1 /* 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by the University of 19 * California, Berkeley and its contributors. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 37 * 38 * 39 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 40 * All rights reserved. 41 * 42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 43 * 44 * Permission to use, copy, modify and distribute this software and 45 * its documentation is hereby granted, provided that both the copyright 46 * notice and this permission notice appear in all copies of the 47 * software, derivative works or modified versions, and any portions 48 * thereof, and that both notices appear in supporting documentation. 49 * 50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 53 * 54 * Carnegie Mellon requests users of this software to return to 55 * 56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 57 * School of Computer Science 58 * Carnegie Mellon University 59 * Pittsburgh PA 15213-3890 60 * 61 * any improvements or extensions that they make and grant Carnegie the 62 * rights to redistribute these changes. 63 * 64 * $Id: vm_map.c,v 1.108 1998/01/22 17:30:37 dyson Exp $ 65 */ 66 67 /* 68 * Virtual memory mapping module. 69 */ 70 71 #include <sys/param.h> 72 #include <sys/systm.h> 73 #include <sys/malloc.h> 74 #include <sys/proc.h> 75 #include <sys/vmmeter.h> 76 #include <sys/mman.h> 77 #include <sys/buf.h> 78 #include <sys/vnode.h> 79 80 #include <vm/vm.h> 81 #include <vm/vm_param.h> 82 #include <vm/vm_prot.h> 83 #include <vm/vm_inherit.h> 84 #include <sys/lock.h> 85 #include <vm/pmap.h> 86 #include <vm/vm_map.h> 87 #include <vm/vm_page.h> 88 #include <vm/vm_object.h> 89 #include <vm/vm_pageout.h> 90 #include <vm/vm_pager.h> 91 #include <vm/vm_kern.h> 92 #include <vm/vm_extern.h> 93 #include <vm/default_pager.h> 94 #include <vm/swap_pager.h> 95 #include <vm/vm_zone.h> 96 97 static MALLOC_DEFINE(M_VMMAP, "VM map", "VM map structures"); 98 99 /* 100 * Virtual memory maps provide for the mapping, protection, 101 * and sharing of virtual memory objects. In addition, 102 * this module provides for an efficient virtual copy of 103 * memory from one map to another. 104 * 105 * Synchronization is required prior to most operations. 106 * 107 * Maps consist of an ordered doubly-linked list of simple 108 * entries; a single hint is used to speed up lookups. 109 * 110 * In order to properly represent the sharing of virtual 111 * memory regions among maps, the map structure is bi-level. 112 * Top-level ("address") maps refer to regions of sharable 113 * virtual memory. These regions are implemented as 114 * ("sharing") maps, which then refer to the actual virtual 115 * memory objects. When two address maps "share" memory, 116 * their top-level maps both have references to the same 117 * sharing map. When memory is virtual-copied from one 118 * address map to another, the references in the sharing 119 * maps are actually copied -- no copying occurs at the 120 * virtual memory object level. 121 * 122 * Since portions of maps are specified by start/end addreses, 123 * which may not align with existing map entries, all 124 * routines merely "clip" entries to these start/end values. 125 * [That is, an entry is split into two, bordering at a 126 * start or end value.] Note that these clippings may not 127 * always be necessary (as the two resulting entries are then 128 * not changed); however, the clipping is done for convenience. 129 * No attempt is currently made to "glue back together" two 130 * abutting entries. 131 * 132 * As mentioned above, virtual copy operations are performed 133 * by copying VM object references from one sharing map to 134 * another, and then marking both regions as copy-on-write. 135 * It is important to note that only one writeable reference 136 * to a VM object region exists in any map -- this means that 137 * shadow object creation can be delayed until a write operation 138 * occurs. 139 */ 140 141 /* 142 * vm_map_startup: 143 * 144 * Initialize the vm_map module. Must be called before 145 * any other vm_map routines. 146 * 147 * Map and entry structures are allocated from the general 148 * purpose memory pool with some exceptions: 149 * 150 * - The kernel map and kmem submap are allocated statically. 151 * - Kernel map entries are allocated out of a static pool. 152 * 153 * These restrictions are necessary since malloc() uses the 154 * maps and requires map entries. 155 */ 156 157 extern char kstack[]; 158 extern int inmprotect; 159 160 static struct vm_zone kmapentzone_store, mapentzone_store, mapzone_store; 161 static vm_zone_t mapentzone, kmapentzone, mapzone, vmspace_zone; 162 static struct vm_object kmapentobj, mapentobj, mapobj; 163 #define MAP_ENTRY_INIT 128 164 struct vm_map_entry map_entry_init[MAX_MAPENT]; 165 struct vm_map_entry kmap_entry_init[MAX_KMAPENT]; 166 struct vm_map map_init[MAX_KMAP]; 167 168 static void _vm_map_clip_end __P((vm_map_t, vm_map_entry_t, vm_offset_t)); 169 static void _vm_map_clip_start __P((vm_map_t, vm_map_entry_t, vm_offset_t)); 170 static vm_map_entry_t vm_map_entry_create __P((vm_map_t)); 171 static void vm_map_entry_delete __P((vm_map_t, vm_map_entry_t)); 172 static void vm_map_entry_dispose __P((vm_map_t, vm_map_entry_t)); 173 static void vm_map_entry_unwire __P((vm_map_t, vm_map_entry_t)); 174 static void vm_map_copy_entry __P((vm_map_t, vm_map_t, vm_map_entry_t, 175 vm_map_entry_t)); 176 static vm_page_t vm_freeze_page_alloc __P((vm_object_t, vm_pindex_t)); 177 178 void 179 vm_map_startup() 180 { 181 mapzone = &mapzone_store; 182 zbootinit(mapzone, "MAP", sizeof (struct vm_map), 183 map_init, MAX_KMAP); 184 kmapentzone = &kmapentzone_store; 185 zbootinit(kmapentzone, "KMAP ENTRY", sizeof (struct vm_map_entry), 186 kmap_entry_init, MAX_KMAPENT); 187 mapentzone = &mapentzone_store; 188 zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry), 189 map_entry_init, MAX_MAPENT); 190 } 191 192 /* 193 * Allocate a vmspace structure, including a vm_map and pmap, 194 * and initialize those structures. The refcnt is set to 1. 195 * The remaining fields must be initialized by the caller. 196 */ 197 struct vmspace * 198 vmspace_alloc(min, max) 199 vm_offset_t min, max; 200 { 201 register struct vmspace *vm; 202 203 vm = zalloc(vmspace_zone); 204 bzero(&vm->vm_map, sizeof vm->vm_map); 205 vm_map_init(&vm->vm_map, min, max); 206 pmap_pinit(&vm->vm_pmap); 207 vm->vm_map.pmap = &vm->vm_pmap; /* XXX */ 208 vm->vm_refcnt = 1; 209 vm->vm_shm = NULL; 210 return (vm); 211 } 212 213 void 214 vm_init2(void) { 215 zinitna(kmapentzone, &kmapentobj, 216 NULL, 0, cnt.v_page_count / 4, ZONE_INTERRUPT, 1); 217 zinitna(mapentzone, &mapentobj, 218 NULL, 0, 0, 0, 1); 219 zinitna(mapzone, &mapobj, 220 NULL, 0, 0, 0, 1); 221 vmspace_zone = zinit("VMSPACE", sizeof (struct vmspace), 0, 0, 3); 222 pmap_init2(); 223 vm_object_init2(); 224 } 225 226 void 227 vmspace_free(vm) 228 register struct vmspace *vm; 229 { 230 231 if (vm->vm_refcnt == 0) 232 panic("vmspace_free: attempt to free already freed vmspace"); 233 234 if (--vm->vm_refcnt == 0) { 235 236 /* 237 * Lock the map, to wait out all other references to it. 238 * Delete all of the mappings and pages they hold, then call 239 * the pmap module to reclaim anything left. 240 */ 241 vm_map_lock(&vm->vm_map); 242 (void) vm_map_delete(&vm->vm_map, vm->vm_map.min_offset, 243 vm->vm_map.max_offset); 244 vm_map_unlock(&vm->vm_map); 245 246 pmap_release(&vm->vm_pmap); 247 zfree(vmspace_zone, vm); 248 } 249 } 250 251 /* 252 * vm_map_create: 253 * 254 * Creates and returns a new empty VM map with 255 * the given physical map structure, and having 256 * the given lower and upper address bounds. 257 */ 258 vm_map_t 259 vm_map_create(pmap, min, max) 260 pmap_t pmap; 261 vm_offset_t min, max; 262 { 263 register vm_map_t result; 264 265 result = zalloc(mapzone); 266 vm_map_init(result, min, max); 267 result->pmap = pmap; 268 return (result); 269 } 270 271 /* 272 * Initialize an existing vm_map structure 273 * such as that in the vmspace structure. 274 * The pmap is set elsewhere. 275 */ 276 void 277 vm_map_init(map, min, max) 278 register struct vm_map *map; 279 vm_offset_t min, max; 280 { 281 map->header.next = map->header.prev = &map->header; 282 map->nentries = 0; 283 map->size = 0; 284 map->is_main_map = TRUE; 285 map->system_map = 0; 286 map->min_offset = min; 287 map->max_offset = max; 288 map->first_free = &map->header; 289 map->hint = &map->header; 290 map->timestamp = 0; 291 lockinit(&map->lock, PVM, "thrd_sleep", 0, 0); 292 } 293 294 /* 295 * vm_map_entry_dispose: [ internal use only ] 296 * 297 * Inverse of vm_map_entry_create. 298 */ 299 static void 300 vm_map_entry_dispose(map, entry) 301 vm_map_t map; 302 vm_map_entry_t entry; 303 { 304 zfree((map->system_map || !mapentzone) ? kmapentzone : mapentzone, entry); 305 } 306 307 /* 308 * vm_map_entry_create: [ internal use only ] 309 * 310 * Allocates a VM map entry for insertion. 311 * No entry fields are filled in. This routine is 312 */ 313 static vm_map_entry_t 314 vm_map_entry_create(map) 315 vm_map_t map; 316 { 317 return zalloc((map->system_map || !mapentzone) ? kmapentzone : mapentzone); 318 } 319 320 /* 321 * vm_map_entry_{un,}link: 322 * 323 * Insert/remove entries from maps. 324 */ 325 #define vm_map_entry_link(map, after_where, entry) \ 326 { \ 327 (map)->nentries++; \ 328 (map)->timestamp++; \ 329 (entry)->prev = (after_where); \ 330 (entry)->next = (after_where)->next; \ 331 (entry)->prev->next = (entry); \ 332 (entry)->next->prev = (entry); \ 333 } 334 #define vm_map_entry_unlink(map, entry) \ 335 { \ 336 (map)->nentries--; \ 337 (map)->timestamp++; \ 338 (entry)->next->prev = (entry)->prev; \ 339 (entry)->prev->next = (entry)->next; \ 340 } 341 342 /* 343 * SAVE_HINT: 344 * 345 * Saves the specified entry as the hint for 346 * future lookups. 