1 /* 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by the University of 19 * California, Berkeley and its contributors. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 37 * 38 * 39 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 40 * All rights reserved. 41 * 42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 43 * 44 * Permission to use, copy, modify and distribute this software and 45 * its documentation is hereby granted, provided that both the copyright 46 * notice and this permission notice appear in all copies of the 47 * software, derivative works or modified versions, and any portions 48 * thereof, and that both notices appear in supporting documentation. 49 * 50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 53 * 54 * Carnegie Mellon requests users of this software to return to 55 * 56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 57 * School of Computer Science 58 * Carnegie Mellon University 59 * Pittsburgh PA 15213-3890 60 * 61 * any improvements or extensions that they make and grant Carnegie the 62 * rights to redistribute these changes. 63 * 64 * $Id: vm_map.c,v 1.169 1999/06/17 05:49:00 alc Exp $ 65 */ 66 67 /* 68 * Virtual memory mapping module. 69 */ 70 71 #include <sys/param.h> 72 #include <sys/systm.h> 73 #include <sys/malloc.h> 74 #include <sys/proc.h> 75 #include <sys/vmmeter.h> 76 #include <sys/mman.h> 77 #include <sys/vnode.h> 78 #include <sys/resourcevar.h> 79 80 #include <vm/vm.h> 81 #include <vm/vm_param.h> 82 #include <vm/vm_prot.h> 83 #include <vm/vm_inherit.h> 84 #include <sys/lock.h> 85 #include <vm/pmap.h> 86 #include <vm/vm_map.h> 87 #include <vm/vm_page.h> 88 #include <vm/vm_object.h> 89 #include <vm/vm_pager.h> 90 #include <vm/vm_kern.h> 91 #include <vm/vm_extern.h> 92 #include <vm/default_pager.h> 93 #include <vm/swap_pager.h> 94 #include <vm/vm_zone.h> 95 96 /* 97 * Virtual memory maps provide for the mapping, protection, 98 * and sharing of virtual memory objects. In addition, 99 * this module provides for an efficient virtual copy of 100 * memory from one map to another. 101 * 102 * Synchronization is required prior to most operations. 103 * 104 * Maps consist of an ordered doubly-linked list of simple 105 * entries; a single hint is used to speed up lookups. 106 * 107 * Since portions of maps are specified by start/end addreses, 108 * which may not align with existing map entries, all 109 * routines merely "clip" entries to these start/end values. 110 * [That is, an entry is split into two, bordering at a 111 * start or end value.] Note that these clippings may not 112 * always be necessary (as the two resulting entries are then 113 * not changed); however, the clipping is done for convenience. 114 * 115 * As mentioned above, virtual copy operations are performed 116 * by copying VM object references from one map to 117 * another, and then marking both regions as copy-on-write. 118 */ 119 120 /* 121 * vm_map_startup: 122 * 123 * Initialize the vm_map module. Must be called before 124 * any other vm_map routines. 125 * 126 * Map and entry structures are allocated from the general 127 * purpose memory pool with some exceptions: 128 * 129 * - The kernel map and kmem submap are allocated statically. 130 * - Kernel map entries are allocated out of a static pool. 131 * 132 * These restrictions are necessary since malloc() uses the 133 * maps and requires map entries. 134 */ 135 136 static struct vm_zone kmapentzone_store, mapentzone_store, mapzone_store; 137 static vm_zone_t mapentzone, kmapentzone, mapzone, vmspace_zone; 138 static struct vm_object kmapentobj, mapentobj, mapobj; 139 140 static struct vm_map_entry map_entry_init[MAX_MAPENT]; 141 static struct vm_map_entry kmap_entry_init[MAX_KMAPENT]; 142 static struct vm_map map_init[MAX_KMAP]; 143 144 static void _vm_map_clip_end __P((vm_map_t, vm_map_entry_t, vm_offset_t)); 145 static void _vm_map_clip_start __P((vm_map_t, vm_map_entry_t, vm_offset_t)); 146 static vm_map_entry_t vm_map_entry_create __P((vm_map_t)); 147 static void vm_map_entry_delete __P((vm_map_t, vm_map_entry_t)); 148 static void vm_map_entry_dispose __P((vm_map_t, vm_map_entry_t)); 149 static void vm_map_entry_unwire __P((vm_map_t, vm_map_entry_t)); 150 static void vm_map_copy_entry __P((vm_map_t, vm_map_t, vm_map_entry_t, 151 vm_map_entry_t)); 152 static void vm_map_split __P((vm_map_entry_t)); 153 154 void 155 vm_map_startup() 156 { 157 mapzone = &mapzone_store; 158 zbootinit(mapzone, "MAP", sizeof (struct vm_map), 159 map_init, MAX_KMAP); 160 kmapentzone = &kmapentzone_store; 161 zbootinit(kmapentzone, "KMAP ENTRY", sizeof (struct vm_map_entry), 162 kmap_entry_init, MAX_KMAPENT); 163 mapentzone = &mapentzone_store; 164 zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry), 165 map_entry_init, MAX_MAPENT); 166 } 167 168 /* 169 * Allocate a vmspace structure, including a vm_map and pmap, 170 * and initialize those structures. The refcnt is set to 1. 171 * The remaining fields must be initialized by the caller. 172 */ 173 struct vmspace * 174 vmspace_alloc(min, max) 175 vm_offset_t min, max; 176 { 177 struct vmspace *vm; 178 179 vm = zalloc(vmspace_zone); 180 vm_map_init(&vm->vm_map, min, max); 181 pmap_pinit(vmspace_pmap(vm)); 182 vm->vm_map.pmap = vmspace_pmap(vm); /* XXX */ 183 vm->vm_refcnt = 1; 184 vm->vm_shm = NULL; 185 return (vm); 186 } 187 188 void 189 vm_init2(void) { 190 zinitna(kmapentzone, &kmapentobj, 191 NULL, 0, cnt.v_page_count / 4, ZONE_INTERRUPT, 1); 192 zinitna(mapentzone, &mapentobj, 193 NULL, 0, 0, 0, 1); 194 zinitna(mapzone, &mapobj, 195 NULL, 0, 0, 0, 1); 196 vmspace_zone = zinit("VMSPACE", sizeof (struct vmspace), 0, 0, 3); 197 pmap_init2(); 198 vm_object_init2(); 199 } 200 201 void 202 vmspace_free(vm) 203 struct vmspace *vm; 204 { 205 206 if (vm->vm_refcnt == 0) 207 panic("vmspace_free: attempt to free already freed vmspace"); 208 209 if (--vm->vm_refcnt == 0) { 210 211 /* 212 * Lock the map, to wait out all other references to it. 213 * Delete all of the mappings and pages they hold, then call 214 * the pmap module to reclaim anything left. 215 */ 216 vm_map_lock(&vm->vm_map); 217 (void) vm_map_delete(&vm->vm_map, vm->vm_map.min_offset, 218 vm->vm_map.max_offset); 219 vm_map_unlock(&vm->vm_map); 220 221 pmap_release(vmspace_pmap(vm)); 222 zfree(vmspace_zone, vm); 223 } 224 } 225 226 /* 227 * vm_map_create: 228 * 229 * Creates and returns a new empty VM map with 230 * the given physical map structure, and having 231 * the given lower and upper address bounds. 232 */ 233 vm_map_t 234 vm_map_create(pmap, min, max) 235 pmap_t pmap; 236 vm_offset_t min, max; 237 { 238 vm_map_t result; 239 240 result = zalloc(mapzone); 241 vm_map_init(result, min, max); 242 result->pmap = pmap; 243 return (result); 244 } 245 246 /* 247 * Initialize an existing vm_map structure 248 * such as that in the vmspace structure. 249 * The pmap is set elsewhere. 250 */ 251 void 252 vm_map_init(map, min, max) 253 struct vm_map *map; 254 vm_offset_t min, max; 255 { 256 map->header.next = map->header.prev = &map->header; 257 map->nentries = 0; 258 map->size = 0; 259 map->system_map = 0; 260 map->min_offset = min; 261 map->max_offset = max; 262 map->first_free = &map->header; 263 map->hint = &map->header; 264 map->timestamp = 0; 265 lockinit(&map->lock, PVM, "thrd_sleep", 0, LK_NOPAUSE); 266 } 267 268 /* 269 * vm_map_entry_dispose: [ internal use only ] 270 * 271 * Inverse of vm_map_entry_create. 272 */ 273 static void 274 vm_map_entry_dispose(map, entry) 275 vm_map_t map; 276 vm_map_entry_t entry; 277 { 278 zfree((map->system_map || !mapentzone) ? kmapentzone : mapentzone, entry); 279 } 280 281 /* 282 * vm_map_entry_create: [ internal use only ] 283 * 284 * Allocates a VM map entry for insertion. 285 * No entry fields are filled in. This routine is 286 */ 287 static vm_map_entry_t 288 vm_map_entry_create(map) 289 vm_map_t map; 290 { 291 return zalloc((map->system_map || !mapentzone) ? kmapentzone : mapentzone); 292 } 293 294 /* 295 * vm_map_entry_{un,}link: 296 * 297 * Insert/remove entries from maps. 298 */ 299 static __inline void 300 vm_map_entry_link(vm_map_t map, 301 vm_map_entry_t after_where, 302 vm_map_entry_t entry) 303 { 304 map->nentries++; 305 entry->prev = after_where; 306 entry->next = after_where->next; 307 entry->next->prev = entry; 308 after_where->next = entry; 309 } 310 311 static __inline void 312 vm_map_entry_unlink(vm_map_t map, 313 vm_map_entry_t entry) 314 { 315 vm_map_entry_t prev = entry->prev; 316 vm_map_entry_t next = entry->next; 317 318 next->prev = prev; 319 prev->next = next; 320 map->nentries--; 321 } 322 323 /* 324 * SAVE_HINT: 325 * 326 * Saves the specified entry as the hint for 327 * future lookups. 328 */ 329 #define SAVE_HINT(map,value) \ 330 (map)->hint = (value); 331 332 /* 333 * vm_map_lookup_entry: [ internal use only ] 334 * 335 * Finds the map entry containing (or 336 * immediately preceding) the specified address 337 * in the given map; the entry is returned 338 * in the "entry" parameter. The boolean 339 * result indicates whether the address is 340 * actually contained in the map. 341 */ 342 boolean_t 343 vm_map_lookup_entry(map, address, entry) 344 vm_map_t map; 345 vm_offset_t address; 346 vm_map_entry_t *entry; /* OUT */ 347 { 348 vm_map_entry_t cur; 349 vm_map_entry_t last; 350 351 /* 352 * Start looking either from the head of the list, or from the hint. 353 */ 354 355 cur = map->hint; 356 357 if (cur == &map->header) 358 cur = cur->next; 359 360 if (address >= cur->start) { 361 /* 362 * Go from hint to end of list. 363 * 364 * But first, make a quick check to see if we are already looking 365 * at the entry we want (which is usually the case). Note also 366 * that we don't need to save the hint here... it is the same 367 * hint (unless we are at the header, in which case the hint 368 * didn't buy us anything anyway). 369 */ 370 last = &map->header; 371 if ((cur != last) && (cur->end > address)) { 372 *entry = cur; 373 return (TRUE); 374 } 375 } else { 376 /* 377 * Go from start to hint, *inclusively* 378 */ 379 last = cur->next; 380 cur = map->header.next; 381 } 382 383 /* 384 * Search linearly 385 */ 386 387 while (cur != last) { 388 if (cur->end > address) { 389 if (address >= cur->start) { 390 /* 391 * Save this lookup for future hints, and 392 * return 393 */ 394 395 *entry = cur; 396 SAVE_HINT(map, cur); 397 return (TRUE); 398 } 399 break; 400 } 401 cur = cur->next; 402 } 403 *entry = cur->prev; 404 SAVE_HINT(map, *entry); 405 return (FALSE); 406 } 407 408 /* 409 * vm_map_insert: 410 * 411 * Inserts the given whole VM object into the target 412 * map at the specified address range. The object's 413 * size should match that of the address range. 