1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 */ 60 61 /* 62 * Virtual memory mapping module. 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include <sys/param.h> 69 #include <sys/systm.h> 70 #include <sys/kernel.h> 71 #include <sys/ktr.h> 72 #include <sys/lock.h> 73 #include <sys/mutex.h> 74 #include <sys/proc.h> 75 #include <sys/vmmeter.h> 76 #include <sys/mman.h> 77 #include <sys/vnode.h> 78 #include <sys/racct.h> 79 #include <sys/resourcevar.h> 80 #include <sys/rwlock.h> 81 #include <sys/file.h> 82 #include <sys/sysctl.h> 83 #include <sys/sysent.h> 84 #include <sys/shm.h> 85 86 #include <vm/vm.h> 87 #include <vm/vm_param.h> 88 #include <vm/pmap.h> 89 #include <vm/vm_map.h> 90 #include <vm/vm_page.h> 91 #include <vm/vm_object.h> 92 #include <vm/vm_pager.h> 93 #include <vm/vm_kern.h> 94 #include <vm/vm_extern.h> 95 #include <vm/vnode_pager.h> 96 #include <vm/swap_pager.h> 97 #include <vm/uma.h> 98 99 /* 100 * Virtual memory maps provide for the mapping, protection, 101 * and sharing of virtual memory objects. In addition, 102 * this module provides for an efficient virtual copy of 103 * memory from one map to another. 104 * 105 * Synchronization is required prior to most operations. 106 * 107 * Maps consist of an ordered doubly-linked list of simple 108 * entries; a self-adjusting binary search tree of these 109 * entries is used to speed up lookups. 110 * 111 * Since portions of maps are specified by start/end addresses, 112 * which may not align with existing map entries, all 113 * routines merely "clip" entries to these start/end values. 114 * [That is, an entry is split into two, bordering at a 115 * start or end value.] Note that these clippings may not 116 * always be necessary (as the two resulting entries are then 117 * not changed); however, the clipping is done for convenience. 118 * 119 * As mentioned above, virtual copy operations are performed 120 * by copying VM object references from one map to 121 * another, and then marking both regions as copy-on-write. 122 */ 123 124 static struct mtx map_sleep_mtx; 125 static uma_zone_t mapentzone; 126 static uma_zone_t kmapentzone; 127 static uma_zone_t mapzone; 128 static uma_zone_t vmspace_zone; 129 static int vmspace_zinit(void *mem, int size, int flags); 130 static int vm_map_zinit(void *mem, int ize, int flags); 131 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, 132 vm_offset_t max); 133 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map); 134 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry); 135 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry); 136 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 137 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags); 138 #ifdef INVARIANTS 139 static void vm_map_zdtor(void *mem, int size, void *arg); 140 static void vmspace_zdtor(void *mem, int size, void *arg); 141 #endif 142 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, 143 vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max, 144 int cow); 145 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry, 146 vm_offset_t failed_addr); 147 148 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \ 149 ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \ 150 !((e)->eflags & MAP_ENTRY_NEEDS_COPY))) 151 152 /* 153 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type 154 * stable. 155 */ 156 #define PROC_VMSPACE_LOCK(p) do { } while (0) 157 #define PROC_VMSPACE_UNLOCK(p) do { } while (0) 158 159 /* 160 * VM_MAP_RANGE_CHECK: [ internal use only ] 161 * 162 * Asserts that the starting and ending region 163 * addresses fall within the valid range of the map. 164 */ 165 #define VM_MAP_RANGE_CHECK(map, start, end) \ 166 { \ 167 if (start < vm_map_min(map)) \ 168 start = vm_map_min(map); \ 169 if (end > vm_map_max(map)) \ 170 end = vm_map_max(map); \ 171 if (start > end) \ 172 start = end; \ 173 } 174 175 /* 176 * vm_map_startup: 177 * 178 * Initialize the vm_map module. Must be called before 179 * any other vm_map routines. 180 * 181 * Map and entry structures are allocated from the general 182 * purpose memory pool with some exceptions: 183 * 184 * - The kernel map and kmem submap are allocated statically. 185 * - Kernel map entries are allocated out of a static pool. 186 * 187 * These restrictions are necessary since malloc() uses the 188 * maps and requires map entries. 189 */ 190 191 void 192 vm_map_startup(void) 193 { 194 mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF); 195 mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL, 196 #ifdef INVARIANTS 197 vm_map_zdtor, 198 #else 199 NULL, 200 #endif 201 vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 202 uma_prealloc(mapzone, MAX_KMAP); 203 kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry), 204 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 205 UMA_ZONE_MTXCLASS | UMA_ZONE_VM); 206 mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry), 207 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 208 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL, 209 #ifdef INVARIANTS 210 vmspace_zdtor, 211 #else 212 NULL, 213 #endif 214 vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 215 } 216 217 static int 218 vmspace_zinit(void *mem, int size, int flags) 219 { 220 struct vmspace *vm; 221 222 vm = (struct vmspace *)mem; 223 224 vm->vm_map.pmap = NULL; 225 (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags); 226 PMAP_LOCK_INIT(vmspace_pmap(vm)); 227 return (0); 228 } 229 230 static int 231 vm_map_zinit(void *mem, int size, int flags) 232 { 233 vm_map_t map; 234 235 map = (vm_map_t)mem; 236 memset(map, 0, sizeof(*map)); 237 mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK); 238 sx_init(&map->lock, "vm map (user)"); 239 return (0); 240 } 241 242 #ifdef INVARIANTS 243 static void 244 vmspace_zdtor(void *mem, int size, void *arg) 245 { 246 struct vmspace *vm; 247 248 vm = (struct vmspace *)mem; 249 250 vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg); 251 } 252 static void 253 vm_map_zdtor(void *mem, int size, void *arg) 254 { 255 vm_map_t map; 256 257 map = (vm_map_t)mem; 258 KASSERT(map->nentries == 0, 259 ("map %p nentries == %d on free.", 260 map, map->nentries)); 261 KASSERT(map->size == 0, 262 ("map %p size == %lu on free.", 263 map, (unsigned long)map->size)); 264 } 265 #endif /* INVARIANTS */ 266 267 /* 268 * Allocate a vmspace structure, including a vm_map and pmap, 269 * and initialize those structures. The refcnt is set to 1. 270 * 271 * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit(). 272 */ 273 struct vmspace * 274 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit) 275 { 276 struct vmspace *vm; 277 278 vm = uma_zalloc(vmspace_zone, M_WAITOK); 279 280 KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL")); 281 282 if (pinit == NULL) 283 pinit = &pmap_pinit; 284 285 if (!pinit(vmspace_pmap(vm))) { 286 uma_zfree(vmspace_zone, vm); 287 return (NULL); 288 } 289 CTR1(KTR_VM, "vmspace_alloc: %p", vm); 290 _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max); 291 vm->vm_refcnt = 1; 292 vm->vm_shm = NULL; 293 vm->vm_swrss = 0; 294 vm->vm_tsize = 0; 295 vm->vm_dsize = 0; 296 vm->vm_ssize = 0; 297 vm->vm_taddr = 0; 298 vm->vm_daddr = 0; 299 vm->vm_maxsaddr = 0; 300 return (vm); 301 } 302 303 static void 304 vmspace_container_reset(struct proc *p) 305 { 306 307 #ifdef RACCT 308 PROC_LOCK(p); 309 racct_set(p, RACCT_DATA, 0); 310 racct_set(p, RACCT_STACK, 0); 311 racct_set(p, RACCT_RSS, 0); 312 racct_set(p, RACCT_MEMLOCK, 0); 313 racct_set(p, RACCT_VMEM, 0); 314 PROC_UNLOCK(p); 315 #endif 316 } 317 318 static inline void 319 vmspace_dofree(struct vmspace *vm) 320 { 321 322 CTR1(KTR_VM, "vmspace_free: %p", vm); 323 324 /* 325 * Make sure any SysV shm is freed, it might not have been in 326 * exit1(). 327 */ 328 shmexit(vm); 329 330 /* 331 * Lock the map, to wait out all other references to it. 332 * Delete all of the mappings and pages they hold, then call 333 * the pmap module to reclaim anything left. 334 */ 335 (void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset, 336 vm->vm_map.max_offset); 337 338 pmap_release(vmspace_pmap(vm)); 339 vm->vm_map.pmap = NULL; 340 uma_zfree(vmspace_zone, vm); 341 } 342 343 void 344 vmspace_free(struct vmspace *vm) 345 { 346 347 if (vm->vm_refcnt == 0) 348 panic("vmspace_free: attempt to free already freed vmspace"); 349 350 if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1) 351 vmspace_dofree(vm); 352 } 353 354 void 355 vmspace_exitfree(struct proc *p) 356 { 357 struct vmspace *vm; 358 359 PROC_VMSPACE_LOCK(p); 360 vm = p->p_vmspace; 361 p->p_vmspace = NULL; 362 PROC_VMSPACE_UNLOCK(p); 363 KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace")); 364 vmspace_free(vm); 365 } 366 367 void 368 vmspace_exit(struct thread *td) 369 { 370 int refcnt; 371 struct vmspace *vm; 372 struct proc *p; 373 374 /* 375 * Release user portion of address space. 376 * This releases references to vnodes, 377 * which could cause I/O if the file has been unlinked. 378 * Need to do this early enough that we can still sleep. 379 * 380 * The last exiting process to reach this point releases as 381 * much of the environment as it can. vmspace_dofree() is the 382 * slower fallback in case another process had a temporary 383 * reference to the vmspace. 384 */ 385 386 p = td->td_proc; 387 vm = p->p_vmspace; 388 atomic_add_int(&vmspace0.vm_refcnt, 1); 389 do { 390 refcnt = vm->vm_refcnt; 391 if (refcnt > 1 && p->p_vmspace != &vmspace0) { 392 /* Switch now since other proc might free vmspace */ 393 PROC_VMSPACE_LOCK(p); 394 p->p_vmspace = &vmspace0; 395 PROC_VMSPACE_UNLOCK(p); 396 pmap_activate(td); 397 } 398 } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1)); 399 if (refcnt == 1) { 400 if (p->p_vmspace != vm) { 401 /* vmspace not yet freed, switch back */ 402 PROC_VMSPACE_LOCK(p); 403 p->p_vmspace = vm; 404 PROC_VMSPACE_UNLOCK(p); 405 pmap_activate(td); 406 } 407 pmap_remove_pages(vmspace_pmap(vm)); 408 /* Switch now since this proc will free vmspace */ 409 PROC_VMSPACE_LOCK(p); 410 p->p_vmspace = &vmspace0; 411 PROC_VMSPACE_UNLOCK(p); 412 pmap_activate(td); 413 vmspace_dofree(vm); 414 } 415 vmspace_container_reset(p); 416 } 417 418 /* Acquire reference to vmspace owned by another process. */ 419 420 struct vmspace * 421 vmspace_acquire_ref(struct proc *p) 422 { 423 struct vmspace *vm; 424 int refcnt; 425 426 PROC_VMSPACE_LOCK(p); 427 vm = p->p_vmspace; 428 if (vm == NULL) { 429 PROC_VMSPACE_UNLOCK(p); 430 return (NULL); 431 } 432 do { 433 refcnt = vm->vm_refcnt; 434 if (refcnt <= 0) { /* Avoid 0->1 transition */ 435 PROC_VMSPACE_UNLOCK(p); 436 return (NULL); 437 } 438 } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1)); 439 if (vm != p->p_vmspace) { 440 PROC_VMSPACE_UNLOCK(p); 441 vmspace_free(vm); 442 return (NULL); 443 } 444 PROC_VMSPACE_UNLOCK(p); 445 return (vm); 446 } 447 448 void 449 _vm_map_lock(vm_map_t map, const char *file, int line) 450 { 451 452 if (map->system_map) 453 mtx_lock_flags_(&map->system_mtx, 0, file, line); 454 else 455 sx_xlock_(&map->lock, file, line); 456 map->timestamp++; 457 } 458 459 static void 460 vm_map_process_deferred(void) 461 { 462 struct thread *td; 463 vm_map_entry_t entry, next; 464 vm_object_t object; 465 466 td = curthread; 467 entry = td->td_map_def_user; 468 td->td_map_def_user = NULL; 469 while (entry != NULL) { 470 next = entry->next; 471 if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) { 472 /* 473 * Decrement the object's writemappings and 474 * possibly the vnode's v_writecount. 475 */ 476 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 477 ("Submap with writecount")); 478 object = entry->object.vm_object; 479 KASSERT(object != NULL, ("No object for writecount")); 480 vnode_pager_release_writecount(object, entry->start, 481 entry->end); 482 } 483 vm_map_entry_deallocate(entry, FALSE); 484 entry = next; 485 } 486 } 487 488 void 489 _vm_map_unlock(vm_map_t map, const char *file, int line) 490 { 491 492 if (map->system_map) 493 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 494 else { 495 sx_xunlock_(&map->lock, file, line); 496 vm_map_process_deferred(); 497 } 498 } 499 500 void 501 _vm_map_lock_read(vm_map_t map, const char *file, int line) 502 { 503 504 if (map->system_map) 505 mtx_lock_flags_(&map->system_mtx, 0, file, line); 506 else 507 sx_slock_(&map->lock, file, line); 508 } 509 510 void 511 _vm_map_unlock_read(vm_map_t map, const char *file, int line) 512 { 513 514 if (map->system_map) 515 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 516 else { 517 sx_sunlock_(&map->lock, file, line); 518 vm_map_process_deferred(); 519 } 520 } 521 522 int 523 _vm_map_trylock(vm_map_t map, const char *file, int line) 524 { 525 int error; 526 527 error = map->system_map ? 528 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 529 !sx_try_xlock_(&map->lock, file, line); 530 if (error == 0) 531 map->timestamp++; 532 return (error == 0); 533 } 534 535 int 536 _vm_map_trylock_read(vm_map_t map, const char *file, int line) 537 { 538 int error; 539 540 error = map->system_map ? 541 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 542 !sx_try_slock_(&map->lock, file, line); 543 return (error == 0); 544 } 545 546 /* 547 * _vm_map_lock_upgrade: [ internal use only ] 548 * 549 * Tries to upgrade a read (shared) lock on the specified map to a write 550 * (exclusive) lock. Returns the value "0" if the upgrade succeeds and a 551 * non-zero value if the upgrade fails. If the upgrade fails, the map is 552 * returned without a read or write lock held. 553 * 554 * Requires that the map be read locked. 555 */ 556 int 557 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line) 558 { 559 unsigned int last_timestamp; 560 561 if (map->system_map) { 562 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 563 } else { 564 if (!sx_try_upgrade_(&map->lock, file, line)) { 565 last_timestamp = map->timestamp; 566 sx_sunlock_(&map->lock, file, line); 567 vm_map_process_deferred(); 568 /* 569 * If the map's timestamp does not change while the 570 * map is unlocked, then the upgrade succeeds. 571 */ 572 sx_xlock_(&map->lock, file, line); 573 if (last_timestamp != map->timestamp) { 574 sx_xunlock_(&map->lock, file, line); 575 return (1); 576 } 577 } 578 } 579 map->timestamp++; 580 return (0); 581 } 582 583 void 584 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line) 585 { 586 587 if (map->system_map) { 588 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 589 } else 590 sx_downgrade_(&map->lock, file, line); 591 } 592 593 /* 594 * vm_map_locked: 595 * 596 * Returns a non-zero value if the caller holds a write (exclusive) lock 597 * on the specified map and the value "0" otherwise. 598 */ 599 int 600 vm_map_locked(vm_map_t map) 601 { 602 603 if (map->system_map) 604 return (mtx_owned(&map->system_mtx)); 605 else 606 return (sx_xlocked(&map->lock)); 607 } 608 609 #ifdef INVARIANTS 610 static void 611 _vm_map_assert_locked(vm_map_t map, const char *file, int line) 612 { 613 614 if (map->system_map) 615 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 616 else 617 sx_assert_(&map->lock, SA_XLOCKED, file, line); 618 } 619 620 #define VM_MAP_ASSERT_LOCKED(map) \ 621 _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE) 622 #else 623 #define VM_MAP_ASSERT_LOCKED(map) 624 #endif 625 626 /* 627 * _vm_map_unlock_and_wait: 628 * 629 * Atomically releases the lock on the specified map and puts the calling 630 * thread to sleep. The calling thread will remain asleep until either 631 * vm_map_wakeup() is performed on the map or the specified timeout is 632 * exceeded. 