xref: /freebsd/sys/vm/vm_map.c (revision 729362425c09cf6b362366aabc6fb547eee8035a)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD$
65  */
66 
67 /*
68  *	Virtual memory mapping module.
69  */
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/ktr.h>
74 #include <sys/lock.h>
75 #include <sys/mutex.h>
76 #include <sys/proc.h>
77 #include <sys/vmmeter.h>
78 #include <sys/mman.h>
79 #include <sys/vnode.h>
80 #include <sys/resourcevar.h>
81 #include <sys/sysent.h>
82 #include <sys/shm.h>
83 
84 #include <vm/vm.h>
85 #include <vm/vm_param.h>
86 #include <vm/pmap.h>
87 #include <vm/vm_map.h>
88 #include <vm/vm_page.h>
89 #include <vm/vm_object.h>
90 #include <vm/vm_pager.h>
91 #include <vm/vm_kern.h>
92 #include <vm/vm_extern.h>
93 #include <vm/swap_pager.h>
94 #include <vm/uma.h>
95 
96 /*
97  *	Virtual memory maps provide for the mapping, protection,
98  *	and sharing of virtual memory objects.  In addition,
99  *	this module provides for an efficient virtual copy of
100  *	memory from one map to another.
101  *
102  *	Synchronization is required prior to most operations.
103  *
104  *	Maps consist of an ordered doubly-linked list of simple
105  *	entries; a single hint is used to speed up lookups.
106  *
107  *	Since portions of maps are specified by start/end addresses,
108  *	which may not align with existing map entries, all
109  *	routines merely "clip" entries to these start/end values.
110  *	[That is, an entry is split into two, bordering at a
111  *	start or end value.]  Note that these clippings may not
112  *	always be necessary (as the two resulting entries are then
113  *	not changed); however, the clipping is done for convenience.
114  *
115  *	As mentioned above, virtual copy operations are performed
116  *	by copying VM object references from one map to
117  *	another, and then marking both regions as copy-on-write.
118  */
119 
120 /*
121  *	vm_map_startup:
122  *
123  *	Initialize the vm_map module.  Must be called before
124  *	any other vm_map routines.
125  *
126  *	Map and entry structures are allocated from the general
127  *	purpose memory pool with some exceptions:
128  *
129  *	- The kernel map and kmem submap are allocated statically.
130  *	- Kernel map entries are allocated out of a static pool.
131  *
132  *	These restrictions are necessary since malloc() uses the
133  *	maps and requires map entries.
134  */
135 
136 static struct mtx map_sleep_mtx;
137 static uma_zone_t mapentzone;
138 static uma_zone_t kmapentzone;
139 static uma_zone_t mapzone;
140 static uma_zone_t vmspace_zone;
141 static struct vm_object kmapentobj;
142 static void vmspace_zinit(void *mem, int size);
143 static void vmspace_zfini(void *mem, int size);
144 static void vm_map_zinit(void *mem, int size);
145 static void vm_map_zfini(void *mem, int size);
146 static void _vm_map_init(vm_map_t map, vm_offset_t min, vm_offset_t max);
147 
148 #ifdef INVARIANTS
149 static void vm_map_zdtor(void *mem, int size, void *arg);
150 static void vmspace_zdtor(void *mem, int size, void *arg);
151 #endif
152 
153 void
154 vm_map_startup(void)
155 {
156 	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
157 	mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
158 #ifdef INVARIANTS
159 	    vm_map_zdtor,
160 #else
161 	    NULL,
162 #endif
163 	    vm_map_zinit, vm_map_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
164 	uma_prealloc(mapzone, MAX_KMAP);
165 	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
166 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
167 	    UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
168 	uma_prealloc(kmapentzone, MAX_KMAPENT);
169 	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
170 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
171 	uma_prealloc(mapentzone, MAX_MAPENT);
172 }
173 
174 static void
175 vmspace_zfini(void *mem, int size)
176 {
177 	struct vmspace *vm;
178 
179 	vm = (struct vmspace *)mem;
180 
181 	vm_map_zfini(&vm->vm_map, sizeof(vm->vm_map));
182 }
183 
184 static void
185 vmspace_zinit(void *mem, int size)
186 {
187 	struct vmspace *vm;
188 
189 	vm = (struct vmspace *)mem;
190 
191 	vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map));
192 }
193 
194 static void
195 vm_map_zfini(void *mem, int size)
196 {
197 	vm_map_t map;
198 
199 	map = (vm_map_t)mem;
200 	mtx_destroy(&map->system_mtx);
201 	lockdestroy(&map->lock);
202 }
203 
204 static void
205 vm_map_zinit(void *mem, int size)
206 {
207 	vm_map_t map;
208 
209 	map = (vm_map_t)mem;
210 	map->nentries = 0;
211 	map->size = 0;
212 	map->infork = 0;
213 	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
214 	lockinit(&map->lock, PVM, "thrd_sleep", 0, LK_NOPAUSE);
215 }
216 
217 #ifdef INVARIANTS
218 static void
219 vmspace_zdtor(void *mem, int size, void *arg)
220 {
221 	struct vmspace *vm;
222 
223 	vm = (struct vmspace *)mem;
224 
225 	vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
226 }
227 static void
228 vm_map_zdtor(void *mem, int size, void *arg)
229 {
230 	vm_map_t map;
231 
232 	map = (vm_map_t)mem;
233 	KASSERT(map->nentries == 0,
234 	    ("map %p nentries == %d on free.",
235 	    map, map->nentries));
236 	KASSERT(map->size == 0,
237 	    ("map %p size == %lu on free.",
238 	    map, (unsigned long)map->size));
239 	KASSERT(map->infork == 0,
240 	    ("map %p infork == %d on free.",
241 	    map, map->infork));
242 }
243 #endif	/* INVARIANTS */
244 
245 /*
246  * Allocate a vmspace structure, including a vm_map and pmap,
247  * and initialize those structures.  The refcnt is set to 1.
248  * The remaining fields must be initialized by the caller.
249  */
250 struct vmspace *
251 vmspace_alloc(min, max)
252 	vm_offset_t min, max;
253 {
254 	struct vmspace *vm;
255 
256 	GIANT_REQUIRED;
257 	vm = uma_zalloc(vmspace_zone, M_WAITOK);
258 	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
259 	_vm_map_init(&vm->vm_map, min, max);
260 	pmap_pinit(vmspace_pmap(vm));
261 	vm->vm_map.pmap = vmspace_pmap(vm);		/* XXX */
262 	vm->vm_refcnt = 1;
263 	vm->vm_shm = NULL;
264 	vm->vm_exitingcnt = 0;
265 	return (vm);
266 }
267 
268 void
269 vm_init2(void)
270 {
271 	uma_zone_set_obj(kmapentzone, &kmapentobj, lmin(cnt.v_page_count,
272 	    (VM_MAX_KERNEL_ADDRESS - KERNBASE) / PAGE_SIZE) / 8);
273 	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
274 #ifdef INVARIANTS
275 	    vmspace_zdtor,
276 #else
277 	    NULL,
278 #endif
279 	    vmspace_zinit, vmspace_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
280 	pmap_init2();
281 }
282 
283 static __inline void
284 vmspace_dofree(struct vmspace *vm)
285 {
286 	CTR1(KTR_VM, "vmspace_free: %p", vm);
287 
288 	/*
289 	 * Make sure any SysV shm is freed, it might not have been in
290 	 * exit1().
291 	 */
292 	shmexit(vm);
293 
294 	/*
295 	 * Lock the map, to wait out all other references to it.
296 	 * Delete all of the mappings and pages they hold, then call
297 	 * the pmap module to reclaim anything left.
298 	 */
299 	vm_map_lock(&vm->vm_map);
300 	(void) vm_map_delete(&vm->vm_map, vm->vm_map.min_offset,
301 	    vm->vm_map.max_offset);
302 	vm_map_unlock(&vm->vm_map);
303 
304 	pmap_release(vmspace_pmap(vm));
305 	uma_zfree(vmspace_zone, vm);
306 }
307 
308 void
309 vmspace_free(struct vmspace *vm)
310 {
311 	GIANT_REQUIRED;
312 
313 	if (vm->vm_refcnt == 0)
314 		panic("vmspace_free: attempt to free already freed vmspace");
315 
316 	if (--vm->vm_refcnt == 0 && vm->vm_exitingcnt == 0)
317 		vmspace_dofree(vm);
318 }
319 
320 void
321 vmspace_exitfree(struct proc *p)
322 {
323 	struct vmspace *vm;
324 
325 	GIANT_REQUIRED;
326 	vm = p->p_vmspace;
327 	p->p_vmspace = NULL;
328 
329 	/*
330 	 * cleanup by parent process wait()ing on exiting child.  vm_refcnt
331 	 * may not be 0 (e.g. fork() and child exits without exec()ing).
332 	 * exitingcnt may increment above 0 and drop back down to zero
333 	 * several times while vm_refcnt is held non-zero.  vm_refcnt
334 	 * may also increment above 0 and drop back down to zero several
335 	 * times while vm_exitingcnt is held non-zero.
336 	 *
337 	 * The last wait on the exiting child's vmspace will clean up
338 	 * the remainder of the vmspace.
339 	 */
340 	if (--vm->vm_exitingcnt == 0 && vm->vm_refcnt == 0)
341 		vmspace_dofree(vm);
342 }
343 
344 /*
345  * vmspace_swap_count() - count the approximate swap useage in pages for a
346  *			  vmspace.
347  *
348  *	The map must be locked.
349  *
350  *	Swap useage is determined by taking the proportional swap used by
351  *	VM objects backing the VM map.  To make up for fractional losses,
352  *	if the VM object has any swap use at all the associated map entries
353  *	count for at least 1 swap page.
354  */
355 int
356 vmspace_swap_count(struct vmspace *vmspace)
357 {
358 	vm_map_t map = &vmspace->vm_map;
359 	vm_map_entry_t cur;
360 	int count = 0;
361 
362 	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
363 		vm_object_t object;
364 
365 		if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
366 		    (object = cur->object.vm_object) != NULL &&
367 		    object->type == OBJT_SWAP
368 		) {
369 			int n = (cur->end - cur->start) / PAGE_SIZE;
370 
371 			if (object->un_pager.swp.swp_bcount) {
372 				count += object->un_pager.swp.swp_bcount *
373 				    SWAP_META_PAGES * n / object->size + 1;
374 			}
375 		}
376 	}
377 	return (count);
378 }
379 
380 void
381 _vm_map_lock(vm_map_t map, const char *file, int line)
382 {
383 	int error;
384 
385 	if (map->system_map)
386 		_mtx_lock_flags(&map->system_mtx, 0, file, line);
387 	else {
388 		error = lockmgr(&map->lock, LK_EXCLUSIVE, NULL, curthread);
389 		KASSERT(error == 0, ("%s: failed to get lock", __func__));
390 	}
391 	map->timestamp++;
392 }
393 
394 void
395 _vm_map_unlock(vm_map_t map, const char *file, int line)
396 {
397 
398 	if (map->system_map)
399 		_mtx_unlock_flags(&map->system_mtx, 0, file, line);
400 	else
401 		lockmgr(&map->lock, LK_RELEASE, NULL, curthread);
402 }
403 
404 void
405 _vm_map_lock_read(vm_map_t map, const char *file, int line)
406 {
407 	int error;
408 
409 	if (map->system_map)
410 		_mtx_lock_flags(&map->system_mtx, 0, file, line);
411 	else {
412 		error = lockmgr(&map->lock, LK_EXCLUSIVE, NULL, curthread);
413 		KASSERT(error == 0, ("%s: failed to get lock", __func__));
414 	}
415 }
416 
417 void
418 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
419 {
420 
421 	if (map->system_map)
422 		_mtx_unlock_flags(&map->system_mtx, 0, file, line);
423 	else
424 		lockmgr(&map->lock, LK_RELEASE, NULL, curthread);
425 }
426 
427 int
428 _vm_map_trylock(vm_map_t map, const char *file, int line)
429 {
430 	int error;
431 
432 	error = map->system_map ?
