1 /* 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by the University of 19 * California, Berkeley and its contributors. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 37 * 38 * 39 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 40 * All rights reserved. 41 * 42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 43 * 44 * Permission to use, copy, modify and distribute this software and 45 * its documentation is hereby granted, provided that both the copyright 46 * notice and this permission notice appear in all copies of the 47 * software, derivative works or modified versions, and any portions 48 * thereof, and that both notices appear in supporting documentation. 49 * 50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 53 * 54 * Carnegie Mellon requests users of this software to return to 55 * 56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 57 * School of Computer Science 58 * Carnegie Mellon University 59 * Pittsburgh PA 15213-3890 60 * 61 * any improvements or extensions that they make and grant Carnegie the 62 * rights to redistribute these changes. 63 * 64 * $Id: vm_map.c,v 1.65 1997/01/01 04:45:03 dyson Exp $ 65 */ 66 67 /* 68 * Virtual memory mapping module. 69 */ 70 71 #include <sys/param.h> 72 #include <sys/systm.h> 73 #include <sys/malloc.h> 74 #include <sys/proc.h> 75 #include <sys/queue.h> 76 #include <sys/vmmeter.h> 77 #include <sys/mman.h> 78 79 #include <vm/vm.h> 80 #include <vm/vm_param.h> 81 #include <vm/vm_prot.h> 82 #include <vm/vm_inherit.h> 83 #include <vm/lock.h> 84 #include <vm/pmap.h> 85 #include <vm/vm_map.h> 86 #include <vm/vm_page.h> 87 #include <vm/vm_object.h> 88 #include <vm/vm_kern.h> 89 #include <vm/vm_pager.h> 90 #include <vm/vm_extern.h> 91 #include <vm/default_pager.h> 92 93 /* 94 * Virtual memory maps provide for the mapping, protection, 95 * and sharing of virtual memory objects. In addition, 96 * this module provides for an efficient virtual copy of 97 * memory from one map to another. 98 * 99 * Synchronization is required prior to most operations. 100 * 101 * Maps consist of an ordered doubly-linked list of simple 102 * entries; a single hint is used to speed up lookups. 103 * 104 * In order to properly represent the sharing of virtual 105 * memory regions among maps, the map structure is bi-level. 106 * Top-level ("address") maps refer to regions of sharable 107 * virtual memory. These regions are implemented as 108 * ("sharing") maps, which then refer to the actual virtual 109 * memory objects. When two address maps "share" memory, 110 * their top-level maps both have references to the same 111 * sharing map. When memory is virtual-copied from one 112 * address map to another, the references in the sharing 113 * maps are actually copied -- no copying occurs at the 114 * virtual memory object level. 115 * 116 * Since portions of maps are specified by start/end addreses, 117 * which may not align with existing map entries, all 118 * routines merely "clip" entries to these start/end values. 119 * [That is, an entry is split into two, bordering at a 120 * start or end value.] Note that these clippings may not 121 * always be necessary (as the two resulting entries are then 122 * not changed); however, the clipping is done for convenience. 123 * No attempt is currently made to "glue back together" two 124 * abutting entries. 125 * 126 * As mentioned above, virtual copy operations are performed 127 * by copying VM object references from one sharing map to 128 * another, and then marking both regions as copy-on-write. 129 * It is important to note that only one writeable reference 130 * to a VM object region exists in any map -- this means that 131 * shadow object creation can be delayed until a write operation 132 * occurs. 133 */ 134 135 /* 136 * vm_map_startup: 137 * 138 * Initialize the vm_map module. Must be called before 139 * any other vm_map routines. 140 * 141 * Map and entry structures are allocated from the general 142 * purpose memory pool with some exceptions: 143 * 144 * - The kernel map and kmem submap are allocated statically. 145 * - Kernel map entries are allocated out of a static pool. 146 * 147 * These restrictions are necessary since malloc() uses the 148 * maps and requires map entries. 149 */ 150 151 vm_offset_t kentry_data; 152 vm_size_t kentry_data_size; 153 static vm_map_entry_t kentry_free; 154 static vm_map_t kmap_free; 155 extern char kstack[]; 156 extern int inmprotect; 157 158 static int kentry_count; 159 static vm_offset_t mapvm_start, mapvm, mapvmmax; 160 static int mapvmpgcnt; 161 162 static struct vm_map_entry *mappool; 163 static int mappoolcnt; 164 #define KENTRY_LOW_WATER 128 165 166 static void _vm_map_clip_end __P((vm_map_t, vm_map_entry_t, vm_offset_t)); 167 static void _vm_map_clip_start __P((vm_map_t, vm_map_entry_t, vm_offset_t)); 168 static vm_map_entry_t vm_map_entry_create __P((vm_map_t)); 169 static void vm_map_entry_delete __P((vm_map_t, vm_map_entry_t)); 170 static void vm_map_entry_dispose __P((vm_map_t, vm_map_entry_t)); 171 static void vm_map_entry_unwire __P((vm_map_t, vm_map_entry_t)); 172 static void vm_map_copy_entry __P((vm_map_t, vm_map_t, vm_map_entry_t, 173 vm_map_entry_t)); 174 175 void 176 vm_map_startup() 177 { 178 register int i; 179 register vm_map_entry_t mep; 180 vm_map_t mp; 181 182 /* 183 * Static map structures for allocation before initialization of 184 * kernel map or kmem map. vm_map_create knows how to deal with them. 185 */ 186 kmap_free = mp = (vm_map_t) kentry_data; 187 i = MAX_KMAP; 188 while (--i > 0) { 189 mp->header.next = (vm_map_entry_t) (mp + 1); 190 mp++; 191 } 192 mp++->header.next = NULL; 193 194 /* 195 * Form a free list of statically allocated kernel map entries with 196 * the rest. 197 */ 198 kentry_free = mep = (vm_map_entry_t) mp; 199 kentry_count = i = (kentry_data_size - MAX_KMAP * sizeof *mp) / sizeof *mep; 200 while (--i > 0) { 201 mep->next = mep + 1; 202 mep++; 203 } 204 mep->next = NULL; 205 } 206 207 /* 208 * Allocate a vmspace structure, including a vm_map and pmap, 209 * and initialize those structures. The refcnt is set to 1. 210 * The remaining fields must be initialized by the caller. 211 */ 212 struct vmspace * 213 vmspace_alloc(min, max, pageable) 214 vm_offset_t min, max; 215 int pageable; 216 { 217 register struct vmspace *vm; 218 219 if (mapvmpgcnt == 0 && mapvm == 0) { 220 mapvmpgcnt = (cnt.v_page_count * sizeof(struct vm_map_entry) + PAGE_SIZE - 1) / PAGE_SIZE; 221 mapvm_start = mapvm = kmem_alloc_pageable(kernel_map, 222 mapvmpgcnt * PAGE_SIZE); 223 mapvmmax = mapvm_start + mapvmpgcnt * PAGE_SIZE; 224 if (!mapvm) 225 mapvmpgcnt = 0; 226 } 227 MALLOC(vm, struct vmspace *, sizeof(struct vmspace), M_VMMAP, M_WAITOK); 228 bzero(vm, (caddr_t) &vm->vm_startcopy - (caddr_t) vm); 229 vm_map_init(&vm->vm_map, min, max, pageable); 230 pmap_pinit(&vm->vm_pmap); 231 vm->vm_map.pmap = &vm->vm_pmap; /* XXX */ 232 vm->vm_refcnt = 1; 233 return (vm); 234 } 235 236 void 237 vmspace_free(vm) 238 register struct vmspace *vm; 239 { 240 241 if (vm->vm_refcnt == 0) 242 panic("vmspace_free: attempt to free already freed vmspace"); 243 244 if (--vm->vm_refcnt == 0) { 245 246 /* 247 * Lock the map, to wait out all other references to it. 248 * Delete all of the mappings and pages they hold, then call 249 * the pmap module to reclaim anything left. 250 */ 251 vm_map_lock(&vm->vm_map); 252 (void) vm_map_delete(&vm->vm_map, vm->vm_map.min_offset, 253 vm->vm_map.max_offset); 254 vm_map_unlock(&vm->vm_map); 255 256 while( vm->vm_map.ref_count != 1) 257 tsleep(&vm->vm_map.ref_count, PVM, "vmsfre", 0); 258 --vm->vm_map.ref_count; 259 vm_object_pmap_remove(vm->vm_upages_obj, 260 0, vm->vm_upages_obj->size); 261 vm_object_deallocate(vm->vm_upages_obj); 262 pmap_release(&vm->vm_pmap); 263 FREE(vm, M_VMMAP); 264 } else { 265 wakeup(&vm->vm_map.ref_count); 266 } 267 } 268 269 /* 270 * vm_map_create: 271 * 272 * Creates and returns a new empty VM map with 273 * the given physical map structure, and having 274 * the given lower and upper address bounds. 275 */ 276 vm_map_t 277 vm_map_create(pmap, min, max, pageable) 278 pmap_t pmap; 279 vm_offset_t min, max; 280 boolean_t pageable; 281 { 282 register vm_map_t result; 283 284 if (kmem_map == NULL) { 285 result = kmap_free; 286 kmap_free = (vm_map_t) result->header.next; 287 if (result == NULL) 288 panic("vm_map_create: out of maps"); 289 } else 290 MALLOC(result, vm_map_t, sizeof(struct vm_map), 291 M_VMMAP, M_WAITOK); 292 293 vm_map_init(result, min, max, pageable); 294 result->pmap = pmap; 295 return (result); 296 } 297 298 /* 299 * Initialize an existing vm_map structure 300 * such as that in the vmspace structure. 