xref: /freebsd/sys/vm/vm_map.c (revision 6780ab54325a71e7e70112b11657973edde8655e)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD$
65  */
66 
67 /*
68  *	Virtual memory mapping module.
69  */
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/ktr.h>
74 #include <sys/lock.h>
75 #include <sys/mutex.h>
76 #include <sys/proc.h>
77 #include <sys/vmmeter.h>
78 #include <sys/mman.h>
79 #include <sys/vnode.h>
80 #include <sys/resourcevar.h>
81 #include <sys/sysent.h>
82 #include <sys/stdint.h>
83 #include <sys/shm.h>
84 
85 #include <vm/vm.h>
86 #include <vm/vm_param.h>
87 #include <vm/pmap.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_page.h>
90 #include <vm/vm_object.h>
91 #include <vm/vm_pager.h>
92 #include <vm/vm_kern.h>
93 #include <vm/vm_extern.h>
94 #include <vm/swap_pager.h>
95 #include <vm/uma.h>
96 
97 /*
98  *	Virtual memory maps provide for the mapping, protection,
99  *	and sharing of virtual memory objects.  In addition,
100  *	this module provides for an efficient virtual copy of
101  *	memory from one map to another.
102  *
103  *	Synchronization is required prior to most operations.
104  *
105  *	Maps consist of an ordered doubly-linked list of simple
106  *	entries; a single hint is used to speed up lookups.
107  *
108  *	Since portions of maps are specified by start/end addresses,
109  *	which may not align with existing map entries, all
110  *	routines merely "clip" entries to these start/end values.
111  *	[That is, an entry is split into two, bordering at a
112  *	start or end value.]  Note that these clippings may not
113  *	always be necessary (as the two resulting entries are then
114  *	not changed); however, the clipping is done for convenience.
115  *
116  *	As mentioned above, virtual copy operations are performed
117  *	by copying VM object references from one map to
118  *	another, and then marking both regions as copy-on-write.
119  */
120 
121 /*
122  *	vm_map_startup:
123  *
124  *	Initialize the vm_map module.  Must be called before
125  *	any other vm_map routines.
126  *
127  *	Map and entry structures are allocated from the general
128  *	purpose memory pool with some exceptions:
129  *
130  *	- The kernel map and kmem submap are allocated statically.
131  *	- Kernel map entries are allocated out of a static pool.
132  *
133  *	These restrictions are necessary since malloc() uses the
134  *	maps and requires map entries.
135  */
136 
137 static struct mtx map_sleep_mtx;
138 static uma_zone_t mapentzone;
139 static uma_zone_t kmapentzone;
140 static uma_zone_t mapzone;
141 static uma_zone_t vmspace_zone;
142 static struct vm_object kmapentobj;
143 static void vmspace_zinit(void *mem, int size);
144 static void vmspace_zfini(void *mem, int size);
145 static void vm_map_zinit(void *mem, int size);
146 static void vm_map_zfini(void *mem, int size);
147 static void _vm_map_init(vm_map_t map, vm_offset_t min, vm_offset_t max);
148 
149 #ifdef INVARIANTS
150 static void vm_map_zdtor(void *mem, int size, void *arg);
151 static void vmspace_zdtor(void *mem, int size, void *arg);
152 #endif
153 
154 void
155 vm_map_startup(void)
156 {
157 	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
158 	mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
159 #ifdef INVARIANTS
160 	    vm_map_zdtor,
161 #else
162 	    NULL,
163 #endif
164 	    vm_map_zinit, vm_map_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
165 	uma_prealloc(mapzone, MAX_KMAP);
166 	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
167 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
168 	    UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
169 	uma_prealloc(kmapentzone, MAX_KMAPENT);
170 	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
171 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
172 	uma_prealloc(mapentzone, MAX_MAPENT);
173 }
174 
175 static void
176 vmspace_zfini(void *mem, int size)
177 {
178 	struct vmspace *vm;
179 
180 	vm = (struct vmspace *)mem;
181 
182 	vm_map_zfini(&vm->vm_map, sizeof(vm->vm_map));
183 }
184 
185 static void
186 vmspace_zinit(void *mem, int size)
187 {
188 	struct vmspace *vm;
189 
190 	vm = (struct vmspace *)mem;
191 
192 	vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map));
193 }
194 
195 static void
196 vm_map_zfini(void *mem, int size)
197 {
198 	vm_map_t map;
199 
200 	map = (vm_map_t)mem;
201 	mtx_destroy(&map->system_mtx);
202 	lockdestroy(&map->lock);
203 }
204 
205 static void
206 vm_map_zinit(void *mem, int size)
207 {
208 	vm_map_t map;
209 
210 	map = (vm_map_t)mem;
211 	map->nentries = 0;
212 	map->size = 0;
213 	map->infork = 0;
214 	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
215 	lockinit(&map->lock, PVM, "thrd_sleep", 0, LK_NOPAUSE);
216 }
217 
218 #ifdef INVARIANTS
219 static void
220 vmspace_zdtor(void *mem, int size, void *arg)
221 {
222 	struct vmspace *vm;
223 
224 	vm = (struct vmspace *)mem;
225 
226 	vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
227 }
228 static void
229 vm_map_zdtor(void *mem, int size, void *arg)
230 {
231 	vm_map_t map;
232 
233 	map = (vm_map_t)mem;
234 	KASSERT(map->nentries == 0,
235 	    ("map %p nentries == %d on free.",
236 	    map, map->nentries));
237 	KASSERT(map->size == 0,
238 	    ("map %p size == %lu on free.",
239 	    map, (unsigned long)map->size));
240 	KASSERT(map->infork == 0,
241 	    ("map %p infork == %d on free.",
242 	    map, map->infork));
243 }
244 #endif	/* INVARIANTS */
245 
246 /*
247  * Allocate a vmspace structure, including a vm_map and pmap,
248  * and initialize those structures.  The refcnt is set to 1.
249  * The remaining fields must be initialized by the caller.
250  */
251 struct vmspace *
252 vmspace_alloc(min, max)
253 	vm_offset_t min, max;
254 {
255 	struct vmspace *vm;
256 
257 	GIANT_REQUIRED;
258 	vm = uma_zalloc(vmspace_zone, 0);
259 	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
260 	_vm_map_init(&vm->vm_map, min, max);
261 	pmap_pinit(vmspace_pmap(vm));
262 	vm->vm_map.pmap = vmspace_pmap(vm);		/* XXX */
263 	vm->vm_refcnt = 1;
264 	vm->vm_shm = NULL;
265 	vm->vm_exitingcnt = 0;
266 	return (vm);
267 }
268 
269 void
270 vm_init2(void)
271 {
272 	uma_zone_set_obj(kmapentzone, &kmapentobj, lmin(cnt.v_page_count,
273 	    (VM_MAX_KERNEL_ADDRESS - KERNBASE) / PAGE_SIZE) / 8);
274 	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
275 #ifdef INVARIANTS
276 	    vmspace_zdtor,
277 #else
278 	    NULL,
279 #endif
280 	    vmspace_zinit, vmspace_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
281 	pmap_init2();
282 }
283 
284 static __inline void
285 vmspace_dofree(struct vmspace *vm)
286 {
287 	CTR1(KTR_VM, "vmspace_free: %p", vm);
288 
289 	/*
290 	 * Make sure any SysV shm is freed, it might not have been in
291 	 * exit1().
292 	 */
293 	shmexit(vm);
294 
295 	/*
296 	 * Lock the map, to wait out all other references to it.
297 	 * Delete all of the mappings and pages they hold, then call
298 	 * the pmap module to reclaim anything left.
299 	 */
300 	vm_map_lock(&vm->vm_map);
301 	(void) vm_map_delete(&vm->vm_map, vm->vm_map.min_offset,
302 	    vm->vm_map.max_offset);
303 	vm_map_unlock(&vm->vm_map);
304 
305 	pmap_release(vmspace_pmap(vm));
306 	uma_zfree(vmspace_zone, vm);
307 }
308 
309 void
310 vmspace_free(struct vmspace *vm)
311 {
312 	GIANT_REQUIRED;
313 
314 	if (vm->vm_refcnt == 0)
315 		panic("vmspace_free: attempt to free already freed vmspace");
316 
317 	if (--vm->vm_refcnt == 0 && vm->vm_exitingcnt == 0)
318 		vmspace_dofree(vm);
319 }
320 
321 void
322 vmspace_exitfree(struct proc *p)
323 {
324 	struct vmspace *vm;
325 
326 	GIANT_REQUIRED;
327 	vm = p->p_vmspace;
328 	p->p_vmspace = NULL;
329 
330 	/*
331 	 * cleanup by parent process wait()ing on exiting child.  vm_refcnt
332 	 * may not be 0 (e.g. fork() and child exits without exec()ing).
333 	 * exitingcnt may increment above 0 and drop back down to zero
334 	 * several times while vm_refcnt is held non-zero.  vm_refcnt
335 	 * may also increment above 0 and drop back down to zero several
336 	 * times while vm_exitingcnt is held non-zero.
337 	 *
338 	 * The last wait on the exiting child's vmspace will clean up
339 	 * the remainder of the vmspace.
340 	 */
341 	if (--vm->vm_exitingcnt == 0 && vm->vm_refcnt == 0)
342 		vmspace_dofree(vm);
343 }
344 
345 /*
346  * vmspace_swap_count() - count the approximate swap useage in pages for a
347  *			  vmspace.
348  *
349  *	Swap useage is determined by taking the proportional swap used by
350  *	VM objects backing the VM map.  To make up for fractional losses,
351  *	if the VM object has any swap use at all the associated map entries
352  *	count for at least 1 swap page.
353  */
354 int
355 vmspace_swap_count(struct vmspace *vmspace)
356 {
357 	vm_map_t map = &vmspace->vm_map;
358 	vm_map_entry_t cur;
359 	int count = 0;
360 
361 	vm_map_lock_read(map);
362 	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
363 		vm_object_t object;
364 
365 		if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
366 		    (object = cur->object.vm_object) != NULL &&
367 		    object->type == OBJT_SWAP
368 		) {
369 			int n = (cur->end - cur->start) / PAGE_SIZE;
370 
371 			if (object->un_pager.swp.swp_bcount) {
372 				count += object->un_pager.swp.swp_bcount *
373 				    SWAP_META_PAGES * n / object->size + 1;
374 			}
375 		}
376 	}
377 	vm_map_unlock_read(map);
378 	return (count);
379 }
380 
381 void
382 _vm_map_lock(vm_map_t map, const char *file, int line)
383 {
384 	int error;
385 
386 	if (map->system_map)
387 		_mtx_lock_flags(&map->system_mtx, 0, file, line);
388 	else {
389 		error = lockmgr(&map->lock, LK_EXCLUSIVE, NULL, curthread);
390 		KASSERT(error == 0, ("%s: failed to get lock", __func__));
391 	}
392 	map->timestamp++;
393 }
394 
395 void
396 _vm_map_unlock(vm_map_t map, const char *file, int line)
397 {
398 
399 	if (map->system_map)
400 		_mtx_unlock_flags(&map->system_mtx, 0, file, line);
401 	else
402 		lockmgr(&map->lock, LK_RELEASE, NULL, curthread);
403 }
404 
405 void
406 _vm_map_lock_read(vm_map_t map, const char *file, int line)
407 {
408 	int error;
409 
410 	if (map->system_map)
411 		_mtx_lock_flags(&map->system_mtx, 0, file, line);
412 	else {
413 		error = lockmgr(&map->lock, LK_EXCLUSIVE, NULL, curthread);
414 		KASSERT(error == 0, ("%s: failed to get lock", __func__));
415 	}
416 }
417 
418 void
419 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
420 {
421 
422 	if (map->system_map)
423 		_mtx_unlock_flags(&map->system_mtx, 0, file, line);
424 	else
425 		lockmgr(&map->lock, LK_RELEASE, NULL, curthread);
426 }
427 
428 int
429 _vm_map_trylock(vm_map_t map, const char *file, int line)
430 {
431 	int error;
432 
433 	error = map->system_map ?
434 	    !_mtx_trylock(&map->system_mtx, 0, file, line) :
435 	    lockmgr(&map->lock, LK_EXCLUSIVE | LK_NOWAIT, NULL, curthread);
436 	if (error == 0)
437 		map->timestamp++;
438 	return (error == 0);
439 }
440 
441 int
442 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
443 {
444 
445 	if (map->system_map) {
446 #ifdef INVARIANTS
447 		_mtx_assert(&map->system_mtx, MA_OWNED, file, line);
448 #endif
449 	} else
450 		KASSERT(lockstatus(&map->lock, curthread) == LK_EXCLUSIVE,
451 		    ("%s: lock not held", __func__));
452 	map->timestamp++;
453 	return (0);
454 }
455 
456 void
457 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
458 {
459 
460 	if (map->system_map) {
461 #ifdef INVARIANTS
462 		_mtx_assert(&map->system_mtx, MA_OWNED, file, line);
463 #endif
464 	} else
465 		KASSERT(lockstatus(&map->lock, curthread) == LK_EXCLUSIVE,
466 		    ("%s: lock not held", __func__));
467 }
468 
469 /*
470  *	vm_map_unlock_and_wait:
471  */
472 int
473 vm_map_unlock_and_wait(vm_map_t map, boolean_t user_wait)
474 {
475 
476 	mtx_lock(&map_sleep_mtx);
477 	vm_map_unlock(map);
478 	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps", 0));
479 }
480 
481 /*
482  *	vm_map_wakeup:
483  */
484 void
485 vm_map_wakeup(vm_map_t map)
486 {
487 
488 	/*
489 	 * Acquire and release map_sleep_mtx to prevent a wakeup()
490 	 * from being performed (and lost) between the vm_map_unlock()
491 	 * and the msleep() in vm_map_unlock_and_wait().
