xref: /freebsd/sys/vm/vm_map.c (revision 72238faa6a9eea186c68bf9eff53f1999f80f33f)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60 
61 /*
62  *	Virtual memory mapping module.
63  */
64 
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67 
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/kernel.h>
71 #include <sys/ktr.h>
72 #include <sys/lock.h>
73 #include <sys/mutex.h>
74 #include <sys/proc.h>
75 #include <sys/vmmeter.h>
76 #include <sys/mman.h>
77 #include <sys/vnode.h>
78 #include <sys/racct.h>
79 #include <sys/resourcevar.h>
80 #include <sys/rwlock.h>
81 #include <sys/file.h>
82 #include <sys/sysctl.h>
83 #include <sys/sysent.h>
84 #include <sys/shm.h>
85 
86 #include <vm/vm.h>
87 #include <vm/vm_param.h>
88 #include <vm/pmap.h>
89 #include <vm/vm_map.h>
90 #include <vm/vm_page.h>
91 #include <vm/vm_object.h>
92 #include <vm/vm_pager.h>
93 #include <vm/vm_kern.h>
94 #include <vm/vm_extern.h>
95 #include <vm/vnode_pager.h>
96 #include <vm/swap_pager.h>
97 #include <vm/uma.h>
98 
99 /*
100  *	Virtual memory maps provide for the mapping, protection,
101  *	and sharing of virtual memory objects.  In addition,
102  *	this module provides for an efficient virtual copy of
103  *	memory from one map to another.
104  *
105  *	Synchronization is required prior to most operations.
106  *
107  *	Maps consist of an ordered doubly-linked list of simple
108  *	entries; a self-adjusting binary search tree of these
109  *	entries is used to speed up lookups.
110  *
111  *	Since portions of maps are specified by start/end addresses,
112  *	which may not align with existing map entries, all
113  *	routines merely "clip" entries to these start/end values.
114  *	[That is, an entry is split into two, bordering at a
115  *	start or end value.]  Note that these clippings may not
116  *	always be necessary (as the two resulting entries are then
117  *	not changed); however, the clipping is done for convenience.
118  *
119  *	As mentioned above, virtual copy operations are performed
120  *	by copying VM object references from one map to
121  *	another, and then marking both regions as copy-on-write.
122  */
123 
124 static struct mtx map_sleep_mtx;
125 static uma_zone_t mapentzone;
126 static uma_zone_t kmapentzone;
127 static uma_zone_t mapzone;
128 static uma_zone_t vmspace_zone;
129 static int vmspace_zinit(void *mem, int size, int flags);
130 static int vm_map_zinit(void *mem, int ize, int flags);
131 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
132     vm_offset_t max);
133 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
134 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
135 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
136 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
137     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
138 #ifdef INVARIANTS
139 static void vm_map_zdtor(void *mem, int size, void *arg);
140 static void vmspace_zdtor(void *mem, int size, void *arg);
141 #endif
142 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
143     vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
144     int cow);
145 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
146     vm_offset_t failed_addr);
147 
148 #define	ENTRY_CHARGED(e) ((e)->cred != NULL || \
149     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
150      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
151 
152 /*
153  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
154  * stable.
155  */
156 #define PROC_VMSPACE_LOCK(p) do { } while (0)
157 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
158 
159 /*
160  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
161  *
162  *	Asserts that the starting and ending region
163  *	addresses fall within the valid range of the map.
164  */
165 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
166 		{					\
167 		if (start < vm_map_min(map))		\
168 			start = vm_map_min(map);	\
169 		if (end > vm_map_max(map))		\
170 			end = vm_map_max(map);		\
171 		if (start > end)			\
172 			start = end;			\
173 		}
174 
175 /*
176  *	vm_map_startup:
177  *
178  *	Initialize the vm_map module.  Must be called before
179  *	any other vm_map routines.
180  *
181  *	Map and entry structures are allocated from the general
182  *	purpose memory pool with some exceptions:
183  *
184  *	- The kernel map and kmem submap are allocated statically.
185  *	- Kernel map entries are allocated out of a static pool.
186  *
187  *	These restrictions are necessary since malloc() uses the
188  *	maps and requires map entries.
189  */
190 
191 void
192 vm_map_startup(void)
193 {
194 	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
195 	mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
196 #ifdef INVARIANTS
197 	    vm_map_zdtor,
198 #else
199 	    NULL,
200 #endif
201 	    vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
202 	uma_prealloc(mapzone, MAX_KMAP);
203 	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
204 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
205 	    UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
206 	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
207 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
208 	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
209 #ifdef INVARIANTS
210 	    vmspace_zdtor,
211 #else
212 	    NULL,
213 #endif
214 	    vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
215 }
216 
217 static int
218 vmspace_zinit(void *mem, int size, int flags)
219 {
220 	struct vmspace *vm;
221 
222 	vm = (struct vmspace *)mem;
223 
224 	vm->vm_map.pmap = NULL;
225 	(void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
226 	PMAP_LOCK_INIT(vmspace_pmap(vm));
227 	return (0);
228 }
229 
230 static int
231 vm_map_zinit(void *mem, int size, int flags)
232 {
233 	vm_map_t map;
234 
235 	map = (vm_map_t)mem;
236 	memset(map, 0, sizeof(*map));
237 	mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
238 	sx_init(&map->lock, "vm map (user)");
239 	return (0);
240 }
241 
242 #ifdef INVARIANTS
243 static void
244 vmspace_zdtor(void *mem, int size, void *arg)
245 {
246 	struct vmspace *vm;
247 
248 	vm = (struct vmspace *)mem;
249 
250 	vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
251 }
252 static void
253 vm_map_zdtor(void *mem, int size, void *arg)
254 {
255 	vm_map_t map;
256 
257 	map = (vm_map_t)mem;
258 	KASSERT(map->nentries == 0,
259 	    ("map %p nentries == %d on free.",
260 	    map, map->nentries));
261 	KASSERT(map->size == 0,
262 	    ("map %p size == %lu on free.",
263 	    map, (unsigned long)map->size));
264 }
265 #endif	/* INVARIANTS */
266 
267 /*
268  * Allocate a vmspace structure, including a vm_map and pmap,
269  * and initialize those structures.  The refcnt is set to 1.
270  *
271  * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit().
272  */
273 struct vmspace *
274 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
275 {
276 	struct vmspace *vm;
277 
278 	vm = uma_zalloc(vmspace_zone, M_WAITOK);
279 
280 	KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
281 
282 	if (pinit == NULL)
283 		pinit = &pmap_pinit;
284 
285 	if (!pinit(vmspace_pmap(vm))) {
286 		uma_zfree(vmspace_zone, vm);
287 		return (NULL);
288 	}
289 	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
290 	_vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
291 	vm->vm_refcnt = 1;
292 	vm->vm_shm = NULL;
293 	vm->vm_swrss = 0;
294 	vm->vm_tsize = 0;
295 	vm->vm_dsize = 0;
296 	vm->vm_ssize = 0;
297 	vm->vm_taddr = 0;
298 	vm->vm_daddr = 0;
299 	vm->vm_maxsaddr = 0;
300 	return (vm);
301 }
302 
303 static void
304 vmspace_container_reset(struct proc *p)
305 {
306 
307 #ifdef RACCT
308 	PROC_LOCK(p);
309 	racct_set(p, RACCT_DATA, 0);
310 	racct_set(p, RACCT_STACK, 0);
311 	racct_set(p, RACCT_RSS, 0);
312 	racct_set(p, RACCT_MEMLOCK, 0);
313 	racct_set(p, RACCT_VMEM, 0);
314 	PROC_UNLOCK(p);
315 #endif
316 }
317 
318 static inline void
319 vmspace_dofree(struct vmspace *vm)
320 {
321 
322 	CTR1(KTR_VM, "vmspace_free: %p", vm);
323 
324 	/*
325 	 * Make sure any SysV shm is freed, it might not have been in
326 	 * exit1().
327 	 */
328 	shmexit(vm);
329 
330 	/*
331 	 * Lock the map, to wait out all other references to it.
332 	 * Delete all of the mappings and pages they hold, then call
333 	 * the pmap module to reclaim anything left.
334 	 */
335 	(void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset,
336 	    vm->vm_map.max_offset);
337 
338 	pmap_release(vmspace_pmap(vm));
339 	vm->vm_map.pmap = NULL;
340 	uma_zfree(vmspace_zone, vm);
341 }
342 
343 void
344 vmspace_free(struct vmspace *vm)
345 {
346 
347 	if (vm->vm_refcnt == 0)
348 		panic("vmspace_free: attempt to free already freed vmspace");
349 
350 	if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
351 		vmspace_dofree(vm);
352 }
353 
354 void
355 vmspace_exitfree(struct proc *p)
356 {
357 	struct vmspace *vm;
358 
359 	PROC_VMSPACE_LOCK(p);
360 	vm = p->p_vmspace;
361 	p->p_vmspace = NULL;
362 	PROC_VMSPACE_UNLOCK(p);
363 	KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
364 	vmspace_free(vm);
365 }
366 
367 void
368 vmspace_exit(struct thread *td)
369 {
370 	int refcnt;
371 	struct vmspace *vm;
372 	struct proc *p;
373 
374 	/*
375 	 * Release user portion of address space.
376 	 * This releases references to vnodes,
377 	 * which could cause I/O if the file has been unlinked.
378 	 * Need to do this early enough that we can still sleep.
379 	 *
380 	 * The last exiting process to reach this point releases as
381 	 * much of the environment as it can. vmspace_dofree() is the
382 	 * slower fallback in case another process had a temporary
383 	 * reference to the vmspace.
384 	 */
385 
386 	p = td->td_proc;
387 	vm = p->p_vmspace;
388 	atomic_add_int(&vmspace0.vm_refcnt, 1);
389 	do {
390 		refcnt = vm->vm_refcnt;
391 		if (refcnt > 1 && p->p_vmspace != &vmspace0) {
392 			/* Switch now since other proc might free vmspace */
393 			PROC_VMSPACE_LOCK(p);
394 			p->p_vmspace = &vmspace0;
395 			PROC_VMSPACE_UNLOCK(p);
396 			pmap_activate(td);
397 		}
398 	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
399 	if (refcnt == 1) {
400 		if (p->p_vmspace != vm) {
401 			/* vmspace not yet freed, switch back */
402 			PROC_VMSPACE_LOCK(p);
403 			p->p_vmspace = vm;
404 			PROC_VMSPACE_UNLOCK(p);
405 			pmap_activate(td);
406 		}
407 		pmap_remove_pages(vmspace_pmap(vm));
408 		/* Switch now since this proc will free vmspace */
409 		PROC_VMSPACE_LOCK(p);
410 		p->p_vmspace = &vmspace0;
411 		PROC_VMSPACE_UNLOCK(p);
412 		pmap_activate(td);
413 		vmspace_dofree(vm);
414 	}
415 	vmspace_container_reset(p);
416 }
417 
418 /* Acquire reference to vmspace owned by another process. */
419 
420 struct vmspace *
421 vmspace_acquire_ref(struct proc *p)
422 {
423 	struct vmspace *vm;
424 	int refcnt;
425 
426 	PROC_VMSPACE_LOCK(p);
427 	vm = p->p_vmspace;
428 	if (vm == NULL) {
429 		PROC_VMSPACE_UNLOCK(p);
430 		return (NULL);
431 	}
432 	do {
433 		refcnt = vm->vm_refcnt;
434 		if (refcnt <= 0) { 	/* Avoid 0->1 transition */
435 			PROC_VMSPACE_UNLOCK(p);
436 			return (NULL);
437 		}
438 	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
439 	if (vm != p->p_vmspace) {
440 		PROC_VMSPACE_UNLOCK(p);
441 		vmspace_free(vm);
442 		return (NULL);
443 	}
444 	PROC_VMSPACE_UNLOCK(p);
445 	return (vm);
446 }
447 
448 void
449 _vm_map_lock(vm_map_t map, const char *file, int line)
450 {
451 
452 	if (map->system_map)
453 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
454 	else
455 		sx_xlock_(&map->lock, file, line);
456 	map->timestamp++;
457 }
458 
459 static void
460 vm_map_process_deferred(void)
461 {
462 	struct thread *td;
463 	vm_map_entry_t entry, next;
464 	vm_object_t object;
465 
466 	td = curthread;
467 	entry = td->td_map_def_user;
468 	td->td_map_def_user = NULL;
469 	while (entry != NULL) {
470 		next = entry->next;
471 		if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) {
472 			/*
473 			 * Decrement the object's writemappings and
474 			 * possibly the vnode's v_writecount.
475 			 */
476 			KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
477 			    ("Submap with writecount"));
478 			object = entry->object.vm_object;
479 			KASSERT(object != NULL, ("No object for writecount"));
480 			vnode_pager_release_writecount(object, entry->start,
481 			    entry->end);
482 		}
483 		vm_map_entry_deallocate(entry, FALSE);
484 		entry = next;
485 	}
486 }
487 
488 void
489 _vm_map_unlock(vm_map_t map, const char *file, int line)
490 {
491 
492 	if (map->system_map)
493 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
494 	else {
495 		sx_xunlock_(&map->lock, file, line);
496 		vm_map_process_deferred();
497 	}
498 }
499 
500 void
501 _vm_map_lock_read(vm_map_t map, const char *file, int line)
502 {
503 
504 	if (map->system_map)
505 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
506 	else
507 		sx_slock_(&map->lock, file, line);
508 }
509 
510 void
511 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
512 {
513 
514 	if (map->system_map)
515 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
516 	else {
517 		sx_sunlock_(&map->lock, file, line);
518 		vm_map_process_deferred();
519 	}
520 }
521 
522 int
523 _vm_map_trylock(vm_map_t map, const char *file, int line)
524 {
525 	int error;
526 
527 	error = map->system_map ?
528 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
529 	    !sx_try_xlock_(&map->lock, file, line);
530 	if (error == 0)
531 		map->timestamp++;
532 	return (error == 0);
533 }
534 
535 int
536 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
537 {
538 	int error;
539 
540 	error = map->system_map ?
541 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
542 	    !sx_try_slock_(&map->lock, file, line);
543 	return (error == 0);
544 }
545 
546 /*
547  *	_vm_map_lock_upgrade:	[ internal use only ]
548  *
549  *	Tries to upgrade a read (shared) lock on the specified map to a write
550  *	(exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
551  *	non-zero value if the upgrade fails.  If the upgrade fails, the map is
552  *	returned without a read or write lock held.
553  *
554  *	Requires that the map be read locked.
555  */
556 int
557 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
558 {
559 	unsigned int last_timestamp;
560 
561 	if (map->system_map) {
562 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
563 	} else {
564 		if (!sx_try_upgrade_(&map->lock, file, line)) {
565 			last_timestamp = map->timestamp;
566 			sx_sunlock_(&map->lock, file, line);
567 			vm_map_process_deferred();
568 			/*
569 			 * If the map's timestamp does not change while the
570 			 * map is unlocked, then the upgrade succeeds.
571 			 */
572 			sx_xlock_(&map->lock, file, line);
573 			if (last_timestamp != map->timestamp) {
574 				sx_xunlock_(&map->lock, file, line);
575 				return (1);
576 			}
577 		}
578 	}
579 	map->timestamp++;
580 	return (0);
581 }
582 
583 void
584 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
585 {
586 
587 	if (map->system_map) {
588 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
589 	} else
590 		sx_downgrade_(&map->lock, file, line);
591 }
592 
593 /*
594  *	vm_map_locked:
595  *
596  *	Returns a non-zero value if the caller holds a write (exclusive) lock
597  *	on the specified map and the value "0" otherwise.
598  */
599 int
600 vm_map_locked(vm_map_t map)
601 {
602 
603 	if (map->system_map)
604 		return (mtx_owned(&map->system_mtx));
605 	else
606 		return (sx_xlocked(&map->lock));
607 }
608 
609 #ifdef INVARIANTS
610 static void
611 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
612 {
613 
614 	if (map->system_map)
615 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
616 	else
617 		sx_assert_(&map->lock, SA_XLOCKED, file, line);
618 }
619 
620 #define	VM_MAP_ASSERT_LOCKED(map) \
621     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
622 #else
623 #define	VM_MAP_ASSERT_LOCKED(map)
624 #endif
625 
626 /*
627  *	_vm_map_unlock_and_wait:
628  *
629  *	Atomically releases the lock on the specified map and puts the calling
630  *	thread to sleep.  The calling thread will remain asleep until either
631  *	vm_map_wakeup() is performed on the map or the specified timeout is
632  *	exceeded.
633  *
634  *	WARNING!  This function does not perform deferred deallocations of
635  *	objects and map	entries.  Therefore, the calling thread is expected to
636  *	reacquire the map lock after reawakening and later perform an ordinary
637  *	unlock operation, such as vm_map_unlock(), before completing its
638  *	operation on the map.
639  */
640 int
641 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
642 {
643 
644 	mtx_lock(&map_sleep_mtx);
645 	if (map->system_map)
646 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
647 	else
648 		sx_xunlock_(&map->lock, file, line);
649 	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
650 	    timo));
651 }
652 
653 /*
654  *	vm_map_wakeup:
655  *
656  *	Awaken any threads that have slept on the map using
657  *	vm_map_unlock_and_wait().
658  */
659 void
660 vm_map_wakeup(vm_map_t map)
661 {
662 
663 	/*
664 	 * Acquire and release map_sleep_mtx to prevent a wakeup()
665 	 * from being performed (and lost) between the map unlock
666 	 * and the msleep() in _vm_map_unlock_and_wait().