414 * 415 * Requires that the map be locked, and leaves it so. 416 * 417 * If object is non-NULL, ref count must be bumped by caller 418 * prior to making call to account for the new entry. 419 */ 420 int 421 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 422 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, 423 int cow) 424 { 425 vm_map_entry_t new_entry; 426 vm_map_entry_t prev_entry; 427 vm_map_entry_t temp_entry; 428 u_char protoeflags; 429 430 /* 431 * Check that the start and end points are not bogus. 432 */ 433 434 if ((start < map->min_offset) || (end > map->max_offset) || 435 (start >= end)) 436 return (KERN_INVALID_ADDRESS); 437 438 /* 439 * Find the entry prior to the proposed starting address; if it's part 440 * of an existing entry, this range is bogus. 441 */ 442 443 if (vm_map_lookup_entry(map, start, &temp_entry)) 444 return (KERN_NO_SPACE); 445 446 prev_entry = temp_entry; 447 448 /* 449 * Assert that the next entry doesn't overlap the end point. 450 */ 451 452 if ((prev_entry->next != &map->header) && 453 (prev_entry->next->start < end)) 454 return (KERN_NO_SPACE); 455 456 protoeflags = 0; 457 458 if (cow & MAP_COPY_ON_WRITE) 459 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY; 460 461 if (cow & MAP_NOFAULT) { 462 protoeflags |= MAP_ENTRY_NOFAULT; 463 464 KASSERT(object == NULL, 465 ("vm_map_insert: paradoxical MAP_NOFAULT request")); 466 } 467 if (object) { 468 /* 469 * When object is non-NULL, it could be shared with another 470 * process. We have to set or clear OBJ_ONEMAPPING 471 * appropriately. 472 */ 473 if ((object->ref_count > 1) || (object->shadow_count != 0)) { 474 vm_object_clear_flag(object, OBJ_ONEMAPPING); 475 } else { 476 vm_object_set_flag(object, OBJ_ONEMAPPING); 477 } 478 } 479 else if ((prev_entry != &map->header) && 480 (prev_entry->eflags == protoeflags) && 481 (prev_entry->end == start) && 482 (prev_entry->wired_count == 0) && 483 ((prev_entry->object.vm_object == NULL) || 484 vm_object_coalesce(prev_entry->object.vm_object, 485 OFF_TO_IDX(prev_entry->offset), 486 (vm_size_t)(prev_entry->end - prev_entry->start), 487 (vm_size_t)(end - prev_entry->end)))) { 488 /* 489 * We were able to extend the object. Determine if we 490 * can extend the previous map entry to include the 491 * new range as well. 492 */ 493 if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) && 494 (prev_entry->protection == prot) && 495 (prev_entry->max_protection == max)) { 496 map->size += (end - prev_entry->end); 497 prev_entry->end = end; 498 return (KERN_SUCCESS); 499 } 500 501 /* 502 * If we can extend the object but cannot extend the 503 * map entry, we have to create a new map entry. We 504 * must bump the ref count on the extended object to 505 * account for it. 506 */ 507 object = prev_entry->object.vm_object; 508 offset = prev_entry->offset + 509 (prev_entry->end - prev_entry->start); 510 vm_object_reference(object); 511 } 512 513 /* 514 * NOTE: if conditionals fail, object can be NULL here. This occurs 515 * in things like the buffer map where we manage kva but do not manage 516 * backing objects. 517 */ 518 519 /* 520 * Create a new entry 521 */ 522 523 new_entry = vm_map_entry_create(map); 524 new_entry->start = start; 525 new_entry->end = end; 526 527 new_entry->eflags = protoeflags; 528 new_entry->object.vm_object = object; 529 new_entry->offset = offset; 530 new_entry->avail_ssize = 0; 531 532 new_entry->inheritance = VM_INHERIT_DEFAULT; 533 new_entry->protection = prot; 534 new_entry->max_protection = max; 535 new_entry->wired_count = 0; 536 537 /* 538 * Insert the new entry into the list 539 */ 540 541 vm_map_entry_link(map, prev_entry, new_entry); 542 map->size += new_entry->end - new_entry->start; 543 544 /* 545 * Update the free space hint 546 */ 547 if ((map->first_free == prev_entry) && 548 (prev_entry->end >= new_entry->start)) 549 map->first_free = new_entry; 550 551 if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) 552 pmap_object_init_pt(map->pmap, start, 553 object, OFF_TO_IDX(offset), end - start, 554 cow & MAP_PREFAULT_PARTIAL); 555 556 return (KERN_SUCCESS); 557 } 558 559 /* 560 * Find sufficient space for `length' bytes in the given map, starting at 561 * `start'. The map must be locked. Returns 0 on success, 1 on no space. 562 */ 563 int 564 vm_map_findspace(map, start, length, addr) 565 vm_map_t map; 566 vm_offset_t start; 567 vm_size_t length; 568 vm_offset_t *addr; 569 { 570 vm_map_entry_t entry, next; 571 vm_offset_t end; 572 573 if (start < map->min_offset) 574 start = map->min_offset; 575 if (start > map->max_offset) 576 return (1); 577 578 /* 579 * Look for the first possible address; if there's already something 580 * at this address, we have to start after it. 581 */ 582 if (start == map->min_offset) { 583 if ((entry = map->first_free) != &map->header) 584 start = entry->end; 585 } else { 586 vm_map_entry_t tmp; 587 588 if (vm_map_lookup_entry(map, start, &tmp)) 589 start = tmp->end; 590 entry = tmp; 591 } 592 593 /* 594 * Look through the rest of the map, trying to fit a new region in the 595 * gap between existing regions, or after the very last region. 596 */ 597 for (;; start = (entry = next)->end) { 598 /* 599 * Find the end of the proposed new region. Be sure we didn't 600 * go beyond the end of the map, or wrap around the address; 601 * if so, we lose. Otherwise, if this is the last entry, or 602 * if the proposed new region fits before the next entry, we 603 * win. 604 */ 605 end = start + length; 606 if (end > map->max_offset || end < start) 607 return (1); 608 next = entry->next; 609 if (next == &map->header || next->start >= end) 610 break; 611 } 612 SAVE_HINT(map, entry); 613 *addr = start; 614 if (map == kernel_map) { 615 vm_offset_t ksize; 616 if ((ksize = round_page(start + length)) > kernel_vm_end) { 617 pmap_growkernel(ksize); 618 } 619 } 620 return (0); 621 } 622 623 /* 624 * vm_map_find finds an unallocated region in the target address 625 * map with the given length. The search is defined to be 626 * first-fit from the specified address; the region found is 627 * returned in the same parameter. 628 * 629 * If object is non-NULL, ref count must be bumped by caller 630 * prior to making call to account for the new entry. 631 */ 632 int 633 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 634 vm_offset_t *addr, /* IN/OUT */ 635 vm_size_t length, boolean_t find_space, vm_prot_t prot, 636 vm_prot_t max, int cow) 637 { 638 vm_offset_t start; 639 int result, s = 0; 640 641 start = *addr; 642 643 if (map == kmem_map || map == mb_map) 644 s = splvm(); 645 646 vm_map_lock(map); 647 if (find_space) { 648 if (vm_map_findspace(map, start, length, addr)) { 649 vm_map_unlock(map); 650 if (map == kmem_map || map == mb_map) 651 splx(s); 652 return (KERN_NO_SPACE); 653 } 654 start = *addr; 655 } 656 result = vm_map_insert(map, object, offset, 657 start, start + length, prot, max, cow); 658 vm_map_unlock(map); 659 660 if (map == kmem_map || map == mb_map) 661 splx(s); 662 663 return (result); 664 } 665 666 /* 667 * vm_map_simplify_entry: 668 * 669 * Simplify the given map entry by merging with either neighbor. 670 */ 671 void 672 vm_map_simplify_entry(map, entry) 673 vm_map_t map; 674 vm_map_entry_t entry; 675 { 676 vm_map_entry_t next, prev; 677 vm_size_t prevsize, esize; 678 679 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 680 return; 681 682 prev = entry->prev; 683 if (prev != &map->header) { 684 prevsize = prev->end - prev->start; 685 if ( (prev->end == entry->start) && 686 (prev->object.vm_object == entry->object.vm_object) && 687 (!prev->object.vm_object || 688 (prev->offset + prevsize == entry->offset)) && 689 (prev->eflags == entry->eflags) && 690 (prev->protection == entry->protection) && 691 (prev->max_protection == entry->max_protection) && 692 (prev->inheritance == entry->inheritance) && 693 (prev->wired_count == entry->wired_count)) { 694 if (map->first_free == prev) 695 map->first_free = entry; 696 if (map->hint == prev) 697 map->hint = entry; 698 vm_map_entry_unlink(map, prev); 699 entry->start = prev->start; 700 entry->offset = prev->offset; 701 if (prev->object.vm_object) 702 vm_object_deallocate(prev->object.vm_object); 703 vm_map_entry_dispose(map, prev); 704 } 705 } 706 707 next = entry->next; 708 if (next != &map->header) { 709 esize = entry->end - entry->start; 710 if ((entry->end == next->start) && 711 (next->object.vm_object == entry->object.vm_object) && 712 (!entry->object.vm_object || 713 (entry->offset + esize == next->offset)) && 714 (next->eflags == entry->eflags) && 715 (next->protection == entry->protection) && 716 (next->max_protection == entry->max_protection) && 717 (next->inheritance == entry->inheritance) && 718 (next->wired_count == entry->wired_count)) { 719 if (map->first_free == next) 720 map->first_free = entry; 721 if (map->hint == next) 722 map->hint = entry; 723 vm_map_entry_unlink(map, next); 724 entry->end = next->end; 725 if (next->object.vm_object) 726 vm_object_deallocate(next->object.vm_object); 727 vm_map_entry_dispose(map, next); 728 } 729 } 730 } 731 /* 732 * vm_map_clip_start: [ internal use only ] 733 * 734 * Asserts that the given entry begins at or after 735 * the specified address; if necessary, 736 * it splits the entry into two. 737 */ 738 #define vm_map_clip_start(map, entry, startaddr) \ 739 { \ 740 if (startaddr > entry->start) \ 741 _vm_map_clip_start(map, entry, startaddr); \ 742 else if (entry->object.vm_object && (entry->object.vm_object->ref_count == 1)) \ 743 vm_object_set_flag(entry->object.vm_object, OBJ_ONEMAPPING); \ 744 } 745 746 /* 747 * This routine is called only when it is known that 748 * the entry must be split. 749 */ 750 static void 751 _vm_map_clip_start(map, entry, start) 752 vm_map_t map; 753 vm_map_entry_t entry; 754 vm_offset_t start; 755 { 756 vm_map_entry_t new_entry; 757 758 /* 759 * Split off the front portion -- note that we must insert the new 760 * entry BEFORE this one, so that this entry has the specified 761 * starting address. 