347 */ 348 #define SAVE_HINT(map,value) \ 349 (map)->hint = (value); 350 351 /* 352 * vm_map_lookup_entry: [ internal use only ] 353 * 354 * Finds the map entry containing (or 355 * immediately preceding) the specified address 356 * in the given map; the entry is returned 357 * in the "entry" parameter. The boolean 358 * result indicates whether the address is 359 * actually contained in the map. 360 */ 361 boolean_t 362 vm_map_lookup_entry(map, address, entry) 363 register vm_map_t map; 364 register vm_offset_t address; 365 vm_map_entry_t *entry; /* OUT */ 366 { 367 register vm_map_entry_t cur; 368 register vm_map_entry_t last; 369 370 /* 371 * Start looking either from the head of the list, or from the hint. 372 */ 373 374 cur = map->hint; 375 376 if (cur == &map->header) 377 cur = cur->next; 378 379 if (address >= cur->start) { 380 /* 381 * Go from hint to end of list. 382 * 383 * But first, make a quick check to see if we are already looking 384 * at the entry we want (which is usually the case). Note also 385 * that we don't need to save the hint here... it is the same 386 * hint (unless we are at the header, in which case the hint 387 * didn't buy us anything anyway). 388 */ 389 last = &map->header; 390 if ((cur != last) && (cur->end > address)) { 391 *entry = cur; 392 return (TRUE); 393 } 394 } else { 395 /* 396 * Go from start to hint, *inclusively* 397 */ 398 last = cur->next; 399 cur = map->header.next; 400 } 401 402 /* 403 * Search linearly 404 */ 405 406 while (cur != last) { 407 if (cur->end > address) { 408 if (address >= cur->start) { 409 /* 410 * Save this lookup for future hints, and 411 * return 412 */ 413 414 *entry = cur; 415 SAVE_HINT(map, cur); 416 return (TRUE); 417 } 418 break; 419 } 420 cur = cur->next; 421 } 422 *entry = cur->prev; 423 SAVE_HINT(map, *entry); 424 return (FALSE); 425 } 426 427 /* 428 * vm_map_insert: 429 * 430 * Inserts the given whole VM object into the target 431 * map at the specified address range. The object's 432 * size should match that of the address range. 433 * 434 * Requires that the map be locked, and leaves it so. 435 */ 436 int 437 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 438 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, 439 int cow) 440 { 441 register vm_map_entry_t new_entry; 442 register vm_map_entry_t prev_entry; 443 vm_map_entry_t temp_entry; 444 vm_object_t prev_object; 445 u_char protoeflags; 446 447 if ((object != NULL) && (cow & MAP_NOFAULT)) { 448 panic("vm_map_insert: paradoxical MAP_NOFAULT request"); 449 } 450 451 /* 452 * Check that the start and end points are not bogus. 453 */ 454 455 if ((start < map->min_offset) || (end > map->max_offset) || 456 (start >= end)) 457 return (KERN_INVALID_ADDRESS); 458 459 /* 460 * Find the entry prior to the proposed starting address; if it's part 461 * of an existing entry, this range is bogus. 462 */ 463 464 if (vm_map_lookup_entry(map, start, &temp_entry)) 465 return (KERN_NO_SPACE); 466 467 prev_entry = temp_entry; 468 469 /* 470 * Assert that the next entry doesn't overlap the end point. 471 */ 472 473 if ((prev_entry->next != &map->header) && 474 (prev_entry->next->start < end)) 475 return (KERN_NO_SPACE); 476 477 protoeflags = 0; 478 if (cow & MAP_COPY_NEEDED) 479 protoeflags |= MAP_ENTRY_NEEDS_COPY; 480 481 if (cow & MAP_COPY_ON_WRITE) 482 protoeflags |= MAP_ENTRY_COW; 483 484 if (cow & MAP_NOFAULT) 485 protoeflags |= MAP_ENTRY_NOFAULT; 486 487 /* 488 * See if we can avoid creating a new entry by extending one of our 489 * neighbors. Or at least extend the object. 490 */ 491 492 if ((object == NULL) && 493 (prev_entry != &map->header) && 494 (( prev_entry->eflags & (MAP_ENTRY_IS_A_MAP | MAP_ENTRY_IS_SUB_MAP)) == 0) && 495 ((prev_entry->object.vm_object == NULL) || 496 (prev_entry->object.vm_object->type == OBJT_DEFAULT)) && 497 (prev_entry->end == start) && 498 (prev_entry->wired_count == 0)) { 499 500 501 if ((protoeflags == prev_entry->eflags) && 502 ((cow & MAP_NOFAULT) || 503 vm_object_coalesce(prev_entry->object.vm_object, 504 OFF_TO_IDX(prev_entry->offset), 505 (vm_size_t) (prev_entry->end - prev_entry->start), 506 (vm_size_t) (end - prev_entry->end)))) { 507 508 /* 509 * Coalesced the two objects. Can we extend the 510 * previous map entry to include the new range? 511 */ 512 if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) && 513 (prev_entry->protection == prot) && 514 (prev_entry->max_protection == max)) { 515 516 map->size += (end - prev_entry->end); 517 prev_entry->end = end; 518 if ((cow & MAP_NOFAULT) == 0) { 519 prev_object = prev_entry->object.vm_object; 520 default_pager_convert_to_swapq(prev_object); 521 } 522 return (KERN_SUCCESS); 523 } 524 else { 525 object = prev_entry->object.vm_object; 526 offset = prev_entry->offset + (prev_entry->end - 527 prev_entry->start); 528 529 vm_object_reference(object); 530 } 531 } 532 } 533 534 /* 535 * Create a new entry 536 */ 537 538 new_entry = vm_map_entry_create(map); 539 new_entry->start = start; 540 new_entry->end = end; 541 542 new_entry->eflags = protoeflags; 543 new_entry->object.vm_object = object; 544 new_entry->offset = offset; 545 546 if (map->is_main_map) { 547 new_entry->inheritance = VM_INHERIT_DEFAULT; 548 new_entry->protection = prot; 549 new_entry->max_protection = max; 550 new_entry->wired_count = 0; 551 } 552 /* 553 * Insert the new entry into the list 554 */ 555 556 vm_map_entry_link(map, prev_entry, new_entry); 557 map->size += new_entry->end - new_entry->start; 558 559 /* 560 * Update the free space hint 561 */ 562 if ((map->first_free == prev_entry) && 563 (prev_entry->end >= new_entry->start)) 564 map->first_free = new_entry; 565 566 default_pager_convert_to_swapq(object); 567 return (KERN_SUCCESS); 568 } 569 570 /* 571 * Find sufficient space for `length' bytes in the given map, starting at 572 * `start'. The map must be locked. Returns 0 on success, 1 on no space. 573 */ 574 int 575 vm_map_findspace(map, start, length, addr) 576 register vm_map_t map; 577 register vm_offset_t start; 578 vm_size_t length; 579 vm_offset_t *addr; 580 { 581 register vm_map_entry_t entry, next; 582 register vm_offset_t end; 583 584 if (start < map->min_offset) 585 start = map->min_offset; 586 if (start > map->max_offset) 587 return (1); 588 589 /* 590 * Look for the first possible address; if there's already something 591 * at this address, we have to start after it. 592 */ 593 if (start == map->min_offset) { 594 if ((entry = map->first_free) != &map->header) 595 start = entry->end; 596 } else { 597 vm_map_entry_t tmp; 598 599 if (vm_map_lookup_entry(map, start, &tmp)) 600 start = tmp->end; 601 entry = tmp; 602 } 603 604 /* 605 * Look through the rest of the map, trying to fit a new region in the 606 * gap between existing regions, or after the very last region. 607 */ 608 for (;; start = (entry = next)->end) { 609 /* 610 * Find the end of the proposed new region. Be sure we didn't 611 * go beyond the end of the map, or wrap around the address; 612 * if so, we lose. Otherwise, if this is the last entry, or 613 * if the proposed new region fits before the next entry, we 614 * win. 615 */ 616 end = start + length; 617 if (end > map->max_offset || end < start) 618 return (1); 619 next = entry->next; 620 if (next == &map->header || next->start >= end) 621 break; 622 } 623 SAVE_HINT(map, entry); 624 *addr = start; 625 if (map == kernel_map) { 626 vm_offset_t ksize; 627 if ((ksize = round_page(start + length)) > kernel_vm_end) { 628 pmap_growkernel(ksize); 629 } 630 } 631 return (0); 632 } 633 634 /* 635 * vm_map_find finds an unallocated region in the target address 636 * map with the given length. The search is defined to be 637 * first-fit from the specified address; the region found is 638 * returned in the same parameter. 639 * 640 */ 641 int 642 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 643 vm_offset_t *addr, /* IN/OUT */ 644 vm_size_t length, boolean_t find_space, vm_prot_t prot, 645 vm_prot_t max, int cow) 646 { 647 register vm_offset_t start; 648 int result, s = 0; 649 650 start = *addr; 651 652 if (map == kmem_map || map == mb_map) 653 s = splvm(); 654 655 vm_map_lock(map); 656 if (find_space) { 657 if (vm_map_findspace(map, start, length, addr)) { 658 vm_map_unlock(map); 659 if (map == kmem_map || map == mb_map) 660 splx(s); 661 return (KERN_NO_SPACE); 662 } 663 start = *addr; 664 } 665 result = vm_map_insert(map, object, offset, 666 start, start + length, prot, max, cow); 667 vm_map_unlock(map); 668 669 if (map == kmem_map || map == mb_map) 670 splx(s); 671 672 return (result); 673 } 674 675 /* 676 * vm_map_simplify_entry: 677 * 678 * Simplify the given map entry by merging with either neighbor. 