667 	 */
668 	mtx_lock(&map_sleep_mtx);
669 	mtx_unlock(&map_sleep_mtx);
670 	wakeup(&map->root);
671 }
672 
673 void
674 vm_map_busy(vm_map_t map)
675 {
676 
677 	VM_MAP_ASSERT_LOCKED(map);
678 	map->busy++;
679 }
680 
681 void
682 vm_map_unbusy(vm_map_t map)
683 {
684 
685 	VM_MAP_ASSERT_LOCKED(map);
686 	KASSERT(map->busy, ("vm_map_unbusy: not busy"));
687 	if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
688 		vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
689 		wakeup(&map->busy);
690 	}
691 }
692 
693 void
694 vm_map_wait_busy(vm_map_t map)
695 {
696 
697 	VM_MAP_ASSERT_LOCKED(map);
698 	while (map->busy) {
699 		vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
700 		if (map->system_map)
701 			msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
702 		else
703 			sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
704 	}
705 	map->timestamp++;
706 }
707 
708 long
709 vmspace_resident_count(struct vmspace *vmspace)
710 {
711 	return pmap_resident_count(vmspace_pmap(vmspace));
712 }
713 
714 /*
715  *	vm_map_create:
716  *
717  *	Creates and returns a new empty VM map with
718  *	the given physical map structure, and having
719  *	the given lower and upper address bounds.
720  */
721 vm_map_t
722 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
723 {
724 	vm_map_t result;
725 
726 	result = uma_zalloc(mapzone, M_WAITOK);
727 	CTR1(KTR_VM, "vm_map_create: %p", result);
728 	_vm_map_init(result, pmap, min, max);
729 	return (result);
730 }
731 
732 /*
733  * Initialize an existing vm_map structure
734  * such as that in the vmspace structure.
735  */
736 static void
737 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
738 {
739 
740 	map->header.next = map->header.prev = &map->header;
741 	map->needs_wakeup = FALSE;
742 	map->system_map = 0;
743 	map->pmap = pmap;
744 	map->min_offset = min;
745 	map->max_offset = max;
746 	map->flags = 0;
747 	map->root = NULL;
748 	map->timestamp = 0;
749 	map->busy = 0;
750 }
751 
752 void
753 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
754 {
755 
756 	_vm_map_init(map, pmap, min, max);
757 	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
758 	sx_init(&map->lock, "user map");
759 }
760 
761 /*
762  *	vm_map_entry_dispose:	[ internal use only ]
763  *
764  *	Inverse of vm_map_entry_create.
765  */
766 static void
767 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
768 {
769 	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
770 }
771 
772 /*
773  *	vm_map_entry_create:	[ internal use only ]
774  *
775  *	Allocates a VM map entry for insertion.
776  *	No entry fields are filled in.
777  */
778 static vm_map_entry_t
779 vm_map_entry_create(vm_map_t map)
780 {
781 	vm_map_entry_t new_entry;
782 
783 	if (map->system_map)
784 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
785 	else
786 		new_entry = uma_zalloc(mapentzone, M_WAITOK);
787 	if (new_entry == NULL)
788 		panic("vm_map_entry_create: kernel resources exhausted");
789 	return (new_entry);
790 }
791 
792 /*
793  *	vm_map_entry_set_behavior:
794  *
795  *	Set the expected access behavior, either normal, random, or
796  *	sequential.
797  */
798 static inline void
799 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
800 {
801 	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
802 	    (behavior & MAP_ENTRY_BEHAV_MASK);
803 }
804 
805 /*
806  *	vm_map_entry_set_max_free:
807  *
808  *	Set the max_free field in a vm_map_entry.
809  */
810 static inline void
811 vm_map_entry_set_max_free(vm_map_entry_t entry)
812 {
813 
814 	entry->max_free = entry->adj_free;
815 	if (entry->left != NULL && entry->left->max_free > entry->max_free)
816 		entry->max_free = entry->left->max_free;
817 	if (entry->right != NULL && entry->right->max_free > entry->max_free)
818 		entry->max_free = entry->right->max_free;
819 }
820 
821 /*
822  *	vm_map_entry_splay:
823  *
824  *	The Sleator and Tarjan top-down splay algorithm with the
825  *	following variation.  Max_free must be computed bottom-up, so
826  *	on the downward pass, maintain the left and right spines in
827  *	reverse order.  Then, make a second pass up each side to fix
828  *	the pointers and compute max_free.  The time bound is O(log n)
829  *	amortized.
830  *
831  *	The new root is the vm_map_entry containing "addr", or else an
832  *	adjacent entry (lower or higher) if addr is not in the tree.
833  *
834  *	The map must be locked, and leaves it so.
835  *
836  *	Returns: the new root.
837  */
838 static vm_map_entry_t
839 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
840 {
841 	vm_map_entry_t llist, rlist;
842 	vm_map_entry_t ltree, rtree;
843 	vm_map_entry_t y;
844 
845 	/* Special case of empty tree. */
846 	if (root == NULL)
847 		return (root);
848 
849 	/*
850 	 * Pass One: Splay down the tree until we find addr or a NULL
851 	 * pointer where addr would go.  llist and rlist are the two
852 	 * sides in reverse order (bottom-up), with llist linked by
853 	 * the right pointer and rlist linked by the left pointer in
854 	 * the vm_map_entry.  Wait until Pass Two to set max_free on
855 	 * the two spines.
856 	 */
857 	llist = NULL;
858 	rlist = NULL;
859 	for (;;) {
860 		/* root is never NULL in here. */
861 		if (addr < root->start) {
862 			y = root->left;
863 			if (y == NULL)
864 				break;
865 			if (addr < y->start && y->left != NULL) {
866 				/* Rotate right and put y on rlist. */
867 				root->left = y->right;
868 				y->right = root;
869 				vm_map_entry_set_max_free(root);
870 				root = y->left;
871 				y->left = rlist;
872 				rlist = y;
873 			} else {
874 				/* Put root on rlist. */
875 				root->left = rlist;
876 				rlist = root;
877 				root = y;
878 			}
879 		} else if (addr >= root->end) {
880 			y = root->right;
881 			if (y == NULL)
882 				break;
883 			if (addr >= y->end && y->right != NULL) {
884 				/* Rotate left and put y on llist. */
885 				root->right = y->left;
886 				y->left = root;
887 				vm_map_entry_set_max_free(root);
888 				root = y->right;
889 				y->right = llist;
890 				llist = y;
891 			} else {
892 				/* Put root on llist. */
893 				root->right = llist;
894 				llist = root;
895 				root = y;
896 			}
897 		} else
898 			break;
899 	}
900 
901 	/*
902 	 * Pass Two: Walk back up the two spines, flip the pointers
903 	 * and set max_free.  The subtrees of the root go at the
904 	 * bottom of llist and rlist.
905 	 */
906 	ltree = root->left;
907 	while (llist != NULL) {
908 		y = llist->right;
909 		llist->right = ltree;
910 		vm_map_entry_set_max_free(llist);
911 		ltree = llist;
912 		llist = y;
913 	}
914 	rtree = root->right;
915 	while (rlist != NULL) {
916 		y = rlist->left;
917 		rlist->left = rtree;
918 		vm_map_entry_set_max_free(rlist);
919 		rtree = rlist;
920 		rlist = y;
921 	}
922 
923 	/*
924 	 * Final assembly: add ltree and rtree as subtrees of root.
925 	 */
926 	root->left = ltree;
927 	root->right = rtree;
928 	vm_map_entry_set_max_free(root);
929 
930 	return (root);
931 }
932 
933 /*
934  *	vm_map_entry_{un,}link:
935  *
936  *	Insert/remove entries from maps.
937  */
938 static void
939 vm_map_entry_link(vm_map_t map,
940 		  vm_map_entry_t after_where,
941 		  vm_map_entry_t entry)
942 {
943 
944 	CTR4(KTR_VM,
945 	    "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
946 	    map->nentries, entry, after_where);
947 	VM_MAP_ASSERT_LOCKED(map);
948 	KASSERT(after_where == &map->header ||
949 	    after_where->end <= entry->start,
950 	    ("vm_map_entry_link: prev end %jx new start %jx overlap",
951 	    (uintmax_t)after_where->end, (uintmax_t)entry->start));
952 	KASSERT(after_where->next == &map->header ||
953 	    entry->end <= after_where->next->start,
954 	    ("vm_map_entry_link: new end %jx next start %jx overlap",
955 	    (uintmax_t)entry->end, (uintmax_t)after_where->next->start));
956 
957 	map->nentries++;
958 	entry->prev = after_where;
959 	entry->next = after_where->next;
960 	entry->next->prev = entry;
961 	after_where->next = entry;
962 
963 	if (after_where != &map->header) {
964 		if (after_where != map->root)
965 			vm_map_entry_splay(after_where->start, map->root);
966 		entry->right = after_where->right;
967 		entry->left = after_where;
968 		after_where->right = NULL;
969 		after_where->adj_free = entry->start - after_where->end;
970 		vm_map_entry_set_max_free(after_where);
971 	} else {
972 		entry->right = map->root;
973 		entry->left = NULL;
974 	}
975 	entry->adj_free = (entry->next == &map->header ? map->max_offset :
976 	    entry->next->start) - entry->end;
977 	vm_map_entry_set_max_free(entry);
978 	map->root = entry;
979 }
980 
981 static void
982 vm_map_entry_unlink(vm_map_t map,
983 		    vm_map_entry_t entry)
984 {
985 	vm_map_entry_t next, prev, root;
986 
987 	VM_MAP_ASSERT_LOCKED(map);
988 	if (entry != map->root)
989 		vm_map_entry_splay(entry->start, map->root);
990 	if (entry->left == NULL)
991 		root = entry->right;
992 	else {
993 		root = vm_map_entry_splay(entry->start, entry->left);
994 		root->right = entry->right;
995 		root->adj_free = (entry->next == &map->header ? map->max_offset :
996 		    entry->next->start) - root->end;
997 		vm_map_entry_set_max_free(root);
998 	}
999 	map->root = root;
1000 
1001 	prev = entry->prev;
1002 	next = entry->next;
1003 	next->prev = prev;
1004 	prev->next = next;
1005 	map->nentries--;
1006 	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1007 	    map->nentries, entry);
1008 }
1009 
1010 /*
1011  *	vm_map_entry_resize_free:
1012  *
1013  *	Recompute the amount of free space following a vm_map_entry
1014  *	and propagate that value up the tree.  Call this function after
1015  *	resizing a map entry in-place, that is, without a call to
1016  *	vm_map_entry_link() or _unlink().
1017  *
1018  *	The map must be locked, and leaves it so.
1019  */
1020 static void
1021 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
1022 {
1023 
1024 	/*
1025 	 * Using splay trees without parent pointers, propagating
1026 	 * max_free up the tree is done by moving the entry to the
1027 	 * root and making the change there.
1028 	 */
1029 	if (entry != map->root)
1030 		map->root = vm_map_entry_splay(entry->start, map->root);
1031 
1032 	entry->adj_free = (entry->next == &map->header ? map->max_offset :
1033 	    entry->next->start) - entry->end;
1034 	vm_map_entry_set_max_free(entry);
1035 }
1036 
1037 /*
1038  *	vm_map_lookup_entry:	[ internal use only ]
1039  *
1040  *	Finds the map entry containing (or
1041  *	immediately preceding) the specified address
1042  *	in the given map; the entry is returned
1043  *	in the "entry" parameter.  The boolean
1044  *	result indicates whether the address is
1045  *	actually contained in the map.
1046  */
1047 boolean_t
1048 vm_map_lookup_entry(
1049 	vm_map_t map,
1050 	vm_offset_t address,
1051 	vm_map_entry_t *entry)	/* OUT */
1052 {
1053 	vm_map_entry_t cur;
1054 	boolean_t locked;
1055 
1056 	/*
1057 	 * If the map is empty, then the map entry immediately preceding
1058 	 * "address" is the map's header.
1059 	 */
1060 	cur = map->root;
1061 	if (cur == NULL)
1062 		*entry = &map->header;
1063 	else if (address >= cur->start && cur->end > address) {
1064 		*entry = cur;
1065 		return (TRUE);
1066 	} else if ((locked = vm_map_locked(map)) ||
1067 	    sx_try_upgrade(&map->lock)) {
1068 		/*
1069 		 * Splay requires a write lock on the map.  However, it only
1070 		 * restructures the binary search tree; it does not otherwise
1071 		 * change the map.  Thus, the map's timestamp need not change
1072 		 * on a temporary upgrade.
1073 		 */
1074 		map->root = cur = vm_map_entry_splay(address, cur);
1075 		if (!locked)
1076 			sx_downgrade(&map->lock);
1077 
1078 		/*
1079 		 * If "address" is contained within a map entry, the new root
1080 		 * is that map entry.  Otherwise, the new root is a map entry
1081 		 * immediately before or after "address".
1082 		 */
1083 		if (address >= cur->start) {
1084 			*entry = cur;
1085 			if (cur->end > address)
1086 				return (TRUE);
1087 		} else
1088 			*entry = cur->prev;
1089 	} else
1090 		/*
1091 		 * Since the map is only locked for read access, perform a
1092 		 * standard binary search tree lookup for "address".
1093 		 */
1094 		for (;;) {
1095 			if (address < cur->start) {
1096 				if (cur->left == NULL) {
1097 					*entry = cur->prev;
1098 					break;
1099 				}
1100 				cur = cur->left;
1101 			} else if (cur->end > address) {
1102 				*entry = cur;
1103 				return (TRUE);
1104 			} else {
1105 				if (cur->right == NULL) {
1106 					*entry = cur;
1107 					break;
1108 				}
1109 				cur = cur->right;
1110 			}
1111 		}
1112 	return (FALSE);
1113 }
1114 
1115 /*
1116  *	vm_map_insert:
1117  *
1118  *	Inserts the given whole VM object into the target
1119  *	map at the specified address range.  The object's
1120  *	size should match that of the address range.
1121  *
1122  *	Requires that the map be locked, and leaves it so.
1123  *
1124  *	If object is non-NULL, ref count must be bumped by caller
1125  *	prior to making call to account for the new entry.
1126  */
1127 int
1128 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1129     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1130 {
1131 	vm_map_entry_t new_entry, prev_entry, temp_entry;
1132 	vm_eflags_t protoeflags;
1133 	struct ucred *cred;
1134 	vm_inherit_t inheritance;
1135 
1136 	VM_MAP_ASSERT_LOCKED(map);
1137 	KASSERT((object != kmem_object && object != kernel_object) ||
1138 	    (cow & MAP_COPY_ON_WRITE) == 0,
1139 	    ("vm_map_insert: kmem or kernel object and COW"));
1140 	KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0,
1141 	    ("vm_map_insert: paradoxical MAP_NOFAULT request"));
1142 
1143 	/*
1144 	 * Check that the start and end points are not bogus.
1145 	 */
1146 	if ((start < map->min_offset) || (end > map->max_offset) ||
1147 	    (start >= end))
1148 		return (KERN_INVALID_ADDRESS);
1149 
1150 	/*
1151 	 * Find the entry prior to the proposed starting address; if it's part
1152 	 * of an existing entry, this range is bogus.
1153 	 */
1154 	if (vm_map_lookup_entry(map, start, &temp_entry))
1155 		return (KERN_NO_SPACE);
1156 
1157 	prev_entry = temp_entry;
1158 
1159 	/*
1160 	 * Assert that the next entry doesn't overlap the end point.
1161 	 */
1162 	if ((prev_entry->next != &map->header) &&
1163 	    (prev_entry->next->start < end))
1164 		return (KERN_NO_SPACE);
1165 
1166 	protoeflags = 0;
1167 	if (cow & MAP_COPY_ON_WRITE)
1168 		protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1169 	if (cow & MAP_NOFAULT)
1170 		protoeflags |= MAP_ENTRY_NOFAULT;
1171 	if (cow & MAP_DISABLE_SYNCER)
1172 		protoeflags |= MAP_ENTRY_NOSYNC;
1173 	if (cow & MAP_DISABLE_COREDUMP)
1174 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1175 	if (cow & MAP_STACK_GROWS_DOWN)
1176 		protoeflags |= MAP_ENTRY_GROWS_DOWN;
1177 	if (cow & MAP_STACK_GROWS_UP)
1178 		protoeflags |= MAP_ENTRY_GROWS_UP;
1179 	if (cow & MAP_VN_WRITECOUNT)
1180 		protoeflags |= MAP_ENTRY_VN_WRITECNT;
1181 	if (cow & MAP_INHERIT_SHARE)
1182 		inheritance = VM_INHERIT_SHARE;
1183 	else
1184 		inheritance = VM_INHERIT_DEFAULT;
1185 
1186 	cred = NULL;
1187 	if (cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT))
1188 		goto charged;
1189 	if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1190 	    ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1191 		if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1192 			return (KERN_RESOURCE_SHORTAGE);
1193 		KASSERT(object == NULL || (protoeflags & MAP_ENTRY_NEEDS_COPY) ||
1194 		    object->cred == NULL,
1195 		    ("OVERCOMMIT: vm_map_insert o %p", object));
1196 		cred = curthread->td_ucred;
1197 	}
1198 
1199 charged:
1200 	/* Expand the kernel pmap, if necessary. */
1201 	if (map == kernel_map && end > kernel_vm_end)
1202 		pmap_growkernel(end);
1203 	if (object != NULL) {
1204 		/*
1205 		 * OBJ_ONEMAPPING must be cleared unless this mapping
1206 		 * is trivially proven to be the only mapping for any
1207 		 * of the object's pages.  (Object granularity
1208 		 * reference counting is insufficient to recognize
1209 		 * aliases with precision.)
1210 		 */
1211 		VM_OBJECT_WLOCK(object);
1212 		if (object->ref_count > 1 || object->shadow_count != 0)
1213 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
1214 		VM_OBJECT_WUNLOCK(object);
1215 	}
1216 	else if ((prev_entry != &map->header) &&
1217 		 (prev_entry->eflags == protoeflags) &&
1218 		 (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 &&
1219 		 (prev_entry->end == start) &&
1220 		 (prev_entry->wired_count == 0) &&
1221 		 (prev_entry->cred == cred ||
1222 		  (prev_entry->object.vm_object != NULL &&
1223 		   (prev_entry->object.vm_object->cred == cred))) &&
1224 		   vm_object_coalesce(prev_entry->object.vm_object,
1225 		       prev_entry->offset,
1226 		       (vm_size_t)(prev_entry->end - prev_entry->start),
1227 		       (vm_size_t)(end - prev_entry->end), cred != NULL &&
1228 		       (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1229 		/*
1230 		 * We were able to extend the object.  Determine if we
1231 		 * can extend the previous map entry to include the
1232 		 * new range as well.