301 * The pmap is set elsewhere. 302 */ 303 void 304 vm_map_init(map, min, max, pageable) 305 register struct vm_map *map; 306 vm_offset_t min, max; 307 boolean_t pageable; 308 { 309 map->header.next = map->header.prev = &map->header; 310 map->nentries = 0; 311 map->size = 0; 312 map->ref_count = 1; 313 map->is_main_map = TRUE; 314 map->min_offset = min; 315 map->max_offset = max; 316 map->entries_pageable = pageable; 317 map->first_free = &map->header; 318 map->hint = &map->header; 319 map->timestamp = 0; 320 lock_init(&map->lock, TRUE); 321 } 322 323 /* 324 * vm_map_entry_dispose: [ internal use only ] 325 * 326 * Inverse of vm_map_entry_create. 327 */ 328 static void 329 vm_map_entry_dispose(map, entry) 330 vm_map_t map; 331 vm_map_entry_t entry; 332 { 333 int s; 334 335 if (map == kernel_map || map == kmem_map || 336 map == mb_map || map == pager_map) { 337 s = splvm(); 338 entry->next = kentry_free; 339 kentry_free = entry; 340 ++kentry_count; 341 splx(s); 342 } else { 343 entry->next = mappool; 344 mappool = entry; 345 ++mappoolcnt; 346 } 347 } 348 349 /* 350 * vm_map_entry_create: [ internal use only ] 351 * 352 * Allocates a VM map entry for insertion. 353 * No entry fields are filled in. This routine is 354 */ 355 static vm_map_entry_t 356 vm_map_entry_create(map) 357 vm_map_t map; 358 { 359 vm_map_entry_t entry; 360 int i; 361 int s; 362 363 /* 364 * This is a *very* nasty (and sort of incomplete) hack!!!! 365 */ 366 if (kentry_count < KENTRY_LOW_WATER) { 367 s = splvm(); 368 if (mapvmpgcnt && mapvm) { 369 vm_page_t m; 370 371 m = vm_page_alloc(kernel_object, 372 OFF_TO_IDX(mapvm - VM_MIN_KERNEL_ADDRESS), 373 (map == kmem_map || map == mb_map) ? VM_ALLOC_INTERRUPT : VM_ALLOC_NORMAL); 374 375 if (m) { 376 int newentries; 377 378 newentries = (PAGE_SIZE / sizeof(struct vm_map_entry)); 379 vm_page_wire(m); 380 PAGE_WAKEUP(m); 381 m->valid = VM_PAGE_BITS_ALL; 382 pmap_kenter(mapvm, VM_PAGE_TO_PHYS(m)); 383 m->flags |= PG_WRITEABLE; 384 385 entry = (vm_map_entry_t) mapvm; 386 mapvm += PAGE_SIZE; 387 --mapvmpgcnt; 388 389 for (i = 0; i < newentries; i++) { 390 vm_map_entry_dispose(kernel_map, entry); 391 entry++; 392 } 393 } 394 } 395 splx(s); 396 } 397 398 if (map == kernel_map || map == kmem_map || 399 map == mb_map || map == pager_map) { 400 s = splvm(); 401 entry = kentry_free; 402 if (entry) { 403 kentry_free = entry->next; 404 --kentry_count; 405 } else { 406 panic("vm_map_entry_create: out of map entries for kernel"); 407 } 408 splx(s); 409 } else { 410 entry = mappool; 411 if (entry) { 412 mappool = entry->next; 413 --mappoolcnt; 414 } else { 415 MALLOC(entry, vm_map_entry_t, sizeof(struct vm_map_entry), 416 M_VMMAPENT, M_WAITOK); 417 } 418 } 419 420 return (entry); 421 } 422 423 /* 424 * vm_map_entry_{un,}link: 425 * 426 * Insert/remove entries from maps. 427 */ 428 #define vm_map_entry_link(map, after_where, entry) \ 429 { \ 430 (map)->nentries++; \ 431 (entry)->prev = (after_where); \ 432 (entry)->next = (after_where)->next; \ 433 (entry)->prev->next = (entry); \ 434 (entry)->next->prev = (entry); \ 435 } 436 #define vm_map_entry_unlink(map, entry) \ 437 { \ 438 (map)->nentries--; \ 439 (entry)->next->prev = (entry)->prev; \ 440 (entry)->prev->next = (entry)->next; \ 441 } 442 443 /* 444 * vm_map_reference: 445 * 446 * Creates another valid reference to the given map. 447 * 448 */ 449 void 450 vm_map_reference(map) 451 register vm_map_t map; 452 { 453 if (map == NULL) 454 return; 455 456 map->ref_count++; 457 } 458 459 /* 460 * vm_map_deallocate: 461 * 462 * Removes a reference from the specified map, 463 * destroying it if no references remain. 464 * The map should not be locked. 465 */ 466 void 467 vm_map_deallocate(map) 468 register vm_map_t map; 469 { 470 register int c; 471 472 if (map == NULL) 473 return; 474 475 c = map->ref_count; 476 477 if (c == 0) 478 panic("vm_map_deallocate: deallocating already freed map"); 479 480 if (c != 1) { 481 --map->ref_count; 482 wakeup(&map->ref_count); 483 return; 484 } 485 /* 486 * Lock the map, to wait out all other references to it. 487 */ 488 489 vm_map_lock(map); 490 (void) vm_map_delete(map, map->min_offset, map->max_offset); 491 --map->ref_count; 492 if( map->ref_count != 0) { 493 vm_map_unlock(map); 494 return; 495 } 496 497 pmap_destroy(map->pmap); 498 FREE(map, M_VMMAP); 499 } 500 501 /* 502 * SAVE_HINT: 503 * 504 * Saves the specified entry as the hint for 505 * future lookups. 506 */ 507 #define SAVE_HINT(map,value) \ 508 (map)->hint = (value); 509 510 /* 511 * vm_map_lookup_entry: [ internal use only ] 512 * 513 * Finds the map entry containing (or 514 * immediately preceding) the specified address 515 * in the given map; the entry is returned 516 * in the "entry" parameter. The boolean 517 * result indicates whether the address is 518 * actually contained in the map. 519 */ 520 boolean_t 521 vm_map_lookup_entry(map, address, entry) 522 register vm_map_t map; 523 register vm_offset_t address; 524 vm_map_entry_t *entry; /* OUT */ 525 { 526 register vm_map_entry_t cur; 527 register vm_map_entry_t last; 528 529 /* 530 * Start looking either from the head of the list, or from the hint. 531 */ 532 533 cur = map->hint; 534 535 if (cur == &map->header) 536 cur = cur->next; 537 538 if (address >= cur->start) { 539 /* 540 * Go from hint to end of list. 541 * 542 * But first, make a quick check to see if we are already looking 543 * at the entry we want (which is usually the case). Note also 544 * that we don't need to save the hint here... it is the same 545 * hint (unless we are at the header, in which case the hint 546 * didn't buy us anything anyway). 547 */ 548 last = &map->header; 549 if ((cur != last) && (cur->end > address)) { 550 *entry = cur; 551 return (TRUE); 552 } 553 } else { 554 /* 555 * Go from start to hint, *inclusively* 556 */ 557 last = cur->next; 558 cur = map->header.next; 559 } 560 561 /* 562 * Search linearly 563 */ 564 565 while (cur != last) { 566 if (cur->end > address) { 567 if (address >= cur->start) { 568 /* 569 * Save this lookup for future hints, and 570 * return 571 */ 572 573 *entry = cur; 574 SAVE_HINT(map, cur); 575 return (TRUE); 576 } 577 break; 578 } 579 cur = cur->next; 580 } 581 *entry = cur->prev; 582 SAVE_HINT(map, *entry); 583 return (FALSE); 584 } 585 586 /* 587 * vm_map_insert: 588 * 589 * Inserts the given whole VM object into the target 590 * map at the specified address range. The object's 591 * size should match that of the address range. 592 * 593 * Requires that the map be locked, and leaves it so. 594 */ 595 int 596 vm_map_insert(map, object, offset, start, end, prot, max, cow) 597 vm_map_t map; 598 vm_object_t object; 599 vm_ooffset_t offset; 600 vm_offset_t start; 601 vm_offset_t end; 602 vm_prot_t prot, max; 603 int cow; 604 { 605 register vm_map_entry_t new_entry; 606 register vm_map_entry_t prev_entry; 607 vm_map_entry_t temp_entry; 608 vm_object_t prev_object; 609 610 if ((object != NULL) && (cow & MAP_NOFAULT)) { 611 panic("vm_map_insert: paradoxical MAP_NOFAULT request"); 612 } 613 614 /* 615 * Check that the start and end points are not bogus. 616 */ 617 618 if ((start < map->min_offset) || (end > map->max_offset) || 619 (start >= end)) 620 return (KERN_INVALID_ADDRESS); 621 622 /* 623 * Find the entry prior to the proposed starting address; if it's part 624 * of an existing entry, this range is bogus. 625 */ 626 627 if (vm_map_lookup_entry(map, start, &temp_entry)) 628 return (KERN_NO_SPACE); 629 630 prev_entry = temp_entry; 631 632 /* 633 * Assert that the next entry doesn't overlap the end point. 634 */ 635 636 if ((prev_entry->next != &map->header) && 637 (prev_entry->next->start < end)) 638 return (KERN_NO_SPACE); 639 640 /* 641 * See if we can avoid creating a new entry by extending one of our 642 * neighbors. Or at least extend the object. 643 */ 644 645 if ((object == NULL) && 646 (prev_entry != &map->header) && 647 ( ! prev_entry->is_a_map) && 648 ( ! prev_entry->is_sub_map) && 649 (prev_entry->end == start) && 650 (prev_entry->wired_count == 0)) { 651 652 u_char needs_copy = (cow & MAP_COPY_NEEDED) != 0; 653 u_char copy_on_write = (cow & MAP_COPY_ON_WRITE) != 0; 654 u_char nofault = (cow & MAP_NOFAULT) != 0; 655 656 if ((needs_copy == prev_entry->needs_copy) && 657 (copy_on_write == prev_entry->copy_on_write) && 658 (nofault == prev_entry->nofault) && 659 (nofault || 660 vm_object_coalesce(prev_entry->object.vm_object, 661 OFF_TO_IDX(prev_entry->offset), 662 (vm_size_t) (prev_entry->end - prev_entry->start), 663 (vm_size_t) (end - prev_entry->end)))) { 664 665 /* 666 * Coalesced the two objects. Can we extend the 667 * previous map entry to include the new range? 