762 */ 763 764 vm_map_simplify_entry(map, entry); 765 766 /* 767 * If there is no object backing this entry, we might as well create 768 * one now. If we defer it, an object can get created after the map 769 * is clipped, and individual objects will be created for the split-up 770 * map. This is a bit of a hack, but is also about the best place to 771 * put this improvement. 772 */ 773 774 if (entry->object.vm_object == NULL) { 775 vm_object_t object; 776 object = vm_object_allocate(OBJT_DEFAULT, 777 atop(entry->end - entry->start)); 778 entry->object.vm_object = object; 779 entry->offset = 0; 780 } 781 782 new_entry = vm_map_entry_create(map); 783 *new_entry = *entry; 784 785 new_entry->end = start; 786 entry->offset += (start - entry->start); 787 entry->start = start; 788 789 vm_map_entry_link(map, entry->prev, new_entry); 790 791 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 792 if (new_entry->object.vm_object->ref_count == 1) 793 vm_object_set_flag(new_entry->object.vm_object, 794 OBJ_ONEMAPPING); 795 vm_object_reference(new_entry->object.vm_object); 796 } 797 } 798 799 /* 800 * vm_map_clip_end: [ internal use only ] 801 * 802 * Asserts that the given entry ends at or before 803 * the specified address; if necessary, 804 * it splits the entry into two. 805 */ 806 807 #define vm_map_clip_end(map, entry, endaddr) \ 808 { \ 809 if (endaddr < entry->end) \ 810 _vm_map_clip_end(map, entry, endaddr); \ 811 else if (entry->object.vm_object && (entry->object.vm_object->ref_count == 1)) \ 812 vm_object_set_flag(entry->object.vm_object, OBJ_ONEMAPPING); \ 813 } 814 815 /* 816 * This routine is called only when it is known that 817 * the entry must be split. 818 */ 819 static void 820 _vm_map_clip_end(map, entry, end) 821 vm_map_t map; 822 vm_map_entry_t entry; 823 vm_offset_t end; 824 { 825 vm_map_entry_t new_entry; 826 827 /* 828 * If there is no object backing this entry, we might as well create 829 * one now. If we defer it, an object can get created after the map 830 * is clipped, and individual objects will be created for the split-up 831 * map. This is a bit of a hack, but is also about the best place to 832 * put this improvement. 833 */ 834 835 if (entry->object.vm_object == NULL) { 836 vm_object_t object; 837 object = vm_object_allocate(OBJT_DEFAULT, 838 atop(entry->end - entry->start)); 839 entry->object.vm_object = object; 840 entry->offset = 0; 841 } 842 843 /* 844 * Create a new entry and insert it AFTER the specified entry 845 */ 846 847 new_entry = vm_map_entry_create(map); 848 *new_entry = *entry; 849 850 new_entry->start = entry->end = end; 851 new_entry->offset += (end - entry->start); 852 853 vm_map_entry_link(map, entry, new_entry); 854 855 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 856 if (new_entry->object.vm_object->ref_count == 1) 857 vm_object_set_flag(new_entry->object.vm_object, 858 OBJ_ONEMAPPING); 859 vm_object_reference(new_entry->object.vm_object); 860 } 861 } 862 863 /* 864 * VM_MAP_RANGE_CHECK: [ internal use only ] 865 * 866 * Asserts that the starting and ending region 867 * addresses fall within the valid range of the map. 868 */ 869 #define VM_MAP_RANGE_CHECK(map, start, end) \ 870 { \ 871 if (start < vm_map_min(map)) \ 872 start = vm_map_min(map); \ 873 if (end > vm_map_max(map)) \ 874 end = vm_map_max(map); \ 875 if (start > end) \ 876 start = end; \ 877 } 878 879 /* 880 * vm_map_submap: [ kernel use only ] 881 * 882 * Mark the given range as handled by a subordinate map. 883 * 884 * This range must have been created with vm_map_find, 885 * and no other operations may have been performed on this 886 * range prior to calling vm_map_submap. 887 * 888 * Only a limited number of operations can be performed 889 * within this rage after calling vm_map_submap: 890 * vm_fault 891 * [Don't try vm_map_copy!] 892 * 893 * To remove a submapping, one must first remove the 894 * range from the superior map, and then destroy the 895 * submap (if desired). [Better yet, don't try it.] 896 */ 897 int 898 vm_map_submap(map, start, end, submap) 899 vm_map_t map; 900 vm_offset_t start; 901 vm_offset_t end; 902 vm_map_t submap; 903 { 904 vm_map_entry_t entry; 905 int result = KERN_INVALID_ARGUMENT; 906 907 vm_map_lock(map); 908 909 VM_MAP_RANGE_CHECK(map, start, end); 910 911 if (vm_map_lookup_entry(map, start, &entry)) { 912 vm_map_clip_start(map, entry, start); 913 } else 914 entry = entry->next; 915 916 vm_map_clip_end(map, entry, end); 917 918 if ((entry->start == start) && (entry->end == end) && 919 ((entry->eflags & MAP_ENTRY_COW) == 0) && 920 (entry->object.vm_object == NULL)) { 921 entry->object.sub_map = submap; 922 entry->eflags |= MAP_ENTRY_IS_SUB_MAP; 923 result = KERN_SUCCESS; 924 } 925 vm_map_unlock(map); 926 927 return (result); 928 } 929 930 /* 931 * vm_map_protect: 932 * 933 * Sets the protection of the specified address 934 * region in the target map. If "set_max" is 935 * specified, the maximum protection is to be set; 936 * otherwise, only the current protection is affected. 937 */ 938 int 939 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 940 vm_prot_t new_prot, boolean_t set_max) 941 { 942 vm_map_entry_t current; 943 vm_map_entry_t entry; 944 945 vm_map_lock(map); 946 947 VM_MAP_RANGE_CHECK(map, start, end); 948 949 if (vm_map_lookup_entry(map, start, &entry)) { 950 vm_map_clip_start(map, entry, start); 951 } else { 952 entry = entry->next; 953 } 954 955 /* 956 * Make a first pass to check for protection violations. 957 */ 958 959 current = entry; 960 while ((current != &map->header) && (current->start < end)) { 961 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 962 vm_map_unlock(map); 963 return (KERN_INVALID_ARGUMENT); 964 } 965 if ((new_prot & current->max_protection) != new_prot) { 966 vm_map_unlock(map); 967 return (KERN_PROTECTION_FAILURE); 968 } 969 current = current->next; 970 } 971 972 /* 973 * Go back and fix up protections. [Note that clipping is not 974 * necessary the second time.] 975 */ 976 977 current = entry; 978 979 while ((current != &map->header) && (current->start < end)) { 980 vm_prot_t old_prot; 981 982 vm_map_clip_end(map, current, end); 983 984 old_prot = current->protection; 985 if (set_max) 986 current->protection = 987 (current->max_protection = new_prot) & 988 old_prot; 989 else 990 current->protection = new_prot; 991 992 /* 993 * Update physical map if necessary. Worry about copy-on-write 994 * here -- CHECK THIS XXX 995 */ 996 997 if (current->protection != old_prot) { 998 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 999 VM_PROT_ALL) 1000 1001 pmap_protect(map->pmap, current->start, 1002 current->end, 1003 current->protection & MASK(current)); 1004 #undef MASK 1005 } 1006 1007 vm_map_simplify_entry(map, current); 1008 1009 current = current->next; 1010 } 1011 1012 vm_map_unlock(map); 1013 return (KERN_SUCCESS); 1014 } 1015 1016 /* 1017 * vm_map_madvise: 1018 * 1019 * This routine traverses a processes map handling the madvise 1020 * system call. 1021 */ 1022 void 1023 vm_map_madvise(map, start, end, advise) 1024 vm_map_t map; 1025 vm_offset_t start, end; 1026 int advise; 1027 { 1028 vm_map_entry_t current; 1029 vm_map_entry_t entry; 1030 1031 vm_map_lock(map); 1032 1033 VM_MAP_RANGE_CHECK(map, start, end); 1034 1035 if (vm_map_lookup_entry(map, start, &entry)) { 1036 vm_map_clip_start(map, entry, start); 1037 } else 1038 entry = entry->next; 1039 1040 for(current = entry; 1041 (current != &map->header) && (current->start < end); 1042 current = current->next) { 1043 vm_size_t size; 1044 1045 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 1046 continue; 1047 } 1048 1049 vm_map_clip_end(map, current, end); 1050 size = current->end - current->start; 1051 1052 /* 1053 * Create an object if needed 1054 */ 1055 if (current->object.vm_object == NULL) { 1056 vm_object_t object; 1057 if ((advise == MADV_FREE) || (advise == MADV_DONTNEED)) 1058 continue; 1059 object = vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(size)); 1060 current->object.vm_object = object; 1061 current->offset = 0; 1062 } 1063 1064 switch (advise) { 1065 case MADV_NORMAL: 1066 current->object.vm_object->behavior = OBJ_NORMAL; 1067 break; 1068 case MADV_SEQUENTIAL: 1069 current->object.vm_object->behavior = OBJ_SEQUENTIAL; 1070 break; 1071 case MADV_RANDOM: 1072 current->object.vm_object->behavior = OBJ_RANDOM; 1073 break; 1074 /* 1075 * Right now, we could handle DONTNEED and WILLNEED with common code. 1076 * They are mostly the same, except for the potential async reads (NYI). 1077 */ 1078 case MADV_FREE: 1079 case MADV_DONTNEED: 1080 { 1081 vm_pindex_t pindex; 1082 int count; 1083 pindex = OFF_TO_IDX(current->offset); 1084 count = OFF_TO_IDX(size); 1085 /* 1086 * MADV_DONTNEED removes the page from all 1087 * pmaps, so pmap_remove is not necessary. 1088 */ 1089 vm_object_madvise(current->object.vm_object, 1090 pindex, count, advise); 1091 } 1092 break; 1093 1094 case MADV_WILLNEED: 1095 { 1096 vm_pindex_t pindex; 1097 int count; 1098 pindex = OFF_TO_IDX(current->offset); 1099 count = OFF_TO_IDX(size); 1100 vm_object_madvise(current->object.vm_object, 1101 pindex, count, advise); 1102 pmap_object_init_pt(map->pmap, current->start, 1103 current->object.vm_object, pindex, 1104 (count << PAGE_SHIFT), 0); 1105 } 1106 break; 1107 1108 default: 1109 break; 1110 } 1111 } 1112 1113 vm_map_simplify_entry(map, entry); 1114 vm_map_unlock(map); 1115 return; 1116 } 1117 1118 1119 /* 1120 * vm_map_inherit: 1121 * 1122 * Sets the inheritance of the specified address 1123 * range in the target map. Inheritance 1124 * affects how the map will be shared with 1125 * child maps at the time of vm_map_fork. 1126 */ 1127 int 1128 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 1129 vm_inherit_t new_inheritance) 1130 { 1131 vm_map_entry_t entry; 1132 vm_map_entry_t temp_entry; 1133 1134 switch (new_inheritance) { 1135 case VM_INHERIT_NONE: 1136 case VM_INHERIT_COPY: 1137 case VM_INHERIT_SHARE: 1138 break; 1139 default: 1140 return (KERN_INVALID_ARGUMENT); 1141 } 1142 1143 vm_map_lock(map); 1144 1145 VM_MAP_RANGE_CHECK(map, start, end); 1146 1147 if (vm_map_lookup_entry(map, start, &temp_entry)) { 1148 entry = temp_entry; 1149 vm_map_clip_start(map, entry, start); 1150 } else 1151 entry = temp_entry->next; 1152 1153 while ((entry != &map->header) && (entry->start < end)) { 1154 vm_map_clip_end(map, entry, end); 1155 1156 entry->inheritance = new_inheritance; 1157 1158 vm_map_simplify_entry(map, entry); 1159 1160 entry = entry->next; 1161 } 1162 1163 vm_map_unlock(map); 1164 return (KERN_SUCCESS); 1165 } 1166 1167 /* 1168 * Implement the semantics of mlock 1169 */ 1170 int 1171 vm_map_user_pageable(map, start, end, new_pageable) 1172 vm_map_t map; 1173 vm_offset_t start; 1174 vm_offset_t end; 1175 boolean_t new_pageable; 1176 { 1177 vm_map_entry_t entry; 1178 vm_map_entry_t start_entry; 1179 vm_offset_t estart; 1180 int rv; 1181 1182 vm_map_lock(map); 1183 VM_MAP_RANGE_CHECK(map, start, end); 1184 1185 if (vm_map_lookup_entry(map, start, &start_entry) == FALSE) { 1186 vm_map_unlock(map); 1187 return (KERN_INVALID_ADDRESS); 1188 } 1189 1190 if (new_pageable) { 1191 1192 entry = start_entry; 1193 vm_map_clip_start(map, entry, start); 1194 1195 /* 1196 * Now decrement the wiring count for each region. If a region 1197 * becomes completely unwired, unwire its physical pages and 1198 * mappings. 