679 */ 680 void 681 vm_map_simplify_entry(map, entry) 682 vm_map_t map; 683 vm_map_entry_t entry; 684 { 685 vm_map_entry_t next, prev; 686 vm_size_t prevsize, esize; 687 688 if (entry->eflags & (MAP_ENTRY_IS_SUB_MAP|MAP_ENTRY_IS_A_MAP)) 689 return; 690 691 prev = entry->prev; 692 if (prev != &map->header) { 693 prevsize = prev->end - prev->start; 694 if ( (prev->end == entry->start) && 695 (prev->object.vm_object == entry->object.vm_object) && 696 (!prev->object.vm_object || 697 (prev->object.vm_object->behavior == entry->object.vm_object->behavior)) && 698 (!prev->object.vm_object || 699 (prev->offset + prevsize == entry->offset)) && 700 (prev->eflags == entry->eflags) && 701 (prev->protection == entry->protection) && 702 (prev->max_protection == entry->max_protection) && 703 (prev->inheritance == entry->inheritance) && 704 (prev->wired_count == entry->wired_count)) { 705 if (map->first_free == prev) 706 map->first_free = entry; 707 if (map->hint == prev) 708 map->hint = entry; 709 vm_map_entry_unlink(map, prev); 710 entry->start = prev->start; 711 entry->offset = prev->offset; 712 if (prev->object.vm_object) 713 vm_object_deallocate(prev->object.vm_object); 714 vm_map_entry_dispose(map, prev); 715 } 716 } 717 718 next = entry->next; 719 if (next != &map->header) { 720 esize = entry->end - entry->start; 721 if ((entry->end == next->start) && 722 (next->object.vm_object == entry->object.vm_object) && 723 (!next->object.vm_object || 724 (next->object.vm_object->behavior == entry->object.vm_object->behavior)) && 725 (!entry->object.vm_object || 726 (entry->offset + esize == next->offset)) && 727 (next->eflags == entry->eflags) && 728 (next->protection == entry->protection) && 729 (next->max_protection == entry->max_protection) && 730 (next->inheritance == entry->inheritance) && 731 (next->wired_count == entry->wired_count)) { 732 if (map->first_free == next) 733 map->first_free = entry; 734 if (map->hint == next) 735 map->hint = entry; 736 vm_map_entry_unlink(map, next); 737 entry->end = next->end; 738 if (next->object.vm_object) 739 vm_object_deallocate(next->object.vm_object); 740 vm_map_entry_dispose(map, next); 741 } 742 } 743 } 744 /* 745 * vm_map_clip_start: [ internal use only ] 746 * 747 * Asserts that the given entry begins at or after 748 * the specified address; if necessary, 749 * it splits the entry into two. 750 */ 751 #define vm_map_clip_start(map, entry, startaddr) \ 752 { \ 753 if (startaddr > entry->start) \ 754 _vm_map_clip_start(map, entry, startaddr); \ 755 } 756 757 /* 758 * This routine is called only when it is known that 759 * the entry must be split. 760 */ 761 static void 762 _vm_map_clip_start(map, entry, start) 763 register vm_map_t map; 764 register vm_map_entry_t entry; 765 register vm_offset_t start; 766 { 767 register vm_map_entry_t new_entry; 768 769 /* 770 * Split off the front portion -- note that we must insert the new 771 * entry BEFORE this one, so that this entry has the specified 772 * starting address. 773 */ 774 775 vm_map_simplify_entry(map, entry); 776 777 /* 778 * If there is no object backing this entry, we might as well create 779 * one now. If we defer it, an object can get created after the map 780 * is clipped, and individual objects will be created for the split-up 781 * map. This is a bit of a hack, but is also about the best place to 782 * put this improvement. 783 */ 784 785 if (entry->object.vm_object == NULL) { 786 vm_object_t object; 787 788 object = vm_object_allocate(OBJT_DEFAULT, 789 atop(entry->end - entry->start)); 790 entry->object.vm_object = object; 791 entry->offset = 0; 792 } 793 794 new_entry = vm_map_entry_create(map); 795 *new_entry = *entry; 796 797 new_entry->end = start; 798 entry->offset += (start - entry->start); 799 entry->start = start; 800 801 vm_map_entry_link(map, entry->prev, new_entry); 802 803 if ((entry->eflags & (MAP_ENTRY_IS_A_MAP|MAP_ENTRY_IS_SUB_MAP)) == 0) 804 vm_object_reference(new_entry->object.vm_object); 805 } 806 807 /* 808 * vm_map_clip_end: [ internal use only ] 809 * 810 * Asserts that the given entry ends at or before 811 * the specified address; if necessary, 812 * it splits the entry into two. 813 */ 814 815 #define vm_map_clip_end(map, entry, endaddr) \ 816 { \ 817 if (endaddr < entry->end) \ 818 _vm_map_clip_end(map, entry, endaddr); \ 819 } 820 821 /* 822 * This routine is called only when it is known that 823 * the entry must be split. 824 */ 825 static void 826 _vm_map_clip_end(map, entry, end) 827 register vm_map_t map; 828 register vm_map_entry_t entry; 829 register vm_offset_t end; 830 { 831 register vm_map_entry_t new_entry; 832 833 /* 834 * If there is no object backing this entry, we might as well create 835 * one now. If we defer it, an object can get created after the map 836 * is clipped, and individual objects will be created for the split-up 837 * map. This is a bit of a hack, but is also about the best place to 838 * put this improvement. 839 */ 840 841 if (entry->object.vm_object == NULL) { 842 vm_object_t object; 843 844 object = vm_object_allocate(OBJT_DEFAULT, 845 atop(entry->end - entry->start)); 846 entry->object.vm_object = object; 847 entry->offset = 0; 848 } 849 850 /* 851 * Create a new entry and insert it AFTER the specified entry 852 */ 853 854 new_entry = vm_map_entry_create(map); 855 *new_entry = *entry; 856 857 new_entry->start = entry->end = end; 858 new_entry->offset += (end - entry->start); 859 860 vm_map_entry_link(map, entry, new_entry); 861 862 if ((entry->eflags & (MAP_ENTRY_IS_A_MAP|MAP_ENTRY_IS_SUB_MAP)) == 0) 863 vm_object_reference(new_entry->object.vm_object); 864 } 865 866 /* 867 * VM_MAP_RANGE_CHECK: [ internal use only ] 868 * 869 * Asserts that the starting and ending region 870 * addresses fall within the valid range of the map. 871 */ 872 #define VM_MAP_RANGE_CHECK(map, start, end) \ 873 { \ 874 if (start < vm_map_min(map)) \ 875 start = vm_map_min(map); \ 876 if (end > vm_map_max(map)) \ 877 end = vm_map_max(map); \ 878 if (start > end) \ 879 start = end; \ 880 } 881 882 /* 883 * vm_map_submap: [ kernel use only ] 884 * 885 * Mark the given range as handled by a subordinate map. 886 * 887 * This range must have been created with vm_map_find, 888 * and no other operations may have been performed on this 889 * range prior to calling vm_map_submap. 890 * 891 * Only a limited number of operations can be performed 892 * within this rage after calling vm_map_submap: 893 * vm_fault 894 * [Don't try vm_map_copy!] 895 * 896 * To remove a submapping, one must first remove the 897 * range from the superior map, and then destroy the 898 * submap (if desired). [Better yet, don't try it.] 899 */ 900 int 901 vm_map_submap(map, start, end, submap) 902 register vm_map_t map; 903 register vm_offset_t start; 904 register vm_offset_t end; 905 vm_map_t submap; 906 { 907 vm_map_entry_t entry; 908 register int result = KERN_INVALID_ARGUMENT; 909 910 vm_map_lock(map); 911 912 VM_MAP_RANGE_CHECK(map, start, end); 913 914 if (vm_map_lookup_entry(map, start, &entry)) { 915 vm_map_clip_start(map, entry, start); 916 } else 917 entry = entry->next; 918 919 vm_map_clip_end(map, entry, end); 920 921 if ((entry->start == start) && (entry->end == end) && 922 ((entry->eflags & (MAP_ENTRY_IS_A_MAP|MAP_ENTRY_COW)) == 0) && 923 (entry->object.vm_object == NULL)) { 924 entry->object.sub_map = submap; 925 entry->eflags |= MAP_ENTRY_IS_SUB_MAP; 926 result = KERN_SUCCESS; 927 } 928 vm_map_unlock(map); 929 930 return (result); 931 } 932 933 /* 934 * vm_map_protect: 935 * 936 * Sets the protection of the specified address 937 * region in the target map. If "set_max" is 938 * specified, the maximum protection is to be set; 939 * otherwise, only the current protection is affected. 940 */ 941 int 942 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 943 vm_prot_t new_prot, boolean_t set_max) 944 { 945 register vm_map_entry_t current; 946 vm_map_entry_t entry; 947 948 vm_map_lock(map); 949 950 VM_MAP_RANGE_CHECK(map, start, end); 951 952 if (vm_map_lookup_entry(map, start, &entry)) { 953 vm_map_clip_start(map, entry, start); 954 } else { 955 entry = entry->next; 956 } 957 958 /* 959 * Make a first pass to check for protection violations. 960 */ 961 962 current = entry; 963 while ((current != &map->header) && (current->start < end)) { 964 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 965 vm_map_unlock(map); 966 return (KERN_INVALID_ARGUMENT); 967 } 968 if ((new_prot & current->max_protection) != new_prot) { 969 vm_map_unlock(map); 970 return (KERN_PROTECTION_FAILURE); 971 } 972 current = current->next; 973 } 974 975 /* 976 * Go back and fix up protections. [Note that clipping is not 977 * necessary the second time.] 978 */ 979 980 current = entry; 981 982 while ((current != &map->header) && (current->start < end)) { 983 vm_prot_t old_prot; 984 985 vm_map_clip_end(map, current, end); 986 987 old_prot = current->protection; 988 if (set_max) 989 current->protection = 990 (current->max_protection = new_prot) & 991 old_prot; 992 else 993 current->protection = new_prot; 994 995 /* 996 * Update physical map if necessary. Worry about copy-on-write 997 * here -- CHECK THIS XXX 998 */ 999 1000 if (current->protection != old_prot) { 1001 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 1002 VM_PROT_ALL) 1003 1004 if (current->eflags & MAP_ENTRY_IS_A_MAP) { 1005 vm_map_entry_t share_entry; 1006 vm_offset_t share_end; 1007 1008 vm_map_lock(current->object.share_map); 1009 (void) vm_map_lookup_entry( 1010 current->object.share_map, 1011 current->offset, 1012 &share_entry); 1013 share_end = current->offset + 1014 (current->end - current->start); 1015 while ((share_entry != 1016 ¤t->object.share_map->header) && 1017 (share_entry->start < share_end)) { 1018 1019 pmap_protect(map->pmap, 1020 (qmax(share_entry->start, 1021 current->offset) - 1022 current->offset + 1023 current->start), 1024 min(share_entry->end, 1025 share_end) - 1026 current->offset + 1027 current->start, 1028 current->protection & 1029 MASK(share_entry)); 1030 1031 share_entry = share_entry->next; 1032 } 1033 vm_map_unlock(current->object.share_map); 1034 } else 1035 pmap_protect(map->pmap, current->start, 1036 current->end, 1037 current->protection & MASK(entry)); 1038 #undef MASK 1039 } 1040 1041 vm_map_simplify_entry(map, current); 1042 1043 current = current->next; 1044 } 1045 1046 map->timestamp++; 1047 vm_map_unlock(map); 1048 return (KERN_SUCCESS); 1049 } 1050 1051 /* 1052 * vm_map_madvise: 1053 * 1054 * This routine traverses a processes map handling the madvise 1055 * system call. 1056 */ 