492 	 */
493 	mtx_lock(&map_sleep_mtx);
494 	mtx_unlock(&map_sleep_mtx);
495 	wakeup(&map->root);
496 }
497 
498 long
499 vmspace_resident_count(struct vmspace *vmspace)
500 {
501 	return pmap_resident_count(vmspace_pmap(vmspace));
502 }
503 
504 /*
505  *	vm_map_create:
506  *
507  *	Creates and returns a new empty VM map with
508  *	the given physical map structure, and having
509  *	the given lower and upper address bounds.
510  */
511 vm_map_t
512 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
513 {
514 	vm_map_t result;
515 
516 	result = uma_zalloc(mapzone, 0);
517 	CTR1(KTR_VM, "vm_map_create: %p", result);
518 	_vm_map_init(result, min, max);
519 	result->pmap = pmap;
520 	return (result);
521 }
522 
523 /*
524  * Initialize an existing vm_map structure
525  * such as that in the vmspace structure.
526  * The pmap is set elsewhere.
527  */
528 static void
529 _vm_map_init(vm_map_t map, vm_offset_t min, vm_offset_t max)
530 {
531 
532 	map->header.next = map->header.prev = &map->header;
533 	map->needs_wakeup = FALSE;
534 	map->system_map = 0;
535 	map->min_offset = min;
536 	map->max_offset = max;
537 	map->first_free = &map->header;
538 	map->root = NULL;
539 	map->timestamp = 0;
540 }
541 
542 void
543 vm_map_init(vm_map_t map, vm_offset_t min, vm_offset_t max)
544 {
545 	_vm_map_init(map, min, max);
546 	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
547 	lockinit(&map->lock, PVM, "thrd_sleep", 0, LK_NOPAUSE);
548 }
549 
550 /*
551  *	vm_map_entry_dispose:	[ internal use only ]
552  *
553  *	Inverse of vm_map_entry_create.
554  */
555 static void
556 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
557 {
558 	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
559 }
560 
561 /*
562  *	vm_map_entry_create:	[ internal use only ]
563  *
564  *	Allocates a VM map entry for insertion.
565  *	No entry fields are filled in.
566  */
567 static vm_map_entry_t
568 vm_map_entry_create(vm_map_t map)
569 {
570 	vm_map_entry_t new_entry;
571 
572 	if (map->system_map)
573 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
574 	else
575 		new_entry = uma_zalloc(mapentzone, 0);
576 	if (new_entry == NULL)
577 		panic("vm_map_entry_create: kernel resources exhausted");
578 	return (new_entry);
579 }
580 
581 /*
582  *	vm_map_entry_set_behavior:
583  *
584  *	Set the expected access behavior, either normal, random, or
585  *	sequential.
586  */
587 static __inline void
588 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
589 {
590 	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
591 	    (behavior & MAP_ENTRY_BEHAV_MASK);
592 }
593 
594 /*
595  *	vm_map_entry_splay:
596  *
597  *	Implements Sleator and Tarjan's top-down splay algorithm.  Returns
598  *	the vm_map_entry containing the given address.  If, however, that
599  *	address is not found in the vm_map, returns a vm_map_entry that is
600  *	adjacent to the address, coming before or after it.
601  */
602 static vm_map_entry_t
603 vm_map_entry_splay(vm_offset_t address, vm_map_entry_t root)
604 {
605 	struct vm_map_entry dummy;
606 	vm_map_entry_t lefttreemax, righttreemin, y;
607 
608 	if (root == NULL)
609 		return (root);
610 	lefttreemax = righttreemin = &dummy;
611 	for (;; root = y) {
612 		if (address < root->start) {
613 			if ((y = root->left) == NULL)
614 				break;
615 			if (address < y->start) {
616 				/* Rotate right. */
617 				root->left = y->right;
618 				y->right = root;
619 				root = y;
620 				if ((y = root->left) == NULL)
621 					break;
622 			}
623 			/* Link into the new root's right tree. */
624 			righttreemin->left = root;
625 			righttreemin = root;
626 		} else if (address >= root->end) {
627 			if ((y = root->right) == NULL)
628 				break;
629 			if (address >= y->end) {
630 				/* Rotate left. */
631 				root->right = y->left;
632 				y->left = root;
633 				root = y;
634 				if ((y = root->right) == NULL)
635 					break;
636 			}
637 			/* Link into the new root's left tree. */
638 			lefttreemax->right = root;
639 			lefttreemax = root;
640 		} else
641 			break;
642 	}
643 	/* Assemble the new root. */
644 	lefttreemax->right = root->left;
645 	righttreemin->left = root->right;
646 	root->left = dummy.right;
647 	root->right = dummy.left;
648 	return (root);
649 }
650 
651 /*
652  *	vm_map_entry_{un,}link:
653  *
654  *	Insert/remove entries from maps.
655  */
656 static void
657 vm_map_entry_link(vm_map_t map,
658 		  vm_map_entry_t after_where,
659 		  vm_map_entry_t entry)
660 {
661 
662 	CTR4(KTR_VM,
663 	    "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
664 	    map->nentries, entry, after_where);
665 	map->nentries++;
666 	entry->prev = after_where;
667 	entry->next = after_where->next;
668 	entry->next->prev = entry;
669 	after_where->next = entry;
670 
671 	if (after_where != &map->header) {
672 		if (after_where != map->root)
673 			vm_map_entry_splay(after_where->start, map->root);
674 		entry->right = after_where->right;
675 		entry->left = after_where;
676 		after_where->right = NULL;
677 	} else {
678 		entry->right = map->root;
679 		entry->left = NULL;
680 	}
681 	map->root = entry;
682 }
683 
684 static void
685 vm_map_entry_unlink(vm_map_t map,
686 		    vm_map_entry_t entry)
687 {
688 	vm_map_entry_t next, prev, root;
689 
690 	if (entry != map->root)
691 		vm_map_entry_splay(entry->start, map->root);
692 	if (entry->left == NULL)
693 		root = entry->right;
694 	else {
695 		root = vm_map_entry_splay(entry->start, entry->left);
696 		root->right = entry->right;
697 	}
698 	map->root = root;
699 
700 	prev = entry->prev;
701 	next = entry->next;
702 	next->prev = prev;
703 	prev->next = next;
704 	map->nentries--;
705 	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
706 	    map->nentries, entry);
707 }
708 
709 /*
710  *	vm_map_lookup_entry:	[ internal use only ]
711  *
712  *	Finds the map entry containing (or
713  *	immediately preceding) the specified address
714  *	in the given map; the entry is returned
715  *	in the "entry" parameter.  The boolean
716  *	result indicates whether the address is
717  *	actually contained in the map.
718  */
719 boolean_t
720 vm_map_lookup_entry(
721 	vm_map_t map,
722 	vm_offset_t address,
723 	vm_map_entry_t *entry)	/* OUT */
724 {
725 	vm_map_entry_t cur;
726 
727 	cur = vm_map_entry_splay(address, map->root);
728 	if (cur == NULL)
729 		*entry = &map->header;
730 	else {
731 		map->root = cur;
732 
733 		if (address >= cur->start) {
734 			*entry = cur;
735 			if (cur->end > address)
736 				return (TRUE);
737 		} else
738 			*entry = cur->prev;
739 	}
740 	return (FALSE);
741 }
742 
743 /*
744  *	vm_map_insert:
745  *
746  *	Inserts the given whole VM object into the target
747  *	map at the specified address range.  The object's
748  *	size should match that of the address range.
749  *
750  *	Requires that the map be locked, and leaves it so.
751  *
752  *	If object is non-NULL, ref count must be bumped by caller
753  *	prior to making call to account for the new entry.
754  */
755 int
756 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
757 	      vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max,
758 	      int cow)
759 {
760 	vm_map_entry_t new_entry;
761 	vm_map_entry_t prev_entry;
762 	vm_map_entry_t temp_entry;
763 	vm_eflags_t protoeflags;
764 
765 	/*
766 	 * Check that the start and end points are not bogus.
767 	 */
768 	if ((start < map->min_offset) || (end > map->max_offset) ||
769 	    (start >= end))
770 		return (KERN_INVALID_ADDRESS);
771 
772 	/*
773 	 * Find the entry prior to the proposed starting address; if it's part
774 	 * of an existing entry, this range is bogus.
775 	 */
776 	if (vm_map_lookup_entry(map, start, &temp_entry))
777 		return (KERN_NO_SPACE);
778 
779 	prev_entry = temp_entry;
780 
781 	/*
782 	 * Assert that the next entry doesn't overlap the end point.
783 	 */
784 	if ((prev_entry->next != &map->header) &&
785 	    (prev_entry->next->start < end))
786 		return (KERN_NO_SPACE);
787 
788 	protoeflags = 0;
789 
790 	if (cow & MAP_COPY_ON_WRITE)
791 		protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
792 
793 	if (cow & MAP_NOFAULT) {
794 		protoeflags |= MAP_ENTRY_NOFAULT;
795 
796 		KASSERT(object == NULL,
797 			("vm_map_insert: paradoxical MAP_NOFAULT request"));
798 	}
799 	if (cow & MAP_DISABLE_SYNCER)
800 		protoeflags |= MAP_ENTRY_NOSYNC;
801 	if (cow & MAP_DISABLE_COREDUMP)
802 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
803 
804 	if (object) {
805 		/*
806 		 * When object is non-NULL, it could be shared with another
807 		 * process.  We have to set or clear OBJ_ONEMAPPING
808 		 * appropriately.
809 		 */
810 		vm_object_lock(object);
811 		if ((object->ref_count > 1) || (object->shadow_count != 0)) {
812 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
813 		}
814 		vm_object_unlock(object);
815 	}
816 	else if ((prev_entry != &map->header) &&
817 		 (prev_entry->eflags == protoeflags) &&
818 		 (prev_entry->end == start) &&
819 		 (prev_entry->wired_count == 0) &&
820 		 ((prev_entry->object.vm_object == NULL) ||
821 		  vm_object_coalesce(prev_entry->object.vm_object,
822 				     OFF_TO_IDX(prev_entry->offset),
823 				     (vm_size_t)(prev_entry->end - prev_entry->start),
824 				     (vm_size_t)(end - prev_entry->end)))) {
825 		/*
826 		 * We were able to extend the object.  Determine if we
827 		 * can extend the previous map entry to include the
828 		 * new range as well.
829 		 */
830 		if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
831 		    (prev_entry->protection == prot) &&
832 		    (prev_entry->max_protection == max)) {
833 			map->size += (end - prev_entry->end);
834 			prev_entry->end = end;
835 			vm_map_simplify_entry(map, prev_entry);
836 			return (KERN_SUCCESS);
837 		}
838 
839 		/*
840 		 * If we can extend the object but cannot extend the
841 		 * map entry, we have to create a new map entry.  We
842 		 * must bump the ref count on the extended object to
843 		 * account for it.  object may be NULL.
844 		 */
845 		object = prev_entry->object.vm_object;
846 		offset = prev_entry->offset +
847 			(prev_entry->end - prev_entry->start);
848 		vm_object_reference(object);
849 	}
850 
851 	/*
852 	 * NOTE: if conditionals fail, object can be NULL here.  This occurs
853 	 * in things like the buffer map where we manage kva but do not manage
854 	 * backing objects.
855 	 */
856 
857 	/*
858 	 * Create a new entry
859 	 */
860 	new_entry = vm_map_entry_create(map);
861 	new_entry->start = start;
862 	new_entry->end = end;
863 
864 	new_entry->eflags = protoeflags;
865 	new_entry->object.vm_object = object;
866 	new_entry->offset = offset;
867 	new_entry->avail_ssize = 0;
868 
869 	new_entry->inheritance = VM_INHERIT_DEFAULT;
870 	new_entry->protection = prot;
871 	new_entry->max_protection = max;
872 	new_entry->wired_count = 0;
873 
874 	/*
875 	 * Insert the new entry into the list
876 	 */
877 	vm_map_entry_link(map, prev_entry, new_entry);
878 	map->size += new_entry->end - new_entry->start;
879 
880 	/*
881 	 * Update the free space hint
882 	 */
883 	if ((map->first_free == prev_entry) &&
884 	    (prev_entry->end >= new_entry->start)) {
885 		map->first_free = new_entry;
886 	}
887 
888 #if 0
889 	/*
890 	 * Temporarily removed to avoid MAP_STACK panic, due to
891 	 * MAP_STACK being a huge hack.  Will be added back in
892 	 * when MAP_STACK (and the user stack mapping) is fixed.
