_find, 1019 * and no other operations may have been performed on this 1020 * range prior to calling vm_map_submap. 1021 * 1022 * Only a limited number of operations can be performed 1023 * within this rage after calling vm_map_submap: 1024 * vm_fault 1025 * [Don't try vm_map_copy!] 1026 * 1027 * To remove a submapping, one must first remove the 1028 * range from the superior map, and then destroy the 1029 * submap (if desired). [Better yet, don't try it.] 1030 */ 1031 int 1032 vm_map_submap(map, start, end, submap) 1033 register vm_map_t map; 1034 register vm_offset_t start; 1035 register vm_offset_t end; 1036 vm_map_t submap; 1037 { 1038 vm_map_entry_t entry; 1039 register int result = KERN_INVALID_ARGUMENT; 1040 1041 vm_map_lock(map); 1042 1043 VM_MAP_RANGE_CHECK(map, start, end); 1044 1045 if (vm_map_lookup_entry(map, start, &entry)) { 1046 vm_map_clip_start(map, entry, start); 1047 } else 1048 entry = entry->next; 1049 1050 vm_map_clip_end(map, entry, end); 1051 1052 if ((entry->start == start) && (entry->end == end) && 1053 (!entry->is_a_map) && 1054 (entry->object.vm_object == NULL) && 1055 (!entry->copy_on_write)) { 1056 entry->is_a_map = FALSE; 1057 entry->is_sub_map = TRUE; 1058 vm_map_reference(entry->object.sub_map = submap); 1059 result = KERN_SUCCESS; 1060 } 1061 vm_map_unlock(map); 1062 1063 return (result); 1064 } 1065 1066 /* 1067 * vm_map_protect: 1068 * 1069 * Sets the protection of the specified address 1070 * region in the target map. If "set_max" is 1071 * specified, the maximum protection is to be set; 1072 * otherwise, only the current protection is affected. 1073 */ 1074 int 1075 vm_map_protect(map, start, end, new_prot, set_max) 1076 register vm_map_t map; 1077 register vm_offset_t start; 1078 register vm_offset_t end; 1079 register vm_prot_t new_prot; 1080 register boolean_t set_max; 1081 { 1082 register vm_map_entry_t current; 1083 vm_map_entry_t entry; 1084 1085 vm_map_lock(map); 1086 1087 VM_MAP_RANGE_CHECK(map, start, end); 1088 1089 if (vm_map_lookup_entry(map, start, &entry)) { 1090 vm_map_clip_start(map, entry, start); 1091 } else 1092 entry = entry->next; 1093 1094 /* 1095 * Make a first pass to check for protection violations. 1096 */ 1097 1098 current = entry; 1099 while ((current != &map->header) && (current->start < end)) { 1100 if (current->is_sub_map) { 1101 vm_map_unlock(map); 1102 return (KERN_INVALID_ARGUMENT); 1103 } 1104 if ((new_prot & current->max_protection) != new_prot) { 1105 vm_map_unlock(map); 1106 return (KERN_PROTECTION_FAILURE); 1107 } 1108 current = current->next; 1109 } 1110 1111 /* 1112 * Go back and fix up protections. [Note that clipping is not 1113 * necessary the second time.] 1114 */ 1115 1116 current = entry; 1117 1118 while ((current != &map->header) && (current->start < end)) { 1119 vm_prot_t old_prot; 1120 1121 vm_map_clip_end(map, current, end); 1122 1123 old_prot = current->protection; 1124 if (set_max) 1125 current->protection = 1126 (current->max_protection = new_prot) & 1127 old_prot; 1128 else 1129 current->protection = new_prot; 1130 1131 /* 1132 * Update physical map if necessary. Worry about copy-on-write 1133 * here -- CHECK THIS XXX 1134 */ 1135 1136 if (current->protection != old_prot) { 1137 1138 #define MASK(entry) ((entry)->copy_on_write ? ~VM_PROT_WRITE : \ 1139 VM_PROT_ALL) 1140 #define max(a,b) ((a) > (b) ? (a) : (b)) 1141 1142 if (current->is_a_map) { 1143 vm_map_entry_t share_entry; 1144 vm_offset_t share_end; 1145 1146 vm_map_lock(current->object.share_map); 1147 (void) vm_map_lookup_entry( 1148 current->object.share_map, 1149 current->offset, 1150 &share_entry); 1151 share_end = current->offset + 1152 (current->end - current->start); 1153 while ((share_entry != 1154 ¤t->object.share_map->header) && 1155 (share_entry->start < share_end)) { 1156 1157 pmap_protect(map->pmap, 1158 (max(share_entry->start, 1159 current->offset) - 1160 current->offset + 1161 current->start), 1162 min(share_entry->end, 1163 share_end) - 1164 current->offset + 1165 current->start, 1166 current->protection & 1167 MASK(share_entry)); 1168 1169 share_entry = share_entry->next; 1170 } 1171 vm_map_unlock(current->object.share_map); 1172 } else 1173 pmap_protect(map->pmap, current->start, 1174 current->end, 1175 current->protection & MASK(entry)); 1176 #undef max 1177 #undef MASK 1178 } 1179 current = current->next; 1180 } 1181 1182 vm_map_unlock(map); 1183 return (KERN_SUCCESS); 1184 } 1185 1186 /* 1187 * vm_map_inherit: 1188 * 1189 * Sets the inheritance of the specified address 1190 * range in the target map. Inheritance 1191 * affects how the map will be shared with 1192 * child maps at the time of vm_map_fork. 1193 */ 1194 int 1195 vm_map_inherit(map, start, end, new_inheritance) 1196 register vm_map_t map; 1197 register vm_offset_t start; 1198 register vm_offset_t end; 1199 register vm_inherit_t new_inheritance; 1200 { 1201 register vm_map_entry_t entry; 1202 vm_map_entry_t temp_entry; 1203 1204 switch (new_inheritance) { 1205 case VM_INHERIT_NONE: 1206 case VM_INHERIT_COPY: 1207 case VM_INHERIT_SHARE: 1208 break; 1209 default: 1210 return (KERN_INVALID_ARGUMENT); 1211 } 1212 1213 vm_map_lock(map); 1214 1215 VM_MAP_RANGE_CHECK(map, start, end); 1216 1217 if (vm_map_lookup_entry(map, start, &temp_entry)) { 1218 entry = temp_entry; 1219 vm_map_clip_start(map, entry, start); 1220 } else 1221 entry = temp_entry->next; 1222 1223 while ((entry != &map->header) && (entry->start < end)) { 1224 vm_map_clip_end(map, entry, end); 1225 1226 entry->inheritance = new_inheritance; 1227 1228 entry = entry->next; 1229 } 1230 1231 vm_map_unlock(map); 1232 return (KERN_SUCCESS); 1233 } 1234 1235 /* 1236 * vm_map_pageable: 1237 * 1238 * Sets the pageability of the specified address 1239 * range in the target map. Regions specified 1240 * as not pageable require locked-down physical 1241 * memory and physical page maps. 1242 * 1243 * The map must not be locked, but a reference 1244 * must remain to the map throughout the call. 1245 */ 1246 int 1247 vm_map_pageable(map, start, end, new_pageable) 1248 register vm_map_t map; 1249 register vm_offset_t start; 1250 register vm_offset_t end; 1251 register boolean_t new_pageable; 1252 { 1253 register vm_map_entry_t entry; 1254 vm_map_entry_t start_entry; 1255 register vm_offset_t failed = 0; 1256 int rv; 1257 1258 vm_map_lock(map); 1259 1260 VM_MAP_RANGE_CHECK(map, start, end); 1261 1262 /* 1263 * Only one pageability change may take place at one time, since 1264 * vm_fault assumes it will be called only once for each 1265 * wiring/unwiring. Therefore, we have to make sure we're actually 1266 * changing the pageability for the entire region. We do so before 1267 * making any changes. 1268 */ 1269 1270 if (vm_map_lookup_entry(map, start, &start_entry) == FALSE) { 1271 vm_map_unlock(map); 1272 return (KERN_INVALID_ADDRESS); 1273 } 1274 entry = start_entry; 1275 1276 /* 1277 * Actions are rather different for wiring and unwiring, so we have 1278 * two separate cases. 1279 */ 1280 1281 if (new_pageable) { 1282 1283 vm_map_clip_start(map, entry, start); 1284 1285 /* 1286 * Unwiring. First ensure that the range to be unwired is 1287 * really wired down and that there are no holes. 1288 */ 1289 while ((entry != &map->header) && (entry->start < end)) { 1290 1291 if (entry->wired_count == 0 || 1292 (entry->end < end && 1293 (entry->next == &map->header || 1294 entry->next->start > entry->end))) { 1295 vm_map_unlock(map); 1296 return (KERN_INVALID_ARGUMENT); 1297 } 1298 entry = entry->next; 1299 } 1300 1301 /* 1302 * Now decrement the wiring count for each region. If a region 1303 * becomes completely unwired, unwire its physical pages and 1304 * mappings. 1305 */ 1306 lock_set_recursive(&map->lock); 1307 1308 entry = start_entry; 1309 while ((entry != &map->header) && (entry->start < end)) { 1310 vm_map_clip_end(map, entry, end); 1311 1312 entry->wired_count--; 1313 if (entry->wired_count == 0) 1314 vm_fault_unwire(map, entry->start, entry->end); 1315 1316 entry = entry->next; 1317 } 1318 lock_clear_recursive(&map->lock); 1319 } else { 1320 /* 1321 * Wiring. We must do this in two passes: 1322 * 1323 * 1. Holding the write lock, we create any shadow or zero-fill 1324 * objects that need to be created. Then we clip each map 1325 * entry to the region to be wired and increment its wiring 1326 * count. We create objects before clipping the map entries 1327 * to avoid object proliferation. 1328 * 1329 * 2. We downgrade to a read lock, and call vm_fault_wire to 1330 * fault in the pages for any newly wired area (wired_count is 1331 * 1). 1332 * 1333 * Downgrading to a read lock for vm_fault_wire avoids a possible 1334 * deadlock with another process that may have faulted on one 1335 * of the pages to be wired (it would mark the page busy, 1336 * blocking us, then in turn block on the map lock that we 1337 * hold). Because of problems in the recursive lock package, 1338 * we cannot upgrade to a write lock in vm_map_lookup. Thus, 1339 * any actions that require the write lock must be done 1340 * beforehand. Because we keep the read lock on the map, the 1341 * copy-on-write status of the entries we modify here cannot 1342 * change. 