1057 void 1058 vm_map_madvise(map, pmap, start, end, advise) 1059 vm_map_t map; 1060 pmap_t pmap; 1061 vm_offset_t start, end; 1062 int advise; 1063 { 1064 register vm_map_entry_t current; 1065 vm_map_entry_t entry; 1066 1067 vm_map_lock(map); 1068 1069 VM_MAP_RANGE_CHECK(map, start, end); 1070 1071 if (vm_map_lookup_entry(map, start, &entry)) { 1072 vm_map_clip_start(map, entry, start); 1073 } else 1074 entry = entry->next; 1075 1076 for(current = entry; 1077 (current != &map->header) && (current->start < end); 1078 current = current->next) { 1079 vm_size_t size; 1080 1081 if (current->eflags & (MAP_ENTRY_IS_A_MAP|MAP_ENTRY_IS_SUB_MAP)) { 1082 continue; 1083 } 1084 1085 vm_map_clip_end(map, current, end); 1086 size = current->end - current->start; 1087 1088 /* 1089 * Create an object if needed 1090 */ 1091 if (current->object.vm_object == NULL) { 1092 vm_object_t object; 1093 if ((advise == MADV_FREE) || (advise == MADV_DONTNEED)) 1094 continue; 1095 object = vm_object_allocate(OBJT_DEFAULT, OFF_TO_IDX(size)); 1096 current->object.vm_object = object; 1097 current->offset = 0; 1098 } 1099 1100 switch (advise) { 1101 case MADV_NORMAL: 1102 current->object.vm_object->behavior = OBJ_NORMAL; 1103 break; 1104 case MADV_SEQUENTIAL: 1105 current->object.vm_object->behavior = OBJ_SEQUENTIAL; 1106 break; 1107 case MADV_RANDOM: 1108 current->object.vm_object->behavior = OBJ_RANDOM; 1109 break; 1110 /* 1111 * Right now, we could handle DONTNEED and WILLNEED with common code. 1112 * They are mostly the same, except for the potential async reads (NYI). 1113 */ 1114 case MADV_FREE: 1115 case MADV_DONTNEED: 1116 { 1117 vm_pindex_t pindex; 1118 int count; 1119 pindex = OFF_TO_IDX(current->offset); 1120 count = OFF_TO_IDX(size); 1121 /* 1122 * MADV_DONTNEED removes the page from all 1123 * pmaps, so pmap_remove is not necessary. 1124 */ 1125 vm_object_madvise(current->object.vm_object, 1126 pindex, count, advise); 1127 } 1128 break; 1129 1130 case MADV_WILLNEED: 1131 { 1132 vm_pindex_t pindex; 1133 int count; 1134 pindex = OFF_TO_IDX(current->offset); 1135 count = OFF_TO_IDX(size); 1136 vm_object_madvise(current->object.vm_object, 1137 pindex, count, advise); 1138 pmap_object_init_pt(pmap, current->start, 1139 current->object.vm_object, pindex, 1140 (count << PAGE_SHIFT), 0); 1141 } 1142 break; 1143 1144 default: 1145 break; 1146 } 1147 } 1148 1149 map->timestamp++; 1150 vm_map_simplify_entry(map, entry); 1151 vm_map_unlock(map); 1152 return; 1153 } 1154 1155 1156 /* 1157 * vm_map_inherit: 1158 * 1159 * Sets the inheritance of the specified address 1160 * range in the target map. Inheritance 1161 * affects how the map will be shared with 1162 * child maps at the time of vm_map_fork. 1163 */ 1164 int 1165 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 1166 vm_inherit_t new_inheritance) 1167 { 1168 register vm_map_entry_t entry; 1169 vm_map_entry_t temp_entry; 1170 1171 switch (new_inheritance) { 1172 case VM_INHERIT_NONE: 1173 case VM_INHERIT_COPY: 1174 case VM_INHERIT_SHARE: 1175 break; 1176 default: 1177 return (KERN_INVALID_ARGUMENT); 1178 } 1179 1180 vm_map_lock(map); 1181 1182 VM_MAP_RANGE_CHECK(map, start, end); 1183 1184 if (vm_map_lookup_entry(map, start, &temp_entry)) { 1185 entry = temp_entry; 1186 vm_map_clip_start(map, entry, start); 1187 } else 1188 entry = temp_entry->next; 1189 1190 while ((entry != &map->header) && (entry->start < end)) { 1191 vm_map_clip_end(map, entry, end); 1192 1193 entry->inheritance = new_inheritance; 1194 1195 entry = entry->next; 1196 } 1197 1198 vm_map_simplify_entry(map, temp_entry); 1199 map->timestamp++; 1200 vm_map_unlock(map); 1201 return (KERN_SUCCESS); 1202 } 1203 1204 /* 1205 * Implement the semantics of mlock 1206 */ 1207 int 1208 vm_map_user_pageable(map, start, end, new_pageable) 1209 register vm_map_t map; 1210 register vm_offset_t start; 1211 register vm_offset_t end; 1212 register boolean_t new_pageable; 1213 { 1214 vm_map_entry_t entry; 1215 vm_map_entry_t start_entry; 1216 vm_offset_t estart; 1217 int rv; 1218 1219 vm_map_lock(map); 1220 VM_MAP_RANGE_CHECK(map, start, end); 1221 1222 if (vm_map_lookup_entry(map, start, &start_entry) == FALSE) { 1223 vm_map_unlock(map); 1224 return (KERN_INVALID_ADDRESS); 1225 } 1226 1227 if (new_pageable) { 1228 1229 entry = start_entry; 1230 vm_map_clip_start(map, entry, start); 1231 1232 /* 1233 * Now decrement the wiring count for each region. If a region 1234 * becomes completely unwired, unwire its physical pages and 1235 * mappings. 1236 */ 1237 vm_map_set_recursive(map); 1238 1239 entry = start_entry; 1240 while ((entry != &map->header) && (entry->start < end)) { 1241 if (entry->eflags & MAP_ENTRY_USER_WIRED) { 1242 vm_map_clip_end(map, entry, end); 1243 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 1244 entry->wired_count--; 1245 if (entry->wired_count == 0) 1246 vm_fault_unwire(map, entry->start, entry->end); 1247 } 1248 vm_map_simplify_entry(map,entry); 1249 entry = entry->next; 1250 } 1251 vm_map_clear_recursive(map); 1252 } else { 1253 1254 entry = start_entry; 1255 1256 while ((entry != &map->header) && (entry->start < end)) { 1257 1258 if (entry->eflags & MAP_ENTRY_USER_WIRED) { 1259 entry = entry->next; 1260 continue; 1261 } 1262 1263 if (entry->wired_count != 0) { 1264 entry->wired_count++; 1265 entry->eflags |= MAP_ENTRY_USER_WIRED; 1266 entry = entry->next; 1267 continue; 1268 } 1269 1270 /* Here on entry being newly wired */ 1271 1272 if ((entry->eflags & (MAP_ENTRY_IS_A_MAP|MAP_ENTRY_IS_SUB_MAP)) == 0) { 1273 int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY; 1274 if (copyflag && ((entry->protection & VM_PROT_WRITE) != 0)) { 1275 1276 vm_object_shadow(&entry->object.vm_object, 1277 &entry->offset, 1278 atop(entry->end - entry->start)); 1279 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 1280 1281 } else if (entry->object.vm_object == NULL) { 1282 1283 entry->object.vm_object = 1284 vm_object_allocate(OBJT_DEFAULT, 1285 atop(entry->end - entry->start)); 1286 entry->offset = (vm_offset_t) 0; 1287 1288 } 1289 default_pager_convert_to_swapq(entry->object.vm_object); 1290 } 1291 1292 vm_map_clip_start(map, entry, start); 1293 vm_map_clip_end(map, entry, end); 1294 1295 entry->wired_count++; 1296 entry->eflags |= MAP_ENTRY_USER_WIRED; 1297 estart = entry->start; 1298 1299 /* First we need to allow map modifications */ 1300 vm_map_set_recursive(map); 1301 vm_map_lock_downgrade(map); 1302 map->timestamp++; 1303 1304 rv = vm_fault_user_wire(map, entry->start, entry->end); 1305 if (rv) { 1306 1307 entry->wired_count--; 1308 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 1309 1310 vm_map_clear_recursive(map); 1311 vm_map_unlock(map); 1312 1313 (void) vm_map_user_pageable(map, start, entry->start, TRUE); 1314 return rv; 1315 } 1316 1317 vm_map_clear_recursive(map); 1318 if (vm_map_lock_upgrade(map)) { 1319 vm_map_lock(map); 1320 if (vm_map_lookup_entry(map, estart, &entry) 1321 == FALSE) { 1322 vm_map_unlock(map); 1323 (void) vm_map_user_pageable(map, 1324 start, 1325 estart, 1326 TRUE); 1327 return (KERN_INVALID_ADDRESS); 1328 } 1329 } 1330 vm_map_simplify_entry(map,entry); 1331 } 1332 } 1333 map->timestamp++; 1334 vm_map_unlock(map); 1335 return KERN_SUCCESS; 1336 } 1337 1338 /* 1339 * vm_map_pageable: 1340 * 1341 * Sets the pageability of the specified address 1342 * range in the target map. Regions specified 1343 * as not pageable require locked-down physical 1344 * memory and physical page maps. 1345 * 1346 * The map must not be locked, but a reference 1347 * must remain to the map throughout the call. 1348 */ 1349 int 1350 vm_map_pageable(map, start, end, new_pageable) 1351 register vm_map_t map; 1352 register vm_offset_t start; 1353 register vm_offset_t end; 1354 register boolean_t new_pageable; 1355 { 1356 register vm_map_entry_t entry; 1357 vm_map_entry_t start_entry; 1358 register vm_offset_t failed = 0; 1359 int rv; 1360 1361 vm_map_lock(map); 1362 1363 VM_MAP_RANGE_CHECK(map, start, end); 1364 1365 /* 1366 * Only one pageability change may take place at one time, since 1367 * vm_fault assumes it will be called only once for each 1368 * wiring/unwiring. Therefore, we have to make sure we're actually 1369 * changing the pageability for the entire region. We do so before 1370 * making any changes. 1371 */ 1372 1373 if (vm_map_lookup_entry(map, start, &start_entry) == FALSE) { 1374 vm_map_unlock(map); 1375 return (KERN_INVALID_ADDRESS); 1376 } 1377 entry = start_entry; 1378 1379 /* 1380 * Actions are rather different for wiring and unwiring, so we have 1381 * two separate cases. 1382 */ 1383 1384 if (new_pageable) { 1385 1386 vm_map_clip_start(map, entry, start); 1387 1388 /* 1389 * Unwiring. First ensure that the range to be unwired is 1390 * really wired down and that there are no holes. 1391 */ 1392 while ((entry != &map->header) && (entry->start < end)) { 1393 1394 if (entry->wired_count == 0 || 1395 (entry->end < end && 1396 (entry->next == &map->header || 1397 entry->next->start > entry->end))) { 1398 vm_map_unlock(map); 1399 return (KERN_INVALID_ARGUMENT); 1400 } 1401 entry = entry->next; 1402 } 1403 1404 /* 1405 * Now decrement the wiring count for each region. If a region 1406 * becomes completely unwired, unwire its physical pages and 1407 * mappings. 1408 */ 1409 vm_map_set_recursive(map); 1410 1411 entry = start_entry; 1412 while ((entry != &map->header) && (entry->start < end)) { 1413 vm_map_clip_end(map, entry, end); 1414 1415 entry->wired_count--; 1416 if (entry->wired_count == 0) 1417 vm_fault_unwire(map, entry->start, entry->end); 1418 1419 entry = entry->next; 1420 } 1421 vm_map_simplify_entry(map, start_entry); 1422 vm_map_clear_recursive(map); 1423 } else { 1424 /* 1425 * Wiring. We must do this in two passes: 1426 * 1427 * 1. Holding the write lock, we create any shadow or zero-fill 1428 * objects that need to be created. Then we clip each map 1429 * entry to the region to be wired and increment its wiring 1430 * count. We create objects before clipping the map entries 1431 * to avoid object proliferation. 