1233 		 */
1234 		if ((prev_entry->inheritance == inheritance) &&
1235 		    (prev_entry->protection == prot) &&
1236 		    (prev_entry->max_protection == max)) {
1237 			map->size += (end - prev_entry->end);
1238 			prev_entry->end = end;
1239 			vm_map_entry_resize_free(map, prev_entry);
1240 			vm_map_simplify_entry(map, prev_entry);
1241 			return (KERN_SUCCESS);
1242 		}
1243 
1244 		/*
1245 		 * If we can extend the object but cannot extend the
1246 		 * map entry, we have to create a new map entry.  We
1247 		 * must bump the ref count on the extended object to
1248 		 * account for it.  object may be NULL.
1249 		 */
1250 		object = prev_entry->object.vm_object;
1251 		offset = prev_entry->offset +
1252 			(prev_entry->end - prev_entry->start);
1253 		vm_object_reference(object);
1254 		if (cred != NULL && object != NULL && object->cred != NULL &&
1255 		    !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1256 			/* Object already accounts for this uid. */
1257 			cred = NULL;
1258 		}
1259 	}
1260 	if (cred != NULL)
1261 		crhold(cred);
1262 
1263 	/*
1264 	 * Create a new entry
1265 	 */
1266 	new_entry = vm_map_entry_create(map);
1267 	new_entry->start = start;
1268 	new_entry->end = end;
1269 	new_entry->cred = NULL;
1270 
1271 	new_entry->eflags = protoeflags;
1272 	new_entry->object.vm_object = object;
1273 	new_entry->offset = offset;
1274 	new_entry->avail_ssize = 0;
1275 
1276 	new_entry->inheritance = inheritance;
1277 	new_entry->protection = prot;
1278 	new_entry->max_protection = max;
1279 	new_entry->wired_count = 0;
1280 	new_entry->wiring_thread = NULL;
1281 	new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1282 	new_entry->next_read = OFF_TO_IDX(offset);
1283 
1284 	KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1285 	    ("OVERCOMMIT: vm_map_insert leaks vm_map %p", new_entry));
1286 	new_entry->cred = cred;
1287 
1288 	/*
1289 	 * Insert the new entry into the list
1290 	 */
1291 	vm_map_entry_link(map, prev_entry, new_entry);
1292 	map->size += new_entry->end - new_entry->start;
1293 
1294 	/*
1295 	 * Try to coalesce the new entry with both the previous and next
1296 	 * entries in the list.  Previously, we only attempted to coalesce
1297 	 * with the previous entry when object is NULL.  Here, we handle the
1298 	 * other cases, which are less common.
1299 	 */
1300 	vm_map_simplify_entry(map, new_entry);
1301 
1302 	if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
1303 		vm_map_pmap_enter(map, start, prot,
1304 				    object, OFF_TO_IDX(offset), end - start,
1305 				    cow & MAP_PREFAULT_PARTIAL);
1306 	}
1307 
1308 	return (KERN_SUCCESS);
1309 }
1310 
1311 /*
1312  *	vm_map_findspace:
1313  *
1314  *	Find the first fit (lowest VM address) for "length" free bytes
1315  *	beginning at address >= start in the given map.
1316  *
1317  *	In a vm_map_entry, "adj_free" is the amount of free space
1318  *	adjacent (higher address) to this entry, and "max_free" is the
1319  *	maximum amount of contiguous free space in its subtree.  This
1320  *	allows finding a free region in one path down the tree, so
1321  *	O(log n) amortized with splay trees.
1322  *
1323  *	The map must be locked, and leaves it so.
1324  *
1325  *	Returns: 0 on success, and starting address in *addr,
1326  *		 1 if insufficient space.
1327  */
1328 int
1329 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1330     vm_offset_t *addr)	/* OUT */
1331 {
1332 	vm_map_entry_t entry;
1333 	vm_offset_t st;
1334 
1335 	/*
1336 	 * Request must fit within min/max VM address and must avoid
1337 	 * address wrap.
1338 	 */
1339 	if (start < map->min_offset)
1340 		start = map->min_offset;
1341 	if (start + length > map->max_offset || start + length < start)
1342 		return (1);
1343 
1344 	/* Empty tree means wide open address space. */
1345 	if (map->root == NULL) {
1346 		*addr = start;
1347 		return (0);
1348 	}
1349 
1350 	/*
1351 	 * After splay, if start comes before root node, then there
1352 	 * must be a gap from start to the root.
1353 	 */
1354 	map->root = vm_map_entry_splay(start, map->root);
1355 	if (start + length <= map->root->start) {
1356 		*addr = start;
1357 		return (0);
1358 	}
1359 
1360 	/*
1361 	 * Root is the last node that might begin its gap before
1362 	 * start, and this is the last comparison where address
1363 	 * wrap might be a problem.
1364 	 */
1365 	st = (start > map->root->end) ? start : map->root->end;
1366 	if (length <= map->root->end + map->root->adj_free - st) {
1367 		*addr = st;
1368 		return (0);
1369 	}
1370 
1371 	/* With max_free, can immediately tell if no solution. */
1372 	entry = map->root->right;
1373 	if (entry == NULL || length > entry->max_free)
1374 		return (1);
1375 
1376 	/*
1377 	 * Search the right subtree in the order: left subtree, root,
1378 	 * right subtree (first fit).  The previous splay implies that
1379 	 * all regions in the right subtree have addresses > start.
1380 	 */
1381 	while (entry != NULL) {
1382 		if (entry->left != NULL && entry->left->max_free >= length)
1383 			entry = entry->left;
1384 		else if (entry->adj_free >= length) {
1385 			*addr = entry->end;
1386 			return (0);
1387 		} else
1388 			entry = entry->right;
1389 	}
1390 
1391 	/* Can't get here, so panic if we do. */
1392 	panic("vm_map_findspace: max_free corrupt");
1393 }
1394 
1395 int
1396 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1397     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1398     vm_prot_t max, int cow)
1399 {
1400 	vm_offset_t end;
1401 	int result;
1402 
1403 	end = start + length;
1404 	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1405 	    object == NULL,
1406 	    ("vm_map_fixed: non-NULL backing object for stack"));
1407 	vm_map_lock(map);
1408 	VM_MAP_RANGE_CHECK(map, start, end);
1409 	if ((cow & MAP_CHECK_EXCL) == 0)
1410 		vm_map_delete(map, start, end);
1411 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1412 		result = vm_map_stack_locked(map, start, length, sgrowsiz,
1413 		    prot, max, cow);
1414 	} else {
1415 		result = vm_map_insert(map, object, offset, start, end,
1416 		    prot, max, cow);
1417 	}
1418 	vm_map_unlock(map);
1419 	return (result);
1420 }
1421 
1422 /*
1423  *	vm_map_find finds an unallocated region in the target address
1424  *	map with the given length.  The search is defined to be
1425  *	first-fit from the specified address; the region found is
1426  *	returned in the same parameter.
1427  *
1428  *	If object is non-NULL, ref count must be bumped by caller
1429  *	prior to making call to account for the new entry.
1430  */
1431 int
1432 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1433 	    vm_offset_t *addr,	/* IN/OUT */
1434 	    vm_size_t length, vm_offset_t max_addr, int find_space,
1435 	    vm_prot_t prot, vm_prot_t max, int cow)
1436 {
1437 	vm_offset_t alignment, initial_addr, start;
1438 	int result;
1439 
1440 	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1441 	    object == NULL,
1442 	    ("vm_map_find: non-NULL backing object for stack"));
1443 	if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
1444 	    (object->flags & OBJ_COLORED) == 0))
1445 		find_space = VMFS_ANY_SPACE;
1446 	if (find_space >> 8 != 0) {
1447 		KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
1448 		alignment = (vm_offset_t)1 << (find_space >> 8);
1449 	} else
1450 		alignment = 0;
1451 	initial_addr = *addr;
1452 again:
1453 	start = initial_addr;
1454 	vm_map_lock(map);
1455 	do {
1456 		if (find_space != VMFS_NO_SPACE) {
1457 			if (vm_map_findspace(map, start, length, addr) ||
1458 			    (max_addr != 0 && *addr + length > max_addr)) {
1459 				vm_map_unlock(map);
1460 				if (find_space == VMFS_OPTIMAL_SPACE) {
1461 					find_space = VMFS_ANY_SPACE;
1462 					goto again;
1463 				}
1464 				return (KERN_NO_SPACE);
1465 			}
1466 			switch (find_space) {
1467 			case VMFS_SUPER_SPACE:
1468 			case VMFS_OPTIMAL_SPACE:
1469 				pmap_align_superpage(object, offset, addr,
1470 				    length);
1471 				break;
1472 			case VMFS_ANY_SPACE:
1473 				break;
1474 			default:
1475 				if ((*addr & (alignment - 1)) != 0) {
1476 					*addr &= ~(alignment - 1);
1477 					*addr += alignment;
1478 				}
1479 				break;
1480 			}
1481 
1482 			start = *addr;
1483 		}
1484 		if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1485 			result = vm_map_stack_locked(map, start, length,
1486 			    sgrowsiz, prot, max, cow);
1487 		} else {
1488 			result = vm_map_insert(map, object, offset, start,
1489 			    start + length, prot, max, cow);
1490 		}
1491 	} while (result == KERN_NO_SPACE && find_space != VMFS_NO_SPACE &&
1492 	    find_space != VMFS_ANY_SPACE);
1493 	vm_map_unlock(map);
1494 	return (result);
1495 }
1496 
1497 /*
1498  *	vm_map_simplify_entry:
1499  *
1500  *	Simplify the given map entry by merging with either neighbor.  This
1501  *	routine also has the ability to merge with both neighbors.
1502  *
1503  *	The map must be locked.
1504  *
1505  *	This routine guarentees that the passed entry remains valid (though
1506  *	possibly extended).  When merging, this routine may delete one or
1507  *	both neighbors.
1508  */
1509 void
1510 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1511 {
1512 	vm_map_entry_t next, prev;
1513 	vm_size_t prevsize, esize;
1514 
1515 	if ((entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP |
1516 	    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) != 0)
1517 		return;
1518 
1519 	prev = entry->prev;
1520 	if (prev != &map->header) {
1521 		prevsize = prev->end - prev->start;
1522 		if ( (prev->end == entry->start) &&
1523 		     (prev->object.vm_object == entry->object.vm_object) &&
1524 		     (!prev->object.vm_object ||
1525 			(prev->offset + prevsize == entry->offset)) &&
1526 		     (prev->eflags == entry->eflags) &&
1527 		     (prev->protection == entry->protection) &&
1528 		     (prev->max_protection == entry->max_protection) &&
1529 		     (prev->inheritance == entry->inheritance) &&
1530 		     (prev->wired_count == entry->wired_count) &&
1531 		     (prev->cred == entry->cred)) {
1532 			vm_map_entry_unlink(map, prev);
1533 			entry->start = prev->start;
1534 			entry->offset = prev->offset;
1535 			if (entry->prev != &map->header)
1536 				vm_map_entry_resize_free(map, entry->prev);
1537 
1538 			/*
1539 			 * If the backing object is a vnode object,
1540 			 * vm_object_deallocate() calls vrele().
1541 			 * However, vrele() does not lock the vnode
1542 			 * because the vnode has additional
1543 			 * references.  Thus, the map lock can be kept
1544 			 * without causing a lock-order reversal with
1545 			 * the vnode lock.
1546 			 *
1547 			 * Since we count the number of virtual page
1548 			 * mappings in object->un_pager.vnp.writemappings,
1549 			 * the writemappings value should not be adjusted
1550 			 * when the entry is disposed of.
1551 			 */
1552 			if (prev->object.vm_object)
1553 				vm_object_deallocate(prev->object.vm_object);
1554 			if (prev->cred != NULL)
1555 				crfree(prev->cred);
1556 			vm_map_entry_dispose(map, prev);
1557 		}
1558 	}
1559 
1560 	next = entry->next;
1561 	if (next != &map->header) {
1562 		esize = entry->end - entry->start;
1563 		if ((entry->end == next->start) &&
1564 		    (next->object.vm_object == entry->object.vm_object) &&
1565 		     (!entry->object.vm_object ||
1566 			(entry->offset + esize == next->offset)) &&
1567 		    (next->eflags == entry->eflags) &&
1568 		    (next->protection == entry->protection) &&
1569 		    (next->max_protection == entry->max_protection) &&
1570 		    (next->inheritance == entry->inheritance) &&
1571 		    (next->wired_count == entry->wired_count) &&
1572 		    (next->cred == entry->cred)) {
1573 			vm_map_entry_unlink(map, next);
1574 			entry->end = next->end;
1575 			vm_map_entry_resize_free(map, entry);
1576 
1577 			/*
1578 			 * See comment above.
1579 			 */
1580 			if (next->object.vm_object)
1581 				vm_object_deallocate(next->object.vm_object);
1582 			if (next->cred != NULL)
1583 				crfree(next->cred);
1584 			vm_map_entry_dispose(map, next);
1585 		}
1586 	}
1587 }
1588 /*
1589  *	vm_map_clip_start:	[ internal use only ]
1590  *
1591  *	Asserts that the given entry begins at or after
1592  *	the specified address; if necessary,
1593  *	it splits the entry into two.
1594  */
1595 #define vm_map_clip_start(map, entry, startaddr) \
1596 { \
1597 	if (startaddr > entry->start) \
1598 		_vm_map_clip_start(map, entry, startaddr); \
1599 }
1600 
1601 /*
1602  *	This routine is called only when it is known that
1603  *	the entry must be split.
1604  */
1605 static void
1606 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1607 {
1608 	vm_map_entry_t new_entry;
1609 
1610 	VM_MAP_ASSERT_LOCKED(map);
1611 
1612 	/*
1613 	 * Split off the front portion -- note that we must insert the new
1614 	 * entry BEFORE this one, so that this entry has the specified
1615 	 * starting address.
1616 	 */
1617 	vm_map_simplify_entry(map, entry);
1618 
1619 	/*
1620 	 * If there is no object backing this entry, we might as well create
1621 	 * one now.  If we defer it, an object can get created after the map
1622 	 * is clipped, and individual objects will be created for the split-up
1623 	 * map.  This is a bit of a hack, but is also about the best place to
1624 	 * put this improvement.
1625 	 */
1626 	if (entry->object.vm_object == NULL && !map->system_map) {
1627 		vm_object_t object;
1628 		object = vm_object_allocate(OBJT_DEFAULT,
1629 				atop(entry->end - entry->start));
1630 		entry->object.vm_object = object;
1631 		entry->offset = 0;
1632 		if (entry->cred != NULL) {
1633 			object->cred = entry->cred;
1634 			object->charge = entry->end - entry->start;
1635 			entry->cred = NULL;
1636 		}
1637 	} else if (entry->object.vm_object != NULL &&
1638 		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1639 		   entry->cred != NULL) {
1640 		VM_OBJECT_WLOCK(entry->object.vm_object);
1641 		KASSERT(entry->object.vm_object->cred == NULL,
1642 		    ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
1643 		entry->object.vm_object->cred = entry->cred;
1644 		entry->object.vm_object->charge = entry->end - entry->start;
1645 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
1646 		entry->cred = NULL;
1647 	}
1648 
1649 	new_entry = vm_map_entry_create(map);
1650 	*new_entry = *entry;
1651 
1652 	new_entry->end = start;
1653 	entry->offset += (start - entry->start);
1654 	entry->start = start;
1655 	if (new_entry->cred != NULL)
1656 		crhold(entry->cred);
1657 
1658 	vm_map_entry_link(map, entry->prev, new_entry);
1659 
1660 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1661 		vm_object_reference(new_entry->object.vm_object);
1662 		/*
1663 		 * The object->un_pager.vnp.writemappings for the
1664 		 * object of MAP_ENTRY_VN_WRITECNT type entry shall be
1665 		 * kept as is here.  The virtual pages are
1666 		 * re-distributed among the clipped entries, so the sum is
1667 		 * left the same.
1668 		 */
1669 	}
1670 }
1671 
1672 /*
1673  *	vm_map_clip_end:	[ internal use only ]
1674  *
1675  *	Asserts that the given entry ends at or before
1676  *	the specified address; if necessary,
1677  *	it splits the entry into two.
1678  */
1679 #define vm_map_clip_end(map, entry, endaddr) \
1680 { \
1681 	if ((endaddr) < (entry->end)) \
1682 		_vm_map_clip_end((map), (entry), (endaddr)); \
1683 }
1684 
1685 /*
1686  *	This routine is called only when it is known that
1687  *	the entry must be split.
1688  */
1689 static void
1690 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1691 {
1692 	vm_map_entry_t new_entry;
1693 
1694 	VM_MAP_ASSERT_LOCKED(map);
1695 
1696 	/*
1697 	 * If there is no object backing this entry, we might as well create
1698 	 * one now.  If we defer it, an object can get created after the map
1699 	 * is clipped, and individual objects will be created for the split-up
1700 	 * map.  This is a bit of a hack, but is also about the best place to
1701 	 * put this improvement.
