1 /*- 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 4. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 33 * 34 * 35 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 36 * All rights reserved. 37 * 38 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 39 * 40 * Permission to use, copy, modify and distribute this software and 41 * its documentation is hereby granted, provided that both the copyright 42 * notice and this permission notice appear in all copies of the 43 * software, derivative works or modified versions, and any portions 44 * thereof, and that both notices appear in supporting documentation. 45 * 46 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 47 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 48 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 49 * 50 * Carnegie Mellon requests users of this software to return to 51 * 52 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 53 * School of Computer Science 54 * Carnegie Mellon University 55 * Pittsburgh PA 15213-3890 56 * 57 * any improvements or extensions that they make and grant Carnegie the 58 * rights to redistribute these changes. 59 */ 60 61 /* 62 * Virtual memory mapping module. 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include <sys/param.h> 69 #include <sys/systm.h> 70 #include <sys/kernel.h> 71 #include <sys/ktr.h> 72 #include <sys/lock.h> 73 #include <sys/mutex.h> 74 #include <sys/proc.h> 75 #include <sys/vmmeter.h> 76 #include <sys/mman.h> 77 #include <sys/vnode.h> 78 #include <sys/racct.h> 79 #include <sys/resourcevar.h> 80 #include <sys/rwlock.h> 81 #include <sys/file.h> 82 #include <sys/sysctl.h> 83 #include <sys/sysent.h> 84 #include <sys/shm.h> 85 86 #include <vm/vm.h> 87 #include <vm/vm_param.h> 88 #include <vm/pmap.h> 89 #include <vm/vm_map.h> 90 #include <vm/vm_page.h> 91 #include <vm/vm_object.h> 92 #include <vm/vm_pager.h> 93 #include <vm/vm_kern.h> 94 #include <vm/vm_extern.h> 95 #include <vm/vnode_pager.h> 96 #include <vm/swap_pager.h> 97 #include <vm/uma.h> 98 99 /* 100 * Virtual memory maps provide for the mapping, protection, 101 * and sharing of virtual memory objects. In addition, 102 * this module provides for an efficient virtual copy of 103 * memory from one map to another. 104 * 105 * Synchronization is required prior to most operations. 106 * 107 * Maps consist of an ordered doubly-linked list of simple 108 * entries; a self-adjusting binary search tree of these 109 * entries is used to speed up lookups. 110 * 111 * Since portions of maps are specified by start/end addresses, 112 * which may not align with existing map entries, all 113 * routines merely "clip" entries to these start/end values. 114 * [That is, an entry is split into two, bordering at a 115 * start or end value.] Note that these clippings may not 116 * always be necessary (as the two resulting entries are then 117 * not changed); however, the clipping is done for convenience. 118 * 119 * As mentioned above, virtual copy operations are performed 120 * by copying VM object references from one map to 121 * another, and then marking both regions as copy-on-write. 122 */ 123 124 static struct mtx map_sleep_mtx; 125 static uma_zone_t mapentzone; 126 static uma_zone_t kmapentzone; 127 static uma_zone_t mapzone; 128 static uma_zone_t vmspace_zone; 129 static int vmspace_zinit(void *mem, int size, int flags); 130 static int vm_map_zinit(void *mem, int ize, int flags); 131 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, 132 vm_offset_t max); 133 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map); 134 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry); 135 #ifdef INVARIANTS 136 static void vm_map_zdtor(void *mem, int size, void *arg); 137 static void vmspace_zdtor(void *mem, int size, void *arg); 138 #endif 139 140 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \ 141 ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \ 142 !((e)->eflags & MAP_ENTRY_NEEDS_COPY))) 143 144 /* 145 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type 146 * stable. 147 */ 148 #define PROC_VMSPACE_LOCK(p) do { } while (0) 149 #define PROC_VMSPACE_UNLOCK(p) do { } while (0) 150 151 /* 152 * VM_MAP_RANGE_CHECK: [ internal use only ] 153 * 154 * Asserts that the starting and ending region 155 * addresses fall within the valid range of the map. 156 */ 157 #define VM_MAP_RANGE_CHECK(map, start, end) \ 158 { \ 159 if (start < vm_map_min(map)) \ 160 start = vm_map_min(map); \ 161 if (end > vm_map_max(map)) \ 162 end = vm_map_max(map); \ 163 if (start > end) \ 164 start = end; \ 165 } 166 167 /* 168 * vm_map_startup: 169 * 170 * Initialize the vm_map module. Must be called before 171 * any other vm_map routines. 172 * 173 * Map and entry structures are allocated from the general 174 * purpose memory pool with some exceptions: 175 * 176 * - The kernel map and kmem submap are allocated statically. 177 * - Kernel map entries are allocated out of a static pool. 178 * 179 * These restrictions are necessary since malloc() uses the 180 * maps and requires map entries. 181 */ 182 183 void 184 vm_map_startup(void) 185 { 186 mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF); 187 mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL, 188 #ifdef INVARIANTS 189 vm_map_zdtor, 190 #else 191 NULL, 192 #endif 193 vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 194 uma_prealloc(mapzone, MAX_KMAP); 195 kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry), 196 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 197 UMA_ZONE_MTXCLASS | UMA_ZONE_VM); 198 mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry), 199 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 200 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL, 201 #ifdef INVARIANTS 202 vmspace_zdtor, 203 #else 204 NULL, 205 #endif 206 vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 207 } 208 209 static int 210 vmspace_zinit(void *mem, int size, int flags) 211 { 212 struct vmspace *vm; 213 214 vm = (struct vmspace *)mem; 215 216 vm->vm_map.pmap = NULL; 217 (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags); 218 PMAP_LOCK_INIT(vmspace_pmap(vm)); 219 return (0); 220 } 221 222 static int 223 vm_map_zinit(void *mem, int size, int flags) 224 { 225 vm_map_t map; 226 227 map = (vm_map_t)mem; 228 memset(map, 0, sizeof(*map)); 229 mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK); 230 sx_init(&map->lock, "vm map (user)"); 231 return (0); 232 } 233 234 #ifdef INVARIANTS 235 static void 236 vmspace_zdtor(void *mem, int size, void *arg) 237 { 238 struct vmspace *vm; 239 240 vm = (struct vmspace *)mem; 241 242 vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg); 243 } 244 static void 245 vm_map_zdtor(void *mem, int size, void *arg) 246 { 247 vm_map_t map; 248 249 map = (vm_map_t)mem; 250 KASSERT(map->nentries == 0, 251 ("map %p nentries == %d on free.", 252 map, map->nentries)); 253 KASSERT(map->size == 0, 254 ("map %p size == %lu on free.", 255 map, (unsigned long)map->size)); 256 } 257 #endif /* INVARIANTS */ 258 259 /* 260 * Allocate a vmspace structure, including a vm_map and pmap, 261 * and initialize those structures. The refcnt is set to 1. 262 * 263 * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit(). 264 */ 265 struct vmspace * 266 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit) 267 { 268 struct vmspace *vm; 269 270 vm = uma_zalloc(vmspace_zone, M_WAITOK); 271 272 KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL")); 273 274 if (pinit == NULL) 275 pinit = &pmap_pinit; 276 277 if (!pinit(vmspace_pmap(vm))) { 278 uma_zfree(vmspace_zone, vm); 279 return (NULL); 280 } 281 CTR1(KTR_VM, "vmspace_alloc: %p", vm); 282 _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max); 283 vm->vm_refcnt = 1; 284 vm->vm_shm = NULL; 285 vm->vm_swrss = 0; 286 vm->vm_tsize = 0; 287 vm->vm_dsize = 0; 288 vm->vm_ssize = 0; 289 vm->vm_taddr = 0; 290 vm->vm_daddr = 0; 291 vm->vm_maxsaddr = 0; 292 return (vm); 293 } 294 295 static void 296 vmspace_container_reset(struct proc *p) 297 { 298 299 #ifdef RACCT 300 PROC_LOCK(p); 301 racct_set(p, RACCT_DATA, 0); 302 racct_set(p, RACCT_STACK, 0); 303 racct_set(p, RACCT_RSS, 0); 304 racct_set(p, RACCT_MEMLOCK, 0); 305 racct_set(p, RACCT_VMEM, 0); 306 PROC_UNLOCK(p); 307 #endif 308 } 309 310 static inline void 311 vmspace_dofree(struct vmspace *vm) 312 { 313 314 CTR1(KTR_VM, "vmspace_free: %p", vm); 315 316 /* 317 * Make sure any SysV shm is freed, it might not have been in 318 * exit1(). 319 */ 320 shmexit(vm); 321 322 /* 323 * Lock the map, to wait out all other references to it. 324 * Delete all of the mappings and pages they hold, then call 325 * the pmap module to reclaim anything left. 326 */ 327 (void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset, 328 vm->vm_map.max_offset); 329 330 pmap_release(vmspace_pmap(vm)); 331 vm->vm_map.pmap = NULL; 332 uma_zfree(vmspace_zone, vm); 333 } 334 335 void 336 vmspace_free(struct vmspace *vm) 337 { 338 339 if (vm->vm_refcnt == 0) 340 panic("vmspace_free: attempt to free already freed vmspace"); 341 342 if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1) 343 vmspace_dofree(vm); 344 } 345 346 void 347 vmspace_exitfree(struct proc *p) 348 { 349 struct vmspace *vm; 350 351 PROC_VMSPACE_LOCK(p); 352 vm = p->p_vmspace; 353 p->p_vmspace = NULL; 354 PROC_VMSPACE_UNLOCK(p); 355 KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace")); 356 vmspace_free(vm); 357 } 358 359 void 360 vmspace_exit(struct thread *td) 361 { 362 int refcnt; 363 struct vmspace *vm; 364 struct proc *p; 365 366 /* 367 * Release user portion of address space. 368 * This releases references to vnodes, 369 * which could cause I/O if the file has been unlinked. 370 * Need to do this early enough that we can still sleep. 371 * 372 * The last exiting process to reach this point releases as 373 * much of the environment as it can. vmspace_dofree() is the 374 * slower fallback in case another process had a temporary 375 * reference to the vmspace. 