1199 */ 1200 while ((entry != &map->header) && (entry->start < end)) { 1201 if (entry->eflags & MAP_ENTRY_USER_WIRED) { 1202 vm_map_clip_end(map, entry, end); 1203 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 1204 entry->wired_count--; 1205 if (entry->wired_count == 0) 1206 vm_fault_unwire(map, entry->start, entry->end); 1207 } 1208 vm_map_simplify_entry(map,entry); 1209 entry = entry->next; 1210 } 1211 } else { 1212 1213 entry = start_entry; 1214 1215 while ((entry != &map->header) && (entry->start < end)) { 1216 1217 if (entry->eflags & MAP_ENTRY_USER_WIRED) { 1218 entry = entry->next; 1219 continue; 1220 } 1221 1222 if (entry->wired_count != 0) { 1223 entry->wired_count++; 1224 entry->eflags |= MAP_ENTRY_USER_WIRED; 1225 entry = entry->next; 1226 continue; 1227 } 1228 1229 /* Here on entry being newly wired */ 1230 1231 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1232 int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY; 1233 if (copyflag && ((entry->protection & VM_PROT_WRITE) != 0)) { 1234 1235 vm_object_shadow(&entry->object.vm_object, 1236 &entry->offset, 1237 atop(entry->end - entry->start)); 1238 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 1239 1240 } else if (entry->object.vm_object == NULL) { 1241 1242 entry->object.vm_object = 1243 vm_object_allocate(OBJT_DEFAULT, 1244 atop(entry->end - entry->start)); 1245 entry->offset = (vm_offset_t) 0; 1246 1247 } 1248 } 1249 1250 vm_map_clip_start(map, entry, start); 1251 vm_map_clip_end(map, entry, end); 1252 1253 entry->wired_count++; 1254 entry->eflags |= MAP_ENTRY_USER_WIRED; 1255 estart = entry->start; 1256 1257 /* First we need to allow map modifications */ 1258 vm_map_set_recursive(map); 1259 vm_map_lock_downgrade(map); 1260 map->timestamp++; 1261 1262 rv = vm_fault_user_wire(map, entry->start, entry->end); 1263 if (rv) { 1264 1265 entry->wired_count--; 1266 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 1267 1268 vm_map_clear_recursive(map); 1269 vm_map_unlock(map); 1270 1271 (void) vm_map_user_pageable(map, start, entry->start, TRUE); 1272 return rv; 1273 } 1274 1275 vm_map_clear_recursive(map); 1276 if (vm_map_lock_upgrade(map)) { 1277 vm_map_lock(map); 1278 if (vm_map_lookup_entry(map, estart, &entry) 1279 == FALSE) { 1280 vm_map_unlock(map); 1281 (void) vm_map_user_pageable(map, 1282 start, 1283 estart, 1284 TRUE); 1285 return (KERN_INVALID_ADDRESS); 1286 } 1287 } 1288 vm_map_simplify_entry(map,entry); 1289 } 1290 } 1291 map->timestamp++; 1292 vm_map_unlock(map); 1293 return KERN_SUCCESS; 1294 } 1295 1296 /* 1297 * vm_map_pageable: 1298 * 1299 * Sets the pageability of the specified address 1300 * range in the target map. Regions specified 1301 * as not pageable require locked-down physical 1302 * memory and physical page maps. 1303 * 1304 * The map must not be locked, but a reference 1305 * must remain to the map throughout the call. 1306 */ 1307 int 1308 vm_map_pageable(map, start, end, new_pageable) 1309 vm_map_t map; 1310 vm_offset_t start; 1311 vm_offset_t end; 1312 boolean_t new_pageable; 1313 { 1314 vm_map_entry_t entry; 1315 vm_map_entry_t start_entry; 1316 vm_offset_t failed = 0; 1317 int rv; 1318 1319 vm_map_lock(map); 1320 1321 VM_MAP_RANGE_CHECK(map, start, end); 1322 1323 /* 1324 * Only one pageability change may take place at one time, since 1325 * vm_fault assumes it will be called only once for each 1326 * wiring/unwiring. Therefore, we have to make sure we're actually 1327 * changing the pageability for the entire region. We do so before 1328 * making any changes. 1329 */ 1330 1331 if (vm_map_lookup_entry(map, start, &start_entry) == FALSE) { 1332 vm_map_unlock(map); 1333 return (KERN_INVALID_ADDRESS); 1334 } 1335 entry = start_entry; 1336 1337 /* 1338 * Actions are rather different for wiring and unwiring, so we have 1339 * two separate cases. 1340 */ 1341 1342 if (new_pageable) { 1343 1344 vm_map_clip_start(map, entry, start); 1345 1346 /* 1347 * Unwiring. First ensure that the range to be unwired is 1348 * really wired down and that there are no holes. 1349 */ 1350 while ((entry != &map->header) && (entry->start < end)) { 1351 1352 if (entry->wired_count == 0 || 1353 (entry->end < end && 1354 (entry->next == &map->header || 1355 entry->next->start > entry->end))) { 1356 vm_map_unlock(map); 1357 return (KERN_INVALID_ARGUMENT); 1358 } 1359 entry = entry->next; 1360 } 1361 1362 /* 1363 * Now decrement the wiring count for each region. If a region 1364 * becomes completely unwired, unwire its physical pages and 1365 * mappings. 1366 */ 1367 entry = start_entry; 1368 while ((entry != &map->header) && (entry->start < end)) { 1369 vm_map_clip_end(map, entry, end); 1370 1371 entry->wired_count--; 1372 if (entry->wired_count == 0) 1373 vm_fault_unwire(map, entry->start, entry->end); 1374 1375 vm_map_simplify_entry(map, entry); 1376 1377 entry = entry->next; 1378 } 1379 } else { 1380 /* 1381 * Wiring. We must do this in two passes: 1382 * 1383 * 1. Holding the write lock, we create any shadow or zero-fill 1384 * objects that need to be created. Then we clip each map 1385 * entry to the region to be wired and increment its wiring 1386 * count. We create objects before clipping the map entries 1387 * to avoid object proliferation. 1388 * 1389 * 2. We downgrade to a read lock, and call vm_fault_wire to 1390 * fault in the pages for any newly wired area (wired_count is 1391 * 1). 1392 * 1393 * Downgrading to a read lock for vm_fault_wire avoids a possible 1394 * deadlock with another process that may have faulted on one 1395 * of the pages to be wired (it would mark the page busy, 1396 * blocking us, then in turn block on the map lock that we 1397 * hold). Because of problems in the recursive lock package, 1398 * we cannot upgrade to a write lock in vm_map_lookup. Thus, 1399 * any actions that require the write lock must be done 1400 * beforehand. Because we keep the read lock on the map, the 1401 * copy-on-write status of the entries we modify here cannot 1402 * change. 1403 */ 1404 1405 /* 1406 * Pass 1. 1407 */ 1408 while ((entry != &map->header) && (entry->start < end)) { 1409 if (entry->wired_count == 0) { 1410 1411 /* 1412 * Perform actions of vm_map_lookup that need 1413 * the write lock on the map: create a shadow 1414 * object for a copy-on-write region, or an 1415 * object for a zero-fill region. 1416 * 1417 * We don't have to do this for entries that 1418 * point to sub maps, because we won't 1419 * hold the lock on the sub map. 1420 */ 1421 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1422 int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY; 1423 if (copyflag && 1424 ((entry->protection & VM_PROT_WRITE) != 0)) { 1425 1426 vm_object_shadow(&entry->object.vm_object, 1427 &entry->offset, 1428 atop(entry->end - entry->start)); 1429 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 1430 } else if (entry->object.vm_object == NULL) { 1431 entry->object.vm_object = 1432 vm_object_allocate(OBJT_DEFAULT, 1433 atop(entry->end - entry->start)); 1434 entry->offset = (vm_offset_t) 0; 1435 } 1436 } 1437 } 1438 vm_map_clip_start(map, entry, start); 1439 vm_map_clip_end(map, entry, end); 1440 entry->wired_count++; 1441 1442 /* 1443 * Check for holes 1444 */ 1445 if (entry->end < end && 1446 (entry->next == &map->header || 1447 entry->next->start > entry->end)) { 1448 /* 1449 * Found one. Object creation actions do not 1450 * need to be undone, but the wired counts 1451 * need to be restored. 1452 */ 1453 while (entry != &map->header && entry->end > start) { 1454 entry->wired_count--; 1455 entry = entry->prev; 1456 } 1457 vm_map_unlock(map); 1458 return (KERN_INVALID_ARGUMENT); 1459 } 1460 entry = entry->next; 1461 } 1462 1463 /* 1464 * Pass 2. 1465 */ 1466 1467 /* 1468 * HACK HACK HACK HACK 1469 * 1470 * If we are wiring in the kernel map or a submap of it, 1471 * unlock the map to avoid deadlocks. We trust that the 1472 * kernel is well-behaved, and therefore will not do 1473 * anything destructive to this region of the map while 1474 * we have it unlocked. We cannot trust user processes 1475 * to do the same. 1476 * 1477 * HACK HACK HACK HACK 1478 */ 1479 if (vm_map_pmap(map) == kernel_pmap) { 1480 vm_map_unlock(map); /* trust me ... */ 1481 } else { 1482 vm_map_set_recursive(map); 1483 vm_map_lock_downgrade(map); 1484 } 1485 1486 rv = 0; 1487 entry = start_entry; 1488 while (entry != &map->header && entry->start < end) { 1489 /* 1490 * If vm_fault_wire fails for any page we need to undo 1491 * what has been done. We decrement the wiring count 1492 * for those pages which have not yet been wired (now) 1493 * and unwire those that have (later). 1494 * 1495 * XXX this violates the locking protocol on the map, 1496 * needs to be fixed. 1497 */ 1498 if (rv) 1499 entry->wired_count--; 1500 else if (entry->wired_count == 1) { 1501 rv = vm_fault_wire(map, entry->start, entry->end); 1502 if (rv) { 1503 failed = entry->start; 1504 entry->wired_count--; 1505 } 1506 } 1507 entry = entry->next; 1508 } 1509 1510 if (vm_map_pmap(map) == kernel_pmap) { 1511 vm_map_lock(map); 1512 } else { 1513 vm_map_clear_recursive(map); 1514 } 1515 if (rv) { 1516 vm_map_unlock(map); 1517 (void) vm_map_pageable(map, start, failed, TRUE); 1518 return (rv); 1519 } 1520 vm_map_simplify_entry(map, start_entry); 1521 } 1522 1523 vm_map_unlock(map); 1524 1525 return (KERN_SUCCESS); 1526 } 1527 1528 /* 1529 * vm_map_clean 1530 * 1531 * Push any dirty cached pages in the address range to their pager. 