xref: /freebsd/sys/vm/vm_map.c (revision 6ed68e6f5d47ca30716d4e06c1452e68530970db)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60 
61 /*
62  *	Virtual memory mapping module.
63  */
64 
65 #include <sys/param.h>
66 #include <sys/systm.h>
67 #include <sys/elf.h>
68 #include <sys/kernel.h>
69 #include <sys/ktr.h>
70 #include <sys/lock.h>
71 #include <sys/mutex.h>
72 #include <sys/proc.h>
73 #include <sys/vmmeter.h>
74 #include <sys/mman.h>
75 #include <sys/vnode.h>
76 #include <sys/racct.h>
77 #include <sys/resourcevar.h>
78 #include <sys/rwlock.h>
79 #include <sys/file.h>
80 #include <sys/sysctl.h>
81 #include <sys/sysent.h>
82 #include <sys/shm.h>
83 
84 #include <vm/vm.h>
85 #include <vm/vm_param.h>
86 #include <vm/pmap.h>
87 #include <vm/vm_map.h>
88 #include <vm/vm_page.h>
89 #include <vm/vm_pageout.h>
90 #include <vm/vm_object.h>
91 #include <vm/vm_pager.h>
92 #include <vm/vm_kern.h>
93 #include <vm/vm_extern.h>
94 #include <vm/vnode_pager.h>
95 #include <vm/swap_pager.h>
96 #include <vm/uma.h>
97 
98 /*
99  *	Virtual memory maps provide for the mapping, protection,
100  *	and sharing of virtual memory objects.  In addition,
101  *	this module provides for an efficient virtual copy of
102  *	memory from one map to another.
103  *
104  *	Synchronization is required prior to most operations.
105  *
106  *	Maps consist of an ordered doubly-linked list of simple
107  *	entries; a self-adjusting binary search tree of these
108  *	entries is used to speed up lookups.
109  *
110  *	Since portions of maps are specified by start/end addresses,
111  *	which may not align with existing map entries, all
112  *	routines merely "clip" entries to these start/end values.
113  *	[That is, an entry is split into two, bordering at a
114  *	start or end value.]  Note that these clippings may not
115  *	always be necessary (as the two resulting entries are then
116  *	not changed); however, the clipping is done for convenience.
117  *
118  *	As mentioned above, virtual copy operations are performed
119  *	by copying VM object references from one map to
120  *	another, and then marking both regions as copy-on-write.
121  */
122 
123 static struct mtx map_sleep_mtx;
124 static uma_zone_t mapentzone;
125 static uma_zone_t kmapentzone;
126 static uma_zone_t vmspace_zone;
127 static int vmspace_zinit(void *mem, int size, int flags);
128 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
129     vm_offset_t max);
130 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
131 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
132 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
133 static int vm_map_growstack(vm_map_t map, vm_offset_t addr,
134     vm_map_entry_t gap_entry);
135 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
136     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
137 #ifdef INVARIANTS
138 static void vmspace_zdtor(void *mem, int size, void *arg);
139 #endif
140 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
141     vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
142     int cow);
143 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
144     vm_offset_t failed_addr);
145 
146 #define	CONTAINS_BITS(set, bits)	((~(set) & (bits)) == 0)
147 
148 #define	ENTRY_CHARGED(e) ((e)->cred != NULL || \
149     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
150      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
151 
152 /*
153  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
154  * stable.
155  */
156 #define PROC_VMSPACE_LOCK(p) do { } while (0)
157 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
158 
159 /*
160  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
161  *
162  *	Asserts that the starting and ending region
163  *	addresses fall within the valid range of the map.
164  */
165 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
166 		{					\
167 		if (start < vm_map_min(map))		\
168 			start = vm_map_min(map);	\
169 		if (end > vm_map_max(map))		\
170 			end = vm_map_max(map);		\
171 		if (start > end)			\
172 			start = end;			\
173 		}
174 
175 #ifndef UMA_USE_DMAP
176 
177 /*
178  * Allocate a new slab for kernel map entries.  The kernel map may be locked or
179  * unlocked, depending on whether the request is coming from the kernel map or a
180  * submap.  This function allocates a virtual address range directly from the
181  * kernel map instead of the kmem_* layer to avoid recursion on the kernel map
182  * lock and also to avoid triggering allocator recursion in the vmem boundary
183  * tag allocator.
184  */
185 static void *
186 kmapent_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
187     int wait)
188 {
189 	vm_offset_t addr;
190 	int error, locked;
191 
192 	*pflag = UMA_SLAB_PRIV;
193 
194 	if (!(locked = vm_map_locked(kernel_map)))
195 		vm_map_lock(kernel_map);
196 	addr = vm_map_findspace(kernel_map, vm_map_min(kernel_map), bytes);
197 	if (addr + bytes < addr || addr + bytes > vm_map_max(kernel_map))
198 		panic("%s: kernel map is exhausted", __func__);
199 	error = vm_map_insert(kernel_map, NULL, 0, addr, addr + bytes,
200 	    VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT);
201 	if (error != KERN_SUCCESS)
202 		panic("%s: vm_map_insert() failed: %d", __func__, error);
203 	if (!locked)
204 		vm_map_unlock(kernel_map);
205 	error = kmem_back_domain(domain, kernel_object, addr, bytes, M_NOWAIT |
206 	    M_USE_RESERVE | (wait & M_ZERO));
207 	if (error == KERN_SUCCESS) {
208 		return ((void *)addr);
209 	} else {
210 		if (!locked)
211 			vm_map_lock(kernel_map);
212 		vm_map_delete(kernel_map, addr, bytes);
213 		if (!locked)
214 			vm_map_unlock(kernel_map);
215 		return (NULL);
216 	}
217 }
218 
219 static void
220 kmapent_free(void *item, vm_size_t size, uint8_t pflag)
221 {
222 	vm_offset_t addr;
223 	int error __diagused;
224 
225 	if ((pflag & UMA_SLAB_PRIV) == 0)
226 		/* XXX leaked */
227 		return;
228 
229 	addr = (vm_offset_t)item;
230 	kmem_unback(kernel_object, addr, size);
231 	error = vm_map_remove(kernel_map, addr, addr + size);
232 	KASSERT(error == KERN_SUCCESS,
233 	    ("%s: vm_map_remove failed: %d", __func__, error));
234 }
235 
236 /*
237  * The worst-case upper bound on the number of kernel map entries that may be
238  * created before the zone must be replenished in _vm_map_unlock().
239  */
240 #define	KMAPENT_RESERVE		1
241 
242 #endif /* !UMD_MD_SMALL_ALLOC */
243 
244 /*
245  *	vm_map_startup:
246  *
247  *	Initialize the vm_map module.  Must be called before any other vm_map
248  *	routines.
249  *
250  *	User map and entry structures are allocated from the general purpose
251  *	memory pool.  Kernel maps are statically defined.  Kernel map entries
252  *	require special handling to avoid recursion; see the comments above
253  *	kmapent_alloc() and in vm_map_entry_create().
254  */
255 void
256 vm_map_startup(void)
257 {
258 	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
259 
260 	/*
261 	 * Disable the use of per-CPU buckets: map entry allocation is
262 	 * serialized by the kernel map lock.
263 	 */
264 	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
265 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
266 	    UMA_ZONE_VM | UMA_ZONE_NOBUCKET);
267 #ifndef UMA_USE_DMAP
268 	/* Reserve an extra map entry for use when replenishing the reserve. */
269 	uma_zone_reserve(kmapentzone, KMAPENT_RESERVE + 1);
270 	uma_prealloc(kmapentzone, KMAPENT_RESERVE + 1);
271 	uma_zone_set_allocf(kmapentzone, kmapent_alloc);
272 	uma_zone_set_freef(kmapentzone, kmapent_free);
273 #endif
274 
275 	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
276 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
277 	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
278 #ifdef INVARIANTS
279 	    vmspace_zdtor,
280 #else
281 	    NULL,
282 #endif
283 	    vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
284 }
285 
286 static int
287 vmspace_zinit(void *mem, int size, int flags)
288 {
289 	struct vmspace *vm;
290 	vm_map_t map;
291 
292 	vm = (struct vmspace *)mem;
293 	map = &vm->vm_map;
294 
295 	memset(map, 0, sizeof(*map));	/* set map->system_map = false */
296 	sx_init(&map->lock, "vm map (user)");
297 	PMAP_LOCK_INIT(vmspace_pmap(vm));
298 	return (0);
299 }
300 
301 #ifdef INVARIANTS
302 static void
303 vmspace_zdtor(void *mem, int size, void *arg)
304 {
305 	struct vmspace *vm;
306 
307 	vm = (struct vmspace *)mem;
308 	KASSERT(vm->vm_map.nentries == 0,
309 	    ("vmspace %p nentries == %d on free", vm, vm->vm_map.nentries));
310 	KASSERT(vm->vm_map.size == 0,
311 	    ("vmspace %p size == %ju on free", vm, (uintmax_t)vm->vm_map.size));
312 }
313 #endif	/* INVARIANTS */
314 
315 /*
316  * Allocate a vmspace structure, including a vm_map and pmap,
317  * and initialize those structures.  The refcnt is set to 1.
318  */
319 struct vmspace *
320 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
321 {
322 	struct vmspace *vm;
323 
324 	vm = uma_zalloc(vmspace_zone, M_WAITOK);
325 	KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
326 	if (!pinit(vmspace_pmap(vm))) {
327 		uma_zfree(vmspace_zone, vm);
328 		return (NULL);
329 	}
330 	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
331 	_vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
332 	refcount_init(&vm->vm_refcnt, 1);
333 	vm->vm_shm = NULL;
334 	vm->vm_swrss = 0;
335 	vm->vm_tsize = 0;
336 	vm->vm_dsize = 0;
337 	vm->vm_ssize = 0;
338 	vm->vm_taddr = 0;
339 	vm->vm_daddr = 0;
340 	vm->vm_maxsaddr = 0;
341 	return (vm);
342 }
343 
344 #ifdef RACCT
345 static void
346 vmspace_container_reset(struct proc *p)
347 {
348 
349 	PROC_LOCK(p);
350 	racct_set(p, RACCT_DATA, 0);
351 	racct_set(p, RACCT_STACK, 0);
352 	racct_set(p, RACCT_RSS, 0);
353 	racct_set(p, RACCT_MEMLOCK, 0);
354 	racct_set(p, RACCT_VMEM, 0);
355 	PROC_UNLOCK(p);
356 }
357 #endif
358 
359 static inline void
360 vmspace_dofree(struct vmspace *vm)
361 {
362 
363 	CTR1(KTR_VM, "vmspace_free: %p", vm);
364 
365 	/*
366 	 * Make sure any SysV shm is freed, it might not have been in
367 	 * exit1().
368 	 */
369 	shmexit(vm);
370 
371 	/*
372 	 * Lock the map, to wait out all other references to it.
373 	 * Delete all of the mappings and pages they hold, then call
374 	 * the pmap module to reclaim anything left.
375 	 */
376 	(void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map),
377 	    vm_map_max(&vm->vm_map));
378 
379 	pmap_release(vmspace_pmap(vm));
380 	vm->vm_map.pmap = NULL;
381 	uma_zfree(vmspace_zone, vm);
382 }
383 
384 void
385 vmspace_free(struct vmspace *vm)
386 {
387 
388 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
389 	    "vmspace_free() called");
390 
391 	if (refcount_release(&vm->vm_refcnt))
392 		vmspace_dofree(vm);
393 }
394 
395 void
396 vmspace_exitfree(struct proc *p)
397 {
398 	struct vmspace *vm;
399 
400 	PROC_VMSPACE_LOCK(p);
401 	vm = p->p_vmspace;
402 	p->p_vmspace = NULL;
403 	PROC_VMSPACE_UNLOCK(p);
404 	KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
405 	vmspace_free(vm);
406 }
407 
408 void
409 vmspace_exit(struct thread *td)
410 {
411 	struct vmspace *vm;
412 	struct proc *p;
413 	bool released;
414 
415 	p = td->td_proc;
416 	vm = p->p_vmspace;
417 
418 	/*
419 	 * Prepare to release the vmspace reference.  The thread that releases
420 	 * the last reference is responsible for tearing down the vmspace.
421 	 * However, threads not releasing the final reference must switch to the
422 	 * kernel's vmspace0 before the decrement so that the subsequent pmap
423 	 * deactivation does not modify a freed vmspace.
424 	 */
425 	refcount_acquire(&vmspace0.vm_refcnt);
426 	if (!(released = refcount_release_if_last(&vm->vm_refcnt))) {
427 		if (p->p_vmspace != &vmspace0) {
428 			PROC_VMSPACE_LOCK(p);
429 			p->p_vmspace = &vmspace0;
430 			PROC_VMSPACE_UNLOCK(p);
431 			pmap_activate(td);
432 		}
433 		released = refcount_release(&vm->vm_refcnt);
434 	}
435 	if (released) {
436 		/*
437 		 * pmap_remove_pages() expects the pmap to be active, so switch
438 		 * back first if necessary.
439 		 */
440 		if (p->p_vmspace != vm) {
441 			PROC_VMSPACE_LOCK(p);
442 			p->p_vmspace = vm;
443 			PROC_VMSPACE_UNLOCK(p);
444 			pmap_activate(td);
445 		}
446 		pmap_remove_pages(vmspace_pmap(vm));
447 		PROC_VMSPACE_LOCK(p);
448 		p->p_vmspace = &vmspace0;
449 		PROC_VMSPACE_UNLOCK(p);
450 		pmap_activate(td);
451 		vmspace_dofree(vm);
452 	}
453 #ifdef RACCT
454 	if (racct_enable)
455 		vmspace_container_reset(p);
456 #endif
457 }
458 
459 /* Acquire reference to vmspace owned by another process. */
460 
461 struct vmspace *
462 vmspace_acquire_ref(struct proc *p)
463 {
464 	struct vmspace *vm;
465 
466 	PROC_VMSPACE_LOCK(p);
467 	vm = p->p_vmspace;
468 	if (vm == NULL || !refcount_acquire_if_not_zero(&vm->vm_refcnt)) {
469 		PROC_VMSPACE_UNLOCK(p);
470 		return (NULL);
471 	}
472 	if (vm != p->p_vmspace) {
473 		PROC_VMSPACE_UNLOCK(p);
474 		vmspace_free(vm);
475 		return (NULL);
476 	}
477 	PROC_VMSPACE_UNLOCK(p);
478 	return (vm);
479 }
480 
481 /*
482  * Switch between vmspaces in an AIO kernel process.
483  *
484  * The new vmspace is either the vmspace of a user process obtained
485  * from an active AIO request or the initial vmspace of the AIO kernel
486  * process (when it is idling).  Because user processes will block to
487  * drain any active AIO requests before proceeding in exit() or
488  * execve(), the reference count for vmspaces from AIO requests can
489  * never be 0.  Similarly, AIO kernel processes hold an extra
490  * reference on their initial vmspace for the life of the process.  As
491  * a result, the 'newvm' vmspace always has a non-zero reference
492  * count.  This permits an additional reference on 'newvm' to be
493  * acquired via a simple atomic increment rather than the loop in
494  * vmspace_acquire_ref() above.
495  */
496 void
497 vmspace_switch_aio(struct vmspace *newvm)
498 {
499 	struct vmspace *oldvm;
500 
501 	/* XXX: Need some way to assert that this is an aio daemon. */
502 
503 	KASSERT(refcount_load(&newvm->vm_refcnt) > 0,
504 	    ("vmspace_switch_aio: newvm unreferenced"));
505 
506 	oldvm = curproc->p_vmspace;
507 	if (oldvm == newvm)
508 		return;
509 
510 	/*
511 	 * Point to the new address space and refer to it.
512 	 */
513 	curproc->p_vmspace = newvm;
514 	refcount_acquire(&newvm->vm_refcnt);
515 
516 	/* Activate the new mapping. */
517 	pmap_activate(curthread);
518 
519 	vmspace_free(oldvm);
520 }
521 
522 void
523 _vm_map_lock(vm_map_t map, const char *file, int line)
524 {
525 
526 	if (map->system_map)
527 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
528 	else
529 		sx_xlock_(&map->lock, file, line);
530 	map->timestamp++;
531 }
532 
533 void
534 vm_map_entry_set_vnode_text(vm_map_entry_t entry, bool add)
535 {
536 	vm_object_t object;
537 	struct vnode *vp;
538 	bool vp_held;
539 
540 	if ((entry->eflags & MAP_ENTRY_VN_EXEC) == 0)
541 		return;
542 	KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
543 	    ("Submap with execs"));
544 	object = entry->object.vm_object;
545 	KASSERT(object != NULL, ("No object for text, entry %p", entry));
546 	if ((object->flags & OBJ_ANON) != 0)
547 		object = object->handle;
548 	else
549 		KASSERT(object->backing_object == NULL,
550 		    ("non-anon object %p shadows", object));
551 	KASSERT(object != NULL, ("No content object for text, entry %p obj %p",
552 	    entry, entry->object.vm_object));
553 
554 	/*
555 	 * Mostly, we do not lock the backing object.  It is
556 	 * referenced by the entry we are processing, so it cannot go
557 	 * away.
558 	 */
559 	vm_pager_getvp(object, &vp, &vp_held);
560 	if (vp != NULL) {
561 		if (add) {
562 			VOP_SET_TEXT_CHECKED(vp);
563 		} else {
564 			vn_lock(vp, LK_SHARED | LK_RETRY);
565 			VOP_UNSET_TEXT_CHECKED(vp);
566 			VOP_UNLOCK(vp);
567 		}
568 		if (vp_held)
569 			vdrop(vp);
570 	}
571 }
572 
573 /*
574  * Use a different name for this vm_map_entry field when it's use
575  * is not consistent with its use as part of an ordered search tree.
576  */
577 #define defer_next right
578 
579 static void
580 vm_map_process_deferred(void)
581 {
582 	struct thread *td;
583 	vm_map_entry_t entry, next;
584 	vm_object_t object;
585 
586 	td = curthread;
587 	entry = td->td_map_def_user;
588 	td->td_map_def_user = NULL;
589 	while (entry != NULL) {
590 		next = entry->defer_next;
591 		MPASS((entry->eflags & (MAP_ENTRY_WRITECNT |
592 		    MAP_ENTRY_VN_EXEC)) != (MAP_ENTRY_WRITECNT |
593 		    MAP_ENTRY_VN_EXEC));
594 		if ((entry->eflags & MAP_ENTRY_WRITECNT) != 0) {
595 			/*
596 			 * Decrement the object's writemappings and
597 			 * possibly the vnode's v_writecount.
598 			 */
599 			KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
600 			    ("Submap with writecount"));
601 			object = entry->object.vm_object;
602 			KASSERT(object != NULL, ("No object for writecount"));
603 			vm_pager_release_writecount(object, entry->start,
604 			    entry->end);
605 		}
606 		vm_map_entry_set_vnode_text(entry, false);
607 		vm_map_entry_deallocate(entry, FALSE);
608 		entry = next;
609 	}
610 }
611 
612 #ifdef INVARIANTS
613 static void
614 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
615 {
616 
617 	if (map->system_map)
618 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
619 	else
620 		sx_assert_(&map->lock, SA_XLOCKED, file, line);
621 }
622 
623 #define	VM_MAP_ASSERT_LOCKED(map) \
624     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
625 
626 enum { VMMAP_CHECK_NONE, VMMAP_CHECK_UNLOCK, VMMAP_CHECK_ALL };
627 #ifdef DIAGNOSTIC
628 static int enable_vmmap_check = VMMAP_CHECK_UNLOCK;
629 #else
630 static int enable_vmmap_check = VMMAP_CHECK_NONE;
631 #endif
632 SYSCTL_INT(_debug, OID_AUTO, vmmap_check, CTLFLAG_RWTUN,
633     &enable_vmmap_check, 0, "Enable vm map consistency checking");
634 
635 static void _vm_map_assert_consistent(vm_map_t map, int check);
636 
637 #define VM_MAP_ASSERT_CONSISTENT(map) \
638     _vm_map_assert_consistent(map, VMMAP_CHECK_ALL)
639 #ifdef DIAGNOSTIC
640 #define VM_MAP_UNLOCK_CONSISTENT(map) do {				\
641 	if (map->nupdates > map->nentries) {				\
642 		_vm_map_assert_consistent(map, VMMAP_CHECK_UNLOCK);	\
643 		map->nupdates = 0;					\
644 	}								\
645 } while (0)
646 #else
647 #define VM_MAP_UNLOCK_CONSISTENT(map)
648 #endif
649 #else
650 #define	VM_MAP_ASSERT_LOCKED(map)
651 #define VM_MAP_ASSERT_CONSISTENT(map)
652 #define VM_MAP_UNLOCK_CONSISTENT(map)
653 #endif /* INVARIANTS */
654 
655 void
656 _vm_map_unlock(vm_map_t map, const char *file, int line)
657 {
658 
659 	VM_MAP_UNLOCK_CONSISTENT(map);
660 	if (map->system_map) {
661 #ifndef UMA_USE_DMAP
662 		if (map == kernel_map && (map->flags & MAP_REPLENISH) != 0) {
663 			uma_prealloc(kmapentzone, 1);
664 			map->flags &= ~MAP_REPLENISH;
665 		}
666 #endif
667 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
668 	} else {
669 		sx_xunlock_(&map->lock, file, line);
670 		vm_map_process_deferred();
671 	}
672 }
673 
674 void
675 _vm_map_lock_read(vm_map_t map, const char *file, int line)
676 {
677 
678 	if (map->system_map)
679 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
680 	else
681 		sx_slock_(&map->lock, file, line);
682 }
683 
684 void
685 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
686 {
687 
688 	if (map->system_map) {
689 		KASSERT((map->flags & MAP_REPLENISH) == 0,
690 		    ("%s: MAP_REPLENISH leaked", __func__));
691 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
692 	} else {
693 		sx_sunlock_(&map->lock, file, line);
694 		vm_map_process_deferred();
695 	}
696 }
697 
698 int
699 _vm_map_trylock(vm_map_t map, const char *file, int line)
700 {
701 	int error;
702 
703 	error = map->system_map ?
704 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
705 	    !sx_try_xlock_(&map->lock, file, line);
706 	if (error == 0)
707 		map->timestamp++;
708 	return (error == 0);
709 }
710 
711 int
712 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
713 {
714 	int error;
715 
716 	error = map->system_map ?
717 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
718 	    !sx_try_slock_(&map->lock, file, line);
719 	return (error == 0);
720 }
721 
722 /*
723  *	_vm_map_lock_upgrade:	[ internal use only ]
724  *
725  *	Tries to upgrade a read (shared) lock on the specified map to a write
726  *	(exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
727  *	non-zero value if the upgrade fails.  If the upgrade fails, the map is
728  *	returned without a read or write lock held.
729  *
730  *	Requires that the map be read locked.
731  */
732 int
733 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
734 {
735 	unsigned int last_timestamp;
736 
737 	if (map->system_map) {
738 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
739 	} else {
740 		if (!sx_try_upgrade_(&map->lock, file, line)) {
741 			last_timestamp = map->timestamp;
742 			sx_sunlock_(&map->lock, file, line);
743 			vm_map_process_deferred();
744 			/*
745 			 * If the map's timestamp does not change while the
746 			 * map is unlocked, then the upgrade succeeds.
747 			 */
748 			sx_xlock_(&map->lock, file, line);
749 			if (last_timestamp != map->timestamp) {
750 				sx_xunlock_(&map->lock, file, line);
751 				return (1);
752 			}
753 		}
754 	}
755 	map->timestamp++;
756 	return (0);
757 }
758 
759 void
760 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
761 {
762 
763 	if (map->system_map) {
764 		KASSERT((map->flags & MAP_REPLENISH) == 0,
765 		    ("%s: MAP_REPLENISH leaked", __func__));
766 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
767 	} else {
768 		VM_MAP_UNLOCK_CONSISTENT(map);
769 		sx_downgrade_(&map->lock, file, line);
770 	}
771 }
772 
773 /*
774  *	vm_map_locked:
775  *
776  *	Returns a non-zero value if the caller holds a write (exclusive) lock
777  *	on the specified map and the value "0" otherwise.
778  */
779 int
780 vm_map_locked(vm_map_t map)
781 {
782 
783 	if (map->system_map)
784 		return (mtx_owned(&map->system_mtx));
785 	else
786 		return (sx_xlocked(&map->lock));
787 }
788 
789 /*
790  *	_vm_map_unlock_and_wait:
791  *
792  *	Atomically releases the lock on the specified map and puts the calling
793  *	thread to sleep.  The calling thread will remain asleep until either
794  *	vm_map_wakeup() is performed on the map or the specified timeout is
795  *	exceeded.