1702 	 */
1703 	if (entry->object.vm_object == NULL && !map->system_map) {
1704 		vm_object_t object;
1705 		object = vm_object_allocate(OBJT_DEFAULT,
1706 				atop(entry->end - entry->start));
1707 		entry->object.vm_object = object;
1708 		entry->offset = 0;
1709 		if (entry->cred != NULL) {
1710 			object->cred = entry->cred;
1711 			object->charge = entry->end - entry->start;
1712 			entry->cred = NULL;
1713 		}
1714 	} else if (entry->object.vm_object != NULL &&
1715 		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1716 		   entry->cred != NULL) {
1717 		VM_OBJECT_WLOCK(entry->object.vm_object);
1718 		KASSERT(entry->object.vm_object->cred == NULL,
1719 		    ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
1720 		entry->object.vm_object->cred = entry->cred;
1721 		entry->object.vm_object->charge = entry->end - entry->start;
1722 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
1723 		entry->cred = NULL;
1724 	}
1725 
1726 	/*
1727 	 * Create a new entry and insert it AFTER the specified entry
1728 	 */
1729 	new_entry = vm_map_entry_create(map);
1730 	*new_entry = *entry;
1731 
1732 	new_entry->start = entry->end = end;
1733 	new_entry->offset += (end - entry->start);
1734 	if (new_entry->cred != NULL)
1735 		crhold(entry->cred);
1736 
1737 	vm_map_entry_link(map, entry, new_entry);
1738 
1739 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1740 		vm_object_reference(new_entry->object.vm_object);
1741 	}
1742 }
1743 
1744 /*
1745  *	vm_map_submap:		[ kernel use only ]
1746  *
1747  *	Mark the given range as handled by a subordinate map.
1748  *
1749  *	This range must have been created with vm_map_find,
1750  *	and no other operations may have been performed on this
1751  *	range prior to calling vm_map_submap.
1752  *
1753  *	Only a limited number of operations can be performed
1754  *	within this rage after calling vm_map_submap:
1755  *		vm_fault
1756  *	[Don't try vm_map_copy!]
1757  *
1758  *	To remove a submapping, one must first remove the
1759  *	range from the superior map, and then destroy the
1760  *	submap (if desired).  [Better yet, don't try it.]
1761  */
1762 int
1763 vm_map_submap(
1764 	vm_map_t map,
1765 	vm_offset_t start,
1766 	vm_offset_t end,
1767 	vm_map_t submap)
1768 {
1769 	vm_map_entry_t entry;
1770 	int result = KERN_INVALID_ARGUMENT;
1771 
1772 	vm_map_lock(map);
1773 
1774 	VM_MAP_RANGE_CHECK(map, start, end);
1775 
1776 	if (vm_map_lookup_entry(map, start, &entry)) {
1777 		vm_map_clip_start(map, entry, start);
1778 	} else
1779 		entry = entry->next;
1780 
1781 	vm_map_clip_end(map, entry, end);
1782 
1783 	if ((entry->start == start) && (entry->end == end) &&
1784 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1785 	    (entry->object.vm_object == NULL)) {
1786 		entry->object.sub_map = submap;
1787 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1788 		result = KERN_SUCCESS;
1789 	}
1790 	vm_map_unlock(map);
1791 
1792 	return (result);
1793 }
1794 
1795 /*
1796  * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
1797  */
1798 #define	MAX_INIT_PT	96
1799 
1800 /*
1801  *	vm_map_pmap_enter:
1802  *
1803  *	Preload the specified map's pmap with mappings to the specified
1804  *	object's memory-resident pages.  No further physical pages are
1805  *	allocated, and no further virtual pages are retrieved from secondary
1806  *	storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
1807  *	limited number of page mappings are created at the low-end of the
1808  *	specified address range.  (For this purpose, a superpage mapping
1809  *	counts as one page mapping.)  Otherwise, all resident pages within
1810  *	the specified address range are mapped.  Because these mappings are
1811  *	being created speculatively, cached pages are not reactivated and
1812  *	mapped.
1813  */
1814 static void
1815 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
1816     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
1817 {
1818 	vm_offset_t start;
1819 	vm_page_t p, p_start;
1820 	vm_pindex_t mask, psize, threshold, tmpidx;
1821 
1822 	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
1823 		return;
1824 	VM_OBJECT_RLOCK(object);
1825 	if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1826 		VM_OBJECT_RUNLOCK(object);
1827 		VM_OBJECT_WLOCK(object);
1828 		if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1829 			pmap_object_init_pt(map->pmap, addr, object, pindex,
1830 			    size);
1831 			VM_OBJECT_WUNLOCK(object);
1832 			return;
1833 		}
1834 		VM_OBJECT_LOCK_DOWNGRADE(object);
1835 	}
1836 
1837 	psize = atop(size);
1838 	if (psize + pindex > object->size) {
1839 		if (object->size < pindex) {
1840 			VM_OBJECT_RUNLOCK(object);
1841 			return;
1842 		}
1843 		psize = object->size - pindex;
1844 	}
1845 
1846 	start = 0;
1847 	p_start = NULL;
1848 	threshold = MAX_INIT_PT;
1849 
1850 	p = vm_page_find_least(object, pindex);
1851 	/*
1852 	 * Assert: the variable p is either (1) the page with the
1853 	 * least pindex greater than or equal to the parameter pindex
1854 	 * or (2) NULL.
1855 	 */
1856 	for (;
1857 	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
1858 	     p = TAILQ_NEXT(p, listq)) {
1859 		/*
1860 		 * don't allow an madvise to blow away our really
1861 		 * free pages allocating pv entries.
1862 		 */
1863 		if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
1864 		    vm_cnt.v_free_count < vm_cnt.v_free_reserved) ||
1865 		    ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
1866 		    tmpidx >= threshold)) {
1867 			psize = tmpidx;
1868 			break;
1869 		}
1870 		if (p->valid == VM_PAGE_BITS_ALL) {
1871 			if (p_start == NULL) {
1872 				start = addr + ptoa(tmpidx);
1873 				p_start = p;
1874 			}
1875 			/* Jump ahead if a superpage mapping is possible. */
1876 			if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
1877 			    (pagesizes[p->psind] - 1)) == 0) {
1878 				mask = atop(pagesizes[p->psind]) - 1;
1879 				if (tmpidx + mask < psize &&
1880 				    vm_page_ps_is_valid(p)) {
1881 					p += mask;
1882 					threshold += mask;
1883 				}
1884 			}
1885 		} else if (p_start != NULL) {
1886 			pmap_enter_object(map->pmap, start, addr +
1887 			    ptoa(tmpidx), p_start, prot);
1888 			p_start = NULL;
1889 		}
1890 	}
1891 	if (p_start != NULL)
1892 		pmap_enter_object(map->pmap, start, addr + ptoa(psize),
1893 		    p_start, prot);
1894 	VM_OBJECT_RUNLOCK(object);
1895 }
1896 
1897 /*
1898  *	vm_map_protect:
1899  *
1900  *	Sets the protection of the specified address
1901  *	region in the target map.  If "set_max" is
1902  *	specified, the maximum protection is to be set;
1903  *	otherwise, only the current protection is affected.
1904  */
1905 int
1906 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1907 	       vm_prot_t new_prot, boolean_t set_max)
1908 {
1909 	vm_map_entry_t current, entry;
1910 	vm_object_t obj;
1911 	struct ucred *cred;
1912 	vm_prot_t old_prot;
1913 
1914 	if (start == end)
1915 		return (KERN_SUCCESS);
1916 
1917 	vm_map_lock(map);
1918 
1919 	VM_MAP_RANGE_CHECK(map, start, end);
1920 
1921 	if (vm_map_lookup_entry(map, start, &entry)) {
1922 		vm_map_clip_start(map, entry, start);
1923 	} else {
1924 		entry = entry->next;
1925 	}
1926 
1927 	/*
1928 	 * Make a first pass to check for protection violations.
1929 	 */
1930 	current = entry;
1931 	while ((current != &map->header) && (current->start < end)) {
1932 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1933 			vm_map_unlock(map);
1934 			return (KERN_INVALID_ARGUMENT);
1935 		}
1936 		if ((new_prot & current->max_protection) != new_prot) {
1937 			vm_map_unlock(map);
1938 			return (KERN_PROTECTION_FAILURE);
1939 		}
1940 		current = current->next;
1941 	}
1942 
1943 
1944 	/*
1945 	 * Do an accounting pass for private read-only mappings that
1946 	 * now will do cow due to allowed write (e.g. debugger sets
1947 	 * breakpoint on text segment)
1948 	 */
1949 	for (current = entry; (current != &map->header) &&
1950 	     (current->start < end); current = current->next) {
1951 
1952 		vm_map_clip_end(map, current, end);
1953 
1954 		if (set_max ||
1955 		    ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
1956 		    ENTRY_CHARGED(current)) {
1957 			continue;
1958 		}
1959 
1960 		cred = curthread->td_ucred;
1961 		obj = current->object.vm_object;
1962 
1963 		if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
1964 			if (!swap_reserve(current->end - current->start)) {
1965 				vm_map_unlock(map);
1966 				return (KERN_RESOURCE_SHORTAGE);
1967 			}
1968 			crhold(cred);
1969 			current->cred = cred;
1970 			continue;
1971 		}
1972 
1973 		VM_OBJECT_WLOCK(obj);
1974 		if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
1975 			VM_OBJECT_WUNLOCK(obj);
1976 			continue;
1977 		}
1978 
1979 		/*
1980 		 * Charge for the whole object allocation now, since
1981 		 * we cannot distinguish between non-charged and
1982 		 * charged clipped mapping of the same object later.
1983 		 */
1984 		KASSERT(obj->charge == 0,
1985 		    ("vm_map_protect: object %p overcharged (entry %p)",
1986 		    obj, current));
1987 		if (!swap_reserve(ptoa(obj->size))) {
1988 			VM_OBJECT_WUNLOCK(obj);
1989 			vm_map_unlock(map);
1990 			return (KERN_RESOURCE_SHORTAGE);
1991 		}
1992 
1993 		crhold(cred);
1994 		obj->cred = cred;
1995 		obj->charge = ptoa(obj->size);
1996 		VM_OBJECT_WUNLOCK(obj);
1997 	}
1998 
1999 	/*
2000 	 * Go back and fix up protections. [Note that clipping is not
2001 	 * necessary the second time.]
2002 	 */
2003 	current = entry;
2004 	while ((current != &map->header) && (current->start < end)) {
2005 		old_prot = current->protection;
2006 
2007 		if (set_max)
2008 			current->protection =
2009 			    (current->max_protection = new_prot) &
2010 			    old_prot;
2011 		else
2012 			current->protection = new_prot;
2013 
2014 		/*
2015 		 * For user wired map entries, the normal lazy evaluation of
2016 		 * write access upgrades through soft page faults is
2017 		 * undesirable.  Instead, immediately copy any pages that are
2018 		 * copy-on-write and enable write access in the physical map.
2019 		 */
2020 		if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2021 		    (current->protection & VM_PROT_WRITE) != 0 &&
2022 		    (old_prot & VM_PROT_WRITE) == 0)
2023 			vm_fault_copy_entry(map, map, current, current, NULL);
2024 
2025 		/*
2026 		 * When restricting access, update the physical map.  Worry
2027 		 * about copy-on-write here.
2028 		 */
2029 		if ((old_prot & ~current->protection) != 0) {
2030 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2031 							VM_PROT_ALL)
2032 			pmap_protect(map->pmap, current->start,
2033 			    current->end,
2034 			    current->protection & MASK(current));
2035 #undef	MASK
2036 		}
2037 		vm_map_simplify_entry(map, current);
2038 		current = current->next;
2039 	}
2040 	vm_map_unlock(map);
2041 	return (KERN_SUCCESS);
2042 }
2043 
2044 /*
2045  *	vm_map_madvise:
2046  *
2047  *	This routine traverses a processes map handling the madvise
2048  *	system call.  Advisories are classified as either those effecting
2049  *	the vm_map_entry structure, or those effecting the underlying
2050  *	objects.
2051  */
2052 int
2053 vm_map_madvise(
2054 	vm_map_t map,
2055 	vm_offset_t start,
2056 	vm_offset_t end,
2057 	int behav)
2058 {
2059 	vm_map_entry_t current, entry;
2060 	int modify_map = 0;
2061 
2062 	/*
2063 	 * Some madvise calls directly modify the vm_map_entry, in which case
2064 	 * we need to use an exclusive lock on the map and we need to perform
2065 	 * various clipping operations.  Otherwise we only need a read-lock
2066 	 * on the map.
2067 	 */
2068 	switch(behav) {
2069 	case MADV_NORMAL:
2070 	case MADV_SEQUENTIAL:
2071 	case MADV_RANDOM:
2072 	case MADV_NOSYNC:
2073 	case MADV_AUTOSYNC:
2074 	case MADV_NOCORE:
2075 	case MADV_CORE:
2076 		if (start == end)
2077 			return (KERN_SUCCESS);
2078 		modify_map = 1;
2079 		vm_map_lock(map);
2080 		break;
2081 	case MADV_WILLNEED:
2082 	case MADV_DONTNEED:
2083 	case MADV_FREE:
2084 		if (start == end)
2085 			return (KERN_SUCCESS);
2086 		vm_map_lock_read(map);
2087 		break;
2088 	default:
2089 		return (KERN_INVALID_ARGUMENT);
2090 	}
2091 
2092 	/*
2093 	 * Locate starting entry and clip if necessary.
2094 	 */
2095 	VM_MAP_RANGE_CHECK(map, start, end);
2096 
2097 	if (vm_map_lookup_entry(map, start, &entry)) {
2098 		if (modify_map)
2099 			vm_map_clip_start(map, entry, start);
2100 	} else {
2101 		entry = entry->next;
2102 	}
2103 
2104 	if (modify_map) {
2105 		/*
2106 		 * madvise behaviors that are implemented in the vm_map_entry.
2107 		 *
2108 		 * We clip the vm_map_entry so that behavioral changes are
2109 		 * limited to the specified address range.
2110 		 */
2111 		for (current = entry;
2112 		     (current != &map->header) && (current->start < end);
2113 		     current = current->next
2114 		) {
2115 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2116 				continue;
2117 
2118 			vm_map_clip_end(map, current, end);
2119 
2120 			switch (behav) {
2121 			case MADV_NORMAL:
2122 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2123 				break;
2124 			case MADV_SEQUENTIAL:
2125 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2126 				break;
2127 			case MADV_RANDOM:
2128 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2129 				break;
2130 			case MADV_NOSYNC:
2131 				current->eflags |= MAP_ENTRY_NOSYNC;
2132 				break;
2133 			case MADV_AUTOSYNC:
2134 				current->eflags &= ~MAP_ENTRY_NOSYNC;
2135 				break;
2136 			case MADV_NOCORE:
2137 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
2138 				break;
2139 			case MADV_CORE:
2140 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2141 				break;
2142 			default:
2143 				break;
2144 			}
2145 			vm_map_simplify_entry(map, current);
2146 		}
2147 		vm_map_unlock(map);
2148 	} else {
2149 		vm_pindex_t pstart, pend;
2150 
2151 		/*
2152 		 * madvise behaviors that are implemented in the underlying
2153 		 * vm_object.
2154 		 *
2155 		 * Since we don't clip the vm_map_entry, we have to clip
2156 		 * the vm_object pindex and count.
2157 		 */
2158 		for (current = entry;
2159 		     (current != &map->header) && (current->start < end);
2160 		     current = current->next
2161 		) {
2162 			vm_offset_t useEnd, useStart;
2163 
2164 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2165 				continue;
2166 
2167 			pstart = OFF_TO_IDX(current->offset);
2168 			pend = pstart + atop(current->end - current->start);
2169 			useStart = current->start;
2170 			useEnd = current->end;
2171 
2172 			if (current->start < start) {
2173 				pstart += atop(start - current->start);
2174 				useStart = start;
2175 			}
2176 			if (current->end > end) {
2177 				pend -= atop(current->end - end);
2178 				useEnd = end;
2179 			}
2180 
2181 			if (pstart >= pend)
2182 				continue;
2183 
2184 			/*
2185 			 * Perform the pmap_advise() before clearing
2186 			 * PGA_REFERENCED in vm_page_advise().  Otherwise, a
2187 			 * concurrent pmap operation, such as pmap_remove(),
2188 			 * could clear a reference in the pmap and set
2189 			 * PGA_REFERENCED on the page before the pmap_advise()
2190 			 * had completed.  Consequently, the page would appear
2191 			 * referenced based upon an old reference that
2192 			 * occurred before this pmap_advise() ran.
2193 			 */
2194 			if (behav == MADV_DONTNEED || behav == MADV_FREE)
2195 				pmap_advise(map->pmap, useStart, useEnd,
2196 				    behav);
2197 
2198 			vm_object_madvise(current->object.vm_object, pstart,
2199 			    pend, behav);
2200 			if (behav == MADV_WILLNEED) {
2201 				vm_map_pmap_enter(map,
2202 				    useStart,
2203 				    current->protection,
2204 				    current->object.vm_object,
2205 				    pstart,
2206 				    ptoa(pend - pstart),
2207 				    MAP_PREFAULT_MADVISE
2208 				);
2209 			}
2210 		}
2211 		vm_map_unlock_read(map);
2212 	}
2213 	return (0);
2214 }
2215 
2216 
2217 /*
2218  *	vm_map_inherit:
2219  *
2220  *	Sets the inheritance of the specified address
2221  *	range in the target map.  Inheritance
2222  *	affects how the map will be shared with
2223  *	child maps at the time of vmspace_fork.
2224  */
2225 int
2226 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2227 	       vm_inherit_t new_inheritance)
2228 {
2229 	vm_map_entry_t entry;
2230 	vm_map_entry_t temp_entry;
2231 
2232 	switch (new_inheritance) {
2233 	case VM_INHERIT_NONE:
2234 	case VM_INHERIT_COPY:
2235 	case VM_INHERIT_SHARE:
2236 		break;
2237 	default:
2238 		return (KERN_INVALID_ARGUMENT);
2239 	}
2240 	if (start == end)
2241 		return (KERN_SUCCESS);
2242 	vm_map_lock(map);
2243 	VM_MAP_RANGE_CHECK(map, start, end);
2244 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
2245 		entry = temp_entry;
2246 		vm_map_clip_start(map, entry, start);
2247 	} else
2248 		entry = temp_entry->next;
2249 	while ((entry != &map->header) && (entry->start < end)) {
2250 		vm_map_clip_end(map, entry, end);
2251 		entry->inheritance = new_inheritance;
2252 		vm_map_simplify_entry(map, entry);
2253 		entry = entry->next;
2254 	}
2255 	vm_map_unlock(map);
2256 	return (KERN_SUCCESS);
2257 }
2258 
2259 /*
2260  *	vm_map_unwire:
2261  *
2262  *	Implements both kernel and user unwiring.
