1 /*- 2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * The Mach Operating System project at Carnegie-Mellon University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 35 * 36 * 37 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 38 * All rights reserved. 39 * 40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 41 * 42 * Permission to use, copy, modify and distribute this software and 43 * its documentation is hereby granted, provided that both the copyright 44 * notice and this permission notice appear in all copies of the 45 * software, derivative works or modified versions, and any portions 46 * thereof, and that both notices appear in supporting documentation. 47 * 48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 51 * 52 * Carnegie Mellon requests users of this software to return to 53 * 54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 55 * School of Computer Science 56 * Carnegie Mellon University 57 * Pittsburgh PA 15213-3890 58 * 59 * any improvements or extensions that they make and grant Carnegie the 60 * rights to redistribute these changes. 61 */ 62 63 /* 64 * Virtual memory mapping module. 65 */ 66 67 #include <sys/cdefs.h> 68 __FBSDID("$FreeBSD$"); 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/kernel.h> 73 #include <sys/ktr.h> 74 #include <sys/lock.h> 75 #include <sys/mutex.h> 76 #include <sys/proc.h> 77 #include <sys/vmmeter.h> 78 #include <sys/mman.h> 79 #include <sys/vnode.h> 80 #include <sys/racct.h> 81 #include <sys/resourcevar.h> 82 #include <sys/rwlock.h> 83 #include <sys/file.h> 84 #include <sys/sysctl.h> 85 #include <sys/sysent.h> 86 #include <sys/shm.h> 87 88 #include <vm/vm.h> 89 #include <vm/vm_param.h> 90 #include <vm/pmap.h> 91 #include <vm/vm_map.h> 92 #include <vm/vm_page.h> 93 #include <vm/vm_pageout.h> 94 #include <vm/vm_object.h> 95 #include <vm/vm_pager.h> 96 #include <vm/vm_kern.h> 97 #include <vm/vm_extern.h> 98 #include <vm/vnode_pager.h> 99 #include <vm/swap_pager.h> 100 #include <vm/uma.h> 101 102 /* 103 * Virtual memory maps provide for the mapping, protection, 104 * and sharing of virtual memory objects. In addition, 105 * this module provides for an efficient virtual copy of 106 * memory from one map to another. 107 * 108 * Synchronization is required prior to most operations. 109 * 110 * Maps consist of an ordered doubly-linked list of simple 111 * entries; a self-adjusting binary search tree of these 112 * entries is used to speed up lookups. 113 * 114 * Since portions of maps are specified by start/end addresses, 115 * which may not align with existing map entries, all 116 * routines merely "clip" entries to these start/end values. 117 * [That is, an entry is split into two, bordering at a 118 * start or end value.] Note that these clippings may not 119 * always be necessary (as the two resulting entries are then 120 * not changed); however, the clipping is done for convenience. 121 * 122 * As mentioned above, virtual copy operations are performed 123 * by copying VM object references from one map to 124 * another, and then marking both regions as copy-on-write. 125 */ 126 127 static struct mtx map_sleep_mtx; 128 static uma_zone_t mapentzone; 129 static uma_zone_t kmapentzone; 130 static uma_zone_t mapzone; 131 static uma_zone_t vmspace_zone; 132 static int vmspace_zinit(void *mem, int size, int flags); 133 static int vm_map_zinit(void *mem, int ize, int flags); 134 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, 135 vm_offset_t max); 136 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map); 137 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry); 138 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry); 139 static int vm_map_growstack(vm_map_t map, vm_offset_t addr, 140 vm_map_entry_t gap_entry); 141 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 142 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags); 143 #ifdef INVARIANTS 144 static void vm_map_zdtor(void *mem, int size, void *arg); 145 static void vmspace_zdtor(void *mem, int size, void *arg); 146 #endif 147 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, 148 vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max, 149 int cow); 150 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry, 151 vm_offset_t failed_addr); 152 153 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \ 154 ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \ 155 !((e)->eflags & MAP_ENTRY_NEEDS_COPY))) 156 157 /* 158 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type 159 * stable. 160 */ 161 #define PROC_VMSPACE_LOCK(p) do { } while (0) 162 #define PROC_VMSPACE_UNLOCK(p) do { } while (0) 163 164 /* 165 * VM_MAP_RANGE_CHECK: [ internal use only ] 166 * 167 * Asserts that the starting and ending region 168 * addresses fall within the valid range of the map. 169 */ 170 #define VM_MAP_RANGE_CHECK(map, start, end) \ 171 { \ 172 if (start < vm_map_min(map)) \ 173 start = vm_map_min(map); \ 174 if (end > vm_map_max(map)) \ 175 end = vm_map_max(map); \ 176 if (start > end) \ 177 start = end; \ 178 } 179 180 /* 181 * vm_map_startup: 182 * 183 * Initialize the vm_map module. Must be called before 184 * any other vm_map routines. 185 * 186 * Map and entry structures are allocated from the general 187 * purpose memory pool with some exceptions: 188 * 189 * - The kernel map and kmem submap are allocated statically. 190 * - Kernel map entries are allocated out of a static pool. 191 * 192 * These restrictions are necessary since malloc() uses the 193 * maps and requires map entries. 194 */ 195 196 void 197 vm_map_startup(void) 198 { 199 mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF); 200 mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL, 201 #ifdef INVARIANTS 202 vm_map_zdtor, 203 #else 204 NULL, 205 #endif 206 vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 207 uma_prealloc(mapzone, MAX_KMAP); 208 kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry), 209 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 210 UMA_ZONE_MTXCLASS | UMA_ZONE_VM); 211 mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry), 212 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 213 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL, 214 #ifdef INVARIANTS 215 vmspace_zdtor, 216 #else 217 NULL, 218 #endif 219 vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 220 } 221 222 static int 223 vmspace_zinit(void *mem, int size, int flags) 224 { 225 struct vmspace *vm; 226 227 vm = (struct vmspace *)mem; 228 229 vm->vm_map.pmap = NULL; 230 (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags); 231 PMAP_LOCK_INIT(vmspace_pmap(vm)); 232 return (0); 233 } 234 235 static int 236 vm_map_zinit(void *mem, int size, int flags) 237 { 238 vm_map_t map; 239 240 map = (vm_map_t)mem; 241 memset(map, 0, sizeof(*map)); 242 mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK); 243 sx_init(&map->lock, "vm map (user)"); 244 return (0); 245 } 246 247 #ifdef INVARIANTS 248 static void 249 vmspace_zdtor(void *mem, int size, void *arg) 250 { 251 struct vmspace *vm; 252 253 vm = (struct vmspace *)mem; 254 255 vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg); 256 } 257 static void 258 vm_map_zdtor(void *mem, int size, void *arg) 259 { 260 vm_map_t map; 261 262 map = (vm_map_t)mem; 263 KASSERT(map->nentries == 0, 264 ("map %p nentries == %d on free.", 265 map, map->nentries)); 266 KASSERT(map->size == 0, 267 ("map %p size == %lu on free.", 268 map, (unsigned long)map->size)); 269 } 270 #endif /* INVARIANTS */ 271 272 /* 273 * Allocate a vmspace structure, including a vm_map and pmap, 274 * and initialize those structures. The refcnt is set to 1. 275 * 276 * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit(). 277 */ 278 struct vmspace * 279 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit) 280 { 281 struct vmspace *vm; 282 283 vm = uma_zalloc(vmspace_zone, M_WAITOK); 284 KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL")); 285 if (!pinit(vmspace_pmap(vm))) { 286 uma_zfree(vmspace_zone, vm); 287 return (NULL); 288 } 289 CTR1(KTR_VM, "vmspace_alloc: %p", vm); 290 _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max); 291 vm->vm_refcnt = 1; 292 vm->vm_shm = NULL; 293 vm->vm_swrss = 0; 294 vm->vm_tsize = 0; 295 vm->vm_dsize = 0; 296 vm->vm_ssize = 0; 297 vm->vm_taddr = 0; 298 vm->vm_daddr = 0; 299 vm->vm_maxsaddr = 0; 300 return (vm); 301 } 302 303 #ifdef RACCT 304 static void 305 vmspace_container_reset(struct proc *p) 306 { 307 308 PROC_LOCK(p); 309 racct_set(p, RACCT_DATA, 0); 310 racct_set(p, RACCT_STACK, 0); 311 racct_set(p, RACCT_RSS, 0); 312 racct_set(p, RACCT_MEMLOCK, 0); 313 racct_set(p, RACCT_VMEM, 0); 314 PROC_UNLOCK(p); 315 } 316 #endif 317 318 static inline void 319 vmspace_dofree(struct vmspace *vm) 320 { 321 322 CTR1(KTR_VM, "vmspace_free: %p", vm); 323 324 /* 325 * Make sure any SysV shm is freed, it might not have been in 326 * exit1(). 327 */ 328 shmexit(vm); 329 330 /* 331 * Lock the map, to wait out all other references to it. 332 * Delete all of the mappings and pages they hold, then call 333 * the pmap module to reclaim anything left. 334 */ 335 (void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map), 336 vm_map_max(&vm->vm_map)); 337 338 pmap_release(vmspace_pmap(vm)); 339 vm->vm_map.pmap = NULL; 340 uma_zfree(vmspace_zone, vm); 341 } 342 343 void 344 vmspace_free(struct vmspace *vm) 345 { 346 347 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 348 "vmspace_free() called"); 349 350 if (vm->vm_refcnt == 0) 351 panic("vmspace_free: attempt to free already freed vmspace"); 352 353 if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1) 354 vmspace_dofree(vm); 355 } 356 357 void 358 vmspace_exitfree(struct proc *p) 359 { 360 struct vmspace *vm; 361 362 PROC_VMSPACE_LOCK(p); 363 vm = p->p_vmspace; 364 p->p_vmspace = NULL; 365 PROC_VMSPACE_UNLOCK(p); 366 KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace")); 367 vmspace_free(vm); 368 } 369 370 void 371 vmspace_exit(struct thread *td) 372 { 373 int refcnt; 374 struct vmspace *vm; 375 struct proc *p; 376 377 /* 378 * Release user portion of address space. 379 * This releases references to vnodes, 380 * which could cause I/O if the file has been unlinked. 381 * Need to do this early enough that we can still sleep. 382 * 383 * The last exiting process to reach this point releases as 384 * much of the environment as it can. vmspace_dofree() is the 385 * slower fallback in case another process had a temporary 386 * reference to the vmspace. 387 */ 388 389 p = td->td_proc; 390 vm = p->p_vmspace; 391 atomic_add_int(&vmspace0.vm_refcnt, 1); 392 refcnt = vm->vm_refcnt; 393 do { 394 if (refcnt > 1 && p->p_vmspace != &vmspace0) { 395 /* Switch now since other proc might free vmspace */ 396 PROC_VMSPACE_LOCK(p); 397 p->p_vmspace = &vmspace0; 398 PROC_VMSPACE_UNLOCK(p); 399 pmap_activate(td); 400 } 401 } while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt - 1)); 402 if (refcnt == 1) { 403 if (p->p_vmspace != vm) { 404 /* vmspace not yet freed, switch back */ 405 PROC_VMSPACE_LOCK(p); 406 p->p_vmspace = vm; 407 PROC_VMSPACE_UNLOCK(p); 408 pmap_activate(td); 409 } 410 pmap_remove_pages(vmspace_pmap(vm)); 411 /* Switch now since this proc will free vmspace */ 412 PROC_VMSPACE_LOCK(p); 413 p->p_vmspace = &vmspace0; 414 PROC_VMSPACE_UNLOCK(p); 415 pmap_activate(td); 416 vmspace_dofree(vm); 417 } 418 #ifdef RACCT 419 if (racct_enable) 420 vmspace_container_reset(p); 421 #endif 422 } 423 424 /* Acquire reference to vmspace owned by another process. */ 425 426 struct vmspace * 427 vmspace_acquire_ref(struct proc *p) 428 { 429 struct vmspace *vm; 430 int refcnt; 431 432 PROC_VMSPACE_LOCK(p); 433 vm = p->p_vmspace; 434 if (vm == NULL) { 435 PROC_VMSPACE_UNLOCK(p); 436 return (NULL); 437 } 438 refcnt = vm->vm_refcnt; 439 do { 440 if (refcnt <= 0) { /* Avoid 0->1 transition */ 441 PROC_VMSPACE_UNLOCK(p); 442 return (NULL); 443 } 444 } while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt + 1)); 445 if (vm != p->p_vmspace) { 446 PROC_VMSPACE_UNLOCK(p); 447 vmspace_free(vm); 448 return (NULL); 449 } 450 PROC_VMSPACE_UNLOCK(p); 451 return (vm); 452 } 453 454 /* 455 * Switch between vmspaces in an AIO kernel process. 456 * 457 * The new vmspace is either the vmspace of a user process obtained 458 * from an active AIO request or the initial vmspace of the AIO kernel 459 * process (when it is idling). Because user processes will block to 460 * drain any active AIO requests before proceeding in exit() or 461 * execve(), the reference count for vmspaces from AIO requests can 462 * never be 0. Similarly, AIO kernel processes hold an extra 463 * reference on their initial vmspace for the life of the process. As 464 * a result, the 'newvm' vmspace always has a non-zero reference 465 * count. This permits an additional reference on 'newvm' to be 466 * acquired via a simple atomic increment rather than the loop in 467 * vmspace_acquire_ref() above. 468 */ 469 void 470 vmspace_switch_aio(struct vmspace *newvm) 471 { 472 struct vmspace *oldvm; 473 474 /* XXX: Need some way to assert that this is an aio daemon. */ 475 476 KASSERT(newvm->vm_refcnt > 0, 477 ("vmspace_switch_aio: newvm unreferenced")); 478 479 oldvm = curproc->p_vmspace; 480 if (oldvm == newvm) 481 return; 482 483 /* 484 * Point to the new address space and refer to it. 485 */ 486 curproc->p_vmspace = newvm; 487 atomic_add_int(&newvm->vm_refcnt, 1); 488 489 /* Activate the new mapping. */ 490 pmap_activate(curthread); 491 492 vmspace_free(oldvm); 493 } 494 495 void 496 _vm_map_lock(vm_map_t map, const char *file, int line) 497 { 498 499 if (map->system_map) 500 mtx_lock_flags_(&map->system_mtx, 0, file, line); 501 else 502 sx_xlock_(&map->lock, file, line); 503 map->timestamp++; 504 } 505 506 void 507 vm_map_entry_set_vnode_text(vm_map_entry_t entry, bool add) 508 { 509 vm_object_t object, object1; 510 struct vnode *vp; 511 512 if ((entry->eflags & MAP_ENTRY_VN_EXEC) == 0) 513 return; 514 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 515 ("Submap with execs")); 516 object = entry->object.vm_object; 517 KASSERT(object != NULL, ("No object for text, entry %p", entry)); 518 VM_OBJECT_RLOCK(object); 519 while ((object1 = object->backing_object) != NULL) { 520 VM_OBJECT_RLOCK(object1); 521 VM_OBJECT_RUNLOCK(object); 522 object = object1; 523 } 524 525 vp = NULL; 526 if (object->type == OBJT_DEAD) { 527 /* 528 * For OBJT_DEAD objects, v_writecount was handled in 529 * vnode_pager_dealloc(). 530 */ 531 } else if (object->type == OBJT_VNODE) { 532 vp = object->handle; 533 } else if (object->type == OBJT_SWAP) { 534 KASSERT((object->flags & OBJ_TMPFS_NODE) != 0, 535 ("vm_map_entry_set_vnode_text: swap and !TMPFS " 536 "entry %p, object %p, add %d", entry, object, add)); 537 /* 538 * Tmpfs VREG node, which was reclaimed, has 539 * OBJ_TMPFS_NODE flag set, but not OBJ_TMPFS. In 540 * this case there is no v_writecount to adjust. 541 */ 542 if ((object->flags & OBJ_TMPFS) != 0) 543 vp = object->un_pager.swp.swp_tmpfs; 544 } else { 545 KASSERT(0, 546 ("vm_map_entry_set_vnode_text: wrong object type, " 547 "entry %p, object %p, add %d", entry, object, add)); 548 } 549 if (vp != NULL) { 550 if (add) 551 VOP_SET_TEXT_CHECKED(vp); 552 else 553 VOP_UNSET_TEXT_CHECKED(vp); 554 } 555 VM_OBJECT_RUNLOCK(object); 556 } 557 558 static void 559 vm_map_process_deferred(void) 560 { 561 struct thread *td; 562 vm_map_entry_t entry, next; 563 vm_object_t object; 564 565 td = curthread; 566 entry = td->td_map_def_user; 567 td->td_map_def_user = NULL; 568 while (entry != NULL) { 569 next = entry->next; 570 MPASS((entry->eflags & (MAP_ENTRY_VN_WRITECNT | 571 MAP_ENTRY_VN_EXEC)) != (MAP_ENTRY_VN_WRITECNT | 572 MAP_ENTRY_VN_EXEC)); 573 if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) { 574 /* 575 * Decrement the object's writemappings and 576 * possibly the vnode's v_writecount. 577 */ 578 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 579 ("Submap with writecount")); 580 object = entry->object.vm_object; 581 KASSERT(object != NULL, ("No object for writecount")); 582 vnode_pager_release_writecount(object, entry->start, 583 entry->end); 584 } 585 vm_map_entry_set_vnode_text(entry, false); 586 vm_map_entry_deallocate(entry, FALSE); 587 entry = next; 588 } 589 } 590 591 void 592 _vm_map_unlock(vm_map_t map, const char *file, int line) 593 { 594 595 if (map->system_map) 596 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 597 else { 598 sx_xunlock_(&map->lock, file, line); 599 vm_map_process_deferred(); 600 } 601 } 602 603 void 604 _vm_map_lock_read(vm_map_t map, const char *file, int line) 605 { 606 607 if (map->system_map) 608 mtx_lock_flags_(&map->system_mtx, 0, file, line); 609 else 610 sx_slock_(&map->lock, file, line); 611 } 612 613 void 614 _vm_map_unlock_read(vm_map_t map, const char *file, int line) 615 { 616 617 if (map->system_map) 618 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 619 else { 620 sx_sunlock_(&map->lock, file, line); 621 vm_map_process_deferred(); 622 } 623 } 624 625 int 626 _vm_map_trylock(vm_map_t map, const char *file, int line) 627 { 628 int error; 629 630 error = map->system_map ? 631 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 632 !sx_try_xlock_(&map->lock, file, line); 633 if (error == 0) 634 map->timestamp++; 635 return (error == 0); 636 } 637 638 int 639 _vm_map_trylock_read(vm_map_t map, const char *file, int line) 640 { 641 int error; 642 643 error = map->system_map ? 644 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 645 !sx_try_slock_(&map->lock, file, line); 646 return (error == 0); 647 } 648 649 /* 650 * _vm_map_lock_upgrade: [ internal use only ] 651 * 652 * Tries to upgrade a read (shared) lock on the specified map to a write 653 * (exclusive) lock. Returns the value "0" if the upgrade succeeds and a 654 * non-zero value if the upgrade fails. If the upgrade fails, the map is 655 * returned without a read or write lock held. 656 * 657 * Requires that the map be read locked. 658 */ 659 int 660 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line) 661 { 662 unsigned int last_timestamp; 663 664 if (map->system_map) { 665 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 666 } else { 667 if (!sx_try_upgrade_(&map->lock, file, line)) { 668 last_timestamp = map->timestamp; 669 sx_sunlock_(&map->lock, file, line); 670 vm_map_process_deferred(); 671 /* 672 * If the map's timestamp does not change while the 673 * map is unlocked, then the upgrade succeeds. 