xref: /freebsd/sys/vm/vm_map.c (revision 60eddb209b5ad13a549ca74a41b7cb38a31da5ef)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62 
63 /*
64  *	Virtual memory mapping module.
65  */
66 
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/kernel.h>
73 #include <sys/ktr.h>
74 #include <sys/lock.h>
75 #include <sys/mutex.h>
76 #include <sys/proc.h>
77 #include <sys/vmmeter.h>
78 #include <sys/mman.h>
79 #include <sys/vnode.h>
80 #include <sys/racct.h>
81 #include <sys/resourcevar.h>
82 #include <sys/rwlock.h>
83 #include <sys/file.h>
84 #include <sys/sysctl.h>
85 #include <sys/sysent.h>
86 #include <sys/shm.h>
87 
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_object.h>
94 #include <vm/vm_pager.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_extern.h>
97 #include <vm/vnode_pager.h>
98 #include <vm/swap_pager.h>
99 #include <vm/uma.h>
100 
101 /*
102  *	Virtual memory maps provide for the mapping, protection,
103  *	and sharing of virtual memory objects.  In addition,
104  *	this module provides for an efficient virtual copy of
105  *	memory from one map to another.
106  *
107  *	Synchronization is required prior to most operations.
108  *
109  *	Maps consist of an ordered doubly-linked list of simple
110  *	entries; a self-adjusting binary search tree of these
111  *	entries is used to speed up lookups.
112  *
113  *	Since portions of maps are specified by start/end addresses,
114  *	which may not align with existing map entries, all
115  *	routines merely "clip" entries to these start/end values.
116  *	[That is, an entry is split into two, bordering at a
117  *	start or end value.]  Note that these clippings may not
118  *	always be necessary (as the two resulting entries are then
119  *	not changed); however, the clipping is done for convenience.
120  *
121  *	As mentioned above, virtual copy operations are performed
122  *	by copying VM object references from one map to
123  *	another, and then marking both regions as copy-on-write.
124  */
125 
126 static struct mtx map_sleep_mtx;
127 static uma_zone_t mapentzone;
128 static uma_zone_t kmapentzone;
129 static uma_zone_t mapzone;
130 static uma_zone_t vmspace_zone;
131 static int vmspace_zinit(void *mem, int size, int flags);
132 static int vm_map_zinit(void *mem, int ize, int flags);
133 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
134     vm_offset_t max);
135 static int vm_map_alignspace(vm_map_t map, vm_object_t object,
136     vm_ooffset_t offset, vm_offset_t *addr, vm_size_t length,
137     vm_offset_t max_addr, vm_offset_t alignment);
138 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
139 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
140 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
141 static int vm_map_growstack(vm_map_t map, vm_offset_t addr,
142     vm_map_entry_t gap_entry);
143 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
144     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
145 #ifdef INVARIANTS
146 static void vm_map_zdtor(void *mem, int size, void *arg);
147 static void vmspace_zdtor(void *mem, int size, void *arg);
148 #endif
149 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
150     vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
151     int cow);
152 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
153     vm_offset_t failed_addr);
154 
155 #define	ENTRY_CHARGED(e) ((e)->cred != NULL || \
156     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
157      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
158 
159 /*
160  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
161  * stable.
162  */
163 #define PROC_VMSPACE_LOCK(p) do { } while (0)
164 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
165 
166 /*
167  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
168  *
169  *	Asserts that the starting and ending region
170  *	addresses fall within the valid range of the map.
171  */
172 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
173 		{					\
174 		if (start < vm_map_min(map))		\
175 			start = vm_map_min(map);	\
176 		if (end > vm_map_max(map))		\
177 			end = vm_map_max(map);		\
178 		if (start > end)			\
179 			start = end;			\
180 		}
181 
182 /*
183  *	vm_map_startup:
184  *
185  *	Initialize the vm_map module.  Must be called before
186  *	any other vm_map routines.
187  *
188  *	Map and entry structures are allocated from the general
189  *	purpose memory pool with some exceptions:
190  *
191  *	- The kernel map and kmem submap are allocated statically.
192  *	- Kernel map entries are allocated out of a static pool.
193  *
194  *	These restrictions are necessary since malloc() uses the
195  *	maps and requires map entries.
196  */
197 
198 void
199 vm_map_startup(void)
200 {
201 	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
202 	mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
203 #ifdef INVARIANTS
204 	    vm_map_zdtor,
205 #else
206 	    NULL,
207 #endif
208 	    vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
209 	uma_prealloc(mapzone, MAX_KMAP);
210 	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
211 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
212 	    UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
213 	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
214 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
215 	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
216 #ifdef INVARIANTS
217 	    vmspace_zdtor,
218 #else
219 	    NULL,
220 #endif
221 	    vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
222 }
223 
224 static int
225 vmspace_zinit(void *mem, int size, int flags)
226 {
227 	struct vmspace *vm;
228 
229 	vm = (struct vmspace *)mem;
230 
231 	vm->vm_map.pmap = NULL;
232 	(void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
233 	PMAP_LOCK_INIT(vmspace_pmap(vm));
234 	return (0);
235 }
236 
237 static int
238 vm_map_zinit(void *mem, int size, int flags)
239 {
240 	vm_map_t map;
241 
242 	map = (vm_map_t)mem;
243 	memset(map, 0, sizeof(*map));
244 	mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
245 	sx_init(&map->lock, "vm map (user)");
246 	return (0);
247 }
248 
249 #ifdef INVARIANTS
250 static void
251 vmspace_zdtor(void *mem, int size, void *arg)
252 {
253 	struct vmspace *vm;
254 
255 	vm = (struct vmspace *)mem;
256 
257 	vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
258 }
259 static void
260 vm_map_zdtor(void *mem, int size, void *arg)
261 {
262 	vm_map_t map;
263 
264 	map = (vm_map_t)mem;
265 	KASSERT(map->nentries == 0,
266 	    ("map %p nentries == %d on free.",
267 	    map, map->nentries));
268 	KASSERT(map->size == 0,
269 	    ("map %p size == %lu on free.",
270 	    map, (unsigned long)map->size));
271 }
272 #endif	/* INVARIANTS */
273 
274 /*
275  * Allocate a vmspace structure, including a vm_map and pmap,
276  * and initialize those structures.  The refcnt is set to 1.
277  *
278  * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit().
279  */
280 struct vmspace *
281 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
282 {
283 	struct vmspace *vm;
284 
285 	vm = uma_zalloc(vmspace_zone, M_WAITOK);
286 
287 	KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
288 
289 	if (pinit == NULL)
290 		pinit = &pmap_pinit;
291 
292 	if (!pinit(vmspace_pmap(vm))) {
293 		uma_zfree(vmspace_zone, vm);
294 		return (NULL);
295 	}
296 	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
297 	_vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
298 	vm->vm_refcnt = 1;
299 	vm->vm_shm = NULL;
300 	vm->vm_swrss = 0;
301 	vm->vm_tsize = 0;
302 	vm->vm_dsize = 0;
303 	vm->vm_ssize = 0;
304 	vm->vm_taddr = 0;
305 	vm->vm_daddr = 0;
306 	vm->vm_maxsaddr = 0;
307 	return (vm);
308 }
309 
310 #ifdef RACCT
311 static void
312 vmspace_container_reset(struct proc *p)
313 {
314 
315 	PROC_LOCK(p);
316 	racct_set(p, RACCT_DATA, 0);
317 	racct_set(p, RACCT_STACK, 0);
318 	racct_set(p, RACCT_RSS, 0);
319 	racct_set(p, RACCT_MEMLOCK, 0);
320 	racct_set(p, RACCT_VMEM, 0);
321 	PROC_UNLOCK(p);
322 }
323 #endif
324 
325 static inline void
326 vmspace_dofree(struct vmspace *vm)
327 {
328 
329 	CTR1(KTR_VM, "vmspace_free: %p", vm);
330 
331 	/*
332 	 * Make sure any SysV shm is freed, it might not have been in
333 	 * exit1().
334 	 */
335 	shmexit(vm);
336 
337 	/*
338 	 * Lock the map, to wait out all other references to it.
339 	 * Delete all of the mappings and pages they hold, then call
340 	 * the pmap module to reclaim anything left.
341 	 */
342 	(void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset,
343 	    vm->vm_map.max_offset);
344 
345 	pmap_release(vmspace_pmap(vm));
346 	vm->vm_map.pmap = NULL;
347 	uma_zfree(vmspace_zone, vm);
348 }
349 
350 void
351 vmspace_free(struct vmspace *vm)
352 {
353 
354 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
355 	    "vmspace_free() called");
356 
357 	if (vm->vm_refcnt == 0)
358 		panic("vmspace_free: attempt to free already freed vmspace");
359 
360 	if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
361 		vmspace_dofree(vm);
362 }
363 
364 void
365 vmspace_exitfree(struct proc *p)
366 {
367 	struct vmspace *vm;
368 
369 	PROC_VMSPACE_LOCK(p);
370 	vm = p->p_vmspace;
371 	p->p_vmspace = NULL;
372 	PROC_VMSPACE_UNLOCK(p);
373 	KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
374 	vmspace_free(vm);
375 }
376 
377 void
378 vmspace_exit(struct thread *td)
379 {
380 	int refcnt;
381 	struct vmspace *vm;
382 	struct proc *p;
383 
384 	/*
385 	 * Release user portion of address space.
386 	 * This releases references to vnodes,
387 	 * which could cause I/O if the file has been unlinked.
388 	 * Need to do this early enough that we can still sleep.
389 	 *
390 	 * The last exiting process to reach this point releases as
391 	 * much of the environment as it can. vmspace_dofree() is the
392 	 * slower fallback in case another process had a temporary
393 	 * reference to the vmspace.
394 	 */
395 
396 	p = td->td_proc;
397 	vm = p->p_vmspace;
398 	atomic_add_int(&vmspace0.vm_refcnt, 1);
399 	do {
400 		refcnt = vm->vm_refcnt;
401 		if (refcnt > 1 && p->p_vmspace != &vmspace0) {
402 			/* Switch now since other proc might free vmspace */
403 			PROC_VMSPACE_LOCK(p);
404 			p->p_vmspace = &vmspace0;
405 			PROC_VMSPACE_UNLOCK(p);
406 			pmap_activate(td);
407 		}
408 	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
409 	if (refcnt == 1) {
410 		if (p->p_vmspace != vm) {
411 			/* vmspace not yet freed, switch back */
412 			PROC_VMSPACE_LOCK(p);
413 			p->p_vmspace = vm;
414 			PROC_VMSPACE_UNLOCK(p);
415 			pmap_activate(td);
416 		}
417 		pmap_remove_pages(vmspace_pmap(vm));
418 		/* Switch now since this proc will free vmspace */
419 		PROC_VMSPACE_LOCK(p);
420 		p->p_vmspace = &vmspace0;
421 		PROC_VMSPACE_UNLOCK(p);
422 		pmap_activate(td);
423 		vmspace_dofree(vm);
424 	}
425 #ifdef RACCT
426 	if (racct_enable)
427 		vmspace_container_reset(p);
428 #endif
429 }
430 
431 /* Acquire reference to vmspace owned by another process. */
432 
433 struct vmspace *
434 vmspace_acquire_ref(struct proc *p)
435 {
436 	struct vmspace *vm;
437 	int refcnt;
438 
439 	PROC_VMSPACE_LOCK(p);
440 	vm = p->p_vmspace;
441 	if (vm == NULL) {
442 		PROC_VMSPACE_UNLOCK(p);
443 		return (NULL);
444 	}
445 	do {
446 		refcnt = vm->vm_refcnt;
447 		if (refcnt <= 0) { 	/* Avoid 0->1 transition */
448 			PROC_VMSPACE_UNLOCK(p);
449 			return (NULL);
450 		}
451 	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
452 	if (vm != p->p_vmspace) {
453 		PROC_VMSPACE_UNLOCK(p);
454 		vmspace_free(vm);
455 		return (NULL);
456 	}
457 	PROC_VMSPACE_UNLOCK(p);
458 	return (vm);
459 }
460 
461 /*
462  * Switch between vmspaces in an AIO kernel process.
463  *
464  * The AIO kernel processes switch to and from a user process's
465  * vmspace while performing an I/O operation on behalf of a user
466  * process.  The new vmspace is either the vmspace of a user process
467  * obtained from an active AIO request or the initial vmspace of the
468  * AIO kernel process (when it is idling).  Because user processes
469  * will block to drain any active AIO requests before proceeding in
470  * exit() or execve(), the vmspace reference count for these vmspaces
471  * can never be 0.  This allows for a much simpler implementation than
472  * the loop in vmspace_acquire_ref() above.  Similarly, AIO kernel
473  * processes hold an extra reference on their initial vmspace for the
474  * life of the process so that this guarantee is true for any vmspace
475  * passed as 'newvm'.
476  */
477 void
478 vmspace_switch_aio(struct vmspace *newvm)
479 {
480 	struct vmspace *oldvm;
481 
482 	/* XXX: Need some way to assert that this is an aio daemon. */
483 
484 	KASSERT(newvm->vm_refcnt > 0,
485 	    ("vmspace_switch_aio: newvm unreferenced"));
486 
487 	oldvm = curproc->p_vmspace;
488 	if (oldvm == newvm)
489 		return;
490 
491 	/*
492 	 * Point to the new address space and refer to it.
493 	 */
494 	curproc->p_vmspace = newvm;
495 	atomic_add_int(&newvm->vm_refcnt, 1);
496 
497 	/* Activate the new mapping. */
498 	pmap_activate(curthread);
499 
500 	/* Remove the daemon's reference to the old address space. */
501 	KASSERT(oldvm->vm_refcnt > 1,
502 	    ("vmspace_switch_aio: oldvm dropping last reference"));
503 	vmspace_free(oldvm);
504 }
505 
506 void
507 _vm_map_lock(vm_map_t map, const char *file, int line)
508 {
509 
510 	if (map->system_map)
511 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
512 	else
513 		sx_xlock_(&map->lock, file, line);
514 	map->timestamp++;
515 }
516 
517 static void
518 vm_map_process_deferred(void)
519 {
520 	struct thread *td;
521 	vm_map_entry_t entry, next;
522 	vm_object_t object;
523 
524 	td = curthread;
525 	entry = td->td_map_def_user;
526 	td->td_map_def_user = NULL;
527 	while (entry != NULL) {
528 		next = entry->next;
529 		if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) {
530 			/*
531 			 * Decrement the object's writemappings and
532 			 * possibly the vnode's v_writecount.
533 			 */
534 			KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
535 			    ("Submap with writecount"));
536 			object = entry->object.vm_object;
537 			KASSERT(object != NULL, ("No object for writecount"));
538 			vnode_pager_release_writecount(object, entry->start,
539 			    entry->end);
540 		}
541 		vm_map_entry_deallocate(entry, FALSE);
542 		entry = next;
543 	}
544 }
545 
546 void
547 _vm_map_unlock(vm_map_t map, const char *file, int line)
548 {
549 
550 	if (map->system_map)
551 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
552 	else {
553 		sx_xunlock_(&map->lock, file, line);
554 		vm_map_process_deferred();
555 	}
556 }
557 
558 void
559 _vm_map_lock_read(vm_map_t map, const char *file, int line)
560 {
561 
562 	if (map->system_map)
563 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
564 	else
565 		sx_slock_(&map->lock, file, line);
566 }
567 
568 void
569 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
570 {
571 
572 	if (map->system_map)
573 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
574 	else {
575 		sx_sunlock_(&map->lock, file, line);
576 		vm_map_process_deferred();
577 	}
578 }
579 
580 int
581 _vm_map_trylock(vm_map_t map, const char *file, int line)
582 {
583 	int error;
584 
585 	error = map->system_map ?
586 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
587 	    !sx_try_xlock_(&map->lock, file, line);
588 	if (error == 0)
589 		map->timestamp++;
590 	return (error == 0);
591 }
592 
593 int
594 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
595 {
596 	int error;
597 
598 	error = map->system_map ?
599 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
600 	    !sx_try_slock_(&map->lock, file, line);
601 	return (error == 0);
602 }
603 
604 /*
605  *	_vm_map_lock_upgrade:	[ internal use only ]
606  *
607  *	Tries to upgrade a read (shared) lock on the specified map to a write
608  *	(exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
609  *	non-zero value if the upgrade fails.  If the upgrade fails, the map is
610  *	returned without a read or write lock held.
611  *
612  *	Requires that the map be read locked.
613  */
614 int
615 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
616 {
617 	unsigned int last_timestamp;
618 
619 	if (map->system_map) {
620 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
621 	} else {
622 		if (!sx_try_upgrade_(&map->lock, file, line)) {
623 			last_timestamp = map->timestamp;
624 			sx_sunlock_(&map->lock, file, line);
625 			vm_map_process_deferred();
626 			/*
627 			 * If the map's timestamp does not change while the
628 			 * map is unlocked, then the upgrade succeeds.
629 			 */
630 			sx_xlock_(&map->lock, file, line);
631 			if (last_timestamp != map->timestamp) {
632 				sx_xunlock_(&map->lock, file, line);
633 				return (1);
634 			}
635 		}
636 	}
637 	map->timestamp++;
638 	return (0);
639 }
640 
641 void
642 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
643 {
644 
645 	if (map->system_map) {
646 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
647 	} else
648 		sx_downgrade_(&map->lock, file, line);
649 }
650 
651 /*
652  *	vm_map_locked:
653  *
654  *	Returns a non-zero value if the caller holds a write (exclusive) lock
655  *	on the specified map and the value "0" otherwise.
656  */
657 int
658 vm_map_locked(vm_map_t map)
659 {
660 
661 	if (map->system_map)
662 		return (mtx_owned(&map->system_mtx));
663 	else
664 		return (sx_xlocked(&map->lock));
665 }
666 
667 #ifdef INVARIANTS
668 static void
669 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
670 {
671 
672 	if (map->system_map)
673 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
674 	else
675 		sx_assert_(&map->lock, SA_XLOCKED, file, line);
676 }
677 
678 #define	VM_MAP_ASSERT_LOCKED(map) \
679     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
680 #else
681 #define	VM_MAP_ASSERT_LOCKED(map)
682 #endif
683 
684 /*
685  *	_vm_map_unlock_and_wait:
686  *
687  *	Atomically releases the lock on the specified map and puts the calling
688  *	thread to sleep.  The calling thread will remain asleep until either
689  *	vm_map_wakeup() is performed on the map or the specified timeout is
690  *	exceeded.
691  *
692  *	WARNING!  This function does not perform deferred deallocations of
693  *	objects and map	entries.  Therefore, the calling thread is expected to
694  *	reacquire the map lock after reawakening and later perform an ordinary
695  *	unlock operation, such as vm_map_unlock(), before completing its
696  *	operation on the map.