893 	 */
894 	/*
895 	 * It may be possible to simplify the entry
896 	 */
897 	vm_map_simplify_entry(map, new_entry);
898 #endif
899 
900 	if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
901 		mtx_lock(&Giant);
902 		pmap_object_init_pt(map->pmap, start,
903 				    object, OFF_TO_IDX(offset), end - start,
904 				    cow & MAP_PREFAULT_PARTIAL);
905 		mtx_unlock(&Giant);
906 	}
907 
908 	return (KERN_SUCCESS);
909 }
910 
911 /*
912  * Find sufficient space for `length' bytes in the given map, starting at
913  * `start'.  The map must be locked.  Returns 0 on success, 1 on no space.
914  */
915 int
916 vm_map_findspace(
917 	vm_map_t map,
918 	vm_offset_t start,
919 	vm_size_t length,
920 	vm_offset_t *addr)
921 {
922 	vm_map_entry_t entry, next;
923 	vm_offset_t end;
924 
925 	if (start < map->min_offset)
926 		start = map->min_offset;
927 	if (start > map->max_offset)
928 		return (1);
929 
930 	/*
931 	 * Look for the first possible address; if there's already something
932 	 * at this address, we have to start after it.
933 	 */
934 	if (start == map->min_offset) {
935 		if ((entry = map->first_free) != &map->header)
936 			start = entry->end;
937 	} else {
938 		vm_map_entry_t tmp;
939 
940 		if (vm_map_lookup_entry(map, start, &tmp))
941 			start = tmp->end;
942 		entry = tmp;
943 	}
944 
945 	/*
946 	 * Look through the rest of the map, trying to fit a new region in the
947 	 * gap between existing regions, or after the very last region.
948 	 */
949 	for (;; start = (entry = next)->end) {
950 		/*
951 		 * Find the end of the proposed new region.  Be sure we didn't
952 		 * go beyond the end of the map, or wrap around the address;
953 		 * if so, we lose.  Otherwise, if this is the last entry, or
954 		 * if the proposed new region fits before the next entry, we
955 		 * win.
956 		 */
957 		end = start + length;
958 		if (end > map->max_offset || end < start)
959 			return (1);
960 		next = entry->next;
961 		if (next == &map->header || next->start >= end)
962 			break;
963 	}
964 	*addr = start;
965 	if (map == kernel_map) {
966 		vm_offset_t ksize;
967 		if ((ksize = round_page(start + length)) > kernel_vm_end) {
968 			mtx_lock(&Giant);
969 			pmap_growkernel(ksize);
970 			mtx_unlock(&Giant);
971 		}
972 	}
973 	return (0);
974 }
975 
976 /*
977  *	vm_map_find finds an unallocated region in the target address
978  *	map with the given length.  The search is defined to be
979  *	first-fit from the specified address; the region found is
980  *	returned in the same parameter.
981  *
982  *	If object is non-NULL, ref count must be bumped by caller
983  *	prior to making call to account for the new entry.
984  */
985 int
986 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
987 	    vm_offset_t *addr,	/* IN/OUT */
988 	    vm_size_t length, boolean_t find_space, vm_prot_t prot,
989 	    vm_prot_t max, int cow)
990 {
991 	vm_offset_t start;
992 	int result, s = 0;
993 
994 	start = *addr;
995 
996 	if (map == kmem_map)
997 		s = splvm();
998 
999 	vm_map_lock(map);
1000 	if (find_space) {
1001 		if (vm_map_findspace(map, start, length, addr)) {
1002 			vm_map_unlock(map);
1003 			if (map == kmem_map)
1004 				splx(s);
1005 			return (KERN_NO_SPACE);
1006 		}
1007 		start = *addr;
1008 	}
1009 	result = vm_map_insert(map, object, offset,
1010 		start, start + length, prot, max, cow);
1011 	vm_map_unlock(map);
1012 
1013 	if (map == kmem_map)
1014 		splx(s);
1015 
1016 	return (result);
1017 }
1018 
1019 /*
1020  *	vm_map_simplify_entry:
1021  *
1022  *	Simplify the given map entry by merging with either neighbor.  This
1023  *	routine also has the ability to merge with both neighbors.
1024  *
1025  *	The map must be locked.
1026  *
1027  *	This routine guarentees that the passed entry remains valid (though
1028  *	possibly extended).  When merging, this routine may delete one or
1029  *	both neighbors.
1030  */
1031 void
1032 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1033 {
1034 	vm_map_entry_t next, prev;
1035 	vm_size_t prevsize, esize;
1036 
1037 	if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP))
1038 		return;
1039 
1040 	prev = entry->prev;
1041 	if (prev != &map->header) {
1042 		prevsize = prev->end - prev->start;
1043 		if ( (prev->end == entry->start) &&
1044 		     (prev->object.vm_object == entry->object.vm_object) &&
1045 		     (!prev->object.vm_object ||
1046 			(prev->offset + prevsize == entry->offset)) &&
1047 		     (prev->eflags == entry->eflags) &&
1048 		     (prev->protection == entry->protection) &&
1049 		     (prev->max_protection == entry->max_protection) &&
1050 		     (prev->inheritance == entry->inheritance) &&
1051 		     (prev->wired_count == entry->wired_count)) {
1052 			if (map->first_free == prev)
1053 				map->first_free = entry;
1054 			vm_map_entry_unlink(map, prev);
1055 			entry->start = prev->start;
1056 			entry->offset = prev->offset;
1057 			if (prev->object.vm_object)
1058 				vm_object_deallocate(prev->object.vm_object);
1059 			vm_map_entry_dispose(map, prev);
1060 		}
1061 	}
1062 
1063 	next = entry->next;
1064 	if (next != &map->header) {
1065 		esize = entry->end - entry->start;
1066 		if ((entry->end == next->start) &&
1067 		    (next->object.vm_object == entry->object.vm_object) &&
1068 		     (!entry->object.vm_object ||
1069 			(entry->offset + esize == next->offset)) &&
1070 		    (next->eflags == entry->eflags) &&
1071 		    (next->protection == entry->protection) &&
1072 		    (next->max_protection == entry->max_protection) &&
1073 		    (next->inheritance == entry->inheritance) &&
1074 		    (next->wired_count == entry->wired_count)) {
1075 			if (map->first_free == next)
1076 				map->first_free = entry;
1077 			vm_map_entry_unlink(map, next);
1078 			entry->end = next->end;
1079 			if (next->object.vm_object)
1080 				vm_object_deallocate(next->object.vm_object);
1081 			vm_map_entry_dispose(map, next);
1082 	        }
1083 	}
1084 }
1085 /*
1086  *	vm_map_clip_start:	[ internal use only ]
1087  *
1088  *	Asserts that the given entry begins at or after
1089  *	the specified address; if necessary,
1090  *	it splits the entry into two.
1091  */
1092 #define vm_map_clip_start(map, entry, startaddr) \
1093 { \
1094 	if (startaddr > entry->start) \
1095 		_vm_map_clip_start(map, entry, startaddr); \
1096 }
1097 
1098 /*
1099  *	This routine is called only when it is known that
1100  *	the entry must be split.
1101  */
1102 static void
1103 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1104 {
1105 	vm_map_entry_t new_entry;
1106 
1107 	/*
1108 	 * Split off the front portion -- note that we must insert the new
1109 	 * entry BEFORE this one, so that this entry has the specified
1110 	 * starting address.
1111 	 */
1112 	vm_map_simplify_entry(map, entry);
1113 
1114 	/*
1115 	 * If there is no object backing this entry, we might as well create
1116 	 * one now.  If we defer it, an object can get created after the map
1117 	 * is clipped, and individual objects will be created for the split-up
1118 	 * map.  This is a bit of a hack, but is also about the best place to
1119 	 * put this improvement.
1120 	 */
1121 	if (entry->object.vm_object == NULL && !map->system_map) {
1122 		vm_object_t object;
1123 		object = vm_object_allocate(OBJT_DEFAULT,
1124 				atop(entry->end - entry->start));
1125 		entry->object.vm_object = object;
1126 		entry->offset = 0;
1127 	}
1128 
1129 	new_entry = vm_map_entry_create(map);
1130 	*new_entry = *entry;
1131 
1132 	new_entry->end = start;
1133 	entry->offset += (start - entry->start);
1134 	entry->start = start;
1135 
1136 	vm_map_entry_link(map, entry->prev, new_entry);
1137 
1138 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1139 		vm_object_reference(new_entry->object.vm_object);
1140 	}
1141 }
1142 
1143 /*
1144  *	vm_map_clip_end:	[ internal use only ]
1145  *
1146  *	Asserts that the given entry ends at or before
1147  *	the specified address; if necessary,
1148  *	it splits the entry into two.
1149  */
1150 #define vm_map_clip_end(map, entry, endaddr) \
1151 { \
1152 	if ((endaddr) < (entry->end)) \
1153 		_vm_map_clip_end((map), (entry), (endaddr)); \
1154 }
1155 
1156 /*
1157  *	This routine is called only when it is known that
1158  *	the entry must be split.
1159  */
1160 static void
1161 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1162 {
1163 	vm_map_entry_t new_entry;
1164 
1165 	/*
1166 	 * If there is no object backing this entry, we might as well create
1167 	 * one now.  If we defer it, an object can get created after the map
1168 	 * is clipped, and individual objects will be created for the split-up
1169 	 * map.  This is a bit of a hack, but is also about the best place to
1170 	 * put this improvement.
1171 	 */
1172 	if (entry->object.vm_object == NULL && !map->system_map) {
1173 		vm_object_t object;
1174 		object = vm_object_allocate(OBJT_DEFAULT,
1175 				atop(entry->end - entry->start));
1176 		entry->object.vm_object = object;
1177 		entry->offset = 0;
1178 	}
1179 
1180 	/*
1181 	 * Create a new entry and insert it AFTER the specified entry
1182 	 */
1183 	new_entry = vm_map_entry_create(map);
1184 	*new_entry = *entry;
1185 
1186 	new_entry->start = entry->end = end;
1187 	new_entry->offset += (end - entry->start);
1188 
1189 	vm_map_entry_link(map, entry, new_entry);
1190 
1191 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1192 		vm_object_reference(new_entry->object.vm_object);
1193 	}
1194 }
1195 
1196 /*
1197  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
1198  *
1199  *	Asserts that the starting and ending region
1200  *	addresses fall within the valid range of the map.
1201  */
1202 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
1203 		{					\
1204 		if (start < vm_map_min(map))		\
1205 			start = vm_map_min(map);	\
1206 		if (end > vm_map_max(map))		\
1207 			end = vm_map_max(map);		\
1208 		if (start > end)			\
1209 			start = end;			\
1210 		}
1211 
1212 /*
1213  *	vm_map_submap:		[ kernel use only ]
1214  *
1215  *	Mark the given range as handled by a subordinate map.
1216  *
1217  *	This range must have been created with vm_map_find,
1218  *	and no other operations may have been performed on this
1219  *	range prior to calling vm_map_submap.
1220  *
1221  *	Only a limited number of operations can be performed
1222  *	within this rage after calling vm_map_submap:
1223  *		vm_fault
1224  *	[Don't try vm_map_copy!]
1225  *
1226  *	To remove a submapping, one must first remove the
1227  *	range from the superior map, and then destroy the
1228  *	submap (if desired).  [Better yet, don't try it.]
1229  */
1230 int
1231 vm_map_submap(
1232 	vm_map_t map,
1233 	vm_offset_t start,
1234 	vm_offset_t end,
1235 	vm_map_t submap)
1236 {
1237 	vm_map_entry_t entry;
1238 	int result = KERN_INVALID_ARGUMENT;
1239 
1240 	vm_map_lock(map);
1241 
1242 	VM_MAP_RANGE_CHECK(map, start, end);
1243 
1244 	if (vm_map_lookup_entry(map, start, &entry)) {
1245 		vm_map_clip_start(map, entry, start);
1246 	} else
1247 		entry = entry->next;
1248 
1249 	vm_map_clip_end(map, entry, end);
1250 
1251 	if ((entry->start == start) && (entry->end == end) &&
1252 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1253 	    (entry->object.vm_object == NULL)) {
1254 		entry->object.sub_map = submap;
1255 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1256 		result = KERN_SUCCESS;
1257 	}
1258 	vm_map_unlock(map);
1259 
1260 	return (result);
1261 }
1262 
1263 /*
1264  *	vm_map_protect:
1265  *
1266  *	Sets the protection of the specified address
1267  *	region in the target map.  If "set_max" is
1268  *	specified, the maximum protection is to be set;
1269  *	otherwise, only the current protection is affected.
1270  */
1271 int
1272 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1273 	       vm_prot_t new_prot, boolean_t set_max)
1274 {
1275 	vm_map_entry_t current;
1276 	vm_map_entry_t entry;
1277 
1278 	vm_map_lock(map);
1279 
1280 	VM_MAP_RANGE_CHECK(map, start, end);
1281 
1282 	if (vm_map_lookup_entry(map, start, &entry)) {
1283 		vm_map_clip_start(map, entry, start);
1284 	} else {
1285 		entry = entry->next;
1286 	}
1287 
1288 	/*
1289 	 * Make a first pass to check for protection violations.