674 */ 675 sx_xlock_(&map->lock, file, line); 676 if (last_timestamp != map->timestamp) { 677 sx_xunlock_(&map->lock, file, line); 678 return (1); 679 } 680 } 681 } 682 map->timestamp++; 683 return (0); 684 } 685 686 void 687 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line) 688 { 689 690 if (map->system_map) { 691 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 692 } else 693 sx_downgrade_(&map->lock, file, line); 694 } 695 696 /* 697 * vm_map_locked: 698 * 699 * Returns a non-zero value if the caller holds a write (exclusive) lock 700 * on the specified map and the value "0" otherwise. 701 */ 702 int 703 vm_map_locked(vm_map_t map) 704 { 705 706 if (map->system_map) 707 return (mtx_owned(&map->system_mtx)); 708 else 709 return (sx_xlocked(&map->lock)); 710 } 711 712 #ifdef INVARIANTS 713 static void 714 _vm_map_assert_locked(vm_map_t map, const char *file, int line) 715 { 716 717 if (map->system_map) 718 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 719 else 720 sx_assert_(&map->lock, SA_XLOCKED, file, line); 721 } 722 723 #define VM_MAP_ASSERT_LOCKED(map) \ 724 _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE) 725 726 #ifdef DIAGNOSTIC 727 static int enable_vmmap_check = 1; 728 #else 729 static int enable_vmmap_check = 0; 730 #endif 731 SYSCTL_INT(_debug, OID_AUTO, vmmap_check, CTLFLAG_RWTUN, 732 &enable_vmmap_check, 0, "Enable vm map consistency checking"); 733 734 static void 735 _vm_map_assert_consistent(vm_map_t map) 736 { 737 vm_map_entry_t child, entry, prev; 738 vm_size_t max_left, max_right; 739 740 if (!enable_vmmap_check) 741 return; 742 743 for (prev = &map->header; (entry = prev->next) != &map->header; 744 prev = entry) { 745 KASSERT(prev->end <= entry->start, 746 ("map %p prev->end = %jx, start = %jx", map, 747 (uintmax_t)prev->end, (uintmax_t)entry->start)); 748 KASSERT(entry->start < entry->end, 749 ("map %p start = %jx, end = %jx", map, 750 (uintmax_t)entry->start, (uintmax_t)entry->end)); 751 KASSERT(entry->end <= entry->next->start, 752 ("map %p end = %jx, next->start = %jx", map, 753 (uintmax_t)entry->end, (uintmax_t)entry->next->start)); 754 KASSERT(entry->left == NULL || 755 entry->left->start < entry->start, 756 ("map %p left->start = %jx, start = %jx", map, 757 (uintmax_t)entry->left->start, (uintmax_t)entry->start)); 758 KASSERT(entry->right == NULL || 759 entry->start < entry->right->start, 760 ("map %p start = %jx, right->start = %jx", map, 761 (uintmax_t)entry->start, (uintmax_t)entry->right->start)); 762 child = entry->left; 763 max_left = (child != NULL) ? child->max_free : 764 entry->start - prev->end; 765 child = entry->right; 766 max_right = (child != NULL) ? child->max_free : 767 entry->next->start - entry->end; 768 KASSERT(entry->max_free == MAX(max_left, max_right), 769 ("map %p max = %jx, max_left = %jx, max_right = %jx", map, 770 (uintmax_t)entry->max_free, 771 (uintmax_t)max_left, (uintmax_t)max_right)); 772 } 773 } 774 775 #define VM_MAP_ASSERT_CONSISTENT(map) \ 776 _vm_map_assert_consistent(map) 777 #else 778 #define VM_MAP_ASSERT_LOCKED(map) 779 #define VM_MAP_ASSERT_CONSISTENT(map) 780 #endif /* INVARIANTS */ 781 782 /* 783 * _vm_map_unlock_and_wait: 784 * 785 * Atomically releases the lock on the specified map and puts the calling 786 * thread to sleep. The calling thread will remain asleep until either 787 * vm_map_wakeup() is performed on the map or the specified timeout is 788 * exceeded. 789 * 790 * WARNING! This function does not perform deferred deallocations of 791 * objects and map entries. Therefore, the calling thread is expected to 792 * reacquire the map lock after reawakening and later perform an ordinary 793 * unlock operation, such as vm_map_unlock(), before completing its 794 * operation on the map. 795 */ 796 int 797 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line) 798 { 799 800 mtx_lock(&map_sleep_mtx); 801 if (map->system_map) 802 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 803 else 804 sx_xunlock_(&map->lock, file, line); 805 return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps", 806 timo)); 807 } 808 809 /* 810 * vm_map_wakeup: 811 * 812 * Awaken any threads that have slept on the map using 813 * vm_map_unlock_and_wait(). 814 */ 815 void 816 vm_map_wakeup(vm_map_t map) 817 { 818 819 /* 820 * Acquire and release map_sleep_mtx to prevent a wakeup() 821 * from being performed (and lost) between the map unlock 822 * and the msleep() in _vm_map_unlock_and_wait(). 823 */ 824 mtx_lock(&map_sleep_mtx); 825 mtx_unlock(&map_sleep_mtx); 826 wakeup(&map->root); 827 } 828 829 void 830 vm_map_busy(vm_map_t map) 831 { 832 833 VM_MAP_ASSERT_LOCKED(map); 834 map->busy++; 835 } 836 837 void 838 vm_map_unbusy(vm_map_t map) 839 { 840 841 VM_MAP_ASSERT_LOCKED(map); 842 KASSERT(map->busy, ("vm_map_unbusy: not busy")); 843 if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) { 844 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP); 845 wakeup(&map->busy); 846 } 847 } 848 849 void 850 vm_map_wait_busy(vm_map_t map) 851 { 852 853 VM_MAP_ASSERT_LOCKED(map); 854 while (map->busy) { 855 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0); 856 if (map->system_map) 857 msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0); 858 else 859 sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0); 860 } 861 map->timestamp++; 862 } 863 864 long 865 vmspace_resident_count(struct vmspace *vmspace) 866 { 867 return pmap_resident_count(vmspace_pmap(vmspace)); 868 } 869 870 /* 871 * vm_map_create: 872 * 873 * Creates and returns a new empty VM map with 874 * the given physical map structure, and having 875 * the given lower and upper address bounds. 876 */ 877 vm_map_t 878 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max) 879 { 880 vm_map_t result; 881 882 result = uma_zalloc(mapzone, M_WAITOK); 883 CTR1(KTR_VM, "vm_map_create: %p", result); 884 _vm_map_init(result, pmap, min, max); 885 return (result); 886 } 887 888 /* 889 * Initialize an existing vm_map structure 890 * such as that in the vmspace structure. 891 */ 892 static void 893 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 894 { 895 896 map->header.next = map->header.prev = &map->header; 897 map->header.eflags = MAP_ENTRY_HEADER; 898 map->needs_wakeup = FALSE; 899 map->system_map = 0; 900 map->pmap = pmap; 901 map->header.end = min; 902 map->header.start = max; 903 map->flags = 0; 904 map->root = NULL; 905 map->timestamp = 0; 906 map->busy = 0; 907 map->anon_loc = 0; 908 } 909 910 void 911 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 912 { 913 914 _vm_map_init(map, pmap, min, max); 915 mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK); 916 sx_init(&map->lock, "user map"); 917 } 918 919 /* 920 * vm_map_entry_dispose: [ internal use only ] 921 * 922 * Inverse of vm_map_entry_create. 923 */ 924 static void 925 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry) 926 { 927 uma_zfree(map->system_map ? kmapentzone : mapentzone, entry); 928 } 929 930 /* 931 * vm_map_entry_create: [ internal use only ] 932 * 933 * Allocates a VM map entry for insertion. 934 * No entry fields are filled in. 935 */ 936 static vm_map_entry_t 937 vm_map_entry_create(vm_map_t map) 938 { 939 vm_map_entry_t new_entry; 940 941 if (map->system_map) 942 new_entry = uma_zalloc(kmapentzone, M_NOWAIT); 943 else 944 new_entry = uma_zalloc(mapentzone, M_WAITOK); 945 if (new_entry == NULL) 946 panic("vm_map_entry_create: kernel resources exhausted"); 947 return (new_entry); 948 } 949 950 /* 951 * vm_map_entry_set_behavior: 952 * 953 * Set the expected access behavior, either normal, random, or 954 * sequential. 955 */ 956 static inline void 957 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior) 958 { 959 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) | 960 (behavior & MAP_ENTRY_BEHAV_MASK); 961 } 962 963 /* 964 * vm_map_entry_max_free_{left,right}: 965 * 966 * Compute the size of the largest free gap between two entries, 967 * one the root of a tree and the other the ancestor of that root 968 * that is the least or greatest ancestor found on the search path. 969 */ 970 static inline vm_size_t 971 vm_map_entry_max_free_left(vm_map_entry_t root, vm_map_entry_t left_ancestor) 972 { 973 974 return (root->left != NULL ? 975 root->left->max_free : root->start - left_ancestor->end); 976 } 977 978 static inline vm_size_t 979 vm_map_entry_max_free_right(vm_map_entry_t root, vm_map_entry_t right_ancestor) 980 { 981 982 return (root->right != NULL ? 983 root->right->max_free : right_ancestor->start - root->end); 984 } 985 986 #define SPLAY_LEFT_STEP(root, y, rlist, test) do { \ 987 vm_size_t max_free; \ 988 \ 989 /* \ 990 * Infer root->right->max_free == root->max_free when \ 991 * y->max_free < root->max_free || root->max_free == 0. \ 992 * Otherwise, look right to find it. \ 993 */ \ 994 y = root->left; \ 995 max_free = root->max_free; \ 996 KASSERT(max_free >= vm_map_entry_max_free_right(root, rlist), \ 997 ("%s: max_free invariant fails", __func__)); \ 998 if (y == NULL ? max_free > 0 : max_free - 1 < y->max_free) \ 999 max_free = vm_map_entry_max_free_right(root, rlist); \ 1000 if (y != NULL && (test)) { \ 1001 /* Rotate right and make y root. */ \ 1002 root->left = y->right; \ 1003 y->right = root; \ 1004 if (max_free < y->max_free) \ 1005 root->max_free = max_free = MAX(max_free, \ 1006 vm_map_entry_max_free_left(root, y)); \ 1007 root = y; \ 1008 y = root->left; \ 1009 } \ 1010 /* Copy right->max_free. Put root on rlist. */ \ 1011 root->max_free = max_free; \ 1012 KASSERT(max_free == vm_map_entry_max_free_right(root, rlist), \ 1013 ("%s: max_free not copied from right", __func__)); \ 1014 root->left = rlist; \ 1015 rlist = root; \ 1016 root = y; \ 1017 } while (0) 1018 1019 #define SPLAY_RIGHT_STEP(root, y, llist, test) do { \ 1020 vm_size_t max_free; \ 1021 \ 1022 /* \ 1023 * Infer root->left->max_free == root->max_free when \ 1024 * y->max_free < root->max_free || root->max_free == 0. \ 1025 * Otherwise, look left to find it. \ 1026 */ \ 1027 y = root->right; \ 1028 max_free = root->max_free; \ 1029 KASSERT(max_free >= vm_map_entry_max_free_left(root, llist), \ 1030 ("%s: max_free invariant fails", __func__)); \ 1031 if (y == NULL ? max_free > 0 : max_free - 1 < y->max_free) \ 1032 max_free = vm_map_entry_max_free_left(root, llist); \ 1033 if (y != NULL && (test)) { \ 1034 /* Rotate left and make y root. */ \ 1035 root->right = y->left; \ 1036 y->left = root; \ 1037 if (max_free < y->max_free) \ 1038 root->max_free = max_free = MAX(max_free, \ 1039 vm_map_entry_max_free_right(root, y)); \ 1040 root = y; \ 1041 y = root->right; \ 1042 } \ 1043 /* Copy left->max_free. Put root on llist. */ \ 1044 root->max_free = max_free; \ 1045 KASSERT(max_free == vm_map_entry_max_free_left(root, llist), \ 1046 ("%s: max_free not copied from left", __func__)); \ 1047 root->right = llist; \ 1048 llist = root; \ 1049 root = y; \ 1050 } while (0) 1051 1052 /* 1053 * Walk down the tree until we find addr or a NULL pointer where addr would go, 1054 * breaking off left and right subtrees of nodes less than, or greater than 1055 * addr. Treat pointers to nodes with max_free < length as NULL pointers. 1056 * llist and rlist are the two sides in reverse order (bottom-up), with llist 1057 * linked by the right pointer and rlist linked by the left pointer in the 1058 * vm_map_entry, and both lists terminated by &map->header. This function, and 1059 * the subsequent call to vm_map_splay_merge, rely on the start and end address 1060 * values in &map->header. 1061 */ 1062 static vm_map_entry_t 1063 vm_map_splay_split(vm_map_t map, vm_offset_t addr, vm_size_t length, 1064 vm_map_entry_t *out_llist, vm_map_entry_t *out_rlist) 1065 { 1066 vm_map_entry_t llist, rlist, root, y; 1067 1068 llist = rlist = &map->header; 1069 root = map->root; 1070 while (root != NULL && root->max_free >= length) { 1071 KASSERT(llist->end <= root->start && root->end <= rlist->start, 1072 ("%s: root not within tree bounds", __func__)); 1073 if (addr < root->start) { 1074 SPLAY_LEFT_STEP(root, y, rlist, 1075 y->max_free >= length && addr < y->start); 1076 } else if (addr >= root->end) { 1077 SPLAY_RIGHT_STEP(root, y, llist, 1078 y->max_free >= length && addr >= y->end); 1079 } else 1080 break; 1081 } 1082 *out_llist = llist; 1083 *out_rlist = rlist; 1084 return (root); 1085 } 1086 1087 static void 1088 vm_map_splay_findnext(vm_map_entry_t root, vm_map_entry_t *iolist) 1089 { 1090 vm_map_entry_t rlist, y; 1091 1092 root = root->right; 1093 rlist = *iolist; 1094 while (root != NULL) 1095 SPLAY_LEFT_STEP(root, y, rlist, true); 1096 *iolist = rlist; 1097 } 1098 1099 static void 1100 vm_map_splay_findprev(vm_map_entry_t root, vm_map_entry_t *iolist) 1101 { 1102 vm_map_entry_t llist, y; 1103 1104 root = root->left; 1105 llist = *iolist; 1106 while (root != NULL) 1107 SPLAY_RIGHT_STEP(root, y, llist, true); 1108 *iolist = llist; 1109 } 1110 1111 static inline void 1112 vm_map_entry_swap(vm_map_entry_t *a, vm_map_entry_t *b) 1113 { 1114 vm_map_entry_t tmp; 1115 1116 tmp = *b; 1117 *b = *a; 1118 *a = tmp; 1119 } 1120 1121 /* 1122 * Walk back up the two spines, flip the pointers and set max_free. The 1123 * subtrees of the root go at the bottom of llist and rlist. 1124 */ 1125 static void 1126 vm_map_splay_merge(vm_map_t map, vm_map_entry_t root, 1127 vm_map_entry_t llist, vm_map_entry_t rlist) 1128 { 1129 vm_map_entry_t prev; 1130 vm_size_t max_free_left, max_free_right; 1131 1132 max_free_left = vm_map_entry_max_free_left(root, llist); 1133 if (llist != &map->header) { 1134 prev = root->left; 1135 do { 1136 /* 1137 * The max_free values of the children of llist are in 1138 * llist->max_free and max_free_left. Update with the 1139 * max value. 1140 */ 1141 llist->max_free = max_free_left = 1142 MAX(llist->max_free, max_free_left); 1143 vm_map_entry_swap(&llist->right, &prev); 1144 vm_map_entry_swap(&prev, &llist); 1145 } while (llist != &map->header); 1146 root->left = prev; 1147 } 1148 max_free_right = vm_map_entry_max_free_right(root, rlist); 1149 if (rlist != &map->header) { 1150 prev = root->right; 1151 do { 1152 /* 1153 * The max_free values of the children of rlist are in 1154 * rlist->max_free and max_free_right. Update with the 1155 * max value. 1156 */ 1157 rlist->max_free = max_free_right = 1158 MAX(rlist->max_free, max_free_right); 1159 vm_map_entry_swap(&rlist->left, &prev); 1160 vm_map_entry_swap(&prev, &rlist); 1161 } while (rlist != &map->header); 1162 root->right = prev; 1163 } 1164 root->max_free = MAX(max_free_left, max_free_right); 1165 map->root = root; 1166 } 1167 1168 /* 1169 * vm_map_splay: 1170 * 1171 * The Sleator and Tarjan top-down splay algorithm with the 1172 * following variation. Max_free must be computed bottom-up, so 1173 * on the downward pass, maintain the left and right spines in 1174 * reverse order. Then, make a second pass up each side to fix 1175 * the pointers and compute max_free. The time bound is O(log n) 1176 * amortized. 1177 * 1178 * The new root is the vm_map_entry containing "addr", or else an 1179 * adjacent entry (lower if possible) if addr is not in the tree. 1180 * 1181 * The map must be locked, and leaves it so. 1182 * 1183 * Returns: the new root. 1184 */ 1185 static vm_map_entry_t 1186 vm_map_splay(vm_map_t map, vm_offset_t addr) 1187 { 1188 vm_map_entry_t llist, rlist, root; 1189 1190 root = vm_map_splay_split(map, addr, 0, &llist, &rlist); 1191 if (root != NULL) { 1192 /* do nothing */ 1193 } else if (llist != &map->header) { 1194 /* 1195 * Recover the greatest node in the left 1196 * subtree and make it the root. 1197 */ 1198 root = llist; 1199 llist = root->right; 1200 root->right = NULL; 1201 } else if (rlist != &map->header) { 1202 /* 1203 * Recover the least node in the right 1204 * subtree and make it the root. 1205 */ 1206 root = rlist; 1207 rlist = root->left; 1208 root->left = NULL; 1209 } else { 1210 /* There is no root. */ 1211 return (NULL); 1212 } 1213 vm_map_splay_merge(map, root, llist, rlist); 1214 VM_MAP_ASSERT_CONSISTENT(map); 1215 return (root); 1216 } 1217 1218 /* 1219 * vm_map_entry_{un,}link: 1220 * 1221 * Insert/remove entries from maps. 1222 */ 1223 static void 1224 vm_map_entry_link(vm_map_t map, vm_map_entry_t entry) 1225 { 1226 vm_map_entry_t llist, rlist, root; 1227 1228 CTR3(KTR_VM, 1229 "vm_map_entry_link: map %p, nentries %d, entry %p", map, 1230 map->nentries, entry); 1231 VM_MAP_ASSERT_LOCKED(map); 1232 map->nentries++; 1233 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist); 1234 KASSERT(root == NULL, 1235 ("vm_map_entry_link: link object already mapped")); 1236 entry->prev = llist; 1237 entry->next = rlist; 1238 llist->next = rlist->prev = entry; 1239 entry->left = entry->right = NULL; 1240 vm_map_splay_merge(map, entry, llist, rlist); 1241 VM_MAP_ASSERT_CONSISTENT(map); 1242 } 1243 1244 enum unlink_merge_type { 1245 UNLINK_MERGE_PREV, 1246 UNLINK_MERGE_NONE, 1247 UNLINK_MERGE_NEXT 1248 }; 1249 1250 static void 1251 vm_map_entry_unlink(vm_map_t map, vm_map_entry_t entry, 1252 enum unlink_merge_type op) 1253 { 1254 vm_map_entry_t llist, rlist, root, y; 1255 1256 VM_MAP_ASSERT_LOCKED(map); 1257 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist); 1258 KASSERT(root != NULL, 1259 ("vm_map_entry_unlink: unlink object not mapped")); 1260 1261 switch (op) { 1262 case UNLINK_MERGE_PREV: 1263 vm_map_splay_findprev(root, &llist); 1264 llist->end = root->end; 1265 y = root->right; 1266 root = llist; 1267 llist = root->right; 1268 root->right = y; 1269 break; 1270 case UNLINK_MERGE_NEXT: 1271 vm_map_splay_findnext(root, &rlist); 1272 rlist->start = root->start; 1273 rlist->offset = root->offset; 1274 y = root->left; 1275 root = rlist; 1276 rlist = root->left; 1277 root->left = y; 1278 break; 1279 case UNLINK_MERGE_NONE: 1280 vm_map_splay_findprev(root, &llist); 1281 vm_map_splay_findnext(root, &rlist); 1282 if (llist != &map->header) { 1283 root = llist; 1284 llist = root->right; 1285 root->right = NULL; 1286 } else if (rlist != &map->header) { 1287 root = rlist; 1288 rlist = root->left; 1289 root->left = NULL; 1290 } else 1291 root = NULL; 1292 break; 1293 } 1294 y = entry->next; 1295 y->prev = entry->prev; 1296 y->prev->next = y; 1297 if (root != NULL) 1298 vm_map_splay_merge(map, root, llist, rlist); 1299 else 1300 map->root = NULL; 1301 VM_MAP_ASSERT_CONSISTENT(map); 1302 map->nentries--; 1303 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map, 1304 map->nentries, entry); 1305 } 1306 1307 /* 1308 * vm_map_entry_resize: 1309 * 1310 * Resize a vm_map_entry, recompute the amount of free space that 1311 * follows it and propagate that value up the tree. 1312 * 1313 * The map must be locked, and leaves it so. 1314 */ 1315 static void 1316 vm_map_entry_resize(vm_map_t map, vm_map_entry_t entry, vm_size_t grow_amount) 1317 { 1318 vm_map_entry_t llist, rlist, root; 1319 1320 VM_MAP_ASSERT_LOCKED(map); 1321 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist); 1322 KASSERT(root != NULL, 1323 ("%s: resize object not mapped", __func__)); 1324 vm_map_splay_findnext(root, &rlist); 1325 root->right = NULL; 1326 entry->end += grow_amount; 1327 vm_map_splay_merge(map, root, llist, rlist); 1328 VM_MAP_ASSERT_CONSISTENT(map); 1329 CTR4(KTR_VM, "%s: map %p, nentries %d, entry %p", 1330 __func__, map, map->nentries, entry); 1331 } 1332 1333 /* 1334 * vm_map_lookup_entry: [ internal use only ] 1335 * 1336 * Finds the map entry containing (or 1337 * immediately preceding) the specified address 1338 * in the given map; the entry is returned 1339 * in the "entry" parameter. The boolean 1340 * result indicates whether the address is 1341 * actually contained in the map. 1342 */ 1343 boolean_t 1344 vm_map_lookup_entry( 1345 vm_map_t map, 1346 vm_offset_t address, 1347 vm_map_entry_t *entry) /* OUT */ 1348 { 1349 vm_map_entry_t cur, lbound; 1350 boolean_t locked; 1351 1352 /* 1353 * If the map is empty, then the map entry immediately preceding 1354 * "address" is the map's header. 