796  *
797  *	WARNING!  This function does not perform deferred deallocations of
798  *	objects and map	entries.  Therefore, the calling thread is expected to
799  *	reacquire the map lock after reawakening and later perform an ordinary
800  *	unlock operation, such as vm_map_unlock(), before completing its
801  *	operation on the map.
802  */
803 int
804 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
805 {
806 
807 	VM_MAP_UNLOCK_CONSISTENT(map);
808 	mtx_lock(&map_sleep_mtx);
809 	if (map->system_map) {
810 		KASSERT((map->flags & MAP_REPLENISH) == 0,
811 		    ("%s: MAP_REPLENISH leaked", __func__));
812 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
813 	} else {
814 		sx_xunlock_(&map->lock, file, line);
815 	}
816 	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
817 	    timo));
818 }
819 
820 /*
821  *	vm_map_wakeup:
822  *
823  *	Awaken any threads that have slept on the map using
824  *	vm_map_unlock_and_wait().
825  */
826 void
827 vm_map_wakeup(vm_map_t map)
828 {
829 
830 	/*
831 	 * Acquire and release map_sleep_mtx to prevent a wakeup()
832 	 * from being performed (and lost) between the map unlock
833 	 * and the msleep() in _vm_map_unlock_and_wait().
834 	 */
835 	mtx_lock(&map_sleep_mtx);
836 	mtx_unlock(&map_sleep_mtx);
837 	wakeup(&map->root);
838 }
839 
840 void
841 vm_map_busy(vm_map_t map)
842 {
843 
844 	VM_MAP_ASSERT_LOCKED(map);
845 	map->busy++;
846 }
847 
848 void
849 vm_map_unbusy(vm_map_t map)
850 {
851 
852 	VM_MAP_ASSERT_LOCKED(map);
853 	KASSERT(map->busy, ("vm_map_unbusy: not busy"));
854 	if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
855 		vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
856 		wakeup(&map->busy);
857 	}
858 }
859 
860 void
861 vm_map_wait_busy(vm_map_t map)
862 {
863 
864 	VM_MAP_ASSERT_LOCKED(map);
865 	while (map->busy) {
866 		vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
867 		if (map->system_map)
868 			msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
869 		else
870 			sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
871 	}
872 	map->timestamp++;
873 }
874 
875 long
876 vmspace_resident_count(struct vmspace *vmspace)
877 {
878 	return pmap_resident_count(vmspace_pmap(vmspace));
879 }
880 
881 /*
882  * Initialize an existing vm_map structure
883  * such as that in the vmspace structure.
884  */
885 static void
886 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
887 {
888 
889 	map->header.eflags = MAP_ENTRY_HEADER;
890 	map->needs_wakeup = FALSE;
891 	map->pmap = pmap;
892 	map->header.end = min;
893 	map->header.start = max;
894 	map->flags = 0;
895 	map->header.left = map->header.right = &map->header;
896 	map->root = NULL;
897 	map->timestamp = 0;
898 	map->busy = 0;
899 	map->anon_loc = 0;
900 #ifdef DIAGNOSTIC
901 	map->nupdates = 0;
902 #endif
903 }
904 
905 void
906 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
907 {
908 	_vm_map_init(map, pmap, min, max);
909 	map->system_map = false;
910 	sx_init(&map->lock, "vm map (user)");
911 }
912 
913 void
914 vm_map_init_system(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
915 {
916 	_vm_map_init(map, pmap, min, max);
917 	map->system_map = true;
918 	mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF |
919 	    MTX_DUPOK);
920 }
921 
922 /*
923  *	vm_map_entry_dispose:	[ internal use only ]
924  *
925  *	Inverse of vm_map_entry_create.
926  */
927 static void
928 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
929 {
930 	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
931 }
932 
933 /*
934  *	vm_map_entry_create:	[ internal use only ]
935  *
936  *	Allocates a VM map entry for insertion.
937  *	No entry fields are filled in.
938  */
939 static vm_map_entry_t
940 vm_map_entry_create(vm_map_t map)
941 {
942 	vm_map_entry_t new_entry;
943 
944 #ifndef UMA_USE_DMAP
945 	if (map == kernel_map) {
946 		VM_MAP_ASSERT_LOCKED(map);
947 
948 		/*
949 		 * A new slab of kernel map entries cannot be allocated at this
950 		 * point because the kernel map has not yet been updated to
951 		 * reflect the caller's request.  Therefore, we allocate a new
952 		 * map entry, dipping into the reserve if necessary, and set a
953 		 * flag indicating that the reserve must be replenished before
954 		 * the map is unlocked.
955 		 */
956 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT | M_NOVM);
957 		if (new_entry == NULL) {
958 			new_entry = uma_zalloc(kmapentzone,
959 			    M_NOWAIT | M_NOVM | M_USE_RESERVE);
960 			kernel_map->flags |= MAP_REPLENISH;
961 		}
962 	} else
963 #endif
964 	if (map->system_map) {
965 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
966 	} else {
967 		new_entry = uma_zalloc(mapentzone, M_WAITOK);
968 	}
969 	KASSERT(new_entry != NULL,
970 	    ("vm_map_entry_create: kernel resources exhausted"));
971 	return (new_entry);
972 }
973 
974 /*
975  *	vm_map_entry_set_behavior:
976  *
977  *	Set the expected access behavior, either normal, random, or
978  *	sequential.
979  */
980 static inline void
981 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
982 {
983 	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
984 	    (behavior & MAP_ENTRY_BEHAV_MASK);
985 }
986 
987 /*
988  *	vm_map_entry_max_free_{left,right}:
989  *
990  *	Compute the size of the largest free gap between two entries,
991  *	one the root of a tree and the other the ancestor of that root
992  *	that is the least or greatest ancestor found on the search path.
993  */
994 static inline vm_size_t
995 vm_map_entry_max_free_left(vm_map_entry_t root, vm_map_entry_t left_ancestor)
996 {
997 
998 	return (root->left != left_ancestor ?
999 	    root->left->max_free : root->start - left_ancestor->end);
1000 }
1001 
1002 static inline vm_size_t
1003 vm_map_entry_max_free_right(vm_map_entry_t root, vm_map_entry_t right_ancestor)
1004 {
1005 
1006 	return (root->right != right_ancestor ?
1007 	    root->right->max_free : right_ancestor->start - root->end);
1008 }
1009 
1010 /*
1011  *	vm_map_entry_{pred,succ}:
1012  *
1013  *	Find the {predecessor, successor} of the entry by taking one step
1014  *	in the appropriate direction and backtracking as much as necessary.
1015  *	vm_map_entry_succ is defined in vm_map.h.
1016  */
1017 static inline vm_map_entry_t
1018 vm_map_entry_pred(vm_map_entry_t entry)
1019 {
1020 	vm_map_entry_t prior;
1021 
1022 	prior = entry->left;
1023 	if (prior->right->start < entry->start) {
1024 		do
1025 			prior = prior->right;
1026 		while (prior->right != entry);
1027 	}
1028 	return (prior);
1029 }
1030 
1031 static inline vm_size_t
1032 vm_size_max(vm_size_t a, vm_size_t b)
1033 {
1034 
1035 	return (a > b ? a : b);
1036 }
1037 
1038 #define SPLAY_LEFT_STEP(root, y, llist, rlist, test) do {		\
1039 	vm_map_entry_t z;						\
1040 	vm_size_t max_free;						\
1041 									\
1042 	/*								\
1043 	 * Infer root->right->max_free == root->max_free when		\
1044 	 * y->max_free < root->max_free || root->max_free == 0.		\
1045 	 * Otherwise, look right to find it.				\
1046 	 */								\
1047 	y = root->left;							\
1048 	max_free = root->max_free;					\
1049 	KASSERT(max_free == vm_size_max(				\
1050 	    vm_map_entry_max_free_left(root, llist),			\
1051 	    vm_map_entry_max_free_right(root, rlist)),			\
1052 	    ("%s: max_free invariant fails", __func__));		\
1053 	if (max_free - 1 < vm_map_entry_max_free_left(root, llist))	\
1054 		max_free = vm_map_entry_max_free_right(root, rlist);	\
1055 	if (y != llist && (test)) {					\
1056 		/* Rotate right and make y root. */			\
1057 		z = y->right;						\
1058 		if (z != root) {					\
1059 			root->left = z;					\
1060 			y->right = root;				\
1061 			if (max_free < y->max_free)			\
1062 			    root->max_free = max_free =			\
1063 			    vm_size_max(max_free, z->max_free);		\
1064 		} else if (max_free < y->max_free)			\
1065 			root->max_free = max_free =			\
1066 			    vm_size_max(max_free, root->start - y->end);\
1067 		root = y;						\
1068 		y = root->left;						\
1069 	}								\
1070 	/* Copy right->max_free.  Put root on rlist. */			\
1071 	root->max_free = max_free;					\
1072 	KASSERT(max_free == vm_map_entry_max_free_right(root, rlist),	\
1073 	    ("%s: max_free not copied from right", __func__));		\
1074 	root->left = rlist;						\
1075 	rlist = root;							\
1076 	root = y != llist ? y : NULL;					\
1077 } while (0)
1078 
1079 #define SPLAY_RIGHT_STEP(root, y, llist, rlist, test) do {		\
1080 	vm_map_entry_t z;						\
1081 	vm_size_t max_free;						\
1082 									\
1083 	/*								\
1084 	 * Infer root->left->max_free == root->max_free when		\
1085 	 * y->max_free < root->max_free || root->max_free == 0.		\
1086 	 * Otherwise, look left to find it.				\
1087 	 */								\
1088 	y = root->right;						\
1089 	max_free = root->max_free;					\
1090 	KASSERT(max_free == vm_size_max(				\
1091 	    vm_map_entry_max_free_left(root, llist),			\
1092 	    vm_map_entry_max_free_right(root, rlist)),			\
1093 	    ("%s: max_free invariant fails", __func__));		\
1094 	if (max_free - 1 < vm_map_entry_max_free_right(root, rlist))	\
1095 		max_free = vm_map_entry_max_free_left(root, llist);	\
1096 	if (y != rlist && (test)) {					\
1097 		/* Rotate left and make y root. */			\
1098 		z = y->left;						\
1099 		if (z != root) {					\
1100 			root->right = z;				\
1101 			y->left = root;					\
1102 			if (max_free < y->max_free)			\
1103 			    root->max_free = max_free =			\
1104 			    vm_size_max(max_free, z->max_free);		\
1105 		} else if (max_free < y->max_free)			\
1106 			root->max_free = max_free =			\
1107 			    vm_size_max(max_free, y->start - root->end);\
1108 		root = y;						\
1109 		y = root->right;					\
1110 	}								\
1111 	/* Copy left->max_free.  Put root on llist. */			\
1112 	root->max_free = max_free;					\
1113 	KASSERT(max_free == vm_map_entry_max_free_left(root, llist),	\
1114 	    ("%s: max_free not copied from left", __func__));		\
1115 	root->right = llist;						\
1116 	llist = root;							\
1117 	root = y != rlist ? y : NULL;					\
1118 } while (0)
1119 
1120 /*
1121  * Walk down the tree until we find addr or a gap where addr would go, breaking
1122  * off left and right subtrees of nodes less than, or greater than addr.  Treat
1123  * subtrees with root->max_free < length as empty trees.  llist and rlist are
1124  * the two sides in reverse order (bottom-up), with llist linked by the right
1125  * pointer and rlist linked by the left pointer in the vm_map_entry, and both
1126  * lists terminated by &map->header.  This function, and the subsequent call to
1127  * vm_map_splay_merge_{left,right,pred,succ}, rely on the start and end address
1128  * values in &map->header.
1129  */
1130 static __always_inline vm_map_entry_t
1131 vm_map_splay_split(vm_map_t map, vm_offset_t addr, vm_size_t length,
1132     vm_map_entry_t *llist, vm_map_entry_t *rlist)
1133 {
1134 	vm_map_entry_t left, right, root, y;
1135 
1136 	left = right = &map->header;
1137 	root = map->root;
1138 	while (root != NULL && root->max_free >= length) {
1139 		KASSERT(left->end <= root->start &&
1140 		    root->end <= right->start,
1141 		    ("%s: root not within tree bounds", __func__));
1142 		if (addr < root->start) {
1143 			SPLAY_LEFT_STEP(root, y, left, right,
1144 			    y->max_free >= length && addr < y->start);
1145 		} else if (addr >= root->end) {
1146 			SPLAY_RIGHT_STEP(root, y, left, right,
1147 			    y->max_free >= length && addr >= y->end);
1148 		} else
1149 			break;
1150 	}
1151 	*llist = left;
1152 	*rlist = right;
1153 	return (root);
1154 }
1155 
1156 static __always_inline void
1157 vm_map_splay_findnext(vm_map_entry_t root, vm_map_entry_t *rlist)
1158 {
1159 	vm_map_entry_t hi, right, y;
1160 
1161 	right = *rlist;
1162 	hi = root->right == right ? NULL : root->right;
1163 	if (hi == NULL)
1164 		return;
1165 	do
1166 		SPLAY_LEFT_STEP(hi, y, root, right, true);
1167 	while (hi != NULL);
1168 	*rlist = right;
1169 }
1170 
1171 static __always_inline void
1172 vm_map_splay_findprev(vm_map_entry_t root, vm_map_entry_t *llist)
1173 {
1174 	vm_map_entry_t left, lo, y;
1175 
1176 	left = *llist;
1177 	lo = root->left == left ? NULL : root->left;
1178 	if (lo == NULL)
1179 		return;
1180 	do
1181 		SPLAY_RIGHT_STEP(lo, y, left, root, true);
1182 	while (lo != NULL);
1183 	*llist = left;
1184 }
1185 
1186 static inline void
1187 vm_map_entry_swap(vm_map_entry_t *a, vm_map_entry_t *b)
1188 {
1189 	vm_map_entry_t tmp;
1190 
1191 	tmp = *b;
1192 	*b = *a;
1193 	*a = tmp;
1194 }
1195 
1196 /*
1197  * Walk back up the two spines, flip the pointers and set max_free.  The
1198  * subtrees of the root go at the bottom of llist and rlist.
1199  */
1200 static vm_size_t
1201 vm_map_splay_merge_left_walk(vm_map_entry_t header, vm_map_entry_t root,
1202     vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t llist)
1203 {
1204 	do {
1205 		/*
1206 		 * The max_free values of the children of llist are in
1207 		 * llist->max_free and max_free.  Update with the
1208 		 * max value.
1209 		 */
1210 		llist->max_free = max_free =
1211 		    vm_size_max(llist->max_free, max_free);
1212 		vm_map_entry_swap(&llist->right, &tail);
1213 		vm_map_entry_swap(&tail, &llist);
1214 	} while (llist != header);
1215 	root->left = tail;
1216 	return (max_free);
1217 }
1218 
1219 /*
1220  * When llist is known to be the predecessor of root.
1221  */
1222 static inline vm_size_t
1223 vm_map_splay_merge_pred(vm_map_entry_t header, vm_map_entry_t root,
1224     vm_map_entry_t llist)
1225 {
1226 	vm_size_t max_free;
1227 
1228 	max_free = root->start - llist->end;
1229 	if (llist != header) {
1230 		max_free = vm_map_splay_merge_left_walk(header, root,
1231 		    root, max_free, llist);
1232 	} else {
1233 		root->left = header;
1234 		header->right = root;
1235 	}
1236 	return (max_free);
1237 }
1238 
1239 /*
1240  * When llist may or may not be the predecessor of root.
1241  */
1242 static inline vm_size_t
1243 vm_map_splay_merge_left(vm_map_entry_t header, vm_map_entry_t root,
1244     vm_map_entry_t llist)
1245 {
1246 	vm_size_t max_free;
1247 
1248 	max_free = vm_map_entry_max_free_left(root, llist);
1249 	if (llist != header) {
1250 		max_free = vm_map_splay_merge_left_walk(header, root,
1251 		    root->left == llist ? root : root->left,
1252 		    max_free, llist);
1253 	}
1254 	return (max_free);
1255 }
1256 
1257 static vm_size_t
1258 vm_map_splay_merge_right_walk(vm_map_entry_t header, vm_map_entry_t root,
1259     vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t rlist)
1260 {
1261 	do {
1262 		/*
1263 		 * The max_free values of the children of rlist are in
1264 		 * rlist->max_free and max_free.  Update with the
1265 		 * max value.
1266 		 */
1267 		rlist->max_free = max_free =
1268 		    vm_size_max(rlist->max_free, max_free);
1269 		vm_map_entry_swap(&rlist->left, &tail);
1270 		vm_map_entry_swap(&tail, &rlist);
1271 	} while (rlist != header);
1272 	root->right = tail;
1273 	return (max_free);
1274 }
1275 
1276 /*
1277  * When rlist is known to be the succecessor of root.
1278  */
1279 static inline vm_size_t
1280 vm_map_splay_merge_succ(vm_map_entry_t header, vm_map_entry_t root,
1281     vm_map_entry_t rlist)
1282 {
1283 	vm_size_t max_free;
1284 
1285 	max_free = rlist->start - root->end;
1286 	if (rlist != header) {
1287 		max_free = vm_map_splay_merge_right_walk(header, root,
1288 		    root, max_free, rlist);
1289 	} else {
1290 		root->right = header;
1291 		header->left = root;
1292 	}
1293 	return (max_free);
1294 }
1295 
1296 /*
1297  * When rlist may or may not be the succecessor of root.
1298  */
1299 static inline vm_size_t
1300 vm_map_splay_merge_right(vm_map_entry_t header, vm_map_entry_t root,
1301     vm_map_entry_t rlist)
1302 {
1303 	vm_size_t max_free;
1304 
1305 	max_free = vm_map_entry_max_free_right(root, rlist);
1306 	if (rlist != header) {
1307 		max_free = vm_map_splay_merge_right_walk(header, root,
1308 		    root->right == rlist ? root : root->right,
1309 		    max_free, rlist);
1310 	}
1311 	return (max_free);
1312 }
1313 
1314 /*
1315  *	vm_map_splay:
1316  *
1317  *	The Sleator and Tarjan top-down splay algorithm with the
1318  *	following variation.  Max_free must be computed bottom-up, so
1319  *	on the downward pass, maintain the left and right spines in
1320  *	reverse order.  Then, make a second pass up each side to fix
1321  *	the pointers and compute max_free.  The time bound is O(log n)
1322  *	amortized.
1323  *
1324  *	The tree is threaded, which means that there are no null pointers.
1325  *	When a node has no left child, its left pointer points to its
1326  *	predecessor, which the last ancestor on the search path from the root
1327  *	where the search branched right.  Likewise, when a node has no right
1328  *	child, its right pointer points to its successor.  The map header node
1329  *	is the predecessor of the first map entry, and the successor of the
1330  *	last.
1331  *
1332  *	The new root is the vm_map_entry containing "addr", or else an
1333  *	adjacent entry (lower if possible) if addr is not in the tree.
1334  *
1335  *	The map must be locked, and leaves it so.
1336  *
1337  *	Returns: the new root.
1338  */
1339 static vm_map_entry_t
1340 vm_map_splay(vm_map_t map, vm_offset_t addr)
1341 {
1342 	vm_map_entry_t header, llist, rlist, root;
1343 	vm_size_t max_free_left, max_free_right;
1344 
1345 	header = &map->header;
1346 	root = vm_map_splay_split(map, addr, 0, &llist, &rlist);
1347 	if (root != NULL) {
1348 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1349 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1350 	} else if (llist != header) {
1351 		/*
1352 		 * Recover the greatest node in the left
1353 		 * subtree and make it the root.
1354 		 */
1355 		root = llist;
1356 		llist = root->right;
1357 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1358 		max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1359 	} else if (rlist != header) {
1360 		/*
1361 		 * Recover the least node in the right
1362 		 * subtree and make it the root.
1363 		 */
1364 		root = rlist;
1365 		rlist = root->left;
1366 		max_free_left = vm_map_splay_merge_pred(header, root, llist);
1367 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1368 	} else {
1369 		/* There is no root. */
1370 		return (NULL);
1371 	}
1372 	root->max_free = vm_size_max(max_free_left, max_free_right);
1373 	map->root = root;
1374 	VM_MAP_ASSERT_CONSISTENT(map);
1375 	return (root);
1376 }
1377 
1378 /*
1379  *	vm_map_entry_{un,}link:
1380  *
1381  *	Insert/remove entries from maps.  On linking, if new entry clips
1382  *	existing entry, trim existing entry to avoid overlap, and manage
1383  *	offsets.  On unlinking, merge disappearing entry with neighbor, if
1384  *	called for, and manage offsets.  Callers should not modify fields in
1385  *	entries already mapped.
1386  */
1387 static void
1388 vm_map_entry_link(vm_map_t map, vm_map_entry_t entry)
1389 {
1390 	vm_map_entry_t header, llist, rlist, root;
1391 	vm_size_t max_free_left, max_free_right;
1392 
1393 	CTR3(KTR_VM,
1394 	    "vm_map_entry_link: map %p, nentries %d, entry %p", map,
1395 	    map->nentries, entry);
1396 	VM_MAP_ASSERT_LOCKED(map);
1397 	map->nentries++;
1398 	header = &map->header;
1399 	root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1400 	if (root == NULL) {
1401 		/*
1402 		 * The new entry does not overlap any existing entry in the
1403 		 * map, so it becomes the new root of the map tree.
1404 		 */
1405 		max_free_left = vm_map_splay_merge_pred(header, entry, llist);
1406 		max_free_right = vm_map_splay_merge_succ(header, entry, rlist);
1407 	} else if (entry->start == root->start) {
1408 		/*
1409 		 * The new entry is a clone of root, with only the end field
1410 		 * changed.  The root entry will be shrunk to abut the new
1411 		 * entry, and will be the right child of the new root entry in
1412 		 * the modified map.
1413 		 */
1414 		KASSERT(entry->end < root->end,
1415 		    ("%s: clip_start not within entry", __func__));
1416 		vm_map_splay_findprev(root, &llist);
1417 		if ((root->eflags & MAP_ENTRY_STACK_GAP) == 0)
1418 			root->offset += entry->end - root->start;
1419 		root->start = entry->end;
1420 		max_free_left = vm_map_splay_merge_pred(header, entry, llist);
1421 		max_free_right = root->max_free = vm_size_max(
1422 		    vm_map_splay_merge_pred(entry, root, entry),
1423 		    vm_map_splay_merge_right(header, root, rlist));
1424 	} else {
1425 		/*
1426 		 * The new entry is a clone of root, with only the start field
1427 		 * changed.  The root entry will be shrunk to abut the new
1428 		 * entry, and will be the left child of the new root entry in
1429 		 * the modified map.
1430 		 */
1431 		KASSERT(entry->end == root->end,
1432 		    ("%s: clip_start not within entry", __func__));
1433 		vm_map_splay_findnext(root, &rlist);
1434 		if ((entry->eflags & MAP_ENTRY_STACK_GAP) == 0)
1435 			entry->offset += entry->start - root->start;
1436 		root->end = entry->start;
1437 		max_free_left = root->max_free = vm_size_max(
1438 		    vm_map_splay_merge_left(header, root, llist),
1439 		    vm_map_splay_merge_succ(entry, root, entry));
1440 		max_free_right = vm_map_splay_merge_succ(header, entry, rlist);
1441 	}
1442 	entry->max_free = vm_size_max(max_free_left, max_free_right);
1443 	map->root = entry;
1444 	VM_MAP_ASSERT_CONSISTENT(map);
1445 }
1446 
1447 enum unlink_merge_type {
1448 	UNLINK_MERGE_NONE,
1449 	UNLINK_MERGE_NEXT
1450 };
1451 
1452 static void
1453 vm_map_entry_unlink(vm_map_t map, vm_map_entry_t entry,
1454     enum unlink_merge_type op)
1455 {
1456 	vm_map_entry_t header, llist, rlist, root;
1457 	vm_size_t max_free_left, max_free_right;
1458 
1459 	VM_MAP_ASSERT_LOCKED(map);
1460 	header = &map->header;
1461 	root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1462 	KASSERT(root != NULL,
1463 	    ("vm_map_entry_unlink: unlink object not mapped"));
1464 
1465 	vm_map_splay_findprev(root, &llist);
1466 	vm_map_splay_findnext(root, &rlist);
1467 	if (op == UNLINK_MERGE_NEXT) {
1468 		rlist->start = root->start;
1469 		MPASS((rlist->eflags & MAP_ENTRY_STACK_GAP) == 0);
1470 		rlist->offset = root->offset;
1471 	}
1472 	if (llist != header) {
1473 		root = llist;
1474 		llist = root->right;
1475 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1476 		max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1477 	} else if (rlist != header) {
1478 		root = rlist;
1479 		rlist = root->left;
1480 		max_free_left = vm_map_splay_merge_pred(header, root, llist);
1481 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1482 	} else {
1483 		header->left = header->right = header;
1484 		root = NULL;
1485 	}
1486 	if (root != NULL)
1487 		root->max_free = vm_size_max(max_free_left, max_free_right);
1488 	map->root = root;
1489 	VM_MAP_ASSERT_CONSISTENT(map);
1490 	map->nentries--;
1491 	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1492 	    map->nentries, entry);
1493 }
1494 
1495 /*
1496  *	vm_map_entry_resize:
1497  *
1498  *	Resize a vm_map_entry, recompute the amount of free space that
1499  *	follows it and propagate that value up the tree.
