xref: /freebsd/sys/vm/vm_map.c (revision 6966ac055c3b7a39266fb982493330df7a097997)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62 
63 /*
64  *	Virtual memory mapping module.
65  */
66 
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/elf.h>
73 #include <sys/kernel.h>
74 #include <sys/ktr.h>
75 #include <sys/lock.h>
76 #include <sys/mutex.h>
77 #include <sys/proc.h>
78 #include <sys/vmmeter.h>
79 #include <sys/mman.h>
80 #include <sys/vnode.h>
81 #include <sys/racct.h>
82 #include <sys/resourcevar.h>
83 #include <sys/rwlock.h>
84 #include <sys/file.h>
85 #include <sys/sysctl.h>
86 #include <sys/sysent.h>
87 #include <sys/shm.h>
88 
89 #include <vm/vm.h>
90 #include <vm/vm_param.h>
91 #include <vm/pmap.h>
92 #include <vm/vm_map.h>
93 #include <vm/vm_page.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/vm_object.h>
96 #include <vm/vm_pager.h>
97 #include <vm/vm_kern.h>
98 #include <vm/vm_extern.h>
99 #include <vm/vnode_pager.h>
100 #include <vm/swap_pager.h>
101 #include <vm/uma.h>
102 
103 /*
104  *	Virtual memory maps provide for the mapping, protection,
105  *	and sharing of virtual memory objects.  In addition,
106  *	this module provides for an efficient virtual copy of
107  *	memory from one map to another.
108  *
109  *	Synchronization is required prior to most operations.
110  *
111  *	Maps consist of an ordered doubly-linked list of simple
112  *	entries; a self-adjusting binary search tree of these
113  *	entries is used to speed up lookups.
114  *
115  *	Since portions of maps are specified by start/end addresses,
116  *	which may not align with existing map entries, all
117  *	routines merely "clip" entries to these start/end values.
118  *	[That is, an entry is split into two, bordering at a
119  *	start or end value.]  Note that these clippings may not
120  *	always be necessary (as the two resulting entries are then
121  *	not changed); however, the clipping is done for convenience.
122  *
123  *	As mentioned above, virtual copy operations are performed
124  *	by copying VM object references from one map to
125  *	another, and then marking both regions as copy-on-write.
126  */
127 
128 static struct mtx map_sleep_mtx;
129 static uma_zone_t mapentzone;
130 static uma_zone_t kmapentzone;
131 static uma_zone_t mapzone;
132 static uma_zone_t vmspace_zone;
133 static int vmspace_zinit(void *mem, int size, int flags);
134 static int vm_map_zinit(void *mem, int ize, int flags);
135 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
136     vm_offset_t max);
137 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
138 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
139 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
140 static int vm_map_growstack(vm_map_t map, vm_offset_t addr,
141     vm_map_entry_t gap_entry);
142 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
143     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
144 #ifdef INVARIANTS
145 static void vm_map_zdtor(void *mem, int size, void *arg);
146 static void vmspace_zdtor(void *mem, int size, void *arg);
147 #endif
148 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
149     vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
150     int cow);
151 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
152     vm_offset_t failed_addr);
153 
154 #define	ENTRY_CHARGED(e) ((e)->cred != NULL || \
155     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
156      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
157 
158 /*
159  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
160  * stable.
161  */
162 #define PROC_VMSPACE_LOCK(p) do { } while (0)
163 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
164 
165 /*
166  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
167  *
168  *	Asserts that the starting and ending region
169  *	addresses fall within the valid range of the map.
170  */
171 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
172 		{					\
173 		if (start < vm_map_min(map))		\
174 			start = vm_map_min(map);	\
175 		if (end > vm_map_max(map))		\
176 			end = vm_map_max(map);		\
177 		if (start > end)			\
178 			start = end;			\
179 		}
180 
181 /*
182  *	vm_map_startup:
183  *
184  *	Initialize the vm_map module.  Must be called before
185  *	any other vm_map routines.
186  *
187  *	Map and entry structures are allocated from the general
188  *	purpose memory pool with some exceptions:
189  *
190  *	- The kernel map and kmem submap are allocated statically.
191  *	- Kernel map entries are allocated out of a static pool.
192  *
193  *	These restrictions are necessary since malloc() uses the
194  *	maps and requires map entries.
195  */
196 
197 void
198 vm_map_startup(void)
199 {
200 	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
201 	mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
202 #ifdef INVARIANTS
203 	    vm_map_zdtor,
204 #else
205 	    NULL,
206 #endif
207 	    vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
208 	uma_prealloc(mapzone, MAX_KMAP);
209 	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
210 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
211 	    UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
212 	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
213 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
214 	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
215 #ifdef INVARIANTS
216 	    vmspace_zdtor,
217 #else
218 	    NULL,
219 #endif
220 	    vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
221 }
222 
223 static int
224 vmspace_zinit(void *mem, int size, int flags)
225 {
226 	struct vmspace *vm;
227 
228 	vm = (struct vmspace *)mem;
229 
230 	vm->vm_map.pmap = NULL;
231 	(void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
232 	PMAP_LOCK_INIT(vmspace_pmap(vm));
233 	return (0);
234 }
235 
236 static int
237 vm_map_zinit(void *mem, int size, int flags)
238 {
239 	vm_map_t map;
240 
241 	map = (vm_map_t)mem;
242 	memset(map, 0, sizeof(*map));
243 	mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
244 	sx_init(&map->lock, "vm map (user)");
245 	return (0);
246 }
247 
248 #ifdef INVARIANTS
249 static void
250 vmspace_zdtor(void *mem, int size, void *arg)
251 {
252 	struct vmspace *vm;
253 
254 	vm = (struct vmspace *)mem;
255 
256 	vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
257 }
258 static void
259 vm_map_zdtor(void *mem, int size, void *arg)
260 {
261 	vm_map_t map;
262 
263 	map = (vm_map_t)mem;
264 	KASSERT(map->nentries == 0,
265 	    ("map %p nentries == %d on free.",
266 	    map, map->nentries));
267 	KASSERT(map->size == 0,
268 	    ("map %p size == %lu on free.",
269 	    map, (unsigned long)map->size));
270 }
271 #endif	/* INVARIANTS */
272 
273 /*
274  * Allocate a vmspace structure, including a vm_map and pmap,
275  * and initialize those structures.  The refcnt is set to 1.
276  *
277  * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit().
278  */
279 struct vmspace *
280 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
281 {
282 	struct vmspace *vm;
283 
284 	vm = uma_zalloc(vmspace_zone, M_WAITOK);
285 	KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
286 	if (!pinit(vmspace_pmap(vm))) {
287 		uma_zfree(vmspace_zone, vm);
288 		return (NULL);
289 	}
290 	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
291 	_vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
292 	vm->vm_refcnt = 1;
293 	vm->vm_shm = NULL;
294 	vm->vm_swrss = 0;
295 	vm->vm_tsize = 0;
296 	vm->vm_dsize = 0;
297 	vm->vm_ssize = 0;
298 	vm->vm_taddr = 0;
299 	vm->vm_daddr = 0;
300 	vm->vm_maxsaddr = 0;
301 	return (vm);
302 }
303 
304 #ifdef RACCT
305 static void
306 vmspace_container_reset(struct proc *p)
307 {
308 
309 	PROC_LOCK(p);
310 	racct_set(p, RACCT_DATA, 0);
311 	racct_set(p, RACCT_STACK, 0);
312 	racct_set(p, RACCT_RSS, 0);
313 	racct_set(p, RACCT_MEMLOCK, 0);
314 	racct_set(p, RACCT_VMEM, 0);
315 	PROC_UNLOCK(p);
316 }
317 #endif
318 
319 static inline void
320 vmspace_dofree(struct vmspace *vm)
321 {
322 
323 	CTR1(KTR_VM, "vmspace_free: %p", vm);
324 
325 	/*
326 	 * Make sure any SysV shm is freed, it might not have been in
327 	 * exit1().
328 	 */
329 	shmexit(vm);
330 
331 	/*
332 	 * Lock the map, to wait out all other references to it.
333 	 * Delete all of the mappings and pages they hold, then call
334 	 * the pmap module to reclaim anything left.
335 	 */
336 	(void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map),
337 	    vm_map_max(&vm->vm_map));
338 
339 	pmap_release(vmspace_pmap(vm));
340 	vm->vm_map.pmap = NULL;
341 	uma_zfree(vmspace_zone, vm);
342 }
343 
344 void
345 vmspace_free(struct vmspace *vm)
346 {
347 
348 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
349 	    "vmspace_free() called");
350 
351 	if (vm->vm_refcnt == 0)
352 		panic("vmspace_free: attempt to free already freed vmspace");
353 
354 	if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
355 		vmspace_dofree(vm);
356 }
357 
358 void
359 vmspace_exitfree(struct proc *p)
360 {
361 	struct vmspace *vm;
362 
363 	PROC_VMSPACE_LOCK(p);
364 	vm = p->p_vmspace;
365 	p->p_vmspace = NULL;
366 	PROC_VMSPACE_UNLOCK(p);
367 	KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
368 	vmspace_free(vm);
369 }
370 
371 void
372 vmspace_exit(struct thread *td)
373 {
374 	int refcnt;
375 	struct vmspace *vm;
376 	struct proc *p;
377 
378 	/*
379 	 * Release user portion of address space.
380 	 * This releases references to vnodes,
381 	 * which could cause I/O if the file has been unlinked.
382 	 * Need to do this early enough that we can still sleep.
383 	 *
384 	 * The last exiting process to reach this point releases as
385 	 * much of the environment as it can. vmspace_dofree() is the
386 	 * slower fallback in case another process had a temporary
387 	 * reference to the vmspace.
388 	 */
389 
390 	p = td->td_proc;
391 	vm = p->p_vmspace;
392 	atomic_add_int(&vmspace0.vm_refcnt, 1);
393 	refcnt = vm->vm_refcnt;
394 	do {
395 		if (refcnt > 1 && p->p_vmspace != &vmspace0) {
396 			/* Switch now since other proc might free vmspace */
397 			PROC_VMSPACE_LOCK(p);
398 			p->p_vmspace = &vmspace0;
399 			PROC_VMSPACE_UNLOCK(p);
400 			pmap_activate(td);
401 		}
402 	} while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt - 1));
403 	if (refcnt == 1) {
404 		if (p->p_vmspace != vm) {
405 			/* vmspace not yet freed, switch back */
406 			PROC_VMSPACE_LOCK(p);
407 			p->p_vmspace = vm;
408 			PROC_VMSPACE_UNLOCK(p);
409 			pmap_activate(td);
410 		}
411 		pmap_remove_pages(vmspace_pmap(vm));
412 		/* Switch now since this proc will free vmspace */
413 		PROC_VMSPACE_LOCK(p);
414 		p->p_vmspace = &vmspace0;
415 		PROC_VMSPACE_UNLOCK(p);
416 		pmap_activate(td);
417 		vmspace_dofree(vm);
418 	}
419 #ifdef RACCT
420 	if (racct_enable)
421 		vmspace_container_reset(p);
422 #endif
423 }
424 
425 /* Acquire reference to vmspace owned by another process. */
426 
427 struct vmspace *
428 vmspace_acquire_ref(struct proc *p)
429 {
430 	struct vmspace *vm;
431 	int refcnt;
432 
433 	PROC_VMSPACE_LOCK(p);
434 	vm = p->p_vmspace;
435 	if (vm == NULL) {
436 		PROC_VMSPACE_UNLOCK(p);
437 		return (NULL);
438 	}
439 	refcnt = vm->vm_refcnt;
440 	do {
441 		if (refcnt <= 0) { 	/* Avoid 0->1 transition */
442 			PROC_VMSPACE_UNLOCK(p);
443 			return (NULL);
444 		}
445 	} while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt + 1));
446 	if (vm != p->p_vmspace) {
447 		PROC_VMSPACE_UNLOCK(p);
448 		vmspace_free(vm);
449 		return (NULL);
450 	}
451 	PROC_VMSPACE_UNLOCK(p);
452 	return (vm);
453 }
454 
455 /*
456  * Switch between vmspaces in an AIO kernel process.
457  *
458  * The new vmspace is either the vmspace of a user process obtained
459  * from an active AIO request or the initial vmspace of the AIO kernel
460  * process (when it is idling).  Because user processes will block to
461  * drain any active AIO requests before proceeding in exit() or
462  * execve(), the reference count for vmspaces from AIO requests can
463  * never be 0.  Similarly, AIO kernel processes hold an extra
464  * reference on their initial vmspace for the life of the process.  As
465  * a result, the 'newvm' vmspace always has a non-zero reference
466  * count.  This permits an additional reference on 'newvm' to be
467  * acquired via a simple atomic increment rather than the loop in
468  * vmspace_acquire_ref() above.
469  */
470 void
471 vmspace_switch_aio(struct vmspace *newvm)
472 {
473 	struct vmspace *oldvm;
474 
475 	/* XXX: Need some way to assert that this is an aio daemon. */
476 
477 	KASSERT(newvm->vm_refcnt > 0,
478 	    ("vmspace_switch_aio: newvm unreferenced"));
479 
480 	oldvm = curproc->p_vmspace;
481 	if (oldvm == newvm)
482 		return;
483 
484 	/*
485 	 * Point to the new address space and refer to it.
486 	 */
487 	curproc->p_vmspace = newvm;
488 	atomic_add_int(&newvm->vm_refcnt, 1);
489 
490 	/* Activate the new mapping. */
491 	pmap_activate(curthread);
492 
493 	vmspace_free(oldvm);
494 }
495 
496 void
497 _vm_map_lock(vm_map_t map, const char *file, int line)
498 {
499 
500 	if (map->system_map)
501 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
502 	else
503 		sx_xlock_(&map->lock, file, line);
504 	map->timestamp++;
505 }
506 
507 void
508 vm_map_entry_set_vnode_text(vm_map_entry_t entry, bool add)
509 {
510 	vm_object_t object;
511 	struct vnode *vp;
512 	bool vp_held;
513 
514 	if ((entry->eflags & MAP_ENTRY_VN_EXEC) == 0)
515 		return;
516 	KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
517 	    ("Submap with execs"));
518 	object = entry->object.vm_object;
519 	KASSERT(object != NULL, ("No object for text, entry %p", entry));
520 	if ((object->flags & OBJ_ANON) != 0)
521 		object = object->handle;
522 	else
523 		KASSERT(object->backing_object == NULL,
524 		    ("non-anon object %p shadows", object));
525 	KASSERT(object != NULL, ("No content object for text, entry %p obj %p",
526 	    entry, entry->object.vm_object));
527 
528 	/*
529 	 * Mostly, we do not lock the backing object.  It is
530 	 * referenced by the entry we are processing, so it cannot go
531 	 * away.
532 	 */
533 	vp = NULL;
534 	vp_held = false;
535 	if (object->type == OBJT_DEAD) {
536 		/*
537 		 * For OBJT_DEAD objects, v_writecount was handled in
538 		 * vnode_pager_dealloc().
539 		 */
540 	} else if (object->type == OBJT_VNODE) {
541 		vp = object->handle;
542 	} else if (object->type == OBJT_SWAP) {
543 		KASSERT((object->flags & OBJ_TMPFS_NODE) != 0,
544 		    ("vm_map_entry_set_vnode_text: swap and !TMPFS "
545 		    "entry %p, object %p, add %d", entry, object, add));
546 		/*
547 		 * Tmpfs VREG node, which was reclaimed, has
548 		 * OBJ_TMPFS_NODE flag set, but not OBJ_TMPFS.  In
549 		 * this case there is no v_writecount to adjust.
550 		 */
551 		VM_OBJECT_RLOCK(object);
552 		if ((object->flags & OBJ_TMPFS) != 0) {
553 			vp = object->un_pager.swp.swp_tmpfs;
554 			if (vp != NULL) {
555 				vhold(vp);
556 				vp_held = true;
557 			}
558 		}
559 		VM_OBJECT_RUNLOCK(object);
560 	} else {
561 		KASSERT(0,
562 		    ("vm_map_entry_set_vnode_text: wrong object type, "
563 		    "entry %p, object %p, add %d", entry, object, add));
564 	}
565 	if (vp != NULL) {
566 		if (add) {
567 			VOP_SET_TEXT_CHECKED(vp);
568 		} else {
569 			vn_lock(vp, LK_SHARED | LK_RETRY);
570 			VOP_UNSET_TEXT_CHECKED(vp);
571 			VOP_UNLOCK(vp);
572 		}
573 		if (vp_held)
574 			vdrop(vp);
575 	}
576 }
577 
578 /*
579  * Use a different name for this vm_map_entry field when it's use
580  * is not consistent with its use as part of an ordered search tree.
581  */
582 #define defer_next right
583 
584 static void
585 vm_map_process_deferred(void)
586 {
587 	struct thread *td;
588 	vm_map_entry_t entry, next;
589 	vm_object_t object;
590 
591 	td = curthread;
592 	entry = td->td_map_def_user;
593 	td->td_map_def_user = NULL;
594 	while (entry != NULL) {
595 		next = entry->defer_next;
596 		MPASS((entry->eflags & (MAP_ENTRY_WRITECNT |
597 		    MAP_ENTRY_VN_EXEC)) != (MAP_ENTRY_WRITECNT |
598 		    MAP_ENTRY_VN_EXEC));
599 		if ((entry->eflags & MAP_ENTRY_WRITECNT) != 0) {
600 			/*
601 			 * Decrement the object's writemappings and
602 			 * possibly the vnode's v_writecount.
603 			 */
604 			KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
605 			    ("Submap with writecount"));
606 			object = entry->object.vm_object;
607 			KASSERT(object != NULL, ("No object for writecount"));
608 			vm_pager_release_writecount(object, entry->start,
609 			    entry->end);
610 		}
611 		vm_map_entry_set_vnode_text(entry, false);
612 		vm_map_entry_deallocate(entry, FALSE);
613 		entry = next;
614 	}
615 }
616 
617 #ifdef INVARIANTS
618 static void
619 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
620 {
621 
622 	if (map->system_map)
623 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
624 	else
625 		sx_assert_(&map->lock, SA_XLOCKED, file, line);
626 }
627 
628 #define	VM_MAP_ASSERT_LOCKED(map) \
629     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
630 
631 enum { VMMAP_CHECK_NONE, VMMAP_CHECK_UNLOCK, VMMAP_CHECK_ALL };
632 #ifdef DIAGNOSTIC
633 static int enable_vmmap_check = VMMAP_CHECK_UNLOCK;
634 #else
635 static int enable_vmmap_check = VMMAP_CHECK_NONE;
636 #endif
637 SYSCTL_INT(_debug, OID_AUTO, vmmap_check, CTLFLAG_RWTUN,
638     &enable_vmmap_check, 0, "Enable vm map consistency checking");
639 
640 static void _vm_map_assert_consistent(vm_map_t map, int check);
641 
642 #define VM_MAP_ASSERT_CONSISTENT(map) \
643     _vm_map_assert_consistent(map, VMMAP_CHECK_ALL)
644 #ifdef DIAGNOSTIC
645 #define VM_MAP_UNLOCK_CONSISTENT(map) do {				\
646 	if (map->nupdates > map->nentries) {				\
647 		_vm_map_assert_consistent(map, VMMAP_CHECK_UNLOCK);	\
648 		map->nupdates = 0;					\
649 	}								\
650 } while (0)
651 #else
652 #define VM_MAP_UNLOCK_CONSISTENT(map)
653 #endif
654 #else
655 #define	VM_MAP_ASSERT_LOCKED(map)
656 #define VM_MAP_ASSERT_CONSISTENT(map)
657 #define VM_MAP_UNLOCK_CONSISTENT(map)
658 #endif /* INVARIANTS */
659 
660 void
661 _vm_map_unlock(vm_map_t map, const char *file, int line)
662 {
663 
664 	VM_MAP_UNLOCK_CONSISTENT(map);
665 	if (map->system_map)
666 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
667 	else {
668 		sx_xunlock_(&map->lock, file, line);
669 		vm_map_process_deferred();
670 	}
671 }
672 
673 void
674 _vm_map_lock_read(vm_map_t map, const char *file, int line)
675 {
676 
677 	if (map->system_map)
678 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
679 	else
680 		sx_slock_(&map->lock, file, line);
681 }
682 
683 void
684 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
685 {
686 
687 	if (map->system_map)
688 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
689 	else {
690 		sx_sunlock_(&map->lock, file, line);
691 		vm_map_process_deferred();
692 	}
693 }
694 
695 int
696 _vm_map_trylock(vm_map_t map, const char *file, int line)
697 {
698 	int error;
699 
700 	error = map->system_map ?
701 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
702 	    !sx_try_xlock_(&map->lock, file, line);
703 	if (error == 0)
704 		map->timestamp++;
705 	return (error == 0);
706 }
707 
708 int
709 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
710 {
711 	int error;
712 
713 	error = map->system_map ?
714 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
715 	    !sx_try_slock_(&map->lock, file, line);
716 	return (error == 0);
717 }
718 
719 /*
720  *	_vm_map_lock_upgrade:	[ internal use only ]
721  *
722  *	Tries to upgrade a read (shared) lock on the specified map to a write
723  *	(exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
724  *	non-zero value if the upgrade fails.  If the upgrade fails, the map is
725  *	returned without a read or write lock held.
726  *
727  *	Requires that the map be read locked.
728  */
729 int
730 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
731 {
732 	unsigned int last_timestamp;
733 
734 	if (map->system_map) {
735 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
736 	} else {
737 		if (!sx_try_upgrade_(&map->lock, file, line)) {
738 			last_timestamp = map->timestamp;
739 			sx_sunlock_(&map->lock, file, line);
740 			vm_map_process_deferred();
741 			/*
742 			 * If the map's timestamp does not change while the
743 			 * map is unlocked, then the upgrade succeeds.
744 			 */
745 			sx_xlock_(&map->lock, file, line);
746 			if (last_timestamp != map->timestamp) {
747 				sx_xunlock_(&map->lock, file, line);
748 				return (1);
749 			}
750 		}
751 	}
752 	map->timestamp++;
753 	return (0);
754 }
755 
756 void
757 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
758 {
759 
760 	if (map->system_map) {
761 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
762 	} else {
763 		VM_MAP_UNLOCK_CONSISTENT(map);
764 		sx_downgrade_(&map->lock, file, line);
765 	}
766 }
767 
768 /*
769  *	vm_map_locked:
770  *
771  *	Returns a non-zero value if the caller holds a write (exclusive) lock
772  *	on the specified map and the value "0" otherwise.
773  */
774 int
775 vm_map_locked(vm_map_t map)
776 {
777 
778 	if (map->system_map)
779 		return (mtx_owned(&map->system_mtx));
780 	else
781 		return (sx_xlocked(&map->lock));
782 }
783 
784 /*
785  *	_vm_map_unlock_and_wait:
786  *
787  *	Atomically releases the lock on the specified map and puts the calling
788  *	thread to sleep.  The calling thread will remain asleep until either
789  *	vm_map_wakeup() is performed on the map or the specified timeout is
790  *	exceeded.