1355 */ 1356 cur = map->root; 1357 if (cur == NULL) { 1358 *entry = &map->header; 1359 return (FALSE); 1360 } 1361 if (address >= cur->start && cur->end > address) { 1362 *entry = cur; 1363 return (TRUE); 1364 } 1365 if ((locked = vm_map_locked(map)) || 1366 sx_try_upgrade(&map->lock)) { 1367 /* 1368 * Splay requires a write lock on the map. However, it only 1369 * restructures the binary search tree; it does not otherwise 1370 * change the map. Thus, the map's timestamp need not change 1371 * on a temporary upgrade. 1372 */ 1373 cur = vm_map_splay(map, address); 1374 if (!locked) 1375 sx_downgrade(&map->lock); 1376 1377 /* 1378 * If "address" is contained within a map entry, the new root 1379 * is that map entry. Otherwise, the new root is a map entry 1380 * immediately before or after "address". 1381 */ 1382 if (address < cur->start) { 1383 *entry = &map->header; 1384 return (FALSE); 1385 } 1386 *entry = cur; 1387 return (address < cur->end); 1388 } 1389 /* 1390 * Since the map is only locked for read access, perform a 1391 * standard binary search tree lookup for "address". 1392 */ 1393 lbound = &map->header; 1394 do { 1395 if (address < cur->start) { 1396 cur = cur->left; 1397 } else if (cur->end <= address) { 1398 lbound = cur; 1399 cur = cur->right; 1400 } else { 1401 *entry = cur; 1402 return (TRUE); 1403 } 1404 } while (cur != NULL); 1405 *entry = lbound; 1406 return (FALSE); 1407 } 1408 1409 /* 1410 * vm_map_insert: 1411 * 1412 * Inserts the given whole VM object into the target 1413 * map at the specified address range. The object's 1414 * size should match that of the address range. 1415 * 1416 * Requires that the map be locked, and leaves it so. 1417 * 1418 * If object is non-NULL, ref count must be bumped by caller 1419 * prior to making call to account for the new entry. 1420 */ 1421 int 1422 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1423 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow) 1424 { 1425 vm_map_entry_t new_entry, prev_entry, temp_entry; 1426 struct ucred *cred; 1427 vm_eflags_t protoeflags; 1428 vm_inherit_t inheritance; 1429 1430 VM_MAP_ASSERT_LOCKED(map); 1431 KASSERT(object != kernel_object || 1432 (cow & MAP_COPY_ON_WRITE) == 0, 1433 ("vm_map_insert: kernel object and COW")); 1434 KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0, 1435 ("vm_map_insert: paradoxical MAP_NOFAULT request")); 1436 KASSERT((prot & ~max) == 0, 1437 ("prot %#x is not subset of max_prot %#x", prot, max)); 1438 1439 /* 1440 * Check that the start and end points are not bogus. 1441 */ 1442 if (start < vm_map_min(map) || end > vm_map_max(map) || 1443 start >= end) 1444 return (KERN_INVALID_ADDRESS); 1445 1446 /* 1447 * Find the entry prior to the proposed starting address; if it's part 1448 * of an existing entry, this range is bogus. 1449 */ 1450 if (vm_map_lookup_entry(map, start, &temp_entry)) 1451 return (KERN_NO_SPACE); 1452 1453 prev_entry = temp_entry; 1454 1455 /* 1456 * Assert that the next entry doesn't overlap the end point. 1457 */ 1458 if (prev_entry->next->start < end) 1459 return (KERN_NO_SPACE); 1460 1461 if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL || 1462 max != VM_PROT_NONE)) 1463 return (KERN_INVALID_ARGUMENT); 1464 1465 protoeflags = 0; 1466 if (cow & MAP_COPY_ON_WRITE) 1467 protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY; 1468 if (cow & MAP_NOFAULT) 1469 protoeflags |= MAP_ENTRY_NOFAULT; 1470 if (cow & MAP_DISABLE_SYNCER) 1471 protoeflags |= MAP_ENTRY_NOSYNC; 1472 if (cow & MAP_DISABLE_COREDUMP) 1473 protoeflags |= MAP_ENTRY_NOCOREDUMP; 1474 if (cow & MAP_STACK_GROWS_DOWN) 1475 protoeflags |= MAP_ENTRY_GROWS_DOWN; 1476 if (cow & MAP_STACK_GROWS_UP) 1477 protoeflags |= MAP_ENTRY_GROWS_UP; 1478 if (cow & MAP_VN_WRITECOUNT) 1479 protoeflags |= MAP_ENTRY_VN_WRITECNT; 1480 if (cow & MAP_VN_EXEC) 1481 protoeflags |= MAP_ENTRY_VN_EXEC; 1482 if ((cow & MAP_CREATE_GUARD) != 0) 1483 protoeflags |= MAP_ENTRY_GUARD; 1484 if ((cow & MAP_CREATE_STACK_GAP_DN) != 0) 1485 protoeflags |= MAP_ENTRY_STACK_GAP_DN; 1486 if ((cow & MAP_CREATE_STACK_GAP_UP) != 0) 1487 protoeflags |= MAP_ENTRY_STACK_GAP_UP; 1488 if (cow & MAP_INHERIT_SHARE) 1489 inheritance = VM_INHERIT_SHARE; 1490 else 1491 inheritance = VM_INHERIT_DEFAULT; 1492 1493 cred = NULL; 1494 if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0) 1495 goto charged; 1496 if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) && 1497 ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) { 1498 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start)) 1499 return (KERN_RESOURCE_SHORTAGE); 1500 KASSERT(object == NULL || 1501 (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 || 1502 object->cred == NULL, 1503 ("overcommit: vm_map_insert o %p", object)); 1504 cred = curthread->td_ucred; 1505 } 1506 1507 charged: 1508 /* Expand the kernel pmap, if necessary. */ 1509 if (map == kernel_map && end > kernel_vm_end) 1510 pmap_growkernel(end); 1511 if (object != NULL) { 1512 /* 1513 * OBJ_ONEMAPPING must be cleared unless this mapping 1514 * is trivially proven to be the only mapping for any 1515 * of the object's pages. (Object granularity 1516 * reference counting is insufficient to recognize 1517 * aliases with precision.) 1518 */ 1519 VM_OBJECT_WLOCK(object); 1520 if (object->ref_count > 1 || object->shadow_count != 0) 1521 vm_object_clear_flag(object, OBJ_ONEMAPPING); 1522 VM_OBJECT_WUNLOCK(object); 1523 } else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) == 1524 protoeflags && 1525 (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP | 1526 MAP_VN_EXEC)) == 0 && 1527 prev_entry->end == start && (prev_entry->cred == cred || 1528 (prev_entry->object.vm_object != NULL && 1529 prev_entry->object.vm_object->cred == cred)) && 1530 vm_object_coalesce(prev_entry->object.vm_object, 1531 prev_entry->offset, 1532 (vm_size_t)(prev_entry->end - prev_entry->start), 1533 (vm_size_t)(end - prev_entry->end), cred != NULL && 1534 (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) { 1535 /* 1536 * We were able to extend the object. Determine if we 1537 * can extend the previous map entry to include the 1538 * new range as well. 1539 */ 1540 if (prev_entry->inheritance == inheritance && 1541 prev_entry->protection == prot && 1542 prev_entry->max_protection == max && 1543 prev_entry->wired_count == 0) { 1544 KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) == 1545 0, ("prev_entry %p has incoherent wiring", 1546 prev_entry)); 1547 if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0) 1548 map->size += end - prev_entry->end; 1549 vm_map_entry_resize(map, prev_entry, 1550 end - prev_entry->end); 1551 vm_map_simplify_entry(map, prev_entry); 1552 return (KERN_SUCCESS); 1553 } 1554 1555 /* 1556 * If we can extend the object but cannot extend the 1557 * map entry, we have to create a new map entry. We 1558 * must bump the ref count on the extended object to 1559 * account for it. object may be NULL. 1560 */ 1561 object = prev_entry->object.vm_object; 1562 offset = prev_entry->offset + 1563 (prev_entry->end - prev_entry->start); 1564 vm_object_reference(object); 1565 if (cred != NULL && object != NULL && object->cred != NULL && 1566 !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 1567 /* Object already accounts for this uid. */ 1568 cred = NULL; 1569 } 1570 } 1571 if (cred != NULL) 1572 crhold(cred); 1573 1574 /* 1575 * Create a new entry 1576 */ 1577 new_entry = vm_map_entry_create(map); 1578 new_entry->start = start; 1579 new_entry->end = end; 1580 new_entry->cred = NULL; 1581 1582 new_entry->eflags = protoeflags; 1583 new_entry->object.vm_object = object; 1584 new_entry->offset = offset; 1585 1586 new_entry->inheritance = inheritance; 1587 new_entry->protection = prot; 1588 new_entry->max_protection = max; 1589 new_entry->wired_count = 0; 1590 new_entry->wiring_thread = NULL; 1591 new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT; 1592 new_entry->next_read = start; 1593 1594 KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry), 1595 ("overcommit: vm_map_insert leaks vm_map %p", new_entry)); 1596 new_entry->cred = cred; 1597 1598 /* 1599 * Insert the new entry into the list 1600 */ 1601 vm_map_entry_link(map, new_entry); 1602 if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0) 1603 map->size += new_entry->end - new_entry->start; 1604 1605 /* 1606 * Try to coalesce the new entry with both the previous and next 1607 * entries in the list. Previously, we only attempted to coalesce 1608 * with the previous entry when object is NULL. Here, we handle the 1609 * other cases, which are less common. 1610 */ 1611 vm_map_simplify_entry(map, new_entry); 1612 1613 if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) { 1614 vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset), 1615 end - start, cow & MAP_PREFAULT_PARTIAL); 1616 } 1617 1618 return (KERN_SUCCESS); 1619 } 1620 1621 /* 1622 * vm_map_findspace: 1623 * 1624 * Find the first fit (lowest VM address) for "length" free bytes 1625 * beginning at address >= start in the given map. 1626 * 1627 * In a vm_map_entry, "max_free" is the maximum amount of 1628 * contiguous free space between an entry in its subtree and a 1629 * neighbor of that entry. This allows finding a free region in 1630 * one path down the tree, so O(log n) amortized with splay 1631 * trees. 1632 * 1633 * The map must be locked, and leaves it so. 1634 * 1635 * Returns: starting address if sufficient space, 1636 * vm_map_max(map)-length+1 if insufficient space. 1637 */ 1638 vm_offset_t 1639 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length) 1640 { 1641 vm_map_entry_t llist, rlist, root, y; 1642 vm_size_t left_length; 1643 vm_offset_t gap_end; 1644 1645 /* 1646 * Request must fit within min/max VM address and must avoid 1647 * address wrap. 1648 */ 1649 start = MAX(start, vm_map_min(map)); 1650 if (start >= vm_map_max(map) || length > vm_map_max(map) - start) 1651 return (vm_map_max(map) - length + 1); 1652 1653 /* Empty tree means wide open address space. */ 1654 if (map->root == NULL) 1655 return (start); 1656 1657 /* 1658 * After splay_split, if start is within an entry, push it to the start 1659 * of the following gap. If rlist is at the end of the gap containing 1660 * start, save the end of that gap in gap_end to see if the gap is big 1661 * enough; otherwise set gap_end to start skip gap-checking and move 1662 * directly to a search of the right subtree. 1663 */ 1664 root = vm_map_splay_split(map, start, length, &llist, &rlist); 1665 gap_end = rlist->start; 1666 if (root != NULL) { 1667 start = root->end; 1668 if (root->right != NULL) 1669 gap_end = start; 1670 } else if (rlist != &map->header) { 1671 root = rlist; 1672 rlist = root->left; 1673 root->left = NULL; 1674 } else { 1675 root = llist; 1676 llist = root->right; 1677 root->right = NULL; 1678 } 1679 vm_map_splay_merge(map, root, llist, rlist); 1680 VM_MAP_ASSERT_CONSISTENT(map); 1681 if (length <= gap_end - start) 1682 return (start); 1683 1684 /* With max_free, can immediately tell if no solution. */ 1685 if (root->right == NULL || length > root->right->max_free) 1686 return (vm_map_max(map) - length + 1); 1687 1688 /* 1689 * Splay for the least large-enough gap in the right subtree. 1690 */ 1691 llist = rlist = &map->header; 1692 for (left_length = 0;; 1693 left_length = vm_map_entry_max_free_left(root, llist)) { 1694 if (length <= left_length) 1695 SPLAY_LEFT_STEP(root, y, rlist, 1696 length <= vm_map_entry_max_free_left(y, llist)); 1697 else 1698 SPLAY_RIGHT_STEP(root, y, llist, 1699 length > vm_map_entry_max_free_left(y, root)); 1700 if (root == NULL) 1701 break; 1702 } 1703 root = llist; 1704 llist = root->right; 1705 root->right = NULL; 1706 if (rlist != &map->header) { 1707 y = rlist; 1708 rlist = y->left; 1709 y->left = NULL; 1710 vm_map_splay_merge(map, y, &map->header, rlist); 1711 y->max_free = MAX( 1712 vm_map_entry_max_free_left(y, root), 1713 vm_map_entry_max_free_right(y, &map->header)); 1714 root->right = y; 1715 } 1716 vm_map_splay_merge(map, root, llist, &map->header); 1717 VM_MAP_ASSERT_CONSISTENT(map); 1718 return (root->end); 1719 } 1720 1721 int 1722 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1723 vm_offset_t start, vm_size_t length, vm_prot_t prot, 1724 vm_prot_t max, int cow) 1725 { 1726 vm_offset_t end; 1727 int result; 1728 1729 end = start + length; 1730 KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 || 1731 object == NULL, 1732 ("vm_map_fixed: non-NULL backing object for stack")); 1733 vm_map_lock(map); 1734 VM_MAP_RANGE_CHECK(map, start, end); 1735 if ((cow & MAP_CHECK_EXCL) == 0) 1736 vm_map_delete(map, start, end); 1737 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) { 1738 result = vm_map_stack_locked(map, start, length, sgrowsiz, 1739 prot, max, cow); 1740 } else { 1741 result = vm_map_insert(map, object, offset, start, end, 1742 prot, max, cow); 1743 } 1744 vm_map_unlock(map); 1745 return (result); 1746 } 1747 1748 static const int aslr_pages_rnd_64[2] = {0x1000, 0x10}; 1749 static const int aslr_pages_rnd_32[2] = {0x100, 0x4}; 1750 1751 static int cluster_anon = 1; 1752 SYSCTL_INT(_vm, OID_AUTO, cluster_anon, CTLFLAG_RW, 1753 &cluster_anon, 0, 1754 "Cluster anonymous mappings: 0 = no, 1 = yes if no hint, 2 = always"); 1755 1756 static bool 1757 clustering_anon_allowed(vm_offset_t addr) 1758 { 1759 1760 switch (cluster_anon) { 1761 case 0: 1762 return (false); 1763 case 1: 1764 return (addr == 0); 1765 case 2: 1766 default: 1767 return (true); 1768 } 1769 } 1770 1771 static long aslr_restarts; 1772 SYSCTL_LONG(_vm, OID_AUTO, aslr_restarts, CTLFLAG_RD, 1773 &aslr_restarts, 0, 1774 "Number of aslr failures"); 1775 1776 #define MAP_32BIT_MAX_ADDR ((vm_offset_t)1 << 31) 1777 1778 /* 1779 * Searches for the specified amount of free space in the given map with the 1780 * specified alignment. Performs an address-ordered, first-fit search from 1781 * the given address "*addr", with an optional upper bound "max_addr". If the 1782 * parameter "alignment" is zero, then the alignment is computed from the 1783 * given (object, offset) pair so as to enable the greatest possible use of 1784 * superpage mappings. Returns KERN_SUCCESS and the address of the free space 1785 * in "*addr" if successful. Otherwise, returns KERN_NO_SPACE. 1786 * 1787 * The map must be locked. Initially, there must be at least "length" bytes 1788 * of free space at the given address. 1789 */ 1790 static int 1791 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1792 vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr, 1793 vm_offset_t alignment) 1794 { 1795 vm_offset_t aligned_addr, free_addr; 1796 1797 VM_MAP_ASSERT_LOCKED(map); 1798 free_addr = *addr; 1799 KASSERT(free_addr == vm_map_findspace(map, free_addr, length), 1800 ("caller failed to provide space %#jx at address %p", 1801 (uintmax_t)length, (void *)free_addr)); 1802 for (;;) { 1803 /* 1804 * At the start of every iteration, the free space at address 1805 * "*addr" is at least "length" bytes. 1806 */ 1807 if (alignment == 0) 1808 pmap_align_superpage(object, offset, addr, length); 1809 else if ((*addr & (alignment - 1)) != 0) { 1810 *addr &= ~(alignment - 1); 1811 *addr += alignment; 1812 } 1813 aligned_addr = *addr; 1814 if (aligned_addr == free_addr) { 1815 /* 1816 * Alignment did not change "*addr", so "*addr" must 1817 * still provide sufficient free space. 1818 */ 1819 return (KERN_SUCCESS); 1820 } 1821 1822 /* 1823 * Test for address wrap on "*addr". A wrapped "*addr" could 1824 * be a valid address, in which case vm_map_findspace() cannot 1825 * be relied upon to fail. 1826 */ 1827 if (aligned_addr < free_addr) 1828 return (KERN_NO_SPACE); 1829 *addr = vm_map_findspace(map, aligned_addr, length); 1830 if (*addr + length > vm_map_max(map) || 1831 (max_addr != 0 && *addr + length > max_addr)) 1832 return (KERN_NO_SPACE); 1833 free_addr = *addr; 1834 if (free_addr == aligned_addr) { 1835 /* 1836 * If a successful call to vm_map_findspace() did not 1837 * change "*addr", then "*addr" must still be aligned 1838 * and provide sufficient free space. 1839 */ 1840 return (KERN_SUCCESS); 1841 } 1842 } 1843 } 1844 1845 /* 1846 * vm_map_find finds an unallocated region in the target address 1847 * map with the given length. The search is defined to be 1848 * first-fit from the specified address; the region found is 1849 * returned in the same parameter. 1850 * 1851 * If object is non-NULL, ref count must be bumped by caller 1852 * prior to making call to account for the new entry. 