1500  *
1501  *	The map must be locked, and leaves it so.
1502  */
1503 static void
1504 vm_map_entry_resize(vm_map_t map, vm_map_entry_t entry, vm_size_t grow_amount)
1505 {
1506 	vm_map_entry_t header, llist, rlist, root;
1507 
1508 	VM_MAP_ASSERT_LOCKED(map);
1509 	header = &map->header;
1510 	root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1511 	KASSERT(root != NULL, ("%s: resize object not mapped", __func__));
1512 	vm_map_splay_findnext(root, &rlist);
1513 	entry->end += grow_amount;
1514 	root->max_free = vm_size_max(
1515 	    vm_map_splay_merge_left(header, root, llist),
1516 	    vm_map_splay_merge_succ(header, root, rlist));
1517 	map->root = root;
1518 	VM_MAP_ASSERT_CONSISTENT(map);
1519 	CTR4(KTR_VM, "%s: map %p, nentries %d, entry %p",
1520 	    __func__, map, map->nentries, entry);
1521 }
1522 
1523 /*
1524  *	vm_map_lookup_entry:	[ internal use only ]
1525  *
1526  *	Finds the map entry containing (or
1527  *	immediately preceding) the specified address
1528  *	in the given map; the entry is returned
1529  *	in the "entry" parameter.  The boolean
1530  *	result indicates whether the address is
1531  *	actually contained in the map.
1532  */
1533 boolean_t
1534 vm_map_lookup_entry(
1535 	vm_map_t map,
1536 	vm_offset_t address,
1537 	vm_map_entry_t *entry)	/* OUT */
1538 {
1539 	vm_map_entry_t cur, header, lbound, ubound;
1540 	boolean_t locked;
1541 
1542 	/*
1543 	 * If the map is empty, then the map entry immediately preceding
1544 	 * "address" is the map's header.
1545 	 */
1546 	header = &map->header;
1547 	cur = map->root;
1548 	if (cur == NULL) {
1549 		*entry = header;
1550 		return (FALSE);
1551 	}
1552 	if (address >= cur->start && cur->end > address) {
1553 		*entry = cur;
1554 		return (TRUE);
1555 	}
1556 	if ((locked = vm_map_locked(map)) ||
1557 	    sx_try_upgrade(&map->lock)) {
1558 		/*
1559 		 * Splay requires a write lock on the map.  However, it only
1560 		 * restructures the binary search tree; it does not otherwise
1561 		 * change the map.  Thus, the map's timestamp need not change
1562 		 * on a temporary upgrade.
1563 		 */
1564 		cur = vm_map_splay(map, address);
1565 		if (!locked) {
1566 			VM_MAP_UNLOCK_CONSISTENT(map);
1567 			sx_downgrade(&map->lock);
1568 		}
1569 
1570 		/*
1571 		 * If "address" is contained within a map entry, the new root
1572 		 * is that map entry.  Otherwise, the new root is a map entry
1573 		 * immediately before or after "address".
1574 		 */
1575 		if (address < cur->start) {
1576 			*entry = header;
1577 			return (FALSE);
1578 		}
1579 		*entry = cur;
1580 		return (address < cur->end);
1581 	}
1582 	/*
1583 	 * Since the map is only locked for read access, perform a
1584 	 * standard binary search tree lookup for "address".
1585 	 */
1586 	lbound = ubound = header;
1587 	for (;;) {
1588 		if (address < cur->start) {
1589 			ubound = cur;
1590 			cur = cur->left;
1591 			if (cur == lbound)
1592 				break;
1593 		} else if (cur->end <= address) {
1594 			lbound = cur;
1595 			cur = cur->right;
1596 			if (cur == ubound)
1597 				break;
1598 		} else {
1599 			*entry = cur;
1600 			return (TRUE);
1601 		}
1602 	}
1603 	*entry = lbound;
1604 	return (FALSE);
1605 }
1606 
1607 /*
1608  * vm_map_insert1() is identical to vm_map_insert() except that it
1609  * returns the newly inserted map entry in '*res'.  In case the new
1610  * entry is coalesced with a neighbor or an existing entry was
1611  * resized, that entry is returned.  In any case, the returned entry
1612  * covers the specified address range.
1613  */
1614 static int
1615 vm_map_insert1(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1616     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow,
1617     vm_map_entry_t *res)
1618 {
1619 	vm_map_entry_t new_entry, next_entry, prev_entry;
1620 	struct ucred *cred;
1621 	vm_eflags_t protoeflags;
1622 	vm_inherit_t inheritance;
1623 	u_long bdry;
1624 	u_int bidx;
1625 
1626 	VM_MAP_ASSERT_LOCKED(map);
1627 	KASSERT(object != kernel_object ||
1628 	    (cow & MAP_COPY_ON_WRITE) == 0,
1629 	    ("vm_map_insert: kernel object and COW"));
1630 	KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0 ||
1631 	    (cow & MAP_SPLIT_BOUNDARY_MASK) != 0,
1632 	    ("vm_map_insert: paradoxical MAP_NOFAULT request, obj %p cow %#x",
1633 	    object, cow));
1634 	KASSERT((prot & ~max) == 0,
1635 	    ("prot %#x is not subset of max_prot %#x", prot, max));
1636 
1637 	/*
1638 	 * Check that the start and end points are not bogus.
1639 	 */
1640 	if (start == end || !vm_map_range_valid(map, start, end))
1641 		return (KERN_INVALID_ADDRESS);
1642 
1643 	if ((map->flags & MAP_WXORX) != 0 && (prot & (VM_PROT_WRITE |
1644 	    VM_PROT_EXECUTE)) == (VM_PROT_WRITE | VM_PROT_EXECUTE))
1645 		return (KERN_PROTECTION_FAILURE);
1646 
1647 	/*
1648 	 * Find the entry prior to the proposed starting address; if it's part
1649 	 * of an existing entry, this range is bogus.
1650 	 */
1651 	if (vm_map_lookup_entry(map, start, &prev_entry))
1652 		return (KERN_NO_SPACE);
1653 
1654 	/*
1655 	 * Assert that the next entry doesn't overlap the end point.
1656 	 */
1657 	next_entry = vm_map_entry_succ(prev_entry);
1658 	if (next_entry->start < end)
1659 		return (KERN_NO_SPACE);
1660 
1661 	if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL ||
1662 	    max != VM_PROT_NONE))
1663 		return (KERN_INVALID_ARGUMENT);
1664 
1665 	protoeflags = 0;
1666 	if (cow & MAP_COPY_ON_WRITE)
1667 		protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1668 	if (cow & MAP_NOFAULT)
1669 		protoeflags |= MAP_ENTRY_NOFAULT;
1670 	if (cow & MAP_DISABLE_SYNCER)
1671 		protoeflags |= MAP_ENTRY_NOSYNC;
1672 	if (cow & MAP_DISABLE_COREDUMP)
1673 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1674 	if (cow & MAP_STACK_AREA)
1675 		protoeflags |= MAP_ENTRY_GROWS_DOWN;
1676 	if (cow & MAP_WRITECOUNT)
1677 		protoeflags |= MAP_ENTRY_WRITECNT;
1678 	if (cow & MAP_VN_EXEC)
1679 		protoeflags |= MAP_ENTRY_VN_EXEC;
1680 	if ((cow & MAP_CREATE_GUARD) != 0)
1681 		protoeflags |= MAP_ENTRY_GUARD;
1682 	if ((cow & MAP_CREATE_STACK_GAP) != 0)
1683 		protoeflags |= MAP_ENTRY_STACK_GAP;
1684 	if (cow & MAP_INHERIT_SHARE)
1685 		inheritance = VM_INHERIT_SHARE;
1686 	else
1687 		inheritance = VM_INHERIT_DEFAULT;
1688 	if ((cow & MAP_SPLIT_BOUNDARY_MASK) != 0) {
1689 		/* This magically ignores index 0, for usual page size. */
1690 		bidx = (cow & MAP_SPLIT_BOUNDARY_MASK) >>
1691 		    MAP_SPLIT_BOUNDARY_SHIFT;
1692 		if (bidx >= MAXPAGESIZES)
1693 			return (KERN_INVALID_ARGUMENT);
1694 		bdry = pagesizes[bidx] - 1;
1695 		if ((start & bdry) != 0 || (end & bdry) != 0)
1696 			return (KERN_INVALID_ARGUMENT);
1697 		protoeflags |= bidx << MAP_ENTRY_SPLIT_BOUNDARY_SHIFT;
1698 	}
1699 
1700 	cred = NULL;
1701 	if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0)
1702 		goto charged;
1703 	if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1704 	    ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1705 		if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1706 			return (KERN_RESOURCE_SHORTAGE);
1707 		KASSERT(object == NULL ||
1708 		    (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
1709 		    object->cred == NULL,
1710 		    ("overcommit: vm_map_insert o %p", object));
1711 		cred = curthread->td_ucred;
1712 	}
1713 
1714 charged:
1715 	/* Expand the kernel pmap, if necessary. */
1716 	if (map == kernel_map && end > kernel_vm_end)
1717 		pmap_growkernel(end);
1718 	if (object != NULL) {
1719 		/*
1720 		 * OBJ_ONEMAPPING must be cleared unless this mapping
1721 		 * is trivially proven to be the only mapping for any
1722 		 * of the object's pages.  (Object granularity
1723 		 * reference counting is insufficient to recognize
1724 		 * aliases with precision.)
1725 		 */
1726 		if ((object->flags & OBJ_ANON) != 0) {
1727 			VM_OBJECT_WLOCK(object);
1728 			if (object->ref_count > 1 || object->shadow_count != 0)
1729 				vm_object_clear_flag(object, OBJ_ONEMAPPING);
1730 			VM_OBJECT_WUNLOCK(object);
1731 		}
1732 	} else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) ==
1733 	    protoeflags &&
1734 	    (cow & (MAP_STACK_AREA | MAP_VN_EXEC)) == 0 &&
1735 	    prev_entry->end == start && (prev_entry->cred == cred ||
1736 	    (prev_entry->object.vm_object != NULL &&
1737 	    prev_entry->object.vm_object->cred == cred)) &&
1738 	    vm_object_coalesce(prev_entry->object.vm_object,
1739 	    prev_entry->offset,
1740 	    (vm_size_t)(prev_entry->end - prev_entry->start),
1741 	    (vm_size_t)(end - prev_entry->end), cred != NULL &&
1742 	    (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1743 		/*
1744 		 * We were able to extend the object.  Determine if we
1745 		 * can extend the previous map entry to include the
1746 		 * new range as well.
1747 		 */
1748 		if (prev_entry->inheritance == inheritance &&
1749 		    prev_entry->protection == prot &&
1750 		    prev_entry->max_protection == max &&
1751 		    prev_entry->wired_count == 0) {
1752 			KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) ==
1753 			    0, ("prev_entry %p has incoherent wiring",
1754 			    prev_entry));
1755 			if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0)
1756 				map->size += end - prev_entry->end;
1757 			vm_map_entry_resize(map, prev_entry,
1758 			    end - prev_entry->end);
1759 			*res = vm_map_try_merge_entries(map, prev_entry,
1760 			    next_entry);
1761 			return (KERN_SUCCESS);
1762 		}
1763 
1764 		/*
1765 		 * If we can extend the object but cannot extend the
1766 		 * map entry, we have to create a new map entry.  We
1767 		 * must bump the ref count on the extended object to
1768 		 * account for it.  object may be NULL.
1769 		 */
1770 		object = prev_entry->object.vm_object;
1771 		offset = prev_entry->offset +
1772 		    (prev_entry->end - prev_entry->start);
1773 		vm_object_reference(object);
1774 		if (cred != NULL && object != NULL && object->cred != NULL &&
1775 		    !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1776 			/* Object already accounts for this uid. */
1777 			cred = NULL;
1778 		}
1779 	}
1780 	if (cred != NULL)
1781 		crhold(cred);
1782 
1783 	/*
1784 	 * Create a new entry
1785 	 */
1786 	new_entry = vm_map_entry_create(map);
1787 	new_entry->start = start;
1788 	new_entry->end = end;
1789 	new_entry->cred = NULL;
1790 
1791 	new_entry->eflags = protoeflags;
1792 	new_entry->object.vm_object = object;
1793 	new_entry->offset = offset;
1794 
1795 	new_entry->inheritance = inheritance;
1796 	new_entry->protection = prot;
1797 	new_entry->max_protection = max;
1798 	new_entry->wired_count = 0;
1799 	new_entry->wiring_thread = NULL;
1800 	new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1801 	new_entry->next_read = start;
1802 
1803 	KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1804 	    ("overcommit: vm_map_insert leaks vm_map %p", new_entry));
1805 	new_entry->cred = cred;
1806 
1807 	/*
1808 	 * Insert the new entry into the list
1809 	 */
1810 	vm_map_entry_link(map, new_entry);
1811 	if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0)
1812 		map->size += new_entry->end - new_entry->start;
1813 
1814 	/*
1815 	 * Try to coalesce the new entry with both the previous and next
1816 	 * entries in the list.  Previously, we only attempted to coalesce
1817 	 * with the previous entry when object is NULL.  Here, we handle the
1818 	 * other cases, which are less common.
1819 	 */
1820 	vm_map_try_merge_entries(map, prev_entry, new_entry);
1821 	*res = vm_map_try_merge_entries(map, new_entry, next_entry);
1822 
1823 	if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) {
1824 		vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset),
1825 		    end - start, cow & MAP_PREFAULT_PARTIAL);
1826 	}
1827 
1828 	return (KERN_SUCCESS);
1829 }
1830 
1831 /*
1832  *	vm_map_insert:
1833  *
1834  *	Inserts the given VM object into the target map at the
1835  *	specified address range.
1836  *
1837  *	Requires that the map be locked, and leaves it so.
1838  *
1839  *	If object is non-NULL, ref count must be bumped by caller
1840  *	prior to making call to account for the new entry.
1841  */
1842 int
1843 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1844     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1845 {
1846 	vm_map_entry_t res;
1847 
1848 	return (vm_map_insert1(map, object, offset, start, end, prot, max,
1849 	    cow, &res));
1850 }
1851 
1852 /*
1853  *	vm_map_findspace:
1854  *
1855  *	Find the first fit (lowest VM address) for "length" free bytes
1856  *	beginning at address >= start in the given map.
1857  *
1858  *	In a vm_map_entry, "max_free" is the maximum amount of
1859  *	contiguous free space between an entry in its subtree and a
1860  *	neighbor of that entry.  This allows finding a free region in
1861  *	one path down the tree, so O(log n) amortized with splay
1862  *	trees.
1863  *
1864  *	The map must be locked, and leaves it so.
1865  *
1866  *	Returns: starting address if sufficient space,
1867  *		 vm_map_max(map)-length+1 if insufficient space.
1868  */
1869 vm_offset_t
1870 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length)
1871 {
1872 	vm_map_entry_t header, llist, rlist, root, y;
1873 	vm_size_t left_length, max_free_left, max_free_right;
1874 	vm_offset_t gap_end;
1875 
1876 	VM_MAP_ASSERT_LOCKED(map);
1877 
1878 	/*
1879 	 * Request must fit within min/max VM address and must avoid
1880 	 * address wrap.
1881 	 */
1882 	start = MAX(start, vm_map_min(map));
1883 	if (start >= vm_map_max(map) || length > vm_map_max(map) - start)
1884 		return (vm_map_max(map) - length + 1);
1885 
1886 	/* Empty tree means wide open address space. */
1887 	if (map->root == NULL)
1888 		return (start);
1889 
1890 	/*
1891 	 * After splay_split, if start is within an entry, push it to the start
1892 	 * of the following gap.  If rlist is at the end of the gap containing
1893 	 * start, save the end of that gap in gap_end to see if the gap is big
1894 	 * enough; otherwise set gap_end to start skip gap-checking and move
1895 	 * directly to a search of the right subtree.
1896 	 */
1897 	header = &map->header;
1898 	root = vm_map_splay_split(map, start, length, &llist, &rlist);
1899 	gap_end = rlist->start;
1900 	if (root != NULL) {
1901 		start = root->end;
1902 		if (root->right != rlist)
1903 			gap_end = start;
1904 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1905 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1906 	} else if (rlist != header) {
1907 		root = rlist;
1908 		rlist = root->left;
1909 		max_free_left = vm_map_splay_merge_pred(header, root, llist);
1910 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1911 	} else {
1912 		root = llist;
1913 		llist = root->right;
1914 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1915 		max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1916 	}
1917 	root->max_free = vm_size_max(max_free_left, max_free_right);
1918 	map->root = root;
1919 	VM_MAP_ASSERT_CONSISTENT(map);
1920 	if (length <= gap_end - start)
1921 		return (start);
1922 
1923 	/* With max_free, can immediately tell if no solution. */
1924 	if (root->right == header || length > root->right->max_free)
1925 		return (vm_map_max(map) - length + 1);
1926 
1927 	/*
1928 	 * Splay for the least large-enough gap in the right subtree.
1929 	 */
1930 	llist = rlist = header;
1931 	for (left_length = 0;;
1932 	    left_length = vm_map_entry_max_free_left(root, llist)) {
1933 		if (length <= left_length)
1934 			SPLAY_LEFT_STEP(root, y, llist, rlist,
1935 			    length <= vm_map_entry_max_free_left(y, llist));
1936 		else
1937 			SPLAY_RIGHT_STEP(root, y, llist, rlist,
1938 			    length > vm_map_entry_max_free_left(y, root));
1939 		if (root == NULL)
1940 			break;
1941 	}
1942 	root = llist;
1943 	llist = root->right;
1944 	max_free_left = vm_map_splay_merge_left(header, root, llist);
1945 	if (rlist == header) {
1946 		root->max_free = vm_size_max(max_free_left,
1947 		    vm_map_splay_merge_succ(header, root, rlist));
1948 	} else {
1949 		y = rlist;
1950 		rlist = y->left;
1951 		y->max_free = vm_size_max(
1952 		    vm_map_splay_merge_pred(root, y, root),
1953 		    vm_map_splay_merge_right(header, y, rlist));
1954 		root->max_free = vm_size_max(max_free_left, y->max_free);
1955 	}
1956 	map->root = root;
1957 	VM_MAP_ASSERT_CONSISTENT(map);
1958 	return (root->end);
1959 }
1960 
1961 int
1962 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1963     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1964     vm_prot_t max, int cow)
1965 {
1966 	vm_offset_t end;
1967 	int result;
1968 
1969 	end = start + length;
1970 	KASSERT((cow & MAP_STACK_AREA) == 0 || object == NULL,
1971 	    ("vm_map_fixed: non-NULL backing object for stack"));
1972 	vm_map_lock(map);
1973 	VM_MAP_RANGE_CHECK(map, start, end);
1974 	if ((cow & MAP_CHECK_EXCL) == 0) {
1975 		result = vm_map_delete(map, start, end);
1976 		if (result != KERN_SUCCESS)
1977 			goto out;
1978 	}
1979 	if ((cow & MAP_STACK_AREA) != 0) {
1980 		result = vm_map_stack_locked(map, start, length, sgrowsiz,
1981 		    prot, max, cow);
1982 	} else {
1983 		result = vm_map_insert(map, object, offset, start, end,
1984 		    prot, max, cow);
1985 	}
1986 out:
1987 	vm_map_unlock(map);
1988 	return (result);
1989 }
1990 
1991 #if VM_NRESERVLEVEL <= 1
1992 static const int aslr_pages_rnd_64[2] = {0x1000, 0x10};
1993 static const int aslr_pages_rnd_32[2] = {0x100, 0x4};
1994 #elif VM_NRESERVLEVEL == 2
1995 static const int aslr_pages_rnd_64[3] = {0x1000, 0x1000, 0x10};
1996 static const int aslr_pages_rnd_32[3] = {0x100, 0x100, 0x4};
1997 #else
1998 #error "Unsupported VM_NRESERVLEVEL"
1999 #endif
2000 
2001 static int cluster_anon = 1;
2002 SYSCTL_INT(_vm, OID_AUTO, cluster_anon, CTLFLAG_RW,
2003     &cluster_anon, 0,
2004     "Cluster anonymous mappings: 0 = no, 1 = yes if no hint, 2 = always");
2005 
2006 static bool
2007 clustering_anon_allowed(vm_offset_t addr, int cow)
2008 {
2009 
2010 	switch (cluster_anon) {
2011 	case 0:
2012 		return (false);
2013 	case 1:
2014 		return (addr == 0 || (cow & MAP_NO_HINT) != 0);
2015 	case 2:
2016 	default:
2017 		return (true);
2018 	}
2019 }
2020 
2021 static long aslr_restarts;
2022 SYSCTL_LONG(_vm, OID_AUTO, aslr_restarts, CTLFLAG_RD,
2023     &aslr_restarts, 0,
2024     "Number of aslr failures");
2025 
2026 /*
2027  * Searches for the specified amount of free space in the given map with the
2028  * specified alignment.  Performs an address-ordered, first-fit search from
2029  * the given address "*addr", with an optional upper bound "max_addr".  If the
2030  * parameter "alignment" is zero, then the alignment is computed from the
2031  * given (object, offset) pair so as to enable the greatest possible use of
2032  * superpage mappings.  Returns KERN_SUCCESS and the address of the free space
2033  * in "*addr" if successful.  Otherwise, returns KERN_NO_SPACE.
2034  *
2035  * The map must be locked.  Initially, there must be at least "length" bytes
2036  * of free space at the given address.
2037  */
2038 static int
2039 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2040     vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr,
2041     vm_offset_t alignment)
2042 {
2043 	vm_offset_t aligned_addr, free_addr;
2044 
2045 	VM_MAP_ASSERT_LOCKED(map);
2046 	free_addr = *addr;
2047 	KASSERT(free_addr == vm_map_findspace(map, free_addr, length),
2048 	    ("caller failed to provide space %#jx at address %p",
2049 	     (uintmax_t)length, (void *)free_addr));
2050 	for (;;) {
2051 		/*
2052 		 * At the start of every iteration, the free space at address
2053 		 * "*addr" is at least "length" bytes.
2054 		 */
2055 		if (alignment == 0)
2056 			pmap_align_superpage(object, offset, addr, length);
2057 		else
2058 			*addr = roundup2(*addr, alignment);
2059 		aligned_addr = *addr;
2060 		if (aligned_addr == free_addr) {
2061 			/*
2062 			 * Alignment did not change "*addr", so "*addr" must
2063 			 * still provide sufficient free space.
2064 			 */
2065 			return (KERN_SUCCESS);
2066 		}
2067 
2068 		/*
2069 		 * Test for address wrap on "*addr".  A wrapped "*addr" could
2070 		 * be a valid address, in which case vm_map_findspace() cannot
2071 		 * be relied upon to fail.
2072 		 */
2073 		if (aligned_addr < free_addr)
2074 			return (KERN_NO_SPACE);
2075 		*addr = vm_map_findspace(map, aligned_addr, length);
2076 		if (*addr + length > vm_map_max(map) ||
2077 		    (max_addr != 0 && *addr + length > max_addr))
2078 			return (KERN_NO_SPACE);
2079 		free_addr = *addr;
2080 		if (free_addr == aligned_addr) {
2081 			/*
2082 			 * If a successful call to vm_map_findspace() did not
2083 			 * change "*addr", then "*addr" must still be aligned
2084 			 * and provide sufficient free space.
2085 			 */
2086 			return (KERN_SUCCESS);
2087 		}
2088 	}
2089 }
2090 
2091 int
2092 vm_map_find_aligned(vm_map_t map, vm_offset_t *addr, vm_size_t length,
2093     vm_offset_t max_addr, vm_offset_t alignment)
2094 {
2095 	/* XXXKIB ASLR eh ? */
2096 	*addr = vm_map_findspace(map, *addr, length);
2097 	if (*addr + length > vm_map_max(map) ||
2098 	    (max_addr != 0 && *addr + length > max_addr))
2099 		return (KERN_NO_SPACE);
2100 	return (vm_map_alignspace(map, NULL, 0, addr, length, max_addr,
2101 	    alignment));
2102 }
2103 
2104 /*
2105  *	vm_map_find finds an unallocated region in the target address
2106  *	map with the given length.  The search is defined to be
2107  *	first-fit from the specified address; the region found is
2108  *	returned in the same parameter.
2109  *
2110  *	If object is non-NULL, ref count must be bumped by caller
2111  *	prior to making call to account for the new entry.