633 * 634 * WARNING! This function does not perform deferred deallocations of 635 * objects and map entries. Therefore, the calling thread is expected to 636 * reacquire the map lock after reawakening and later perform an ordinary 637 * unlock operation, such as vm_map_unlock(), before completing its 638 * operation on the map. 639 */ 640 int 641 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line) 642 { 643 644 mtx_lock(&map_sleep_mtx); 645 if (map->system_map) 646 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 647 else 648 sx_xunlock_(&map->lock, file, line); 649 return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps", 650 timo)); 651 } 652 653 /* 654 * vm_map_wakeup: 655 * 656 * Awaken any threads that have slept on the map using 657 * vm_map_unlock_and_wait(). 658 */ 659 void 660 vm_map_wakeup(vm_map_t map) 661 { 662 663 /* 664 * Acquire and release map_sleep_mtx to prevent a wakeup() 665 * from being performed (and lost) between the map unlock 666 * and the msleep() in _vm_map_unlock_and_wait(). 667 */ 668 mtx_lock(&map_sleep_mtx); 669 mtx_unlock(&map_sleep_mtx); 670 wakeup(&map->root); 671 } 672 673 void 674 vm_map_busy(vm_map_t map) 675 { 676 677 VM_MAP_ASSERT_LOCKED(map); 678 map->busy++; 679 } 680 681 void 682 vm_map_unbusy(vm_map_t map) 683 { 684 685 VM_MAP_ASSERT_LOCKED(map); 686 KASSERT(map->busy, ("vm_map_unbusy: not busy")); 687 if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) { 688 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP); 689 wakeup(&map->busy); 690 } 691 } 692 693 void 694 vm_map_wait_busy(vm_map_t map) 695 { 696 697 VM_MAP_ASSERT_LOCKED(map); 698 while (map->busy) { 699 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0); 700 if (map->system_map) 701 msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0); 702 else 703 sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0); 704 } 705 map->timestamp++; 706 } 707 708 long 709 vmspace_resident_count(struct vmspace *vmspace) 710 { 711 return pmap_resident_count(vmspace_pmap(vmspace)); 712 } 713 714 /* 715 * vm_map_create: 716 * 717 * Creates and returns a new empty VM map with 718 * the given physical map structure, and having 719 * the given lower and upper address bounds. 720 */ 721 vm_map_t 722 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max) 723 { 724 vm_map_t result; 725 726 result = uma_zalloc(mapzone, M_WAITOK); 727 CTR1(KTR_VM, "vm_map_create: %p", result); 728 _vm_map_init(result, pmap, min, max); 729 return (result); 730 } 731 732 /* 733 * Initialize an existing vm_map structure 734 * such as that in the vmspace structure. 735 */ 736 static void 737 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 738 { 739 740 map->header.next = map->header.prev = &map->header; 741 map->needs_wakeup = FALSE; 742 map->system_map = 0; 743 map->pmap = pmap; 744 map->min_offset = min; 745 map->max_offset = max; 746 map->flags = 0; 747 map->root = NULL; 748 map->timestamp = 0; 749 map->busy = 0; 750 } 751 752 void 753 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 754 { 755 756 _vm_map_init(map, pmap, min, max); 757 mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK); 758 sx_init(&map->lock, "user map"); 759 } 760 761 /* 762 * vm_map_entry_dispose: [ internal use only ] 763 * 764 * Inverse of vm_map_entry_create. 765 */ 766 static void 767 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry) 768 { 769 uma_zfree(map->system_map ? kmapentzone : mapentzone, entry); 770 } 771 772 /* 773 * vm_map_entry_create: [ internal use only ] 774 * 775 * Allocates a VM map entry for insertion. 776 * No entry fields are filled in. 777 */ 778 static vm_map_entry_t 779 vm_map_entry_create(vm_map_t map) 780 { 781 vm_map_entry_t new_entry; 782 783 if (map->system_map) 784 new_entry = uma_zalloc(kmapentzone, M_NOWAIT); 785 else 786 new_entry = uma_zalloc(mapentzone, M_WAITOK); 787 if (new_entry == NULL) 788 panic("vm_map_entry_create: kernel resources exhausted"); 789 return (new_entry); 790 } 791 792 /* 793 * vm_map_entry_set_behavior: 794 * 795 * Set the expected access behavior, either normal, random, or 796 * sequential. 797 */ 798 static inline void 799 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior) 800 { 801 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) | 802 (behavior & MAP_ENTRY_BEHAV_MASK); 803 } 804 805 /* 806 * vm_map_entry_set_max_free: 807 * 808 * Set the max_free field in a vm_map_entry. 809 */ 810 static inline void 811 vm_map_entry_set_max_free(vm_map_entry_t entry) 812 { 813 814 entry->max_free = entry->adj_free; 815 if (entry->left != NULL && entry->left->max_free > entry->max_free) 816 entry->max_free = entry->left->max_free; 817 if (entry->right != NULL && entry->right->max_free > entry->max_free) 818 entry->max_free = entry->right->max_free; 819 } 820 821 /* 822 * vm_map_entry_splay: 823 * 824 * The Sleator and Tarjan top-down splay algorithm with the 825 * following variation. Max_free must be computed bottom-up, so 826 * on the downward pass, maintain the left and right spines in 827 * reverse order. Then, make a second pass up each side to fix 828 * the pointers and compute max_free. The time bound is O(log n) 829 * amortized. 830 * 831 * The new root is the vm_map_entry containing "addr", or else an 832 * adjacent entry (lower or higher) if addr is not in the tree. 833 * 834 * The map must be locked, and leaves it so. 835 * 836 * Returns: the new root. 837 */ 838 static vm_map_entry_t 839 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root) 840 { 841 vm_map_entry_t llist, rlist; 842 vm_map_entry_t ltree, rtree; 843 vm_map_entry_t y; 844 845 /* Special case of empty tree. */ 846 if (root == NULL) 847 return (root); 848 849 /* 850 * Pass One: Splay down the tree until we find addr or a NULL 851 * pointer where addr would go. llist and rlist are the two 852 * sides in reverse order (bottom-up), with llist linked by 853 * the right pointer and rlist linked by the left pointer in 854 * the vm_map_entry. Wait until Pass Two to set max_free on 855 * the two spines. 856 */ 857 llist = NULL; 858 rlist = NULL; 859 for (;;) { 860 /* root is never NULL in here. */ 861 if (addr < root->start) { 862 y = root->left; 863 if (y == NULL) 864 break; 865 if (addr < y->start && y->left != NULL) { 866 /* Rotate right and put y on rlist. */ 867 root->left = y->right; 868 y->right = root; 869 vm_map_entry_set_max_free(root); 870 root = y->left; 871 y->left = rlist; 872 rlist = y; 873 } else { 874 /* Put root on rlist. */ 875 root->left = rlist; 876 rlist = root; 877 root = y; 878 } 879 } else if (addr >= root->end) { 880 y = root->right; 881 if (y == NULL) 882 break; 883 if (addr >= y->end && y->right != NULL) { 884 /* Rotate left and put y on llist. */ 885 root->right = y->left; 886 y->left = root; 887 vm_map_entry_set_max_free(root); 888 root = y->right; 889 y->right = llist; 890 llist = y; 891 } else { 892 /* Put root on llist. */ 893 root->right = llist; 894 llist = root; 895 root = y; 896 } 897 } else 898 break; 899 } 900 901 /* 902 * Pass Two: Walk back up the two spines, flip the pointers 903 * and set max_free. The subtrees of the root go at the 904 * bottom of llist and rlist. 905 */ 906 ltree = root->left; 907 while (llist != NULL) { 908 y = llist->right; 909 llist->right = ltree; 910 vm_map_entry_set_max_free(llist); 911 ltree = llist; 912 llist = y; 913 } 914 rtree = root->right; 915 while (rlist != NULL) { 916 y = rlist->left; 917 rlist->left = rtree; 918 vm_map_entry_set_max_free(rlist); 919 rtree = rlist; 920 rlist = y; 921 } 922 923 /* 924 * Final assembly: add ltree and rtree as subtrees of root. 925 */ 926 root->left = ltree; 927 root->right = rtree; 928 vm_map_entry_set_max_free(root); 929 930 return (root); 931 } 932 933 /* 934 * vm_map_entry_{un,}link: 935 * 936 * Insert/remove entries from maps. 937 */ 938 static void 939 vm_map_entry_link(vm_map_t map, 940 vm_map_entry_t after_where, 941 vm_map_entry_t entry) 942 { 943 944 CTR4(KTR_VM, 945 "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map, 946 map->nentries, entry, after_where); 947 VM_MAP_ASSERT_LOCKED(map); 948 KASSERT(after_where == &map->header || 949 after_where->end <= entry->start, 950 ("vm_map_entry_link: prev end %jx new start %jx overlap", 951 (uintmax_t)after_where->end, (uintmax_t)entry->start)); 952 KASSERT(after_where->next == &map->header || 953 entry->end <= after_where->next->start, 954 ("vm_map_entry_link: new end %jx next start %jx overlap", 955 (uintmax_t)entry->end, (uintmax_t)after_where->next->start)); 956 957 map->nentries++; 958 entry->prev = after_where; 959 entry->next = after_where->next; 960 entry->next->prev = entry; 961 after_where->next = entry; 962 963 if (after_where != &map->header) { 964 if (after_where != map->root) 965 vm_map_entry_splay(after_where->start, map->root); 966 entry->right = after_where->right; 967 entry->left = after_where; 968 after_where->right = NULL; 969 after_where->adj_free = entry->start - after_where->end; 970 vm_map_entry_set_max_free(after_where); 971 } else { 972 entry->right = map->root; 973 entry->left = NULL; 974 } 975 entry->adj_free = (entry->next == &map->header ? map->max_offset : 976 entry->next->start) - entry->end; 977 vm_map_entry_set_max_free(entry); 978 map->root = entry; 979 } 980 981 static void 982 vm_map_entry_unlink(vm_map_t map, 983 vm_map_entry_t entry) 984 { 985 vm_map_entry_t next, prev, root; 986 987 VM_MAP_ASSERT_LOCKED(map); 988 if (entry != map->root) 989 vm_map_entry_splay(entry->start, map->root); 990 if (entry->left == NULL) 991 root = entry->right; 992 else { 993 root = vm_map_entry_splay(entry->start, entry->left); 994 root->right = entry->right; 995 root->adj_free = (entry->next == &map->header ? map->max_offset : 996 entry->next->start) - root->end; 997 vm_map_entry_set_max_free(root); 998 } 999 map->root = root; 1000 1001 prev = entry->prev; 1002 next = entry->next; 1003 next->prev = prev; 1004 prev->next = next; 1005 map->nentries--; 1006 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map, 1007 map->nentries, entry); 1008 } 1009 1010 /* 1011 * vm_map_entry_resize_free: 1012 * 1013 * Recompute the amount of free space following a vm_map_entry 1014 * and propagate that value up the tree. Call this function after 1015 * resizing a map entry in-place, that is, without a call to 1016 * vm_map_entry_link() or _unlink(). 1017 * 1018 * The map must be locked, and leaves it so. 1019 */ 1020 static void 1021 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry) 1022 { 1023 1024 /* 1025 * Using splay trees without parent pointers, propagating 1026 * max_free up the tree is done by moving the entry to the 1027 * root and making the change there. 1028 */ 1029 if (entry != map->root) 1030 map->root = vm_map_entry_splay(entry->start, map->root); 1031 1032 entry->adj_free = (entry->next == &map->header ? map->max_offset : 1033 entry->next->start) - entry->end; 1034 vm_map_entry_set_max_free(entry); 1035 } 1036 1037 /* 1038 * vm_map_lookup_entry: [ internal use only ] 1039 * 1040 * Finds the map entry containing (or 1041 * immediately preceding) the specified address 1042 * in the given map; the entry is returned 1043 * in the "entry" parameter. The boolean 1044 * result indicates whether the address is 1045 * actually contained in the map. 1046 */ 1047 boolean_t 1048 vm_map_lookup_entry( 1049 vm_map_t map, 1050 vm_offset_t address, 1051 vm_map_entry_t *entry) /* OUT */ 1052 { 1053 vm_map_entry_t cur; 1054 boolean_t locked; 1055 1056 /* 1057 * If the map is empty, then the map entry immediately preceding 1058 * "address" is the map's header. 1059 */ 1060 cur = map->root; 1061 if (cur == NULL) 1062 *entry = &map->header; 1063 else if (address >= cur->start && cur->end > address) { 1064 *entry = cur; 1065 return (TRUE); 1066 } else if ((locked = vm_map_locked(map)) || 1067 sx_try_upgrade(&map->lock)) { 1068 /* 1069 * Splay requires a write lock on the map. However, it only 1070 * restructures the binary search tree; it does not otherwise 1071 * change the map. Thus, the map's timestamp need not change 1072 * on a temporary upgrade. 1073 */ 1074 map->root = cur = vm_map_entry_splay(address, cur); 1075 if (!locked) 1076 sx_downgrade(&map->lock); 1077 1078 /* 1079 * If "address" is contained within a map entry, the new root 1080 * is that map entry. Otherwise, the new root is a map entry 1081 * immediately before or after "address". 1082 */ 1083 if (address >= cur->start) { 1084 *entry = cur; 1085 if (cur->end > address) 1086 return (TRUE); 1087 } else 1088 *entry = cur->prev; 1089 } else 1090 /* 1091 * Since the map is only locked for read access, perform a 1092 * standard binary search tree lookup for "address". 1093 */ 1094 for (;;) { 1095 if (address < cur->start) { 1096 if (cur->left == NULL) { 1097 *entry = cur->prev; 1098 break; 1099 } 1100 cur = cur->left; 1101 } else if (cur->end > address) { 1102 *entry = cur; 1103 return (TRUE); 1104 } else { 1105 if (cur->right == NULL) { 1106 *entry = cur; 1107 break; 1108 } 1109 cur = cur->right; 1110 } 1111 } 1112 return (FALSE); 1113 } 1114 1115 /* 1116 * vm_map_insert: 1117 * 1118 * Inserts the given whole VM object into the target 1119 * map at the specified address range. The object's 1120 * size should match that of the address range. 1121 * 1122 * Requires that the map be locked, and leaves it so. 1123 * 1124 * If object is non-NULL, ref count must be bumped by caller 1125 * prior to making call to account for the new entry. 1126 */ 1127 int 1128 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1129 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow) 1130 { 1131 vm_map_entry_t new_entry, prev_entry, temp_entry; 1132 vm_eflags_t protoeflags; 1133 struct ucred *cred; 1134 vm_inherit_t inheritance; 1135 1136 VM_MAP_ASSERT_LOCKED(map); 1137 KASSERT((object != kmem_object && object != kernel_object) || 1138 (cow & MAP_COPY_ON_WRITE) == 0, 1139 ("vm_map_insert: kmem or kernel object and COW")); 1140 KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0, 1141 ("vm_map_insert: paradoxical MAP_NOFAULT request")); 1142 1143 /* 1144 * Check that the start and end points are not bogus. 1145 */ 1146 if ((start < map->min_offset) || (end > map->max_offset) || 1147 (start >= end)) 1148 return (KERN_INVALID_ADDRESS); 1149 1150 /* 1151 * Find the entry prior to the proposed starting address; if it's part 1152 * of an existing entry, this range is bogus. 1153 */ 1154 if (vm_map_lookup_entry(map, start, &temp_entry)) 1155 return (KERN_NO_SPACE); 1156 1157 prev_entry = temp_entry; 1158 1159 /* 1160 * Assert that the next entry doesn't overlap the end point. 1161 */ 1162 if ((prev_entry->next != &map->header) && 1163 (prev_entry->next->start < end)) 1164 return (KERN_NO_SPACE); 1165 1166 protoeflags = 0; 1167 if (cow & MAP_COPY_ON_WRITE) 1168 protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY; 1169 if (cow & MAP_NOFAULT) 1170 protoeflags |= MAP_ENTRY_NOFAULT; 1171 if (cow & MAP_DISABLE_SYNCER) 1172 protoeflags |= MAP_ENTRY_NOSYNC; 1173 if (cow & MAP_DISABLE_COREDUMP) 1174 protoeflags |= MAP_ENTRY_NOCOREDUMP; 1175 if (cow & MAP_STACK_GROWS_DOWN) 1176 protoeflags |= MAP_ENTRY_GROWS_DOWN; 1177 if (cow & MAP_STACK_GROWS_UP) 1178 protoeflags |= MAP_ENTRY_GROWS_UP; 1179 if (cow & MAP_VN_WRITECOUNT) 1180 protoeflags |= MAP_ENTRY_VN_WRITECNT; 1181 if (cow & MAP_INHERIT_SHARE) 1182 inheritance = VM_INHERIT_SHARE; 1183 else 1184 inheritance = VM_INHERIT_DEFAULT; 1185 1186 cred = NULL; 1187 if (cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT)) 1188 goto charged; 1189 if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) && 1190 ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) { 1191 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start)) 1192 return (KERN_RESOURCE_SHORTAGE); 1193 KASSERT(object == NULL || (protoeflags & MAP_ENTRY_NEEDS_COPY) || 1194 object->cred == NULL, 1195 ("OVERCOMMIT: vm_map_insert o %p", object)); 1196 cred = curthread->td_ucred; 1197 } 1198 1199 charged: 1200 /* Expand the kernel pmap, if necessary. */ 1201 if (map == kernel_map && end > kernel_vm_end) 1202 pmap_growkernel(end); 1203 if (object != NULL) { 1204 /* 1205 * OBJ_ONEMAPPING must be cleared unless this mapping 1206 * is trivially proven to be the only mapping for any 1207 * of the object's pages. (Object granularity 1208 * reference counting is insufficient to recognize 1209 * aliases with precision.) 