1853 */ 1854 int 1855 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1856 vm_offset_t *addr, /* IN/OUT */ 1857 vm_size_t length, vm_offset_t max_addr, int find_space, 1858 vm_prot_t prot, vm_prot_t max, int cow) 1859 { 1860 vm_offset_t alignment, curr_min_addr, min_addr; 1861 int gap, pidx, rv, try; 1862 bool cluster, en_aslr, update_anon; 1863 1864 KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 || 1865 object == NULL, 1866 ("vm_map_find: non-NULL backing object for stack")); 1867 MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE && 1868 (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0)); 1869 if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL || 1870 (object->flags & OBJ_COLORED) == 0)) 1871 find_space = VMFS_ANY_SPACE; 1872 if (find_space >> 8 != 0) { 1873 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags")); 1874 alignment = (vm_offset_t)1 << (find_space >> 8); 1875 } else 1876 alignment = 0; 1877 en_aslr = (map->flags & MAP_ASLR) != 0; 1878 update_anon = cluster = clustering_anon_allowed(*addr) && 1879 (map->flags & MAP_IS_SUB_MAP) == 0 && max_addr == 0 && 1880 find_space != VMFS_NO_SPACE && object == NULL && 1881 (cow & (MAP_INHERIT_SHARE | MAP_STACK_GROWS_UP | 1882 MAP_STACK_GROWS_DOWN)) == 0 && prot != PROT_NONE; 1883 curr_min_addr = min_addr = *addr; 1884 if (en_aslr && min_addr == 0 && !cluster && 1885 find_space != VMFS_NO_SPACE && 1886 (map->flags & MAP_ASLR_IGNSTART) != 0) 1887 curr_min_addr = min_addr = vm_map_min(map); 1888 try = 0; 1889 vm_map_lock(map); 1890 if (cluster) { 1891 curr_min_addr = map->anon_loc; 1892 if (curr_min_addr == 0) 1893 cluster = false; 1894 } 1895 if (find_space != VMFS_NO_SPACE) { 1896 KASSERT(find_space == VMFS_ANY_SPACE || 1897 find_space == VMFS_OPTIMAL_SPACE || 1898 find_space == VMFS_SUPER_SPACE || 1899 alignment != 0, ("unexpected VMFS flag")); 1900 again: 1901 /* 1902 * When creating an anonymous mapping, try clustering 1903 * with an existing anonymous mapping first. 1904 * 1905 * We make up to two attempts to find address space 1906 * for a given find_space value. The first attempt may 1907 * apply randomization or may cluster with an existing 1908 * anonymous mapping. If this first attempt fails, 1909 * perform a first-fit search of the available address 1910 * space. 1911 * 1912 * If all tries failed, and find_space is 1913 * VMFS_OPTIMAL_SPACE, fallback to VMFS_ANY_SPACE. 1914 * Again enable clustering and randomization. 1915 */ 1916 try++; 1917 MPASS(try <= 2); 1918 1919 if (try == 2) { 1920 /* 1921 * Second try: we failed either to find a 1922 * suitable region for randomizing the 1923 * allocation, or to cluster with an existing 1924 * mapping. Retry with free run. 1925 */ 1926 curr_min_addr = (map->flags & MAP_ASLR_IGNSTART) != 0 ? 1927 vm_map_min(map) : min_addr; 1928 atomic_add_long(&aslr_restarts, 1); 1929 } 1930 1931 if (try == 1 && en_aslr && !cluster) { 1932 /* 1933 * Find space for allocation, including 1934 * gap needed for later randomization. 1935 */ 1936 pidx = MAXPAGESIZES > 1 && pagesizes[1] != 0 && 1937 (find_space == VMFS_SUPER_SPACE || find_space == 1938 VMFS_OPTIMAL_SPACE) ? 1 : 0; 1939 gap = vm_map_max(map) > MAP_32BIT_MAX_ADDR && 1940 (max_addr == 0 || max_addr > MAP_32BIT_MAX_ADDR) ? 1941 aslr_pages_rnd_64[pidx] : aslr_pages_rnd_32[pidx]; 1942 *addr = vm_map_findspace(map, curr_min_addr, 1943 length + gap * pagesizes[pidx]); 1944 if (*addr + length + gap * pagesizes[pidx] > 1945 vm_map_max(map)) 1946 goto again; 1947 /* And randomize the start address. */ 1948 *addr += (arc4random() % gap) * pagesizes[pidx]; 1949 if (max_addr != 0 && *addr + length > max_addr) 1950 goto again; 1951 } else { 1952 *addr = vm_map_findspace(map, curr_min_addr, length); 1953 if (*addr + length > vm_map_max(map) || 1954 (max_addr != 0 && *addr + length > max_addr)) { 1955 if (cluster) { 1956 cluster = false; 1957 MPASS(try == 1); 1958 goto again; 1959 } 1960 rv = KERN_NO_SPACE; 1961 goto done; 1962 } 1963 } 1964 1965 if (find_space != VMFS_ANY_SPACE && 1966 (rv = vm_map_alignspace(map, object, offset, addr, length, 1967 max_addr, alignment)) != KERN_SUCCESS) { 1968 if (find_space == VMFS_OPTIMAL_SPACE) { 1969 find_space = VMFS_ANY_SPACE; 1970 curr_min_addr = min_addr; 1971 cluster = update_anon; 1972 try = 0; 1973 goto again; 1974 } 1975 goto done; 1976 } 1977 } else if ((cow & MAP_REMAP) != 0) { 1978 if (*addr < vm_map_min(map) || 1979 *addr + length > vm_map_max(map) || 1980 *addr + length <= length) { 1981 rv = KERN_INVALID_ADDRESS; 1982 goto done; 1983 } 1984 vm_map_delete(map, *addr, *addr + length); 1985 } 1986 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) { 1987 rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot, 1988 max, cow); 1989 } else { 1990 rv = vm_map_insert(map, object, offset, *addr, *addr + length, 1991 prot, max, cow); 1992 } 1993 if (rv == KERN_SUCCESS && update_anon) 1994 map->anon_loc = *addr + length; 1995 done: 1996 vm_map_unlock(map); 1997 return (rv); 1998 } 1999 2000 /* 2001 * vm_map_find_min() is a variant of vm_map_find() that takes an 2002 * additional parameter (min_addr) and treats the given address 2003 * (*addr) differently. Specifically, it treats *addr as a hint 2004 * and not as the minimum address where the mapping is created. 2005 * 2006 * This function works in two phases. First, it tries to 2007 * allocate above the hint. If that fails and the hint is 2008 * greater than min_addr, it performs a second pass, replacing 2009 * the hint with min_addr as the minimum address for the 2010 * allocation. 2011 */ 2012 int 2013 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 2014 vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr, 2015 vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max, 2016 int cow) 2017 { 2018 vm_offset_t hint; 2019 int rv; 2020 2021 hint = *addr; 2022 for (;;) { 2023 rv = vm_map_find(map, object, offset, addr, length, max_addr, 2024 find_space, prot, max, cow); 2025 if (rv == KERN_SUCCESS || min_addr >= hint) 2026 return (rv); 2027 *addr = hint = min_addr; 2028 } 2029 } 2030 2031 /* 2032 * A map entry with any of the following flags set must not be merged with 2033 * another entry. 2034 */ 2035 #define MAP_ENTRY_NOMERGE_MASK (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | \ 2036 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP | MAP_ENTRY_VN_EXEC) 2037 2038 static bool 2039 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry) 2040 { 2041 2042 KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 || 2043 (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0, 2044 ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable", 2045 prev, entry)); 2046 return (prev->end == entry->start && 2047 prev->object.vm_object == entry->object.vm_object && 2048 (prev->object.vm_object == NULL || 2049 prev->offset + (prev->end - prev->start) == entry->offset) && 2050 prev->eflags == entry->eflags && 2051 prev->protection == entry->protection && 2052 prev->max_protection == entry->max_protection && 2053 prev->inheritance == entry->inheritance && 2054 prev->wired_count == entry->wired_count && 2055 prev->cred == entry->cred); 2056 } 2057 2058 static void 2059 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry) 2060 { 2061 2062 /* 2063 * If the backing object is a vnode object, vm_object_deallocate() 2064 * calls vrele(). However, vrele() does not lock the vnode because 2065 * the vnode has additional references. Thus, the map lock can be 2066 * kept without causing a lock-order reversal with the vnode lock. 2067 * 2068 * Since we count the number of virtual page mappings in 2069 * object->un_pager.vnp.writemappings, the writemappings value 2070 * should not be adjusted when the entry is disposed of. 2071 */ 2072 if (entry->object.vm_object != NULL) 2073 vm_object_deallocate(entry->object.vm_object); 2074 if (entry->cred != NULL) 2075 crfree(entry->cred); 2076 vm_map_entry_dispose(map, entry); 2077 } 2078 2079 /* 2080 * vm_map_simplify_entry: 2081 * 2082 * Simplify the given map entry by merging with either neighbor. This 2083 * routine also has the ability to merge with both neighbors. 2084 * 2085 * The map must be locked. 2086 * 2087 * This routine guarantees that the passed entry remains valid (though 2088 * possibly extended). When merging, this routine may delete one or 2089 * both neighbors. 2090 */ 2091 void 2092 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry) 2093 { 2094 vm_map_entry_t next, prev; 2095 2096 if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) != 0) 2097 return; 2098 prev = entry->prev; 2099 if (vm_map_mergeable_neighbors(prev, entry)) { 2100 vm_map_entry_unlink(map, prev, UNLINK_MERGE_NEXT); 2101 vm_map_merged_neighbor_dispose(map, prev); 2102 } 2103 next = entry->next; 2104 if (vm_map_mergeable_neighbors(entry, next)) { 2105 vm_map_entry_unlink(map, next, UNLINK_MERGE_PREV); 2106 vm_map_merged_neighbor_dispose(map, next); 2107 } 2108 } 2109 2110 /* 2111 * vm_map_entry_back: 2112 * 2113 * Allocate an object to back a map entry. 2114 */ 2115 static inline void 2116 vm_map_entry_back(vm_map_entry_t entry) 2117 { 2118 vm_object_t object; 2119 2120 KASSERT(entry->object.vm_object == NULL, 2121 ("map entry %p has backing object", entry)); 2122 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 2123 ("map entry %p is a submap", entry)); 2124 object = vm_object_allocate(OBJT_DEFAULT, 2125 atop(entry->end - entry->start)); 2126 entry->object.vm_object = object; 2127 entry->offset = 0; 2128 if (entry->cred != NULL) { 2129 object->cred = entry->cred; 2130 object->charge = entry->end - entry->start; 2131 entry->cred = NULL; 2132 } 2133 } 2134 2135 /* 2136 * vm_map_entry_charge_object 2137 * 2138 * If there is no object backing this entry, create one. Otherwise, if 2139 * the entry has cred, give it to the backing object. 2140 */ 2141 static inline void 2142 vm_map_entry_charge_object(vm_map_t map, vm_map_entry_t entry) 2143 { 2144 2145 VM_MAP_ASSERT_LOCKED(map); 2146 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 2147 ("map entry %p is a submap", entry)); 2148 if (entry->object.vm_object == NULL && !map->system_map && 2149 (entry->eflags & MAP_ENTRY_GUARD) == 0) 2150 vm_map_entry_back(entry); 2151 else if (entry->object.vm_object != NULL && 2152 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 2153 entry->cred != NULL) { 2154 VM_OBJECT_WLOCK(entry->object.vm_object); 2155 KASSERT(entry->object.vm_object->cred == NULL, 2156 ("OVERCOMMIT: %s: both cred e %p", __func__, entry)); 2157 entry->object.vm_object->cred = entry->cred; 2158 entry->object.vm_object->charge = entry->end - entry->start; 2159 VM_OBJECT_WUNLOCK(entry->object.vm_object); 2160 entry->cred = NULL; 2161 } 2162 } 2163 2164 /* 2165 * vm_map_clip_start: [ internal use only ] 2166 * 2167 * Asserts that the given entry begins at or after 2168 * the specified address; if necessary, 2169 * it splits the entry into two. 2170 */ 2171 #define vm_map_clip_start(map, entry, startaddr) \ 2172 { \ 2173 if (startaddr > entry->start) \ 2174 _vm_map_clip_start(map, entry, startaddr); \ 2175 } 2176 2177 /* 2178 * This routine is called only when it is known that 2179 * the entry must be split. 2180 */ 2181 static void 2182 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start) 2183 { 2184 vm_map_entry_t new_entry; 2185 2186 VM_MAP_ASSERT_LOCKED(map); 2187 KASSERT(entry->end > start && entry->start < start, 2188 ("_vm_map_clip_start: invalid clip of entry %p", entry)); 2189 2190 /* 2191 * Create a backing object now, if none exists, so that more individual 2192 * objects won't be created after the map entry is split. 2193 */ 2194 vm_map_entry_charge_object(map, entry); 2195 2196 /* Clone the entry. */ 2197 new_entry = vm_map_entry_create(map); 2198 *new_entry = *entry; 2199 2200 /* 2201 * Split off the front portion. Insert the new entry BEFORE this one, 2202 * so that this entry has the specified starting address. 2203 */ 2204 new_entry->end = start; 2205 entry->offset += (start - entry->start); 2206 entry->start = start; 2207 if (new_entry->cred != NULL) 2208 crhold(entry->cred); 2209 2210 vm_map_entry_link(map, new_entry); 2211 2212 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 2213 vm_object_reference(new_entry->object.vm_object); 2214 vm_map_entry_set_vnode_text(new_entry, true); 2215 /* 2216 * The object->un_pager.vnp.writemappings for the 2217 * object of MAP_ENTRY_VN_WRITECNT type entry shall be 2218 * kept as is here. The virtual pages are 2219 * re-distributed among the clipped entries, so the sum is 2220 * left the same. 2221 */ 2222 } 2223 } 2224 2225 /* 2226 * vm_map_clip_end: [ internal use only ] 2227 * 2228 * Asserts that the given entry ends at or before 2229 * the specified address; if necessary, 2230 * it splits the entry into two. 2231 */ 2232 #define vm_map_clip_end(map, entry, endaddr) \ 2233 { \ 2234 if ((endaddr) < (entry->end)) \ 2235 _vm_map_clip_end((map), (entry), (endaddr)); \ 2236 } 2237 2238 /* 2239 * This routine is called only when it is known that 2240 * the entry must be split. 2241 */ 2242 static void 2243 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end) 2244 { 2245 vm_map_entry_t new_entry; 2246 2247 VM_MAP_ASSERT_LOCKED(map); 2248 KASSERT(entry->start < end && entry->end > end, 2249 ("_vm_map_clip_end: invalid clip of entry %p", entry)); 2250 2251 /* 2252 * Create a backing object now, if none exists, so that more individual 2253 * objects won't be created after the map entry is split. 2254 */ 2255 vm_map_entry_charge_object(map, entry); 2256 2257 /* Clone the entry. */ 2258 new_entry = vm_map_entry_create(map); 2259 *new_entry = *entry; 2260 2261 /* 2262 * Split off the back portion. Insert the new entry AFTER this one, 2263 * so that this entry has the specified ending address. 2264 */ 2265 new_entry->start = entry->end = end; 2266 new_entry->offset += (end - entry->start); 2267 if (new_entry->cred != NULL) 2268 crhold(entry->cred); 2269 2270 vm_map_entry_link(map, new_entry); 2271 2272 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 2273 vm_object_reference(new_entry->object.vm_object); 2274 vm_map_entry_set_vnode_text(new_entry, true); 2275 } 2276 } 2277 2278 /* 2279 * vm_map_submap: [ kernel use only ] 2280 * 2281 * Mark the given range as handled by a subordinate map. 2282 * 2283 * This range must have been created with vm_map_find, 2284 * and no other operations may have been performed on this 2285 * range prior to calling vm_map_submap. 2286 * 2287 * Only a limited number of operations can be performed 2288 * within this rage after calling vm_map_submap: 2289 * vm_fault 2290 * [Don't try vm_map_copy!] 2291 * 2292 * To remove a submapping, one must first remove the 2293 * range from the superior map, and then destroy the 2294 * submap (if desired). [Better yet, don't try it.] 2295 */ 2296 int 2297 vm_map_submap( 2298 vm_map_t map, 2299 vm_offset_t start, 2300 vm_offset_t end, 2301 vm_map_t submap) 2302 { 2303 vm_map_entry_t entry; 2304 int result; 2305 2306 result = KERN_INVALID_ARGUMENT; 2307 2308 vm_map_lock(submap); 2309 submap->flags |= MAP_IS_SUB_MAP; 2310 vm_map_unlock(submap); 2311 2312 vm_map_lock(map); 2313 2314 VM_MAP_RANGE_CHECK(map, start, end); 2315 2316 if (vm_map_lookup_entry(map, start, &entry)) { 2317 vm_map_clip_start(map, entry, start); 2318 } else 2319 entry = entry->next; 2320 2321 vm_map_clip_end(map, entry, end); 2322 2323 if ((entry->start == start) && (entry->end == end) && 2324 ((entry->eflags & MAP_ENTRY_COW) == 0) && 2325 (entry->object.vm_object == NULL)) { 2326 entry->object.sub_map = submap; 2327 entry->eflags |= MAP_ENTRY_IS_SUB_MAP; 2328 result = KERN_SUCCESS; 2329 } 2330 vm_map_unlock(map); 2331 2332 if (result != KERN_SUCCESS) { 2333 vm_map_lock(submap); 2334 submap->flags &= ~MAP_IS_SUB_MAP; 2335 vm_map_unlock(submap); 2336 } 2337 return (result); 2338 } 2339 2340 /* 2341 * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified 2342 */ 2343 #define MAX_INIT_PT 96 2344 2345 /* 2346 * vm_map_pmap_enter: 2347 * 2348 * Preload the specified map's pmap with mappings to the specified 2349 * object's memory-resident pages. No further physical pages are 2350 * allocated, and no further virtual pages are retrieved from secondary 2351 * storage. If the specified flags include MAP_PREFAULT_PARTIAL, then a 2352 * limited number of page mappings are created at the low-end of the 2353 * specified address range. (For this purpose, a superpage mapping 2354 * counts as one page mapping.) Otherwise, all resident pages within 2355 * the specified address range are mapped. 2356 */ 2357 static void 2358 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 2359 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags) 2360 { 2361 vm_offset_t start; 2362 vm_page_t p, p_start; 2363 vm_pindex_t mask, psize, threshold, tmpidx; 2364 2365 if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL) 2366 return; 2367 VM_OBJECT_RLOCK(object); 2368 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 2369 VM_OBJECT_RUNLOCK(object); 2370 VM_OBJECT_WLOCK(object); 2371 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 2372 pmap_object_init_pt(map->pmap, addr, object, pindex, 2373 size); 2374 VM_OBJECT_WUNLOCK(object); 2375 return; 2376 } 2377 VM_OBJECT_LOCK_DOWNGRADE(object); 2378 } 2379 2380 psize = atop(size); 2381 if (psize + pindex > object->size) { 2382 if (object->size < pindex) { 2383 VM_OBJECT_RUNLOCK(object); 2384 return; 2385 } 2386 psize = object->size - pindex; 2387 } 2388 2389 start = 0; 2390 p_start = NULL; 2391 threshold = MAX_INIT_PT; 2392 2393 p = vm_page_find_least(object, pindex); 2394 /* 2395 * Assert: the variable p is either (1) the page with the 2396 * least pindex greater than or equal to the parameter pindex 2397 * or (2) NULL. 2398 */ 2399 for (; 2400 p != NULL && (tmpidx = p->pindex - pindex) < psize; 2401 p = TAILQ_NEXT(p, listq)) { 2402 /* 2403 * don't allow an madvise to blow away our really 2404 * free pages allocating pv entries. 2405 */ 2406 if (((flags & MAP_PREFAULT_MADVISE) != 0 && 2407 vm_page_count_severe()) || 2408 ((flags & MAP_PREFAULT_PARTIAL) != 0 && 2409 tmpidx >= threshold)) { 2410 psize = tmpidx; 2411 break; 2412 } 2413 if (p->valid == VM_PAGE_BITS_ALL) { 2414 if (p_start == NULL) { 2415 start = addr + ptoa(tmpidx); 2416 p_start = p; 2417 } 2418 /* Jump ahead if a superpage mapping is possible. */ 2419 if (p->psind > 0 && ((addr + ptoa(tmpidx)) & 2420 (pagesizes[p->psind] - 1)) == 0) { 2421 mask = atop(pagesizes[p->psind]) - 1; 2422 if (tmpidx + mask < psize && 2423 vm_page_ps_test(p, PS_ALL_VALID, NULL)) { 2424 p += mask; 2425 threshold += mask; 2426 } 2427 } 2428 } else if (p_start != NULL) { 2429 pmap_enter_object(map->pmap, start, addr + 2430 ptoa(tmpidx), p_start, prot); 2431 p_start = NULL; 2432 } 2433 } 2434 if (p_start != NULL) 2435 pmap_enter_object(map->pmap, start, addr + ptoa(psize), 2436 p_start, prot); 2437 VM_OBJECT_RUNLOCK(object); 2438 } 2439 2440 /* 2441 * vm_map_protect: 2442 * 2443 * Sets the protection of the specified address 2444 * region in the target map. If "set_max" is 2445 * specified, the maximum protection is to be set; 2446 * otherwise, only the current protection is affected. 