2112  */
2113 int
2114 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2115     vm_offset_t *addr,	/* IN/OUT */
2116     vm_size_t length, vm_offset_t max_addr, int find_space,
2117     vm_prot_t prot, vm_prot_t max, int cow)
2118 {
2119 	int rv;
2120 
2121 	vm_map_lock(map);
2122 	rv = vm_map_find_locked(map, object, offset, addr, length, max_addr,
2123 	    find_space, prot, max, cow);
2124 	vm_map_unlock(map);
2125 	return (rv);
2126 }
2127 
2128 int
2129 vm_map_find_locked(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2130     vm_offset_t *addr,	/* IN/OUT */
2131     vm_size_t length, vm_offset_t max_addr, int find_space,
2132     vm_prot_t prot, vm_prot_t max, int cow)
2133 {
2134 	vm_offset_t alignment, curr_min_addr, min_addr;
2135 	int gap, pidx, rv, try;
2136 	bool cluster, en_aslr, update_anon;
2137 
2138 	KASSERT((cow & MAP_STACK_AREA) == 0 || object == NULL,
2139 	    ("non-NULL backing object for stack"));
2140 	MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE &&
2141 	    (cow & MAP_STACK_AREA) == 0));
2142 	if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
2143 	    (object->flags & OBJ_COLORED) == 0))
2144 		find_space = VMFS_ANY_SPACE;
2145 	if (find_space >> 8 != 0) {
2146 		KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
2147 		alignment = (vm_offset_t)1 << (find_space >> 8);
2148 	} else
2149 		alignment = 0;
2150 	en_aslr = (map->flags & MAP_ASLR) != 0;
2151 	update_anon = cluster = clustering_anon_allowed(*addr, cow) &&
2152 	    (map->flags & MAP_IS_SUB_MAP) == 0 && max_addr == 0 &&
2153 	    find_space != VMFS_NO_SPACE && object == NULL &&
2154 	    (cow & (MAP_INHERIT_SHARE | MAP_STACK_AREA)) == 0 &&
2155 	    prot != PROT_NONE;
2156 	curr_min_addr = min_addr = *addr;
2157 	if (en_aslr && min_addr == 0 && !cluster &&
2158 	    find_space != VMFS_NO_SPACE &&
2159 	    (map->flags & MAP_ASLR_IGNSTART) != 0)
2160 		curr_min_addr = min_addr = vm_map_min(map);
2161 	try = 0;
2162 	if (cluster) {
2163 		curr_min_addr = map->anon_loc;
2164 		if (curr_min_addr == 0)
2165 			cluster = false;
2166 	}
2167 	if (find_space != VMFS_NO_SPACE) {
2168 		KASSERT(find_space == VMFS_ANY_SPACE ||
2169 		    find_space == VMFS_OPTIMAL_SPACE ||
2170 		    find_space == VMFS_SUPER_SPACE ||
2171 		    alignment != 0, ("unexpected VMFS flag"));
2172 again:
2173 		/*
2174 		 * When creating an anonymous mapping, try clustering
2175 		 * with an existing anonymous mapping first.
2176 		 *
2177 		 * We make up to two attempts to find address space
2178 		 * for a given find_space value. The first attempt may
2179 		 * apply randomization or may cluster with an existing
2180 		 * anonymous mapping. If this first attempt fails,
2181 		 * perform a first-fit search of the available address
2182 		 * space.
2183 		 *
2184 		 * If all tries failed, and find_space is
2185 		 * VMFS_OPTIMAL_SPACE, fallback to VMFS_ANY_SPACE.
2186 		 * Again enable clustering and randomization.
2187 		 */
2188 		try++;
2189 		MPASS(try <= 2);
2190 
2191 		if (try == 2) {
2192 			/*
2193 			 * Second try: we failed either to find a
2194 			 * suitable region for randomizing the
2195 			 * allocation, or to cluster with an existing
2196 			 * mapping.  Retry with free run.
2197 			 */
2198 			curr_min_addr = (map->flags & MAP_ASLR_IGNSTART) != 0 ?
2199 			    vm_map_min(map) : min_addr;
2200 			atomic_add_long(&aslr_restarts, 1);
2201 		}
2202 
2203 		if (try == 1 && en_aslr && !cluster) {
2204 			/*
2205 			 * Find space for allocation, including
2206 			 * gap needed for later randomization.
2207 			 */
2208 			pidx = 0;
2209 #if VM_NRESERVLEVEL > 0
2210 			if ((find_space == VMFS_SUPER_SPACE ||
2211 			    find_space == VMFS_OPTIMAL_SPACE) &&
2212 			    pagesizes[VM_NRESERVLEVEL] != 0) {
2213 				/*
2214 				 * Do not pointlessly increase the space that
2215 				 * is requested from vm_map_findspace().
2216 				 * pmap_align_superpage() will only change a
2217 				 * mapping's alignment if that mapping is at
2218 				 * least a superpage in size.
2219 				 */
2220 				pidx = VM_NRESERVLEVEL;
2221 				while (pidx > 0 && length < pagesizes[pidx])
2222 					pidx--;
2223 			}
2224 #endif
2225 			gap = vm_map_max(map) > MAP_32BIT_MAX_ADDR &&
2226 			    (max_addr == 0 || max_addr > MAP_32BIT_MAX_ADDR) ?
2227 			    aslr_pages_rnd_64[pidx] : aslr_pages_rnd_32[pidx];
2228 			*addr = vm_map_findspace(map, curr_min_addr,
2229 			    length + gap * pagesizes[pidx]);
2230 			if (*addr + length + gap * pagesizes[pidx] >
2231 			    vm_map_max(map))
2232 				goto again;
2233 			/* And randomize the start address. */
2234 			*addr += (arc4random() % gap) * pagesizes[pidx];
2235 			if (max_addr != 0 && *addr + length > max_addr)
2236 				goto again;
2237 		} else {
2238 			*addr = vm_map_findspace(map, curr_min_addr, length);
2239 			if (*addr + length > vm_map_max(map) ||
2240 			    (max_addr != 0 && *addr + length > max_addr)) {
2241 				if (cluster) {
2242 					cluster = false;
2243 					MPASS(try == 1);
2244 					goto again;
2245 				}
2246 				return (KERN_NO_SPACE);
2247 			}
2248 		}
2249 
2250 		if (find_space != VMFS_ANY_SPACE &&
2251 		    (rv = vm_map_alignspace(map, object, offset, addr, length,
2252 		    max_addr, alignment)) != KERN_SUCCESS) {
2253 			if (find_space == VMFS_OPTIMAL_SPACE) {
2254 				find_space = VMFS_ANY_SPACE;
2255 				curr_min_addr = min_addr;
2256 				cluster = update_anon;
2257 				try = 0;
2258 				goto again;
2259 			}
2260 			return (rv);
2261 		}
2262 	} else if ((cow & MAP_REMAP) != 0) {
2263 		if (!vm_map_range_valid(map, *addr, *addr + length))
2264 			return (KERN_INVALID_ADDRESS);
2265 		rv = vm_map_delete(map, *addr, *addr + length);
2266 		if (rv != KERN_SUCCESS)
2267 			return (rv);
2268 	}
2269 	if ((cow & MAP_STACK_AREA) != 0) {
2270 		rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot,
2271 		    max, cow);
2272 	} else {
2273 		rv = vm_map_insert(map, object, offset, *addr, *addr + length,
2274 		    prot, max, cow);
2275 	}
2276 
2277 	/*
2278 	 * Update the starting address for clustered anonymous memory mappings
2279 	 * if a starting address was not previously defined or an ASLR restart
2280 	 * placed an anonymous memory mapping at a lower address.
2281 	 */
2282 	if (update_anon && rv == KERN_SUCCESS && (map->anon_loc == 0 ||
2283 	    *addr < map->anon_loc))
2284 		map->anon_loc = *addr;
2285 	return (rv);
2286 }
2287 
2288 /*
2289  *	vm_map_find_min() is a variant of vm_map_find() that takes an
2290  *	additional parameter ("default_addr") and treats the given address
2291  *	("*addr") differently.  Specifically, it treats "*addr" as a hint
2292  *	and not as the minimum address where the mapping is created.
2293  *
2294  *	This function works in two phases.  First, it tries to
2295  *	allocate above the hint.  If that fails and the hint is
2296  *	greater than "default_addr", it performs a second pass, replacing
2297  *	the hint with "default_addr" as the minimum address for the
2298  *	allocation.
2299  */
2300 int
2301 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2302     vm_offset_t *addr, vm_size_t length, vm_offset_t default_addr,
2303     vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max,
2304     int cow)
2305 {
2306 	vm_offset_t hint;
2307 	int rv;
2308 
2309 	hint = *addr;
2310 	if (hint == 0) {
2311 		cow |= MAP_NO_HINT;
2312 		*addr = hint = default_addr;
2313 	}
2314 	for (;;) {
2315 		rv = vm_map_find(map, object, offset, addr, length, max_addr,
2316 		    find_space, prot, max, cow);
2317 		if (rv == KERN_SUCCESS || default_addr >= hint)
2318 			return (rv);
2319 		*addr = hint = default_addr;
2320 	}
2321 }
2322 
2323 /*
2324  * A map entry with any of the following flags set must not be merged with
2325  * another entry.
2326  */
2327 #define	MAP_ENTRY_NOMERGE_MASK	(MAP_ENTRY_GROWS_DOWN | \
2328     MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP | MAP_ENTRY_VN_EXEC | \
2329     MAP_ENTRY_STACK_GAP)
2330 
2331 static bool
2332 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry)
2333 {
2334 
2335 	KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 ||
2336 	    (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0,
2337 	    ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable",
2338 	    prev, entry));
2339 	return (prev->end == entry->start &&
2340 	    prev->object.vm_object == entry->object.vm_object &&
2341 	    (prev->object.vm_object == NULL ||
2342 	    prev->offset + (prev->end - prev->start) == entry->offset) &&
2343 	    prev->eflags == entry->eflags &&
2344 	    prev->protection == entry->protection &&
2345 	    prev->max_protection == entry->max_protection &&
2346 	    prev->inheritance == entry->inheritance &&
2347 	    prev->wired_count == entry->wired_count &&
2348 	    prev->cred == entry->cred);
2349 }
2350 
2351 static void
2352 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry)
2353 {
2354 
2355 	/*
2356 	 * If the backing object is a vnode object, vm_object_deallocate()
2357 	 * calls vrele().  However, vrele() does not lock the vnode because
2358 	 * the vnode has additional references.  Thus, the map lock can be
2359 	 * kept without causing a lock-order reversal with the vnode lock.
2360 	 *
2361 	 * Since we count the number of virtual page mappings in
2362 	 * object->un_pager.vnp.writemappings, the writemappings value
2363 	 * should not be adjusted when the entry is disposed of.
2364 	 */
2365 	if (entry->object.vm_object != NULL)
2366 		vm_object_deallocate(entry->object.vm_object);
2367 	if (entry->cred != NULL)
2368 		crfree(entry->cred);
2369 	vm_map_entry_dispose(map, entry);
2370 }
2371 
2372 /*
2373  *	vm_map_try_merge_entries:
2374  *
2375  *	Compare two map entries that represent consecutive ranges. If
2376  *	the entries can be merged, expand the range of the second to
2377  *	cover the range of the first and delete the first. Then return
2378  *	the map entry that includes the first range.
2379  *
2380  *	The map must be locked.
2381  */
2382 vm_map_entry_t
2383 vm_map_try_merge_entries(vm_map_t map, vm_map_entry_t prev_entry,
2384     vm_map_entry_t entry)
2385 {
2386 
2387 	VM_MAP_ASSERT_LOCKED(map);
2388 	if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 &&
2389 	    vm_map_mergeable_neighbors(prev_entry, entry)) {
2390 		vm_map_entry_unlink(map, prev_entry, UNLINK_MERGE_NEXT);
2391 		vm_map_merged_neighbor_dispose(map, prev_entry);
2392 		return (entry);
2393 	}
2394 	return (prev_entry);
2395 }
2396 
2397 /*
2398  *	vm_map_entry_back:
2399  *
2400  *	Allocate an object to back a map entry.
2401  */
2402 static inline void
2403 vm_map_entry_back(vm_map_entry_t entry)
2404 {
2405 	vm_object_t object;
2406 
2407 	KASSERT(entry->object.vm_object == NULL,
2408 	    ("map entry %p has backing object", entry));
2409 	KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
2410 	    ("map entry %p is a submap", entry));
2411 	object = vm_object_allocate_anon(atop(entry->end - entry->start), NULL,
2412 	    entry->cred, entry->end - entry->start);
2413 	entry->object.vm_object = object;
2414 	entry->offset = 0;
2415 	entry->cred = NULL;
2416 }
2417 
2418 /*
2419  *	vm_map_entry_charge_object
2420  *
2421  *	If there is no object backing this entry, create one.  Otherwise, if
2422  *	the entry has cred, give it to the backing object.
2423  */
2424 static inline void
2425 vm_map_entry_charge_object(vm_map_t map, vm_map_entry_t entry)
2426 {
2427 
2428 	VM_MAP_ASSERT_LOCKED(map);
2429 	KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
2430 	    ("map entry %p is a submap", entry));
2431 	if (entry->object.vm_object == NULL && !map->system_map &&
2432 	    (entry->eflags & MAP_ENTRY_GUARD) == 0)
2433 		vm_map_entry_back(entry);
2434 	else if (entry->object.vm_object != NULL &&
2435 	    ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
2436 	    entry->cred != NULL) {
2437 		VM_OBJECT_WLOCK(entry->object.vm_object);
2438 		KASSERT(entry->object.vm_object->cred == NULL,
2439 		    ("OVERCOMMIT: %s: both cred e %p", __func__, entry));
2440 		entry->object.vm_object->cred = entry->cred;
2441 		entry->object.vm_object->charge = entry->end - entry->start;
2442 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
2443 		entry->cred = NULL;
2444 	}
2445 }
2446 
2447 /*
2448  *	vm_map_entry_clone
2449  *
2450  *	Create a duplicate map entry for clipping.
2451  */
2452 static vm_map_entry_t
2453 vm_map_entry_clone(vm_map_t map, vm_map_entry_t entry)
2454 {
2455 	vm_map_entry_t new_entry;
2456 
2457 	VM_MAP_ASSERT_LOCKED(map);
2458 
2459 	/*
2460 	 * Create a backing object now, if none exists, so that more individual
2461 	 * objects won't be created after the map entry is split.
2462 	 */
2463 	vm_map_entry_charge_object(map, entry);
2464 
2465 	/* Clone the entry. */
2466 	new_entry = vm_map_entry_create(map);
2467 	*new_entry = *entry;
2468 	if (new_entry->cred != NULL)
2469 		crhold(entry->cred);
2470 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2471 		vm_object_reference(new_entry->object.vm_object);
2472 		vm_map_entry_set_vnode_text(new_entry, true);
2473 		/*
2474 		 * The object->un_pager.vnp.writemappings for the object of
2475 		 * MAP_ENTRY_WRITECNT type entry shall be kept as is here.  The
2476 		 * virtual pages are re-distributed among the clipped entries,
2477 		 * so the sum is left the same.
2478 		 */
2479 	}
2480 	return (new_entry);
2481 }
2482 
2483 /*
2484  *	vm_map_clip_start:	[ internal use only ]
2485  *
2486  *	Asserts that the given entry begins at or after
2487  *	the specified address; if necessary,
2488  *	it splits the entry into two.
2489  */
2490 static int
2491 vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t startaddr)
2492 {
2493 	vm_map_entry_t new_entry;
2494 	int bdry_idx;
2495 
2496 	if (!map->system_map)
2497 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2498 		    "%s: map %p entry %p start 0x%jx", __func__, map, entry,
2499 		    (uintmax_t)startaddr);
2500 
2501 	if (startaddr <= entry->start)
2502 		return (KERN_SUCCESS);
2503 
2504 	VM_MAP_ASSERT_LOCKED(map);
2505 	KASSERT(entry->end > startaddr && entry->start < startaddr,
2506 	    ("%s: invalid clip of entry %p", __func__, entry));
2507 
2508 	bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry);
2509 	if (bdry_idx != 0) {
2510 		if ((startaddr & (pagesizes[bdry_idx] - 1)) != 0)
2511 			return (KERN_INVALID_ARGUMENT);
2512 	}
2513 
2514 	new_entry = vm_map_entry_clone(map, entry);
2515 
2516 	/*
2517 	 * Split off the front portion.  Insert the new entry BEFORE this one,
2518 	 * so that this entry has the specified starting address.
2519 	 */
2520 	new_entry->end = startaddr;
2521 	vm_map_entry_link(map, new_entry);
2522 	return (KERN_SUCCESS);
2523 }
2524 
2525 /*
2526  *	vm_map_lookup_clip_start:
2527  *
2528  *	Find the entry at or just after 'start', and clip it if 'start' is in
2529  *	the interior of the entry.  Return entry after 'start', and in
2530  *	prev_entry set the entry before 'start'.
2531  */
2532 static int
2533 vm_map_lookup_clip_start(vm_map_t map, vm_offset_t start,
2534     vm_map_entry_t *res_entry, vm_map_entry_t *prev_entry)
2535 {
2536 	vm_map_entry_t entry;
2537 	int rv;
2538 
2539 	if (!map->system_map)
2540 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2541 		    "%s: map %p start 0x%jx prev %p", __func__, map,
2542 		    (uintmax_t)start, prev_entry);
2543 
2544 	if (vm_map_lookup_entry(map, start, prev_entry)) {
2545 		entry = *prev_entry;
2546 		rv = vm_map_clip_start(map, entry, start);
2547 		if (rv != KERN_SUCCESS)
2548 			return (rv);
2549 		*prev_entry = vm_map_entry_pred(entry);
2550 	} else
2551 		entry = vm_map_entry_succ(*prev_entry);
2552 	*res_entry = entry;
2553 	return (KERN_SUCCESS);
2554 }
2555 
2556 /*
2557  *	vm_map_clip_end:	[ internal use only ]
2558  *
2559  *	Asserts that the given entry ends at or before
2560  *	the specified address; if necessary,
2561  *	it splits the entry into two.
2562  */
2563 static int
2564 vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t endaddr)
2565 {
2566 	vm_map_entry_t new_entry;
2567 	int bdry_idx;
2568 
2569 	if (!map->system_map)
2570 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2571 		    "%s: map %p entry %p end 0x%jx", __func__, map, entry,
2572 		    (uintmax_t)endaddr);
2573 
2574 	if (endaddr >= entry->end)
2575 		return (KERN_SUCCESS);
2576 
2577 	VM_MAP_ASSERT_LOCKED(map);
2578 	KASSERT(entry->start < endaddr && entry->end > endaddr,
2579 	    ("%s: invalid clip of entry %p", __func__, entry));
2580 
2581 	bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry);
2582 	if (bdry_idx != 0) {
2583 		if ((endaddr & (pagesizes[bdry_idx] - 1)) != 0)
2584 			return (KERN_INVALID_ARGUMENT);
2585 	}
2586 
2587 	new_entry = vm_map_entry_clone(map, entry);
2588 
2589 	/*
2590 	 * Split off the back portion.  Insert the new entry AFTER this one,
2591 	 * so that this entry has the specified ending address.
2592 	 */
2593 	new_entry->start = endaddr;
2594 	vm_map_entry_link(map, new_entry);
2595 
2596 	return (KERN_SUCCESS);
2597 }
2598 
2599 /*
2600  *	vm_map_submap:		[ kernel use only ]
2601  *
2602  *	Mark the given range as handled by a subordinate map.
2603  *
2604  *	This range must have been created with vm_map_find,
2605  *	and no other operations may have been performed on this
2606  *	range prior to calling vm_map_submap.
2607  *
2608  *	Only a limited number of operations can be performed
2609  *	within this rage after calling vm_map_submap:
2610  *		vm_fault
2611  *	[Don't try vm_map_copy!]
2612  *
2613  *	To remove a submapping, one must first remove the
2614  *	range from the superior map, and then destroy the
2615  *	submap (if desired).  [Better yet, don't try it.]
2616  */
2617 int
2618 vm_map_submap(
2619 	vm_map_t map,
2620 	vm_offset_t start,
2621 	vm_offset_t end,
2622 	vm_map_t submap)
2623 {
2624 	vm_map_entry_t entry;
2625 	int result;
2626 
2627 	result = KERN_INVALID_ARGUMENT;
2628 
2629 	vm_map_lock(submap);
2630 	submap->flags |= MAP_IS_SUB_MAP;
2631 	vm_map_unlock(submap);
2632 
2633 	vm_map_lock(map);
2634 	VM_MAP_RANGE_CHECK(map, start, end);
2635 	if (vm_map_lookup_entry(map, start, &entry) && entry->end >= end &&
2636 	    (entry->eflags & MAP_ENTRY_COW) == 0 &&
2637 	    entry->object.vm_object == NULL) {
2638 		result = vm_map_clip_start(map, entry, start);
2639 		if (result != KERN_SUCCESS)
2640 			goto unlock;
2641 		result = vm_map_clip_end(map, entry, end);
2642 		if (result != KERN_SUCCESS)
2643 			goto unlock;
2644 		entry->object.sub_map = submap;
2645 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
2646 		result = KERN_SUCCESS;
2647 	}
2648 unlock:
2649 	vm_map_unlock(map);
2650 
2651 	if (result != KERN_SUCCESS) {
2652 		vm_map_lock(submap);
2653 		submap->flags &= ~MAP_IS_SUB_MAP;
2654 		vm_map_unlock(submap);
2655 	}
2656 	return (result);
2657 }
2658 
2659 /*
2660  * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
2661  */
2662 #define	MAX_INIT_PT	96
2663 
2664 /*
2665  *	vm_map_pmap_enter:
2666  *
2667  *	Preload the specified map's pmap with mappings to the specified
2668  *	object's memory-resident pages.  No further physical pages are
2669  *	allocated, and no further virtual pages are retrieved from secondary
2670  *	storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
2671  *	limited number of page mappings are created at the low-end of the
2672  *	specified address range.  (For this purpose, a superpage mapping
2673  *	counts as one page mapping.)  Otherwise, all resident pages within
2674  *	the specified address range are mapped.
2675  */
2676 static void
2677 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
2678     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
2679 {
2680 	vm_offset_t start;
2681 	vm_page_t p, p_start;
2682 	vm_pindex_t mask, psize, threshold, tmpidx;
2683 	int psind;
2684 
2685 	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
2686 		return;
2687 	if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2688 		VM_OBJECT_WLOCK(object);
2689 		if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2690 			pmap_object_init_pt(map->pmap, addr, object, pindex,
2691 			    size);
2692 			VM_OBJECT_WUNLOCK(object);
2693 			return;
2694 		}
2695 		VM_OBJECT_LOCK_DOWNGRADE(object);
2696 	} else
2697 		VM_OBJECT_RLOCK(object);
2698 
2699 	psize = atop(size);
2700 	if (psize + pindex > object->size) {
2701 		if (pindex >= object->size) {
2702 			VM_OBJECT_RUNLOCK(object);
2703 			return;
2704 		}
2705 		psize = object->size - pindex;
2706 	}
2707 
2708 	start = 0;
2709 	p_start = NULL;
2710 	threshold = MAX_INIT_PT;
2711 
2712 	p = vm_page_find_least(object, pindex);
2713 	/*
2714 	 * Assert: the variable p is either (1) the page with the
2715 	 * least pindex greater than or equal to the parameter pindex
2716 	 * or (2) NULL.
2717 	 */
2718 	for (;
2719 	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
2720 	     p = TAILQ_NEXT(p, listq)) {
2721 		/*
2722 		 * don't allow an madvise to blow away our really
2723 		 * free pages allocating pv entries.