1210 */ 1211 VM_OBJECT_WLOCK(object); 1212 if (object->ref_count > 1 || object->shadow_count != 0) 1213 vm_object_clear_flag(object, OBJ_ONEMAPPING); 1214 VM_OBJECT_WUNLOCK(object); 1215 } 1216 else if ((prev_entry != &map->header) && 1217 (prev_entry->eflags == protoeflags) && 1218 (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 && 1219 (prev_entry->end == start) && 1220 (prev_entry->wired_count == 0) && 1221 (prev_entry->cred == cred || 1222 (prev_entry->object.vm_object != NULL && 1223 (prev_entry->object.vm_object->cred == cred))) && 1224 vm_object_coalesce(prev_entry->object.vm_object, 1225 prev_entry->offset, 1226 (vm_size_t)(prev_entry->end - prev_entry->start), 1227 (vm_size_t)(end - prev_entry->end), cred != NULL && 1228 (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) { 1229 /* 1230 * We were able to extend the object. Determine if we 1231 * can extend the previous map entry to include the 1232 * new range as well. 1233 */ 1234 if ((prev_entry->inheritance == inheritance) && 1235 (prev_entry->protection == prot) && 1236 (prev_entry->max_protection == max)) { 1237 map->size += (end - prev_entry->end); 1238 prev_entry->end = end; 1239 vm_map_entry_resize_free(map, prev_entry); 1240 vm_map_simplify_entry(map, prev_entry); 1241 return (KERN_SUCCESS); 1242 } 1243 1244 /* 1245 * If we can extend the object but cannot extend the 1246 * map entry, we have to create a new map entry. We 1247 * must bump the ref count on the extended object to 1248 * account for it. object may be NULL. 1249 */ 1250 object = prev_entry->object.vm_object; 1251 offset = prev_entry->offset + 1252 (prev_entry->end - prev_entry->start); 1253 vm_object_reference(object); 1254 if (cred != NULL && object != NULL && object->cred != NULL && 1255 !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 1256 /* Object already accounts for this uid. */ 1257 cred = NULL; 1258 } 1259 } 1260 if (cred != NULL) 1261 crhold(cred); 1262 1263 /* 1264 * Create a new entry 1265 */ 1266 new_entry = vm_map_entry_create(map); 1267 new_entry->start = start; 1268 new_entry->end = end; 1269 new_entry->cred = NULL; 1270 1271 new_entry->eflags = protoeflags; 1272 new_entry->object.vm_object = object; 1273 new_entry->offset = offset; 1274 new_entry->avail_ssize = 0; 1275 1276 new_entry->inheritance = inheritance; 1277 new_entry->protection = prot; 1278 new_entry->max_protection = max; 1279 new_entry->wired_count = 0; 1280 new_entry->wiring_thread = NULL; 1281 new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT; 1282 new_entry->next_read = OFF_TO_IDX(offset); 1283 1284 KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry), 1285 ("OVERCOMMIT: vm_map_insert leaks vm_map %p", new_entry)); 1286 new_entry->cred = cred; 1287 1288 /* 1289 * Insert the new entry into the list 1290 */ 1291 vm_map_entry_link(map, prev_entry, new_entry); 1292 map->size += new_entry->end - new_entry->start; 1293 1294 /* 1295 * Try to coalesce the new entry with both the previous and next 1296 * entries in the list. Previously, we only attempted to coalesce 1297 * with the previous entry when object is NULL. Here, we handle the 1298 * other cases, which are less common. 1299 */ 1300 vm_map_simplify_entry(map, new_entry); 1301 1302 if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) { 1303 vm_map_pmap_enter(map, start, prot, 1304 object, OFF_TO_IDX(offset), end - start, 1305 cow & MAP_PREFAULT_PARTIAL); 1306 } 1307 1308 return (KERN_SUCCESS); 1309 } 1310 1311 /* 1312 * vm_map_findspace: 1313 * 1314 * Find the first fit (lowest VM address) for "length" free bytes 1315 * beginning at address >= start in the given map. 1316 * 1317 * In a vm_map_entry, "adj_free" is the amount of free space 1318 * adjacent (higher address) to this entry, and "max_free" is the 1319 * maximum amount of contiguous free space in its subtree. This 1320 * allows finding a free region in one path down the tree, so 1321 * O(log n) amortized with splay trees. 1322 * 1323 * The map must be locked, and leaves it so. 1324 * 1325 * Returns: 0 on success, and starting address in *addr, 1326 * 1 if insufficient space. 1327 */ 1328 int 1329 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length, 1330 vm_offset_t *addr) /* OUT */ 1331 { 1332 vm_map_entry_t entry; 1333 vm_offset_t st; 1334 1335 /* 1336 * Request must fit within min/max VM address and must avoid 1337 * address wrap. 1338 */ 1339 if (start < map->min_offset) 1340 start = map->min_offset; 1341 if (start + length > map->max_offset || start + length < start) 1342 return (1); 1343 1344 /* Empty tree means wide open address space. */ 1345 if (map->root == NULL) { 1346 *addr = start; 1347 return (0); 1348 } 1349 1350 /* 1351 * After splay, if start comes before root node, then there 1352 * must be a gap from start to the root. 1353 */ 1354 map->root = vm_map_entry_splay(start, map->root); 1355 if (start + length <= map->root->start) { 1356 *addr = start; 1357 return (0); 1358 } 1359 1360 /* 1361 * Root is the last node that might begin its gap before 1362 * start, and this is the last comparison where address 1363 * wrap might be a problem. 1364 */ 1365 st = (start > map->root->end) ? start : map->root->end; 1366 if (length <= map->root->end + map->root->adj_free - st) { 1367 *addr = st; 1368 return (0); 1369 } 1370 1371 /* With max_free, can immediately tell if no solution. */ 1372 entry = map->root->right; 1373 if (entry == NULL || length > entry->max_free) 1374 return (1); 1375 1376 /* 1377 * Search the right subtree in the order: left subtree, root, 1378 * right subtree (first fit). The previous splay implies that 1379 * all regions in the right subtree have addresses > start. 1380 */ 1381 while (entry != NULL) { 1382 if (entry->left != NULL && entry->left->max_free >= length) 1383 entry = entry->left; 1384 else if (entry->adj_free >= length) { 1385 *addr = entry->end; 1386 return (0); 1387 } else 1388 entry = entry->right; 1389 } 1390 1391 /* Can't get here, so panic if we do. */ 1392 panic("vm_map_findspace: max_free corrupt"); 1393 } 1394 1395 int 1396 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1397 vm_offset_t start, vm_size_t length, vm_prot_t prot, 1398 vm_prot_t max, int cow) 1399 { 1400 vm_offset_t end; 1401 int result; 1402 1403 end = start + length; 1404 KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 || 1405 object == NULL, 1406 ("vm_map_fixed: non-NULL backing object for stack")); 1407 vm_map_lock(map); 1408 VM_MAP_RANGE_CHECK(map, start, end); 1409 if ((cow & MAP_CHECK_EXCL) == 0) 1410 vm_map_delete(map, start, end); 1411 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) { 1412 result = vm_map_stack_locked(map, start, length, sgrowsiz, 1413 prot, max, cow); 1414 } else { 1415 result = vm_map_insert(map, object, offset, start, end, 1416 prot, max, cow); 1417 } 1418 vm_map_unlock(map); 1419 return (result); 1420 } 1421 1422 /* 1423 * vm_map_find finds an unallocated region in the target address 1424 * map with the given length. The search is defined to be 1425 * first-fit from the specified address; the region found is 1426 * returned in the same parameter. 1427 * 1428 * If object is non-NULL, ref count must be bumped by caller 1429 * prior to making call to account for the new entry. 1430 */ 1431 int 1432 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1433 vm_offset_t *addr, /* IN/OUT */ 1434 vm_size_t length, vm_offset_t max_addr, int find_space, 1435 vm_prot_t prot, vm_prot_t max, int cow) 1436 { 1437 vm_offset_t alignment, initial_addr, start; 1438 int result; 1439 1440 KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 || 1441 object == NULL, 1442 ("vm_map_find: non-NULL backing object for stack")); 1443 if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL || 1444 (object->flags & OBJ_COLORED) == 0)) 1445 find_space = VMFS_ANY_SPACE; 1446 if (find_space >> 8 != 0) { 1447 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags")); 1448 alignment = (vm_offset_t)1 << (find_space >> 8); 1449 } else 1450 alignment = 0; 1451 initial_addr = *addr; 1452 again: 1453 start = initial_addr; 1454 vm_map_lock(map); 1455 do { 1456 if (find_space != VMFS_NO_SPACE) { 1457 if (vm_map_findspace(map, start, length, addr) || 1458 (max_addr != 0 && *addr + length > max_addr)) { 1459 vm_map_unlock(map); 1460 if (find_space == VMFS_OPTIMAL_SPACE) { 1461 find_space = VMFS_ANY_SPACE; 1462 goto again; 1463 } 1464 return (KERN_NO_SPACE); 1465 } 1466 switch (find_space) { 1467 case VMFS_SUPER_SPACE: 1468 case VMFS_OPTIMAL_SPACE: 1469 pmap_align_superpage(object, offset, addr, 1470 length); 1471 break; 1472 case VMFS_ANY_SPACE: 1473 break; 1474 default: 1475 if ((*addr & (alignment - 1)) != 0) { 1476 *addr &= ~(alignment - 1); 1477 *addr += alignment; 1478 } 1479 break; 1480 } 1481 1482 start = *addr; 1483 } 1484 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) { 1485 result = vm_map_stack_locked(map, start, length, 1486 sgrowsiz, prot, max, cow); 1487 } else { 1488 result = vm_map_insert(map, object, offset, start, 1489 start + length, prot, max, cow); 1490 } 1491 } while (result == KERN_NO_SPACE && find_space != VMFS_NO_SPACE && 1492 find_space != VMFS_ANY_SPACE); 1493 vm_map_unlock(map); 1494 return (result); 1495 } 1496 1497 /* 1498 * vm_map_simplify_entry: 1499 * 1500 * Simplify the given map entry by merging with either neighbor. This 1501 * routine also has the ability to merge with both neighbors. 1502 * 1503 * The map must be locked. 1504 * 1505 * This routine guarentees that the passed entry remains valid (though 1506 * possibly extended). When merging, this routine may delete one or 1507 * both neighbors. 1508 */ 1509 void 1510 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry) 1511 { 1512 vm_map_entry_t next, prev; 1513 vm_size_t prevsize, esize; 1514 1515 if ((entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | 1516 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) != 0) 1517 return; 1518 1519 prev = entry->prev; 1520 if (prev != &map->header) { 1521 prevsize = prev->end - prev->start; 1522 if ( (prev->end == entry->start) && 1523 (prev->object.vm_object == entry->object.vm_object) && 1524 (!prev->object.vm_object || 1525 (prev->offset + prevsize == entry->offset)) && 1526 (prev->eflags == entry->eflags) && 1527 (prev->protection == entry->protection) && 1528 (prev->max_protection == entry->max_protection) && 1529 (prev->inheritance == entry->inheritance) && 1530 (prev->wired_count == entry->wired_count) && 1531 (prev->cred == entry->cred)) { 1532 vm_map_entry_unlink(map, prev); 1533 entry->start = prev->start; 1534 entry->offset = prev->offset; 1535 if (entry->prev != &map->header) 1536 vm_map_entry_resize_free(map, entry->prev); 1537 1538 /* 1539 * If the backing object is a vnode object, 1540 * vm_object_deallocate() calls vrele(). 1541 * However, vrele() does not lock the vnode 1542 * because the vnode has additional 1543 * references. Thus, the map lock can be kept 1544 * without causing a lock-order reversal with 1545 * the vnode lock. 1546 * 1547 * Since we count the number of virtual page 1548 * mappings in object->un_pager.vnp.writemappings, 1549 * the writemappings value should not be adjusted 1550 * when the entry is disposed of. 1551 */ 1552 if (prev->object.vm_object) 1553 vm_object_deallocate(prev->object.vm_object); 1554 if (prev->cred != NULL) 1555 crfree(prev->cred); 1556 vm_map_entry_dispose(map, prev); 1557 } 1558 } 1559 1560 next = entry->next; 1561 if (next != &map->header) { 1562 esize = entry->end - entry->start; 1563 if ((entry->end == next->start) && 1564 (next->object.vm_object == entry->object.vm_object) && 1565 (!entry->object.vm_object || 1566 (entry->offset + esize == next->offset)) && 1567 (next->eflags == entry->eflags) && 1568 (next->protection == entry->protection) && 1569 (next->max_protection == entry->max_protection) && 1570 (next->inheritance == entry->inheritance) && 1571 (next->wired_count == entry->wired_count) && 1572 (next->cred == entry->cred)) { 1573 vm_map_entry_unlink(map, next); 1574 entry->end = next->end; 1575 vm_map_entry_resize_free(map, entry); 1576 1577 /* 1578 * See comment above. 1579 */ 1580 if (next->object.vm_object) 1581 vm_object_deallocate(next->object.vm_object); 1582 if (next->cred != NULL) 1583 crfree(next->cred); 1584 vm_map_entry_dispose(map, next); 1585 } 1586 } 1587 } 1588 /* 1589 * vm_map_clip_start: [ internal use only ] 1590 * 1591 * Asserts that the given entry begins at or after 1592 * the specified address; if necessary, 1593 * it splits the entry into two. 1594 */ 1595 #define vm_map_clip_start(map, entry, startaddr) \ 1596 { \ 1597 if (startaddr > entry->start) \ 1598 _vm_map_clip_start(map, entry, startaddr); \ 1599 } 1600 1601 /* 1602 * This routine is called only when it is known that 1603 * the entry must be split. 1604 */ 1605 static void 1606 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start) 1607 { 1608 vm_map_entry_t new_entry; 1609 1610 VM_MAP_ASSERT_LOCKED(map); 1611 1612 /* 1613 * Split off the front portion -- note that we must insert the new 1614 * entry BEFORE this one, so that this entry has the specified 1615 * starting address. 1616 */ 1617 vm_map_simplify_entry(map, entry); 1618 1619 /* 1620 * If there is no object backing this entry, we might as well create 1621 * one now. If we defer it, an object can get created after the map 1622 * is clipped, and individual objects will be created for the split-up 1623 * map. This is a bit of a hack, but is also about the best place to 1624 * put this improvement. 1625 */ 1626 if (entry->object.vm_object == NULL && !map->system_map) { 1627 vm_object_t object; 1628 object = vm_object_allocate(OBJT_DEFAULT, 1629 atop(entry->end - entry->start)); 1630 entry->object.vm_object = object; 1631 entry->offset = 0; 1632 if (entry->cred != NULL) { 1633 object->cred = entry->cred; 1634 object->charge = entry->end - entry->start; 1635 entry->cred = NULL; 1636 } 1637 } else if (entry->object.vm_object != NULL && 1638 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 1639 entry->cred != NULL) { 1640 VM_OBJECT_WLOCK(entry->object.vm_object); 1641 KASSERT(entry->object.vm_object->cred == NULL, 1642 ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry)); 1643 entry->object.vm_object->cred = entry->cred; 1644 entry->object.vm_object->charge = entry->end - entry->start; 1645 VM_OBJECT_WUNLOCK(entry->object.vm_object); 1646 entry->cred = NULL; 1647 } 1648 1649 new_entry = vm_map_entry_create(map); 1650 *new_entry = *entry; 1651 1652 new_entry->end = start; 1653 entry->offset += (start - entry->start); 1654 entry->start = start; 1655 if (new_entry->cred != NULL) 1656 crhold(entry->cred); 1657 1658 vm_map_entry_link(map, entry->prev, new_entry); 1659 1660 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1661 vm_object_reference(new_entry->object.vm_object); 1662 /* 1663 * The object->un_pager.vnp.writemappings for the 1664 * object of MAP_ENTRY_VN_WRITECNT type entry shall be 1665 * kept as is here. The virtual pages are 1666 * re-distributed among the clipped entries, so the sum is 1667 * left the same. 1668 */ 1669 } 1670 } 1671 1672 /* 1673 * vm_map_clip_end: [ internal use only ] 1674 * 1675 * Asserts that the given entry ends at or before 1676 * the specified address; if necessary, 1677 * it splits the entry into two. 1678 */ 1679 #define vm_map_clip_end(map, entry, endaddr) \ 1680 { \ 1681 if ((endaddr) < (entry->end)) \ 1682 _vm_map_clip_end((map), (entry), (endaddr)); \ 1683 } 1684 1685 /* 1686 * This routine is called only when it is known that 1687 * the entry must be split. 