1432 * 1433 * 2. We downgrade to a read lock, and call vm_fault_wire to 1434 * fault in the pages for any newly wired area (wired_count is 1435 * 1). 1436 * 1437 * Downgrading to a read lock for vm_fault_wire avoids a possible 1438 * deadlock with another process that may have faulted on one 1439 * of the pages to be wired (it would mark the page busy, 1440 * blocking us, then in turn block on the map lock that we 1441 * hold). Because of problems in the recursive lock package, 1442 * we cannot upgrade to a write lock in vm_map_lookup. Thus, 1443 * any actions that require the write lock must be done 1444 * beforehand. Because we keep the read lock on the map, the 1445 * copy-on-write status of the entries we modify here cannot 1446 * change. 1447 */ 1448 1449 /* 1450 * Pass 1. 1451 */ 1452 while ((entry != &map->header) && (entry->start < end)) { 1453 if (entry->wired_count == 0) { 1454 1455 /* 1456 * Perform actions of vm_map_lookup that need 1457 * the write lock on the map: create a shadow 1458 * object for a copy-on-write region, or an 1459 * object for a zero-fill region. 1460 * 1461 * We don't have to do this for entries that 1462 * point to sharing maps, because we won't 1463 * hold the lock on the sharing map. 1464 */ 1465 if ((entry->eflags & (MAP_ENTRY_IS_A_MAP|MAP_ENTRY_IS_SUB_MAP)) == 0) { 1466 int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY; 1467 if (copyflag && 1468 ((entry->protection & VM_PROT_WRITE) != 0)) { 1469 1470 vm_object_shadow(&entry->object.vm_object, 1471 &entry->offset, 1472 atop(entry->end - entry->start)); 1473 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 1474 } else if (entry->object.vm_object == NULL) { 1475 entry->object.vm_object = 1476 vm_object_allocate(OBJT_DEFAULT, 1477 atop(entry->end - entry->start)); 1478 entry->offset = (vm_offset_t) 0; 1479 } 1480 default_pager_convert_to_swapq(entry->object.vm_object); 1481 } 1482 } 1483 vm_map_clip_start(map, entry, start); 1484 vm_map_clip_end(map, entry, end); 1485 entry->wired_count++; 1486 1487 /* 1488 * Check for holes 1489 */ 1490 if (entry->end < end && 1491 (entry->next == &map->header || 1492 entry->next->start > entry->end)) { 1493 /* 1494 * Found one. Object creation actions do not 1495 * need to be undone, but the wired counts 1496 * need to be restored. 1497 */ 1498 while (entry != &map->header && entry->end > start) { 1499 entry->wired_count--; 1500 entry = entry->prev; 1501 } 1502 map->timestamp++; 1503 vm_map_unlock(map); 1504 return (KERN_INVALID_ARGUMENT); 1505 } 1506 entry = entry->next; 1507 } 1508 1509 /* 1510 * Pass 2. 1511 */ 1512 1513 /* 1514 * HACK HACK HACK HACK 1515 * 1516 * If we are wiring in the kernel map or a submap of it, 1517 * unlock the map to avoid deadlocks. We trust that the 1518 * kernel is well-behaved, and therefore will not do 1519 * anything destructive to this region of the map while 1520 * we have it unlocked. We cannot trust user processes 1521 * to do the same. 1522 * 1523 * HACK HACK HACK HACK 1524 */ 1525 if (vm_map_pmap(map) == kernel_pmap) { 1526 vm_map_unlock(map); /* trust me ... */ 1527 } else { 1528 vm_map_set_recursive(map); 1529 vm_map_lock_downgrade(map); 1530 } 1531 1532 rv = 0; 1533 entry = start_entry; 1534 while (entry != &map->header && entry->start < end) { 1535 /* 1536 * If vm_fault_wire fails for any page we need to undo 1537 * what has been done. We decrement the wiring count 1538 * for those pages which have not yet been wired (now) 1539 * and unwire those that have (later). 1540 * 1541 * XXX this violates the locking protocol on the map, 1542 * needs to be fixed. 1543 */ 1544 if (rv) 1545 entry->wired_count--; 1546 else if (entry->wired_count == 1) { 1547 rv = vm_fault_wire(map, entry->start, entry->end); 1548 if (rv) { 1549 failed = entry->start; 1550 entry->wired_count--; 1551 } 1552 } 1553 entry = entry->next; 1554 } 1555 1556 if (vm_map_pmap(map) == kernel_pmap) { 1557 vm_map_lock(map); 1558 } else { 1559 vm_map_clear_recursive(map); 1560 } 1561 if (rv) { 1562 vm_map_unlock(map); 1563 (void) vm_map_pageable(map, start, failed, TRUE); 1564 return (rv); 1565 } 1566 vm_map_simplify_entry(map, start_entry); 1567 } 1568 1569 vm_map_unlock(map); 1570 1571 map->timestamp++; 1572 return (KERN_SUCCESS); 1573 } 1574 1575 /* 1576 * vm_map_clean 1577 * 1578 * Push any dirty cached pages in the address range to their pager. 1579 * If syncio is TRUE, dirty pages are written synchronously. 1580 * If invalidate is TRUE, any cached pages are freed as well. 1581 * 1582 * Returns an error if any part of the specified range is not mapped. 1583 */ 1584 int 1585 vm_map_clean(map, start, end, syncio, invalidate) 1586 vm_map_t map; 1587 vm_offset_t start; 1588 vm_offset_t end; 1589 boolean_t syncio; 1590 boolean_t invalidate; 1591 { 1592 register vm_map_entry_t current; 1593 vm_map_entry_t entry; 1594 vm_size_t size; 1595 vm_object_t object; 1596 vm_ooffset_t offset; 1597 1598 vm_map_lock_read(map); 1599 VM_MAP_RANGE_CHECK(map, start, end); 1600 if (!vm_map_lookup_entry(map, start, &entry)) { 1601 vm_map_unlock_read(map); 1602 return (KERN_INVALID_ADDRESS); 1603 } 1604 /* 1605 * Make a first pass to check for holes. 1606 */ 1607 for (current = entry; current->start < end; current = current->next) { 1608 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 1609 vm_map_unlock_read(map); 1610 return (KERN_INVALID_ARGUMENT); 1611 } 1612 if (end > current->end && 1613 (current->next == &map->header || 1614 current->end != current->next->start)) { 1615 vm_map_unlock_read(map); 1616 return (KERN_INVALID_ADDRESS); 1617 } 1618 } 1619 1620 /* 1621 * Make a second pass, cleaning/uncaching pages from the indicated 1622 * objects as we go. 1623 */ 1624 for (current = entry; current->start < end; current = current->next) { 1625 offset = current->offset + (start - current->start); 1626 size = (end <= current->end ? end : current->end) - start; 1627 if (current->eflags & (MAP_ENTRY_IS_A_MAP|MAP_ENTRY_IS_SUB_MAP)) { 1628 register vm_map_t smap; 1629 vm_map_entry_t tentry; 1630 vm_size_t tsize; 1631 1632 smap = current->object.share_map; 1633 vm_map_lock_read(smap); 1634 (void) vm_map_lookup_entry(smap, offset, &tentry); 1635 tsize = tentry->end - offset; 1636 if (tsize < size) 1637 size = tsize; 1638 object = tentry->object.vm_object; 1639 offset = tentry->offset + (offset - tentry->start); 1640 vm_map_unlock_read(smap); 1641 } else { 1642 object = current->object.vm_object; 1643 } 1644 /* 1645 * Note that there is absolutely no sense in writing out 1646 * anonymous objects, so we track down the vnode object 1647 * to write out. 1648 * We invalidate (remove) all pages from the address space 1649 * anyway, for semantic correctness. 1650 */ 1651 while (object->backing_object) { 1652 object = object->backing_object; 1653 offset += object->backing_object_offset; 1654 if (object->size < OFF_TO_IDX( offset + size)) 1655 size = IDX_TO_OFF(object->size) - offset; 1656 } 1657 if (invalidate) 1658 pmap_remove(vm_map_pmap(map), current->start, 1659 current->start + size); 1660 if (object && (object->type == OBJT_VNODE)) { 1661 /* 1662 * Flush pages if writing is allowed. XXX should we continue 1663 * on an error? 1664 * 1665 * XXX Doing async I/O and then removing all the pages from 1666 * the object before it completes is probably a very bad 1667 * idea. 1668 */ 1669 if (current->protection & VM_PROT_WRITE) { 1670 if (object->type == OBJT_VNODE) 1671 vn_lock(object->handle, LK_EXCLUSIVE, curproc); 1672 vm_object_page_clean(object, 1673 OFF_TO_IDX(offset), 1674 OFF_TO_IDX(offset + size + PAGE_MASK), 1675 (syncio||invalidate)?1:0); 1676 if (invalidate) 1677 vm_object_page_remove(object, 1678 OFF_TO_IDX(offset), 1679 OFF_TO_IDX(offset + size + PAGE_MASK), 1680 FALSE); 1681 if (object->type == OBJT_VNODE) 1682 VOP_UNLOCK(object->handle, 0, curproc); 1683 } 1684 } 1685 start += size; 1686 } 1687 1688 vm_map_unlock_read(map); 1689 return (KERN_SUCCESS); 1690 } 1691 1692 /* 1693 * vm_map_entry_unwire: [ internal use only ] 1694 * 1695 * Make the region specified by this entry pageable. 1696 * 1697 * The map in question should be locked. 1698 * [This is the reason for this routine's existence.] 