1290 	 */
1291 	current = entry;
1292 	while ((current != &map->header) && (current->start < end)) {
1293 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1294 			vm_map_unlock(map);
1295 			return (KERN_INVALID_ARGUMENT);
1296 		}
1297 		if ((new_prot & current->max_protection) != new_prot) {
1298 			vm_map_unlock(map);
1299 			return (KERN_PROTECTION_FAILURE);
1300 		}
1301 		current = current->next;
1302 	}
1303 
1304 	/*
1305 	 * Go back and fix up protections. [Note that clipping is not
1306 	 * necessary the second time.]
1307 	 */
1308 	current = entry;
1309 	while ((current != &map->header) && (current->start < end)) {
1310 		vm_prot_t old_prot;
1311 
1312 		vm_map_clip_end(map, current, end);
1313 
1314 		old_prot = current->protection;
1315 		if (set_max)
1316 			current->protection =
1317 			    (current->max_protection = new_prot) &
1318 			    old_prot;
1319 		else
1320 			current->protection = new_prot;
1321 
1322 		/*
1323 		 * Update physical map if necessary. Worry about copy-on-write
1324 		 * here -- CHECK THIS XXX
1325 		 */
1326 		if (current->protection != old_prot) {
1327 			mtx_lock(&Giant);
1328 			vm_page_lock_queues();
1329 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1330 							VM_PROT_ALL)
1331 			pmap_protect(map->pmap, current->start,
1332 			    current->end,
1333 			    current->protection & MASK(current));
1334 #undef	MASK
1335 			vm_page_unlock_queues();
1336 			mtx_unlock(&Giant);
1337 		}
1338 		vm_map_simplify_entry(map, current);
1339 		current = current->next;
1340 	}
1341 	vm_map_unlock(map);
1342 	return (KERN_SUCCESS);
1343 }
1344 
1345 /*
1346  *	vm_map_madvise:
1347  *
1348  * 	This routine traverses a processes map handling the madvise
1349  *	system call.  Advisories are classified as either those effecting
1350  *	the vm_map_entry structure, or those effecting the underlying
1351  *	objects.
1352  */
1353 int
1354 vm_map_madvise(
1355 	vm_map_t map,
1356 	vm_offset_t start,
1357 	vm_offset_t end,
1358 	int behav)
1359 {
1360 	vm_map_entry_t current, entry;
1361 	int modify_map = 0;
1362 
1363 	/*
1364 	 * Some madvise calls directly modify the vm_map_entry, in which case
1365 	 * we need to use an exclusive lock on the map and we need to perform
1366 	 * various clipping operations.  Otherwise we only need a read-lock
1367 	 * on the map.
1368 	 */
1369 	switch(behav) {
1370 	case MADV_NORMAL:
1371 	case MADV_SEQUENTIAL:
1372 	case MADV_RANDOM:
1373 	case MADV_NOSYNC:
1374 	case MADV_AUTOSYNC:
1375 	case MADV_NOCORE:
1376 	case MADV_CORE:
1377 		modify_map = 1;
1378 		vm_map_lock(map);
1379 		break;
1380 	case MADV_WILLNEED:
1381 	case MADV_DONTNEED:
1382 	case MADV_FREE:
1383 		vm_map_lock_read(map);
1384 		break;
1385 	default:
1386 		return (KERN_INVALID_ARGUMENT);
1387 	}
1388 
1389 	/*
1390 	 * Locate starting entry and clip if necessary.
1391 	 */
1392 	VM_MAP_RANGE_CHECK(map, start, end);
1393 
1394 	if (vm_map_lookup_entry(map, start, &entry)) {
1395 		if (modify_map)
1396 			vm_map_clip_start(map, entry, start);
1397 	} else {
1398 		entry = entry->next;
1399 	}
1400 
1401 	if (modify_map) {
1402 		/*
1403 		 * madvise behaviors that are implemented in the vm_map_entry.
1404 		 *
1405 		 * We clip the vm_map_entry so that behavioral changes are
1406 		 * limited to the specified address range.
1407 		 */
1408 		for (current = entry;
1409 		     (current != &map->header) && (current->start < end);
1410 		     current = current->next
1411 		) {
1412 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
1413 				continue;
1414 
1415 			vm_map_clip_end(map, current, end);
1416 
1417 			switch (behav) {
1418 			case MADV_NORMAL:
1419 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
1420 				break;
1421 			case MADV_SEQUENTIAL:
1422 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
1423 				break;
1424 			case MADV_RANDOM:
1425 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
1426 				break;
1427 			case MADV_NOSYNC:
1428 				current->eflags |= MAP_ENTRY_NOSYNC;
1429 				break;
1430 			case MADV_AUTOSYNC:
1431 				current->eflags &= ~MAP_ENTRY_NOSYNC;
1432 				break;
1433 			case MADV_NOCORE:
1434 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
1435 				break;
1436 			case MADV_CORE:
1437 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
1438 				break;
1439 			default:
1440 				break;
1441 			}
1442 			vm_map_simplify_entry(map, current);
1443 		}
1444 		vm_map_unlock(map);
1445 	} else {
1446 		vm_pindex_t pindex;
1447 		int count;
1448 
1449 		/*
1450 		 * madvise behaviors that are implemented in the underlying
1451 		 * vm_object.
1452 		 *
1453 		 * Since we don't clip the vm_map_entry, we have to clip
1454 		 * the vm_object pindex and count.
1455 		 */
1456 		for (current = entry;
1457 		     (current != &map->header) && (current->start < end);
1458 		     current = current->next
1459 		) {
1460 			vm_offset_t useStart;
1461 
1462 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
1463 				continue;
1464 
1465 			pindex = OFF_TO_IDX(current->offset);
1466 			count = atop(current->end - current->start);
1467 			useStart = current->start;
1468 
1469 			if (current->start < start) {
1470 				pindex += atop(start - current->start);
1471 				count -= atop(start - current->start);
1472 				useStart = start;
1473 			}
1474 			if (current->end > end)
1475 				count -= atop(current->end - end);
1476 
1477 			if (count <= 0)
1478 				continue;
1479 
1480 			vm_object_madvise(current->object.vm_object,
1481 					  pindex, count, behav);
1482 			if (behav == MADV_WILLNEED) {
1483 				mtx_lock(&Giant);
1484 				pmap_object_init_pt(
1485 				    map->pmap,
1486 				    useStart,
1487 				    current->object.vm_object,
1488 				    pindex,
1489 				    (count << PAGE_SHIFT),
1490 				    MAP_PREFAULT_MADVISE
1491 				);
1492 				mtx_unlock(&Giant);
1493 			}
1494 		}
1495 		vm_map_unlock_read(map);
1496 	}
1497 	return (0);
1498 }
1499 
1500 
1501 /*
1502  *	vm_map_inherit:
1503  *
1504  *	Sets the inheritance of the specified address
1505  *	range in the target map.  Inheritance
1506  *	affects how the map will be shared with
1507  *	child maps at the time of vm_map_fork.
1508  */
1509 int
1510 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
1511 	       vm_inherit_t new_inheritance)
1512 {
1513 	vm_map_entry_t entry;
1514 	vm_map_entry_t temp_entry;
1515 
1516 	switch (new_inheritance) {
1517 	case VM_INHERIT_NONE:
1518 	case VM_INHERIT_COPY:
1519 	case VM_INHERIT_SHARE:
1520 		break;
1521 	default:
1522 		return (KERN_INVALID_ARGUMENT);
1523 	}
1524 	vm_map_lock(map);
1525 	VM_MAP_RANGE_CHECK(map, start, end);
1526 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
1527 		entry = temp_entry;
1528 		vm_map_clip_start(map, entry, start);
1529 	} else
1530 		entry = temp_entry->next;
1531 	while ((entry != &map->header) && (entry->start < end)) {
1532 		vm_map_clip_end(map, entry, end);
1533 		entry->inheritance = new_inheritance;
1534 		vm_map_simplify_entry(map, entry);
1535 		entry = entry->next;
1536 	}
1537 	vm_map_unlock(map);
1538 	return (KERN_SUCCESS);
1539 }
1540 
1541 /*
1542  *	vm_map_unwire:
1543  *
1544  *	Implements both kernel and user unwiring.
1545  */
1546 int
1547 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1548 	boolean_t user_unwire)
1549 {
1550 	vm_map_entry_t entry, first_entry, tmp_entry;
1551 	vm_offset_t saved_start;
1552 	unsigned int last_timestamp;
1553 	int rv;
1554 	boolean_t need_wakeup, result;
1555 
1556 	vm_map_lock(map);
1557 	VM_MAP_RANGE_CHECK(map, start, end);
1558 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
1559 		vm_map_unlock(map);
1560 		return (KERN_INVALID_ADDRESS);
1561 	}
1562 	last_timestamp = map->timestamp;
1563 	entry = first_entry;
1564 	while (entry != &map->header && entry->start < end) {
1565 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1566 			/*
1567 			 * We have not yet clipped the entry.
1568 			 */
1569 			saved_start = (start >= entry->start) ? start :
1570 			    entry->start;
1571 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1572 			if (vm_map_unlock_and_wait(map, user_unwire)) {
1573 				/*
1574 				 * Allow interruption of user unwiring?
1575 				 */
1576 			}
1577 			vm_map_lock(map);
1578 			if (last_timestamp+1 != map->timestamp) {
1579 				/*
1580 				 * Look again for the entry because the map was
1581 				 * modified while it was unlocked.
1582 				 * Specifically, the entry may have been
1583 				 * clipped, merged, or deleted.
1584 				 */
1585 				if (!vm_map_lookup_entry(map, saved_start,
1586 				    &tmp_entry)) {
1587 					if (saved_start == start) {
1588 						/*
1589 						 * First_entry has been deleted.
1590 						 */
1591 						vm_map_unlock(map);
1592 						return (KERN_INVALID_ADDRESS);
1593 					}
1594 					end = saved_start;
1595 					rv = KERN_INVALID_ADDRESS;
1596 					goto done;
1597 				}
1598 				if (entry == first_entry)
1599 					first_entry = tmp_entry;
1600 				else
1601 					first_entry = NULL;
1602 				entry = tmp_entry;
1603 			}
1604 			last_timestamp = map->timestamp;
1605 			continue;
1606 		}
1607 		vm_map_clip_start(map, entry, start);
1608 		vm_map_clip_end(map, entry, end);
1609 		/*
1610 		 * Mark the entry in case the map lock is released.  (See
1611 		 * above.)
1612 		 */
1613 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
1614 		/*
1615 		 * Check the map for holes in the specified region.
1616 		 */
1617 		if (entry->end < end && (entry->next == &map->header ||
1618 		    entry->next->start > entry->end)) {
1619 			end = entry->end;
1620 			rv = KERN_INVALID_ADDRESS;
1621 			goto done;
1622 		}
1623 		/*
1624 		 * Require that the entry is wired.
1625 		 */
1626 		if (entry->wired_count == 0 || (user_unwire &&
1627 		    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0)) {
1628 			end = entry->end;
1629 			rv = KERN_INVALID_ARGUMENT;
1630 			goto done;
1631 		}
1632 		entry = entry->next;
1633 	}
1634 	rv = KERN_SUCCESS;
1635 done:
1636 	need_wakeup = FALSE;
1637 	if (first_entry == NULL) {
1638 		result = vm_map_lookup_entry(map, start, &first_entry);
1639 		KASSERT(result, ("vm_map_unwire: lookup failed"));
1640 	}
1641 	entry = first_entry;
1642 	while (entry != &map->header && entry->start < end) {
1643 		if (rv == KERN_SUCCESS) {
1644 			if (user_unwire)
1645 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
1646 			entry->wired_count--;
1647 			if (entry->wired_count == 0) {
1648 				/*
1649 				 * Retain the map lock.
1650 				 */
1651 				vm_fault_unwire(map, entry->start, entry->end);
1652 			}
1653 		}
1654 		KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
1655 			("vm_map_unwire: in-transition flag missing"));
1656 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
1657 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
1658 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
1659 			need_wakeup = TRUE;
1660 		}
1661 		vm_map_simplify_entry(map, entry);
1662 		entry = entry->next;
1663 	}
1664 	vm_map_unlock(map);
1665 	if (need_wakeup)
1666 		vm_map_wakeup(map);
1667 	return (rv);
1668 }
1669 
1670 /*
1671  *	vm_map_wire:
1672  *
1673  *	Implements both kernel and user wiring.
1674  */
1675 int
1676 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1677 	boolean_t user_wire)
1678 {
1679 	vm_map_entry_t entry, first_entry, tmp_entry;
1680 	vm_offset_t saved_end, saved_start;
1681 	unsigned int last_timestamp;
1682 	int rv;
1683 	boolean_t need_wakeup, result;
1684 
1685 	vm_map_lock(map);
1686 	VM_MAP_RANGE_CHECK(map, start, end);
1687 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
1688 		vm_map_unlock(map);
1689 		return (KERN_INVALID_ADDRESS);
1690 	}
1691 	last_timestamp = map->timestamp;
1692 	entry = first_entry;
1693 	while (entry != &map->header && entry->start < end) {
1694 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1695 			/*
1696 			 * We have not yet clipped the entry.