376 */ 377 378 p = td->td_proc; 379 vm = p->p_vmspace; 380 atomic_add_int(&vmspace0.vm_refcnt, 1); 381 do { 382 refcnt = vm->vm_refcnt; 383 if (refcnt > 1 && p->p_vmspace != &vmspace0) { 384 /* Switch now since other proc might free vmspace */ 385 PROC_VMSPACE_LOCK(p); 386 p->p_vmspace = &vmspace0; 387 PROC_VMSPACE_UNLOCK(p); 388 pmap_activate(td); 389 } 390 } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1)); 391 if (refcnt == 1) { 392 if (p->p_vmspace != vm) { 393 /* vmspace not yet freed, switch back */ 394 PROC_VMSPACE_LOCK(p); 395 p->p_vmspace = vm; 396 PROC_VMSPACE_UNLOCK(p); 397 pmap_activate(td); 398 } 399 pmap_remove_pages(vmspace_pmap(vm)); 400 /* Switch now since this proc will free vmspace */ 401 PROC_VMSPACE_LOCK(p); 402 p->p_vmspace = &vmspace0; 403 PROC_VMSPACE_UNLOCK(p); 404 pmap_activate(td); 405 vmspace_dofree(vm); 406 } 407 vmspace_container_reset(p); 408 } 409 410 /* Acquire reference to vmspace owned by another process. */ 411 412 struct vmspace * 413 vmspace_acquire_ref(struct proc *p) 414 { 415 struct vmspace *vm; 416 int refcnt; 417 418 PROC_VMSPACE_LOCK(p); 419 vm = p->p_vmspace; 420 if (vm == NULL) { 421 PROC_VMSPACE_UNLOCK(p); 422 return (NULL); 423 } 424 do { 425 refcnt = vm->vm_refcnt; 426 if (refcnt <= 0) { /* Avoid 0->1 transition */ 427 PROC_VMSPACE_UNLOCK(p); 428 return (NULL); 429 } 430 } while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1)); 431 if (vm != p->p_vmspace) { 432 PROC_VMSPACE_UNLOCK(p); 433 vmspace_free(vm); 434 return (NULL); 435 } 436 PROC_VMSPACE_UNLOCK(p); 437 return (vm); 438 } 439 440 void 441 _vm_map_lock(vm_map_t map, const char *file, int line) 442 { 443 444 if (map->system_map) 445 mtx_lock_flags_(&map->system_mtx, 0, file, line); 446 else 447 sx_xlock_(&map->lock, file, line); 448 map->timestamp++; 449 } 450 451 static void 452 vm_map_process_deferred(void) 453 { 454 struct thread *td; 455 vm_map_entry_t entry, next; 456 vm_object_t object; 457 458 td = curthread; 459 entry = td->td_map_def_user; 460 td->td_map_def_user = NULL; 461 while (entry != NULL) { 462 next = entry->next; 463 if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) { 464 /* 465 * Decrement the object's writemappings and 466 * possibly the vnode's v_writecount. 467 */ 468 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 469 ("Submap with writecount")); 470 object = entry->object.vm_object; 471 KASSERT(object != NULL, ("No object for writecount")); 472 vnode_pager_release_writecount(object, entry->start, 473 entry->end); 474 } 475 vm_map_entry_deallocate(entry, FALSE); 476 entry = next; 477 } 478 } 479 480 void 481 _vm_map_unlock(vm_map_t map, const char *file, int line) 482 { 483 484 if (map->system_map) 485 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 486 else { 487 sx_xunlock_(&map->lock, file, line); 488 vm_map_process_deferred(); 489 } 490 } 491 492 void 493 _vm_map_lock_read(vm_map_t map, const char *file, int line) 494 { 495 496 if (map->system_map) 497 mtx_lock_flags_(&map->system_mtx, 0, file, line); 498 else 499 sx_slock_(&map->lock, file, line); 500 } 501 502 void 503 _vm_map_unlock_read(vm_map_t map, const char *file, int line) 504 { 505 506 if (map->system_map) 507 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 508 else { 509 sx_sunlock_(&map->lock, file, line); 510 vm_map_process_deferred(); 511 } 512 } 513 514 int 515 _vm_map_trylock(vm_map_t map, const char *file, int line) 516 { 517 int error; 518 519 error = map->system_map ? 520 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 521 !sx_try_xlock_(&map->lock, file, line); 522 if (error == 0) 523 map->timestamp++; 524 return (error == 0); 525 } 526 527 int 528 _vm_map_trylock_read(vm_map_t map, const char *file, int line) 529 { 530 int error; 531 532 error = map->system_map ? 533 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 534 !sx_try_slock_(&map->lock, file, line); 535 return (error == 0); 536 } 537 538 /* 539 * _vm_map_lock_upgrade: [ internal use only ] 540 * 541 * Tries to upgrade a read (shared) lock on the specified map to a write 542 * (exclusive) lock. Returns the value "0" if the upgrade succeeds and a 543 * non-zero value if the upgrade fails. If the upgrade fails, the map is 544 * returned without a read or write lock held. 545 * 546 * Requires that the map be read locked. 547 */ 548 int 549 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line) 550 { 551 unsigned int last_timestamp; 552 553 if (map->system_map) { 554 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 555 } else { 556 if (!sx_try_upgrade_(&map->lock, file, line)) { 557 last_timestamp = map->timestamp; 558 sx_sunlock_(&map->lock, file, line); 559 vm_map_process_deferred(); 560 /* 561 * If the map's timestamp does not change while the 562 * map is unlocked, then the upgrade succeeds. 563 */ 564 sx_xlock_(&map->lock, file, line); 565 if (last_timestamp != map->timestamp) { 566 sx_xunlock_(&map->lock, file, line); 567 return (1); 568 } 569 } 570 } 571 map->timestamp++; 572 return (0); 573 } 574 575 void 576 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line) 577 { 578 579 if (map->system_map) { 580 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 581 } else 582 sx_downgrade_(&map->lock, file, line); 583 } 584 585 /* 586 * vm_map_locked: 587 * 588 * Returns a non-zero value if the caller holds a write (exclusive) lock 589 * on the specified map and the value "0" otherwise. 590 */ 591 int 592 vm_map_locked(vm_map_t map) 593 { 594 595 if (map->system_map) 596 return (mtx_owned(&map->system_mtx)); 597 else 598 return (sx_xlocked(&map->lock)); 599 } 600 601 #ifdef INVARIANTS 602 static void 603 _vm_map_assert_locked(vm_map_t map, const char *file, int line) 604 { 605 606 if (map->system_map) 607 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 608 else 609 sx_assert_(&map->lock, SA_XLOCKED, file, line); 610 } 611 612 #define VM_MAP_ASSERT_LOCKED(map) \ 613 _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE) 614 #else 615 #define VM_MAP_ASSERT_LOCKED(map) 616 #endif 617 618 /* 619 * _vm_map_unlock_and_wait: 620 * 621 * Atomically releases the lock on the specified map and puts the calling 622 * thread to sleep. The calling thread will remain asleep until either 623 * vm_map_wakeup() is performed on the map or the specified timeout is 624 * exceeded. 625 * 626 * WARNING! This function does not perform deferred deallocations of 627 * objects and map entries. Therefore, the calling thread is expected to 628 * reacquire the map lock after reawakening and later perform an ordinary 629 * unlock operation, such as vm_map_unlock(), before completing its 630 * operation on the map. 631 */ 632 int 633 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line) 634 { 635 636 mtx_lock(&map_sleep_mtx); 637 if (map->system_map) 638 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 639 else 640 sx_xunlock_(&map->lock, file, line); 641 return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps", 642 timo)); 643 } 644 645 /* 646 * vm_map_wakeup: 647 * 648 * Awaken any threads that have slept on the map using 649 * vm_map_unlock_and_wait(). 650 */ 651 void 652 vm_map_wakeup(vm_map_t map) 653 { 654 655 /* 656 * Acquire and release map_sleep_mtx to prevent a wakeup() 657 * from being performed (and lost) between the map unlock 658 * and the msleep() in _vm_map_unlock_and_wait(). 659 */ 660 mtx_lock(&map_sleep_mtx); 661 mtx_unlock(&map_sleep_mtx); 662 wakeup(&map->root); 663 } 664 665 void 666 vm_map_busy(vm_map_t map) 667 { 668 669 VM_MAP_ASSERT_LOCKED(map); 670 map->busy++; 671 } 672 673 void 674 vm_map_unbusy(vm_map_t map) 675 { 676 677 VM_MAP_ASSERT_LOCKED(map); 678 KASSERT(map->busy, ("vm_map_unbusy: not busy")); 679 if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) { 680 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP); 681 wakeup(&map->busy); 682 } 683 } 684 685 void 686 vm_map_wait_busy(vm_map_t map) 687 { 688 689 VM_MAP_ASSERT_LOCKED(map); 690 while (map->busy) { 691 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0); 692 if (map->system_map) 693 msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0); 694 else 695 sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0); 696 } 697 map->timestamp++; 698 } 699 700 long 701 vmspace_resident_count(struct vmspace *vmspace) 702 { 703 return pmap_resident_count(vmspace_pmap(vmspace)); 704 } 705 706 /* 707 * vm_map_create: 708 * 709 * Creates and returns a new empty VM map with 710 * the given physical map structure, and having 711 * the given lower and upper address bounds. 712 */ 713 vm_map_t 714 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max) 715 { 716 vm_map_t result; 717 718 result = uma_zalloc(mapzone, M_WAITOK); 719 CTR1(KTR_VM, "vm_map_create: %p", result); 720 _vm_map_init(result, pmap, min, max); 721 return (result); 722 } 723 724 /* 725 * Initialize an existing vm_map structure 726 * such as that in the vmspace structure. 727 */ 728 static void 729 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 730 { 731 732 map->header.next = map->header.prev = &map->header; 733 map->needs_wakeup = FALSE; 734 map->system_map = 0; 735 map->pmap = pmap; 736 map->min_offset = min; 737 map->max_offset = max; 738 map->flags = 0; 739 map->root = NULL; 740 map->timestamp = 0; 741 map->busy = 0; 742 } 743 744 void 745 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 746 { 747 748 _vm_map_init(map, pmap, min, max); 749 mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK); 750 sx_init(&map->lock, "user map"); 751 } 752 753 /* 754 * vm_map_entry_dispose: [ internal use only ] 755 * 756 * Inverse of vm_map_entry_create. 757 */ 758 static void 759 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry) 760 { 761 uma_zfree(map->system_map ? kmapentzone : mapentzone, entry); 762 } 763 764 /* 765 * vm_map_entry_create: [ internal use only ] 766 * 767 * Allocates a VM map entry for insertion. 768 * No entry fields are filled in. 769 */ 770 static vm_map_entry_t 771 vm_map_entry_create(vm_map_t map) 772 { 773 vm_map_entry_t new_entry; 774 775 if (map->system_map) 776 new_entry = uma_zalloc(kmapentzone, M_NOWAIT); 777 else 778 new_entry = uma_zalloc(mapentzone, M_WAITOK); 779 if (new_entry == NULL) 780 panic("vm_map_entry_create: kernel resources exhausted"); 781 return (new_entry); 782 } 783 784 /* 785 * vm_map_entry_set_behavior: 786 * 787 * Set the expected access behavior, either normal, random, or 788 * sequential. 789 */ 790 static inline void 791 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior) 792 { 793 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) | 794 (behavior & MAP_ENTRY_BEHAV_MASK); 795 } 796 797 /* 798 * vm_map_entry_set_max_free: 799 * 800 * Set the max_free field in a vm_map_entry. 801 */ 802 static inline void 803 vm_map_entry_set_max_free(vm_map_entry_t entry) 804 { 805 806 entry->max_free = entry->adj_free; 807 if (entry->left != NULL && entry->left->max_free > entry->max_free) 808 entry->max_free = entry->left->max_free; 809 if (entry->right != NULL && entry->right->max_free > entry->max_free) 810 entry->max_free = entry->right->max_free; 811 } 812 813 /* 814 * vm_map_entry_splay: 815 * 816 * The Sleator and Tarjan top-down splay algorithm with the 817 * following variation. Max_free must be computed bottom-up, so 818 * on the downward pass, maintain the left and right spines in 819 * reverse order. Then, make a second pass up each side to fix 820 * the pointers and compute max_free. The time bound is O(log n) 821 * amortized. 