2724 		 */
2725 		if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
2726 		    vm_page_count_severe()) ||
2727 		    ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
2728 		    tmpidx >= threshold)) {
2729 			psize = tmpidx;
2730 			break;
2731 		}
2732 		if (vm_page_all_valid(p)) {
2733 			if (p_start == NULL) {
2734 				start = addr + ptoa(tmpidx);
2735 				p_start = p;
2736 			}
2737 			/* Jump ahead if a superpage mapping is possible. */
2738 			for (psind = p->psind; psind > 0; psind--) {
2739 				if (((addr + ptoa(tmpidx)) &
2740 				    (pagesizes[psind] - 1)) == 0) {
2741 					mask = atop(pagesizes[psind]) - 1;
2742 					if (tmpidx + mask < psize &&
2743 					    vm_page_ps_test(p, psind,
2744 					    PS_ALL_VALID, NULL)) {
2745 						p += mask;
2746 						threshold += mask;
2747 						break;
2748 					}
2749 				}
2750 			}
2751 		} else if (p_start != NULL) {
2752 			pmap_enter_object(map->pmap, start, addr +
2753 			    ptoa(tmpidx), p_start, prot);
2754 			p_start = NULL;
2755 		}
2756 	}
2757 	if (p_start != NULL)
2758 		pmap_enter_object(map->pmap, start, addr + ptoa(psize),
2759 		    p_start, prot);
2760 	VM_OBJECT_RUNLOCK(object);
2761 }
2762 
2763 static void
2764 vm_map_protect_guard(vm_map_entry_t entry, vm_prot_t new_prot,
2765     vm_prot_t new_maxprot, int flags)
2766 {
2767 	vm_prot_t old_prot;
2768 
2769 	MPASS((entry->eflags & MAP_ENTRY_GUARD) != 0);
2770 	if ((entry->eflags & MAP_ENTRY_STACK_GAP) == 0)
2771 		return;
2772 
2773 	old_prot = PROT_EXTRACT(entry->offset);
2774 	if ((flags & VM_MAP_PROTECT_SET_MAXPROT) != 0) {
2775 		entry->offset = PROT_MAX(new_maxprot) |
2776 		    (new_maxprot & old_prot);
2777 	}
2778 	if ((flags & VM_MAP_PROTECT_SET_PROT) != 0) {
2779 		entry->offset = new_prot | PROT_MAX(
2780 		    PROT_MAX_EXTRACT(entry->offset));
2781 	}
2782 }
2783 
2784 /*
2785  *	vm_map_protect:
2786  *
2787  *	Sets the protection and/or the maximum protection of the
2788  *	specified address region in the target map.
2789  */
2790 int
2791 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
2792     vm_prot_t new_prot, vm_prot_t new_maxprot, int flags)
2793 {
2794 	vm_map_entry_t entry, first_entry, in_tran, prev_entry;
2795 	vm_object_t obj;
2796 	struct ucred *cred;
2797 	vm_offset_t orig_start;
2798 	vm_prot_t check_prot, max_prot, old_prot;
2799 	int rv;
2800 
2801 	if (start == end)
2802 		return (KERN_SUCCESS);
2803 
2804 	if (CONTAINS_BITS(flags, VM_MAP_PROTECT_SET_PROT |
2805 	    VM_MAP_PROTECT_SET_MAXPROT) &&
2806 	    !CONTAINS_BITS(new_maxprot, new_prot))
2807 		return (KERN_OUT_OF_BOUNDS);
2808 
2809 	orig_start = start;
2810 again:
2811 	in_tran = NULL;
2812 	start = orig_start;
2813 	vm_map_lock(map);
2814 
2815 	if ((map->flags & MAP_WXORX) != 0 &&
2816 	    (flags & VM_MAP_PROTECT_SET_PROT) != 0 &&
2817 	    CONTAINS_BITS(new_prot, VM_PROT_WRITE | VM_PROT_EXECUTE)) {
2818 		vm_map_unlock(map);
2819 		return (KERN_PROTECTION_FAILURE);
2820 	}
2821 
2822 	/*
2823 	 * Ensure that we are not concurrently wiring pages.  vm_map_wire() may
2824 	 * need to fault pages into the map and will drop the map lock while
2825 	 * doing so, and the VM object may end up in an inconsistent state if we
2826 	 * update the protection on the map entry in between faults.
2827 	 */
2828 	vm_map_wait_busy(map);
2829 
2830 	VM_MAP_RANGE_CHECK(map, start, end);
2831 
2832 	if (!vm_map_lookup_entry(map, start, &first_entry))
2833 		first_entry = vm_map_entry_succ(first_entry);
2834 
2835 	if ((flags & VM_MAP_PROTECT_GROWSDOWN) != 0 &&
2836 	    (first_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0) {
2837 		/*
2838 		 * Handle Linux's PROT_GROWSDOWN flag.
2839 		 * It means that protection is applied down to the
2840 		 * whole stack, including the specified range of the
2841 		 * mapped region, and the grow down region (AKA
2842 		 * guard).
2843 		 */
2844 		while (!CONTAINS_BITS(first_entry->eflags,
2845 		    MAP_ENTRY_GUARD | MAP_ENTRY_STACK_GAP) &&
2846 		    first_entry != vm_map_entry_first(map))
2847 			first_entry = vm_map_entry_pred(first_entry);
2848 		start = first_entry->start;
2849 	}
2850 
2851 	/*
2852 	 * Make a first pass to check for protection violations.
2853 	 */
2854 	check_prot = 0;
2855 	if ((flags & VM_MAP_PROTECT_SET_PROT) != 0)
2856 		check_prot |= new_prot;
2857 	if ((flags & VM_MAP_PROTECT_SET_MAXPROT) != 0)
2858 		check_prot |= new_maxprot;
2859 	for (entry = first_entry; entry->start < end;
2860 	    entry = vm_map_entry_succ(entry)) {
2861 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) {
2862 			vm_map_unlock(map);
2863 			return (KERN_INVALID_ARGUMENT);
2864 		}
2865 		if ((entry->eflags & (MAP_ENTRY_GUARD |
2866 		    MAP_ENTRY_STACK_GAP)) == MAP_ENTRY_GUARD)
2867 			continue;
2868 		max_prot = (entry->eflags & MAP_ENTRY_STACK_GAP) != 0 ?
2869 		    PROT_MAX_EXTRACT(entry->offset) : entry->max_protection;
2870 		if (!CONTAINS_BITS(max_prot, check_prot)) {
2871 			vm_map_unlock(map);
2872 			return (KERN_PROTECTION_FAILURE);
2873 		}
2874 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0)
2875 			in_tran = entry;
2876 	}
2877 
2878 	/*
2879 	 * Postpone the operation until all in-transition map entries have
2880 	 * stabilized.  An in-transition entry might already have its pages
2881 	 * wired and wired_count incremented, but not yet have its
2882 	 * MAP_ENTRY_USER_WIRED flag set.  In which case, we would fail to call
2883 	 * vm_fault_copy_entry() in the final loop below.
2884 	 */
2885 	if (in_tran != NULL) {
2886 		in_tran->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2887 		vm_map_unlock_and_wait(map, 0);
2888 		goto again;
2889 	}
2890 
2891 	/*
2892 	 * Before changing the protections, try to reserve swap space for any
2893 	 * private (i.e., copy-on-write) mappings that are transitioning from
2894 	 * read-only to read/write access.  If a reservation fails, break out
2895 	 * of this loop early and let the next loop simplify the entries, since
2896 	 * some may now be mergeable.
2897 	 */
2898 	rv = vm_map_clip_start(map, first_entry, start);
2899 	if (rv != KERN_SUCCESS) {
2900 		vm_map_unlock(map);
2901 		return (rv);
2902 	}
2903 	for (entry = first_entry; entry->start < end;
2904 	    entry = vm_map_entry_succ(entry)) {
2905 		rv = vm_map_clip_end(map, entry, end);
2906 		if (rv != KERN_SUCCESS) {
2907 			vm_map_unlock(map);
2908 			return (rv);
2909 		}
2910 
2911 		if ((flags & VM_MAP_PROTECT_SET_PROT) == 0 ||
2912 		    ((new_prot & ~entry->protection) & VM_PROT_WRITE) == 0 ||
2913 		    ENTRY_CHARGED(entry) ||
2914 		    (entry->eflags & MAP_ENTRY_GUARD) != 0)
2915 			continue;
2916 
2917 		cred = curthread->td_ucred;
2918 		obj = entry->object.vm_object;
2919 
2920 		if (obj == NULL ||
2921 		    (entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0) {
2922 			if (!swap_reserve(entry->end - entry->start)) {
2923 				rv = KERN_RESOURCE_SHORTAGE;
2924 				end = entry->end;
2925 				break;
2926 			}
2927 			crhold(cred);
2928 			entry->cred = cred;
2929 			continue;
2930 		}
2931 
2932 		VM_OBJECT_WLOCK(obj);
2933 		if ((obj->flags & OBJ_SWAP) == 0) {
2934 			VM_OBJECT_WUNLOCK(obj);
2935 			continue;
2936 		}
2937 
2938 		/*
2939 		 * Charge for the whole object allocation now, since
2940 		 * we cannot distinguish between non-charged and
2941 		 * charged clipped mapping of the same object later.
2942 		 */
2943 		KASSERT(obj->charge == 0,
2944 		    ("vm_map_protect: object %p overcharged (entry %p)",
2945 		    obj, entry));
2946 		if (!swap_reserve(ptoa(obj->size))) {
2947 			VM_OBJECT_WUNLOCK(obj);
2948 			rv = KERN_RESOURCE_SHORTAGE;
2949 			end = entry->end;
2950 			break;
2951 		}
2952 
2953 		crhold(cred);
2954 		obj->cred = cred;
2955 		obj->charge = ptoa(obj->size);
2956 		VM_OBJECT_WUNLOCK(obj);
2957 	}
2958 
2959 	/*
2960 	 * If enough swap space was available, go back and fix up protections.
2961 	 * Otherwise, just simplify entries, since some may have been modified.
2962 	 * [Note that clipping is not necessary the second time.]
2963 	 */
2964 	for (prev_entry = vm_map_entry_pred(first_entry), entry = first_entry;
2965 	    entry->start < end;
2966 	    vm_map_try_merge_entries(map, prev_entry, entry),
2967 	    prev_entry = entry, entry = vm_map_entry_succ(entry)) {
2968 		if (rv != KERN_SUCCESS)
2969 			continue;
2970 
2971 		if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
2972 			vm_map_protect_guard(entry, new_prot, new_maxprot,
2973 			    flags);
2974 			continue;
2975 		}
2976 
2977 		old_prot = entry->protection;
2978 
2979 		if ((flags & VM_MAP_PROTECT_SET_MAXPROT) != 0) {
2980 			entry->max_protection = new_maxprot;
2981 			entry->protection = new_maxprot & old_prot;
2982 		}
2983 		if ((flags & VM_MAP_PROTECT_SET_PROT) != 0)
2984 			entry->protection = new_prot;
2985 
2986 		/*
2987 		 * For user wired map entries, the normal lazy evaluation of
2988 		 * write access upgrades through soft page faults is
2989 		 * undesirable.  Instead, immediately copy any pages that are
2990 		 * copy-on-write and enable write access in the physical map.
2991 		 */
2992 		if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2993 		    (entry->protection & VM_PROT_WRITE) != 0 &&
2994 		    (old_prot & VM_PROT_WRITE) == 0)
2995 			vm_fault_copy_entry(map, map, entry, entry, NULL);
2996 
2997 		/*
2998 		 * When restricting access, update the physical map.  Worry
2999 		 * about copy-on-write here.
3000 		 */
3001 		if ((old_prot & ~entry->protection) != 0) {
3002 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
3003 							VM_PROT_ALL)
3004 			pmap_protect(map->pmap, entry->start,
3005 			    entry->end,
3006 			    entry->protection & MASK(entry));
3007 #undef	MASK
3008 		}
3009 	}
3010 	vm_map_try_merge_entries(map, prev_entry, entry);
3011 	vm_map_unlock(map);
3012 	return (rv);
3013 }
3014 
3015 /*
3016  *	vm_map_madvise:
3017  *
3018  *	This routine traverses a processes map handling the madvise
3019  *	system call.  Advisories are classified as either those effecting
3020  *	the vm_map_entry structure, or those effecting the underlying
3021  *	objects.
3022  */
3023 int
3024 vm_map_madvise(
3025 	vm_map_t map,
3026 	vm_offset_t start,
3027 	vm_offset_t end,
3028 	int behav)
3029 {
3030 	vm_map_entry_t entry, prev_entry;
3031 	int rv;
3032 	bool modify_map;
3033 
3034 	/*
3035 	 * Some madvise calls directly modify the vm_map_entry, in which case
3036 	 * we need to use an exclusive lock on the map and we need to perform
3037 	 * various clipping operations.  Otherwise we only need a read-lock
3038 	 * on the map.
3039 	 */
3040 	switch(behav) {
3041 	case MADV_NORMAL:
3042 	case MADV_SEQUENTIAL:
3043 	case MADV_RANDOM:
3044 	case MADV_NOSYNC:
3045 	case MADV_AUTOSYNC:
3046 	case MADV_NOCORE:
3047 	case MADV_CORE:
3048 		if (start == end)
3049 			return (0);
3050 		modify_map = true;
3051 		vm_map_lock(map);
3052 		break;
3053 	case MADV_WILLNEED:
3054 	case MADV_DONTNEED:
3055 	case MADV_FREE:
3056 		if (start == end)
3057 			return (0);
3058 		modify_map = false;
3059 		vm_map_lock_read(map);
3060 		break;
3061 	default:
3062 		return (EINVAL);
3063 	}
3064 
3065 	/*
3066 	 * Locate starting entry and clip if necessary.
3067 	 */
3068 	VM_MAP_RANGE_CHECK(map, start, end);
3069 
3070 	if (modify_map) {
3071 		/*
3072 		 * madvise behaviors that are implemented in the vm_map_entry.
3073 		 *
3074 		 * We clip the vm_map_entry so that behavioral changes are
3075 		 * limited to the specified address range.
3076 		 */
3077 		rv = vm_map_lookup_clip_start(map, start, &entry, &prev_entry);
3078 		if (rv != KERN_SUCCESS) {
3079 			vm_map_unlock(map);
3080 			return (vm_mmap_to_errno(rv));
3081 		}
3082 
3083 		for (; entry->start < end; prev_entry = entry,
3084 		    entry = vm_map_entry_succ(entry)) {
3085 			if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
3086 				continue;
3087 
3088 			rv = vm_map_clip_end(map, entry, end);
3089 			if (rv != KERN_SUCCESS) {
3090 				vm_map_unlock(map);
3091 				return (vm_mmap_to_errno(rv));
3092 			}
3093 
3094 			switch (behav) {
3095 			case MADV_NORMAL:
3096 				vm_map_entry_set_behavior(entry,
3097 				    MAP_ENTRY_BEHAV_NORMAL);
3098 				break;
3099 			case MADV_SEQUENTIAL:
3100 				vm_map_entry_set_behavior(entry,
3101 				    MAP_ENTRY_BEHAV_SEQUENTIAL);
3102 				break;
3103 			case MADV_RANDOM:
3104 				vm_map_entry_set_behavior(entry,
3105 				    MAP_ENTRY_BEHAV_RANDOM);
3106 				break;
3107 			case MADV_NOSYNC:
3108 				entry->eflags |= MAP_ENTRY_NOSYNC;
3109 				break;
3110 			case MADV_AUTOSYNC:
3111 				entry->eflags &= ~MAP_ENTRY_NOSYNC;
3112 				break;
3113 			case MADV_NOCORE:
3114 				entry->eflags |= MAP_ENTRY_NOCOREDUMP;
3115 				break;
3116 			case MADV_CORE:
3117 				entry->eflags &= ~MAP_ENTRY_NOCOREDUMP;
3118 				break;
3119 			default:
3120 				break;
3121 			}
3122 			vm_map_try_merge_entries(map, prev_entry, entry);
3123 		}
3124 		vm_map_try_merge_entries(map, prev_entry, entry);
3125 		vm_map_unlock(map);
3126 	} else {
3127 		vm_pindex_t pstart, pend;
3128 
3129 		/*
3130 		 * madvise behaviors that are implemented in the underlying
3131 		 * vm_object.
3132 		 *
3133 		 * Since we don't clip the vm_map_entry, we have to clip
3134 		 * the vm_object pindex and count.
3135 		 */
3136 		if (!vm_map_lookup_entry(map, start, &entry))
3137 			entry = vm_map_entry_succ(entry);
3138 		for (; entry->start < end;
3139 		    entry = vm_map_entry_succ(entry)) {
3140 			vm_offset_t useEnd, useStart;
3141 
3142 			if ((entry->eflags & (MAP_ENTRY_IS_SUB_MAP |
3143 			    MAP_ENTRY_GUARD)) != 0)
3144 				continue;
3145 
3146 			/*
3147 			 * MADV_FREE would otherwise rewind time to
3148 			 * the creation of the shadow object.  Because
3149 			 * we hold the VM map read-locked, neither the
3150 			 * entry's object nor the presence of a
3151 			 * backing object can change.
3152 			 */
3153 			if (behav == MADV_FREE &&
3154 			    entry->object.vm_object != NULL &&
3155 			    entry->object.vm_object->backing_object != NULL)
3156 				continue;
3157 
3158 			pstart = OFF_TO_IDX(entry->offset);
3159 			pend = pstart + atop(entry->end - entry->start);
3160 			useStart = entry->start;
3161 			useEnd = entry->end;
3162 
3163 			if (entry->start < start) {
3164 				pstart += atop(start - entry->start);
3165 				useStart = start;
3166 			}
3167 			if (entry->end > end) {
3168 				pend -= atop(entry->end - end);
3169 				useEnd = end;
3170 			}
3171 
3172 			if (pstart >= pend)
3173 				continue;
3174 
3175 			/*
3176 			 * Perform the pmap_advise() before clearing
3177 			 * PGA_REFERENCED in vm_page_advise().  Otherwise, a
3178 			 * concurrent pmap operation, such as pmap_remove(),
3179 			 * could clear a reference in the pmap and set
3180 			 * PGA_REFERENCED on the page before the pmap_advise()
3181 			 * had completed.  Consequently, the page would appear
3182 			 * referenced based upon an old reference that
3183 			 * occurred before this pmap_advise() ran.
3184 			 */
3185 			if (behav == MADV_DONTNEED || behav == MADV_FREE)
3186 				pmap_advise(map->pmap, useStart, useEnd,
3187 				    behav);
3188 
3189 			vm_object_madvise(entry->object.vm_object, pstart,
3190 			    pend, behav);
3191 
3192 			/*
3193 			 * Pre-populate paging structures in the
3194 			 * WILLNEED case.  For wired entries, the
3195 			 * paging structures are already populated.
3196 			 */
3197 			if (behav == MADV_WILLNEED &&
3198 			    entry->wired_count == 0) {
3199 				vm_map_pmap_enter(map,
3200 				    useStart,
3201 				    entry->protection,
3202 				    entry->object.vm_object,
3203 				    pstart,
3204 				    ptoa(pend - pstart),
3205 				    MAP_PREFAULT_MADVISE
3206 				);
3207 			}
3208 		}
3209 		vm_map_unlock_read(map);
3210 	}
3211 	return (0);
3212 }
3213 
3214 /*
3215  *	vm_map_inherit:
3216  *
3217  *	Sets the inheritance of the specified address
3218  *	range in the target map.  Inheritance
3219  *	affects how the map will be shared with
3220  *	child maps at the time of vmspace_fork.
3221  */
3222 int
3223 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
3224 	       vm_inherit_t new_inheritance)
3225 {
3226 	vm_map_entry_t entry, lentry, prev_entry, start_entry;
3227 	int rv;
3228 
3229 	switch (new_inheritance) {
3230 	case VM_INHERIT_NONE:
3231 	case VM_INHERIT_COPY:
3232 	case VM_INHERIT_SHARE:
3233 	case VM_INHERIT_ZERO:
3234 		break;
3235 	default:
3236 		return (KERN_INVALID_ARGUMENT);
3237 	}
3238 	if (start == end)
3239 		return (KERN_SUCCESS);
3240 	vm_map_lock(map);
3241 	VM_MAP_RANGE_CHECK(map, start, end);
3242 	rv = vm_map_lookup_clip_start(map, start, &start_entry, &prev_entry);
3243 	if (rv != KERN_SUCCESS)
3244 		goto unlock;
3245 	if (vm_map_lookup_entry(map, end - 1, &lentry)) {
3246 		rv = vm_map_clip_end(map, lentry, end);
3247 		if (rv != KERN_SUCCESS)
3248 			goto unlock;
3249 	}
3250 	if (new_inheritance == VM_INHERIT_COPY) {
3251 		for (entry = start_entry; entry->start < end;
3252 		    prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3253 			if ((entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK)
3254 			    != 0) {
3255 				rv = KERN_INVALID_ARGUMENT;
3256 				goto unlock;
3257 			}
3258 		}
3259 	}
3260 	for (entry = start_entry; entry->start < end; prev_entry = entry,
3261 	    entry = vm_map_entry_succ(entry)) {
3262 		KASSERT(entry->end <= end, ("non-clipped entry %p end %jx %jx",
3263 		    entry, (uintmax_t)entry->end, (uintmax_t)end));
3264 		if ((entry->eflags & MAP_ENTRY_GUARD) == 0 ||
3265 		    new_inheritance != VM_INHERIT_ZERO)
3266 			entry->inheritance = new_inheritance;
3267 		vm_map_try_merge_entries(map, prev_entry, entry);
3268 	}
3269 	vm_map_try_merge_entries(map, prev_entry, entry);
3270 unlock:
3271 	vm_map_unlock(map);
3272 	return (rv);
3273 }
3274 
3275 /*
3276  *	vm_map_entry_in_transition:
3277  *
3278  *	Release the map lock, and sleep until the entry is no longer in
3279  *	transition.  Awake and acquire the map lock.  If the map changed while
3280  *	another held the lock, lookup a possibly-changed entry at or after the
3281  *	'start' position of the old entry.
3282  */
3283 static vm_map_entry_t
3284 vm_map_entry_in_transition(vm_map_t map, vm_offset_t in_start,
3285     vm_offset_t *io_end, bool holes_ok, vm_map_entry_t in_entry)
3286 {
3287 	vm_map_entry_t entry;
3288 	vm_offset_t start;
3289 	u_int last_timestamp;
3290 
3291 	VM_MAP_ASSERT_LOCKED(map);
3292 	KASSERT((in_entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3293 	    ("not in-tranition map entry %p", in_entry));
3294 	/*
3295 	 * We have not yet clipped the entry.
3296 	 */
3297 	start = MAX(in_start, in_entry->start);
3298 	in_entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3299 	last_timestamp = map->timestamp;
3300 	if (vm_map_unlock_and_wait(map, 0)) {
3301 		/*
3302 		 * Allow interruption of user wiring/unwiring?
3303 		 */
3304 	}
3305 	vm_map_lock(map);
3306 	if (last_timestamp + 1 == map->timestamp)
3307 		return (in_entry);
3308 
3309 	/*
3310 	 * Look again for the entry because the map was modified while it was
3311 	 * unlocked.  Specifically, the entry may have been clipped, merged, or
3312 	 * deleted.
3313 	 */
3314 	if (!vm_map_lookup_entry(map, start, &entry)) {
3315 		if (!holes_ok) {
3316 			*io_end = start;
3317 			return (NULL);
3318 		}
3319 		entry = vm_map_entry_succ(entry);
3320 	}
3321 	return (entry);
3322 }
3323 
3324 /*
3325  *	vm_map_unwire:
3326  *
3327  *	Implements both kernel and user unwiring.
3328  */
3329 int
3330 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
3331     int flags)
3332 {
3333 	vm_map_entry_t entry, first_entry, next_entry, prev_entry;
3334 	int rv;
3335 	bool holes_ok, need_wakeup, user_unwire;
3336 
3337 	if (start == end)
3338 		return (KERN_SUCCESS);
3339 	holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0;
3340 	user_unwire = (flags & VM_MAP_WIRE_USER) != 0;
3341 	vm_map_lock(map);
3342 	VM_MAP_RANGE_CHECK(map, start, end);
3343 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
3344 		if (holes_ok)
3345 			first_entry = vm_map_entry_succ(first_entry);
3346 		else {
3347 			vm_map_unlock(map);
3348 			return (KERN_INVALID_ADDRESS);
3349 		}
3350 	}
3351 	rv = KERN_SUCCESS;
3352 	for (entry = first_entry; entry->start < end; entry = next_entry) {
3353 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
3354 			/*
3355 			 * We have not yet clipped the entry.
3356 			 */
3357 			next_entry = vm_map_entry_in_transition(map, start,
3358 			    &end, holes_ok, entry);
3359 			if (next_entry == NULL) {
3360 				if (entry == first_entry) {
3361 					vm_map_unlock(map);
3362 					return (KERN_INVALID_ADDRESS);
3363 				}
3364 				rv = KERN_INVALID_ADDRESS;
3365 				break;
3366 			}
3367 			first_entry = (entry == first_entry) ?
3368 			    next_entry : NULL;
3369 			continue;
3370 		}
3371 		rv = vm_map_clip_start(map, entry, start);
3372 		if (rv != KERN_SUCCESS)
3373 			break;
3374 		rv = vm_map_clip_end(map, entry, end);
3375 		if (rv != KERN_SUCCESS)
3376 			break;
3377 
3378 		/*
3379 		 * Mark the entry in case the map lock is released.  (See
3380 		 * above.)
3381 		 */
3382 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
3383 		    entry->wiring_thread == NULL,
3384 		    ("owned map entry %p", entry));
3385 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
3386 		entry->wiring_thread = curthread;
3387 		next_entry = vm_map_entry_succ(entry);
3388 		/*
3389 		 * Check the map for holes in the specified region.
3390 		 * If holes_ok, skip this check.