668 */ 669 if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) && 670 (prev_entry->protection == prot) && 671 (prev_entry->max_protection == max)) { 672 673 map->size += (end - prev_entry->end); 674 prev_entry->end = end; 675 if (!nofault) { 676 prev_object = prev_entry->object.vm_object; 677 default_pager_convert_to_swapq(prev_object); 678 } 679 return (KERN_SUCCESS); 680 } 681 else { 682 object = prev_entry->object.vm_object; 683 offset = prev_entry->offset + (prev_entry->end - 684 prev_entry->start); 685 686 vm_object_reference(object); 687 } 688 } 689 } 690 691 /* 692 * Create a new entry 693 */ 694 695 new_entry = vm_map_entry_create(map); 696 new_entry->start = start; 697 new_entry->end = end; 698 699 new_entry->is_a_map = FALSE; 700 new_entry->is_sub_map = FALSE; 701 new_entry->object.vm_object = object; 702 new_entry->offset = offset; 703 704 if (cow & MAP_COPY_NEEDED) 705 new_entry->needs_copy = TRUE; 706 else 707 new_entry->needs_copy = FALSE; 708 709 if (cow & MAP_COPY_ON_WRITE) 710 new_entry->copy_on_write = TRUE; 711 else 712 new_entry->copy_on_write = FALSE; 713 714 if (cow & MAP_NOFAULT) 715 new_entry->nofault = TRUE; 716 else 717 new_entry->nofault = FALSE; 718 719 if (map->is_main_map) { 720 new_entry->inheritance = VM_INHERIT_DEFAULT; 721 new_entry->protection = prot; 722 new_entry->max_protection = max; 723 new_entry->wired_count = 0; 724 } 725 /* 726 * Insert the new entry into the list 727 */ 728 729 vm_map_entry_link(map, prev_entry, new_entry); 730 map->size += new_entry->end - new_entry->start; 731 732 /* 733 * Update the free space hint 734 */ 735 if ((map->first_free == prev_entry) && 736 (prev_entry->end >= new_entry->start)) 737 map->first_free = new_entry; 738 739 default_pager_convert_to_swapq(object); 740 return (KERN_SUCCESS); 741 } 742 743 /* 744 * Find sufficient space for `length' bytes in the given map, starting at 745 * `start'. The map must be locked. Returns 0 on success, 1 on no space. 746 */ 747 int 748 vm_map_findspace(map, start, length, addr) 749 register vm_map_t map; 750 register vm_offset_t start; 751 vm_size_t length; 752 vm_offset_t *addr; 753 { 754 register vm_map_entry_t entry, next; 755 register vm_offset_t end; 756 757 if (start < map->min_offset) 758 start = map->min_offset; 759 if (start > map->max_offset) 760 return (1); 761 762 /* 763 * Look for the first possible address; if there's already something 764 * at this address, we have to start after it. 765 */ 766 if (start == map->min_offset) { 767 if ((entry = map->first_free) != &map->header) 768 start = entry->end; 769 } else { 770 vm_map_entry_t tmp; 771 772 if (vm_map_lookup_entry(map, start, &tmp)) 773 start = tmp->end; 774 entry = tmp; 775 } 776 777 /* 778 * Look through the rest of the map, trying to fit a new region in the 779 * gap between existing regions, or after the very last region. 780 */ 781 for (;; start = (entry = next)->end) { 782 /* 783 * Find the end of the proposed new region. Be sure we didn't 784 * go beyond the end of the map, or wrap around the address; 785 * if so, we lose. Otherwise, if this is the last entry, or 786 * if the proposed new region fits before the next entry, we 787 * win. 788 */ 789 end = start + length; 790 if (end > map->max_offset || end < start) 791 return (1); 792 next = entry->next; 793 if (next == &map->header || next->start >= end) 794 break; 795 } 796 SAVE_HINT(map, entry); 797 *addr = start; 798 if (map == kernel_map && round_page(start + length) > kernel_vm_end) 799 pmap_growkernel(round_page(start + length)); 800 return (0); 801 } 802 803 /* 804 * vm_map_find finds an unallocated region in the target address 805 * map with the given length. The search is defined to be 806 * first-fit from the specified address; the region found is 807 * returned in the same parameter. 808 * 809 */ 810 int 811 vm_map_find(map, object, offset, addr, length, find_space, prot, max, cow) 812 vm_map_t map; 813 vm_object_t object; 814 vm_ooffset_t offset; 815 vm_offset_t *addr; /* IN/OUT */ 816 vm_size_t length; 817 boolean_t find_space; 818 vm_prot_t prot, max; 819 int cow; 820 { 821 register vm_offset_t start; 822 int result, s = 0; 823 824 start = *addr; 825 826 if (map == kmem_map || map == mb_map) 827 s = splvm(); 828 829 vm_map_lock(map); 830 if (find_space) { 831 if (vm_map_findspace(map, start, length, addr)) { 832 vm_map_unlock(map); 833 if (map == kmem_map || map == mb_map) 834 splx(s); 835 return (KERN_NO_SPACE); 836 } 837 start = *addr; 838 } 839 result = vm_map_insert(map, object, offset, 840 start, start + length, prot, max, cow); 841 vm_map_unlock(map); 842 843 if (map == kmem_map || map == mb_map) 844 splx(s); 845 846 return (result); 847 } 848 849 /* 850 * vm_map_simplify_entry: 851 * 852 * Simplify the given map entry by merging with either neighbor. 853 */ 854 void 855 vm_map_simplify_entry(map, entry) 856 vm_map_t map; 857 vm_map_entry_t entry; 858 { 859 vm_map_entry_t next, prev; 860 vm_size_t prevsize, esize; 861 862 if (entry->is_sub_map || entry->is_a_map) 863 return; 864 865 prev = entry->prev; 866 if (prev != &map->header) { 867 prevsize = prev->end - prev->start; 868 if ( (prev->end == entry->start) && 869 (prev->object.vm_object == entry->object.vm_object) && 870 (!prev->object.vm_object || (prev->object.vm_object->behavior == entry->object.vm_object->behavior)) && 871 (!prev->object.vm_object || 872 (prev->offset + prevsize == entry->offset)) && 873 (prev->needs_copy == entry->needs_copy) && 874 (prev->copy_on_write == entry->copy_on_write) && 875 (prev->protection == entry->protection) && 876 (prev->max_protection == entry->max_protection) && 877 (prev->inheritance == entry->inheritance) && 878 (prev->is_a_map == FALSE) && 879 (prev->is_sub_map == FALSE) && 880 (prev->wired_count == entry->wired_count)) { 881 if (map->first_free == prev) 882 map->first_free = entry; 883 if (map->hint == prev) 884 map->hint = entry; 885 vm_map_entry_unlink(map, prev); 886 entry->start = prev->start; 887 entry->offset = prev->offset; 888 if (prev->object.vm_object) 889 vm_object_deallocate(prev->object.vm_object); 890 vm_map_entry_dispose(map, prev); 891 } 892 } 893 894 next = entry->next; 895 if (next != &map->header) { 896 esize = entry->end - entry->start; 897 if ((entry->end == next->start) && 898 (next->object.vm_object == entry->object.vm_object) && 899 (!next->object.vm_object || (next->object.vm_object->behavior == entry->object.vm_object->behavior)) && 900 (!entry->object.vm_object || 901 (entry->offset + esize == next->offset)) && 902 (next->needs_copy == entry->needs_copy) && 903 (next->copy_on_write == entry->copy_on_write) && 904 (next->protection == entry->protection) && 905 (next->max_protection == entry->max_protection) && 906 (next->inheritance == entry->inheritance) && 907 (next->is_a_map == FALSE) && 908 (next->is_sub_map == FALSE) && 909 (next->wired_count == entry->wired_count)) { 910 if (map->first_free == next) 911 map->first_free = entry; 912 if (map->hint == next) 913 map->hint = entry; 914 vm_map_entry_unlink(map, next); 915 entry->end = next->end; 916 if (next->object.vm_object) 917 vm_object_deallocate(next->object.vm_object); 918 vm_map_entry_dispose(map, next); 919 } 920 } 921 } 922 /* 923 * vm_map_clip_start: [ internal use only ] 924 * 925 * Asserts that the given entry begins at or after 926 * the specified address; if necessary, 927 * it splits the entry into two. 928 */ 929 #define vm_map_clip_start(map, entry, startaddr) \ 930 { \ 931 if (startaddr > entry->start) \ 932 _vm_map_clip_start(map, entry, startaddr); \ 933 } 934 935 /* 936 * This routine is called only when it is known that 937 * the entry must be split. 938 */ 939 static void 940 _vm_map_clip_start(map, entry, start) 941 register vm_map_t map; 942 register vm_map_entry_t entry; 943 register vm_offset_t start; 944 { 945 register vm_map_entry_t new_entry; 946 947 /* 948 * Split off the front portion -- note that we must insert the new 949 * entry BEFORE this one, so that this entry has the specified 950 * starting address. 