791  *
792  *	WARNING!  This function does not perform deferred deallocations of
793  *	objects and map	entries.  Therefore, the calling thread is expected to
794  *	reacquire the map lock after reawakening and later perform an ordinary
795  *	unlock operation, such as vm_map_unlock(), before completing its
796  *	operation on the map.
797  */
798 int
799 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
800 {
801 
802 	VM_MAP_UNLOCK_CONSISTENT(map);
803 	mtx_lock(&map_sleep_mtx);
804 	if (map->system_map)
805 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
806 	else
807 		sx_xunlock_(&map->lock, file, line);
808 	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
809 	    timo));
810 }
811 
812 /*
813  *	vm_map_wakeup:
814  *
815  *	Awaken any threads that have slept on the map using
816  *	vm_map_unlock_and_wait().
817  */
818 void
819 vm_map_wakeup(vm_map_t map)
820 {
821 
822 	/*
823 	 * Acquire and release map_sleep_mtx to prevent a wakeup()
824 	 * from being performed (and lost) between the map unlock
825 	 * and the msleep() in _vm_map_unlock_and_wait().
826 	 */
827 	mtx_lock(&map_sleep_mtx);
828 	mtx_unlock(&map_sleep_mtx);
829 	wakeup(&map->root);
830 }
831 
832 void
833 vm_map_busy(vm_map_t map)
834 {
835 
836 	VM_MAP_ASSERT_LOCKED(map);
837 	map->busy++;
838 }
839 
840 void
841 vm_map_unbusy(vm_map_t map)
842 {
843 
844 	VM_MAP_ASSERT_LOCKED(map);
845 	KASSERT(map->busy, ("vm_map_unbusy: not busy"));
846 	if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
847 		vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
848 		wakeup(&map->busy);
849 	}
850 }
851 
852 void
853 vm_map_wait_busy(vm_map_t map)
854 {
855 
856 	VM_MAP_ASSERT_LOCKED(map);
857 	while (map->busy) {
858 		vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
859 		if (map->system_map)
860 			msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
861 		else
862 			sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
863 	}
864 	map->timestamp++;
865 }
866 
867 long
868 vmspace_resident_count(struct vmspace *vmspace)
869 {
870 	return pmap_resident_count(vmspace_pmap(vmspace));
871 }
872 
873 /*
874  *	vm_map_create:
875  *
876  *	Creates and returns a new empty VM map with
877  *	the given physical map structure, and having
878  *	the given lower and upper address bounds.
879  */
880 vm_map_t
881 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
882 {
883 	vm_map_t result;
884 
885 	result = uma_zalloc(mapzone, M_WAITOK);
886 	CTR1(KTR_VM, "vm_map_create: %p", result);
887 	_vm_map_init(result, pmap, min, max);
888 	return (result);
889 }
890 
891 /*
892  * Initialize an existing vm_map structure
893  * such as that in the vmspace structure.
894  */
895 static void
896 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
897 {
898 
899 	map->header.eflags = MAP_ENTRY_HEADER;
900 	map->needs_wakeup = FALSE;
901 	map->system_map = 0;
902 	map->pmap = pmap;
903 	map->header.end = min;
904 	map->header.start = max;
905 	map->flags = 0;
906 	map->header.left = map->header.right = &map->header;
907 	map->root = NULL;
908 	map->timestamp = 0;
909 	map->busy = 0;
910 	map->anon_loc = 0;
911 #ifdef DIAGNOSTIC
912 	map->nupdates = 0;
913 #endif
914 }
915 
916 void
917 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
918 {
919 
920 	_vm_map_init(map, pmap, min, max);
921 	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
922 	sx_init(&map->lock, "user map");
923 }
924 
925 /*
926  *	vm_map_entry_dispose:	[ internal use only ]
927  *
928  *	Inverse of vm_map_entry_create.
929  */
930 static void
931 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
932 {
933 	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
934 }
935 
936 /*
937  *	vm_map_entry_create:	[ internal use only ]
938  *
939  *	Allocates a VM map entry for insertion.
940  *	No entry fields are filled in.
941  */
942 static vm_map_entry_t
943 vm_map_entry_create(vm_map_t map)
944 {
945 	vm_map_entry_t new_entry;
946 
947 	if (map->system_map)
948 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
949 	else
950 		new_entry = uma_zalloc(mapentzone, M_WAITOK);
951 	if (new_entry == NULL)
952 		panic("vm_map_entry_create: kernel resources exhausted");
953 	return (new_entry);
954 }
955 
956 /*
957  *	vm_map_entry_set_behavior:
958  *
959  *	Set the expected access behavior, either normal, random, or
960  *	sequential.
961  */
962 static inline void
963 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
964 {
965 	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
966 	    (behavior & MAP_ENTRY_BEHAV_MASK);
967 }
968 
969 /*
970  *	vm_map_entry_max_free_{left,right}:
971  *
972  *	Compute the size of the largest free gap between two entries,
973  *	one the root of a tree and the other the ancestor of that root
974  *	that is the least or greatest ancestor found on the search path.
975  */
976 static inline vm_size_t
977 vm_map_entry_max_free_left(vm_map_entry_t root, vm_map_entry_t left_ancestor)
978 {
979 
980 	return (root->left != left_ancestor ?
981 	    root->left->max_free : root->start - left_ancestor->end);
982 }
983 
984 static inline vm_size_t
985 vm_map_entry_max_free_right(vm_map_entry_t root, vm_map_entry_t right_ancestor)
986 {
987 
988 	return (root->right != right_ancestor ?
989 	    root->right->max_free : right_ancestor->start - root->end);
990 }
991 
992 /*
993  *	vm_map_entry_{pred,succ}:
994  *
995  *	Find the {predecessor, successor} of the entry by taking one step
996  *	in the appropriate direction and backtracking as much as necessary.
997  *	vm_map_entry_succ is defined in vm_map.h.
998  */
999 static inline vm_map_entry_t
1000 vm_map_entry_pred(vm_map_entry_t entry)
1001 {
1002 	vm_map_entry_t prior;
1003 
1004 	prior = entry->left;
1005 	if (prior->right->start < entry->start) {
1006 		do
1007 			prior = prior->right;
1008 		while (prior->right != entry);
1009 	}
1010 	return (prior);
1011 }
1012 
1013 static inline vm_size_t
1014 vm_size_max(vm_size_t a, vm_size_t b)
1015 {
1016 
1017 	return (a > b ? a : b);
1018 }
1019 
1020 #define SPLAY_LEFT_STEP(root, y, llist, rlist, test) do {		\
1021 	vm_map_entry_t z;						\
1022 	vm_size_t max_free;						\
1023 									\
1024 	/*								\
1025 	 * Infer root->right->max_free == root->max_free when		\
1026 	 * y->max_free < root->max_free || root->max_free == 0.		\
1027 	 * Otherwise, look right to find it.				\
1028 	 */								\
1029 	y = root->left;							\
1030 	max_free = root->max_free;					\
1031 	KASSERT(max_free == vm_size_max(				\
1032 	    vm_map_entry_max_free_left(root, llist),			\
1033 	    vm_map_entry_max_free_right(root, rlist)),			\
1034 	    ("%s: max_free invariant fails", __func__));		\
1035 	if (max_free - 1 < vm_map_entry_max_free_left(root, llist))	\
1036 		max_free = vm_map_entry_max_free_right(root, rlist);	\
1037 	if (y != llist && (test)) {					\
1038 		/* Rotate right and make y root. */			\
1039 		z = y->right;						\
1040 		if (z != root) {					\
1041 			root->left = z;					\
1042 			y->right = root;				\
1043 			if (max_free < y->max_free)			\
1044 			    root->max_free = max_free =			\
1045 			    vm_size_max(max_free, z->max_free);		\
1046 		} else if (max_free < y->max_free)			\
1047 			root->max_free = max_free =			\
1048 			    vm_size_max(max_free, root->start - y->end);\
1049 		root = y;						\
1050 		y = root->left;						\
1051 	}								\
1052 	/* Copy right->max_free.  Put root on rlist. */			\
1053 	root->max_free = max_free;					\
1054 	KASSERT(max_free == vm_map_entry_max_free_right(root, rlist),	\
1055 	    ("%s: max_free not copied from right", __func__));		\
1056 	root->left = rlist;						\
1057 	rlist = root;							\
1058 	root = y != llist ? y : NULL;					\
1059 } while (0)
1060 
1061 #define SPLAY_RIGHT_STEP(root, y, llist, rlist, test) do {		\
1062 	vm_map_entry_t z;						\
1063 	vm_size_t max_free;						\
1064 									\
1065 	/*								\
1066 	 * Infer root->left->max_free == root->max_free when		\
1067 	 * y->max_free < root->max_free || root->max_free == 0.		\
1068 	 * Otherwise, look left to find it.				\
1069 	 */								\
1070 	y = root->right;						\
1071 	max_free = root->max_free;					\
1072 	KASSERT(max_free == vm_size_max(				\
1073 	    vm_map_entry_max_free_left(root, llist),			\
1074 	    vm_map_entry_max_free_right(root, rlist)),			\
1075 	    ("%s: max_free invariant fails", __func__));		\
1076 	if (max_free - 1 < vm_map_entry_max_free_right(root, rlist))	\
1077 		max_free = vm_map_entry_max_free_left(root, llist);	\
1078 	if (y != rlist && (test)) {					\
1079 		/* Rotate left and make y root. */			\
1080 		z = y->left;						\
1081 		if (z != root) {					\
1082 			root->right = z;				\
1083 			y->left = root;					\
1084 			if (max_free < y->max_free)			\
1085 			    root->max_free = max_free =			\
1086 			    vm_size_max(max_free, z->max_free);		\
1087 		} else if (max_free < y->max_free)			\
1088 			root->max_free = max_free =			\
1089 			    vm_size_max(max_free, y->start - root->end);\
1090 		root = y;						\
1091 		y = root->right;					\
1092 	}								\
1093 	/* Copy left->max_free.  Put root on llist. */			\
1094 	root->max_free = max_free;					\
1095 	KASSERT(max_free == vm_map_entry_max_free_left(root, llist),	\
1096 	    ("%s: max_free not copied from left", __func__));		\
1097 	root->right = llist;						\
1098 	llist = root;							\
1099 	root = y != rlist ? y : NULL;					\
1100 } while (0)
1101 
1102 /*
1103  * Walk down the tree until we find addr or a gap where addr would go, breaking
1104  * off left and right subtrees of nodes less than, or greater than addr.  Treat
1105  * subtrees with root->max_free < length as empty trees.  llist and rlist are
1106  * the two sides in reverse order (bottom-up), with llist linked by the right
1107  * pointer and rlist linked by the left pointer in the vm_map_entry, and both
1108  * lists terminated by &map->header.  This function, and the subsequent call to
1109  * vm_map_splay_merge_{left,right,pred,succ}, rely on the start and end address
1110  * values in &map->header.
1111  */
1112 static __always_inline vm_map_entry_t
1113 vm_map_splay_split(vm_map_t map, vm_offset_t addr, vm_size_t length,
1114     vm_map_entry_t *llist, vm_map_entry_t *rlist)
1115 {
1116 	vm_map_entry_t left, right, root, y;
1117 
1118 	left = right = &map->header;
1119 	root = map->root;
1120 	while (root != NULL && root->max_free >= length) {
1121 		KASSERT(left->end <= root->start &&
1122 		    root->end <= right->start,
1123 		    ("%s: root not within tree bounds", __func__));
1124 		if (addr < root->start) {
1125 			SPLAY_LEFT_STEP(root, y, left, right,
1126 			    y->max_free >= length && addr < y->start);
1127 		} else if (addr >= root->end) {
1128 			SPLAY_RIGHT_STEP(root, y, left, right,
1129 			    y->max_free >= length && addr >= y->end);
1130 		} else
1131 			break;
1132 	}
1133 	*llist = left;
1134 	*rlist = right;
1135 	return (root);
1136 }
1137 
1138 static __always_inline void
1139 vm_map_splay_findnext(vm_map_entry_t root, vm_map_entry_t *rlist)
1140 {
1141 	vm_map_entry_t hi, right, y;
1142 
1143 	right = *rlist;
1144 	hi = root->right == right ? NULL : root->right;
1145 	if (hi == NULL)
1146 		return;
1147 	do
1148 		SPLAY_LEFT_STEP(hi, y, root, right, true);
1149 	while (hi != NULL);
1150 	*rlist = right;
1151 }
1152 
1153 static __always_inline void
1154 vm_map_splay_findprev(vm_map_entry_t root, vm_map_entry_t *llist)
1155 {
1156 	vm_map_entry_t left, lo, y;
1157 
1158 	left = *llist;
1159 	lo = root->left == left ? NULL : root->left;
1160 	if (lo == NULL)
1161 		return;
1162 	do
1163 		SPLAY_RIGHT_STEP(lo, y, left, root, true);
1164 	while (lo != NULL);
1165 	*llist = left;
1166 }
1167 
1168 static inline void
1169 vm_map_entry_swap(vm_map_entry_t *a, vm_map_entry_t *b)
1170 {
1171 	vm_map_entry_t tmp;
1172 
1173 	tmp = *b;
1174 	*b = *a;
1175 	*a = tmp;
1176 }
1177 
1178 /*
1179  * Walk back up the two spines, flip the pointers and set max_free.  The
1180  * subtrees of the root go at the bottom of llist and rlist.
1181  */
1182 static vm_size_t
1183 vm_map_splay_merge_left_walk(vm_map_entry_t header, vm_map_entry_t root,
1184     vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t llist)
1185 {
1186 	do {
1187 		/*
1188 		 * The max_free values of the children of llist are in
1189 		 * llist->max_free and max_free.  Update with the
1190 		 * max value.
1191 		 */
1192 		llist->max_free = max_free =
1193 		    vm_size_max(llist->max_free, max_free);
1194 		vm_map_entry_swap(&llist->right, &tail);
1195 		vm_map_entry_swap(&tail, &llist);
1196 	} while (llist != header);
1197 	root->left = tail;
1198 	return (max_free);
1199 }
1200 
1201 /*
1202  * When llist is known to be the predecessor of root.
1203  */
1204 static inline vm_size_t
1205 vm_map_splay_merge_pred(vm_map_entry_t header, vm_map_entry_t root,
1206     vm_map_entry_t llist)
1207 {
1208 	vm_size_t max_free;
1209 
1210 	max_free = root->start - llist->end;
1211 	if (llist != header) {
1212 		max_free = vm_map_splay_merge_left_walk(header, root,
1213 		    root, max_free, llist);
1214 	} else {
1215 		root->left = header;
1216 		header->right = root;
1217 	}
1218 	return (max_free);
1219 }
1220 
1221 /*
1222  * When llist may or may not be the predecessor of root.
1223  */
1224 static inline vm_size_t
1225 vm_map_splay_merge_left(vm_map_entry_t header, vm_map_entry_t root,
1226     vm_map_entry_t llist)
1227 {
1228 	vm_size_t max_free;
1229 
1230 	max_free = vm_map_entry_max_free_left(root, llist);
1231 	if (llist != header) {
1232 		max_free = vm_map_splay_merge_left_walk(header, root,
1233 		    root->left == llist ? root : root->left,
1234 		    max_free, llist);
1235 	}
1236 	return (max_free);
1237 }
1238 
1239 static vm_size_t
1240 vm_map_splay_merge_right_walk(vm_map_entry_t header, vm_map_entry_t root,
1241     vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t rlist)
1242 {
1243 	do {
1244 		/*
1245 		 * The max_free values of the children of rlist are in
1246 		 * rlist->max_free and max_free.  Update with the
1247 		 * max value.
1248 		 */
1249 		rlist->max_free = max_free =
1250 		    vm_size_max(rlist->max_free, max_free);
1251 		vm_map_entry_swap(&rlist->left, &tail);
1252 		vm_map_entry_swap(&tail, &rlist);
1253 	} while (rlist != header);
1254 	root->right = tail;
1255 	return (max_free);
1256 }
1257 
1258 /*
1259  * When rlist is known to be the succecessor of root.
1260  */
1261 static inline vm_size_t
1262 vm_map_splay_merge_succ(vm_map_entry_t header, vm_map_entry_t root,
1263     vm_map_entry_t rlist)
1264 {
1265 	vm_size_t max_free;
1266 
1267 	max_free = rlist->start - root->end;
1268 	if (rlist != header) {
1269 		max_free = vm_map_splay_merge_right_walk(header, root,
1270 		    root, max_free, rlist);
1271 	} else {
1272 		root->right = header;
1273 		header->left = root;
1274 	}
1275 	return (max_free);
1276 }
1277 
1278 /*
1279  * When rlist may or may not be the succecessor of root.
1280  */
1281 static inline vm_size_t
1282 vm_map_splay_merge_right(vm_map_entry_t header, vm_map_entry_t root,
1283     vm_map_entry_t rlist)
1284 {
1285 	vm_size_t max_free;
1286 
1287 	max_free = vm_map_entry_max_free_right(root, rlist);
1288 	if (rlist != header) {
1289 		max_free = vm_map_splay_merge_right_walk(header, root,
1290 		    root->right == rlist ? root : root->right,
1291 		    max_free, rlist);
1292 	}
1293 	return (max_free);
1294 }
1295 
1296 /*
1297  *	vm_map_splay:
1298  *
1299  *	The Sleator and Tarjan top-down splay algorithm with the
1300  *	following variation.  Max_free must be computed bottom-up, so
1301  *	on the downward pass, maintain the left and right spines in
1302  *	reverse order.  Then, make a second pass up each side to fix
1303  *	the pointers and compute max_free.  The time bound is O(log n)
1304  *	amortized.
1305  *
1306  *	The tree is threaded, which means that there are no null pointers.
1307  *	When a node has no left child, its left pointer points to its
1308  *	predecessor, which the last ancestor on the search path from the root
1309  *	where the search branched right.  Likewise, when a node has no right
1310  *	child, its right pointer points to its successor.  The map header node
1311  *	is the predecessor of the first map entry, and the successor of the
1312  *	last.
1313  *
1314  *	The new root is the vm_map_entry containing "addr", or else an
1315  *	adjacent entry (lower if possible) if addr is not in the tree.
1316  *
1317  *	The map must be locked, and leaves it so.
1318  *
1319  *	Returns: the new root.
1320  */
1321 static vm_map_entry_t
1322 vm_map_splay(vm_map_t map, vm_offset_t addr)
1323 {
1324 	vm_map_entry_t header, llist, rlist, root;
1325 	vm_size_t max_free_left, max_free_right;
1326 
1327 	header = &map->header;
1328 	root = vm_map_splay_split(map, addr, 0, &llist, &rlist);
1329 	if (root != NULL) {
1330 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1331 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1332 	} else if (llist != header) {
1333 		/*
1334 		 * Recover the greatest node in the left
1335 		 * subtree and make it the root.
1336 		 */
1337 		root = llist;
1338 		llist = root->right;
1339 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1340 		max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1341 	} else if (rlist != header) {
1342 		/*
1343 		 * Recover the least node in the right
1344 		 * subtree and make it the root.
1345 		 */
1346 		root = rlist;
1347 		rlist = root->left;
1348 		max_free_left = vm_map_splay_merge_pred(header, root, llist);
1349 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1350 	} else {
1351 		/* There is no root. */
1352 		return (NULL);
1353 	}
1354 	root->max_free = vm_size_max(max_free_left, max_free_right);
1355 	map->root = root;
1356 	VM_MAP_ASSERT_CONSISTENT(map);
1357 	return (root);
1358 }
1359 
1360 /*
1361  *	vm_map_entry_{un,}link:
1362  *
1363  *	Insert/remove entries from maps.  On linking, if new entry clips
1364  *	existing entry, trim existing entry to avoid overlap, and manage
1365  *	offsets.  On unlinking, merge disappearing entry with neighbor, if
1366  *	called for, and manage offsets.  Callers should not modify fields in
1367  *	entries already mapped.
1368  */
1369 static void
1370 vm_map_entry_link(vm_map_t map, vm_map_entry_t entry)
1371 {
1372 	vm_map_entry_t header, llist, rlist, root;
1373 	vm_size_t max_free_left, max_free_right;
1374 
1375 	CTR3(KTR_VM,
1376 	    "vm_map_entry_link: map %p, nentries %d, entry %p", map,
1377 	    map->nentries, entry);
1378 	VM_MAP_ASSERT_LOCKED(map);
1379 	map->nentries++;
1380 	header = &map->header;
1381 	root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1382 	if (root == NULL) {
1383 		/*
1384 		 * The new entry does not overlap any existing entry in the
1385 		 * map, so it becomes the new root of the map tree.
1386 		 */
1387 		max_free_left = vm_map_splay_merge_pred(header, entry, llist);
1388 		max_free_right = vm_map_splay_merge_succ(header, entry, rlist);
1389 	} else if (entry->start == root->start) {
1390 		/*
1391 		 * The new entry is a clone of root, with only the end field
1392 		 * changed.  The root entry will be shrunk to abut the new
1393 		 * entry, and will be the right child of the new root entry in
1394 		 * the modified map.
1395 		 */
1396 		KASSERT(entry->end < root->end,
1397 		    ("%s: clip_start not within entry", __func__));
1398 		vm_map_splay_findprev(root, &llist);
1399 		root->offset += entry->end - root->start;
1400 		root->start = entry->end;
1401 		max_free_left = vm_map_splay_merge_pred(header, entry, llist);
1402 		max_free_right = root->max_free = vm_size_max(
1403 		    vm_map_splay_merge_pred(entry, root, entry),
1404 		    vm_map_splay_merge_right(header, root, rlist));
1405 	} else {
1406 		/*
1407 		 * The new entry is a clone of root, with only the start field
1408 		 * changed.  The root entry will be shrunk to abut the new
1409 		 * entry, and will be the left child of the new root entry in
1410 		 * the modified map.
1411 		 */
1412 		KASSERT(entry->end == root->end,
1413 		    ("%s: clip_start not within entry", __func__));
1414 		vm_map_splay_findnext(root, &rlist);
1415 		entry->offset += entry->start - root->start;
1416 		root->end = entry->start;
1417 		max_free_left = root->max_free = vm_size_max(
1418 		    vm_map_splay_merge_left(header, root, llist),
1419 		    vm_map_splay_merge_succ(entry, root, entry));
1420 		max_free_right = vm_map_splay_merge_succ(header, entry, rlist);
1421 	}
1422 	entry->max_free = vm_size_max(max_free_left, max_free_right);
1423 	map->root = entry;
1424 	VM_MAP_ASSERT_CONSISTENT(map);
1425 }
1426 
1427 enum unlink_merge_type {
1428 	UNLINK_MERGE_NONE,
1429 	UNLINK_MERGE_NEXT
1430 };
1431 
1432 static void
1433 vm_map_entry_unlink(vm_map_t map, vm_map_entry_t entry,
1434     enum unlink_merge_type op)
1435 {
1436 	vm_map_entry_t header, llist, rlist, root;
1437 	vm_size_t max_free_left, max_free_right;
1438 
1439 	VM_MAP_ASSERT_LOCKED(map);
1440 	header = &map->header;
1441 	root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1442 	KASSERT(root != NULL,
1443 	    ("vm_map_entry_unlink: unlink object not mapped"));
1444 
1445 	vm_map_splay_findprev(root, &llist);
1446 	vm_map_splay_findnext(root, &rlist);
1447 	if (op == UNLINK_MERGE_NEXT) {
1448 		rlist->start = root->start;
1449 		rlist->offset = root->offset;
1450 	}
1451 	if (llist != header) {
1452 		root = llist;
1453 		llist = root->right;
1454 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1455 		max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1456 	} else if (rlist != header) {
1457 		root = rlist;
1458 		rlist = root->left;
1459 		max_free_left = vm_map_splay_merge_pred(header, root, llist);
1460 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1461 	} else {
1462 		header->left = header->right = header;
1463 		root = NULL;
1464 	}
1465 	if (root != NULL)
1466 		root->max_free = vm_size_max(max_free_left, max_free_right);
1467 	map->root = root;
1468 	VM_MAP_ASSERT_CONSISTENT(map);
1469 	map->nentries--;
1470 	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1471 	    map->nentries, entry);
1472 }
1473 
1474 /*
1475  *	vm_map_entry_resize:
1476  *
1477  *	Resize a vm_map_entry, recompute the amount of free space that
1478  *	follows it and propagate that value up the tree.