2263  */
2264 int
2265 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2266     int flags)
2267 {
2268 	vm_map_entry_t entry, first_entry, tmp_entry;
2269 	vm_offset_t saved_start;
2270 	unsigned int last_timestamp;
2271 	int rv;
2272 	boolean_t need_wakeup, result, user_unwire;
2273 
2274 	if (start == end)
2275 		return (KERN_SUCCESS);
2276 	user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2277 	vm_map_lock(map);
2278 	VM_MAP_RANGE_CHECK(map, start, end);
2279 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2280 		if (flags & VM_MAP_WIRE_HOLESOK)
2281 			first_entry = first_entry->next;
2282 		else {
2283 			vm_map_unlock(map);
2284 			return (KERN_INVALID_ADDRESS);
2285 		}
2286 	}
2287 	last_timestamp = map->timestamp;
2288 	entry = first_entry;
2289 	while (entry != &map->header && entry->start < end) {
2290 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2291 			/*
2292 			 * We have not yet clipped the entry.
2293 			 */
2294 			saved_start = (start >= entry->start) ? start :
2295 			    entry->start;
2296 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2297 			if (vm_map_unlock_and_wait(map, 0)) {
2298 				/*
2299 				 * Allow interruption of user unwiring?
2300 				 */
2301 			}
2302 			vm_map_lock(map);
2303 			if (last_timestamp+1 != map->timestamp) {
2304 				/*
2305 				 * Look again for the entry because the map was
2306 				 * modified while it was unlocked.
2307 				 * Specifically, the entry may have been
2308 				 * clipped, merged, or deleted.
2309 				 */
2310 				if (!vm_map_lookup_entry(map, saved_start,
2311 				    &tmp_entry)) {
2312 					if (flags & VM_MAP_WIRE_HOLESOK)
2313 						tmp_entry = tmp_entry->next;
2314 					else {
2315 						if (saved_start == start) {
2316 							/*
2317 							 * First_entry has been deleted.
2318 							 */
2319 							vm_map_unlock(map);
2320 							return (KERN_INVALID_ADDRESS);
2321 						}
2322 						end = saved_start;
2323 						rv = KERN_INVALID_ADDRESS;
2324 						goto done;
2325 					}
2326 				}
2327 				if (entry == first_entry)
2328 					first_entry = tmp_entry;
2329 				else
2330 					first_entry = NULL;
2331 				entry = tmp_entry;
2332 			}
2333 			last_timestamp = map->timestamp;
2334 			continue;
2335 		}
2336 		vm_map_clip_start(map, entry, start);
2337 		vm_map_clip_end(map, entry, end);
2338 		/*
2339 		 * Mark the entry in case the map lock is released.  (See
2340 		 * above.)
2341 		 */
2342 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2343 		    entry->wiring_thread == NULL,
2344 		    ("owned map entry %p", entry));
2345 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2346 		entry->wiring_thread = curthread;
2347 		/*
2348 		 * Check the map for holes in the specified region.
2349 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2350 		 */
2351 		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2352 		    (entry->end < end && (entry->next == &map->header ||
2353 		    entry->next->start > entry->end))) {
2354 			end = entry->end;
2355 			rv = KERN_INVALID_ADDRESS;
2356 			goto done;
2357 		}
2358 		/*
2359 		 * If system unwiring, require that the entry is system wired.
2360 		 */
2361 		if (!user_unwire &&
2362 		    vm_map_entry_system_wired_count(entry) == 0) {
2363 			end = entry->end;
2364 			rv = KERN_INVALID_ARGUMENT;
2365 			goto done;
2366 		}
2367 		entry = entry->next;
2368 	}
2369 	rv = KERN_SUCCESS;
2370 done:
2371 	need_wakeup = FALSE;
2372 	if (first_entry == NULL) {
2373 		result = vm_map_lookup_entry(map, start, &first_entry);
2374 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2375 			first_entry = first_entry->next;
2376 		else
2377 			KASSERT(result, ("vm_map_unwire: lookup failed"));
2378 	}
2379 	for (entry = first_entry; entry != &map->header && entry->start < end;
2380 	    entry = entry->next) {
2381 		/*
2382 		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2383 		 * space in the unwired region could have been mapped
2384 		 * while the map lock was dropped for draining
2385 		 * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
2386 		 * could be simultaneously wiring this new mapping
2387 		 * entry.  Detect these cases and skip any entries
2388 		 * marked as in transition by us.
2389 		 */
2390 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2391 		    entry->wiring_thread != curthread) {
2392 			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2393 			    ("vm_map_unwire: !HOLESOK and new/changed entry"));
2394 			continue;
2395 		}
2396 
2397 		if (rv == KERN_SUCCESS && (!user_unwire ||
2398 		    (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2399 			if (user_unwire)
2400 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2401 			if (entry->wired_count == 1)
2402 				vm_map_entry_unwire(map, entry);
2403 			else
2404 				entry->wired_count--;
2405 		}
2406 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2407 		    ("vm_map_unwire: in-transition flag missing %p", entry));
2408 		KASSERT(entry->wiring_thread == curthread,
2409 		    ("vm_map_unwire: alien wire %p", entry));
2410 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2411 		entry->wiring_thread = NULL;
2412 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2413 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2414 			need_wakeup = TRUE;
2415 		}
2416 		vm_map_simplify_entry(map, entry);
2417 	}
2418 	vm_map_unlock(map);
2419 	if (need_wakeup)
2420 		vm_map_wakeup(map);
2421 	return (rv);
2422 }
2423 
2424 /*
2425  *	vm_map_wire_entry_failure:
2426  *
2427  *	Handle a wiring failure on the given entry.
2428  *
2429  *	The map should be locked.
2430  */
2431 static void
2432 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
2433     vm_offset_t failed_addr)
2434 {
2435 
2436 	VM_MAP_ASSERT_LOCKED(map);
2437 	KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
2438 	    entry->wired_count == 1,
2439 	    ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
2440 	KASSERT(failed_addr < entry->end,
2441 	    ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
2442 
2443 	/*
2444 	 * If any pages at the start of this entry were successfully wired,
2445 	 * then unwire them.
2446 	 */
2447 	if (failed_addr > entry->start) {
2448 		pmap_unwire(map->pmap, entry->start, failed_addr);
2449 		vm_object_unwire(entry->object.vm_object, entry->offset,
2450 		    failed_addr - entry->start, PQ_ACTIVE);
2451 	}
2452 
2453 	/*
2454 	 * Assign an out-of-range value to represent the failure to wire this
2455 	 * entry.
2456 	 */
2457 	entry->wired_count = -1;
2458 }
2459 
2460 /*
2461  *	vm_map_wire:
2462  *
2463  *	Implements both kernel and user wiring.
2464  */
2465 int
2466 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2467     int flags)
2468 {
2469 	vm_map_entry_t entry, first_entry, tmp_entry;
2470 	vm_offset_t faddr, saved_end, saved_start;
2471 	unsigned int last_timestamp;
2472 	int rv;
2473 	boolean_t need_wakeup, result, user_wire;
2474 	vm_prot_t prot;
2475 
2476 	if (start == end)
2477 		return (KERN_SUCCESS);
2478 	prot = 0;
2479 	if (flags & VM_MAP_WIRE_WRITE)
2480 		prot |= VM_PROT_WRITE;
2481 	user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2482 	vm_map_lock(map);
2483 	VM_MAP_RANGE_CHECK(map, start, end);
2484 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2485 		if (flags & VM_MAP_WIRE_HOLESOK)
2486 			first_entry = first_entry->next;
2487 		else {
2488 			vm_map_unlock(map);
2489 			return (KERN_INVALID_ADDRESS);
2490 		}
2491 	}
2492 	last_timestamp = map->timestamp;
2493 	entry = first_entry;
2494 	while (entry != &map->header && entry->start < end) {
2495 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2496 			/*
2497 			 * We have not yet clipped the entry.
2498 			 */
2499 			saved_start = (start >= entry->start) ? start :
2500 			    entry->start;
2501 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2502 			if (vm_map_unlock_and_wait(map, 0)) {
2503 				/*
2504 				 * Allow interruption of user wiring?
2505 				 */
2506 			}
2507 			vm_map_lock(map);
2508 			if (last_timestamp + 1 != map->timestamp) {
2509 				/*
2510 				 * Look again for the entry because the map was
2511 				 * modified while it was unlocked.
2512 				 * Specifically, the entry may have been
2513 				 * clipped, merged, or deleted.
2514 				 */
2515 				if (!vm_map_lookup_entry(map, saved_start,
2516 				    &tmp_entry)) {
2517 					if (flags & VM_MAP_WIRE_HOLESOK)
2518 						tmp_entry = tmp_entry->next;
2519 					else {
2520 						if (saved_start == start) {
2521 							/*
2522 							 * first_entry has been deleted.
2523 							 */
2524 							vm_map_unlock(map);
2525 							return (KERN_INVALID_ADDRESS);
2526 						}
2527 						end = saved_start;
2528 						rv = KERN_INVALID_ADDRESS;
2529 						goto done;
2530 					}
2531 				}
2532 				if (entry == first_entry)
2533 					first_entry = tmp_entry;
2534 				else
2535 					first_entry = NULL;
2536 				entry = tmp_entry;
2537 			}
2538 			last_timestamp = map->timestamp;
2539 			continue;
2540 		}
2541 		vm_map_clip_start(map, entry, start);
2542 		vm_map_clip_end(map, entry, end);
2543 		/*
2544 		 * Mark the entry in case the map lock is released.  (See
2545 		 * above.)
2546 		 */
2547 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2548 		    entry->wiring_thread == NULL,
2549 		    ("owned map entry %p", entry));
2550 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2551 		entry->wiring_thread = curthread;
2552 		if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
2553 		    || (entry->protection & prot) != prot) {
2554 			entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
2555 			if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
2556 				end = entry->end;
2557 				rv = KERN_INVALID_ADDRESS;
2558 				goto done;
2559 			}
2560 			goto next_entry;
2561 		}
2562 		if (entry->wired_count == 0) {
2563 			entry->wired_count++;
2564 			saved_start = entry->start;
2565 			saved_end = entry->end;
2566 
2567 			/*
2568 			 * Release the map lock, relying on the in-transition
2569 			 * mark.  Mark the map busy for fork.
2570 			 */
2571 			vm_map_busy(map);
2572 			vm_map_unlock(map);
2573 
2574 			faddr = saved_start;
2575 			do {
2576 				/*
2577 				 * Simulate a fault to get the page and enter
2578 				 * it into the physical map.
2579 				 */
2580 				if ((rv = vm_fault(map, faddr, VM_PROT_NONE,
2581 				    VM_FAULT_CHANGE_WIRING)) != KERN_SUCCESS)
2582 					break;
2583 			} while ((faddr += PAGE_SIZE) < saved_end);
2584 			vm_map_lock(map);
2585 			vm_map_unbusy(map);
2586 			if (last_timestamp + 1 != map->timestamp) {
2587 				/*
2588 				 * Look again for the entry because the map was
2589 				 * modified while it was unlocked.  The entry
2590 				 * may have been clipped, but NOT merged or
2591 				 * deleted.
2592 				 */
2593 				result = vm_map_lookup_entry(map, saved_start,
2594 				    &tmp_entry);
2595 				KASSERT(result, ("vm_map_wire: lookup failed"));
2596 				if (entry == first_entry)
2597 					first_entry = tmp_entry;
2598 				else
2599 					first_entry = NULL;
2600 				entry = tmp_entry;
2601 				while (entry->end < saved_end) {
2602 					/*
2603 					 * In case of failure, handle entries
2604 					 * that were not fully wired here;
2605 					 * fully wired entries are handled
2606 					 * later.
2607 					 */
2608 					if (rv != KERN_SUCCESS &&
2609 					    faddr < entry->end)
2610 						vm_map_wire_entry_failure(map,
2611 						    entry, faddr);
2612 					entry = entry->next;
2613 				}
2614 			}
2615 			last_timestamp = map->timestamp;
2616 			if (rv != KERN_SUCCESS) {
2617 				vm_map_wire_entry_failure(map, entry, faddr);
2618 				end = entry->end;
2619 				goto done;
2620 			}
2621 		} else if (!user_wire ||
2622 			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2623 			entry->wired_count++;
2624 		}
2625 		/*
2626 		 * Check the map for holes in the specified region.
2627 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2628 		 */
2629 	next_entry:
2630 		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2631 		    (entry->end < end && (entry->next == &map->header ||
2632 		    entry->next->start > entry->end))) {
2633 			end = entry->end;
2634 			rv = KERN_INVALID_ADDRESS;
2635 			goto done;
2636 		}
2637 		entry = entry->next;
2638 	}
2639 	rv = KERN_SUCCESS;
2640 done:
2641 	need_wakeup = FALSE;
2642 	if (first_entry == NULL) {
2643 		result = vm_map_lookup_entry(map, start, &first_entry);
2644 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2645 			first_entry = first_entry->next;
2646 		else
2647 			KASSERT(result, ("vm_map_wire: lookup failed"));
2648 	}
2649 	for (entry = first_entry; entry != &map->header && entry->start < end;
2650 	    entry = entry->next) {
2651 		if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
2652 			goto next_entry_done;
2653 
2654 		/*
2655 		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2656 		 * space in the unwired region could have been mapped
2657 		 * while the map lock was dropped for faulting in the
2658 		 * pages or draining MAP_ENTRY_IN_TRANSITION.
2659 		 * Moreover, another thread could be simultaneously
2660 		 * wiring this new mapping entry.  Detect these cases
2661 		 * and skip any entries marked as in transition by us.
2662 		 */
2663 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2664 		    entry->wiring_thread != curthread) {
2665 			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2666 			    ("vm_map_wire: !HOLESOK and new/changed entry"));
2667 			continue;
2668 		}
2669 
2670 		if (rv == KERN_SUCCESS) {
2671 			if (user_wire)
2672 				entry->eflags |= MAP_ENTRY_USER_WIRED;
2673 		} else if (entry->wired_count == -1) {
2674 			/*
2675 			 * Wiring failed on this entry.  Thus, unwiring is
2676 			 * unnecessary.
2677 			 */
2678 			entry->wired_count = 0;
2679 		} else if (!user_wire ||
2680 		    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2681 			/*
2682 			 * Undo the wiring.  Wiring succeeded on this entry
2683 			 * but failed on a later entry.
2684 			 */
2685 			if (entry->wired_count == 1)
2686 				vm_map_entry_unwire(map, entry);
2687 			else
2688 				entry->wired_count--;
2689 		}
2690 	next_entry_done:
2691 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2692 		    ("vm_map_wire: in-transition flag missing %p", entry));
2693 		KASSERT(entry->wiring_thread == curthread,
2694 		    ("vm_map_wire: alien wire %p", entry));
2695 		entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
2696 		    MAP_ENTRY_WIRE_SKIPPED);
2697 		entry->wiring_thread = NULL;
2698 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2699 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2700 			need_wakeup = TRUE;
2701 		}
2702 		vm_map_simplify_entry(map, entry);
2703 	}
2704 	vm_map_unlock(map);
2705 	if (need_wakeup)
2706 		vm_map_wakeup(map);
2707 	return (rv);
2708 }
2709 
2710 /*
2711  * vm_map_sync
2712  *
2713  * Push any dirty cached pages in the address range to their pager.
2714  * If syncio is TRUE, dirty pages are written synchronously.
2715  * If invalidate is TRUE, any cached pages are freed as well.
2716  *
2717  * If the size of the region from start to end is zero, we are
2718  * supposed to flush all modified pages within the region containing
2719  * start.  Unfortunately, a region can be split or coalesced with
2720  * neighboring regions, making it difficult to determine what the
2721  * original region was.  Therefore, we approximate this requirement by
2722  * flushing the current region containing start.
2723  *
2724  * Returns an error if any part of the specified range is not mapped.
2725  */
2726 int
2727 vm_map_sync(
2728 	vm_map_t map,
2729 	vm_offset_t start,
2730 	vm_offset_t end,
2731 	boolean_t syncio,
2732 	boolean_t invalidate)
2733 {
2734 	vm_map_entry_t current;
2735 	vm_map_entry_t entry;
2736 	vm_size_t size;
2737 	vm_object_t object;
2738 	vm_ooffset_t offset;
2739 	unsigned int last_timestamp;
2740 	boolean_t failed;
2741 
2742 	vm_map_lock_read(map);
2743 	VM_MAP_RANGE_CHECK(map, start, end);
2744 	if (!vm_map_lookup_entry(map, start, &entry)) {
2745 		vm_map_unlock_read(map);
2746 		return (KERN_INVALID_ADDRESS);
2747 	} else if (start == end) {
2748 		start = entry->start;
2749 		end = entry->end;
2750 	}
2751 	/*
2752 	 * Make a first pass to check for user-wired memory and holes.
2753 	 */
2754 	for (current = entry; current != &map->header && current->start < end;
2755 	    current = current->next) {
2756 		if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
2757 			vm_map_unlock_read(map);
2758 			return (KERN_INVALID_ARGUMENT);
2759 		}
2760 		if (end > current->end &&
2761 		    (current->next == &map->header ||
2762 			current->end != current->next->start)) {
2763 			vm_map_unlock_read(map);
2764 			return (KERN_INVALID_ADDRESS);
2765 		}
2766 	}
2767 
2768 	if (invalidate)
2769 		pmap_remove(map->pmap, start, end);
2770 	failed = FALSE;
2771 
2772 	/*
2773 	 * Make a second pass, cleaning/uncaching pages from the indicated
2774 	 * objects as we go.