951 */ 952 953 vm_map_simplify_entry(map, entry); 954 955 new_entry = vm_map_entry_create(map); 956 *new_entry = *entry; 957 958 new_entry->end = start; 959 entry->offset += (start - entry->start); 960 entry->start = start; 961 962 vm_map_entry_link(map, entry->prev, new_entry); 963 964 if (entry->is_a_map || entry->is_sub_map) 965 vm_map_reference(new_entry->object.share_map); 966 else 967 vm_object_reference(new_entry->object.vm_object); 968 } 969 970 /* 971 * vm_map_clip_end: [ internal use only ] 972 * 973 * Asserts that the given entry ends at or before 974 * the specified address; if necessary, 975 * it splits the entry into two. 976 */ 977 978 #define vm_map_clip_end(map, entry, endaddr) \ 979 { \ 980 if (endaddr < entry->end) \ 981 _vm_map_clip_end(map, entry, endaddr); \ 982 } 983 984 /* 985 * This routine is called only when it is known that 986 * the entry must be split. 987 */ 988 static void 989 _vm_map_clip_end(map, entry, end) 990 register vm_map_t map; 991 register vm_map_entry_t entry; 992 register vm_offset_t end; 993 { 994 register vm_map_entry_t new_entry; 995 996 /* 997 * Create a new entry and insert it AFTER the specified entry 998 */ 999 1000 new_entry = vm_map_entry_create(map); 1001 *new_entry = *entry; 1002 1003 new_entry->start = entry->end = end; 1004 new_entry->offset += (end - entry->start); 1005 1006 vm_map_entry_link(map, entry, new_entry); 1007 1008 if (entry->is_a_map || entry->is_sub_map) 1009 vm_map_reference(new_entry->object.share_map); 1010 else 1011 vm_object_reference(new_entry->object.vm_object); 1012 } 1013 1014 /* 1015 * VM_MAP_RANGE_CHECK: [ internal use only ] 1016 * 1017 * Asserts that the starting and ending region 1018 * addresses fall within the valid range of the map. 1019 */ 1020 #define VM_MAP_RANGE_CHECK(map, start, end) \ 1021 { \ 1022 if (start < vm_map_min(map)) \ 1023 start = vm_map_min(map); \ 1024 if (end > vm_map_max(map)) \ 1025 end = vm_map_max(map); \ 1026 if (start > end) \ 1027 start = end; \ 1028 } 1029 1030 /* 1031 * vm_map_submap: [ kernel use only ] 1032 * 1033 * Mark the given range as handled by a subordinate map. 1034 * 1035 * This range must have been created with vm_map_find, 1036 * and no other operations may have been performed on this 1037 * range prior to calling vm_map_submap. 1038 * 1039 * Only a limited number of operations can be performed 1040 * within this rage after calling vm_map_submap: 1041 * vm_fault 1042 * [Don't try vm_map_copy!] 1043 * 1044 * To remove a submapping, one must first remove the 1045 * range from the superior map, and then destroy the 1046 * submap (if desired). [Better yet, don't try it.] 1047 */ 1048 int 1049 vm_map_submap(map, start, end, submap) 1050 register vm_map_t map; 1051 register vm_offset_t start; 1052 register vm_offset_t end; 1053 vm_map_t submap; 1054 { 1055 vm_map_entry_t entry; 1056 register int result = KERN_INVALID_ARGUMENT; 1057 1058 vm_map_lock(map); 1059 1060 VM_MAP_RANGE_CHECK(map, start, end); 1061 1062 if (vm_map_lookup_entry(map, start, &entry)) { 1063 vm_map_clip_start(map, entry, start); 1064 } else 1065 entry = entry->next; 1066 1067 vm_map_clip_end(map, entry, end); 1068 1069 if ((entry->start == start) && (entry->end == end) && 1070 (!entry->is_a_map) && 1071 (entry->object.vm_object == NULL) && 1072 (!entry->copy_on_write)) { 1073 entry->is_a_map = FALSE; 1074 entry->is_sub_map = TRUE; 1075 vm_map_reference(entry->object.sub_map = submap); 1076 result = KERN_SUCCESS; 1077 } 1078 vm_map_unlock(map); 1079 1080 return (result); 1081 } 1082 1083 /* 1084 * vm_map_protect: 1085 * 1086 * Sets the protection of the specified address 1087 * region in the target map. If "set_max" is 1088 * specified, the maximum protection is to be set; 1089 * otherwise, only the current protection is affected. 1090 */ 1091 int 1092 vm_map_protect(map, start, end, new_prot, set_max) 1093 register vm_map_t map; 1094 register vm_offset_t start; 1095 register vm_offset_t end; 1096 register vm_prot_t new_prot; 1097 register boolean_t set_max; 1098 { 1099 register vm_map_entry_t current; 1100 vm_map_entry_t entry; 1101 1102 vm_map_lock(map); 1103 1104 VM_MAP_RANGE_CHECK(map, start, end); 1105 1106 if (vm_map_lookup_entry(map, start, &entry)) { 1107 vm_map_clip_start(map, entry, start); 1108 } else { 1109 entry = entry->next; 1110 } 1111 1112 /* 1113 * Make a first pass to check for protection violations. 1114 */ 1115 1116 current = entry; 1117 while ((current != &map->header) && (current->start < end)) { 1118 if (current->is_sub_map) { 1119 vm_map_unlock(map); 1120 return (KERN_INVALID_ARGUMENT); 1121 } 1122 if ((new_prot & current->max_protection) != new_prot) { 1123 vm_map_unlock(map); 1124 return (KERN_PROTECTION_FAILURE); 1125 } 1126 current = current->next; 1127 } 1128 1129 /* 1130 * Go back and fix up protections. [Note that clipping is not 1131 * necessary the second time.] 1132 */ 1133 1134 current = entry; 1135 1136 while ((current != &map->header) && (current->start < end)) { 1137 vm_prot_t old_prot; 1138 1139 vm_map_clip_end(map, current, end); 1140 1141 old_prot = current->protection; 1142 if (set_max) 1143 current->protection = 1144 (current->max_protection = new_prot) & 1145 old_prot; 1146 else 1147 current->protection = new_prot; 1148 1149 /* 1150 * Update physical map if necessary. Worry about copy-on-write 1151 * here -- CHECK THIS XXX 1152 */ 1153 1154 if (current->protection != old_prot) { 1155 #define MASK(entry) ((entry)->copy_on_write ? ~VM_PROT_WRITE : \ 1156 VM_PROT_ALL) 1157 #define max(a,b) ((a) > (b) ? (a) : (b)) 1158 1159 if (current->is_a_map) { 1160 vm_map_entry_t share_entry; 1161 vm_offset_t share_end; 1162 1163 vm_map_lock(current->object.share_map); 1164 (void) vm_map_lookup_entry( 1165 current->object.share_map, 1166 current->offset, 1167 &share_entry); 1168 share_end = current->offset + 1169 (current->end - current->start); 1170 while ((share_entry != 1171 ¤t->object.share_map->header) && 1172 (share_entry->start < share_end)) { 1173 1174 pmap_protect(map->pmap, 1175 (max(share_entry->start, 1176 current->offset) - 1177 current->offset + 1178 current->start), 1179 min(share_entry->end, 1180 share_end) - 1181 current->offset + 1182 current->start, 1183 current->protection & 1184 MASK(share_entry)); 1185 1186 share_entry = share_entry->next; 1187 } 1188 vm_map_unlock(current->object.share_map); 1189 } else 1190 pmap_protect(map->pmap, current->start, 1191 current->end, 1192 current->protection & MASK(entry)); 1193 #undef max 1194 #undef MASK 1195 } 1196 current = current->next; 1197 } 1198 1199 vm_map_simplify_entry(map, entry); 1200 vm_map_unlock(map); 1201 return (KERN_SUCCESS); 1202 } 1203 1204 /* 1205 * vm_map_madvise: 1206 * 1207 * This routine traverses a processes map handling the madvise 1208 * system call. 1209 */ 1210 void 1211 vm_map_madvise(map, pmap, start, end, advise) 1212 vm_map_t map; 1213 pmap_t pmap; 1214 vm_offset_t start, end; 1215 int advise; 1216 { 1217 register vm_map_entry_t current; 1218 vm_map_entry_t entry; 1219 1220 vm_map_lock(map); 1221 1222 VM_MAP_RANGE_CHECK(map, start, end); 1223 1224 if (vm_map_lookup_entry(map, start, &entry)) { 1225 vm_map_clip_start(map, entry, start); 1226 } else 1227 entry = entry->next; 1228 1229 for(current = entry; 1230 (current != &map->header) && (current->start < end); 1231 current = current->next) { 1232 if (current->is_a_map || current->is_sub_map) { 1233 continue; 1234 } 1235 vm_map_clip_end(map, current, end); 1236 switch (advise) { 1237 case MADV_NORMAL: 1238 current->object.vm_object->behavior = OBJ_NORMAL; 1239 break; 1240 case MADV_SEQUENTIAL: 1241 current->object.vm_object->behavior = OBJ_SEQUENTIAL; 1242 break; 1243 case MADV_RANDOM: 1244 current->object.vm_object->behavior = OBJ_RANDOM; 1245 break; 1246 /* 1247 * Right now, we could handle DONTNEED and WILLNEED with common code. 1248 * They are mostly the same, except for the potential async reads (NYI). 1249 */ 1250 case MADV_FREE: 1251 case MADV_DONTNEED: 1252 { 1253 vm_pindex_t pindex; 1254 int count; 1255 vm_size_t size = current->end - current->start; 1256 pindex = OFF_TO_IDX(entry->offset); 1257 count = OFF_TO_IDX(size); 1258 /* 1259 * MADV_DONTNEED removes the page from all 1260 * pmaps, so pmap_remove is not necessary. 