1479  *
1480  *	The map must be locked, and leaves it so.
1481  */
1482 static void
1483 vm_map_entry_resize(vm_map_t map, vm_map_entry_t entry, vm_size_t grow_amount)
1484 {
1485 	vm_map_entry_t header, llist, rlist, root;
1486 
1487 	VM_MAP_ASSERT_LOCKED(map);
1488 	header = &map->header;
1489 	root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1490 	KASSERT(root != NULL, ("%s: resize object not mapped", __func__));
1491 	vm_map_splay_findnext(root, &rlist);
1492 	entry->end += grow_amount;
1493 	root->max_free = vm_size_max(
1494 	    vm_map_splay_merge_left(header, root, llist),
1495 	    vm_map_splay_merge_succ(header, root, rlist));
1496 	map->root = root;
1497 	VM_MAP_ASSERT_CONSISTENT(map);
1498 	CTR4(KTR_VM, "%s: map %p, nentries %d, entry %p",
1499 	    __func__, map, map->nentries, entry);
1500 }
1501 
1502 /*
1503  *	vm_map_lookup_entry:	[ internal use only ]
1504  *
1505  *	Finds the map entry containing (or
1506  *	immediately preceding) the specified address
1507  *	in the given map; the entry is returned
1508  *	in the "entry" parameter.  The boolean
1509  *	result indicates whether the address is
1510  *	actually contained in the map.
1511  */
1512 boolean_t
1513 vm_map_lookup_entry(
1514 	vm_map_t map,
1515 	vm_offset_t address,
1516 	vm_map_entry_t *entry)	/* OUT */
1517 {
1518 	vm_map_entry_t cur, header, lbound, ubound;
1519 	boolean_t locked;
1520 
1521 	/*
1522 	 * If the map is empty, then the map entry immediately preceding
1523 	 * "address" is the map's header.
1524 	 */
1525 	header = &map->header;
1526 	cur = map->root;
1527 	if (cur == NULL) {
1528 		*entry = header;
1529 		return (FALSE);
1530 	}
1531 	if (address >= cur->start && cur->end > address) {
1532 		*entry = cur;
1533 		return (TRUE);
1534 	}
1535 	if ((locked = vm_map_locked(map)) ||
1536 	    sx_try_upgrade(&map->lock)) {
1537 		/*
1538 		 * Splay requires a write lock on the map.  However, it only
1539 		 * restructures the binary search tree; it does not otherwise
1540 		 * change the map.  Thus, the map's timestamp need not change
1541 		 * on a temporary upgrade.
1542 		 */
1543 		cur = vm_map_splay(map, address);
1544 		if (!locked) {
1545 			VM_MAP_UNLOCK_CONSISTENT(map);
1546 			sx_downgrade(&map->lock);
1547 		}
1548 
1549 		/*
1550 		 * If "address" is contained within a map entry, the new root
1551 		 * is that map entry.  Otherwise, the new root is a map entry
1552 		 * immediately before or after "address".
1553 		 */
1554 		if (address < cur->start) {
1555 			*entry = header;
1556 			return (FALSE);
1557 		}
1558 		*entry = cur;
1559 		return (address < cur->end);
1560 	}
1561 	/*
1562 	 * Since the map is only locked for read access, perform a
1563 	 * standard binary search tree lookup for "address".
1564 	 */
1565 	lbound = ubound = header;
1566 	for (;;) {
1567 		if (address < cur->start) {
1568 			ubound = cur;
1569 			cur = cur->left;
1570 			if (cur == lbound)
1571 				break;
1572 		} else if (cur->end <= address) {
1573 			lbound = cur;
1574 			cur = cur->right;
1575 			if (cur == ubound)
1576 				break;
1577 		} else {
1578 			*entry = cur;
1579 			return (TRUE);
1580 		}
1581 	}
1582 	*entry = lbound;
1583 	return (FALSE);
1584 }
1585 
1586 /*
1587  *	vm_map_insert:
1588  *
1589  *	Inserts the given whole VM object into the target
1590  *	map at the specified address range.  The object's
1591  *	size should match that of the address range.
1592  *
1593  *	Requires that the map be locked, and leaves it so.
1594  *
1595  *	If object is non-NULL, ref count must be bumped by caller
1596  *	prior to making call to account for the new entry.
1597  */
1598 int
1599 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1600     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1601 {
1602 	vm_map_entry_t new_entry, next_entry, prev_entry;
1603 	struct ucred *cred;
1604 	vm_eflags_t protoeflags;
1605 	vm_inherit_t inheritance;
1606 
1607 	VM_MAP_ASSERT_LOCKED(map);
1608 	KASSERT(object != kernel_object ||
1609 	    (cow & MAP_COPY_ON_WRITE) == 0,
1610 	    ("vm_map_insert: kernel object and COW"));
1611 	KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0,
1612 	    ("vm_map_insert: paradoxical MAP_NOFAULT request"));
1613 	KASSERT((prot & ~max) == 0,
1614 	    ("prot %#x is not subset of max_prot %#x", prot, max));
1615 
1616 	/*
1617 	 * Check that the start and end points are not bogus.
1618 	 */
1619 	if (start < vm_map_min(map) || end > vm_map_max(map) ||
1620 	    start >= end)
1621 		return (KERN_INVALID_ADDRESS);
1622 
1623 	/*
1624 	 * Find the entry prior to the proposed starting address; if it's part
1625 	 * of an existing entry, this range is bogus.
1626 	 */
1627 	if (vm_map_lookup_entry(map, start, &prev_entry))
1628 		return (KERN_NO_SPACE);
1629 
1630 	/*
1631 	 * Assert that the next entry doesn't overlap the end point.
1632 	 */
1633 	next_entry = vm_map_entry_succ(prev_entry);
1634 	if (next_entry->start < end)
1635 		return (KERN_NO_SPACE);
1636 
1637 	if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL ||
1638 	    max != VM_PROT_NONE))
1639 		return (KERN_INVALID_ARGUMENT);
1640 
1641 	protoeflags = 0;
1642 	if (cow & MAP_COPY_ON_WRITE)
1643 		protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1644 	if (cow & MAP_NOFAULT)
1645 		protoeflags |= MAP_ENTRY_NOFAULT;
1646 	if (cow & MAP_DISABLE_SYNCER)
1647 		protoeflags |= MAP_ENTRY_NOSYNC;
1648 	if (cow & MAP_DISABLE_COREDUMP)
1649 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1650 	if (cow & MAP_STACK_GROWS_DOWN)
1651 		protoeflags |= MAP_ENTRY_GROWS_DOWN;
1652 	if (cow & MAP_STACK_GROWS_UP)
1653 		protoeflags |= MAP_ENTRY_GROWS_UP;
1654 	if (cow & MAP_WRITECOUNT)
1655 		protoeflags |= MAP_ENTRY_WRITECNT;
1656 	if (cow & MAP_VN_EXEC)
1657 		protoeflags |= MAP_ENTRY_VN_EXEC;
1658 	if ((cow & MAP_CREATE_GUARD) != 0)
1659 		protoeflags |= MAP_ENTRY_GUARD;
1660 	if ((cow & MAP_CREATE_STACK_GAP_DN) != 0)
1661 		protoeflags |= MAP_ENTRY_STACK_GAP_DN;
1662 	if ((cow & MAP_CREATE_STACK_GAP_UP) != 0)
1663 		protoeflags |= MAP_ENTRY_STACK_GAP_UP;
1664 	if (cow & MAP_INHERIT_SHARE)
1665 		inheritance = VM_INHERIT_SHARE;
1666 	else
1667 		inheritance = VM_INHERIT_DEFAULT;
1668 
1669 	cred = NULL;
1670 	if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0)
1671 		goto charged;
1672 	if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1673 	    ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1674 		if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1675 			return (KERN_RESOURCE_SHORTAGE);
1676 		KASSERT(object == NULL ||
1677 		    (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
1678 		    object->cred == NULL,
1679 		    ("overcommit: vm_map_insert o %p", object));
1680 		cred = curthread->td_ucred;
1681 	}
1682 
1683 charged:
1684 	/* Expand the kernel pmap, if necessary. */
1685 	if (map == kernel_map && end > kernel_vm_end)
1686 		pmap_growkernel(end);
1687 	if (object != NULL) {
1688 		/*
1689 		 * OBJ_ONEMAPPING must be cleared unless this mapping
1690 		 * is trivially proven to be the only mapping for any
1691 		 * of the object's pages.  (Object granularity
1692 		 * reference counting is insufficient to recognize
1693 		 * aliases with precision.)
1694 		 */
1695 		if ((object->flags & OBJ_ANON) != 0) {
1696 			VM_OBJECT_WLOCK(object);
1697 			if (object->ref_count > 1 || object->shadow_count != 0)
1698 				vm_object_clear_flag(object, OBJ_ONEMAPPING);
1699 			VM_OBJECT_WUNLOCK(object);
1700 		}
1701 	} else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) ==
1702 	    protoeflags &&
1703 	    (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP |
1704 	    MAP_VN_EXEC)) == 0 &&
1705 	    prev_entry->end == start && (prev_entry->cred == cred ||
1706 	    (prev_entry->object.vm_object != NULL &&
1707 	    prev_entry->object.vm_object->cred == cred)) &&
1708 	    vm_object_coalesce(prev_entry->object.vm_object,
1709 	    prev_entry->offset,
1710 	    (vm_size_t)(prev_entry->end - prev_entry->start),
1711 	    (vm_size_t)(end - prev_entry->end), cred != NULL &&
1712 	    (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1713 		/*
1714 		 * We were able to extend the object.  Determine if we
1715 		 * can extend the previous map entry to include the
1716 		 * new range as well.
1717 		 */
1718 		if (prev_entry->inheritance == inheritance &&
1719 		    prev_entry->protection == prot &&
1720 		    prev_entry->max_protection == max &&
1721 		    prev_entry->wired_count == 0) {
1722 			KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) ==
1723 			    0, ("prev_entry %p has incoherent wiring",
1724 			    prev_entry));
1725 			if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0)
1726 				map->size += end - prev_entry->end;
1727 			vm_map_entry_resize(map, prev_entry,
1728 			    end - prev_entry->end);
1729 			vm_map_try_merge_entries(map, prev_entry, next_entry);
1730 			return (KERN_SUCCESS);
1731 		}
1732 
1733 		/*
1734 		 * If we can extend the object but cannot extend the
1735 		 * map entry, we have to create a new map entry.  We
1736 		 * must bump the ref count on the extended object to
1737 		 * account for it.  object may be NULL.
1738 		 */
1739 		object = prev_entry->object.vm_object;
1740 		offset = prev_entry->offset +
1741 		    (prev_entry->end - prev_entry->start);
1742 		vm_object_reference(object);
1743 		if (cred != NULL && object != NULL && object->cred != NULL &&
1744 		    !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1745 			/* Object already accounts for this uid. */
1746 			cred = NULL;
1747 		}
1748 	}
1749 	if (cred != NULL)
1750 		crhold(cred);
1751 
1752 	/*
1753 	 * Create a new entry
1754 	 */
1755 	new_entry = vm_map_entry_create(map);
1756 	new_entry->start = start;
1757 	new_entry->end = end;
1758 	new_entry->cred = NULL;
1759 
1760 	new_entry->eflags = protoeflags;
1761 	new_entry->object.vm_object = object;
1762 	new_entry->offset = offset;
1763 
1764 	new_entry->inheritance = inheritance;
1765 	new_entry->protection = prot;
1766 	new_entry->max_protection = max;
1767 	new_entry->wired_count = 0;
1768 	new_entry->wiring_thread = NULL;
1769 	new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1770 	new_entry->next_read = start;
1771 
1772 	KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1773 	    ("overcommit: vm_map_insert leaks vm_map %p", new_entry));
1774 	new_entry->cred = cred;
1775 
1776 	/*
1777 	 * Insert the new entry into the list
1778 	 */
1779 	vm_map_entry_link(map, new_entry);
1780 	if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0)
1781 		map->size += new_entry->end - new_entry->start;
1782 
1783 	/*
1784 	 * Try to coalesce the new entry with both the previous and next
1785 	 * entries in the list.  Previously, we only attempted to coalesce
1786 	 * with the previous entry when object is NULL.  Here, we handle the
1787 	 * other cases, which are less common.
1788 	 */
1789 	vm_map_try_merge_entries(map, prev_entry, new_entry);
1790 	vm_map_try_merge_entries(map, new_entry, next_entry);
1791 
1792 	if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) {
1793 		vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset),
1794 		    end - start, cow & MAP_PREFAULT_PARTIAL);
1795 	}
1796 
1797 	return (KERN_SUCCESS);
1798 }
1799 
1800 /*
1801  *	vm_map_findspace:
1802  *
1803  *	Find the first fit (lowest VM address) for "length" free bytes
1804  *	beginning at address >= start in the given map.
1805  *
1806  *	In a vm_map_entry, "max_free" is the maximum amount of
1807  *	contiguous free space between an entry in its subtree and a
1808  *	neighbor of that entry.  This allows finding a free region in
1809  *	one path down the tree, so O(log n) amortized with splay
1810  *	trees.
1811  *
1812  *	The map must be locked, and leaves it so.
1813  *
1814  *	Returns: starting address if sufficient space,
1815  *		 vm_map_max(map)-length+1 if insufficient space.
1816  */
1817 vm_offset_t
1818 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length)
1819 {
1820 	vm_map_entry_t header, llist, rlist, root, y;
1821 	vm_size_t left_length, max_free_left, max_free_right;
1822 	vm_offset_t gap_end;
1823 
1824 	/*
1825 	 * Request must fit within min/max VM address and must avoid
1826 	 * address wrap.
1827 	 */
1828 	start = MAX(start, vm_map_min(map));
1829 	if (start >= vm_map_max(map) || length > vm_map_max(map) - start)
1830 		return (vm_map_max(map) - length + 1);
1831 
1832 	/* Empty tree means wide open address space. */
1833 	if (map->root == NULL)
1834 		return (start);
1835 
1836 	/*
1837 	 * After splay_split, if start is within an entry, push it to the start
1838 	 * of the following gap.  If rlist is at the end of the gap containing
1839 	 * start, save the end of that gap in gap_end to see if the gap is big
1840 	 * enough; otherwise set gap_end to start skip gap-checking and move
1841 	 * directly to a search of the right subtree.
1842 	 */
1843 	header = &map->header;
1844 	root = vm_map_splay_split(map, start, length, &llist, &rlist);
1845 	gap_end = rlist->start;
1846 	if (root != NULL) {
1847 		start = root->end;
1848 		if (root->right != rlist)
1849 			gap_end = start;
1850 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1851 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1852 	} else if (rlist != header) {
1853 		root = rlist;
1854 		rlist = root->left;
1855 		max_free_left = vm_map_splay_merge_pred(header, root, llist);
1856 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1857 	} else {
1858 		root = llist;
1859 		llist = root->right;
1860 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1861 		max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1862 	}
1863 	root->max_free = vm_size_max(max_free_left, max_free_right);
1864 	map->root = root;
1865 	VM_MAP_ASSERT_CONSISTENT(map);
1866 	if (length <= gap_end - start)
1867 		return (start);
1868 
1869 	/* With max_free, can immediately tell if no solution. */
1870 	if (root->right == header || length > root->right->max_free)
1871 		return (vm_map_max(map) - length + 1);
1872 
1873 	/*
1874 	 * Splay for the least large-enough gap in the right subtree.
1875 	 */
1876 	llist = rlist = header;
1877 	for (left_length = 0;;
1878 	    left_length = vm_map_entry_max_free_left(root, llist)) {
1879 		if (length <= left_length)
1880 			SPLAY_LEFT_STEP(root, y, llist, rlist,
1881 			    length <= vm_map_entry_max_free_left(y, llist));
1882 		else
1883 			SPLAY_RIGHT_STEP(root, y, llist, rlist,
1884 			    length > vm_map_entry_max_free_left(y, root));
1885 		if (root == NULL)
1886 			break;
1887 	}
1888 	root = llist;
1889 	llist = root->right;
1890 	max_free_left = vm_map_splay_merge_left(header, root, llist);
1891 	if (rlist == header) {
1892 		root->max_free = vm_size_max(max_free_left,
1893 		    vm_map_splay_merge_succ(header, root, rlist));
1894 	} else {
1895 		y = rlist;
1896 		rlist = y->left;
1897 		y->max_free = vm_size_max(
1898 		    vm_map_splay_merge_pred(root, y, root),
1899 		    vm_map_splay_merge_right(header, y, rlist));
1900 		root->max_free = vm_size_max(max_free_left, y->max_free);
1901 	}
1902 	map->root = root;
1903 	VM_MAP_ASSERT_CONSISTENT(map);
1904 	return (root->end);
1905 }
1906 
1907 int
1908 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1909     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1910     vm_prot_t max, int cow)
1911 {
1912 	vm_offset_t end;
1913 	int result;
1914 
1915 	end = start + length;
1916 	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1917 	    object == NULL,
1918 	    ("vm_map_fixed: non-NULL backing object for stack"));
1919 	vm_map_lock(map);
1920 	VM_MAP_RANGE_CHECK(map, start, end);
1921 	if ((cow & MAP_CHECK_EXCL) == 0)
1922 		vm_map_delete(map, start, end);
1923 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1924 		result = vm_map_stack_locked(map, start, length, sgrowsiz,
1925 		    prot, max, cow);
1926 	} else {
1927 		result = vm_map_insert(map, object, offset, start, end,
1928 		    prot, max, cow);
1929 	}
1930 	vm_map_unlock(map);
1931 	return (result);
1932 }
1933 
1934 static const int aslr_pages_rnd_64[2] = {0x1000, 0x10};
1935 static const int aslr_pages_rnd_32[2] = {0x100, 0x4};
1936 
1937 static int cluster_anon = 1;
1938 SYSCTL_INT(_vm, OID_AUTO, cluster_anon, CTLFLAG_RW,
1939     &cluster_anon, 0,
1940     "Cluster anonymous mappings: 0 = no, 1 = yes if no hint, 2 = always");
1941 
1942 static bool
1943 clustering_anon_allowed(vm_offset_t addr)
1944 {
1945 
1946 	switch (cluster_anon) {
1947 	case 0:
1948 		return (false);
1949 	case 1:
1950 		return (addr == 0);
1951 	case 2:
1952 	default:
1953 		return (true);
1954 	}
1955 }
1956 
1957 static long aslr_restarts;
1958 SYSCTL_LONG(_vm, OID_AUTO, aslr_restarts, CTLFLAG_RD,
1959     &aslr_restarts, 0,
1960     "Number of aslr failures");
1961 
1962 #define	MAP_32BIT_MAX_ADDR	((vm_offset_t)1 << 31)
1963 
1964 /*
1965  * Searches for the specified amount of free space in the given map with the
1966  * specified alignment.  Performs an address-ordered, first-fit search from
1967  * the given address "*addr", with an optional upper bound "max_addr".  If the
1968  * parameter "alignment" is zero, then the alignment is computed from the
1969  * given (object, offset) pair so as to enable the greatest possible use of
1970  * superpage mappings.  Returns KERN_SUCCESS and the address of the free space
1971  * in "*addr" if successful.  Otherwise, returns KERN_NO_SPACE.
1972  *
1973  * The map must be locked.  Initially, there must be at least "length" bytes
1974  * of free space at the given address.
1975  */
1976 static int
1977 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1978     vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr,
1979     vm_offset_t alignment)
1980 {
1981 	vm_offset_t aligned_addr, free_addr;
1982 
1983 	VM_MAP_ASSERT_LOCKED(map);
1984 	free_addr = *addr;
1985 	KASSERT(free_addr == vm_map_findspace(map, free_addr, length),
1986 	    ("caller failed to provide space %#jx at address %p",
1987 	     (uintmax_t)length, (void *)free_addr));
1988 	for (;;) {
1989 		/*
1990 		 * At the start of every iteration, the free space at address
1991 		 * "*addr" is at least "length" bytes.
1992 		 */
1993 		if (alignment == 0)
1994 			pmap_align_superpage(object, offset, addr, length);
1995 		else if ((*addr & (alignment - 1)) != 0) {
1996 			*addr &= ~(alignment - 1);
1997 			*addr += alignment;
1998 		}
1999 		aligned_addr = *addr;
2000 		if (aligned_addr == free_addr) {
2001 			/*
2002 			 * Alignment did not change "*addr", so "*addr" must
2003 			 * still provide sufficient free space.
2004 			 */
2005 			return (KERN_SUCCESS);
2006 		}
2007 
2008 		/*
2009 		 * Test for address wrap on "*addr".  A wrapped "*addr" could
2010 		 * be a valid address, in which case vm_map_findspace() cannot
2011 		 * be relied upon to fail.
2012 		 */
2013 		if (aligned_addr < free_addr)
2014 			return (KERN_NO_SPACE);
2015 		*addr = vm_map_findspace(map, aligned_addr, length);
2016 		if (*addr + length > vm_map_max(map) ||
2017 		    (max_addr != 0 && *addr + length > max_addr))
2018 			return (KERN_NO_SPACE);
2019 		free_addr = *addr;
2020 		if (free_addr == aligned_addr) {
2021 			/*
2022 			 * If a successful call to vm_map_findspace() did not
2023 			 * change "*addr", then "*addr" must still be aligned
2024 			 * and provide sufficient free space.
2025 			 */
2026 			return (KERN_SUCCESS);
2027 		}
2028 	}
2029 }
2030 
2031 /*
2032  *	vm_map_find finds an unallocated region in the target address
2033  *	map with the given length.  The search is defined to be
2034  *	first-fit from the specified address; the region found is
2035  *	returned in the same parameter.
2036  *
2037  *	If object is non-NULL, ref count must be bumped by caller
2038  *	prior to making call to account for the new entry.