1532 * If syncio is TRUE, dirty pages are written synchronously. 1533 * If invalidate is TRUE, any cached pages are freed as well. 1534 * 1535 * Returns an error if any part of the specified range is not mapped. 1536 */ 1537 int 1538 vm_map_clean(map, start, end, syncio, invalidate) 1539 vm_map_t map; 1540 vm_offset_t start; 1541 vm_offset_t end; 1542 boolean_t syncio; 1543 boolean_t invalidate; 1544 { 1545 vm_map_entry_t current; 1546 vm_map_entry_t entry; 1547 vm_size_t size; 1548 vm_object_t object; 1549 vm_ooffset_t offset; 1550 1551 vm_map_lock_read(map); 1552 VM_MAP_RANGE_CHECK(map, start, end); 1553 if (!vm_map_lookup_entry(map, start, &entry)) { 1554 vm_map_unlock_read(map); 1555 return (KERN_INVALID_ADDRESS); 1556 } 1557 /* 1558 * Make a first pass to check for holes. 1559 */ 1560 for (current = entry; current->start < end; current = current->next) { 1561 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 1562 vm_map_unlock_read(map); 1563 return (KERN_INVALID_ARGUMENT); 1564 } 1565 if (end > current->end && 1566 (current->next == &map->header || 1567 current->end != current->next->start)) { 1568 vm_map_unlock_read(map); 1569 return (KERN_INVALID_ADDRESS); 1570 } 1571 } 1572 1573 if (invalidate) 1574 pmap_remove(vm_map_pmap(map), start, end); 1575 /* 1576 * Make a second pass, cleaning/uncaching pages from the indicated 1577 * objects as we go. 1578 */ 1579 for (current = entry; current->start < end; current = current->next) { 1580 offset = current->offset + (start - current->start); 1581 size = (end <= current->end ? end : current->end) - start; 1582 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 1583 vm_map_t smap; 1584 vm_map_entry_t tentry; 1585 vm_size_t tsize; 1586 1587 smap = current->object.sub_map; 1588 vm_map_lock_read(smap); 1589 (void) vm_map_lookup_entry(smap, offset, &tentry); 1590 tsize = tentry->end - offset; 1591 if (tsize < size) 1592 size = tsize; 1593 object = tentry->object.vm_object; 1594 offset = tentry->offset + (offset - tentry->start); 1595 vm_map_unlock_read(smap); 1596 } else { 1597 object = current->object.vm_object; 1598 } 1599 /* 1600 * Note that there is absolutely no sense in writing out 1601 * anonymous objects, so we track down the vnode object 1602 * to write out. 1603 * We invalidate (remove) all pages from the address space 1604 * anyway, for semantic correctness. 1605 */ 1606 while (object->backing_object) { 1607 object = object->backing_object; 1608 offset += object->backing_object_offset; 1609 if (object->size < OFF_TO_IDX( offset + size)) 1610 size = IDX_TO_OFF(object->size) - offset; 1611 } 1612 if (object && (object->type == OBJT_VNODE)) { 1613 /* 1614 * Flush pages if writing is allowed. XXX should we continue 1615 * on an error? 1616 * 1617 * XXX Doing async I/O and then removing all the pages from 1618 * the object before it completes is probably a very bad 1619 * idea. 1620 */ 1621 if (current->protection & VM_PROT_WRITE) { 1622 int flags; 1623 if (object->type == OBJT_VNODE) 1624 vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY, curproc); 1625 flags = (syncio || invalidate) ? OBJPC_SYNC : 0; 1626 flags |= invalidate ? OBJPC_INVAL : 0; 1627 vm_object_page_clean(object, 1628 OFF_TO_IDX(offset), 1629 OFF_TO_IDX(offset + size + PAGE_MASK), 1630 flags); 1631 if (invalidate) { 1632 vm_object_pip_wait(object, "objmcl"); 1633 vm_object_page_remove(object, 1634 OFF_TO_IDX(offset), 1635 OFF_TO_IDX(offset + size + PAGE_MASK), 1636 FALSE); 1637 } 1638 if (object->type == OBJT_VNODE) 1639 VOP_UNLOCK(object->handle, 0, curproc); 1640 } 1641 } 1642 start += size; 1643 } 1644 1645 vm_map_unlock_read(map); 1646 return (KERN_SUCCESS); 1647 } 1648 1649 /* 1650 * vm_map_entry_unwire: [ internal use only ] 1651 * 1652 * Make the region specified by this entry pageable. 1653 * 1654 * The map in question should be locked. 1655 * [This is the reason for this routine's existence.] 1656 */ 1657 static void 1658 vm_map_entry_unwire(map, entry) 1659 vm_map_t map; 1660 vm_map_entry_t entry; 1661 { 1662 vm_fault_unwire(map, entry->start, entry->end); 1663 entry->wired_count = 0; 1664 } 1665 1666 /* 1667 * vm_map_entry_delete: [ internal use only ] 1668 * 1669 * Deallocate the given entry from the target map. 1670 */ 1671 static void 1672 vm_map_entry_delete(map, entry) 1673 vm_map_t map; 1674 vm_map_entry_t entry; 1675 { 1676 vm_map_entry_unlink(map, entry); 1677 map->size -= entry->end - entry->start; 1678 1679 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1680 vm_object_deallocate(entry->object.vm_object); 1681 } 1682 1683 vm_map_entry_dispose(map, entry); 1684 } 1685 1686 /* 1687 * vm_map_delete: [ internal use only ] 1688 * 1689 * Deallocates the given address range from the target 1690 * map. 1691 */ 1692 int 1693 vm_map_delete(map, start, end) 1694 vm_map_t map; 1695 vm_offset_t start; 1696 vm_offset_t end; 1697 { 1698 vm_object_t object; 1699 vm_map_entry_t entry; 1700 vm_map_entry_t first_entry; 1701 1702 /* 1703 * Find the start of the region, and clip it 1704 */ 1705 1706 if (!vm_map_lookup_entry(map, start, &first_entry)) 1707 entry = first_entry->next; 1708 else { 1709 entry = first_entry; 1710 vm_map_clip_start(map, entry, start); 1711 /* 1712 * Fix the lookup hint now, rather than each time though the 1713 * loop. 1714 */ 1715 SAVE_HINT(map, entry->prev); 1716 } 1717 1718 /* 1719 * Save the free space hint 1720 */ 1721 1722 if (entry == &map->header) { 1723 map->first_free = &map->header; 1724 } else if (map->first_free->start >= start) { 1725 map->first_free = entry->prev; 1726 } 1727 1728 /* 1729 * Step through all entries in this region 1730 */ 1731 1732 while ((entry != &map->header) && (entry->start < end)) { 1733 vm_map_entry_t next; 1734 vm_offset_t s, e; 1735 vm_pindex_t offidxstart, offidxend, count; 1736 1737 vm_map_clip_end(map, entry, end); 1738 1739 s = entry->start; 1740 e = entry->end; 1741 next = entry->next; 1742 1743 offidxstart = OFF_TO_IDX(entry->offset); 1744 count = OFF_TO_IDX(e - s); 1745 object = entry->object.vm_object; 1746 1747 /* 1748 * Unwire before removing addresses from the pmap; otherwise, 1749 * unwiring will put the entries back in the pmap. 1750 */ 1751 if (entry->wired_count != 0) { 1752 vm_map_entry_unwire(map, entry); 1753 } 1754 1755 offidxend = offidxstart + count; 1756 1757 if ((object == kernel_object) || (object == kmem_object)) { 1758 vm_object_page_remove(object, offidxstart, offidxend, FALSE); 1759 } else { 1760 pmap_remove(map->pmap, s, e); 1761 if (object != NULL && 1762 object->ref_count != 1 && 1763 (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING && 1764 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) { 1765 vm_object_collapse(object); 1766 vm_object_page_remove(object, offidxstart, offidxend, FALSE); 1767 if (object->type == OBJT_SWAP) { 1768 swap_pager_freespace(object, offidxstart, count); 1769 } 1770 if (offidxend >= object->size && 1771 offidxstart < object->size) { 1772 object->size = offidxstart; 1773 } 1774 } 1775 } 1776 1777 /* 1778 * Delete the entry (which may delete the object) only after 1779 * removing all pmap entries pointing to its pages. 1780 * (Otherwise, its page frames may be reallocated, and any 1781 * modify bits will be set in the wrong object!) 1782 */ 1783 vm_map_entry_delete(map, entry); 1784 entry = next; 1785 } 1786 return (KERN_SUCCESS); 1787 } 1788 1789 /* 1790 * vm_map_remove: 1791 * 1792 * Remove the given address range from the target map. 1793 * This is the exported form of vm_map_delete. 1794 */ 1795 int 1796 vm_map_remove(map, start, end) 1797 vm_map_t map; 1798 vm_offset_t start; 1799 vm_offset_t end; 1800 { 1801 int result, s = 0; 1802 1803 if (map == kmem_map || map == mb_map) 1804 s = splvm(); 1805 1806 vm_map_lock(map); 1807 VM_MAP_RANGE_CHECK(map, start, end); 1808 result = vm_map_delete(map, start, end); 1809 vm_map_unlock(map); 1810 1811 if (map == kmem_map || map == mb_map) 1812 splx(s); 1813 1814 return (result); 1815 } 1816 1817 /* 1818 * vm_map_check_protection: 1819 * 1820 * Assert that the target map allows the specified 1821 * privilege on the entire address region given. 1822 * The entire region must be allocated. 1823 */ 1824 boolean_t 1825 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 1826 vm_prot_t protection) 1827 { 1828 vm_map_entry_t entry; 1829 vm_map_entry_t tmp_entry; 1830 1831 if (!vm_map_lookup_entry(map, start, &tmp_entry)) { 1832 return (FALSE); 1833 } 1834 entry = tmp_entry; 1835 1836 while (start < end) { 1837 if (entry == &map->header) { 1838 return (FALSE); 1839 } 1840 /* 1841 * No holes allowed! 1842 */ 1843 1844 if (start < entry->start) { 1845 return (FALSE); 1846 } 1847 /* 1848 * Check protection associated with entry. 1849 */ 1850 1851 if ((entry->protection & protection) != protection) { 1852 return (FALSE); 1853 } 1854 /* go to next entry */ 1855 1856 start = entry->end; 1857 entry = entry->next; 1858 } 1859 return (TRUE); 1860 } 1861 1862 /* 1863 * Split the pages in a map entry into a new object. This affords 1864 * easier removal of unused pages, and keeps object inheritance from 1865 * being a negative impact on memory usage. 