1261 */ 1262 vm_object_madvise(current->object.vm_object, 1263 pindex, count, advise); 1264 } 1265 break; 1266 1267 case MADV_WILLNEED: 1268 { 1269 vm_pindex_t pindex; 1270 int count; 1271 vm_size_t size = current->end - current->start; 1272 pindex = OFF_TO_IDX(current->offset); 1273 count = OFF_TO_IDX(size); 1274 vm_object_madvise(current->object.vm_object, 1275 pindex, count, advise); 1276 pmap_object_init_pt(pmap, current->start, 1277 current->object.vm_object, pindex, 1278 (count << PAGE_SHIFT), 0); 1279 } 1280 break; 1281 1282 default: 1283 break; 1284 } 1285 } 1286 1287 vm_map_simplify_entry(map, entry); 1288 vm_map_unlock(map); 1289 return; 1290 } 1291 1292 1293 /* 1294 * vm_map_inherit: 1295 * 1296 * Sets the inheritance of the specified address 1297 * range in the target map. Inheritance 1298 * affects how the map will be shared with 1299 * child maps at the time of vm_map_fork. 1300 */ 1301 int 1302 vm_map_inherit(map, start, end, new_inheritance) 1303 register vm_map_t map; 1304 register vm_offset_t start; 1305 register vm_offset_t end; 1306 register vm_inherit_t new_inheritance; 1307 { 1308 register vm_map_entry_t entry; 1309 vm_map_entry_t temp_entry; 1310 1311 switch (new_inheritance) { 1312 case VM_INHERIT_NONE: 1313 case VM_INHERIT_COPY: 1314 case VM_INHERIT_SHARE: 1315 break; 1316 default: 1317 return (KERN_INVALID_ARGUMENT); 1318 } 1319 1320 vm_map_lock(map); 1321 1322 VM_MAP_RANGE_CHECK(map, start, end); 1323 1324 if (vm_map_lookup_entry(map, start, &temp_entry)) { 1325 entry = temp_entry; 1326 vm_map_clip_start(map, entry, start); 1327 } else 1328 entry = temp_entry->next; 1329 1330 while ((entry != &map->header) && (entry->start < end)) { 1331 vm_map_clip_end(map, entry, end); 1332 1333 entry->inheritance = new_inheritance; 1334 1335 entry = entry->next; 1336 } 1337 1338 vm_map_simplify_entry(map, temp_entry); 1339 vm_map_unlock(map); 1340 return (KERN_SUCCESS); 1341 } 1342 1343 /* 1344 * Implement the semantics of mlock 1345 */ 1346 int 1347 vm_map_user_pageable(map, start, end, new_pageable) 1348 register vm_map_t map; 1349 register vm_offset_t start; 1350 register vm_offset_t end; 1351 register boolean_t new_pageable; 1352 { 1353 register vm_map_entry_t entry; 1354 vm_map_entry_t start_entry; 1355 register vm_offset_t failed = 0; 1356 int rv; 1357 1358 vm_map_lock(map); 1359 VM_MAP_RANGE_CHECK(map, start, end); 1360 1361 if (vm_map_lookup_entry(map, start, &start_entry) == FALSE) { 1362 vm_map_unlock(map); 1363 return (KERN_INVALID_ADDRESS); 1364 } 1365 1366 if (new_pageable) { 1367 1368 entry = start_entry; 1369 vm_map_clip_start(map, entry, start); 1370 1371 /* 1372 * Now decrement the wiring count for each region. If a region 1373 * becomes completely unwired, unwire its physical pages and 1374 * mappings. 1375 */ 1376 lock_set_recursive(&map->lock); 1377 1378 entry = start_entry; 1379 while ((entry != &map->header) && (entry->start < end)) { 1380 if (entry->user_wired) { 1381 vm_map_clip_end(map, entry, end); 1382 entry->user_wired = 0; 1383 entry->wired_count--; 1384 if (entry->wired_count == 0) 1385 vm_fault_unwire(map, entry->start, entry->end); 1386 } 1387 entry = entry->next; 1388 } 1389 vm_map_simplify_entry(map, start_entry); 1390 lock_clear_recursive(&map->lock); 1391 } else { 1392 1393 /* 1394 * Because of the possiblity of blocking, etc. We restart 1395 * through the process's map entries from beginning so that 1396 * we don't end up depending on a map entry that could have 1397 * changed. 1398 */ 1399 rescan: 1400 1401 entry = start_entry; 1402 1403 while ((entry != &map->header) && (entry->start < end)) { 1404 1405 if (entry->user_wired != 0) { 1406 entry = entry->next; 1407 continue; 1408 } 1409 1410 if (entry->wired_count != 0) { 1411 entry->wired_count++; 1412 entry->user_wired = 1; 1413 entry = entry->next; 1414 continue; 1415 } 1416 1417 /* Here on entry being newly wired */ 1418 1419 if (!entry->is_a_map && !entry->is_sub_map) { 1420 int copyflag = entry->needs_copy; 1421 if (copyflag && ((entry->protection & VM_PROT_WRITE) != 0)) { 1422 1423 vm_object_shadow(&entry->object.vm_object, 1424 &entry->offset, 1425 OFF_TO_IDX(entry->end 1426 - entry->start)); 1427 entry->needs_copy = FALSE; 1428 1429 } else if (entry->object.vm_object == NULL) { 1430 1431 entry->object.vm_object = 1432 vm_object_allocate(OBJT_DEFAULT, 1433 OFF_TO_IDX(entry->end - entry->start)); 1434 entry->offset = (vm_offset_t) 0; 1435 1436 } 1437 default_pager_convert_to_swapq(entry->object.vm_object); 1438 } 1439 1440 vm_map_clip_start(map, entry, start); 1441 vm_map_clip_end(map, entry, end); 1442 1443 entry->wired_count++; 1444 entry->user_wired = 1; 1445 1446 /* First we need to allow map modifications */ 1447 lock_set_recursive(&map->lock); 1448 lock_write_to_read(&map->lock); 1449 1450 rv = vm_fault_user_wire(map, entry->start, entry->end); 1451 if (rv) { 1452 1453 entry->wired_count--; 1454 entry->user_wired = 0; 1455 1456 lock_clear_recursive(&map->lock); 1457 vm_map_unlock(map); 1458 1459 (void) vm_map_user_pageable(map, start, entry->start, TRUE); 1460 return rv; 1461 } 1462 1463 lock_clear_recursive(&map->lock); 1464 vm_map_unlock(map); 1465 vm_map_lock(map); 1466 1467 goto rescan; 1468 } 1469 } 1470 vm_map_unlock(map); 1471 return KERN_SUCCESS; 1472 } 1473 1474 /* 1475 * vm_map_pageable: 1476 * 1477 * Sets the pageability of the specified address 1478 * range in the target map. Regions specified 1479 * as not pageable require locked-down physical 1480 * memory and physical page maps. 1481 * 1482 * The map must not be locked, but a reference 1483 * must remain to the map throughout the call. 1484 */ 1485 int 1486 vm_map_pageable(map, start, end, new_pageable) 1487 register vm_map_t map; 1488 register vm_offset_t start; 1489 register vm_offset_t end; 1490 register boolean_t new_pageable; 1491 { 1492 register vm_map_entry_t entry; 1493 vm_map_entry_t start_entry; 1494 register vm_offset_t failed = 0; 1495 int rv; 1496 1497 vm_map_lock(map); 1498 1499 VM_MAP_RANGE_CHECK(map, start, end); 1500 1501 /* 1502 * Only one pageability change may take place at one time, since 1503 * vm_fault assumes it will be called only once for each 1504 * wiring/unwiring. Therefore, we have to make sure we're actually 1505 * changing the pageability for the entire region. We do so before 1506 * making any changes. 1507 */ 1508 1509 if (vm_map_lookup_entry(map, start, &start_entry) == FALSE) { 1510 vm_map_unlock(map); 1511 return (KERN_INVALID_ADDRESS); 1512 } 1513 entry = start_entry; 1514 1515 /* 1516 * Actions are rather different for wiring and unwiring, so we have 1517 * two separate cases. 1518 */ 1519 1520 if (new_pageable) { 1521 1522 vm_map_clip_start(map, entry, start); 1523 1524 /* 1525 * Unwiring. First ensure that the range to be unwired is 1526 * really wired down and that there are no holes. 1527 */ 1528 while ((entry != &map->header) && (entry->start < end)) { 1529 1530 if (entry->wired_count == 0 || 1531 (entry->end < end && 1532 (entry->next == &map->header || 1533 entry->next->start > entry->end))) { 1534 vm_map_unlock(map); 1535 return (KERN_INVALID_ARGUMENT); 1536 } 1537 entry = entry->next; 1538 } 1539 1540 /* 1541 * Now decrement the wiring count for each region. If a region 1542 * becomes completely unwired, unwire its physical pages and 1543 * mappings. 1544 */ 1545 lock_set_recursive(&map->lock); 1546 1547 entry = start_entry; 1548 while ((entry != &map->header) && (entry->start < end)) { 1549 vm_map_clip_end(map, entry, end); 1550 1551 entry->wired_count--; 1552 if (entry->wired_count == 0) 1553 vm_fault_unwire(map, entry->start, entry->end); 1554 1555 entry = entry->next; 1556 } 1557 vm_map_simplify_entry(map, start_entry); 1558 lock_clear_recursive(&map->lock); 1559 } else { 1560 /* 1561 * Wiring. We must do this in two passes: 1562 * 1563 * 1. Holding the write lock, we create any shadow or zero-fill 1564 * objects that need to be created. Then we clip each map 1565 * entry to the region to be wired and increment its wiring 1566 * count. We create objects before clipping the map entries 1567 * to avoid object proliferation. 1568 * 1569 * 2. We downgrade to a read lock, and call vm_fault_wire to 1570 * fault in the pages for any newly wired area (wired_count is 1571 * 1). 1572 * 1573 * Downgrading to a read lock for vm_fault_wire avoids a possible 1574 * deadlock with another process that may have faulted on one 1575 * of the pages to be wired (it would mark the page busy, 1576 * blocking us, then in turn block on the map lock that we 1577 * hold). Because of problems in the recursive lock package, 1578 * we cannot upgrade to a write lock in vm_map_lookup. Thus, 1579 * any actions that require the write lock must be done 1580 * beforehand. Because we keep the read lock on the map, the 1581 * copy-on-write status of the entries we modify here cannot 1582 * change. 