433 	    !_mtx_trylock(&map->system_mtx, 0, file, line) :
434 	    lockmgr(&map->lock, LK_EXCLUSIVE | LK_NOWAIT, NULL, curthread);
435 	if (error == 0)
436 		map->timestamp++;
437 	return (error == 0);
438 }
439 
440 int
441 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
442 {
443 	int error;
444 
445 	error = map->system_map ?
446 	    !_mtx_trylock(&map->system_mtx, 0, file, line) :
447 	    lockmgr(&map->lock, LK_EXCLUSIVE | LK_NOWAIT, NULL, curthread);
448 	return (error == 0);
449 }
450 
451 int
452 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
453 {
454 
455 	if (map->system_map) {
456 #ifdef INVARIANTS
457 		_mtx_assert(&map->system_mtx, MA_OWNED, file, line);
458 #endif
459 	} else
460 		KASSERT(lockstatus(&map->lock, curthread) == LK_EXCLUSIVE,
461 		    ("%s: lock not held", __func__));
462 	map->timestamp++;
463 	return (0);
464 }
465 
466 void
467 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
468 {
469 
470 	if (map->system_map) {
471 #ifdef INVARIANTS
472 		_mtx_assert(&map->system_mtx, MA_OWNED, file, line);
473 #endif
474 	} else
475 		KASSERT(lockstatus(&map->lock, curthread) == LK_EXCLUSIVE,
476 		    ("%s: lock not held", __func__));
477 }
478 
479 /*
480  *	vm_map_unlock_and_wait:
481  */
482 int
483 vm_map_unlock_and_wait(vm_map_t map, boolean_t user_wait)
484 {
485 
486 	mtx_lock(&map_sleep_mtx);
487 	vm_map_unlock(map);
488 	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps", 0));
489 }
490 
491 /*
492  *	vm_map_wakeup:
493  */
494 void
495 vm_map_wakeup(vm_map_t map)
496 {
497 
498 	/*
499 	 * Acquire and release map_sleep_mtx to prevent a wakeup()
500 	 * from being performed (and lost) between the vm_map_unlock()
501 	 * and the msleep() in vm_map_unlock_and_wait().
502 	 */
503 	mtx_lock(&map_sleep_mtx);
504 	mtx_unlock(&map_sleep_mtx);
505 	wakeup(&map->root);
506 }
507 
508 long
509 vmspace_resident_count(struct vmspace *vmspace)
510 {
511 	return pmap_resident_count(vmspace_pmap(vmspace));
512 }
513 
514 /*
515  *	vm_map_create:
516  *
517  *	Creates and returns a new empty VM map with
518  *	the given physical map structure, and having
519  *	the given lower and upper address bounds.
520  */
521 vm_map_t
522 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
523 {
524 	vm_map_t result;
525 
526 	result = uma_zalloc(mapzone, M_WAITOK);
527 	CTR1(KTR_VM, "vm_map_create: %p", result);
528 	_vm_map_init(result, min, max);
529 	result->pmap = pmap;
530 	return (result);
531 }
532 
533 /*
534  * Initialize an existing vm_map structure
535  * such as that in the vmspace structure.
536  * The pmap is set elsewhere.
537  */
538 static void
539 _vm_map_init(vm_map_t map, vm_offset_t min, vm_offset_t max)
540 {
541 
542 	map->header.next = map->header.prev = &map->header;
543 	map->needs_wakeup = FALSE;
544 	map->system_map = 0;
545 	map->min_offset = min;
546 	map->max_offset = max;
547 	map->first_free = &map->header;
548 	map->root = NULL;
549 	map->timestamp = 0;
550 }
551 
552 void
553 vm_map_init(vm_map_t map, vm_offset_t min, vm_offset_t max)
554 {
555 	_vm_map_init(map, min, max);
556 	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
557 	lockinit(&map->lock, PVM, "thrd_sleep", 0, LK_NOPAUSE);
558 }
559 
560 /*
561  *	vm_map_entry_dispose:	[ internal use only ]
562  *
563  *	Inverse of vm_map_entry_create.
564  */
565 static void
566 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
567 {
568 	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
569 }
570 
571 /*
572  *	vm_map_entry_create:	[ internal use only ]
573  *
574  *	Allocates a VM map entry for insertion.
575  *	No entry fields are filled in.
576  */
577 static vm_map_entry_t
578 vm_map_entry_create(vm_map_t map)
579 {
580 	vm_map_entry_t new_entry;
581 
582 	if (map->system_map)
583 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
584 	else
585 		new_entry = uma_zalloc(mapentzone, M_WAITOK);
586 	if (new_entry == NULL)
587 		panic("vm_map_entry_create: kernel resources exhausted");
588 	return (new_entry);
589 }
590 
591 /*
592  *	vm_map_entry_set_behavior:
593  *
594  *	Set the expected access behavior, either normal, random, or
595  *	sequential.
596  */
597 static __inline void
598 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
599 {
600 	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
601 	    (behavior & MAP_ENTRY_BEHAV_MASK);
602 }
603 
604 /*
605  *	vm_map_entry_splay:
606  *
607  *	Implements Sleator and Tarjan's top-down splay algorithm.  Returns
608  *	the vm_map_entry containing the given address.  If, however, that
609  *	address is not found in the vm_map, returns a vm_map_entry that is
610  *	adjacent to the address, coming before or after it.
611  */
612 static vm_map_entry_t
613 vm_map_entry_splay(vm_offset_t address, vm_map_entry_t root)
614 {
615 	struct vm_map_entry dummy;
616 	vm_map_entry_t lefttreemax, righttreemin, y;
617 
618 	if (root == NULL)
619 		return (root);
620 	lefttreemax = righttreemin = &dummy;
621 	for (;; root = y) {
622 		if (address < root->start) {
623 			if ((y = root->left) == NULL)
624 				break;
625 			if (address < y->start) {
626 				/* Rotate right. */
627 				root->left = y->right;
628 				y->right = root;
629 				root = y;
630 				if ((y = root->left) == NULL)
631 					break;
632 			}
633 			/* Link into the new root's right tree. */
634 			righttreemin->left = root;
635 			righttreemin = root;
636 		} else if (address >= root->end) {
637 			if ((y = root->right) == NULL)
638 				break;
639 			if (address >= y->end) {
640 				/* Rotate left. */
641 				root->right = y->left;
642 				y->left = root;
643 				root = y;
644 				if ((y = root->right) == NULL)
645 					break;
646 			}
647 			/* Link into the new root's left tree. */
648 			lefttreemax->right = root;
649 			lefttreemax = root;
650 		} else
651 			break;
652 	}
653 	/* Assemble the new root. */
654 	lefttreemax->right = root->left;
655 	righttreemin->left = root->right;
656 	root->left = dummy.right;
657 	root->right = dummy.left;
658 	return (root);
659 }
660 
661 /*
662  *	vm_map_entry_{un,}link:
663  *
664  *	Insert/remove entries from maps.
665  */
666 static void
667 vm_map_entry_link(vm_map_t map,
668 		  vm_map_entry_t after_where,
669 		  vm_map_entry_t entry)
670 {
671 
672 	CTR4(KTR_VM,
673 	    "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
674 	    map->nentries, entry, after_where);
675 	map->nentries++;
676 	entry->prev = after_where;
677 	entry->next = after_where->next;
678 	entry->next->prev = entry;
679 	after_where->next = entry;
680 
681 	if (after_where != &map->header) {
682 		if (after_where != map->root)
683 			vm_map_entry_splay(after_where->start, map->root);
684 		entry->right = after_where->right;
685 		entry->left = after_where;
686 		after_where->right = NULL;
687 	} else {
688 		entry->right = map->root;
689 		entry->left = NULL;
690 	}
691 	map->root = entry;
692 }
693 
694 static void
695 vm_map_entry_unlink(vm_map_t map,
696 		    vm_map_entry_t entry)
697 {
698 	vm_map_entry_t next, prev, root;
699 
700 	if (entry != map->root)
701 		vm_map_entry_splay(entry->start, map->root);
702 	if (entry->left == NULL)
703 		root = entry->right;
704 	else {
705 		root = vm_map_entry_splay(entry->start, entry->left);
706 		root->right = entry->right;
707 	}
708 	map->root = root;
709 
710 	prev = entry->prev;
711 	next = entry->next;
712 	next->prev = prev;
713 	prev->next = next;
714 	map->nentries--;
715 	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
716 	    map->nentries, entry);
717 }
718 
719 /*
720  *	vm_map_lookup_entry:	[ internal use only ]
721  *
722  *	Finds the map entry containing (or
723  *	immediately preceding) the specified address
724  *	in the given map; the entry is returned
725  *	in the "entry" parameter.  The boolean
726  *	result indicates whether the address is
727  *	actually contained in the map.
728  */
729 boolean_t
730 vm_map_lookup_entry(
731 	vm_map_t map,
732 	vm_offset_t address,
733 	vm_map_entry_t *entry)	/* OUT */
734 {
735 	vm_map_entry_t cur;
736 
737 	cur = vm_map_entry_splay(address, map->root);
738 	if (cur == NULL)
739 		*entry = &map->header;
740 	else {
741 		map->root = cur;
742 
743 		if (address >= cur->start) {
744 			*entry = cur;
745 			if (cur->end > address)
746 				return (TRUE);
747 		} else
748 			*entry = cur->prev;
749 	}
750 	return (FALSE);
751 }
752 
753 /*
754  *	vm_map_insert:
755  *
756  *	Inserts the given whole VM object into the target
757  *	map at the specified address range.  The object's
758  *	size should match that of the address range.
759  *
760  *	Requires that the map be locked, and leaves it so.
761  *
762  *	If object is non-NULL, ref count must be bumped by caller
763  *	prior to making call to account for the new entry.
764  */
765 int
766 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
767 	      vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max,
768 	      int cow)
769 {
770 	vm_map_entry_t new_entry;
771 	vm_map_entry_t prev_entry;
772 	vm_map_entry_t temp_entry;
773 	vm_eflags_t protoeflags;
774 
775 	/*
776 	 * Check that the start and end points are not bogus.
777 	 */
778 	if ((start < map->min_offset) || (end > map->max_offset) ||
779 	    (start >= end))
780 		return (KERN_INVALID_ADDRESS);
781 
782 	/*
783 	 * Find the entry prior to the proposed starting address; if it's part
784 	 * of an existing entry, this range is bogus.
785 	 */
786 	if (vm_map_lookup_entry(map, start, &temp_entry))
787 		return (KERN_NO_SPACE);
788 
789 	prev_entry = temp_entry;
790 
791 	/*
792 	 * Assert that the next entry doesn't overlap the end point.
793 	 */
794 	if ((prev_entry->next != &map->header) &&
795 	    (prev_entry->next->start < end))
796 		return (KERN_NO_SPACE);
797 
798 	protoeflags = 0;
799 
800 	if (cow & MAP_COPY_ON_WRITE)
801 		protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
802 
803 	if (cow & MAP_NOFAULT) {
804 		protoeflags |= MAP_ENTRY_NOFAULT;
805 
806 		KASSERT(object == NULL,
807 			("vm_map_insert: paradoxical MAP_NOFAULT request"));
808 	}
809 	if (cow & MAP_DISABLE_SYNCER)
810 		protoeflags |= MAP_ENTRY_NOSYNC;
811 	if (cow & MAP_DISABLE_COREDUMP)
812 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
813 
814 	if (object) {
815 		/*
816 		 * When object is non-NULL, it could be shared with another
817 		 * process.  We have to set or clear OBJ_ONEMAPPING
818 		 * appropriately.
819 		 */
820 		vm_object_lock(object);
821 		if ((object->ref_count > 1) || (object->shadow_count != 0)) {
822 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
823 		}
824 		vm_object_unlock(object);
825 	}
826 	else if ((prev_entry != &map->header) &&
827 		 (prev_entry->eflags == protoeflags) &&
828 		 (prev_entry->end == start) &&
829 		 (prev_entry->wired_count == 0) &&
830 		 ((prev_entry->object.vm_object == NULL) ||
831 		  vm_object_coalesce(prev_entry->object.vm_object,
832 				     OFF_TO_IDX(prev_entry->offset),
833 				     (vm_size_t)(prev_entry->end - prev_entry->start),
834 				     (vm_size_t)(end - prev_entry->end)))) {
835 		/*
836 		 * We were able to extend the object.  Determine if we
837 		 * can extend the previous map entry to include the
838 		 * new range as well.