3391 		 */
3392 		if (!holes_ok &&
3393 		    entry->end < end && next_entry->start > entry->end) {
3394 			end = entry->end;
3395 			rv = KERN_INVALID_ADDRESS;
3396 			break;
3397 		}
3398 		/*
3399 		 * If system unwiring, require that the entry is system wired.
3400 		 */
3401 		if (!user_unwire &&
3402 		    vm_map_entry_system_wired_count(entry) == 0) {
3403 			end = entry->end;
3404 			rv = KERN_INVALID_ARGUMENT;
3405 			break;
3406 		}
3407 	}
3408 	need_wakeup = false;
3409 	if (first_entry == NULL &&
3410 	    !vm_map_lookup_entry(map, start, &first_entry)) {
3411 		KASSERT(holes_ok, ("vm_map_unwire: lookup failed"));
3412 		prev_entry = first_entry;
3413 		entry = vm_map_entry_succ(first_entry);
3414 	} else {
3415 		prev_entry = vm_map_entry_pred(first_entry);
3416 		entry = first_entry;
3417 	}
3418 	for (; entry->start < end;
3419 	    prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3420 		/*
3421 		 * If holes_ok was specified, an empty
3422 		 * space in the unwired region could have been mapped
3423 		 * while the map lock was dropped for draining
3424 		 * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
3425 		 * could be simultaneously wiring this new mapping
3426 		 * entry.  Detect these cases and skip any entries
3427 		 * marked as in transition by us.
3428 		 */
3429 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
3430 		    entry->wiring_thread != curthread) {
3431 			KASSERT(holes_ok,
3432 			    ("vm_map_unwire: !HOLESOK and new/changed entry"));
3433 			continue;
3434 		}
3435 
3436 		if (rv == KERN_SUCCESS && (!user_unwire ||
3437 		    (entry->eflags & MAP_ENTRY_USER_WIRED))) {
3438 			if (entry->wired_count == 1)
3439 				vm_map_entry_unwire(map, entry);
3440 			else
3441 				entry->wired_count--;
3442 			if (user_unwire)
3443 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3444 		}
3445 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3446 		    ("vm_map_unwire: in-transition flag missing %p", entry));
3447 		KASSERT(entry->wiring_thread == curthread,
3448 		    ("vm_map_unwire: alien wire %p", entry));
3449 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
3450 		entry->wiring_thread = NULL;
3451 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3452 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3453 			need_wakeup = true;
3454 		}
3455 		vm_map_try_merge_entries(map, prev_entry, entry);
3456 	}
3457 	vm_map_try_merge_entries(map, prev_entry, entry);
3458 	vm_map_unlock(map);
3459 	if (need_wakeup)
3460 		vm_map_wakeup(map);
3461 	return (rv);
3462 }
3463 
3464 static void
3465 vm_map_wire_user_count_sub(u_long npages)
3466 {
3467 
3468 	atomic_subtract_long(&vm_user_wire_count, npages);
3469 }
3470 
3471 static bool
3472 vm_map_wire_user_count_add(u_long npages)
3473 {
3474 	u_long wired;
3475 
3476 	wired = vm_user_wire_count;
3477 	do {
3478 		if (npages + wired > vm_page_max_user_wired)
3479 			return (false);
3480 	} while (!atomic_fcmpset_long(&vm_user_wire_count, &wired,
3481 	    npages + wired));
3482 
3483 	return (true);
3484 }
3485 
3486 /*
3487  *	vm_map_wire_entry_failure:
3488  *
3489  *	Handle a wiring failure on the given entry.
3490  *
3491  *	The map should be locked.
3492  */
3493 static void
3494 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
3495     vm_offset_t failed_addr)
3496 {
3497 
3498 	VM_MAP_ASSERT_LOCKED(map);
3499 	KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
3500 	    entry->wired_count == 1,
3501 	    ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
3502 	KASSERT(failed_addr < entry->end,
3503 	    ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
3504 
3505 	/*
3506 	 * If any pages at the start of this entry were successfully wired,
3507 	 * then unwire them.
3508 	 */
3509 	if (failed_addr > entry->start) {
3510 		pmap_unwire(map->pmap, entry->start, failed_addr);
3511 		vm_object_unwire(entry->object.vm_object, entry->offset,
3512 		    failed_addr - entry->start, PQ_ACTIVE);
3513 	}
3514 
3515 	/*
3516 	 * Assign an out-of-range value to represent the failure to wire this
3517 	 * entry.
3518 	 */
3519 	entry->wired_count = -1;
3520 }
3521 
3522 int
3523 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3524 {
3525 	int rv;
3526 
3527 	vm_map_lock(map);
3528 	rv = vm_map_wire_locked(map, start, end, flags);
3529 	vm_map_unlock(map);
3530 	return (rv);
3531 }
3532 
3533 /*
3534  *	vm_map_wire_locked:
3535  *
3536  *	Implements both kernel and user wiring.  Returns with the map locked,
3537  *	the map lock may be dropped.
3538  */
3539 int
3540 vm_map_wire_locked(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3541 {
3542 	vm_map_entry_t entry, first_entry, next_entry, prev_entry;
3543 	vm_offset_t faddr, saved_end, saved_start;
3544 	u_long incr, npages;
3545 	u_int bidx, last_timestamp;
3546 	int rv;
3547 	bool holes_ok, need_wakeup, user_wire;
3548 	vm_prot_t prot;
3549 
3550 	VM_MAP_ASSERT_LOCKED(map);
3551 
3552 	if (start == end)
3553 		return (KERN_SUCCESS);
3554 	prot = 0;
3555 	if (flags & VM_MAP_WIRE_WRITE)
3556 		prot |= VM_PROT_WRITE;
3557 	holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0;
3558 	user_wire = (flags & VM_MAP_WIRE_USER) != 0;
3559 	VM_MAP_RANGE_CHECK(map, start, end);
3560 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
3561 		if (holes_ok)
3562 			first_entry = vm_map_entry_succ(first_entry);
3563 		else
3564 			return (KERN_INVALID_ADDRESS);
3565 	}
3566 	for (entry = first_entry; entry->start < end; entry = next_entry) {
3567 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
3568 			/*
3569 			 * We have not yet clipped the entry.
3570 			 */
3571 			next_entry = vm_map_entry_in_transition(map, start,
3572 			    &end, holes_ok, entry);
3573 			if (next_entry == NULL) {
3574 				if (entry == first_entry)
3575 					return (KERN_INVALID_ADDRESS);
3576 				rv = KERN_INVALID_ADDRESS;
3577 				goto done;
3578 			}
3579 			first_entry = (entry == first_entry) ?
3580 			    next_entry : NULL;
3581 			continue;
3582 		}
3583 		rv = vm_map_clip_start(map, entry, start);
3584 		if (rv != KERN_SUCCESS)
3585 			goto done;
3586 		rv = vm_map_clip_end(map, entry, end);
3587 		if (rv != KERN_SUCCESS)
3588 			goto done;
3589 
3590 		/*
3591 		 * Mark the entry in case the map lock is released.  (See
3592 		 * above.)
3593 		 */
3594 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
3595 		    entry->wiring_thread == NULL,
3596 		    ("owned map entry %p", entry));
3597 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
3598 		entry->wiring_thread = curthread;
3599 		if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
3600 		    || (entry->protection & prot) != prot) {
3601 			entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
3602 			if (!holes_ok) {
3603 				end = entry->end;
3604 				rv = KERN_INVALID_ADDRESS;
3605 				goto done;
3606 			}
3607 		} else if (entry->wired_count == 0) {
3608 			entry->wired_count++;
3609 
3610 			npages = atop(entry->end - entry->start);
3611 			if (user_wire && !vm_map_wire_user_count_add(npages)) {
3612 				vm_map_wire_entry_failure(map, entry,
3613 				    entry->start);
3614 				end = entry->end;
3615 				rv = KERN_RESOURCE_SHORTAGE;
3616 				goto done;
3617 			}
3618 
3619 			/*
3620 			 * Release the map lock, relying on the in-transition
3621 			 * mark.  Mark the map busy for fork.
3622 			 */
3623 			saved_start = entry->start;
3624 			saved_end = entry->end;
3625 			last_timestamp = map->timestamp;
3626 			bidx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry);
3627 			incr =  pagesizes[bidx];
3628 			vm_map_busy(map);
3629 			vm_map_unlock(map);
3630 
3631 			for (faddr = saved_start; faddr < saved_end;
3632 			    faddr += incr) {
3633 				/*
3634 				 * Simulate a fault to get the page and enter
3635 				 * it into the physical map.
3636 				 */
3637 				rv = vm_fault(map, faddr, VM_PROT_NONE,
3638 				    VM_FAULT_WIRE, NULL);
3639 				if (rv != KERN_SUCCESS)
3640 					break;
3641 			}
3642 			vm_map_lock(map);
3643 			vm_map_unbusy(map);
3644 			if (last_timestamp + 1 != map->timestamp) {
3645 				/*
3646 				 * Look again for the entry because the map was
3647 				 * modified while it was unlocked.  The entry
3648 				 * may have been clipped, but NOT merged or
3649 				 * deleted.
3650 				 */
3651 				if (!vm_map_lookup_entry(map, saved_start,
3652 				    &next_entry))
3653 					KASSERT(false,
3654 					    ("vm_map_wire: lookup failed"));
3655 				first_entry = (entry == first_entry) ?
3656 				    next_entry : NULL;
3657 				for (entry = next_entry; entry->end < saved_end;
3658 				    entry = vm_map_entry_succ(entry)) {
3659 					/*
3660 					 * In case of failure, handle entries
3661 					 * that were not fully wired here;
3662 					 * fully wired entries are handled
3663 					 * later.
3664 					 */
3665 					if (rv != KERN_SUCCESS &&
3666 					    faddr < entry->end)
3667 						vm_map_wire_entry_failure(map,
3668 						    entry, faddr);
3669 				}
3670 			}
3671 			if (rv != KERN_SUCCESS) {
3672 				vm_map_wire_entry_failure(map, entry, faddr);
3673 				if (user_wire)
3674 					vm_map_wire_user_count_sub(npages);
3675 				end = entry->end;
3676 				goto done;
3677 			}
3678 		} else if (!user_wire ||
3679 			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3680 			entry->wired_count++;
3681 		}
3682 		/*
3683 		 * Check the map for holes in the specified region.
3684 		 * If holes_ok was specified, skip this check.
3685 		 */
3686 		next_entry = vm_map_entry_succ(entry);
3687 		if (!holes_ok &&
3688 		    entry->end < end && next_entry->start > entry->end) {
3689 			end = entry->end;
3690 			rv = KERN_INVALID_ADDRESS;
3691 			goto done;
3692 		}
3693 	}
3694 	rv = KERN_SUCCESS;
3695 done:
3696 	need_wakeup = false;
3697 	if (first_entry == NULL &&
3698 	    !vm_map_lookup_entry(map, start, &first_entry)) {
3699 		KASSERT(holes_ok, ("vm_map_wire: lookup failed"));
3700 		prev_entry = first_entry;
3701 		entry = vm_map_entry_succ(first_entry);
3702 	} else {
3703 		prev_entry = vm_map_entry_pred(first_entry);
3704 		entry = first_entry;
3705 	}
3706 	for (; entry->start < end;
3707 	    prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3708 		/*
3709 		 * If holes_ok was specified, an empty
3710 		 * space in the unwired region could have been mapped
3711 		 * while the map lock was dropped for faulting in the
3712 		 * pages or draining MAP_ENTRY_IN_TRANSITION.
3713 		 * Moreover, another thread could be simultaneously
3714 		 * wiring this new mapping entry.  Detect these cases
3715 		 * and skip any entries marked as in transition not by us.
3716 		 *
3717 		 * Another way to get an entry not marked with
3718 		 * MAP_ENTRY_IN_TRANSITION is after failed clipping,
3719 		 * which set rv to KERN_INVALID_ARGUMENT.
3720 		 */
3721 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
3722 		    entry->wiring_thread != curthread) {
3723 			KASSERT(holes_ok || rv == KERN_INVALID_ARGUMENT,
3724 			    ("vm_map_wire: !HOLESOK and new/changed entry"));
3725 			continue;
3726 		}
3727 
3728 		if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) {
3729 			/* do nothing */
3730 		} else if (rv == KERN_SUCCESS) {
3731 			if (user_wire)
3732 				entry->eflags |= MAP_ENTRY_USER_WIRED;
3733 		} else if (entry->wired_count == -1) {
3734 			/*
3735 			 * Wiring failed on this entry.  Thus, unwiring is
3736 			 * unnecessary.
3737 			 */
3738 			entry->wired_count = 0;
3739 		} else if (!user_wire ||
3740 		    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3741 			/*
3742 			 * Undo the wiring.  Wiring succeeded on this entry
3743 			 * but failed on a later entry.
3744 			 */
3745 			if (entry->wired_count == 1) {
3746 				vm_map_entry_unwire(map, entry);
3747 				if (user_wire)
3748 					vm_map_wire_user_count_sub(
3749 					    atop(entry->end - entry->start));
3750 			} else
3751 				entry->wired_count--;
3752 		}
3753 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3754 		    ("vm_map_wire: in-transition flag missing %p", entry));
3755 		KASSERT(entry->wiring_thread == curthread,
3756 		    ("vm_map_wire: alien wire %p", entry));
3757 		entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
3758 		    MAP_ENTRY_WIRE_SKIPPED);
3759 		entry->wiring_thread = NULL;
3760 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3761 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3762 			need_wakeup = true;
3763 		}
3764 		vm_map_try_merge_entries(map, prev_entry, entry);
3765 	}
3766 	vm_map_try_merge_entries(map, prev_entry, entry);
3767 	if (need_wakeup)
3768 		vm_map_wakeup(map);
3769 	return (rv);
3770 }
3771 
3772 /*
3773  * vm_map_sync
3774  *
3775  * Push any dirty cached pages in the address range to their pager.
3776  * If syncio is TRUE, dirty pages are written synchronously.
3777  * If invalidate is TRUE, any cached pages are freed as well.
3778  *
3779  * If the size of the region from start to end is zero, we are
3780  * supposed to flush all modified pages within the region containing
3781  * start.  Unfortunately, a region can be split or coalesced with
3782  * neighboring regions, making it difficult to determine what the
3783  * original region was.  Therefore, we approximate this requirement by
3784  * flushing the current region containing start.
3785  *
3786  * Returns an error if any part of the specified range is not mapped.
3787  */
3788 int
3789 vm_map_sync(
3790 	vm_map_t map,
3791 	vm_offset_t start,
3792 	vm_offset_t end,
3793 	boolean_t syncio,
3794 	boolean_t invalidate)
3795 {
3796 	vm_map_entry_t entry, first_entry, next_entry;
3797 	vm_size_t size;
3798 	vm_object_t object;
3799 	vm_ooffset_t offset;
3800 	unsigned int last_timestamp;
3801 	int bdry_idx;
3802 	boolean_t failed;
3803 
3804 	vm_map_lock_read(map);
3805 	VM_MAP_RANGE_CHECK(map, start, end);
3806 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
3807 		vm_map_unlock_read(map);
3808 		return (KERN_INVALID_ADDRESS);
3809 	} else if (start == end) {
3810 		start = first_entry->start;
3811 		end = first_entry->end;
3812 	}
3813 
3814 	/*
3815 	 * Make a first pass to check for user-wired memory, holes,
3816 	 * and partial invalidation of largepage mappings.
3817 	 */
3818 	for (entry = first_entry; entry->start < end; entry = next_entry) {
3819 		if (invalidate) {
3820 			if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0) {
3821 				vm_map_unlock_read(map);
3822 				return (KERN_INVALID_ARGUMENT);
3823 			}
3824 			bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(entry);
3825 			if (bdry_idx != 0 &&
3826 			    ((start & (pagesizes[bdry_idx] - 1)) != 0 ||
3827 			    (end & (pagesizes[bdry_idx] - 1)) != 0)) {
3828 				vm_map_unlock_read(map);
3829 				return (KERN_INVALID_ARGUMENT);
3830 			}
3831 		}
3832 		next_entry = vm_map_entry_succ(entry);
3833 		if (end > entry->end &&
3834 		    entry->end != next_entry->start) {
3835 			vm_map_unlock_read(map);
3836 			return (KERN_INVALID_ADDRESS);
3837 		}
3838 	}
3839 
3840 	if (invalidate)
3841 		pmap_remove(map->pmap, start, end);
3842 	failed = FALSE;
3843 
3844 	/*
3845 	 * Make a second pass, cleaning/uncaching pages from the indicated
3846 	 * objects as we go.
3847 	 */
3848 	for (entry = first_entry; entry->start < end;) {
3849 		offset = entry->offset + (start - entry->start);
3850 		size = (end <= entry->end ? end : entry->end) - start;
3851 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) {
3852 			vm_map_t smap;
3853 			vm_map_entry_t tentry;
3854 			vm_size_t tsize;
3855 
3856 			smap = entry->object.sub_map;
3857 			vm_map_lock_read(smap);
3858 			(void) vm_map_lookup_entry(smap, offset, &tentry);
3859 			tsize = tentry->end - offset;
3860 			if (tsize < size)
3861 				size = tsize;
3862 			object = tentry->object.vm_object;
3863 			offset = tentry->offset + (offset - tentry->start);
3864 			vm_map_unlock_read(smap);
3865 		} else {
3866 			object = entry->object.vm_object;
3867 		}
3868 		vm_object_reference(object);
3869 		last_timestamp = map->timestamp;
3870 		vm_map_unlock_read(map);
3871 		if (!vm_object_sync(object, offset, size, syncio, invalidate))
3872 			failed = TRUE;
3873 		start += size;
3874 		vm_object_deallocate(object);
3875 		vm_map_lock_read(map);
3876 		if (last_timestamp == map->timestamp ||
3877 		    !vm_map_lookup_entry(map, start, &entry))
3878 			entry = vm_map_entry_succ(entry);
3879 	}
3880 
3881 	vm_map_unlock_read(map);
3882 	return (failed ? KERN_FAILURE : KERN_SUCCESS);
3883 }
3884 
3885 /*
3886  *	vm_map_entry_unwire:	[ internal use only ]
3887  *
3888  *	Make the region specified by this entry pageable.
3889  *
3890  *	The map in question should be locked.
3891  *	[This is the reason for this routine's existence.]
3892  */
3893 static void
3894 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
3895 {
3896 	vm_size_t size;
3897 
3898 	VM_MAP_ASSERT_LOCKED(map);
3899 	KASSERT(entry->wired_count > 0,
3900 	    ("vm_map_entry_unwire: entry %p isn't wired", entry));
3901 
3902 	size = entry->end - entry->start;
3903 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0)
3904 		vm_map_wire_user_count_sub(atop(size));
3905 	pmap_unwire(map->pmap, entry->start, entry->end);
3906 	vm_object_unwire(entry->object.vm_object, entry->offset, size,
3907 	    PQ_ACTIVE);
3908 	entry->wired_count = 0;
3909 }
3910 
3911 static void
3912 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
3913 {
3914 
3915 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
3916 		vm_object_deallocate(entry->object.vm_object);
3917 	uma_zfree(system_map ? kmapentzone : mapentzone, entry);
3918 }
3919 
3920 /*
3921  *	vm_map_entry_delete:	[ internal use only ]
3922  *
3923  *	Deallocate the given entry from the target map.
3924  */
3925 static void
3926 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
3927 {
3928 	vm_object_t object;
3929 	vm_pindex_t offidxstart, offidxend, size1;
3930 	vm_size_t size;
3931 
3932 	vm_map_entry_unlink(map, entry, UNLINK_MERGE_NONE);
3933 	object = entry->object.vm_object;
3934 
3935 	if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
3936 		MPASS(entry->cred == NULL);
3937 		MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0);
3938 		MPASS(object == NULL);
3939 		vm_map_entry_deallocate(entry, map->system_map);
3940 		return;
3941 	}
3942 
3943 	size = entry->end - entry->start;
3944 	map->size -= size;
3945 
3946 	if (entry->cred != NULL) {
3947 		swap_release_by_cred(size, entry->cred);
3948 		crfree(entry->cred);
3949 	}
3950 
3951 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || object == NULL) {
3952 		entry->object.vm_object = NULL;
3953 	} else if ((object->flags & OBJ_ANON) != 0 ||
3954 	    object == kernel_object) {
3955 		KASSERT(entry->cred == NULL || object->cred == NULL ||
3956 		    (entry->eflags & MAP_ENTRY_NEEDS_COPY),
3957 		    ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
3958 		offidxstart = OFF_TO_IDX(entry->offset);
3959 		offidxend = offidxstart + atop(size);
3960 		VM_OBJECT_WLOCK(object);
3961 		if (object->ref_count != 1 &&
3962 		    ((object->flags & OBJ_ONEMAPPING) != 0 ||
3963 		    object == kernel_object)) {
3964 			vm_object_collapse(object);
3965 
3966 			/*
3967 			 * The option OBJPR_NOTMAPPED can be passed here
3968 			 * because vm_map_delete() already performed
3969 			 * pmap_remove() on the only mapping to this range
3970 			 * of pages.
3971 			 */
3972 			vm_object_page_remove(object, offidxstart, offidxend,
3973 			    OBJPR_NOTMAPPED);
3974 			if (offidxend >= object->size &&
3975 			    offidxstart < object->size) {
3976 				size1 = object->size;
3977 				object->size = offidxstart;
3978 				if (object->cred != NULL) {
3979 					size1 -= object->size;
3980 					KASSERT(object->charge >= ptoa(size1),
3981 					    ("object %p charge < 0", object));
3982 					swap_release_by_cred(ptoa(size1),
3983 					    object->cred);
3984 					object->charge -= ptoa(size1);
3985 				}
3986 			}
3987 		}
3988 		VM_OBJECT_WUNLOCK(object);
3989 	}
3990 	if (map->system_map)
3991 		vm_map_entry_deallocate(entry, TRUE);
3992 	else {
3993 		entry->defer_next = curthread->td_map_def_user;
3994 		curthread->td_map_def_user = entry;
3995 	}
3996 }
3997 
3998 /*
3999  *	vm_map_delete:	[ internal use only ]
4000  *
4001  *	Deallocates the given address range from the target
4002  *	map.
4003  */
4004 int
4005 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
4006 {
4007 	vm_map_entry_t entry, next_entry, scratch_entry;
4008 	int rv;
4009 
4010 	VM_MAP_ASSERT_LOCKED(map);
4011 
4012 	if (start == end)
4013 		return (KERN_SUCCESS);
4014 
4015 	/*
4016 	 * Find the start of the region, and clip it.
4017 	 * Step through all entries in this region.
4018 	 */
4019 	rv = vm_map_lookup_clip_start(map, start, &entry, &scratch_entry);
4020 	if (rv != KERN_SUCCESS)
4021 		return (rv);
4022 	for (; entry->start < end; entry = next_entry) {
4023 		/*
4024 		 * Wait for wiring or unwiring of an entry to complete.
4025 		 * Also wait for any system wirings to disappear on
4026 		 * user maps.
4027 		 */
4028 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
4029 		    (vm_map_pmap(map) != kernel_pmap &&
4030 		    vm_map_entry_system_wired_count(entry) != 0)) {
4031 			unsigned int last_timestamp;
4032 			vm_offset_t saved_start;
4033 
4034 			saved_start = entry->start;
4035 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
4036 			last_timestamp = map->timestamp;
4037 			(void) vm_map_unlock_and_wait(map, 0);
4038 			vm_map_lock(map);
4039 			if (last_timestamp + 1 != map->timestamp) {
4040 				/*
4041 				 * Look again for the entry because the map was
4042 				 * modified while it was unlocked.
4043 				 * Specifically, the entry may have been
4044 				 * clipped, merged, or deleted.
4045 				 */
4046 				rv = vm_map_lookup_clip_start(map, saved_start,
4047 				    &next_entry, &scratch_entry);
4048 				if (rv != KERN_SUCCESS)
4049 					break;
4050 			} else
4051 				next_entry = entry;
4052 			continue;
4053 		}
4054 
4055 		/* XXXKIB or delete to the upper superpage boundary ? */
4056 		rv = vm_map_clip_end(map, entry, end);
4057 		if (rv != KERN_SUCCESS)
4058 			break;
4059 		next_entry = vm_map_entry_succ(entry);
4060 
4061 		/*
4062 		 * Unwire before removing addresses from the pmap; otherwise,
4063 		 * unwiring will put the entries back in the pmap.
4064 		 */
4065 		if (entry->wired_count != 0)
4066 			vm_map_entry_unwire(map, entry);
4067 
4068 		/*
4069 		 * Remove mappings for the pages, but only if the
4070 		 * mappings could exist.  For instance, it does not
4071 		 * make sense to call pmap_remove() for guard entries.