1583 */ 1584 1585 /* 1586 * Pass 1. 1587 */ 1588 while ((entry != &map->header) && (entry->start < end)) { 1589 if (entry->wired_count == 0) { 1590 1591 /* 1592 * Perform actions of vm_map_lookup that need 1593 * the write lock on the map: create a shadow 1594 * object for a copy-on-write region, or an 1595 * object for a zero-fill region. 1596 * 1597 * We don't have to do this for entries that 1598 * point to sharing maps, because we won't 1599 * hold the lock on the sharing map. 1600 */ 1601 if (!entry->is_a_map && !entry->is_sub_map) { 1602 int copyflag = entry->needs_copy; 1603 if (copyflag && 1604 ((entry->protection & VM_PROT_WRITE) != 0)) { 1605 1606 vm_object_shadow(&entry->object.vm_object, 1607 &entry->offset, 1608 OFF_TO_IDX(entry->end 1609 - entry->start)); 1610 entry->needs_copy = FALSE; 1611 } else if (entry->object.vm_object == NULL) { 1612 entry->object.vm_object = 1613 vm_object_allocate(OBJT_DEFAULT, 1614 OFF_TO_IDX(entry->end - entry->start)); 1615 entry->offset = (vm_offset_t) 0; 1616 } 1617 default_pager_convert_to_swapq(entry->object.vm_object); 1618 } 1619 } 1620 vm_map_clip_start(map, entry, start); 1621 vm_map_clip_end(map, entry, end); 1622 entry->wired_count++; 1623 1624 /* 1625 * Check for holes 1626 */ 1627 if (entry->end < end && 1628 (entry->next == &map->header || 1629 entry->next->start > entry->end)) { 1630 /* 1631 * Found one. Object creation actions do not 1632 * need to be undone, but the wired counts 1633 * need to be restored. 1634 */ 1635 while (entry != &map->header && entry->end > start) { 1636 entry->wired_count--; 1637 entry = entry->prev; 1638 } 1639 vm_map_unlock(map); 1640 return (KERN_INVALID_ARGUMENT); 1641 } 1642 entry = entry->next; 1643 } 1644 1645 /* 1646 * Pass 2. 1647 */ 1648 1649 /* 1650 * HACK HACK HACK HACK 1651 * 1652 * If we are wiring in the kernel map or a submap of it, 1653 * unlock the map to avoid deadlocks. We trust that the 1654 * kernel is well-behaved, and therefore will not do 1655 * anything destructive to this region of the map while 1656 * we have it unlocked. We cannot trust user processes 1657 * to do the same. 1658 * 1659 * HACK HACK HACK HACK 1660 */ 1661 if (vm_map_pmap(map) == kernel_pmap) { 1662 vm_map_unlock(map); /* trust me ... */ 1663 } else { 1664 lock_set_recursive(&map->lock); 1665 lock_write_to_read(&map->lock); 1666 } 1667 1668 rv = 0; 1669 entry = start_entry; 1670 while (entry != &map->header && entry->start < end) { 1671 /* 1672 * If vm_fault_wire fails for any page we need to undo 1673 * what has been done. We decrement the wiring count 1674 * for those pages which have not yet been wired (now) 1675 * and unwire those that have (later). 1676 * 1677 * XXX this violates the locking protocol on the map, 1678 * needs to be fixed. 1679 */ 1680 if (rv) 1681 entry->wired_count--; 1682 else if (entry->wired_count == 1) { 1683 rv = vm_fault_wire(map, entry->start, entry->end); 1684 if (rv) { 1685 failed = entry->start; 1686 entry->wired_count--; 1687 } 1688 } 1689 entry = entry->next; 1690 } 1691 1692 if (vm_map_pmap(map) == kernel_pmap) { 1693 vm_map_lock(map); 1694 } else { 1695 lock_clear_recursive(&map->lock); 1696 } 1697 if (rv) { 1698 vm_map_unlock(map); 1699 (void) vm_map_pageable(map, start, failed, TRUE); 1700 return (rv); 1701 } 1702 vm_map_simplify_entry(map, start_entry); 1703 } 1704 1705 vm_map_unlock(map); 1706 1707 return (KERN_SUCCESS); 1708 } 1709 1710 /* 1711 * vm_map_clean 1712 * 1713 * Push any dirty cached pages in the address range to their pager. 1714 * If syncio is TRUE, dirty pages are written synchronously. 1715 * If invalidate is TRUE, any cached pages are freed as well. 1716 * 1717 * Returns an error if any part of the specified range is not mapped. 1718 */ 1719 int 1720 vm_map_clean(map, start, end, syncio, invalidate) 1721 vm_map_t map; 1722 vm_offset_t start; 1723 vm_offset_t end; 1724 boolean_t syncio; 1725 boolean_t invalidate; 1726 { 1727 register vm_map_entry_t current; 1728 vm_map_entry_t entry; 1729 vm_size_t size; 1730 vm_object_t object; 1731 vm_ooffset_t offset; 1732 1733 vm_map_lock_read(map); 1734 VM_MAP_RANGE_CHECK(map, start, end); 1735 if (!vm_map_lookup_entry(map, start, &entry)) { 1736 vm_map_unlock_read(map); 1737 return (KERN_INVALID_ADDRESS); 1738 } 1739 /* 1740 * Make a first pass to check for holes. 1741 */ 1742 for (current = entry; current->start < end; current = current->next) { 1743 if (current->is_sub_map) { 1744 vm_map_unlock_read(map); 1745 return (KERN_INVALID_ARGUMENT); 1746 } 1747 if (end > current->end && 1748 (current->next == &map->header || 1749 current->end != current->next->start)) { 1750 vm_map_unlock_read(map); 1751 return (KERN_INVALID_ADDRESS); 1752 } 1753 } 1754 1755 /* 1756 * Make a second pass, cleaning/uncaching pages from the indicated 1757 * objects as we go. 1758 */ 1759 for (current = entry; current->start < end; current = current->next) { 1760 offset = current->offset + (start - current->start); 1761 size = (end <= current->end ? end : current->end) - start; 1762 if (current->is_a_map || current->is_sub_map) { 1763 register vm_map_t smap; 1764 vm_map_entry_t tentry; 1765 vm_size_t tsize; 1766 1767 smap = current->object.share_map; 1768 vm_map_lock_read(smap); 1769 (void) vm_map_lookup_entry(smap, offset, &tentry); 1770 tsize = tentry->end - offset; 1771 if (tsize < size) 1772 size = tsize; 1773 object = tentry->object.vm_object; 1774 offset = tentry->offset + (offset - tentry->start); 1775 vm_map_unlock_read(smap); 1776 } else { 1777 object = current->object.vm_object; 1778 } 1779 /* 1780 * Note that there is absolutely no sense in writing out 1781 * anonymous objects, so we track down the vnode object 1782 * to write out. 1783 * We invalidate (remove) all pages from the address space 1784 * anyway, for semantic correctness. 1785 */ 1786 while (object->backing_object) { 1787 object = object->backing_object; 1788 offset += object->backing_object_offset; 1789 if (object->size < OFF_TO_IDX( offset + size)) 1790 size = IDX_TO_OFF(object->size) - offset; 1791 } 1792 if (invalidate) 1793 pmap_remove(vm_map_pmap(map), current->start, 1794 current->start + size); 1795 if (object && (object->type == OBJT_VNODE)) { 1796 /* 1797 * Flush pages if writing is allowed. XXX should we continue 1798 * on an error? 1799 * 1800 * XXX Doing async I/O and then removing all the pages from 1801 * the object before it completes is probably a very bad 1802 * idea. 1803 */ 1804 if (current->protection & VM_PROT_WRITE) { 1805 vm_object_page_clean(object, 1806 OFF_TO_IDX(offset), 1807 OFF_TO_IDX(offset + size), 1808 (syncio||invalidate)?1:0, TRUE); 1809 if (invalidate) 1810 vm_object_page_remove(object, 1811 OFF_TO_IDX(offset), 1812 OFF_TO_IDX(offset + size), 1813 FALSE); 1814 } 1815 } 1816 start += size; 1817 } 1818 1819 vm_map_unlock_read(map); 1820 return (KERN_SUCCESS); 1821 } 1822 1823 /* 1824 * vm_map_entry_unwire: [ internal use only ] 1825 * 1826 * Make the region specified by this entry pageable. 1827 * 1828 * The map in question should be locked. 1829 * [This is the reason for this routine's existence.] 1830 */ 1831 static void 1832 vm_map_entry_unwire(map, entry) 1833 vm_map_t map; 1834 register vm_map_entry_t entry; 1835 { 1836 vm_fault_unwire(map, entry->start, entry->end); 1837 entry->wired_count = 0; 1838 } 1839 1840 /* 1841 * vm_map_entry_delete: [ internal use only ] 1842 * 1843 * Deallocate the given entry from the target map. 1844 */ 1845 static void 1846 vm_map_entry_delete(map, entry) 1847 register vm_map_t map; 1848 register vm_map_entry_t entry; 1849 { 1850 vm_map_entry_unlink(map, entry); 1851 map->size -= entry->end - entry->start; 1852 1853 if (entry->is_a_map || entry->is_sub_map) { 1854 vm_map_deallocate(entry->object.share_map); 1855 } else { 1856 vm_object_deallocate(entry->object.vm_object); 1857 } 1858 1859 vm_map_entry_dispose(map, entry); 1860 } 1861 1862 /* 1863 * vm_map_delete: [ internal use only ] 1864 * 1865 * Deallocates the given address range from the target 1866 * map. 1867 * 1868 * When called with a sharing map, removes pages from 1869 * that region from all physical maps. 1870 */ 1871 int 1872 vm_map_delete(map, start, end) 1873 register vm_map_t map; 1874 vm_offset_t start; 1875 register vm_offset_t end; 1876 { 1877 register vm_map_entry_t entry; 1878 vm_map_entry_t first_entry; 1879 1880 /* 1881 * Find the start of the region, and clip it 1882 */ 1883 1884 if (!vm_map_lookup_entry(map, start, &first_entry)) 1885 entry = first_entry->next; 1886 else { 1887 entry = first_entry; 1888 vm_map_clip_start(map, entry, start); 1889 1890 /* 1891 * Fix the lookup hint now, rather than each time though the 1892 * loop. 1893 */ 1894 1895 SAVE_HINT(map, entry->prev); 1896 } 1897 1898 /* 1899 * Save the free space hint 1900 */ 1901 1902 if (entry == &map->header) { 1903 map->first_free = &map->header; 1904 } else if (map->first_free->start >= start) 1905 map->first_free = entry->prev; 1906 1907 /* 1908 * Step through all entries in this region 1909 */ 1910 1911 while ((entry != &map->header) && (entry->start < end)) { 1912 vm_map_entry_t next; 1913 vm_offset_t s, e; 1914 vm_object_t object; 1915 vm_ooffset_t offset; 1916 1917 vm_map_clip_end(map, entry, end); 1918 1919 next = entry->next; 1920 s = entry->start; 1921 e = entry->end; 1922 offset = entry->offset; 1923 1924 /* 1925 * Unwire before removing addresses from the pmap; otherwise, 1926 * unwiring will put the entries back in the pmap. 1927 */ 1928 1929 object = entry->object.vm_object; 1930 if (entry->wired_count != 0) 1931 vm_map_entry_unwire(map, entry); 1932 1933 /* 1934 * If this is a sharing map, we must remove *all* references 1935 * to this data, since we can't find all of the physical maps 1936 * which are sharing it. 1937 */ 1938 1939 if (object == kernel_object || object == kmem_object) { 1940 vm_object_page_remove(object, OFF_TO_IDX(offset), 1941 OFF_TO_IDX(offset + (e - s)), FALSE); 1942 } else if (!map->is_main_map) { 1943 vm_object_pmap_remove(object, 1944 OFF_TO_IDX(offset), 1945 OFF_TO_IDX(offset + (e - s))); 1946 } else { 1947 pmap_remove(map->pmap, s, e); 1948 } 1949 1950 /* 1951 * Delete the entry (which may delete the object) only after 1952 * removing all pmap entries pointing to its pages. 1953 * (Otherwise, its page frames may be reallocated, and any 1954 * modify bits will be set in the wrong object!) 1955 */ 1956 1957 vm_map_entry_delete(map, entry); 1958 entry = next; 1959 } 1960 return (KERN_SUCCESS); 1961 } 1962 1963 /* 1964 * vm_map_remove: 1965 * 1966 * Remove the given address range from the target map. 1967 * This is the exported form of vm_map_delete. 1968 */ 1969 int 1970 vm_map_remove(map, start, end) 1971 register vm_map_t map; 1972 register vm_offset_t start; 1973 register vm_offset_t end; 1974 { 1975 register int result, s = 0; 1976 1977 if (map == kmem_map || map == mb_map) 1978 s = splvm(); 1979 1980 vm_map_lock(map); 1981 VM_MAP_RANGE_CHECK(map, start, end); 1982 result = vm_map_delete(map, start, end); 1983 vm_map_unlock(map); 1984 1985 if (map == kmem_map || map == mb_map) 1986 splx(s); 1987 1988 return (result); 1989 } 1990 1991 /* 1992 * vm_map_check_protection: 1993 * 1994 * Assert that the target map allows the specified 1995 * privilege on the entire address region given. 1996 * The entire region must be allocated. 1997 */ 1998 boolean_t 1999 vm_map_check_protection(map, start, end, protection) 2000 register vm_map_t map; 2001 register vm_offset_t start; 2002 register vm_offset_t end; 2003 register vm_prot_t protection; 2004 { 2005 register vm_map_entry_t entry; 2006 vm_map_entry_t tmp_entry; 2007 2008 if (!vm_map_lookup_entry(map, start, &tmp_entry)) { 2009 return (FALSE); 2010 } 2011 entry = tmp_entry; 2012 2013 while (start < end) { 2014 if (entry == &map->header) { 2015 return (FALSE); 2016 } 2017 /* 2018 * No holes allowed! 2019 */ 2020 2021 if (start < entry->start) { 2022 return (FALSE); 2023 } 2024 /* 2025 * Check protection associated with entry. 2026 */ 2027 2028 if ((entry->protection & protection) != protection) { 2029 return (FALSE); 2030 } 2031 /* go to next entry */ 2032 2033 start = entry->end; 2034 entry = entry->next; 2035 } 2036 return (TRUE); 2037 } 2038 2039 /* 2040 * vm_map_copy_entry: 2041 * 2042 * Copies the contents of the source entry to the destination 2043 * entry. The entries *must* be aligned properly. 2044 */ 2045 static void 2046 vm_map_copy_entry(src_map, dst_map, src_entry, dst_entry) 2047 vm_map_t src_map, dst_map; 2048 register vm_map_entry_t src_entry, dst_entry; 2049 { 2050 if (src_entry->is_sub_map || dst_entry->is_sub_map) 2051 return; 2052 2053 if (src_entry->wired_count == 0) { 2054 2055 /* 2056 * If the source entry is marked needs_copy, it is already 2057 * write-protected. 2058 */ 2059 if (!src_entry->needs_copy) { 2060 2061 boolean_t su; 2062 2063 /* 2064 * If the source entry has only one mapping, we can 2065 * just protect the virtual address range. 2066 */ 2067 if (!(su = src_map->is_main_map)) { 2068 su = (src_map->ref_count == 1); 2069 } 2070 if (su) { 2071 pmap_protect(src_map->pmap, 2072 src_entry->start, 2073 src_entry->end, 2074 src_entry->protection & ~VM_PROT_WRITE); 2075 } else { 2076 vm_object_pmap_copy(src_entry->object.vm_object, 2077 OFF_TO_IDX(src_entry->offset), 2078 OFF_TO_IDX(src_entry->offset + (src_entry->end 2079 - src_entry->start))); 2080 } 2081 } 2082 2083 /* 2084 * Make a copy of the object. 2085 */ 2086 if (src_entry->object.vm_object) { 2087 if ((src_entry->object.vm_object->handle == NULL) && 2088 (src_entry->object.vm_object->type == OBJT_DEFAULT || 2089 src_entry->object.vm_object->type == OBJT_SWAP)) 2090 vm_object_collapse(src_entry->object.vm_object); 2091 ++src_entry->object.vm_object->ref_count; 2092 src_entry->copy_on_write = TRUE; 2093 src_entry->needs_copy = TRUE; 2094 2095 dst_entry->needs_copy = TRUE; 2096 dst_entry->copy_on_write = TRUE; 2097 dst_entry->object.vm_object = 2098 src_entry->object.vm_object; 2099 dst_entry->offset = src_entry->offset; 2100 } else { 2101 dst_entry->object.vm_object = NULL; 2102 dst_entry->offset = 0; 2103 } 2104 2105 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start, 2106 dst_entry->end - dst_entry->start, src_entry->start); 2107 } else { 2108 /* 2109 * Of course, wired down pages can't be set copy-on-write. 2110 * Cause wired pages to be copied into the new map by 2111 * simulating faults (the new pages are pageable) 2112 */ 2113 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry); 2114 } 2115 } 2116 2117 /* 2118 * vmspace_fork: 2119 * Create a new process vmspace structure and vm_map 2120 * based on those of an existing process. The new map 2121 * is based on the old map, according to the inheritance 2122 * values on the regions in that map. 2123 * 2124 * The source map must not be locked. 2125 */ 2126 struct vmspace * 2127 vmspace_fork(vm1) 2128 register struct vmspace *vm1; 2129 { 2130 register struct vmspace *vm2; 2131 vm_map_t old_map = &vm1->vm_map; 2132 vm_map_t new_map; 2133 vm_map_entry_t old_entry; 2134 vm_map_entry_t new_entry; 2135 pmap_t new_pmap; 2136 vm_object_t object; 2137 2138 vm_map_lock(old_map); 2139 2140 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset, 2141 old_map->entries_pageable); 2142 bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy, 2143 (caddr_t) (vm1 + 1) - (caddr_t) &vm1->vm_startcopy); 2144 new_pmap = &vm2->vm_pmap; /* XXX */ 2145 new_map = &vm2->vm_map; /* XXX */ 2146 2147 old_entry = old_map->header.next; 2148 2149 while (old_entry != &old_map->header) { 2150 if (old_entry->is_sub_map) 2151 panic("vm_map_fork: encountered a submap"); 2152 2153 switch (old_entry->inheritance) { 2154 case VM_INHERIT_NONE: 2155 break; 2156 2157 case VM_INHERIT_SHARE: 2158 /* 2159 * Clone the entry, referencing the sharing map. 2160 */ 2161 new_entry = vm_map_entry_create(new_map); 2162 *new_entry = *old_entry; 2163 new_entry->wired_count = 0; 2164 object = new_entry->object.vm_object; 2165 ++object->ref_count; 2166 2167 /* 2168 * Insert the entry into the new map -- we know we're 2169 * inserting at the end of the new map. 2170 */ 2171 2172 vm_map_entry_link(new_map, new_map->header.prev, 2173 new_entry); 2174 2175 /* 2176 * Update the physical map 2177 */ 2178 2179 pmap_copy(new_map->pmap, old_map->pmap, 2180 new_entry->start, 2181 (old_entry->end - old_entry->start), 2182 old_entry->start); 2183 break; 2184 2185 case VM_INHERIT_COPY: 2186 /* 2187 * Clone the entry and link into the map. 2188 */ 2189 new_entry = vm_map_entry_create(new_map); 2190 *new_entry = *old_entry; 2191 new_entry->wired_count = 0; 2192 new_entry->object.vm_object = NULL; 2193 new_entry->is_a_map = FALSE; 2194 vm_map_entry_link(new_map, new_map->header.prev, 2195 new_entry); 2196 vm_map_copy_entry(old_map, new_map, old_entry, 2197 new_entry); 2198 break; 2199 } 2200 old_entry = old_entry->next; 2201 } 2202 2203 new_map->size = old_map->size; 2204 vm_map_unlock(old_map); 2205 2206 return (vm2); 2207 } 2208 2209 /* 2210 * vm_map_lookup: 2211 * 2212 * Finds the VM object, offset, and 2213 * protection for a given virtual address in the 2214 * specified map, assuming a page fault of the 2215 * type specified. 