2039  */
2040 int
2041 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2042 	    vm_offset_t *addr,	/* IN/OUT */
2043 	    vm_size_t length, vm_offset_t max_addr, int find_space,
2044 	    vm_prot_t prot, vm_prot_t max, int cow)
2045 {
2046 	vm_offset_t alignment, curr_min_addr, min_addr;
2047 	int gap, pidx, rv, try;
2048 	bool cluster, en_aslr, update_anon;
2049 
2050 	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
2051 	    object == NULL,
2052 	    ("vm_map_find: non-NULL backing object for stack"));
2053 	MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE &&
2054 	    (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0));
2055 	if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
2056 	    (object->flags & OBJ_COLORED) == 0))
2057 		find_space = VMFS_ANY_SPACE;
2058 	if (find_space >> 8 != 0) {
2059 		KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
2060 		alignment = (vm_offset_t)1 << (find_space >> 8);
2061 	} else
2062 		alignment = 0;
2063 	en_aslr = (map->flags & MAP_ASLR) != 0;
2064 	update_anon = cluster = clustering_anon_allowed(*addr) &&
2065 	    (map->flags & MAP_IS_SUB_MAP) == 0 && max_addr == 0 &&
2066 	    find_space != VMFS_NO_SPACE && object == NULL &&
2067 	    (cow & (MAP_INHERIT_SHARE | MAP_STACK_GROWS_UP |
2068 	    MAP_STACK_GROWS_DOWN)) == 0 && prot != PROT_NONE;
2069 	curr_min_addr = min_addr = *addr;
2070 	if (en_aslr && min_addr == 0 && !cluster &&
2071 	    find_space != VMFS_NO_SPACE &&
2072 	    (map->flags & MAP_ASLR_IGNSTART) != 0)
2073 		curr_min_addr = min_addr = vm_map_min(map);
2074 	try = 0;
2075 	vm_map_lock(map);
2076 	if (cluster) {
2077 		curr_min_addr = map->anon_loc;
2078 		if (curr_min_addr == 0)
2079 			cluster = false;
2080 	}
2081 	if (find_space != VMFS_NO_SPACE) {
2082 		KASSERT(find_space == VMFS_ANY_SPACE ||
2083 		    find_space == VMFS_OPTIMAL_SPACE ||
2084 		    find_space == VMFS_SUPER_SPACE ||
2085 		    alignment != 0, ("unexpected VMFS flag"));
2086 again:
2087 		/*
2088 		 * When creating an anonymous mapping, try clustering
2089 		 * with an existing anonymous mapping first.
2090 		 *
2091 		 * We make up to two attempts to find address space
2092 		 * for a given find_space value. The first attempt may
2093 		 * apply randomization or may cluster with an existing
2094 		 * anonymous mapping. If this first attempt fails,
2095 		 * perform a first-fit search of the available address
2096 		 * space.
2097 		 *
2098 		 * If all tries failed, and find_space is
2099 		 * VMFS_OPTIMAL_SPACE, fallback to VMFS_ANY_SPACE.
2100 		 * Again enable clustering and randomization.
2101 		 */
2102 		try++;
2103 		MPASS(try <= 2);
2104 
2105 		if (try == 2) {
2106 			/*
2107 			 * Second try: we failed either to find a
2108 			 * suitable region for randomizing the
2109 			 * allocation, or to cluster with an existing
2110 			 * mapping.  Retry with free run.
2111 			 */
2112 			curr_min_addr = (map->flags & MAP_ASLR_IGNSTART) != 0 ?
2113 			    vm_map_min(map) : min_addr;
2114 			atomic_add_long(&aslr_restarts, 1);
2115 		}
2116 
2117 		if (try == 1 && en_aslr && !cluster) {
2118 			/*
2119 			 * Find space for allocation, including
2120 			 * gap needed for later randomization.
2121 			 */
2122 			pidx = MAXPAGESIZES > 1 && pagesizes[1] != 0 &&
2123 			    (find_space == VMFS_SUPER_SPACE || find_space ==
2124 			    VMFS_OPTIMAL_SPACE) ? 1 : 0;
2125 			gap = vm_map_max(map) > MAP_32BIT_MAX_ADDR &&
2126 			    (max_addr == 0 || max_addr > MAP_32BIT_MAX_ADDR) ?
2127 			    aslr_pages_rnd_64[pidx] : aslr_pages_rnd_32[pidx];
2128 			*addr = vm_map_findspace(map, curr_min_addr,
2129 			    length + gap * pagesizes[pidx]);
2130 			if (*addr + length + gap * pagesizes[pidx] >
2131 			    vm_map_max(map))
2132 				goto again;
2133 			/* And randomize the start address. */
2134 			*addr += (arc4random() % gap) * pagesizes[pidx];
2135 			if (max_addr != 0 && *addr + length > max_addr)
2136 				goto again;
2137 		} else {
2138 			*addr = vm_map_findspace(map, curr_min_addr, length);
2139 			if (*addr + length > vm_map_max(map) ||
2140 			    (max_addr != 0 && *addr + length > max_addr)) {
2141 				if (cluster) {
2142 					cluster = false;
2143 					MPASS(try == 1);
2144 					goto again;
2145 				}
2146 				rv = KERN_NO_SPACE;
2147 				goto done;
2148 			}
2149 		}
2150 
2151 		if (find_space != VMFS_ANY_SPACE &&
2152 		    (rv = vm_map_alignspace(map, object, offset, addr, length,
2153 		    max_addr, alignment)) != KERN_SUCCESS) {
2154 			if (find_space == VMFS_OPTIMAL_SPACE) {
2155 				find_space = VMFS_ANY_SPACE;
2156 				curr_min_addr = min_addr;
2157 				cluster = update_anon;
2158 				try = 0;
2159 				goto again;
2160 			}
2161 			goto done;
2162 		}
2163 	} else if ((cow & MAP_REMAP) != 0) {
2164 		if (*addr < vm_map_min(map) ||
2165 		    *addr + length > vm_map_max(map) ||
2166 		    *addr + length <= length) {
2167 			rv = KERN_INVALID_ADDRESS;
2168 			goto done;
2169 		}
2170 		vm_map_delete(map, *addr, *addr + length);
2171 	}
2172 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
2173 		rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot,
2174 		    max, cow);
2175 	} else {
2176 		rv = vm_map_insert(map, object, offset, *addr, *addr + length,
2177 		    prot, max, cow);
2178 	}
2179 	if (rv == KERN_SUCCESS && update_anon)
2180 		map->anon_loc = *addr + length;
2181 done:
2182 	vm_map_unlock(map);
2183 	return (rv);
2184 }
2185 
2186 /*
2187  *	vm_map_find_min() is a variant of vm_map_find() that takes an
2188  *	additional parameter (min_addr) and treats the given address
2189  *	(*addr) differently.  Specifically, it treats *addr as a hint
2190  *	and not as the minimum address where the mapping is created.
2191  *
2192  *	This function works in two phases.  First, it tries to
2193  *	allocate above the hint.  If that fails and the hint is
2194  *	greater than min_addr, it performs a second pass, replacing
2195  *	the hint with min_addr as the minimum address for the
2196  *	allocation.
2197  */
2198 int
2199 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2200     vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr,
2201     vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max,
2202     int cow)
2203 {
2204 	vm_offset_t hint;
2205 	int rv;
2206 
2207 	hint = *addr;
2208 	for (;;) {
2209 		rv = vm_map_find(map, object, offset, addr, length, max_addr,
2210 		    find_space, prot, max, cow);
2211 		if (rv == KERN_SUCCESS || min_addr >= hint)
2212 			return (rv);
2213 		*addr = hint = min_addr;
2214 	}
2215 }
2216 
2217 /*
2218  * A map entry with any of the following flags set must not be merged with
2219  * another entry.
2220  */
2221 #define	MAP_ENTRY_NOMERGE_MASK	(MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | \
2222 	    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP | MAP_ENTRY_VN_EXEC)
2223 
2224 static bool
2225 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry)
2226 {
2227 
2228 	KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 ||
2229 	    (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0,
2230 	    ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable",
2231 	    prev, entry));
2232 	return (prev->end == entry->start &&
2233 	    prev->object.vm_object == entry->object.vm_object &&
2234 	    (prev->object.vm_object == NULL ||
2235 	    prev->offset + (prev->end - prev->start) == entry->offset) &&
2236 	    prev->eflags == entry->eflags &&
2237 	    prev->protection == entry->protection &&
2238 	    prev->max_protection == entry->max_protection &&
2239 	    prev->inheritance == entry->inheritance &&
2240 	    prev->wired_count == entry->wired_count &&
2241 	    prev->cred == entry->cred);
2242 }
2243 
2244 static void
2245 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry)
2246 {
2247 
2248 	/*
2249 	 * If the backing object is a vnode object, vm_object_deallocate()
2250 	 * calls vrele().  However, vrele() does not lock the vnode because
2251 	 * the vnode has additional references.  Thus, the map lock can be
2252 	 * kept without causing a lock-order reversal with the vnode lock.
2253 	 *
2254 	 * Since we count the number of virtual page mappings in
2255 	 * object->un_pager.vnp.writemappings, the writemappings value
2256 	 * should not be adjusted when the entry is disposed of.
2257 	 */
2258 	if (entry->object.vm_object != NULL)
2259 		vm_object_deallocate(entry->object.vm_object);
2260 	if (entry->cred != NULL)
2261 		crfree(entry->cred);
2262 	vm_map_entry_dispose(map, entry);
2263 }
2264 
2265 /*
2266  *	vm_map_try_merge_entries:
2267  *
2268  *	Compare the given map entry to its predecessor, and merge its precessor
2269  *	into it if possible.  The entry remains valid, and may be extended.
2270  *	The predecessor may be deleted.
2271  *
2272  *	The map must be locked.
2273  */
2274 void
2275 vm_map_try_merge_entries(vm_map_t map, vm_map_entry_t prev_entry,
2276     vm_map_entry_t entry)
2277 {
2278 
2279 	VM_MAP_ASSERT_LOCKED(map);
2280 	if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 &&
2281 	    vm_map_mergeable_neighbors(prev_entry, entry)) {
2282 		vm_map_entry_unlink(map, prev_entry, UNLINK_MERGE_NEXT);
2283 		vm_map_merged_neighbor_dispose(map, prev_entry);
2284 	}
2285 }
2286 
2287 /*
2288  *	vm_map_entry_back:
2289  *
2290  *	Allocate an object to back a map entry.
2291  */
2292 static inline void
2293 vm_map_entry_back(vm_map_entry_t entry)
2294 {
2295 	vm_object_t object;
2296 
2297 	KASSERT(entry->object.vm_object == NULL,
2298 	    ("map entry %p has backing object", entry));
2299 	KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
2300 	    ("map entry %p is a submap", entry));
2301 	object = vm_object_allocate_anon(atop(entry->end - entry->start), NULL,
2302 	    entry->cred, entry->end - entry->start);
2303 	entry->object.vm_object = object;
2304 	entry->offset = 0;
2305 	entry->cred = NULL;
2306 }
2307 
2308 /*
2309  *	vm_map_entry_charge_object
2310  *
2311  *	If there is no object backing this entry, create one.  Otherwise, if
2312  *	the entry has cred, give it to the backing object.
2313  */
2314 static inline void
2315 vm_map_entry_charge_object(vm_map_t map, vm_map_entry_t entry)
2316 {
2317 
2318 	VM_MAP_ASSERT_LOCKED(map);
2319 	KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
2320 	    ("map entry %p is a submap", entry));
2321 	if (entry->object.vm_object == NULL && !map->system_map &&
2322 	    (entry->eflags & MAP_ENTRY_GUARD) == 0)
2323 		vm_map_entry_back(entry);
2324 	else if (entry->object.vm_object != NULL &&
2325 	    ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
2326 	    entry->cred != NULL) {
2327 		VM_OBJECT_WLOCK(entry->object.vm_object);
2328 		KASSERT(entry->object.vm_object->cred == NULL,
2329 		    ("OVERCOMMIT: %s: both cred e %p", __func__, entry));
2330 		entry->object.vm_object->cred = entry->cred;
2331 		entry->object.vm_object->charge = entry->end - entry->start;
2332 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
2333 		entry->cred = NULL;
2334 	}
2335 }
2336 
2337 /*
2338  *	vm_map_entry_clone
2339  *
2340  *	Create a duplicate map entry for clipping.
2341  */
2342 static vm_map_entry_t
2343 vm_map_entry_clone(vm_map_t map, vm_map_entry_t entry)
2344 {
2345 	vm_map_entry_t new_entry;
2346 
2347 	VM_MAP_ASSERT_LOCKED(map);
2348 
2349 	/*
2350 	 * Create a backing object now, if none exists, so that more individual
2351 	 * objects won't be created after the map entry is split.
2352 	 */
2353 	vm_map_entry_charge_object(map, entry);
2354 
2355 	/* Clone the entry. */
2356 	new_entry = vm_map_entry_create(map);
2357 	*new_entry = *entry;
2358 	if (new_entry->cred != NULL)
2359 		crhold(entry->cred);
2360 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2361 		vm_object_reference(new_entry->object.vm_object);
2362 		vm_map_entry_set_vnode_text(new_entry, true);
2363 		/*
2364 		 * The object->un_pager.vnp.writemappings for the object of
2365 		 * MAP_ENTRY_WRITECNT type entry shall be kept as is here.  The
2366 		 * virtual pages are re-distributed among the clipped entries,
2367 		 * so the sum is left the same.
2368 		 */
2369 	}
2370 	return (new_entry);
2371 }
2372 
2373 /*
2374  *	vm_map_clip_start:	[ internal use only ]
2375  *
2376  *	Asserts that the given entry begins at or after
2377  *	the specified address; if necessary,
2378  *	it splits the entry into two.
2379  */
2380 #define vm_map_clip_start(map, entry, startaddr) \
2381 { \
2382 	if (startaddr > entry->start) \
2383 		_vm_map_clip_start(map, entry, startaddr); \
2384 }
2385 
2386 /*
2387  *	This routine is called only when it is known that
2388  *	the entry must be split.
2389  */
2390 static void
2391 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
2392 {
2393 	vm_map_entry_t new_entry;
2394 
2395 	VM_MAP_ASSERT_LOCKED(map);
2396 	KASSERT(entry->end > start && entry->start < start,
2397 	    ("_vm_map_clip_start: invalid clip of entry %p", entry));
2398 
2399 	new_entry = vm_map_entry_clone(map, entry);
2400 
2401 	/*
2402 	 * Split off the front portion.  Insert the new entry BEFORE this one,
2403 	 * so that this entry has the specified starting address.
2404 	 */
2405 	new_entry->end = start;
2406 	vm_map_entry_link(map, new_entry);
2407 }
2408 
2409 /*
2410  *	vm_map_clip_end:	[ internal use only ]
2411  *
2412  *	Asserts that the given entry ends at or before
2413  *	the specified address; if necessary,
2414  *	it splits the entry into two.
2415  */
2416 #define vm_map_clip_end(map, entry, endaddr) \
2417 { \
2418 	if ((endaddr) < (entry->end)) \
2419 		_vm_map_clip_end((map), (entry), (endaddr)); \
2420 }
2421 
2422 /*
2423  *	This routine is called only when it is known that
2424  *	the entry must be split.
2425  */
2426 static void
2427 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
2428 {
2429 	vm_map_entry_t new_entry;
2430 
2431 	VM_MAP_ASSERT_LOCKED(map);
2432 	KASSERT(entry->start < end && entry->end > end,
2433 	    ("_vm_map_clip_end: invalid clip of entry %p", entry));
2434 
2435 	new_entry = vm_map_entry_clone(map, entry);
2436 
2437 	/*
2438 	 * Split off the back portion.  Insert the new entry AFTER this one,
2439 	 * so that this entry has the specified ending address.
2440 	 */
2441 	new_entry->start = end;
2442 	vm_map_entry_link(map, new_entry);
2443 }
2444 
2445 /*
2446  *	vm_map_submap:		[ kernel use only ]
2447  *
2448  *	Mark the given range as handled by a subordinate map.
2449  *
2450  *	This range must have been created with vm_map_find,
2451  *	and no other operations may have been performed on this
2452  *	range prior to calling vm_map_submap.
2453  *
2454  *	Only a limited number of operations can be performed
2455  *	within this rage after calling vm_map_submap:
2456  *		vm_fault
2457  *	[Don't try vm_map_copy!]
2458  *
2459  *	To remove a submapping, one must first remove the
2460  *	range from the superior map, and then destroy the
2461  *	submap (if desired).  [Better yet, don't try it.]
2462  */
2463 int
2464 vm_map_submap(
2465 	vm_map_t map,
2466 	vm_offset_t start,
2467 	vm_offset_t end,
2468 	vm_map_t submap)
2469 {
2470 	vm_map_entry_t entry;
2471 	int result;
2472 
2473 	result = KERN_INVALID_ARGUMENT;
2474 
2475 	vm_map_lock(submap);
2476 	submap->flags |= MAP_IS_SUB_MAP;
2477 	vm_map_unlock(submap);
2478 
2479 	vm_map_lock(map);
2480 	VM_MAP_RANGE_CHECK(map, start, end);
2481 	if (vm_map_lookup_entry(map, start, &entry) && entry->end >= end &&
2482 	    (entry->eflags & MAP_ENTRY_COW) == 0 &&
2483 	    entry->object.vm_object == NULL) {
2484 		vm_map_clip_start(map, entry, start);
2485 		vm_map_clip_end(map, entry, end);
2486 		entry->object.sub_map = submap;
2487 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
2488 		result = KERN_SUCCESS;
2489 	}
2490 	vm_map_unlock(map);
2491 
2492 	if (result != KERN_SUCCESS) {
2493 		vm_map_lock(submap);
2494 		submap->flags &= ~MAP_IS_SUB_MAP;
2495 		vm_map_unlock(submap);
2496 	}
2497 	return (result);
2498 }
2499 
2500 /*
2501  * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
2502  */
2503 #define	MAX_INIT_PT	96
2504 
2505 /*
2506  *	vm_map_pmap_enter:
2507  *
2508  *	Preload the specified map's pmap with mappings to the specified
2509  *	object's memory-resident pages.  No further physical pages are
2510  *	allocated, and no further virtual pages are retrieved from secondary
2511  *	storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
2512  *	limited number of page mappings are created at the low-end of the
2513  *	specified address range.  (For this purpose, a superpage mapping
2514  *	counts as one page mapping.)  Otherwise, all resident pages within
2515  *	the specified address range are mapped.
2516  */
2517 static void
2518 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
2519     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
2520 {
2521 	vm_offset_t start;
2522 	vm_page_t p, p_start;
2523 	vm_pindex_t mask, psize, threshold, tmpidx;
2524 
2525 	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
2526 		return;
2527 	if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2528 		VM_OBJECT_WLOCK(object);
2529 		if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2530 			pmap_object_init_pt(map->pmap, addr, object, pindex,
2531 			    size);
2532 			VM_OBJECT_WUNLOCK(object);
2533 			return;
2534 		}
2535 		VM_OBJECT_LOCK_DOWNGRADE(object);
2536 	} else
2537 		VM_OBJECT_RLOCK(object);
2538 
2539 	psize = atop(size);
2540 	if (psize + pindex > object->size) {
2541 		if (pindex >= object->size) {
2542 			VM_OBJECT_RUNLOCK(object);
2543 			return;
2544 		}
2545 		psize = object->size - pindex;
2546 	}
2547 
2548 	start = 0;
2549 	p_start = NULL;
2550 	threshold = MAX_INIT_PT;
2551 
2552 	p = vm_page_find_least(object, pindex);
2553 	/*
2554 	 * Assert: the variable p is either (1) the page with the
2555 	 * least pindex greater than or equal to the parameter pindex
2556 	 * or (2) NULL.
2557 	 */
2558 	for (;
2559 	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
2560 	     p = TAILQ_NEXT(p, listq)) {
2561 		/*
2562 		 * don't allow an madvise to blow away our really
2563 		 * free pages allocating pv entries.
2564 		 */
2565 		if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
2566 		    vm_page_count_severe()) ||
2567 		    ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
2568 		    tmpidx >= threshold)) {
2569 			psize = tmpidx;
2570 			break;
2571 		}
2572 		if (vm_page_all_valid(p)) {
2573 			if (p_start == NULL) {
2574 				start = addr + ptoa(tmpidx);
2575 				p_start = p;
2576 			}
2577 			/* Jump ahead if a superpage mapping is possible. */
2578 			if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
2579 			    (pagesizes[p->psind] - 1)) == 0) {
2580 				mask = atop(pagesizes[p->psind]) - 1;
2581 				if (tmpidx + mask < psize &&
2582 				    vm_page_ps_test(p, PS_ALL_VALID, NULL)) {
2583 					p += mask;
2584 					threshold += mask;
2585 				}
2586 			}
2587 		} else if (p_start != NULL) {
2588 			pmap_enter_object(map->pmap, start, addr +
2589 			    ptoa(tmpidx), p_start, prot);
2590 			p_start = NULL;
2591 		}
2592 	}
2593 	if (p_start != NULL)
2594 		pmap_enter_object(map->pmap, start, addr + ptoa(psize),
2595 		    p_start, prot);
2596 	VM_OBJECT_RUNLOCK(object);
2597 }
2598 
2599 /*
2600  *	vm_map_protect:
2601  *
2602  *	Sets the protection of the specified address
2603  *	region in the target map.  If "set_max" is
2604  *	specified, the maximum protection is to be set;
2605  *	otherwise, only the current protection is affected.
2606  */
2607 int
2608 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
2609 	       vm_prot_t new_prot, boolean_t set_max)
2610 {
2611 	vm_map_entry_t entry, first_entry, in_tran, prev_entry;
2612 	vm_object_t obj;
2613 	struct ucred *cred;
2614 	vm_prot_t old_prot;
2615 	int rv;
2616 
2617 	if (start == end)
2618 		return (KERN_SUCCESS);
2619 
2620 again:
2621 	in_tran = NULL;
2622 	vm_map_lock(map);
2623 
2624 	/*
2625 	 * Ensure that we are not concurrently wiring pages.  vm_map_wire() may
2626 	 * need to fault pages into the map and will drop the map lock while
2627 	 * doing so, and the VM object may end up in an inconsistent state if we
2628 	 * update the protection on the map entry in between faults.
2629 	 */
2630 	vm_map_wait_busy(map);
2631 
2632 	VM_MAP_RANGE_CHECK(map, start, end);
2633 
2634 	if (!vm_map_lookup_entry(map, start, &first_entry))
2635 		first_entry = vm_map_entry_succ(first_entry);
2636 
2637 	/*
2638 	 * Make a first pass to check for protection violations.