822 * 823 * The new root is the vm_map_entry containing "addr", or else an 824 * adjacent entry (lower or higher) if addr is not in the tree. 825 * 826 * The map must be locked, and leaves it so. 827 * 828 * Returns: the new root. 829 */ 830 static vm_map_entry_t 831 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root) 832 { 833 vm_map_entry_t llist, rlist; 834 vm_map_entry_t ltree, rtree; 835 vm_map_entry_t y; 836 837 /* Special case of empty tree. */ 838 if (root == NULL) 839 return (root); 840 841 /* 842 * Pass One: Splay down the tree until we find addr or a NULL 843 * pointer where addr would go. llist and rlist are the two 844 * sides in reverse order (bottom-up), with llist linked by 845 * the right pointer and rlist linked by the left pointer in 846 * the vm_map_entry. Wait until Pass Two to set max_free on 847 * the two spines. 848 */ 849 llist = NULL; 850 rlist = NULL; 851 for (;;) { 852 /* root is never NULL in here. */ 853 if (addr < root->start) { 854 y = root->left; 855 if (y == NULL) 856 break; 857 if (addr < y->start && y->left != NULL) { 858 /* Rotate right and put y on rlist. */ 859 root->left = y->right; 860 y->right = root; 861 vm_map_entry_set_max_free(root); 862 root = y->left; 863 y->left = rlist; 864 rlist = y; 865 } else { 866 /* Put root on rlist. */ 867 root->left = rlist; 868 rlist = root; 869 root = y; 870 } 871 } else if (addr >= root->end) { 872 y = root->right; 873 if (y == NULL) 874 break; 875 if (addr >= y->end && y->right != NULL) { 876 /* Rotate left and put y on llist. */ 877 root->right = y->left; 878 y->left = root; 879 vm_map_entry_set_max_free(root); 880 root = y->right; 881 y->right = llist; 882 llist = y; 883 } else { 884 /* Put root on llist. */ 885 root->right = llist; 886 llist = root; 887 root = y; 888 } 889 } else 890 break; 891 } 892 893 /* 894 * Pass Two: Walk back up the two spines, flip the pointers 895 * and set max_free. The subtrees of the root go at the 896 * bottom of llist and rlist. 897 */ 898 ltree = root->left; 899 while (llist != NULL) { 900 y = llist->right; 901 llist->right = ltree; 902 vm_map_entry_set_max_free(llist); 903 ltree = llist; 904 llist = y; 905 } 906 rtree = root->right; 907 while (rlist != NULL) { 908 y = rlist->left; 909 rlist->left = rtree; 910 vm_map_entry_set_max_free(rlist); 911 rtree = rlist; 912 rlist = y; 913 } 914 915 /* 916 * Final assembly: add ltree and rtree as subtrees of root. 917 */ 918 root->left = ltree; 919 root->right = rtree; 920 vm_map_entry_set_max_free(root); 921 922 return (root); 923 } 924 925 /* 926 * vm_map_entry_{un,}link: 927 * 928 * Insert/remove entries from maps. 929 */ 930 static void 931 vm_map_entry_link(vm_map_t map, 932 vm_map_entry_t after_where, 933 vm_map_entry_t entry) 934 { 935 936 CTR4(KTR_VM, 937 "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map, 938 map->nentries, entry, after_where); 939 VM_MAP_ASSERT_LOCKED(map); 940 map->nentries++; 941 entry->prev = after_where; 942 entry->next = after_where->next; 943 entry->next->prev = entry; 944 after_where->next = entry; 945 946 if (after_where != &map->header) { 947 if (after_where != map->root) 948 vm_map_entry_splay(after_where->start, map->root); 949 entry->right = after_where->right; 950 entry->left = after_where; 951 after_where->right = NULL; 952 after_where->adj_free = entry->start - after_where->end; 953 vm_map_entry_set_max_free(after_where); 954 } else { 955 entry->right = map->root; 956 entry->left = NULL; 957 } 958 entry->adj_free = (entry->next == &map->header ? map->max_offset : 959 entry->next->start) - entry->end; 960 vm_map_entry_set_max_free(entry); 961 map->root = entry; 962 } 963 964 static void 965 vm_map_entry_unlink(vm_map_t map, 966 vm_map_entry_t entry) 967 { 968 vm_map_entry_t next, prev, root; 969 970 VM_MAP_ASSERT_LOCKED(map); 971 if (entry != map->root) 972 vm_map_entry_splay(entry->start, map->root); 973 if (entry->left == NULL) 974 root = entry->right; 975 else { 976 root = vm_map_entry_splay(entry->start, entry->left); 977 root->right = entry->right; 978 root->adj_free = (entry->next == &map->header ? map->max_offset : 979 entry->next->start) - root->end; 980 vm_map_entry_set_max_free(root); 981 } 982 map->root = root; 983 984 prev = entry->prev; 985 next = entry->next; 986 next->prev = prev; 987 prev->next = next; 988 map->nentries--; 989 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map, 990 map->nentries, entry); 991 } 992 993 /* 994 * vm_map_entry_resize_free: 995 * 996 * Recompute the amount of free space following a vm_map_entry 997 * and propagate that value up the tree. Call this function after 998 * resizing a map entry in-place, that is, without a call to 999 * vm_map_entry_link() or _unlink(). 1000 * 1001 * The map must be locked, and leaves it so. 1002 */ 1003 static void 1004 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry) 1005 { 1006 1007 /* 1008 * Using splay trees without parent pointers, propagating 1009 * max_free up the tree is done by moving the entry to the 1010 * root and making the change there. 1011 */ 1012 if (entry != map->root) 1013 map->root = vm_map_entry_splay(entry->start, map->root); 1014 1015 entry->adj_free = (entry->next == &map->header ? map->max_offset : 1016 entry->next->start) - entry->end; 1017 vm_map_entry_set_max_free(entry); 1018 } 1019 1020 /* 1021 * vm_map_lookup_entry: [ internal use only ] 1022 * 1023 * Finds the map entry containing (or 1024 * immediately preceding) the specified address 1025 * in the given map; the entry is returned 1026 * in the "entry" parameter. The boolean 1027 * result indicates whether the address is 1028 * actually contained in the map. 1029 */ 1030 boolean_t 1031 vm_map_lookup_entry( 1032 vm_map_t map, 1033 vm_offset_t address, 1034 vm_map_entry_t *entry) /* OUT */ 1035 { 1036 vm_map_entry_t cur; 1037 boolean_t locked; 1038 1039 /* 1040 * If the map is empty, then the map entry immediately preceding 1041 * "address" is the map's header. 1042 */ 1043 cur = map->root; 1044 if (cur == NULL) 1045 *entry = &map->header; 1046 else if (address >= cur->start && cur->end > address) { 1047 *entry = cur; 1048 return (TRUE); 1049 } else if ((locked = vm_map_locked(map)) || 1050 sx_try_upgrade(&map->lock)) { 1051 /* 1052 * Splay requires a write lock on the map. However, it only 1053 * restructures the binary search tree; it does not otherwise 1054 * change the map. Thus, the map's timestamp need not change 1055 * on a temporary upgrade. 1056 */ 1057 map->root = cur = vm_map_entry_splay(address, cur); 1058 if (!locked) 1059 sx_downgrade(&map->lock); 1060 1061 /* 1062 * If "address" is contained within a map entry, the new root 1063 * is that map entry. Otherwise, the new root is a map entry 1064 * immediately before or after "address". 1065 */ 1066 if (address >= cur->start) { 1067 *entry = cur; 1068 if (cur->end > address) 1069 return (TRUE); 1070 } else 1071 *entry = cur->prev; 1072 } else 1073 /* 1074 * Since the map is only locked for read access, perform a 1075 * standard binary search tree lookup for "address". 1076 */ 1077 for (;;) { 1078 if (address < cur->start) { 1079 if (cur->left == NULL) { 1080 *entry = cur->prev; 1081 break; 1082 } 1083 cur = cur->left; 1084 } else if (cur->end > address) { 1085 *entry = cur; 1086 return (TRUE); 1087 } else { 1088 if (cur->right == NULL) { 1089 *entry = cur; 1090 break; 1091 } 1092 cur = cur->right; 1093 } 1094 } 1095 return (FALSE); 1096 } 1097 1098 /* 1099 * vm_map_insert: 1100 * 1101 * Inserts the given whole VM object into the target 1102 * map at the specified address range. The object's 1103 * size should match that of the address range. 1104 * 1105 * Requires that the map be locked, and leaves it so. 1106 * 1107 * If object is non-NULL, ref count must be bumped by caller 1108 * prior to making call to account for the new entry. 1109 */ 1110 int 1111 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1112 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, 1113 int cow) 1114 { 1115 vm_map_entry_t new_entry; 1116 vm_map_entry_t prev_entry; 1117 vm_map_entry_t temp_entry; 1118 vm_eflags_t protoeflags; 1119 struct ucred *cred; 1120 vm_inherit_t inheritance; 1121 boolean_t charge_prev_obj; 1122 1123 VM_MAP_ASSERT_LOCKED(map); 1124 1125 /* 1126 * Check that the start and end points are not bogus. 1127 */ 1128 if ((start < map->min_offset) || (end > map->max_offset) || 1129 (start >= end)) 1130 return (KERN_INVALID_ADDRESS); 1131 1132 /* 1133 * Find the entry prior to the proposed starting address; if it's part 1134 * of an existing entry, this range is bogus. 1135 */ 1136 if (vm_map_lookup_entry(map, start, &temp_entry)) 1137 return (KERN_NO_SPACE); 1138 1139 prev_entry = temp_entry; 1140 1141 /* 1142 * Assert that the next entry doesn't overlap the end point. 1143 */ 1144 if ((prev_entry->next != &map->header) && 1145 (prev_entry->next->start < end)) 1146 return (KERN_NO_SPACE); 1147 1148 protoeflags = 0; 1149 charge_prev_obj = FALSE; 1150 1151 if (cow & MAP_COPY_ON_WRITE) 1152 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY; 1153 1154 if (cow & MAP_NOFAULT) { 1155 protoeflags |= MAP_ENTRY_NOFAULT; 1156 1157 KASSERT(object == NULL, 1158 ("vm_map_insert: paradoxical MAP_NOFAULT request")); 1159 } 1160 if (cow & MAP_DISABLE_SYNCER) 1161 protoeflags |= MAP_ENTRY_NOSYNC; 1162 if (cow & MAP_DISABLE_COREDUMP) 1163 protoeflags |= MAP_ENTRY_NOCOREDUMP; 1164 if (cow & MAP_VN_WRITECOUNT) 1165 protoeflags |= MAP_ENTRY_VN_WRITECNT; 1166 if (cow & MAP_INHERIT_SHARE) 1167 inheritance = VM_INHERIT_SHARE; 1168 else 1169 inheritance = VM_INHERIT_DEFAULT; 1170 1171 cred = NULL; 1172 KASSERT((object != kmem_object && object != kernel_object) || 1173 ((object == kmem_object || object == kernel_object) && 1174 !(protoeflags & MAP_ENTRY_NEEDS_COPY)), 1175 ("kmem or kernel object and cow")); 1176 if (cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT)) 1177 goto charged; 1178 if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) && 1179 ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) { 1180 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start)) 1181 return (KERN_RESOURCE_SHORTAGE); 1182 KASSERT(object == NULL || (protoeflags & MAP_ENTRY_NEEDS_COPY) || 1183 object->cred == NULL, 1184 ("OVERCOMMIT: vm_map_insert o %p", object)); 1185 cred = curthread->td_ucred; 1186 crhold(cred); 1187 if (object == NULL && !(protoeflags & MAP_ENTRY_NEEDS_COPY)) 1188 charge_prev_obj = TRUE; 1189 } 1190 1191 charged: 1192 /* Expand the kernel pmap, if necessary. */ 1193 if (map == kernel_map && end > kernel_vm_end) 1194 pmap_growkernel(end); 1195 if (object != NULL) { 1196 /* 1197 * OBJ_ONEMAPPING must be cleared unless this mapping 1198 * is trivially proven to be the only mapping for any 1199 * of the object's pages. (Object granularity 1200 * reference counting is insufficient to recognize 1201 * aliases with precision.) 