697  */
698 int
699 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
700 {
701 
702 	mtx_lock(&map_sleep_mtx);
703 	if (map->system_map)
704 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
705 	else
706 		sx_xunlock_(&map->lock, file, line);
707 	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
708 	    timo));
709 }
710 
711 /*
712  *	vm_map_wakeup:
713  *
714  *	Awaken any threads that have slept on the map using
715  *	vm_map_unlock_and_wait().
716  */
717 void
718 vm_map_wakeup(vm_map_t map)
719 {
720 
721 	/*
722 	 * Acquire and release map_sleep_mtx to prevent a wakeup()
723 	 * from being performed (and lost) between the map unlock
724 	 * and the msleep() in _vm_map_unlock_and_wait().
725 	 */
726 	mtx_lock(&map_sleep_mtx);
727 	mtx_unlock(&map_sleep_mtx);
728 	wakeup(&map->root);
729 }
730 
731 void
732 vm_map_busy(vm_map_t map)
733 {
734 
735 	VM_MAP_ASSERT_LOCKED(map);
736 	map->busy++;
737 }
738 
739 void
740 vm_map_unbusy(vm_map_t map)
741 {
742 
743 	VM_MAP_ASSERT_LOCKED(map);
744 	KASSERT(map->busy, ("vm_map_unbusy: not busy"));
745 	if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
746 		vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
747 		wakeup(&map->busy);
748 	}
749 }
750 
751 void
752 vm_map_wait_busy(vm_map_t map)
753 {
754 
755 	VM_MAP_ASSERT_LOCKED(map);
756 	while (map->busy) {
757 		vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
758 		if (map->system_map)
759 			msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
760 		else
761 			sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
762 	}
763 	map->timestamp++;
764 }
765 
766 long
767 vmspace_resident_count(struct vmspace *vmspace)
768 {
769 	return pmap_resident_count(vmspace_pmap(vmspace));
770 }
771 
772 /*
773  *	vm_map_create:
774  *
775  *	Creates and returns a new empty VM map with
776  *	the given physical map structure, and having
777  *	the given lower and upper address bounds.
778  */
779 vm_map_t
780 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
781 {
782 	vm_map_t result;
783 
784 	result = uma_zalloc(mapzone, M_WAITOK);
785 	CTR1(KTR_VM, "vm_map_create: %p", result);
786 	_vm_map_init(result, pmap, min, max);
787 	return (result);
788 }
789 
790 /*
791  * Initialize an existing vm_map structure
792  * such as that in the vmspace structure.
793  */
794 static void
795 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
796 {
797 
798 	map->header.next = map->header.prev = &map->header;
799 	map->needs_wakeup = FALSE;
800 	map->system_map = 0;
801 	map->pmap = pmap;
802 	map->min_offset = min;
803 	map->max_offset = max;
804 	map->flags = 0;
805 	map->root = NULL;
806 	map->timestamp = 0;
807 	map->busy = 0;
808 }
809 
810 void
811 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
812 {
813 
814 	_vm_map_init(map, pmap, min, max);
815 	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
816 	sx_init(&map->lock, "user map");
817 }
818 
819 /*
820  *	vm_map_entry_dispose:	[ internal use only ]
821  *
822  *	Inverse of vm_map_entry_create.
823  */
824 static void
825 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
826 {
827 	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
828 }
829 
830 /*
831  *	vm_map_entry_create:	[ internal use only ]
832  *
833  *	Allocates a VM map entry for insertion.
834  *	No entry fields are filled in.
835  */
836 static vm_map_entry_t
837 vm_map_entry_create(vm_map_t map)
838 {
839 	vm_map_entry_t new_entry;
840 
841 	if (map->system_map)
842 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
843 	else
844 		new_entry = uma_zalloc(mapentzone, M_WAITOK);
845 	if (new_entry == NULL)
846 		panic("vm_map_entry_create: kernel resources exhausted");
847 	return (new_entry);
848 }
849 
850 /*
851  *	vm_map_entry_set_behavior:
852  *
853  *	Set the expected access behavior, either normal, random, or
854  *	sequential.
855  */
856 static inline void
857 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
858 {
859 	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
860 	    (behavior & MAP_ENTRY_BEHAV_MASK);
861 }
862 
863 /*
864  *	vm_map_entry_set_max_free:
865  *
866  *	Set the max_free field in a vm_map_entry.
867  */
868 static inline void
869 vm_map_entry_set_max_free(vm_map_entry_t entry)
870 {
871 
872 	entry->max_free = entry->adj_free;
873 	if (entry->left != NULL && entry->left->max_free > entry->max_free)
874 		entry->max_free = entry->left->max_free;
875 	if (entry->right != NULL && entry->right->max_free > entry->max_free)
876 		entry->max_free = entry->right->max_free;
877 }
878 
879 /*
880  *	vm_map_entry_splay:
881  *
882  *	The Sleator and Tarjan top-down splay algorithm with the
883  *	following variation.  Max_free must be computed bottom-up, so
884  *	on the downward pass, maintain the left and right spines in
885  *	reverse order.  Then, make a second pass up each side to fix
886  *	the pointers and compute max_free.  The time bound is O(log n)
887  *	amortized.
888  *
889  *	The new root is the vm_map_entry containing "addr", or else an
890  *	adjacent entry (lower or higher) if addr is not in the tree.
891  *
892  *	The map must be locked, and leaves it so.
893  *
894  *	Returns: the new root.
895  */
896 static vm_map_entry_t
897 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
898 {
899 	vm_map_entry_t llist, rlist;
900 	vm_map_entry_t ltree, rtree;
901 	vm_map_entry_t y;
902 
903 	/* Special case of empty tree. */
904 	if (root == NULL)
905 		return (root);
906 
907 	/*
908 	 * Pass One: Splay down the tree until we find addr or a NULL
909 	 * pointer where addr would go.  llist and rlist are the two
910 	 * sides in reverse order (bottom-up), with llist linked by
911 	 * the right pointer and rlist linked by the left pointer in
912 	 * the vm_map_entry.  Wait until Pass Two to set max_free on
913 	 * the two spines.
914 	 */
915 	llist = NULL;
916 	rlist = NULL;
917 	for (;;) {
918 		/* root is never NULL in here. */
919 		if (addr < root->start) {
920 			y = root->left;
921 			if (y == NULL)
922 				break;
923 			if (addr < y->start && y->left != NULL) {
924 				/* Rotate right and put y on rlist. */
925 				root->left = y->right;
926 				y->right = root;
927 				vm_map_entry_set_max_free(root);
928 				root = y->left;
929 				y->left = rlist;
930 				rlist = y;
931 			} else {
932 				/* Put root on rlist. */
933 				root->left = rlist;
934 				rlist = root;
935 				root = y;
936 			}
937 		} else if (addr >= root->end) {
938 			y = root->right;
939 			if (y == NULL)
940 				break;
941 			if (addr >= y->end && y->right != NULL) {
942 				/* Rotate left and put y on llist. */
943 				root->right = y->left;
944 				y->left = root;
945 				vm_map_entry_set_max_free(root);
946 				root = y->right;
947 				y->right = llist;
948 				llist = y;
949 			} else {
950 				/* Put root on llist. */
951 				root->right = llist;
952 				llist = root;
953 				root = y;
954 			}
955 		} else
956 			break;
957 	}
958 
959 	/*
960 	 * Pass Two: Walk back up the two spines, flip the pointers
961 	 * and set max_free.  The subtrees of the root go at the
962 	 * bottom of llist and rlist.
963 	 */
964 	ltree = root->left;
965 	while (llist != NULL) {
966 		y = llist->right;
967 		llist->right = ltree;
968 		vm_map_entry_set_max_free(llist);
969 		ltree = llist;
970 		llist = y;
971 	}
972 	rtree = root->right;
973 	while (rlist != NULL) {
974 		y = rlist->left;
975 		rlist->left = rtree;
976 		vm_map_entry_set_max_free(rlist);
977 		rtree = rlist;
978 		rlist = y;
979 	}
980 
981 	/*
982 	 * Final assembly: add ltree and rtree as subtrees of root.
983 	 */
984 	root->left = ltree;
985 	root->right = rtree;
986 	vm_map_entry_set_max_free(root);
987 
988 	return (root);
989 }
990 
991 /*
992  *	vm_map_entry_{un,}link:
993  *
994  *	Insert/remove entries from maps.
995  */
996 static void
997 vm_map_entry_link(vm_map_t map,
998 		  vm_map_entry_t after_where,
999 		  vm_map_entry_t entry)
1000 {
1001 
1002 	CTR4(KTR_VM,
1003 	    "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
1004 	    map->nentries, entry, after_where);
1005 	VM_MAP_ASSERT_LOCKED(map);
1006 	KASSERT(after_where == &map->header ||
1007 	    after_where->end <= entry->start,
1008 	    ("vm_map_entry_link: prev end %jx new start %jx overlap",
1009 	    (uintmax_t)after_where->end, (uintmax_t)entry->start));
1010 	KASSERT(after_where->next == &map->header ||
1011 	    entry->end <= after_where->next->start,
1012 	    ("vm_map_entry_link: new end %jx next start %jx overlap",
1013 	    (uintmax_t)entry->end, (uintmax_t)after_where->next->start));
1014 
1015 	map->nentries++;
1016 	entry->prev = after_where;
1017 	entry->next = after_where->next;
1018 	entry->next->prev = entry;
1019 	after_where->next = entry;
1020 
1021 	if (after_where != &map->header) {
1022 		if (after_where != map->root)
1023 			vm_map_entry_splay(after_where->start, map->root);
1024 		entry->right = after_where->right;
1025 		entry->left = after_where;
1026 		after_where->right = NULL;
1027 		after_where->adj_free = entry->start - after_where->end;
1028 		vm_map_entry_set_max_free(after_where);
1029 	} else {
1030 		entry->right = map->root;
1031 		entry->left = NULL;
1032 	}
1033 	entry->adj_free = (entry->next == &map->header ? map->max_offset :
1034 	    entry->next->start) - entry->end;
1035 	vm_map_entry_set_max_free(entry);
1036 	map->root = entry;
1037 }
1038 
1039 static void
1040 vm_map_entry_unlink(vm_map_t map,
1041 		    vm_map_entry_t entry)
1042 {
1043 	vm_map_entry_t next, prev, root;
1044 
1045 	VM_MAP_ASSERT_LOCKED(map);
1046 	if (entry != map->root)
1047 		vm_map_entry_splay(entry->start, map->root);
1048 	if (entry->left == NULL)
1049 		root = entry->right;
1050 	else {
1051 		root = vm_map_entry_splay(entry->start, entry->left);
1052 		root->right = entry->right;
1053 		root->adj_free = (entry->next == &map->header ? map->max_offset :
1054 		    entry->next->start) - root->end;
1055 		vm_map_entry_set_max_free(root);
1056 	}
1057 	map->root = root;
1058 
1059 	prev = entry->prev;
1060 	next = entry->next;
1061 	next->prev = prev;
1062 	prev->next = next;
1063 	map->nentries--;
1064 	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1065 	    map->nentries, entry);
1066 }
1067 
1068 /*
1069  *	vm_map_entry_resize_free:
1070  *
1071  *	Recompute the amount of free space following a vm_map_entry
1072  *	and propagate that value up the tree.  Call this function after
1073  *	resizing a map entry in-place, that is, without a call to
1074  *	vm_map_entry_link() or _unlink().
1075  *
1076  *	The map must be locked, and leaves it so.
1077  */
1078 static void
1079 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
1080 {
1081 
1082 	/*
1083 	 * Using splay trees without parent pointers, propagating
1084 	 * max_free up the tree is done by moving the entry to the
1085 	 * root and making the change there.
1086 	 */
1087 	if (entry != map->root)
1088 		map->root = vm_map_entry_splay(entry->start, map->root);
1089 
1090 	entry->adj_free = (entry->next == &map->header ? map->max_offset :
1091 	    entry->next->start) - entry->end;
1092 	vm_map_entry_set_max_free(entry);
1093 }
1094 
1095 /*
1096  *	vm_map_lookup_entry:	[ internal use only ]
1097  *
1098  *	Finds the map entry containing (or
1099  *	immediately preceding) the specified address
1100  *	in the given map; the entry is returned
1101  *	in the "entry" parameter.  The boolean
1102  *	result indicates whether the address is
1103  *	actually contained in the map.
1104  */
1105 boolean_t
1106 vm_map_lookup_entry(
1107 	vm_map_t map,
1108 	vm_offset_t address,
1109 	vm_map_entry_t *entry)	/* OUT */
1110 {
1111 	vm_map_entry_t cur;
1112 	boolean_t locked;
1113 
1114 	/*
1115 	 * If the map is empty, then the map entry immediately preceding
1116 	 * "address" is the map's header.
1117 	 */
1118 	cur = map->root;
1119 	if (cur == NULL)
1120 		*entry = &map->header;
1121 	else if (address >= cur->start && cur->end > address) {
1122 		*entry = cur;
1123 		return (TRUE);
1124 	} else if ((locked = vm_map_locked(map)) ||
1125 	    sx_try_upgrade(&map->lock)) {
1126 		/*
1127 		 * Splay requires a write lock on the map.  However, it only
1128 		 * restructures the binary search tree; it does not otherwise
1129 		 * change the map.  Thus, the map's timestamp need not change
1130 		 * on a temporary upgrade.
1131 		 */
1132 		map->root = cur = vm_map_entry_splay(address, cur);
1133 		if (!locked)
1134 			sx_downgrade(&map->lock);
1135 
1136 		/*
1137 		 * If "address" is contained within a map entry, the new root
1138 		 * is that map entry.  Otherwise, the new root is a map entry
1139 		 * immediately before or after "address".
1140 		 */
1141 		if (address >= cur->start) {
1142 			*entry = cur;
1143 			if (cur->end > address)
1144 				return (TRUE);
1145 		} else
1146 			*entry = cur->prev;
1147 	} else
1148 		/*
1149 		 * Since the map is only locked for read access, perform a
1150 		 * standard binary search tree lookup for "address".
1151 		 */
1152 		for (;;) {
1153 			if (address < cur->start) {
1154 				if (cur->left == NULL) {
1155 					*entry = cur->prev;
1156 					break;
1157 				}
1158 				cur = cur->left;
1159 			} else if (cur->end > address) {
1160 				*entry = cur;
1161 				return (TRUE);
1162 			} else {
1163 				if (cur->right == NULL) {
1164 					*entry = cur;
1165 					break;
1166 				}
1167 				cur = cur->right;
1168 			}
1169 		}
1170 	return (FALSE);
1171 }
1172 
1173 /*
1174  *	vm_map_insert:
1175  *
1176  *	Inserts the given whole VM object into the target
1177  *	map at the specified address range.  The object's
1178  *	size should match that of the address range.
1179  *
1180  *	Requires that the map be locked, and leaves it so.
1181  *
1182  *	If object is non-NULL, ref count must be bumped by caller
1183  *	prior to making call to account for the new entry.
1184  */
1185 int
1186 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1187     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1188 {
1189 	vm_map_entry_t new_entry, prev_entry, temp_entry;
1190 	struct ucred *cred;
1191 	vm_eflags_t protoeflags;
1192 	vm_inherit_t inheritance;
1193 
1194 	VM_MAP_ASSERT_LOCKED(map);
1195 	KASSERT(object != kernel_object ||
1196 	    (cow & MAP_COPY_ON_WRITE) == 0,
1197 	    ("vm_map_insert: kernel object and COW"));
1198 	KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0,
1199 	    ("vm_map_insert: paradoxical MAP_NOFAULT request"));
1200 	KASSERT((prot & ~max) == 0,
1201 	    ("prot %#x is not subset of max_prot %#x", prot, max));
1202 
1203 	/*
1204 	 * Check that the start and end points are not bogus.
1205 	 */
1206 	if (start < map->min_offset || end > map->max_offset || start >= end)
1207 		return (KERN_INVALID_ADDRESS);
1208 
1209 	/*
1210 	 * Find the entry prior to the proposed starting address; if it's part
1211 	 * of an existing entry, this range is bogus.
1212 	 */
1213 	if (vm_map_lookup_entry(map, start, &temp_entry))
1214 		return (KERN_NO_SPACE);
1215 
1216 	prev_entry = temp_entry;
1217 
1218 	/*
1219 	 * Assert that the next entry doesn't overlap the end point.
1220 	 */
1221 	if (prev_entry->next != &map->header && prev_entry->next->start < end)
1222 		return (KERN_NO_SPACE);
1223 
1224 	if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL ||
1225 	    max != VM_PROT_NONE))
1226 		return (KERN_INVALID_ARGUMENT);
1227 
1228 	protoeflags = 0;
1229 	if (cow & MAP_COPY_ON_WRITE)
1230 		protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1231 	if (cow & MAP_NOFAULT)
1232 		protoeflags |= MAP_ENTRY_NOFAULT;
1233 	if (cow & MAP_DISABLE_SYNCER)
1234 		protoeflags |= MAP_ENTRY_NOSYNC;
1235 	if (cow & MAP_DISABLE_COREDUMP)
1236 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1237 	if (cow & MAP_STACK_GROWS_DOWN)
1238 		protoeflags |= MAP_ENTRY_GROWS_DOWN;
1239 	if (cow & MAP_STACK_GROWS_UP)
1240 		protoeflags |= MAP_ENTRY_GROWS_UP;
1241 	if (cow & MAP_VN_WRITECOUNT)
1242 		protoeflags |= MAP_ENTRY_VN_WRITECNT;
1243 	if ((cow & MAP_CREATE_GUARD) != 0)
1244 		protoeflags |= MAP_ENTRY_GUARD;
1245 	if ((cow & MAP_CREATE_STACK_GAP_DN) != 0)
1246 		protoeflags |= MAP_ENTRY_STACK_GAP_DN;
1247 	if ((cow & MAP_CREATE_STACK_GAP_UP) != 0)
1248 		protoeflags |= MAP_ENTRY_STACK_GAP_UP;
1249 	if (cow & MAP_INHERIT_SHARE)
1250 		inheritance = VM_INHERIT_SHARE;
1251 	else
1252 		inheritance = VM_INHERIT_DEFAULT;
1253 
1254 	cred = NULL;
1255 	if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0)
1256 		goto charged;
1257 	if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1258 	    ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1259 		if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1260 			return (KERN_RESOURCE_SHORTAGE);
1261 		KASSERT(object == NULL ||
1262 		    (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
1263 		    object->cred == NULL,
1264 		    ("overcommit: vm_map_insert o %p", object));
1265 		cred = curthread->td_ucred;
1266 	}
1267 
1268 charged:
1269 	/* Expand the kernel pmap, if necessary. */
1270 	if (map == kernel_map && end > kernel_vm_end)
1271 		pmap_growkernel(end);
1272 	if (object != NULL) {
1273 		/*
1274 		 * OBJ_ONEMAPPING must be cleared unless this mapping
1275 		 * is trivially proven to be the only mapping for any
1276 		 * of the object's pages.  (Object granularity
1277 		 * reference counting is insufficient to recognize
1278 		 * aliases with precision.)