1697 			 */
1698 			saved_start = (start >= entry->start) ? start :
1699 			    entry->start;
1700 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1701 			if (vm_map_unlock_and_wait(map, user_wire)) {
1702 				/*
1703 				 * Allow interruption of user wiring?
1704 				 */
1705 			}
1706 			vm_map_lock(map);
1707 			if (last_timestamp + 1 != map->timestamp) {
1708 				/*
1709 				 * Look again for the entry because the map was
1710 				 * modified while it was unlocked.
1711 				 * Specifically, the entry may have been
1712 				 * clipped, merged, or deleted.
1713 				 */
1714 				if (!vm_map_lookup_entry(map, saved_start,
1715 				    &tmp_entry)) {
1716 					if (saved_start == start) {
1717 						/*
1718 						 * first_entry has been deleted.
1719 						 */
1720 						vm_map_unlock(map);
1721 						return (KERN_INVALID_ADDRESS);
1722 					}
1723 					end = saved_start;
1724 					rv = KERN_INVALID_ADDRESS;
1725 					goto done;
1726 				}
1727 				if (entry == first_entry)
1728 					first_entry = tmp_entry;
1729 				else
1730 					first_entry = NULL;
1731 				entry = tmp_entry;
1732 			}
1733 			last_timestamp = map->timestamp;
1734 			continue;
1735 		}
1736 		vm_map_clip_start(map, entry, start);
1737 		vm_map_clip_end(map, entry, end);
1738 		/*
1739 		 * Mark the entry in case the map lock is released.  (See
1740 		 * above.)
1741 		 */
1742 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
1743 		/*
1744 		 *
1745 		 */
1746 		if (entry->wired_count == 0) {
1747 			entry->wired_count++;
1748 			saved_start = entry->start;
1749 			saved_end = entry->end;
1750 			/*
1751 			 * Release the map lock, relying on the in-transition
1752 			 * mark.
1753 			 */
1754 			vm_map_unlock(map);
1755 			rv = vm_fault_wire(map, saved_start, saved_end,
1756 			    user_wire);
1757 			vm_map_lock(map);
1758 			if (last_timestamp + 1 != map->timestamp) {
1759 				/*
1760 				 * Look again for the entry because the map was
1761 				 * modified while it was unlocked.  The entry
1762 				 * may have been clipped, but NOT merged or
1763 				 * deleted.
1764 				 */
1765 				result = vm_map_lookup_entry(map, saved_start,
1766 				    &tmp_entry);
1767 				KASSERT(result, ("vm_map_wire: lookup failed"));
1768 				if (entry == first_entry)
1769 					first_entry = tmp_entry;
1770 				else
1771 					first_entry = NULL;
1772 				entry = tmp_entry;
1773 				while (entry->end < saved_end) {
1774 					if (rv != KERN_SUCCESS) {
1775 						KASSERT(entry->wired_count == 1,
1776 						    ("vm_map_wire: bad count"));
1777 						entry->wired_count = -1;
1778 					}
1779 					entry = entry->next;
1780 				}
1781 			}
1782 			last_timestamp = map->timestamp;
1783 			if (rv != KERN_SUCCESS) {
1784 				KASSERT(entry->wired_count == 1,
1785 				    ("vm_map_wire: bad count"));
1786 				/*
1787 				 * Assign an out-of-range value to represent
1788 				 * the failure to wire this entry.
1789 				 */
1790 				entry->wired_count = -1;
1791 				end = entry->end;
1792 				goto done;
1793 			}
1794 		} else if (!user_wire ||
1795 			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
1796 			entry->wired_count++;
1797 		}
1798 		/*
1799 		 * Check the map for holes in the specified region.
1800 		 */
1801 		if (entry->end < end && (entry->next == &map->header ||
1802 		    entry->next->start > entry->end)) {
1803 			end = entry->end;
1804 			rv = KERN_INVALID_ADDRESS;
1805 			goto done;
1806 		}
1807 		entry = entry->next;
1808 	}
1809 	rv = KERN_SUCCESS;
1810 done:
1811 	need_wakeup = FALSE;
1812 	if (first_entry == NULL) {
1813 		result = vm_map_lookup_entry(map, start, &first_entry);
1814 		KASSERT(result, ("vm_map_wire: lookup failed"));
1815 	}
1816 	entry = first_entry;
1817 	while (entry != &map->header && entry->start < end) {
1818 		if (rv == KERN_SUCCESS) {
1819 			if (user_wire)
1820 				entry->eflags |= MAP_ENTRY_USER_WIRED;
1821 		} else if (entry->wired_count == -1) {
1822 			/*
1823 			 * Wiring failed on this entry.  Thus, unwiring is
1824 			 * unnecessary.
1825 			 */
1826 			entry->wired_count = 0;
1827 		} else {
1828 			if (!user_wire ||
1829 			    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0)
1830 				entry->wired_count--;
1831 			if (entry->wired_count == 0) {
1832 				/*
1833 				 * Retain the map lock.
1834 				 */
1835 				vm_fault_unwire(map, entry->start, entry->end);
1836 			}
1837 		}
1838 		KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
1839 			("vm_map_wire: in-transition flag missing"));
1840 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
1841 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
1842 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
1843 			need_wakeup = TRUE;
1844 		}
1845 		vm_map_simplify_entry(map, entry);
1846 		entry = entry->next;
1847 	}
1848 	vm_map_unlock(map);
1849 	if (need_wakeup)
1850 		vm_map_wakeup(map);
1851 	return (rv);
1852 }
1853 
1854 /*
1855  * vm_map_clean
1856  *
1857  * Push any dirty cached pages in the address range to their pager.
1858  * If syncio is TRUE, dirty pages are written synchronously.
1859  * If invalidate is TRUE, any cached pages are freed as well.
1860  *
1861  * Returns an error if any part of the specified range is not mapped.
1862  */
1863 int
1864 vm_map_clean(
1865 	vm_map_t map,
1866 	vm_offset_t start,
1867 	vm_offset_t end,
1868 	boolean_t syncio,
1869 	boolean_t invalidate)
1870 {
1871 	vm_map_entry_t current;
1872 	vm_map_entry_t entry;
1873 	vm_size_t size;
1874 	vm_object_t object;
1875 	vm_ooffset_t offset;
1876 
1877 	GIANT_REQUIRED;
1878 
1879 	vm_map_lock_read(map);
1880 	VM_MAP_RANGE_CHECK(map, start, end);
1881 	if (!vm_map_lookup_entry(map, start, &entry)) {
1882 		vm_map_unlock_read(map);
1883 		return (KERN_INVALID_ADDRESS);
1884 	}
1885 	/*
1886 	 * Make a first pass to check for holes.
1887 	 */
1888 	for (current = entry; current->start < end; current = current->next) {
1889 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1890 			vm_map_unlock_read(map);
1891 			return (KERN_INVALID_ARGUMENT);
1892 		}
1893 		if (end > current->end &&
1894 		    (current->next == &map->header ||
1895 			current->end != current->next->start)) {
1896 			vm_map_unlock_read(map);
1897 			return (KERN_INVALID_ADDRESS);
1898 		}
1899 	}
1900 
1901 	if (invalidate) {
1902 		vm_page_lock_queues();
1903 		pmap_remove(map->pmap, start, end);
1904 		vm_page_unlock_queues();
1905 	}
1906 	/*
1907 	 * Make a second pass, cleaning/uncaching pages from the indicated
1908 	 * objects as we go.
1909 	 */
1910 	for (current = entry; current->start < end; current = current->next) {
1911 		offset = current->offset + (start - current->start);
1912 		size = (end <= current->end ? end : current->end) - start;
1913 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1914 			vm_map_t smap;
1915 			vm_map_entry_t tentry;
1916 			vm_size_t tsize;
1917 
1918 			smap = current->object.sub_map;
1919 			vm_map_lock_read(smap);
1920 			(void) vm_map_lookup_entry(smap, offset, &tentry);
1921 			tsize = tentry->end - offset;
1922 			if (tsize < size)
1923 				size = tsize;
1924 			object = tentry->object.vm_object;
1925 			offset = tentry->offset + (offset - tentry->start);
1926 			vm_map_unlock_read(smap);
1927 		} else {
1928 			object = current->object.vm_object;
1929 		}
1930 		/*
1931 		 * Note that there is absolutely no sense in writing out
1932 		 * anonymous objects, so we track down the vnode object
1933 		 * to write out.
1934 		 * We invalidate (remove) all pages from the address space
1935 		 * anyway, for semantic correctness.
1936 		 *
1937 		 * note: certain anonymous maps, such as MAP_NOSYNC maps,
1938 		 * may start out with a NULL object.
1939 		 */
1940 		while (object && object->backing_object) {
1941 			object = object->backing_object;
1942 			offset += object->backing_object_offset;
1943 			if (object->size < OFF_TO_IDX(offset + size))
1944 				size = IDX_TO_OFF(object->size) - offset;
1945 		}
1946 		if (object && (object->type == OBJT_VNODE) &&
1947 		    (current->protection & VM_PROT_WRITE)) {
1948 			/*
1949 			 * Flush pages if writing is allowed, invalidate them
1950 			 * if invalidation requested.  Pages undergoing I/O
1951 			 * will be ignored by vm_object_page_remove().
1952 			 *
1953 			 * We cannot lock the vnode and then wait for paging
1954 			 * to complete without deadlocking against vm_fault.
1955 			 * Instead we simply call vm_object_page_remove() and
1956 			 * allow it to block internally on a page-by-page
1957 			 * basis when it encounters pages undergoing async
1958 			 * I/O.
1959 			 */
1960 			int flags;
1961 
1962 			vm_object_reference(object);
1963 			vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY, curthread);
1964 			flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1965 			flags |= invalidate ? OBJPC_INVAL : 0;
1966 			vm_object_page_clean(object,
1967 			    OFF_TO_IDX(offset),
1968 			    OFF_TO_IDX(offset + size + PAGE_MASK),
1969 			    flags);
1970 			VOP_UNLOCK(object->handle, 0, curthread);
1971 			vm_object_deallocate(object);
1972 		}
1973 		if (object && invalidate &&
1974 		    ((object->type == OBJT_VNODE) ||
1975 		     (object->type == OBJT_DEVICE))) {
1976 			vm_object_reference(object);
1977 			vm_object_lock(object);
1978 			vm_object_page_remove(object,
1979 			    OFF_TO_IDX(offset),
1980 			    OFF_TO_IDX(offset + size + PAGE_MASK),
1981 			    FALSE);
1982 			vm_object_unlock(object);
1983 			vm_object_deallocate(object);
1984                 }
1985 		start += size;
1986 	}
1987 
1988 	vm_map_unlock_read(map);
1989 	return (KERN_SUCCESS);
1990 }
1991 
1992 /*
1993  *	vm_map_entry_unwire:	[ internal use only ]
1994  *
1995  *	Make the region specified by this entry pageable.
1996  *
1997  *	The map in question should be locked.
1998  *	[This is the reason for this routine's existence.]
1999  */
2000 static void
2001 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2002 {
2003 	vm_fault_unwire(map, entry->start, entry->end);
2004 	entry->wired_count = 0;
2005 }
2006 
2007 /*
2008  *	vm_map_entry_delete:	[ internal use only ]
2009  *
2010  *	Deallocate the given entry from the target map.
2011  */
2012 static void
2013 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
2014 {
2015 	vm_map_entry_unlink(map, entry);
2016 	map->size -= entry->end - entry->start;
2017 
2018 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2019 		vm_object_deallocate(entry->object.vm_object);
2020 	}
2021 
2022 	vm_map_entry_dispose(map, entry);
2023 }
2024 
2025 /*
2026  *	vm_map_delete:	[ internal use only ]
2027  *
2028  *	Deallocates the given address range from the target
2029  *	map.
2030  */
2031 int
2032 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
2033 {
2034 	vm_object_t object;
2035 	vm_map_entry_t entry;
2036 	vm_map_entry_t first_entry;
2037 
2038 	/*
2039 	 * Find the start of the region, and clip it
2040 	 */
2041 	if (!vm_map_lookup_entry(map, start, &first_entry))
2042 		entry = first_entry->next;
2043 	else {
2044 		entry = first_entry;
2045 		vm_map_clip_start(map, entry, start);
2046 	}
2047 
2048 	/*
2049 	 * Save the free space hint
2050 	 */
2051 	if (entry == &map->header) {
2052 		map->first_free = &map->header;
2053 	} else if (map->first_free->start >= start) {
2054 		map->first_free = entry->prev;
2055 	}
2056 
2057 	/*
2058 	 * Step through all entries in this region
2059 	 */
2060 	while ((entry != &map->header) && (entry->start < end)) {
2061 		vm_map_entry_t next;
2062 		vm_offset_t s, e;
2063 		vm_pindex_t offidxstart, offidxend, count;
2064 
2065 		/*
2066 		 * Wait for wiring or unwiring of an entry to complete.
2067 		 */
2068 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0) {
2069 			unsigned int last_timestamp;
2070 			vm_offset_t saved_start;
2071 			vm_map_entry_t tmp_entry;
2072 
2073 			saved_start = entry->start;
2074 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2075 			last_timestamp = map->timestamp;
2076 			(void) vm_map_unlock_and_wait(map, FALSE);
2077 			vm_map_lock(map);
2078 			if (last_timestamp + 1 != map->timestamp) {
2079 				/*
2080 				 * Look again for the entry because the map was
2081 				 * modified while it was unlocked.