2775 	 */
2776 	for (current = entry; current != &map->header && current->start < end;) {
2777 		offset = current->offset + (start - current->start);
2778 		size = (end <= current->end ? end : current->end) - start;
2779 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2780 			vm_map_t smap;
2781 			vm_map_entry_t tentry;
2782 			vm_size_t tsize;
2783 
2784 			smap = current->object.sub_map;
2785 			vm_map_lock_read(smap);
2786 			(void) vm_map_lookup_entry(smap, offset, &tentry);
2787 			tsize = tentry->end - offset;
2788 			if (tsize < size)
2789 				size = tsize;
2790 			object = tentry->object.vm_object;
2791 			offset = tentry->offset + (offset - tentry->start);
2792 			vm_map_unlock_read(smap);
2793 		} else {
2794 			object = current->object.vm_object;
2795 		}
2796 		vm_object_reference(object);
2797 		last_timestamp = map->timestamp;
2798 		vm_map_unlock_read(map);
2799 		if (!vm_object_sync(object, offset, size, syncio, invalidate))
2800 			failed = TRUE;
2801 		start += size;
2802 		vm_object_deallocate(object);
2803 		vm_map_lock_read(map);
2804 		if (last_timestamp == map->timestamp ||
2805 		    !vm_map_lookup_entry(map, start, &current))
2806 			current = current->next;
2807 	}
2808 
2809 	vm_map_unlock_read(map);
2810 	return (failed ? KERN_FAILURE : KERN_SUCCESS);
2811 }
2812 
2813 /*
2814  *	vm_map_entry_unwire:	[ internal use only ]
2815  *
2816  *	Make the region specified by this entry pageable.
2817  *
2818  *	The map in question should be locked.
2819  *	[This is the reason for this routine's existence.]
2820  */
2821 static void
2822 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2823 {
2824 
2825 	VM_MAP_ASSERT_LOCKED(map);
2826 	KASSERT(entry->wired_count > 0,
2827 	    ("vm_map_entry_unwire: entry %p isn't wired", entry));
2828 	pmap_unwire(map->pmap, entry->start, entry->end);
2829 	vm_object_unwire(entry->object.vm_object, entry->offset, entry->end -
2830 	    entry->start, PQ_ACTIVE);
2831 	entry->wired_count = 0;
2832 }
2833 
2834 static void
2835 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
2836 {
2837 
2838 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
2839 		vm_object_deallocate(entry->object.vm_object);
2840 	uma_zfree(system_map ? kmapentzone : mapentzone, entry);
2841 }
2842 
2843 /*
2844  *	vm_map_entry_delete:	[ internal use only ]
2845  *
2846  *	Deallocate the given entry from the target map.
2847  */
2848 static void
2849 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
2850 {
2851 	vm_object_t object;
2852 	vm_pindex_t offidxstart, offidxend, count, size1;
2853 	vm_ooffset_t size;
2854 
2855 	vm_map_entry_unlink(map, entry);
2856 	object = entry->object.vm_object;
2857 	size = entry->end - entry->start;
2858 	map->size -= size;
2859 
2860 	if (entry->cred != NULL) {
2861 		swap_release_by_cred(size, entry->cred);
2862 		crfree(entry->cred);
2863 	}
2864 
2865 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2866 	    (object != NULL)) {
2867 		KASSERT(entry->cred == NULL || object->cred == NULL ||
2868 		    (entry->eflags & MAP_ENTRY_NEEDS_COPY),
2869 		    ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
2870 		count = OFF_TO_IDX(size);
2871 		offidxstart = OFF_TO_IDX(entry->offset);
2872 		offidxend = offidxstart + count;
2873 		VM_OBJECT_WLOCK(object);
2874 		if (object->ref_count != 1 &&
2875 		    ((object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
2876 		    object == kernel_object || object == kmem_object)) {
2877 			vm_object_collapse(object);
2878 
2879 			/*
2880 			 * The option OBJPR_NOTMAPPED can be passed here
2881 			 * because vm_map_delete() already performed
2882 			 * pmap_remove() on the only mapping to this range
2883 			 * of pages.
2884 			 */
2885 			vm_object_page_remove(object, offidxstart, offidxend,
2886 			    OBJPR_NOTMAPPED);
2887 			if (object->type == OBJT_SWAP)
2888 				swap_pager_freespace(object, offidxstart, count);
2889 			if (offidxend >= object->size &&
2890 			    offidxstart < object->size) {
2891 				size1 = object->size;
2892 				object->size = offidxstart;
2893 				if (object->cred != NULL) {
2894 					size1 -= object->size;
2895 					KASSERT(object->charge >= ptoa(size1),
2896 					    ("vm_map_entry_delete: object->charge < 0"));
2897 					swap_release_by_cred(ptoa(size1), object->cred);
2898 					object->charge -= ptoa(size1);
2899 				}
2900 			}
2901 		}
2902 		VM_OBJECT_WUNLOCK(object);
2903 	} else
2904 		entry->object.vm_object = NULL;
2905 	if (map->system_map)
2906 		vm_map_entry_deallocate(entry, TRUE);
2907 	else {
2908 		entry->next = curthread->td_map_def_user;
2909 		curthread->td_map_def_user = entry;
2910 	}
2911 }
2912 
2913 /*
2914  *	vm_map_delete:	[ internal use only ]
2915  *
2916  *	Deallocates the given address range from the target
2917  *	map.
2918  */
2919 int
2920 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
2921 {
2922 	vm_map_entry_t entry;
2923 	vm_map_entry_t first_entry;
2924 
2925 	VM_MAP_ASSERT_LOCKED(map);
2926 	if (start == end)
2927 		return (KERN_SUCCESS);
2928 
2929 	/*
2930 	 * Find the start of the region, and clip it
2931 	 */
2932 	if (!vm_map_lookup_entry(map, start, &first_entry))
2933 		entry = first_entry->next;
2934 	else {
2935 		entry = first_entry;
2936 		vm_map_clip_start(map, entry, start);
2937 	}
2938 
2939 	/*
2940 	 * Step through all entries in this region
2941 	 */
2942 	while ((entry != &map->header) && (entry->start < end)) {
2943 		vm_map_entry_t next;
2944 
2945 		/*
2946 		 * Wait for wiring or unwiring of an entry to complete.
2947 		 * Also wait for any system wirings to disappear on
2948 		 * user maps.
2949 		 */
2950 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
2951 		    (vm_map_pmap(map) != kernel_pmap &&
2952 		    vm_map_entry_system_wired_count(entry) != 0)) {
2953 			unsigned int last_timestamp;
2954 			vm_offset_t saved_start;
2955 			vm_map_entry_t tmp_entry;
2956 
2957 			saved_start = entry->start;
2958 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2959 			last_timestamp = map->timestamp;
2960 			(void) vm_map_unlock_and_wait(map, 0);
2961 			vm_map_lock(map);
2962 			if (last_timestamp + 1 != map->timestamp) {
2963 				/*
2964 				 * Look again for the entry because the map was
2965 				 * modified while it was unlocked.
2966 				 * Specifically, the entry may have been
2967 				 * clipped, merged, or deleted.
2968 				 */
2969 				if (!vm_map_lookup_entry(map, saved_start,
2970 							 &tmp_entry))
2971 					entry = tmp_entry->next;
2972 				else {
2973 					entry = tmp_entry;
2974 					vm_map_clip_start(map, entry,
2975 							  saved_start);
2976 				}
2977 			}
2978 			continue;
2979 		}
2980 		vm_map_clip_end(map, entry, end);
2981 
2982 		next = entry->next;
2983 
2984 		/*
2985 		 * Unwire before removing addresses from the pmap; otherwise,
2986 		 * unwiring will put the entries back in the pmap.
2987 		 */
2988 		if (entry->wired_count != 0) {
2989 			vm_map_entry_unwire(map, entry);
2990 		}
2991 
2992 		pmap_remove(map->pmap, entry->start, entry->end);
2993 
2994 		/*
2995 		 * Delete the entry only after removing all pmap
2996 		 * entries pointing to its pages.  (Otherwise, its
2997 		 * page frames may be reallocated, and any modify bits
2998 		 * will be set in the wrong object!)
2999 		 */
3000 		vm_map_entry_delete(map, entry);
3001 		entry = next;
3002 	}
3003 	return (KERN_SUCCESS);
3004 }
3005 
3006 /*
3007  *	vm_map_remove:
3008  *
3009  *	Remove the given address range from the target map.
3010  *	This is the exported form of vm_map_delete.
3011  */
3012 int
3013 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3014 {
3015 	int result;
3016 
3017 	vm_map_lock(map);
3018 	VM_MAP_RANGE_CHECK(map, start, end);
3019 	result = vm_map_delete(map, start, end);
3020 	vm_map_unlock(map);
3021 	return (result);
3022 }
3023 
3024 /*
3025  *	vm_map_check_protection:
3026  *
3027  *	Assert that the target map allows the specified privilege on the
3028  *	entire address region given.  The entire region must be allocated.
3029  *
3030  *	WARNING!  This code does not and should not check whether the
3031  *	contents of the region is accessible.  For example a smaller file
3032  *	might be mapped into a larger address space.
3033  *
3034  *	NOTE!  This code is also called by munmap().
3035  *
3036  *	The map must be locked.  A read lock is sufficient.
3037  */
3038 boolean_t
3039 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
3040 			vm_prot_t protection)
3041 {
3042 	vm_map_entry_t entry;
3043 	vm_map_entry_t tmp_entry;
3044 
3045 	if (!vm_map_lookup_entry(map, start, &tmp_entry))
3046 		return (FALSE);
3047 	entry = tmp_entry;
3048 
3049 	while (start < end) {
3050 		if (entry == &map->header)
3051 			return (FALSE);
3052 		/*
3053 		 * No holes allowed!
3054 		 */
3055 		if (start < entry->start)
3056 			return (FALSE);
3057 		/*
3058 		 * Check protection associated with entry.
3059 		 */
3060 		if ((entry->protection & protection) != protection)
3061 			return (FALSE);
3062 		/* go to next entry */
3063 		start = entry->end;
3064 		entry = entry->next;
3065 	}
3066 	return (TRUE);
3067 }
3068 
3069 /*
3070  *	vm_map_copy_entry:
3071  *
3072  *	Copies the contents of the source entry to the destination
3073  *	entry.  The entries *must* be aligned properly.
3074  */
3075 static void
3076 vm_map_copy_entry(
3077 	vm_map_t src_map,
3078 	vm_map_t dst_map,
3079 	vm_map_entry_t src_entry,
3080 	vm_map_entry_t dst_entry,
3081 	vm_ooffset_t *fork_charge)
3082 {
3083 	vm_object_t src_object;
3084 	vm_map_entry_t fake_entry;
3085 	vm_offset_t size;
3086 	struct ucred *cred;
3087 	int charged;
3088 
3089 	VM_MAP_ASSERT_LOCKED(dst_map);
3090 
3091 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
3092 		return;
3093 
3094 	if (src_entry->wired_count == 0 ||
3095 	    (src_entry->protection & VM_PROT_WRITE) == 0) {
3096 		/*
3097 		 * If the source entry is marked needs_copy, it is already
3098 		 * write-protected.
3099 		 */
3100 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
3101 		    (src_entry->protection & VM_PROT_WRITE) != 0) {
3102 			pmap_protect(src_map->pmap,
3103 			    src_entry->start,
3104 			    src_entry->end,
3105 			    src_entry->protection & ~VM_PROT_WRITE);
3106 		}
3107 
3108 		/*
3109 		 * Make a copy of the object.
3110 		 */
3111 		size = src_entry->end - src_entry->start;
3112 		if ((src_object = src_entry->object.vm_object) != NULL) {
3113 			VM_OBJECT_WLOCK(src_object);
3114 			charged = ENTRY_CHARGED(src_entry);
3115 			if ((src_object->handle == NULL) &&
3116 				(src_object->type == OBJT_DEFAULT ||
3117 				 src_object->type == OBJT_SWAP)) {
3118 				vm_object_collapse(src_object);
3119 				if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
3120 					vm_object_split(src_entry);
3121 					src_object = src_entry->object.vm_object;
3122 				}
3123 			}
3124 			vm_object_reference_locked(src_object);
3125 			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3126 			if (src_entry->cred != NULL &&
3127 			    !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3128 				KASSERT(src_object->cred == NULL,
3129 				    ("OVERCOMMIT: vm_map_copy_entry: cred %p",
3130 				     src_object));
3131 				src_object->cred = src_entry->cred;
3132 				src_object->charge = size;
3133 			}
3134 			VM_OBJECT_WUNLOCK(src_object);
3135 			dst_entry->object.vm_object = src_object;
3136 			if (charged) {
3137 				cred = curthread->td_ucred;
3138 				crhold(cred);
3139 				dst_entry->cred = cred;
3140 				*fork_charge += size;
3141 				if (!(src_entry->eflags &
3142 				      MAP_ENTRY_NEEDS_COPY)) {
3143 					crhold(cred);
3144 					src_entry->cred = cred;
3145 					*fork_charge += size;
3146 				}
3147 			}
3148 			src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
3149 			dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
3150 			dst_entry->offset = src_entry->offset;
3151 			if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3152 				/*
3153 				 * MAP_ENTRY_VN_WRITECNT cannot
3154 				 * indicate write reference from
3155 				 * src_entry, since the entry is
3156 				 * marked as needs copy.  Allocate a
3157 				 * fake entry that is used to
3158 				 * decrement object->un_pager.vnp.writecount
3159 				 * at the appropriate time.  Attach
3160 				 * fake_entry to the deferred list.
3161 				 */
3162 				fake_entry = vm_map_entry_create(dst_map);
3163 				fake_entry->eflags = MAP_ENTRY_VN_WRITECNT;
3164 				src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT;
3165 				vm_object_reference(src_object);
3166 				fake_entry->object.vm_object = src_object;
3167 				fake_entry->start = src_entry->start;
3168 				fake_entry->end = src_entry->end;
3169 				fake_entry->next = curthread->td_map_def_user;
3170 				curthread->td_map_def_user = fake_entry;
3171 			}
3172 		} else {
3173 			dst_entry->object.vm_object = NULL;
3174 			dst_entry->offset = 0;
3175 			if (src_entry->cred != NULL) {
3176 				dst_entry->cred = curthread->td_ucred;
3177 				crhold(dst_entry->cred);
3178 				*fork_charge += size;
3179 			}
3180 		}
3181 
3182 		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
3183 		    dst_entry->end - dst_entry->start, src_entry->start);
3184 	} else {
3185 		/*
3186 		 * We don't want to make writeable wired pages copy-on-write.
3187 		 * Immediately copy these pages into the new map by simulating
3188 		 * page faults.  The new pages are pageable.
3189 		 */
3190 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3191 		    fork_charge);
3192 	}
3193 }
3194 
3195 /*
3196  * vmspace_map_entry_forked:
3197  * Update the newly-forked vmspace each time a map entry is inherited
3198  * or copied.  The values for vm_dsize and vm_tsize are approximate
3199  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3200  */
3201 static void
3202 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3203     vm_map_entry_t entry)
3204 {
3205 	vm_size_t entrysize;
3206 	vm_offset_t newend;
3207 
3208 	entrysize = entry->end - entry->start;
3209 	vm2->vm_map.size += entrysize;
3210 	if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3211 		vm2->vm_ssize += btoc(entrysize);
3212 	} else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3213 	    entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3214 		newend = MIN(entry->end,
3215 		    (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3216 		vm2->vm_dsize += btoc(newend - entry->start);
3217 	} else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3218 	    entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3219 		newend = MIN(entry->end,
3220 		    (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3221 		vm2->vm_tsize += btoc(newend - entry->start);
3222 	}
3223 }
3224 
3225 /*
3226  * vmspace_fork:
3227  * Create a new process vmspace structure and vm_map
3228  * based on those of an existing process.  The new map
3229  * is based on the old map, according to the inheritance
3230  * values on the regions in that map.
3231  *
3232  * XXX It might be worth coalescing the entries added to the new vmspace.
3233  *
3234  * The source map must not be locked.
3235  */
3236 struct vmspace *
3237 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3238 {
3239 	struct vmspace *vm2;
3240 	vm_map_t new_map, old_map;
3241 	vm_map_entry_t new_entry, old_entry;
3242 	vm_object_t object;
3243 	int locked;
3244 
3245 	old_map = &vm1->vm_map;
3246 	/* Copy immutable fields of vm1 to vm2. */
3247 	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset, NULL);
3248 	if (vm2 == NULL)
3249 		return (NULL);
3250 	vm2->vm_taddr = vm1->vm_taddr;
3251 	vm2->vm_daddr = vm1->vm_daddr;
3252 	vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3253 	vm_map_lock(old_map);
3254 	if (old_map->busy)
3255 		vm_map_wait_busy(old_map);
3256 	new_map = &vm2->vm_map;
3257 	locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3258 	KASSERT(locked, ("vmspace_fork: lock failed"));
3259 
3260 	old_entry = old_map->header.next;
3261 
3262 	while (old_entry != &old_map->header) {
3263 		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3264 			panic("vm_map_fork: encountered a submap");
3265 
3266 		switch (old_entry->inheritance) {
3267 		case VM_INHERIT_NONE:
3268 			break;
3269 
3270 		case VM_INHERIT_SHARE:
3271 			/*
3272 			 * Clone the entry, creating the shared object if necessary.
3273 			 */
3274 			object = old_entry->object.vm_object;
3275 			if (object == NULL) {
3276 				object = vm_object_allocate(OBJT_DEFAULT,
3277 					atop(old_entry->end - old_entry->start));
3278 				old_entry->object.vm_object = object;
3279 				old_entry->offset = 0;
3280 				if (old_entry->cred != NULL) {
3281 					object->cred = old_entry->cred;
3282 					object->charge = old_entry->end -
3283 					    old_entry->start;
3284 					old_entry->cred = NULL;
3285 				}
3286 			}
3287 
3288 			/*
3289 			 * Add the reference before calling vm_object_shadow
3290 			 * to insure that a shadow object is created.