1279 		 */
1280 		VM_OBJECT_WLOCK(object);
1281 		if (object->ref_count > 1 || object->shadow_count != 0)
1282 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
1283 		VM_OBJECT_WUNLOCK(object);
1284 	} else if (prev_entry != &map->header &&
1285 	    prev_entry->eflags == protoeflags &&
1286 	    (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 &&
1287 	    prev_entry->end == start && prev_entry->wired_count == 0 &&
1288 	    (prev_entry->cred == cred ||
1289 	    (prev_entry->object.vm_object != NULL &&
1290 	    prev_entry->object.vm_object->cred == cred)) &&
1291 	    vm_object_coalesce(prev_entry->object.vm_object,
1292 	    prev_entry->offset,
1293 	    (vm_size_t)(prev_entry->end - prev_entry->start),
1294 	    (vm_size_t)(end - prev_entry->end), cred != NULL &&
1295 	    (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1296 		/*
1297 		 * We were able to extend the object.  Determine if we
1298 		 * can extend the previous map entry to include the
1299 		 * new range as well.
1300 		 */
1301 		if (prev_entry->inheritance == inheritance &&
1302 		    prev_entry->protection == prot &&
1303 		    prev_entry->max_protection == max) {
1304 			if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0)
1305 				map->size += end - prev_entry->end;
1306 			prev_entry->end = end;
1307 			vm_map_entry_resize_free(map, prev_entry);
1308 			vm_map_simplify_entry(map, prev_entry);
1309 			return (KERN_SUCCESS);
1310 		}
1311 
1312 		/*
1313 		 * If we can extend the object but cannot extend the
1314 		 * map entry, we have to create a new map entry.  We
1315 		 * must bump the ref count on the extended object to
1316 		 * account for it.  object may be NULL.
1317 		 */
1318 		object = prev_entry->object.vm_object;
1319 		offset = prev_entry->offset +
1320 		    (prev_entry->end - prev_entry->start);
1321 		vm_object_reference(object);
1322 		if (cred != NULL && object != NULL && object->cred != NULL &&
1323 		    !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1324 			/* Object already accounts for this uid. */
1325 			cred = NULL;
1326 		}
1327 	}
1328 	if (cred != NULL)
1329 		crhold(cred);
1330 
1331 	/*
1332 	 * Create a new entry
1333 	 */
1334 	new_entry = vm_map_entry_create(map);
1335 	new_entry->start = start;
1336 	new_entry->end = end;
1337 	new_entry->cred = NULL;
1338 
1339 	new_entry->eflags = protoeflags;
1340 	new_entry->object.vm_object = object;
1341 	new_entry->offset = offset;
1342 
1343 	new_entry->inheritance = inheritance;
1344 	new_entry->protection = prot;
1345 	new_entry->max_protection = max;
1346 	new_entry->wired_count = 0;
1347 	new_entry->wiring_thread = NULL;
1348 	new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1349 	new_entry->next_read = start;
1350 
1351 	KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1352 	    ("overcommit: vm_map_insert leaks vm_map %p", new_entry));
1353 	new_entry->cred = cred;
1354 
1355 	/*
1356 	 * Insert the new entry into the list
1357 	 */
1358 	vm_map_entry_link(map, prev_entry, new_entry);
1359 	if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0)
1360 		map->size += new_entry->end - new_entry->start;
1361 
1362 	/*
1363 	 * Try to coalesce the new entry with both the previous and next
1364 	 * entries in the list.  Previously, we only attempted to coalesce
1365 	 * with the previous entry when object is NULL.  Here, we handle the
1366 	 * other cases, which are less common.
1367 	 */
1368 	vm_map_simplify_entry(map, new_entry);
1369 
1370 	if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) {
1371 		vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset),
1372 		    end - start, cow & MAP_PREFAULT_PARTIAL);
1373 	}
1374 
1375 	return (KERN_SUCCESS);
1376 }
1377 
1378 /*
1379  *	vm_map_findspace:
1380  *
1381  *	Find the first fit (lowest VM address) for "length" free bytes
1382  *	beginning at address >= start in the given map.
1383  *
1384  *	In a vm_map_entry, "adj_free" is the amount of free space
1385  *	adjacent (higher address) to this entry, and "max_free" is the
1386  *	maximum amount of contiguous free space in its subtree.  This
1387  *	allows finding a free region in one path down the tree, so
1388  *	O(log n) amortized with splay trees.
1389  *
1390  *	The map must be locked, and leaves it so.
1391  *
1392  *	Returns: 0 on success, and starting address in *addr,
1393  *		 1 if insufficient space.
1394  */
1395 int
1396 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1397     vm_offset_t *addr)	/* OUT */
1398 {
1399 	vm_map_entry_t entry;
1400 	vm_offset_t st;
1401 
1402 	/*
1403 	 * Request must fit within min/max VM address and must avoid
1404 	 * address wrap.
1405 	 */
1406 	if (start < map->min_offset)
1407 		start = map->min_offset;
1408 	if (start + length > map->max_offset || start + length < start)
1409 		return (1);
1410 
1411 	/* Empty tree means wide open address space. */
1412 	if (map->root == NULL) {
1413 		*addr = start;
1414 		return (0);
1415 	}
1416 
1417 	/*
1418 	 * After splay, if start comes before root node, then there
1419 	 * must be a gap from start to the root.
1420 	 */
1421 	map->root = vm_map_entry_splay(start, map->root);
1422 	if (start + length <= map->root->start) {
1423 		*addr = start;
1424 		return (0);
1425 	}
1426 
1427 	/*
1428 	 * Root is the last node that might begin its gap before
1429 	 * start, and this is the last comparison where address
1430 	 * wrap might be a problem.
1431 	 */
1432 	st = (start > map->root->end) ? start : map->root->end;
1433 	if (length <= map->root->end + map->root->adj_free - st) {
1434 		*addr = st;
1435 		return (0);
1436 	}
1437 
1438 	/* With max_free, can immediately tell if no solution. */
1439 	entry = map->root->right;
1440 	if (entry == NULL || length > entry->max_free)
1441 		return (1);
1442 
1443 	/*
1444 	 * Search the right subtree in the order: left subtree, root,
1445 	 * right subtree (first fit).  The previous splay implies that
1446 	 * all regions in the right subtree have addresses > start.
1447 	 */
1448 	while (entry != NULL) {
1449 		if (entry->left != NULL && entry->left->max_free >= length)
1450 			entry = entry->left;
1451 		else if (entry->adj_free >= length) {
1452 			*addr = entry->end;
1453 			return (0);
1454 		} else
1455 			entry = entry->right;
1456 	}
1457 
1458 	/* Can't get here, so panic if we do. */
1459 	panic("vm_map_findspace: max_free corrupt");
1460 }
1461 
1462 int
1463 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1464     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1465     vm_prot_t max, int cow)
1466 {
1467 	vm_offset_t end;
1468 	int result;
1469 
1470 	end = start + length;
1471 	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1472 	    object == NULL,
1473 	    ("vm_map_fixed: non-NULL backing object for stack"));
1474 	vm_map_lock(map);
1475 	VM_MAP_RANGE_CHECK(map, start, end);
1476 	if ((cow & MAP_CHECK_EXCL) == 0)
1477 		vm_map_delete(map, start, end);
1478 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1479 		result = vm_map_stack_locked(map, start, length, sgrowsiz,
1480 		    prot, max, cow);
1481 	} else {
1482 		result = vm_map_insert(map, object, offset, start, end,
1483 		    prot, max, cow);
1484 	}
1485 	vm_map_unlock(map);
1486 	return (result);
1487 }
1488 
1489 /*
1490  * Searches for the specified amount of free space in the given map with the
1491  * specified alignment.  Performs an address-ordered, first-fit search from
1492  * the given address "*addr", with an optional upper bound "max_addr".  If the
1493  * parameter "alignment" is zero, then the alignment is computed from the
1494  * given (object, offset) pair so as to enable the greatest possible use of
1495  * superpage mappings.  Returns KERN_SUCCESS and the address of the free space
1496  * in "*addr" if successful.  Otherwise, returns KERN_NO_SPACE.
1497  *
1498  * The map must be locked.  Initially, there must be at least "length" bytes
1499  * of free space at the given address.
1500  */
1501 static int
1502 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1503     vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr,
1504     vm_offset_t alignment)
1505 {
1506 	vm_offset_t aligned_addr, free_addr;
1507 
1508 	VM_MAP_ASSERT_LOCKED(map);
1509 	free_addr = *addr;
1510 	KASSERT(!vm_map_findspace(map, free_addr, length, addr) &&
1511 	    free_addr == *addr, ("caller provided insufficient free space"));
1512 	for (;;) {
1513 		/*
1514 		 * At the start of every iteration, the free space at address
1515 		 * "*addr" is at least "length" bytes.
1516 		 */
1517 		if (alignment == 0)
1518 			pmap_align_superpage(object, offset, addr, length);
1519 		else if ((*addr & (alignment - 1)) != 0) {
1520 			*addr &= ~(alignment - 1);
1521 			*addr += alignment;
1522 		}
1523 		aligned_addr = *addr;
1524 		if (aligned_addr == free_addr) {
1525 			/*
1526 			 * Alignment did not change "*addr", so "*addr" must
1527 			 * still provide sufficient free space.
1528 			 */
1529 			return (KERN_SUCCESS);
1530 		}
1531 
1532 		/*
1533 		 * Test for address wrap on "*addr".  A wrapped "*addr" could
1534 		 * be a valid address, in which case vm_map_findspace() cannot
1535 		 * be relied upon to fail.
1536 		 */
1537 		if (aligned_addr < free_addr ||
1538 		    vm_map_findspace(map, aligned_addr, length, addr) ||
1539 		    (max_addr != 0 && *addr + length > max_addr))
1540 			return (KERN_NO_SPACE);
1541 		free_addr = *addr;
1542 		if (free_addr == aligned_addr) {
1543 			/*
1544 			 * If a successful call to vm_map_findspace() did not
1545 			 * change "*addr", then "*addr" must still be aligned
1546 			 * and provide sufficient free space.
1547 			 */
1548 			return (KERN_SUCCESS);
1549 		}
1550 	}
1551 }
1552 
1553 /*
1554  *	vm_map_find finds an unallocated region in the target address
1555  *	map with the given length.  The search is defined to be
1556  *	first-fit from the specified address; the region found is
1557  *	returned in the same parameter.
1558  *
1559  *	If object is non-NULL, ref count must be bumped by caller
1560  *	prior to making call to account for the new entry.
1561  */
1562 int
1563 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1564 	    vm_offset_t *addr,	/* IN/OUT */
1565 	    vm_size_t length, vm_offset_t max_addr, int find_space,
1566 	    vm_prot_t prot, vm_prot_t max, int cow)
1567 {
1568 	vm_offset_t alignment, min_addr;
1569 	int rv;
1570 
1571 	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1572 	    object == NULL,
1573 	    ("vm_map_find: non-NULL backing object for stack"));
1574 	if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
1575 	    (object->flags & OBJ_COLORED) == 0))
1576 		find_space = VMFS_ANY_SPACE;
1577 	if (find_space >> 8 != 0) {
1578 		KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
1579 		alignment = (vm_offset_t)1 << (find_space >> 8);
1580 	} else
1581 		alignment = 0;
1582 	vm_map_lock(map);
1583 	if (find_space != VMFS_NO_SPACE) {
1584 		KASSERT(find_space == VMFS_ANY_SPACE ||
1585 		    find_space == VMFS_OPTIMAL_SPACE ||
1586 		    find_space == VMFS_SUPER_SPACE ||
1587 		    alignment != 0, ("unexpected VMFS flag"));
1588 		min_addr = *addr;
1589 again:
1590 		if (vm_map_findspace(map, min_addr, length, addr) ||
1591 		    (max_addr != 0 && *addr + length > max_addr)) {
1592 			rv = KERN_NO_SPACE;
1593 			goto done;
1594 		}
1595 		if (find_space != VMFS_ANY_SPACE &&
1596 		    (rv = vm_map_alignspace(map, object, offset, addr, length,
1597 		    max_addr, alignment)) != KERN_SUCCESS) {
1598 			if (find_space == VMFS_OPTIMAL_SPACE) {
1599 				find_space = VMFS_ANY_SPACE;
1600 				goto again;
1601 			}
1602 			goto done;
1603 		}
1604 	}
1605 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1606 		rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot,
1607 		    max, cow);
1608 	} else {
1609 		rv = vm_map_insert(map, object, offset, *addr, *addr + length,
1610 		    prot, max, cow);
1611 	}
1612 done:
1613 	vm_map_unlock(map);
1614 	return (rv);
1615 }
1616 
1617 /*
1618  *	vm_map_find_min() is a variant of vm_map_find() that takes an
1619  *	additional parameter (min_addr) and treats the given address
1620  *	(*addr) differently.  Specifically, it treats *addr as a hint
1621  *	and not as the minimum address where the mapping is created.
1622  *
1623  *	This function works in two phases.  First, it tries to
1624  *	allocate above the hint.  If that fails and the hint is
1625  *	greater than min_addr, it performs a second pass, replacing
1626  *	the hint with min_addr as the minimum address for the
1627  *	allocation.
1628  */
1629 int
1630 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1631     vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr,
1632     vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max,
1633     int cow)
1634 {
1635 	vm_offset_t hint;
1636 	int rv;
1637 
1638 	hint = *addr;
1639 	for (;;) {
1640 		rv = vm_map_find(map, object, offset, addr, length, max_addr,
1641 		    find_space, prot, max, cow);
1642 		if (rv == KERN_SUCCESS || min_addr >= hint)
1643 			return (rv);
1644 		*addr = hint = min_addr;
1645 	}
1646 }
1647 
1648 /*
1649  *	vm_map_simplify_entry:
1650  *
1651  *	Simplify the given map entry by merging with either neighbor.  This
1652  *	routine also has the ability to merge with both neighbors.
1653  *
1654  *	The map must be locked.
1655  *
1656  *	This routine guarantees that the passed entry remains valid (though
1657  *	possibly extended).  When merging, this routine may delete one or
1658  *	both neighbors.
1659  */
1660 void
1661 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1662 {
1663 	vm_map_entry_t next, prev;
1664 	vm_size_t prevsize, esize;
1665 
1666 	if ((entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP |
1667 	    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) != 0)
1668 		return;
1669 
1670 	prev = entry->prev;
1671 	if (prev != &map->header) {
1672 		prevsize = prev->end - prev->start;
1673 		if ( (prev->end == entry->start) &&
1674 		     (prev->object.vm_object == entry->object.vm_object) &&
1675 		     (!prev->object.vm_object ||
1676 			(prev->offset + prevsize == entry->offset)) &&
1677 		     (prev->eflags == entry->eflags) &&
1678 		     (prev->protection == entry->protection) &&
1679 		     (prev->max_protection == entry->max_protection) &&
1680 		     (prev->inheritance == entry->inheritance) &&
1681 		     (prev->wired_count == entry->wired_count) &&
1682 		     (prev->cred == entry->cred)) {
1683 			vm_map_entry_unlink(map, prev);
1684 			entry->start = prev->start;
1685 			entry->offset = prev->offset;
1686 			if (entry->prev != &map->header)
1687 				vm_map_entry_resize_free(map, entry->prev);
1688 
1689 			/*
1690 			 * If the backing object is a vnode object,
1691 			 * vm_object_deallocate() calls vrele().
1692 			 * However, vrele() does not lock the vnode
1693 			 * because the vnode has additional
1694 			 * references.  Thus, the map lock can be kept
1695 			 * without causing a lock-order reversal with
1696 			 * the vnode lock.
1697 			 *
1698 			 * Since we count the number of virtual page
1699 			 * mappings in object->un_pager.vnp.writemappings,
1700 			 * the writemappings value should not be adjusted
1701 			 * when the entry is disposed of.
1702 			 */
1703 			if (prev->object.vm_object)
1704 				vm_object_deallocate(prev->object.vm_object);
1705 			if (prev->cred != NULL)
1706 				crfree(prev->cred);
1707 			vm_map_entry_dispose(map, prev);
1708 		}
1709 	}
1710 
1711 	next = entry->next;
1712 	if (next != &map->header) {
1713 		esize = entry->end - entry->start;
1714 		if ((entry->end == next->start) &&
1715 		    (next->object.vm_object == entry->object.vm_object) &&
1716 		     (!entry->object.vm_object ||
1717 			(entry->offset + esize == next->offset)) &&
1718 		    (next->eflags == entry->eflags) &&
1719 		    (next->protection == entry->protection) &&
1720 		    (next->max_protection == entry->max_protection) &&
1721 		    (next->inheritance == entry->inheritance) &&
1722 		    (next->wired_count == entry->wired_count) &&
1723 		    (next->cred == entry->cred)) {
1724 			vm_map_entry_unlink(map, next);
1725 			entry->end = next->end;
1726 			vm_map_entry_resize_free(map, entry);
1727 
1728 			/*
1729 			 * See comment above.
1730 			 */
1731 			if (next->object.vm_object)
1732 				vm_object_deallocate(next->object.vm_object);
1733 			if (next->cred != NULL)
1734 				crfree(next->cred);
1735 			vm_map_entry_dispose(map, next);
1736 		}
1737 	}
1738 }
1739 /*
1740  *	vm_map_clip_start:	[ internal use only ]
1741  *
1742  *	Asserts that the given entry begins at or after
1743  *	the specified address; if necessary,
1744  *	it splits the entry into two.
1745  */
1746 #define vm_map_clip_start(map, entry, startaddr) \
1747 { \
1748 	if (startaddr > entry->start) \
1749 		_vm_map_clip_start(map, entry, startaddr); \
1750 }
1751 
1752 /*
1753  *	This routine is called only when it is known that
1754  *	the entry must be split.
1755  */
1756 static void
1757 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1758 {
1759 	vm_map_entry_t new_entry;
1760 
1761 	VM_MAP_ASSERT_LOCKED(map);
1762 	KASSERT(entry->end > start && entry->start < start,
1763 	    ("_vm_map_clip_start: invalid clip of entry %p", entry));
1764 
1765 	/*
1766 	 * Split off the front portion -- note that we must insert the new
1767 	 * entry BEFORE this one, so that this entry has the specified
1768 	 * starting address.
1769 	 */
1770 	vm_map_simplify_entry(map, entry);
1771 
1772 	/*
1773 	 * If there is no object backing this entry, we might as well create
1774 	 * one now.  If we defer it, an object can get created after the map
1775 	 * is clipped, and individual objects will be created for the split-up
1776 	 * map.  This is a bit of a hack, but is also about the best place to
1777 	 * put this improvement.