1866 */ 1867 static void 1868 vm_map_split(entry) 1869 vm_map_entry_t entry; 1870 { 1871 vm_page_t m; 1872 vm_object_t orig_object, new_object, source; 1873 vm_offset_t s, e; 1874 vm_pindex_t offidxstart, offidxend, idx; 1875 vm_size_t size; 1876 vm_ooffset_t offset; 1877 1878 orig_object = entry->object.vm_object; 1879 if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP) 1880 return; 1881 if (orig_object->ref_count <= 1) 1882 return; 1883 1884 offset = entry->offset; 1885 s = entry->start; 1886 e = entry->end; 1887 1888 offidxstart = OFF_TO_IDX(offset); 1889 offidxend = offidxstart + OFF_TO_IDX(e - s); 1890 size = offidxend - offidxstart; 1891 1892 new_object = vm_pager_allocate(orig_object->type, 1893 NULL, IDX_TO_OFF(size), VM_PROT_ALL, 0LL); 1894 if (new_object == NULL) 1895 return; 1896 1897 source = orig_object->backing_object; 1898 if (source != NULL) { 1899 vm_object_reference(source); /* Referenced by new_object */ 1900 TAILQ_INSERT_TAIL(&source->shadow_head, 1901 new_object, shadow_list); 1902 vm_object_clear_flag(source, OBJ_ONEMAPPING); 1903 new_object->backing_object_offset = 1904 orig_object->backing_object_offset + IDX_TO_OFF(offidxstart); 1905 new_object->backing_object = source; 1906 source->shadow_count++; 1907 source->generation++; 1908 } 1909 1910 for (idx = 0; idx < size; idx++) { 1911 vm_page_t m; 1912 1913 retry: 1914 m = vm_page_lookup(orig_object, offidxstart + idx); 1915 if (m == NULL) 1916 continue; 1917 1918 /* 1919 * We must wait for pending I/O to complete before we can 1920 * rename the page. 1921 * 1922 * We do not have to VM_PROT_NONE the page as mappings should 1923 * not be changed by this operation. 1924 */ 1925 if (vm_page_sleep_busy(m, TRUE, "spltwt")) 1926 goto retry; 1927 1928 vm_page_busy(m); 1929 vm_page_rename(m, new_object, idx); 1930 /* page automatically made dirty by rename and cache handled */ 1931 vm_page_busy(m); 1932 } 1933 1934 if (orig_object->type == OBJT_SWAP) { 1935 vm_object_pip_add(orig_object, 1); 1936 /* 1937 * copy orig_object pages into new_object 1938 * and destroy unneeded pages in 1939 * shadow object. 1940 */ 1941 swap_pager_copy(orig_object, new_object, offidxstart, 0); 1942 vm_object_pip_wakeup(orig_object); 1943 } 1944 1945 for (idx = 0; idx < size; idx++) { 1946 m = vm_page_lookup(new_object, idx); 1947 if (m) { 1948 vm_page_wakeup(m); 1949 } 1950 } 1951 1952 entry->object.vm_object = new_object; 1953 entry->offset = 0LL; 1954 vm_object_deallocate(orig_object); 1955 } 1956 1957 /* 1958 * vm_map_copy_entry: 1959 * 1960 * Copies the contents of the source entry to the destination 1961 * entry. The entries *must* be aligned properly. 1962 */ 1963 static void 1964 vm_map_copy_entry(src_map, dst_map, src_entry, dst_entry) 1965 vm_map_t src_map, dst_map; 1966 vm_map_entry_t src_entry, dst_entry; 1967 { 1968 vm_object_t src_object; 1969 1970 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP) 1971 return; 1972 1973 if (src_entry->wired_count == 0) { 1974 1975 /* 1976 * If the source entry is marked needs_copy, it is already 1977 * write-protected. 1978 */ 1979 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) { 1980 pmap_protect(src_map->pmap, 1981 src_entry->start, 1982 src_entry->end, 1983 src_entry->protection & ~VM_PROT_WRITE); 1984 } 1985 1986 /* 1987 * Make a copy of the object. 1988 */ 1989 if ((src_object = src_entry->object.vm_object) != NULL) { 1990 1991 if ((src_object->handle == NULL) && 1992 (src_object->type == OBJT_DEFAULT || 1993 src_object->type == OBJT_SWAP)) { 1994 vm_object_collapse(src_object); 1995 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) { 1996 vm_map_split(src_entry); 1997 src_object = src_entry->object.vm_object; 1998 } 1999 } 2000 2001 vm_object_reference(src_object); 2002 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 2003 dst_entry->object.vm_object = src_object; 2004 src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 2005 dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 2006 dst_entry->offset = src_entry->offset; 2007 } else { 2008 dst_entry->object.vm_object = NULL; 2009 dst_entry->offset = 0; 2010 } 2011 2012 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start, 2013 dst_entry->end - dst_entry->start, src_entry->start); 2014 } else { 2015 /* 2016 * Of course, wired down pages can't be set copy-on-write. 2017 * Cause wired pages to be copied into the new map by 2018 * simulating faults (the new pages are pageable) 2019 */ 2020 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry); 2021 } 2022 } 2023 2024 /* 2025 * vmspace_fork: 2026 * Create a new process vmspace structure and vm_map 2027 * based on those of an existing process. The new map 2028 * is based on the old map, according to the inheritance 2029 * values on the regions in that map. 2030 * 2031 * The source map must not be locked. 2032 */ 2033 struct vmspace * 2034 vmspace_fork(vm1) 2035 struct vmspace *vm1; 2036 { 2037 struct vmspace *vm2; 2038 vm_map_t old_map = &vm1->vm_map; 2039 vm_map_t new_map; 2040 vm_map_entry_t old_entry; 2041 vm_map_entry_t new_entry; 2042 vm_object_t object; 2043 2044 vm_map_lock(old_map); 2045 2046 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset); 2047 bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy, 2048 (caddr_t) (vm1 + 1) - (caddr_t) &vm1->vm_startcopy); 2049 new_map = &vm2->vm_map; /* XXX */ 2050 new_map->timestamp = 1; 2051 2052 old_entry = old_map->header.next; 2053 2054 while (old_entry != &old_map->header) { 2055 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2056 panic("vm_map_fork: encountered a submap"); 2057 2058 switch (old_entry->inheritance) { 2059 case VM_INHERIT_NONE: 2060 break; 2061 2062 case VM_INHERIT_SHARE: 2063 /* 2064 * Clone the entry, creating the shared object if necessary. 2065 */ 2066 object = old_entry->object.vm_object; 2067 if (object == NULL) { 2068 object = vm_object_allocate(OBJT_DEFAULT, 2069 atop(old_entry->end - old_entry->start)); 2070 old_entry->object.vm_object = object; 2071 old_entry->offset = (vm_offset_t) 0; 2072 } 2073 2074 /* 2075 * Add the reference before calling vm_object_shadow 2076 * to insure that a shadow object is created. 2077 */ 2078 vm_object_reference(object); 2079 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 2080 vm_object_shadow(&old_entry->object.vm_object, 2081 &old_entry->offset, 2082 atop(old_entry->end - old_entry->start)); 2083 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 2084 object = old_entry->object.vm_object; 2085 } 2086 vm_object_clear_flag(object, OBJ_ONEMAPPING); 2087 2088 /* 2089 * Clone the entry, referencing the shared object. 2090 */ 2091 new_entry = vm_map_entry_create(new_map); 2092 *new_entry = *old_entry; 2093 new_entry->wired_count = 0; 2094 2095 /* 2096 * Insert the entry into the new map -- we know we're 2097 * inserting at the end of the new map. 2098 */ 2099 2100 vm_map_entry_link(new_map, new_map->header.prev, 2101 new_entry); 2102 2103 /* 2104 * Update the physical map 2105 */ 2106 2107 pmap_copy(new_map->pmap, old_map->pmap, 2108 new_entry->start, 2109 (old_entry->end - old_entry->start), 2110 old_entry->start); 2111 break; 2112 2113 case VM_INHERIT_COPY: 2114 /* 2115 * Clone the entry and link into the map. 2116 */ 2117 new_entry = vm_map_entry_create(new_map); 2118 *new_entry = *old_entry; 2119 new_entry->wired_count = 0; 2120 new_entry->object.vm_object = NULL; 2121 vm_map_entry_link(new_map, new_map->header.prev, 2122 new_entry); 2123 vm_map_copy_entry(old_map, new_map, old_entry, 2124 new_entry); 2125 break; 2126 } 2127 old_entry = old_entry->next; 2128 } 2129 2130 new_map->size = old_map->size; 2131 vm_map_unlock(old_map); 2132 2133 return (vm2); 2134 } 2135 2136 int 2137 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 2138 vm_prot_t prot, vm_prot_t max, int cow) 2139 { 2140 vm_map_entry_t prev_entry; 2141 vm_map_entry_t new_stack_entry; 2142 vm_size_t init_ssize; 2143 int rv; 2144 2145 if (VM_MIN_ADDRESS > 0 && addrbos < VM_MIN_ADDRESS) 2146 return (KERN_NO_SPACE); 2147 2148 if (max_ssize < SGROWSIZ) 2149 init_ssize = max_ssize; 2150 else 2151 init_ssize = SGROWSIZ; 2152 2153 vm_map_lock(map); 2154 2155 /* If addr is already mapped, no go */ 2156 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) { 2157 vm_map_unlock(map); 2158 return (KERN_NO_SPACE); 2159 } 2160 2161 /* If we can't accomodate max_ssize in the current mapping, 2162 * no go. However, we need to be aware that subsequent user 2163 * mappings might map into the space we have reserved for 2164 * stack, and currently this space is not protected. 2165 * 2166 * Hopefully we will at least detect this condition 2167 * when we try to grow the stack. 2168 */ 2169 if ((prev_entry->next != &map->header) && 2170 (prev_entry->next->start < addrbos + max_ssize)) { 2171 vm_map_unlock(map); 2172 return (KERN_NO_SPACE); 2173 } 2174 2175 /* We initially map a stack of only init_ssize. We will 2176 * grow as needed later. Since this is to be a grow 2177 * down stack, we map at the top of the range. 2178 * 2179 * Note: we would normally expect prot and max to be 2180 * VM_PROT_ALL, and cow to be 0. Possibly we should 2181 * eliminate these as input parameters, and just 2182 * pass these values here in the insert call. 2183 */ 2184 rv = vm_map_insert(map, NULL, 0, addrbos + max_ssize - init_ssize, 2185 addrbos + max_ssize, prot, max, cow); 2186 2187 /* Now set the avail_ssize amount */ 2188 if (rv == KERN_SUCCESS){ 2189 if (prev_entry != &map->header) 2190 vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize); 2191 new_stack_entry = prev_entry->next; 2192 if (new_stack_entry->end != addrbos + max_ssize || 2193 new_stack_entry->start != addrbos + max_ssize - init_ssize) 2194 panic ("Bad entry start/end for new stack entry"); 2195 else 2196 new_stack_entry->avail_ssize = max_ssize - init_ssize; 2197 } 2198 2199 vm_map_unlock(map); 2200 return (rv); 2201 } 2202 2203 /* Attempts to grow a vm stack entry. Returns KERN_SUCCESS if the 2204 * desired address is already mapped, or if we successfully grow 2205 * the stack. Also returns KERN_SUCCESS if addr is outside the 2206 * stack range (this is strange, but preserves compatibility with 2207 * the grow function in vm_machdep.c). 2208 */ 2209 int 2210 vm_map_growstack (struct proc *p, vm_offset_t addr) 2211 { 2212 vm_map_entry_t prev_entry; 2213 vm_map_entry_t stack_entry; 2214 vm_map_entry_t new_stack_entry; 2215 struct vmspace *vm = p->p_vmspace; 2216 vm_map_t map = &vm->vm_map; 2217 vm_offset_t end; 2218 int grow_amount; 2219 int rv; 2220 int is_procstack; 2221 Retry: 2222 vm_map_lock_read(map); 2223 2224 /* If addr is already in the entry range, no need to grow.*/ 2225 if (vm_map_lookup_entry(map, addr, &prev_entry)) { 2226 vm_map_unlock_read(map); 2227 return (KERN_SUCCESS); 2228 } 2229 2230 if ((stack_entry = prev_entry->next) == &map->header) { 2231 vm_map_unlock_read(map); 2232 return (KERN_SUCCESS); 2233 } 2234 if (prev_entry == &map->header) 2235 end = stack_entry->start - stack_entry->avail_ssize; 2236 else 2237 end = prev_entry->end; 2238 2239 /* This next test mimics the old grow function in vm_machdep.c. 2240 * It really doesn't quite make sense, but we do it anyway 2241 * for compatibility. 