3291 			 */
3292 			vm_object_reference(object);
3293 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3294 				vm_object_shadow(&old_entry->object.vm_object,
3295 				    &old_entry->offset,
3296 				    old_entry->end - old_entry->start);
3297 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3298 				/* Transfer the second reference too. */
3299 				vm_object_reference(
3300 				    old_entry->object.vm_object);
3301 
3302 				/*
3303 				 * As in vm_map_simplify_entry(), the
3304 				 * vnode lock will not be acquired in
3305 				 * this call to vm_object_deallocate().
3306 				 */
3307 				vm_object_deallocate(object);
3308 				object = old_entry->object.vm_object;
3309 			}
3310 			VM_OBJECT_WLOCK(object);
3311 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
3312 			if (old_entry->cred != NULL) {
3313 				KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3314 				object->cred = old_entry->cred;
3315 				object->charge = old_entry->end - old_entry->start;
3316 				old_entry->cred = NULL;
3317 			}
3318 
3319 			/*
3320 			 * Assert the correct state of the vnode
3321 			 * v_writecount while the object is locked, to
3322 			 * not relock it later for the assertion
3323 			 * correctness.
3324 			 */
3325 			if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT &&
3326 			    object->type == OBJT_VNODE) {
3327 				KASSERT(((struct vnode *)object->handle)->
3328 				    v_writecount > 0,
3329 				    ("vmspace_fork: v_writecount %p", object));
3330 				KASSERT(object->un_pager.vnp.writemappings > 0,
3331 				    ("vmspace_fork: vnp.writecount %p",
3332 				    object));
3333 			}
3334 			VM_OBJECT_WUNLOCK(object);
3335 
3336 			/*
3337 			 * Clone the entry, referencing the shared object.
3338 			 */
3339 			new_entry = vm_map_entry_create(new_map);
3340 			*new_entry = *old_entry;
3341 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3342 			    MAP_ENTRY_IN_TRANSITION);
3343 			new_entry->wiring_thread = NULL;
3344 			new_entry->wired_count = 0;
3345 			if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3346 				vnode_pager_update_writecount(object,
3347 				    new_entry->start, new_entry->end);
3348 			}
3349 
3350 			/*
3351 			 * Insert the entry into the new map -- we know we're
3352 			 * inserting at the end of the new map.
3353 			 */
3354 			vm_map_entry_link(new_map, new_map->header.prev,
3355 			    new_entry);
3356 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3357 
3358 			/*
3359 			 * Update the physical map
3360 			 */
3361 			pmap_copy(new_map->pmap, old_map->pmap,
3362 			    new_entry->start,
3363 			    (old_entry->end - old_entry->start),
3364 			    old_entry->start);
3365 			break;
3366 
3367 		case VM_INHERIT_COPY:
3368 			/*
3369 			 * Clone the entry and link into the map.
3370 			 */
3371 			new_entry = vm_map_entry_create(new_map);
3372 			*new_entry = *old_entry;
3373 			/*
3374 			 * Copied entry is COW over the old object.
3375 			 */
3376 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3377 			    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT);
3378 			new_entry->wiring_thread = NULL;
3379 			new_entry->wired_count = 0;
3380 			new_entry->object.vm_object = NULL;
3381 			new_entry->cred = NULL;
3382 			vm_map_entry_link(new_map, new_map->header.prev,
3383 			    new_entry);
3384 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3385 			vm_map_copy_entry(old_map, new_map, old_entry,
3386 			    new_entry, fork_charge);
3387 			break;
3388 		}
3389 		old_entry = old_entry->next;
3390 	}
3391 	/*
3392 	 * Use inlined vm_map_unlock() to postpone handling the deferred
3393 	 * map entries, which cannot be done until both old_map and
3394 	 * new_map locks are released.
3395 	 */
3396 	sx_xunlock(&old_map->lock);
3397 	sx_xunlock(&new_map->lock);
3398 	vm_map_process_deferred();
3399 
3400 	return (vm2);
3401 }
3402 
3403 int
3404 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3405     vm_prot_t prot, vm_prot_t max, int cow)
3406 {
3407 	vm_size_t growsize, init_ssize;
3408 	rlim_t lmemlim, vmemlim;
3409 	int rv;
3410 
3411 	growsize = sgrowsiz;
3412 	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3413 	vm_map_lock(map);
3414 	PROC_LOCK(curproc);
3415 	lmemlim = lim_cur(curproc, RLIMIT_MEMLOCK);
3416 	vmemlim = lim_cur(curproc, RLIMIT_VMEM);
3417 	PROC_UNLOCK(curproc);
3418 	if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3419 		if (ptoa(pmap_wired_count(map->pmap)) + init_ssize > lmemlim) {
3420 			rv = KERN_NO_SPACE;
3421 			goto out;
3422 		}
3423 	}
3424 	/* If we would blow our VMEM resource limit, no go */
3425 	if (map->size + init_ssize > vmemlim) {
3426 		rv = KERN_NO_SPACE;
3427 		goto out;
3428 	}
3429 	rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
3430 	    max, cow);
3431 out:
3432 	vm_map_unlock(map);
3433 	return (rv);
3434 }
3435 
3436 static int
3437 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3438     vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
3439 {
3440 	vm_map_entry_t new_entry, prev_entry;
3441 	vm_offset_t bot, top;
3442 	vm_size_t init_ssize;
3443 	int orient, rv;
3444 
3445 	/*
3446 	 * The stack orientation is piggybacked with the cow argument.
3447 	 * Extract it into orient and mask the cow argument so that we
3448 	 * don't pass it around further.
3449 	 * NOTE: We explicitly allow bi-directional stacks.
3450 	 */
3451 	orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP);
3452 	KASSERT(orient != 0, ("No stack grow direction"));
3453 
3454 	if (addrbos < vm_map_min(map) ||
3455 	    addrbos > vm_map_max(map) ||
3456 	    addrbos + max_ssize < addrbos)
3457 		return (KERN_NO_SPACE);
3458 
3459 	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3460 
3461 	/* If addr is already mapped, no go */
3462 	if (vm_map_lookup_entry(map, addrbos, &prev_entry))
3463 		return (KERN_NO_SPACE);
3464 
3465 	/*
3466 	 * If we can't accomodate max_ssize in the current mapping, no go.
3467 	 * However, we need to be aware that subsequent user mappings might
3468 	 * map into the space we have reserved for stack, and currently this
3469 	 * space is not protected.
3470 	 *
3471 	 * Hopefully we will at least detect this condition when we try to
3472 	 * grow the stack.
3473 	 */
3474 	if ((prev_entry->next != &map->header) &&
3475 	    (prev_entry->next->start < addrbos + max_ssize))
3476 		return (KERN_NO_SPACE);
3477 
3478 	/*
3479 	 * We initially map a stack of only init_ssize.  We will grow as
3480 	 * needed later.  Depending on the orientation of the stack (i.e.
3481 	 * the grow direction) we either map at the top of the range, the
3482 	 * bottom of the range or in the middle.
3483 	 *
3484 	 * Note: we would normally expect prot and max to be VM_PROT_ALL,
3485 	 * and cow to be 0.  Possibly we should eliminate these as input
3486 	 * parameters, and just pass these values here in the insert call.
3487 	 */
3488 	if (orient == MAP_STACK_GROWS_DOWN)
3489 		bot = addrbos + max_ssize - init_ssize;
3490 	else if (orient == MAP_STACK_GROWS_UP)
3491 		bot = addrbos;
3492 	else
3493 		bot = round_page(addrbos + max_ssize/2 - init_ssize/2);
3494 	top = bot + init_ssize;
3495 	rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
3496 
3497 	/* Now set the avail_ssize amount. */
3498 	if (rv == KERN_SUCCESS) {
3499 		new_entry = prev_entry->next;
3500 		if (new_entry->end != top || new_entry->start != bot)
3501 			panic("Bad entry start/end for new stack entry");
3502 
3503 		new_entry->avail_ssize = max_ssize - init_ssize;
3504 		KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
3505 		    (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
3506 		    ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
3507 		KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
3508 		    (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
3509 		    ("new entry lacks MAP_ENTRY_GROWS_UP"));
3510 	}
3511 
3512 	return (rv);
3513 }
3514 
3515 static int stack_guard_page = 0;
3516 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
3517     &stack_guard_page, 0,
3518     "Insert stack guard page ahead of the growable segments.");
3519 
3520 /* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
3521  * desired address is already mapped, or if we successfully grow
3522  * the stack.  Also returns KERN_SUCCESS if addr is outside the
3523  * stack range (this is strange, but preserves compatibility with
3524  * the grow function in vm_machdep.c).
3525  */
3526 int
3527 vm_map_growstack(struct proc *p, vm_offset_t addr)
3528 {
3529 	vm_map_entry_t next_entry, prev_entry;
3530 	vm_map_entry_t new_entry, stack_entry;
3531 	struct vmspace *vm = p->p_vmspace;
3532 	vm_map_t map = &vm->vm_map;
3533 	vm_offset_t end;
3534 	vm_size_t growsize;
3535 	size_t grow_amount, max_grow;
3536 	rlim_t lmemlim, stacklim, vmemlim;
3537 	int is_procstack, rv;
3538 	struct ucred *cred;
3539 #ifdef notyet
3540 	uint64_t limit;
3541 #endif
3542 #ifdef RACCT
3543 	int error;
3544 #endif
3545 
3546 Retry:
3547 	PROC_LOCK(p);
3548 	lmemlim = lim_cur(p, RLIMIT_MEMLOCK);
3549 	stacklim = lim_cur(p, RLIMIT_STACK);
3550 	vmemlim = lim_cur(p, RLIMIT_VMEM);
3551 	PROC_UNLOCK(p);
3552 
3553 	vm_map_lock_read(map);
3554 
3555 	/* If addr is already in the entry range, no need to grow.*/
3556 	if (vm_map_lookup_entry(map, addr, &prev_entry)) {
3557 		vm_map_unlock_read(map);
3558 		return (KERN_SUCCESS);
3559 	}
3560 
3561 	next_entry = prev_entry->next;
3562 	if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) {
3563 		/*
3564 		 * This entry does not grow upwards. Since the address lies
3565 		 * beyond this entry, the next entry (if one exists) has to
3566 		 * be a downward growable entry. The entry list header is
3567 		 * never a growable entry, so it suffices to check the flags.
3568 		 */
3569 		if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) {
3570 			vm_map_unlock_read(map);
3571 			return (KERN_SUCCESS);
3572 		}
3573 		stack_entry = next_entry;
3574 	} else {
3575 		/*
3576 		 * This entry grows upward. If the next entry does not at
3577 		 * least grow downwards, this is the entry we need to grow.
3578 		 * otherwise we have two possible choices and we have to
3579 		 * select one.
3580 		 */
3581 		if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) {
3582 			/*
3583 			 * We have two choices; grow the entry closest to
3584 			 * the address to minimize the amount of growth.
3585 			 */
3586 			if (addr - prev_entry->end <= next_entry->start - addr)
3587 				stack_entry = prev_entry;
3588 			else
3589 				stack_entry = next_entry;
3590 		} else
3591 			stack_entry = prev_entry;
3592 	}
3593 
3594 	if (stack_entry == next_entry) {
3595 		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo"));
3596 		KASSERT(addr < stack_entry->start, ("foo"));
3597 		end = (prev_entry != &map->header) ? prev_entry->end :
3598 		    stack_entry->start - stack_entry->avail_ssize;
3599 		grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE);
3600 		max_grow = stack_entry->start - end;
3601 	} else {
3602 		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo"));
3603 		KASSERT(addr >= stack_entry->end, ("foo"));
3604 		end = (next_entry != &map->header) ? next_entry->start :
3605 		    stack_entry->end + stack_entry->avail_ssize;
3606 		grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE);
3607 		max_grow = end - stack_entry->end;
3608 	}
3609 
3610 	if (grow_amount > stack_entry->avail_ssize) {
3611 		vm_map_unlock_read(map);
3612 		return (KERN_NO_SPACE);
3613 	}
3614 
3615 	/*
3616 	 * If there is no longer enough space between the entries nogo, and
3617 	 * adjust the available space.  Note: this  should only happen if the
3618 	 * user has mapped into the stack area after the stack was created,
3619 	 * and is probably an error.
3620 	 *
3621 	 * This also effectively destroys any guard page the user might have
3622 	 * intended by limiting the stack size.
3623 	 */
3624 	if (grow_amount + (stack_guard_page ? PAGE_SIZE : 0) > max_grow) {
3625 		if (vm_map_lock_upgrade(map))
3626 			goto Retry;
3627 
3628 		stack_entry->avail_ssize = max_grow;
3629 
3630 		vm_map_unlock(map);
3631 		return (KERN_NO_SPACE);
3632 	}
3633 
3634 	is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr) ? 1 : 0;
3635 
3636 	/*
3637 	 * If this is the main process stack, see if we're over the stack
3638 	 * limit.
3639 	 */
3640 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3641 		vm_map_unlock_read(map);
3642 		return (KERN_NO_SPACE);
3643 	}
3644 #ifdef RACCT
3645 	PROC_LOCK(p);
3646 	if (is_procstack &&
3647 	    racct_set(p, RACCT_STACK, ctob(vm->vm_ssize) + grow_amount)) {
3648 		PROC_UNLOCK(p);
3649 		vm_map_unlock_read(map);
3650 		return (KERN_NO_SPACE);
3651 	}
3652 	PROC_UNLOCK(p);
3653 #endif
3654 
3655 	/* Round up the grow amount modulo sgrowsiz */
3656 	growsize = sgrowsiz;
3657 	grow_amount = roundup(grow_amount, growsize);
3658 	if (grow_amount > stack_entry->avail_ssize)
3659 		grow_amount = stack_entry->avail_ssize;
3660 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3661 		grow_amount = trunc_page((vm_size_t)stacklim) -
3662 		    ctob(vm->vm_ssize);
3663 	}
3664 #ifdef notyet
3665 	PROC_LOCK(p);
3666 	limit = racct_get_available(p, RACCT_STACK);
3667 	PROC_UNLOCK(p);
3668 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
3669 		grow_amount = limit - ctob(vm->vm_ssize);
3670 #endif
3671 	if (!old_mlock && map->flags & MAP_WIREFUTURE) {
3672 		if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
3673 			vm_map_unlock_read(map);
3674 			rv = KERN_NO_SPACE;
3675 			goto out;
3676 		}
3677 #ifdef RACCT
3678 		PROC_LOCK(p);
3679 		if (racct_set(p, RACCT_MEMLOCK,
3680 		    ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
3681 			PROC_UNLOCK(p);
3682 			vm_map_unlock_read(map);
3683 			rv = KERN_NO_SPACE;
3684 			goto out;
3685 		}
3686 		PROC_UNLOCK(p);
3687 #endif
3688 	}
3689 	/* If we would blow our VMEM resource limit, no go */
3690 	if (map->size + grow_amount > vmemlim) {
3691 		vm_map_unlock_read(map);
3692 		rv = KERN_NO_SPACE;
3693 		goto out;
3694 	}
3695 #ifdef RACCT
3696 	PROC_LOCK(p);
3697 	if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
3698 		PROC_UNLOCK(p);
3699 		vm_map_unlock_read(map);
3700 		rv = KERN_NO_SPACE;
3701 		goto out;
3702 	}
3703 	PROC_UNLOCK(p);
3704 #endif
3705 
3706 	if (vm_map_lock_upgrade(map))
3707 		goto Retry;
3708 
3709 	if (stack_entry == next_entry) {
3710 		/*
3711 		 * Growing downward.
3712 		 */
3713 		/* Get the preliminary new entry start value */
3714 		addr = stack_entry->start - grow_amount;
3715 
3716 		/*
3717 		 * If this puts us into the previous entry, cut back our
3718 		 * growth to the available space. Also, see the note above.
3719 		 */
3720 		if (addr < end) {
3721 			stack_entry->avail_ssize = max_grow;
3722 			addr = end;
3723 			if (stack_guard_page)
3724 				addr += PAGE_SIZE;
3725 		}
3726 
3727 		rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start,
3728 		    next_entry->protection, next_entry->max_protection,
3729 		    MAP_STACK_GROWS_DOWN);
3730 
3731 		/* Adjust the available stack space by the amount we grew. */
3732 		if (rv == KERN_SUCCESS) {
3733 			new_entry = prev_entry->next;
3734 			KASSERT(new_entry == stack_entry->prev, ("foo"));
3735 			KASSERT(new_entry->end == stack_entry->start, ("foo"));
3736 			KASSERT(new_entry->start == addr, ("foo"));
3737 			KASSERT((new_entry->eflags & MAP_ENTRY_GROWS_DOWN) !=
3738 			    0, ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
3739 			grow_amount = new_entry->end - new_entry->start;
3740 			new_entry->avail_ssize = stack_entry->avail_ssize -
3741 			    grow_amount;
3742 			stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN;
3743 		}
3744 	} else {
3745 		/*
3746 		 * Growing upward.
3747 		 */
3748 		addr = stack_entry->end + grow_amount;
3749 
3750 		/*
3751 		 * If this puts us into the next entry, cut back our growth
3752 		 * to the available space. Also, see the note above.