1778 	 */
1779 	if (entry->object.vm_object == NULL && !map->system_map &&
1780 	    (entry->eflags & MAP_ENTRY_GUARD) == 0) {
1781 		vm_object_t object;
1782 		object = vm_object_allocate(OBJT_DEFAULT,
1783 				atop(entry->end - entry->start));
1784 		entry->object.vm_object = object;
1785 		entry->offset = 0;
1786 		if (entry->cred != NULL) {
1787 			object->cred = entry->cred;
1788 			object->charge = entry->end - entry->start;
1789 			entry->cred = NULL;
1790 		}
1791 	} else if (entry->object.vm_object != NULL &&
1792 		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1793 		   entry->cred != NULL) {
1794 		VM_OBJECT_WLOCK(entry->object.vm_object);
1795 		KASSERT(entry->object.vm_object->cred == NULL,
1796 		    ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
1797 		entry->object.vm_object->cred = entry->cred;
1798 		entry->object.vm_object->charge = entry->end - entry->start;
1799 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
1800 		entry->cred = NULL;
1801 	}
1802 
1803 	new_entry = vm_map_entry_create(map);
1804 	*new_entry = *entry;
1805 
1806 	new_entry->end = start;
1807 	entry->offset += (start - entry->start);
1808 	entry->start = start;
1809 	if (new_entry->cred != NULL)
1810 		crhold(entry->cred);
1811 
1812 	vm_map_entry_link(map, entry->prev, new_entry);
1813 
1814 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1815 		vm_object_reference(new_entry->object.vm_object);
1816 		/*
1817 		 * The object->un_pager.vnp.writemappings for the
1818 		 * object of MAP_ENTRY_VN_WRITECNT type entry shall be
1819 		 * kept as is here.  The virtual pages are
1820 		 * re-distributed among the clipped entries, so the sum is
1821 		 * left the same.
1822 		 */
1823 	}
1824 }
1825 
1826 /*
1827  *	vm_map_clip_end:	[ internal use only ]
1828  *
1829  *	Asserts that the given entry ends at or before
1830  *	the specified address; if necessary,
1831  *	it splits the entry into two.
1832  */
1833 #define vm_map_clip_end(map, entry, endaddr) \
1834 { \
1835 	if ((endaddr) < (entry->end)) \
1836 		_vm_map_clip_end((map), (entry), (endaddr)); \
1837 }
1838 
1839 /*
1840  *	This routine is called only when it is known that
1841  *	the entry must be split.
1842  */
1843 static void
1844 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1845 {
1846 	vm_map_entry_t new_entry;
1847 
1848 	VM_MAP_ASSERT_LOCKED(map);
1849 	KASSERT(entry->start < end && entry->end > end,
1850 	    ("_vm_map_clip_end: invalid clip of entry %p", entry));
1851 
1852 	/*
1853 	 * If there is no object backing this entry, we might as well create
1854 	 * one now.  If we defer it, an object can get created after the map
1855 	 * is clipped, and individual objects will be created for the split-up
1856 	 * map.  This is a bit of a hack, but is also about the best place to
1857 	 * put this improvement.
1858 	 */
1859 	if (entry->object.vm_object == NULL && !map->system_map &&
1860 	    (entry->eflags & MAP_ENTRY_GUARD) == 0) {
1861 		vm_object_t object;
1862 		object = vm_object_allocate(OBJT_DEFAULT,
1863 				atop(entry->end - entry->start));
1864 		entry->object.vm_object = object;
1865 		entry->offset = 0;
1866 		if (entry->cred != NULL) {
1867 			object->cred = entry->cred;
1868 			object->charge = entry->end - entry->start;
1869 			entry->cred = NULL;
1870 		}
1871 	} else if (entry->object.vm_object != NULL &&
1872 		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1873 		   entry->cred != NULL) {
1874 		VM_OBJECT_WLOCK(entry->object.vm_object);
1875 		KASSERT(entry->object.vm_object->cred == NULL,
1876 		    ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
1877 		entry->object.vm_object->cred = entry->cred;
1878 		entry->object.vm_object->charge = entry->end - entry->start;
1879 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
1880 		entry->cred = NULL;
1881 	}
1882 
1883 	/*
1884 	 * Create a new entry and insert it AFTER the specified entry
1885 	 */
1886 	new_entry = vm_map_entry_create(map);
1887 	*new_entry = *entry;
1888 
1889 	new_entry->start = entry->end = end;
1890 	new_entry->offset += (end - entry->start);
1891 	if (new_entry->cred != NULL)
1892 		crhold(entry->cred);
1893 
1894 	vm_map_entry_link(map, entry, new_entry);
1895 
1896 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1897 		vm_object_reference(new_entry->object.vm_object);
1898 	}
1899 }
1900 
1901 /*
1902  *	vm_map_submap:		[ kernel use only ]
1903  *
1904  *	Mark the given range as handled by a subordinate map.
1905  *
1906  *	This range must have been created with vm_map_find,
1907  *	and no other operations may have been performed on this
1908  *	range prior to calling vm_map_submap.
1909  *
1910  *	Only a limited number of operations can be performed
1911  *	within this rage after calling vm_map_submap:
1912  *		vm_fault
1913  *	[Don't try vm_map_copy!]
1914  *
1915  *	To remove a submapping, one must first remove the
1916  *	range from the superior map, and then destroy the
1917  *	submap (if desired).  [Better yet, don't try it.]
1918  */
1919 int
1920 vm_map_submap(
1921 	vm_map_t map,
1922 	vm_offset_t start,
1923 	vm_offset_t end,
1924 	vm_map_t submap)
1925 {
1926 	vm_map_entry_t entry;
1927 	int result = KERN_INVALID_ARGUMENT;
1928 
1929 	vm_map_lock(map);
1930 
1931 	VM_MAP_RANGE_CHECK(map, start, end);
1932 
1933 	if (vm_map_lookup_entry(map, start, &entry)) {
1934 		vm_map_clip_start(map, entry, start);
1935 	} else
1936 		entry = entry->next;
1937 
1938 	vm_map_clip_end(map, entry, end);
1939 
1940 	if ((entry->start == start) && (entry->end == end) &&
1941 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1942 	    (entry->object.vm_object == NULL)) {
1943 		entry->object.sub_map = submap;
1944 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1945 		result = KERN_SUCCESS;
1946 	}
1947 	vm_map_unlock(map);
1948 
1949 	return (result);
1950 }
1951 
1952 /*
1953  * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
1954  */
1955 #define	MAX_INIT_PT	96
1956 
1957 /*
1958  *	vm_map_pmap_enter:
1959  *
1960  *	Preload the specified map's pmap with mappings to the specified
1961  *	object's memory-resident pages.  No further physical pages are
1962  *	allocated, and no further virtual pages are retrieved from secondary
1963  *	storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
1964  *	limited number of page mappings are created at the low-end of the
1965  *	specified address range.  (For this purpose, a superpage mapping
1966  *	counts as one page mapping.)  Otherwise, all resident pages within
1967  *	the specified address range are mapped.
1968  */
1969 static void
1970 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
1971     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
1972 {
1973 	vm_offset_t start;
1974 	vm_page_t p, p_start;
1975 	vm_pindex_t mask, psize, threshold, tmpidx;
1976 
1977 	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
1978 		return;
1979 	VM_OBJECT_RLOCK(object);
1980 	if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1981 		VM_OBJECT_RUNLOCK(object);
1982 		VM_OBJECT_WLOCK(object);
1983 		if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1984 			pmap_object_init_pt(map->pmap, addr, object, pindex,
1985 			    size);
1986 			VM_OBJECT_WUNLOCK(object);
1987 			return;
1988 		}
1989 		VM_OBJECT_LOCK_DOWNGRADE(object);
1990 	}
1991 
1992 	psize = atop(size);
1993 	if (psize + pindex > object->size) {
1994 		if (object->size < pindex) {
1995 			VM_OBJECT_RUNLOCK(object);
1996 			return;
1997 		}
1998 		psize = object->size - pindex;
1999 	}
2000 
2001 	start = 0;
2002 	p_start = NULL;
2003 	threshold = MAX_INIT_PT;
2004 
2005 	p = vm_page_find_least(object, pindex);
2006 	/*
2007 	 * Assert: the variable p is either (1) the page with the
2008 	 * least pindex greater than or equal to the parameter pindex
2009 	 * or (2) NULL.
2010 	 */
2011 	for (;
2012 	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
2013 	     p = TAILQ_NEXT(p, listq)) {
2014 		/*
2015 		 * don't allow an madvise to blow away our really
2016 		 * free pages allocating pv entries.
2017 		 */
2018 		if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
2019 		    vm_cnt.v_free_count < vm_cnt.v_free_reserved) ||
2020 		    ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
2021 		    tmpidx >= threshold)) {
2022 			psize = tmpidx;
2023 			break;
2024 		}
2025 		if (p->valid == VM_PAGE_BITS_ALL) {
2026 			if (p_start == NULL) {
2027 				start = addr + ptoa(tmpidx);
2028 				p_start = p;
2029 			}
2030 			/* Jump ahead if a superpage mapping is possible. */
2031 			if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
2032 			    (pagesizes[p->psind] - 1)) == 0) {
2033 				mask = atop(pagesizes[p->psind]) - 1;
2034 				if (tmpidx + mask < psize &&
2035 				    vm_page_ps_test(p, PS_ALL_VALID, NULL)) {
2036 					p += mask;
2037 					threshold += mask;
2038 				}
2039 			}
2040 		} else if (p_start != NULL) {
2041 			pmap_enter_object(map->pmap, start, addr +
2042 			    ptoa(tmpidx), p_start, prot);
2043 			p_start = NULL;
2044 		}
2045 	}
2046 	if (p_start != NULL)
2047 		pmap_enter_object(map->pmap, start, addr + ptoa(psize),
2048 		    p_start, prot);
2049 	VM_OBJECT_RUNLOCK(object);
2050 }
2051 
2052 /*
2053  *	vm_map_protect:
2054  *
2055  *	Sets the protection of the specified address
2056  *	region in the target map.  If "set_max" is
2057  *	specified, the maximum protection is to be set;
2058  *	otherwise, only the current protection is affected.
2059  */
2060 int
2061 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
2062 	       vm_prot_t new_prot, boolean_t set_max)
2063 {
2064 	vm_map_entry_t current, entry;
2065 	vm_object_t obj;
2066 	struct ucred *cred;
2067 	vm_prot_t old_prot;
2068 
2069 	if (start == end)
2070 		return (KERN_SUCCESS);
2071 
2072 	vm_map_lock(map);
2073 
2074 	/*
2075 	 * Ensure that we are not concurrently wiring pages.  vm_map_wire() may
2076 	 * need to fault pages into the map and will drop the map lock while
2077 	 * doing so, and the VM object may end up in an inconsistent state if we
2078 	 * update the protection on the map entry in between faults.
2079 	 */
2080 	vm_map_wait_busy(map);
2081 
2082 	VM_MAP_RANGE_CHECK(map, start, end);
2083 
2084 	if (vm_map_lookup_entry(map, start, &entry)) {
2085 		vm_map_clip_start(map, entry, start);
2086 	} else {
2087 		entry = entry->next;
2088 	}
2089 
2090 	/*
2091 	 * Make a first pass to check for protection violations.
2092 	 */
2093 	for (current = entry; current != &map->header && current->start < end;
2094 	    current = current->next) {
2095 		if ((current->eflags & MAP_ENTRY_GUARD) != 0)
2096 			continue;
2097 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2098 			vm_map_unlock(map);
2099 			return (KERN_INVALID_ARGUMENT);
2100 		}
2101 		if ((new_prot & current->max_protection) != new_prot) {
2102 			vm_map_unlock(map);
2103 			return (KERN_PROTECTION_FAILURE);
2104 		}
2105 	}
2106 
2107 	/*
2108 	 * Do an accounting pass for private read-only mappings that
2109 	 * now will do cow due to allowed write (e.g. debugger sets
2110 	 * breakpoint on text segment)
2111 	 */
2112 	for (current = entry; current != &map->header && current->start < end;
2113 	    current = current->next) {
2114 
2115 		vm_map_clip_end(map, current, end);
2116 
2117 		if (set_max ||
2118 		    ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
2119 		    ENTRY_CHARGED(current) ||
2120 		    (current->eflags & MAP_ENTRY_GUARD) != 0) {
2121 			continue;
2122 		}
2123 
2124 		cred = curthread->td_ucred;
2125 		obj = current->object.vm_object;
2126 
2127 		if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
2128 			if (!swap_reserve(current->end - current->start)) {
2129 				vm_map_unlock(map);
2130 				return (KERN_RESOURCE_SHORTAGE);
2131 			}
2132 			crhold(cred);
2133 			current->cred = cred;
2134 			continue;
2135 		}
2136 
2137 		VM_OBJECT_WLOCK(obj);
2138 		if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
2139 			VM_OBJECT_WUNLOCK(obj);
2140 			continue;
2141 		}
2142 
2143 		/*
2144 		 * Charge for the whole object allocation now, since
2145 		 * we cannot distinguish between non-charged and
2146 		 * charged clipped mapping of the same object later.
2147 		 */
2148 		KASSERT(obj->charge == 0,
2149 		    ("vm_map_protect: object %p overcharged (entry %p)",
2150 		    obj, current));
2151 		if (!swap_reserve(ptoa(obj->size))) {
2152 			VM_OBJECT_WUNLOCK(obj);
2153 			vm_map_unlock(map);
2154 			return (KERN_RESOURCE_SHORTAGE);
2155 		}
2156 
2157 		crhold(cred);
2158 		obj->cred = cred;
2159 		obj->charge = ptoa(obj->size);
2160 		VM_OBJECT_WUNLOCK(obj);
2161 	}
2162 
2163 	/*
2164 	 * Go back and fix up protections. [Note that clipping is not
2165 	 * necessary the second time.]
2166 	 */
2167 	for (current = entry; current != &map->header && current->start < end;
2168 	    current = current->next) {
2169 		if ((current->eflags & MAP_ENTRY_GUARD) != 0)
2170 			continue;
2171 
2172 		old_prot = current->protection;
2173 
2174 		if (set_max)
2175 			current->protection =
2176 			    (current->max_protection = new_prot) &
2177 			    old_prot;
2178 		else
2179 			current->protection = new_prot;
2180 
2181 		/*
2182 		 * For user wired map entries, the normal lazy evaluation of
2183 		 * write access upgrades through soft page faults is
2184 		 * undesirable.  Instead, immediately copy any pages that are
2185 		 * copy-on-write and enable write access in the physical map.
2186 		 */
2187 		if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2188 		    (current->protection & VM_PROT_WRITE) != 0 &&
2189 		    (old_prot & VM_PROT_WRITE) == 0)
2190 			vm_fault_copy_entry(map, map, current, current, NULL);
2191 
2192 		/*
2193 		 * When restricting access, update the physical map.  Worry
2194 		 * about copy-on-write here.
2195 		 */
2196 		if ((old_prot & ~current->protection) != 0) {
2197 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2198 							VM_PROT_ALL)
2199 			pmap_protect(map->pmap, current->start,
2200 			    current->end,
2201 			    current->protection & MASK(current));
2202 #undef	MASK
2203 		}
2204 		vm_map_simplify_entry(map, current);
2205 	}
2206 	vm_map_unlock(map);
2207 	return (KERN_SUCCESS);
2208 }
2209 
2210 /*
2211  *	vm_map_madvise:
2212  *
2213  *	This routine traverses a processes map handling the madvise
2214  *	system call.  Advisories are classified as either those effecting
2215  *	the vm_map_entry structure, or those effecting the underlying
2216  *	objects.
2217  */
2218 int
2219 vm_map_madvise(
2220 	vm_map_t map,
2221 	vm_offset_t start,
2222 	vm_offset_t end,
2223 	int behav)
2224 {
2225 	vm_map_entry_t current, entry;
2226 	int modify_map = 0;
2227 
2228 	/*
2229 	 * Some madvise calls directly modify the vm_map_entry, in which case
2230 	 * we need to use an exclusive lock on the map and we need to perform
2231 	 * various clipping operations.  Otherwise we only need a read-lock
2232 	 * on the map.
2233 	 */
2234 	switch(behav) {
2235 	case MADV_NORMAL:
2236 	case MADV_SEQUENTIAL:
2237 	case MADV_RANDOM:
2238 	case MADV_NOSYNC:
2239 	case MADV_AUTOSYNC:
2240 	case MADV_NOCORE:
2241 	case MADV_CORE:
2242 		if (start == end)
2243 			return (KERN_SUCCESS);
2244 		modify_map = 1;
2245 		vm_map_lock(map);
2246 		break;
2247 	case MADV_WILLNEED:
2248 	case MADV_DONTNEED:
2249 	case MADV_FREE:
2250 		if (start == end)
2251 			return (KERN_SUCCESS);
2252 		vm_map_lock_read(map);
2253 		break;
2254 	default:
2255 		return (KERN_INVALID_ARGUMENT);
2256 	}
2257 
2258 	/*
2259 	 * Locate starting entry and clip if necessary.
2260 	 */
2261 	VM_MAP_RANGE_CHECK(map, start, end);
2262 
2263 	if (vm_map_lookup_entry(map, start, &entry)) {
2264 		if (modify_map)
2265 			vm_map_clip_start(map, entry, start);
2266 	} else {
2267 		entry = entry->next;
2268 	}
2269 
2270 	if (modify_map) {
2271 		/*
2272 		 * madvise behaviors that are implemented in the vm_map_entry.
2273 		 *
2274 		 * We clip the vm_map_entry so that behavioral changes are
2275 		 * limited to the specified address range.
2276 		 */
2277 		for (current = entry;
2278 		     (current != &map->header) && (current->start < end);
2279 		     current = current->next
2280 		) {
2281 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2282 				continue;
2283 
2284 			vm_map_clip_end(map, current, end);
2285 
2286 			switch (behav) {
2287 			case MADV_NORMAL:
2288 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2289 				break;
2290 			case MADV_SEQUENTIAL:
2291 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2292 				break;
2293 			case MADV_RANDOM:
2294 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2295 				break;
2296 			case MADV_NOSYNC:
2297 				current->eflags |= MAP_ENTRY_NOSYNC;
2298 				break;
2299 			case MADV_AUTOSYNC:
2300 				current->eflags &= ~MAP_ENTRY_NOSYNC;
2301 				break;
2302 			case MADV_NOCORE:
2303 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
2304 				break;
2305 			case MADV_CORE:
2306 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2307 				break;
2308 			default:
2309 				break;
2310 			}
2311 			vm_map_simplify_entry(map, current);
2312 		}
2313 		vm_map_unlock(map);
2314 	} else {
2315 		vm_pindex_t pstart, pend;
2316 
2317 		/*
2318 		 * madvise behaviors that are implemented in the underlying
2319 		 * vm_object.