1202 */ 1203 VM_OBJECT_WLOCK(object); 1204 if (object->ref_count > 1 || object->shadow_count != 0) 1205 vm_object_clear_flag(object, OBJ_ONEMAPPING); 1206 VM_OBJECT_WUNLOCK(object); 1207 } 1208 else if ((prev_entry != &map->header) && 1209 (prev_entry->eflags == protoeflags) && 1210 (cow & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) == 0 && 1211 (prev_entry->end == start) && 1212 (prev_entry->wired_count == 0) && 1213 (prev_entry->cred == cred || 1214 (prev_entry->object.vm_object != NULL && 1215 (prev_entry->object.vm_object->cred == cred))) && 1216 vm_object_coalesce(prev_entry->object.vm_object, 1217 prev_entry->offset, 1218 (vm_size_t)(prev_entry->end - prev_entry->start), 1219 (vm_size_t)(end - prev_entry->end), charge_prev_obj)) { 1220 /* 1221 * We were able to extend the object. Determine if we 1222 * can extend the previous map entry to include the 1223 * new range as well. 1224 */ 1225 if ((prev_entry->inheritance == inheritance) && 1226 (prev_entry->protection == prot) && 1227 (prev_entry->max_protection == max)) { 1228 map->size += (end - prev_entry->end); 1229 prev_entry->end = end; 1230 vm_map_entry_resize_free(map, prev_entry); 1231 vm_map_simplify_entry(map, prev_entry); 1232 if (cred != NULL) 1233 crfree(cred); 1234 return (KERN_SUCCESS); 1235 } 1236 1237 /* 1238 * If we can extend the object but cannot extend the 1239 * map entry, we have to create a new map entry. We 1240 * must bump the ref count on the extended object to 1241 * account for it. object may be NULL. 1242 */ 1243 object = prev_entry->object.vm_object; 1244 offset = prev_entry->offset + 1245 (prev_entry->end - prev_entry->start); 1246 vm_object_reference(object); 1247 if (cred != NULL && object != NULL && object->cred != NULL && 1248 !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 1249 /* Object already accounts for this uid. */ 1250 crfree(cred); 1251 cred = NULL; 1252 } 1253 } 1254 1255 /* 1256 * NOTE: if conditionals fail, object can be NULL here. This occurs 1257 * in things like the buffer map where we manage kva but do not manage 1258 * backing objects. 1259 */ 1260 1261 /* 1262 * Create a new entry 1263 */ 1264 new_entry = vm_map_entry_create(map); 1265 new_entry->start = start; 1266 new_entry->end = end; 1267 new_entry->cred = NULL; 1268 1269 new_entry->eflags = protoeflags; 1270 new_entry->object.vm_object = object; 1271 new_entry->offset = offset; 1272 new_entry->avail_ssize = 0; 1273 1274 new_entry->inheritance = inheritance; 1275 new_entry->protection = prot; 1276 new_entry->max_protection = max; 1277 new_entry->wired_count = 0; 1278 new_entry->wiring_thread = NULL; 1279 new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT; 1280 new_entry->next_read = OFF_TO_IDX(offset); 1281 1282 KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry), 1283 ("OVERCOMMIT: vm_map_insert leaks vm_map %p", new_entry)); 1284 new_entry->cred = cred; 1285 1286 /* 1287 * Insert the new entry into the list 1288 */ 1289 vm_map_entry_link(map, prev_entry, new_entry); 1290 map->size += new_entry->end - new_entry->start; 1291 1292 /* 1293 * It may be possible to merge the new entry with the next and/or 1294 * previous entries. However, due to MAP_STACK_* being a hack, a 1295 * panic can result from merging such entries. 1296 */ 1297 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0) 1298 vm_map_simplify_entry(map, new_entry); 1299 1300 if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) { 1301 vm_map_pmap_enter(map, start, prot, 1302 object, OFF_TO_IDX(offset), end - start, 1303 cow & MAP_PREFAULT_PARTIAL); 1304 } 1305 1306 return (KERN_SUCCESS); 1307 } 1308 1309 /* 1310 * vm_map_findspace: 1311 * 1312 * Find the first fit (lowest VM address) for "length" free bytes 1313 * beginning at address >= start in the given map. 1314 * 1315 * In a vm_map_entry, "adj_free" is the amount of free space 1316 * adjacent (higher address) to this entry, and "max_free" is the 1317 * maximum amount of contiguous free space in its subtree. This 1318 * allows finding a free region in one path down the tree, so 1319 * O(log n) amortized with splay trees. 1320 * 1321 * The map must be locked, and leaves it so. 1322 * 1323 * Returns: 0 on success, and starting address in *addr, 1324 * 1 if insufficient space. 1325 */ 1326 int 1327 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length, 1328 vm_offset_t *addr) /* OUT */ 1329 { 1330 vm_map_entry_t entry; 1331 vm_offset_t st; 1332 1333 /* 1334 * Request must fit within min/max VM address and must avoid 1335 * address wrap. 1336 */ 1337 if (start < map->min_offset) 1338 start = map->min_offset; 1339 if (start + length > map->max_offset || start + length < start) 1340 return (1); 1341 1342 /* Empty tree means wide open address space. */ 1343 if (map->root == NULL) { 1344 *addr = start; 1345 return (0); 1346 } 1347 1348 /* 1349 * After splay, if start comes before root node, then there 1350 * must be a gap from start to the root. 1351 */ 1352 map->root = vm_map_entry_splay(start, map->root); 1353 if (start + length <= map->root->start) { 1354 *addr = start; 1355 return (0); 1356 } 1357 1358 /* 1359 * Root is the last node that might begin its gap before 1360 * start, and this is the last comparison where address 1361 * wrap might be a problem. 1362 */ 1363 st = (start > map->root->end) ? start : map->root->end; 1364 if (length <= map->root->end + map->root->adj_free - st) { 1365 *addr = st; 1366 return (0); 1367 } 1368 1369 /* With max_free, can immediately tell if no solution. */ 1370 entry = map->root->right; 1371 if (entry == NULL || length > entry->max_free) 1372 return (1); 1373 1374 /* 1375 * Search the right subtree in the order: left subtree, root, 1376 * right subtree (first fit). The previous splay implies that 1377 * all regions in the right subtree have addresses > start. 1378 */ 1379 while (entry != NULL) { 1380 if (entry->left != NULL && entry->left->max_free >= length) 1381 entry = entry->left; 1382 else if (entry->adj_free >= length) { 1383 *addr = entry->end; 1384 return (0); 1385 } else 1386 entry = entry->right; 1387 } 1388 1389 /* Can't get here, so panic if we do. */ 1390 panic("vm_map_findspace: max_free corrupt"); 1391 } 1392 1393 int 1394 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1395 vm_offset_t start, vm_size_t length, vm_prot_t prot, 1396 vm_prot_t max, int cow) 1397 { 1398 vm_offset_t end; 1399 int result; 1400 1401 end = start + length; 1402 vm_map_lock(map); 1403 VM_MAP_RANGE_CHECK(map, start, end); 1404 (void) vm_map_delete(map, start, end); 1405 result = vm_map_insert(map, object, offset, start, end, prot, 1406 max, cow); 1407 vm_map_unlock(map); 1408 return (result); 1409 } 1410 1411 /* 1412 * vm_map_find finds an unallocated region in the target address 1413 * map with the given length. The search is defined to be 1414 * first-fit from the specified address; the region found is 1415 * returned in the same parameter. 1416 * 1417 * If object is non-NULL, ref count must be bumped by caller 1418 * prior to making call to account for the new entry. 1419 */ 1420 int 1421 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1422 vm_offset_t *addr, /* IN/OUT */ 1423 vm_size_t length, vm_offset_t max_addr, int find_space, 1424 vm_prot_t prot, vm_prot_t max, int cow) 1425 { 1426 vm_offset_t alignment, initial_addr, start; 1427 int result; 1428 1429 if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL || 1430 (object->flags & OBJ_COLORED) == 0)) 1431 find_space = VMFS_ANY_SPACE; 1432 if (find_space >> 8 != 0) { 1433 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags")); 1434 alignment = (vm_offset_t)1 << (find_space >> 8); 1435 } else 1436 alignment = 0; 1437 initial_addr = *addr; 1438 again: 1439 start = initial_addr; 1440 vm_map_lock(map); 1441 do { 1442 if (find_space != VMFS_NO_SPACE) { 1443 if (vm_map_findspace(map, start, length, addr) || 1444 (max_addr != 0 && *addr + length > max_addr)) { 1445 vm_map_unlock(map); 1446 if (find_space == VMFS_OPTIMAL_SPACE) { 1447 find_space = VMFS_ANY_SPACE; 1448 goto again; 1449 } 1450 return (KERN_NO_SPACE); 1451 } 1452 switch (find_space) { 1453 case VMFS_SUPER_SPACE: 1454 case VMFS_OPTIMAL_SPACE: 1455 pmap_align_superpage(object, offset, addr, 1456 length); 1457 break; 1458 case VMFS_ANY_SPACE: 1459 break; 1460 default: 1461 if ((*addr & (alignment - 1)) != 0) { 1462 *addr &= ~(alignment - 1); 1463 *addr += alignment; 1464 } 1465 break; 1466 } 1467 1468 start = *addr; 1469 } 1470 result = vm_map_insert(map, object, offset, start, start + 1471 length, prot, max, cow); 1472 } while (result == KERN_NO_SPACE && find_space != VMFS_NO_SPACE && 1473 find_space != VMFS_ANY_SPACE); 1474 vm_map_unlock(map); 1475 return (result); 1476 } 1477 1478 /* 1479 * vm_map_simplify_entry: 1480 * 1481 * Simplify the given map entry by merging with either neighbor. This 1482 * routine also has the ability to merge with both neighbors. 1483 * 1484 * The map must be locked. 1485 * 1486 * This routine guarentees that the passed entry remains valid (though 1487 * possibly extended). When merging, this routine may delete one or 1488 * both neighbors. 1489 */ 1490 void 1491 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry) 1492 { 1493 vm_map_entry_t next, prev; 1494 vm_size_t prevsize, esize; 1495 1496 if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) 1497 return; 1498 1499 prev = entry->prev; 1500 if (prev != &map->header) { 1501 prevsize = prev->end - prev->start; 1502 if ( (prev->end == entry->start) && 1503 (prev->object.vm_object == entry->object.vm_object) && 1504 (!prev->object.vm_object || 1505 (prev->offset + prevsize == entry->offset)) && 1506 (prev->eflags == entry->eflags) && 1507 (prev->protection == entry->protection) && 1508 (prev->max_protection == entry->max_protection) && 1509 (prev->inheritance == entry->inheritance) && 1510 (prev->wired_count == entry->wired_count) && 1511 (prev->cred == entry->cred)) { 1512 vm_map_entry_unlink(map, prev); 1513 entry->start = prev->start; 1514 entry->offset = prev->offset; 1515 if (entry->prev != &map->header) 1516 vm_map_entry_resize_free(map, entry->prev); 1517 1518 /* 1519 * If the backing object is a vnode object, 1520 * vm_object_deallocate() calls vrele(). 1521 * However, vrele() does not lock the vnode 1522 * because the vnode has additional 1523 * references. Thus, the map lock can be kept 1524 * without causing a lock-order reversal with 1525 * the vnode lock. 1526 * 1527 * Since we count the number of virtual page 1528 * mappings in object->un_pager.vnp.writemappings, 1529 * the writemappings value should not be adjusted 1530 * when the entry is disposed of. 1531 */ 1532 if (prev->object.vm_object) 1533 vm_object_deallocate(prev->object.vm_object); 1534 if (prev->cred != NULL) 1535 crfree(prev->cred); 1536 vm_map_entry_dispose(map, prev); 1537 } 1538 } 1539 1540 next = entry->next; 1541 if (next != &map->header) { 1542 esize = entry->end - entry->start; 1543 if ((entry->end == next->start) && 1544 (next->object.vm_object == entry->object.vm_object) && 1545 (!entry->object.vm_object || 1546 (entry->offset + esize == next->offset)) && 1547 (next->eflags == entry->eflags) && 1548 (next->protection == entry->protection) && 1549 (next->max_protection == entry->max_protection) && 1550 (next->inheritance == entry->inheritance) && 1551 (next->wired_count == entry->wired_count) && 1552 (next->cred == entry->cred)) { 1553 vm_map_entry_unlink(map, next); 1554 entry->end = next->end; 1555 vm_map_entry_resize_free(map, entry); 1556 1557 /* 1558 * See comment above. 