2639 	 */
2640 	for (entry = first_entry; entry->start < end;
2641 	    entry = vm_map_entry_succ(entry)) {
2642 		if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
2643 			continue;
2644 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) {
2645 			vm_map_unlock(map);
2646 			return (KERN_INVALID_ARGUMENT);
2647 		}
2648 		if ((new_prot & entry->max_protection) != new_prot) {
2649 			vm_map_unlock(map);
2650 			return (KERN_PROTECTION_FAILURE);
2651 		}
2652 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0)
2653 			in_tran = entry;
2654 	}
2655 
2656 	/*
2657 	 * Postpone the operation until all in-transition map entries have
2658 	 * stabilized.  An in-transition entry might already have its pages
2659 	 * wired and wired_count incremented, but not yet have its
2660 	 * MAP_ENTRY_USER_WIRED flag set.  In which case, we would fail to call
2661 	 * vm_fault_copy_entry() in the final loop below.
2662 	 */
2663 	if (in_tran != NULL) {
2664 		in_tran->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2665 		vm_map_unlock_and_wait(map, 0);
2666 		goto again;
2667 	}
2668 
2669 	/*
2670 	 * Before changing the protections, try to reserve swap space for any
2671 	 * private (i.e., copy-on-write) mappings that are transitioning from
2672 	 * read-only to read/write access.  If a reservation fails, break out
2673 	 * of this loop early and let the next loop simplify the entries, since
2674 	 * some may now be mergeable.
2675 	 */
2676 	rv = KERN_SUCCESS;
2677 	vm_map_clip_start(map, first_entry, start);
2678 	for (entry = first_entry; entry->start < end;
2679 	    entry = vm_map_entry_succ(entry)) {
2680 		vm_map_clip_end(map, entry, end);
2681 
2682 		if (set_max ||
2683 		    ((new_prot & ~entry->protection) & VM_PROT_WRITE) == 0 ||
2684 		    ENTRY_CHARGED(entry) ||
2685 		    (entry->eflags & MAP_ENTRY_GUARD) != 0) {
2686 			continue;
2687 		}
2688 
2689 		cred = curthread->td_ucred;
2690 		obj = entry->object.vm_object;
2691 
2692 		if (obj == NULL ||
2693 		    (entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0) {
2694 			if (!swap_reserve(entry->end - entry->start)) {
2695 				rv = KERN_RESOURCE_SHORTAGE;
2696 				end = entry->end;
2697 				break;
2698 			}
2699 			crhold(cred);
2700 			entry->cred = cred;
2701 			continue;
2702 		}
2703 
2704 		if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP)
2705 			continue;
2706 		VM_OBJECT_WLOCK(obj);
2707 		if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
2708 			VM_OBJECT_WUNLOCK(obj);
2709 			continue;
2710 		}
2711 
2712 		/*
2713 		 * Charge for the whole object allocation now, since
2714 		 * we cannot distinguish between non-charged and
2715 		 * charged clipped mapping of the same object later.
2716 		 */
2717 		KASSERT(obj->charge == 0,
2718 		    ("vm_map_protect: object %p overcharged (entry %p)",
2719 		    obj, entry));
2720 		if (!swap_reserve(ptoa(obj->size))) {
2721 			VM_OBJECT_WUNLOCK(obj);
2722 			rv = KERN_RESOURCE_SHORTAGE;
2723 			end = entry->end;
2724 			break;
2725 		}
2726 
2727 		crhold(cred);
2728 		obj->cred = cred;
2729 		obj->charge = ptoa(obj->size);
2730 		VM_OBJECT_WUNLOCK(obj);
2731 	}
2732 
2733 	/*
2734 	 * If enough swap space was available, go back and fix up protections.
2735 	 * Otherwise, just simplify entries, since some may have been modified.
2736 	 * [Note that clipping is not necessary the second time.]
2737 	 */
2738 	for (prev_entry = vm_map_entry_pred(first_entry), entry = first_entry;
2739 	    entry->start < end;
2740 	    vm_map_try_merge_entries(map, prev_entry, entry),
2741 	    prev_entry = entry, entry = vm_map_entry_succ(entry)) {
2742 		if (rv != KERN_SUCCESS ||
2743 		    (entry->eflags & MAP_ENTRY_GUARD) != 0)
2744 			continue;
2745 
2746 		old_prot = entry->protection;
2747 
2748 		if (set_max)
2749 			entry->protection =
2750 			    (entry->max_protection = new_prot) &
2751 			    old_prot;
2752 		else
2753 			entry->protection = new_prot;
2754 
2755 		/*
2756 		 * For user wired map entries, the normal lazy evaluation of
2757 		 * write access upgrades through soft page faults is
2758 		 * undesirable.  Instead, immediately copy any pages that are
2759 		 * copy-on-write and enable write access in the physical map.
2760 		 */
2761 		if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2762 		    (entry->protection & VM_PROT_WRITE) != 0 &&
2763 		    (old_prot & VM_PROT_WRITE) == 0)
2764 			vm_fault_copy_entry(map, map, entry, entry, NULL);
2765 
2766 		/*
2767 		 * When restricting access, update the physical map.  Worry
2768 		 * about copy-on-write here.
2769 		 */
2770 		if ((old_prot & ~entry->protection) != 0) {
2771 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2772 							VM_PROT_ALL)
2773 			pmap_protect(map->pmap, entry->start,
2774 			    entry->end,
2775 			    entry->protection & MASK(entry));
2776 #undef	MASK
2777 		}
2778 	}
2779 	vm_map_try_merge_entries(map, prev_entry, entry);
2780 	vm_map_unlock(map);
2781 	return (rv);
2782 }
2783 
2784 /*
2785  *	vm_map_madvise:
2786  *
2787  *	This routine traverses a processes map handling the madvise
2788  *	system call.  Advisories are classified as either those effecting
2789  *	the vm_map_entry structure, or those effecting the underlying
2790  *	objects.
2791  */
2792 int
2793 vm_map_madvise(
2794 	vm_map_t map,
2795 	vm_offset_t start,
2796 	vm_offset_t end,
2797 	int behav)
2798 {
2799 	vm_map_entry_t entry, prev_entry;
2800 	bool modify_map;
2801 
2802 	/*
2803 	 * Some madvise calls directly modify the vm_map_entry, in which case
2804 	 * we need to use an exclusive lock on the map and we need to perform
2805 	 * various clipping operations.  Otherwise we only need a read-lock
2806 	 * on the map.
2807 	 */
2808 	switch(behav) {
2809 	case MADV_NORMAL:
2810 	case MADV_SEQUENTIAL:
2811 	case MADV_RANDOM:
2812 	case MADV_NOSYNC:
2813 	case MADV_AUTOSYNC:
2814 	case MADV_NOCORE:
2815 	case MADV_CORE:
2816 		if (start == end)
2817 			return (0);
2818 		modify_map = true;
2819 		vm_map_lock(map);
2820 		break;
2821 	case MADV_WILLNEED:
2822 	case MADV_DONTNEED:
2823 	case MADV_FREE:
2824 		if (start == end)
2825 			return (0);
2826 		modify_map = false;
2827 		vm_map_lock_read(map);
2828 		break;
2829 	default:
2830 		return (EINVAL);
2831 	}
2832 
2833 	/*
2834 	 * Locate starting entry and clip if necessary.
2835 	 */
2836 	VM_MAP_RANGE_CHECK(map, start, end);
2837 
2838 	if (vm_map_lookup_entry(map, start, &entry)) {
2839 		if (modify_map)
2840 			vm_map_clip_start(map, entry, start);
2841 		prev_entry = vm_map_entry_pred(entry);
2842 	} else {
2843 		prev_entry = entry;
2844 		entry = vm_map_entry_succ(entry);
2845 	}
2846 
2847 	if (modify_map) {
2848 		/*
2849 		 * madvise behaviors that are implemented in the vm_map_entry.
2850 		 *
2851 		 * We clip the vm_map_entry so that behavioral changes are
2852 		 * limited to the specified address range.
2853 		 */
2854 		for (; entry->start < end;
2855 		     prev_entry = entry, entry = vm_map_entry_succ(entry)) {
2856 			if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
2857 				continue;
2858 
2859 			vm_map_clip_end(map, entry, end);
2860 
2861 			switch (behav) {
2862 			case MADV_NORMAL:
2863 				vm_map_entry_set_behavior(entry,
2864 				    MAP_ENTRY_BEHAV_NORMAL);
2865 				break;
2866 			case MADV_SEQUENTIAL:
2867 				vm_map_entry_set_behavior(entry,
2868 				    MAP_ENTRY_BEHAV_SEQUENTIAL);
2869 				break;
2870 			case MADV_RANDOM:
2871 				vm_map_entry_set_behavior(entry,
2872 				    MAP_ENTRY_BEHAV_RANDOM);
2873 				break;
2874 			case MADV_NOSYNC:
2875 				entry->eflags |= MAP_ENTRY_NOSYNC;
2876 				break;
2877 			case MADV_AUTOSYNC:
2878 				entry->eflags &= ~MAP_ENTRY_NOSYNC;
2879 				break;
2880 			case MADV_NOCORE:
2881 				entry->eflags |= MAP_ENTRY_NOCOREDUMP;
2882 				break;
2883 			case MADV_CORE:
2884 				entry->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2885 				break;
2886 			default:
2887 				break;
2888 			}
2889 			vm_map_try_merge_entries(map, prev_entry, entry);
2890 		}
2891 		vm_map_try_merge_entries(map, prev_entry, entry);
2892 		vm_map_unlock(map);
2893 	} else {
2894 		vm_pindex_t pstart, pend;
2895 
2896 		/*
2897 		 * madvise behaviors that are implemented in the underlying
2898 		 * vm_object.
2899 		 *
2900 		 * Since we don't clip the vm_map_entry, we have to clip
2901 		 * the vm_object pindex and count.
2902 		 */
2903 		for (; entry->start < end;
2904 		    entry = vm_map_entry_succ(entry)) {
2905 			vm_offset_t useEnd, useStart;
2906 
2907 			if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
2908 				continue;
2909 
2910 			/*
2911 			 * MADV_FREE would otherwise rewind time to
2912 			 * the creation of the shadow object.  Because
2913 			 * we hold the VM map read-locked, neither the
2914 			 * entry's object nor the presence of a
2915 			 * backing object can change.
2916 			 */
2917 			if (behav == MADV_FREE &&
2918 			    entry->object.vm_object != NULL &&
2919 			    entry->object.vm_object->backing_object != NULL)
2920 				continue;
2921 
2922 			pstart = OFF_TO_IDX(entry->offset);
2923 			pend = pstart + atop(entry->end - entry->start);
2924 			useStart = entry->start;
2925 			useEnd = entry->end;
2926 
2927 			if (entry->start < start) {
2928 				pstart += atop(start - entry->start);
2929 				useStart = start;
2930 			}
2931 			if (entry->end > end) {
2932 				pend -= atop(entry->end - end);
2933 				useEnd = end;
2934 			}
2935 
2936 			if (pstart >= pend)
2937 				continue;
2938 
2939 			/*
2940 			 * Perform the pmap_advise() before clearing
2941 			 * PGA_REFERENCED in vm_page_advise().  Otherwise, a
2942 			 * concurrent pmap operation, such as pmap_remove(),
2943 			 * could clear a reference in the pmap and set
2944 			 * PGA_REFERENCED on the page before the pmap_advise()
2945 			 * had completed.  Consequently, the page would appear
2946 			 * referenced based upon an old reference that
2947 			 * occurred before this pmap_advise() ran.
2948 			 */
2949 			if (behav == MADV_DONTNEED || behav == MADV_FREE)
2950 				pmap_advise(map->pmap, useStart, useEnd,
2951 				    behav);
2952 
2953 			vm_object_madvise(entry->object.vm_object, pstart,
2954 			    pend, behav);
2955 
2956 			/*
2957 			 * Pre-populate paging structures in the
2958 			 * WILLNEED case.  For wired entries, the
2959 			 * paging structures are already populated.
2960 			 */
2961 			if (behav == MADV_WILLNEED &&
2962 			    entry->wired_count == 0) {
2963 				vm_map_pmap_enter(map,
2964 				    useStart,
2965 				    entry->protection,
2966 				    entry->object.vm_object,
2967 				    pstart,
2968 				    ptoa(pend - pstart),
2969 				    MAP_PREFAULT_MADVISE
2970 				);
2971 			}
2972 		}
2973 		vm_map_unlock_read(map);
2974 	}
2975 	return (0);
2976 }
2977 
2978 
2979 /*
2980  *	vm_map_inherit:
2981  *
2982  *	Sets the inheritance of the specified address
2983  *	range in the target map.  Inheritance
2984  *	affects how the map will be shared with
2985  *	child maps at the time of vmspace_fork.
2986  */
2987 int
2988 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2989 	       vm_inherit_t new_inheritance)
2990 {
2991 	vm_map_entry_t entry, prev_entry;
2992 
2993 	switch (new_inheritance) {
2994 	case VM_INHERIT_NONE:
2995 	case VM_INHERIT_COPY:
2996 	case VM_INHERIT_SHARE:
2997 	case VM_INHERIT_ZERO:
2998 		break;
2999 	default:
3000 		return (KERN_INVALID_ARGUMENT);
3001 	}
3002 	if (start == end)
3003 		return (KERN_SUCCESS);
3004 	vm_map_lock(map);
3005 	VM_MAP_RANGE_CHECK(map, start, end);
3006 	if (vm_map_lookup_entry(map, start, &prev_entry)) {
3007 		entry = prev_entry;
3008 		vm_map_clip_start(map, entry, start);
3009 		prev_entry = vm_map_entry_pred(entry);
3010 	} else
3011 		entry = vm_map_entry_succ(prev_entry);
3012 	for (; entry->start < end;
3013 	    prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3014 		vm_map_clip_end(map, entry, end);
3015 		if ((entry->eflags & MAP_ENTRY_GUARD) == 0 ||
3016 		    new_inheritance != VM_INHERIT_ZERO)
3017 			entry->inheritance = new_inheritance;
3018 		vm_map_try_merge_entries(map, prev_entry, entry);
3019 	}
3020 	vm_map_try_merge_entries(map, prev_entry, entry);
3021 	vm_map_unlock(map);
3022 	return (KERN_SUCCESS);
3023 }
3024 
3025 /*
3026  *	vm_map_entry_in_transition:
3027  *
3028  *	Release the map lock, and sleep until the entry is no longer in
3029  *	transition.  Awake and acquire the map lock.  If the map changed while
3030  *	another held the lock, lookup a possibly-changed entry at or after the
3031  *	'start' position of the old entry.
3032  */
3033 static vm_map_entry_t
3034 vm_map_entry_in_transition(vm_map_t map, vm_offset_t in_start,
3035     vm_offset_t *io_end, bool holes_ok, vm_map_entry_t in_entry)
3036 {
3037 	vm_map_entry_t entry;
3038 	vm_offset_t start;
3039 	u_int last_timestamp;
3040 
3041 	VM_MAP_ASSERT_LOCKED(map);
3042 	KASSERT((in_entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3043 	    ("not in-tranition map entry %p", in_entry));
3044 	/*
3045 	 * We have not yet clipped the entry.
3046 	 */
3047 	start = MAX(in_start, in_entry->start);
3048 	in_entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3049 	last_timestamp = map->timestamp;
3050 	if (vm_map_unlock_and_wait(map, 0)) {
3051 		/*
3052 		 * Allow interruption of user wiring/unwiring?
3053 		 */
3054 	}
3055 	vm_map_lock(map);
3056 	if (last_timestamp + 1 == map->timestamp)
3057 		return (in_entry);
3058 
3059 	/*
3060 	 * Look again for the entry because the map was modified while it was
3061 	 * unlocked.  Specifically, the entry may have been clipped, merged, or
3062 	 * deleted.
3063 	 */
3064 	if (!vm_map_lookup_entry(map, start, &entry)) {
3065 		if (!holes_ok) {
3066 			*io_end = start;
3067 			return (NULL);
3068 		}
3069 		entry = vm_map_entry_succ(entry);
3070 	}
3071 	return (entry);
3072 }
3073 
3074 /*
3075  *	vm_map_unwire:
3076  *
3077  *	Implements both kernel and user unwiring.
3078  */
3079 int
3080 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
3081     int flags)
3082 {
3083 	vm_map_entry_t entry, first_entry, next_entry, prev_entry;
3084 	int rv;
3085 	bool holes_ok, need_wakeup, user_unwire;
3086 
3087 	if (start == end)
3088 		return (KERN_SUCCESS);
3089 	holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0;
3090 	user_unwire = (flags & VM_MAP_WIRE_USER) != 0;
3091 	vm_map_lock(map);
3092 	VM_MAP_RANGE_CHECK(map, start, end);
3093 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
3094 		if (holes_ok)
3095 			first_entry = vm_map_entry_succ(first_entry);
3096 		else {
3097 			vm_map_unlock(map);
3098 			return (KERN_INVALID_ADDRESS);
3099 		}
3100 	}
3101 	rv = KERN_SUCCESS;
3102 	for (entry = first_entry; entry->start < end; entry = next_entry) {
3103 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
3104 			/*
3105 			 * We have not yet clipped the entry.
3106 			 */
3107 			next_entry = vm_map_entry_in_transition(map, start,
3108 			    &end, holes_ok, entry);
3109 			if (next_entry == NULL) {
3110 				if (entry == first_entry) {
3111 					vm_map_unlock(map);
3112 					return (KERN_INVALID_ADDRESS);
3113 				}
3114 				rv = KERN_INVALID_ADDRESS;
3115 				break;
3116 			}
3117 			first_entry = (entry == first_entry) ?
3118 			    next_entry : NULL;
3119 			continue;
3120 		}
3121 		vm_map_clip_start(map, entry, start);
3122 		vm_map_clip_end(map, entry, end);
3123 		/*
3124 		 * Mark the entry in case the map lock is released.  (See
3125 		 * above.)
3126 		 */
3127 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
3128 		    entry->wiring_thread == NULL,
3129 		    ("owned map entry %p", entry));
3130 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
3131 		entry->wiring_thread = curthread;
3132 		next_entry = vm_map_entry_succ(entry);
3133 		/*
3134 		 * Check the map for holes in the specified region.
3135 		 * If holes_ok, skip this check.
3136 		 */
3137 		if (!holes_ok &&
3138 		    entry->end < end && next_entry->start > entry->end) {
3139 			end = entry->end;
3140 			rv = KERN_INVALID_ADDRESS;
3141 			break;
3142 		}
3143 		/*
3144 		 * If system unwiring, require that the entry is system wired.
3145 		 */
3146 		if (!user_unwire &&
3147 		    vm_map_entry_system_wired_count(entry) == 0) {
3148 			end = entry->end;
3149 			rv = KERN_INVALID_ARGUMENT;
3150 			break;
3151 		}
3152 	}
3153 	need_wakeup = false;
3154 	if (first_entry == NULL &&
3155 	    !vm_map_lookup_entry(map, start, &first_entry)) {
3156 		KASSERT(holes_ok, ("vm_map_unwire: lookup failed"));
3157 		prev_entry = first_entry;
3158 		entry = vm_map_entry_succ(first_entry);
3159 	} else {
3160 		prev_entry = vm_map_entry_pred(first_entry);
3161 		entry = first_entry;
3162 	}
3163 	for (; entry->start < end;
3164 	    prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3165 		/*
3166 		 * If holes_ok was specified, an empty
3167 		 * space in the unwired region could have been mapped
3168 		 * while the map lock was dropped for draining
3169 		 * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
3170 		 * could be simultaneously wiring this new mapping
3171 		 * entry.  Detect these cases and skip any entries
3172 		 * marked as in transition by us.
3173 		 */
3174 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
3175 		    entry->wiring_thread != curthread) {
3176 			KASSERT(holes_ok,
3177 			    ("vm_map_unwire: !HOLESOK and new/changed entry"));
3178 			continue;
3179 		}
3180 
3181 		if (rv == KERN_SUCCESS && (!user_unwire ||
3182 		    (entry->eflags & MAP_ENTRY_USER_WIRED))) {
3183 			if (entry->wired_count == 1)
3184 				vm_map_entry_unwire(map, entry);
3185 			else
3186 				entry->wired_count--;
3187 			if (user_unwire)
3188 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3189 		}
3190 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3191 		    ("vm_map_unwire: in-transition flag missing %p", entry));
3192 		KASSERT(entry->wiring_thread == curthread,
3193 		    ("vm_map_unwire: alien wire %p", entry));
3194 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
3195 		entry->wiring_thread = NULL;
3196 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3197 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3198 			need_wakeup = true;
3199 		}
3200 		vm_map_try_merge_entries(map, prev_entry, entry);
3201 	}
3202 	vm_map_try_merge_entries(map, prev_entry, entry);
3203 	vm_map_unlock(map);
3204 	if (need_wakeup)
3205 		vm_map_wakeup(map);
3206 	return (rv);
3207 }
3208 
3209 static void
3210 vm_map_wire_user_count_sub(u_long npages)
3211 {
3212 
3213 	atomic_subtract_long(&vm_user_wire_count, npages);
3214 }
3215 
3216 static bool
3217 vm_map_wire_user_count_add(u_long npages)
3218 {
3219 	u_long wired;
3220 
3221 	wired = vm_user_wire_count;
3222 	do {
3223 		if (npages + wired > vm_page_max_user_wired)
3224 			return (false);
3225 	} while (!atomic_fcmpset_long(&vm_user_wire_count, &wired,
3226 	    npages + wired));
3227 
3228 	return (true);
3229 }
3230 
3231 /*
3232  *	vm_map_wire_entry_failure:
3233  *
3234  *	Handle a wiring failure on the given entry.
3235  *
3236  *	The map should be locked.
3237  */
3238 static void
3239 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
3240     vm_offset_t failed_addr)
3241 {
3242 
3243 	VM_MAP_ASSERT_LOCKED(map);
3244 	KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
3245 	    entry->wired_count == 1,
3246 	    ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
3247 	KASSERT(failed_addr < entry->end,
3248 	    ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
3249 
3250 	/*
3251 	 * If any pages at the start of this entry were successfully wired,
3252 	 * then unwire them.
3253 	 */
3254 	if (failed_addr > entry->start) {
3255 		pmap_unwire(map->pmap, entry->start, failed_addr);
3256 		vm_object_unwire(entry->object.vm_object, entry->offset,
3257 		    failed_addr - entry->start, PQ_ACTIVE);
3258 	}
3259 
3260 	/*
3261 	 * Assign an out-of-range value to represent the failure to wire this
3262 	 * entry.
3263 	 */
3264 	entry->wired_count = -1;
3265 }
3266 
3267 int
3268 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3269 {
3270 	int rv;
3271 
3272 	vm_map_lock(map);
3273 	rv = vm_map_wire_locked(map, start, end, flags);
3274 	vm_map_unlock(map);
3275 	return (rv);
3276 }
3277 
3278 
3279 /*
3280  *	vm_map_wire_locked:
3281  *
3282  *	Implements both kernel and user wiring.  Returns with the map locked,
3283  *	the map lock may be dropped.