1688 */ 1689 static void 1690 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end) 1691 { 1692 vm_map_entry_t new_entry; 1693 1694 VM_MAP_ASSERT_LOCKED(map); 1695 1696 /* 1697 * If there is no object backing this entry, we might as well create 1698 * one now. If we defer it, an object can get created after the map 1699 * is clipped, and individual objects will be created for the split-up 1700 * map. This is a bit of a hack, but is also about the best place to 1701 * put this improvement. 1702 */ 1703 if (entry->object.vm_object == NULL && !map->system_map) { 1704 vm_object_t object; 1705 object = vm_object_allocate(OBJT_DEFAULT, 1706 atop(entry->end - entry->start)); 1707 entry->object.vm_object = object; 1708 entry->offset = 0; 1709 if (entry->cred != NULL) { 1710 object->cred = entry->cred; 1711 object->charge = entry->end - entry->start; 1712 entry->cred = NULL; 1713 } 1714 } else if (entry->object.vm_object != NULL && 1715 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 1716 entry->cred != NULL) { 1717 VM_OBJECT_WLOCK(entry->object.vm_object); 1718 KASSERT(entry->object.vm_object->cred == NULL, 1719 ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry)); 1720 entry->object.vm_object->cred = entry->cred; 1721 entry->object.vm_object->charge = entry->end - entry->start; 1722 VM_OBJECT_WUNLOCK(entry->object.vm_object); 1723 entry->cred = NULL; 1724 } 1725 1726 /* 1727 * Create a new entry and insert it AFTER the specified entry 1728 */ 1729 new_entry = vm_map_entry_create(map); 1730 *new_entry = *entry; 1731 1732 new_entry->start = entry->end = end; 1733 new_entry->offset += (end - entry->start); 1734 if (new_entry->cred != NULL) 1735 crhold(entry->cred); 1736 1737 vm_map_entry_link(map, entry, new_entry); 1738 1739 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1740 vm_object_reference(new_entry->object.vm_object); 1741 } 1742 } 1743 1744 /* 1745 * vm_map_submap: [ kernel use only ] 1746 * 1747 * Mark the given range as handled by a subordinate map. 1748 * 1749 * This range must have been created with vm_map_find, 1750 * and no other operations may have been performed on this 1751 * range prior to calling vm_map_submap. 1752 * 1753 * Only a limited number of operations can be performed 1754 * within this rage after calling vm_map_submap: 1755 * vm_fault 1756 * [Don't try vm_map_copy!] 1757 * 1758 * To remove a submapping, one must first remove the 1759 * range from the superior map, and then destroy the 1760 * submap (if desired). [Better yet, don't try it.] 1761 */ 1762 int 1763 vm_map_submap( 1764 vm_map_t map, 1765 vm_offset_t start, 1766 vm_offset_t end, 1767 vm_map_t submap) 1768 { 1769 vm_map_entry_t entry; 1770 int result = KERN_INVALID_ARGUMENT; 1771 1772 vm_map_lock(map); 1773 1774 VM_MAP_RANGE_CHECK(map, start, end); 1775 1776 if (vm_map_lookup_entry(map, start, &entry)) { 1777 vm_map_clip_start(map, entry, start); 1778 } else 1779 entry = entry->next; 1780 1781 vm_map_clip_end(map, entry, end); 1782 1783 if ((entry->start == start) && (entry->end == end) && 1784 ((entry->eflags & MAP_ENTRY_COW) == 0) && 1785 (entry->object.vm_object == NULL)) { 1786 entry->object.sub_map = submap; 1787 entry->eflags |= MAP_ENTRY_IS_SUB_MAP; 1788 result = KERN_SUCCESS; 1789 } 1790 vm_map_unlock(map); 1791 1792 return (result); 1793 } 1794 1795 /* 1796 * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified 1797 */ 1798 #define MAX_INIT_PT 96 1799 1800 /* 1801 * vm_map_pmap_enter: 1802 * 1803 * Preload the specified map's pmap with mappings to the specified 1804 * object's memory-resident pages. No further physical pages are 1805 * allocated, and no further virtual pages are retrieved from secondary 1806 * storage. If the specified flags include MAP_PREFAULT_PARTIAL, then a 1807 * limited number of page mappings are created at the low-end of the 1808 * specified address range. (For this purpose, a superpage mapping 1809 * counts as one page mapping.) Otherwise, all resident pages within 1810 * the specified address range are mapped. Because these mappings are 1811 * being created speculatively, cached pages are not reactivated and 1812 * mapped. 1813 */ 1814 static void 1815 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 1816 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags) 1817 { 1818 vm_offset_t start; 1819 vm_page_t p, p_start; 1820 vm_pindex_t mask, psize, threshold, tmpidx; 1821 1822 if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL) 1823 return; 1824 VM_OBJECT_RLOCK(object); 1825 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 1826 VM_OBJECT_RUNLOCK(object); 1827 VM_OBJECT_WLOCK(object); 1828 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 1829 pmap_object_init_pt(map->pmap, addr, object, pindex, 1830 size); 1831 VM_OBJECT_WUNLOCK(object); 1832 return; 1833 } 1834 VM_OBJECT_LOCK_DOWNGRADE(object); 1835 } 1836 1837 psize = atop(size); 1838 if (psize + pindex > object->size) { 1839 if (object->size < pindex) { 1840 VM_OBJECT_RUNLOCK(object); 1841 return; 1842 } 1843 psize = object->size - pindex; 1844 } 1845 1846 start = 0; 1847 p_start = NULL; 1848 threshold = MAX_INIT_PT; 1849 1850 p = vm_page_find_least(object, pindex); 1851 /* 1852 * Assert: the variable p is either (1) the page with the 1853 * least pindex greater than or equal to the parameter pindex 1854 * or (2) NULL. 1855 */ 1856 for (; 1857 p != NULL && (tmpidx = p->pindex - pindex) < psize; 1858 p = TAILQ_NEXT(p, listq)) { 1859 /* 1860 * don't allow an madvise to blow away our really 1861 * free pages allocating pv entries. 1862 */ 1863 if (((flags & MAP_PREFAULT_MADVISE) != 0 && 1864 vm_cnt.v_free_count < vm_cnt.v_free_reserved) || 1865 ((flags & MAP_PREFAULT_PARTIAL) != 0 && 1866 tmpidx >= threshold)) { 1867 psize = tmpidx; 1868 break; 1869 } 1870 if (p->valid == VM_PAGE_BITS_ALL) { 1871 if (p_start == NULL) { 1872 start = addr + ptoa(tmpidx); 1873 p_start = p; 1874 } 1875 /* Jump ahead if a superpage mapping is possible. */ 1876 if (p->psind > 0 && ((addr + ptoa(tmpidx)) & 1877 (pagesizes[p->psind] - 1)) == 0) { 1878 mask = atop(pagesizes[p->psind]) - 1; 1879 if (tmpidx + mask < psize && 1880 vm_page_ps_is_valid(p)) { 1881 p += mask; 1882 threshold += mask; 1883 } 1884 } 1885 } else if (p_start != NULL) { 1886 pmap_enter_object(map->pmap, start, addr + 1887 ptoa(tmpidx), p_start, prot); 1888 p_start = NULL; 1889 } 1890 } 1891 if (p_start != NULL) 1892 pmap_enter_object(map->pmap, start, addr + ptoa(psize), 1893 p_start, prot); 1894 VM_OBJECT_RUNLOCK(object); 1895 } 1896 1897 /* 1898 * vm_map_protect: 1899 * 1900 * Sets the protection of the specified address 1901 * region in the target map. If "set_max" is 1902 * specified, the maximum protection is to be set; 1903 * otherwise, only the current protection is affected. 1904 */ 1905 int 1906 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 1907 vm_prot_t new_prot, boolean_t set_max) 1908 { 1909 vm_map_entry_t current, entry; 1910 vm_object_t obj; 1911 struct ucred *cred; 1912 vm_prot_t old_prot; 1913 1914 if (start == end) 1915 return (KERN_SUCCESS); 1916 1917 vm_map_lock(map); 1918 1919 VM_MAP_RANGE_CHECK(map, start, end); 1920 1921 if (vm_map_lookup_entry(map, start, &entry)) { 1922 vm_map_clip_start(map, entry, start); 1923 } else { 1924 entry = entry->next; 1925 } 1926 1927 /* 1928 * Make a first pass to check for protection violations. 1929 */ 1930 current = entry; 1931 while ((current != &map->header) && (current->start < end)) { 1932 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 1933 vm_map_unlock(map); 1934 return (KERN_INVALID_ARGUMENT); 1935 } 1936 if ((new_prot & current->max_protection) != new_prot) { 1937 vm_map_unlock(map); 1938 return (KERN_PROTECTION_FAILURE); 1939 } 1940 current = current->next; 1941 } 1942 1943 1944 /* 1945 * Do an accounting pass for private read-only mappings that 1946 * now will do cow due to allowed write (e.g. debugger sets 1947 * breakpoint on text segment) 1948 */ 1949 for (current = entry; (current != &map->header) && 1950 (current->start < end); current = current->next) { 1951 1952 vm_map_clip_end(map, current, end); 1953 1954 if (set_max || 1955 ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 || 1956 ENTRY_CHARGED(current)) { 1957 continue; 1958 } 1959 1960 cred = curthread->td_ucred; 1961 obj = current->object.vm_object; 1962 1963 if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) { 1964 if (!swap_reserve(current->end - current->start)) { 1965 vm_map_unlock(map); 1966 return (KERN_RESOURCE_SHORTAGE); 1967 } 1968 crhold(cred); 1969 current->cred = cred; 1970 continue; 1971 } 1972 1973 VM_OBJECT_WLOCK(obj); 1974 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) { 1975 VM_OBJECT_WUNLOCK(obj); 1976 continue; 1977 } 1978 1979 /* 1980 * Charge for the whole object allocation now, since 1981 * we cannot distinguish between non-charged and 1982 * charged clipped mapping of the same object later. 1983 */ 1984 KASSERT(obj->charge == 0, 1985 ("vm_map_protect: object %p overcharged (entry %p)", 1986 obj, current)); 1987 if (!swap_reserve(ptoa(obj->size))) { 1988 VM_OBJECT_WUNLOCK(obj); 1989 vm_map_unlock(map); 1990 return (KERN_RESOURCE_SHORTAGE); 1991 } 1992 1993 crhold(cred); 1994 obj->cred = cred; 1995 obj->charge = ptoa(obj->size); 1996 VM_OBJECT_WUNLOCK(obj); 1997 } 1998 1999 /* 2000 * Go back and fix up protections. [Note that clipping is not 2001 * necessary the second time.] 2002 */ 2003 current = entry; 2004 while ((current != &map->header) && (current->start < end)) { 2005 old_prot = current->protection; 2006 2007 if (set_max) 2008 current->protection = 2009 (current->max_protection = new_prot) & 2010 old_prot; 2011 else 2012 current->protection = new_prot; 2013 2014 /* 2015 * For user wired map entries, the normal lazy evaluation of 2016 * write access upgrades through soft page faults is 2017 * undesirable. Instead, immediately copy any pages that are 2018 * copy-on-write and enable write access in the physical map. 2019 */ 2020 if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 && 2021 (current->protection & VM_PROT_WRITE) != 0 && 2022 (old_prot & VM_PROT_WRITE) == 0) 2023 vm_fault_copy_entry(map, map, current, current, NULL); 2024 2025 /* 2026 * When restricting access, update the physical map. Worry 2027 * about copy-on-write here. 2028 */ 2029 if ((old_prot & ~current->protection) != 0) { 2030 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 2031 VM_PROT_ALL) 2032 pmap_protect(map->pmap, current->start, 2033 current->end, 2034 current->protection & MASK(current)); 2035 #undef MASK 2036 } 2037 vm_map_simplify_entry(map, current); 2038 current = current->next; 2039 } 2040 vm_map_unlock(map); 2041 return (KERN_SUCCESS); 2042 } 2043 2044 /* 2045 * vm_map_madvise: 2046 * 2047 * This routine traverses a processes map handling the madvise 2048 * system call. Advisories are classified as either those effecting 2049 * the vm_map_entry structure, or those effecting the underlying 2050 * objects. 2051 */ 2052 int 2053 vm_map_madvise( 2054 vm_map_t map, 2055 vm_offset_t start, 2056 vm_offset_t end, 2057 int behav) 2058 { 2059 vm_map_entry_t current, entry; 2060 int modify_map = 0; 2061 2062 /* 2063 * Some madvise calls directly modify the vm_map_entry, in which case 2064 * we need to use an exclusive lock on the map and we need to perform 2065 * various clipping operations. Otherwise we only need a read-lock 2066 * on the map. 2067 */ 2068 switch(behav) { 2069 case MADV_NORMAL: 2070 case MADV_SEQUENTIAL: 2071 case MADV_RANDOM: 2072 case MADV_NOSYNC: 2073 case MADV_AUTOSYNC: 2074 case MADV_NOCORE: 2075 case MADV_CORE: 2076 if (start == end) 2077 return (KERN_SUCCESS); 2078 modify_map = 1; 2079 vm_map_lock(map); 2080 break; 2081 case MADV_WILLNEED: 2082 case MADV_DONTNEED: 2083 case MADV_FREE: 2084 if (start == end) 2085 return (KERN_SUCCESS); 2086 vm_map_lock_read(map); 2087 break; 2088 default: 2089 return (KERN_INVALID_ARGUMENT); 2090 } 2091 2092 /* 2093 * Locate starting entry and clip if necessary. 2094 */ 2095 VM_MAP_RANGE_CHECK(map, start, end); 2096 2097 if (vm_map_lookup_entry(map, start, &entry)) { 2098 if (modify_map) 2099 vm_map_clip_start(map, entry, start); 2100 } else { 2101 entry = entry->next; 2102 } 2103 2104 if (modify_map) { 2105 /* 2106 * madvise behaviors that are implemented in the vm_map_entry. 2107 * 2108 * We clip the vm_map_entry so that behavioral changes are 2109 * limited to the specified address range. 2110 */ 2111 for (current = entry; 2112 (current != &map->header) && (current->start < end); 2113 current = current->next 2114 ) { 2115 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2116 continue; 2117 2118 vm_map_clip_end(map, current, end); 2119 2120 switch (behav) { 2121 case MADV_NORMAL: 2122 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL); 2123 break; 2124 case MADV_SEQUENTIAL: 2125 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL); 2126 break; 2127 case MADV_RANDOM: 2128 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM); 2129 break; 2130 case MADV_NOSYNC: 2131 current->eflags |= MAP_ENTRY_NOSYNC; 2132 break; 2133 case MADV_AUTOSYNC: 2134 current->eflags &= ~MAP_ENTRY_NOSYNC; 2135 break; 2136 case MADV_NOCORE: 2137 current->eflags |= MAP_ENTRY_NOCOREDUMP; 2138 break; 2139 case MADV_CORE: 2140 current->eflags &= ~MAP_ENTRY_NOCOREDUMP; 2141 break; 2142 default: 2143 break; 2144 } 2145 vm_map_simplify_entry(map, current); 2146 } 2147 vm_map_unlock(map); 2148 } else { 2149 vm_pindex_t pstart, pend; 2150 2151 /* 2152 * madvise behaviors that are implemented in the underlying 2153 * vm_object. 2154 * 2155 * Since we don't clip the vm_map_entry, we have to clip 2156 * the vm_object pindex and count. 2157 */ 2158 for (current = entry; 2159 (current != &map->header) && (current->start < end); 2160 current = current->next 2161 ) { 2162 vm_offset_t useEnd, useStart; 2163 2164 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2165 continue; 2166 2167 pstart = OFF_TO_IDX(current->offset); 2168 pend = pstart + atop(current->end - current->start); 2169 useStart = current->start; 2170 useEnd = current->end; 2171 2172 if (current->start < start) { 2173 pstart += atop(start - current->start); 2174 useStart = start; 2175 } 2176 if (current->end > end) { 2177 pend -= atop(current->end - end); 2178 useEnd = end; 2179 } 2180 2181 if (pstart >= pend) 2182 continue; 2183 2184 /* 2185 * Perform the pmap_advise() before clearing 2186 * PGA_REFERENCED in vm_page_advise(). Otherwise, a 2187 * concurrent pmap operation, such as pmap_remove(), 2188 * could clear a reference in the pmap and set 2189 * PGA_REFERENCED on the page before the pmap_advise() 2190 * had completed. Consequently, the page would appear 2191 * referenced based upon an old reference that 2192 * occurred before this pmap_advise() ran. 2193 */ 2194 if (behav == MADV_DONTNEED || behav == MADV_FREE) 2195 pmap_advise(map->pmap, useStart, useEnd, 2196 behav); 2197 2198 vm_object_madvise(current->object.vm_object, pstart, 2199 pend, behav); 2200 if (behav == MADV_WILLNEED) { 2201 vm_map_pmap_enter(map, 2202 useStart, 2203 current->protection, 2204 current->object.vm_object, 2205 pstart, 2206 ptoa(pend - pstart), 2207 MAP_PREFAULT_MADVISE 2208 ); 2209 } 2210 } 2211 vm_map_unlock_read(map); 2212 } 2213 return (0); 2214 } 2215 2216 2217 /* 2218 * vm_map_inherit: 2219 * 2220 * Sets the inheritance of the specified address 2221 * range in the target map. Inheritance 2222 * affects how the map will be shared with 2223 * child maps at the time of vmspace_fork. 2224 */ 2225 int 2226 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 2227 vm_inherit_t new_inheritance) 2228 { 2229 vm_map_entry_t entry; 2230 vm_map_entry_t temp_entry; 2231 2232 switch (new_inheritance) { 2233 case VM_INHERIT_NONE: 2234 case VM_INHERIT_COPY: 2235 case VM_INHERIT_SHARE: 2236 break; 2237 default: 2238 return (KERN_INVALID_ARGUMENT); 2239 } 2240 if (start == end) 2241 return (KERN_SUCCESS); 2242 vm_map_lock(map); 2243 VM_MAP_RANGE_CHECK(map, start, end); 2244 if (vm_map_lookup_entry(map, start, &temp_entry)) { 2245 entry = temp_entry; 2246 vm_map_clip_start(map, entry, start); 2247 } else 2248 entry = temp_entry->next; 2249 while ((entry != &map->header) && (entry->start < end)) { 2250 vm_map_clip_end(map, entry, end); 2251 entry->inheritance = new_inheritance; 2252 vm_map_simplify_entry(map, entry); 2253 entry = entry->next; 2254 } 2255 vm_map_unlock(map); 2256 return (KERN_SUCCESS); 2257 } 2258 2259 /* 2260 * vm_map_unwire: 2261 * 2262 * Implements both kernel and user unwiring. 