1559 */ 1560 if (next->object.vm_object) 1561 vm_object_deallocate(next->object.vm_object); 1562 if (next->cred != NULL) 1563 crfree(next->cred); 1564 vm_map_entry_dispose(map, next); 1565 } 1566 } 1567 } 1568 /* 1569 * vm_map_clip_start: [ internal use only ] 1570 * 1571 * Asserts that the given entry begins at or after 1572 * the specified address; if necessary, 1573 * it splits the entry into two. 1574 */ 1575 #define vm_map_clip_start(map, entry, startaddr) \ 1576 { \ 1577 if (startaddr > entry->start) \ 1578 _vm_map_clip_start(map, entry, startaddr); \ 1579 } 1580 1581 /* 1582 * This routine is called only when it is known that 1583 * the entry must be split. 1584 */ 1585 static void 1586 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start) 1587 { 1588 vm_map_entry_t new_entry; 1589 1590 VM_MAP_ASSERT_LOCKED(map); 1591 1592 /* 1593 * Split off the front portion -- note that we must insert the new 1594 * entry BEFORE this one, so that this entry has the specified 1595 * starting address. 1596 */ 1597 vm_map_simplify_entry(map, entry); 1598 1599 /* 1600 * If there is no object backing this entry, we might as well create 1601 * one now. If we defer it, an object can get created after the map 1602 * is clipped, and individual objects will be created for the split-up 1603 * map. This is a bit of a hack, but is also about the best place to 1604 * put this improvement. 1605 */ 1606 if (entry->object.vm_object == NULL && !map->system_map) { 1607 vm_object_t object; 1608 object = vm_object_allocate(OBJT_DEFAULT, 1609 atop(entry->end - entry->start)); 1610 entry->object.vm_object = object; 1611 entry->offset = 0; 1612 if (entry->cred != NULL) { 1613 object->cred = entry->cred; 1614 object->charge = entry->end - entry->start; 1615 entry->cred = NULL; 1616 } 1617 } else if (entry->object.vm_object != NULL && 1618 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 1619 entry->cred != NULL) { 1620 VM_OBJECT_WLOCK(entry->object.vm_object); 1621 KASSERT(entry->object.vm_object->cred == NULL, 1622 ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry)); 1623 entry->object.vm_object->cred = entry->cred; 1624 entry->object.vm_object->charge = entry->end - entry->start; 1625 VM_OBJECT_WUNLOCK(entry->object.vm_object); 1626 entry->cred = NULL; 1627 } 1628 1629 new_entry = vm_map_entry_create(map); 1630 *new_entry = *entry; 1631 1632 new_entry->end = start; 1633 entry->offset += (start - entry->start); 1634 entry->start = start; 1635 if (new_entry->cred != NULL) 1636 crhold(entry->cred); 1637 1638 vm_map_entry_link(map, entry->prev, new_entry); 1639 1640 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1641 vm_object_reference(new_entry->object.vm_object); 1642 /* 1643 * The object->un_pager.vnp.writemappings for the 1644 * object of MAP_ENTRY_VN_WRITECNT type entry shall be 1645 * kept as is here. The virtual pages are 1646 * re-distributed among the clipped entries, so the sum is 1647 * left the same. 1648 */ 1649 } 1650 } 1651 1652 /* 1653 * vm_map_clip_end: [ internal use only ] 1654 * 1655 * Asserts that the given entry ends at or before 1656 * the specified address; if necessary, 1657 * it splits the entry into two. 1658 */ 1659 #define vm_map_clip_end(map, entry, endaddr) \ 1660 { \ 1661 if ((endaddr) < (entry->end)) \ 1662 _vm_map_clip_end((map), (entry), (endaddr)); \ 1663 } 1664 1665 /* 1666 * This routine is called only when it is known that 1667 * the entry must be split. 1668 */ 1669 static void 1670 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end) 1671 { 1672 vm_map_entry_t new_entry; 1673 1674 VM_MAP_ASSERT_LOCKED(map); 1675 1676 /* 1677 * If there is no object backing this entry, we might as well create 1678 * one now. If we defer it, an object can get created after the map 1679 * is clipped, and individual objects will be created for the split-up 1680 * map. This is a bit of a hack, but is also about the best place to 1681 * put this improvement. 1682 */ 1683 if (entry->object.vm_object == NULL && !map->system_map) { 1684 vm_object_t object; 1685 object = vm_object_allocate(OBJT_DEFAULT, 1686 atop(entry->end - entry->start)); 1687 entry->object.vm_object = object; 1688 entry->offset = 0; 1689 if (entry->cred != NULL) { 1690 object->cred = entry->cred; 1691 object->charge = entry->end - entry->start; 1692 entry->cred = NULL; 1693 } 1694 } else if (entry->object.vm_object != NULL && 1695 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 1696 entry->cred != NULL) { 1697 VM_OBJECT_WLOCK(entry->object.vm_object); 1698 KASSERT(entry->object.vm_object->cred == NULL, 1699 ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry)); 1700 entry->object.vm_object->cred = entry->cred; 1701 entry->object.vm_object->charge = entry->end - entry->start; 1702 VM_OBJECT_WUNLOCK(entry->object.vm_object); 1703 entry->cred = NULL; 1704 } 1705 1706 /* 1707 * Create a new entry and insert it AFTER the specified entry 1708 */ 1709 new_entry = vm_map_entry_create(map); 1710 *new_entry = *entry; 1711 1712 new_entry->start = entry->end = end; 1713 new_entry->offset += (end - entry->start); 1714 if (new_entry->cred != NULL) 1715 crhold(entry->cred); 1716 1717 vm_map_entry_link(map, entry, new_entry); 1718 1719 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1720 vm_object_reference(new_entry->object.vm_object); 1721 } 1722 } 1723 1724 /* 1725 * vm_map_submap: [ kernel use only ] 1726 * 1727 * Mark the given range as handled by a subordinate map. 1728 * 1729 * This range must have been created with vm_map_find, 1730 * and no other operations may have been performed on this 1731 * range prior to calling vm_map_submap. 1732 * 1733 * Only a limited number of operations can be performed 1734 * within this rage after calling vm_map_submap: 1735 * vm_fault 1736 * [Don't try vm_map_copy!] 1737 * 1738 * To remove a submapping, one must first remove the 1739 * range from the superior map, and then destroy the 1740 * submap (if desired). [Better yet, don't try it.] 1741 */ 1742 int 1743 vm_map_submap( 1744 vm_map_t map, 1745 vm_offset_t start, 1746 vm_offset_t end, 1747 vm_map_t submap) 1748 { 1749 vm_map_entry_t entry; 1750 int result = KERN_INVALID_ARGUMENT; 1751 1752 vm_map_lock(map); 1753 1754 VM_MAP_RANGE_CHECK(map, start, end); 1755 1756 if (vm_map_lookup_entry(map, start, &entry)) { 1757 vm_map_clip_start(map, entry, start); 1758 } else 1759 entry = entry->next; 1760 1761 vm_map_clip_end(map, entry, end); 1762 1763 if ((entry->start == start) && (entry->end == end) && 1764 ((entry->eflags & MAP_ENTRY_COW) == 0) && 1765 (entry->object.vm_object == NULL)) { 1766 entry->object.sub_map = submap; 1767 entry->eflags |= MAP_ENTRY_IS_SUB_MAP; 1768 result = KERN_SUCCESS; 1769 } 1770 vm_map_unlock(map); 1771 1772 return (result); 1773 } 1774 1775 /* 1776 * The maximum number of pages to map 1777 */ 1778 #define MAX_INIT_PT 96 1779 1780 /* 1781 * vm_map_pmap_enter: 1782 * 1783 * Preload read-only mappings for the specified object's resident pages 1784 * into the target map. If "flags" is MAP_PREFAULT_PARTIAL, then only 1785 * the resident pages within the address range [addr, addr + ulmin(size, 1786 * ptoa(MAX_INIT_PT))) are mapped. Otherwise, all resident pages within 1787 * the specified address range are mapped. This eliminates many soft 1788 * faults on process startup and immediately after an mmap(2). Because 1789 * these are speculative mappings, cached pages are not reactivated and 1790 * mapped. 1791 */ 1792 void 1793 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 1794 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags) 1795 { 1796 vm_offset_t start; 1797 vm_page_t p, p_start; 1798 vm_pindex_t psize, tmpidx; 1799 1800 if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL) 1801 return; 1802 VM_OBJECT_RLOCK(object); 1803 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 1804 VM_OBJECT_RUNLOCK(object); 1805 VM_OBJECT_WLOCK(object); 1806 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 1807 pmap_object_init_pt(map->pmap, addr, object, pindex, 1808 size); 1809 VM_OBJECT_WUNLOCK(object); 1810 return; 1811 } 1812 VM_OBJECT_LOCK_DOWNGRADE(object); 1813 } 1814 1815 psize = atop(size); 1816 if (psize > MAX_INIT_PT && (flags & MAP_PREFAULT_PARTIAL) != 0) 1817 psize = MAX_INIT_PT; 1818 if (psize + pindex > object->size) { 1819 if (object->size < pindex) { 1820 VM_OBJECT_RUNLOCK(object); 1821 return; 1822 } 1823 psize = object->size - pindex; 1824 } 1825 1826 start = 0; 1827 p_start = NULL; 1828 1829 p = vm_page_find_least(object, pindex); 1830 /* 1831 * Assert: the variable p is either (1) the page with the 1832 * least pindex greater than or equal to the parameter pindex 1833 * or (2) NULL. 1834 */ 1835 for (; 1836 p != NULL && (tmpidx = p->pindex - pindex) < psize; 1837 p = TAILQ_NEXT(p, listq)) { 1838 /* 1839 * don't allow an madvise to blow away our really 1840 * free pages allocating pv entries. 1841 */ 1842 if ((flags & MAP_PREFAULT_MADVISE) && 1843 vm_cnt.v_free_count < vm_cnt.v_free_reserved) { 1844 psize = tmpidx; 1845 break; 1846 } 1847 if (p->valid == VM_PAGE_BITS_ALL) { 1848 if (p_start == NULL) { 1849 start = addr + ptoa(tmpidx); 1850 p_start = p; 1851 } 1852 } else if (p_start != NULL) { 1853 pmap_enter_object(map->pmap, start, addr + 1854 ptoa(tmpidx), p_start, prot); 1855 p_start = NULL; 1856 } 1857 } 1858 if (p_start != NULL) 1859 pmap_enter_object(map->pmap, start, addr + ptoa(psize), 1860 p_start, prot); 1861 VM_OBJECT_RUNLOCK(object); 1862 } 1863 1864 /* 1865 * vm_map_protect: 1866 * 1867 * Sets the protection of the specified address 1868 * region in the target map. If "set_max" is 1869 * specified, the maximum protection is to be set; 1870 * otherwise, only the current protection is affected. 1871 */ 1872 int 1873 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 1874 vm_prot_t new_prot, boolean_t set_max) 1875 { 1876 vm_map_entry_t current, entry; 1877 vm_object_t obj; 1878 struct ucred *cred; 1879 vm_prot_t old_prot; 1880 1881 if (start == end) 1882 return (KERN_SUCCESS); 1883 1884 vm_map_lock(map); 1885 1886 VM_MAP_RANGE_CHECK(map, start, end); 1887 1888 if (vm_map_lookup_entry(map, start, &entry)) { 1889 vm_map_clip_start(map, entry, start); 1890 } else { 1891 entry = entry->next; 1892 } 1893 1894 /* 1895 * Make a first pass to check for protection violations. 