1343 */ 1344 1345 /* 1346 * Pass 1. 1347 */ 1348 while ((entry != &map->header) && (entry->start < end)) { 1349 if (entry->wired_count == 0) { 1350 1351 /* 1352 * Perform actions of vm_map_lookup that need 1353 * the write lock on the map: create a shadow 1354 * object for a copy-on-write region, or an 1355 * object for a zero-fill region. 1356 * 1357 * We don't have to do this for entries that 1358 * point to sharing maps, because we won't 1359 * hold the lock on the sharing map. 1360 */ 1361 if (!entry->is_a_map && !entry->is_sub_map) { 1362 if (entry->needs_copy && 1363 ((entry->protection & VM_PROT_WRITE) != 0)) { 1364 1365 vm_object_shadow(&entry->object.vm_object, 1366 &entry->offset, 1367 OFF_TO_IDX(entry->end 1368 - entry->start)); 1369 entry->needs_copy = FALSE; 1370 } else if (entry->object.vm_object == NULL) { 1371 entry->object.vm_object = 1372 vm_object_allocate(OBJT_DEFAULT, 1373 OFF_TO_IDX(entry->end - entry->start)); 1374 entry->offset = (vm_offset_t) 0; 1375 } 1376 } 1377 } 1378 vm_map_clip_start(map, entry, start); 1379 vm_map_clip_end(map, entry, end); 1380 entry->wired_count++; 1381 1382 /* 1383 * Check for holes 1384 */ 1385 if (entry->end < end && 1386 (entry->next == &map->header || 1387 entry->next->start > entry->end)) { 1388 /* 1389 * Found one. Object creation actions do not 1390 * need to be undone, but the wired counts 1391 * need to be restored. 1392 */ 1393 while (entry != &map->header && entry->end > start) { 1394 entry->wired_count--; 1395 entry = entry->prev; 1396 } 1397 vm_map_unlock(map); 1398 return (KERN_INVALID_ARGUMENT); 1399 } 1400 entry = entry->next; 1401 } 1402 1403 /* 1404 * Pass 2. 1405 */ 1406 1407 /* 1408 * HACK HACK HACK HACK 1409 * 1410 * If we are wiring in the kernel map or a submap of it, 1411 * unlock the map to avoid deadlocks. We trust that the 1412 * kernel is well-behaved, and therefore will not do 1413 * anything destructive to this region of the map while 1414 * we have it unlocked. We cannot trust user processes 1415 * to do the same. 1416 * 1417 * HACK HACK HACK HACK 1418 */ 1419 if (vm_map_pmap(map) == kernel_pmap) { 1420 vm_map_unlock(map); /* trust me ... */ 1421 } else { 1422 lock_set_recursive(&map->lock); 1423 lock_write_to_read(&map->lock); 1424 } 1425 1426 rv = 0; 1427 entry = start_entry; 1428 while (entry != &map->header && entry->start < end) { 1429 /* 1430 * If vm_fault_wire fails for any page we need to undo 1431 * what has been done. We decrement the wiring count 1432 * for those pages which have not yet been wired (now) 1433 * and unwire those that have (later). 1434 * 1435 * XXX this violates the locking protocol on the map, 1436 * needs to be fixed. 1437 */ 1438 if (rv) 1439 entry->wired_count--; 1440 else if (entry->wired_count == 1) { 1441 rv = vm_fault_wire(map, entry->start, entry->end); 1442 if (rv) { 1443 failed = entry->start; 1444 entry->wired_count--; 1445 } 1446 } 1447 entry = entry->next; 1448 } 1449 1450 if (vm_map_pmap(map) == kernel_pmap) { 1451 vm_map_lock(map); 1452 } else { 1453 lock_clear_recursive(&map->lock); 1454 } 1455 if (rv) { 1456 vm_map_unlock(map); 1457 (void) vm_map_pageable(map, start, failed, TRUE); 1458 return (rv); 1459 } 1460 } 1461 1462 vm_map_unlock(map); 1463 1464 return (KERN_SUCCESS); 1465 } 1466 1467 /* 1468 * vm_map_clean 1469 * 1470 * Push any dirty cached pages in the address range to their pager. 1471 * If syncio is TRUE, dirty pages are written synchronously. 1472 * If invalidate is TRUE, any cached pages are freed as well. 1473 * 1474 * Returns an error if any part of the specified range is not mapped. 1475 */ 1476 int 1477 vm_map_clean(map, start, end, syncio, invalidate) 1478 vm_map_t map; 1479 vm_offset_t start; 1480 vm_offset_t end; 1481 boolean_t syncio; 1482 boolean_t invalidate; 1483 { 1484 register vm_map_entry_t current; 1485 vm_map_entry_t entry; 1486 vm_size_t size; 1487 vm_object_t object; 1488 vm_ooffset_t offset; 1489 1490 vm_map_lock_read(map); 1491 VM_MAP_RANGE_CHECK(map, start, end); 1492 if (!vm_map_lookup_entry(map, start, &entry)) { 1493 vm_map_unlock_read(map); 1494 return (KERN_INVALID_ADDRESS); 1495 } 1496 /* 1497 * Make a first pass to check for holes. 