2263 */ 2264 int 2265 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2266 int flags) 2267 { 2268 vm_map_entry_t entry, first_entry, tmp_entry; 2269 vm_offset_t saved_start; 2270 unsigned int last_timestamp; 2271 int rv; 2272 boolean_t need_wakeup, result, user_unwire; 2273 2274 if (start == end) 2275 return (KERN_SUCCESS); 2276 user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 2277 vm_map_lock(map); 2278 VM_MAP_RANGE_CHECK(map, start, end); 2279 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2280 if (flags & VM_MAP_WIRE_HOLESOK) 2281 first_entry = first_entry->next; 2282 else { 2283 vm_map_unlock(map); 2284 return (KERN_INVALID_ADDRESS); 2285 } 2286 } 2287 last_timestamp = map->timestamp; 2288 entry = first_entry; 2289 while (entry != &map->header && entry->start < end) { 2290 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2291 /* 2292 * We have not yet clipped the entry. 2293 */ 2294 saved_start = (start >= entry->start) ? start : 2295 entry->start; 2296 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2297 if (vm_map_unlock_and_wait(map, 0)) { 2298 /* 2299 * Allow interruption of user unwiring? 2300 */ 2301 } 2302 vm_map_lock(map); 2303 if (last_timestamp+1 != map->timestamp) { 2304 /* 2305 * Look again for the entry because the map was 2306 * modified while it was unlocked. 2307 * Specifically, the entry may have been 2308 * clipped, merged, or deleted. 2309 */ 2310 if (!vm_map_lookup_entry(map, saved_start, 2311 &tmp_entry)) { 2312 if (flags & VM_MAP_WIRE_HOLESOK) 2313 tmp_entry = tmp_entry->next; 2314 else { 2315 if (saved_start == start) { 2316 /* 2317 * First_entry has been deleted. 2318 */ 2319 vm_map_unlock(map); 2320 return (KERN_INVALID_ADDRESS); 2321 } 2322 end = saved_start; 2323 rv = KERN_INVALID_ADDRESS; 2324 goto done; 2325 } 2326 } 2327 if (entry == first_entry) 2328 first_entry = tmp_entry; 2329 else 2330 first_entry = NULL; 2331 entry = tmp_entry; 2332 } 2333 last_timestamp = map->timestamp; 2334 continue; 2335 } 2336 vm_map_clip_start(map, entry, start); 2337 vm_map_clip_end(map, entry, end); 2338 /* 2339 * Mark the entry in case the map lock is released. (See 2340 * above.) 2341 */ 2342 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 2343 entry->wiring_thread == NULL, 2344 ("owned map entry %p", entry)); 2345 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 2346 entry->wiring_thread = curthread; 2347 /* 2348 * Check the map for holes in the specified region. 2349 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 2350 */ 2351 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) && 2352 (entry->end < end && (entry->next == &map->header || 2353 entry->next->start > entry->end))) { 2354 end = entry->end; 2355 rv = KERN_INVALID_ADDRESS; 2356 goto done; 2357 } 2358 /* 2359 * If system unwiring, require that the entry is system wired. 2360 */ 2361 if (!user_unwire && 2362 vm_map_entry_system_wired_count(entry) == 0) { 2363 end = entry->end; 2364 rv = KERN_INVALID_ARGUMENT; 2365 goto done; 2366 } 2367 entry = entry->next; 2368 } 2369 rv = KERN_SUCCESS; 2370 done: 2371 need_wakeup = FALSE; 2372 if (first_entry == NULL) { 2373 result = vm_map_lookup_entry(map, start, &first_entry); 2374 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 2375 first_entry = first_entry->next; 2376 else 2377 KASSERT(result, ("vm_map_unwire: lookup failed")); 2378 } 2379 for (entry = first_entry; entry != &map->header && entry->start < end; 2380 entry = entry->next) { 2381 /* 2382 * If VM_MAP_WIRE_HOLESOK was specified, an empty 2383 * space in the unwired region could have been mapped 2384 * while the map lock was dropped for draining 2385 * MAP_ENTRY_IN_TRANSITION. Moreover, another thread 2386 * could be simultaneously wiring this new mapping 2387 * entry. Detect these cases and skip any entries 2388 * marked as in transition by us. 2389 */ 2390 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 2391 entry->wiring_thread != curthread) { 2392 KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0, 2393 ("vm_map_unwire: !HOLESOK and new/changed entry")); 2394 continue; 2395 } 2396 2397 if (rv == KERN_SUCCESS && (!user_unwire || 2398 (entry->eflags & MAP_ENTRY_USER_WIRED))) { 2399 if (user_unwire) 2400 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2401 if (entry->wired_count == 1) 2402 vm_map_entry_unwire(map, entry); 2403 else 2404 entry->wired_count--; 2405 } 2406 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 2407 ("vm_map_unwire: in-transition flag missing %p", entry)); 2408 KASSERT(entry->wiring_thread == curthread, 2409 ("vm_map_unwire: alien wire %p", entry)); 2410 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 2411 entry->wiring_thread = NULL; 2412 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 2413 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 2414 need_wakeup = TRUE; 2415 } 2416 vm_map_simplify_entry(map, entry); 2417 } 2418 vm_map_unlock(map); 2419 if (need_wakeup) 2420 vm_map_wakeup(map); 2421 return (rv); 2422 } 2423 2424 /* 2425 * vm_map_wire_entry_failure: 2426 * 2427 * Handle a wiring failure on the given entry. 2428 * 2429 * The map should be locked. 2430 */ 2431 static void 2432 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry, 2433 vm_offset_t failed_addr) 2434 { 2435 2436 VM_MAP_ASSERT_LOCKED(map); 2437 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 && 2438 entry->wired_count == 1, 2439 ("vm_map_wire_entry_failure: entry %p isn't being wired", entry)); 2440 KASSERT(failed_addr < entry->end, 2441 ("vm_map_wire_entry_failure: entry %p was fully wired", entry)); 2442 2443 /* 2444 * If any pages at the start of this entry were successfully wired, 2445 * then unwire them. 2446 */ 2447 if (failed_addr > entry->start) { 2448 pmap_unwire(map->pmap, entry->start, failed_addr); 2449 vm_object_unwire(entry->object.vm_object, entry->offset, 2450 failed_addr - entry->start, PQ_ACTIVE); 2451 } 2452 2453 /* 2454 * Assign an out-of-range value to represent the failure to wire this 2455 * entry. 2456 */ 2457 entry->wired_count = -1; 2458 } 2459 2460 /* 2461 * vm_map_wire: 2462 * 2463 * Implements both kernel and user wiring. 2464 */ 2465 int 2466 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2467 int flags) 2468 { 2469 vm_map_entry_t entry, first_entry, tmp_entry; 2470 vm_offset_t faddr, saved_end, saved_start; 2471 unsigned int last_timestamp; 2472 int rv; 2473 boolean_t need_wakeup, result, user_wire; 2474 vm_prot_t prot; 2475 2476 if (start == end) 2477 return (KERN_SUCCESS); 2478 prot = 0; 2479 if (flags & VM_MAP_WIRE_WRITE) 2480 prot |= VM_PROT_WRITE; 2481 user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 2482 vm_map_lock(map); 2483 VM_MAP_RANGE_CHECK(map, start, end); 2484 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2485 if (flags & VM_MAP_WIRE_HOLESOK) 2486 first_entry = first_entry->next; 2487 else { 2488 vm_map_unlock(map); 2489 return (KERN_INVALID_ADDRESS); 2490 } 2491 } 2492 last_timestamp = map->timestamp; 2493 entry = first_entry; 2494 while (entry != &map->header && entry->start < end) { 2495 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2496 /* 2497 * We have not yet clipped the entry. 2498 */ 2499 saved_start = (start >= entry->start) ? start : 2500 entry->start; 2501 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2502 if (vm_map_unlock_and_wait(map, 0)) { 2503 /* 2504 * Allow interruption of user wiring? 2505 */ 2506 } 2507 vm_map_lock(map); 2508 if (last_timestamp + 1 != map->timestamp) { 2509 /* 2510 * Look again for the entry because the map was 2511 * modified while it was unlocked. 2512 * Specifically, the entry may have been 2513 * clipped, merged, or deleted. 2514 */ 2515 if (!vm_map_lookup_entry(map, saved_start, 2516 &tmp_entry)) { 2517 if (flags & VM_MAP_WIRE_HOLESOK) 2518 tmp_entry = tmp_entry->next; 2519 else { 2520 if (saved_start == start) { 2521 /* 2522 * first_entry has been deleted. 2523 */ 2524 vm_map_unlock(map); 2525 return (KERN_INVALID_ADDRESS); 2526 } 2527 end = saved_start; 2528 rv = KERN_INVALID_ADDRESS; 2529 goto done; 2530 } 2531 } 2532 if (entry == first_entry) 2533 first_entry = tmp_entry; 2534 else 2535 first_entry = NULL; 2536 entry = tmp_entry; 2537 } 2538 last_timestamp = map->timestamp; 2539 continue; 2540 } 2541 vm_map_clip_start(map, entry, start); 2542 vm_map_clip_end(map, entry, end); 2543 /* 2544 * Mark the entry in case the map lock is released. (See 2545 * above.) 2546 */ 2547 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 2548 entry->wiring_thread == NULL, 2549 ("owned map entry %p", entry)); 2550 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 2551 entry->wiring_thread = curthread; 2552 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 2553 || (entry->protection & prot) != prot) { 2554 entry->eflags |= MAP_ENTRY_WIRE_SKIPPED; 2555 if ((flags & VM_MAP_WIRE_HOLESOK) == 0) { 2556 end = entry->end; 2557 rv = KERN_INVALID_ADDRESS; 2558 goto done; 2559 } 2560 goto next_entry; 2561 } 2562 if (entry->wired_count == 0) { 2563 entry->wired_count++; 2564 saved_start = entry->start; 2565 saved_end = entry->end; 2566 2567 /* 2568 * Release the map lock, relying on the in-transition 2569 * mark. Mark the map busy for fork. 2570 */ 2571 vm_map_busy(map); 2572 vm_map_unlock(map); 2573 2574 faddr = saved_start; 2575 do { 2576 /* 2577 * Simulate a fault to get the page and enter 2578 * it into the physical map. 2579 */ 2580 if ((rv = vm_fault(map, faddr, VM_PROT_NONE, 2581 VM_FAULT_CHANGE_WIRING)) != KERN_SUCCESS) 2582 break; 2583 } while ((faddr += PAGE_SIZE) < saved_end); 2584 vm_map_lock(map); 2585 vm_map_unbusy(map); 2586 if (last_timestamp + 1 != map->timestamp) { 2587 /* 2588 * Look again for the entry because the map was 2589 * modified while it was unlocked. The entry 2590 * may have been clipped, but NOT merged or 2591 * deleted. 2592 */ 2593 result = vm_map_lookup_entry(map, saved_start, 2594 &tmp_entry); 2595 KASSERT(result, ("vm_map_wire: lookup failed")); 2596 if (entry == first_entry) 2597 first_entry = tmp_entry; 2598 else 2599 first_entry = NULL; 2600 entry = tmp_entry; 2601 while (entry->end < saved_end) { 2602 /* 2603 * In case of failure, handle entries 2604 * that were not fully wired here; 2605 * fully wired entries are handled 2606 * later. 2607 */ 2608 if (rv != KERN_SUCCESS && 2609 faddr < entry->end) 2610 vm_map_wire_entry_failure(map, 2611 entry, faddr); 2612 entry = entry->next; 2613 } 2614 } 2615 last_timestamp = map->timestamp; 2616 if (rv != KERN_SUCCESS) { 2617 vm_map_wire_entry_failure(map, entry, faddr); 2618 end = entry->end; 2619 goto done; 2620 } 2621 } else if (!user_wire || 2622 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 2623 entry->wired_count++; 2624 } 2625 /* 2626 * Check the map for holes in the specified region. 2627 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 2628 */ 2629 next_entry: 2630 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) && 2631 (entry->end < end && (entry->next == &map->header || 2632 entry->next->start > entry->end))) { 2633 end = entry->end; 2634 rv = KERN_INVALID_ADDRESS; 2635 goto done; 2636 } 2637 entry = entry->next; 2638 } 2639 rv = KERN_SUCCESS; 2640 done: 2641 need_wakeup = FALSE; 2642 if (first_entry == NULL) { 2643 result = vm_map_lookup_entry(map, start, &first_entry); 2644 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 2645 first_entry = first_entry->next; 2646 else 2647 KASSERT(result, ("vm_map_wire: lookup failed")); 2648 } 2649 for (entry = first_entry; entry != &map->header && entry->start < end; 2650 entry = entry->next) { 2651 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) 2652 goto next_entry_done; 2653 2654 /* 2655 * If VM_MAP_WIRE_HOLESOK was specified, an empty 2656 * space in the unwired region could have been mapped 2657 * while the map lock was dropped for faulting in the 2658 * pages or draining MAP_ENTRY_IN_TRANSITION. 2659 * Moreover, another thread could be simultaneously 2660 * wiring this new mapping entry. Detect these cases 2661 * and skip any entries marked as in transition by us. 2662 */ 2663 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 2664 entry->wiring_thread != curthread) { 2665 KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0, 2666 ("vm_map_wire: !HOLESOK and new/changed entry")); 2667 continue; 2668 } 2669 2670 if (rv == KERN_SUCCESS) { 2671 if (user_wire) 2672 entry->eflags |= MAP_ENTRY_USER_WIRED; 2673 } else if (entry->wired_count == -1) { 2674 /* 2675 * Wiring failed on this entry. Thus, unwiring is 2676 * unnecessary. 2677 */ 2678 entry->wired_count = 0; 2679 } else if (!user_wire || 2680 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 2681 /* 2682 * Undo the wiring. Wiring succeeded on this entry 2683 * but failed on a later entry. 2684 */ 2685 if (entry->wired_count == 1) 2686 vm_map_entry_unwire(map, entry); 2687 else 2688 entry->wired_count--; 2689 } 2690 next_entry_done: 2691 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 2692 ("vm_map_wire: in-transition flag missing %p", entry)); 2693 KASSERT(entry->wiring_thread == curthread, 2694 ("vm_map_wire: alien wire %p", entry)); 2695 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION | 2696 MAP_ENTRY_WIRE_SKIPPED); 2697 entry->wiring_thread = NULL; 2698 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 2699 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 2700 need_wakeup = TRUE; 2701 } 2702 vm_map_simplify_entry(map, entry); 2703 } 2704 vm_map_unlock(map); 2705 if (need_wakeup) 2706 vm_map_wakeup(map); 2707 return (rv); 2708 } 2709 2710 /* 2711 * vm_map_sync 2712 * 2713 * Push any dirty cached pages in the address range to their pager. 2714 * If syncio is TRUE, dirty pages are written synchronously. 2715 * If invalidate is TRUE, any cached pages are freed as well. 2716 * 2717 * If the size of the region from start to end is zero, we are 2718 * supposed to flush all modified pages within the region containing 2719 * start. Unfortunately, a region can be split or coalesced with 2720 * neighboring regions, making it difficult to determine what the 2721 * original region was. Therefore, we approximate this requirement by 2722 * flushing the current region containing start. 2723 * 2724 * Returns an error if any part of the specified range is not mapped. 