2320 		 *
2321 		 * Since we don't clip the vm_map_entry, we have to clip
2322 		 * the vm_object pindex and count.
2323 		 */
2324 		for (current = entry;
2325 		     (current != &map->header) && (current->start < end);
2326 		     current = current->next
2327 		) {
2328 			vm_offset_t useEnd, useStart;
2329 
2330 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2331 				continue;
2332 
2333 			pstart = OFF_TO_IDX(current->offset);
2334 			pend = pstart + atop(current->end - current->start);
2335 			useStart = current->start;
2336 			useEnd = current->end;
2337 
2338 			if (current->start < start) {
2339 				pstart += atop(start - current->start);
2340 				useStart = start;
2341 			}
2342 			if (current->end > end) {
2343 				pend -= atop(current->end - end);
2344 				useEnd = end;
2345 			}
2346 
2347 			if (pstart >= pend)
2348 				continue;
2349 
2350 			/*
2351 			 * Perform the pmap_advise() before clearing
2352 			 * PGA_REFERENCED in vm_page_advise().  Otherwise, a
2353 			 * concurrent pmap operation, such as pmap_remove(),
2354 			 * could clear a reference in the pmap and set
2355 			 * PGA_REFERENCED on the page before the pmap_advise()
2356 			 * had completed.  Consequently, the page would appear
2357 			 * referenced based upon an old reference that
2358 			 * occurred before this pmap_advise() ran.
2359 			 */
2360 			if (behav == MADV_DONTNEED || behav == MADV_FREE)
2361 				pmap_advise(map->pmap, useStart, useEnd,
2362 				    behav);
2363 
2364 			vm_object_madvise(current->object.vm_object, pstart,
2365 			    pend, behav);
2366 
2367 			/*
2368 			 * Pre-populate paging structures in the
2369 			 * WILLNEED case.  For wired entries, the
2370 			 * paging structures are already populated.
2371 			 */
2372 			if (behav == MADV_WILLNEED &&
2373 			    current->wired_count == 0) {
2374 				vm_map_pmap_enter(map,
2375 				    useStart,
2376 				    current->protection,
2377 				    current->object.vm_object,
2378 				    pstart,
2379 				    ptoa(pend - pstart),
2380 				    MAP_PREFAULT_MADVISE
2381 				);
2382 			}
2383 		}
2384 		vm_map_unlock_read(map);
2385 	}
2386 	return (0);
2387 }
2388 
2389 
2390 /*
2391  *	vm_map_inherit:
2392  *
2393  *	Sets the inheritance of the specified address
2394  *	range in the target map.  Inheritance
2395  *	affects how the map will be shared with
2396  *	child maps at the time of vmspace_fork.
2397  */
2398 int
2399 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2400 	       vm_inherit_t new_inheritance)
2401 {
2402 	vm_map_entry_t entry;
2403 	vm_map_entry_t temp_entry;
2404 
2405 	switch (new_inheritance) {
2406 	case VM_INHERIT_NONE:
2407 	case VM_INHERIT_COPY:
2408 	case VM_INHERIT_SHARE:
2409 	case VM_INHERIT_ZERO:
2410 		break;
2411 	default:
2412 		return (KERN_INVALID_ARGUMENT);
2413 	}
2414 	if (start == end)
2415 		return (KERN_SUCCESS);
2416 	vm_map_lock(map);
2417 	VM_MAP_RANGE_CHECK(map, start, end);
2418 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
2419 		entry = temp_entry;
2420 		vm_map_clip_start(map, entry, start);
2421 	} else
2422 		entry = temp_entry->next;
2423 	while ((entry != &map->header) && (entry->start < end)) {
2424 		vm_map_clip_end(map, entry, end);
2425 		if ((entry->eflags & MAP_ENTRY_GUARD) == 0 ||
2426 		    new_inheritance != VM_INHERIT_ZERO)
2427 			entry->inheritance = new_inheritance;
2428 		vm_map_simplify_entry(map, entry);
2429 		entry = entry->next;
2430 	}
2431 	vm_map_unlock(map);
2432 	return (KERN_SUCCESS);
2433 }
2434 
2435 /*
2436  *	vm_map_unwire:
2437  *
2438  *	Implements both kernel and user unwiring.
2439  */
2440 int
2441 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2442     int flags)
2443 {
2444 	vm_map_entry_t entry, first_entry, tmp_entry;
2445 	vm_offset_t saved_start;
2446 	unsigned int last_timestamp;
2447 	int rv;
2448 	boolean_t need_wakeup, result, user_unwire;
2449 
2450 	if (start == end)
2451 		return (KERN_SUCCESS);
2452 	user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2453 	vm_map_lock(map);
2454 	VM_MAP_RANGE_CHECK(map, start, end);
2455 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2456 		if (flags & VM_MAP_WIRE_HOLESOK)
2457 			first_entry = first_entry->next;
2458 		else {
2459 			vm_map_unlock(map);
2460 			return (KERN_INVALID_ADDRESS);
2461 		}
2462 	}
2463 	last_timestamp = map->timestamp;
2464 	entry = first_entry;
2465 	while (entry != &map->header && entry->start < end) {
2466 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2467 			/*
2468 			 * We have not yet clipped the entry.
2469 			 */
2470 			saved_start = (start >= entry->start) ? start :
2471 			    entry->start;
2472 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2473 			if (vm_map_unlock_and_wait(map, 0)) {
2474 				/*
2475 				 * Allow interruption of user unwiring?
2476 				 */
2477 			}
2478 			vm_map_lock(map);
2479 			if (last_timestamp+1 != map->timestamp) {
2480 				/*
2481 				 * Look again for the entry because the map was
2482 				 * modified while it was unlocked.
2483 				 * Specifically, the entry may have been
2484 				 * clipped, merged, or deleted.
2485 				 */
2486 				if (!vm_map_lookup_entry(map, saved_start,
2487 				    &tmp_entry)) {
2488 					if (flags & VM_MAP_WIRE_HOLESOK)
2489 						tmp_entry = tmp_entry->next;
2490 					else {
2491 						if (saved_start == start) {
2492 							/*
2493 							 * First_entry has been deleted.
2494 							 */
2495 							vm_map_unlock(map);
2496 							return (KERN_INVALID_ADDRESS);
2497 						}
2498 						end = saved_start;
2499 						rv = KERN_INVALID_ADDRESS;
2500 						goto done;
2501 					}
2502 				}
2503 				if (entry == first_entry)
2504 					first_entry = tmp_entry;
2505 				else
2506 					first_entry = NULL;
2507 				entry = tmp_entry;
2508 			}
2509 			last_timestamp = map->timestamp;
2510 			continue;
2511 		}
2512 		vm_map_clip_start(map, entry, start);
2513 		vm_map_clip_end(map, entry, end);
2514 		/*
2515 		 * Mark the entry in case the map lock is released.  (See
2516 		 * above.)
2517 		 */
2518 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2519 		    entry->wiring_thread == NULL,
2520 		    ("owned map entry %p", entry));
2521 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2522 		entry->wiring_thread = curthread;
2523 		/*
2524 		 * Check the map for holes in the specified region.
2525 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2526 		 */
2527 		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2528 		    (entry->end < end && (entry->next == &map->header ||
2529 		    entry->next->start > entry->end))) {
2530 			end = entry->end;
2531 			rv = KERN_INVALID_ADDRESS;
2532 			goto done;
2533 		}
2534 		/*
2535 		 * If system unwiring, require that the entry is system wired.
2536 		 */
2537 		if (!user_unwire &&
2538 		    vm_map_entry_system_wired_count(entry) == 0) {
2539 			end = entry->end;
2540 			rv = KERN_INVALID_ARGUMENT;
2541 			goto done;
2542 		}
2543 		entry = entry->next;
2544 	}
2545 	rv = KERN_SUCCESS;
2546 done:
2547 	need_wakeup = FALSE;
2548 	if (first_entry == NULL) {
2549 		result = vm_map_lookup_entry(map, start, &first_entry);
2550 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2551 			first_entry = first_entry->next;
2552 		else
2553 			KASSERT(result, ("vm_map_unwire: lookup failed"));
2554 	}
2555 	for (entry = first_entry; entry != &map->header && entry->start < end;
2556 	    entry = entry->next) {
2557 		/*
2558 		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2559 		 * space in the unwired region could have been mapped
2560 		 * while the map lock was dropped for draining
2561 		 * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
2562 		 * could be simultaneously wiring this new mapping
2563 		 * entry.  Detect these cases and skip any entries
2564 		 * marked as in transition by us.
2565 		 */
2566 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2567 		    entry->wiring_thread != curthread) {
2568 			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2569 			    ("vm_map_unwire: !HOLESOK and new/changed entry"));
2570 			continue;
2571 		}
2572 
2573 		if (rv == KERN_SUCCESS && (!user_unwire ||
2574 		    (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2575 			if (user_unwire)
2576 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2577 			if (entry->wired_count == 1)
2578 				vm_map_entry_unwire(map, entry);
2579 			else
2580 				entry->wired_count--;
2581 		}
2582 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2583 		    ("vm_map_unwire: in-transition flag missing %p", entry));
2584 		KASSERT(entry->wiring_thread == curthread,
2585 		    ("vm_map_unwire: alien wire %p", entry));
2586 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2587 		entry->wiring_thread = NULL;
2588 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2589 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2590 			need_wakeup = TRUE;
2591 		}
2592 		vm_map_simplify_entry(map, entry);
2593 	}
2594 	vm_map_unlock(map);
2595 	if (need_wakeup)
2596 		vm_map_wakeup(map);
2597 	return (rv);
2598 }
2599 
2600 /*
2601  *	vm_map_wire_entry_failure:
2602  *
2603  *	Handle a wiring failure on the given entry.
2604  *
2605  *	The map should be locked.
2606  */
2607 static void
2608 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
2609     vm_offset_t failed_addr)
2610 {
2611 
2612 	VM_MAP_ASSERT_LOCKED(map);
2613 	KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
2614 	    entry->wired_count == 1,
2615 	    ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
2616 	KASSERT(failed_addr < entry->end,
2617 	    ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
2618 
2619 	/*
2620 	 * If any pages at the start of this entry were successfully wired,
2621 	 * then unwire them.
2622 	 */
2623 	if (failed_addr > entry->start) {
2624 		pmap_unwire(map->pmap, entry->start, failed_addr);
2625 		vm_object_unwire(entry->object.vm_object, entry->offset,
2626 		    failed_addr - entry->start, PQ_ACTIVE);
2627 	}
2628 
2629 	/*
2630 	 * Assign an out-of-range value to represent the failure to wire this
2631 	 * entry.
2632 	 */
2633 	entry->wired_count = -1;
2634 }
2635 
2636 /*
2637  *	vm_map_wire:
2638  *
2639  *	Implements both kernel and user wiring.
2640  */
2641 int
2642 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2643     int flags)
2644 {
2645 	vm_map_entry_t entry, first_entry, tmp_entry;
2646 	vm_offset_t faddr, saved_end, saved_start;
2647 	unsigned int last_timestamp;
2648 	int rv;
2649 	boolean_t need_wakeup, result, user_wire;
2650 	vm_prot_t prot;
2651 
2652 	if (start == end)
2653 		return (KERN_SUCCESS);
2654 	prot = 0;
2655 	if (flags & VM_MAP_WIRE_WRITE)
2656 		prot |= VM_PROT_WRITE;
2657 	user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2658 	vm_map_lock(map);
2659 	VM_MAP_RANGE_CHECK(map, start, end);
2660 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2661 		if (flags & VM_MAP_WIRE_HOLESOK)
2662 			first_entry = first_entry->next;
2663 		else {
2664 			vm_map_unlock(map);
2665 			return (KERN_INVALID_ADDRESS);
2666 		}
2667 	}
2668 	last_timestamp = map->timestamp;
2669 	entry = first_entry;
2670 	while (entry != &map->header && entry->start < end) {
2671 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2672 			/*
2673 			 * We have not yet clipped the entry.
2674 			 */
2675 			saved_start = (start >= entry->start) ? start :
2676 			    entry->start;
2677 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2678 			if (vm_map_unlock_and_wait(map, 0)) {
2679 				/*
2680 				 * Allow interruption of user wiring?
2681 				 */
2682 			}
2683 			vm_map_lock(map);
2684 			if (last_timestamp + 1 != map->timestamp) {
2685 				/*
2686 				 * Look again for the entry because the map was
2687 				 * modified while it was unlocked.
2688 				 * Specifically, the entry may have been
2689 				 * clipped, merged, or deleted.
2690 				 */
2691 				if (!vm_map_lookup_entry(map, saved_start,
2692 				    &tmp_entry)) {
2693 					if (flags & VM_MAP_WIRE_HOLESOK)
2694 						tmp_entry = tmp_entry->next;
2695 					else {
2696 						if (saved_start == start) {
2697 							/*
2698 							 * first_entry has been deleted.
2699 							 */
2700 							vm_map_unlock(map);
2701 							return (KERN_INVALID_ADDRESS);
2702 						}
2703 						end = saved_start;
2704 						rv = KERN_INVALID_ADDRESS;
2705 						goto done;
2706 					}
2707 				}
2708 				if (entry == first_entry)
2709 					first_entry = tmp_entry;
2710 				else
2711 					first_entry = NULL;
2712 				entry = tmp_entry;
2713 			}
2714 			last_timestamp = map->timestamp;
2715 			continue;
2716 		}
2717 		vm_map_clip_start(map, entry, start);
2718 		vm_map_clip_end(map, entry, end);
2719 		/*
2720 		 * Mark the entry in case the map lock is released.  (See
2721 		 * above.)
2722 		 */
2723 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2724 		    entry->wiring_thread == NULL,
2725 		    ("owned map entry %p", entry));
2726 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2727 		entry->wiring_thread = curthread;
2728 		if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
2729 		    || (entry->protection & prot) != prot) {
2730 			entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
2731 			if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
2732 				end = entry->end;
2733 				rv = KERN_INVALID_ADDRESS;
2734 				goto done;
2735 			}
2736 			goto next_entry;
2737 		}
2738 		if (entry->wired_count == 0) {
2739 			entry->wired_count++;
2740 			saved_start = entry->start;
2741 			saved_end = entry->end;
2742 
2743 			/*
2744 			 * Release the map lock, relying on the in-transition
2745 			 * mark.  Mark the map busy for fork.
2746 			 */
2747 			vm_map_busy(map);
2748 			vm_map_unlock(map);
2749 
2750 			faddr = saved_start;
2751 			do {
2752 				/*
2753 				 * Simulate a fault to get the page and enter
2754 				 * it into the physical map.
2755 				 */
2756 				if ((rv = vm_fault(map, faddr, VM_PROT_NONE,
2757 				    VM_FAULT_WIRE)) != KERN_SUCCESS)
2758 					break;
2759 			} while ((faddr += PAGE_SIZE) < saved_end);
2760 			vm_map_lock(map);
2761 			vm_map_unbusy(map);
2762 			if (last_timestamp + 1 != map->timestamp) {
2763 				/*
2764 				 * Look again for the entry because the map was
2765 				 * modified while it was unlocked.  The entry
2766 				 * may have been clipped, but NOT merged or
2767 				 * deleted.
2768 				 */
2769 				result = vm_map_lookup_entry(map, saved_start,
2770 				    &tmp_entry);
2771 				KASSERT(result, ("vm_map_wire: lookup failed"));
2772 				if (entry == first_entry)
2773 					first_entry = tmp_entry;
2774 				else
2775 					first_entry = NULL;
2776 				entry = tmp_entry;
2777 				while (entry->end < saved_end) {
2778 					/*
2779 					 * In case of failure, handle entries
2780 					 * that were not fully wired here;
2781 					 * fully wired entries are handled
2782 					 * later.
2783 					 */
2784 					if (rv != KERN_SUCCESS &&
2785 					    faddr < entry->end)
2786 						vm_map_wire_entry_failure(map,
2787 						    entry, faddr);
2788 					entry = entry->next;
2789 				}
2790 			}
2791 			last_timestamp = map->timestamp;
2792 			if (rv != KERN_SUCCESS) {
2793 				vm_map_wire_entry_failure(map, entry, faddr);
2794 				end = entry->end;
2795 				goto done;
2796 			}
2797 		} else if (!user_wire ||
2798 			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2799 			entry->wired_count++;
2800 		}
2801 		/*
2802 		 * Check the map for holes in the specified region.
2803 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2804 		 */
2805 	next_entry:
2806 		if ((flags & VM_MAP_WIRE_HOLESOK) == 0 &&
2807 		    entry->end < end && (entry->next == &map->header ||
2808 		    entry->next->start > entry->end)) {
2809 			end = entry->end;
2810 			rv = KERN_INVALID_ADDRESS;
2811 			goto done;
2812 		}
2813 		entry = entry->next;
2814 	}
2815 	rv = KERN_SUCCESS;
2816 done:
2817 	need_wakeup = FALSE;
2818 	if (first_entry == NULL) {
2819 		result = vm_map_lookup_entry(map, start, &first_entry);
2820 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2821 			first_entry = first_entry->next;
2822 		else
2823 			KASSERT(result, ("vm_map_wire: lookup failed"));
2824 	}
2825 	for (entry = first_entry; entry != &map->header && entry->start < end;
2826 	    entry = entry->next) {
2827 		/*
2828 		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2829 		 * space in the unwired region could have been mapped
2830 		 * while the map lock was dropped for faulting in the
2831 		 * pages or draining MAP_ENTRY_IN_TRANSITION.
2832 		 * Moreover, another thread could be simultaneously
2833 		 * wiring this new mapping entry.  Detect these cases
2834 		 * and skip any entries marked as in transition not by us.
2835 		 */
2836 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2837 		    entry->wiring_thread != curthread) {
2838 			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2839 			    ("vm_map_wire: !HOLESOK and new/changed entry"));
2840 			continue;
2841 		}
2842 
2843 		if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
2844 			goto next_entry_done;
2845 
2846 		if (rv == KERN_SUCCESS) {
2847 			if (user_wire)
2848 				entry->eflags |= MAP_ENTRY_USER_WIRED;
2849 		} else if (entry->wired_count == -1) {
2850 			/*
2851 			 * Wiring failed on this entry.  Thus, unwiring is
2852 			 * unnecessary.
2853 			 */
2854 			entry->wired_count = 0;
2855 		} else if (!user_wire ||
2856 		    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2857 			/*
2858 			 * Undo the wiring.  Wiring succeeded on this entry
2859 			 * but failed on a later entry.