1896 */ 1897 current = entry; 1898 while ((current != &map->header) && (current->start < end)) { 1899 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 1900 vm_map_unlock(map); 1901 return (KERN_INVALID_ARGUMENT); 1902 } 1903 if ((new_prot & current->max_protection) != new_prot) { 1904 vm_map_unlock(map); 1905 return (KERN_PROTECTION_FAILURE); 1906 } 1907 current = current->next; 1908 } 1909 1910 1911 /* 1912 * Do an accounting pass for private read-only mappings that 1913 * now will do cow due to allowed write (e.g. debugger sets 1914 * breakpoint on text segment) 1915 */ 1916 for (current = entry; (current != &map->header) && 1917 (current->start < end); current = current->next) { 1918 1919 vm_map_clip_end(map, current, end); 1920 1921 if (set_max || 1922 ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 || 1923 ENTRY_CHARGED(current)) { 1924 continue; 1925 } 1926 1927 cred = curthread->td_ucred; 1928 obj = current->object.vm_object; 1929 1930 if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) { 1931 if (!swap_reserve(current->end - current->start)) { 1932 vm_map_unlock(map); 1933 return (KERN_RESOURCE_SHORTAGE); 1934 } 1935 crhold(cred); 1936 current->cred = cred; 1937 continue; 1938 } 1939 1940 VM_OBJECT_WLOCK(obj); 1941 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) { 1942 VM_OBJECT_WUNLOCK(obj); 1943 continue; 1944 } 1945 1946 /* 1947 * Charge for the whole object allocation now, since 1948 * we cannot distinguish between non-charged and 1949 * charged clipped mapping of the same object later. 1950 */ 1951 KASSERT(obj->charge == 0, 1952 ("vm_map_protect: object %p overcharged (entry %p)", 1953 obj, current)); 1954 if (!swap_reserve(ptoa(obj->size))) { 1955 VM_OBJECT_WUNLOCK(obj); 1956 vm_map_unlock(map); 1957 return (KERN_RESOURCE_SHORTAGE); 1958 } 1959 1960 crhold(cred); 1961 obj->cred = cred; 1962 obj->charge = ptoa(obj->size); 1963 VM_OBJECT_WUNLOCK(obj); 1964 } 1965 1966 /* 1967 * Go back and fix up protections. [Note that clipping is not 1968 * necessary the second time.] 1969 */ 1970 current = entry; 1971 while ((current != &map->header) && (current->start < end)) { 1972 old_prot = current->protection; 1973 1974 if (set_max) 1975 current->protection = 1976 (current->max_protection = new_prot) & 1977 old_prot; 1978 else 1979 current->protection = new_prot; 1980 1981 /* 1982 * For user wired map entries, the normal lazy evaluation of 1983 * write access upgrades through soft page faults is 1984 * undesirable. Instead, immediately copy any pages that are 1985 * copy-on-write and enable write access in the physical map. 1986 */ 1987 if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 && 1988 (current->protection & VM_PROT_WRITE) != 0 && 1989 (old_prot & VM_PROT_WRITE) == 0) { 1990 KASSERT(old_prot != VM_PROT_NONE, 1991 ("vm_map_protect: inaccessible wired map entry")); 1992 vm_fault_copy_entry(map, map, current, current, NULL); 1993 } 1994 1995 /* 1996 * When restricting access, update the physical map. Worry 1997 * about copy-on-write here. 1998 */ 1999 if ((old_prot & ~current->protection) != 0) { 2000 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 2001 VM_PROT_ALL) 2002 pmap_protect(map->pmap, current->start, 2003 current->end, 2004 current->protection & MASK(current)); 2005 #undef MASK 2006 } 2007 vm_map_simplify_entry(map, current); 2008 current = current->next; 2009 } 2010 vm_map_unlock(map); 2011 return (KERN_SUCCESS); 2012 } 2013 2014 /* 2015 * vm_map_madvise: 2016 * 2017 * This routine traverses a processes map handling the madvise 2018 * system call. Advisories are classified as either those effecting 2019 * the vm_map_entry structure, or those effecting the underlying 2020 * objects. 2021 */ 2022 int 2023 vm_map_madvise( 2024 vm_map_t map, 2025 vm_offset_t start, 2026 vm_offset_t end, 2027 int behav) 2028 { 2029 vm_map_entry_t current, entry; 2030 int modify_map = 0; 2031 2032 /* 2033 * Some madvise calls directly modify the vm_map_entry, in which case 2034 * we need to use an exclusive lock on the map and we need to perform 2035 * various clipping operations. Otherwise we only need a read-lock 2036 * on the map. 2037 */ 2038 switch(behav) { 2039 case MADV_NORMAL: 2040 case MADV_SEQUENTIAL: 2041 case MADV_RANDOM: 2042 case MADV_NOSYNC: 2043 case MADV_AUTOSYNC: 2044 case MADV_NOCORE: 2045 case MADV_CORE: 2046 if (start == end) 2047 return (KERN_SUCCESS); 2048 modify_map = 1; 2049 vm_map_lock(map); 2050 break; 2051 case MADV_WILLNEED: 2052 case MADV_DONTNEED: 2053 case MADV_FREE: 2054 if (start == end) 2055 return (KERN_SUCCESS); 2056 vm_map_lock_read(map); 2057 break; 2058 default: 2059 return (KERN_INVALID_ARGUMENT); 2060 } 2061 2062 /* 2063 * Locate starting entry and clip if necessary. 2064 */ 2065 VM_MAP_RANGE_CHECK(map, start, end); 2066 2067 if (vm_map_lookup_entry(map, start, &entry)) { 2068 if (modify_map) 2069 vm_map_clip_start(map, entry, start); 2070 } else { 2071 entry = entry->next; 2072 } 2073 2074 if (modify_map) { 2075 /* 2076 * madvise behaviors that are implemented in the vm_map_entry. 2077 * 2078 * We clip the vm_map_entry so that behavioral changes are 2079 * limited to the specified address range. 2080 */ 2081 for (current = entry; 2082 (current != &map->header) && (current->start < end); 2083 current = current->next 2084 ) { 2085 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2086 continue; 2087 2088 vm_map_clip_end(map, current, end); 2089 2090 switch (behav) { 2091 case MADV_NORMAL: 2092 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL); 2093 break; 2094 case MADV_SEQUENTIAL: 2095 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL); 2096 break; 2097 case MADV_RANDOM: 2098 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM); 2099 break; 2100 case MADV_NOSYNC: 2101 current->eflags |= MAP_ENTRY_NOSYNC; 2102 break; 2103 case MADV_AUTOSYNC: 2104 current->eflags &= ~MAP_ENTRY_NOSYNC; 2105 break; 2106 case MADV_NOCORE: 2107 current->eflags |= MAP_ENTRY_NOCOREDUMP; 2108 break; 2109 case MADV_CORE: 2110 current->eflags &= ~MAP_ENTRY_NOCOREDUMP; 2111 break; 2112 default: 2113 break; 2114 } 2115 vm_map_simplify_entry(map, current); 2116 } 2117 vm_map_unlock(map); 2118 } else { 2119 vm_pindex_t pstart, pend; 2120 2121 /* 2122 * madvise behaviors that are implemented in the underlying 2123 * vm_object. 2124 * 2125 * Since we don't clip the vm_map_entry, we have to clip 2126 * the vm_object pindex and count. 2127 */ 2128 for (current = entry; 2129 (current != &map->header) && (current->start < end); 2130 current = current->next 2131 ) { 2132 vm_offset_t useEnd, useStart; 2133 2134 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2135 continue; 2136 2137 pstart = OFF_TO_IDX(current->offset); 2138 pend = pstart + atop(current->end - current->start); 2139 useStart = current->start; 2140 useEnd = current->end; 2141 2142 if (current->start < start) { 2143 pstart += atop(start - current->start); 2144 useStart = start; 2145 } 2146 if (current->end > end) { 2147 pend -= atop(current->end - end); 2148 useEnd = end; 2149 } 2150 2151 if (pstart >= pend) 2152 continue; 2153 2154 /* 2155 * Perform the pmap_advise() before clearing 2156 * PGA_REFERENCED in vm_page_advise(). Otherwise, a 2157 * concurrent pmap operation, such as pmap_remove(), 2158 * could clear a reference in the pmap and set 2159 * PGA_REFERENCED on the page before the pmap_advise() 2160 * had completed. Consequently, the page would appear 2161 * referenced based upon an old reference that 2162 * occurred before this pmap_advise() ran. 2163 */ 2164 if (behav == MADV_DONTNEED || behav == MADV_FREE) 2165 pmap_advise(map->pmap, useStart, useEnd, 2166 behav); 2167 2168 vm_object_madvise(current->object.vm_object, pstart, 2169 pend, behav); 2170 if (behav == MADV_WILLNEED) { 2171 vm_map_pmap_enter(map, 2172 useStart, 2173 current->protection, 2174 current->object.vm_object, 2175 pstart, 2176 ptoa(pend - pstart), 2177 MAP_PREFAULT_MADVISE 2178 ); 2179 } 2180 } 2181 vm_map_unlock_read(map); 2182 } 2183 return (0); 2184 } 2185 2186 2187 /* 2188 * vm_map_inherit: 2189 * 2190 * Sets the inheritance of the specified address 2191 * range in the target map. Inheritance 2192 * affects how the map will be shared with 2193 * child maps at the time of vmspace_fork. 2194 */ 2195 int 2196 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 2197 vm_inherit_t new_inheritance) 2198 { 2199 vm_map_entry_t entry; 2200 vm_map_entry_t temp_entry; 2201 2202 switch (new_inheritance) { 2203 case VM_INHERIT_NONE: 2204 case VM_INHERIT_COPY: 2205 case VM_INHERIT_SHARE: 2206 break; 2207 default: 2208 return (KERN_INVALID_ARGUMENT); 2209 } 2210 if (start == end) 2211 return (KERN_SUCCESS); 2212 vm_map_lock(map); 2213 VM_MAP_RANGE_CHECK(map, start, end); 2214 if (vm_map_lookup_entry(map, start, &temp_entry)) { 2215 entry = temp_entry; 2216 vm_map_clip_start(map, entry, start); 2217 } else 2218 entry = temp_entry->next; 2219 while ((entry != &map->header) && (entry->start < end)) { 2220 vm_map_clip_end(map, entry, end); 2221 entry->inheritance = new_inheritance; 2222 vm_map_simplify_entry(map, entry); 2223 entry = entry->next; 2224 } 2225 vm_map_unlock(map); 2226 return (KERN_SUCCESS); 2227 } 2228 2229 /* 2230 * vm_map_unwire: 2231 * 2232 * Implements both kernel and user unwiring. 2233 */ 2234 int 2235 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2236 int flags) 2237 { 2238 vm_map_entry_t entry, first_entry, tmp_entry; 2239 vm_offset_t saved_start; 2240 unsigned int last_timestamp; 2241 int rv; 2242 boolean_t need_wakeup, result, user_unwire; 2243 2244 if (start == end) 2245 return (KERN_SUCCESS); 2246 user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 2247 vm_map_lock(map); 2248 VM_MAP_RANGE_CHECK(map, start, end); 2249 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2250 if (flags & VM_MAP_WIRE_HOLESOK) 2251 first_entry = first_entry->next; 2252 else { 2253 vm_map_unlock(map); 2254 return (KERN_INVALID_ADDRESS); 2255 } 2256 } 2257 last_timestamp = map->timestamp; 2258 entry = first_entry; 2259 while (entry != &map->header && entry->start < end) { 2260 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2261 /* 2262 * We have not yet clipped the entry. 2263 */ 2264 saved_start = (start >= entry->start) ? start : 2265 entry->start; 2266 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2267 if (vm_map_unlock_and_wait(map, 0)) { 2268 /* 2269 * Allow interruption of user unwiring? 2270 */ 2271 } 2272 vm_map_lock(map); 2273 if (last_timestamp+1 != map->timestamp) { 2274 /* 2275 * Look again for the entry because the map was 2276 * modified while it was unlocked. 2277 * Specifically, the entry may have been 2278 * clipped, merged, or deleted. 2279 */ 2280 if (!vm_map_lookup_entry(map, saved_start, 2281 &tmp_entry)) { 2282 if (flags & VM_MAP_WIRE_HOLESOK) 2283 tmp_entry = tmp_entry->next; 2284 else { 2285 if (saved_start == start) { 2286 /* 2287 * First_entry has been deleted. 