2725 */ 2726 int 2727 vm_map_sync( 2728 vm_map_t map, 2729 vm_offset_t start, 2730 vm_offset_t end, 2731 boolean_t syncio, 2732 boolean_t invalidate) 2733 { 2734 vm_map_entry_t current; 2735 vm_map_entry_t entry; 2736 vm_size_t size; 2737 vm_object_t object; 2738 vm_ooffset_t offset; 2739 unsigned int last_timestamp; 2740 boolean_t failed; 2741 2742 vm_map_lock_read(map); 2743 VM_MAP_RANGE_CHECK(map, start, end); 2744 if (!vm_map_lookup_entry(map, start, &entry)) { 2745 vm_map_unlock_read(map); 2746 return (KERN_INVALID_ADDRESS); 2747 } else if (start == end) { 2748 start = entry->start; 2749 end = entry->end; 2750 } 2751 /* 2752 * Make a first pass to check for user-wired memory and holes. 2753 */ 2754 for (current = entry; current != &map->header && current->start < end; 2755 current = current->next) { 2756 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) { 2757 vm_map_unlock_read(map); 2758 return (KERN_INVALID_ARGUMENT); 2759 } 2760 if (end > current->end && 2761 (current->next == &map->header || 2762 current->end != current->next->start)) { 2763 vm_map_unlock_read(map); 2764 return (KERN_INVALID_ADDRESS); 2765 } 2766 } 2767 2768 if (invalidate) 2769 pmap_remove(map->pmap, start, end); 2770 failed = FALSE; 2771 2772 /* 2773 * Make a second pass, cleaning/uncaching pages from the indicated 2774 * objects as we go. 2775 */ 2776 for (current = entry; current != &map->header && current->start < end;) { 2777 offset = current->offset + (start - current->start); 2778 size = (end <= current->end ? end : current->end) - start; 2779 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 2780 vm_map_t smap; 2781 vm_map_entry_t tentry; 2782 vm_size_t tsize; 2783 2784 smap = current->object.sub_map; 2785 vm_map_lock_read(smap); 2786 (void) vm_map_lookup_entry(smap, offset, &tentry); 2787 tsize = tentry->end - offset; 2788 if (tsize < size) 2789 size = tsize; 2790 object = tentry->object.vm_object; 2791 offset = tentry->offset + (offset - tentry->start); 2792 vm_map_unlock_read(smap); 2793 } else { 2794 object = current->object.vm_object; 2795 } 2796 vm_object_reference(object); 2797 last_timestamp = map->timestamp; 2798 vm_map_unlock_read(map); 2799 if (!vm_object_sync(object, offset, size, syncio, invalidate)) 2800 failed = TRUE; 2801 start += size; 2802 vm_object_deallocate(object); 2803 vm_map_lock_read(map); 2804 if (last_timestamp == map->timestamp || 2805 !vm_map_lookup_entry(map, start, ¤t)) 2806 current = current->next; 2807 } 2808 2809 vm_map_unlock_read(map); 2810 return (failed ? KERN_FAILURE : KERN_SUCCESS); 2811 } 2812 2813 /* 2814 * vm_map_entry_unwire: [ internal use only ] 2815 * 2816 * Make the region specified by this entry pageable. 2817 * 2818 * The map in question should be locked. 2819 * [This is the reason for this routine's existence.] 2820 */ 2821 static void 2822 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 2823 { 2824 2825 VM_MAP_ASSERT_LOCKED(map); 2826 KASSERT(entry->wired_count > 0, 2827 ("vm_map_entry_unwire: entry %p isn't wired", entry)); 2828 pmap_unwire(map->pmap, entry->start, entry->end); 2829 vm_object_unwire(entry->object.vm_object, entry->offset, entry->end - 2830 entry->start, PQ_ACTIVE); 2831 entry->wired_count = 0; 2832 } 2833 2834 static void 2835 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map) 2836 { 2837 2838 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) 2839 vm_object_deallocate(entry->object.vm_object); 2840 uma_zfree(system_map ? kmapentzone : mapentzone, entry); 2841 } 2842 2843 /* 2844 * vm_map_entry_delete: [ internal use only ] 2845 * 2846 * Deallocate the given entry from the target map. 2847 */ 2848 static void 2849 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry) 2850 { 2851 vm_object_t object; 2852 vm_pindex_t offidxstart, offidxend, count, size1; 2853 vm_ooffset_t size; 2854 2855 vm_map_entry_unlink(map, entry); 2856 object = entry->object.vm_object; 2857 size = entry->end - entry->start; 2858 map->size -= size; 2859 2860 if (entry->cred != NULL) { 2861 swap_release_by_cred(size, entry->cred); 2862 crfree(entry->cred); 2863 } 2864 2865 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 && 2866 (object != NULL)) { 2867 KASSERT(entry->cred == NULL || object->cred == NULL || 2868 (entry->eflags & MAP_ENTRY_NEEDS_COPY), 2869 ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry)); 2870 count = OFF_TO_IDX(size); 2871 offidxstart = OFF_TO_IDX(entry->offset); 2872 offidxend = offidxstart + count; 2873 VM_OBJECT_WLOCK(object); 2874 if (object->ref_count != 1 && 2875 ((object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING || 2876 object == kernel_object || object == kmem_object)) { 2877 vm_object_collapse(object); 2878 2879 /* 2880 * The option OBJPR_NOTMAPPED can be passed here 2881 * because vm_map_delete() already performed 2882 * pmap_remove() on the only mapping to this range 2883 * of pages. 2884 */ 2885 vm_object_page_remove(object, offidxstart, offidxend, 2886 OBJPR_NOTMAPPED); 2887 if (object->type == OBJT_SWAP) 2888 swap_pager_freespace(object, offidxstart, count); 2889 if (offidxend >= object->size && 2890 offidxstart < object->size) { 2891 size1 = object->size; 2892 object->size = offidxstart; 2893 if (object->cred != NULL) { 2894 size1 -= object->size; 2895 KASSERT(object->charge >= ptoa(size1), 2896 ("vm_map_entry_delete: object->charge < 0")); 2897 swap_release_by_cred(ptoa(size1), object->cred); 2898 object->charge -= ptoa(size1); 2899 } 2900 } 2901 } 2902 VM_OBJECT_WUNLOCK(object); 2903 } else 2904 entry->object.vm_object = NULL; 2905 if (map->system_map) 2906 vm_map_entry_deallocate(entry, TRUE); 2907 else { 2908 entry->next = curthread->td_map_def_user; 2909 curthread->td_map_def_user = entry; 2910 } 2911 } 2912 2913 /* 2914 * vm_map_delete: [ internal use only ] 2915 * 2916 * Deallocates the given address range from the target 2917 * map. 2918 */ 2919 int 2920 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end) 2921 { 2922 vm_map_entry_t entry; 2923 vm_map_entry_t first_entry; 2924 2925 VM_MAP_ASSERT_LOCKED(map); 2926 if (start == end) 2927 return (KERN_SUCCESS); 2928 2929 /* 2930 * Find the start of the region, and clip it 2931 */ 2932 if (!vm_map_lookup_entry(map, start, &first_entry)) 2933 entry = first_entry->next; 2934 else { 2935 entry = first_entry; 2936 vm_map_clip_start(map, entry, start); 2937 } 2938 2939 /* 2940 * Step through all entries in this region 2941 */ 2942 while ((entry != &map->header) && (entry->start < end)) { 2943 vm_map_entry_t next; 2944 2945 /* 2946 * Wait for wiring or unwiring of an entry to complete. 2947 * Also wait for any system wirings to disappear on 2948 * user maps. 2949 */ 2950 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 || 2951 (vm_map_pmap(map) != kernel_pmap && 2952 vm_map_entry_system_wired_count(entry) != 0)) { 2953 unsigned int last_timestamp; 2954 vm_offset_t saved_start; 2955 vm_map_entry_t tmp_entry; 2956 2957 saved_start = entry->start; 2958 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2959 last_timestamp = map->timestamp; 2960 (void) vm_map_unlock_and_wait(map, 0); 2961 vm_map_lock(map); 2962 if (last_timestamp + 1 != map->timestamp) { 2963 /* 2964 * Look again for the entry because the map was 2965 * modified while it was unlocked. 2966 * Specifically, the entry may have been 2967 * clipped, merged, or deleted. 2968 */ 2969 if (!vm_map_lookup_entry(map, saved_start, 2970 &tmp_entry)) 2971 entry = tmp_entry->next; 2972 else { 2973 entry = tmp_entry; 2974 vm_map_clip_start(map, entry, 2975 saved_start); 2976 } 2977 } 2978 continue; 2979 } 2980 vm_map_clip_end(map, entry, end); 2981 2982 next = entry->next; 2983 2984 /* 2985 * Unwire before removing addresses from the pmap; otherwise, 2986 * unwiring will put the entries back in the pmap. 2987 */ 2988 if (entry->wired_count != 0) { 2989 vm_map_entry_unwire(map, entry); 2990 } 2991 2992 pmap_remove(map->pmap, entry->start, entry->end); 2993 2994 /* 2995 * Delete the entry only after removing all pmap 2996 * entries pointing to its pages. (Otherwise, its 2997 * page frames may be reallocated, and any modify bits 2998 * will be set in the wrong object!) 2999 */ 3000 vm_map_entry_delete(map, entry); 3001 entry = next; 3002 } 3003 return (KERN_SUCCESS); 3004 } 3005 3006 /* 3007 * vm_map_remove: 3008 * 3009 * Remove the given address range from the target map. 3010 * This is the exported form of vm_map_delete. 3011 */ 3012 int 3013 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 3014 { 3015 int result; 3016 3017 vm_map_lock(map); 3018 VM_MAP_RANGE_CHECK(map, start, end); 3019 result = vm_map_delete(map, start, end); 3020 vm_map_unlock(map); 3021 return (result); 3022 } 3023 3024 /* 3025 * vm_map_check_protection: 3026 * 3027 * Assert that the target map allows the specified privilege on the 3028 * entire address region given. The entire region must be allocated. 3029 * 3030 * WARNING! This code does not and should not check whether the 3031 * contents of the region is accessible. For example a smaller file 3032 * might be mapped into a larger address space. 3033 * 3034 * NOTE! This code is also called by munmap(). 3035 * 3036 * The map must be locked. A read lock is sufficient. 3037 */ 3038 boolean_t 3039 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 3040 vm_prot_t protection) 3041 { 3042 vm_map_entry_t entry; 3043 vm_map_entry_t tmp_entry; 3044 3045 if (!vm_map_lookup_entry(map, start, &tmp_entry)) 3046 return (FALSE); 3047 entry = tmp_entry; 3048 3049 while (start < end) { 3050 if (entry == &map->header) 3051 return (FALSE); 3052 /* 3053 * No holes allowed! 3054 */ 3055 if (start < entry->start) 3056 return (FALSE); 3057 /* 3058 * Check protection associated with entry. 3059 */ 3060 if ((entry->protection & protection) != protection) 3061 return (FALSE); 3062 /* go to next entry */ 3063 start = entry->end; 3064 entry = entry->next; 3065 } 3066 return (TRUE); 3067 } 3068 3069 /* 3070 * vm_map_copy_entry: 3071 * 3072 * Copies the contents of the source entry to the destination 3073 * entry. The entries *must* be aligned properly. 3074 */ 3075 static void 3076 vm_map_copy_entry( 3077 vm_map_t src_map, 3078 vm_map_t dst_map, 3079 vm_map_entry_t src_entry, 3080 vm_map_entry_t dst_entry, 3081 vm_ooffset_t *fork_charge) 3082 { 3083 vm_object_t src_object; 3084 vm_map_entry_t fake_entry; 3085 vm_offset_t size; 3086 struct ucred *cred; 3087 int charged; 3088 3089 VM_MAP_ASSERT_LOCKED(dst_map); 3090 3091 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP) 3092 return; 3093 3094 if (src_entry->wired_count == 0 || 3095 (src_entry->protection & VM_PROT_WRITE) == 0) { 3096 /* 3097 * If the source entry is marked needs_copy, it is already 3098 * write-protected. 3099 */ 3100 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 && 3101 (src_entry->protection & VM_PROT_WRITE) != 0) { 3102 pmap_protect(src_map->pmap, 3103 src_entry->start, 3104 src_entry->end, 3105 src_entry->protection & ~VM_PROT_WRITE); 3106 } 3107 3108 /* 3109 * Make a copy of the object. 3110 */ 3111 size = src_entry->end - src_entry->start; 3112 if ((src_object = src_entry->object.vm_object) != NULL) { 3113 VM_OBJECT_WLOCK(src_object); 3114 charged = ENTRY_CHARGED(src_entry); 3115 if ((src_object->handle == NULL) && 3116 (src_object->type == OBJT_DEFAULT || 3117 src_object->type == OBJT_SWAP)) { 3118 vm_object_collapse(src_object); 3119 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) { 3120 vm_object_split(src_entry); 3121 src_object = src_entry->object.vm_object; 3122 } 3123 } 3124 vm_object_reference_locked(src_object); 3125 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 3126 if (src_entry->cred != NULL && 3127 !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 3128 KASSERT(src_object->cred == NULL, 3129 ("OVERCOMMIT: vm_map_copy_entry: cred %p", 3130 src_object)); 3131 src_object->cred = src_entry->cred; 3132 src_object->charge = size; 3133 } 3134 VM_OBJECT_WUNLOCK(src_object); 3135 dst_entry->object.vm_object = src_object; 3136 if (charged) { 3137 cred = curthread->td_ucred; 3138 crhold(cred); 3139 dst_entry->cred = cred; 3140 *fork_charge += size; 3141 if (!(src_entry->eflags & 3142 MAP_ENTRY_NEEDS_COPY)) { 3143 crhold(cred); 3144 src_entry->cred = cred; 3145 *fork_charge += size; 3146 } 3147 } 3148 src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 3149 dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 3150 dst_entry->offset = src_entry->offset; 3151 if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) { 3152 /* 3153 * MAP_ENTRY_VN_WRITECNT cannot 3154 * indicate write reference from 3155 * src_entry, since the entry is 3156 * marked as needs copy. Allocate a 3157 * fake entry that is used to 3158 * decrement object->un_pager.vnp.writecount 3159 * at the appropriate time. Attach 3160 * fake_entry to the deferred list. 3161 */ 3162 fake_entry = vm_map_entry_create(dst_map); 3163 fake_entry->eflags = MAP_ENTRY_VN_WRITECNT; 3164 src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT; 3165 vm_object_reference(src_object); 3166 fake_entry->object.vm_object = src_object; 3167 fake_entry->start = src_entry->start; 3168 fake_entry->end = src_entry->end; 3169 fake_entry->next = curthread->td_map_def_user; 3170 curthread->td_map_def_user = fake_entry; 3171 } 3172 } else { 3173 dst_entry->object.vm_object = NULL; 3174 dst_entry->offset = 0; 3175 if (src_entry->cred != NULL) { 3176 dst_entry->cred = curthread->td_ucred; 3177 crhold(dst_entry->cred); 3178 *fork_charge += size; 3179 } 3180 } 3181 3182 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start, 3183 dst_entry->end - dst_entry->start, src_entry->start); 3184 } else { 3185 /* 3186 * We don't want to make writeable wired pages copy-on-write. 3187 * Immediately copy these pages into the new map by simulating 3188 * page faults. The new pages are pageable. 3189 */ 3190 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry, 3191 fork_charge); 3192 } 3193 } 3194 3195 /* 3196 * vmspace_map_entry_forked: 3197 * Update the newly-forked vmspace each time a map entry is inherited 3198 * or copied. The values for vm_dsize and vm_tsize are approximate 3199 * (and mostly-obsolete ideas in the face of mmap(2) et al.) 3200 */ 3201 static void 3202 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2, 3203 vm_map_entry_t entry) 3204 { 3205 vm_size_t entrysize; 3206 vm_offset_t newend; 3207 3208 entrysize = entry->end - entry->start; 3209 vm2->vm_map.size += entrysize; 3210 if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) { 3211 vm2->vm_ssize += btoc(entrysize); 3212 } else if (entry->start >= (vm_offset_t)vm1->vm_daddr && 3213 entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) { 3214 newend = MIN(entry->end, 3215 (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)); 3216 vm2->vm_dsize += btoc(newend - entry->start); 3217 } else if (entry->start >= (vm_offset_t)vm1->vm_taddr && 3218 entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) { 3219 newend = MIN(entry->end, 3220 (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)); 3221 vm2->vm_tsize += btoc(newend - entry->start); 3222 } 3223 } 3224 3225 /* 3226 * vmspace_fork: 3227 * Create a new process vmspace structure and vm_map 3228 * based on those of an existing process. The new map 3229 * is based on the old map, according to the inheritance 3230 * values on the regions in that map. 3231 * 3232 * XXX It might be worth coalescing the entries added to the new vmspace. 3233 * 3234 * The source map must not be locked. 