1699 */ 1700 static void 1701 vm_map_entry_unwire(map, entry) 1702 vm_map_t map; 1703 register vm_map_entry_t entry; 1704 { 1705 vm_fault_unwire(map, entry->start, entry->end); 1706 entry->wired_count = 0; 1707 } 1708 1709 /* 1710 * vm_map_entry_delete: [ internal use only ] 1711 * 1712 * Deallocate the given entry from the target map. 1713 */ 1714 static void 1715 vm_map_entry_delete(map, entry) 1716 register vm_map_t map; 1717 register vm_map_entry_t entry; 1718 { 1719 vm_map_entry_unlink(map, entry); 1720 map->size -= entry->end - entry->start; 1721 1722 if ((entry->eflags & (MAP_ENTRY_IS_A_MAP|MAP_ENTRY_IS_SUB_MAP)) == 0) { 1723 vm_object_deallocate(entry->object.vm_object); 1724 } 1725 1726 vm_map_entry_dispose(map, entry); 1727 } 1728 1729 /* 1730 * vm_map_delete: [ internal use only ] 1731 * 1732 * Deallocates the given address range from the target 1733 * map. 1734 * 1735 * When called with a sharing map, removes pages from 1736 * that region from all physical maps. 1737 */ 1738 int 1739 vm_map_delete(map, start, end) 1740 register vm_map_t map; 1741 vm_offset_t start; 1742 register vm_offset_t end; 1743 { 1744 register vm_map_entry_t entry; 1745 vm_map_entry_t first_entry; 1746 1747 /* 1748 * Find the start of the region, and clip it 1749 */ 1750 1751 if (!vm_map_lookup_entry(map, start, &first_entry)) 1752 entry = first_entry->next; 1753 else { 1754 entry = first_entry; 1755 vm_map_clip_start(map, entry, start); 1756 1757 /* 1758 * Fix the lookup hint now, rather than each time though the 1759 * loop. 1760 */ 1761 1762 SAVE_HINT(map, entry->prev); 1763 } 1764 1765 /* 1766 * Save the free space hint 1767 */ 1768 1769 if (entry == &map->header) { 1770 map->first_free = &map->header; 1771 } else if (map->first_free->start >= start) 1772 map->first_free = entry->prev; 1773 1774 /* 1775 * Step through all entries in this region 1776 */ 1777 1778 while ((entry != &map->header) && (entry->start < end)) { 1779 vm_map_entry_t next; 1780 vm_offset_t s, e; 1781 vm_object_t object; 1782 vm_ooffset_t offset; 1783 1784 vm_map_clip_end(map, entry, end); 1785 1786 next = entry->next; 1787 s = entry->start; 1788 e = entry->end; 1789 offset = entry->offset; 1790 1791 /* 1792 * Unwire before removing addresses from the pmap; otherwise, 1793 * unwiring will put the entries back in the pmap. 1794 */ 1795 1796 object = entry->object.vm_object; 1797 if (entry->wired_count != 0) 1798 vm_map_entry_unwire(map, entry); 1799 1800 /* 1801 * If this is a sharing map, we must remove *all* references 1802 * to this data, since we can't find all of the physical maps 1803 * which are sharing it. 1804 */ 1805 1806 if (object == kernel_object || object == kmem_object) { 1807 vm_object_page_remove(object, OFF_TO_IDX(offset), 1808 OFF_TO_IDX(offset + (e - s)), FALSE); 1809 } else if (!map->is_main_map) { 1810 vm_object_pmap_remove(object, 1811 OFF_TO_IDX(offset), 1812 OFF_TO_IDX(offset + (e - s))); 1813 } else { 1814 pmap_remove(map->pmap, s, e); 1815 } 1816 1817 /* 1818 * Delete the entry (which may delete the object) only after 1819 * removing all pmap entries pointing to its pages. 1820 * (Otherwise, its page frames may be reallocated, and any 1821 * modify bits will be set in the wrong object!) 1822 */ 1823 1824 vm_map_entry_delete(map, entry); 1825 entry = next; 1826 } 1827 return (KERN_SUCCESS); 1828 } 1829 1830 /* 1831 * vm_map_remove: 1832 * 1833 * Remove the given address range from the target map. 1834 * This is the exported form of vm_map_delete. 1835 */ 1836 int 1837 vm_map_remove(map, start, end) 1838 register vm_map_t map; 1839 register vm_offset_t start; 1840 register vm_offset_t end; 1841 { 1842 register int result, s = 0; 1843 1844 if (map == kmem_map || map == mb_map) 1845 s = splvm(); 1846 1847 vm_map_lock(map); 1848 VM_MAP_RANGE_CHECK(map, start, end); 1849 result = vm_map_delete(map, start, end); 1850 vm_map_unlock(map); 1851 1852 if (map == kmem_map || map == mb_map) 1853 splx(s); 1854 1855 return (result); 1856 } 1857 1858 /* 1859 * vm_map_check_protection: 1860 * 1861 * Assert that the target map allows the specified 1862 * privilege on the entire address region given. 1863 * The entire region must be allocated. 1864 */ 1865 boolean_t 1866 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 1867 vm_prot_t protection) 1868 { 1869 register vm_map_entry_t entry; 1870 vm_map_entry_t tmp_entry; 1871 1872 if (!vm_map_lookup_entry(map, start, &tmp_entry)) { 1873 return (FALSE); 1874 } 1875 entry = tmp_entry; 1876 1877 while (start < end) { 1878 if (entry == &map->header) { 1879 return (FALSE); 1880 } 1881 /* 1882 * No holes allowed! 1883 */ 1884 1885 if (start < entry->start) { 1886 return (FALSE); 1887 } 1888 /* 1889 * Check protection associated with entry. 1890 */ 1891 1892 if ((entry->protection & protection) != protection) { 1893 return (FALSE); 1894 } 1895 /* go to next entry */ 1896 1897 start = entry->end; 1898 entry = entry->next; 1899 } 1900 return (TRUE); 1901 } 1902 1903 /* 1904 * vm_map_copy_entry: 1905 * 1906 * Copies the contents of the source entry to the destination 1907 * entry. The entries *must* be aligned properly. 1908 */ 1909 static void 1910 vm_map_copy_entry(src_map, dst_map, src_entry, dst_entry) 1911 vm_map_t src_map, dst_map; 1912 register vm_map_entry_t src_entry, dst_entry; 1913 { 1914 if ((dst_entry->eflags|src_entry->eflags) & 1915 (MAP_ENTRY_IS_A_MAP|MAP_ENTRY_IS_SUB_MAP)) 1916 return; 1917 1918 if (src_entry->wired_count == 0) { 1919 1920 /* 1921 * If the source entry is marked needs_copy, it is already 1922 * write-protected. 1923 */ 1924 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) { 1925 pmap_protect(src_map->pmap, 1926 src_entry->start, 1927 src_entry->end, 1928 src_entry->protection & ~VM_PROT_WRITE); 1929 } 1930 1931 /* 1932 * Make a copy of the object. 1933 */ 1934 if (src_entry->object.vm_object) { 1935 if ((src_entry->object.vm_object->handle == NULL) && 1936 (src_entry->object.vm_object->type == OBJT_DEFAULT || 1937 src_entry->object.vm_object->type == OBJT_SWAP)) 1938 vm_object_collapse(src_entry->object.vm_object); 1939 vm_object_reference(src_entry->object.vm_object); 1940 src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 1941 dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 1942 dst_entry->object.vm_object = 1943 src_entry->object.vm_object; 1944 dst_entry->offset = src_entry->offset; 1945 } else { 1946 dst_entry->object.vm_object = NULL; 1947 dst_entry->offset = 0; 1948 } 1949 1950 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start, 1951 dst_entry->end - dst_entry->start, src_entry->start); 1952 } else { 1953 /* 1954 * Of course, wired down pages can't be set copy-on-write. 1955 * Cause wired pages to be copied into the new map by 1956 * simulating faults (the new pages are pageable) 1957 */ 1958 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry); 1959 } 1960 } 1961 1962 /* 1963 * vmspace_fork: 1964 * Create a new process vmspace structure and vm_map 1965 * based on those of an existing process. The new map 1966 * is based on the old map, according to the inheritance 1967 * values on the regions in that map. 1968 * 1969 * The source map must not be locked. 1970 */ 1971 struct vmspace * 1972 vmspace_fork(vm1) 1973 register struct vmspace *vm1; 1974 { 1975 register struct vmspace *vm2; 1976 vm_map_t old_map = &vm1->vm_map; 1977 vm_map_t new_map; 1978 vm_map_entry_t old_entry; 1979 vm_map_entry_t new_entry; 1980 pmap_t new_pmap; 1981 vm_object_t object; 1982 1983 vm_map_lock(old_map); 1984 1985 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset); 1986 bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy, 1987 (caddr_t) (vm1 + 1) - (caddr_t) &vm1->vm_startcopy); 1988 new_pmap = &vm2->vm_pmap; /* XXX */ 1989 new_map = &vm2->vm_map; /* XXX */ 1990 new_map->timestamp = 1; 1991 1992 old_entry = old_map->header.next; 1993 1994 while (old_entry != &old_map->header) { 1995 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) 1996 panic("vm_map_fork: encountered a submap"); 1997 1998 switch (old_entry->inheritance) { 1999 case VM_INHERIT_NONE: 2000 break; 2001 2002 case VM_INHERIT_SHARE: 2003 /* 2004 * Clone the entry, creating the shared object if necessary. 2005 */ 2006 object = old_entry->object.vm_object; 2007 if (object == NULL) { 2008 object = vm_object_allocate(OBJT_DEFAULT, 2009 atop(old_entry->end - old_entry->start)); 2010 old_entry->object.vm_object = object; 2011 old_entry->offset = (vm_offset_t) 0; 2012 } else if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 2013 vm_object_shadow(&old_entry->object.vm_object, 2014 &old_entry->offset, 2015 atop(old_entry->end - old_entry->start)); 2016 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 2017 object = old_entry->object.vm_object; 2018 } 2019 2020 /* 2021 * Clone the entry, referencing the sharing map. 2022 */ 2023 new_entry = vm_map_entry_create(new_map); 2024 *new_entry = *old_entry; 2025 new_entry->wired_count = 0; 2026 vm_object_reference(object); 2027 2028 /* 2029 * Insert the entry into the new map -- we know we're 2030 * inserting at the end of the new map. 2031 */ 2032 2033 vm_map_entry_link(new_map, new_map->header.prev, 2034 new_entry); 2035 2036 /* 2037 * Update the physical map 2038 */ 2039 2040 pmap_copy(new_map->pmap, old_map->pmap, 2041 new_entry->start, 2042 (old_entry->end - old_entry->start), 2043 old_entry->start); 2044 break; 2045 2046 case VM_INHERIT_COPY: 2047 /* 2048 * Clone the entry and link into the map. 2049 */ 2050 new_entry = vm_map_entry_create(new_map); 2051 *new_entry = *old_entry; 2052 new_entry->wired_count = 0; 2053 new_entry->object.vm_object = NULL; 2054 new_entry->eflags &= ~MAP_ENTRY_IS_A_MAP; 2055 vm_map_entry_link(new_map, new_map->header.prev, 2056 new_entry); 2057 vm_map_copy_entry(old_map, new_map, old_entry, 2058 new_entry); 2059 break; 2060 } 2061 old_entry = old_entry->next; 2062 } 2063 2064 new_map->size = old_map->size; 2065 vm_map_unlock(old_map); 2066 2067 return (vm2); 2068 } 2069 2070 /* 2071 * Unshare the specified VM space for exec. If other processes are 2072 * mapped to it, then create a new one. The new vmspace is null. 2073 */ 2074 2075 void 2076 vmspace_exec(struct proc *p) { 2077 struct vmspace *oldvmspace = p->p_vmspace; 2078 struct vmspace *newvmspace; 2079 vm_map_t map = &p->p_vmspace->vm_map; 2080 2081 newvmspace = vmspace_alloc(map->min_offset, map->max_offset); 2082 bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy, 2083 (caddr_t) (newvmspace + 1) - (caddr_t) &newvmspace->vm_startcopy); 2084 /* 2085 * This code is written like this for prototype purposes. The 2086 * goal is to avoid running down the vmspace here, but let the 2087 * other process's that are still using the vmspace to finally 2088 * run it down. Even though there is little or no chance of blocking 2089 * here, it is a good idea to keep this form for future mods. 2090 */ 2091 vmspace_free(oldvmspace); 2092 p->p_vmspace = newvmspace; 2093 if (p == curproc) 2094 pmap_activate(p); 2095 } 2096 2097 /* 2098 * Unshare the specified VM space for forcing COW. This 2099 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 2100 */ 2101 2102 void 2103 vmspace_unshare(struct proc *p) { 2104 struct vmspace *oldvmspace = p->p_vmspace; 2105 struct vmspace *newvmspace; 2106 2107 if (oldvmspace->vm_refcnt == 1) 2108 return; 2109 newvmspace = vmspace_fork(oldvmspace); 2110 vmspace_free(oldvmspace); 2111 p->p_vmspace = newvmspace; 2112 if (p == curproc) 2113 pmap_activate(p); 2114 } 2115 2116 2117 /* 2118 * vm_map_lookup: 2119 * 2120 * Finds the VM object, offset, and 2121 * protection for a given virtual address in the 2122 * specified map, assuming a page fault of the 2123 * type specified. 