2447 */ 2448 int 2449 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 2450 vm_prot_t new_prot, boolean_t set_max) 2451 { 2452 vm_map_entry_t current, entry, in_tran; 2453 vm_object_t obj; 2454 struct ucred *cred; 2455 vm_prot_t old_prot; 2456 int rv; 2457 2458 if (start == end) 2459 return (KERN_SUCCESS); 2460 2461 again: 2462 in_tran = NULL; 2463 vm_map_lock(map); 2464 2465 /* 2466 * Ensure that we are not concurrently wiring pages. vm_map_wire() may 2467 * need to fault pages into the map and will drop the map lock while 2468 * doing so, and the VM object may end up in an inconsistent state if we 2469 * update the protection on the map entry in between faults. 2470 */ 2471 vm_map_wait_busy(map); 2472 2473 VM_MAP_RANGE_CHECK(map, start, end); 2474 2475 if (!vm_map_lookup_entry(map, start, &entry)) 2476 entry = entry->next; 2477 2478 /* 2479 * Make a first pass to check for protection violations. 2480 */ 2481 for (current = entry; current->start < end; current = current->next) { 2482 if ((current->eflags & MAP_ENTRY_GUARD) != 0) 2483 continue; 2484 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 2485 vm_map_unlock(map); 2486 return (KERN_INVALID_ARGUMENT); 2487 } 2488 if ((new_prot & current->max_protection) != new_prot) { 2489 vm_map_unlock(map); 2490 return (KERN_PROTECTION_FAILURE); 2491 } 2492 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0) 2493 in_tran = entry; 2494 } 2495 2496 /* 2497 * Postpone the operation until all in transition map entries 2498 * are stabilized. In-transition entry might already have its 2499 * pages wired and wired_count incremented, but 2500 * MAP_ENTRY_USER_WIRED flag not yet set, and visible to other 2501 * threads because the map lock is dropped. In this case we 2502 * would miss our call to vm_fault_copy_entry(). 2503 */ 2504 if (in_tran != NULL) { 2505 in_tran->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2506 vm_map_unlock_and_wait(map, 0); 2507 goto again; 2508 } 2509 2510 /* 2511 * Before changing the protections, try to reserve swap space for any 2512 * private (i.e., copy-on-write) mappings that are transitioning from 2513 * read-only to read/write access. If a reservation fails, break out 2514 * of this loop early and let the next loop simplify the entries, since 2515 * some may now be mergeable. 2516 */ 2517 rv = KERN_SUCCESS; 2518 vm_map_clip_start(map, entry, start); 2519 for (current = entry; current->start < end; current = current->next) { 2520 2521 vm_map_clip_end(map, current, end); 2522 2523 if (set_max || 2524 ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 || 2525 ENTRY_CHARGED(current) || 2526 (current->eflags & MAP_ENTRY_GUARD) != 0) { 2527 continue; 2528 } 2529 2530 cred = curthread->td_ucred; 2531 obj = current->object.vm_object; 2532 2533 if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) { 2534 if (!swap_reserve(current->end - current->start)) { 2535 rv = KERN_RESOURCE_SHORTAGE; 2536 end = current->end; 2537 break; 2538 } 2539 crhold(cred); 2540 current->cred = cred; 2541 continue; 2542 } 2543 2544 VM_OBJECT_WLOCK(obj); 2545 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) { 2546 VM_OBJECT_WUNLOCK(obj); 2547 continue; 2548 } 2549 2550 /* 2551 * Charge for the whole object allocation now, since 2552 * we cannot distinguish between non-charged and 2553 * charged clipped mapping of the same object later. 2554 */ 2555 KASSERT(obj->charge == 0, 2556 ("vm_map_protect: object %p overcharged (entry %p)", 2557 obj, current)); 2558 if (!swap_reserve(ptoa(obj->size))) { 2559 VM_OBJECT_WUNLOCK(obj); 2560 rv = KERN_RESOURCE_SHORTAGE; 2561 end = current->end; 2562 break; 2563 } 2564 2565 crhold(cred); 2566 obj->cred = cred; 2567 obj->charge = ptoa(obj->size); 2568 VM_OBJECT_WUNLOCK(obj); 2569 } 2570 2571 /* 2572 * If enough swap space was available, go back and fix up protections. 2573 * Otherwise, just simplify entries, since some may have been modified. 2574 * [Note that clipping is not necessary the second time.] 2575 */ 2576 for (current = entry; current->start < end; 2577 vm_map_simplify_entry(map, current), current = current->next) { 2578 if (rv != KERN_SUCCESS || 2579 (current->eflags & MAP_ENTRY_GUARD) != 0) 2580 continue; 2581 2582 old_prot = current->protection; 2583 2584 if (set_max) 2585 current->protection = 2586 (current->max_protection = new_prot) & 2587 old_prot; 2588 else 2589 current->protection = new_prot; 2590 2591 /* 2592 * For user wired map entries, the normal lazy evaluation of 2593 * write access upgrades through soft page faults is 2594 * undesirable. Instead, immediately copy any pages that are 2595 * copy-on-write and enable write access in the physical map. 2596 */ 2597 if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 && 2598 (current->protection & VM_PROT_WRITE) != 0 && 2599 (old_prot & VM_PROT_WRITE) == 0) 2600 vm_fault_copy_entry(map, map, current, current, NULL); 2601 2602 /* 2603 * When restricting access, update the physical map. Worry 2604 * about copy-on-write here. 2605 */ 2606 if ((old_prot & ~current->protection) != 0) { 2607 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 2608 VM_PROT_ALL) 2609 pmap_protect(map->pmap, current->start, 2610 current->end, 2611 current->protection & MASK(current)); 2612 #undef MASK 2613 } 2614 } 2615 vm_map_unlock(map); 2616 return (rv); 2617 } 2618 2619 /* 2620 * vm_map_madvise: 2621 * 2622 * This routine traverses a processes map handling the madvise 2623 * system call. Advisories are classified as either those effecting 2624 * the vm_map_entry structure, or those effecting the underlying 2625 * objects. 2626 */ 2627 int 2628 vm_map_madvise( 2629 vm_map_t map, 2630 vm_offset_t start, 2631 vm_offset_t end, 2632 int behav) 2633 { 2634 vm_map_entry_t current, entry; 2635 bool modify_map; 2636 2637 /* 2638 * Some madvise calls directly modify the vm_map_entry, in which case 2639 * we need to use an exclusive lock on the map and we need to perform 2640 * various clipping operations. Otherwise we only need a read-lock 2641 * on the map. 2642 */ 2643 switch(behav) { 2644 case MADV_NORMAL: 2645 case MADV_SEQUENTIAL: 2646 case MADV_RANDOM: 2647 case MADV_NOSYNC: 2648 case MADV_AUTOSYNC: 2649 case MADV_NOCORE: 2650 case MADV_CORE: 2651 if (start == end) 2652 return (0); 2653 modify_map = true; 2654 vm_map_lock(map); 2655 break; 2656 case MADV_WILLNEED: 2657 case MADV_DONTNEED: 2658 case MADV_FREE: 2659 if (start == end) 2660 return (0); 2661 modify_map = false; 2662 vm_map_lock_read(map); 2663 break; 2664 default: 2665 return (EINVAL); 2666 } 2667 2668 /* 2669 * Locate starting entry and clip if necessary. 2670 */ 2671 VM_MAP_RANGE_CHECK(map, start, end); 2672 2673 if (vm_map_lookup_entry(map, start, &entry)) { 2674 if (modify_map) 2675 vm_map_clip_start(map, entry, start); 2676 } else { 2677 entry = entry->next; 2678 } 2679 2680 if (modify_map) { 2681 /* 2682 * madvise behaviors that are implemented in the vm_map_entry. 2683 * 2684 * We clip the vm_map_entry so that behavioral changes are 2685 * limited to the specified address range. 2686 */ 2687 for (current = entry; current->start < end; 2688 current = current->next) { 2689 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2690 continue; 2691 2692 vm_map_clip_end(map, current, end); 2693 2694 switch (behav) { 2695 case MADV_NORMAL: 2696 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL); 2697 break; 2698 case MADV_SEQUENTIAL: 2699 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL); 2700 break; 2701 case MADV_RANDOM: 2702 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM); 2703 break; 2704 case MADV_NOSYNC: 2705 current->eflags |= MAP_ENTRY_NOSYNC; 2706 break; 2707 case MADV_AUTOSYNC: 2708 current->eflags &= ~MAP_ENTRY_NOSYNC; 2709 break; 2710 case MADV_NOCORE: 2711 current->eflags |= MAP_ENTRY_NOCOREDUMP; 2712 break; 2713 case MADV_CORE: 2714 current->eflags &= ~MAP_ENTRY_NOCOREDUMP; 2715 break; 2716 default: 2717 break; 2718 } 2719 vm_map_simplify_entry(map, current); 2720 } 2721 vm_map_unlock(map); 2722 } else { 2723 vm_pindex_t pstart, pend; 2724 2725 /* 2726 * madvise behaviors that are implemented in the underlying 2727 * vm_object. 2728 * 2729 * Since we don't clip the vm_map_entry, we have to clip 2730 * the vm_object pindex and count. 2731 */ 2732 for (current = entry; current->start < end; 2733 current = current->next) { 2734 vm_offset_t useEnd, useStart; 2735 2736 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2737 continue; 2738 2739 pstart = OFF_TO_IDX(current->offset); 2740 pend = pstart + atop(current->end - current->start); 2741 useStart = current->start; 2742 useEnd = current->end; 2743 2744 if (current->start < start) { 2745 pstart += atop(start - current->start); 2746 useStart = start; 2747 } 2748 if (current->end > end) { 2749 pend -= atop(current->end - end); 2750 useEnd = end; 2751 } 2752 2753 if (pstart >= pend) 2754 continue; 2755 2756 /* 2757 * Perform the pmap_advise() before clearing 2758 * PGA_REFERENCED in vm_page_advise(). Otherwise, a 2759 * concurrent pmap operation, such as pmap_remove(), 2760 * could clear a reference in the pmap and set 2761 * PGA_REFERENCED on the page before the pmap_advise() 2762 * had completed. Consequently, the page would appear 2763 * referenced based upon an old reference that 2764 * occurred before this pmap_advise() ran. 2765 */ 2766 if (behav == MADV_DONTNEED || behav == MADV_FREE) 2767 pmap_advise(map->pmap, useStart, useEnd, 2768 behav); 2769 2770 vm_object_madvise(current->object.vm_object, pstart, 2771 pend, behav); 2772 2773 /* 2774 * Pre-populate paging structures in the 2775 * WILLNEED case. For wired entries, the 2776 * paging structures are already populated. 2777 */ 2778 if (behav == MADV_WILLNEED && 2779 current->wired_count == 0) { 2780 vm_map_pmap_enter(map, 2781 useStart, 2782 current->protection, 2783 current->object.vm_object, 2784 pstart, 2785 ptoa(pend - pstart), 2786 MAP_PREFAULT_MADVISE 2787 ); 2788 } 2789 } 2790 vm_map_unlock_read(map); 2791 } 2792 return (0); 2793 } 2794 2795 2796 /* 2797 * vm_map_inherit: 2798 * 2799 * Sets the inheritance of the specified address 2800 * range in the target map. Inheritance 2801 * affects how the map will be shared with 2802 * child maps at the time of vmspace_fork. 2803 */ 2804 int 2805 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 2806 vm_inherit_t new_inheritance) 2807 { 2808 vm_map_entry_t entry; 2809 vm_map_entry_t temp_entry; 2810 2811 switch (new_inheritance) { 2812 case VM_INHERIT_NONE: 2813 case VM_INHERIT_COPY: 2814 case VM_INHERIT_SHARE: 2815 case VM_INHERIT_ZERO: 2816 break; 2817 default: 2818 return (KERN_INVALID_ARGUMENT); 2819 } 2820 if (start == end) 2821 return (KERN_SUCCESS); 2822 vm_map_lock(map); 2823 VM_MAP_RANGE_CHECK(map, start, end); 2824 if (vm_map_lookup_entry(map, start, &temp_entry)) { 2825 entry = temp_entry; 2826 vm_map_clip_start(map, entry, start); 2827 } else 2828 entry = temp_entry->next; 2829 while (entry->start < end) { 2830 vm_map_clip_end(map, entry, end); 2831 if ((entry->eflags & MAP_ENTRY_GUARD) == 0 || 2832 new_inheritance != VM_INHERIT_ZERO) 2833 entry->inheritance = new_inheritance; 2834 vm_map_simplify_entry(map, entry); 2835 entry = entry->next; 2836 } 2837 vm_map_unlock(map); 2838 return (KERN_SUCCESS); 2839 } 2840 2841 /* 2842 * vm_map_unwire: 2843 * 2844 * Implements both kernel and user unwiring. 2845 */ 2846 int 2847 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2848 int flags) 2849 { 2850 vm_map_entry_t entry, first_entry, tmp_entry; 2851 vm_offset_t saved_start; 2852 unsigned int last_timestamp; 2853 int rv; 2854 boolean_t need_wakeup, result, user_unwire; 2855 2856 if (start == end) 2857 return (KERN_SUCCESS); 2858 user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 2859 vm_map_lock(map); 2860 VM_MAP_RANGE_CHECK(map, start, end); 2861 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2862 if (flags & VM_MAP_WIRE_HOLESOK) 2863 first_entry = first_entry->next; 2864 else { 2865 vm_map_unlock(map); 2866 return (KERN_INVALID_ADDRESS); 2867 } 2868 } 2869 last_timestamp = map->timestamp; 2870 entry = first_entry; 2871 while (entry->start < end) { 2872 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2873 /* 2874 * We have not yet clipped the entry. 2875 */ 2876 saved_start = (start >= entry->start) ? start : 2877 entry->start; 2878 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2879 if (vm_map_unlock_and_wait(map, 0)) { 2880 /* 2881 * Allow interruption of user unwiring? 2882 */ 2883 } 2884 vm_map_lock(map); 2885 if (last_timestamp+1 != map->timestamp) { 2886 /* 2887 * Look again for the entry because the map was 2888 * modified while it was unlocked. 2889 * Specifically, the entry may have been 2890 * clipped, merged, or deleted. 2891 */ 2892 if (!vm_map_lookup_entry(map, saved_start, 2893 &tmp_entry)) { 2894 if (flags & VM_MAP_WIRE_HOLESOK) 2895 tmp_entry = tmp_entry->next; 2896 else { 2897 if (saved_start == start) { 2898 /* 2899 * First_entry has been deleted. 2900 */ 2901 vm_map_unlock(map); 2902 return (KERN_INVALID_ADDRESS); 2903 } 2904 end = saved_start; 2905 rv = KERN_INVALID_ADDRESS; 2906 goto done; 2907 } 2908 } 2909 if (entry == first_entry) 2910 first_entry = tmp_entry; 2911 else 2912 first_entry = NULL; 2913 entry = tmp_entry; 2914 } 2915 last_timestamp = map->timestamp; 2916 continue; 2917 } 2918 vm_map_clip_start(map, entry, start); 2919 vm_map_clip_end(map, entry, end); 2920 /* 2921 * Mark the entry in case the map lock is released. (See 2922 * above.) 2923 */ 2924 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 2925 entry->wiring_thread == NULL, 2926 ("owned map entry %p", entry)); 2927 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 2928 entry->wiring_thread = curthread; 2929 /* 2930 * Check the map for holes in the specified region. 2931 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 2932 */ 2933 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) && 2934 (entry->end < end && entry->next->start > entry->end)) { 2935 end = entry->end; 2936 rv = KERN_INVALID_ADDRESS; 2937 goto done; 2938 } 2939 /* 2940 * If system unwiring, require that the entry is system wired. 2941 */ 2942 if (!user_unwire && 2943 vm_map_entry_system_wired_count(entry) == 0) { 2944 end = entry->end; 2945 rv = KERN_INVALID_ARGUMENT; 2946 goto done; 2947 } 2948 entry = entry->next; 2949 } 2950 rv = KERN_SUCCESS; 2951 done: 2952 need_wakeup = FALSE; 2953 if (first_entry == NULL) { 2954 result = vm_map_lookup_entry(map, start, &first_entry); 2955 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 2956 first_entry = first_entry->next; 2957 else 2958 KASSERT(result, ("vm_map_unwire: lookup failed")); 2959 } 2960 for (entry = first_entry; entry->start < end; entry = entry->next) { 2961 /* 2962 * If VM_MAP_WIRE_HOLESOK was specified, an empty 2963 * space in the unwired region could have been mapped 2964 * while the map lock was dropped for draining 2965 * MAP_ENTRY_IN_TRANSITION. Moreover, another thread 2966 * could be simultaneously wiring this new mapping 2967 * entry. Detect these cases and skip any entries 2968 * marked as in transition by us. 2969 */ 2970 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 2971 entry->wiring_thread != curthread) { 2972 KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0, 2973 ("vm_map_unwire: !HOLESOK and new/changed entry")); 2974 continue; 2975 } 2976 2977 if (rv == KERN_SUCCESS && (!user_unwire || 2978 (entry->eflags & MAP_ENTRY_USER_WIRED))) { 2979 if (entry->wired_count == 1) 2980 vm_map_entry_unwire(map, entry); 2981 else 2982 entry->wired_count--; 2983 if (user_unwire) 2984 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2985 } 2986 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 2987 ("vm_map_unwire: in-transition flag missing %p", entry)); 2988 KASSERT(entry->wiring_thread == curthread, 2989 ("vm_map_unwire: alien wire %p", entry)); 2990 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 2991 entry->wiring_thread = NULL; 2992 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 2993 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 2994 need_wakeup = TRUE; 2995 } 2996 vm_map_simplify_entry(map, entry); 2997 } 2998 vm_map_unlock(map); 2999 if (need_wakeup) 3000 vm_map_wakeup(map); 3001 return (rv); 3002 } 3003 3004 static void 3005 vm_map_wire_user_count_sub(u_long npages) 3006 { 3007 3008 atomic_subtract_long(&vm_user_wire_count, npages); 3009 } 3010 3011 static bool 3012 vm_map_wire_user_count_add(u_long npages) 3013 { 3014 u_long wired; 3015 3016 wired = vm_user_wire_count; 3017 do { 3018 if (npages + wired > vm_page_max_user_wired) 3019 return (false); 3020 } while (!atomic_fcmpset_long(&vm_user_wire_count, &wired, 3021 npages + wired)); 3022 3023 return (true); 3024 } 3025 3026 /* 3027 * vm_map_wire_entry_failure: 3028 * 3029 * Handle a wiring failure on the given entry. 3030 * 3031 * The map should be locked. 3032 */ 3033 static void 3034 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry, 3035 vm_offset_t failed_addr) 3036 { 3037 3038 VM_MAP_ASSERT_LOCKED(map); 3039 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 && 3040 entry->wired_count == 1, 3041 ("vm_map_wire_entry_failure: entry %p isn't being wired", entry)); 3042 KASSERT(failed_addr < entry->end, 3043 ("vm_map_wire_entry_failure: entry %p was fully wired", entry)); 3044 3045 /* 3046 * If any pages at the start of this entry were successfully wired, 3047 * then unwire them. 3048 */ 3049 if (failed_addr > entry->start) { 3050 pmap_unwire(map->pmap, entry->start, failed_addr); 3051 vm_object_unwire(entry->object.vm_object, entry->offset, 3052 failed_addr - entry->start, PQ_ACTIVE); 3053 } 3054 3055 /* 3056 * Assign an out-of-range value to represent the failure to wire this 3057 * entry. 3058 */ 3059 entry->wired_count = -1; 3060 } 3061 3062 int 3063 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags) 3064 { 3065 int rv; 3066 3067 vm_map_lock(map); 3068 rv = vm_map_wire_locked(map, start, end, flags); 3069 vm_map_unlock(map); 3070 return (rv); 3071 } 3072 3073 3074 /* 3075 * vm_map_wire_locked: 3076 * 3077 * Implements both kernel and user wiring. Returns with the map locked, 3078 * the map lock may be dropped. 