1498 */ 1499 for (current = entry; current->start < end; current = current->next) { 1500 if (current->is_sub_map) { 1501 vm_map_unlock_read(map); 1502 return (KERN_INVALID_ARGUMENT); 1503 } 1504 if (end > current->end && 1505 (current->next == &map->header || 1506 current->end != current->next->start)) { 1507 vm_map_unlock_read(map); 1508 return (KERN_INVALID_ADDRESS); 1509 } 1510 } 1511 1512 /* 1513 * Make a second pass, cleaning/uncaching pages from the indicated 1514 * objects as we go. 1515 */ 1516 for (current = entry; current->start < end; current = current->next) { 1517 offset = current->offset + (start - current->start); 1518 size = (end <= current->end ? end : current->end) - start; 1519 if (current->is_a_map || current->is_sub_map) { 1520 register vm_map_t smap; 1521 vm_map_entry_t tentry; 1522 vm_size_t tsize; 1523 1524 smap = current->object.share_map; 1525 vm_map_lock_read(smap); 1526 (void) vm_map_lookup_entry(smap, offset, &tentry); 1527 tsize = tentry->end - offset; 1528 if (tsize < size) 1529 size = tsize; 1530 object = tentry->object.vm_object; 1531 offset = tentry->offset + (offset - tentry->start); 1532 vm_map_unlock_read(smap); 1533 } else { 1534 object = current->object.vm_object; 1535 } 1536 /* 1537 * Note that there is absolutely no sense in writing out 1538 * anonymous objects, so we track down the vnode object 1539 * to write out. 1540 * We invalidate (remove) all pages from the address space 1541 * anyway, for semantic correctness. 1542 */ 1543 while (object->backing_object) { 1544 object = object->backing_object; 1545 offset += object->backing_object_offset; 1546 if (object->size < OFF_TO_IDX( offset + size)) 1547 size = IDX_TO_OFF(object->size) - offset; 1548 } 1549 if (invalidate) 1550 pmap_remove(vm_map_pmap(map), current->start, 1551 current->start + size); 1552 if (object && (object->type == OBJT_VNODE)) { 1553 /* 1554 * Flush pages if writing is allowed. XXX should we continue 1555 * on an error? 1556 * 1557 * XXX Doing async I/O and then removing all the pages from 1558 * the object before it completes is probably a very bad 1559 * idea. 1560 */ 1561 if (current->protection & VM_PROT_WRITE) { 1562 vm_object_page_clean(object, 1563 OFF_TO_IDX(offset), 1564 OFF_TO_IDX(offset + size), 1565 (syncio||invalidate)?1:0, TRUE); 1566 if (invalidate) 1567 vm_object_page_remove(object, 1568 OFF_TO_IDX(offset), 1569 OFF_TO_IDX(offset + size), 1570 FALSE); 1571 } 1572 } 1573 start += size; 1574 } 1575 1576 vm_map_unlock_read(map); 1577 return (KERN_SUCCESS); 1578 } 1579 1580 /* 1581 * vm_map_entry_unwire: [ internal use only ] 1582 * 1583 * Make the region specified by this entry pageable. 1584 * 1585 * The map in question should be locked. 1586 * [This is the reason for this routine's existence.] 1587 */ 1588 static void 1589 vm_map_entry_unwire(map, entry) 1590 vm_map_t map; 1591 register vm_map_entry_t entry; 1592 { 1593 vm_fault_unwire(map, entry->start, entry->end); 1594 entry->wired_count = 0; 1595 } 1596 1597 /* 1598 * vm_map_entry_delete: [ internal use only ] 1599 * 1600 * Deallocate the given entry from the target map. 1601 */ 1602 static void 1603 vm_map_entry_delete(map, entry) 1604 register vm_map_t map; 1605 register vm_map_entry_t entry; 1606 { 1607 if (entry->wired_count != 0) 1608 vm_map_entry_unwire(map, entry); 1609 1610 vm_map_entry_unlink(map, entry); 1611 map->size -= entry->end - entry->start; 1612 1613 if (entry->is_a_map || entry->is_sub_map) 1614 vm_map_deallocate(entry->object.share_map); 1615 else 1616 vm_object_deallocate(entry->object.vm_object); 1617 1618 vm_map_entry_dispose(map, entry); 1619 } 1620 1621 /* 1622 * vm_map_delete: [ internal use only ] 1623 * 1624 * Deallocates the given address range from the target 1625 * map. 1626 * 1627 * When called with a sharing map, removes pages from 1628 * that region from all physical maps. 1629 */ 1630 int 1631 vm_map_delete(map, start, end) 1632 register vm_map_t map; 1633 vm_offset_t start; 1634 register vm_offset_t end; 1635 { 1636 register vm_map_entry_t entry; 1637 vm_map_entry_t first_entry; 1638 1639 /* 1640 * Find the start of the region, and clip it 1641 */ 1642 1643 if (!vm_map_lookup_entry(map, start, &first_entry)) 1644 entry = first_entry->next; 1645 else { 1646 entry = first_entry; 1647 vm_map_clip_start(map, entry, start); 1648 1649 /* 1650 * Fix the lookup hint now, rather than each time though the 1651 * loop. 1652 */ 1653 1654 SAVE_HINT(map, entry->prev); 1655 } 1656 1657 /* 1658 * Save the free space hint 1659 */ 1660 1661 if (map->first_free->start >= start) 1662 map->first_free = entry->prev; 1663 1664 /* 1665 * Step through all entries in this region 1666 */ 1667 1668 while ((entry != &map->header) && (entry->start < end)) { 1669 vm_map_entry_t next; 1670 register vm_offset_t s, e; 1671 register vm_object_t object; 1672 1673 vm_map_clip_end(map, entry, end); 1674 1675 next = entry->next; 1676 s = entry->start; 1677 e = entry->end; 1678 1679 /* 1680 * Unwire before removing addresses from the pmap; otherwise, 1681 * unwiring will put the entries back in the pmap. 1682 */ 1683 1684 object = entry->object.vm_object; 1685 if (entry->wired_count != 0) 1686 vm_map_entry_unwire(map, entry); 1687 1688 /* 1689 * If this is a sharing map, we must remove *all* references 1690 * to this data, since we can't find all of the physical maps 1691 * which are sharing it. 1692 */ 1693 1694 if (object == kernel_object || object == kmem_object) 1695 vm_object_page_remove(object, OFF_TO_IDX(entry->offset), 1696 OFF_TO_IDX(entry->offset + (e - s)), FALSE); 1697 else if (!map->is_main_map) 1698 vm_object_pmap_remove(object, 1699 OFF_TO_IDX(entry->offset), 1700 OFF_TO_IDX(entry->offset + (e - s))); 1701 else 1702 pmap_remove(map->pmap, s, e); 1703 1704 /* 1705 * Delete the entry (which may delete the object) only after 1706 * removing all pmap entries pointing to its pages. 1707 * (Otherwise, its page frames may be reallocated, and any 1708 * modify bits will be set in the wrong object!) 1709 */ 1710 1711 vm_map_entry_delete(map, entry); 1712 entry = next; 1713 } 1714 return (KERN_SUCCESS); 1715 } 1716 1717 /* 1718 * vm_map_remove: 1719 * 1720 * Remove the given address range from the target map. 1721 * This is the exported form of vm_map_delete. 1722 */ 1723 int 1724 vm_map_remove(map, start, end) 1725 register vm_map_t map; 1726 register vm_offset_t start; 1727 register vm_offset_t end; 1728 { 1729 register int result, s = 0; 1730 1731 if (map == kmem_map) 1732 s = splhigh(); 1733 1734 vm_map_lock(map); 1735 VM_MAP_RANGE_CHECK(map, start, end); 1736 result = vm_map_delete(map, start, end); 1737 vm_map_unlock(map); 1738 1739 if (map == kmem_map) 1740 splx(s); 1741 1742 return (result); 1743 } 1744 1745 /* 1746 * vm_map_check_protection: 1747 * 1748 * Assert that the target map allows the specified 1749 * privilege on the entire address region given. 1750 * The entire region must be allocated. 1751 */ 1752 boolean_t 1753 vm_map_check_protection(map, start, end, protection) 1754 register vm_map_t map; 1755 register vm_offset_t start; 1756 register vm_offset_t end; 1757 register vm_prot_t protection; 1758 { 1759 register vm_map_entry_t entry; 1760 vm_map_entry_t tmp_entry; 1761 1762 if (!vm_map_lookup_entry(map, start, &tmp_entry)) { 1763 return (FALSE); 1764 } 1765 entry = tmp_entry; 1766 1767 while (start < end) { 1768 if (entry == &map->header) { 1769 return (FALSE); 1770 } 1771 /* 1772 * No holes allowed! 1773 */ 1774 1775 if (start < entry->start) { 1776 return (FALSE); 1777 } 1778 /* 1779 * Check protection associated with entry. 1780 */ 1781 1782 if ((entry->protection & protection) != protection) { 1783 return (FALSE); 1784 } 1785 /* go to next entry */ 1786 1787 start = entry->end; 1788 entry = entry->next; 1789 } 1790 return (TRUE); 1791 } 1792 1793 /* 1794 * vm_map_copy_entry: 1795 * 1796 * Copies the contents of the source entry to the destination 1797 * entry. The entries *must* be aligned properly. 1798 */ 1799 static void 1800 vm_map_copy_entry(src_map, dst_map, src_entry, dst_entry) 1801 vm_map_t src_map, dst_map; 1802 register vm_map_entry_t src_entry, dst_entry; 1803 { 1804 vm_pindex_t temp_pindex; 1805 1806 if (src_entry->is_sub_map || dst_entry->is_sub_map) 1807 return; 1808 1809 if (dst_entry->object.vm_object != NULL) 1810 printf("vm_map_copy_entry: dst_entry object not NULL!\n"); 1811 1812 /* 1813 * If our destination map was wired down, unwire it now. 1814 */ 1815 1816 if (dst_entry->wired_count != 0) 1817 vm_map_entry_unwire(dst_map, dst_entry); 1818 1819 if (src_entry->wired_count == 0) { 1820 1821 boolean_t src_needs_copy; 1822 1823 /* 1824 * If the source entry is marked needs_copy, it is already 1825 * write-protected. 1826 */ 1827 if (!src_entry->needs_copy) { 1828 1829 boolean_t su; 1830 1831 /* 1832 * If the source entry has only one mapping, we can 1833 * just protect the virtual address range. 1834 */ 1835 if (!(su = src_map->is_main_map)) { 1836 su = (src_map->ref_count == 1); 1837 } 1838 if (su) { 1839 pmap_protect(src_map->pmap, 1840 src_entry->start, 1841 src_entry->end, 1842 src_entry->protection & ~VM_PROT_WRITE); 1843 } else { 1844 vm_object_pmap_copy(src_entry->object.vm_object, 1845 OFF_TO_IDX(src_entry->offset), 1846 OFF_TO_IDX(src_entry->offset + (src_entry->end 1847 - src_entry->start))); 1848 } 1849 } 1850 /* 1851 * Make a copy of the object. 