839 		 */
840 		if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
841 		    (prev_entry->protection == prot) &&
842 		    (prev_entry->max_protection == max)) {
843 			map->size += (end - prev_entry->end);
844 			prev_entry->end = end;
845 			vm_map_simplify_entry(map, prev_entry);
846 			return (KERN_SUCCESS);
847 		}
848 
849 		/*
850 		 * If we can extend the object but cannot extend the
851 		 * map entry, we have to create a new map entry.  We
852 		 * must bump the ref count on the extended object to
853 		 * account for it.  object may be NULL.
854 		 */
855 		object = prev_entry->object.vm_object;
856 		offset = prev_entry->offset +
857 			(prev_entry->end - prev_entry->start);
858 		vm_object_reference(object);
859 	}
860 
861 	/*
862 	 * NOTE: if conditionals fail, object can be NULL here.  This occurs
863 	 * in things like the buffer map where we manage kva but do not manage
864 	 * backing objects.
865 	 */
866 
867 	/*
868 	 * Create a new entry
869 	 */
870 	new_entry = vm_map_entry_create(map);
871 	new_entry->start = start;
872 	new_entry->end = end;
873 
874 	new_entry->eflags = protoeflags;
875 	new_entry->object.vm_object = object;
876 	new_entry->offset = offset;
877 	new_entry->avail_ssize = 0;
878 
879 	new_entry->inheritance = VM_INHERIT_DEFAULT;
880 	new_entry->protection = prot;
881 	new_entry->max_protection = max;
882 	new_entry->wired_count = 0;
883 
884 	/*
885 	 * Insert the new entry into the list
886 	 */
887 	vm_map_entry_link(map, prev_entry, new_entry);
888 	map->size += new_entry->end - new_entry->start;
889 
890 	/*
891 	 * Update the free space hint
892 	 */
893 	if ((map->first_free == prev_entry) &&
894 	    (prev_entry->end >= new_entry->start)) {
895 		map->first_free = new_entry;
896 	}
897 
898 #if 0
899 	/*
900 	 * Temporarily removed to avoid MAP_STACK panic, due to
901 	 * MAP_STACK being a huge hack.  Will be added back in
902 	 * when MAP_STACK (and the user stack mapping) is fixed.
903 	 */
904 	/*
905 	 * It may be possible to simplify the entry
906 	 */
907 	vm_map_simplify_entry(map, new_entry);
908 #endif
909 
910 	if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
911 		mtx_lock(&Giant);
912 		pmap_object_init_pt(map->pmap, start,
913 				    object, OFF_TO_IDX(offset), end - start,
914 				    cow & MAP_PREFAULT_PARTIAL);
915 		mtx_unlock(&Giant);
916 	}
917 
918 	return (KERN_SUCCESS);
919 }
920 
921 /*
922  * Find sufficient space for `length' bytes in the given map, starting at
923  * `start'.  The map must be locked.  Returns 0 on success, 1 on no space.
924  */
925 int
926 vm_map_findspace(
927 	vm_map_t map,
928 	vm_offset_t start,
929 	vm_size_t length,
930 	vm_offset_t *addr)
931 {
932 	vm_map_entry_t entry, next;
933 	vm_offset_t end;
934 
935 	if (start < map->min_offset)
936 		start = map->min_offset;
937 	if (start > map->max_offset)
938 		return (1);
939 
940 	/*
941 	 * Look for the first possible address; if there's already something
942 	 * at this address, we have to start after it.
943 	 */
944 	if (start == map->min_offset) {
945 		if ((entry = map->first_free) != &map->header)
946 			start = entry->end;
947 	} else {
948 		vm_map_entry_t tmp;
949 
950 		if (vm_map_lookup_entry(map, start, &tmp))
951 			start = tmp->end;
952 		entry = tmp;
953 	}
954 
955 	/*
956 	 * Look through the rest of the map, trying to fit a new region in the
957 	 * gap between existing regions, or after the very last region.
958 	 */
959 	for (;; start = (entry = next)->end) {
960 		/*
961 		 * Find the end of the proposed new region.  Be sure we didn't
962 		 * go beyond the end of the map, or wrap around the address;
963 		 * if so, we lose.  Otherwise, if this is the last entry, or
964 		 * if the proposed new region fits before the next entry, we
965 		 * win.
966 		 */
967 		end = start + length;
968 		if (end > map->max_offset || end < start)
969 			return (1);
970 		next = entry->next;
971 		if (next == &map->header || next->start >= end)
972 			break;
973 	}
974 	*addr = start;
975 	if (map == kernel_map) {
976 		vm_offset_t ksize;
977 		if ((ksize = round_page(start + length)) > kernel_vm_end) {
978 			pmap_growkernel(ksize);
979 		}
980 	}
981 	return (0);
982 }
983 
984 /*
985  *	vm_map_find finds an unallocated region in the target address
986  *	map with the given length.  The search is defined to be
987  *	first-fit from the specified address; the region found is
988  *	returned in the same parameter.
989  *
990  *	If object is non-NULL, ref count must be bumped by caller
991  *	prior to making call to account for the new entry.
992  */
993 int
994 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
995 	    vm_offset_t *addr,	/* IN/OUT */
996 	    vm_size_t length, boolean_t find_space, vm_prot_t prot,
997 	    vm_prot_t max, int cow)
998 {
999 	vm_offset_t start;
1000 	int result, s = 0;
1001 
1002 	start = *addr;
1003 
1004 	if (map == kmem_map)
1005 		s = splvm();
1006 
1007 	vm_map_lock(map);
1008 	if (find_space) {
1009 		if (vm_map_findspace(map, start, length, addr)) {
1010 			vm_map_unlock(map);
1011 			if (map == kmem_map)
1012 				splx(s);
1013 			return (KERN_NO_SPACE);
1014 		}
1015 		start = *addr;
1016 	}
1017 	result = vm_map_insert(map, object, offset,
1018 		start, start + length, prot, max, cow);
1019 	vm_map_unlock(map);
1020 
1021 	if (map == kmem_map)
1022 		splx(s);
1023 
1024 	return (result);
1025 }
1026 
1027 /*
1028  *	vm_map_simplify_entry:
1029  *
1030  *	Simplify the given map entry by merging with either neighbor.  This
1031  *	routine also has the ability to merge with both neighbors.
1032  *
1033  *	The map must be locked.
1034  *
1035  *	This routine guarentees that the passed entry remains valid (though
1036  *	possibly extended).  When merging, this routine may delete one or
1037  *	both neighbors.
1038  */
1039 void
1040 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1041 {
1042 	vm_map_entry_t next, prev;
1043 	vm_size_t prevsize, esize;
1044 
1045 	if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP))
1046 		return;
1047 
1048 	prev = entry->prev;
1049 	if (prev != &map->header) {
1050 		prevsize = prev->end - prev->start;
1051 		if ( (prev->end == entry->start) &&
1052 		     (prev->object.vm_object == entry->object.vm_object) &&
1053 		     (!prev->object.vm_object ||
1054 			(prev->offset + prevsize == entry->offset)) &&
1055 		     (prev->eflags == entry->eflags) &&
1056 		     (prev->protection == entry->protection) &&
1057 		     (prev->max_protection == entry->max_protection) &&
1058 		     (prev->inheritance == entry->inheritance) &&
1059 		     (prev->wired_count == entry->wired_count)) {
1060 			if (map->first_free == prev)
1061 				map->first_free = entry;
1062 			vm_map_entry_unlink(map, prev);
1063 			entry->start = prev->start;
1064 			entry->offset = prev->offset;
1065 			if (prev->object.vm_object)
1066 				vm_object_deallocate(prev->object.vm_object);
1067 			vm_map_entry_dispose(map, prev);
1068 		}
1069 	}
1070 
1071 	next = entry->next;
1072 	if (next != &map->header) {
1073 		esize = entry->end - entry->start;
1074 		if ((entry->end == next->start) &&
1075 		    (next->object.vm_object == entry->object.vm_object) &&
1076 		     (!entry->object.vm_object ||
1077 			(entry->offset + esize == next->offset)) &&
1078 		    (next->eflags == entry->eflags) &&
1079 		    (next->protection == entry->protection) &&
1080 		    (next->max_protection == entry->max_protection) &&
1081 		    (next->inheritance == entry->inheritance) &&
1082 		    (next->wired_count == entry->wired_count)) {
1083 			if (map->first_free == next)
1084 				map->first_free = entry;
1085 			vm_map_entry_unlink(map, next);
1086 			entry->end = next->end;
1087 			if (next->object.vm_object)
1088 				vm_object_deallocate(next->object.vm_object);
1089 			vm_map_entry_dispose(map, next);
1090 	        }
1091 	}
1092 }
1093 /*
1094  *	vm_map_clip_start:	[ internal use only ]
1095  *
1096  *	Asserts that the given entry begins at or after
1097  *	the specified address; if necessary,
1098  *	it splits the entry into two.
1099  */
1100 #define vm_map_clip_start(map, entry, startaddr) \
1101 { \
1102 	if (startaddr > entry->start) \
1103 		_vm_map_clip_start(map, entry, startaddr); \
1104 }
1105 
1106 /*
1107  *	This routine is called only when it is known that
1108  *	the entry must be split.
1109  */
1110 static void
1111 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1112 {
1113 	vm_map_entry_t new_entry;
1114 
1115 	/*
1116 	 * Split off the front portion -- note that we must insert the new
1117 	 * entry BEFORE this one, so that this entry has the specified
1118 	 * starting address.
1119 	 */
1120 	vm_map_simplify_entry(map, entry);
1121 
1122 	/*
1123 	 * If there is no object backing this entry, we might as well create
1124 	 * one now.  If we defer it, an object can get created after the map
1125 	 * is clipped, and individual objects will be created for the split-up
1126 	 * map.  This is a bit of a hack, but is also about the best place to
1127 	 * put this improvement.
1128 	 */
1129 	if (entry->object.vm_object == NULL && !map->system_map) {
1130 		vm_object_t object;
1131 		object = vm_object_allocate(OBJT_DEFAULT,
1132 				atop(entry->end - entry->start));
1133 		entry->object.vm_object = object;
1134 		entry->offset = 0;
1135 	}
1136 
1137 	new_entry = vm_map_entry_create(map);
1138 	*new_entry = *entry;
1139 
1140 	new_entry->end = start;
1141 	entry->offset += (start - entry->start);
1142 	entry->start = start;
1143 
1144 	vm_map_entry_link(map, entry->prev, new_entry);
1145 
1146 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1147 		vm_object_reference(new_entry->object.vm_object);
1148 	}
1149 }
1150 
1151 /*
1152  *	vm_map_clip_end:	[ internal use only ]
1153  *
1154  *	Asserts that the given entry ends at or before
1155  *	the specified address; if necessary,
1156  *	it splits the entry into two.
1157  */
1158 #define vm_map_clip_end(map, entry, endaddr) \
1159 { \
1160 	if ((endaddr) < (entry->end)) \
1161 		_vm_map_clip_end((map), (entry), (endaddr)); \
1162 }
1163 
1164 /*
1165  *	This routine is called only when it is known that
1166  *	the entry must be split.
1167  */
1168 static void
1169 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1170 {
1171 	vm_map_entry_t new_entry;
1172 
1173 	/*
1174 	 * If there is no object backing this entry, we might as well create
1175 	 * one now.  If we defer it, an object can get created after the map
1176 	 * is clipped, and individual objects will be created for the split-up
1177 	 * map.  This is a bit of a hack, but is also about the best place to
1178 	 * put this improvement.
1179 	 */
1180 	if (entry->object.vm_object == NULL && !map->system_map) {
1181 		vm_object_t object;
1182 		object = vm_object_allocate(OBJT_DEFAULT,
1183 				atop(entry->end - entry->start));
1184 		entry->object.vm_object = object;
1185 		entry->offset = 0;
1186 	}
1187 
1188 	/*
1189 	 * Create a new entry and insert it AFTER the specified entry
1190 	 */
1191 	new_entry = vm_map_entry_create(map);
1192 	*new_entry = *entry;
1193 
1194 	new_entry->start = entry->end = end;
1195 	new_entry->offset += (end - entry->start);
1196 
1197 	vm_map_entry_link(map, entry, new_entry);
1198 
1199 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1200 		vm_object_reference(new_entry->object.vm_object);
1201 	}
1202 }
1203 
1204 /*
1205  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
1206  *
1207  *	Asserts that the starting and ending region
1208  *	addresses fall within the valid range of the map.