2082 				 * Specifically, the entry may have been
2083 				 * clipped, merged, or deleted.
2084 				 */
2085 				if (!vm_map_lookup_entry(map, saved_start,
2086 							 &tmp_entry))
2087 					entry = tmp_entry->next;
2088 				else {
2089 					entry = tmp_entry;
2090 					vm_map_clip_start(map, entry,
2091 							  saved_start);
2092 				}
2093 			}
2094 			continue;
2095 		}
2096 		vm_map_clip_end(map, entry, end);
2097 
2098 		s = entry->start;
2099 		e = entry->end;
2100 		next = entry->next;
2101 
2102 		offidxstart = OFF_TO_IDX(entry->offset);
2103 		count = OFF_TO_IDX(e - s);
2104 		object = entry->object.vm_object;
2105 
2106 		/*
2107 		 * Unwire before removing addresses from the pmap; otherwise,
2108 		 * unwiring will put the entries back in the pmap.
2109 		 */
2110 		if (entry->wired_count != 0) {
2111 			vm_map_entry_unwire(map, entry);
2112 		}
2113 
2114 		offidxend = offidxstart + count;
2115 
2116 		if ((object == kernel_object) || (object == kmem_object)) {
2117 			vm_object_lock(object);
2118 			vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2119 			vm_object_unlock(object);
2120 		} else {
2121 			vm_object_lock(object);
2122 			vm_page_lock_queues();
2123 			pmap_remove(map->pmap, s, e);
2124 			vm_page_unlock_queues();
2125 			if (object != NULL &&
2126 			    object->ref_count != 1 &&
2127 			    (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING &&
2128 			    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
2129 				vm_object_collapse(object);
2130 				vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2131 				if (object->type == OBJT_SWAP) {
2132 					swap_pager_freespace(object, offidxstart, count);
2133 				}
2134 				if (offidxend >= object->size &&
2135 				    offidxstart < object->size) {
2136 					object->size = offidxstart;
2137 				}
2138 			}
2139 			vm_object_unlock(object);
2140 		}
2141 
2142 		/*
2143 		 * Delete the entry (which may delete the object) only after
2144 		 * removing all pmap entries pointing to its pages.
2145 		 * (Otherwise, its page frames may be reallocated, and any
2146 		 * modify bits will be set in the wrong object!)
2147 		 */
2148 		vm_map_entry_delete(map, entry);
2149 		entry = next;
2150 	}
2151 	return (KERN_SUCCESS);
2152 }
2153 
2154 /*
2155  *	vm_map_remove:
2156  *
2157  *	Remove the given address range from the target map.
2158  *	This is the exported form of vm_map_delete.
2159  */
2160 int
2161 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2162 {
2163 	int result, s = 0;
2164 
2165 	if (map == kmem_map)
2166 		s = splvm();
2167 
2168 	vm_map_lock(map);
2169 	VM_MAP_RANGE_CHECK(map, start, end);
2170 	result = vm_map_delete(map, start, end);
2171 	vm_map_unlock(map);
2172 
2173 	if (map == kmem_map)
2174 		splx(s);
2175 
2176 	return (result);
2177 }
2178 
2179 /*
2180  *	vm_map_check_protection:
2181  *
2182  *	Assert that the target map allows the specified privilege on the
2183  *	entire address region given.  The entire region must be allocated.
2184  *
2185  *	WARNING!  This code does not and should not check whether the
2186  *	contents of the region is accessible.  For example a smaller file
2187  *	might be mapped into a larger address space.
2188  *
2189  *	NOTE!  This code is also called by munmap().
2190  */
2191 boolean_t
2192 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2193 			vm_prot_t protection)
2194 {
2195 	vm_map_entry_t entry;
2196 	vm_map_entry_t tmp_entry;
2197 
2198 	vm_map_lock_read(map);
2199 	if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
2200 		vm_map_unlock_read(map);
2201 		return (FALSE);
2202 	}
2203 	entry = tmp_entry;
2204 
2205 	while (start < end) {
2206 		if (entry == &map->header) {
2207 			vm_map_unlock_read(map);
2208 			return (FALSE);
2209 		}
2210 		/*
2211 		 * No holes allowed!
2212 		 */
2213 		if (start < entry->start) {
2214 			vm_map_unlock_read(map);
2215 			return (FALSE);
2216 		}
2217 		/*
2218 		 * Check protection associated with entry.
2219 		 */
2220 		if ((entry->protection & protection) != protection) {
2221 			vm_map_unlock_read(map);
2222 			return (FALSE);
2223 		}
2224 		/* go to next entry */
2225 		start = entry->end;
2226 		entry = entry->next;
2227 	}
2228 	vm_map_unlock_read(map);
2229 	return (TRUE);
2230 }
2231 
2232 /*
2233  *	vm_map_copy_entry:
2234  *
2235  *	Copies the contents of the source entry to the destination
2236  *	entry.  The entries *must* be aligned properly.
2237  */
2238 static void
2239 vm_map_copy_entry(
2240 	vm_map_t src_map,
2241 	vm_map_t dst_map,
2242 	vm_map_entry_t src_entry,
2243 	vm_map_entry_t dst_entry)
2244 {
2245 	vm_object_t src_object;
2246 
2247 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
2248 		return;
2249 
2250 	if (src_entry->wired_count == 0) {
2251 
2252 		/*
2253 		 * If the source entry is marked needs_copy, it is already
2254 		 * write-protected.
2255 		 */
2256 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2257 			vm_page_lock_queues();
2258 			pmap_protect(src_map->pmap,
2259 			    src_entry->start,
2260 			    src_entry->end,
2261 			    src_entry->protection & ~VM_PROT_WRITE);
2262 			vm_page_unlock_queues();
2263 		}
2264 
2265 		/*
2266 		 * Make a copy of the object.
2267 		 */
2268 		if ((src_object = src_entry->object.vm_object) != NULL) {
2269 
2270 			if ((src_object->handle == NULL) &&
2271 				(src_object->type == OBJT_DEFAULT ||
2272 				 src_object->type == OBJT_SWAP)) {
2273 				vm_object_collapse(src_object);
2274 				if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
2275 					vm_object_split(src_entry);
2276 					src_object = src_entry->object.vm_object;
2277 				}
2278 			}
2279 
2280 			vm_object_reference(src_object);
2281 			vm_object_lock(src_object);
2282 			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
2283 			vm_object_unlock(src_object);
2284 			dst_entry->object.vm_object = src_object;
2285 			src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2286 			dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2287 			dst_entry->offset = src_entry->offset;
2288 		} else {
2289 			dst_entry->object.vm_object = NULL;
2290 			dst_entry->offset = 0;
2291 		}
2292 
2293 		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
2294 		    dst_entry->end - dst_entry->start, src_entry->start);
2295 	} else {
2296 		/*
2297 		 * Of course, wired down pages can't be set copy-on-write.
2298 		 * Cause wired pages to be copied into the new map by
2299 		 * simulating faults (the new pages are pageable)
2300 		 */
2301 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
2302 	}
2303 }
2304 
2305 /*
2306  * vmspace_fork:
2307  * Create a new process vmspace structure and vm_map
2308  * based on those of an existing process.  The new map
2309  * is based on the old map, according to the inheritance
2310  * values on the regions in that map.
2311  *
2312  * The source map must not be locked.
2313  */
2314 struct vmspace *
2315 vmspace_fork(struct vmspace *vm1)
2316 {
2317 	struct vmspace *vm2;
2318 	vm_map_t old_map = &vm1->vm_map;
2319 	vm_map_t new_map;
2320 	vm_map_entry_t old_entry;
2321 	vm_map_entry_t new_entry;
2322 	vm_object_t object;
2323 
2324 	GIANT_REQUIRED;
2325 
2326 	vm_map_lock(old_map);
2327 	old_map->infork = 1;
2328 
2329 	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
2330 	bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy,
2331 	    (caddr_t) &vm1->vm_endcopy - (caddr_t) &vm1->vm_startcopy);
2332 	new_map = &vm2->vm_map;	/* XXX */
2333 	new_map->timestamp = 1;
2334 
2335 	old_entry = old_map->header.next;
2336 
2337 	while (old_entry != &old_map->header) {
2338 		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2339 			panic("vm_map_fork: encountered a submap");
2340 
2341 		switch (old_entry->inheritance) {
2342 		case VM_INHERIT_NONE:
2343 			break;
2344 
2345 		case VM_INHERIT_SHARE:
2346 			/*
2347 			 * Clone the entry, creating the shared object if necessary.
2348 			 */
2349 			object = old_entry->object.vm_object;
2350 			if (object == NULL) {
2351 				object = vm_object_allocate(OBJT_DEFAULT,
2352 					atop(old_entry->end - old_entry->start));
2353 				old_entry->object.vm_object = object;
2354 				old_entry->offset = (vm_offset_t) 0;
2355 			}
2356 
2357 			/*
2358 			 * Add the reference before calling vm_object_shadow
2359 			 * to insure that a shadow object is created.
2360 			 */
2361 			vm_object_reference(object);
2362 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
2363 				vm_object_shadow(&old_entry->object.vm_object,
2364 					&old_entry->offset,
2365 					atop(old_entry->end - old_entry->start));
2366 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
2367 				/* Transfer the second reference too. */
2368 				vm_object_reference(
2369 				    old_entry->object.vm_object);
2370 				vm_object_deallocate(object);
2371 				object = old_entry->object.vm_object;
2372 			}
2373 			vm_object_lock(object);
2374 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
2375 			vm_object_unlock(object);
2376 
2377 			/*
2378 			 * Clone the entry, referencing the shared object.
2379 			 */
2380 			new_entry = vm_map_entry_create(new_map);
2381 			*new_entry = *old_entry;
2382 			new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2383 			new_entry->wired_count = 0;
2384 
2385 			/*
2386 			 * Insert the entry into the new map -- we know we're
2387 			 * inserting at the end of the new map.
2388 			 */
2389 			vm_map_entry_link(new_map, new_map->header.prev,
2390 			    new_entry);
2391 
2392 			/*
2393 			 * Update the physical map
2394 			 */
2395 			pmap_copy(new_map->pmap, old_map->pmap,
2396 			    new_entry->start,
2397 			    (old_entry->end - old_entry->start),
2398 			    old_entry->start);
2399 			break;
2400 
2401 		case VM_INHERIT_COPY:
2402 			/*
2403 			 * Clone the entry and link into the map.
2404 			 */
2405 			new_entry = vm_map_entry_create(new_map);
2406 			*new_entry = *old_entry;
2407 			new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2408 			new_entry->wired_count = 0;
2409 			new_entry->object.vm_object = NULL;
2410 			vm_map_entry_link(new_map, new_map->header.prev,
2411 			    new_entry);
2412 			vm_map_copy_entry(old_map, new_map, old_entry,
2413 			    new_entry);
2414 			break;
2415 		}
2416 		old_entry = old_entry->next;
2417 	}
2418 
2419 	new_map->size = old_map->size;
2420 	old_map->infork = 0;
2421 	vm_map_unlock(old_map);
2422 
2423 	return (vm2);
2424 }
2425 
2426 int
2427 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
2428 	      vm_prot_t prot, vm_prot_t max, int cow)
2429 {
2430 	vm_map_entry_t prev_entry;
2431 	vm_map_entry_t new_stack_entry;
2432 	vm_size_t      init_ssize;
2433 	int            rv;
2434 
2435 	if (addrbos < vm_map_min(map))
2436 		return (KERN_NO_SPACE);
2437 
2438 	if (max_ssize < sgrowsiz)
2439 		init_ssize = max_ssize;
2440 	else
2441 		init_ssize = sgrowsiz;
2442 
2443 	vm_map_lock(map);
2444 
2445 	/* If addr is already mapped, no go */
2446 	if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
2447 		vm_map_unlock(map);
2448 		return (KERN_NO_SPACE);
2449 	}
2450 
2451 	/* If we would blow our VMEM resource limit, no go */
2452 	if (map->size + init_ssize >
2453 	    curthread->td_proc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
2454 		vm_map_unlock(map);
2455 		return (KERN_NO_SPACE);
2456 	}
2457 
2458 	/* If we can't accomodate max_ssize in the current mapping,
2459 	 * no go.  However, we need to be aware that subsequent user
2460 	 * mappings might map into the space we have reserved for
2461 	 * stack, and currently this space is not protected.
2462 	 *
2463 	 * Hopefully we will at least detect this condition
2464 	 * when we try to grow the stack.
2465 	 */
2466 	if ((prev_entry->next != &map->header) &&
2467 	    (prev_entry->next->start < addrbos + max_ssize)) {
2468 		vm_map_unlock(map);
2469 		return (KERN_NO_SPACE);
2470 	}
2471 
2472 	/* We initially map a stack of only init_ssize.  We will
2473 	 * grow as needed later.  Since this is to be a grow
2474 	 * down stack, we map at the top of the range.