3079 */ 3080 int 3081 vm_map_wire_locked(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags) 3082 { 3083 vm_map_entry_t entry, first_entry, tmp_entry; 3084 vm_offset_t faddr, saved_end, saved_start; 3085 u_long npages; 3086 u_int last_timestamp; 3087 int rv; 3088 boolean_t need_wakeup, result, user_wire; 3089 vm_prot_t prot; 3090 3091 VM_MAP_ASSERT_LOCKED(map); 3092 3093 if (start == end) 3094 return (KERN_SUCCESS); 3095 prot = 0; 3096 if (flags & VM_MAP_WIRE_WRITE) 3097 prot |= VM_PROT_WRITE; 3098 user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 3099 VM_MAP_RANGE_CHECK(map, start, end); 3100 if (!vm_map_lookup_entry(map, start, &first_entry)) { 3101 if (flags & VM_MAP_WIRE_HOLESOK) 3102 first_entry = first_entry->next; 3103 else 3104 return (KERN_INVALID_ADDRESS); 3105 } 3106 last_timestamp = map->timestamp; 3107 entry = first_entry; 3108 while (entry->start < end) { 3109 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 3110 /* 3111 * We have not yet clipped the entry. 3112 */ 3113 saved_start = (start >= entry->start) ? start : 3114 entry->start; 3115 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 3116 if (vm_map_unlock_and_wait(map, 0)) { 3117 /* 3118 * Allow interruption of user wiring? 3119 */ 3120 } 3121 vm_map_lock(map); 3122 if (last_timestamp + 1 != map->timestamp) { 3123 /* 3124 * Look again for the entry because the map was 3125 * modified while it was unlocked. 3126 * Specifically, the entry may have been 3127 * clipped, merged, or deleted. 3128 */ 3129 if (!vm_map_lookup_entry(map, saved_start, 3130 &tmp_entry)) { 3131 if (flags & VM_MAP_WIRE_HOLESOK) 3132 tmp_entry = tmp_entry->next; 3133 else { 3134 if (saved_start == start) { 3135 /* 3136 * first_entry has been deleted. 3137 */ 3138 return (KERN_INVALID_ADDRESS); 3139 } 3140 end = saved_start; 3141 rv = KERN_INVALID_ADDRESS; 3142 goto done; 3143 } 3144 } 3145 if (entry == first_entry) 3146 first_entry = tmp_entry; 3147 else 3148 first_entry = NULL; 3149 entry = tmp_entry; 3150 } 3151 last_timestamp = map->timestamp; 3152 continue; 3153 } 3154 vm_map_clip_start(map, entry, start); 3155 vm_map_clip_end(map, entry, end); 3156 /* 3157 * Mark the entry in case the map lock is released. (See 3158 * above.) 3159 */ 3160 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 3161 entry->wiring_thread == NULL, 3162 ("owned map entry %p", entry)); 3163 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 3164 entry->wiring_thread = curthread; 3165 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 3166 || (entry->protection & prot) != prot) { 3167 entry->eflags |= MAP_ENTRY_WIRE_SKIPPED; 3168 if ((flags & VM_MAP_WIRE_HOLESOK) == 0) { 3169 end = entry->end; 3170 rv = KERN_INVALID_ADDRESS; 3171 goto done; 3172 } 3173 goto next_entry; 3174 } 3175 if (entry->wired_count == 0) { 3176 entry->wired_count++; 3177 3178 npages = atop(entry->end - entry->start); 3179 if (user_wire && !vm_map_wire_user_count_add(npages)) { 3180 vm_map_wire_entry_failure(map, entry, 3181 entry->start); 3182 end = entry->end; 3183 rv = KERN_RESOURCE_SHORTAGE; 3184 goto done; 3185 } 3186 3187 /* 3188 * Release the map lock, relying on the in-transition 3189 * mark. Mark the map busy for fork. 3190 */ 3191 saved_start = entry->start; 3192 saved_end = entry->end; 3193 vm_map_busy(map); 3194 vm_map_unlock(map); 3195 3196 faddr = saved_start; 3197 do { 3198 /* 3199 * Simulate a fault to get the page and enter 3200 * it into the physical map. 3201 */ 3202 if ((rv = vm_fault(map, faddr, VM_PROT_NONE, 3203 VM_FAULT_WIRE)) != KERN_SUCCESS) 3204 break; 3205 } while ((faddr += PAGE_SIZE) < saved_end); 3206 vm_map_lock(map); 3207 vm_map_unbusy(map); 3208 if (last_timestamp + 1 != map->timestamp) { 3209 /* 3210 * Look again for the entry because the map was 3211 * modified while it was unlocked. The entry 3212 * may have been clipped, but NOT merged or 3213 * deleted. 3214 */ 3215 result = vm_map_lookup_entry(map, saved_start, 3216 &tmp_entry); 3217 KASSERT(result, ("vm_map_wire: lookup failed")); 3218 if (entry == first_entry) 3219 first_entry = tmp_entry; 3220 else 3221 first_entry = NULL; 3222 entry = tmp_entry; 3223 while (entry->end < saved_end) { 3224 /* 3225 * In case of failure, handle entries 3226 * that were not fully wired here; 3227 * fully wired entries are handled 3228 * later. 3229 */ 3230 if (rv != KERN_SUCCESS && 3231 faddr < entry->end) 3232 vm_map_wire_entry_failure(map, 3233 entry, faddr); 3234 entry = entry->next; 3235 } 3236 } 3237 last_timestamp = map->timestamp; 3238 if (rv != KERN_SUCCESS) { 3239 vm_map_wire_entry_failure(map, entry, faddr); 3240 if (user_wire) 3241 vm_map_wire_user_count_sub(npages); 3242 end = entry->end; 3243 goto done; 3244 } 3245 } else if (!user_wire || 3246 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 3247 entry->wired_count++; 3248 } 3249 /* 3250 * Check the map for holes in the specified region. 3251 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 3252 */ 3253 next_entry: 3254 if ((flags & VM_MAP_WIRE_HOLESOK) == 0 && 3255 entry->end < end && entry->next->start > entry->end) { 3256 end = entry->end; 3257 rv = KERN_INVALID_ADDRESS; 3258 goto done; 3259 } 3260 entry = entry->next; 3261 } 3262 rv = KERN_SUCCESS; 3263 done: 3264 need_wakeup = FALSE; 3265 if (first_entry == NULL) { 3266 result = vm_map_lookup_entry(map, start, &first_entry); 3267 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 3268 first_entry = first_entry->next; 3269 else 3270 KASSERT(result, ("vm_map_wire: lookup failed")); 3271 } 3272 for (entry = first_entry; entry->start < end; entry = entry->next) { 3273 /* 3274 * If VM_MAP_WIRE_HOLESOK was specified, an empty 3275 * space in the unwired region could have been mapped 3276 * while the map lock was dropped for faulting in the 3277 * pages or draining MAP_ENTRY_IN_TRANSITION. 3278 * Moreover, another thread could be simultaneously 3279 * wiring this new mapping entry. Detect these cases 3280 * and skip any entries marked as in transition not by us. 3281 */ 3282 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 3283 entry->wiring_thread != curthread) { 3284 KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0, 3285 ("vm_map_wire: !HOLESOK and new/changed entry")); 3286 continue; 3287 } 3288 3289 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) 3290 goto next_entry_done; 3291 3292 if (rv == KERN_SUCCESS) { 3293 if (user_wire) 3294 entry->eflags |= MAP_ENTRY_USER_WIRED; 3295 } else if (entry->wired_count == -1) { 3296 /* 3297 * Wiring failed on this entry. Thus, unwiring is 3298 * unnecessary. 3299 */ 3300 entry->wired_count = 0; 3301 } else if (!user_wire || 3302 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 3303 /* 3304 * Undo the wiring. Wiring succeeded on this entry 3305 * but failed on a later entry. 3306 */ 3307 if (entry->wired_count == 1) { 3308 vm_map_entry_unwire(map, entry); 3309 if (user_wire) 3310 vm_map_wire_user_count_sub( 3311 atop(entry->end - entry->start)); 3312 } else 3313 entry->wired_count--; 3314 } 3315 next_entry_done: 3316 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 3317 ("vm_map_wire: in-transition flag missing %p", entry)); 3318 KASSERT(entry->wiring_thread == curthread, 3319 ("vm_map_wire: alien wire %p", entry)); 3320 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION | 3321 MAP_ENTRY_WIRE_SKIPPED); 3322 entry->wiring_thread = NULL; 3323 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 3324 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 3325 need_wakeup = TRUE; 3326 } 3327 vm_map_simplify_entry(map, entry); 3328 } 3329 if (need_wakeup) 3330 vm_map_wakeup(map); 3331 return (rv); 3332 } 3333 3334 /* 3335 * vm_map_sync 3336 * 3337 * Push any dirty cached pages in the address range to their pager. 3338 * If syncio is TRUE, dirty pages are written synchronously. 3339 * If invalidate is TRUE, any cached pages are freed as well. 3340 * 3341 * If the size of the region from start to end is zero, we are 3342 * supposed to flush all modified pages within the region containing 3343 * start. Unfortunately, a region can be split or coalesced with 3344 * neighboring regions, making it difficult to determine what the 3345 * original region was. Therefore, we approximate this requirement by 3346 * flushing the current region containing start. 3347 * 3348 * Returns an error if any part of the specified range is not mapped. 3349 */ 3350 int 3351 vm_map_sync( 3352 vm_map_t map, 3353 vm_offset_t start, 3354 vm_offset_t end, 3355 boolean_t syncio, 3356 boolean_t invalidate) 3357 { 3358 vm_map_entry_t current; 3359 vm_map_entry_t entry; 3360 vm_size_t size; 3361 vm_object_t object; 3362 vm_ooffset_t offset; 3363 unsigned int last_timestamp; 3364 boolean_t failed; 3365 3366 vm_map_lock_read(map); 3367 VM_MAP_RANGE_CHECK(map, start, end); 3368 if (!vm_map_lookup_entry(map, start, &entry)) { 3369 vm_map_unlock_read(map); 3370 return (KERN_INVALID_ADDRESS); 3371 } else if (start == end) { 3372 start = entry->start; 3373 end = entry->end; 3374 } 3375 /* 3376 * Make a first pass to check for user-wired memory and holes. 3377 */ 3378 for (current = entry; current->start < end; current = current->next) { 3379 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) { 3380 vm_map_unlock_read(map); 3381 return (KERN_INVALID_ARGUMENT); 3382 } 3383 if (end > current->end && 3384 current->end != current->next->start) { 3385 vm_map_unlock_read(map); 3386 return (KERN_INVALID_ADDRESS); 3387 } 3388 } 3389 3390 if (invalidate) 3391 pmap_remove(map->pmap, start, end); 3392 failed = FALSE; 3393 3394 /* 3395 * Make a second pass, cleaning/uncaching pages from the indicated 3396 * objects as we go. 3397 */ 3398 for (current = entry; current->start < end;) { 3399 offset = current->offset + (start - current->start); 3400 size = (end <= current->end ? end : current->end) - start; 3401 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 3402 vm_map_t smap; 3403 vm_map_entry_t tentry; 3404 vm_size_t tsize; 3405 3406 smap = current->object.sub_map; 3407 vm_map_lock_read(smap); 3408 (void) vm_map_lookup_entry(smap, offset, &tentry); 3409 tsize = tentry->end - offset; 3410 if (tsize < size) 3411 size = tsize; 3412 object = tentry->object.vm_object; 3413 offset = tentry->offset + (offset - tentry->start); 3414 vm_map_unlock_read(smap); 3415 } else { 3416 object = current->object.vm_object; 3417 } 3418 vm_object_reference(object); 3419 last_timestamp = map->timestamp; 3420 vm_map_unlock_read(map); 3421 if (!vm_object_sync(object, offset, size, syncio, invalidate)) 3422 failed = TRUE; 3423 start += size; 3424 vm_object_deallocate(object); 3425 vm_map_lock_read(map); 3426 if (last_timestamp == map->timestamp || 3427 !vm_map_lookup_entry(map, start, ¤t)) 3428 current = current->next; 3429 } 3430 3431 vm_map_unlock_read(map); 3432 return (failed ? KERN_FAILURE : KERN_SUCCESS); 3433 } 3434 3435 /* 3436 * vm_map_entry_unwire: [ internal use only ] 3437 * 3438 * Make the region specified by this entry pageable. 3439 * 3440 * The map in question should be locked. 3441 * [This is the reason for this routine's existence.] 3442 */ 3443 static void 3444 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 3445 { 3446 vm_size_t size; 3447 3448 VM_MAP_ASSERT_LOCKED(map); 3449 KASSERT(entry->wired_count > 0, 3450 ("vm_map_entry_unwire: entry %p isn't wired", entry)); 3451 3452 size = entry->end - entry->start; 3453 if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0) 3454 vm_map_wire_user_count_sub(atop(size)); 3455 pmap_unwire(map->pmap, entry->start, entry->end); 3456 vm_object_unwire(entry->object.vm_object, entry->offset, size, 3457 PQ_ACTIVE); 3458 entry->wired_count = 0; 3459 } 3460 3461 static void 3462 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map) 3463 { 3464 3465 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) 3466 vm_object_deallocate(entry->object.vm_object); 3467 uma_zfree(system_map ? kmapentzone : mapentzone, entry); 3468 } 3469 3470 /* 3471 * vm_map_entry_delete: [ internal use only ] 3472 * 3473 * Deallocate the given entry from the target map. 3474 */ 3475 static void 3476 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry) 3477 { 3478 vm_object_t object; 3479 vm_pindex_t offidxstart, offidxend, count, size1; 3480 vm_size_t size; 3481 3482 vm_map_entry_unlink(map, entry, UNLINK_MERGE_NONE); 3483 object = entry->object.vm_object; 3484 3485 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) { 3486 MPASS(entry->cred == NULL); 3487 MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0); 3488 MPASS(object == NULL); 3489 vm_map_entry_deallocate(entry, map->system_map); 3490 return; 3491 } 3492 3493 size = entry->end - entry->start; 3494 map->size -= size; 3495 3496 if (entry->cred != NULL) { 3497 swap_release_by_cred(size, entry->cred); 3498 crfree(entry->cred); 3499 } 3500 3501 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 && 3502 (object != NULL)) { 3503 KASSERT(entry->cred == NULL || object->cred == NULL || 3504 (entry->eflags & MAP_ENTRY_NEEDS_COPY), 3505 ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry)); 3506 count = atop(size); 3507 offidxstart = OFF_TO_IDX(entry->offset); 3508 offidxend = offidxstart + count; 3509 VM_OBJECT_WLOCK(object); 3510 if (object->ref_count != 1 && ((object->flags & (OBJ_NOSPLIT | 3511 OBJ_ONEMAPPING)) == OBJ_ONEMAPPING || 3512 object == kernel_object)) { 3513 vm_object_collapse(object); 3514 3515 /* 3516 * The option OBJPR_NOTMAPPED can be passed here 3517 * because vm_map_delete() already performed 3518 * pmap_remove() on the only mapping to this range 3519 * of pages. 3520 */ 3521 vm_object_page_remove(object, offidxstart, offidxend, 3522 OBJPR_NOTMAPPED); 3523 if (object->type == OBJT_SWAP) 3524 swap_pager_freespace(object, offidxstart, 3525 count); 3526 if (offidxend >= object->size && 3527 offidxstart < object->size) { 3528 size1 = object->size; 3529 object->size = offidxstart; 3530 if (object->cred != NULL) { 3531 size1 -= object->size; 3532 KASSERT(object->charge >= ptoa(size1), 3533 ("object %p charge < 0", object)); 3534 swap_release_by_cred(ptoa(size1), 3535 object->cred); 3536 object->charge -= ptoa(size1); 3537 } 3538 } 3539 } 3540 VM_OBJECT_WUNLOCK(object); 3541 } else 3542 entry->object.vm_object = NULL; 3543 if (map->system_map) 3544 vm_map_entry_deallocate(entry, TRUE); 3545 else { 3546 entry->next = curthread->td_map_def_user; 3547 curthread->td_map_def_user = entry; 3548 } 3549 } 3550 3551 /* 3552 * vm_map_delete: [ internal use only ] 3553 * 3554 * Deallocates the given address range from the target 3555 * map. 3556 */ 3557 int 3558 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end) 3559 { 3560 vm_map_entry_t entry; 3561 vm_map_entry_t first_entry; 3562 3563 VM_MAP_ASSERT_LOCKED(map); 3564 if (start == end) 3565 return (KERN_SUCCESS); 3566 3567 /* 3568 * Find the start of the region, and clip it 3569 */ 3570 if (!vm_map_lookup_entry(map, start, &first_entry)) 3571 entry = first_entry->next; 3572 else { 3573 entry = first_entry; 3574 vm_map_clip_start(map, entry, start); 3575 } 3576 3577 /* 3578 * Step through all entries in this region 3579 */ 3580 while (entry->start < end) { 3581 vm_map_entry_t next; 3582 3583 /* 3584 * Wait for wiring or unwiring of an entry to complete. 3585 * Also wait for any system wirings to disappear on 3586 * user maps. 3587 */ 3588 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 || 3589 (vm_map_pmap(map) != kernel_pmap && 3590 vm_map_entry_system_wired_count(entry) != 0)) { 3591 unsigned int last_timestamp; 3592 vm_offset_t saved_start; 3593 vm_map_entry_t tmp_entry; 3594 3595 saved_start = entry->start; 3596 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 3597 last_timestamp = map->timestamp; 3598 (void) vm_map_unlock_and_wait(map, 0); 3599 vm_map_lock(map); 3600 if (last_timestamp + 1 != map->timestamp) { 3601 /* 3602 * Look again for the entry because the map was 3603 * modified while it was unlocked. 3604 * Specifically, the entry may have been 3605 * clipped, merged, or deleted. 3606 */ 3607 if (!vm_map_lookup_entry(map, saved_start, 3608 &tmp_entry)) 3609 entry = tmp_entry->next; 3610 else { 3611 entry = tmp_entry; 3612 vm_map_clip_start(map, entry, 3613 saved_start); 3614 } 3615 } 3616 continue; 3617 } 3618 vm_map_clip_end(map, entry, end); 3619 3620 next = entry->next; 3621 3622 /* 3623 * Unwire before removing addresses from the pmap; otherwise, 3624 * unwiring will put the entries back in the pmap. 3625 */ 3626 if (entry->wired_count != 0) 3627 vm_map_entry_unwire(map, entry); 3628 3629 /* 3630 * Remove mappings for the pages, but only if the 3631 * mappings could exist. For instance, it does not 3632 * make sense to call pmap_remove() for guard entries. 3633 */ 3634 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || 3635 entry->object.vm_object != NULL) 3636 pmap_remove(map->pmap, entry->start, entry->end); 3637 3638 if (entry->end == map->anon_loc) 3639 map->anon_loc = entry->start; 3640 3641 /* 3642 * Delete the entry only after removing all pmap 3643 * entries pointing to its pages. (Otherwise, its 3644 * page frames may be reallocated, and any modify bits 3645 * will be set in the wrong object!) 3646 */ 3647 vm_map_entry_delete(map, entry); 3648 entry = next; 3649 } 3650 return (KERN_SUCCESS); 3651 } 3652 3653 /* 3654 * vm_map_remove: 3655 * 3656 * Remove the given address range from the target map. 3657 * This is the exported form of vm_map_delete. 3658 */ 3659 int 3660 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 3661 { 3662 int result; 3663 3664 vm_map_lock(map); 3665 VM_MAP_RANGE_CHECK(map, start, end); 3666 result = vm_map_delete(map, start, end); 3667 vm_map_unlock(map); 3668 return (result); 3669 } 3670 3671 /* 3672 * vm_map_check_protection: 3673 * 3674 * Assert that the target map allows the specified privilege on the 3675 * entire address region given. The entire region must be allocated. 3676 * 3677 * WARNING! This code does not and should not check whether the 3678 * contents of the region is accessible. For example a smaller file 3679 * might be mapped into a larger address space. 3680 * 3681 * NOTE! This code is also called by munmap(). 3682 * 3683 * The map must be locked. A read lock is sufficient. 3684 */ 3685 boolean_t 3686 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 3687 vm_prot_t protection) 3688 { 3689 vm_map_entry_t entry; 3690 vm_map_entry_t tmp_entry; 3691 3692 if (!vm_map_lookup_entry(map, start, &tmp_entry)) 3693 return (FALSE); 3694 entry = tmp_entry; 3695 3696 while (start < end) { 3697 /* 3698 * No holes allowed! 3699 */ 3700 if (start < entry->start) 3701 return (FALSE); 3702 /* 3703 * Check protection associated with entry. 