2860 			 */
2861 			if (entry->wired_count == 1)
2862 				vm_map_entry_unwire(map, entry);
2863 			else
2864 				entry->wired_count--;
2865 		}
2866 	next_entry_done:
2867 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2868 		    ("vm_map_wire: in-transition flag missing %p", entry));
2869 		KASSERT(entry->wiring_thread == curthread,
2870 		    ("vm_map_wire: alien wire %p", entry));
2871 		entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
2872 		    MAP_ENTRY_WIRE_SKIPPED);
2873 		entry->wiring_thread = NULL;
2874 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2875 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2876 			need_wakeup = TRUE;
2877 		}
2878 		vm_map_simplify_entry(map, entry);
2879 	}
2880 	vm_map_unlock(map);
2881 	if (need_wakeup)
2882 		vm_map_wakeup(map);
2883 	return (rv);
2884 }
2885 
2886 /*
2887  * vm_map_sync
2888  *
2889  * Push any dirty cached pages in the address range to their pager.
2890  * If syncio is TRUE, dirty pages are written synchronously.
2891  * If invalidate is TRUE, any cached pages are freed as well.
2892  *
2893  * If the size of the region from start to end is zero, we are
2894  * supposed to flush all modified pages within the region containing
2895  * start.  Unfortunately, a region can be split or coalesced with
2896  * neighboring regions, making it difficult to determine what the
2897  * original region was.  Therefore, we approximate this requirement by
2898  * flushing the current region containing start.
2899  *
2900  * Returns an error if any part of the specified range is not mapped.
2901  */
2902 int
2903 vm_map_sync(
2904 	vm_map_t map,
2905 	vm_offset_t start,
2906 	vm_offset_t end,
2907 	boolean_t syncio,
2908 	boolean_t invalidate)
2909 {
2910 	vm_map_entry_t current;
2911 	vm_map_entry_t entry;
2912 	vm_size_t size;
2913 	vm_object_t object;
2914 	vm_ooffset_t offset;
2915 	unsigned int last_timestamp;
2916 	boolean_t failed;
2917 
2918 	vm_map_lock_read(map);
2919 	VM_MAP_RANGE_CHECK(map, start, end);
2920 	if (!vm_map_lookup_entry(map, start, &entry)) {
2921 		vm_map_unlock_read(map);
2922 		return (KERN_INVALID_ADDRESS);
2923 	} else if (start == end) {
2924 		start = entry->start;
2925 		end = entry->end;
2926 	}
2927 	/*
2928 	 * Make a first pass to check for user-wired memory and holes.
2929 	 */
2930 	for (current = entry; current != &map->header && current->start < end;
2931 	    current = current->next) {
2932 		if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
2933 			vm_map_unlock_read(map);
2934 			return (KERN_INVALID_ARGUMENT);
2935 		}
2936 		if (end > current->end &&
2937 		    (current->next == &map->header ||
2938 			current->end != current->next->start)) {
2939 			vm_map_unlock_read(map);
2940 			return (KERN_INVALID_ADDRESS);
2941 		}
2942 	}
2943 
2944 	if (invalidate)
2945 		pmap_remove(map->pmap, start, end);
2946 	failed = FALSE;
2947 
2948 	/*
2949 	 * Make a second pass, cleaning/uncaching pages from the indicated
2950 	 * objects as we go.
2951 	 */
2952 	for (current = entry; current != &map->header && current->start < end;) {
2953 		offset = current->offset + (start - current->start);
2954 		size = (end <= current->end ? end : current->end) - start;
2955 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2956 			vm_map_t smap;
2957 			vm_map_entry_t tentry;
2958 			vm_size_t tsize;
2959 
2960 			smap = current->object.sub_map;
2961 			vm_map_lock_read(smap);
2962 			(void) vm_map_lookup_entry(smap, offset, &tentry);
2963 			tsize = tentry->end - offset;
2964 			if (tsize < size)
2965 				size = tsize;
2966 			object = tentry->object.vm_object;
2967 			offset = tentry->offset + (offset - tentry->start);
2968 			vm_map_unlock_read(smap);
2969 		} else {
2970 			object = current->object.vm_object;
2971 		}
2972 		vm_object_reference(object);
2973 		last_timestamp = map->timestamp;
2974 		vm_map_unlock_read(map);
2975 		if (!vm_object_sync(object, offset, size, syncio, invalidate))
2976 			failed = TRUE;
2977 		start += size;
2978 		vm_object_deallocate(object);
2979 		vm_map_lock_read(map);
2980 		if (last_timestamp == map->timestamp ||
2981 		    !vm_map_lookup_entry(map, start, &current))
2982 			current = current->next;
2983 	}
2984 
2985 	vm_map_unlock_read(map);
2986 	return (failed ? KERN_FAILURE : KERN_SUCCESS);
2987 }
2988 
2989 /*
2990  *	vm_map_entry_unwire:	[ internal use only ]
2991  *
2992  *	Make the region specified by this entry pageable.
2993  *
2994  *	The map in question should be locked.
2995  *	[This is the reason for this routine's existence.]
2996  */
2997 static void
2998 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2999 {
3000 
3001 	VM_MAP_ASSERT_LOCKED(map);
3002 	KASSERT(entry->wired_count > 0,
3003 	    ("vm_map_entry_unwire: entry %p isn't wired", entry));
3004 	pmap_unwire(map->pmap, entry->start, entry->end);
3005 	vm_object_unwire(entry->object.vm_object, entry->offset, entry->end -
3006 	    entry->start, PQ_ACTIVE);
3007 	entry->wired_count = 0;
3008 }
3009 
3010 static void
3011 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
3012 {
3013 
3014 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
3015 		vm_object_deallocate(entry->object.vm_object);
3016 	uma_zfree(system_map ? kmapentzone : mapentzone, entry);
3017 }
3018 
3019 /*
3020  *	vm_map_entry_delete:	[ internal use only ]
3021  *
3022  *	Deallocate the given entry from the target map.
3023  */
3024 static void
3025 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
3026 {
3027 	vm_object_t object;
3028 	vm_pindex_t offidxstart, offidxend, count, size1;
3029 	vm_size_t size;
3030 
3031 	vm_map_entry_unlink(map, entry);
3032 	object = entry->object.vm_object;
3033 
3034 	if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
3035 		MPASS(entry->cred == NULL);
3036 		MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0);
3037 		MPASS(object == NULL);
3038 		vm_map_entry_deallocate(entry, map->system_map);
3039 		return;
3040 	}
3041 
3042 	size = entry->end - entry->start;
3043 	map->size -= size;
3044 
3045 	if (entry->cred != NULL) {
3046 		swap_release_by_cred(size, entry->cred);
3047 		crfree(entry->cred);
3048 	}
3049 
3050 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
3051 	    (object != NULL)) {
3052 		KASSERT(entry->cred == NULL || object->cred == NULL ||
3053 		    (entry->eflags & MAP_ENTRY_NEEDS_COPY),
3054 		    ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
3055 		count = atop(size);
3056 		offidxstart = OFF_TO_IDX(entry->offset);
3057 		offidxend = offidxstart + count;
3058 		VM_OBJECT_WLOCK(object);
3059 		if (object->ref_count != 1 && ((object->flags & (OBJ_NOSPLIT |
3060 		    OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
3061 		    object == kernel_object)) {
3062 			vm_object_collapse(object);
3063 
3064 			/*
3065 			 * The option OBJPR_NOTMAPPED can be passed here
3066 			 * because vm_map_delete() already performed
3067 			 * pmap_remove() on the only mapping to this range
3068 			 * of pages.
3069 			 */
3070 			vm_object_page_remove(object, offidxstart, offidxend,
3071 			    OBJPR_NOTMAPPED);
3072 			if (object->type == OBJT_SWAP)
3073 				swap_pager_freespace(object, offidxstart,
3074 				    count);
3075 			if (offidxend >= object->size &&
3076 			    offidxstart < object->size) {
3077 				size1 = object->size;
3078 				object->size = offidxstart;
3079 				if (object->cred != NULL) {
3080 					size1 -= object->size;
3081 					KASSERT(object->charge >= ptoa(size1),
3082 					    ("object %p charge < 0", object));
3083 					swap_release_by_cred(ptoa(size1),
3084 					    object->cred);
3085 					object->charge -= ptoa(size1);
3086 				}
3087 			}
3088 		}
3089 		VM_OBJECT_WUNLOCK(object);
3090 	} else
3091 		entry->object.vm_object = NULL;
3092 	if (map->system_map)
3093 		vm_map_entry_deallocate(entry, TRUE);
3094 	else {
3095 		entry->next = curthread->td_map_def_user;
3096 		curthread->td_map_def_user = entry;
3097 	}
3098 }
3099 
3100 /*
3101  *	vm_map_delete:	[ internal use only ]
3102  *
3103  *	Deallocates the given address range from the target
3104  *	map.
3105  */
3106 int
3107 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
3108 {
3109 	vm_map_entry_t entry;
3110 	vm_map_entry_t first_entry;
3111 
3112 	VM_MAP_ASSERT_LOCKED(map);
3113 	if (start == end)
3114 		return (KERN_SUCCESS);
3115 
3116 	/*
3117 	 * Find the start of the region, and clip it
3118 	 */
3119 	if (!vm_map_lookup_entry(map, start, &first_entry))
3120 		entry = first_entry->next;
3121 	else {
3122 		entry = first_entry;
3123 		vm_map_clip_start(map, entry, start);
3124 	}
3125 
3126 	/*
3127 	 * Step through all entries in this region
3128 	 */
3129 	while ((entry != &map->header) && (entry->start < end)) {
3130 		vm_map_entry_t next;
3131 
3132 		/*
3133 		 * Wait for wiring or unwiring of an entry to complete.
3134 		 * Also wait for any system wirings to disappear on
3135 		 * user maps.
3136 		 */
3137 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
3138 		    (vm_map_pmap(map) != kernel_pmap &&
3139 		    vm_map_entry_system_wired_count(entry) != 0)) {
3140 			unsigned int last_timestamp;
3141 			vm_offset_t saved_start;
3142 			vm_map_entry_t tmp_entry;
3143 
3144 			saved_start = entry->start;
3145 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3146 			last_timestamp = map->timestamp;
3147 			(void) vm_map_unlock_and_wait(map, 0);
3148 			vm_map_lock(map);
3149 			if (last_timestamp + 1 != map->timestamp) {
3150 				/*
3151 				 * Look again for the entry because the map was
3152 				 * modified while it was unlocked.
3153 				 * Specifically, the entry may have been
3154 				 * clipped, merged, or deleted.
3155 				 */
3156 				if (!vm_map_lookup_entry(map, saved_start,
3157 							 &tmp_entry))
3158 					entry = tmp_entry->next;
3159 				else {
3160 					entry = tmp_entry;
3161 					vm_map_clip_start(map, entry,
3162 							  saved_start);
3163 				}
3164 			}
3165 			continue;
3166 		}
3167 		vm_map_clip_end(map, entry, end);
3168 
3169 		next = entry->next;
3170 
3171 		/*
3172 		 * Unwire before removing addresses from the pmap; otherwise,
3173 		 * unwiring will put the entries back in the pmap.
3174 		 */
3175 		if (entry->wired_count != 0) {
3176 			vm_map_entry_unwire(map, entry);
3177 		}
3178 
3179 		pmap_remove(map->pmap, entry->start, entry->end);
3180 
3181 		/*
3182 		 * Delete the entry only after removing all pmap
3183 		 * entries pointing to its pages.  (Otherwise, its
3184 		 * page frames may be reallocated, and any modify bits
3185 		 * will be set in the wrong object!)
3186 		 */
3187 		vm_map_entry_delete(map, entry);
3188 		entry = next;
3189 	}
3190 	return (KERN_SUCCESS);
3191 }
3192 
3193 /*
3194  *	vm_map_remove:
3195  *
3196  *	Remove the given address range from the target map.
3197  *	This is the exported form of vm_map_delete.
3198  */
3199 int
3200 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3201 {
3202 	int result;
3203 
3204 	vm_map_lock(map);
3205 	VM_MAP_RANGE_CHECK(map, start, end);
3206 	result = vm_map_delete(map, start, end);
3207 	vm_map_unlock(map);
3208 	return (result);
3209 }
3210 
3211 /*
3212  *	vm_map_check_protection:
3213  *
3214  *	Assert that the target map allows the specified privilege on the
3215  *	entire address region given.  The entire region must be allocated.
3216  *
3217  *	WARNING!  This code does not and should not check whether the
3218  *	contents of the region is accessible.  For example a smaller file
3219  *	might be mapped into a larger address space.
3220  *
3221  *	NOTE!  This code is also called by munmap().
3222  *
3223  *	The map must be locked.  A read lock is sufficient.
3224  */
3225 boolean_t
3226 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
3227 			vm_prot_t protection)
3228 {
3229 	vm_map_entry_t entry;
3230 	vm_map_entry_t tmp_entry;
3231 
3232 	if (!vm_map_lookup_entry(map, start, &tmp_entry))
3233 		return (FALSE);
3234 	entry = tmp_entry;
3235 
3236 	while (start < end) {
3237 		if (entry == &map->header)
3238 			return (FALSE);
3239 		/*
3240 		 * No holes allowed!
3241 		 */
3242 		if (start < entry->start)
3243 			return (FALSE);
3244 		/*
3245 		 * Check protection associated with entry.
3246 		 */
3247 		if ((entry->protection & protection) != protection)
3248 			return (FALSE);
3249 		/* go to next entry */
3250 		start = entry->end;
3251 		entry = entry->next;
3252 	}
3253 	return (TRUE);
3254 }
3255 
3256 /*
3257  *	vm_map_copy_entry:
3258  *
3259  *	Copies the contents of the source entry to the destination
3260  *	entry.  The entries *must* be aligned properly.
3261  */
3262 static void
3263 vm_map_copy_entry(
3264 	vm_map_t src_map,
3265 	vm_map_t dst_map,
3266 	vm_map_entry_t src_entry,
3267 	vm_map_entry_t dst_entry,
3268 	vm_ooffset_t *fork_charge)
3269 {
3270 	vm_object_t src_object;
3271 	vm_map_entry_t fake_entry;
3272 	vm_offset_t size;
3273 	struct ucred *cred;
3274 	int charged;
3275 
3276 	VM_MAP_ASSERT_LOCKED(dst_map);
3277 
3278 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
3279 		return;
3280 
3281 	if (src_entry->wired_count == 0 ||
3282 	    (src_entry->protection & VM_PROT_WRITE) == 0) {
3283 		/*
3284 		 * If the source entry is marked needs_copy, it is already
3285 		 * write-protected.
3286 		 */
3287 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
3288 		    (src_entry->protection & VM_PROT_WRITE) != 0) {
3289 			pmap_protect(src_map->pmap,
3290 			    src_entry->start,
3291 			    src_entry->end,
3292 			    src_entry->protection & ~VM_PROT_WRITE);
3293 		}
3294 
3295 		/*
3296 		 * Make a copy of the object.
3297 		 */
3298 		size = src_entry->end - src_entry->start;
3299 		if ((src_object = src_entry->object.vm_object) != NULL) {
3300 			VM_OBJECT_WLOCK(src_object);
3301 			charged = ENTRY_CHARGED(src_entry);
3302 			if (src_object->handle == NULL &&
3303 			    (src_object->type == OBJT_DEFAULT ||
3304 			    src_object->type == OBJT_SWAP)) {
3305 				vm_object_collapse(src_object);
3306 				if ((src_object->flags & (OBJ_NOSPLIT |
3307 				    OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
3308 					vm_object_split(src_entry);
3309 					src_object =
3310 					    src_entry->object.vm_object;
3311 				}
3312 			}
3313 			vm_object_reference_locked(src_object);
3314 			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3315 			if (src_entry->cred != NULL &&
3316 			    !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3317 				KASSERT(src_object->cred == NULL,
3318 				    ("OVERCOMMIT: vm_map_copy_entry: cred %p",
3319 				     src_object));
3320 				src_object->cred = src_entry->cred;
3321 				src_object->charge = size;
3322 			}
3323 			VM_OBJECT_WUNLOCK(src_object);
3324 			dst_entry->object.vm_object = src_object;
3325 			if (charged) {
3326 				cred = curthread->td_ucred;
3327 				crhold(cred);
3328 				dst_entry->cred = cred;
3329 				*fork_charge += size;
3330 				if (!(src_entry->eflags &
3331 				      MAP_ENTRY_NEEDS_COPY)) {
3332 					crhold(cred);
3333 					src_entry->cred = cred;
3334 					*fork_charge += size;
3335 				}
3336 			}
3337 			src_entry->eflags |= MAP_ENTRY_COW |
3338 			    MAP_ENTRY_NEEDS_COPY;
3339 			dst_entry->eflags |= MAP_ENTRY_COW |
3340 			    MAP_ENTRY_NEEDS_COPY;
3341 			dst_entry->offset = src_entry->offset;
3342 			if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3343 				/*
3344 				 * MAP_ENTRY_VN_WRITECNT cannot
3345 				 * indicate write reference from
3346 				 * src_entry, since the entry is
3347 				 * marked as needs copy.  Allocate a
3348 				 * fake entry that is used to
3349 				 * decrement object->un_pager.vnp.writecount
3350 				 * at the appropriate time.  Attach
3351 				 * fake_entry to the deferred list.
3352 				 */
3353 				fake_entry = vm_map_entry_create(dst_map);
3354 				fake_entry->eflags = MAP_ENTRY_VN_WRITECNT;
3355 				src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT;
3356 				vm_object_reference(src_object);
3357 				fake_entry->object.vm_object = src_object;
3358 				fake_entry->start = src_entry->start;
3359 				fake_entry->end = src_entry->end;
3360 				fake_entry->next = curthread->td_map_def_user;
3361 				curthread->td_map_def_user = fake_entry;
3362 			}
3363 
3364 			pmap_copy(dst_map->pmap, src_map->pmap,
3365 			    dst_entry->start, dst_entry->end - dst_entry->start,
3366 			    src_entry->start);
3367 		} else {
3368 			dst_entry->object.vm_object = NULL;
3369 			dst_entry->offset = 0;
3370 			if (src_entry->cred != NULL) {
3371 				dst_entry->cred = curthread->td_ucred;
3372 				crhold(dst_entry->cred);
3373 				*fork_charge += size;
3374 			}
3375 		}
3376 	} else {
3377 		/*
3378 		 * We don't want to make writeable wired pages copy-on-write.
3379 		 * Immediately copy these pages into the new map by simulating
3380 		 * page faults.  The new pages are pageable.