4072 		 */
4073 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 ||
4074 		    entry->object.vm_object != NULL)
4075 			pmap_map_delete(map->pmap, entry->start, entry->end);
4076 
4077 		/*
4078 		 * Delete the entry only after removing all pmap
4079 		 * entries pointing to its pages.  (Otherwise, its
4080 		 * page frames may be reallocated, and any modify bits
4081 		 * will be set in the wrong object!)
4082 		 */
4083 		vm_map_entry_delete(map, entry);
4084 	}
4085 	return (rv);
4086 }
4087 
4088 /*
4089  *	vm_map_remove:
4090  *
4091  *	Remove the given address range from the target map.
4092  *	This is the exported form of vm_map_delete.
4093  */
4094 int
4095 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
4096 {
4097 	int result;
4098 
4099 	vm_map_lock(map);
4100 	VM_MAP_RANGE_CHECK(map, start, end);
4101 	result = vm_map_delete(map, start, end);
4102 	vm_map_unlock(map);
4103 	return (result);
4104 }
4105 
4106 /*
4107  *	vm_map_check_protection:
4108  *
4109  *	Assert that the target map allows the specified privilege on the
4110  *	entire address region given.  The entire region must be allocated.
4111  *
4112  *	WARNING!  This code does not and should not check whether the
4113  *	contents of the region is accessible.  For example a smaller file
4114  *	might be mapped into a larger address space.
4115  *
4116  *	NOTE!  This code is also called by munmap().
4117  *
4118  *	The map must be locked.  A read lock is sufficient.
4119  */
4120 boolean_t
4121 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
4122 			vm_prot_t protection)
4123 {
4124 	vm_map_entry_t entry;
4125 	vm_map_entry_t tmp_entry;
4126 
4127 	if (!vm_map_lookup_entry(map, start, &tmp_entry))
4128 		return (FALSE);
4129 	entry = tmp_entry;
4130 
4131 	while (start < end) {
4132 		/*
4133 		 * No holes allowed!
4134 		 */
4135 		if (start < entry->start)
4136 			return (FALSE);
4137 		/*
4138 		 * Check protection associated with entry.
4139 		 */
4140 		if ((entry->protection & protection) != protection)
4141 			return (FALSE);
4142 		/* go to next entry */
4143 		start = entry->end;
4144 		entry = vm_map_entry_succ(entry);
4145 	}
4146 	return (TRUE);
4147 }
4148 
4149 /*
4150  *
4151  *	vm_map_copy_swap_object:
4152  *
4153  *	Copies a swap-backed object from an existing map entry to a
4154  *	new one.  Carries forward the swap charge.  May change the
4155  *	src object on return.
4156  */
4157 static void
4158 vm_map_copy_swap_object(vm_map_entry_t src_entry, vm_map_entry_t dst_entry,
4159     vm_offset_t size, vm_ooffset_t *fork_charge)
4160 {
4161 	vm_object_t src_object;
4162 	struct ucred *cred;
4163 	int charged;
4164 
4165 	src_object = src_entry->object.vm_object;
4166 	charged = ENTRY_CHARGED(src_entry);
4167 	if ((src_object->flags & OBJ_ANON) != 0) {
4168 		VM_OBJECT_WLOCK(src_object);
4169 		vm_object_collapse(src_object);
4170 		if ((src_object->flags & OBJ_ONEMAPPING) != 0) {
4171 			vm_object_split(src_entry);
4172 			src_object = src_entry->object.vm_object;
4173 		}
4174 		vm_object_reference_locked(src_object);
4175 		vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
4176 		VM_OBJECT_WUNLOCK(src_object);
4177 	} else
4178 		vm_object_reference(src_object);
4179 	if (src_entry->cred != NULL &&
4180 	    !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
4181 		KASSERT(src_object->cred == NULL,
4182 		    ("OVERCOMMIT: vm_map_copy_anon_entry: cred %p",
4183 		     src_object));
4184 		src_object->cred = src_entry->cred;
4185 		src_object->charge = size;
4186 	}
4187 	dst_entry->object.vm_object = src_object;
4188 	if (charged) {
4189 		cred = curthread->td_ucred;
4190 		crhold(cred);
4191 		dst_entry->cred = cred;
4192 		*fork_charge += size;
4193 		if (!(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
4194 			crhold(cred);
4195 			src_entry->cred = cred;
4196 			*fork_charge += size;
4197 		}
4198 	}
4199 }
4200 
4201 /*
4202  *	vm_map_copy_entry:
4203  *
4204  *	Copies the contents of the source entry to the destination
4205  *	entry.  The entries *must* be aligned properly.
4206  */
4207 static void
4208 vm_map_copy_entry(
4209 	vm_map_t src_map,
4210 	vm_map_t dst_map,
4211 	vm_map_entry_t src_entry,
4212 	vm_map_entry_t dst_entry,
4213 	vm_ooffset_t *fork_charge)
4214 {
4215 	vm_object_t src_object;
4216 	vm_map_entry_t fake_entry;
4217 	vm_offset_t size;
4218 
4219 	VM_MAP_ASSERT_LOCKED(dst_map);
4220 
4221 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
4222 		return;
4223 
4224 	if (src_entry->wired_count == 0 ||
4225 	    (src_entry->protection & VM_PROT_WRITE) == 0) {
4226 		/*
4227 		 * If the source entry is marked needs_copy, it is already
4228 		 * write-protected.
4229 		 */
4230 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
4231 		    (src_entry->protection & VM_PROT_WRITE) != 0) {
4232 			pmap_protect(src_map->pmap,
4233 			    src_entry->start,
4234 			    src_entry->end,
4235 			    src_entry->protection & ~VM_PROT_WRITE);
4236 		}
4237 
4238 		/*
4239 		 * Make a copy of the object.
4240 		 */
4241 		size = src_entry->end - src_entry->start;
4242 		if ((src_object = src_entry->object.vm_object) != NULL) {
4243 			if ((src_object->flags & OBJ_SWAP) != 0) {
4244 				vm_map_copy_swap_object(src_entry, dst_entry,
4245 				    size, fork_charge);
4246 				/* May have split/collapsed, reload obj. */
4247 				src_object = src_entry->object.vm_object;
4248 			} else {
4249 				vm_object_reference(src_object);
4250 				dst_entry->object.vm_object = src_object;
4251 			}
4252 			src_entry->eflags |= MAP_ENTRY_COW |
4253 			    MAP_ENTRY_NEEDS_COPY;
4254 			dst_entry->eflags |= MAP_ENTRY_COW |
4255 			    MAP_ENTRY_NEEDS_COPY;
4256 			dst_entry->offset = src_entry->offset;
4257 			if (src_entry->eflags & MAP_ENTRY_WRITECNT) {
4258 				/*
4259 				 * MAP_ENTRY_WRITECNT cannot
4260 				 * indicate write reference from
4261 				 * src_entry, since the entry is
4262 				 * marked as needs copy.  Allocate a
4263 				 * fake entry that is used to
4264 				 * decrement object->un_pager writecount
4265 				 * at the appropriate time.  Attach
4266 				 * fake_entry to the deferred list.
4267 				 */
4268 				fake_entry = vm_map_entry_create(dst_map);
4269 				fake_entry->eflags = MAP_ENTRY_WRITECNT;
4270 				src_entry->eflags &= ~MAP_ENTRY_WRITECNT;
4271 				vm_object_reference(src_object);
4272 				fake_entry->object.vm_object = src_object;
4273 				fake_entry->start = src_entry->start;
4274 				fake_entry->end = src_entry->end;
4275 				fake_entry->defer_next =
4276 				    curthread->td_map_def_user;
4277 				curthread->td_map_def_user = fake_entry;
4278 			}
4279 
4280 			pmap_copy(dst_map->pmap, src_map->pmap,
4281 			    dst_entry->start, dst_entry->end - dst_entry->start,
4282 			    src_entry->start);
4283 		} else {
4284 			dst_entry->object.vm_object = NULL;
4285 			if ((dst_entry->eflags & MAP_ENTRY_GUARD) == 0)
4286 				dst_entry->offset = 0;
4287 			if (src_entry->cred != NULL) {
4288 				dst_entry->cred = curthread->td_ucred;
4289 				crhold(dst_entry->cred);
4290 				*fork_charge += size;
4291 			}
4292 		}
4293 	} else {
4294 		/*
4295 		 * We don't want to make writeable wired pages copy-on-write.
4296 		 * Immediately copy these pages into the new map by simulating
4297 		 * page faults.  The new pages are pageable.
4298 		 */
4299 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
4300 		    fork_charge);
4301 	}
4302 }
4303 
4304 /*
4305  * vmspace_map_entry_forked:
4306  * Update the newly-forked vmspace each time a map entry is inherited
4307  * or copied.  The values for vm_dsize and vm_tsize are approximate
4308  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
4309  */
4310 static void
4311 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
4312     vm_map_entry_t entry)
4313 {
4314 	vm_size_t entrysize;
4315 	vm_offset_t newend;
4316 
4317 	if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
4318 		return;
4319 	entrysize = entry->end - entry->start;
4320 	vm2->vm_map.size += entrysize;
4321 	if ((entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0) {
4322 		vm2->vm_ssize += btoc(entrysize);
4323 	} else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
4324 	    entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
4325 		newend = MIN(entry->end,
4326 		    (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
4327 		vm2->vm_dsize += btoc(newend - entry->start);
4328 	} else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
4329 	    entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
4330 		newend = MIN(entry->end,
4331 		    (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
4332 		vm2->vm_tsize += btoc(newend - entry->start);
4333 	}
4334 }
4335 
4336 /*
4337  * vmspace_fork:
4338  * Create a new process vmspace structure and vm_map
4339  * based on those of an existing process.  The new map
4340  * is based on the old map, according to the inheritance
4341  * values on the regions in that map.
4342  *
4343  * XXX It might be worth coalescing the entries added to the new vmspace.
4344  *
4345  * The source map must not be locked.
4346  */
4347 struct vmspace *
4348 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
4349 {
4350 	struct vmspace *vm2;
4351 	vm_map_t new_map, old_map;
4352 	vm_map_entry_t new_entry, old_entry;
4353 	vm_object_t object;
4354 	int error, locked __diagused;
4355 	vm_inherit_t inh;
4356 
4357 	old_map = &vm1->vm_map;
4358 	/* Copy immutable fields of vm1 to vm2. */
4359 	vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map),
4360 	    pmap_pinit);
4361 	if (vm2 == NULL)
4362 		return (NULL);
4363 
4364 	vm2->vm_taddr = vm1->vm_taddr;
4365 	vm2->vm_daddr = vm1->vm_daddr;
4366 	vm2->vm_maxsaddr = vm1->vm_maxsaddr;
4367 	vm2->vm_stacktop = vm1->vm_stacktop;
4368 	vm2->vm_shp_base = vm1->vm_shp_base;
4369 	vm_map_lock(old_map);
4370 	if (old_map->busy)
4371 		vm_map_wait_busy(old_map);
4372 	new_map = &vm2->vm_map;
4373 	locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
4374 	KASSERT(locked, ("vmspace_fork: lock failed"));
4375 
4376 	error = pmap_vmspace_copy(new_map->pmap, old_map->pmap);
4377 	if (error != 0) {
4378 		sx_xunlock(&old_map->lock);
4379 		sx_xunlock(&new_map->lock);
4380 		vm_map_process_deferred();
4381 		vmspace_free(vm2);
4382 		return (NULL);
4383 	}
4384 
4385 	new_map->anon_loc = old_map->anon_loc;
4386 	new_map->flags |= old_map->flags & (MAP_ASLR | MAP_ASLR_IGNSTART |
4387 	    MAP_ASLR_STACK | MAP_WXORX);
4388 
4389 	VM_MAP_ENTRY_FOREACH(old_entry, old_map) {
4390 		if ((old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
4391 			panic("vm_map_fork: encountered a submap");
4392 
4393 		inh = old_entry->inheritance;
4394 		if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4395 		    inh != VM_INHERIT_NONE)
4396 			inh = VM_INHERIT_COPY;
4397 
4398 		switch (inh) {
4399 		case VM_INHERIT_NONE:
4400 			break;
4401 
4402 		case VM_INHERIT_SHARE:
4403 			/*
4404 			 * Clone the entry, creating the shared object if
4405 			 * necessary.
4406 			 */
4407 			object = old_entry->object.vm_object;
4408 			if (object == NULL) {
4409 				vm_map_entry_back(old_entry);
4410 				object = old_entry->object.vm_object;
4411 			}
4412 
4413 			/*
4414 			 * Add the reference before calling vm_object_shadow
4415 			 * to insure that a shadow object is created.
4416 			 */
4417 			vm_object_reference(object);
4418 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4419 				vm_object_shadow(&old_entry->object.vm_object,
4420 				    &old_entry->offset,
4421 				    old_entry->end - old_entry->start,
4422 				    old_entry->cred,
4423 				    /* Transfer the second reference too. */
4424 				    true);
4425 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4426 				old_entry->cred = NULL;
4427 
4428 				/*
4429 				 * As in vm_map_merged_neighbor_dispose(),
4430 				 * the vnode lock will not be acquired in
4431 				 * this call to vm_object_deallocate().
4432 				 */
4433 				vm_object_deallocate(object);
4434 				object = old_entry->object.vm_object;
4435 			} else {
4436 				VM_OBJECT_WLOCK(object);
4437 				vm_object_clear_flag(object, OBJ_ONEMAPPING);
4438 				if (old_entry->cred != NULL) {
4439 					KASSERT(object->cred == NULL,
4440 					    ("vmspace_fork both cred"));
4441 					object->cred = old_entry->cred;
4442 					object->charge = old_entry->end -
4443 					    old_entry->start;
4444 					old_entry->cred = NULL;
4445 				}
4446 
4447 				/*
4448 				 * Assert the correct state of the vnode
4449 				 * v_writecount while the object is locked, to
4450 				 * not relock it later for the assertion
4451 				 * correctness.
4452 				 */
4453 				if (old_entry->eflags & MAP_ENTRY_WRITECNT &&
4454 				    object->type == OBJT_VNODE) {
4455 					KASSERT(((struct vnode *)object->
4456 					    handle)->v_writecount > 0,
4457 					    ("vmspace_fork: v_writecount %p",
4458 					    object));
4459 					KASSERT(object->un_pager.vnp.
4460 					    writemappings > 0,
4461 					    ("vmspace_fork: vnp.writecount %p",
4462 					    object));
4463 				}
4464 				VM_OBJECT_WUNLOCK(object);
4465 			}
4466 
4467 			/*
4468 			 * Clone the entry, referencing the shared object.
4469 			 */
4470 			new_entry = vm_map_entry_create(new_map);
4471 			*new_entry = *old_entry;
4472 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
4473 			    MAP_ENTRY_IN_TRANSITION);
4474 			new_entry->wiring_thread = NULL;
4475 			new_entry->wired_count = 0;
4476 			if (new_entry->eflags & MAP_ENTRY_WRITECNT) {
4477 				vm_pager_update_writecount(object,
4478 				    new_entry->start, new_entry->end);
4479 			}
4480 			vm_map_entry_set_vnode_text(new_entry, true);
4481 
4482 			/*
4483 			 * Insert the entry into the new map -- we know we're
4484 			 * inserting at the end of the new map.
4485 			 */
4486 			vm_map_entry_link(new_map, new_entry);
4487 			vmspace_map_entry_forked(vm1, vm2, new_entry);
4488 
4489 			/*
4490 			 * Update the physical map
4491 			 */
4492 			pmap_copy(new_map->pmap, old_map->pmap,
4493 			    new_entry->start,
4494 			    (old_entry->end - old_entry->start),
4495 			    old_entry->start);
4496 			break;
4497 
4498 		case VM_INHERIT_COPY:
4499 			/*
4500 			 * Clone the entry and link into the map.
4501 			 */
4502 			new_entry = vm_map_entry_create(new_map);
4503 			*new_entry = *old_entry;
4504 			/*
4505 			 * Copied entry is COW over the old object.
4506 			 */
4507 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
4508 			    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_WRITECNT);
4509 			new_entry->wiring_thread = NULL;
4510 			new_entry->wired_count = 0;
4511 			new_entry->object.vm_object = NULL;
4512 			new_entry->cred = NULL;
4513 			vm_map_entry_link(new_map, new_entry);
4514 			vmspace_map_entry_forked(vm1, vm2, new_entry);
4515 			vm_map_copy_entry(old_map, new_map, old_entry,
4516 			    new_entry, fork_charge);
4517 			vm_map_entry_set_vnode_text(new_entry, true);
4518 			break;
4519 
4520 		case VM_INHERIT_ZERO:
4521 			/*
4522 			 * Create a new anonymous mapping entry modelled from
4523 			 * the old one.
4524 			 */
4525 			new_entry = vm_map_entry_create(new_map);
4526 			memset(new_entry, 0, sizeof(*new_entry));
4527 
4528 			new_entry->start = old_entry->start;
4529 			new_entry->end = old_entry->end;
4530 			new_entry->eflags = old_entry->eflags &
4531 			    ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION |
4532 			    MAP_ENTRY_WRITECNT | MAP_ENTRY_VN_EXEC |
4533 			    MAP_ENTRY_SPLIT_BOUNDARY_MASK);
4534 			new_entry->protection = old_entry->protection;
4535 			new_entry->max_protection = old_entry->max_protection;
4536 			new_entry->inheritance = VM_INHERIT_ZERO;
4537 
4538 			vm_map_entry_link(new_map, new_entry);
4539 			vmspace_map_entry_forked(vm1, vm2, new_entry);
4540 
4541 			new_entry->cred = curthread->td_ucred;
4542 			crhold(new_entry->cred);
4543 			*fork_charge += (new_entry->end - new_entry->start);
4544 
4545 			break;
4546 		}
4547 	}
4548 	/*
4549 	 * Use inlined vm_map_unlock() to postpone handling the deferred
4550 	 * map entries, which cannot be done until both old_map and
4551 	 * new_map locks are released.
4552 	 */
4553 	sx_xunlock(&old_map->lock);
4554 	sx_xunlock(&new_map->lock);
4555 	vm_map_process_deferred();
4556 
4557 	return (vm2);
4558 }
4559 
4560 /*
4561  * Create a process's stack for exec_new_vmspace().  This function is never
4562  * asked to wire the newly created stack.
4563  */
4564 int
4565 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4566     vm_prot_t prot, vm_prot_t max, int cow)
4567 {
4568 	vm_size_t growsize, init_ssize;
4569 	rlim_t vmemlim;
4570 	int rv;
4571 
4572 	MPASS((map->flags & MAP_WIREFUTURE) == 0);
4573 	growsize = sgrowsiz;
4574 	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
4575 	vm_map_lock(map);
4576 	vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4577 	/* If we would blow our VMEM resource limit, no go */
4578 	if (map->size + init_ssize > vmemlim) {
4579 		rv = KERN_NO_SPACE;
4580 		goto out;
4581 	}
4582 	rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
4583 	    max, cow);
4584 out:
4585 	vm_map_unlock(map);
4586 	return (rv);
4587 }
4588 
4589 static int stack_guard_page = 1;
4590 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
4591     &stack_guard_page, 0,
4592     "Specifies the number of guard pages for a stack that grows");
4593 
4594 static int
4595 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4596     vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
4597 {
4598 	vm_map_entry_t gap_entry, new_entry, prev_entry;
4599 	vm_offset_t bot, gap_bot, gap_top, top;
4600 	vm_size_t init_ssize, sgp;
4601 	int rv;
4602 
4603 	KASSERT((cow & MAP_STACK_AREA) != 0,
4604 	    ("New mapping is not a stack"));
4605 
4606 	if (max_ssize == 0 ||
4607 	    !vm_map_range_valid(map, addrbos, addrbos + max_ssize))
4608 		return (KERN_INVALID_ADDRESS);
4609 	sgp = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ||
4610 	    (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 :
4611 	    (vm_size_t)stack_guard_page * PAGE_SIZE;
4612 	if (sgp >= max_ssize)
4613 		return (KERN_INVALID_ARGUMENT);
4614 
4615 	init_ssize = growsize;
4616 	if (max_ssize < init_ssize + sgp)
4617 		init_ssize = max_ssize - sgp;
4618 
4619 	/* If addr is already mapped, no go */
4620 	if (vm_map_lookup_entry(map, addrbos, &prev_entry))
4621 		return (KERN_NO_SPACE);
4622 
4623 	/*
4624 	 * If we can't accommodate max_ssize in the current mapping, no go.
4625 	 */
4626 	if (vm_map_entry_succ(prev_entry)->start < addrbos + max_ssize)
4627 		return (KERN_NO_SPACE);
4628 
4629 	/*
4630 	 * We initially map a stack of only init_ssize, at the top of
4631 	 * the range.  We will grow as needed later.
4632 	 *
4633 	 * Note: we would normally expect prot and max to be VM_PROT_ALL,
4634 	 * and cow to be 0.  Possibly we should eliminate these as input
4635 	 * parameters, and just pass these values here in the insert call.
4636 	 */
4637 	bot = addrbos + max_ssize - init_ssize;
4638 	top = bot + init_ssize;
4639 	gap_bot = addrbos;
4640 	gap_top = bot;
4641 	rv = vm_map_insert1(map, NULL, 0, bot, top, prot, max, cow,
4642 	    &new_entry);
4643 	if (rv != KERN_SUCCESS)
4644 		return (rv);
4645 	KASSERT(new_entry->end == top || new_entry->start == bot,
4646 	    ("Bad entry start/end for new stack entry"));
4647 	KASSERT((new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
4648 	    ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
4649 	if (gap_bot == gap_top)
4650 		return (KERN_SUCCESS);
4651 	rv = vm_map_insert1(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE,
4652 	    VM_PROT_NONE, MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP,
4653 	    &gap_entry);
4654 	if (rv == KERN_SUCCESS) {
4655 		KASSERT((gap_entry->eflags & MAP_ENTRY_GUARD) != 0,
4656 		    ("entry %p not gap %#x", gap_entry, gap_entry->eflags));
4657 		KASSERT((gap_entry->eflags & MAP_ENTRY_STACK_GAP) != 0,
4658 		    ("entry %p not stack gap %#x", gap_entry,
4659 		    gap_entry->eflags));
4660 
4661 		/*
4662 		 * Gap can never successfully handle a fault, so
4663 		 * read-ahead logic is never used for it.  Re-use
4664 		 * next_read of the gap entry to store
4665 		 * stack_guard_page for vm_map_growstack().
4666 		 * Similarly, since a gap cannot have a backing object,
4667 		 * store the original stack protections in the
4668 		 * object offset.
4669 		 */
4670 		gap_entry->next_read = sgp;
4671 		gap_entry->offset = prot | PROT_MAX(max);
4672 	} else {
4673 		(void)vm_map_delete(map, bot, top);
4674 	}
4675 	return (rv);
4676 }
4677 
4678 /*
4679  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if we
4680  * successfully grow the stack.
4681  */
4682 static int
4683 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry)
4684 {
4685 	vm_map_entry_t stack_entry;
4686 	struct proc *p;
4687 	struct vmspace *vm;
4688 	vm_offset_t gap_end, gap_start, grow_start;
4689 	vm_size_t grow_amount, guard, max_grow, sgp;
4690 	vm_prot_t prot, max;
4691 	rlim_t lmemlim, stacklim, vmemlim;
4692 	int rv, rv1 __diagused;
4693 	bool gap_deleted, is_procstack;
4694 #ifdef notyet
4695 	uint64_t limit;
4696 #endif
4697 #ifdef RACCT
4698 	int error __diagused;
4699 #endif
4700 
4701 	p = curproc;
4702 	vm = p->p_vmspace;
4703 
4704 	/*
4705 	 * Disallow stack growth when the access is performed by a
4706 	 * debugger or AIO daemon.  The reason is that the wrong
4707 	 * resource limits are applied.
4708 	 */
4709 	if (p != initproc && (map != &p->p_vmspace->vm_map ||
4710 	    p->p_textvp == NULL))
4711 		return (KERN_FAILURE);
4712 
4713 	MPASS(!map->system_map);
4714 
4715 	lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
4716 	stacklim = lim_cur(curthread, RLIMIT_STACK);
4717 	vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4718 retry:
4719 	/* If addr is not in a hole for a stack grow area, no need to grow. */
4720 	if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry))
4721 		return (KERN_FAILURE);
4722 	if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0)
4723 		return (KERN_SUCCESS);
4724 	if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP) != 0) {
4725 		stack_entry = vm_map_entry_succ(gap_entry);
4726 		if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 ||
4727 		    stack_entry->start != gap_entry->end)
4728 			return (KERN_FAILURE);
4729 		grow_amount = round_page(stack_entry->start - addr);
4730 	} else {
4731 		return (KERN_FAILURE);
4732 	}
4733 	guard = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ||
4734 	    (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 :
4735 	    gap_entry->next_read;
4736 	max_grow = gap_entry->end - gap_entry->start;
4737 	if (guard > max_grow)
4738 		return (KERN_NO_SPACE);
4739 	max_grow -= guard;
4740 	if (grow_amount > max_grow)
4741 		return (KERN_NO_SPACE);
4742 
4743 	/*
4744 	 * If this is the main process stack, see if we're over the stack
4745 	 * limit.