2475 	 *
2476 	 * Note: we would normally expect prot and max to be
2477 	 * VM_PROT_ALL, and cow to be 0.  Possibly we should
2478 	 * eliminate these as input parameters, and just
2479 	 * pass these values here in the insert call.
2480 	 */
2481 	rv = vm_map_insert(map, NULL, 0, addrbos + max_ssize - init_ssize,
2482 	                   addrbos + max_ssize, prot, max, cow);
2483 
2484 	/* Now set the avail_ssize amount */
2485 	if (rv == KERN_SUCCESS){
2486 		if (prev_entry != &map->header)
2487 			vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize);
2488 		new_stack_entry = prev_entry->next;
2489 		if (new_stack_entry->end   != addrbos + max_ssize ||
2490 		    new_stack_entry->start != addrbos + max_ssize - init_ssize)
2491 			panic ("Bad entry start/end for new stack entry");
2492 		else
2493 			new_stack_entry->avail_ssize = max_ssize - init_ssize;
2494 	}
2495 
2496 	vm_map_unlock(map);
2497 	return (rv);
2498 }
2499 
2500 /* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
2501  * desired address is already mapped, or if we successfully grow
2502  * the stack.  Also returns KERN_SUCCESS if addr is outside the
2503  * stack range (this is strange, but preserves compatibility with
2504  * the grow function in vm_machdep.c).
2505  */
2506 int
2507 vm_map_growstack (struct proc *p, vm_offset_t addr)
2508 {
2509 	vm_map_entry_t prev_entry;
2510 	vm_map_entry_t stack_entry;
2511 	vm_map_entry_t new_stack_entry;
2512 	struct vmspace *vm = p->p_vmspace;
2513 	vm_map_t map = &vm->vm_map;
2514 	vm_offset_t    end;
2515 	int      grow_amount;
2516 	int      rv;
2517 	int      is_procstack;
2518 
2519 	GIANT_REQUIRED;
2520 
2521 Retry:
2522 	vm_map_lock_read(map);
2523 
2524 	/* If addr is already in the entry range, no need to grow.*/
2525 	if (vm_map_lookup_entry(map, addr, &prev_entry)) {
2526 		vm_map_unlock_read(map);
2527 		return (KERN_SUCCESS);
2528 	}
2529 
2530 	if ((stack_entry = prev_entry->next) == &map->header) {
2531 		vm_map_unlock_read(map);
2532 		return (KERN_SUCCESS);
2533 	}
2534 	if (prev_entry == &map->header)
2535 		end = stack_entry->start - stack_entry->avail_ssize;
2536 	else
2537 		end = prev_entry->end;
2538 
2539 	/* This next test mimics the old grow function in vm_machdep.c.
2540 	 * It really doesn't quite make sense, but we do it anyway
2541 	 * for compatibility.
2542 	 *
2543 	 * If not growable stack, return success.  This signals the
2544 	 * caller to proceed as he would normally with normal vm.
2545 	 */
2546 	if (stack_entry->avail_ssize < 1 ||
2547 	    addr >= stack_entry->start ||
2548 	    addr <  stack_entry->start - stack_entry->avail_ssize) {
2549 		vm_map_unlock_read(map);
2550 		return (KERN_SUCCESS);
2551 	}
2552 
2553 	/* Find the minimum grow amount */
2554 	grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE);
2555 	if (grow_amount > stack_entry->avail_ssize) {
2556 		vm_map_unlock_read(map);
2557 		return (KERN_NO_SPACE);
2558 	}
2559 
2560 	/* If there is no longer enough space between the entries
2561 	 * nogo, and adjust the available space.  Note: this
2562 	 * should only happen if the user has mapped into the
2563 	 * stack area after the stack was created, and is
2564 	 * probably an error.
2565 	 *
2566 	 * This also effectively destroys any guard page the user
2567 	 * might have intended by limiting the stack size.
2568 	 */
2569 	if (grow_amount > stack_entry->start - end) {
2570 		if (vm_map_lock_upgrade(map))
2571 			goto Retry;
2572 
2573 		stack_entry->avail_ssize = stack_entry->start - end;
2574 
2575 		vm_map_unlock(map);
2576 		return (KERN_NO_SPACE);
2577 	}
2578 
2579 	is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr;
2580 
2581 	/* If this is the main process stack, see if we're over the
2582 	 * stack limit.
2583 	 */
2584 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
2585 			     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
2586 		vm_map_unlock_read(map);
2587 		return (KERN_NO_SPACE);
2588 	}
2589 
2590 	/* Round up the grow amount modulo SGROWSIZ */
2591 	grow_amount = roundup (grow_amount, sgrowsiz);
2592 	if (grow_amount > stack_entry->avail_ssize) {
2593 		grow_amount = stack_entry->avail_ssize;
2594 	}
2595 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
2596 	                     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
2597 		grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur -
2598 		              ctob(vm->vm_ssize);
2599 	}
2600 
2601 	/* If we would blow our VMEM resource limit, no go */
2602 	if (map->size + grow_amount >
2603 	    curthread->td_proc->p_rlimit[RLIMIT_VMEM].rlim_cur) {
2604 		vm_map_unlock_read(map);
2605 		return (KERN_NO_SPACE);
2606 	}
2607 
2608 	if (vm_map_lock_upgrade(map))
2609 		goto Retry;
2610 
2611 	/* Get the preliminary new entry start value */
2612 	addr = stack_entry->start - grow_amount;
2613 
2614 	/* If this puts us into the previous entry, cut back our growth
2615 	 * to the available space.  Also, see the note above.
2616 	 */
2617 	if (addr < end) {
2618 		stack_entry->avail_ssize = stack_entry->start - end;
2619 		addr = end;
2620 	}
2621 
2622 	rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start,
2623 	    p->p_sysent->sv_stackprot, VM_PROT_ALL, 0);
2624 
2625 	/* Adjust the available stack space by the amount we grew. */
2626 	if (rv == KERN_SUCCESS) {
2627 		if (prev_entry != &map->header)
2628 			vm_map_clip_end(map, prev_entry, addr);
2629 		new_stack_entry = prev_entry->next;
2630 		if (new_stack_entry->end   != stack_entry->start  ||
2631 		    new_stack_entry->start != addr)
2632 			panic ("Bad stack grow start/end in new stack entry");
2633 		else {
2634 			new_stack_entry->avail_ssize = stack_entry->avail_ssize -
2635 							(new_stack_entry->end -
2636 							 new_stack_entry->start);
2637 			if (is_procstack)
2638 				vm->vm_ssize += btoc(new_stack_entry->end -
2639 						     new_stack_entry->start);
2640 		}
2641 	}
2642 
2643 	vm_map_unlock(map);
2644 	return (rv);
2645 }
2646 
2647 /*
2648  * Unshare the specified VM space for exec.  If other processes are
2649  * mapped to it, then create a new one.  The new vmspace is null.
2650  */
2651 void
2652 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
2653 {
2654 	struct vmspace *oldvmspace = p->p_vmspace;
2655 	struct vmspace *newvmspace;
2656 
2657 	GIANT_REQUIRED;
2658 	newvmspace = vmspace_alloc(minuser, maxuser);
2659 	bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy,
2660 	    (caddr_t) (newvmspace + 1) - (caddr_t) &newvmspace->vm_startcopy);
2661 	/*
2662 	 * This code is written like this for prototype purposes.  The
2663 	 * goal is to avoid running down the vmspace here, but let the
2664 	 * other process's that are still using the vmspace to finally
2665 	 * run it down.  Even though there is little or no chance of blocking
2666 	 * here, it is a good idea to keep this form for future mods.
2667 	 */
2668 	p->p_vmspace = newvmspace;
2669 	pmap_pinit2(vmspace_pmap(newvmspace));
2670 	vmspace_free(oldvmspace);
2671 	if (p == curthread->td_proc)		/* XXXKSE ? */
2672 		pmap_activate(curthread);
2673 }
2674 
2675 /*
2676  * Unshare the specified VM space for forcing COW.  This
2677  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
2678  */
2679 void
2680 vmspace_unshare(struct proc *p)
2681 {
2682 	struct vmspace *oldvmspace = p->p_vmspace;
2683 	struct vmspace *newvmspace;
2684 
2685 	GIANT_REQUIRED;
2686 	if (oldvmspace->vm_refcnt == 1)
2687 		return;
2688 	newvmspace = vmspace_fork(oldvmspace);
2689 	p->p_vmspace = newvmspace;
2690 	pmap_pinit2(vmspace_pmap(newvmspace));
2691 	vmspace_free(oldvmspace);
2692 	if (p == curthread->td_proc)		/* XXXKSE ? */
2693 		pmap_activate(curthread);
2694 }
2695 
2696 /*
2697  *	vm_map_lookup:
2698  *
2699  *	Finds the VM object, offset, and
2700  *	protection for a given virtual address in the
2701  *	specified map, assuming a page fault of the
2702  *	type specified.
2703  *
2704  *	Leaves the map in question locked for read; return
2705  *	values are guaranteed until a vm_map_lookup_done
2706  *	call is performed.  Note that the map argument
2707  *	is in/out; the returned map must be used in
2708  *	the call to vm_map_lookup_done.
2709  *
2710  *	A handle (out_entry) is returned for use in
2711  *	vm_map_lookup_done, to make that fast.
2712  *
2713  *	If a lookup is requested with "write protection"
2714  *	specified, the map may be changed to perform virtual
2715  *	copying operations, although the data referenced will
2716  *	remain the same.
2717  */
2718 int
2719 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
2720 	      vm_offset_t vaddr,
2721 	      vm_prot_t fault_typea,
2722 	      vm_map_entry_t *out_entry,	/* OUT */
2723 	      vm_object_t *object,		/* OUT */
2724 	      vm_pindex_t *pindex,		/* OUT */
2725 	      vm_prot_t *out_prot,		/* OUT */
2726 	      boolean_t *wired)			/* OUT */
2727 {
2728 	vm_map_entry_t entry;
2729 	vm_map_t map = *var_map;
2730 	vm_prot_t prot;
2731 	vm_prot_t fault_type = fault_typea;
2732 
2733 RetryLookup:;
2734 	/*
2735 	 * Lookup the faulting address.
2736 	 */
2737 
2738 	vm_map_lock_read(map);
2739 #define	RETURN(why) \
2740 		{ \
2741 		vm_map_unlock_read(map); \
2742 		return (why); \
2743 		}
2744 
2745 	/*
2746 	 * If the map has an interesting hint, try it before calling full
2747 	 * blown lookup routine.
2748 	 */
2749 	entry = map->root;
2750 	*out_entry = entry;
2751 	if (entry == NULL ||
2752 	    (vaddr < entry->start) || (vaddr >= entry->end)) {
2753 		/*
2754 		 * Entry was either not a valid hint, or the vaddr was not
2755 		 * contained in the entry, so do a full lookup.
2756 		 */
2757 		if (!vm_map_lookup_entry(map, vaddr, out_entry))
2758 			RETURN(KERN_INVALID_ADDRESS);
2759 
2760 		entry = *out_entry;
2761 	}
2762 
2763 	/*
2764 	 * Handle submaps.
2765 	 */
2766 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2767 		vm_map_t old_map = map;
2768 
2769 		*var_map = map = entry->object.sub_map;
2770 		vm_map_unlock_read(old_map);
2771 		goto RetryLookup;
2772 	}
2773 
2774 	/*
2775 	 * Check whether this task is allowed to have this page.
2776 	 * Note the special case for MAP_ENTRY_COW
2777 	 * pages with an override.  This is to implement a forced
2778 	 * COW for debuggers.
2779 	 */
2780 	if (fault_type & VM_PROT_OVERRIDE_WRITE)
2781 		prot = entry->max_protection;
2782 	else
2783 		prot = entry->protection;
2784 	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
2785 	if ((fault_type & prot) != fault_type) {
2786 			RETURN(KERN_PROTECTION_FAILURE);
2787 	}
2788 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
2789 	    (entry->eflags & MAP_ENTRY_COW) &&
2790 	    (fault_type & VM_PROT_WRITE) &&
2791 	    (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
2792 		RETURN(KERN_PROTECTION_FAILURE);
2793 	}
2794 
2795 	/*
2796 	 * If this page is not pageable, we have to get it for all possible
2797 	 * accesses.
2798 	 */
2799 	*wired = (entry->wired_count != 0);
2800 	if (*wired)
2801 		prot = fault_type = entry->protection;
2802 
2803 	/*
2804 	 * If the entry was copy-on-write, we either ...
2805 	 */
2806 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
2807 		/*
2808 		 * If we want to write the page, we may as well handle that
2809 		 * now since we've got the map locked.
2810 		 *
2811 		 * If we don't need to write the page, we just demote the
2812 		 * permissions allowed.
2813 		 */
2814 		if (fault_type & VM_PROT_WRITE) {
2815 			/*
2816 			 * Make a new object, and place it in the object
2817 			 * chain.  Note that no new references have appeared
2818 			 * -- one just moved from the map to the new
2819 			 * object.
2820 			 */
2821 			if (vm_map_lock_upgrade(map))
2822 				goto RetryLookup;
2823 
2824 			vm_object_shadow(
2825 			    &entry->object.vm_object,
2826 			    &entry->offset,
2827 			    atop(entry->end - entry->start));
2828 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
2829 
2830 			vm_map_lock_downgrade(map);
2831 		} else {
2832 			/*
2833 			 * We're attempting to read a copy-on-write page --
2834 			 * don't allow writes.