2216 * 2217 * Leaves the map in question locked for read; return 2218 * values are guaranteed until a vm_map_lookup_done 2219 * call is performed. Note that the map argument 2220 * is in/out; the returned map must be used in 2221 * the call to vm_map_lookup_done. 2222 * 2223 * A handle (out_entry) is returned for use in 2224 * vm_map_lookup_done, to make that fast. 2225 * 2226 * If a lookup is requested with "write protection" 2227 * specified, the map may be changed to perform virtual 2228 * copying operations, although the data referenced will 2229 * remain the same. 2230 */ 2231 int 2232 vm_map_lookup(var_map, vaddr, fault_type, out_entry, 2233 object, pindex, out_prot, wired, single_use) 2234 vm_map_t *var_map; /* IN/OUT */ 2235 register vm_offset_t vaddr; 2236 register vm_prot_t fault_type; 2237 2238 vm_map_entry_t *out_entry; /* OUT */ 2239 vm_object_t *object; /* OUT */ 2240 vm_pindex_t *pindex; /* OUT */ 2241 vm_prot_t *out_prot; /* OUT */ 2242 boolean_t *wired; /* OUT */ 2243 boolean_t *single_use; /* OUT */ 2244 { 2245 vm_map_t share_map; 2246 vm_offset_t share_offset; 2247 register vm_map_entry_t entry; 2248 register vm_map_t map = *var_map; 2249 register vm_prot_t prot; 2250 register boolean_t su; 2251 2252 RetryLookup:; 2253 2254 /* 2255 * Lookup the faulting address. 2256 */ 2257 2258 vm_map_lock_read(map); 2259 2260 #define RETURN(why) \ 2261 { \ 2262 vm_map_unlock_read(map); \ 2263 return(why); \ 2264 } 2265 2266 /* 2267 * If the map has an interesting hint, try it before calling full 2268 * blown lookup routine. 2269 */ 2270 2271 entry = map->hint; 2272 2273 *out_entry = entry; 2274 2275 if ((entry == &map->header) || 2276 (vaddr < entry->start) || (vaddr >= entry->end)) { 2277 vm_map_entry_t tmp_entry; 2278 2279 /* 2280 * Entry was either not a valid hint, or the vaddr was not 2281 * contained in the entry, so do a full lookup. 2282 */ 2283 if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) 2284 RETURN(KERN_INVALID_ADDRESS); 2285 2286 entry = tmp_entry; 2287 *out_entry = entry; 2288 } 2289 2290 /* 2291 * Handle submaps. 2292 */ 2293 2294 if (entry->is_sub_map) { 2295 vm_map_t old_map = map; 2296 2297 *var_map = map = entry->object.sub_map; 2298 vm_map_unlock_read(old_map); 2299 goto RetryLookup; 2300 } 2301 /* 2302 * Check whether this task is allowed to have this page. 2303 */ 2304 2305 prot = entry->protection; 2306 if ((fault_type & (prot)) != fault_type) 2307 RETURN(KERN_PROTECTION_FAILURE); 2308 2309 /* 2310 * If this page is not pageable, we have to get it for all possible 2311 * accesses. 2312 */ 2313 2314 *wired = (entry->wired_count != 0); 2315 if (*wired) 2316 prot = fault_type = entry->protection; 2317 2318 /* 2319 * If we don't already have a VM object, track it down. 2320 */ 2321 2322 su = !entry->is_a_map; 2323 if (su) { 2324 share_map = map; 2325 share_offset = vaddr; 2326 } else { 2327 vm_map_entry_t share_entry; 2328 2329 /* 2330 * Compute the sharing map, and offset into it. 2331 */ 2332 2333 share_map = entry->object.share_map; 2334 share_offset = (vaddr - entry->start) + entry->offset; 2335 2336 /* 2337 * Look for the backing store object and offset 2338 */ 2339 2340 vm_map_lock_read(share_map); 2341 2342 if (!vm_map_lookup_entry(share_map, share_offset, 2343 &share_entry)) { 2344 vm_map_unlock_read(share_map); 2345 RETURN(KERN_INVALID_ADDRESS); 2346 } 2347 entry = share_entry; 2348 } 2349 2350 /* 2351 * If the entry was copy-on-write, we either ... 2352 */ 2353 2354 if (entry->needs_copy) { 2355 /* 2356 * If we want to write the page, we may as well handle that 2357 * now since we've got the sharing map locked. 2358 * 2359 * If we don't need to write the page, we just demote the 2360 * permissions allowed. 2361 */ 2362 2363 if (fault_type & VM_PROT_WRITE) { 2364 /* 2365 * Make a new object, and place it in the object 2366 * chain. Note that no new references have appeared 2367 * -- one just moved from the share map to the new 2368 * object. 2369 */ 2370 2371 if (lock_read_to_write(&share_map->lock)) { 2372 if (share_map != map) 2373 vm_map_unlock_read(map); 2374 goto RetryLookup; 2375 } 2376 vm_object_shadow( 2377 &entry->object.vm_object, 2378 &entry->offset, 2379 OFF_TO_IDX(entry->end - entry->start)); 2380 2381 entry->needs_copy = FALSE; 2382 2383 lock_write_to_read(&share_map->lock); 2384 } else { 2385 /* 2386 * We're attempting to read a copy-on-write page -- 2387 * don't allow writes. 2388 */ 2389 2390 prot &= (~VM_PROT_WRITE); 2391 } 2392 } 2393 /* 2394 * Create an object if necessary. 2395 */ 2396 if (entry->object.vm_object == NULL) { 2397 2398 if (lock_read_to_write(&share_map->lock)) { 2399 if (share_map != map) 2400 vm_map_unlock_read(map); 2401 goto RetryLookup; 2402 } 2403 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT, 2404 OFF_TO_IDX(entry->end - entry->start)); 2405 entry->offset = 0; 2406 lock_write_to_read(&share_map->lock); 2407 } 2408 2409 if (entry->object.vm_object != NULL) 2410 default_pager_convert_to_swapq(entry->object.vm_object); 2411 /* 2412 * Return the object/offset from this entry. If the entry was 2413 * copy-on-write or empty, it has been fixed up. 2414 */ 2415 2416 *pindex = OFF_TO_IDX((share_offset - entry->start) + entry->offset); 2417 *object = entry->object.vm_object; 2418 2419 /* 2420 * Return whether this is the only map sharing this data. 2421 */ 2422 2423 if (!su) { 2424 su = (share_map->ref_count == 1); 2425 } 2426 *out_prot = prot; 2427 *single_use = su; 2428 2429 return (KERN_SUCCESS); 2430 2431 #undef RETURN 2432 } 2433 2434 /* 2435 * vm_map_lookup_done: 2436 * 2437 * Releases locks acquired by a vm_map_lookup 2438 * (according to the handle returned by that lookup). 2439 */ 2440 2441 void 2442 vm_map_lookup_done(map, entry) 2443 register vm_map_t map; 2444 vm_map_entry_t entry; 2445 { 2446 /* 2447 * If this entry references a map, unlock it first. 2448 */ 2449 2450 if (entry->is_a_map) 2451 vm_map_unlock_read(entry->object.share_map); 2452 2453 /* 2454 * Unlock the main-level map 2455 */ 2456 2457 vm_map_unlock_read(map); 2458 } 2459 2460 #include "opt_ddb.h" 2461 #ifdef DDB 2462 #include <sys/kernel.h> 2463 2464 #include <ddb/ddb.h> 2465 2466 /* 2467 * vm_map_print: [ debug ] 2468 */ 2469 DB_SHOW_COMMAND(map, vm_map_print) 2470 { 2471 /* XXX convert args. */ 2472 register vm_map_t map = (vm_map_t)addr; 2473 boolean_t full = have_addr; 2474 2475 register vm_map_entry_t entry; 2476 2477 db_iprintf("%s map 0x%x: pmap=0x%x,ref=%d,nentries=%d,version=%d\n", 2478 (map->is_main_map ? "Task" : "Share"), 2479 (int) map, (int) (map->pmap), map->ref_count, map->nentries, 2480 map->timestamp); 2481 2482 if (!full && db_indent) 2483 return; 2484 2485 db_indent += 2; 2486 for (entry = map->header.next; entry != &map->header; 2487 entry = entry->next) { 2488 db_iprintf("map entry 0x%x: start=0x%x, end=0x%x, ", 2489 (int) entry, (int) entry->start, (int) entry->end); 2490 if (map->is_main_map) { 2491 static char *inheritance_name[4] = 2492 {"share", "copy", "none", "donate_copy"}; 2493 2494 db_printf("prot=%x/%x/%s, ", 2495 entry->protection, 2496 entry->max_protection, 2497 inheritance_name[entry->inheritance]); 2498 if (entry->wired_count != 0) 2499 db_printf("wired, "); 2500 } 2501 if (entry->is_a_map || entry->is_sub_map) { 2502 db_printf("share=0x%x, offset=0x%x\n", 2503 (int) entry->object.share_map, 2504 (int) entry->offset); 2505 if ((entry->prev == &map->header) || 2506 (!entry->prev->is_a_map) || 2507 (entry->prev->object.share_map != 2508 entry->object.share_map)) { 2509 db_indent += 2; 2510 vm_map_print((int)entry->object.share_map, 2511 full, 0, (char *)0); 2512 db_indent -= 2; 2513 } 2514 } else { 2515 db_printf("object=0x%x, offset=0x%x", 2516 (int) entry->object.vm_object, 2517 (int) entry->offset); 2518 if (entry->copy_on_write) 2519 db_printf(", copy (%s)", 2520 entry->needs_copy ? "needed" : "done"); 2521 db_printf("\n"); 2522 2523 if ((entry->prev == &map->header) || 2524 (entry->prev->is_a_map) || 2525 (entry->prev->object.vm_object != 2526 entry->object.vm_object)) { 2527 db_indent += 2; 2528 vm_object_print((int)entry->object.vm_object, 2529 full, 0, (char *)0); 2530 db_indent -= 2; 2531 } 2532 } 2533 } 2534 db_indent -= 2; 2535 } 2536 #endif /* DDB */ 2537