2288 */ 2289 vm_map_unlock(map); 2290 return (KERN_INVALID_ADDRESS); 2291 } 2292 end = saved_start; 2293 rv = KERN_INVALID_ADDRESS; 2294 goto done; 2295 } 2296 } 2297 if (entry == first_entry) 2298 first_entry = tmp_entry; 2299 else 2300 first_entry = NULL; 2301 entry = tmp_entry; 2302 } 2303 last_timestamp = map->timestamp; 2304 continue; 2305 } 2306 vm_map_clip_start(map, entry, start); 2307 vm_map_clip_end(map, entry, end); 2308 /* 2309 * Mark the entry in case the map lock is released. (See 2310 * above.) 2311 */ 2312 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 2313 entry->wiring_thread == NULL, 2314 ("owned map entry %p", entry)); 2315 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 2316 entry->wiring_thread = curthread; 2317 /* 2318 * Check the map for holes in the specified region. 2319 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 2320 */ 2321 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) && 2322 (entry->end < end && (entry->next == &map->header || 2323 entry->next->start > entry->end))) { 2324 end = entry->end; 2325 rv = KERN_INVALID_ADDRESS; 2326 goto done; 2327 } 2328 /* 2329 * If system unwiring, require that the entry is system wired. 2330 */ 2331 if (!user_unwire && 2332 vm_map_entry_system_wired_count(entry) == 0) { 2333 end = entry->end; 2334 rv = KERN_INVALID_ARGUMENT; 2335 goto done; 2336 } 2337 entry = entry->next; 2338 } 2339 rv = KERN_SUCCESS; 2340 done: 2341 need_wakeup = FALSE; 2342 if (first_entry == NULL) { 2343 result = vm_map_lookup_entry(map, start, &first_entry); 2344 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 2345 first_entry = first_entry->next; 2346 else 2347 KASSERT(result, ("vm_map_unwire: lookup failed")); 2348 } 2349 for (entry = first_entry; entry != &map->header && entry->start < end; 2350 entry = entry->next) { 2351 /* 2352 * If VM_MAP_WIRE_HOLESOK was specified, an empty 2353 * space in the unwired region could have been mapped 2354 * while the map lock was dropped for draining 2355 * MAP_ENTRY_IN_TRANSITION. Moreover, another thread 2356 * could be simultaneously wiring this new mapping 2357 * entry. Detect these cases and skip any entries 2358 * marked as in transition by us. 2359 */ 2360 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 2361 entry->wiring_thread != curthread) { 2362 KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0, 2363 ("vm_map_unwire: !HOLESOK and new/changed entry")); 2364 continue; 2365 } 2366 2367 if (rv == KERN_SUCCESS && (!user_unwire || 2368 (entry->eflags & MAP_ENTRY_USER_WIRED))) { 2369 if (user_unwire) 2370 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2371 entry->wired_count--; 2372 if (entry->wired_count == 0) { 2373 /* 2374 * Retain the map lock. 2375 */ 2376 vm_fault_unwire(map, entry->start, entry->end, 2377 entry->object.vm_object != NULL && 2378 (entry->object.vm_object->flags & 2379 OBJ_FICTITIOUS) != 0); 2380 } 2381 } 2382 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 2383 ("vm_map_unwire: in-transition flag missing %p", entry)); 2384 KASSERT(entry->wiring_thread == curthread, 2385 ("vm_map_unwire: alien wire %p", entry)); 2386 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 2387 entry->wiring_thread = NULL; 2388 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 2389 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 2390 need_wakeup = TRUE; 2391 } 2392 vm_map_simplify_entry(map, entry); 2393 } 2394 vm_map_unlock(map); 2395 if (need_wakeup) 2396 vm_map_wakeup(map); 2397 return (rv); 2398 } 2399 2400 /* 2401 * vm_map_wire: 2402 * 2403 * Implements both kernel and user wiring. 2404 */ 2405 int 2406 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2407 int flags) 2408 { 2409 vm_map_entry_t entry, first_entry, tmp_entry; 2410 vm_offset_t saved_end, saved_start; 2411 unsigned int last_timestamp; 2412 int rv; 2413 boolean_t fictitious, need_wakeup, result, user_wire; 2414 vm_prot_t prot; 2415 2416 if (start == end) 2417 return (KERN_SUCCESS); 2418 prot = 0; 2419 if (flags & VM_MAP_WIRE_WRITE) 2420 prot |= VM_PROT_WRITE; 2421 user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 2422 vm_map_lock(map); 2423 VM_MAP_RANGE_CHECK(map, start, end); 2424 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2425 if (flags & VM_MAP_WIRE_HOLESOK) 2426 first_entry = first_entry->next; 2427 else { 2428 vm_map_unlock(map); 2429 return (KERN_INVALID_ADDRESS); 2430 } 2431 } 2432 last_timestamp = map->timestamp; 2433 entry = first_entry; 2434 while (entry != &map->header && entry->start < end) { 2435 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2436 /* 2437 * We have not yet clipped the entry. 2438 */ 2439 saved_start = (start >= entry->start) ? start : 2440 entry->start; 2441 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2442 if (vm_map_unlock_and_wait(map, 0)) { 2443 /* 2444 * Allow interruption of user wiring? 2445 */ 2446 } 2447 vm_map_lock(map); 2448 if (last_timestamp + 1 != map->timestamp) { 2449 /* 2450 * Look again for the entry because the map was 2451 * modified while it was unlocked. 2452 * Specifically, the entry may have been 2453 * clipped, merged, or deleted. 2454 */ 2455 if (!vm_map_lookup_entry(map, saved_start, 2456 &tmp_entry)) { 2457 if (flags & VM_MAP_WIRE_HOLESOK) 2458 tmp_entry = tmp_entry->next; 2459 else { 2460 if (saved_start == start) { 2461 /* 2462 * first_entry has been deleted. 2463 */ 2464 vm_map_unlock(map); 2465 return (KERN_INVALID_ADDRESS); 2466 } 2467 end = saved_start; 2468 rv = KERN_INVALID_ADDRESS; 2469 goto done; 2470 } 2471 } 2472 if (entry == first_entry) 2473 first_entry = tmp_entry; 2474 else 2475 first_entry = NULL; 2476 entry = tmp_entry; 2477 } 2478 last_timestamp = map->timestamp; 2479 continue; 2480 } 2481 vm_map_clip_start(map, entry, start); 2482 vm_map_clip_end(map, entry, end); 2483 /* 2484 * Mark the entry in case the map lock is released. (See 2485 * above.) 2486 */ 2487 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 2488 entry->wiring_thread == NULL, 2489 ("owned map entry %p", entry)); 2490 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 2491 entry->wiring_thread = curthread; 2492 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 2493 || (entry->protection & prot) != prot) { 2494 entry->eflags |= MAP_ENTRY_WIRE_SKIPPED; 2495 if ((flags & VM_MAP_WIRE_HOLESOK) == 0) { 2496 end = entry->end; 2497 rv = KERN_INVALID_ADDRESS; 2498 goto done; 2499 } 2500 goto next_entry; 2501 } 2502 if (entry->wired_count == 0) { 2503 entry->wired_count++; 2504 saved_start = entry->start; 2505 saved_end = entry->end; 2506 fictitious = entry->object.vm_object != NULL && 2507 (entry->object.vm_object->flags & 2508 OBJ_FICTITIOUS) != 0; 2509 /* 2510 * Release the map lock, relying on the in-transition 2511 * mark. Mark the map busy for fork. 2512 */ 2513 vm_map_busy(map); 2514 vm_map_unlock(map); 2515 rv = vm_fault_wire(map, saved_start, saved_end, 2516 fictitious); 2517 vm_map_lock(map); 2518 vm_map_unbusy(map); 2519 if (last_timestamp + 1 != map->timestamp) { 2520 /* 2521 * Look again for the entry because the map was 2522 * modified while it was unlocked. The entry 2523 * may have been clipped, but NOT merged or 2524 * deleted. 2525 */ 2526 result = vm_map_lookup_entry(map, saved_start, 2527 &tmp_entry); 2528 KASSERT(result, ("vm_map_wire: lookup failed")); 2529 if (entry == first_entry) 2530 first_entry = tmp_entry; 2531 else 2532 first_entry = NULL; 2533 entry = tmp_entry; 2534 while (entry->end < saved_end) { 2535 if (rv != KERN_SUCCESS) { 2536 KASSERT(entry->wired_count == 1, 2537 ("vm_map_wire: bad count")); 2538 entry->wired_count = -1; 2539 } 2540 entry = entry->next; 2541 } 2542 } 2543 last_timestamp = map->timestamp; 2544 if (rv != KERN_SUCCESS) { 2545 KASSERT(entry->wired_count == 1, 2546 ("vm_map_wire: bad count")); 2547 /* 2548 * Assign an out-of-range value to represent 2549 * the failure to wire this entry. 2550 */ 2551 entry->wired_count = -1; 2552 end = entry->end; 2553 goto done; 2554 } 2555 } else if (!user_wire || 2556 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 2557 entry->wired_count++; 2558 } 2559 /* 2560 * Check the map for holes in the specified region. 2561 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 2562 */ 2563 next_entry: 2564 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) && 2565 (entry->end < end && (entry->next == &map->header || 2566 entry->next->start > entry->end))) { 2567 end = entry->end; 2568 rv = KERN_INVALID_ADDRESS; 2569 goto done; 2570 } 2571 entry = entry->next; 2572 } 2573 rv = KERN_SUCCESS; 2574 done: 2575 need_wakeup = FALSE; 2576 if (first_entry == NULL) { 2577 result = vm_map_lookup_entry(map, start, &first_entry); 2578 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 2579 first_entry = first_entry->next; 2580 else 2581 KASSERT(result, ("vm_map_wire: lookup failed")); 2582 } 2583 for (entry = first_entry; entry != &map->header && entry->start < end; 2584 entry = entry->next) { 2585 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) 2586 goto next_entry_done; 2587 2588 /* 2589 * If VM_MAP_WIRE_HOLESOK was specified, an empty 2590 * space in the unwired region could have been mapped 2591 * while the map lock was dropped for faulting in the 2592 * pages or draining MAP_ENTRY_IN_TRANSITION. 2593 * Moreover, another thread could be simultaneously 2594 * wiring this new mapping entry. Detect these cases 2595 * and skip any entries marked as in transition by us. 2596 */ 2597 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 2598 entry->wiring_thread != curthread) { 2599 KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0, 2600 ("vm_map_wire: !HOLESOK and new/changed entry")); 2601 continue; 2602 } 2603 2604 if (rv == KERN_SUCCESS) { 2605 if (user_wire) 2606 entry->eflags |= MAP_ENTRY_USER_WIRED; 2607 } else if (entry->wired_count == -1) { 2608 /* 2609 * Wiring failed on this entry. Thus, unwiring is 2610 * unnecessary. 2611 */ 2612 entry->wired_count = 0; 2613 } else { 2614 if (!user_wire || 2615 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) 2616 entry->wired_count--; 2617 if (entry->wired_count == 0) { 2618 /* 2619 * Retain the map lock. 2620 */ 2621 vm_fault_unwire(map, entry->start, entry->end, 2622 entry->object.vm_object != NULL && 2623 (entry->object.vm_object->flags & 2624 OBJ_FICTITIOUS) != 0); 2625 } 2626 } 2627 next_entry_done: 2628 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 2629 ("vm_map_wire: in-transition flag missing %p", entry)); 2630 KASSERT(entry->wiring_thread == curthread, 2631 ("vm_map_wire: alien wire %p", entry)); 2632 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION | 2633 MAP_ENTRY_WIRE_SKIPPED); 2634 entry->wiring_thread = NULL; 2635 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 2636 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 2637 need_wakeup = TRUE; 2638 } 2639 vm_map_simplify_entry(map, entry); 2640 } 2641 vm_map_unlock(map); 2642 if (need_wakeup) 2643 vm_map_wakeup(map); 2644 return (rv); 2645 } 2646 2647 /* 2648 * vm_map_sync 2649 * 2650 * Push any dirty cached pages in the address range to their pager. 