3235 */ 3236 struct vmspace * 3237 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge) 3238 { 3239 struct vmspace *vm2; 3240 vm_map_t new_map, old_map; 3241 vm_map_entry_t new_entry, old_entry; 3242 vm_object_t object; 3243 int locked; 3244 3245 old_map = &vm1->vm_map; 3246 /* Copy immutable fields of vm1 to vm2. */ 3247 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset, NULL); 3248 if (vm2 == NULL) 3249 return (NULL); 3250 vm2->vm_taddr = vm1->vm_taddr; 3251 vm2->vm_daddr = vm1->vm_daddr; 3252 vm2->vm_maxsaddr = vm1->vm_maxsaddr; 3253 vm_map_lock(old_map); 3254 if (old_map->busy) 3255 vm_map_wait_busy(old_map); 3256 new_map = &vm2->vm_map; 3257 locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */ 3258 KASSERT(locked, ("vmspace_fork: lock failed")); 3259 3260 old_entry = old_map->header.next; 3261 3262 while (old_entry != &old_map->header) { 3263 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) 3264 panic("vm_map_fork: encountered a submap"); 3265 3266 switch (old_entry->inheritance) { 3267 case VM_INHERIT_NONE: 3268 break; 3269 3270 case VM_INHERIT_SHARE: 3271 /* 3272 * Clone the entry, creating the shared object if necessary. 3273 */ 3274 object = old_entry->object.vm_object; 3275 if (object == NULL) { 3276 object = vm_object_allocate(OBJT_DEFAULT, 3277 atop(old_entry->end - old_entry->start)); 3278 old_entry->object.vm_object = object; 3279 old_entry->offset = 0; 3280 if (old_entry->cred != NULL) { 3281 object->cred = old_entry->cred; 3282 object->charge = old_entry->end - 3283 old_entry->start; 3284 old_entry->cred = NULL; 3285 } 3286 } 3287 3288 /* 3289 * Add the reference before calling vm_object_shadow 3290 * to insure that a shadow object is created. 3291 */ 3292 vm_object_reference(object); 3293 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3294 vm_object_shadow(&old_entry->object.vm_object, 3295 &old_entry->offset, 3296 old_entry->end - old_entry->start); 3297 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 3298 /* Transfer the second reference too. */ 3299 vm_object_reference( 3300 old_entry->object.vm_object); 3301 3302 /* 3303 * As in vm_map_simplify_entry(), the 3304 * vnode lock will not be acquired in 3305 * this call to vm_object_deallocate(). 3306 */ 3307 vm_object_deallocate(object); 3308 object = old_entry->object.vm_object; 3309 } 3310 VM_OBJECT_WLOCK(object); 3311 vm_object_clear_flag(object, OBJ_ONEMAPPING); 3312 if (old_entry->cred != NULL) { 3313 KASSERT(object->cred == NULL, ("vmspace_fork both cred")); 3314 object->cred = old_entry->cred; 3315 object->charge = old_entry->end - old_entry->start; 3316 old_entry->cred = NULL; 3317 } 3318 3319 /* 3320 * Assert the correct state of the vnode 3321 * v_writecount while the object is locked, to 3322 * not relock it later for the assertion 3323 * correctness. 3324 */ 3325 if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT && 3326 object->type == OBJT_VNODE) { 3327 KASSERT(((struct vnode *)object->handle)-> 3328 v_writecount > 0, 3329 ("vmspace_fork: v_writecount %p", object)); 3330 KASSERT(object->un_pager.vnp.writemappings > 0, 3331 ("vmspace_fork: vnp.writecount %p", 3332 object)); 3333 } 3334 VM_OBJECT_WUNLOCK(object); 3335 3336 /* 3337 * Clone the entry, referencing the shared object. 3338 */ 3339 new_entry = vm_map_entry_create(new_map); 3340 *new_entry = *old_entry; 3341 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 3342 MAP_ENTRY_IN_TRANSITION); 3343 new_entry->wiring_thread = NULL; 3344 new_entry->wired_count = 0; 3345 if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) { 3346 vnode_pager_update_writecount(object, 3347 new_entry->start, new_entry->end); 3348 } 3349 3350 /* 3351 * Insert the entry into the new map -- we know we're 3352 * inserting at the end of the new map. 3353 */ 3354 vm_map_entry_link(new_map, new_map->header.prev, 3355 new_entry); 3356 vmspace_map_entry_forked(vm1, vm2, new_entry); 3357 3358 /* 3359 * Update the physical map 3360 */ 3361 pmap_copy(new_map->pmap, old_map->pmap, 3362 new_entry->start, 3363 (old_entry->end - old_entry->start), 3364 old_entry->start); 3365 break; 3366 3367 case VM_INHERIT_COPY: 3368 /* 3369 * Clone the entry and link into the map. 3370 */ 3371 new_entry = vm_map_entry_create(new_map); 3372 *new_entry = *old_entry; 3373 /* 3374 * Copied entry is COW over the old object. 3375 */ 3376 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 3377 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT); 3378 new_entry->wiring_thread = NULL; 3379 new_entry->wired_count = 0; 3380 new_entry->object.vm_object = NULL; 3381 new_entry->cred = NULL; 3382 vm_map_entry_link(new_map, new_map->header.prev, 3383 new_entry); 3384 vmspace_map_entry_forked(vm1, vm2, new_entry); 3385 vm_map_copy_entry(old_map, new_map, old_entry, 3386 new_entry, fork_charge); 3387 break; 3388 } 3389 old_entry = old_entry->next; 3390 } 3391 /* 3392 * Use inlined vm_map_unlock() to postpone handling the deferred 3393 * map entries, which cannot be done until both old_map and 3394 * new_map locks are released. 3395 */ 3396 sx_xunlock(&old_map->lock); 3397 sx_xunlock(&new_map->lock); 3398 vm_map_process_deferred(); 3399 3400 return (vm2); 3401 } 3402 3403 int 3404 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 3405 vm_prot_t prot, vm_prot_t max, int cow) 3406 { 3407 vm_size_t growsize, init_ssize; 3408 rlim_t lmemlim, vmemlim; 3409 int rv; 3410 3411 growsize = sgrowsiz; 3412 init_ssize = (max_ssize < growsize) ? max_ssize : growsize; 3413 vm_map_lock(map); 3414 PROC_LOCK(curproc); 3415 lmemlim = lim_cur(curproc, RLIMIT_MEMLOCK); 3416 vmemlim = lim_cur(curproc, RLIMIT_VMEM); 3417 PROC_UNLOCK(curproc); 3418 if (!old_mlock && map->flags & MAP_WIREFUTURE) { 3419 if (ptoa(pmap_wired_count(map->pmap)) + init_ssize > lmemlim) { 3420 rv = KERN_NO_SPACE; 3421 goto out; 3422 } 3423 } 3424 /* If we would blow our VMEM resource limit, no go */ 3425 if (map->size + init_ssize > vmemlim) { 3426 rv = KERN_NO_SPACE; 3427 goto out; 3428 } 3429 rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot, 3430 max, cow); 3431 out: 3432 vm_map_unlock(map); 3433 return (rv); 3434 } 3435 3436 static int 3437 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 3438 vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow) 3439 { 3440 vm_map_entry_t new_entry, prev_entry; 3441 vm_offset_t bot, top; 3442 vm_size_t init_ssize; 3443 int orient, rv; 3444 3445 /* 3446 * The stack orientation is piggybacked with the cow argument. 3447 * Extract it into orient and mask the cow argument so that we 3448 * don't pass it around further. 3449 * NOTE: We explicitly allow bi-directional stacks. 3450 */ 3451 orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP); 3452 KASSERT(orient != 0, ("No stack grow direction")); 3453 3454 if (addrbos < vm_map_min(map) || 3455 addrbos > vm_map_max(map) || 3456 addrbos + max_ssize < addrbos) 3457 return (KERN_NO_SPACE); 3458 3459 init_ssize = (max_ssize < growsize) ? max_ssize : growsize; 3460 3461 /* If addr is already mapped, no go */ 3462 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) 3463 return (KERN_NO_SPACE); 3464 3465 /* 3466 * If we can't accomodate max_ssize in the current mapping, no go. 3467 * However, we need to be aware that subsequent user mappings might 3468 * map into the space we have reserved for stack, and currently this 3469 * space is not protected. 3470 * 3471 * Hopefully we will at least detect this condition when we try to 3472 * grow the stack. 3473 */ 3474 if ((prev_entry->next != &map->header) && 3475 (prev_entry->next->start < addrbos + max_ssize)) 3476 return (KERN_NO_SPACE); 3477 3478 /* 3479 * We initially map a stack of only init_ssize. We will grow as 3480 * needed later. Depending on the orientation of the stack (i.e. 3481 * the grow direction) we either map at the top of the range, the 3482 * bottom of the range or in the middle. 3483 * 3484 * Note: we would normally expect prot and max to be VM_PROT_ALL, 3485 * and cow to be 0. Possibly we should eliminate these as input 3486 * parameters, and just pass these values here in the insert call. 3487 */ 3488 if (orient == MAP_STACK_GROWS_DOWN) 3489 bot = addrbos + max_ssize - init_ssize; 3490 else if (orient == MAP_STACK_GROWS_UP) 3491 bot = addrbos; 3492 else 3493 bot = round_page(addrbos + max_ssize/2 - init_ssize/2); 3494 top = bot + init_ssize; 3495 rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow); 3496 3497 /* Now set the avail_ssize amount. */ 3498 if (rv == KERN_SUCCESS) { 3499 new_entry = prev_entry->next; 3500 if (new_entry->end != top || new_entry->start != bot) 3501 panic("Bad entry start/end for new stack entry"); 3502 3503 new_entry->avail_ssize = max_ssize - init_ssize; 3504 KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 || 3505 (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0, 3506 ("new entry lacks MAP_ENTRY_GROWS_DOWN")); 3507 KASSERT((orient & MAP_STACK_GROWS_UP) == 0 || 3508 (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0, 3509 ("new entry lacks MAP_ENTRY_GROWS_UP")); 3510 } 3511 3512 return (rv); 3513 } 3514 3515 static int stack_guard_page = 0; 3516 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN, 3517 &stack_guard_page, 0, 3518 "Insert stack guard page ahead of the growable segments."); 3519 3520 /* Attempts to grow a vm stack entry. Returns KERN_SUCCESS if the 3521 * desired address is already mapped, or if we successfully grow 3522 * the stack. Also returns KERN_SUCCESS if addr is outside the 3523 * stack range (this is strange, but preserves compatibility with 3524 * the grow function in vm_machdep.c). 3525 */ 3526 int 3527 vm_map_growstack(struct proc *p, vm_offset_t addr) 3528 { 3529 vm_map_entry_t next_entry, prev_entry; 3530 vm_map_entry_t new_entry, stack_entry; 3531 struct vmspace *vm = p->p_vmspace; 3532 vm_map_t map = &vm->vm_map; 3533 vm_offset_t end; 3534 vm_size_t growsize; 3535 size_t grow_amount, max_grow; 3536 rlim_t lmemlim, stacklim, vmemlim; 3537 int is_procstack, rv; 3538 struct ucred *cred; 3539 #ifdef notyet 3540 uint64_t limit; 3541 #endif 3542 #ifdef RACCT 3543 int error; 3544 #endif 3545 3546 Retry: 3547 PROC_LOCK(p); 3548 lmemlim = lim_cur(p, RLIMIT_MEMLOCK); 3549 stacklim = lim_cur(p, RLIMIT_STACK); 3550 vmemlim = lim_cur(p, RLIMIT_VMEM); 3551 PROC_UNLOCK(p); 3552 3553 vm_map_lock_read(map); 3554 3555 /* If addr is already in the entry range, no need to grow.*/ 3556 if (vm_map_lookup_entry(map, addr, &prev_entry)) { 3557 vm_map_unlock_read(map); 3558 return (KERN_SUCCESS); 3559 } 3560 3561 next_entry = prev_entry->next; 3562 if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) { 3563 /* 3564 * This entry does not grow upwards. Since the address lies 3565 * beyond this entry, the next entry (if one exists) has to 3566 * be a downward growable entry. The entry list header is 3567 * never a growable entry, so it suffices to check the flags. 3568 */ 3569 if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) { 3570 vm_map_unlock_read(map); 3571 return (KERN_SUCCESS); 3572 } 3573 stack_entry = next_entry; 3574 } else { 3575 /* 3576 * This entry grows upward. If the next entry does not at 3577 * least grow downwards, this is the entry we need to grow. 3578 * otherwise we have two possible choices and we have to 3579 * select one. 3580 */ 3581 if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) { 3582 /* 3583 * We have two choices; grow the entry closest to 3584 * the address to minimize the amount of growth. 3585 */ 3586 if (addr - prev_entry->end <= next_entry->start - addr) 3587 stack_entry = prev_entry; 3588 else 3589 stack_entry = next_entry; 3590 } else 3591 stack_entry = prev_entry; 3592 } 3593 3594 if (stack_entry == next_entry) { 3595 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo")); 3596 KASSERT(addr < stack_entry->start, ("foo")); 3597 end = (prev_entry != &map->header) ? prev_entry->end : 3598 stack_entry->start - stack_entry->avail_ssize; 3599 grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE); 3600 max_grow = stack_entry->start - end; 3601 } else { 3602 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo")); 3603 KASSERT(addr >= stack_entry->end, ("foo")); 3604 end = (next_entry != &map->header) ? next_entry->start : 3605 stack_entry->end + stack_entry->avail_ssize; 3606 grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE); 3607 max_grow = end - stack_entry->end; 3608 } 3609 3610 if (grow_amount > stack_entry->avail_ssize) { 3611 vm_map_unlock_read(map); 3612 return (KERN_NO_SPACE); 3613 } 3614 3615 /* 3616 * If there is no longer enough space between the entries nogo, and 3617 * adjust the available space. Note: this should only happen if the 3618 * user has mapped into the stack area after the stack was created, 3619 * and is probably an error. 3620 * 3621 * This also effectively destroys any guard page the user might have 3622 * intended by limiting the stack size. 3623 */ 3624 if (grow_amount + (stack_guard_page ? PAGE_SIZE : 0) > max_grow) { 3625 if (vm_map_lock_upgrade(map)) 3626 goto Retry; 3627 3628 stack_entry->avail_ssize = max_grow; 3629 3630 vm_map_unlock(map); 3631 return (KERN_NO_SPACE); 3632 } 3633 3634 is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr) ? 1 : 0; 3635 3636 /* 3637 * If this is the main process stack, see if we're over the stack 3638 * limit. 3639 */ 3640 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 3641 vm_map_unlock_read(map); 3642 return (KERN_NO_SPACE); 3643 } 3644 #ifdef RACCT 3645 PROC_LOCK(p); 3646 if (is_procstack && 3647 racct_set(p, RACCT_STACK, ctob(vm->vm_ssize) + grow_amount)) { 3648 PROC_UNLOCK(p); 3649 vm_map_unlock_read(map); 3650 return (KERN_NO_SPACE); 3651 } 3652 PROC_UNLOCK(p); 3653 #endif 3654 3655 /* Round up the grow amount modulo sgrowsiz */ 3656 growsize = sgrowsiz; 3657 grow_amount = roundup(grow_amount, growsize); 3658 if (grow_amount > stack_entry->avail_ssize) 3659 grow_amount = stack_entry->avail_ssize; 3660 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 3661 grow_amount = trunc_page((vm_size_t)stacklim) - 3662 ctob(vm->vm_ssize); 3663 } 3664 #ifdef notyet 3665 PROC_LOCK(p); 3666 limit = racct_get_available(p, RACCT_STACK); 3667 PROC_UNLOCK(p); 3668 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit)) 3669 grow_amount = limit - ctob(vm->vm_ssize); 3670 #endif 3671 if (!old_mlock && map->flags & MAP_WIREFUTURE) { 3672 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) { 3673 vm_map_unlock_read(map); 3674 rv = KERN_NO_SPACE; 3675 goto out; 3676 } 3677 #ifdef RACCT 3678 PROC_LOCK(p); 3679 if (racct_set(p, RACCT_MEMLOCK, 3680 ptoa(pmap_wired_count(map->pmap)) + grow_amount)) { 3681 PROC_UNLOCK(p); 3682 vm_map_unlock_read(map); 3683 rv = KERN_NO_SPACE; 3684 goto out; 3685 } 3686 PROC_UNLOCK(p); 3687 #endif 3688 } 3689 /* If we would blow our VMEM resource limit, no go */ 3690 if (map->size + grow_amount > vmemlim) { 3691 vm_map_unlock_read(map); 3692 rv = KERN_NO_SPACE; 3693 goto out; 3694 } 3695 #ifdef RACCT 3696 PROC_LOCK(p); 3697 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) { 3698 PROC_UNLOCK(p); 3699 vm_map_unlock_read(map); 3700 rv = KERN_NO_SPACE; 3701 goto out; 3702 } 3703 PROC_UNLOCK(p); 3704 #endif 3705 3706 if (vm_map_lock_upgrade(map)) 3707 goto Retry; 3708 3709 if (stack_entry == next_entry) { 3710 /* 3711 * Growing downward. 3712 */ 3713 /* Get the preliminary new entry start value */ 3714 addr = stack_entry->start - grow_amount; 3715 3716 /* 3717 * If this puts us into the previous entry, cut back our 3718 * growth to the available space. Also, see the note above. 3719 */ 3720 if (addr < end) { 3721 stack_entry->avail_ssize = max_grow; 3722 addr = end; 3723 if (stack_guard_page) 3724 addr += PAGE_SIZE; 3725 } 3726 3727 rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start, 3728 next_entry->protection, next_entry->max_protection, 3729 MAP_STACK_GROWS_DOWN); 3730 3731 /* Adjust the available stack space by the amount we grew. */ 3732 if (rv == KERN_SUCCESS) { 3733 new_entry = prev_entry->next; 3734 KASSERT(new_entry == stack_entry->prev, ("foo")); 3735 KASSERT(new_entry->end == stack_entry->start, ("foo")); 3736 KASSERT(new_entry->start == addr, ("foo")); 3737 KASSERT((new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 3738 0, ("new entry lacks MAP_ENTRY_GROWS_DOWN")); 3739 grow_amount = new_entry->end - new_entry->start; 3740 new_entry->avail_ssize = stack_entry->avail_ssize - 3741 grow_amount; 3742 stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN; 3743 } 3744 } else { 3745 /* 3746 * Growing upward. 