3284  */
3285 int
3286 vm_map_wire_locked(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3287 {
3288 	vm_map_entry_t entry, first_entry, next_entry, prev_entry;
3289 	vm_offset_t faddr, saved_end, saved_start;
3290 	u_long npages;
3291 	u_int last_timestamp;
3292 	int rv;
3293 	bool holes_ok, need_wakeup, user_wire;
3294 	vm_prot_t prot;
3295 
3296 	VM_MAP_ASSERT_LOCKED(map);
3297 
3298 	if (start == end)
3299 		return (KERN_SUCCESS);
3300 	prot = 0;
3301 	if (flags & VM_MAP_WIRE_WRITE)
3302 		prot |= VM_PROT_WRITE;
3303 	holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0;
3304 	user_wire = (flags & VM_MAP_WIRE_USER) != 0;
3305 	VM_MAP_RANGE_CHECK(map, start, end);
3306 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
3307 		if (holes_ok)
3308 			first_entry = vm_map_entry_succ(first_entry);
3309 		else
3310 			return (KERN_INVALID_ADDRESS);
3311 	}
3312 	for (entry = first_entry; entry->start < end; entry = next_entry) {
3313 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
3314 			/*
3315 			 * We have not yet clipped the entry.
3316 			 */
3317 			next_entry = vm_map_entry_in_transition(map, start,
3318 			    &end, holes_ok, entry);
3319 			if (next_entry == NULL) {
3320 				if (entry == first_entry)
3321 					return (KERN_INVALID_ADDRESS);
3322 				rv = KERN_INVALID_ADDRESS;
3323 				goto done;
3324 			}
3325 			first_entry = (entry == first_entry) ?
3326 			    next_entry : NULL;
3327 			continue;
3328 		}
3329 		vm_map_clip_start(map, entry, start);
3330 		vm_map_clip_end(map, entry, end);
3331 		/*
3332 		 * Mark the entry in case the map lock is released.  (See
3333 		 * above.)
3334 		 */
3335 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
3336 		    entry->wiring_thread == NULL,
3337 		    ("owned map entry %p", entry));
3338 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
3339 		entry->wiring_thread = curthread;
3340 		if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
3341 		    || (entry->protection & prot) != prot) {
3342 			entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
3343 			if (!holes_ok) {
3344 				end = entry->end;
3345 				rv = KERN_INVALID_ADDRESS;
3346 				goto done;
3347 			}
3348 		} else if (entry->wired_count == 0) {
3349 			entry->wired_count++;
3350 
3351 			npages = atop(entry->end - entry->start);
3352 			if (user_wire && !vm_map_wire_user_count_add(npages)) {
3353 				vm_map_wire_entry_failure(map, entry,
3354 				    entry->start);
3355 				end = entry->end;
3356 				rv = KERN_RESOURCE_SHORTAGE;
3357 				goto done;
3358 			}
3359 
3360 			/*
3361 			 * Release the map lock, relying on the in-transition
3362 			 * mark.  Mark the map busy for fork.
3363 			 */
3364 			saved_start = entry->start;
3365 			saved_end = entry->end;
3366 			last_timestamp = map->timestamp;
3367 			vm_map_busy(map);
3368 			vm_map_unlock(map);
3369 
3370 			faddr = saved_start;
3371 			do {
3372 				/*
3373 				 * Simulate a fault to get the page and enter
3374 				 * it into the physical map.
3375 				 */
3376 				if ((rv = vm_fault(map, faddr,
3377 				    VM_PROT_NONE, VM_FAULT_WIRE, NULL)) !=
3378 				    KERN_SUCCESS)
3379 					break;
3380 			} while ((faddr += PAGE_SIZE) < saved_end);
3381 			vm_map_lock(map);
3382 			vm_map_unbusy(map);
3383 			if (last_timestamp + 1 != map->timestamp) {
3384 				/*
3385 				 * Look again for the entry because the map was
3386 				 * modified while it was unlocked.  The entry
3387 				 * may have been clipped, but NOT merged or
3388 				 * deleted.
3389 				 */
3390 				if (!vm_map_lookup_entry(map, saved_start,
3391 				    &next_entry))
3392 					KASSERT(false,
3393 					    ("vm_map_wire: lookup failed"));
3394 				first_entry = (entry == first_entry) ?
3395 				    next_entry : NULL;
3396 				for (entry = next_entry; entry->end < saved_end;
3397 				    entry = vm_map_entry_succ(entry)) {
3398 					/*
3399 					 * In case of failure, handle entries
3400 					 * that were not fully wired here;
3401 					 * fully wired entries are handled
3402 					 * later.
3403 					 */
3404 					if (rv != KERN_SUCCESS &&
3405 					    faddr < entry->end)
3406 						vm_map_wire_entry_failure(map,
3407 						    entry, faddr);
3408 				}
3409 			}
3410 			if (rv != KERN_SUCCESS) {
3411 				vm_map_wire_entry_failure(map, entry, faddr);
3412 				if (user_wire)
3413 					vm_map_wire_user_count_sub(npages);
3414 				end = entry->end;
3415 				goto done;
3416 			}
3417 		} else if (!user_wire ||
3418 			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3419 			entry->wired_count++;
3420 		}
3421 		/*
3422 		 * Check the map for holes in the specified region.
3423 		 * If holes_ok was specified, skip this check.
3424 		 */
3425 		next_entry = vm_map_entry_succ(entry);
3426 		if (!holes_ok &&
3427 		    entry->end < end && next_entry->start > entry->end) {
3428 			end = entry->end;
3429 			rv = KERN_INVALID_ADDRESS;
3430 			goto done;
3431 		}
3432 	}
3433 	rv = KERN_SUCCESS;
3434 done:
3435 	need_wakeup = false;
3436 	if (first_entry == NULL &&
3437 	    !vm_map_lookup_entry(map, start, &first_entry)) {
3438 		KASSERT(holes_ok, ("vm_map_wire: lookup failed"));
3439 		prev_entry = first_entry;
3440 		entry = vm_map_entry_succ(first_entry);
3441 	} else {
3442 		prev_entry = vm_map_entry_pred(first_entry);
3443 		entry = first_entry;
3444 	}
3445 	for (; entry->start < end;
3446 	    prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3447 		/*
3448 		 * If holes_ok was specified, an empty
3449 		 * space in the unwired region could have been mapped
3450 		 * while the map lock was dropped for faulting in the
3451 		 * pages or draining MAP_ENTRY_IN_TRANSITION.
3452 		 * Moreover, another thread could be simultaneously
3453 		 * wiring this new mapping entry.  Detect these cases
3454 		 * and skip any entries marked as in transition not by us.
3455 		 */
3456 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
3457 		    entry->wiring_thread != curthread) {
3458 			KASSERT(holes_ok,
3459 			    ("vm_map_wire: !HOLESOK and new/changed entry"));
3460 			continue;
3461 		}
3462 
3463 		if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) {
3464 			/* do nothing */
3465 		} else if (rv == KERN_SUCCESS) {
3466 			if (user_wire)
3467 				entry->eflags |= MAP_ENTRY_USER_WIRED;
3468 		} else if (entry->wired_count == -1) {
3469 			/*
3470 			 * Wiring failed on this entry.  Thus, unwiring is
3471 			 * unnecessary.
3472 			 */
3473 			entry->wired_count = 0;
3474 		} else if (!user_wire ||
3475 		    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3476 			/*
3477 			 * Undo the wiring.  Wiring succeeded on this entry
3478 			 * but failed on a later entry.
3479 			 */
3480 			if (entry->wired_count == 1) {
3481 				vm_map_entry_unwire(map, entry);
3482 				if (user_wire)
3483 					vm_map_wire_user_count_sub(
3484 					    atop(entry->end - entry->start));
3485 			} else
3486 				entry->wired_count--;
3487 		}
3488 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3489 		    ("vm_map_wire: in-transition flag missing %p", entry));
3490 		KASSERT(entry->wiring_thread == curthread,
3491 		    ("vm_map_wire: alien wire %p", entry));
3492 		entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
3493 		    MAP_ENTRY_WIRE_SKIPPED);
3494 		entry->wiring_thread = NULL;
3495 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3496 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3497 			need_wakeup = true;
3498 		}
3499 		vm_map_try_merge_entries(map, prev_entry, entry);
3500 	}
3501 	vm_map_try_merge_entries(map, prev_entry, entry);
3502 	if (need_wakeup)
3503 		vm_map_wakeup(map);
3504 	return (rv);
3505 }
3506 
3507 /*
3508  * vm_map_sync
3509  *
3510  * Push any dirty cached pages in the address range to their pager.
3511  * If syncio is TRUE, dirty pages are written synchronously.
3512  * If invalidate is TRUE, any cached pages are freed as well.
3513  *
3514  * If the size of the region from start to end is zero, we are
3515  * supposed to flush all modified pages within the region containing
3516  * start.  Unfortunately, a region can be split or coalesced with
3517  * neighboring regions, making it difficult to determine what the
3518  * original region was.  Therefore, we approximate this requirement by
3519  * flushing the current region containing start.
3520  *
3521  * Returns an error if any part of the specified range is not mapped.
3522  */
3523 int
3524 vm_map_sync(
3525 	vm_map_t map,
3526 	vm_offset_t start,
3527 	vm_offset_t end,
3528 	boolean_t syncio,
3529 	boolean_t invalidate)
3530 {
3531 	vm_map_entry_t entry, first_entry, next_entry;
3532 	vm_size_t size;
3533 	vm_object_t object;
3534 	vm_ooffset_t offset;
3535 	unsigned int last_timestamp;
3536 	boolean_t failed;
3537 
3538 	vm_map_lock_read(map);
3539 	VM_MAP_RANGE_CHECK(map, start, end);
3540 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
3541 		vm_map_unlock_read(map);
3542 		return (KERN_INVALID_ADDRESS);
3543 	} else if (start == end) {
3544 		start = first_entry->start;
3545 		end = first_entry->end;
3546 	}
3547 	/*
3548 	 * Make a first pass to check for user-wired memory and holes.
3549 	 */
3550 	for (entry = first_entry; entry->start < end; entry = next_entry) {
3551 		if (invalidate &&
3552 		    (entry->eflags & MAP_ENTRY_USER_WIRED) != 0) {
3553 			vm_map_unlock_read(map);
3554 			return (KERN_INVALID_ARGUMENT);
3555 		}
3556 		next_entry = vm_map_entry_succ(entry);
3557 		if (end > entry->end &&
3558 		    entry->end != next_entry->start) {
3559 			vm_map_unlock_read(map);
3560 			return (KERN_INVALID_ADDRESS);
3561 		}
3562 	}
3563 
3564 	if (invalidate)
3565 		pmap_remove(map->pmap, start, end);
3566 	failed = FALSE;
3567 
3568 	/*
3569 	 * Make a second pass, cleaning/uncaching pages from the indicated
3570 	 * objects as we go.
3571 	 */
3572 	for (entry = first_entry; entry->start < end;) {
3573 		offset = entry->offset + (start - entry->start);
3574 		size = (end <= entry->end ? end : entry->end) - start;
3575 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) {
3576 			vm_map_t smap;
3577 			vm_map_entry_t tentry;
3578 			vm_size_t tsize;
3579 
3580 			smap = entry->object.sub_map;
3581 			vm_map_lock_read(smap);
3582 			(void) vm_map_lookup_entry(smap, offset, &tentry);
3583 			tsize = tentry->end - offset;
3584 			if (tsize < size)
3585 				size = tsize;
3586 			object = tentry->object.vm_object;
3587 			offset = tentry->offset + (offset - tentry->start);
3588 			vm_map_unlock_read(smap);
3589 		} else {
3590 			object = entry->object.vm_object;
3591 		}
3592 		vm_object_reference(object);
3593 		last_timestamp = map->timestamp;
3594 		vm_map_unlock_read(map);
3595 		if (!vm_object_sync(object, offset, size, syncio, invalidate))
3596 			failed = TRUE;
3597 		start += size;
3598 		vm_object_deallocate(object);
3599 		vm_map_lock_read(map);
3600 		if (last_timestamp == map->timestamp ||
3601 		    !vm_map_lookup_entry(map, start, &entry))
3602 			entry = vm_map_entry_succ(entry);
3603 	}
3604 
3605 	vm_map_unlock_read(map);
3606 	return (failed ? KERN_FAILURE : KERN_SUCCESS);
3607 }
3608 
3609 /*
3610  *	vm_map_entry_unwire:	[ internal use only ]
3611  *
3612  *	Make the region specified by this entry pageable.
3613  *
3614  *	The map in question should be locked.
3615  *	[This is the reason for this routine's existence.]
3616  */
3617 static void
3618 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
3619 {
3620 	vm_size_t size;
3621 
3622 	VM_MAP_ASSERT_LOCKED(map);
3623 	KASSERT(entry->wired_count > 0,
3624 	    ("vm_map_entry_unwire: entry %p isn't wired", entry));
3625 
3626 	size = entry->end - entry->start;
3627 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0)
3628 		vm_map_wire_user_count_sub(atop(size));
3629 	pmap_unwire(map->pmap, entry->start, entry->end);
3630 	vm_object_unwire(entry->object.vm_object, entry->offset, size,
3631 	    PQ_ACTIVE);
3632 	entry->wired_count = 0;
3633 }
3634 
3635 static void
3636 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
3637 {
3638 
3639 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
3640 		vm_object_deallocate(entry->object.vm_object);
3641 	uma_zfree(system_map ? kmapentzone : mapentzone, entry);
3642 }
3643 
3644 /*
3645  *	vm_map_entry_delete:	[ internal use only ]
3646  *
3647  *	Deallocate the given entry from the target map.
3648  */
3649 static void
3650 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
3651 {
3652 	vm_object_t object;
3653 	vm_pindex_t offidxstart, offidxend, count, size1;
3654 	vm_size_t size;
3655 
3656 	vm_map_entry_unlink(map, entry, UNLINK_MERGE_NONE);
3657 	object = entry->object.vm_object;
3658 
3659 	if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
3660 		MPASS(entry->cred == NULL);
3661 		MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0);
3662 		MPASS(object == NULL);
3663 		vm_map_entry_deallocate(entry, map->system_map);
3664 		return;
3665 	}
3666 
3667 	size = entry->end - entry->start;
3668 	map->size -= size;
3669 
3670 	if (entry->cred != NULL) {
3671 		swap_release_by_cred(size, entry->cred);
3672 		crfree(entry->cred);
3673 	}
3674 
3675 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || object == NULL) {
3676 		entry->object.vm_object = NULL;
3677 	} else if ((object->flags & OBJ_ANON) != 0 ||
3678 	    object == kernel_object) {
3679 		KASSERT(entry->cred == NULL || object->cred == NULL ||
3680 		    (entry->eflags & MAP_ENTRY_NEEDS_COPY),
3681 		    ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
3682 		count = atop(size);
3683 		offidxstart = OFF_TO_IDX(entry->offset);
3684 		offidxend = offidxstart + count;
3685 		VM_OBJECT_WLOCK(object);
3686 		if (object->ref_count != 1 &&
3687 		    ((object->flags & OBJ_ONEMAPPING) != 0 ||
3688 		    object == kernel_object)) {
3689 			vm_object_collapse(object);
3690 
3691 			/*
3692 			 * The option OBJPR_NOTMAPPED can be passed here
3693 			 * because vm_map_delete() already performed
3694 			 * pmap_remove() on the only mapping to this range
3695 			 * of pages.
3696 			 */
3697 			vm_object_page_remove(object, offidxstart, offidxend,
3698 			    OBJPR_NOTMAPPED);
3699 			if (object->type == OBJT_SWAP)
3700 				swap_pager_freespace(object, offidxstart,
3701 				    count);
3702 			if (offidxend >= object->size &&
3703 			    offidxstart < object->size) {
3704 				size1 = object->size;
3705 				object->size = offidxstart;
3706 				if (object->cred != NULL) {
3707 					size1 -= object->size;
3708 					KASSERT(object->charge >= ptoa(size1),
3709 					    ("object %p charge < 0", object));
3710 					swap_release_by_cred(ptoa(size1),
3711 					    object->cred);
3712 					object->charge -= ptoa(size1);
3713 				}
3714 			}
3715 		}
3716 		VM_OBJECT_WUNLOCK(object);
3717 	}
3718 	if (map->system_map)
3719 		vm_map_entry_deallocate(entry, TRUE);
3720 	else {
3721 		entry->defer_next = curthread->td_map_def_user;
3722 		curthread->td_map_def_user = entry;
3723 	}
3724 }
3725 
3726 /*
3727  *	vm_map_delete:	[ internal use only ]
3728  *
3729  *	Deallocates the given address range from the target
3730  *	map.
3731  */
3732 int
3733 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
3734 {
3735 	vm_map_entry_t entry;
3736 	vm_map_entry_t first_entry;
3737 
3738 	VM_MAP_ASSERT_LOCKED(map);
3739 	if (start == end)
3740 		return (KERN_SUCCESS);
3741 
3742 	/*
3743 	 * Find the start of the region, and clip it
3744 	 */
3745 	if (!vm_map_lookup_entry(map, start, &first_entry))
3746 		entry = vm_map_entry_succ(first_entry);
3747 	else {
3748 		entry = first_entry;
3749 		vm_map_clip_start(map, entry, start);
3750 	}
3751 
3752 	/*
3753 	 * Step through all entries in this region
3754 	 */
3755 	while (entry->start < end) {
3756 		vm_map_entry_t next;
3757 
3758 		/*
3759 		 * Wait for wiring or unwiring of an entry to complete.
3760 		 * Also wait for any system wirings to disappear on
3761 		 * user maps.
3762 		 */
3763 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
3764 		    (vm_map_pmap(map) != kernel_pmap &&
3765 		    vm_map_entry_system_wired_count(entry) != 0)) {
3766 			unsigned int last_timestamp;
3767 			vm_offset_t saved_start;
3768 			vm_map_entry_t tmp_entry;
3769 
3770 			saved_start = entry->start;
3771 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3772 			last_timestamp = map->timestamp;
3773 			(void) vm_map_unlock_and_wait(map, 0);
3774 			vm_map_lock(map);
3775 			if (last_timestamp + 1 != map->timestamp) {
3776 				/*
3777 				 * Look again for the entry because the map was
3778 				 * modified while it was unlocked.
3779 				 * Specifically, the entry may have been
3780 				 * clipped, merged, or deleted.
3781 				 */
3782 				if (!vm_map_lookup_entry(map, saved_start,
3783 							 &tmp_entry))
3784 					entry = vm_map_entry_succ(tmp_entry);
3785 				else {
3786 					entry = tmp_entry;
3787 					vm_map_clip_start(map, entry,
3788 							  saved_start);
3789 				}
3790 			}
3791 			continue;
3792 		}
3793 		vm_map_clip_end(map, entry, end);
3794 
3795 		next = vm_map_entry_succ(entry);
3796 
3797 		/*
3798 		 * Unwire before removing addresses from the pmap; otherwise,
3799 		 * unwiring will put the entries back in the pmap.
3800 		 */
3801 		if (entry->wired_count != 0)
3802 			vm_map_entry_unwire(map, entry);
3803 
3804 		/*
3805 		 * Remove mappings for the pages, but only if the
3806 		 * mappings could exist.  For instance, it does not
3807 		 * make sense to call pmap_remove() for guard entries.
3808 		 */
3809 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 ||
3810 		    entry->object.vm_object != NULL)
3811 			pmap_remove(map->pmap, entry->start, entry->end);
3812 
3813 		if (entry->end == map->anon_loc)
3814 			map->anon_loc = entry->start;
3815 
3816 		/*
3817 		 * Delete the entry only after removing all pmap
3818 		 * entries pointing to its pages.  (Otherwise, its
3819 		 * page frames may be reallocated, and any modify bits
3820 		 * will be set in the wrong object!)
3821 		 */
3822 		vm_map_entry_delete(map, entry);
3823 		entry = next;
3824 	}
3825 	return (KERN_SUCCESS);
3826 }
3827 
3828 /*
3829  *	vm_map_remove:
3830  *
3831  *	Remove the given address range from the target map.
3832  *	This is the exported form of vm_map_delete.
3833  */
3834 int
3835 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3836 {
3837 	int result;
3838 
3839 	vm_map_lock(map);
3840 	VM_MAP_RANGE_CHECK(map, start, end);
3841 	result = vm_map_delete(map, start, end);
3842 	vm_map_unlock(map);
3843 	return (result);
3844 }
3845 
3846 /*
3847  *	vm_map_check_protection:
3848  *
3849  *	Assert that the target map allows the specified privilege on the
3850  *	entire address region given.  The entire region must be allocated.
3851  *
3852  *	WARNING!  This code does not and should not check whether the
3853  *	contents of the region is accessible.  For example a smaller file
3854  *	might be mapped into a larger address space.
3855  *
3856  *	NOTE!  This code is also called by munmap().
3857  *
3858  *	The map must be locked.  A read lock is sufficient.
3859  */
3860 boolean_t
3861 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
3862 			vm_prot_t protection)
3863 {
3864 	vm_map_entry_t entry;
3865 	vm_map_entry_t tmp_entry;
3866 
3867 	if (!vm_map_lookup_entry(map, start, &tmp_entry))
3868 		return (FALSE);
3869 	entry = tmp_entry;
3870 
3871 	while (start < end) {
3872 		/*
3873 		 * No holes allowed!
3874 		 */
3875 		if (start < entry->start)
3876 			return (FALSE);
3877 		/*
3878 		 * Check protection associated with entry.
3879 		 */
3880 		if ((entry->protection & protection) != protection)
3881 			return (FALSE);
3882 		/* go to next entry */
3883 		start = entry->end;
3884 		entry = vm_map_entry_succ(entry);
3885 	}
3886 	return (TRUE);
3887 }
3888 
3889 
3890 /*
3891  *
3892  *	vm_map_copy_swap_object:
3893  *
3894  *	Copies a swap-backed object from an existing map entry to a
3895  *	new one.  Carries forward the swap charge.  May change the
3896  *	src object on return.
3897  */
3898 static void
3899 vm_map_copy_swap_object(vm_map_entry_t src_entry, vm_map_entry_t dst_entry,
3900     vm_offset_t size, vm_ooffset_t *fork_charge)
3901 {
3902 	vm_object_t src_object;
3903 	struct ucred *cred;
3904 	int charged;
3905 
3906 	src_object = src_entry->object.vm_object;
3907 	charged = ENTRY_CHARGED(src_entry);
3908 	if ((src_object->flags & OBJ_ANON) != 0) {
3909 		VM_OBJECT_WLOCK(src_object);
3910 		vm_object_collapse(src_object);
3911 		if ((src_object->flags & OBJ_ONEMAPPING) != 0) {
3912 			vm_object_split(src_entry);
3913 			src_object = src_entry->object.vm_object;
3914 		}
3915 		vm_object_reference_locked(src_object);
3916 		vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3917 		VM_OBJECT_WUNLOCK(src_object);
3918 	} else
3919 		vm_object_reference(src_object);
3920 	if (src_entry->cred != NULL &&
3921 	    !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3922 		KASSERT(src_object->cred == NULL,
3923 		    ("OVERCOMMIT: vm_map_copy_anon_entry: cred %p",
3924 		     src_object));
3925 		src_object->cred = src_entry->cred;
3926 		src_object->charge = size;
3927 	}
3928 	dst_entry->object.vm_object = src_object;
3929 	if (charged) {
3930 		cred = curthread->td_ucred;
3931 		crhold(cred);
3932 		dst_entry->cred = cred;
3933 		*fork_charge += size;
3934 		if (!(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3935 			crhold(cred);
3936 			src_entry->cred = cred;
3937 			*fork_charge += size;
3938 		}
3939 	}
3940 }
3941 
3942 /*
3943  *	vm_map_copy_entry:
3944  *
3945  *	Copies the contents of the source entry to the destination
3946  *	entry.  The entries *must* be aligned properly.