3381 		 */
3382 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3383 		    fork_charge);
3384 	}
3385 }
3386 
3387 /*
3388  * vmspace_map_entry_forked:
3389  * Update the newly-forked vmspace each time a map entry is inherited
3390  * or copied.  The values for vm_dsize and vm_tsize are approximate
3391  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3392  */
3393 static void
3394 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3395     vm_map_entry_t entry)
3396 {
3397 	vm_size_t entrysize;
3398 	vm_offset_t newend;
3399 
3400 	if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
3401 		return;
3402 	entrysize = entry->end - entry->start;
3403 	vm2->vm_map.size += entrysize;
3404 	if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3405 		vm2->vm_ssize += btoc(entrysize);
3406 	} else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3407 	    entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3408 		newend = MIN(entry->end,
3409 		    (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3410 		vm2->vm_dsize += btoc(newend - entry->start);
3411 	} else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3412 	    entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3413 		newend = MIN(entry->end,
3414 		    (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3415 		vm2->vm_tsize += btoc(newend - entry->start);
3416 	}
3417 }
3418 
3419 /*
3420  * vmspace_fork:
3421  * Create a new process vmspace structure and vm_map
3422  * based on those of an existing process.  The new map
3423  * is based on the old map, according to the inheritance
3424  * values on the regions in that map.
3425  *
3426  * XXX It might be worth coalescing the entries added to the new vmspace.
3427  *
3428  * The source map must not be locked.
3429  */
3430 struct vmspace *
3431 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3432 {
3433 	struct vmspace *vm2;
3434 	vm_map_t new_map, old_map;
3435 	vm_map_entry_t new_entry, old_entry;
3436 	vm_object_t object;
3437 	int locked;
3438 	vm_inherit_t inh;
3439 
3440 	old_map = &vm1->vm_map;
3441 	/* Copy immutable fields of vm1 to vm2. */
3442 	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset, NULL);
3443 	if (vm2 == NULL)
3444 		return (NULL);
3445 	vm2->vm_taddr = vm1->vm_taddr;
3446 	vm2->vm_daddr = vm1->vm_daddr;
3447 	vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3448 	vm_map_lock(old_map);
3449 	if (old_map->busy)
3450 		vm_map_wait_busy(old_map);
3451 	new_map = &vm2->vm_map;
3452 	locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3453 	KASSERT(locked, ("vmspace_fork: lock failed"));
3454 
3455 	old_entry = old_map->header.next;
3456 
3457 	while (old_entry != &old_map->header) {
3458 		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3459 			panic("vm_map_fork: encountered a submap");
3460 
3461 		inh = old_entry->inheritance;
3462 		if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 &&
3463 		    inh != VM_INHERIT_NONE)
3464 			inh = VM_INHERIT_COPY;
3465 
3466 		switch (inh) {
3467 		case VM_INHERIT_NONE:
3468 			break;
3469 
3470 		case VM_INHERIT_SHARE:
3471 			/*
3472 			 * Clone the entry, creating the shared object if necessary.
3473 			 */
3474 			object = old_entry->object.vm_object;
3475 			if (object == NULL) {
3476 				object = vm_object_allocate(OBJT_DEFAULT,
3477 					atop(old_entry->end - old_entry->start));
3478 				old_entry->object.vm_object = object;
3479 				old_entry->offset = 0;
3480 				if (old_entry->cred != NULL) {
3481 					object->cred = old_entry->cred;
3482 					object->charge = old_entry->end -
3483 					    old_entry->start;
3484 					old_entry->cred = NULL;
3485 				}
3486 			}
3487 
3488 			/*
3489 			 * Add the reference before calling vm_object_shadow
3490 			 * to insure that a shadow object is created.
3491 			 */
3492 			vm_object_reference(object);
3493 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3494 				vm_object_shadow(&old_entry->object.vm_object,
3495 				    &old_entry->offset,
3496 				    old_entry->end - old_entry->start);
3497 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3498 				/* Transfer the second reference too. */
3499 				vm_object_reference(
3500 				    old_entry->object.vm_object);
3501 
3502 				/*
3503 				 * As in vm_map_simplify_entry(), the
3504 				 * vnode lock will not be acquired in
3505 				 * this call to vm_object_deallocate().
3506 				 */
3507 				vm_object_deallocate(object);
3508 				object = old_entry->object.vm_object;
3509 			}
3510 			VM_OBJECT_WLOCK(object);
3511 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
3512 			if (old_entry->cred != NULL) {
3513 				KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3514 				object->cred = old_entry->cred;
3515 				object->charge = old_entry->end - old_entry->start;
3516 				old_entry->cred = NULL;
3517 			}
3518 
3519 			/*
3520 			 * Assert the correct state of the vnode
3521 			 * v_writecount while the object is locked, to
3522 			 * not relock it later for the assertion
3523 			 * correctness.
3524 			 */
3525 			if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT &&
3526 			    object->type == OBJT_VNODE) {
3527 				KASSERT(((struct vnode *)object->handle)->
3528 				    v_writecount > 0,
3529 				    ("vmspace_fork: v_writecount %p", object));
3530 				KASSERT(object->un_pager.vnp.writemappings > 0,
3531 				    ("vmspace_fork: vnp.writecount %p",
3532 				    object));
3533 			}
3534 			VM_OBJECT_WUNLOCK(object);
3535 
3536 			/*
3537 			 * Clone the entry, referencing the shared object.
3538 			 */
3539 			new_entry = vm_map_entry_create(new_map);
3540 			*new_entry = *old_entry;
3541 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3542 			    MAP_ENTRY_IN_TRANSITION);
3543 			new_entry->wiring_thread = NULL;
3544 			new_entry->wired_count = 0;
3545 			if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3546 				vnode_pager_update_writecount(object,
3547 				    new_entry->start, new_entry->end);
3548 			}
3549 
3550 			/*
3551 			 * Insert the entry into the new map -- we know we're
3552 			 * inserting at the end of the new map.
3553 			 */
3554 			vm_map_entry_link(new_map, new_map->header.prev,
3555 			    new_entry);
3556 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3557 
3558 			/*
3559 			 * Update the physical map
3560 			 */
3561 			pmap_copy(new_map->pmap, old_map->pmap,
3562 			    new_entry->start,
3563 			    (old_entry->end - old_entry->start),
3564 			    old_entry->start);
3565 			break;
3566 
3567 		case VM_INHERIT_COPY:
3568 			/*
3569 			 * Clone the entry and link into the map.
3570 			 */
3571 			new_entry = vm_map_entry_create(new_map);
3572 			*new_entry = *old_entry;
3573 			/*
3574 			 * Copied entry is COW over the old object.
3575 			 */
3576 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3577 			    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT);
3578 			new_entry->wiring_thread = NULL;
3579 			new_entry->wired_count = 0;
3580 			new_entry->object.vm_object = NULL;
3581 			new_entry->cred = NULL;
3582 			vm_map_entry_link(new_map, new_map->header.prev,
3583 			    new_entry);
3584 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3585 			vm_map_copy_entry(old_map, new_map, old_entry,
3586 			    new_entry, fork_charge);
3587 			break;
3588 
3589 		case VM_INHERIT_ZERO:
3590 			/*
3591 			 * Create a new anonymous mapping entry modelled from
3592 			 * the old one.
3593 			 */
3594 			new_entry = vm_map_entry_create(new_map);
3595 			memset(new_entry, 0, sizeof(*new_entry));
3596 
3597 			new_entry->start = old_entry->start;
3598 			new_entry->end = old_entry->end;
3599 			new_entry->eflags = old_entry->eflags &
3600 			    ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION |
3601 			    MAP_ENTRY_VN_WRITECNT);
3602 			new_entry->protection = old_entry->protection;
3603 			new_entry->max_protection = old_entry->max_protection;
3604 			new_entry->inheritance = VM_INHERIT_ZERO;
3605 
3606 			vm_map_entry_link(new_map, new_map->header.prev,
3607 			    new_entry);
3608 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3609 
3610 			new_entry->cred = curthread->td_ucred;
3611 			crhold(new_entry->cred);
3612 			*fork_charge += (new_entry->end - new_entry->start);
3613 
3614 			break;
3615 		}
3616 		old_entry = old_entry->next;
3617 	}
3618 	/*
3619 	 * Use inlined vm_map_unlock() to postpone handling the deferred
3620 	 * map entries, which cannot be done until both old_map and
3621 	 * new_map locks are released.
3622 	 */
3623 	sx_xunlock(&old_map->lock);
3624 	sx_xunlock(&new_map->lock);
3625 	vm_map_process_deferred();
3626 
3627 	return (vm2);
3628 }
3629 
3630 /*
3631  * Create a process's stack for exec_new_vmspace().  This function is never
3632  * asked to wire the newly created stack.
3633  */
3634 int
3635 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3636     vm_prot_t prot, vm_prot_t max, int cow)
3637 {
3638 	vm_size_t growsize, init_ssize;
3639 	rlim_t vmemlim;
3640 	int rv;
3641 
3642 	MPASS((map->flags & MAP_WIREFUTURE) == 0);
3643 	growsize = sgrowsiz;
3644 	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3645 	vm_map_lock(map);
3646 	vmemlim = lim_cur(curthread, RLIMIT_VMEM);
3647 	/* If we would blow our VMEM resource limit, no go */
3648 	if (map->size + init_ssize > vmemlim) {
3649 		rv = KERN_NO_SPACE;
3650 		goto out;
3651 	}
3652 	rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
3653 	    max, cow);
3654 out:
3655 	vm_map_unlock(map);
3656 	return (rv);
3657 }
3658 
3659 static int stack_guard_page = 1;
3660 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
3661     &stack_guard_page, 0,
3662     "Specifies the number of guard pages for a stack that grows");
3663 
3664 static int
3665 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3666     vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
3667 {
3668 	vm_map_entry_t new_entry, prev_entry;
3669 	vm_offset_t bot, gap_bot, gap_top, top;
3670 	vm_size_t init_ssize, sgp;
3671 	int orient, rv;
3672 
3673 	/*
3674 	 * The stack orientation is piggybacked with the cow argument.
3675 	 * Extract it into orient and mask the cow argument so that we
3676 	 * don't pass it around further.
3677 	 */
3678 	orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP);
3679 	KASSERT(orient != 0, ("No stack grow direction"));
3680 	KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP),
3681 	    ("bi-dir stack"));
3682 
3683 	if (addrbos < vm_map_min(map) ||
3684 	    addrbos + max_ssize > vm_map_max(map) ||
3685 	    addrbos + max_ssize <= addrbos)
3686 		return (KERN_INVALID_ADDRESS);
3687 	sgp = (vm_size_t)stack_guard_page * PAGE_SIZE;
3688 	if (sgp >= max_ssize)
3689 		return (KERN_INVALID_ARGUMENT);
3690 
3691 	init_ssize = growsize;
3692 	if (max_ssize < init_ssize + sgp)
3693 		init_ssize = max_ssize - sgp;
3694 
3695 	/* If addr is already mapped, no go */
3696 	if (vm_map_lookup_entry(map, addrbos, &prev_entry))
3697 		return (KERN_NO_SPACE);
3698 
3699 	/*
3700 	 * If we can't accommodate max_ssize in the current mapping, no go.
3701 	 */
3702 	if ((prev_entry->next != &map->header) &&
3703 	    (prev_entry->next->start < addrbos + max_ssize))
3704 		return (KERN_NO_SPACE);
3705 
3706 	/*
3707 	 * We initially map a stack of only init_ssize.  We will grow as
3708 	 * needed later.  Depending on the orientation of the stack (i.e.
3709 	 * the grow direction) we either map at the top of the range, the
3710 	 * bottom of the range or in the middle.
3711 	 *
3712 	 * Note: we would normally expect prot and max to be VM_PROT_ALL,
3713 	 * and cow to be 0.  Possibly we should eliminate these as input
3714 	 * parameters, and just pass these values here in the insert call.
3715 	 */
3716 	if (orient == MAP_STACK_GROWS_DOWN) {
3717 		bot = addrbos + max_ssize - init_ssize;
3718 		top = bot + init_ssize;
3719 		gap_bot = addrbos;
3720 		gap_top = bot;
3721 	} else /* if (orient == MAP_STACK_GROWS_UP) */ {
3722 		bot = addrbos;
3723 		top = bot + init_ssize;
3724 		gap_bot = top;
3725 		gap_top = addrbos + max_ssize;
3726 	}
3727 	rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
3728 	if (rv != KERN_SUCCESS)
3729 		return (rv);
3730 	new_entry = prev_entry->next;
3731 	KASSERT(new_entry->end == top || new_entry->start == bot,
3732 	    ("Bad entry start/end for new stack entry"));
3733 	KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
3734 	    (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
3735 	    ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
3736 	KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
3737 	    (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
3738 	    ("new entry lacks MAP_ENTRY_GROWS_UP"));
3739 	rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE,
3740 	    VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ?
3741 	    MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP));
3742 	if (rv != KERN_SUCCESS)
3743 		(void)vm_map_delete(map, bot, top);
3744 	return (rv);
3745 }
3746 
3747 /*
3748  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if we
3749  * successfully grow the stack.
3750  */
3751 static int
3752 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry)
3753 {
3754 	vm_map_entry_t stack_entry;
3755 	struct proc *p;
3756 	struct vmspace *vm;
3757 	struct ucred *cred;
3758 	vm_offset_t gap_end, gap_start, grow_start;
3759 	size_t grow_amount, guard, max_grow;
3760 	rlim_t lmemlim, stacklim, vmemlim;
3761 	int rv, rv1;
3762 	bool gap_deleted, grow_down, is_procstack;
3763 #ifdef notyet
3764 	uint64_t limit;
3765 #endif
3766 #ifdef RACCT
3767 	int error;
3768 #endif
3769 
3770 	p = curproc;
3771 	vm = p->p_vmspace;
3772 
3773 	/*
3774 	 * Disallow stack growth when the access is performed by a
3775 	 * debugger or AIO daemon.  The reason is that the wrong
3776 	 * resource limits are applied.
3777 	 */
3778 	if (map != &p->p_vmspace->vm_map || p->p_textvp == NULL)
3779 		return (KERN_FAILURE);
3780 
3781 	MPASS(!map->system_map);
3782 
3783 	guard = stack_guard_page * PAGE_SIZE;
3784 	lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
3785 	stacklim = lim_cur(curthread, RLIMIT_STACK);
3786 	vmemlim = lim_cur(curthread, RLIMIT_VMEM);
3787 retry:
3788 	/* If addr is not in a hole for a stack grow area, no need to grow. */
3789 	if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry))
3790 		return (KERN_FAILURE);
3791 	if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0)
3792 		return (KERN_SUCCESS);
3793 	if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) {
3794 		stack_entry = gap_entry->next;
3795 		if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 ||
3796 		    stack_entry->start != gap_entry->end)
3797 			return (KERN_FAILURE);
3798 		grow_amount = round_page(stack_entry->start - addr);
3799 		grow_down = true;
3800 	} else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) {
3801 		stack_entry = gap_entry->prev;
3802 		if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 ||
3803 		    stack_entry->end != gap_entry->start)
3804 			return (KERN_FAILURE);
3805 		grow_amount = round_page(addr + 1 - stack_entry->end);
3806 		grow_down = false;
3807 	} else {
3808 		return (KERN_FAILURE);
3809 	}
3810 	max_grow = gap_entry->end - gap_entry->start;
3811 	if (guard > max_grow)
3812 		return (KERN_NO_SPACE);
3813 	max_grow -= guard;
3814 	if (grow_amount > max_grow)
3815 		return (KERN_NO_SPACE);
3816 
3817 	/*
3818 	 * If this is the main process stack, see if we're over the stack
3819 	 * limit.
3820 	 */
3821 	is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr &&
3822 	    addr < (vm_offset_t)p->p_sysent->sv_usrstack;
3823 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim))
3824 		return (KERN_NO_SPACE);
3825 
3826 #ifdef RACCT
3827 	if (racct_enable) {
3828 		PROC_LOCK(p);
3829 		if (is_procstack && racct_set(p, RACCT_STACK,
3830 		    ctob(vm->vm_ssize) + grow_amount)) {
3831 			PROC_UNLOCK(p);
3832 			return (KERN_NO_SPACE);
3833 		}
3834 		PROC_UNLOCK(p);
3835 	}
3836 #endif
3837 
3838 	grow_amount = roundup(grow_amount, sgrowsiz);
3839 	if (grow_amount > max_grow)
3840 		grow_amount = max_grow;
3841 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3842 		grow_amount = trunc_page((vm_size_t)stacklim) -
3843 		    ctob(vm->vm_ssize);
3844 	}
3845 
3846 #ifdef notyet
3847 	PROC_LOCK(p);
3848 	limit = racct_get_available(p, RACCT_STACK);
3849 	PROC_UNLOCK(p);
3850 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
3851 		grow_amount = limit - ctob(vm->vm_ssize);
3852 #endif
3853 
3854 	if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) {
3855 		if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
3856 			rv = KERN_NO_SPACE;
3857 			goto out;
3858 		}
3859 #ifdef RACCT
3860 		if (racct_enable) {
3861 			PROC_LOCK(p);
3862 			if (racct_set(p, RACCT_MEMLOCK,
3863 			    ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
3864 				PROC_UNLOCK(p);
3865 				rv = KERN_NO_SPACE;
3866 				goto out;
3867 			}
3868 			PROC_UNLOCK(p);
3869 		}
3870 #endif
3871 	}
3872 
3873 	/* If we would blow our VMEM resource limit, no go */
3874 	if (map->size + grow_amount > vmemlim) {
3875 		rv = KERN_NO_SPACE;
3876 		goto out;
3877 	}
3878 #ifdef RACCT
3879 	if (racct_enable) {
3880 		PROC_LOCK(p);
3881 		if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
3882 			PROC_UNLOCK(p);
3883 			rv = KERN_NO_SPACE;
3884 			goto out;
3885 		}
3886 		PROC_UNLOCK(p);
3887 	}
3888 #endif
3889 
3890 	if (vm_map_lock_upgrade(map)) {
3891 		gap_entry = NULL;
3892 		vm_map_lock_read(map);
3893 		goto retry;
3894 	}
3895 
3896 	if (grow_down) {
3897 		grow_start = gap_entry->end - grow_amount;
3898 		if (gap_entry->start + grow_amount == gap_entry->end) {
3899 			gap_start = gap_entry->start;
3900 			gap_end = gap_entry->end;
3901 			vm_map_entry_delete(map, gap_entry);
3902 			gap_deleted = true;
3903 		} else {
3904 			MPASS(gap_entry->start < gap_entry->end - grow_amount);
3905 			gap_entry->end -= grow_amount;
3906 			vm_map_entry_resize_free(map, gap_entry);
3907 			gap_deleted = false;
3908 		}
3909 		rv = vm_map_insert(map, NULL, 0, grow_start,
3910 		    grow_start + grow_amount,
3911 		    stack_entry->protection, stack_entry->max_protection,
3912 		    MAP_STACK_GROWS_DOWN);
3913 		if (rv != KERN_SUCCESS) {
3914 			if (gap_deleted) {
3915 				rv1 = vm_map_insert(map, NULL, 0, gap_start,
3916 				    gap_end, VM_PROT_NONE, VM_PROT_NONE,
3917 				    MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN);
3918 				MPASS(rv1 == KERN_SUCCESS);
3919 			} else {
3920 				gap_entry->end += grow_amount;
3921 				vm_map_entry_resize_free(map, gap_entry);
3922 			}
3923 		}
3924 	} else {
3925 		grow_start = stack_entry->end;
3926 		cred = stack_entry->cred;
3927 		if (cred == NULL && stack_entry->object.vm_object != NULL)
3928 			cred = stack_entry->object.vm_object->cred;
3929 		if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
3930 			rv = KERN_NO_SPACE;
3931 		/* Grow the underlying object if applicable. */
3932 		else if (stack_entry->object.vm_object == NULL ||
3933 		    vm_object_coalesce(stack_entry->object.vm_object,
3934 		    stack_entry->offset,
3935 		    (vm_size_t)(stack_entry->end - stack_entry->start),
3936 		    (vm_size_t)grow_amount, cred != NULL)) {
3937 			if (gap_entry->start + grow_amount == gap_entry->end)
3938 				vm_map_entry_delete(map, gap_entry);
3939 			else
3940 				gap_entry->start += grow_amount;
3941 			stack_entry->end += grow_amount;
3942 			map->size += grow_amount;
3943 			vm_map_entry_resize_free(map, stack_entry);
3944 			rv = KERN_SUCCESS;
3945 		} else
3946 			rv = KERN_FAILURE;
3947 	}
3948 	if (rv == KERN_SUCCESS && is_procstack)
3949 		vm->vm_ssize += btoc(grow_amount);
3950 
3951 	/*
3952 	 * Heed the MAP_WIREFUTURE flag if it was set for this process.