3747 */ 3748 addr = stack_entry->end + grow_amount; 3749 3750 /* 3751 * If this puts us into the next entry, cut back our growth 3752 * to the available space. Also, see the note above. 3753 */ 3754 if (addr > end) { 3755 stack_entry->avail_ssize = end - stack_entry->end; 3756 addr = end; 3757 if (stack_guard_page) 3758 addr -= PAGE_SIZE; 3759 } 3760 3761 grow_amount = addr - stack_entry->end; 3762 cred = stack_entry->cred; 3763 if (cred == NULL && stack_entry->object.vm_object != NULL) 3764 cred = stack_entry->object.vm_object->cred; 3765 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred)) 3766 rv = KERN_NO_SPACE; 3767 /* Grow the underlying object if applicable. */ 3768 else if (stack_entry->object.vm_object == NULL || 3769 vm_object_coalesce(stack_entry->object.vm_object, 3770 stack_entry->offset, 3771 (vm_size_t)(stack_entry->end - stack_entry->start), 3772 (vm_size_t)grow_amount, cred != NULL)) { 3773 map->size += (addr - stack_entry->end); 3774 /* Update the current entry. */ 3775 stack_entry->end = addr; 3776 stack_entry->avail_ssize -= grow_amount; 3777 vm_map_entry_resize_free(map, stack_entry); 3778 rv = KERN_SUCCESS; 3779 } else 3780 rv = KERN_FAILURE; 3781 } 3782 3783 if (rv == KERN_SUCCESS && is_procstack) 3784 vm->vm_ssize += btoc(grow_amount); 3785 3786 vm_map_unlock(map); 3787 3788 /* 3789 * Heed the MAP_WIREFUTURE flag if it was set for this process. 3790 */ 3791 if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) { 3792 vm_map_wire(map, 3793 (stack_entry == next_entry) ? addr : addr - grow_amount, 3794 (stack_entry == next_entry) ? stack_entry->start : addr, 3795 (p->p_flag & P_SYSTEM) 3796 ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES 3797 : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES); 3798 } 3799 3800 out: 3801 #ifdef RACCT 3802 if (rv != KERN_SUCCESS) { 3803 PROC_LOCK(p); 3804 error = racct_set(p, RACCT_VMEM, map->size); 3805 KASSERT(error == 0, ("decreasing RACCT_VMEM failed")); 3806 if (!old_mlock) { 3807 error = racct_set(p, RACCT_MEMLOCK, 3808 ptoa(pmap_wired_count(map->pmap))); 3809 KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed")); 3810 } 3811 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize)); 3812 KASSERT(error == 0, ("decreasing RACCT_STACK failed")); 3813 PROC_UNLOCK(p); 3814 } 3815 #endif 3816 3817 return (rv); 3818 } 3819 3820 /* 3821 * Unshare the specified VM space for exec. If other processes are 3822 * mapped to it, then create a new one. The new vmspace is null. 3823 */ 3824 int 3825 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser) 3826 { 3827 struct vmspace *oldvmspace = p->p_vmspace; 3828 struct vmspace *newvmspace; 3829 3830 KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0, 3831 ("vmspace_exec recursed")); 3832 newvmspace = vmspace_alloc(minuser, maxuser, NULL); 3833 if (newvmspace == NULL) 3834 return (ENOMEM); 3835 newvmspace->vm_swrss = oldvmspace->vm_swrss; 3836 /* 3837 * This code is written like this for prototype purposes. The 3838 * goal is to avoid running down the vmspace here, but let the 3839 * other process's that are still using the vmspace to finally 3840 * run it down. Even though there is little or no chance of blocking 3841 * here, it is a good idea to keep this form for future mods. 3842 */ 3843 PROC_VMSPACE_LOCK(p); 3844 p->p_vmspace = newvmspace; 3845 PROC_VMSPACE_UNLOCK(p); 3846 if (p == curthread->td_proc) 3847 pmap_activate(curthread); 3848 curthread->td_pflags |= TDP_EXECVMSPC; 3849 return (0); 3850 } 3851 3852 /* 3853 * Unshare the specified VM space for forcing COW. This 3854 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 3855 */ 3856 int 3857 vmspace_unshare(struct proc *p) 3858 { 3859 struct vmspace *oldvmspace = p->p_vmspace; 3860 struct vmspace *newvmspace; 3861 vm_ooffset_t fork_charge; 3862 3863 if (oldvmspace->vm_refcnt == 1) 3864 return (0); 3865 fork_charge = 0; 3866 newvmspace = vmspace_fork(oldvmspace, &fork_charge); 3867 if (newvmspace == NULL) 3868 return (ENOMEM); 3869 if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) { 3870 vmspace_free(newvmspace); 3871 return (ENOMEM); 3872 } 3873 PROC_VMSPACE_LOCK(p); 3874 p->p_vmspace = newvmspace; 3875 PROC_VMSPACE_UNLOCK(p); 3876 if (p == curthread->td_proc) 3877 pmap_activate(curthread); 3878 vmspace_free(oldvmspace); 3879 return (0); 3880 } 3881 3882 /* 3883 * vm_map_lookup: 3884 * 3885 * Finds the VM object, offset, and 3886 * protection for a given virtual address in the 3887 * specified map, assuming a page fault of the 3888 * type specified. 3889 * 3890 * Leaves the map in question locked for read; return 3891 * values are guaranteed until a vm_map_lookup_done 3892 * call is performed. Note that the map argument 3893 * is in/out; the returned map must be used in 3894 * the call to vm_map_lookup_done. 3895 * 3896 * A handle (out_entry) is returned for use in 3897 * vm_map_lookup_done, to make that fast. 3898 * 3899 * If a lookup is requested with "write protection" 3900 * specified, the map may be changed to perform virtual 3901 * copying operations, although the data referenced will 3902 * remain the same. 3903 */ 3904 int 3905 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 3906 vm_offset_t vaddr, 3907 vm_prot_t fault_typea, 3908 vm_map_entry_t *out_entry, /* OUT */ 3909 vm_object_t *object, /* OUT */ 3910 vm_pindex_t *pindex, /* OUT */ 3911 vm_prot_t *out_prot, /* OUT */ 3912 boolean_t *wired) /* OUT */ 3913 { 3914 vm_map_entry_t entry; 3915 vm_map_t map = *var_map; 3916 vm_prot_t prot; 3917 vm_prot_t fault_type = fault_typea; 3918 vm_object_t eobject; 3919 vm_size_t size; 3920 struct ucred *cred; 3921 3922 RetryLookup:; 3923 3924 vm_map_lock_read(map); 3925 3926 /* 3927 * Lookup the faulting address. 3928 */ 3929 if (!vm_map_lookup_entry(map, vaddr, out_entry)) { 3930 vm_map_unlock_read(map); 3931 return (KERN_INVALID_ADDRESS); 3932 } 3933 3934 entry = *out_entry; 3935 3936 /* 3937 * Handle submaps. 3938 */ 3939 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 3940 vm_map_t old_map = map; 3941 3942 *var_map = map = entry->object.sub_map; 3943 vm_map_unlock_read(old_map); 3944 goto RetryLookup; 3945 } 3946 3947 /* 3948 * Check whether this task is allowed to have this page. 3949 */ 3950 prot = entry->protection; 3951 fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE); 3952 if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) { 3953 vm_map_unlock_read(map); 3954 return (KERN_PROTECTION_FAILURE); 3955 } 3956 if ((entry->eflags & MAP_ENTRY_USER_WIRED) && 3957 (entry->eflags & MAP_ENTRY_COW) && 3958 (fault_type & VM_PROT_WRITE)) { 3959 vm_map_unlock_read(map); 3960 return (KERN_PROTECTION_FAILURE); 3961 } 3962 if ((fault_typea & VM_PROT_COPY) != 0 && 3963 (entry->max_protection & VM_PROT_WRITE) == 0 && 3964 (entry->eflags & MAP_ENTRY_COW) == 0) { 3965 vm_map_unlock_read(map); 3966 return (KERN_PROTECTION_FAILURE); 3967 } 3968 3969 /* 3970 * If this page is not pageable, we have to get it for all possible 3971 * accesses. 3972 */ 3973 *wired = (entry->wired_count != 0); 3974 if (*wired) 3975 fault_type = entry->protection; 3976 size = entry->end - entry->start; 3977 /* 3978 * If the entry was copy-on-write, we either ... 3979 */ 3980 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3981 /* 3982 * If we want to write the page, we may as well handle that 3983 * now since we've got the map locked. 3984 * 3985 * If we don't need to write the page, we just demote the 3986 * permissions allowed. 3987 */ 3988 if ((fault_type & VM_PROT_WRITE) != 0 || 3989 (fault_typea & VM_PROT_COPY) != 0) { 3990 /* 3991 * Make a new object, and place it in the object 3992 * chain. Note that no new references have appeared 3993 * -- one just moved from the map to the new 3994 * object. 3995 */ 3996 if (vm_map_lock_upgrade(map)) 3997 goto RetryLookup; 3998 3999 if (entry->cred == NULL) { 4000 /* 4001 * The debugger owner is charged for 4002 * the memory. 4003 */ 4004 cred = curthread->td_ucred; 4005 crhold(cred); 4006 if (!swap_reserve_by_cred(size, cred)) { 4007 crfree(cred); 4008 vm_map_unlock(map); 4009 return (KERN_RESOURCE_SHORTAGE); 4010 } 4011 entry->cred = cred; 4012 } 4013 vm_object_shadow(&entry->object.vm_object, 4014 &entry->offset, size); 4015 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 4016 eobject = entry->object.vm_object; 4017 if (eobject->cred != NULL) { 4018 /* 4019 * The object was not shadowed. 4020 */ 4021 swap_release_by_cred(size, entry->cred); 4022 crfree(entry->cred); 4023 entry->cred = NULL; 4024 } else if (entry->cred != NULL) { 4025 VM_OBJECT_WLOCK(eobject); 4026 eobject->cred = entry->cred; 4027 eobject->charge = size; 4028 VM_OBJECT_WUNLOCK(eobject); 4029 entry->cred = NULL; 4030 } 4031 4032 vm_map_lock_downgrade(map); 4033 } else { 4034 /* 4035 * We're attempting to read a copy-on-write page -- 4036 * don't allow writes. 4037 */ 4038 prot &= ~VM_PROT_WRITE; 4039 } 4040 } 4041 4042 /* 4043 * Create an object if necessary. 4044 */ 4045 if (entry->object.vm_object == NULL && 4046 !map->system_map) { 4047 if (vm_map_lock_upgrade(map)) 4048 goto RetryLookup; 4049 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT, 4050 atop(size)); 4051 entry->offset = 0; 4052 if (entry->cred != NULL) { 4053 VM_OBJECT_WLOCK(entry->object.vm_object); 4054 entry->object.vm_object->cred = entry->cred; 4055 entry->object.vm_object->charge = size; 4056 VM_OBJECT_WUNLOCK(entry->object.vm_object); 4057 entry->cred = NULL; 4058 } 4059 vm_map_lock_downgrade(map); 4060 } 4061 4062 /* 4063 * Return the object/offset from this entry. If the entry was 4064 * copy-on-write or empty, it has been fixed up. 4065 */ 4066 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 4067 *object = entry->object.vm_object; 4068 4069 *out_prot = prot; 4070 return (KERN_SUCCESS); 4071 } 4072 4073 /* 4074 * vm_map_lookup_locked: 4075 * 4076 * Lookup the faulting address. A version of vm_map_lookup that returns 4077 * KERN_FAILURE instead of blocking on map lock or memory allocation. 4078 */ 4079 int 4080 vm_map_lookup_locked(vm_map_t *var_map, /* IN/OUT */ 4081 vm_offset_t vaddr, 4082 vm_prot_t fault_typea, 4083 vm_map_entry_t *out_entry, /* OUT */ 4084 vm_object_t *object, /* OUT */ 4085 vm_pindex_t *pindex, /* OUT */ 4086 vm_prot_t *out_prot, /* OUT */ 4087 boolean_t *wired) /* OUT */ 4088 { 4089 vm_map_entry_t entry; 4090 vm_map_t map = *var_map; 4091 vm_prot_t prot; 4092 vm_prot_t fault_type = fault_typea; 4093 4094 /* 4095 * Lookup the faulting address. 4096 */ 4097 if (!vm_map_lookup_entry(map, vaddr, out_entry)) 4098 return (KERN_INVALID_ADDRESS); 4099 4100 entry = *out_entry; 4101 4102 /* 4103 * Fail if the entry refers to a submap. 4104 */ 4105 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 4106 return (KERN_FAILURE); 4107 4108 /* 4109 * Check whether this task is allowed to have this page. 4110 */ 4111 prot = entry->protection; 4112 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; 4113 if ((fault_type & prot) != fault_type) 4114 return (KERN_PROTECTION_FAILURE); 4115 if ((entry->eflags & MAP_ENTRY_USER_WIRED) && 4116 (entry->eflags & MAP_ENTRY_COW) && 4117 (fault_type & VM_PROT_WRITE)) 4118 return (KERN_PROTECTION_FAILURE); 4119 4120 /* 4121 * If this page is not pageable, we have to get it for all possible 4122 * accesses. 4123 */ 4124 *wired = (entry->wired_count != 0); 4125 if (*wired) 4126 fault_type = entry->protection; 4127 4128 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 4129 /* 4130 * Fail if the entry was copy-on-write for a write fault. 4131 */ 4132 if (fault_type & VM_PROT_WRITE) 4133 return (KERN_FAILURE); 4134 /* 4135 * We're attempting to read a copy-on-write page -- 4136 * don't allow writes. 4137 */ 4138 prot &= ~VM_PROT_WRITE; 4139 } 4140 4141 /* 4142 * Fail if an object should be created. 4143 */ 4144 if (entry->object.vm_object == NULL && !map->system_map) 4145 return (KERN_FAILURE); 4146 4147 /* 4148 * Return the object/offset from this entry. If the entry was 4149 * copy-on-write or empty, it has been fixed up. 4150 */ 4151 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 4152 *object = entry->object.vm_object; 4153 4154 *out_prot = prot; 4155 return (KERN_SUCCESS); 4156 } 4157 4158 /* 4159 * vm_map_lookup_done: 4160 * 4161 * Releases locks acquired by a vm_map_lookup 4162 * (according to the handle returned by that lookup). 4163 */ 4164 void 4165 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry) 4166 { 4167 /* 4168 * Unlock the main-level map 4169 */ 4170 vm_map_unlock_read(map); 4171 } 4172 4173 #include "opt_ddb.h" 4174 #ifdef DDB 4175 #include <sys/kernel.h> 4176 4177 #include <ddb/ddb.h> 4178 4179 static void 4180 vm_map_print(vm_map_t map) 4181 { 4182 vm_map_entry_t entry; 4183 4184 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 4185 (void *)map, 4186 (void *)map->pmap, map->nentries, map->timestamp); 4187 4188 db_indent += 2; 4189 for (entry = map->header.next; entry != &map->header; 4190 entry = entry->next) { 4191 db_iprintf("map entry %p: start=%p, end=%p\n", 4192 (void *)entry, (void *)entry->start, (void *)entry->end); 4193 { 4194 static char *inheritance_name[4] = 4195 {"share", "copy", "none", "donate_copy"}; 4196 4197 db_iprintf(" prot=%x/%x/%s", 4198 entry->protection, 4199 entry->max_protection, 4200 inheritance_name[(int)(unsigned char)entry->inheritance]); 4201 if (entry->wired_count != 0) 4202 db_printf(", wired"); 4203 } 4204 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 4205 db_printf(", share=%p, offset=0x%jx\n", 4206 (void *)entry->object.sub_map, 4207 (uintmax_t)entry->offset); 4208 if ((entry->prev == &map->header) || 4209 (entry->prev->object.sub_map != 4210 entry->object.sub_map)) { 4211 db_indent += 2; 4212 vm_map_print((vm_map_t)entry->object.sub_map); 4213 db_indent -= 2; 4214 } 4215 } else { 4216 if (entry->cred != NULL) 4217 db_printf(", ruid %d", entry->cred->cr_ruid); 4218 db_printf(", object=%p, offset=0x%jx", 4219 (void *)entry->object.vm_object, 4220 (uintmax_t)entry->offset); 4221 if (entry->object.vm_object && entry->object.vm_object->cred) 4222 db_printf(", obj ruid %d charge %jx", 4223 entry->object.vm_object->cred->cr_ruid, 4224 (uintmax_t)entry->object.vm_object->charge); 4225 if (entry->eflags & MAP_ENTRY_COW) 4226 db_printf(", copy (%s)", 4227 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 4228 db_printf("\n"); 4229 4230 if ((entry->prev == &map->header) || 4231 (entry->prev->object.vm_object != 4232 entry->object.vm_object)) { 4233 db_indent += 2; 4234 vm_object_print((db_expr_t)(intptr_t) 4235 entry->object.vm_object, 4236 0, 0, (char *)0); 4237 db_indent -= 2; 4238 } 4239 } 4240 } 4241 db_indent -= 2; 4242 } 4243 4244 DB_SHOW_COMMAND(map, map) 4245 { 4246 4247 if (!have_addr) { 4248 db_printf("usage: show map <addr>\n"); 4249 return; 4250 } 4251 vm_map_print((vm_map_t)addr); 4252 } 4253 4254 DB_SHOW_COMMAND(procvm, procvm) 4255 { 4256 struct proc *p; 4257 4258 if (have_addr) { 4259 p = (struct proc *) addr; 4260 } else { 4261 p = curproc; 4262 } 4263 4264 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 4265 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 4266 (void *)vmspace_pmap(p->p_vmspace)); 4267 4268 vm_map_print((vm_map_t)&p->p_vmspace->vm_map); 4269 } 4270 4271 #endif /* DDB */ 4272