4746 	 */
4747 	is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr &&
4748 	    addr < (vm_offset_t)vm->vm_stacktop;
4749 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim))
4750 		return (KERN_NO_SPACE);
4751 
4752 #ifdef RACCT
4753 	if (racct_enable) {
4754 		PROC_LOCK(p);
4755 		if (is_procstack && racct_set(p, RACCT_STACK,
4756 		    ctob(vm->vm_ssize) + grow_amount)) {
4757 			PROC_UNLOCK(p);
4758 			return (KERN_NO_SPACE);
4759 		}
4760 		PROC_UNLOCK(p);
4761 	}
4762 #endif
4763 
4764 	grow_amount = roundup(grow_amount, sgrowsiz);
4765 	if (grow_amount > max_grow)
4766 		grow_amount = max_grow;
4767 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
4768 		grow_amount = trunc_page((vm_size_t)stacklim) -
4769 		    ctob(vm->vm_ssize);
4770 	}
4771 
4772 #ifdef notyet
4773 	PROC_LOCK(p);
4774 	limit = racct_get_available(p, RACCT_STACK);
4775 	PROC_UNLOCK(p);
4776 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
4777 		grow_amount = limit - ctob(vm->vm_ssize);
4778 #endif
4779 
4780 	if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) {
4781 		if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
4782 			rv = KERN_NO_SPACE;
4783 			goto out;
4784 		}
4785 #ifdef RACCT
4786 		if (racct_enable) {
4787 			PROC_LOCK(p);
4788 			if (racct_set(p, RACCT_MEMLOCK,
4789 			    ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
4790 				PROC_UNLOCK(p);
4791 				rv = KERN_NO_SPACE;
4792 				goto out;
4793 			}
4794 			PROC_UNLOCK(p);
4795 		}
4796 #endif
4797 	}
4798 
4799 	/* If we would blow our VMEM resource limit, no go */
4800 	if (map->size + grow_amount > vmemlim) {
4801 		rv = KERN_NO_SPACE;
4802 		goto out;
4803 	}
4804 #ifdef RACCT
4805 	if (racct_enable) {
4806 		PROC_LOCK(p);
4807 		if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
4808 			PROC_UNLOCK(p);
4809 			rv = KERN_NO_SPACE;
4810 			goto out;
4811 		}
4812 		PROC_UNLOCK(p);
4813 	}
4814 #endif
4815 
4816 	if (vm_map_lock_upgrade(map)) {
4817 		gap_entry = NULL;
4818 		vm_map_lock_read(map);
4819 		goto retry;
4820 	}
4821 
4822 	/*
4823 	 * The gap_entry "offset" field is overloaded.  See
4824 	 * vm_map_stack_locked().
4825 	 */
4826 	prot = PROT_EXTRACT(gap_entry->offset);
4827 	max = PROT_MAX_EXTRACT(gap_entry->offset);
4828 	sgp = gap_entry->next_read;
4829 
4830 	grow_start = gap_entry->end - grow_amount;
4831 	if (gap_entry->start + grow_amount == gap_entry->end) {
4832 		gap_start = gap_entry->start;
4833 		gap_end = gap_entry->end;
4834 		vm_map_entry_delete(map, gap_entry);
4835 		gap_deleted = true;
4836 	} else {
4837 		MPASS(gap_entry->start < gap_entry->end - grow_amount);
4838 		vm_map_entry_resize(map, gap_entry, -grow_amount);
4839 		gap_deleted = false;
4840 	}
4841 	rv = vm_map_insert(map, NULL, 0, grow_start,
4842 	    grow_start + grow_amount, prot, max, MAP_STACK_AREA);
4843 	if (rv != KERN_SUCCESS) {
4844 		if (gap_deleted) {
4845 			rv1 = vm_map_insert1(map, NULL, 0, gap_start,
4846 			    gap_end, VM_PROT_NONE, VM_PROT_NONE,
4847 			    MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP,
4848 			    &gap_entry);
4849 			MPASS(rv1 == KERN_SUCCESS);
4850 			gap_entry->next_read = sgp;
4851 			gap_entry->offset = prot | PROT_MAX(max);
4852 		} else {
4853 			vm_map_entry_resize(map, gap_entry,
4854 			    grow_amount);
4855 		}
4856 	}
4857 	if (rv == KERN_SUCCESS && is_procstack)
4858 		vm->vm_ssize += btoc(grow_amount);
4859 
4860 	/*
4861 	 * Heed the MAP_WIREFUTURE flag if it was set for this process.
4862 	 */
4863 	if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) {
4864 		rv = vm_map_wire_locked(map, grow_start,
4865 		    grow_start + grow_amount,
4866 		    VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
4867 	}
4868 	vm_map_lock_downgrade(map);
4869 
4870 out:
4871 #ifdef RACCT
4872 	if (racct_enable && rv != KERN_SUCCESS) {
4873 		PROC_LOCK(p);
4874 		error = racct_set(p, RACCT_VMEM, map->size);
4875 		KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
4876 		if (!old_mlock) {
4877 			error = racct_set(p, RACCT_MEMLOCK,
4878 			    ptoa(pmap_wired_count(map->pmap)));
4879 			KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
4880 		}
4881 	    	error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
4882 		KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
4883 		PROC_UNLOCK(p);
4884 	}
4885 #endif
4886 
4887 	return (rv);
4888 }
4889 
4890 /*
4891  * Unshare the specified VM space for exec.  If other processes are
4892  * mapped to it, then create a new one.  The new vmspace is null.
4893  */
4894 int
4895 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
4896 {
4897 	struct vmspace *oldvmspace = p->p_vmspace;
4898 	struct vmspace *newvmspace;
4899 
4900 	KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
4901 	    ("vmspace_exec recursed"));
4902 	newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit);
4903 	if (newvmspace == NULL)
4904 		return (ENOMEM);
4905 	newvmspace->vm_swrss = oldvmspace->vm_swrss;
4906 	/*
4907 	 * This code is written like this for prototype purposes.  The
4908 	 * goal is to avoid running down the vmspace here, but let the
4909 	 * other process's that are still using the vmspace to finally
4910 	 * run it down.  Even though there is little or no chance of blocking
4911 	 * here, it is a good idea to keep this form for future mods.
4912 	 */
4913 	PROC_VMSPACE_LOCK(p);
4914 	p->p_vmspace = newvmspace;
4915 	PROC_VMSPACE_UNLOCK(p);
4916 	if (p == curthread->td_proc)
4917 		pmap_activate(curthread);
4918 	curthread->td_pflags |= TDP_EXECVMSPC;
4919 	return (0);
4920 }
4921 
4922 /*
4923  * Unshare the specified VM space for forcing COW.  This
4924  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
4925  */
4926 int
4927 vmspace_unshare(struct proc *p)
4928 {
4929 	struct vmspace *oldvmspace = p->p_vmspace;
4930 	struct vmspace *newvmspace;
4931 	vm_ooffset_t fork_charge;
4932 
4933 	/*
4934 	 * The caller is responsible for ensuring that the reference count
4935 	 * cannot concurrently transition 1 -> 2.
4936 	 */
4937 	if (refcount_load(&oldvmspace->vm_refcnt) == 1)
4938 		return (0);
4939 	fork_charge = 0;
4940 	newvmspace = vmspace_fork(oldvmspace, &fork_charge);
4941 	if (newvmspace == NULL)
4942 		return (ENOMEM);
4943 	if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
4944 		vmspace_free(newvmspace);
4945 		return (ENOMEM);
4946 	}
4947 	PROC_VMSPACE_LOCK(p);
4948 	p->p_vmspace = newvmspace;
4949 	PROC_VMSPACE_UNLOCK(p);
4950 	if (p == curthread->td_proc)
4951 		pmap_activate(curthread);
4952 	vmspace_free(oldvmspace);
4953 	return (0);
4954 }
4955 
4956 /*
4957  *	vm_map_lookup:
4958  *
4959  *	Finds the VM object, offset, and
4960  *	protection for a given virtual address in the
4961  *	specified map, assuming a page fault of the
4962  *	type specified.
4963  *
4964  *	Leaves the map in question locked for read; return
4965  *	values are guaranteed until a vm_map_lookup_done
4966  *	call is performed.  Note that the map argument
4967  *	is in/out; the returned map must be used in
4968  *	the call to vm_map_lookup_done.
4969  *
4970  *	A handle (out_entry) is returned for use in
4971  *	vm_map_lookup_done, to make that fast.
4972  *
4973  *	If a lookup is requested with "write protection"
4974  *	specified, the map may be changed to perform virtual
4975  *	copying operations, although the data referenced will
4976  *	remain the same.
4977  */
4978 int
4979 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
4980 	      vm_offset_t vaddr,
4981 	      vm_prot_t fault_typea,
4982 	      vm_map_entry_t *out_entry,	/* OUT */
4983 	      vm_object_t *object,		/* OUT */
4984 	      vm_pindex_t *pindex,		/* OUT */
4985 	      vm_prot_t *out_prot,		/* OUT */
4986 	      boolean_t *wired)			/* OUT */
4987 {
4988 	vm_map_entry_t entry;
4989 	vm_map_t map = *var_map;
4990 	vm_prot_t prot;
4991 	vm_prot_t fault_type;
4992 	vm_object_t eobject;
4993 	vm_size_t size;
4994 	struct ucred *cred;
4995 
4996 RetryLookup:
4997 
4998 	vm_map_lock_read(map);
4999 
5000 RetryLookupLocked:
5001 	/*
5002 	 * Lookup the faulting address.
5003 	 */
5004 	if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
5005 		vm_map_unlock_read(map);
5006 		return (KERN_INVALID_ADDRESS);
5007 	}
5008 
5009 	entry = *out_entry;
5010 
5011 	/*
5012 	 * Handle submaps.
5013 	 */
5014 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
5015 		vm_map_t old_map = map;
5016 
5017 		*var_map = map = entry->object.sub_map;
5018 		vm_map_unlock_read(old_map);
5019 		goto RetryLookup;
5020 	}
5021 
5022 	/*
5023 	 * Check whether this task is allowed to have this page.
5024 	 */
5025 	prot = entry->protection;
5026 	if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) {
5027 		fault_typea &= ~VM_PROT_FAULT_LOOKUP;
5028 		if (prot == VM_PROT_NONE && map != kernel_map &&
5029 		    (entry->eflags & MAP_ENTRY_GUARD) != 0 &&
5030 		    (entry->eflags & MAP_ENTRY_STACK_GAP) != 0 &&
5031 		    vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS)
5032 			goto RetryLookupLocked;
5033 	}
5034 	fault_type = fault_typea & VM_PROT_ALL;
5035 	if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
5036 		vm_map_unlock_read(map);
5037 		return (KERN_PROTECTION_FAILURE);
5038 	}
5039 	KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
5040 	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
5041 	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
5042 	    ("entry %p flags %x", entry, entry->eflags));
5043 	if ((fault_typea & VM_PROT_COPY) != 0 &&
5044 	    (entry->max_protection & VM_PROT_WRITE) == 0 &&
5045 	    (entry->eflags & MAP_ENTRY_COW) == 0) {
5046 		vm_map_unlock_read(map);
5047 		return (KERN_PROTECTION_FAILURE);
5048 	}
5049 
5050 	/*
5051 	 * If this page is not pageable, we have to get it for all possible
5052 	 * accesses.
5053 	 */
5054 	*wired = (entry->wired_count != 0);
5055 	if (*wired)
5056 		fault_type = entry->protection;
5057 	size = entry->end - entry->start;
5058 
5059 	/*
5060 	 * If the entry was copy-on-write, we either ...
5061 	 */
5062 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
5063 		/*
5064 		 * If we want to write the page, we may as well handle that
5065 		 * now since we've got the map locked.
5066 		 *
5067 		 * If we don't need to write the page, we just demote the
5068 		 * permissions allowed.
5069 		 */
5070 		if ((fault_type & VM_PROT_WRITE) != 0 ||
5071 		    (fault_typea & VM_PROT_COPY) != 0) {
5072 			/*
5073 			 * Make a new object, and place it in the object
5074 			 * chain.  Note that no new references have appeared
5075 			 * -- one just moved from the map to the new
5076 			 * object.
5077 			 */
5078 			if (vm_map_lock_upgrade(map))
5079 				goto RetryLookup;
5080 
5081 			if (entry->cred == NULL) {
5082 				/*
5083 				 * The debugger owner is charged for
5084 				 * the memory.
5085 				 */
5086 				cred = curthread->td_ucred;
5087 				crhold(cred);
5088 				if (!swap_reserve_by_cred(size, cred)) {
5089 					crfree(cred);
5090 					vm_map_unlock(map);
5091 					return (KERN_RESOURCE_SHORTAGE);
5092 				}
5093 				entry->cred = cred;
5094 			}
5095 			eobject = entry->object.vm_object;
5096 			vm_object_shadow(&entry->object.vm_object,
5097 			    &entry->offset, size, entry->cred, false);
5098 			if (eobject == entry->object.vm_object) {
5099 				/*
5100 				 * The object was not shadowed.
5101 				 */
5102 				swap_release_by_cred(size, entry->cred);
5103 				crfree(entry->cred);
5104 			}
5105 			entry->cred = NULL;
5106 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
5107 
5108 			vm_map_lock_downgrade(map);
5109 		} else {
5110 			/*
5111 			 * We're attempting to read a copy-on-write page --
5112 			 * don't allow writes.
5113 			 */
5114 			prot &= ~VM_PROT_WRITE;
5115 		}
5116 	}
5117 
5118 	/*
5119 	 * Create an object if necessary.
5120 	 */
5121 	if (entry->object.vm_object == NULL && !map->system_map) {
5122 		if (vm_map_lock_upgrade(map))
5123 			goto RetryLookup;
5124 		entry->object.vm_object = vm_object_allocate_anon(atop(size),
5125 		    NULL, entry->cred, size);
5126 		entry->offset = 0;
5127 		entry->cred = NULL;
5128 		vm_map_lock_downgrade(map);
5129 	}
5130 
5131 	/*
5132 	 * Return the object/offset from this entry.  If the entry was
5133 	 * copy-on-write or empty, it has been fixed up.
5134 	 */
5135 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
5136 	*object = entry->object.vm_object;
5137 
5138 	*out_prot = prot;
5139 	return (KERN_SUCCESS);
5140 }
5141 
5142 /*
5143  *	vm_map_lookup_locked:
5144  *
5145  *	Lookup the faulting address.  A version of vm_map_lookup that returns
5146  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
5147  */
5148 int
5149 vm_map_lookup_locked(vm_map_t *var_map,		/* IN/OUT */
5150 		     vm_offset_t vaddr,
5151 		     vm_prot_t fault_typea,
5152 		     vm_map_entry_t *out_entry,	/* OUT */
5153 		     vm_object_t *object,	/* OUT */
5154 		     vm_pindex_t *pindex,	/* OUT */
5155 		     vm_prot_t *out_prot,	/* OUT */
5156 		     boolean_t *wired)		/* OUT */
5157 {
5158 	vm_map_entry_t entry;
5159 	vm_map_t map = *var_map;
5160 	vm_prot_t prot;
5161 	vm_prot_t fault_type = fault_typea;
5162 
5163 	/*
5164 	 * Lookup the faulting address.
5165 	 */
5166 	if (!vm_map_lookup_entry(map, vaddr, out_entry))
5167 		return (KERN_INVALID_ADDRESS);
5168 
5169 	entry = *out_entry;
5170 
5171 	/*
5172 	 * Fail if the entry refers to a submap.
5173 	 */
5174 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
5175 		return (KERN_FAILURE);
5176 
5177 	/*
5178 	 * Check whether this task is allowed to have this page.
5179 	 */
5180 	prot = entry->protection;
5181 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
5182 	if ((fault_type & prot) != fault_type)
5183 		return (KERN_PROTECTION_FAILURE);
5184 
5185 	/*
5186 	 * If this page is not pageable, we have to get it for all possible
5187 	 * accesses.
5188 	 */
5189 	*wired = (entry->wired_count != 0);
5190 	if (*wired)
5191 		fault_type = entry->protection;
5192 
5193 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
5194 		/*
5195 		 * Fail if the entry was copy-on-write for a write fault.
5196 		 */
5197 		if (fault_type & VM_PROT_WRITE)
5198 			return (KERN_FAILURE);
5199 		/*
5200 		 * We're attempting to read a copy-on-write page --
5201 		 * don't allow writes.
5202 		 */
5203 		prot &= ~VM_PROT_WRITE;
5204 	}
5205 
5206 	/*
5207 	 * Fail if an object should be created.
5208 	 */
5209 	if (entry->object.vm_object == NULL && !map->system_map)
5210 		return (KERN_FAILURE);
5211 
5212 	/*
5213 	 * Return the object/offset from this entry.  If the entry was
5214 	 * copy-on-write or empty, it has been fixed up.
5215 	 */
5216 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
5217 	*object = entry->object.vm_object;
5218 
5219 	*out_prot = prot;
5220 	return (KERN_SUCCESS);
5221 }
5222 
5223 /*
5224  *	vm_map_lookup_done:
5225  *
5226  *	Releases locks acquired by a vm_map_lookup
5227  *	(according to the handle returned by that lookup).
5228  */
5229 void
5230 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
5231 {
5232 	/*
5233 	 * Unlock the main-level map
5234 	 */
5235 	vm_map_unlock_read(map);
5236 }
5237 
5238 vm_offset_t
5239 vm_map_max_KBI(const struct vm_map *map)
5240 {
5241 
5242 	return (vm_map_max(map));
5243 }
5244 
5245 vm_offset_t
5246 vm_map_min_KBI(const struct vm_map *map)
5247 {
5248 
5249 	return (vm_map_min(map));
5250 }
5251 
5252 pmap_t
5253 vm_map_pmap_KBI(vm_map_t map)
5254 {
5255 
5256 	return (map->pmap);
5257 }
5258 
5259 bool
5260 vm_map_range_valid_KBI(vm_map_t map, vm_offset_t start, vm_offset_t end)
5261 {
5262 
5263 	return (vm_map_range_valid(map, start, end));
5264 }
5265 
5266 #ifdef INVARIANTS
5267 static void
5268 _vm_map_assert_consistent(vm_map_t map, int check)
5269 {
5270 	vm_map_entry_t entry, prev;
5271 	vm_map_entry_t cur, header, lbound, ubound;
5272 	vm_size_t max_left, max_right;
5273 
5274 #ifdef DIAGNOSTIC
5275 	++map->nupdates;
5276 #endif
5277 	if (enable_vmmap_check != check)
5278 		return;
5279 
5280 	header = prev = &map->header;
5281 	VM_MAP_ENTRY_FOREACH(entry, map) {
5282 		KASSERT(prev->end <= entry->start,
5283 		    ("map %p prev->end = %jx, start = %jx", map,
5284 		    (uintmax_t)prev->end, (uintmax_t)entry->start));
5285 		KASSERT(entry->start < entry->end,
5286 		    ("map %p start = %jx, end = %jx", map,
5287 		    (uintmax_t)entry->start, (uintmax_t)entry->end));
5288 		KASSERT(entry->left == header ||
5289 		    entry->left->start < entry->start,
5290 		    ("map %p left->start = %jx, start = %jx", map,
5291 		    (uintmax_t)entry->left->start, (uintmax_t)entry->start));
5292 		KASSERT(entry->right == header ||
5293 		    entry->start < entry->right->start,
5294 		    ("map %p start = %jx, right->start = %jx", map,
5295 		    (uintmax_t)entry->start, (uintmax_t)entry->right->start));
5296 		cur = map->root;
5297 		lbound = ubound = header;
5298 		for (;;) {
5299 			if (entry->start < cur->start) {
5300 				ubound = cur;
5301 				cur = cur->left;
5302 				KASSERT(cur != lbound,
5303 				    ("map %p cannot find %jx",
5304 				    map, (uintmax_t)entry->start));
5305 			} else if (cur->end <= entry->start) {
5306 				lbound = cur;
5307 				cur = cur->right;
5308 				KASSERT(cur != ubound,
5309 				    ("map %p cannot find %jx",
5310 				    map, (uintmax_t)entry->start));
5311 			} else {
5312 				KASSERT(cur == entry,
5313 				    ("map %p cannot find %jx",
5314 				    map, (uintmax_t)entry->start));
5315 				break;
5316 			}
5317 		}
5318 		max_left = vm_map_entry_max_free_left(entry, lbound);
5319 		max_right = vm_map_entry_max_free_right(entry, ubound);
5320 		KASSERT(entry->max_free == vm_size_max(max_left, max_right),
5321 		    ("map %p max = %jx, max_left = %jx, max_right = %jx", map,
5322 		    (uintmax_t)entry->max_free,
5323 		    (uintmax_t)max_left, (uintmax_t)max_right));
5324 		prev = entry;
5325 	}
5326 	KASSERT(prev->end <= entry->start,
5327 	    ("map %p prev->end = %jx, start = %jx", map,
5328 	    (uintmax_t)prev->end, (uintmax_t)entry->start));
5329 }
5330 #endif
5331 
5332 #include "opt_ddb.h"
5333 #ifdef DDB
5334 #include <sys/kernel.h>
5335 
5336 #include <ddb/ddb.h>
5337 
5338 static void
5339 vm_map_print(vm_map_t map)
5340 {
5341 	vm_map_entry_t entry, prev;
5342 
5343 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
5344 	    (void *)map,
5345 	    (void *)map->pmap, map->nentries, map->timestamp);
5346 
5347 	db_indent += 2;
5348 	prev = &map->header;
5349 	VM_MAP_ENTRY_FOREACH(entry, map) {
5350 		db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n",
5351 		    (void *)entry, (void *)entry->start, (void *)entry->end,
5352 		    entry->eflags);
5353 		{
5354 			static const char * const inheritance_name[4] =
5355 			{"share", "copy", "none", "donate_copy"};
5356 
5357 			db_iprintf(" prot=%x/%x/%s",
5358 			    entry->protection,
5359 			    entry->max_protection,
5360 			    inheritance_name[(int)(unsigned char)
5361 			    entry->inheritance]);
5362 			if (entry->wired_count != 0)
5363 				db_printf(", wired");
5364 		}
5365 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
5366 			db_printf(", share=%p, offset=0x%jx\n",
5367 			    (void *)entry->object.sub_map,
5368 			    (uintmax_t)entry->offset);
5369 			if (prev == &map->header ||
5370 			    prev->object.sub_map !=
5371 				entry->object.sub_map) {
5372 				db_indent += 2;
5373 				vm_map_print((vm_map_t)entry->object.sub_map);
5374 				db_indent -= 2;
5375 			}
5376 		} else {
5377 			if (entry->cred != NULL)
5378 				db_printf(", ruid %d", entry->cred->cr_ruid);
5379 			db_printf(", object=%p, offset=0x%jx",
5380 			    (void *)entry->object.vm_object,
5381 			    (uintmax_t)entry->offset);
5382 			if (entry->object.vm_object && entry->object.vm_object->cred)
5383 				db_printf(", obj ruid %d charge %jx",
5384 				    entry->object.vm_object->cred->cr_ruid,
5385 				    (uintmax_t)entry->object.vm_object->charge);
5386 			if (entry->eflags & MAP_ENTRY_COW)
5387 				db_printf(", copy (%s)",
5388 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
5389 			db_printf("\n");
5390 
5391 			if (prev == &map->header ||
5392 			    prev->object.vm_object !=
5393 				entry->object.vm_object) {
5394 				db_indent += 2;
5395 				vm_object_print((db_expr_t)(intptr_t)
5396 						entry->object.vm_object,
5397 						0, 0, (char *)0);
5398 				db_indent -= 2;
5399 			}
5400 		}
5401 		prev = entry;
5402 	}
5403 	db_indent -= 2;
5404 }
5405 
5406 DB_SHOW_COMMAND(map, map)
5407 {
5408 
5409 	if (!have_addr) {
5410 		db_printf("usage: show map <addr>\n");
5411 		return;
5412 	}
5413 	vm_map_print((vm_map_t)addr);
5414 }
5415 
5416 DB_SHOW_COMMAND(procvm, procvm)
5417 {
5418 	struct proc *p;
5419 
5420 	if (have_addr) {
5421 		p = db_lookup_proc(addr);
5422 	} else {
5423 		p = curproc;
5424 	}
5425 
5426 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
5427 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
5428 	    (void *)vmspace_pmap(p->p_vmspace));
5429 
5430 	vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
5431 }
5432 
5433 #endif /* DDB */
5434