3753 		 */
3754 		if (addr > end) {
3755 			stack_entry->avail_ssize = end - stack_entry->end;
3756 			addr = end;
3757 			if (stack_guard_page)
3758 				addr -= PAGE_SIZE;
3759 		}
3760 
3761 		grow_amount = addr - stack_entry->end;
3762 		cred = stack_entry->cred;
3763 		if (cred == NULL && stack_entry->object.vm_object != NULL)
3764 			cred = stack_entry->object.vm_object->cred;
3765 		if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
3766 			rv = KERN_NO_SPACE;
3767 		/* Grow the underlying object if applicable. */
3768 		else if (stack_entry->object.vm_object == NULL ||
3769 			 vm_object_coalesce(stack_entry->object.vm_object,
3770 			 stack_entry->offset,
3771 			 (vm_size_t)(stack_entry->end - stack_entry->start),
3772 			 (vm_size_t)grow_amount, cred != NULL)) {
3773 			map->size += (addr - stack_entry->end);
3774 			/* Update the current entry. */
3775 			stack_entry->end = addr;
3776 			stack_entry->avail_ssize -= grow_amount;
3777 			vm_map_entry_resize_free(map, stack_entry);
3778 			rv = KERN_SUCCESS;
3779 		} else
3780 			rv = KERN_FAILURE;
3781 	}
3782 
3783 	if (rv == KERN_SUCCESS && is_procstack)
3784 		vm->vm_ssize += btoc(grow_amount);
3785 
3786 	vm_map_unlock(map);
3787 
3788 	/*
3789 	 * Heed the MAP_WIREFUTURE flag if it was set for this process.
3790 	 */
3791 	if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) {
3792 		vm_map_wire(map,
3793 		    (stack_entry == next_entry) ? addr : addr - grow_amount,
3794 		    (stack_entry == next_entry) ? stack_entry->start : addr,
3795 		    (p->p_flag & P_SYSTEM)
3796 		    ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES
3797 		    : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES);
3798 	}
3799 
3800 out:
3801 #ifdef RACCT
3802 	if (rv != KERN_SUCCESS) {
3803 		PROC_LOCK(p);
3804 		error = racct_set(p, RACCT_VMEM, map->size);
3805 		KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
3806 		if (!old_mlock) {
3807 			error = racct_set(p, RACCT_MEMLOCK,
3808 			    ptoa(pmap_wired_count(map->pmap)));
3809 			KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
3810 		}
3811 	    	error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
3812 		KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
3813 		PROC_UNLOCK(p);
3814 	}
3815 #endif
3816 
3817 	return (rv);
3818 }
3819 
3820 /*
3821  * Unshare the specified VM space for exec.  If other processes are
3822  * mapped to it, then create a new one.  The new vmspace is null.
3823  */
3824 int
3825 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
3826 {
3827 	struct vmspace *oldvmspace = p->p_vmspace;
3828 	struct vmspace *newvmspace;
3829 
3830 	KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
3831 	    ("vmspace_exec recursed"));
3832 	newvmspace = vmspace_alloc(minuser, maxuser, NULL);
3833 	if (newvmspace == NULL)
3834 		return (ENOMEM);
3835 	newvmspace->vm_swrss = oldvmspace->vm_swrss;
3836 	/*
3837 	 * This code is written like this for prototype purposes.  The
3838 	 * goal is to avoid running down the vmspace here, but let the
3839 	 * other process's that are still using the vmspace to finally
3840 	 * run it down.  Even though there is little or no chance of blocking
3841 	 * here, it is a good idea to keep this form for future mods.
3842 	 */
3843 	PROC_VMSPACE_LOCK(p);
3844 	p->p_vmspace = newvmspace;
3845 	PROC_VMSPACE_UNLOCK(p);
3846 	if (p == curthread->td_proc)
3847 		pmap_activate(curthread);
3848 	curthread->td_pflags |= TDP_EXECVMSPC;
3849 	return (0);
3850 }
3851 
3852 /*
3853  * Unshare the specified VM space for forcing COW.  This
3854  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3855  */
3856 int
3857 vmspace_unshare(struct proc *p)
3858 {
3859 	struct vmspace *oldvmspace = p->p_vmspace;
3860 	struct vmspace *newvmspace;
3861 	vm_ooffset_t fork_charge;
3862 
3863 	if (oldvmspace->vm_refcnt == 1)
3864 		return (0);
3865 	fork_charge = 0;
3866 	newvmspace = vmspace_fork(oldvmspace, &fork_charge);
3867 	if (newvmspace == NULL)
3868 		return (ENOMEM);
3869 	if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
3870 		vmspace_free(newvmspace);
3871 		return (ENOMEM);
3872 	}
3873 	PROC_VMSPACE_LOCK(p);
3874 	p->p_vmspace = newvmspace;
3875 	PROC_VMSPACE_UNLOCK(p);
3876 	if (p == curthread->td_proc)
3877 		pmap_activate(curthread);
3878 	vmspace_free(oldvmspace);
3879 	return (0);
3880 }
3881 
3882 /*
3883  *	vm_map_lookup:
3884  *
3885  *	Finds the VM object, offset, and
3886  *	protection for a given virtual address in the
3887  *	specified map, assuming a page fault of the
3888  *	type specified.
3889  *
3890  *	Leaves the map in question locked for read; return
3891  *	values are guaranteed until a vm_map_lookup_done
3892  *	call is performed.  Note that the map argument
3893  *	is in/out; the returned map must be used in
3894  *	the call to vm_map_lookup_done.
3895  *
3896  *	A handle (out_entry) is returned for use in
3897  *	vm_map_lookup_done, to make that fast.
3898  *
3899  *	If a lookup is requested with "write protection"
3900  *	specified, the map may be changed to perform virtual
3901  *	copying operations, although the data referenced will
3902  *	remain the same.
3903  */
3904 int
3905 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
3906 	      vm_offset_t vaddr,
3907 	      vm_prot_t fault_typea,
3908 	      vm_map_entry_t *out_entry,	/* OUT */
3909 	      vm_object_t *object,		/* OUT */
3910 	      vm_pindex_t *pindex,		/* OUT */
3911 	      vm_prot_t *out_prot,		/* OUT */
3912 	      boolean_t *wired)			/* OUT */
3913 {
3914 	vm_map_entry_t entry;
3915 	vm_map_t map = *var_map;
3916 	vm_prot_t prot;
3917 	vm_prot_t fault_type = fault_typea;
3918 	vm_object_t eobject;
3919 	vm_size_t size;
3920 	struct ucred *cred;
3921 
3922 RetryLookup:;
3923 
3924 	vm_map_lock_read(map);
3925 
3926 	/*
3927 	 * Lookup the faulting address.
3928 	 */
3929 	if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
3930 		vm_map_unlock_read(map);
3931 		return (KERN_INVALID_ADDRESS);
3932 	}
3933 
3934 	entry = *out_entry;
3935 
3936 	/*
3937 	 * Handle submaps.
3938 	 */
3939 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3940 		vm_map_t old_map = map;
3941 
3942 		*var_map = map = entry->object.sub_map;
3943 		vm_map_unlock_read(old_map);
3944 		goto RetryLookup;
3945 	}
3946 
3947 	/*
3948 	 * Check whether this task is allowed to have this page.
3949 	 */
3950 	prot = entry->protection;
3951 	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3952 	if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
3953 		vm_map_unlock_read(map);
3954 		return (KERN_PROTECTION_FAILURE);
3955 	}
3956 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3957 	    (entry->eflags & MAP_ENTRY_COW) &&
3958 	    (fault_type & VM_PROT_WRITE)) {
3959 		vm_map_unlock_read(map);
3960 		return (KERN_PROTECTION_FAILURE);
3961 	}
3962 	if ((fault_typea & VM_PROT_COPY) != 0 &&
3963 	    (entry->max_protection & VM_PROT_WRITE) == 0 &&
3964 	    (entry->eflags & MAP_ENTRY_COW) == 0) {
3965 		vm_map_unlock_read(map);
3966 		return (KERN_PROTECTION_FAILURE);
3967 	}
3968 
3969 	/*
3970 	 * If this page is not pageable, we have to get it for all possible
3971 	 * accesses.
3972 	 */
3973 	*wired = (entry->wired_count != 0);
3974 	if (*wired)
3975 		fault_type = entry->protection;
3976 	size = entry->end - entry->start;
3977 	/*
3978 	 * If the entry was copy-on-write, we either ...
3979 	 */
3980 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3981 		/*
3982 		 * If we want to write the page, we may as well handle that
3983 		 * now since we've got the map locked.
3984 		 *
3985 		 * If we don't need to write the page, we just demote the
3986 		 * permissions allowed.
3987 		 */
3988 		if ((fault_type & VM_PROT_WRITE) != 0 ||
3989 		    (fault_typea & VM_PROT_COPY) != 0) {
3990 			/*
3991 			 * Make a new object, and place it in the object
3992 			 * chain.  Note that no new references have appeared
3993 			 * -- one just moved from the map to the new
3994 			 * object.
3995 			 */
3996 			if (vm_map_lock_upgrade(map))
3997 				goto RetryLookup;
3998 
3999 			if (entry->cred == NULL) {
4000 				/*
4001 				 * The debugger owner is charged for
4002 				 * the memory.
4003 				 */
4004 				cred = curthread->td_ucred;
4005 				crhold(cred);
4006 				if (!swap_reserve_by_cred(size, cred)) {
4007 					crfree(cred);
4008 					vm_map_unlock(map);
4009 					return (KERN_RESOURCE_SHORTAGE);
4010 				}
4011 				entry->cred = cred;
4012 			}
4013 			vm_object_shadow(&entry->object.vm_object,
4014 			    &entry->offset, size);
4015 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4016 			eobject = entry->object.vm_object;
4017 			if (eobject->cred != NULL) {
4018 				/*
4019 				 * The object was not shadowed.
4020 				 */
4021 				swap_release_by_cred(size, entry->cred);
4022 				crfree(entry->cred);
4023 				entry->cred = NULL;
4024 			} else if (entry->cred != NULL) {
4025 				VM_OBJECT_WLOCK(eobject);
4026 				eobject->cred = entry->cred;
4027 				eobject->charge = size;
4028 				VM_OBJECT_WUNLOCK(eobject);
4029 				entry->cred = NULL;
4030 			}
4031 
4032 			vm_map_lock_downgrade(map);
4033 		} else {
4034 			/*
4035 			 * We're attempting to read a copy-on-write page --
4036 			 * don't allow writes.
4037 			 */
4038 			prot &= ~VM_PROT_WRITE;
4039 		}
4040 	}
4041 
4042 	/*
4043 	 * Create an object if necessary.
4044 	 */
4045 	if (entry->object.vm_object == NULL &&
4046 	    !map->system_map) {
4047 		if (vm_map_lock_upgrade(map))
4048 			goto RetryLookup;
4049 		entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
4050 		    atop(size));
4051 		entry->offset = 0;
4052 		if (entry->cred != NULL) {
4053 			VM_OBJECT_WLOCK(entry->object.vm_object);
4054 			entry->object.vm_object->cred = entry->cred;
4055 			entry->object.vm_object->charge = size;
4056 			VM_OBJECT_WUNLOCK(entry->object.vm_object);
4057 			entry->cred = NULL;
4058 		}
4059 		vm_map_lock_downgrade(map);
4060 	}
4061 
4062 	/*
4063 	 * Return the object/offset from this entry.  If the entry was
4064 	 * copy-on-write or empty, it has been fixed up.
4065 	 */
4066 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4067 	*object = entry->object.vm_object;
4068 
4069 	*out_prot = prot;
4070 	return (KERN_SUCCESS);
4071 }
4072 
4073 /*
4074  *	vm_map_lookup_locked:
4075  *
4076  *	Lookup the faulting address.  A version of vm_map_lookup that returns
4077  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
4078  */
4079 int
4080 vm_map_lookup_locked(vm_map_t *var_map,		/* IN/OUT */
4081 		     vm_offset_t vaddr,
4082 		     vm_prot_t fault_typea,
4083 		     vm_map_entry_t *out_entry,	/* OUT */
4084 		     vm_object_t *object,	/* OUT */
4085 		     vm_pindex_t *pindex,	/* OUT */
4086 		     vm_prot_t *out_prot,	/* OUT */
4087 		     boolean_t *wired)		/* OUT */
4088 {
4089 	vm_map_entry_t entry;
4090 	vm_map_t map = *var_map;
4091 	vm_prot_t prot;
4092 	vm_prot_t fault_type = fault_typea;
4093 
4094 	/*
4095 	 * Lookup the faulting address.
4096 	 */
4097 	if (!vm_map_lookup_entry(map, vaddr, out_entry))
4098 		return (KERN_INVALID_ADDRESS);
4099 
4100 	entry = *out_entry;
4101 
4102 	/*
4103 	 * Fail if the entry refers to a submap.
4104 	 */
4105 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4106 		return (KERN_FAILURE);
4107 
4108 	/*
4109 	 * Check whether this task is allowed to have this page.
4110 	 */
4111 	prot = entry->protection;
4112 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4113 	if ((fault_type & prot) != fault_type)
4114 		return (KERN_PROTECTION_FAILURE);
4115 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
4116 	    (entry->eflags & MAP_ENTRY_COW) &&
4117 	    (fault_type & VM_PROT_WRITE))
4118 		return (KERN_PROTECTION_FAILURE);
4119 
4120 	/*
4121 	 * If this page is not pageable, we have to get it for all possible
4122 	 * accesses.
4123 	 */
4124 	*wired = (entry->wired_count != 0);
4125 	if (*wired)
4126 		fault_type = entry->protection;
4127 
4128 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4129 		/*
4130 		 * Fail if the entry was copy-on-write for a write fault.
4131 		 */
4132 		if (fault_type & VM_PROT_WRITE)
4133 			return (KERN_FAILURE);
4134 		/*
4135 		 * We're attempting to read a copy-on-write page --
4136 		 * don't allow writes.
4137 		 */
4138 		prot &= ~VM_PROT_WRITE;
4139 	}
4140 
4141 	/*
4142 	 * Fail if an object should be created.
4143 	 */
4144 	if (entry->object.vm_object == NULL && !map->system_map)
4145 		return (KERN_FAILURE);
4146 
4147 	/*
4148 	 * Return the object/offset from this entry.  If the entry was
4149 	 * copy-on-write or empty, it has been fixed up.
4150 	 */
4151 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4152 	*object = entry->object.vm_object;
4153 
4154 	*out_prot = prot;
4155 	return (KERN_SUCCESS);
4156 }
4157 
4158 /*
4159  *	vm_map_lookup_done:
4160  *
4161  *	Releases locks acquired by a vm_map_lookup
4162  *	(according to the handle returned by that lookup).
4163  */
4164 void
4165 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
4166 {
4167 	/*
4168 	 * Unlock the main-level map
4169 	 */
4170 	vm_map_unlock_read(map);
4171 }
4172 
4173 #include "opt_ddb.h"
4174 #ifdef DDB
4175 #include <sys/kernel.h>
4176 
4177 #include <ddb/ddb.h>
4178 
4179 static void
4180 vm_map_print(vm_map_t map)
4181 {
4182 	vm_map_entry_t entry;
4183 
4184 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4185 	    (void *)map,
4186 	    (void *)map->pmap, map->nentries, map->timestamp);
4187 
4188 	db_indent += 2;
4189 	for (entry = map->header.next; entry != &map->header;
4190 	    entry = entry->next) {
4191 		db_iprintf("map entry %p: start=%p, end=%p\n",
4192 		    (void *)entry, (void *)entry->start, (void *)entry->end);
4193 		{
4194 			static char *inheritance_name[4] =
4195 			{"share", "copy", "none", "donate_copy"};
4196 
4197 			db_iprintf(" prot=%x/%x/%s",
4198 			    entry->protection,
4199 			    entry->max_protection,
4200 			    inheritance_name[(int)(unsigned char)entry->inheritance]);
4201 			if (entry->wired_count != 0)
4202 				db_printf(", wired");
4203 		}
4204 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4205 			db_printf(", share=%p, offset=0x%jx\n",
4206 			    (void *)entry->object.sub_map,
4207 			    (uintmax_t)entry->offset);
4208 			if ((entry->prev == &map->header) ||
4209 			    (entry->prev->object.sub_map !=
4210 				entry->object.sub_map)) {
4211 				db_indent += 2;
4212 				vm_map_print((vm_map_t)entry->object.sub_map);
4213 				db_indent -= 2;
4214 			}
4215 		} else {
4216 			if (entry->cred != NULL)
4217 				db_printf(", ruid %d", entry->cred->cr_ruid);
4218 			db_printf(", object=%p, offset=0x%jx",
4219 			    (void *)entry->object.vm_object,
4220 			    (uintmax_t)entry->offset);
4221 			if (entry->object.vm_object && entry->object.vm_object->cred)
4222 				db_printf(", obj ruid %d charge %jx",
4223 				    entry->object.vm_object->cred->cr_ruid,
4224 				    (uintmax_t)entry->object.vm_object->charge);
4225 			if (entry->eflags & MAP_ENTRY_COW)
4226 				db_printf(", copy (%s)",
4227 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4228 			db_printf("\n");
4229 
4230 			if ((entry->prev == &map->header) ||
4231 			    (entry->prev->object.vm_object !=
4232 				entry->object.vm_object)) {
4233 				db_indent += 2;
4234 				vm_object_print((db_expr_t)(intptr_t)
4235 						entry->object.vm_object,
4236 						0, 0, (char *)0);
4237 				db_indent -= 2;
4238 			}
4239 		}
4240 	}
4241 	db_indent -= 2;
4242 }
4243 
4244 DB_SHOW_COMMAND(map, map)
4245 {
4246 
4247 	if (!have_addr) {
4248 		db_printf("usage: show map <addr>\n");
4249 		return;
4250 	}
4251 	vm_map_print((vm_map_t)addr);
4252 }
4253 
4254 DB_SHOW_COMMAND(procvm, procvm)
4255 {
4256 	struct proc *p;
4257 
4258 	if (have_addr) {
4259 		p = (struct proc *) addr;
4260 	} else {
4261 		p = curproc;
4262 	}
4263 
4264 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4265 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4266 	    (void *)vmspace_pmap(p->p_vmspace));
4267 
4268 	vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
4269 }
4270 
4271 #endif /* DDB */
4272