1209  */
1210 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
1211 		{					\
1212 		if (start < vm_map_min(map))		\
1213 			start = vm_map_min(map);	\
1214 		if (end > vm_map_max(map))		\
1215 			end = vm_map_max(map);		\
1216 		if (start > end)			\
1217 			start = end;			\
1218 		}
1219 
1220 /*
1221  *	vm_map_submap:		[ kernel use only ]
1222  *
1223  *	Mark the given range as handled by a subordinate map.
1224  *
1225  *	This range must have been created with vm_map_find,
1226  *	and no other operations may have been performed on this
1227  *	range prior to calling vm_map_submap.
1228  *
1229  *	Only a limited number of operations can be performed
1230  *	within this rage after calling vm_map_submap:
1231  *		vm_fault
1232  *	[Don't try vm_map_copy!]
1233  *
1234  *	To remove a submapping, one must first remove the
1235  *	range from the superior map, and then destroy the
1236  *	submap (if desired).  [Better yet, don't try it.]
1237  */
1238 int
1239 vm_map_submap(
1240 	vm_map_t map,
1241 	vm_offset_t start,
1242 	vm_offset_t end,
1243 	vm_map_t submap)
1244 {
1245 	vm_map_entry_t entry;
1246 	int result = KERN_INVALID_ARGUMENT;
1247 
1248 	vm_map_lock(map);
1249 
1250 	VM_MAP_RANGE_CHECK(map, start, end);
1251 
1252 	if (vm_map_lookup_entry(map, start, &entry)) {
1253 		vm_map_clip_start(map, entry, start);
1254 	} else
1255 		entry = entry->next;
1256 
1257 	vm_map_clip_end(map, entry, end);
1258 
1259 	if ((entry->start == start) && (entry->end == end) &&
1260 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1261 	    (entry->object.vm_object == NULL)) {
1262 		entry->object.sub_map = submap;
1263 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1264 		result = KERN_SUCCESS;
1265 	}
1266 	vm_map_unlock(map);
1267 
1268 	return (result);
1269 }
1270 
1271 /*
1272  *	vm_map_protect:
1273  *
1274  *	Sets the protection of the specified address
1275  *	region in the target map.  If "set_max" is
1276  *	specified, the maximum protection is to be set;
1277  *	otherwise, only the current protection is affected.
1278  */
1279 int
1280 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1281 	       vm_prot_t new_prot, boolean_t set_max)
1282 {
1283 	vm_map_entry_t current;
1284 	vm_map_entry_t entry;
1285 
1286 	vm_map_lock(map);
1287 
1288 	VM_MAP_RANGE_CHECK(map, start, end);
1289 
1290 	if (vm_map_lookup_entry(map, start, &entry)) {
1291 		vm_map_clip_start(map, entry, start);
1292 	} else {
1293 		entry = entry->next;
1294 	}
1295 
1296 	/*
1297 	 * Make a first pass to check for protection violations.
1298 	 */
1299 	current = entry;
1300 	while ((current != &map->header) && (current->start < end)) {
1301 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1302 			vm_map_unlock(map);
1303 			return (KERN_INVALID_ARGUMENT);
1304 		}
1305 		if ((new_prot & current->max_protection) != new_prot) {
1306 			vm_map_unlock(map);
1307 			return (KERN_PROTECTION_FAILURE);
1308 		}
1309 		current = current->next;
1310 	}
1311 
1312 	/*
1313 	 * Go back and fix up protections. [Note that clipping is not
1314 	 * necessary the second time.]
1315 	 */
1316 	current = entry;
1317 	while ((current != &map->header) && (current->start < end)) {
1318 		vm_prot_t old_prot;
1319 
1320 		vm_map_clip_end(map, current, end);
1321 
1322 		old_prot = current->protection;
1323 		if (set_max)
1324 			current->protection =
1325 			    (current->max_protection = new_prot) &
1326 			    old_prot;
1327 		else
1328 			current->protection = new_prot;
1329 
1330 		/*
1331 		 * Update physical map if necessary. Worry about copy-on-write
1332 		 * here -- CHECK THIS XXX
1333 		 */
1334 		if (current->protection != old_prot) {
1335 			mtx_lock(&Giant);
1336 			vm_page_lock_queues();
1337 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1338 							VM_PROT_ALL)
1339 			pmap_protect(map->pmap, current->start,
1340 			    current->end,
1341 			    current->protection & MASK(current));
1342 #undef	MASK
1343 			vm_page_unlock_queues();
1344 			mtx_unlock(&Giant);
1345 		}
1346 		vm_map_simplify_entry(map, current);
1347 		current = current->next;
1348 	}
1349 	vm_map_unlock(map);
1350 	return (KERN_SUCCESS);
1351 }
1352 
1353 /*
1354  *	vm_map_madvise:
1355  *
1356  * 	This routine traverses a processes map handling the madvise
1357  *	system call.  Advisories are classified as either those effecting
1358  *	the vm_map_entry structure, or those effecting the underlying
1359  *	objects.
1360  */
1361 int
1362 vm_map_madvise(
1363 	vm_map_t map,
1364 	vm_offset_t start,
1365 	vm_offset_t end,
1366 	int behav)
1367 {
1368 	vm_map_entry_t current, entry;
1369 	int modify_map = 0;
1370 
1371 	/*
1372 	 * Some madvise calls directly modify the vm_map_entry, in which case
1373 	 * we need to use an exclusive lock on the map and we need to perform
1374 	 * various clipping operations.  Otherwise we only need a read-lock
1375 	 * on the map.
1376 	 */
1377 	switch(behav) {
1378 	case MADV_NORMAL:
1379 	case MADV_SEQUENTIAL:
1380 	case MADV_RANDOM:
1381 	case MADV_NOSYNC:
1382 	case MADV_AUTOSYNC:
1383 	case MADV_NOCORE:
1384 	case MADV_CORE:
1385 		modify_map = 1;
1386 		vm_map_lock(map);
1387 		break;
1388 	case MADV_WILLNEED:
1389 	case MADV_DONTNEED:
1390 	case MADV_FREE:
1391 		vm_map_lock_read(map);
1392 		break;
1393 	default:
1394 		return (KERN_INVALID_ARGUMENT);
1395 	}
1396 
1397 	/*
1398 	 * Locate starting entry and clip if necessary.
1399 	 */
1400 	VM_MAP_RANGE_CHECK(map, start, end);
1401 
1402 	if (vm_map_lookup_entry(map, start, &entry)) {
1403 		if (modify_map)
1404 			vm_map_clip_start(map, entry, start);
1405 	} else {
1406 		entry = entry->next;
1407 	}
1408 
1409 	if (modify_map) {
1410 		/*
1411 		 * madvise behaviors that are implemented in the vm_map_entry.
1412 		 *
1413 		 * We clip the vm_map_entry so that behavioral changes are
1414 		 * limited to the specified address range.
1415 		 */
1416 		for (current = entry;
1417 		     (current != &map->header) && (current->start < end);
1418 		     current = current->next
1419 		) {
1420 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
1421 				continue;
1422 
1423 			vm_map_clip_end(map, current, end);
1424 
1425 			switch (behav) {
1426 			case MADV_NORMAL:
1427 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
1428 				break;
1429 			case MADV_SEQUENTIAL:
1430 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
1431 				break;
1432 			case MADV_RANDOM:
1433 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
1434 				break;
1435 			case MADV_NOSYNC:
1436 				current->eflags |= MAP_ENTRY_NOSYNC;
1437 				break;
1438 			case MADV_AUTOSYNC:
1439 				current->eflags &= ~MAP_ENTRY_NOSYNC;
1440 				break;
1441 			case MADV_NOCORE:
1442 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
1443 				break;
1444 			case MADV_CORE:
1445 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
1446 				break;
1447 			default:
1448 				break;
1449 			}
1450 			vm_map_simplify_entry(map, current);
1451 		}
1452 		vm_map_unlock(map);
1453 	} else {
1454 		vm_pindex_t pindex;
1455 		int count;
1456 
1457 		/*
1458 		 * madvise behaviors that are implemented in the underlying
1459 		 * vm_object.
1460 		 *
1461 		 * Since we don't clip the vm_map_entry, we have to clip
1462 		 * the vm_object pindex and count.
1463 		 */
1464 		for (current = entry;
1465 		     (current != &map->header) && (current->start < end);
1466 		     current = current->next
1467 		) {
1468 			vm_offset_t useStart;
1469 
1470 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
1471 				continue;
1472 
1473 			pindex = OFF_TO_IDX(current->offset);
1474 			count = atop(current->end - current->start);
1475 			useStart = current->start;
1476 
1477 			if (current->start < start) {
1478 				pindex += atop(start - current->start);
1479 				count -= atop(start - current->start);
1480 				useStart = start;
1481 			}
1482 			if (current->end > end)
1483 				count -= atop(current->end - end);
1484 
1485 			if (count <= 0)
1486 				continue;
1487 
1488 			vm_object_madvise(current->object.vm_object,
1489 					  pindex, count, behav);
1490 			if (behav == MADV_WILLNEED) {
1491 				mtx_lock(&Giant);
1492 				pmap_object_init_pt(
1493 				    map->pmap,
1494 				    useStart,
1495 				    current->object.vm_object,
1496 				    pindex,
1497 				    (count << PAGE_SHIFT),
1498 				    MAP_PREFAULT_MADVISE
1499 				);
1500 				mtx_unlock(&Giant);
1501 			}
1502 		}
1503 		vm_map_unlock_read(map);
1504 	}
1505 	return (0);
1506 }
1507 
1508 
1509 /*
1510  *	vm_map_inherit:
1511  *
1512  *	Sets the inheritance of the specified address
1513  *	range in the target map.  Inheritance
1514  *	affects how the map will be shared with
1515  *	child maps at the time of vm_map_fork.
1516  */
1517 int
1518 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
1519 	       vm_inherit_t new_inheritance)
1520 {
1521 	vm_map_entry_t entry;
1522 	vm_map_entry_t temp_entry;
1523 
1524 	switch (new_inheritance) {
1525 	case VM_INHERIT_NONE:
1526 	case VM_INHERIT_COPY:
1527 	case VM_INHERIT_SHARE:
1528 		break;
1529 	default:
1530 		return (KERN_INVALID_ARGUMENT);
1531 	}
1532 	vm_map_lock(map);
1533 	VM_MAP_RANGE_CHECK(map, start, end);
1534 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
1535 		entry = temp_entry;
1536 		vm_map_clip_start(map, entry, start);
1537 	} else
1538 		entry = temp_entry->next;
1539 	while ((entry != &map->header) && (entry->start < end)) {
1540 		vm_map_clip_end(map, entry, end);
1541 		entry->inheritance = new_inheritance;
1542 		vm_map_simplify_entry(map, entry);
1543 		entry = entry->next;
1544 	}
1545 	vm_map_unlock(map);
1546 	return (KERN_SUCCESS);
1547 }
1548 
1549 /*
1550  *	vm_map_unwire:
1551  *
1552  *	Implements both kernel and user unwiring.
1553  */
1554 int
1555 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1556 	boolean_t user_unwire)
1557 {
1558 	vm_map_entry_t entry, first_entry, tmp_entry;
1559 	vm_offset_t saved_start;
1560 	unsigned int last_timestamp;
1561 	int rv;
1562 	boolean_t need_wakeup, result;
1563 
1564 	vm_map_lock(map);
1565 	VM_MAP_RANGE_CHECK(map, start, end);
1566 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
1567 		vm_map_unlock(map);
1568 		return (KERN_INVALID_ADDRESS);
1569 	}
1570 	last_timestamp = map->timestamp;
1571 	entry = first_entry;
1572 	while (entry != &map->header && entry->start < end) {
1573 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1574 			/*
1575 			 * We have not yet clipped the entry.