3947  */
3948 static void
3949 vm_map_copy_entry(
3950 	vm_map_t src_map,
3951 	vm_map_t dst_map,
3952 	vm_map_entry_t src_entry,
3953 	vm_map_entry_t dst_entry,
3954 	vm_ooffset_t *fork_charge)
3955 {
3956 	vm_object_t src_object;
3957 	vm_map_entry_t fake_entry;
3958 	vm_offset_t size;
3959 
3960 	VM_MAP_ASSERT_LOCKED(dst_map);
3961 
3962 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
3963 		return;
3964 
3965 	if (src_entry->wired_count == 0 ||
3966 	    (src_entry->protection & VM_PROT_WRITE) == 0) {
3967 		/*
3968 		 * If the source entry is marked needs_copy, it is already
3969 		 * write-protected.
3970 		 */
3971 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
3972 		    (src_entry->protection & VM_PROT_WRITE) != 0) {
3973 			pmap_protect(src_map->pmap,
3974 			    src_entry->start,
3975 			    src_entry->end,
3976 			    src_entry->protection & ~VM_PROT_WRITE);
3977 		}
3978 
3979 		/*
3980 		 * Make a copy of the object.
3981 		 */
3982 		size = src_entry->end - src_entry->start;
3983 		if ((src_object = src_entry->object.vm_object) != NULL) {
3984 			if (src_object->type == OBJT_DEFAULT ||
3985 			    src_object->type == OBJT_SWAP) {
3986 				vm_map_copy_swap_object(src_entry, dst_entry,
3987 				    size, fork_charge);
3988 				/* May have split/collapsed, reload obj. */
3989 				src_object = src_entry->object.vm_object;
3990 			} else {
3991 				vm_object_reference(src_object);
3992 				dst_entry->object.vm_object = src_object;
3993 			}
3994 			src_entry->eflags |= MAP_ENTRY_COW |
3995 			    MAP_ENTRY_NEEDS_COPY;
3996 			dst_entry->eflags |= MAP_ENTRY_COW |
3997 			    MAP_ENTRY_NEEDS_COPY;
3998 			dst_entry->offset = src_entry->offset;
3999 			if (src_entry->eflags & MAP_ENTRY_WRITECNT) {
4000 				/*
4001 				 * MAP_ENTRY_WRITECNT cannot
4002 				 * indicate write reference from
4003 				 * src_entry, since the entry is
4004 				 * marked as needs copy.  Allocate a
4005 				 * fake entry that is used to
4006 				 * decrement object->un_pager writecount
4007 				 * at the appropriate time.  Attach
4008 				 * fake_entry to the deferred list.
4009 				 */
4010 				fake_entry = vm_map_entry_create(dst_map);
4011 				fake_entry->eflags = MAP_ENTRY_WRITECNT;
4012 				src_entry->eflags &= ~MAP_ENTRY_WRITECNT;
4013 				vm_object_reference(src_object);
4014 				fake_entry->object.vm_object = src_object;
4015 				fake_entry->start = src_entry->start;
4016 				fake_entry->end = src_entry->end;
4017 				fake_entry->defer_next =
4018 				    curthread->td_map_def_user;
4019 				curthread->td_map_def_user = fake_entry;
4020 			}
4021 
4022 			pmap_copy(dst_map->pmap, src_map->pmap,
4023 			    dst_entry->start, dst_entry->end - dst_entry->start,
4024 			    src_entry->start);
4025 		} else {
4026 			dst_entry->object.vm_object = NULL;
4027 			dst_entry->offset = 0;
4028 			if (src_entry->cred != NULL) {
4029 				dst_entry->cred = curthread->td_ucred;
4030 				crhold(dst_entry->cred);
4031 				*fork_charge += size;
4032 			}
4033 		}
4034 	} else {
4035 		/*
4036 		 * We don't want to make writeable wired pages copy-on-write.
4037 		 * Immediately copy these pages into the new map by simulating
4038 		 * page faults.  The new pages are pageable.
4039 		 */
4040 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
4041 		    fork_charge);
4042 	}
4043 }
4044 
4045 /*
4046  * vmspace_map_entry_forked:
4047  * Update the newly-forked vmspace each time a map entry is inherited
4048  * or copied.  The values for vm_dsize and vm_tsize are approximate
4049  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
4050  */
4051 static void
4052 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
4053     vm_map_entry_t entry)
4054 {
4055 	vm_size_t entrysize;
4056 	vm_offset_t newend;
4057 
4058 	if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
4059 		return;
4060 	entrysize = entry->end - entry->start;
4061 	vm2->vm_map.size += entrysize;
4062 	if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
4063 		vm2->vm_ssize += btoc(entrysize);
4064 	} else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
4065 	    entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
4066 		newend = MIN(entry->end,
4067 		    (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
4068 		vm2->vm_dsize += btoc(newend - entry->start);
4069 	} else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
4070 	    entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
4071 		newend = MIN(entry->end,
4072 		    (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
4073 		vm2->vm_tsize += btoc(newend - entry->start);
4074 	}
4075 }
4076 
4077 /*
4078  * vmspace_fork:
4079  * Create a new process vmspace structure and vm_map
4080  * based on those of an existing process.  The new map
4081  * is based on the old map, according to the inheritance
4082  * values on the regions in that map.
4083  *
4084  * XXX It might be worth coalescing the entries added to the new vmspace.
4085  *
4086  * The source map must not be locked.
4087  */
4088 struct vmspace *
4089 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
4090 {
4091 	struct vmspace *vm2;
4092 	vm_map_t new_map, old_map;
4093 	vm_map_entry_t new_entry, old_entry;
4094 	vm_object_t object;
4095 	int error, locked;
4096 	vm_inherit_t inh;
4097 
4098 	old_map = &vm1->vm_map;
4099 	/* Copy immutable fields of vm1 to vm2. */
4100 	vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map),
4101 	    pmap_pinit);
4102 	if (vm2 == NULL)
4103 		return (NULL);
4104 
4105 	vm2->vm_taddr = vm1->vm_taddr;
4106 	vm2->vm_daddr = vm1->vm_daddr;
4107 	vm2->vm_maxsaddr = vm1->vm_maxsaddr;
4108 	vm_map_lock(old_map);
4109 	if (old_map->busy)
4110 		vm_map_wait_busy(old_map);
4111 	new_map = &vm2->vm_map;
4112 	locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
4113 	KASSERT(locked, ("vmspace_fork: lock failed"));
4114 
4115 	error = pmap_vmspace_copy(new_map->pmap, old_map->pmap);
4116 	if (error != 0) {
4117 		sx_xunlock(&old_map->lock);
4118 		sx_xunlock(&new_map->lock);
4119 		vm_map_process_deferred();
4120 		vmspace_free(vm2);
4121 		return (NULL);
4122 	}
4123 
4124 	new_map->anon_loc = old_map->anon_loc;
4125 
4126 	VM_MAP_ENTRY_FOREACH(old_entry, old_map) {
4127 		if ((old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
4128 			panic("vm_map_fork: encountered a submap");
4129 
4130 		inh = old_entry->inheritance;
4131 		if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4132 		    inh != VM_INHERIT_NONE)
4133 			inh = VM_INHERIT_COPY;
4134 
4135 		switch (inh) {
4136 		case VM_INHERIT_NONE:
4137 			break;
4138 
4139 		case VM_INHERIT_SHARE:
4140 			/*
4141 			 * Clone the entry, creating the shared object if
4142 			 * necessary.
4143 			 */
4144 			object = old_entry->object.vm_object;
4145 			if (object == NULL) {
4146 				vm_map_entry_back(old_entry);
4147 				object = old_entry->object.vm_object;
4148 			}
4149 
4150 			/*
4151 			 * Add the reference before calling vm_object_shadow
4152 			 * to insure that a shadow object is created.
4153 			 */
4154 			vm_object_reference(object);
4155 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4156 				vm_object_shadow(&old_entry->object.vm_object,
4157 				    &old_entry->offset,
4158 				    old_entry->end - old_entry->start,
4159 				    old_entry->cred,
4160 				    /* Transfer the second reference too. */
4161 				    true);
4162 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4163 				old_entry->cred = NULL;
4164 
4165 				/*
4166 				 * As in vm_map_merged_neighbor_dispose(),
4167 				 * the vnode lock will not be acquired in
4168 				 * this call to vm_object_deallocate().
4169 				 */
4170 				vm_object_deallocate(object);
4171 				object = old_entry->object.vm_object;
4172 			} else {
4173 				VM_OBJECT_WLOCK(object);
4174 				vm_object_clear_flag(object, OBJ_ONEMAPPING);
4175 				if (old_entry->cred != NULL) {
4176 					KASSERT(object->cred == NULL,
4177 					    ("vmspace_fork both cred"));
4178 					object->cred = old_entry->cred;
4179 					object->charge = old_entry->end -
4180 					    old_entry->start;
4181 					old_entry->cred = NULL;
4182 				}
4183 
4184 				/*
4185 				 * Assert the correct state of the vnode
4186 				 * v_writecount while the object is locked, to
4187 				 * not relock it later for the assertion
4188 				 * correctness.
4189 				 */
4190 				if (old_entry->eflags & MAP_ENTRY_WRITECNT &&
4191 				    object->type == OBJT_VNODE) {
4192 					KASSERT(((struct vnode *)object->
4193 					    handle)->v_writecount > 0,
4194 					    ("vmspace_fork: v_writecount %p",
4195 					    object));
4196 					KASSERT(object->un_pager.vnp.
4197 					    writemappings > 0,
4198 					    ("vmspace_fork: vnp.writecount %p",
4199 					    object));
4200 				}
4201 				VM_OBJECT_WUNLOCK(object);
4202 			}
4203 
4204 			/*
4205 			 * Clone the entry, referencing the shared object.
4206 			 */
4207 			new_entry = vm_map_entry_create(new_map);
4208 			*new_entry = *old_entry;
4209 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
4210 			    MAP_ENTRY_IN_TRANSITION);
4211 			new_entry->wiring_thread = NULL;
4212 			new_entry->wired_count = 0;
4213 			if (new_entry->eflags & MAP_ENTRY_WRITECNT) {
4214 				vm_pager_update_writecount(object,
4215 				    new_entry->start, new_entry->end);
4216 			}
4217 			vm_map_entry_set_vnode_text(new_entry, true);
4218 
4219 			/*
4220 			 * Insert the entry into the new map -- we know we're
4221 			 * inserting at the end of the new map.
4222 			 */
4223 			vm_map_entry_link(new_map, new_entry);
4224 			vmspace_map_entry_forked(vm1, vm2, new_entry);
4225 
4226 			/*
4227 			 * Update the physical map
4228 			 */
4229 			pmap_copy(new_map->pmap, old_map->pmap,
4230 			    new_entry->start,
4231 			    (old_entry->end - old_entry->start),
4232 			    old_entry->start);
4233 			break;
4234 
4235 		case VM_INHERIT_COPY:
4236 			/*
4237 			 * Clone the entry and link into the map.
4238 			 */
4239 			new_entry = vm_map_entry_create(new_map);
4240 			*new_entry = *old_entry;
4241 			/*
4242 			 * Copied entry is COW over the old object.
4243 			 */
4244 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
4245 			    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_WRITECNT);
4246 			new_entry->wiring_thread = NULL;
4247 			new_entry->wired_count = 0;
4248 			new_entry->object.vm_object = NULL;
4249 			new_entry->cred = NULL;
4250 			vm_map_entry_link(new_map, new_entry);
4251 			vmspace_map_entry_forked(vm1, vm2, new_entry);
4252 			vm_map_copy_entry(old_map, new_map, old_entry,
4253 			    new_entry, fork_charge);
4254 			vm_map_entry_set_vnode_text(new_entry, true);
4255 			break;
4256 
4257 		case VM_INHERIT_ZERO:
4258 			/*
4259 			 * Create a new anonymous mapping entry modelled from
4260 			 * the old one.
4261 			 */
4262 			new_entry = vm_map_entry_create(new_map);
4263 			memset(new_entry, 0, sizeof(*new_entry));
4264 
4265 			new_entry->start = old_entry->start;
4266 			new_entry->end = old_entry->end;
4267 			new_entry->eflags = old_entry->eflags &
4268 			    ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION |
4269 			    MAP_ENTRY_WRITECNT | MAP_ENTRY_VN_EXEC);
4270 			new_entry->protection = old_entry->protection;
4271 			new_entry->max_protection = old_entry->max_protection;
4272 			new_entry->inheritance = VM_INHERIT_ZERO;
4273 
4274 			vm_map_entry_link(new_map, new_entry);
4275 			vmspace_map_entry_forked(vm1, vm2, new_entry);
4276 
4277 			new_entry->cred = curthread->td_ucred;
4278 			crhold(new_entry->cred);
4279 			*fork_charge += (new_entry->end - new_entry->start);
4280 
4281 			break;
4282 		}
4283 	}
4284 	/*
4285 	 * Use inlined vm_map_unlock() to postpone handling the deferred
4286 	 * map entries, which cannot be done until both old_map and
4287 	 * new_map locks are released.
4288 	 */
4289 	sx_xunlock(&old_map->lock);
4290 	sx_xunlock(&new_map->lock);
4291 	vm_map_process_deferred();
4292 
4293 	return (vm2);
4294 }
4295 
4296 /*
4297  * Create a process's stack for exec_new_vmspace().  This function is never
4298  * asked to wire the newly created stack.
4299  */
4300 int
4301 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4302     vm_prot_t prot, vm_prot_t max, int cow)
4303 {
4304 	vm_size_t growsize, init_ssize;
4305 	rlim_t vmemlim;
4306 	int rv;
4307 
4308 	MPASS((map->flags & MAP_WIREFUTURE) == 0);
4309 	growsize = sgrowsiz;
4310 	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
4311 	vm_map_lock(map);
4312 	vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4313 	/* If we would blow our VMEM resource limit, no go */
4314 	if (map->size + init_ssize > vmemlim) {
4315 		rv = KERN_NO_SPACE;
4316 		goto out;
4317 	}
4318 	rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
4319 	    max, cow);
4320 out:
4321 	vm_map_unlock(map);
4322 	return (rv);
4323 }
4324 
4325 static int stack_guard_page = 1;
4326 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
4327     &stack_guard_page, 0,
4328     "Specifies the number of guard pages for a stack that grows");
4329 
4330 static int
4331 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4332     vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
4333 {
4334 	vm_map_entry_t new_entry, prev_entry;
4335 	vm_offset_t bot, gap_bot, gap_top, top;
4336 	vm_size_t init_ssize, sgp;
4337 	int orient, rv;
4338 
4339 	/*
4340 	 * The stack orientation is piggybacked with the cow argument.
4341 	 * Extract it into orient and mask the cow argument so that we
4342 	 * don't pass it around further.
4343 	 */
4344 	orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP);
4345 	KASSERT(orient != 0, ("No stack grow direction"));
4346 	KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP),
4347 	    ("bi-dir stack"));
4348 
4349 	if (addrbos < vm_map_min(map) ||
4350 	    addrbos + max_ssize > vm_map_max(map) ||
4351 	    addrbos + max_ssize <= addrbos)
4352 		return (KERN_INVALID_ADDRESS);
4353 	sgp = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ||
4354 	    (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 :
4355 	    (vm_size_t)stack_guard_page * PAGE_SIZE;
4356 	if (sgp >= max_ssize)
4357 		return (KERN_INVALID_ARGUMENT);
4358 
4359 	init_ssize = growsize;
4360 	if (max_ssize < init_ssize + sgp)
4361 		init_ssize = max_ssize - sgp;
4362 
4363 	/* If addr is already mapped, no go */
4364 	if (vm_map_lookup_entry(map, addrbos, &prev_entry))
4365 		return (KERN_NO_SPACE);
4366 
4367 	/*
4368 	 * If we can't accommodate max_ssize in the current mapping, no go.
4369 	 */
4370 	if (vm_map_entry_succ(prev_entry)->start < addrbos + max_ssize)
4371 		return (KERN_NO_SPACE);
4372 
4373 	/*
4374 	 * We initially map a stack of only init_ssize.  We will grow as
4375 	 * needed later.  Depending on the orientation of the stack (i.e.
4376 	 * the grow direction) we either map at the top of the range, the
4377 	 * bottom of the range or in the middle.
4378 	 *
4379 	 * Note: we would normally expect prot and max to be VM_PROT_ALL,
4380 	 * and cow to be 0.  Possibly we should eliminate these as input
4381 	 * parameters, and just pass these values here in the insert call.
4382 	 */
4383 	if (orient == MAP_STACK_GROWS_DOWN) {
4384 		bot = addrbos + max_ssize - init_ssize;
4385 		top = bot + init_ssize;
4386 		gap_bot = addrbos;
4387 		gap_top = bot;
4388 	} else /* if (orient == MAP_STACK_GROWS_UP) */ {
4389 		bot = addrbos;
4390 		top = bot + init_ssize;
4391 		gap_bot = top;
4392 		gap_top = addrbos + max_ssize;
4393 	}
4394 	rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
4395 	if (rv != KERN_SUCCESS)
4396 		return (rv);
4397 	new_entry = vm_map_entry_succ(prev_entry);
4398 	KASSERT(new_entry->end == top || new_entry->start == bot,
4399 	    ("Bad entry start/end for new stack entry"));
4400 	KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
4401 	    (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
4402 	    ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
4403 	KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
4404 	    (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
4405 	    ("new entry lacks MAP_ENTRY_GROWS_UP"));
4406 	if (gap_bot == gap_top)
4407 		return (KERN_SUCCESS);
4408 	rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE,
4409 	    VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ?
4410 	    MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP));
4411 	if (rv == KERN_SUCCESS) {
4412 		/*
4413 		 * Gap can never successfully handle a fault, so
4414 		 * read-ahead logic is never used for it.  Re-use
4415 		 * next_read of the gap entry to store
4416 		 * stack_guard_page for vm_map_growstack().
4417 		 */
4418 		if (orient == MAP_STACK_GROWS_DOWN)
4419 			vm_map_entry_pred(new_entry)->next_read = sgp;
4420 		else
4421 			vm_map_entry_succ(new_entry)->next_read = sgp;
4422 	} else {
4423 		(void)vm_map_delete(map, bot, top);
4424 	}
4425 	return (rv);
4426 }
4427 
4428 /*
4429  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if we
4430  * successfully grow the stack.
4431  */
4432 static int
4433 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry)
4434 {
4435 	vm_map_entry_t stack_entry;
4436 	struct proc *p;
4437 	struct vmspace *vm;
4438 	struct ucred *cred;
4439 	vm_offset_t gap_end, gap_start, grow_start;
4440 	vm_size_t grow_amount, guard, max_grow;
4441 	rlim_t lmemlim, stacklim, vmemlim;
4442 	int rv, rv1;
4443 	bool gap_deleted, grow_down, is_procstack;
4444 #ifdef notyet
4445 	uint64_t limit;
4446 #endif
4447 #ifdef RACCT
4448 	int error;
4449 #endif
4450 
4451 	p = curproc;
4452 	vm = p->p_vmspace;
4453 
4454 	/*
4455 	 * Disallow stack growth when the access is performed by a
4456 	 * debugger or AIO daemon.  The reason is that the wrong
4457 	 * resource limits are applied.
4458 	 */
4459 	if (p != initproc && (map != &p->p_vmspace->vm_map ||
4460 	    p->p_textvp == NULL))
4461 		return (KERN_FAILURE);
4462 
4463 	MPASS(!map->system_map);
4464 
4465 	lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
4466 	stacklim = lim_cur(curthread, RLIMIT_STACK);
4467 	vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4468 retry:
4469 	/* If addr is not in a hole for a stack grow area, no need to grow. */
4470 	if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry))
4471 		return (KERN_FAILURE);
4472 	if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0)
4473 		return (KERN_SUCCESS);
4474 	if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) {
4475 		stack_entry = vm_map_entry_succ(gap_entry);
4476 		if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 ||
4477 		    stack_entry->start != gap_entry->end)
4478 			return (KERN_FAILURE);
4479 		grow_amount = round_page(stack_entry->start - addr);
4480 		grow_down = true;
4481 	} else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) {
4482 		stack_entry = vm_map_entry_pred(gap_entry);
4483 		if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 ||
4484 		    stack_entry->end != gap_entry->start)
4485 			return (KERN_FAILURE);
4486 		grow_amount = round_page(addr + 1 - stack_entry->end);
4487 		grow_down = false;
4488 	} else {
4489 		return (KERN_FAILURE);
4490 	}
4491 	guard = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ||
4492 	    (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 :
4493 	    gap_entry->next_read;
4494 	max_grow = gap_entry->end - gap_entry->start;
4495 	if (guard > max_grow)
4496 		return (KERN_NO_SPACE);
4497 	max_grow -= guard;
4498 	if (grow_amount > max_grow)
4499 		return (KERN_NO_SPACE);
4500 
4501 	/*
4502 	 * If this is the main process stack, see if we're over the stack
4503 	 * limit.