1852 */ 1853 temp_pindex = OFF_TO_IDX(dst_entry->offset); 1854 vm_object_copy(src_entry->object.vm_object, 1855 OFF_TO_IDX(src_entry->offset), 1856 &dst_entry->object.vm_object, 1857 &temp_pindex, 1858 &src_needs_copy); 1859 dst_entry->offset = IDX_TO_OFF(temp_pindex); 1860 /* 1861 * If we didn't get a copy-object now, mark the source map 1862 * entry so that a shadow will be created to hold its changed 1863 * pages. 1864 */ 1865 if (src_needs_copy) 1866 src_entry->needs_copy = TRUE; 1867 1868 /* 1869 * The destination always needs to have a shadow created. 1870 */ 1871 dst_entry->needs_copy = TRUE; 1872 1873 /* 1874 * Mark the entries copy-on-write, so that write-enabling the 1875 * entry won't make copy-on-write pages writable. 1876 */ 1877 src_entry->copy_on_write = TRUE; 1878 dst_entry->copy_on_write = TRUE; 1879 1880 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start, 1881 dst_entry->end - dst_entry->start, src_entry->start); 1882 } else { 1883 /* 1884 * Of course, wired down pages can't be set copy-on-write. 1885 * Cause wired pages to be copied into the new map by 1886 * simulating faults (the new pages are pageable) 1887 */ 1888 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry); 1889 } 1890 } 1891 1892 /* 1893 * vmspace_fork: 1894 * Create a new process vmspace structure and vm_map 1895 * based on those of an existing process. The new map 1896 * is based on the old map, according to the inheritance 1897 * values on the regions in that map. 1898 * 1899 * The source map must not be locked. 1900 */ 1901 struct vmspace * 1902 vmspace_fork(vm1) 1903 register struct vmspace *vm1; 1904 { 1905 register struct vmspace *vm2; 1906 vm_map_t old_map = &vm1->vm_map; 1907 vm_map_t new_map; 1908 vm_map_entry_t old_entry; 1909 vm_map_entry_t new_entry; 1910 pmap_t new_pmap; 1911 vm_object_t object; 1912 vm_page_t p; 1913 1914 vm_map_lock(old_map); 1915 1916 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset, 1917 old_map->entries_pageable); 1918 bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy, 1919 (caddr_t) (vm1 + 1) - (caddr_t) &vm1->vm_startcopy); 1920 new_pmap = &vm2->vm_pmap; /* XXX */ 1921 new_map = &vm2->vm_map; /* XXX */ 1922 1923 old_entry = old_map->header.next; 1924 1925 while (old_entry != &old_map->header) { 1926 if (old_entry->is_sub_map) 1927 panic("vm_map_fork: encountered a submap"); 1928 1929 switch (old_entry->inheritance) { 1930 case VM_INHERIT_NONE: 1931 break; 1932 1933 case VM_INHERIT_SHARE: 1934 /* 1935 * Clone the entry, referencing the sharing map. 1936 */ 1937 new_entry = vm_map_entry_create(new_map); 1938 *new_entry = *old_entry; 1939 new_entry->wired_count = 0; 1940 object = new_entry->object.vm_object; 1941 ++object->ref_count; 1942 1943 /* 1944 * Insert the entry into the new map -- we know we're 1945 * inserting at the end of the new map. 1946 */ 1947 1948 vm_map_entry_link(new_map, new_map->header.prev, 1949 new_entry); 1950 1951 /* 1952 * Update the physical map 1953 */ 1954 1955 pmap_copy(new_map->pmap, old_map->pmap, 1956 new_entry->start, 1957 (old_entry->end - old_entry->start), 1958 old_entry->start); 1959 break; 1960 1961 case VM_INHERIT_COPY: 1962 /* 1963 * Clone the entry and link into the map. 1964 */ 1965 1966 new_entry = vm_map_entry_create(new_map); 1967 *new_entry = *old_entry; 1968 new_entry->wired_count = 0; 1969 new_entry->object.vm_object = NULL; 1970 new_entry->is_a_map = FALSE; 1971 vm_map_entry_link(new_map, new_map->header.prev, 1972 new_entry); 1973 vm_map_copy_entry(old_map, new_map, old_entry, 1974 new_entry); 1975 break; 1976 } 1977 old_entry = old_entry->next; 1978 } 1979 1980 new_map->size = old_map->size; 1981 vm_map_unlock(old_map); 1982 1983 return (vm2); 1984 } 1985 1986 /* 1987 * vm_map_lookup: 1988 * 1989 * Finds the VM object, offset, and 1990 * protection for a given virtual address in the 1991 * specified map, assuming a page fault of the 1992 * type specified. 1993 * 1994 * Leaves the map in question locked for read; return 1995 * values are guaranteed until a vm_map_lookup_done 1996 * call is performed. Note that the map argument 1997 * is in/out; the returned map must be used in 1998 * the call to vm_map_lookup_done. 1999 * 2000 * A handle (out_entry) is returned for use in 2001 * vm_map_lookup_done, to make that fast. 2002 * 2003 * If a lookup is requested with "write protection" 2004 * specified, the map may be changed to perform virtual 2005 * copying operations, although the data referenced will 2006 * remain the same. 2007 */ 2008 int 2009 vm_map_lookup(var_map, vaddr, fault_type, out_entry, 2010 object, pindex, out_prot, wired, single_use) 2011 vm_map_t *var_map; /* IN/OUT */ 2012 register vm_offset_t vaddr; 2013 register vm_prot_t fault_type; 2014 2015 vm_map_entry_t *out_entry; /* OUT */ 2016 vm_object_t *object; /* OUT */ 2017 vm_pindex_t *pindex; /* OUT */ 2018 vm_prot_t *out_prot; /* OUT */ 2019 boolean_t *wired; /* OUT */ 2020 boolean_t *single_use; /* OUT */ 2021 { 2022 vm_map_t share_map; 2023 vm_offset_t share_offset; 2024 register vm_map_entry_t entry; 2025 register vm_map_t map = *var_map; 2026 register vm_prot_t prot; 2027 register boolean_t su; 2028 2029 RetryLookup:; 2030 2031 /* 2032 * Lookup the faulting address. 