2124 * 2125 * Leaves the map in question locked for read; return 2126 * values are guaranteed until a vm_map_lookup_done 2127 * call is performed. Note that the map argument 2128 * is in/out; the returned map must be used in 2129 * the call to vm_map_lookup_done. 2130 * 2131 * A handle (out_entry) is returned for use in 2132 * vm_map_lookup_done, to make that fast. 2133 * 2134 * If a lookup is requested with "write protection" 2135 * specified, the map may be changed to perform virtual 2136 * copying operations, although the data referenced will 2137 * remain the same. 2138 */ 2139 int 2140 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 2141 vm_offset_t vaddr, 2142 vm_prot_t fault_typea, 2143 vm_map_entry_t *out_entry, /* OUT */ 2144 vm_object_t *object, /* OUT */ 2145 vm_pindex_t *pindex, /* OUT */ 2146 vm_prot_t *out_prot, /* OUT */ 2147 boolean_t *wired) /* OUT */ 2148 { 2149 vm_map_t share_map; 2150 vm_offset_t share_offset; 2151 register vm_map_entry_t entry; 2152 register vm_map_t map = *var_map; 2153 register vm_prot_t prot; 2154 register boolean_t su; 2155 vm_prot_t fault_type = fault_typea; 2156 2157 RetryLookup:; 2158 2159 /* 2160 * Lookup the faulting address. 2161 */ 2162 2163 vm_map_lock_read(map); 2164 2165 #define RETURN(why) \ 2166 { \ 2167 vm_map_unlock_read(map); \ 2168 return(why); \ 2169 } 2170 2171 /* 2172 * If the map has an interesting hint, try it before calling full 2173 * blown lookup routine. 2174 */ 2175 2176 entry = map->hint; 2177 2178 *out_entry = entry; 2179 2180 if ((entry == &map->header) || 2181 (vaddr < entry->start) || (vaddr >= entry->end)) { 2182 vm_map_entry_t tmp_entry; 2183 2184 /* 2185 * Entry was either not a valid hint, or the vaddr was not 2186 * contained in the entry, so do a full lookup. 2187 */ 2188 if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) 2189 RETURN(KERN_INVALID_ADDRESS); 2190 2191 entry = tmp_entry; 2192 *out_entry = entry; 2193 } 2194 2195 /* 2196 * Handle submaps. 2197 */ 2198 2199 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 2200 vm_map_t old_map = map; 2201 2202 *var_map = map = entry->object.sub_map; 2203 vm_map_unlock_read(old_map); 2204 goto RetryLookup; 2205 } 2206 2207 /* 2208 * Check whether this task is allowed to have this page. 2209 * Note the special case for MAP_ENTRY_COW 2210 * pages with an override. This is to implement a forced 2211 * COW for debuggers. 2212 */ 2213 2214 if (fault_type & VM_PROT_OVERRIDE_WRITE) 2215 prot = entry->max_protection; 2216 else 2217 prot = entry->protection; 2218 2219 fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE); 2220 if ((fault_type & prot) != fault_type) { 2221 RETURN(KERN_PROTECTION_FAILURE); 2222 } 2223 2224 if (entry->wired_count && (fault_type & VM_PROT_WRITE) && 2225 (entry->eflags & MAP_ENTRY_COW) && 2226 (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) { 2227 RETURN(KERN_PROTECTION_FAILURE); 2228 } 2229 2230 /* 2231 * If this page is not pageable, we have to get it for all possible 2232 * accesses. 2233 */ 2234 2235 *wired = (entry->wired_count != 0); 2236 if (*wired) 2237 prot = fault_type = entry->protection; 2238 2239 /* 2240 * If we don't already have a VM object, track it down. 2241 */ 2242 2243 su = (entry->eflags & MAP_ENTRY_IS_A_MAP) == 0; 2244 if (su) { 2245 share_map = map; 2246 share_offset = vaddr; 2247 } else { 2248 vm_map_entry_t share_entry; 2249 2250 /* 2251 * Compute the sharing map, and offset into it. 2252 */ 2253 2254 share_map = entry->object.share_map; 2255 share_offset = (vaddr - entry->start) + entry->offset; 2256 2257 /* 2258 * Look for the backing store object and offset 2259 */ 2260 2261 vm_map_lock_read(share_map); 2262 2263 if (!vm_map_lookup_entry(share_map, share_offset, 2264 &share_entry)) { 2265 vm_map_unlock_read(share_map); 2266 RETURN(KERN_INVALID_ADDRESS); 2267 } 2268 entry = share_entry; 2269 } 2270 2271 /* 2272 * If the entry was copy-on-write, we either ... 2273 */ 2274 2275 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 2276 /* 2277 * If we want to write the page, we may as well handle that 2278 * now since we've got the sharing map locked. 2279 * 2280 * If we don't need to write the page, we just demote the 2281 * permissions allowed. 2282 */ 2283 2284 if (fault_type & VM_PROT_WRITE) { 2285 /* 2286 * Make a new object, and place it in the object 2287 * chain. Note that no new references have appeared 2288 * -- one just moved from the share map to the new 2289 * object. 2290 */ 2291 2292 if (vm_map_lock_upgrade(share_map)) { 2293 if (share_map != map) 2294 vm_map_unlock_read(map); 2295 2296 goto RetryLookup; 2297 } 2298 vm_object_shadow( 2299 &entry->object.vm_object, 2300 &entry->offset, 2301 atop(entry->end - entry->start)); 2302 2303 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 2304 vm_map_lock_downgrade(share_map); 2305 } else { 2306 /* 2307 * We're attempting to read a copy-on-write page -- 2308 * don't allow writes. 2309 */ 2310 2311 prot &= ~VM_PROT_WRITE; 2312 } 2313 } 2314 2315 /* 2316 * Create an object if necessary. 2317 */ 2318 if (entry->object.vm_object == NULL) { 2319 2320 if (vm_map_lock_upgrade(share_map)) { 2321 if (share_map != map) 2322 vm_map_unlock_read(map); 2323 goto RetryLookup; 2324 } 2325 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT, 2326 atop(entry->end - entry->start)); 2327 entry->offset = 0; 2328 vm_map_lock_downgrade(share_map); 2329 } 2330 2331 if (entry->object.vm_object->type == OBJT_DEFAULT) 2332 default_pager_convert_to_swapq(entry->object.vm_object); 2333 /* 2334 * Return the object/offset from this entry. If the entry was 2335 * copy-on-write or empty, it has been fixed up. 2336 */ 2337 2338 *pindex = OFF_TO_IDX((share_offset - entry->start) + entry->offset); 2339 *object = entry->object.vm_object; 2340 2341 /* 2342 * Return whether this is the only map sharing this data. 2343 */ 2344 2345 *out_prot = prot; 2346 return (KERN_SUCCESS); 2347 2348 #undef RETURN 2349 } 2350 2351 /* 2352 * vm_map_lookup_done: 2353 * 2354 * Releases locks acquired by a vm_map_lookup 2355 * (according to the handle returned by that lookup). 2356 */ 2357 2358 void 2359 vm_map_lookup_done(map, entry) 2360 register vm_map_t map; 2361 vm_map_entry_t entry; 2362 { 2363 /* 2364 * If this entry references a map, unlock it first. 2365 */ 2366 2367 if (entry->eflags & MAP_ENTRY_IS_A_MAP) 2368 vm_map_unlock_read(entry->object.share_map); 2369 2370 /* 2371 * Unlock the main-level map 2372 */ 2373 2374 vm_map_unlock_read(map); 2375 } 2376 2377 /* 2378 * Implement uiomove with VM operations. This handles (and collateral changes) 2379 * support every combination of source object modification, and COW type 2380 * operations. 2381 */ 2382 int 2383 vm_uiomove(mapa, srcobject, cp, cnta, uaddra, npages) 2384 vm_map_t mapa; 2385 vm_object_t srcobject; 2386 off_t cp; 2387 int cnta; 2388 vm_offset_t uaddra; 2389 int *npages; 2390 { 2391 vm_map_t map; 2392 vm_object_t first_object, oldobject, object; 2393 vm_map_entry_t entry; 2394 vm_prot_t prot; 2395 boolean_t wired; 2396 int tcnt, rv; 2397 vm_offset_t uaddr, start, end, tend; 2398 vm_pindex_t first_pindex, osize, oindex; 2399 off_t ooffset; 2400 int cnt; 2401 2402 if (npages) 2403 *npages = 0; 2404 2405 cnt = cnta; 2406 uaddr = uaddra; 2407 2408 while (cnt > 0) { 2409 map = mapa; 2410 2411 if ((vm_map_lookup(&map, uaddr, 2412 VM_PROT_READ, &entry, &first_object, 2413 &first_pindex, &prot, &wired)) != KERN_SUCCESS) { 2414 return EFAULT; 2415 } 2416 2417 vm_map_clip_start(map, entry, uaddr); 2418 2419 tcnt = cnt; 2420 tend = uaddr + tcnt; 2421 if (tend > entry->end) { 2422 tcnt = entry->end - uaddr; 2423 tend = entry->end; 2424 } 2425 2426 vm_map_clip_end(map, entry, tend); 2427 2428 start = entry->start; 2429 end = entry->end; 2430 2431 osize = atop(tcnt); 2432 2433 oindex = OFF_TO_IDX(cp); 2434 if (npages) { 2435 vm_pindex_t idx; 2436 for (idx = 0; idx < osize; idx++) { 2437 vm_page_t m; 2438 if ((m = vm_page_lookup(srcobject, oindex + idx)) == NULL) { 2439 vm_map_lookup_done(map, entry); 2440 return 0; 2441 } 2442 if ((m->flags & PG_BUSY) || 2443 ((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL)) { 2444 vm_map_lookup_done(map, entry); 2445 return 0; 2446 } 2447 } 2448 } 2449 2450 /* 2451 * If we are changing an existing map entry, just redirect 2452 * the object, and change mappings. 