4504 	 */
4505 	is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr &&
4506 	    addr < (vm_offset_t)p->p_sysent->sv_usrstack;
4507 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim))
4508 		return (KERN_NO_SPACE);
4509 
4510 #ifdef RACCT
4511 	if (racct_enable) {
4512 		PROC_LOCK(p);
4513 		if (is_procstack && racct_set(p, RACCT_STACK,
4514 		    ctob(vm->vm_ssize) + grow_amount)) {
4515 			PROC_UNLOCK(p);
4516 			return (KERN_NO_SPACE);
4517 		}
4518 		PROC_UNLOCK(p);
4519 	}
4520 #endif
4521 
4522 	grow_amount = roundup(grow_amount, sgrowsiz);
4523 	if (grow_amount > max_grow)
4524 		grow_amount = max_grow;
4525 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
4526 		grow_amount = trunc_page((vm_size_t)stacklim) -
4527 		    ctob(vm->vm_ssize);
4528 	}
4529 
4530 #ifdef notyet
4531 	PROC_LOCK(p);
4532 	limit = racct_get_available(p, RACCT_STACK);
4533 	PROC_UNLOCK(p);
4534 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
4535 		grow_amount = limit - ctob(vm->vm_ssize);
4536 #endif
4537 
4538 	if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) {
4539 		if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
4540 			rv = KERN_NO_SPACE;
4541 			goto out;
4542 		}
4543 #ifdef RACCT
4544 		if (racct_enable) {
4545 			PROC_LOCK(p);
4546 			if (racct_set(p, RACCT_MEMLOCK,
4547 			    ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
4548 				PROC_UNLOCK(p);
4549 				rv = KERN_NO_SPACE;
4550 				goto out;
4551 			}
4552 			PROC_UNLOCK(p);
4553 		}
4554 #endif
4555 	}
4556 
4557 	/* If we would blow our VMEM resource limit, no go */
4558 	if (map->size + grow_amount > vmemlim) {
4559 		rv = KERN_NO_SPACE;
4560 		goto out;
4561 	}
4562 #ifdef RACCT
4563 	if (racct_enable) {
4564 		PROC_LOCK(p);
4565 		if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
4566 			PROC_UNLOCK(p);
4567 			rv = KERN_NO_SPACE;
4568 			goto out;
4569 		}
4570 		PROC_UNLOCK(p);
4571 	}
4572 #endif
4573 
4574 	if (vm_map_lock_upgrade(map)) {
4575 		gap_entry = NULL;
4576 		vm_map_lock_read(map);
4577 		goto retry;
4578 	}
4579 
4580 	if (grow_down) {
4581 		grow_start = gap_entry->end - grow_amount;
4582 		if (gap_entry->start + grow_amount == gap_entry->end) {
4583 			gap_start = gap_entry->start;
4584 			gap_end = gap_entry->end;
4585 			vm_map_entry_delete(map, gap_entry);
4586 			gap_deleted = true;
4587 		} else {
4588 			MPASS(gap_entry->start < gap_entry->end - grow_amount);
4589 			vm_map_entry_resize(map, gap_entry, -grow_amount);
4590 			gap_deleted = false;
4591 		}
4592 		rv = vm_map_insert(map, NULL, 0, grow_start,
4593 		    grow_start + grow_amount,
4594 		    stack_entry->protection, stack_entry->max_protection,
4595 		    MAP_STACK_GROWS_DOWN);
4596 		if (rv != KERN_SUCCESS) {
4597 			if (gap_deleted) {
4598 				rv1 = vm_map_insert(map, NULL, 0, gap_start,
4599 				    gap_end, VM_PROT_NONE, VM_PROT_NONE,
4600 				    MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN);
4601 				MPASS(rv1 == KERN_SUCCESS);
4602 			} else
4603 				vm_map_entry_resize(map, gap_entry,
4604 				    grow_amount);
4605 		}
4606 	} else {
4607 		grow_start = stack_entry->end;
4608 		cred = stack_entry->cred;
4609 		if (cred == NULL && stack_entry->object.vm_object != NULL)
4610 			cred = stack_entry->object.vm_object->cred;
4611 		if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
4612 			rv = KERN_NO_SPACE;
4613 		/* Grow the underlying object if applicable. */
4614 		else if (stack_entry->object.vm_object == NULL ||
4615 		    vm_object_coalesce(stack_entry->object.vm_object,
4616 		    stack_entry->offset,
4617 		    (vm_size_t)(stack_entry->end - stack_entry->start),
4618 		    grow_amount, cred != NULL)) {
4619 			if (gap_entry->start + grow_amount == gap_entry->end) {
4620 				vm_map_entry_delete(map, gap_entry);
4621 				vm_map_entry_resize(map, stack_entry,
4622 				    grow_amount);
4623 			} else {
4624 				gap_entry->start += grow_amount;
4625 				stack_entry->end += grow_amount;
4626 			}
4627 			map->size += grow_amount;
4628 			rv = KERN_SUCCESS;
4629 		} else
4630 			rv = KERN_FAILURE;
4631 	}
4632 	if (rv == KERN_SUCCESS && is_procstack)
4633 		vm->vm_ssize += btoc(grow_amount);
4634 
4635 	/*
4636 	 * Heed the MAP_WIREFUTURE flag if it was set for this process.
4637 	 */
4638 	if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) {
4639 		rv = vm_map_wire_locked(map, grow_start,
4640 		    grow_start + grow_amount,
4641 		    VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
4642 	}
4643 	vm_map_lock_downgrade(map);
4644 
4645 out:
4646 #ifdef RACCT
4647 	if (racct_enable && rv != KERN_SUCCESS) {
4648 		PROC_LOCK(p);
4649 		error = racct_set(p, RACCT_VMEM, map->size);
4650 		KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
4651 		if (!old_mlock) {
4652 			error = racct_set(p, RACCT_MEMLOCK,
4653 			    ptoa(pmap_wired_count(map->pmap)));
4654 			KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
4655 		}
4656 	    	error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
4657 		KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
4658 		PROC_UNLOCK(p);
4659 	}
4660 #endif
4661 
4662 	return (rv);
4663 }
4664 
4665 /*
4666  * Unshare the specified VM space for exec.  If other processes are
4667  * mapped to it, then create a new one.  The new vmspace is null.
4668  */
4669 int
4670 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
4671 {
4672 	struct vmspace *oldvmspace = p->p_vmspace;
4673 	struct vmspace *newvmspace;
4674 
4675 	KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
4676 	    ("vmspace_exec recursed"));
4677 	newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit);
4678 	if (newvmspace == NULL)
4679 		return (ENOMEM);
4680 	newvmspace->vm_swrss = oldvmspace->vm_swrss;
4681 	/*
4682 	 * This code is written like this for prototype purposes.  The
4683 	 * goal is to avoid running down the vmspace here, but let the
4684 	 * other process's that are still using the vmspace to finally
4685 	 * run it down.  Even though there is little or no chance of blocking
4686 	 * here, it is a good idea to keep this form for future mods.
4687 	 */
4688 	PROC_VMSPACE_LOCK(p);
4689 	p->p_vmspace = newvmspace;
4690 	PROC_VMSPACE_UNLOCK(p);
4691 	if (p == curthread->td_proc)
4692 		pmap_activate(curthread);
4693 	curthread->td_pflags |= TDP_EXECVMSPC;
4694 	return (0);
4695 }
4696 
4697 /*
4698  * Unshare the specified VM space for forcing COW.  This
4699  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
4700  */
4701 int
4702 vmspace_unshare(struct proc *p)
4703 {
4704 	struct vmspace *oldvmspace = p->p_vmspace;
4705 	struct vmspace *newvmspace;
4706 	vm_ooffset_t fork_charge;
4707 
4708 	if (oldvmspace->vm_refcnt == 1)
4709 		return (0);
4710 	fork_charge = 0;
4711 	newvmspace = vmspace_fork(oldvmspace, &fork_charge);
4712 	if (newvmspace == NULL)
4713 		return (ENOMEM);
4714 	if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
4715 		vmspace_free(newvmspace);
4716 		return (ENOMEM);
4717 	}
4718 	PROC_VMSPACE_LOCK(p);
4719 	p->p_vmspace = newvmspace;
4720 	PROC_VMSPACE_UNLOCK(p);
4721 	if (p == curthread->td_proc)
4722 		pmap_activate(curthread);
4723 	vmspace_free(oldvmspace);
4724 	return (0);
4725 }
4726 
4727 /*
4728  *	vm_map_lookup:
4729  *
4730  *	Finds the VM object, offset, and
4731  *	protection for a given virtual address in the
4732  *	specified map, assuming a page fault of the
4733  *	type specified.
4734  *
4735  *	Leaves the map in question locked for read; return
4736  *	values are guaranteed until a vm_map_lookup_done
4737  *	call is performed.  Note that the map argument
4738  *	is in/out; the returned map must be used in
4739  *	the call to vm_map_lookup_done.
4740  *
4741  *	A handle (out_entry) is returned for use in
4742  *	vm_map_lookup_done, to make that fast.
4743  *
4744  *	If a lookup is requested with "write protection"
4745  *	specified, the map may be changed to perform virtual
4746  *	copying operations, although the data referenced will
4747  *	remain the same.
4748  */
4749 int
4750 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
4751 	      vm_offset_t vaddr,
4752 	      vm_prot_t fault_typea,
4753 	      vm_map_entry_t *out_entry,	/* OUT */
4754 	      vm_object_t *object,		/* OUT */
4755 	      vm_pindex_t *pindex,		/* OUT */
4756 	      vm_prot_t *out_prot,		/* OUT */
4757 	      boolean_t *wired)			/* OUT */
4758 {
4759 	vm_map_entry_t entry;
4760 	vm_map_t map = *var_map;
4761 	vm_prot_t prot;
4762 	vm_prot_t fault_type;
4763 	vm_object_t eobject;
4764 	vm_size_t size;
4765 	struct ucred *cred;
4766 
4767 RetryLookup:
4768 
4769 	vm_map_lock_read(map);
4770 
4771 RetryLookupLocked:
4772 	/*
4773 	 * Lookup the faulting address.
4774 	 */
4775 	if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
4776 		vm_map_unlock_read(map);
4777 		return (KERN_INVALID_ADDRESS);
4778 	}
4779 
4780 	entry = *out_entry;
4781 
4782 	/*
4783 	 * Handle submaps.
4784 	 */
4785 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4786 		vm_map_t old_map = map;
4787 
4788 		*var_map = map = entry->object.sub_map;
4789 		vm_map_unlock_read(old_map);
4790 		goto RetryLookup;
4791 	}
4792 
4793 	/*
4794 	 * Check whether this task is allowed to have this page.
4795 	 */
4796 	prot = entry->protection;
4797 	if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) {
4798 		fault_typea &= ~VM_PROT_FAULT_LOOKUP;
4799 		if (prot == VM_PROT_NONE && map != kernel_map &&
4800 		    (entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4801 		    (entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
4802 		    MAP_ENTRY_STACK_GAP_UP)) != 0 &&
4803 		    vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS)
4804 			goto RetryLookupLocked;
4805 	}
4806 	fault_type = fault_typea & VM_PROT_ALL;
4807 	if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
4808 		vm_map_unlock_read(map);
4809 		return (KERN_PROTECTION_FAILURE);
4810 	}
4811 	KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
4812 	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
4813 	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
4814 	    ("entry %p flags %x", entry, entry->eflags));
4815 	if ((fault_typea & VM_PROT_COPY) != 0 &&
4816 	    (entry->max_protection & VM_PROT_WRITE) == 0 &&
4817 	    (entry->eflags & MAP_ENTRY_COW) == 0) {
4818 		vm_map_unlock_read(map);
4819 		return (KERN_PROTECTION_FAILURE);
4820 	}
4821 
4822 	/*
4823 	 * If this page is not pageable, we have to get it for all possible
4824 	 * accesses.
4825 	 */
4826 	*wired = (entry->wired_count != 0);
4827 	if (*wired)
4828 		fault_type = entry->protection;
4829 	size = entry->end - entry->start;
4830 
4831 	/*
4832 	 * If the entry was copy-on-write, we either ...
4833 	 */
4834 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4835 		/*
4836 		 * If we want to write the page, we may as well handle that
4837 		 * now since we've got the map locked.
4838 		 *
4839 		 * If we don't need to write the page, we just demote the
4840 		 * permissions allowed.
4841 		 */
4842 		if ((fault_type & VM_PROT_WRITE) != 0 ||
4843 		    (fault_typea & VM_PROT_COPY) != 0) {
4844 			/*
4845 			 * Make a new object, and place it in the object
4846 			 * chain.  Note that no new references have appeared
4847 			 * -- one just moved from the map to the new
4848 			 * object.
4849 			 */
4850 			if (vm_map_lock_upgrade(map))
4851 				goto RetryLookup;
4852 
4853 			if (entry->cred == NULL) {
4854 				/*
4855 				 * The debugger owner is charged for
4856 				 * the memory.
4857 				 */
4858 				cred = curthread->td_ucred;
4859 				crhold(cred);
4860 				if (!swap_reserve_by_cred(size, cred)) {
4861 					crfree(cred);
4862 					vm_map_unlock(map);
4863 					return (KERN_RESOURCE_SHORTAGE);
4864 				}
4865 				entry->cred = cred;
4866 			}
4867 			eobject = entry->object.vm_object;
4868 			vm_object_shadow(&entry->object.vm_object,
4869 			    &entry->offset, size, entry->cred, false);
4870 			if (eobject == entry->object.vm_object) {
4871 				/*
4872 				 * The object was not shadowed.
4873 				 */
4874 				swap_release_by_cred(size, entry->cred);
4875 				crfree(entry->cred);
4876 			}
4877 			entry->cred = NULL;
4878 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4879 
4880 			vm_map_lock_downgrade(map);
4881 		} else {
4882 			/*
4883 			 * We're attempting to read a copy-on-write page --
4884 			 * don't allow writes.
4885 			 */
4886 			prot &= ~VM_PROT_WRITE;
4887 		}
4888 	}
4889 
4890 	/*
4891 	 * Create an object if necessary.
4892 	 */
4893 	if (entry->object.vm_object == NULL && !map->system_map) {
4894 		if (vm_map_lock_upgrade(map))
4895 			goto RetryLookup;
4896 		entry->object.vm_object = vm_object_allocate_anon(atop(size),
4897 		    NULL, entry->cred, entry->cred != NULL ? size : 0);
4898 		entry->offset = 0;
4899 		entry->cred = NULL;
4900 		vm_map_lock_downgrade(map);
4901 	}
4902 
4903 	/*
4904 	 * Return the object/offset from this entry.  If the entry was
4905 	 * copy-on-write or empty, it has been fixed up.
4906 	 */
4907 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4908 	*object = entry->object.vm_object;
4909 
4910 	*out_prot = prot;
4911 	return (KERN_SUCCESS);
4912 }
4913 
4914 /*
4915  *	vm_map_lookup_locked:
4916  *
4917  *	Lookup the faulting address.  A version of vm_map_lookup that returns
4918  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
4919  */
4920 int
4921 vm_map_lookup_locked(vm_map_t *var_map,		/* IN/OUT */
4922 		     vm_offset_t vaddr,
4923 		     vm_prot_t fault_typea,
4924 		     vm_map_entry_t *out_entry,	/* OUT */
4925 		     vm_object_t *object,	/* OUT */
4926 		     vm_pindex_t *pindex,	/* OUT */
4927 		     vm_prot_t *out_prot,	/* OUT */
4928 		     boolean_t *wired)		/* OUT */
4929 {
4930 	vm_map_entry_t entry;
4931 	vm_map_t map = *var_map;
4932 	vm_prot_t prot;
4933 	vm_prot_t fault_type = fault_typea;
4934 
4935 	/*
4936 	 * Lookup the faulting address.
4937 	 */
4938 	if (!vm_map_lookup_entry(map, vaddr, out_entry))
4939 		return (KERN_INVALID_ADDRESS);
4940 
4941 	entry = *out_entry;
4942 
4943 	/*
4944 	 * Fail if the entry refers to a submap.
4945 	 */
4946 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4947 		return (KERN_FAILURE);
4948 
4949 	/*
4950 	 * Check whether this task is allowed to have this page.
4951 	 */
4952 	prot = entry->protection;
4953 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4954 	if ((fault_type & prot) != fault_type)
4955 		return (KERN_PROTECTION_FAILURE);
4956 
4957 	/*
4958 	 * If this page is not pageable, we have to get it for all possible
4959 	 * accesses.
4960 	 */
4961 	*wired = (entry->wired_count != 0);
4962 	if (*wired)
4963 		fault_type = entry->protection;
4964 
4965 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4966 		/*
4967 		 * Fail if the entry was copy-on-write for a write fault.
4968 		 */
4969 		if (fault_type & VM_PROT_WRITE)
4970 			return (KERN_FAILURE);
4971 		/*
4972 		 * We're attempting to read a copy-on-write page --
4973 		 * don't allow writes.
4974 		 */
4975 		prot &= ~VM_PROT_WRITE;
4976 	}
4977 
4978 	/*
4979 	 * Fail if an object should be created.
4980 	 */
4981 	if (entry->object.vm_object == NULL && !map->system_map)
4982 		return (KERN_FAILURE);
4983 
4984 	/*
4985 	 * Return the object/offset from this entry.  If the entry was
4986 	 * copy-on-write or empty, it has been fixed up.
4987 	 */
4988 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4989 	*object = entry->object.vm_object;
4990 
4991 	*out_prot = prot;
4992 	return (KERN_SUCCESS);
4993 }
4994 
4995 /*
4996  *	vm_map_lookup_done:
4997  *
4998  *	Releases locks acquired by a vm_map_lookup
4999  *	(according to the handle returned by that lookup).
5000  */
5001 void
5002 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
5003 {
5004 	/*
5005 	 * Unlock the main-level map
5006 	 */
5007 	vm_map_unlock_read(map);
5008 }
5009 
5010 vm_offset_t
5011 vm_map_max_KBI(const struct vm_map *map)
5012 {
5013 
5014 	return (vm_map_max(map));
5015 }
5016 
5017 vm_offset_t
5018 vm_map_min_KBI(const struct vm_map *map)
5019 {
5020 
5021 	return (vm_map_min(map));
5022 }
5023 
5024 pmap_t
5025 vm_map_pmap_KBI(vm_map_t map)
5026 {
5027 
5028 	return (map->pmap);
5029 }
5030 
5031 #ifdef INVARIANTS
5032 static void
5033 _vm_map_assert_consistent(vm_map_t map, int check)
5034 {
5035 	vm_map_entry_t entry, prev;
5036 	vm_map_entry_t cur, header, lbound, ubound;
5037 	vm_size_t max_left, max_right;
5038 
5039 #ifdef DIAGNOSTIC
5040 	++map->nupdates;
5041 #endif
5042 	if (enable_vmmap_check != check)
5043 		return;
5044 
5045 	header = prev = &map->header;
5046 	VM_MAP_ENTRY_FOREACH(entry, map) {
5047 		KASSERT(prev->end <= entry->start,
5048 		    ("map %p prev->end = %jx, start = %jx", map,
5049 		    (uintmax_t)prev->end, (uintmax_t)entry->start));
5050 		KASSERT(entry->start < entry->end,
5051 		    ("map %p start = %jx, end = %jx", map,
5052 		    (uintmax_t)entry->start, (uintmax_t)entry->end));
5053 		KASSERT(entry->left == header ||
5054 		    entry->left->start < entry->start,
5055 		    ("map %p left->start = %jx, start = %jx", map,
5056 		    (uintmax_t)entry->left->start, (uintmax_t)entry->start));
5057 		KASSERT(entry->right == header ||
5058 		    entry->start < entry->right->start,
5059 		    ("map %p start = %jx, right->start = %jx", map,
5060 		    (uintmax_t)entry->start, (uintmax_t)entry->right->start));
5061 		cur = map->root;
5062 		lbound = ubound = header;
5063 		for (;;) {
5064 			if (entry->start < cur->start) {
5065 				ubound = cur;
5066 				cur = cur->left;
5067 				KASSERT(cur != lbound,
5068 				    ("map %p cannot find %jx",
5069 				    map, (uintmax_t)entry->start));
5070 			} else if (cur->end <= entry->start) {
5071 				lbound = cur;
5072 				cur = cur->right;
5073 				KASSERT(cur != ubound,
5074 				    ("map %p cannot find %jx",
5075 				    map, (uintmax_t)entry->start));
5076 			} else {
5077 				KASSERT(cur == entry,
5078 				    ("map %p cannot find %jx",
5079 				    map, (uintmax_t)entry->start));
5080 				break;
5081 			}
5082 		}
5083 		max_left = vm_map_entry_max_free_left(entry, lbound);
5084 		max_right = vm_map_entry_max_free_right(entry, ubound);
5085 		KASSERT(entry->max_free == vm_size_max(max_left, max_right),
5086 		    ("map %p max = %jx, max_left = %jx, max_right = %jx", map,
5087 		    (uintmax_t)entry->max_free,
5088 		    (uintmax_t)max_left, (uintmax_t)max_right));
5089 		prev = entry;
5090 	}
5091 	KASSERT(prev->end <= entry->start,
5092 	    ("map %p prev->end = %jx, start = %jx", map,
5093 	    (uintmax_t)prev->end, (uintmax_t)entry->start));
5094 }
5095 #endif
5096 
5097 #include "opt_ddb.h"
5098 #ifdef DDB
5099 #include <sys/kernel.h>
5100 
5101 #include <ddb/ddb.h>
5102 
5103 static void
5104 vm_map_print(vm_map_t map)
5105 {
5106 	vm_map_entry_t entry, prev;
5107 
5108 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
5109 	    (void *)map,
5110 	    (void *)map->pmap, map->nentries, map->timestamp);
5111 
5112 	db_indent += 2;
5113 	prev = &map->header;
5114 	VM_MAP_ENTRY_FOREACH(entry, map) {
5115 		db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n",
5116 		    (void *)entry, (void *)entry->start, (void *)entry->end,
5117 		    entry->eflags);
5118 		{
5119 			static char *inheritance_name[4] =
5120 			{"share", "copy", "none", "donate_copy"};
5121 
5122 			db_iprintf(" prot=%x/%x/%s",
5123 			    entry->protection,
5124 			    entry->max_protection,
5125 			    inheritance_name[(int)(unsigned char)
5126 			    entry->inheritance]);
5127 			if (entry->wired_count != 0)
5128 				db_printf(", wired");
5129 		}
5130 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
5131 			db_printf(", share=%p, offset=0x%jx\n",
5132 			    (void *)entry->object.sub_map,
5133 			    (uintmax_t)entry->offset);
5134 			if (prev == &map->header ||
5135 			    prev->object.sub_map !=
5136 				entry->object.sub_map) {
5137 				db_indent += 2;
5138 				vm_map_print((vm_map_t)entry->object.sub_map);
5139 				db_indent -= 2;
5140 			}
5141 		} else {
5142 			if (entry->cred != NULL)
5143 				db_printf(", ruid %d", entry->cred->cr_ruid);
5144 			db_printf(", object=%p, offset=0x%jx",
5145 			    (void *)entry->object.vm_object,
5146 			    (uintmax_t)entry->offset);
5147 			if (entry->object.vm_object && entry->object.vm_object->cred)
5148 				db_printf(", obj ruid %d charge %jx",
5149 				    entry->object.vm_object->cred->cr_ruid,
5150 				    (uintmax_t)entry->object.vm_object->charge);
5151 			if (entry->eflags & MAP_ENTRY_COW)
5152 				db_printf(", copy (%s)",
5153 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
5154 			db_printf("\n");
5155 
5156 			if (prev == &map->header ||
5157 			    prev->object.vm_object !=
5158 				entry->object.vm_object) {
5159 				db_indent += 2;
5160 				vm_object_print((db_expr_t)(intptr_t)
5161 						entry->object.vm_object,
5162 						0, 0, (char *)0);
5163 				db_indent -= 2;
5164 			}
5165 		}
5166 		prev = entry;
5167 	}
5168 	db_indent -= 2;
5169 }
5170 
5171 DB_SHOW_COMMAND(map, map)
5172 {
5173 
5174 	if (!have_addr) {
5175 		db_printf("usage: show map <addr>\n");
5176 		return;
5177 	}
5178 	vm_map_print((vm_map_t)addr);
5179 }
5180 
5181 DB_SHOW_COMMAND(procvm, procvm)
5182 {
5183 	struct proc *p;
5184 
5185 	if (have_addr) {
5186 		p = db_lookup_proc(addr);
5187 	} else {
5188 		p = curproc;
5189 	}
5190 
5191 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
5192 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
5193 	    (void *)vmspace_pmap(p->p_vmspace));
5194 
5195 	vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
5196 }
5197 
5198 #endif /* DDB */
5199