2033 */ 2034 2035 vm_map_lock_read(map); 2036 2037 #define RETURN(why) \ 2038 { \ 2039 vm_map_unlock_read(map); \ 2040 return(why); \ 2041 } 2042 2043 /* 2044 * If the map has an interesting hint, try it before calling full 2045 * blown lookup routine. 2046 */ 2047 2048 entry = map->hint; 2049 2050 *out_entry = entry; 2051 2052 if ((entry == &map->header) || 2053 (vaddr < entry->start) || (vaddr >= entry->end)) { 2054 vm_map_entry_t tmp_entry; 2055 2056 /* 2057 * Entry was either not a valid hint, or the vaddr was not 2058 * contained in the entry, so do a full lookup. 2059 */ 2060 if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) 2061 RETURN(KERN_INVALID_ADDRESS); 2062 2063 entry = tmp_entry; 2064 *out_entry = entry; 2065 } 2066 /* 2067 * Handle submaps. 2068 */ 2069 2070 if (entry->is_sub_map) { 2071 vm_map_t old_map = map; 2072 2073 *var_map = map = entry->object.sub_map; 2074 vm_map_unlock_read(old_map); 2075 goto RetryLookup; 2076 } 2077 /* 2078 * Check whether this task is allowed to have this page. 2079 */ 2080 2081 prot = entry->protection; 2082 if ((fault_type & (prot)) != fault_type) 2083 RETURN(KERN_PROTECTION_FAILURE); 2084 2085 /* 2086 * If this page is not pageable, we have to get it for all possible 2087 * accesses. 2088 */ 2089 2090 *wired = (entry->wired_count != 0); 2091 if (*wired) 2092 prot = fault_type = entry->protection; 2093 2094 /* 2095 * If we don't already have a VM object, track it down. 2096 */ 2097 2098 su = !entry->is_a_map; 2099 if (su) { 2100 share_map = map; 2101 share_offset = vaddr; 2102 } else { 2103 vm_map_entry_t share_entry; 2104 2105 /* 2106 * Compute the sharing map, and offset into it. 2107 */ 2108 2109 share_map = entry->object.share_map; 2110 share_offset = (vaddr - entry->start) + entry->offset; 2111 2112 /* 2113 * Look for the backing store object and offset 2114 */ 2115 2116 vm_map_lock_read(share_map); 2117 2118 if (!vm_map_lookup_entry(share_map, share_offset, 2119 &share_entry)) { 2120 vm_map_unlock_read(share_map); 2121 RETURN(KERN_INVALID_ADDRESS); 2122 } 2123 entry = share_entry; 2124 } 2125 2126 /* 2127 * If the entry was copy-on-write, we either ... 2128 */ 2129 2130 if (entry->needs_copy) { 2131 /* 2132 * If we want to write the page, we may as well handle that 2133 * now since we've got the sharing map locked. 2134 * 2135 * If we don't need to write the page, we just demote the 2136 * permissions allowed. 2137 */ 2138 2139 if (fault_type & VM_PROT_WRITE) { 2140 /* 2141 * Make a new object, and place it in the object 2142 * chain. Note that no new references have appeared 2143 * -- one just moved from the share map to the new 2144 * object. 2145 */ 2146 2147 if (lock_read_to_write(&share_map->lock)) { 2148 if (share_map != map) 2149 vm_map_unlock_read(map); 2150 goto RetryLookup; 2151 } 2152 vm_object_shadow( 2153 &entry->object.vm_object, 2154 &entry->offset, 2155 OFF_TO_IDX(entry->end - entry->start)); 2156 2157 entry->needs_copy = FALSE; 2158 2159 lock_write_to_read(&share_map->lock); 2160 } else { 2161 /* 2162 * We're attempting to read a copy-on-write page -- 2163 * don't allow writes. 2164 */ 2165 2166 prot &= (~VM_PROT_WRITE); 2167 } 2168 } 2169 /* 2170 * Create an object if necessary. 2171 */ 2172 if (entry->object.vm_object == NULL) { 2173 2174 if (lock_read_to_write(&share_map->lock)) { 2175 if (share_map != map) 2176 vm_map_unlock_read(map); 2177 goto RetryLookup; 2178 } 2179 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT, 2180 OFF_TO_IDX(entry->end - entry->start)); 2181 entry->offset = 0; 2182 lock_write_to_read(&share_map->lock); 2183 } 2184 /* 2185 * Return the object/offset from this entry. If the entry was 2186 * copy-on-write or empty, it has been fixed up. 2187 */ 2188 2189 *pindex = OFF_TO_IDX((share_offset - entry->start) + entry->offset); 2190 *object = entry->object.vm_object; 2191 2192 /* 2193 * Return whether this is the only map sharing this data. 2194 */ 2195 2196 if (!su) { 2197 su = (share_map->ref_count == 1); 2198 } 2199 *out_prot = prot; 2200 *single_use = su; 2201 2202 return (KERN_SUCCESS); 2203 2204 #undef RETURN 2205 } 2206 2207 /* 2208 * vm_map_lookup_done: 2209 * 2210 * Releases locks acquired by a vm_map_lookup 2211 * (according to the handle returned by that lookup). 