1576 			 */
1577 			saved_start = (start >= entry->start) ? start :
1578 			    entry->start;
1579 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1580 			if (vm_map_unlock_and_wait(map, user_unwire)) {
1581 				/*
1582 				 * Allow interruption of user unwiring?
1583 				 */
1584 			}
1585 			vm_map_lock(map);
1586 			if (last_timestamp+1 != map->timestamp) {
1587 				/*
1588 				 * Look again for the entry because the map was
1589 				 * modified while it was unlocked.
1590 				 * Specifically, the entry may have been
1591 				 * clipped, merged, or deleted.
1592 				 */
1593 				if (!vm_map_lookup_entry(map, saved_start,
1594 				    &tmp_entry)) {
1595 					if (saved_start == start) {
1596 						/*
1597 						 * First_entry has been deleted.
1598 						 */
1599 						vm_map_unlock(map);
1600 						return (KERN_INVALID_ADDRESS);
1601 					}
1602 					end = saved_start;
1603 					rv = KERN_INVALID_ADDRESS;
1604 					goto done;
1605 				}
1606 				if (entry == first_entry)
1607 					first_entry = tmp_entry;
1608 				else
1609 					first_entry = NULL;
1610 				entry = tmp_entry;
1611 			}
1612 			last_timestamp = map->timestamp;
1613 			continue;
1614 		}
1615 		vm_map_clip_start(map, entry, start);
1616 		vm_map_clip_end(map, entry, end);
1617 		/*
1618 		 * Mark the entry in case the map lock is released.  (See
1619 		 * above.)
1620 		 */
1621 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
1622 		/*
1623 		 * Check the map for holes in the specified region.
1624 		 */
1625 		if (entry->end < end && (entry->next == &map->header ||
1626 		    entry->next->start > entry->end)) {
1627 			end = entry->end;
1628 			rv = KERN_INVALID_ADDRESS;
1629 			goto done;
1630 		}
1631 		/*
1632 		 * Require that the entry is wired.
1633 		 */
1634 		if (entry->wired_count == 0 || (user_unwire &&
1635 		    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0)) {
1636 			end = entry->end;
1637 			rv = KERN_INVALID_ARGUMENT;
1638 			goto done;
1639 		}
1640 		entry = entry->next;
1641 	}
1642 	rv = KERN_SUCCESS;
1643 done:
1644 	need_wakeup = FALSE;
1645 	if (first_entry == NULL) {
1646 		result = vm_map_lookup_entry(map, start, &first_entry);
1647 		KASSERT(result, ("vm_map_unwire: lookup failed"));
1648 	}
1649 	entry = first_entry;
1650 	while (entry != &map->header && entry->start < end) {
1651 		if (rv == KERN_SUCCESS) {
1652 			if (user_unwire)
1653 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
1654 			entry->wired_count--;
1655 			if (entry->wired_count == 0) {
1656 				/*
1657 				 * Retain the map lock.
1658 				 */
1659 				vm_fault_unwire(map, entry->start, entry->end);
1660 			}
1661 		}
1662 		KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
1663 			("vm_map_unwire: in-transition flag missing"));
1664 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
1665 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
1666 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
1667 			need_wakeup = TRUE;
1668 		}
1669 		vm_map_simplify_entry(map, entry);
1670 		entry = entry->next;
1671 	}
1672 	vm_map_unlock(map);
1673 	if (need_wakeup)
1674 		vm_map_wakeup(map);
1675 	return (rv);
1676 }
1677 
1678 /*
1679  *	vm_map_wire:
1680  *
1681  *	Implements both kernel and user wiring.
1682  */
1683 int
1684 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1685 	boolean_t user_wire)
1686 {
1687 	vm_map_entry_t entry, first_entry, tmp_entry;
1688 	vm_offset_t saved_end, saved_start;
1689 	unsigned int last_timestamp;
1690 	int rv;
1691 	boolean_t need_wakeup, result;
1692 
1693 	vm_map_lock(map);
1694 	VM_MAP_RANGE_CHECK(map, start, end);
1695 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
1696 		vm_map_unlock(map);
1697 		return (KERN_INVALID_ADDRESS);
1698 	}
1699 	last_timestamp = map->timestamp;
1700 	entry = first_entry;
1701 	while (entry != &map->header && entry->start < end) {
1702 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1703 			/*
1704 			 * We have not yet clipped the entry.
1705 			 */
1706 			saved_start = (start >= entry->start) ? start :
1707 			    entry->start;
1708 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1709 			if (vm_map_unlock_and_wait(map, user_wire)) {
1710 				/*
1711 				 * Allow interruption of user wiring?
1712 				 */
1713 			}
1714 			vm_map_lock(map);
1715 			if (last_timestamp + 1 != map->timestamp) {
1716 				/*
1717 				 * Look again for the entry because the map was
1718 				 * modified while it was unlocked.
1719 				 * Specifically, the entry may have been
1720 				 * clipped, merged, or deleted.
1721 				 */
1722 				if (!vm_map_lookup_entry(map, saved_start,
1723 				    &tmp_entry)) {
1724 					if (saved_start == start) {
1725 						/*
1726 						 * first_entry has been deleted.
1727 						 */
1728 						vm_map_unlock(map);
1729 						return (KERN_INVALID_ADDRESS);
1730 					}
1731 					end = saved_start;
1732 					rv = KERN_INVALID_ADDRESS;
1733 					goto done;
1734 				}
1735 				if (entry == first_entry)
1736 					first_entry = tmp_entry;
1737 				else
1738 					first_entry = NULL;
1739 				entry = tmp_entry;
1740 			}
1741 			last_timestamp = map->timestamp;
1742 			continue;
1743 		}
1744 		vm_map_clip_start(map, entry, start);
1745 		vm_map_clip_end(map, entry, end);
1746 		/*
1747 		 * Mark the entry in case the map lock is released.  (See
1748 		 * above.)
1749 		 */
1750 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
1751 		/*
1752 		 *
1753 		 */
1754 		if (entry->wired_count == 0) {
1755 			entry->wired_count++;
1756 			saved_start = entry->start;
1757 			saved_end = entry->end;
1758 			/*
1759 			 * Release the map lock, relying on the in-transition
1760 			 * mark.
1761 			 */
1762 			vm_map_unlock(map);
1763 			rv = vm_fault_wire(map, saved_start, saved_end,
1764 			    user_wire);
1765 			vm_map_lock(map);
1766 			if (last_timestamp + 1 != map->timestamp) {
1767 				/*
1768 				 * Look again for the entry because the map was
1769 				 * modified while it was unlocked.  The entry
1770 				 * may have been clipped, but NOT merged or
1771 				 * deleted.
1772 				 */
1773 				result = vm_map_lookup_entry(map, saved_start,
1774 				    &tmp_entry);
1775 				KASSERT(result, ("vm_map_wire: lookup failed"));
1776 				if (entry == first_entry)
1777 					first_entry = tmp_entry;
1778 				else
1779 					first_entry = NULL;
1780 				entry = tmp_entry;
1781 				while (entry->end < saved_end) {
1782 					if (rv != KERN_SUCCESS) {
1783 						KASSERT(entry->wired_count == 1,
1784 						    ("vm_map_wire: bad count"));
1785 						entry->wired_count = -1;
1786 					}
1787 					entry = entry->next;
1788 				}
1789 			}
1790 			last_timestamp = map->timestamp;
1791 			if (rv != KERN_SUCCESS) {
1792 				KASSERT(entry->wired_count == 1,
1793 				    ("vm_map_wire: bad count"));
1794 				/*
1795 				 * Assign an out-of-range value to represent
1796 				 * the failure to wire this entry.
1797 				 */
1798 				entry->wired_count = -1;
1799 				end = entry->end;
1800 				goto done;
1801 			}
1802 		} else if (!user_wire ||
1803 			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
1804 			entry->wired_count++;
1805 		}
1806 		/*
1807 		 * Check the map for holes in the specified region.
1808 		 */
1809 		if (entry->end < end && (entry->next == &map->header ||
1810 		    entry->next->start > entry->end)) {
1811 			end = entry->end;
1812 			rv = KERN_INVALID_ADDRESS;
1813 			goto done;
1814 		}
1815 		entry = entry->next;
1816 	}
1817 	rv = KERN_SUCCESS;
1818 done:
1819 	need_wakeup = FALSE;
1820 	if (first_entry == NULL) {
1821 		result = vm_map_lookup_entry(map, start, &first_entry);
1822 		KASSERT(result, ("vm_map_wire: lookup failed"));
1823 	}
1824 	entry = first_entry;
1825 	while (entry != &map->header && entry->start < end) {
1826 		if (rv == KERN_SUCCESS) {
1827 			if (user_wire)
1828 				entry->eflags |= MAP_ENTRY_USER_WIRED;
1829 		} else if (entry->wired_count == -1) {
1830 			/*
1831 			 * Wiring failed on this entry.  Thus, unwiring is
1832 			 * unnecessary.
1833 			 */
1834 			entry->wired_count = 0;
1835 		} else {
1836 			if (!user_wire ||
1837 			    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0)
1838 				entry->wired_count--;
1839 			if (entry->wired_count == 0) {
1840 				/*
1841 				 * Retain the map lock.
1842 				 */
1843 				vm_fault_unwire(map, entry->start, entry->end);
1844 			}
1845 		}
1846 		KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
1847 			("vm_map_wire: in-transition flag missing"));
1848 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
1849 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
1850 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
1851 			need_wakeup = TRUE;
1852 		}
1853 		vm_map_simplify_entry(map, entry);
1854 		entry = entry->next;
1855 	}
1856 	vm_map_unlock(map);
1857 	if (need_wakeup)
1858 		vm_map_wakeup(map);
1859 	return (rv);
1860 }
1861 
1862 /*
1863  * vm_map_clean
1864  *
1865  * Push any dirty cached pages in the address range to their pager.
1866  * If syncio is TRUE, dirty pages are written synchronously.
1867  * If invalidate is TRUE, any cached pages are freed as well.
1868  *
1869  * Returns an error if any part of the specified range is not mapped.
1870  */
1871 int
1872 vm_map_clean(
1873 	vm_map_t map,
1874 	vm_offset_t start,
1875 	vm_offset_t end,
1876 	boolean_t syncio,
1877 	boolean_t invalidate)
1878 {
1879 	vm_map_entry_t current;
1880 	vm_map_entry_t entry;
1881 	vm_size_t size;
1882 	vm_object_t object;
1883 	vm_ooffset_t offset;
1884 
1885 	GIANT_REQUIRED;
1886 
1887 	vm_map_lock_read(map);
1888 	VM_MAP_RANGE_CHECK(map, start, end);
1889 	if (!vm_map_lookup_entry(map, start, &entry)) {
1890 		vm_map_unlock_read(map);
1891 		return (KERN_INVALID_ADDRESS);
1892 	}
1893 	/*
1894 	 * Make a first pass to check for holes.
1895 	 */
1896 	for (current = entry; current->start < end; current = current->next) {
1897 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1898 			vm_map_unlock_read(map);
1899 			return (KERN_INVALID_ARGUMENT);
1900 		}
1901 		if (end > current->end &&
1902 		    (current->next == &map->header ||
1903 			current->end != current->next->start)) {
1904 			vm_map_unlock_read(map);
1905 			return (KERN_INVALID_ADDRESS);
1906 		}
1907 	}
1908 
1909 	if (invalidate) {
1910 		vm_page_lock_queues();
1911 		pmap_remove(map->pmap, start, end);
1912 		vm_page_unlock_queues();
1913 	}
1914 	/*
1915 	 * Make a second pass, cleaning/uncaching pages from the indicated
1916 	 * objects as we go.
1917 	 */
1918 	for (current = entry; current->start < end; current = current->next) {
1919 		offset = current->offset + (start - current->start);
1920 		size = (end <= current->end ? end : current->end) - start;
1921 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1922 			vm_map_t smap;
1923 			vm_map_entry_t tentry;
1924 			vm_size_t tsize;
1925 
1926 			smap = current->object.sub_map;
1927 			vm_map_lock_read(smap);
1928 			(void) vm_map_lookup_entry(smap, offset, &tentry);
1929 			tsize = tentry->end - offset;
1930 			if (tsize < size)
1931 				size = tsize;
1932 			object = tentry->object.vm_object;
1933 			offset = tentry->offset + (offset - tentry->start);
1934 			vm_map_unlock_read(smap);
1935 		} else {
1936 			object = current->object.vm_object;
1937 		}
1938 		/*
1939 		 * Note that there is absolutely no sense in writing out
1940 		 * anonymous objects, so we track down the vnode object
1941 		 * to write out.