2835 			 */
2836 			prot &= ~VM_PROT_WRITE;
2837 		}
2838 	}
2839 
2840 	/*
2841 	 * Create an object if necessary.
2842 	 */
2843 	if (entry->object.vm_object == NULL &&
2844 	    !map->system_map) {
2845 		if (vm_map_lock_upgrade(map))
2846 			goto RetryLookup;
2847 		entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
2848 		    atop(entry->end - entry->start));
2849 		entry->offset = 0;
2850 		vm_map_lock_downgrade(map);
2851 	}
2852 
2853 	/*
2854 	 * Return the object/offset from this entry.  If the entry was
2855 	 * copy-on-write or empty, it has been fixed up.
2856 	 */
2857 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
2858 	*object = entry->object.vm_object;
2859 
2860 	/*
2861 	 * Return whether this is the only map sharing this data.
2862 	 */
2863 	*out_prot = prot;
2864 	return (KERN_SUCCESS);
2865 
2866 #undef	RETURN
2867 }
2868 
2869 /*
2870  *	vm_map_lookup_done:
2871  *
2872  *	Releases locks acquired by a vm_map_lookup
2873  *	(according to the handle returned by that lookup).
2874  */
2875 void
2876 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
2877 {
2878 	/*
2879 	 * Unlock the main-level map
2880 	 */
2881 	vm_map_unlock_read(map);
2882 }
2883 
2884 #ifdef ENABLE_VFS_IOOPT
2885 /*
2886  * Experimental support for zero-copy I/O
2887  *
2888  * Implement uiomove with VM operations.  This handles (and collateral changes)
2889  * support every combination of source object modification, and COW type
2890  * operations.
2891  */
2892 int
2893 vm_uiomove(
2894 	vm_map_t mapa,
2895 	vm_object_t srcobject,
2896 	off_t cp,
2897 	int cnta,
2898 	vm_offset_t uaddra,
2899 	int *npages)
2900 {
2901 	vm_map_t map;
2902 	vm_object_t first_object, oldobject, object;
2903 	vm_map_entry_t entry;
2904 	vm_prot_t prot;
2905 	boolean_t wired;
2906 	int tcnt, rv;
2907 	vm_offset_t uaddr, start, end, tend;
2908 	vm_pindex_t first_pindex, oindex;
2909 	vm_size_t osize;
2910 	off_t ooffset;
2911 	int cnt;
2912 
2913 	GIANT_REQUIRED;
2914 
2915 	if (npages)
2916 		*npages = 0;
2917 
2918 	cnt = cnta;
2919 	uaddr = uaddra;
2920 
2921 	while (cnt > 0) {
2922 		map = mapa;
2923 
2924 		if ((vm_map_lookup(&map, uaddr,
2925 			VM_PROT_READ, &entry, &first_object,
2926 			&first_pindex, &prot, &wired)) != KERN_SUCCESS) {
2927 			return EFAULT;
2928 		}
2929 
2930 		vm_map_clip_start(map, entry, uaddr);
2931 
2932 		tcnt = cnt;
2933 		tend = uaddr + tcnt;
2934 		if (tend > entry->end) {
2935 			tcnt = entry->end - uaddr;
2936 			tend = entry->end;
2937 		}
2938 
2939 		vm_map_clip_end(map, entry, tend);
2940 
2941 		start = entry->start;
2942 		end = entry->end;
2943 
2944 		osize = atop(tcnt);
2945 
2946 		oindex = OFF_TO_IDX(cp);
2947 		if (npages) {
2948 			vm_size_t idx;
2949 			for (idx = 0; idx < osize; idx++) {
2950 				vm_page_t m;
2951 				if ((m = vm_page_lookup(srcobject, oindex + idx)) == NULL) {
2952 					vm_map_lookup_done(map, entry);
2953 					return 0;
2954 				}
2955 				/*
2956 				 * disallow busy or invalid pages, but allow
2957 				 * m->busy pages if they are entirely valid.
2958 				 */
2959 				if ((m->flags & PG_BUSY) ||
2960 					((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL)) {
2961 					vm_map_lookup_done(map, entry);
2962 					return 0;
2963 				}
2964 			}
2965 		}
2966 
2967 /*
2968  * If we are changing an existing map entry, just redirect
2969  * the object, and change mappings.
2970  */
2971 		if ((first_object->type == OBJT_VNODE) &&
2972 			((oldobject = entry->object.vm_object) == first_object)) {
2973 
2974 			if ((entry->offset != cp) || (oldobject != srcobject)) {
2975 				/*
2976    				* Remove old window into the file
2977    				*/
2978 				vm_page_lock_queues();
2979 				pmap_remove(map->pmap, uaddr, tend);
2980 				vm_page_unlock_queues();
2981 
2982 				/*
2983    				* Force copy on write for mmaped regions
2984    				*/
2985 				vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize);
2986 
2987 				/*
2988    				* Point the object appropriately
2989    				*/
2990 				if (oldobject != srcobject) {
2991 
2992 				/*
2993    				* Set the object optimization hint flag
2994    				*/
2995 					vm_object_set_flag(srcobject, OBJ_OPT);
2996 					vm_object_reference(srcobject);
2997 					entry->object.vm_object = srcobject;
2998 
2999 					if (oldobject) {
3000 						vm_object_deallocate(oldobject);
3001 					}
3002 				}
3003 
3004 				entry->offset = cp;
3005 				map->timestamp++;
3006 			} else {
3007 				vm_page_lock_queues();
3008 				pmap_remove(map->pmap, uaddr, tend);
3009 				vm_page_unlock_queues();
3010 			}
3011 
3012 		} else if ((first_object->ref_count == 1) &&
3013 			(first_object->size == osize) &&
3014 			((first_object->type == OBJT_DEFAULT) ||
3015 				(first_object->type == OBJT_SWAP)) ) {
3016 
3017 			oldobject = first_object->backing_object;
3018 
3019 			if ((first_object->backing_object_offset != cp) ||
3020 				(oldobject != srcobject)) {
3021 				/*
3022    				* Remove old window into the file
3023    				*/
3024 				vm_page_lock_queues();
3025 				pmap_remove(map->pmap, uaddr, tend);
3026 				vm_page_unlock_queues();
3027 
3028 				/*
3029 				 * Remove unneeded old pages
3030 				 */
3031 				vm_object_lock(first_object);
3032 				vm_object_page_remove(first_object, 0, 0, 0);
3033 				vm_object_unlock(first_object);
3034 
3035 				/*
3036 				 * Invalidate swap space
3037 				 */
3038 				if (first_object->type == OBJT_SWAP) {
3039 					swap_pager_freespace(first_object,
3040 						0,
3041 						first_object->size);
3042 				}
3043 
3044 				/*
3045    				 * Force copy on write for mmaped regions
3046    				 */
3047 				vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize);
3048 
3049 				/*
3050    				 * Point the object appropriately
3051    				 */
3052 				if (oldobject != srcobject) {
3053 					/*
3054    					 * Set the object optimization hint flag
3055    					 */
3056 					vm_object_set_flag(srcobject, OBJ_OPT);
3057 					vm_object_reference(srcobject);
3058 
3059 					if (oldobject) {
3060 						TAILQ_REMOVE(&oldobject->shadow_head,
3061 							first_object, shadow_list);
3062 						oldobject->shadow_count--;
3063 						/* XXX bump generation? */
3064 						vm_object_deallocate(oldobject);
3065 					}
3066 
3067 					TAILQ_INSERT_TAIL(&srcobject->shadow_head,
3068 						first_object, shadow_list);
3069 					srcobject->shadow_count++;
3070 					/* XXX bump generation? */
3071 
3072 					first_object->backing_object = srcobject;
3073 				}
3074 				first_object->backing_object_offset = cp;
3075 				map->timestamp++;
3076 			} else {
3077 				vm_page_lock_queues();
3078 				pmap_remove(map->pmap, uaddr, tend);
3079 				vm_page_unlock_queues();
3080 			}
3081 /*
3082  * Otherwise, we have to do a logical mmap.
3083  */
3084 		} else {
3085 
3086 			vm_object_set_flag(srcobject, OBJ_OPT);
3087 			vm_object_reference(srcobject);
3088 
3089 			vm_page_lock_queues();
3090 			pmap_remove(map->pmap, uaddr, tend);
3091 			vm_page_unlock_queues();
3092 
3093 			vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize);
3094 			vm_map_lock_upgrade(map);
3095 
3096 			if (entry == &map->header) {
3097 				map->first_free = &map->header;
3098 			} else if (map->first_free->start >= start) {
3099 				map->first_free = entry->prev;
3100 			}
3101 
3102 			vm_map_entry_delete(map, entry);
3103 
3104 			object = srcobject;
3105 			ooffset = cp;
3106 
3107 			rv = vm_map_insert(map, object, ooffset, start, tend,
3108 				VM_PROT_ALL, VM_PROT_ALL, MAP_COPY_ON_WRITE);
3109 
3110 			if (rv != KERN_SUCCESS)
3111 				panic("vm_uiomove: could not insert new entry: %d", rv);
3112 		}
3113 
3114 /*
3115  * Map the window directly, if it is already in memory
3116  */
3117 		pmap_object_init_pt(map->pmap, uaddr,
3118 			srcobject, oindex, tcnt, 0);
3119 
3120 		map->timestamp++;
3121 		vm_map_unlock(map);
3122 
3123 		cnt -= tcnt;
3124 		uaddr += tcnt;
3125 		cp += tcnt;
3126 		if (npages)
3127 			*npages += osize;
3128 	}
3129 	return 0;
3130 }
3131 #endif
3132 
3133 #include "opt_ddb.h"
3134 #ifdef DDB
3135 #include <sys/kernel.h>
3136 
3137 #include <ddb/ddb.h>
3138 
3139 /*
3140  *	vm_map_print:	[ debug ]
3141  */
3142 DB_SHOW_COMMAND(map, vm_map_print)
3143 {
3144 	static int nlines;
3145 	/* XXX convert args. */
3146 	vm_map_t map = (vm_map_t)addr;
3147 	boolean_t full = have_addr;
3148 
3149 	vm_map_entry_t entry;
3150 
3151 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
3152 	    (void *)map,
3153 	    (void *)map->pmap, map->nentries, map->timestamp);
3154 	nlines++;
3155 
3156 	if (!full && db_indent)
3157 		return;
3158 
3159 	db_indent += 2;
3160 	for (entry = map->header.next; entry != &map->header;
3161 	    entry = entry->next) {
3162 		db_iprintf("map entry %p: start=%p, end=%p\n",
3163 		    (void *)entry, (void *)entry->start, (void *)entry->end);
3164 		nlines++;
3165 		{
3166 			static char *inheritance_name[4] =
3167 			{"share", "copy", "none", "donate_copy"};
3168 
3169 			db_iprintf(" prot=%x/%x/%s",
3170 			    entry->protection,
3171 			    entry->max_protection,
3172 			    inheritance_name[(int)(unsigned char)entry->inheritance]);
3173 			if (entry->wired_count != 0)
3174 				db_printf(", wired");
3175 		}
3176 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3177 			db_printf(", share=%p, offset=0x%jx\n",
3178 			    (void *)entry->object.sub_map,
3179 			    (uintmax_t)entry->offset);
3180 			nlines++;
3181 			if ((entry->prev == &map->header) ||
3182 			    (entry->prev->object.sub_map !=
3183 				entry->object.sub_map)) {
3184 				db_indent += 2;
3185 				vm_map_print((db_expr_t)(intptr_t)
3186 					     entry->object.sub_map,
3187 					     full, 0, (char *)0);
3188 				db_indent -= 2;
3189 			}
3190 		} else {
3191 			db_printf(", object=%p, offset=0x%jx",
3192 			    (void *)entry->object.vm_object,
3193 			    (uintmax_t)entry->offset);
3194 			if (entry->eflags & MAP_ENTRY_COW)
3195 				db_printf(", copy (%s)",
3196 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
3197 			db_printf("\n");
3198 			nlines++;
3199 
3200 			if ((entry->prev == &map->header) ||
3201 			    (entry->prev->object.vm_object !=
3202 				entry->object.vm_object)) {
3203 				db_indent += 2;
3204 				vm_object_print((db_expr_t)(intptr_t)
3205 						entry->object.vm_object,
3206 						full, 0, (char *)0);
3207 				nlines += 4;
3208 				db_indent -= 2;
3209 			}
3210 		}
3211 	}
3212 	db_indent -= 2;
3213 	if (db_indent == 0)
3214 		nlines = 0;
3215 }
3216 
3217 
3218 DB_SHOW_COMMAND(procvm, procvm)
3219 {
3220 	struct proc *p;
3221 
3222 	if (have_addr) {
3223 		p = (struct proc *) addr;
3224 	} else {
3225 		p = curproc;
3226 	}
3227 
3228 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
3229 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
3230 	    (void *)vmspace_pmap(p->p_vmspace));
3231 
3232 	vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
3233 }
3234 
3235 #endif /* DDB */
3236