3953 	 */
3954 	if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) {
3955 		vm_map_unlock(map);
3956 		vm_map_wire(map, grow_start, grow_start + grow_amount,
3957 		    VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
3958 		vm_map_lock_read(map);
3959 	} else
3960 		vm_map_lock_downgrade(map);
3961 
3962 out:
3963 #ifdef RACCT
3964 	if (racct_enable && rv != KERN_SUCCESS) {
3965 		PROC_LOCK(p);
3966 		error = racct_set(p, RACCT_VMEM, map->size);
3967 		KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
3968 		if (!old_mlock) {
3969 			error = racct_set(p, RACCT_MEMLOCK,
3970 			    ptoa(pmap_wired_count(map->pmap)));
3971 			KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
3972 		}
3973 	    	error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
3974 		KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
3975 		PROC_UNLOCK(p);
3976 	}
3977 #endif
3978 
3979 	return (rv);
3980 }
3981 
3982 /*
3983  * Unshare the specified VM space for exec.  If other processes are
3984  * mapped to it, then create a new one.  The new vmspace is null.
3985  */
3986 int
3987 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
3988 {
3989 	struct vmspace *oldvmspace = p->p_vmspace;
3990 	struct vmspace *newvmspace;
3991 
3992 	KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
3993 	    ("vmspace_exec recursed"));
3994 	newvmspace = vmspace_alloc(minuser, maxuser, NULL);
3995 	if (newvmspace == NULL)
3996 		return (ENOMEM);
3997 	newvmspace->vm_swrss = oldvmspace->vm_swrss;
3998 	/*
3999 	 * This code is written like this for prototype purposes.  The
4000 	 * goal is to avoid running down the vmspace here, but let the
4001 	 * other process's that are still using the vmspace to finally
4002 	 * run it down.  Even though there is little or no chance of blocking
4003 	 * here, it is a good idea to keep this form for future mods.
4004 	 */
4005 	PROC_VMSPACE_LOCK(p);
4006 	p->p_vmspace = newvmspace;
4007 	PROC_VMSPACE_UNLOCK(p);
4008 	if (p == curthread->td_proc)
4009 		pmap_activate(curthread);
4010 	curthread->td_pflags |= TDP_EXECVMSPC;
4011 	return (0);
4012 }
4013 
4014 /*
4015  * Unshare the specified VM space for forcing COW.  This
4016  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
4017  */
4018 int
4019 vmspace_unshare(struct proc *p)
4020 {
4021 	struct vmspace *oldvmspace = p->p_vmspace;
4022 	struct vmspace *newvmspace;
4023 	vm_ooffset_t fork_charge;
4024 
4025 	if (oldvmspace->vm_refcnt == 1)
4026 		return (0);
4027 	fork_charge = 0;
4028 	newvmspace = vmspace_fork(oldvmspace, &fork_charge);
4029 	if (newvmspace == NULL)
4030 		return (ENOMEM);
4031 	if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
4032 		vmspace_free(newvmspace);
4033 		return (ENOMEM);
4034 	}
4035 	PROC_VMSPACE_LOCK(p);
4036 	p->p_vmspace = newvmspace;
4037 	PROC_VMSPACE_UNLOCK(p);
4038 	if (p == curthread->td_proc)
4039 		pmap_activate(curthread);
4040 	vmspace_free(oldvmspace);
4041 	return (0);
4042 }
4043 
4044 /*
4045  *	vm_map_lookup:
4046  *
4047  *	Finds the VM object, offset, and
4048  *	protection for a given virtual address in the
4049  *	specified map, assuming a page fault of the
4050  *	type specified.
4051  *
4052  *	Leaves the map in question locked for read; return
4053  *	values are guaranteed until a vm_map_lookup_done
4054  *	call is performed.  Note that the map argument
4055  *	is in/out; the returned map must be used in
4056  *	the call to vm_map_lookup_done.
4057  *
4058  *	A handle (out_entry) is returned for use in
4059  *	vm_map_lookup_done, to make that fast.
4060  *
4061  *	If a lookup is requested with "write protection"
4062  *	specified, the map may be changed to perform virtual
4063  *	copying operations, although the data referenced will
4064  *	remain the same.
4065  */
4066 int
4067 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
4068 	      vm_offset_t vaddr,
4069 	      vm_prot_t fault_typea,
4070 	      vm_map_entry_t *out_entry,	/* OUT */
4071 	      vm_object_t *object,		/* OUT */
4072 	      vm_pindex_t *pindex,		/* OUT */
4073 	      vm_prot_t *out_prot,		/* OUT */
4074 	      boolean_t *wired)			/* OUT */
4075 {
4076 	vm_map_entry_t entry;
4077 	vm_map_t map = *var_map;
4078 	vm_prot_t prot;
4079 	vm_prot_t fault_type = fault_typea;
4080 	vm_object_t eobject;
4081 	vm_size_t size;
4082 	struct ucred *cred;
4083 
4084 RetryLookup:
4085 
4086 	vm_map_lock_read(map);
4087 
4088 RetryLookupLocked:
4089 	/*
4090 	 * Lookup the faulting address.
4091 	 */
4092 	if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
4093 		vm_map_unlock_read(map);
4094 		return (KERN_INVALID_ADDRESS);
4095 	}
4096 
4097 	entry = *out_entry;
4098 
4099 	/*
4100 	 * Handle submaps.
4101 	 */
4102 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4103 		vm_map_t old_map = map;
4104 
4105 		*var_map = map = entry->object.sub_map;
4106 		vm_map_unlock_read(old_map);
4107 		goto RetryLookup;
4108 	}
4109 
4110 	/*
4111 	 * Check whether this task is allowed to have this page.
4112 	 */
4113 	prot = entry->protection;
4114 	if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) {
4115 		fault_typea &= ~VM_PROT_FAULT_LOOKUP;
4116 		if (prot == VM_PROT_NONE && map != kernel_map &&
4117 		    (entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4118 		    (entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
4119 		    MAP_ENTRY_STACK_GAP_UP)) != 0 &&
4120 		    vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS)
4121 			goto RetryLookupLocked;
4122 	}
4123 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4124 	if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
4125 		vm_map_unlock_read(map);
4126 		return (KERN_PROTECTION_FAILURE);
4127 	}
4128 	KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
4129 	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
4130 	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
4131 	    ("entry %p flags %x", entry, entry->eflags));
4132 	if ((fault_typea & VM_PROT_COPY) != 0 &&
4133 	    (entry->max_protection & VM_PROT_WRITE) == 0 &&
4134 	    (entry->eflags & MAP_ENTRY_COW) == 0) {
4135 		vm_map_unlock_read(map);
4136 		return (KERN_PROTECTION_FAILURE);
4137 	}
4138 
4139 	/*
4140 	 * If this page is not pageable, we have to get it for all possible
4141 	 * accesses.
4142 	 */
4143 	*wired = (entry->wired_count != 0);
4144 	if (*wired)
4145 		fault_type = entry->protection;
4146 	size = entry->end - entry->start;
4147 	/*
4148 	 * If the entry was copy-on-write, we either ...
4149 	 */
4150 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4151 		/*
4152 		 * If we want to write the page, we may as well handle that
4153 		 * now since we've got the map locked.
4154 		 *
4155 		 * If we don't need to write the page, we just demote the
4156 		 * permissions allowed.
4157 		 */
4158 		if ((fault_type & VM_PROT_WRITE) != 0 ||
4159 		    (fault_typea & VM_PROT_COPY) != 0) {
4160 			/*
4161 			 * Make a new object, and place it in the object
4162 			 * chain.  Note that no new references have appeared
4163 			 * -- one just moved from the map to the new
4164 			 * object.
4165 			 */
4166 			if (vm_map_lock_upgrade(map))
4167 				goto RetryLookup;
4168 
4169 			if (entry->cred == NULL) {
4170 				/*
4171 				 * The debugger owner is charged for
4172 				 * the memory.
4173 				 */
4174 				cred = curthread->td_ucred;
4175 				crhold(cred);
4176 				if (!swap_reserve_by_cred(size, cred)) {
4177 					crfree(cred);
4178 					vm_map_unlock(map);
4179 					return (KERN_RESOURCE_SHORTAGE);
4180 				}
4181 				entry->cred = cred;
4182 			}
4183 			vm_object_shadow(&entry->object.vm_object,
4184 			    &entry->offset, size);
4185 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4186 			eobject = entry->object.vm_object;
4187 			if (eobject->cred != NULL) {
4188 				/*
4189 				 * The object was not shadowed.
4190 				 */
4191 				swap_release_by_cred(size, entry->cred);
4192 				crfree(entry->cred);
4193 				entry->cred = NULL;
4194 			} else if (entry->cred != NULL) {
4195 				VM_OBJECT_WLOCK(eobject);
4196 				eobject->cred = entry->cred;
4197 				eobject->charge = size;
4198 				VM_OBJECT_WUNLOCK(eobject);
4199 				entry->cred = NULL;
4200 			}
4201 
4202 			vm_map_lock_downgrade(map);
4203 		} else {
4204 			/*
4205 			 * We're attempting to read a copy-on-write page --
4206 			 * don't allow writes.
4207 			 */
4208 			prot &= ~VM_PROT_WRITE;
4209 		}
4210 	}
4211 
4212 	/*
4213 	 * Create an object if necessary.
4214 	 */
4215 	if (entry->object.vm_object == NULL &&
4216 	    !map->system_map) {
4217 		if (vm_map_lock_upgrade(map))
4218 			goto RetryLookup;
4219 		entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
4220 		    atop(size));
4221 		entry->offset = 0;
4222 		if (entry->cred != NULL) {
4223 			VM_OBJECT_WLOCK(entry->object.vm_object);
4224 			entry->object.vm_object->cred = entry->cred;
4225 			entry->object.vm_object->charge = size;
4226 			VM_OBJECT_WUNLOCK(entry->object.vm_object);
4227 			entry->cred = NULL;
4228 		}
4229 		vm_map_lock_downgrade(map);
4230 	}
4231 
4232 	/*
4233 	 * Return the object/offset from this entry.  If the entry was
4234 	 * copy-on-write or empty, it has been fixed up.
4235 	 */
4236 	*pindex = UOFF_TO_IDX((vaddr - entry->start) + entry->offset);
4237 	*object = entry->object.vm_object;
4238 
4239 	*out_prot = prot;
4240 	return (KERN_SUCCESS);
4241 }
4242 
4243 /*
4244  *	vm_map_lookup_locked:
4245  *
4246  *	Lookup the faulting address.  A version of vm_map_lookup that returns
4247  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
4248  */
4249 int
4250 vm_map_lookup_locked(vm_map_t *var_map,		/* IN/OUT */
4251 		     vm_offset_t vaddr,
4252 		     vm_prot_t fault_typea,
4253 		     vm_map_entry_t *out_entry,	/* OUT */
4254 		     vm_object_t *object,	/* OUT */
4255 		     vm_pindex_t *pindex,	/* OUT */
4256 		     vm_prot_t *out_prot,	/* OUT */
4257 		     boolean_t *wired)		/* OUT */
4258 {
4259 	vm_map_entry_t entry;
4260 	vm_map_t map = *var_map;
4261 	vm_prot_t prot;
4262 	vm_prot_t fault_type = fault_typea;
4263 
4264 	/*
4265 	 * Lookup the faulting address.
4266 	 */
4267 	if (!vm_map_lookup_entry(map, vaddr, out_entry))
4268 		return (KERN_INVALID_ADDRESS);
4269 
4270 	entry = *out_entry;
4271 
4272 	/*
4273 	 * Fail if the entry refers to a submap.
4274 	 */
4275 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4276 		return (KERN_FAILURE);
4277 
4278 	/*
4279 	 * Check whether this task is allowed to have this page.
4280 	 */
4281 	prot = entry->protection;
4282 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4283 	if ((fault_type & prot) != fault_type)
4284 		return (KERN_PROTECTION_FAILURE);
4285 
4286 	/*
4287 	 * If this page is not pageable, we have to get it for all possible
4288 	 * accesses.
4289 	 */
4290 	*wired = (entry->wired_count != 0);
4291 	if (*wired)
4292 		fault_type = entry->protection;
4293 
4294 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4295 		/*
4296 		 * Fail if the entry was copy-on-write for a write fault.
4297 		 */
4298 		if (fault_type & VM_PROT_WRITE)
4299 			return (KERN_FAILURE);
4300 		/*
4301 		 * We're attempting to read a copy-on-write page --
4302 		 * don't allow writes.
4303 		 */
4304 		prot &= ~VM_PROT_WRITE;
4305 	}
4306 
4307 	/*
4308 	 * Fail if an object should be created.
4309 	 */
4310 	if (entry->object.vm_object == NULL && !map->system_map)
4311 		return (KERN_FAILURE);
4312 
4313 	/*
4314 	 * Return the object/offset from this entry.  If the entry was
4315 	 * copy-on-write or empty, it has been fixed up.
4316 	 */
4317 	*pindex = UOFF_TO_IDX((vaddr - entry->start) + entry->offset);
4318 	*object = entry->object.vm_object;
4319 
4320 	*out_prot = prot;
4321 	return (KERN_SUCCESS);
4322 }
4323 
4324 /*
4325  *	vm_map_lookup_done:
4326  *
4327  *	Releases locks acquired by a vm_map_lookup
4328  *	(according to the handle returned by that lookup).
4329  */
4330 void
4331 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
4332 {
4333 	/*
4334 	 * Unlock the main-level map
4335 	 */
4336 	vm_map_unlock_read(map);
4337 }
4338 
4339 #include "opt_ddb.h"
4340 #ifdef DDB
4341 #include <sys/kernel.h>
4342 
4343 #include <ddb/ddb.h>
4344 
4345 static void
4346 vm_map_print(vm_map_t map)
4347 {
4348 	vm_map_entry_t entry;
4349 
4350 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4351 	    (void *)map,
4352 	    (void *)map->pmap, map->nentries, map->timestamp);
4353 
4354 	db_indent += 2;
4355 	for (entry = map->header.next; entry != &map->header;
4356 	    entry = entry->next) {
4357 		db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n",
4358 		    (void *)entry, (void *)entry->start, (void *)entry->end,
4359 		    entry->eflags);
4360 		{
4361 			static char *inheritance_name[4] =
4362 			{"share", "copy", "none", "donate_copy"};
4363 
4364 			db_iprintf(" prot=%x/%x/%s",
4365 			    entry->protection,
4366 			    entry->max_protection,
4367 			    inheritance_name[(int)(unsigned char)entry->inheritance]);
4368 			if (entry->wired_count != 0)
4369 				db_printf(", wired");
4370 		}
4371 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4372 			db_printf(", share=%p, offset=0x%jx\n",
4373 			    (void *)entry->object.sub_map,
4374 			    (uintmax_t)entry->offset);
4375 			if ((entry->prev == &map->header) ||
4376 			    (entry->prev->object.sub_map !=
4377 				entry->object.sub_map)) {
4378 				db_indent += 2;
4379 				vm_map_print((vm_map_t)entry->object.sub_map);
4380 				db_indent -= 2;
4381 			}
4382 		} else {
4383 			if (entry->cred != NULL)
4384 				db_printf(", ruid %d", entry->cred->cr_ruid);
4385 			db_printf(", object=%p, offset=0x%jx",
4386 			    (void *)entry->object.vm_object,
4387 			    (uintmax_t)entry->offset);
4388 			if (entry->object.vm_object && entry->object.vm_object->cred)
4389 				db_printf(", obj ruid %d charge %jx",
4390 				    entry->object.vm_object->cred->cr_ruid,
4391 				    (uintmax_t)entry->object.vm_object->charge);
4392 			if (entry->eflags & MAP_ENTRY_COW)
4393 				db_printf(", copy (%s)",
4394 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4395 			db_printf("\n");
4396 
4397 			if ((entry->prev == &map->header) ||
4398 			    (entry->prev->object.vm_object !=
4399 				entry->object.vm_object)) {
4400 				db_indent += 2;
4401 				vm_object_print((db_expr_t)(intptr_t)
4402 						entry->object.vm_object,
4403 						0, 0, (char *)0);
4404 				db_indent -= 2;
4405 			}
4406 		}
4407 	}
4408 	db_indent -= 2;
4409 }
4410 
4411 DB_SHOW_COMMAND(map, map)
4412 {
4413 
4414 	if (!have_addr) {
4415 		db_printf("usage: show map <addr>\n");
4416 		return;
4417 	}
4418 	vm_map_print((vm_map_t)addr);
4419 }
4420 
4421 DB_SHOW_COMMAND(procvm, procvm)
4422 {
4423 	struct proc *p;
4424 
4425 	if (have_addr) {
4426 		p = db_lookup_proc(addr);
4427 	} else {
4428 		p = curproc;
4429 	}
4430 
4431 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4432 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4433 	    (void *)vmspace_pmap(p->p_vmspace));
4434 
4435 	vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
4436 }
4437 
4438 #endif /* DDB */
4439