2453 */ 2454 if ((first_object->type == OBJT_VNODE) && 2455 ((oldobject = entry->object.vm_object) == first_object)) { 2456 2457 if ((entry->offset != cp) || (oldobject != srcobject)) { 2458 /* 2459 * Remove old window into the file 2460 */ 2461 pmap_remove (map->pmap, uaddr, tend); 2462 2463 /* 2464 * Force copy on write for mmaped regions 2465 */ 2466 vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize); 2467 2468 /* 2469 * Point the object appropriately 2470 */ 2471 if (oldobject != srcobject) { 2472 2473 /* 2474 * Set the object optimization hint flag 2475 */ 2476 srcobject->flags |= OBJ_OPT; 2477 vm_object_reference(srcobject); 2478 entry->object.vm_object = srcobject; 2479 2480 if (oldobject) { 2481 vm_object_deallocate(oldobject); 2482 } 2483 } 2484 2485 entry->offset = cp; 2486 map->timestamp++; 2487 } else { 2488 pmap_remove (map->pmap, uaddr, tend); 2489 } 2490 2491 } else if ((first_object->ref_count == 1) && 2492 (first_object->size == osize) && 2493 ((first_object->type == OBJT_DEFAULT) || 2494 (first_object->type == OBJT_SWAP)) ) { 2495 2496 oldobject = first_object->backing_object; 2497 2498 if ((first_object->backing_object_offset != cp) || 2499 (oldobject != srcobject)) { 2500 /* 2501 * Remove old window into the file 2502 */ 2503 pmap_remove (map->pmap, uaddr, tend); 2504 2505 /* 2506 * Remove unneeded old pages 2507 */ 2508 if (first_object->resident_page_count) { 2509 vm_object_page_remove (first_object, 0, 0, 0); 2510 } 2511 2512 /* 2513 * Invalidate swap space 2514 */ 2515 if (first_object->type == OBJT_SWAP) { 2516 swap_pager_freespace(first_object, 2517 OFF_TO_IDX(first_object->paging_offset), 2518 first_object->size); 2519 } 2520 2521 /* 2522 * Force copy on write for mmaped regions 2523 */ 2524 vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize); 2525 2526 /* 2527 * Point the object appropriately 2528 */ 2529 if (oldobject != srcobject) { 2530 2531 /* 2532 * Set the object optimization hint flag 2533 */ 2534 srcobject->flags |= OBJ_OPT; 2535 vm_object_reference(srcobject); 2536 2537 if (oldobject) { 2538 TAILQ_REMOVE(&oldobject->shadow_head, 2539 first_object, shadow_list); 2540 oldobject->shadow_count--; 2541 vm_object_deallocate(oldobject); 2542 } 2543 2544 TAILQ_INSERT_TAIL(&srcobject->shadow_head, 2545 first_object, shadow_list); 2546 srcobject->shadow_count++; 2547 2548 first_object->backing_object = srcobject; 2549 } 2550 first_object->backing_object_offset = cp; 2551 map->timestamp++; 2552 } else { 2553 pmap_remove (map->pmap, uaddr, tend); 2554 } 2555 /* 2556 * Otherwise, we have to do a logical mmap. 2557 */ 2558 } else { 2559 2560 srcobject->flags |= OBJ_OPT; 2561 vm_object_reference(srcobject); 2562 2563 pmap_remove (map->pmap, uaddr, tend); 2564 2565 vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize); 2566 vm_map_lock_upgrade(map); 2567 2568 if (entry == &map->header) { 2569 map->first_free = &map->header; 2570 } else if (map->first_free->start >= start) { 2571 map->first_free = entry->prev; 2572 } 2573 2574 SAVE_HINT(map, entry->prev); 2575 vm_map_entry_delete(map, entry); 2576 2577 object = srcobject; 2578 ooffset = cp; 2579 #if 0 2580 vm_object_shadow(&object, &ooffset, osize); 2581 #endif 2582 2583 rv = vm_map_insert(map, object, ooffset, start, tend, 2584 VM_PROT_ALL, VM_PROT_ALL, MAP_COPY_ON_WRITE|MAP_COPY_NEEDED); 2585 2586 if (rv != KERN_SUCCESS) 2587 panic("vm_uiomove: could not insert new entry: %d", rv); 2588 } 2589 2590 /* 2591 * Map the window directly, if it is already in memory 2592 */ 2593 pmap_object_init_pt(map->pmap, uaddr, 2594 srcobject, oindex, tcnt, 0); 2595 2596 map->timestamp++; 2597 vm_map_unlock(map); 2598 2599 cnt -= tcnt; 2600 uaddr += tcnt; 2601 cp += tcnt; 2602 if (npages) 2603 *npages += osize; 2604 } 2605 return 0; 2606 } 2607 2608 /* 2609 * local routine to allocate a page for an object. 2610 */ 2611 static vm_page_t 2612 vm_freeze_page_alloc(object, pindex) 2613 vm_object_t object; 2614 vm_pindex_t pindex; 2615 { 2616 vm_page_t m; 2617 2618 while ((m = vm_page_alloc(object, pindex, VM_ALLOC_NORMAL)) == NULL) { 2619 VM_WAIT; 2620 if (m = vm_page_lookup(object, pindex)) 2621 return NULL; 2622 } 2623 2624 m->valid = 0; 2625 m->dirty = 0; 2626 return m; 2627 } 2628 2629 /* 2630 * Performs the copy_on_write operations necessary to allow the virtual copies 2631 * into user space to work. This has to be called for write(2) system calls 2632 * from other processes, file unlinking, and file size shrinkage. 2633 */ 2634 void 2635 vm_freeze_copyopts(object, froma, toa) 2636 vm_object_t object; 2637 vm_pindex_t froma, toa; 2638 { 2639 int s; 2640 vm_object_t robject, robjectn; 2641 vm_pindex_t idx, from, to; 2642 2643 if ((object == NULL) || 2644 ((object->flags & OBJ_OPT) == 0)) 2645 return; 2646 2647 if (object->shadow_count > object->ref_count) 2648 panic("vm_freeze_copyopts: sc > rc"); 2649 2650 while( robject = TAILQ_FIRST(&object->shadow_head)) { 2651 vm_pindex_t bo_pindex; 2652 vm_page_t m_in, m_out; 2653 2654 bo_pindex = OFF_TO_IDX(robject->backing_object_offset); 2655 2656 vm_object_reference(robject); 2657 2658 s = splvm(); 2659 while (robject->paging_in_progress) { 2660 robject->flags |= OBJ_PIPWNT; 2661 tsleep(robject, PVM, "objfrz", 0); 2662 } 2663 splx(s); 2664 2665 if (robject->ref_count == 1) { 2666 vm_object_deallocate(robject); 2667 continue; 2668 } 2669 2670 robject->paging_in_progress++; 2671 2672 for (idx = 0; idx < robject->size; idx++) { 2673 2674 m_outretry: 2675 m_out = vm_page_lookup(robject, idx); 2676 if( m_out && (m_out->flags & PG_BUSY)) { 2677 s = splvm(); 2678 while (m_out && (m_out->flags & PG_BUSY)) { 2679 m_out->flags |= PG_WANTED; 2680 tsleep(m_out, PVM, "pwtfrz", 0); 2681 splx(s); 2682 goto m_outretry; 2683 } 2684 splx(s); 2685 } 2686 2687 if (m_out == NULL) { 2688 m_out = vm_freeze_page_alloc(robject, idx); 2689 if (m_out == NULL) 2690 goto m_outretry; 2691 } 2692 2693 if (m_out->valid == 0) { 2694 m_out->flags |= PG_BUSY; 2695 m_inretry: 2696 m_in = vm_page_lookup(object, bo_pindex + idx); 2697 if (m_in == NULL) { 2698 int rv; 2699 m_in = vm_freeze_page_alloc(object, bo_pindex + idx); 2700 if (m_in == NULL) 2701 goto m_inretry; 2702 rv = vm_pager_get_pages(object, &m_in, 1, 0); 2703 if (rv != VM_PAGER_OK) { 2704 printf("vm_freeze_copyopts: cannot read page from file: %x\n", m_in->pindex); 2705 continue; 2706 } 2707 } else if(m_in->busy || (m_in->flags & PG_BUSY)) { 2708 s = splvm(); 2709 while (m_in && (m_in->busy || (m_in->flags & PG_BUSY))) { 2710 m_in->flags |= PG_WANTED; 2711 tsleep(m_in, PVM, "pwtfrz", 0); 2712 splx(s); 2713 goto m_inretry; 2714 } 2715 splx(s); 2716 if (m_in == NULL) { 2717 goto m_inretry; 2718 } 2719 } 2720 2721 m_in->flags |= PG_BUSY; 2722 vm_page_protect(m_in, VM_PROT_NONE); 2723 pmap_copy_page(VM_PAGE_TO_PHYS(m_in), VM_PAGE_TO_PHYS(m_out)); 2724 m_out->valid = VM_PAGE_BITS_ALL; 2725 m_out->dirty = VM_PAGE_BITS_ALL; 2726 2727 vm_page_deactivate(m_out); 2728 vm_page_deactivate(m_in); 2729 2730 PAGE_WAKEUP(m_out); 2731 PAGE_WAKEUP(m_in); 2732 } 2733 } 2734 2735 object->shadow_count--; 2736 object->ref_count--; 2737 TAILQ_REMOVE(&object->shadow_head, robject, shadow_list); 2738 robject->backing_object = NULL; 2739 robject->backing_object_offset = 0; 2740 2741 vm_object_pip_wakeup(robject); 2742 vm_object_deallocate(robject); 2743 } 2744 2745 object->flags &= ~OBJ_OPT; 2746 } 2747 2748 #include "opt_ddb.h" 2749 #ifdef DDB 2750 #include <sys/kernel.h> 2751 2752 #include <ddb/ddb.h> 2753 2754 /* 2755 * vm_map_print: [ debug ] 2756 */ 2757 DB_SHOW_COMMAND(map, vm_map_print) 2758 { 2759 static int nlines; 2760 /* XXX convert args. */ 2761 register vm_map_t map = (vm_map_t)addr; 2762 boolean_t full = have_addr; 2763 2764 register vm_map_entry_t entry; 2765 2766 db_iprintf("%s map 0x%x: pmap=0x%x, nentries=%d, version=%d\n", 2767 (map->is_main_map ? "Task" : "Share"), 2768 (int) map, (int) (map->pmap), map->nentries, 2769 map->timestamp); 2770 nlines++; 2771 2772 if (!full && db_indent) 2773 return; 2774 2775 db_indent += 2; 2776 for (entry = map->header.next; entry != &map->header; 2777 entry = entry->next) { 2778 #if 0 2779 if (nlines > 18) { 2780 db_printf("--More--"); 2781 cngetc(); 2782 db_printf("\r"); 2783 nlines = 0; 2784 } 2785 #endif 2786 2787 db_iprintf("map entry 0x%x: start=0x%x, end=0x%x\n", 2788 (int) entry, (int) entry->start, (int) entry->end); 2789 nlines++; 2790 if (map->is_main_map) { 2791 static char *inheritance_name[4] = 2792 {"share", "copy", "none", "donate_copy"}; 2793 2794 db_iprintf(" prot=%x/%x/%s", 2795 entry->protection, 2796 entry->max_protection, 2797 inheritance_name[entry->inheritance]); 2798 if (entry->wired_count != 0) 2799 db_printf(", wired"); 2800 } 2801 if (entry->eflags & (MAP_ENTRY_IS_A_MAP|MAP_ENTRY_IS_SUB_MAP)) { 2802 db_printf(", share=0x%x, offset=0x%x\n", 2803 (int) entry->object.share_map, 2804 (int) entry->offset); 2805 nlines++; 2806 if ((entry->prev == &map->header) || 2807 ((entry->prev->eflags & MAP_ENTRY_IS_A_MAP) == 0) || 2808 (entry->prev->object.share_map != 2809 entry->object.share_map)) { 2810 db_indent += 2; 2811 vm_map_print((int)entry->object.share_map, 2812 full, 0, (char *)0); 2813 db_indent -= 2; 2814 } 2815 } else { 2816 db_printf(", object=0x%x, offset=0x%x", 2817 (int) entry->object.vm_object, 2818 (int) entry->offset); 2819 if (entry->eflags & MAP_ENTRY_COW) 2820 db_printf(", copy (%s)", 2821 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 2822 db_printf("\n"); 2823 nlines++; 2824 2825 if ((entry->prev == &map->header) || 2826 (entry->prev->eflags & MAP_ENTRY_IS_A_MAP) || 2827 (entry->prev->object.vm_object != 2828 entry->object.vm_object)) { 2829 db_indent += 2; 2830 vm_object_print((int)entry->object.vm_object, 2831 full, 0, (char *)0); 2832 nlines += 4; 2833 db_indent -= 2; 2834 } 2835 } 2836 } 2837 db_indent -= 2; 2838 if (db_indent == 0) 2839 nlines = 0; 2840 } 2841 2842 2843 DB_SHOW_COMMAND(procvm, procvm) 2844 { 2845 struct proc *p; 2846 2847 if (have_addr) { 2848 p = (struct proc *) addr; 2849 } else { 2850 p = curproc; 2851 } 2852 2853 printf("p = 0x%x, vmspace = 0x%x, map = 0x%x, pmap = 0x%x\n", 2854 p, p->p_vmspace, &p->p_vmspace->vm_map, &p->p_vmspace->vm_pmap); 2855 2856 vm_map_print ((int) &p->p_vmspace->vm_map, 1, 0, NULL); 2857 } 2858 2859 #endif /* DDB */ 2860