2212 */ 2213 2214 void 2215 vm_map_lookup_done(map, entry) 2216 register vm_map_t map; 2217 vm_map_entry_t entry; 2218 { 2219 /* 2220 * If this entry references a map, unlock it first. 2221 */ 2222 2223 if (entry->is_a_map) 2224 vm_map_unlock_read(entry->object.share_map); 2225 2226 /* 2227 * Unlock the main-level map 2228 */ 2229 2230 vm_map_unlock_read(map); 2231 } 2232 2233 /* 2234 * Routine: vm_map_simplify 2235 * Purpose: 2236 * Attempt to simplify the map representation in 2237 * the vicinity of the given starting address. 2238 * Note: 2239 * This routine is intended primarily to keep the 2240 * kernel maps more compact -- they generally don't 2241 * benefit from the "expand a map entry" technology 2242 * at allocation time because the adjacent entry 2243 * is often wired down. 2244 */ 2245 void 2246 vm_map_simplify(map, start) 2247 vm_map_t map; 2248 vm_offset_t start; 2249 { 2250 vm_map_entry_t this_entry; 2251 vm_map_entry_t prev_entry; 2252 2253 vm_map_lock(map); 2254 if ( 2255 (vm_map_lookup_entry(map, start, &this_entry)) && 2256 ((prev_entry = this_entry->prev) != &map->header) && 2257 2258 (prev_entry->end == start) && 2259 (map->is_main_map) && 2260 2261 (prev_entry->is_a_map == FALSE) && 2262 (prev_entry->is_sub_map == FALSE) && 2263 2264 (this_entry->is_a_map == FALSE) && 2265 (this_entry->is_sub_map == FALSE) && 2266 2267 (prev_entry->inheritance == this_entry->inheritance) && 2268 (prev_entry->protection == this_entry->protection) && 2269 (prev_entry->max_protection == this_entry->max_protection) && 2270 (prev_entry->wired_count == this_entry->wired_count) && 2271 2272 (prev_entry->copy_on_write == this_entry->copy_on_write) && 2273 (prev_entry->needs_copy == this_entry->needs_copy) && 2274 2275 (prev_entry->object.vm_object == this_entry->object.vm_object) && 2276 ((prev_entry->offset + (prev_entry->end - prev_entry->start)) 2277 == this_entry->offset) 2278 ) { 2279 if (map->first_free == this_entry) 2280 map->first_free = prev_entry; 2281 2282 if (!this_entry->object.vm_object->paging_in_progress) { 2283 SAVE_HINT(map, prev_entry); 2284 vm_map_entry_unlink(map, this_entry); 2285 prev_entry->end = this_entry->end; 2286 vm_object_deallocate(this_entry->object.vm_object); 2287 vm_map_entry_dispose(map, this_entry); 2288 } 2289 } 2290 vm_map_unlock(map); 2291 } 2292 2293 #ifdef DDB 2294 /* 2295 * vm_map_print: [ debug ] 2296 */ 2297 void 2298 vm_map_print(imap, full, dummy3, dummy4) 2299 /* db_expr_t */ int imap; 2300 boolean_t full; 2301 /* db_expr_t */ int dummy3; 2302 char *dummy4; 2303 { 2304 register vm_map_entry_t entry; 2305 register vm_map_t map = (vm_map_t)imap; /* XXX */ 2306 2307 iprintf("%s map 0x%x: pmap=0x%x,ref=%d,nentries=%d,version=%d\n", 2308 (map->is_main_map ? "Task" : "Share"), 2309 (int) map, (int) (map->pmap), map->ref_count, map->nentries, 2310 map->timestamp); 2311 2312 if (!full && indent) 2313 return; 2314 2315 indent += 2; 2316 for (entry = map->header.next; entry != &map->header; 2317 entry = entry->next) { 2318 iprintf("map entry 0x%x: start=0x%x, end=0x%x, ", 2319 (int) entry, (int) entry->start, (int) entry->end); 2320 if (map->is_main_map) { 2321 static char *inheritance_name[4] = 2322 {"share", "copy", "none", "donate_copy"}; 2323 2324 printf("prot=%x/%x/%s, ", 2325 entry->protection, 2326 entry->max_protection, 2327 inheritance_name[entry->inheritance]); 2328 if (entry->wired_count != 0) 2329 printf("wired, "); 2330 } 2331 if (entry->is_a_map || entry->is_sub_map) { 2332 printf("share=0x%x, offset=0x%x\n", 2333 (int) entry->object.share_map, 2334 (int) entry->offset); 2335 if ((entry->prev == &map->header) || 2336 (!entry->prev->is_a_map) || 2337 (entry->prev->object.share_map != 2338 entry->object.share_map)) { 2339 indent += 2; 2340 vm_map_print((int)entry->object.share_map, 2341 full, 0, (char *)0); 2342 indent -= 2; 2343 } 2344 } else { 2345 printf("object=0x%x, offset=0x%x", 2346 (int) entry->object.vm_object, 2347 (int) entry->offset); 2348 if (entry->copy_on_write) 2349 printf(", copy (%s)", 2350 entry->needs_copy ? "needed" : "done"); 2351 printf("\n"); 2352 2353 if ((entry->prev == &map->header) || 2354 (entry->prev->is_a_map) || 2355 (entry->prev->object.vm_object != 2356 entry->object.vm_object)) { 2357 indent += 2; 2358 vm_object_print((int)entry->object.vm_object, 2359 full, 0, (char *)0); 2360 indent -= 2; 2361 } 2362 } 2363 } 2364 indent -= 2; 2365 } 2366 #endif 2367