1942 		 * We invalidate (remove) all pages from the address space
1943 		 * anyway, for semantic correctness.
1944 		 *
1945 		 * note: certain anonymous maps, such as MAP_NOSYNC maps,
1946 		 * may start out with a NULL object.
1947 		 */
1948 		while (object && object->backing_object) {
1949 			object = object->backing_object;
1950 			offset += object->backing_object_offset;
1951 			if (object->size < OFF_TO_IDX(offset + size))
1952 				size = IDX_TO_OFF(object->size) - offset;
1953 		}
1954 		if (object && (object->type == OBJT_VNODE) &&
1955 		    (current->protection & VM_PROT_WRITE)) {
1956 			/*
1957 			 * Flush pages if writing is allowed, invalidate them
1958 			 * if invalidation requested.  Pages undergoing I/O
1959 			 * will be ignored by vm_object_page_remove().
1960 			 *
1961 			 * We cannot lock the vnode and then wait for paging
1962 			 * to complete without deadlocking against vm_fault.
1963 			 * Instead we simply call vm_object_page_remove() and
1964 			 * allow it to block internally on a page-by-page
1965 			 * basis when it encounters pages undergoing async
1966 			 * I/O.
1967 			 */
1968 			int flags;
1969 
1970 			vm_object_reference(object);
1971 			vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY, curthread);
1972 			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1973 			flags |= invalidate ? OBJPC_INVAL : 0;
1974 			vm_object_page_clean(object,
1975 			    OFF_TO_IDX(offset),
1976 			    OFF_TO_IDX(offset + size + PAGE_MASK),
1977 			    flags);
1978 			VOP_UNLOCK(object->handle, 0, curthread);
1979 			vm_object_deallocate(object);
1980 		}
1981 		if (object && invalidate &&
1982 		    ((object->type == OBJT_VNODE) ||
1983 		     (object->type == OBJT_DEVICE))) {
1984 			vm_object_reference(object);
1985 			vm_object_lock(object);
1986 			vm_object_page_remove(object,
1987 			    OFF_TO_IDX(offset),
1988 			    OFF_TO_IDX(offset + size + PAGE_MASK),
1989 			    FALSE);
1990 			vm_object_unlock(object);
1991 			vm_object_deallocate(object);
1992                 }
1993 		start += size;
1994 	}
1995 
1996 	vm_map_unlock_read(map);
1997 	return (KERN_SUCCESS);
1998 }
1999 
2000 /*
2001  *	vm_map_entry_unwire:	[ internal use only ]
2002  *
2003  *	Make the region specified by this entry pageable.
2004  *
2005  *	The map in question should be locked.
2006  *	[This is the reason for this routine's existence.]
2007  */
2008 static void
2009 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2010 {
2011 	vm_fault_unwire(map, entry->start, entry->end);
2012 	entry->wired_count = 0;
2013 }
2014 
2015 /*
2016  *	vm_map_entry_delete:	[ internal use only ]
2017  *
2018  *	Deallocate the given entry from the target map.
2019  */
2020 static void
2021 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
2022 {
2023 	vm_map_entry_unlink(map, entry);
2024 	map->size -= entry->end - entry->start;
2025 
2026 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2027 		vm_object_deallocate(entry->object.vm_object);
2028 	}
2029 
2030 	vm_map_entry_dispose(map, entry);
2031 }
2032 
2033 /*
2034  *	vm_map_delete:	[ internal use only ]
2035  *
2036  *	Deallocates the given address range from the target
2037  *	map.
2038  */
2039 int
2040 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
2041 {
2042 	vm_object_t object;
2043 	vm_map_entry_t entry;
2044 	vm_map_entry_t first_entry;
2045 
2046 	/*
2047 	 * Find the start of the region, and clip it
2048 	 */
2049 	if (!vm_map_lookup_entry(map, start, &first_entry))
2050 		entry = first_entry->next;
2051 	else {
2052 		entry = first_entry;
2053 		vm_map_clip_start(map, entry, start);
2054 	}
2055 
2056 	/*
2057 	 * Save the free space hint
2058 	 */
2059 	if (entry == &map->header) {
2060 		map->first_free = &map->header;
2061 	} else if (map->first_free->start >= start) {
2062 		map->first_free = entry->prev;
2063 	}
2064 
2065 	/*
2066 	 * Step through all entries in this region
2067 	 */
2068 	while ((entry != &map->header) && (entry->start < end)) {
2069 		vm_map_entry_t next;
2070 		vm_offset_t s, e;
2071 		vm_pindex_t offidxstart, offidxend, count;
2072 
2073 		/*
2074 		 * Wait for wiring or unwiring of an entry to complete.
2075 		 */
2076 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0) {
2077 			unsigned int last_timestamp;
2078 			vm_offset_t saved_start;
2079 			vm_map_entry_t tmp_entry;
2080 
2081 			saved_start = entry->start;
2082 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2083 			last_timestamp = map->timestamp;
2084 			(void) vm_map_unlock_and_wait(map, FALSE);
2085 			vm_map_lock(map);
2086 			if (last_timestamp + 1 != map->timestamp) {
2087 				/*
2088 				 * Look again for the entry because the map was
2089 				 * modified while it was unlocked.
2090 				 * Specifically, the entry may have been
2091 				 * clipped, merged, or deleted.
2092 				 */
2093 				if (!vm_map_lookup_entry(map, saved_start,
2094 							 &tmp_entry))
2095 					entry = tmp_entry->next;
2096 				else {
2097 					entry = tmp_entry;
2098 					vm_map_clip_start(map, entry,
2099 							  saved_start);
2100 				}
2101 			}
2102 			continue;
2103 		}
2104 		vm_map_clip_end(map, entry, end);
2105 
2106 		s = entry->start;
2107 		e = entry->end;
2108 		next = entry->next;
2109 
2110 		offidxstart = OFF_TO_IDX(entry->offset);
2111 		count = OFF_TO_IDX(e - s);
2112 		object = entry->object.vm_object;
2113 
2114 		/*
2115 		 * Unwire before removing addresses from the pmap; otherwise,
2116 		 * unwiring will put the entries back in the pmap.
2117 		 */
2118 		if (entry->wired_count != 0) {
2119 			vm_map_entry_unwire(map, entry);
2120 		}
2121 
2122 		offidxend = offidxstart + count;
2123 
2124 		if ((object == kernel_object) || (object == kmem_object)) {
2125 			vm_object_lock(object);
2126 			vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2127 			vm_object_unlock(object);
2128 		} else {
2129 			vm_object_lock(object);
2130 			vm_page_lock_queues();
2131 			pmap_remove(map->pmap, s, e);
2132 			vm_page_unlock_queues();
2133 			if (object != NULL &&
2134 			    object->ref_count != 1 &&
2135 			    (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING &&
2136 			    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2137 				vm_object_collapse(object);
2138 				vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2139 				if (object->type == OBJT_SWAP) {
2140 					swap_pager_freespace(object, offidxstart, count);
2141 				}
2142 				if (offidxend >= object->size &&
2143 				    offidxstart < object->size) {
2144 					object->size = offidxstart;
2145 				}
2146 			}
2147 			vm_object_unlock(object);
2148 		}
2149 
2150 		/*
2151 		 * Delete the entry (which may delete the object) only after
2152 		 * removing all pmap entries pointing to its pages.
2153 		 * (Otherwise, its page frames may be reallocated, and any
2154 		 * modify bits will be set in the wrong object!)
2155 		 */
2156 		vm_map_entry_delete(map, entry);
2157 		entry = next;
2158 	}
2159 	return (KERN_SUCCESS);
2160 }
2161 
2162 /*
2163  *	vm_map_remove:
2164  *
2165  *	Remove the given address range from the target map.
2166  *	This is the exported form of vm_map_delete.
2167  */
2168 int
2169 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2170 {
2171 	int result, s = 0;
2172 
2173 	if (map == kmem_map)
2174 		s = splvm();
2175 
2176 	vm_map_lock(map);
2177 	VM_MAP_RANGE_CHECK(map, start, end);
2178 	result = vm_map_delete(map, start, end);
2179 	vm_map_unlock(map);
2180 
2181 	if (map == kmem_map)
2182 		splx(s);
2183 
2184 	return (result);
2185 }
2186 
2187 /*
2188  *	vm_map_check_protection:
2189  *
2190  *	Assert that the target map allows the specified privilege on the
2191  *	entire address region given.  The entire region must be allocated.
2192  *
2193  *	WARNING!  This code does not and should not check whether the
2194  *	contents of the region is accessible.  For example a smaller file
2195  *	might be mapped into a larger address space.
2196  *
2197  *	NOTE!  This code is also called by munmap().
2198  */
2199 boolean_t
2200 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2201 			vm_prot_t protection)
2202 {
2203 	vm_map_entry_t entry;
2204 	vm_map_entry_t tmp_entry;
2205 
2206 	vm_map_lock_read(map);
2207 	if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
2208 		vm_map_unlock_read(map);
2209 		return (FALSE);
2210 	}
2211 	entry = tmp_entry;
2212 
2213 	while (start < end) {
2214 		if (entry == &map->header) {
2215 			vm_map_unlock_read(map);
2216 			return (FALSE);
2217 		}
2218 		/*
2219 		 * No holes allowed!
2220 		 */
2221 		if (start < entry->start) {
2222 			vm_map_unlock_read(map);
2223 			return (FALSE);
2224 		}
2225 		/*
2226 		 * Check protection associated with entry.
2227 		 */
2228 		if ((entry->protection & protection) != protection) {
2229 			vm_map_unlock_read(map);
2230 			return (FALSE);
2231 		}
2232 		/* go to next entry */
2233 		start = entry->end;
2234 		entry = entry->next;
2235 	}
2236 	vm_map_unlock_read(map);
2237 	return (TRUE);
2238 }
2239 
2240 /*
2241  *	vm_map_copy_entry:
2242  *
2243  *	Copies the contents of the source entry to the destination
2244  *	entry.  The entries *must* be aligned properly.
2245  */
2246 static void
2247 vm_map_copy_entry(
2248 	vm_map_t src_map,
2249 	vm_map_t dst_map,
2250 	vm_map_entry_t src_entry,
2251 	vm_map_entry_t dst_entry)
2252 {
2253 	vm_object_t src_object;
2254 
2255 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
2256 		return;
2257 
2258 	if (src_entry->wired_count == 0) {
2259 
2260 		/*
2261 		 * If the source entry is marked needs_copy, it is already
2262 		 * write-protected.
2263 		 */
2264 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2265 			vm_page_lock_queues();
2266 			pmap_protect(src_map->pmap,
2267 			    src_entry->start,
2268 			    src_entry->end,
2269 			    src_entry->protection & ~VM_PROT_WRITE);
2270 			vm_page_unlock_queues();
2271 		}
2272 
2273 		/*
2274 		 * Make a copy of the object.
2275 		 */
2276 		if ((src_object = src_entry->object.vm_object) != NULL) {
2277 
2278 			if ((src_object->handle == NULL) &&
2279 				(src_object->type == OBJT_DEFAULT ||
2280 				 src_object->type == OBJT_SWAP)) {
2281 				vm_object_collapse(src_object);
2282 				if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
2283 					vm_object_split(src_entry);
2284 					src_object = src_entry->object.vm_object;
2285 				}
2286 			}
2287 
2288 			vm_object_reference(src_object);
2289 			vm_object_lock(src_object);
2290 			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
2291 			vm_object_unlock(src_object);
2292 			dst_entry->object.vm_object = src_object;
2293 			src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2294 			dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2295 			dst_entry->offset = src_entry->offset;
2296 		} else {
2297 			dst_entry->object.vm_object = NULL;
2298 			dst_entry->offset = 0;
2299 		}
2300 
2301 		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
2302 		    dst_entry->end - dst_entry->start, src_entry->start);
2303 	} else {
2304 		/*
2305 		 * Of course, wired down pages can't be set copy-on-write.