2242 * 2243 * If not growable stack, return success. This signals the 2244 * caller to proceed as he would normally with normal vm. 2245 */ 2246 if (stack_entry->avail_ssize < 1 || 2247 addr >= stack_entry->start || 2248 addr < stack_entry->start - stack_entry->avail_ssize) { 2249 vm_map_unlock_read(map); 2250 return (KERN_SUCCESS); 2251 } 2252 2253 /* Find the minimum grow amount */ 2254 grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE); 2255 if (grow_amount > stack_entry->avail_ssize) { 2256 vm_map_unlock_read(map); 2257 return (KERN_NO_SPACE); 2258 } 2259 2260 /* If there is no longer enough space between the entries 2261 * nogo, and adjust the available space. Note: this 2262 * should only happen if the user has mapped into the 2263 * stack area after the stack was created, and is 2264 * probably an error. 2265 * 2266 * This also effectively destroys any guard page the user 2267 * might have intended by limiting the stack size. 2268 */ 2269 if (grow_amount > stack_entry->start - end) { 2270 if (vm_map_lock_upgrade(map)) 2271 goto Retry; 2272 2273 stack_entry->avail_ssize = stack_entry->start - end; 2274 2275 vm_map_unlock(map); 2276 return (KERN_NO_SPACE); 2277 } 2278 2279 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr; 2280 2281 /* If this is the main process stack, see if we're over the 2282 * stack limit. 2283 */ 2284 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > 2285 p->p_rlimit[RLIMIT_STACK].rlim_cur)) { 2286 vm_map_unlock_read(map); 2287 return (KERN_NO_SPACE); 2288 } 2289 2290 /* Round up the grow amount modulo SGROWSIZ */ 2291 grow_amount = roundup (grow_amount, SGROWSIZ); 2292 if (grow_amount > stack_entry->avail_ssize) { 2293 grow_amount = stack_entry->avail_ssize; 2294 } 2295 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > 2296 p->p_rlimit[RLIMIT_STACK].rlim_cur)) { 2297 grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur - 2298 ctob(vm->vm_ssize); 2299 } 2300 2301 if (vm_map_lock_upgrade(map)) 2302 goto Retry; 2303 2304 /* Get the preliminary new entry start value */ 2305 addr = stack_entry->start - grow_amount; 2306 2307 /* If this puts us into the previous entry, cut back our growth 2308 * to the available space. Also, see the note above. 2309 */ 2310 if (addr < end) { 2311 stack_entry->avail_ssize = stack_entry->start - end; 2312 addr = end; 2313 } 2314 2315 rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start, 2316 VM_PROT_ALL, 2317 VM_PROT_ALL, 2318 0); 2319 2320 /* Adjust the available stack space by the amount we grew. */ 2321 if (rv == KERN_SUCCESS) { 2322 if (prev_entry != &map->header) 2323 vm_map_clip_end(map, prev_entry, addr); 2324 new_stack_entry = prev_entry->next; 2325 if (new_stack_entry->end != stack_entry->start || 2326 new_stack_entry->start != addr) 2327 panic ("Bad stack grow start/end in new stack entry"); 2328 else { 2329 new_stack_entry->avail_ssize = stack_entry->avail_ssize - 2330 (new_stack_entry->end - 2331 new_stack_entry->start); 2332 if (is_procstack) 2333 vm->vm_ssize += btoc(new_stack_entry->end - 2334 new_stack_entry->start); 2335 } 2336 } 2337 2338 vm_map_unlock(map); 2339 return (rv); 2340 2341 } 2342 2343 /* 2344 * Unshare the specified VM space for exec. If other processes are 2345 * mapped to it, then create a new one. The new vmspace is null. 2346 */ 2347 2348 void 2349 vmspace_exec(struct proc *p) { 2350 struct vmspace *oldvmspace = p->p_vmspace; 2351 struct vmspace *newvmspace; 2352 vm_map_t map = &p->p_vmspace->vm_map; 2353 2354 newvmspace = vmspace_alloc(map->min_offset, map->max_offset); 2355 bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy, 2356 (caddr_t) (newvmspace + 1) - (caddr_t) &newvmspace->vm_startcopy); 2357 /* 2358 * This code is written like this for prototype purposes. The 2359 * goal is to avoid running down the vmspace here, but let the 2360 * other process's that are still using the vmspace to finally 2361 * run it down. Even though there is little or no chance of blocking 2362 * here, it is a good idea to keep this form for future mods. 2363 */ 2364 vmspace_free(oldvmspace); 2365 p->p_vmspace = newvmspace; 2366 if (p == curproc) 2367 pmap_activate(p); 2368 } 2369 2370 /* 2371 * Unshare the specified VM space for forcing COW. This 2372 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 2373 */ 2374 2375 void 2376 vmspace_unshare(struct proc *p) { 2377 struct vmspace *oldvmspace = p->p_vmspace; 2378 struct vmspace *newvmspace; 2379 2380 if (oldvmspace->vm_refcnt == 1) 2381 return; 2382 newvmspace = vmspace_fork(oldvmspace); 2383 vmspace_free(oldvmspace); 2384 p->p_vmspace = newvmspace; 2385 if (p == curproc) 2386 pmap_activate(p); 2387 } 2388 2389 2390 /* 2391 * vm_map_lookup: 2392 * 2393 * Finds the VM object, offset, and 2394 * protection for a given virtual address in the 2395 * specified map, assuming a page fault of the 2396 * type specified. 2397 * 2398 * Leaves the map in question locked for read; return 2399 * values are guaranteed until a vm_map_lookup_done 2400 * call is performed. Note that the map argument 2401 * is in/out; the returned map must be used in 2402 * the call to vm_map_lookup_done. 2403 * 2404 * A handle (out_entry) is returned for use in 2405 * vm_map_lookup_done, to make that fast. 2406 * 2407 * If a lookup is requested with "write protection" 2408 * specified, the map may be changed to perform virtual 2409 * copying operations, although the data referenced will 2410 * remain the same. 2411 */ 2412 int 2413 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 2414 vm_offset_t vaddr, 2415 vm_prot_t fault_typea, 2416 vm_map_entry_t *out_entry, /* OUT */ 2417 vm_object_t *object, /* OUT */ 2418 vm_pindex_t *pindex, /* OUT */ 2419 vm_prot_t *out_prot, /* OUT */ 2420 boolean_t *wired) /* OUT */ 2421 { 2422 vm_map_entry_t entry; 2423 vm_map_t map = *var_map; 2424 vm_prot_t prot; 2425 vm_prot_t fault_type = fault_typea; 2426 2427 RetryLookup:; 2428 2429 /* 2430 * Lookup the faulting address. 2431 */ 2432 2433 vm_map_lock_read(map); 2434 2435 #define RETURN(why) \ 2436 { \ 2437 vm_map_unlock_read(map); \ 2438 return(why); \ 2439 } 2440 2441 /* 2442 * If the map has an interesting hint, try it before calling full 2443 * blown lookup routine. 2444 */ 2445 2446 entry = map->hint; 2447 2448 *out_entry = entry; 2449 2450 if ((entry == &map->header) || 2451 (vaddr < entry->start) || (vaddr >= entry->end)) { 2452 vm_map_entry_t tmp_entry; 2453 2454 /* 2455 * Entry was either not a valid hint, or the vaddr was not 2456 * contained in the entry, so do a full lookup. 2457 */ 2458 if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) 2459 RETURN(KERN_INVALID_ADDRESS); 2460 2461 entry = tmp_entry; 2462 *out_entry = entry; 2463 } 2464 2465 /* 2466 * Handle submaps. 2467 */ 2468 2469 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 2470 vm_map_t old_map = map; 2471 2472 *var_map = map = entry->object.sub_map; 2473 vm_map_unlock_read(old_map); 2474 goto RetryLookup; 2475 } 2476 2477 /* 2478 * Check whether this task is allowed to have this page. 2479 * Note the special case for MAP_ENTRY_COW 2480 * pages with an override. This is to implement a forced 2481 * COW for debuggers. 2482 */ 2483 2484 if (fault_type & VM_PROT_OVERRIDE_WRITE) 2485 prot = entry->max_protection; 2486 else 2487 prot = entry->protection; 2488 2489 fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE); 2490 if ((fault_type & prot) != fault_type) { 2491 RETURN(KERN_PROTECTION_FAILURE); 2492 } 2493 2494 if (entry->wired_count && (fault_type & VM_PROT_WRITE) && 2495 (entry->eflags & MAP_ENTRY_COW) && 2496 (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) { 2497 RETURN(KERN_PROTECTION_FAILURE); 2498 } 2499 2500 /* 2501 * If this page is not pageable, we have to get it for all possible 2502 * accesses. 2503 */ 2504 2505 *wired = (entry->wired_count != 0); 2506 if (*wired) 2507 prot = fault_type = entry->protection; 2508 2509 /* 2510 * If the entry was copy-on-write, we either ... 2511 */ 2512 2513 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 2514 /* 2515 * If we want to write the page, we may as well handle that 2516 * now since we've got the map locked. 2517 * 2518 * If we don't need to write the page, we just demote the 2519 * permissions allowed. 2520 */ 2521 2522 if (fault_type & VM_PROT_WRITE) { 2523 /* 2524 * Make a new object, and place it in the object 2525 * chain. Note that no new references have appeared 2526 * -- one just moved from the map to the new 2527 * object. 2528 */ 2529 2530 if (vm_map_lock_upgrade(map)) 2531 goto RetryLookup; 2532 2533 vm_object_shadow( 2534 &entry->object.vm_object, 2535 &entry->offset, 2536 atop(entry->end - entry->start)); 2537 2538 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 2539 vm_map_lock_downgrade(map); 2540 } else { 2541 /* 2542 * We're attempting to read a copy-on-write page -- 2543 * don't allow writes. 2544 */ 2545 2546 prot &= ~VM_PROT_WRITE; 2547 } 2548 } 2549 2550 /* 2551 * Create an object if necessary. 2552 */ 2553 if (entry->object.vm_object == NULL) { 2554 if (vm_map_lock_upgrade(map)) 2555 goto RetryLookup; 2556 2557 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT, 2558 atop(entry->end - entry->start)); 2559 entry->offset = 0; 2560 vm_map_lock_downgrade(map); 2561 } 2562 2563 /* 2564 * Return the object/offset from this entry. If the entry was 2565 * copy-on-write or empty, it has been fixed up. 2566 */ 2567 2568 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 2569 *object = entry->object.vm_object; 2570 2571 /* 2572 * Return whether this is the only map sharing this data. 2573 */ 2574 2575 *out_prot = prot; 2576 return (KERN_SUCCESS); 2577 2578 #undef RETURN 2579 } 2580 2581 /* 2582 * vm_map_lookup_done: 2583 * 2584 * Releases locks acquired by a vm_map_lookup 2585 * (according to the handle returned by that lookup). 2586 */ 2587 2588 void 2589 vm_map_lookup_done(map, entry) 2590 vm_map_t map; 2591 vm_map_entry_t entry; 2592 { 2593 /* 2594 * Unlock the main-level map 2595 */ 2596 2597 vm_map_unlock_read(map); 2598 } 2599 2600 /* 2601 * Implement uiomove with VM operations. This handles (and collateral changes) 2602 * support every combination of source object modification, and COW type 2603 * operations. 