3704 */ 3705 if ((entry->protection & protection) != protection) 3706 return (FALSE); 3707 /* go to next entry */ 3708 start = entry->end; 3709 entry = entry->next; 3710 } 3711 return (TRUE); 3712 } 3713 3714 /* 3715 * vm_map_copy_entry: 3716 * 3717 * Copies the contents of the source entry to the destination 3718 * entry. The entries *must* be aligned properly. 3719 */ 3720 static void 3721 vm_map_copy_entry( 3722 vm_map_t src_map, 3723 vm_map_t dst_map, 3724 vm_map_entry_t src_entry, 3725 vm_map_entry_t dst_entry, 3726 vm_ooffset_t *fork_charge) 3727 { 3728 vm_object_t src_object; 3729 vm_map_entry_t fake_entry; 3730 vm_offset_t size; 3731 struct ucred *cred; 3732 int charged; 3733 3734 VM_MAP_ASSERT_LOCKED(dst_map); 3735 3736 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP) 3737 return; 3738 3739 if (src_entry->wired_count == 0 || 3740 (src_entry->protection & VM_PROT_WRITE) == 0) { 3741 /* 3742 * If the source entry is marked needs_copy, it is already 3743 * write-protected. 3744 */ 3745 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 && 3746 (src_entry->protection & VM_PROT_WRITE) != 0) { 3747 pmap_protect(src_map->pmap, 3748 src_entry->start, 3749 src_entry->end, 3750 src_entry->protection & ~VM_PROT_WRITE); 3751 } 3752 3753 /* 3754 * Make a copy of the object. 3755 */ 3756 size = src_entry->end - src_entry->start; 3757 if ((src_object = src_entry->object.vm_object) != NULL) { 3758 VM_OBJECT_WLOCK(src_object); 3759 charged = ENTRY_CHARGED(src_entry); 3760 if (src_object->handle == NULL && 3761 (src_object->type == OBJT_DEFAULT || 3762 src_object->type == OBJT_SWAP)) { 3763 vm_object_collapse(src_object); 3764 if ((src_object->flags & (OBJ_NOSPLIT | 3765 OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) { 3766 vm_object_split(src_entry); 3767 src_object = 3768 src_entry->object.vm_object; 3769 } 3770 } 3771 vm_object_reference_locked(src_object); 3772 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 3773 if (src_entry->cred != NULL && 3774 !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 3775 KASSERT(src_object->cred == NULL, 3776 ("OVERCOMMIT: vm_map_copy_entry: cred %p", 3777 src_object)); 3778 src_object->cred = src_entry->cred; 3779 src_object->charge = size; 3780 } 3781 VM_OBJECT_WUNLOCK(src_object); 3782 dst_entry->object.vm_object = src_object; 3783 if (charged) { 3784 cred = curthread->td_ucred; 3785 crhold(cred); 3786 dst_entry->cred = cred; 3787 *fork_charge += size; 3788 if (!(src_entry->eflags & 3789 MAP_ENTRY_NEEDS_COPY)) { 3790 crhold(cred); 3791 src_entry->cred = cred; 3792 *fork_charge += size; 3793 } 3794 } 3795 src_entry->eflags |= MAP_ENTRY_COW | 3796 MAP_ENTRY_NEEDS_COPY; 3797 dst_entry->eflags |= MAP_ENTRY_COW | 3798 MAP_ENTRY_NEEDS_COPY; 3799 dst_entry->offset = src_entry->offset; 3800 if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) { 3801 /* 3802 * MAP_ENTRY_VN_WRITECNT cannot 3803 * indicate write reference from 3804 * src_entry, since the entry is 3805 * marked as needs copy. Allocate a 3806 * fake entry that is used to 3807 * decrement object->un_pager.vnp.writecount 3808 * at the appropriate time. Attach 3809 * fake_entry to the deferred list. 3810 */ 3811 fake_entry = vm_map_entry_create(dst_map); 3812 fake_entry->eflags = MAP_ENTRY_VN_WRITECNT; 3813 src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT; 3814 vm_object_reference(src_object); 3815 fake_entry->object.vm_object = src_object; 3816 fake_entry->start = src_entry->start; 3817 fake_entry->end = src_entry->end; 3818 fake_entry->next = curthread->td_map_def_user; 3819 curthread->td_map_def_user = fake_entry; 3820 } 3821 3822 pmap_copy(dst_map->pmap, src_map->pmap, 3823 dst_entry->start, dst_entry->end - dst_entry->start, 3824 src_entry->start); 3825 } else { 3826 dst_entry->object.vm_object = NULL; 3827 dst_entry->offset = 0; 3828 if (src_entry->cred != NULL) { 3829 dst_entry->cred = curthread->td_ucred; 3830 crhold(dst_entry->cred); 3831 *fork_charge += size; 3832 } 3833 } 3834 } else { 3835 /* 3836 * We don't want to make writeable wired pages copy-on-write. 3837 * Immediately copy these pages into the new map by simulating 3838 * page faults. The new pages are pageable. 3839 */ 3840 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry, 3841 fork_charge); 3842 } 3843 } 3844 3845 /* 3846 * vmspace_map_entry_forked: 3847 * Update the newly-forked vmspace each time a map entry is inherited 3848 * or copied. The values for vm_dsize and vm_tsize are approximate 3849 * (and mostly-obsolete ideas in the face of mmap(2) et al.) 3850 */ 3851 static void 3852 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2, 3853 vm_map_entry_t entry) 3854 { 3855 vm_size_t entrysize; 3856 vm_offset_t newend; 3857 3858 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) 3859 return; 3860 entrysize = entry->end - entry->start; 3861 vm2->vm_map.size += entrysize; 3862 if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) { 3863 vm2->vm_ssize += btoc(entrysize); 3864 } else if (entry->start >= (vm_offset_t)vm1->vm_daddr && 3865 entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) { 3866 newend = MIN(entry->end, 3867 (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)); 3868 vm2->vm_dsize += btoc(newend - entry->start); 3869 } else if (entry->start >= (vm_offset_t)vm1->vm_taddr && 3870 entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) { 3871 newend = MIN(entry->end, 3872 (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)); 3873 vm2->vm_tsize += btoc(newend - entry->start); 3874 } 3875 } 3876 3877 /* 3878 * vmspace_fork: 3879 * Create a new process vmspace structure and vm_map 3880 * based on those of an existing process. The new map 3881 * is based on the old map, according to the inheritance 3882 * values on the regions in that map. 3883 * 3884 * XXX It might be worth coalescing the entries added to the new vmspace. 3885 * 3886 * The source map must not be locked. 3887 */ 3888 struct vmspace * 3889 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge) 3890 { 3891 struct vmspace *vm2; 3892 vm_map_t new_map, old_map; 3893 vm_map_entry_t new_entry, old_entry; 3894 vm_object_t object; 3895 int error, locked; 3896 vm_inherit_t inh; 3897 3898 old_map = &vm1->vm_map; 3899 /* Copy immutable fields of vm1 to vm2. */ 3900 vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map), 3901 pmap_pinit); 3902 if (vm2 == NULL) 3903 return (NULL); 3904 3905 vm2->vm_taddr = vm1->vm_taddr; 3906 vm2->vm_daddr = vm1->vm_daddr; 3907 vm2->vm_maxsaddr = vm1->vm_maxsaddr; 3908 vm_map_lock(old_map); 3909 if (old_map->busy) 3910 vm_map_wait_busy(old_map); 3911 new_map = &vm2->vm_map; 3912 locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */ 3913 KASSERT(locked, ("vmspace_fork: lock failed")); 3914 3915 error = pmap_vmspace_copy(new_map->pmap, old_map->pmap); 3916 if (error != 0) { 3917 sx_xunlock(&old_map->lock); 3918 sx_xunlock(&new_map->lock); 3919 vm_map_process_deferred(); 3920 vmspace_free(vm2); 3921 return (NULL); 3922 } 3923 3924 new_map->anon_loc = old_map->anon_loc; 3925 3926 old_entry = old_map->header.next; 3927 3928 while (old_entry != &old_map->header) { 3929 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) 3930 panic("vm_map_fork: encountered a submap"); 3931 3932 inh = old_entry->inheritance; 3933 if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 && 3934 inh != VM_INHERIT_NONE) 3935 inh = VM_INHERIT_COPY; 3936 3937 switch (inh) { 3938 case VM_INHERIT_NONE: 3939 break; 3940 3941 case VM_INHERIT_SHARE: 3942 /* 3943 * Clone the entry, creating the shared object if necessary. 3944 */ 3945 object = old_entry->object.vm_object; 3946 if (object == NULL) { 3947 vm_map_entry_back(old_entry); 3948 object = old_entry->object.vm_object; 3949 } 3950 3951 /* 3952 * Add the reference before calling vm_object_shadow 3953 * to insure that a shadow object is created. 3954 */ 3955 vm_object_reference(object); 3956 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3957 vm_object_shadow(&old_entry->object.vm_object, 3958 &old_entry->offset, 3959 old_entry->end - old_entry->start); 3960 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 3961 /* Transfer the second reference too. */ 3962 vm_object_reference( 3963 old_entry->object.vm_object); 3964 3965 /* 3966 * As in vm_map_simplify_entry(), the 3967 * vnode lock will not be acquired in 3968 * this call to vm_object_deallocate(). 3969 */ 3970 vm_object_deallocate(object); 3971 object = old_entry->object.vm_object; 3972 } 3973 VM_OBJECT_WLOCK(object); 3974 vm_object_clear_flag(object, OBJ_ONEMAPPING); 3975 if (old_entry->cred != NULL) { 3976 KASSERT(object->cred == NULL, ("vmspace_fork both cred")); 3977 object->cred = old_entry->cred; 3978 object->charge = old_entry->end - old_entry->start; 3979 old_entry->cred = NULL; 3980 } 3981 3982 /* 3983 * Assert the correct state of the vnode 3984 * v_writecount while the object is locked, to 3985 * not relock it later for the assertion 3986 * correctness. 3987 */ 3988 if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT && 3989 object->type == OBJT_VNODE) { 3990 KASSERT(((struct vnode *)object->handle)-> 3991 v_writecount > 0, 3992 ("vmspace_fork: v_writecount %p", object)); 3993 KASSERT(object->un_pager.vnp.writemappings > 0, 3994 ("vmspace_fork: vnp.writecount %p", 3995 object)); 3996 } 3997 VM_OBJECT_WUNLOCK(object); 3998 3999 /* 4000 * Clone the entry, referencing the shared object. 4001 */ 4002 new_entry = vm_map_entry_create(new_map); 4003 *new_entry = *old_entry; 4004 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 4005 MAP_ENTRY_IN_TRANSITION); 4006 new_entry->wiring_thread = NULL; 4007 new_entry->wired_count = 0; 4008 if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) { 4009 vnode_pager_update_writecount(object, 4010 new_entry->start, new_entry->end); 4011 } 4012 vm_map_entry_set_vnode_text(new_entry, true); 4013 4014 /* 4015 * Insert the entry into the new map -- we know we're 4016 * inserting at the end of the new map. 4017 */ 4018 vm_map_entry_link(new_map, new_entry); 4019 vmspace_map_entry_forked(vm1, vm2, new_entry); 4020 4021 /* 4022 * Update the physical map 4023 */ 4024 pmap_copy(new_map->pmap, old_map->pmap, 4025 new_entry->start, 4026 (old_entry->end - old_entry->start), 4027 old_entry->start); 4028 break; 4029 4030 case VM_INHERIT_COPY: 4031 /* 4032 * Clone the entry and link into the map. 4033 */ 4034 new_entry = vm_map_entry_create(new_map); 4035 *new_entry = *old_entry; 4036 /* 4037 * Copied entry is COW over the old object. 4038 */ 4039 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 4040 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT); 4041 new_entry->wiring_thread = NULL; 4042 new_entry->wired_count = 0; 4043 new_entry->object.vm_object = NULL; 4044 new_entry->cred = NULL; 4045 vm_map_entry_link(new_map, new_entry); 4046 vmspace_map_entry_forked(vm1, vm2, new_entry); 4047 vm_map_copy_entry(old_map, new_map, old_entry, 4048 new_entry, fork_charge); 4049 vm_map_entry_set_vnode_text(new_entry, true); 4050 break; 4051 4052 case VM_INHERIT_ZERO: 4053 /* 4054 * Create a new anonymous mapping entry modelled from 4055 * the old one. 4056 */ 4057 new_entry = vm_map_entry_create(new_map); 4058 memset(new_entry, 0, sizeof(*new_entry)); 4059 4060 new_entry->start = old_entry->start; 4061 new_entry->end = old_entry->end; 4062 new_entry->eflags = old_entry->eflags & 4063 ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION | 4064 MAP_ENTRY_VN_WRITECNT | MAP_ENTRY_VN_EXEC); 4065 new_entry->protection = old_entry->protection; 4066 new_entry->max_protection = old_entry->max_protection; 4067 new_entry->inheritance = VM_INHERIT_ZERO; 4068 4069 vm_map_entry_link(new_map, new_entry); 4070 vmspace_map_entry_forked(vm1, vm2, new_entry); 4071 4072 new_entry->cred = curthread->td_ucred; 4073 crhold(new_entry->cred); 4074 *fork_charge += (new_entry->end - new_entry->start); 4075 4076 break; 4077 } 4078 old_entry = old_entry->next; 4079 } 4080 /* 4081 * Use inlined vm_map_unlock() to postpone handling the deferred 4082 * map entries, which cannot be done until both old_map and 4083 * new_map locks are released. 4084 */ 4085 sx_xunlock(&old_map->lock); 4086 sx_xunlock(&new_map->lock); 4087 vm_map_process_deferred(); 4088 4089 return (vm2); 4090 } 4091 4092 /* 4093 * Create a process's stack for exec_new_vmspace(). This function is never 4094 * asked to wire the newly created stack. 4095 */ 4096 int 4097 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 4098 vm_prot_t prot, vm_prot_t max, int cow) 4099 { 4100 vm_size_t growsize, init_ssize; 4101 rlim_t vmemlim; 4102 int rv; 4103 4104 MPASS((map->flags & MAP_WIREFUTURE) == 0); 4105 growsize = sgrowsiz; 4106 init_ssize = (max_ssize < growsize) ? max_ssize : growsize; 4107 vm_map_lock(map); 4108 vmemlim = lim_cur(curthread, RLIMIT_VMEM); 4109 /* If we would blow our VMEM resource limit, no go */ 4110 if (map->size + init_ssize > vmemlim) { 4111 rv = KERN_NO_SPACE; 4112 goto out; 4113 } 4114 rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot, 4115 max, cow); 4116 out: 4117 vm_map_unlock(map); 4118 return (rv); 4119 } 4120 4121 static int stack_guard_page = 1; 4122 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN, 4123 &stack_guard_page, 0, 4124 "Specifies the number of guard pages for a stack that grows"); 4125 4126 static int 4127 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 4128 vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow) 4129 { 4130 vm_map_entry_t new_entry, prev_entry; 4131 vm_offset_t bot, gap_bot, gap_top, top; 4132 vm_size_t init_ssize, sgp; 4133 int orient, rv; 4134 4135 /* 4136 * The stack orientation is piggybacked with the cow argument. 4137 * Extract it into orient and mask the cow argument so that we 4138 * don't pass it around further. 4139 */ 4140 orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP); 4141 KASSERT(orient != 0, ("No stack grow direction")); 4142 KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP), 4143 ("bi-dir stack")); 4144 4145 if (addrbos < vm_map_min(map) || 4146 addrbos + max_ssize > vm_map_max(map) || 4147 addrbos + max_ssize <= addrbos) 4148 return (KERN_INVALID_ADDRESS); 4149 sgp = (vm_size_t)stack_guard_page * PAGE_SIZE; 4150 if (sgp >= max_ssize) 4151 return (KERN_INVALID_ARGUMENT); 4152 4153 init_ssize = growsize; 4154 if (max_ssize < init_ssize + sgp) 4155 init_ssize = max_ssize - sgp; 4156 4157 /* If addr is already mapped, no go */ 4158 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) 4159 return (KERN_NO_SPACE); 4160 4161 /* 4162 * If we can't accommodate max_ssize in the current mapping, no go. 4163 */ 4164 if (prev_entry->next->start < addrbos + max_ssize) 4165 return (KERN_NO_SPACE); 4166 4167 /* 4168 * We initially map a stack of only init_ssize. We will grow as 4169 * needed later. Depending on the orientation of the stack (i.e. 4170 * the grow direction) we either map at the top of the range, the 4171 * bottom of the range or in the middle. 4172 * 4173 * Note: we would normally expect prot and max to be VM_PROT_ALL, 4174 * and cow to be 0. Possibly we should eliminate these as input 4175 * parameters, and just pass these values here in the insert call. 4176 */ 4177 if (orient == MAP_STACK_GROWS_DOWN) { 4178 bot = addrbos + max_ssize - init_ssize; 4179 top = bot + init_ssize; 4180 gap_bot = addrbos; 4181 gap_top = bot; 4182 } else /* if (orient == MAP_STACK_GROWS_UP) */ { 4183 bot = addrbos; 4184 top = bot + init_ssize; 4185 gap_bot = top; 4186 gap_top = addrbos + max_ssize; 4187 } 4188 rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow); 4189 if (rv != KERN_SUCCESS) 4190 return (rv); 4191 new_entry = prev_entry->next; 4192 KASSERT(new_entry->end == top || new_entry->start == bot, 4193 ("Bad entry start/end for new stack entry")); 4194 KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 || 4195 (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0, 4196 ("new entry lacks MAP_ENTRY_GROWS_DOWN")); 4197 KASSERT((orient & MAP_STACK_GROWS_UP) == 0 || 4198 (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0, 4199 ("new entry lacks MAP_ENTRY_GROWS_UP")); 4200 rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE, 4201 VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ? 4202 MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP)); 4203 if (rv != KERN_SUCCESS) 4204 (void)vm_map_delete(map, bot, top); 4205 return (rv); 4206 } 4207 4208 /* 4209 * Attempts to grow a vm stack entry. Returns KERN_SUCCESS if we 4210 * successfully grow the stack. 4211 */ 4212 static int 4213 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry) 4214 { 4215 vm_map_entry_t stack_entry; 4216 struct proc *p; 4217 struct vmspace *vm; 4218 struct ucred *cred; 4219 vm_offset_t gap_end, gap_start, grow_start; 4220 vm_size_t grow_amount, guard, max_grow; 4221 rlim_t lmemlim, stacklim, vmemlim; 4222 int rv, rv1; 4223 bool gap_deleted, grow_down, is_procstack; 4224 #ifdef notyet 4225 uint64_t limit; 4226 #endif 4227 #ifdef RACCT 4228 int error; 4229 #endif 4230 4231 p = curproc; 4232 vm = p->p_vmspace; 4233 4234 /* 4235 * Disallow stack growth when the access is performed by a 4236 * debugger or AIO daemon. The reason is that the wrong 4237 * resource limits are applied. 4238 */ 4239 if (map != &p->p_vmspace->vm_map || p->p_textvp == NULL) 4240 return (KERN_FAILURE); 4241 4242 MPASS(!map->system_map); 4243 4244 guard = stack_guard_page * PAGE_SIZE; 4245 lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK); 4246 stacklim = lim_cur(curthread, RLIMIT_STACK); 4247 vmemlim = lim_cur(curthread, RLIMIT_VMEM); 4248 retry: 4249 /* If addr is not in a hole for a stack grow area, no need to grow. */ 4250 if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry)) 4251 return (KERN_FAILURE); 4252 if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0) 4253 return (KERN_SUCCESS); 4254 if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) { 4255 stack_entry = gap_entry->next; 4256 if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 || 4257 stack_entry->start != gap_entry->end) 4258 return (KERN_FAILURE); 4259 grow_amount = round_page(stack_entry->start - addr); 4260 grow_down = true; 4261 } else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) { 4262 stack_entry = gap_entry->prev; 4263 if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 || 4264 stack_entry->end != gap_entry->start) 4265 return (KERN_FAILURE); 4266 grow_amount = round_page(addr + 1 - stack_entry->end); 4267 grow_down = false; 4268 } else { 4269 return (KERN_FAILURE); 4270 } 4271 max_grow = gap_entry->end - gap_entry->start; 4272 if (guard > max_grow) 4273 return (KERN_NO_SPACE); 4274 max_grow -= guard; 4275 if (grow_amount > max_grow) 4276 return (KERN_NO_SPACE); 4277 4278 /* 4279 * If this is the main process stack, see if we're over the stack 4280 * limit. 