2306 		 * Cause wired pages to be copied into the new map by
2307 		 * simulating faults (the new pages are pageable)
2308 		 */
2309 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
2310 	}
2311 }
2312 
2313 /*
2314  * vmspace_fork:
2315  * Create a new process vmspace structure and vm_map
2316  * based on those of an existing process.  The new map
2317  * is based on the old map, according to the inheritance
2318  * values on the regions in that map.
2319  *
2320  * The source map must not be locked.
2321  */
2322 struct vmspace *
2323 vmspace_fork(struct vmspace *vm1)
2324 {
2325 	struct vmspace *vm2;
2326 	vm_map_t old_map = &vm1->vm_map;
2327 	vm_map_t new_map;
2328 	vm_map_entry_t old_entry;
2329 	vm_map_entry_t new_entry;
2330 	vm_object_t object;
2331 
2332 	GIANT_REQUIRED;
2333 
2334 	vm_map_lock(old_map);
2335 	old_map->infork = 1;
2336 
2337 	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
2338 	bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy,
2339 	    (caddr_t) &vm1->vm_endcopy - (caddr_t) &vm1->vm_startcopy);
2340 	new_map = &vm2->vm_map;	/* XXX */
2341 	new_map->timestamp = 1;
2342 
2343 	old_entry = old_map->header.next;
2344 
2345 	while (old_entry != &old_map->header) {
2346 		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2347 			panic("vm_map_fork: encountered a submap");
2348 
2349 		switch (old_entry->inheritance) {
2350 		case VM_INHERIT_NONE:
2351 			break;
2352 
2353 		case VM_INHERIT_SHARE:
2354 			/*
2355 			 * Clone the entry, creating the shared object if necessary.
2356 			 */
2357 			object = old_entry->object.vm_object;
2358 			if (object == NULL) {
2359 				object = vm_object_allocate(OBJT_DEFAULT,
2360 					atop(old_entry->end - old_entry->start));
2361 				old_entry->object.vm_object = object;
2362 				old_entry->offset = (vm_offset_t) 0;
2363 			}
2364 
2365 			/*
2366 			 * Add the reference before calling vm_object_shadow
2367 			 * to insure that a shadow object is created.
2368 			 */
2369 			vm_object_reference(object);
2370 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
2371 				vm_object_shadow(&old_entry->object.vm_object,
2372 					&old_entry->offset,
2373 					atop(old_entry->end - old_entry->start));
2374 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
2375 				/* Transfer the second reference too. */
2376 				vm_object_reference(
2377 				    old_entry->object.vm_object);
2378 				vm_object_deallocate(object);
2379 				object = old_entry->object.vm_object;
2380 			}
2381 			vm_object_lock(object);
2382 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
2383 			vm_object_unlock(object);
2384 
2385 			/*
2386 			 * Clone the entry, referencing the shared object.
2387 			 */
2388 			new_entry = vm_map_entry_create(new_map);
2389 			*new_entry = *old_entry;
2390 			new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2391 			new_entry->wired_count = 0;
2392 
2393 			/*
2394 			 * Insert the entry into the new map -- we know we're
2395 			 * inserting at the end of the new map.
2396 			 */
2397 			vm_map_entry_link(new_map, new_map->header.prev,
2398 			    new_entry);
2399 
2400 			/*
2401 			 * Update the physical map
2402 			 */
2403 			pmap_copy(new_map->pmap, old_map->pmap,
2404 			    new_entry->start,
2405 			    (old_entry->end - old_entry->start),
2406 			    old_entry->start);
2407 			break;
2408 
2409 		case VM_INHERIT_COPY:
2410 			/*
2411 			 * Clone the entry and link into the map.
2412 			 */
2413 			new_entry = vm_map_entry_create(new_map);
2414 			*new_entry = *old_entry;
2415 			new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2416 			new_entry->wired_count = 0;
2417 			new_entry->object.vm_object = NULL;
2418 			vm_map_entry_link(new_map, new_map->header.prev,
2419 			    new_entry);
2420 			vm_map_copy_entry(old_map, new_map, old_entry,
2421 			    new_entry);
2422 			break;
2423 		}
2424 		old_entry = old_entry->next;
2425 	}
2426 
2427 	new_map->size = old_map->size;
2428 	old_map->infork = 0;
2429 	vm_map_unlock(old_map);
2430 
2431 	return (vm2);
2432 }
2433 
2434 int
2435 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
2436 	      vm_prot_t prot, vm_prot_t max, int cow)
2437 {
2438 	vm_map_entry_t prev_entry;
2439 	vm_map_entry_t new_stack_entry;
2440 	vm_size_t      init_ssize;
2441 	int            rv;
2442 
2443 	if (addrbos < vm_map_min(map))
2444 		return (KERN_NO_SPACE);
2445 
2446 	if (max_ssize < sgrowsiz)
2447 		init_ssize = max_ssize;
2448 	else
2449 		init_ssize = sgrowsiz;
2450 
2451 	vm_map_lock(map);
2452 
2453 	/* If addr is already mapped, no go */
2454 	if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
2455 		vm_map_unlock(map);
2456 		return (KERN_NO_SPACE);
2457 	}
2458 
2459 	/* If we would blow our VMEM resource limit, no go */
2460 	if (map->size + init_ssize >
2461 	    curthread->td_proc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
2462 		vm_map_unlock(map);
2463 		return (KERN_NO_SPACE);
2464 	}
2465 
2466 	/* If we can't accomodate max_ssize in the current mapping,
2467 	 * no go.  However, we need to be aware that subsequent user
2468 	 * mappings might map into the space we have reserved for
2469 	 * stack, and currently this space is not protected.
2470 	 *
2471 	 * Hopefully we will at least detect this condition
2472 	 * when we try to grow the stack.
2473 	 */
2474 	if ((prev_entry->next != &map->header) &&
2475 	    (prev_entry->next->start < addrbos + max_ssize)) {
2476 		vm_map_unlock(map);
2477 		return (KERN_NO_SPACE);
2478 	}
2479 
2480 	/* We initially map a stack of only init_ssize.  We will
2481 	 * grow as needed later.  Since this is to be a grow
2482 	 * down stack, we map at the top of the range.
2483 	 *
2484 	 * Note: we would normally expect prot and max to be
2485 	 * VM_PROT_ALL, and cow to be 0.  Possibly we should
2486 	 * eliminate these as input parameters, and just
2487 	 * pass these values here in the insert call.
2488 	 */
2489 	rv = vm_map_insert(map, NULL, 0, addrbos + max_ssize - init_ssize,
2490 	                   addrbos + max_ssize, prot, max, cow);
2491 
2492 	/* Now set the avail_ssize amount */
2493 	if (rv == KERN_SUCCESS){
2494 		if (prev_entry != &map->header)
2495 			vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize);
2496 		new_stack_entry = prev_entry->next;
2497 		if (new_stack_entry->end   != addrbos + max_ssize ||
2498 		    new_stack_entry->start != addrbos + max_ssize - init_ssize)
2499 			panic ("Bad entry start/end for new stack entry");
2500 		else
2501 			new_stack_entry->avail_ssize = max_ssize - init_ssize;
2502 	}
2503 
2504 	vm_map_unlock(map);
2505 	return (rv);
2506 }
2507 
2508 /* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
2509  * desired address is already mapped, or if we successfully grow
2510  * the stack.  Also returns KERN_SUCCESS if addr is outside the
2511  * stack range (this is strange, but preserves compatibility with
2512  * the grow function in vm_machdep.c).
2513  */
2514 int
2515 vm_map_growstack (struct proc *p, vm_offset_t addr)
2516 {
2517 	vm_map_entry_t prev_entry;
2518 	vm_map_entry_t stack_entry;
2519 	vm_map_entry_t new_stack_entry;
2520 	struct vmspace *vm = p->p_vmspace;
2521 	vm_map_t map = &vm->vm_map;
2522 	vm_offset_t    end;
2523 	int      grow_amount;
2524 	int      rv;
2525 	int      is_procstack;
2526 
2527 	GIANT_REQUIRED;
2528 
2529 Retry:
2530 	vm_map_lock_read(map);
2531 
2532 	/* If addr is already in the entry range, no need to grow.*/
2533 	if (vm_map_lookup_entry(map, addr, &prev_entry)) {
2534 		vm_map_unlock_read(map);
2535 		return (KERN_SUCCESS);
2536 	}
2537 
2538 	if ((stack_entry = prev_entry->next) == &map->header) {
2539 		vm_map_unlock_read(map);
2540 		return (KERN_SUCCESS);
2541 	}
2542 	if (prev_entry == &map->header)
2543 		end = stack_entry->start - stack_entry->avail_ssize;
2544 	else
2545 		end = prev_entry->end;
2546 
2547 	/* This next test mimics the old grow function in vm_machdep.c.
2548 	 * It really doesn't quite make sense, but we do it anyway
2549 	 * for compatibility.
2550 	 *
2551 	 * If not growable stack, return success.  This signals the
2552 	 * caller to proceed as he would normally with normal vm.
2553 	 */
2554 	if (stack_entry->avail_ssize < 1 ||
2555 	    addr >= stack_entry->start ||
2556 	    addr <  stack_entry->start - stack_entry->avail_ssize) {
2557 		vm_map_unlock_read(map);
2558 		return (KERN_SUCCESS);
2559 	}
2560 
2561 	/* Find the minimum grow amount */
2562 	grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE);
2563 	if (grow_amount > stack_entry->avail_ssize) {
2564 		vm_map_unlock_read(map);
2565 		return (KERN_NO_SPACE);
2566 	}
2567 
2568 	/* If there is no longer enough space between the entries
2569 	 * nogo, and adjust the available space.  Note: this
2570 	 * should only happen if the user has mapped into the
2571 	 * stack area after the stack was created, and is
2572 	 * probably an error.
2573 	 *
2574 	 * This also effectively destroys any guard page the user
2575 	 * might have intended by limiting the stack size.
2576 	 */
2577 	if (grow_amount > stack_entry->start - end) {
2578 		if (vm_map_lock_upgrade(map))
2579 			goto Retry;
2580 
2581 		stack_entry->avail_ssize = stack_entry->start - end;
2582 
2583 		vm_map_unlock(map);
2584 		return (KERN_NO_SPACE);
2585 	}
2586 
2587 	is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr;
2588 
2589 	/* If this is the main process stack, see if we're over the
2590 	 * stack limit.
2591 	 */
2592 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
2593 			     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
2594 		vm_map_unlock_read(map);
2595 		return (KERN_NO_SPACE);
2596 	}
2597 
2598 	/* Round up the grow amount modulo SGROWSIZ */
2599 	grow_amount = roundup (grow_amount, sgrowsiz);
2600 	if (grow_amount > stack_entry->avail_ssize) {
2601 		grow_amount = stack_entry->avail_ssize;
2602 	}
2603 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
2604 	                     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
2605 		grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur -
2606 		              ctob(vm->vm_ssize);
2607 	}
2608 
2609 	/* If we would blow our VMEM resource limit, no go */
2610 	if (map->size + grow_amount >
2611 	    curthread->td_proc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
2612 		vm_map_unlock_read(map);
2613 		return (KERN_NO_SPACE);
2614 	}
2615 
2616 	if (vm_map_lock_upgrade(map))
2617 		goto Retry;
2618 
2619 	/* Get the preliminary new entry start value */
2620 	addr = stack_entry->start - grow_amount;
2621 
2622 	/* If this puts us into the previous entry, cut back our growth
2623 	 * to the available space.  Also, see the note above.