2604 */ 2605 int 2606 vm_uiomove(mapa, srcobject, cp, cnta, uaddra, npages) 2607 vm_map_t mapa; 2608 vm_object_t srcobject; 2609 off_t cp; 2610 int cnta; 2611 vm_offset_t uaddra; 2612 int *npages; 2613 { 2614 vm_map_t map; 2615 vm_object_t first_object, oldobject, object; 2616 vm_map_entry_t entry; 2617 vm_prot_t prot; 2618 boolean_t wired; 2619 int tcnt, rv; 2620 vm_offset_t uaddr, start, end, tend; 2621 vm_pindex_t first_pindex, osize, oindex; 2622 off_t ooffset; 2623 int cnt; 2624 2625 if (npages) 2626 *npages = 0; 2627 2628 cnt = cnta; 2629 uaddr = uaddra; 2630 2631 while (cnt > 0) { 2632 map = mapa; 2633 2634 if ((vm_map_lookup(&map, uaddr, 2635 VM_PROT_READ, &entry, &first_object, 2636 &first_pindex, &prot, &wired)) != KERN_SUCCESS) { 2637 return EFAULT; 2638 } 2639 2640 vm_map_clip_start(map, entry, uaddr); 2641 2642 tcnt = cnt; 2643 tend = uaddr + tcnt; 2644 if (tend > entry->end) { 2645 tcnt = entry->end - uaddr; 2646 tend = entry->end; 2647 } 2648 2649 vm_map_clip_end(map, entry, tend); 2650 2651 start = entry->start; 2652 end = entry->end; 2653 2654 osize = atop(tcnt); 2655 2656 oindex = OFF_TO_IDX(cp); 2657 if (npages) { 2658 vm_pindex_t idx; 2659 for (idx = 0; idx < osize; idx++) { 2660 vm_page_t m; 2661 if ((m = vm_page_lookup(srcobject, oindex + idx)) == NULL) { 2662 vm_map_lookup_done(map, entry); 2663 return 0; 2664 } 2665 /* 2666 * disallow busy or invalid pages, but allow 2667 * m->busy pages if they are entirely valid. 2668 */ 2669 if ((m->flags & PG_BUSY) || 2670 ((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL)) { 2671 vm_map_lookup_done(map, entry); 2672 return 0; 2673 } 2674 } 2675 } 2676 2677 /* 2678 * If we are changing an existing map entry, just redirect 2679 * the object, and change mappings. 2680 */ 2681 if ((first_object->type == OBJT_VNODE) && 2682 ((oldobject = entry->object.vm_object) == first_object)) { 2683 2684 if ((entry->offset != cp) || (oldobject != srcobject)) { 2685 /* 2686 * Remove old window into the file 2687 */ 2688 pmap_remove (map->pmap, uaddr, tend); 2689 2690 /* 2691 * Force copy on write for mmaped regions 2692 */ 2693 vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize); 2694 2695 /* 2696 * Point the object appropriately 2697 */ 2698 if (oldobject != srcobject) { 2699 2700 /* 2701 * Set the object optimization hint flag 2702 */ 2703 vm_object_set_flag(srcobject, OBJ_OPT); 2704 vm_object_reference(srcobject); 2705 entry->object.vm_object = srcobject; 2706 2707 if (oldobject) { 2708 vm_object_deallocate(oldobject); 2709 } 2710 } 2711 2712 entry->offset = cp; 2713 map->timestamp++; 2714 } else { 2715 pmap_remove (map->pmap, uaddr, tend); 2716 } 2717 2718 } else if ((first_object->ref_count == 1) && 2719 (first_object->size == osize) && 2720 ((first_object->type == OBJT_DEFAULT) || 2721 (first_object->type == OBJT_SWAP)) ) { 2722 2723 oldobject = first_object->backing_object; 2724 2725 if ((first_object->backing_object_offset != cp) || 2726 (oldobject != srcobject)) { 2727 /* 2728 * Remove old window into the file 2729 */ 2730 pmap_remove (map->pmap, uaddr, tend); 2731 2732 /* 2733 * Remove unneeded old pages 2734 */ 2735 vm_object_page_remove(first_object, 0, 0, 0); 2736 2737 /* 2738 * Invalidate swap space 2739 */ 2740 if (first_object->type == OBJT_SWAP) { 2741 swap_pager_freespace(first_object, 2742 0, 2743 first_object->size); 2744 } 2745 2746 /* 2747 * Force copy on write for mmaped regions 2748 */ 2749 vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize); 2750 2751 /* 2752 * Point the object appropriately 2753 */ 2754 if (oldobject != srcobject) { 2755 2756 /* 2757 * Set the object optimization hint flag 2758 */ 2759 vm_object_set_flag(srcobject, OBJ_OPT); 2760 vm_object_reference(srcobject); 2761 2762 if (oldobject) { 2763 TAILQ_REMOVE(&oldobject->shadow_head, 2764 first_object, shadow_list); 2765 oldobject->shadow_count--; 2766 vm_object_deallocate(oldobject); 2767 } 2768 2769 TAILQ_INSERT_TAIL(&srcobject->shadow_head, 2770 first_object, shadow_list); 2771 srcobject->shadow_count++; 2772 2773 first_object->backing_object = srcobject; 2774 } 2775 first_object->backing_object_offset = cp; 2776 map->timestamp++; 2777 } else { 2778 pmap_remove (map->pmap, uaddr, tend); 2779 } 2780 /* 2781 * Otherwise, we have to do a logical mmap. 2782 */ 2783 } else { 2784 2785 vm_object_set_flag(srcobject, OBJ_OPT); 2786 vm_object_reference(srcobject); 2787 2788 pmap_remove (map->pmap, uaddr, tend); 2789 2790 vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize); 2791 vm_map_lock_upgrade(map); 2792 2793 if (entry == &map->header) { 2794 map->first_free = &map->header; 2795 } else if (map->first_free->start >= start) { 2796 map->first_free = entry->prev; 2797 } 2798 2799 SAVE_HINT(map, entry->prev); 2800 vm_map_entry_delete(map, entry); 2801 2802 object = srcobject; 2803 ooffset = cp; 2804 2805 rv = vm_map_insert(map, object, ooffset, start, tend, 2806 VM_PROT_ALL, VM_PROT_ALL, MAP_COPY_ON_WRITE); 2807 2808 if (rv != KERN_SUCCESS) 2809 panic("vm_uiomove: could not insert new entry: %d", rv); 2810 } 2811 2812 /* 2813 * Map the window directly, if it is already in memory 2814 */ 2815 pmap_object_init_pt(map->pmap, uaddr, 2816 srcobject, oindex, tcnt, 0); 2817 2818 map->timestamp++; 2819 vm_map_unlock(map); 2820 2821 cnt -= tcnt; 2822 uaddr += tcnt; 2823 cp += tcnt; 2824 if (npages) 2825 *npages += osize; 2826 } 2827 return 0; 2828 } 2829 2830 /* 2831 * Performs the copy_on_write operations necessary to allow the virtual copies 2832 * into user space to work. This has to be called for write(2) system calls 2833 * from other processes, file unlinking, and file size shrinkage. 2834 */ 2835 void 2836 vm_freeze_copyopts(object, froma, toa) 2837 vm_object_t object; 2838 vm_pindex_t froma, toa; 2839 { 2840 int rv; 2841 vm_object_t robject; 2842 vm_pindex_t idx; 2843 2844 if ((object == NULL) || 2845 ((object->flags & OBJ_OPT) == 0)) 2846 return; 2847 2848 if (object->shadow_count > object->ref_count) 2849 panic("vm_freeze_copyopts: sc > rc"); 2850 2851 while((robject = TAILQ_FIRST(&object->shadow_head)) != NULL) { 2852 vm_pindex_t bo_pindex; 2853 vm_page_t m_in, m_out; 2854 2855 bo_pindex = OFF_TO_IDX(robject->backing_object_offset); 2856 2857 vm_object_reference(robject); 2858 2859 vm_object_pip_wait(robject, "objfrz"); 2860 2861 if (robject->ref_count == 1) { 2862 vm_object_deallocate(robject); 2863 continue; 2864 } 2865 2866 vm_object_pip_add(robject, 1); 2867 2868 for (idx = 0; idx < robject->size; idx++) { 2869 2870 m_out = vm_page_grab(robject, idx, 2871 VM_ALLOC_NORMAL | VM_ALLOC_RETRY); 2872 2873 if (m_out->valid == 0) { 2874 m_in = vm_page_grab(object, bo_pindex + idx, 2875 VM_ALLOC_NORMAL | VM_ALLOC_RETRY); 2876 if (m_in->valid == 0) { 2877 rv = vm_pager_get_pages(object, &m_in, 1, 0); 2878 if (rv != VM_PAGER_OK) { 2879 printf("vm_freeze_copyopts: cannot read page from file: %x\n", m_in->pindex); 2880 continue; 2881 } 2882 vm_page_deactivate(m_in); 2883 } 2884 2885 vm_page_protect(m_in, VM_PROT_NONE); 2886 pmap_copy_page(VM_PAGE_TO_PHYS(m_in), VM_PAGE_TO_PHYS(m_out)); 2887 m_out->valid = m_in->valid; 2888 vm_page_dirty(m_out); 2889 vm_page_activate(m_out); 2890 vm_page_wakeup(m_in); 2891 } 2892 vm_page_wakeup(m_out); 2893 } 2894 2895 object->shadow_count--; 2896 object->ref_count--; 2897 TAILQ_REMOVE(&object->shadow_head, robject, shadow_list); 2898 robject->backing_object = NULL; 2899 robject->backing_object_offset = 0; 2900 2901 vm_object_pip_wakeup(robject); 2902 vm_object_deallocate(robject); 2903 } 2904 2905 vm_object_clear_flag(object, OBJ_OPT); 2906 } 2907 2908 #include "opt_ddb.h" 2909 #ifdef DDB 2910 #include <sys/kernel.h> 2911 2912 #include <ddb/ddb.h> 2913 2914 /* 2915 * vm_map_print: [ debug ] 2916 */ 2917 DB_SHOW_COMMAND(map, vm_map_print) 2918 { 2919 static int nlines; 2920 /* XXX convert args. */ 2921 vm_map_t map = (vm_map_t)addr; 2922 boolean_t full = have_addr; 2923 2924 vm_map_entry_t entry; 2925 2926 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 2927 (void *)map, 2928 (void *)map->pmap, map->nentries, map->timestamp); 2929 nlines++; 2930 2931 if (!full && db_indent) 2932 return; 2933 2934 db_indent += 2; 2935 for (entry = map->header.next; entry != &map->header; 2936 entry = entry->next) { 2937 db_iprintf("map entry %p: start=%p, end=%p\n", 2938 (void *)entry, (void *)entry->start, (void *)entry->end); 2939 nlines++; 2940 { 2941 static char *inheritance_name[4] = 2942 {"share", "copy", "none", "donate_copy"}; 2943 2944 db_iprintf(" prot=%x/%x/%s", 2945 entry->protection, 2946 entry->max_protection, 2947 inheritance_name[(int)(unsigned char)entry->inheritance]); 2948 if (entry->wired_count != 0) 2949 db_printf(", wired"); 2950 } 2951 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 2952 /* XXX no %qd in kernel. Truncate entry->offset. */ 2953 db_printf(", share=%p, offset=0x%lx\n", 2954 (void *)entry->object.sub_map, 2955 (long)entry->offset); 2956 nlines++; 2957 if ((entry->prev == &map->header) || 2958 (entry->prev->object.sub_map != 2959 entry->object.sub_map)) { 2960 db_indent += 2; 2961 vm_map_print((db_expr_t)(intptr_t) 2962 entry->object.sub_map, 2963 full, 0, (char *)0); 2964 db_indent -= 2; 2965 } 2966 } else { 2967 /* XXX no %qd in kernel. Truncate entry->offset. */ 2968 db_printf(", object=%p, offset=0x%lx", 2969 (void *)entry->object.vm_object, 2970 (long)entry->offset); 2971 if (entry->eflags & MAP_ENTRY_COW) 2972 db_printf(", copy (%s)", 2973 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 2974 db_printf("\n"); 2975 nlines++; 2976 2977 if ((entry->prev == &map->header) || 2978 (entry->prev->object.vm_object != 2979 entry->object.vm_object)) { 2980 db_indent += 2; 2981 vm_object_print((db_expr_t)(intptr_t) 2982 entry->object.vm_object, 2983 full, 0, (char *)0); 2984 nlines += 4; 2985 db_indent -= 2; 2986 } 2987 } 2988 } 2989 db_indent -= 2; 2990 if (db_indent == 0) 2991 nlines = 0; 2992 } 2993 2994 2995 DB_SHOW_COMMAND(procvm, procvm) 2996 { 2997 struct proc *p; 2998 2999 if (have_addr) { 3000 p = (struct proc *) addr; 3001 } else { 3002 p = curproc; 3003 } 3004 3005 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 3006 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 3007 (void *)vmspace_pmap(p->p_vmspace)); 3008 3009 vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL); 3010 } 3011 3012 #endif /* DDB */ 3013