4281 */ 4282 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr && 4283 addr < (vm_offset_t)p->p_sysent->sv_usrstack; 4284 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) 4285 return (KERN_NO_SPACE); 4286 4287 #ifdef RACCT 4288 if (racct_enable) { 4289 PROC_LOCK(p); 4290 if (is_procstack && racct_set(p, RACCT_STACK, 4291 ctob(vm->vm_ssize) + grow_amount)) { 4292 PROC_UNLOCK(p); 4293 return (KERN_NO_SPACE); 4294 } 4295 PROC_UNLOCK(p); 4296 } 4297 #endif 4298 4299 grow_amount = roundup(grow_amount, sgrowsiz); 4300 if (grow_amount > max_grow) 4301 grow_amount = max_grow; 4302 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 4303 grow_amount = trunc_page((vm_size_t)stacklim) - 4304 ctob(vm->vm_ssize); 4305 } 4306 4307 #ifdef notyet 4308 PROC_LOCK(p); 4309 limit = racct_get_available(p, RACCT_STACK); 4310 PROC_UNLOCK(p); 4311 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit)) 4312 grow_amount = limit - ctob(vm->vm_ssize); 4313 #endif 4314 4315 if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) { 4316 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) { 4317 rv = KERN_NO_SPACE; 4318 goto out; 4319 } 4320 #ifdef RACCT 4321 if (racct_enable) { 4322 PROC_LOCK(p); 4323 if (racct_set(p, RACCT_MEMLOCK, 4324 ptoa(pmap_wired_count(map->pmap)) + grow_amount)) { 4325 PROC_UNLOCK(p); 4326 rv = KERN_NO_SPACE; 4327 goto out; 4328 } 4329 PROC_UNLOCK(p); 4330 } 4331 #endif 4332 } 4333 4334 /* If we would blow our VMEM resource limit, no go */ 4335 if (map->size + grow_amount > vmemlim) { 4336 rv = KERN_NO_SPACE; 4337 goto out; 4338 } 4339 #ifdef RACCT 4340 if (racct_enable) { 4341 PROC_LOCK(p); 4342 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) { 4343 PROC_UNLOCK(p); 4344 rv = KERN_NO_SPACE; 4345 goto out; 4346 } 4347 PROC_UNLOCK(p); 4348 } 4349 #endif 4350 4351 if (vm_map_lock_upgrade(map)) { 4352 gap_entry = NULL; 4353 vm_map_lock_read(map); 4354 goto retry; 4355 } 4356 4357 if (grow_down) { 4358 grow_start = gap_entry->end - grow_amount; 4359 if (gap_entry->start + grow_amount == gap_entry->end) { 4360 gap_start = gap_entry->start; 4361 gap_end = gap_entry->end; 4362 vm_map_entry_delete(map, gap_entry); 4363 gap_deleted = true; 4364 } else { 4365 MPASS(gap_entry->start < gap_entry->end - grow_amount); 4366 vm_map_entry_resize(map, gap_entry, -grow_amount); 4367 gap_deleted = false; 4368 } 4369 rv = vm_map_insert(map, NULL, 0, grow_start, 4370 grow_start + grow_amount, 4371 stack_entry->protection, stack_entry->max_protection, 4372 MAP_STACK_GROWS_DOWN); 4373 if (rv != KERN_SUCCESS) { 4374 if (gap_deleted) { 4375 rv1 = vm_map_insert(map, NULL, 0, gap_start, 4376 gap_end, VM_PROT_NONE, VM_PROT_NONE, 4377 MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN); 4378 MPASS(rv1 == KERN_SUCCESS); 4379 } else 4380 vm_map_entry_resize(map, gap_entry, 4381 grow_amount); 4382 } 4383 } else { 4384 grow_start = stack_entry->end; 4385 cred = stack_entry->cred; 4386 if (cred == NULL && stack_entry->object.vm_object != NULL) 4387 cred = stack_entry->object.vm_object->cred; 4388 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred)) 4389 rv = KERN_NO_SPACE; 4390 /* Grow the underlying object if applicable. */ 4391 else if (stack_entry->object.vm_object == NULL || 4392 vm_object_coalesce(stack_entry->object.vm_object, 4393 stack_entry->offset, 4394 (vm_size_t)(stack_entry->end - stack_entry->start), 4395 grow_amount, cred != NULL)) { 4396 if (gap_entry->start + grow_amount == gap_entry->end) { 4397 vm_map_entry_delete(map, gap_entry); 4398 vm_map_entry_resize(map, stack_entry, 4399 grow_amount); 4400 } else { 4401 gap_entry->start += grow_amount; 4402 stack_entry->end += grow_amount; 4403 } 4404 map->size += grow_amount; 4405 rv = KERN_SUCCESS; 4406 } else 4407 rv = KERN_FAILURE; 4408 } 4409 if (rv == KERN_SUCCESS && is_procstack) 4410 vm->vm_ssize += btoc(grow_amount); 4411 4412 /* 4413 * Heed the MAP_WIREFUTURE flag if it was set for this process. 4414 */ 4415 if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) { 4416 rv = vm_map_wire_locked(map, grow_start, 4417 grow_start + grow_amount, 4418 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 4419 } 4420 vm_map_lock_downgrade(map); 4421 4422 out: 4423 #ifdef RACCT 4424 if (racct_enable && rv != KERN_SUCCESS) { 4425 PROC_LOCK(p); 4426 error = racct_set(p, RACCT_VMEM, map->size); 4427 KASSERT(error == 0, ("decreasing RACCT_VMEM failed")); 4428 if (!old_mlock) { 4429 error = racct_set(p, RACCT_MEMLOCK, 4430 ptoa(pmap_wired_count(map->pmap))); 4431 KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed")); 4432 } 4433 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize)); 4434 KASSERT(error == 0, ("decreasing RACCT_STACK failed")); 4435 PROC_UNLOCK(p); 4436 } 4437 #endif 4438 4439 return (rv); 4440 } 4441 4442 /* 4443 * Unshare the specified VM space for exec. If other processes are 4444 * mapped to it, then create a new one. The new vmspace is null. 4445 */ 4446 int 4447 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser) 4448 { 4449 struct vmspace *oldvmspace = p->p_vmspace; 4450 struct vmspace *newvmspace; 4451 4452 KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0, 4453 ("vmspace_exec recursed")); 4454 newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit); 4455 if (newvmspace == NULL) 4456 return (ENOMEM); 4457 newvmspace->vm_swrss = oldvmspace->vm_swrss; 4458 /* 4459 * This code is written like this for prototype purposes. The 4460 * goal is to avoid running down the vmspace here, but let the 4461 * other process's that are still using the vmspace to finally 4462 * run it down. Even though there is little or no chance of blocking 4463 * here, it is a good idea to keep this form for future mods. 4464 */ 4465 PROC_VMSPACE_LOCK(p); 4466 p->p_vmspace = newvmspace; 4467 PROC_VMSPACE_UNLOCK(p); 4468 if (p == curthread->td_proc) 4469 pmap_activate(curthread); 4470 curthread->td_pflags |= TDP_EXECVMSPC; 4471 return (0); 4472 } 4473 4474 /* 4475 * Unshare the specified VM space for forcing COW. This 4476 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 4477 */ 4478 int 4479 vmspace_unshare(struct proc *p) 4480 { 4481 struct vmspace *oldvmspace = p->p_vmspace; 4482 struct vmspace *newvmspace; 4483 vm_ooffset_t fork_charge; 4484 4485 if (oldvmspace->vm_refcnt == 1) 4486 return (0); 4487 fork_charge = 0; 4488 newvmspace = vmspace_fork(oldvmspace, &fork_charge); 4489 if (newvmspace == NULL) 4490 return (ENOMEM); 4491 if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) { 4492 vmspace_free(newvmspace); 4493 return (ENOMEM); 4494 } 4495 PROC_VMSPACE_LOCK(p); 4496 p->p_vmspace = newvmspace; 4497 PROC_VMSPACE_UNLOCK(p); 4498 if (p == curthread->td_proc) 4499 pmap_activate(curthread); 4500 vmspace_free(oldvmspace); 4501 return (0); 4502 } 4503 4504 /* 4505 * vm_map_lookup: 4506 * 4507 * Finds the VM object, offset, and 4508 * protection for a given virtual address in the 4509 * specified map, assuming a page fault of the 4510 * type specified. 4511 * 4512 * Leaves the map in question locked for read; return 4513 * values are guaranteed until a vm_map_lookup_done 4514 * call is performed. Note that the map argument 4515 * is in/out; the returned map must be used in 4516 * the call to vm_map_lookup_done. 4517 * 4518 * A handle (out_entry) is returned for use in 4519 * vm_map_lookup_done, to make that fast. 4520 * 4521 * If a lookup is requested with "write protection" 4522 * specified, the map may be changed to perform virtual 4523 * copying operations, although the data referenced will 4524 * remain the same. 4525 */ 4526 int 4527 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 4528 vm_offset_t vaddr, 4529 vm_prot_t fault_typea, 4530 vm_map_entry_t *out_entry, /* OUT */ 4531 vm_object_t *object, /* OUT */ 4532 vm_pindex_t *pindex, /* OUT */ 4533 vm_prot_t *out_prot, /* OUT */ 4534 boolean_t *wired) /* OUT */ 4535 { 4536 vm_map_entry_t entry; 4537 vm_map_t map = *var_map; 4538 vm_prot_t prot; 4539 vm_prot_t fault_type = fault_typea; 4540 vm_object_t eobject; 4541 vm_size_t size; 4542 struct ucred *cred; 4543 4544 RetryLookup: 4545 4546 vm_map_lock_read(map); 4547 4548 RetryLookupLocked: 4549 /* 4550 * Lookup the faulting address. 4551 */ 4552 if (!vm_map_lookup_entry(map, vaddr, out_entry)) { 4553 vm_map_unlock_read(map); 4554 return (KERN_INVALID_ADDRESS); 4555 } 4556 4557 entry = *out_entry; 4558 4559 /* 4560 * Handle submaps. 4561 */ 4562 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 4563 vm_map_t old_map = map; 4564 4565 *var_map = map = entry->object.sub_map; 4566 vm_map_unlock_read(old_map); 4567 goto RetryLookup; 4568 } 4569 4570 /* 4571 * Check whether this task is allowed to have this page. 4572 */ 4573 prot = entry->protection; 4574 if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) { 4575 fault_typea &= ~VM_PROT_FAULT_LOOKUP; 4576 if (prot == VM_PROT_NONE && map != kernel_map && 4577 (entry->eflags & MAP_ENTRY_GUARD) != 0 && 4578 (entry->eflags & (MAP_ENTRY_STACK_GAP_DN | 4579 MAP_ENTRY_STACK_GAP_UP)) != 0 && 4580 vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS) 4581 goto RetryLookupLocked; 4582 } 4583 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; 4584 if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) { 4585 vm_map_unlock_read(map); 4586 return (KERN_PROTECTION_FAILURE); 4587 } 4588 KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags & 4589 (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) != 4590 (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY), 4591 ("entry %p flags %x", entry, entry->eflags)); 4592 if ((fault_typea & VM_PROT_COPY) != 0 && 4593 (entry->max_protection & VM_PROT_WRITE) == 0 && 4594 (entry->eflags & MAP_ENTRY_COW) == 0) { 4595 vm_map_unlock_read(map); 4596 return (KERN_PROTECTION_FAILURE); 4597 } 4598 4599 /* 4600 * If this page is not pageable, we have to get it for all possible 4601 * accesses. 4602 */ 4603 *wired = (entry->wired_count != 0); 4604 if (*wired) 4605 fault_type = entry->protection; 4606 size = entry->end - entry->start; 4607 /* 4608 * If the entry was copy-on-write, we either ... 4609 */ 4610 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 4611 /* 4612 * If we want to write the page, we may as well handle that 4613 * now since we've got the map locked. 4614 * 4615 * If we don't need to write the page, we just demote the 4616 * permissions allowed. 4617 */ 4618 if ((fault_type & VM_PROT_WRITE) != 0 || 4619 (fault_typea & VM_PROT_COPY) != 0) { 4620 /* 4621 * Make a new object, and place it in the object 4622 * chain. Note that no new references have appeared 4623 * -- one just moved from the map to the new 4624 * object. 4625 */ 4626 if (vm_map_lock_upgrade(map)) 4627 goto RetryLookup; 4628 4629 if (entry->cred == NULL) { 4630 /* 4631 * The debugger owner is charged for 4632 * the memory. 4633 */ 4634 cred = curthread->td_ucred; 4635 crhold(cred); 4636 if (!swap_reserve_by_cred(size, cred)) { 4637 crfree(cred); 4638 vm_map_unlock(map); 4639 return (KERN_RESOURCE_SHORTAGE); 4640 } 4641 entry->cred = cred; 4642 } 4643 vm_object_shadow(&entry->object.vm_object, 4644 &entry->offset, size); 4645 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 4646 eobject = entry->object.vm_object; 4647 if (eobject->cred != NULL) { 4648 /* 4649 * The object was not shadowed. 4650 */ 4651 swap_release_by_cred(size, entry->cred); 4652 crfree(entry->cred); 4653 entry->cred = NULL; 4654 } else if (entry->cred != NULL) { 4655 VM_OBJECT_WLOCK(eobject); 4656 eobject->cred = entry->cred; 4657 eobject->charge = size; 4658 VM_OBJECT_WUNLOCK(eobject); 4659 entry->cred = NULL; 4660 } 4661 4662 vm_map_lock_downgrade(map); 4663 } else { 4664 /* 4665 * We're attempting to read a copy-on-write page -- 4666 * don't allow writes. 4667 */ 4668 prot &= ~VM_PROT_WRITE; 4669 } 4670 } 4671 4672 /* 4673 * Create an object if necessary. 4674 */ 4675 if (entry->object.vm_object == NULL && 4676 !map->system_map) { 4677 if (vm_map_lock_upgrade(map)) 4678 goto RetryLookup; 4679 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT, 4680 atop(size)); 4681 entry->offset = 0; 4682 if (entry->cred != NULL) { 4683 VM_OBJECT_WLOCK(entry->object.vm_object); 4684 entry->object.vm_object->cred = entry->cred; 4685 entry->object.vm_object->charge = size; 4686 VM_OBJECT_WUNLOCK(entry->object.vm_object); 4687 entry->cred = NULL; 4688 } 4689 vm_map_lock_downgrade(map); 4690 } 4691 4692 /* 4693 * Return the object/offset from this entry. If the entry was 4694 * copy-on-write or empty, it has been fixed up. 4695 */ 4696 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 4697 *object = entry->object.vm_object; 4698 4699 *out_prot = prot; 4700 return (KERN_SUCCESS); 4701 } 4702 4703 /* 4704 * vm_map_lookup_locked: 4705 * 4706 * Lookup the faulting address. A version of vm_map_lookup that returns 4707 * KERN_FAILURE instead of blocking on map lock or memory allocation. 4708 */ 4709 int 4710 vm_map_lookup_locked(vm_map_t *var_map, /* IN/OUT */ 4711 vm_offset_t vaddr, 4712 vm_prot_t fault_typea, 4713 vm_map_entry_t *out_entry, /* OUT */ 4714 vm_object_t *object, /* OUT */ 4715 vm_pindex_t *pindex, /* OUT */ 4716 vm_prot_t *out_prot, /* OUT */ 4717 boolean_t *wired) /* OUT */ 4718 { 4719 vm_map_entry_t entry; 4720 vm_map_t map = *var_map; 4721 vm_prot_t prot; 4722 vm_prot_t fault_type = fault_typea; 4723 4724 /* 4725 * Lookup the faulting address. 4726 */ 4727 if (!vm_map_lookup_entry(map, vaddr, out_entry)) 4728 return (KERN_INVALID_ADDRESS); 4729 4730 entry = *out_entry; 4731 4732 /* 4733 * Fail if the entry refers to a submap. 4734 */ 4735 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 4736 return (KERN_FAILURE); 4737 4738 /* 4739 * Check whether this task is allowed to have this page. 4740 */ 4741 prot = entry->protection; 4742 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; 4743 if ((fault_type & prot) != fault_type) 4744 return (KERN_PROTECTION_FAILURE); 4745 4746 /* 4747 * If this page is not pageable, we have to get it for all possible 4748 * accesses. 4749 */ 4750 *wired = (entry->wired_count != 0); 4751 if (*wired) 4752 fault_type = entry->protection; 4753 4754 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 4755 /* 4756 * Fail if the entry was copy-on-write for a write fault. 4757 */ 4758 if (fault_type & VM_PROT_WRITE) 4759 return (KERN_FAILURE); 4760 /* 4761 * We're attempting to read a copy-on-write page -- 4762 * don't allow writes. 4763 */ 4764 prot &= ~VM_PROT_WRITE; 4765 } 4766 4767 /* 4768 * Fail if an object should be created. 4769 */ 4770 if (entry->object.vm_object == NULL && !map->system_map) 4771 return (KERN_FAILURE); 4772 4773 /* 4774 * Return the object/offset from this entry. If the entry was 4775 * copy-on-write or empty, it has been fixed up. 4776 */ 4777 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 4778 *object = entry->object.vm_object; 4779 4780 *out_prot = prot; 4781 return (KERN_SUCCESS); 4782 } 4783 4784 /* 4785 * vm_map_lookup_done: 4786 * 4787 * Releases locks acquired by a vm_map_lookup 4788 * (according to the handle returned by that lookup). 4789 */ 4790 void 4791 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry) 4792 { 4793 /* 4794 * Unlock the main-level map 4795 */ 4796 vm_map_unlock_read(map); 4797 } 4798 4799 vm_offset_t 4800 vm_map_max_KBI(const struct vm_map *map) 4801 { 4802 4803 return (vm_map_max(map)); 4804 } 4805 4806 vm_offset_t 4807 vm_map_min_KBI(const struct vm_map *map) 4808 { 4809 4810 return (vm_map_min(map)); 4811 } 4812 4813 pmap_t 4814 vm_map_pmap_KBI(vm_map_t map) 4815 { 4816 4817 return (map->pmap); 4818 } 4819 4820 #include "opt_ddb.h" 4821 #ifdef DDB 4822 #include <sys/kernel.h> 4823 4824 #include <ddb/ddb.h> 4825 4826 static void 4827 vm_map_print(vm_map_t map) 4828 { 4829 vm_map_entry_t entry, prev; 4830 4831 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 4832 (void *)map, 4833 (void *)map->pmap, map->nentries, map->timestamp); 4834 4835 db_indent += 2; 4836 for (prev = &map->header; (entry = prev->next) != &map->header; 4837 prev = entry) { 4838 db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n", 4839 (void *)entry, (void *)entry->start, (void *)entry->end, 4840 entry->eflags); 4841 { 4842 static char *inheritance_name[4] = 4843 {"share", "copy", "none", "donate_copy"}; 4844 4845 db_iprintf(" prot=%x/%x/%s", 4846 entry->protection, 4847 entry->max_protection, 4848 inheritance_name[(int)(unsigned char) 4849 entry->inheritance]); 4850 if (entry->wired_count != 0) 4851 db_printf(", wired"); 4852 } 4853 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 4854 db_printf(", share=%p, offset=0x%jx\n", 4855 (void *)entry->object.sub_map, 4856 (uintmax_t)entry->offset); 4857 if (prev == &map->header || 4858 prev->object.sub_map != 4859 entry->object.sub_map) { 4860 db_indent += 2; 4861 vm_map_print((vm_map_t)entry->object.sub_map); 4862 db_indent -= 2; 4863 } 4864 } else { 4865 if (entry->cred != NULL) 4866 db_printf(", ruid %d", entry->cred->cr_ruid); 4867 db_printf(", object=%p, offset=0x%jx", 4868 (void *)entry->object.vm_object, 4869 (uintmax_t)entry->offset); 4870 if (entry->object.vm_object && entry->object.vm_object->cred) 4871 db_printf(", obj ruid %d charge %jx", 4872 entry->object.vm_object->cred->cr_ruid, 4873 (uintmax_t)entry->object.vm_object->charge); 4874 if (entry->eflags & MAP_ENTRY_COW) 4875 db_printf(", copy (%s)", 4876 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 4877 db_printf("\n"); 4878 4879 if (prev == &map->header || 4880 prev->object.vm_object != 4881 entry->object.vm_object) { 4882 db_indent += 2; 4883 vm_object_print((db_expr_t)(intptr_t) 4884 entry->object.vm_object, 4885 0, 0, (char *)0); 4886 db_indent -= 2; 4887 } 4888 } 4889 } 4890 db_indent -= 2; 4891 } 4892 4893 DB_SHOW_COMMAND(map, map) 4894 { 4895 4896 if (!have_addr) { 4897 db_printf("usage: show map <addr>\n"); 4898 return; 4899 } 4900 vm_map_print((vm_map_t)addr); 4901 } 4902 4903 DB_SHOW_COMMAND(procvm, procvm) 4904 { 4905 struct proc *p; 4906 4907 if (have_addr) { 4908 p = db_lookup_proc(addr); 4909 } else { 4910 p = curproc; 4911 } 4912 4913 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 4914 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 4915 (void *)vmspace_pmap(p->p_vmspace)); 4916 4917 vm_map_print((vm_map_t)&p->p_vmspace->vm_map); 4918 } 4919 4920 #endif /* DDB */ 4921