2624 	 */
2625 	if (addr < end) {
2626 		stack_entry->avail_ssize = stack_entry->start - end;
2627 		addr = end;
2628 	}
2629 
2630 	rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start,
2631 	    p->p_sysent->sv_stackprot, VM_PROT_ALL, 0);
2632 
2633 	/* Adjust the available stack space by the amount we grew. */
2634 	if (rv == KERN_SUCCESS) {
2635 		if (prev_entry != &map->header)
2636 			vm_map_clip_end(map, prev_entry, addr);
2637 		new_stack_entry = prev_entry->next;
2638 		if (new_stack_entry->end   != stack_entry->start  ||
2639 		    new_stack_entry->start != addr)
2640 			panic ("Bad stack grow start/end in new stack entry");
2641 		else {
2642 			new_stack_entry->avail_ssize = stack_entry->avail_ssize -
2643 							(new_stack_entry->end -
2644 							 new_stack_entry->start);
2645 			if (is_procstack)
2646 				vm->vm_ssize += btoc(new_stack_entry->end -
2647 						     new_stack_entry->start);
2648 		}
2649 	}
2650 
2651 	vm_map_unlock(map);
2652 	return (rv);
2653 }
2654 
2655 /*
2656  * Unshare the specified VM space for exec.  If other processes are
2657  * mapped to it, then create a new one.  The new vmspace is null.
2658  */
2659 void
2660 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
2661 {
2662 	struct vmspace *oldvmspace = p->p_vmspace;
2663 	struct vmspace *newvmspace;
2664 
2665 	GIANT_REQUIRED;
2666 	newvmspace = vmspace_alloc(minuser, maxuser);
2667 	bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy,
2668 	    (caddr_t) (newvmspace + 1) - (caddr_t) &newvmspace->vm_startcopy);
2669 	/*
2670 	 * This code is written like this for prototype purposes.  The
2671 	 * goal is to avoid running down the vmspace here, but let the
2672 	 * other process's that are still using the vmspace to finally
2673 	 * run it down.  Even though there is little or no chance of blocking
2674 	 * here, it is a good idea to keep this form for future mods.
2675 	 */
2676 	p->p_vmspace = newvmspace;
2677 	pmap_pinit2(vmspace_pmap(newvmspace));
2678 	vmspace_free(oldvmspace);
2679 	if (p == curthread->td_proc)		/* XXXKSE ? */
2680 		pmap_activate(curthread);
2681 }
2682 
2683 /*
2684  * Unshare the specified VM space for forcing COW.  This
2685  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
2686  */
2687 void
2688 vmspace_unshare(struct proc *p)
2689 {
2690 	struct vmspace *oldvmspace = p->p_vmspace;
2691 	struct vmspace *newvmspace;
2692 
2693 	GIANT_REQUIRED;
2694 	if (oldvmspace->vm_refcnt == 1)
2695 		return;
2696 	newvmspace = vmspace_fork(oldvmspace);
2697 	p->p_vmspace = newvmspace;
2698 	pmap_pinit2(vmspace_pmap(newvmspace));
2699 	vmspace_free(oldvmspace);
2700 	if (p == curthread->td_proc)		/* XXXKSE ? */
2701 		pmap_activate(curthread);
2702 }
2703 
2704 /*
2705  *	vm_map_lookup:
2706  *
2707  *	Finds the VM object, offset, and
2708  *	protection for a given virtual address in the
2709  *	specified map, assuming a page fault of the
2710  *	type specified.
2711  *
2712  *	Leaves the map in question locked for read; return
2713  *	values are guaranteed until a vm_map_lookup_done
2714  *	call is performed.  Note that the map argument
2715  *	is in/out; the returned map must be used in
2716  *	the call to vm_map_lookup_done.
2717  *
2718  *	A handle (out_entry) is returned for use in
2719  *	vm_map_lookup_done, to make that fast.
2720  *
2721  *	If a lookup is requested with "write protection"
2722  *	specified, the map may be changed to perform virtual
2723  *	copying operations, although the data referenced will
2724  *	remain the same.
2725  */
2726 int
2727 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
2728 	      vm_offset_t vaddr,
2729 	      vm_prot_t fault_typea,
2730 	      vm_map_entry_t *out_entry,	/* OUT */
2731 	      vm_object_t *object,		/* OUT */
2732 	      vm_pindex_t *pindex,		/* OUT */
2733 	      vm_prot_t *out_prot,		/* OUT */
2734 	      boolean_t *wired)			/* OUT */
2735 {
2736 	vm_map_entry_t entry;
2737 	vm_map_t map = *var_map;
2738 	vm_prot_t prot;
2739 	vm_prot_t fault_type = fault_typea;
2740 
2741 RetryLookup:;
2742 	/*
2743 	 * Lookup the faulting address.
2744 	 */
2745 
2746 	vm_map_lock_read(map);
2747 #define	RETURN(why) \
2748 		{ \
2749 		vm_map_unlock_read(map); \
2750 		return (why); \
2751 		}
2752 
2753 	/*
2754 	 * If the map has an interesting hint, try it before calling full
2755 	 * blown lookup routine.
2756 	 */
2757 	entry = map->root;
2758 	*out_entry = entry;
2759 	if (entry == NULL ||
2760 	    (vaddr < entry->start) || (vaddr >= entry->end)) {
2761 		/*
2762 		 * Entry was either not a valid hint, or the vaddr was not
2763 		 * contained in the entry, so do a full lookup.
2764 		 */
2765 		if (!vm_map_lookup_entry(map, vaddr, out_entry))
2766 			RETURN(KERN_INVALID_ADDRESS);
2767 
2768 		entry = *out_entry;
2769 	}
2770 
2771 	/*
2772 	 * Handle submaps.
2773 	 */
2774 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2775 		vm_map_t old_map = map;
2776 
2777 		*var_map = map = entry->object.sub_map;
2778 		vm_map_unlock_read(old_map);
2779 		goto RetryLookup;
2780 	}
2781 
2782 	/*
2783 	 * Check whether this task is allowed to have this page.
2784 	 * Note the special case for MAP_ENTRY_COW
2785 	 * pages with an override.  This is to implement a forced
2786 	 * COW for debuggers.
2787 	 */
2788 	if (fault_type & VM_PROT_OVERRIDE_WRITE)
2789 		prot = entry->max_protection;
2790 	else
2791 		prot = entry->protection;
2792 	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
2793 	if ((fault_type & prot) != fault_type) {
2794 			RETURN(KERN_PROTECTION_FAILURE);
2795 	}
2796 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
2797 	    (entry->eflags & MAP_ENTRY_COW) &&
2798 	    (fault_type & VM_PROT_WRITE) &&
2799 	    (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
2800 		RETURN(KERN_PROTECTION_FAILURE);
2801 	}
2802 
2803 	/*
2804 	 * If this page is not pageable, we have to get it for all possible
2805 	 * accesses.
2806 	 */
2807 	*wired = (entry->wired_count != 0);
2808 	if (*wired)
2809 		prot = fault_type = entry->protection;
2810 
2811 	/*
2812 	 * If the entry was copy-on-write, we either ...
2813 	 */
2814 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
2815 		/*
2816 		 * If we want to write the page, we may as well handle that
2817 		 * now since we've got the map locked.
2818 		 *
2819 		 * If we don't need to write the page, we just demote the
2820 		 * permissions allowed.
2821 		 */
2822 		if (fault_type & VM_PROT_WRITE) {
2823 			/*
2824 			 * Make a new object, and place it in the object
2825 			 * chain.  Note that no new references have appeared
2826 			 * -- one just moved from the map to the new
2827 			 * object.
2828 			 */
2829 			if (vm_map_lock_upgrade(map))
2830 				goto RetryLookup;
2831 
2832 			vm_object_shadow(
2833 			    &entry->object.vm_object,
2834 			    &entry->offset,
2835 			    atop(entry->end - entry->start));
2836 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
2837 
2838 			vm_map_lock_downgrade(map);
2839 		} else {
2840 			/*
2841 			 * We're attempting to read a copy-on-write page --
2842 			 * don't allow writes.
2843 			 */
2844 			prot &= ~VM_PROT_WRITE;
2845 		}
2846 	}
2847 
2848 	/*
2849 	 * Create an object if necessary.
2850 	 */
2851 	if (entry->object.vm_object == NULL &&
2852 	    !map->system_map) {
2853 		if (vm_map_lock_upgrade(map))
2854 			goto RetryLookup;
2855 		entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
2856 		    atop(entry->end - entry->start));
2857 		entry->offset = 0;
2858 		vm_map_lock_downgrade(map);
2859 	}
2860 
2861 	/*
2862 	 * Return the object/offset from this entry.  If the entry was
2863 	 * copy-on-write or empty, it has been fixed up.
2864 	 */
2865 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
2866 	*object = entry->object.vm_object;
2867 
2868 	/*
2869 	 * Return whether this is the only map sharing this data.
2870 	 */
2871 	*out_prot = prot;
2872 	return (KERN_SUCCESS);
2873 
2874 #undef	RETURN
2875 }
2876 
2877 /*
2878  *	vm_map_lookup_done:
2879  *
2880  *	Releases locks acquired by a vm_map_lookup
2881  *	(according to the handle returned by that lookup).
2882  */
2883 void
2884 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
2885 {
2886 	/*
2887 	 * Unlock the main-level map
2888 	 */
2889 	vm_map_unlock_read(map);
2890 }
2891 
2892 #include "opt_ddb.h"
2893 #ifdef DDB
2894 #include <sys/kernel.h>
2895 
2896 #include <ddb/ddb.h>
2897 
2898 /*
2899  *	vm_map_print:	[ debug ]
2900  */
2901 DB_SHOW_COMMAND(map, vm_map_print)
2902 {
2903 	static int nlines;
2904 	/* XXX convert args. */
2905 	vm_map_t map = (vm_map_t)addr;
2906 	boolean_t full = have_addr;
2907 
2908 	vm_map_entry_t entry;
2909 
2910 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
2911 	    (void *)map,
2912 	    (void *)map->pmap, map->nentries, map->timestamp);
2913 	nlines++;
2914 
2915 	if (!full && db_indent)
2916 		return;
2917 
2918 	db_indent += 2;
2919 	for (entry = map->header.next; entry != &map->header;
2920 	    entry = entry->next) {
2921 		db_iprintf("map entry %p: start=%p, end=%p\n",
2922 		    (void *)entry, (void *)entry->start, (void *)entry->end);
2923 		nlines++;
2924 		{
2925 			static char *inheritance_name[4] =
2926 			{"share", "copy", "none", "donate_copy"};
2927 
2928 			db_iprintf(" prot=%x/%x/%s",
2929 			    entry->protection,
2930 			    entry->max_protection,
2931 			    inheritance_name[(int)(unsigned char)entry->inheritance]);
2932 			if (entry->wired_count != 0)
2933 				db_printf(", wired");
2934 		}
2935 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2936 			db_printf(", share=%p, offset=0x%jx\n",
2937 			    (void *)entry->object.sub_map,
2938 			    (uintmax_t)entry->offset);
2939 			nlines++;
2940 			if ((entry->prev == &map->header) ||
2941 			    (entry->prev->object.sub_map !=
2942 				entry->object.sub_map)) {
2943 				db_indent += 2;
2944 				vm_map_print((db_expr_t)(intptr_t)
2945 					     entry->object.sub_map,
2946 					     full, 0, (char *)0);
2947 				db_indent -= 2;
2948 			}
2949 		} else {
2950 			db_printf(", object=%p, offset=0x%jx",
2951 			    (void *)entry->object.vm_object,
2952 			    (uintmax_t)entry->offset);
2953 			if (entry->eflags & MAP_ENTRY_COW)
2954 				db_printf(", copy (%s)",
2955 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
2956 			db_printf("\n");
2957 			nlines++;
2958 
2959 			if ((entry->prev == &map->header) ||
2960 			    (entry->prev->object.vm_object !=
2961 				entry->object.vm_object)) {
2962 				db_indent += 2;
2963 				vm_object_print((db_expr_t)(intptr_t)
2964 						entry->object.vm_object,
2965 						full, 0, (char *)0);
2966 				nlines += 4;
2967 				db_indent -= 2;
2968 			}
2969 		}
2970 	}
2971 	db_indent -= 2;
2972 	if (db_indent == 0)
2973 		nlines = 0;
2974 }
2975 
2976 
2977 DB_SHOW_COMMAND(procvm, procvm)
2978 {
2979 	struct proc *p;
2980 
2981 	if (have_addr) {
2982 		p = (struct proc *) addr;
2983 	} else {
2984 		p = curproc;
2985 	}
2986 
2987 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
2988 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
2989 	    (void *)vmspace_pmap(p->p_vmspace));
2990 
2991 	vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
2992 }
2993 
2994 #endif /* DDB */
2995