2651 * If syncio is TRUE, dirty pages are written synchronously. 2652 * If invalidate is TRUE, any cached pages are freed as well. 2653 * 2654 * If the size of the region from start to end is zero, we are 2655 * supposed to flush all modified pages within the region containing 2656 * start. Unfortunately, a region can be split or coalesced with 2657 * neighboring regions, making it difficult to determine what the 2658 * original region was. Therefore, we approximate this requirement by 2659 * flushing the current region containing start. 2660 * 2661 * Returns an error if any part of the specified range is not mapped. 2662 */ 2663 int 2664 vm_map_sync( 2665 vm_map_t map, 2666 vm_offset_t start, 2667 vm_offset_t end, 2668 boolean_t syncio, 2669 boolean_t invalidate) 2670 { 2671 vm_map_entry_t current; 2672 vm_map_entry_t entry; 2673 vm_size_t size; 2674 vm_object_t object; 2675 vm_ooffset_t offset; 2676 unsigned int last_timestamp; 2677 boolean_t failed; 2678 2679 vm_map_lock_read(map); 2680 VM_MAP_RANGE_CHECK(map, start, end); 2681 if (!vm_map_lookup_entry(map, start, &entry)) { 2682 vm_map_unlock_read(map); 2683 return (KERN_INVALID_ADDRESS); 2684 } else if (start == end) { 2685 start = entry->start; 2686 end = entry->end; 2687 } 2688 /* 2689 * Make a first pass to check for user-wired memory and holes. 2690 */ 2691 for (current = entry; current != &map->header && current->start < end; 2692 current = current->next) { 2693 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) { 2694 vm_map_unlock_read(map); 2695 return (KERN_INVALID_ARGUMENT); 2696 } 2697 if (end > current->end && 2698 (current->next == &map->header || 2699 current->end != current->next->start)) { 2700 vm_map_unlock_read(map); 2701 return (KERN_INVALID_ADDRESS); 2702 } 2703 } 2704 2705 if (invalidate) 2706 pmap_remove(map->pmap, start, end); 2707 failed = FALSE; 2708 2709 /* 2710 * Make a second pass, cleaning/uncaching pages from the indicated 2711 * objects as we go. 2712 */ 2713 for (current = entry; current != &map->header && current->start < end;) { 2714 offset = current->offset + (start - current->start); 2715 size = (end <= current->end ? end : current->end) - start; 2716 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 2717 vm_map_t smap; 2718 vm_map_entry_t tentry; 2719 vm_size_t tsize; 2720 2721 smap = current->object.sub_map; 2722 vm_map_lock_read(smap); 2723 (void) vm_map_lookup_entry(smap, offset, &tentry); 2724 tsize = tentry->end - offset; 2725 if (tsize < size) 2726 size = tsize; 2727 object = tentry->object.vm_object; 2728 offset = tentry->offset + (offset - tentry->start); 2729 vm_map_unlock_read(smap); 2730 } else { 2731 object = current->object.vm_object; 2732 } 2733 vm_object_reference(object); 2734 last_timestamp = map->timestamp; 2735 vm_map_unlock_read(map); 2736 if (!vm_object_sync(object, offset, size, syncio, invalidate)) 2737 failed = TRUE; 2738 start += size; 2739 vm_object_deallocate(object); 2740 vm_map_lock_read(map); 2741 if (last_timestamp == map->timestamp || 2742 !vm_map_lookup_entry(map, start, ¤t)) 2743 current = current->next; 2744 } 2745 2746 vm_map_unlock_read(map); 2747 return (failed ? KERN_FAILURE : KERN_SUCCESS); 2748 } 2749 2750 /* 2751 * vm_map_entry_unwire: [ internal use only ] 2752 * 2753 * Make the region specified by this entry pageable. 2754 * 2755 * The map in question should be locked. 2756 * [This is the reason for this routine's existence.] 2757 */ 2758 static void 2759 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 2760 { 2761 vm_fault_unwire(map, entry->start, entry->end, 2762 entry->object.vm_object != NULL && 2763 (entry->object.vm_object->flags & OBJ_FICTITIOUS) != 0); 2764 entry->wired_count = 0; 2765 } 2766 2767 static void 2768 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map) 2769 { 2770 2771 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) 2772 vm_object_deallocate(entry->object.vm_object); 2773 uma_zfree(system_map ? kmapentzone : mapentzone, entry); 2774 } 2775 2776 /* 2777 * vm_map_entry_delete: [ internal use only ] 2778 * 2779 * Deallocate the given entry from the target map. 2780 */ 2781 static void 2782 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry) 2783 { 2784 vm_object_t object; 2785 vm_pindex_t offidxstart, offidxend, count, size1; 2786 vm_ooffset_t size; 2787 2788 vm_map_entry_unlink(map, entry); 2789 object = entry->object.vm_object; 2790 size = entry->end - entry->start; 2791 map->size -= size; 2792 2793 if (entry->cred != NULL) { 2794 swap_release_by_cred(size, entry->cred); 2795 crfree(entry->cred); 2796 } 2797 2798 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 && 2799 (object != NULL)) { 2800 KASSERT(entry->cred == NULL || object->cred == NULL || 2801 (entry->eflags & MAP_ENTRY_NEEDS_COPY), 2802 ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry)); 2803 count = OFF_TO_IDX(size); 2804 offidxstart = OFF_TO_IDX(entry->offset); 2805 offidxend = offidxstart + count; 2806 VM_OBJECT_WLOCK(object); 2807 if (object->ref_count != 1 && 2808 ((object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING || 2809 object == kernel_object || object == kmem_object)) { 2810 vm_object_collapse(object); 2811 2812 /* 2813 * The option OBJPR_NOTMAPPED can be passed here 2814 * because vm_map_delete() already performed 2815 * pmap_remove() on the only mapping to this range 2816 * of pages. 2817 */ 2818 vm_object_page_remove(object, offidxstart, offidxend, 2819 OBJPR_NOTMAPPED); 2820 if (object->type == OBJT_SWAP) 2821 swap_pager_freespace(object, offidxstart, count); 2822 if (offidxend >= object->size && 2823 offidxstart < object->size) { 2824 size1 = object->size; 2825 object->size = offidxstart; 2826 if (object->cred != NULL) { 2827 size1 -= object->size; 2828 KASSERT(object->charge >= ptoa(size1), 2829 ("vm_map_entry_delete: object->charge < 0")); 2830 swap_release_by_cred(ptoa(size1), object->cred); 2831 object->charge -= ptoa(size1); 2832 } 2833 } 2834 } 2835 VM_OBJECT_WUNLOCK(object); 2836 } else 2837 entry->object.vm_object = NULL; 2838 if (map->system_map) 2839 vm_map_entry_deallocate(entry, TRUE); 2840 else { 2841 entry->next = curthread->td_map_def_user; 2842 curthread->td_map_def_user = entry; 2843 } 2844 } 2845 2846 /* 2847 * vm_map_delete: [ internal use only ] 2848 * 2849 * Deallocates the given address range from the target 2850 * map. 2851 */ 2852 int 2853 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end) 2854 { 2855 vm_map_entry_t entry; 2856 vm_map_entry_t first_entry; 2857 2858 VM_MAP_ASSERT_LOCKED(map); 2859 if (start == end) 2860 return (KERN_SUCCESS); 2861 2862 /* 2863 * Find the start of the region, and clip it 2864 */ 2865 if (!vm_map_lookup_entry(map, start, &first_entry)) 2866 entry = first_entry->next; 2867 else { 2868 entry = first_entry; 2869 vm_map_clip_start(map, entry, start); 2870 } 2871 2872 /* 2873 * Step through all entries in this region 2874 */ 2875 while ((entry != &map->header) && (entry->start < end)) { 2876 vm_map_entry_t next; 2877 2878 /* 2879 * Wait for wiring or unwiring of an entry to complete. 2880 * Also wait for any system wirings to disappear on 2881 * user maps. 2882 */ 2883 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 || 2884 (vm_map_pmap(map) != kernel_pmap && 2885 vm_map_entry_system_wired_count(entry) != 0)) { 2886 unsigned int last_timestamp; 2887 vm_offset_t saved_start; 2888 vm_map_entry_t tmp_entry; 2889 2890 saved_start = entry->start; 2891 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2892 last_timestamp = map->timestamp; 2893 (void) vm_map_unlock_and_wait(map, 0); 2894 vm_map_lock(map); 2895 if (last_timestamp + 1 != map->timestamp) { 2896 /* 2897 * Look again for the entry because the map was 2898 * modified while it was unlocked. 2899 * Specifically, the entry may have been 2900 * clipped, merged, or deleted. 2901 */ 2902 if (!vm_map_lookup_entry(map, saved_start, 2903 &tmp_entry)) 2904 entry = tmp_entry->next; 2905 else { 2906 entry = tmp_entry; 2907 vm_map_clip_start(map, entry, 2908 saved_start); 2909 } 2910 } 2911 continue; 2912 } 2913 vm_map_clip_end(map, entry, end); 2914 2915 next = entry->next; 2916 2917 /* 2918 * Unwire before removing addresses from the pmap; otherwise, 2919 * unwiring will put the entries back in the pmap. 2920 */ 2921 if (entry->wired_count != 0) { 2922 vm_map_entry_unwire(map, entry); 2923 } 2924 2925 pmap_remove(map->pmap, entry->start, entry->end); 2926 2927 /* 2928 * Delete the entry only after removing all pmap 2929 * entries pointing to its pages. (Otherwise, its 2930 * page frames may be reallocated, and any modify bits 2931 * will be set in the wrong object!) 2932 */ 2933 vm_map_entry_delete(map, entry); 2934 entry = next; 2935 } 2936 return (KERN_SUCCESS); 2937 } 2938 2939 /* 2940 * vm_map_remove: 2941 * 2942 * Remove the given address range from the target map. 2943 * This is the exported form of vm_map_delete. 2944 */ 2945 int 2946 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 2947 { 2948 int result; 2949 2950 vm_map_lock(map); 2951 VM_MAP_RANGE_CHECK(map, start, end); 2952 result = vm_map_delete(map, start, end); 2953 vm_map_unlock(map); 2954 return (result); 2955 } 2956 2957 /* 2958 * vm_map_check_protection: 2959 * 2960 * Assert that the target map allows the specified privilege on the 2961 * entire address region given. The entire region must be allocated. 2962 * 2963 * WARNING! This code does not and should not check whether the 2964 * contents of the region is accessible. For example a smaller file 2965 * might be mapped into a larger address space. 2966 * 2967 * NOTE! This code is also called by munmap(). 2968 * 2969 * The map must be locked. A read lock is sufficient. 2970 */ 2971 boolean_t 2972 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 2973 vm_prot_t protection) 2974 { 2975 vm_map_entry_t entry; 2976 vm_map_entry_t tmp_entry; 2977 2978 if (!vm_map_lookup_entry(map, start, &tmp_entry)) 2979 return (FALSE); 2980 entry = tmp_entry; 2981 2982 while (start < end) { 2983 if (entry == &map->header) 2984 return (FALSE); 2985 /* 2986 * No holes allowed! 2987 */ 2988 if (start < entry->start) 2989 return (FALSE); 2990 /* 2991 * Check protection associated with entry. 2992 */ 2993 if ((entry->protection & protection) != protection) 2994 return (FALSE); 2995 /* go to next entry */ 2996 start = entry->end; 2997 entry = entry->next; 2998 } 2999 return (TRUE); 3000 } 3001 3002 /* 3003 * vm_map_copy_entry: 3004 * 3005 * Copies the contents of the source entry to the destination 3006 * entry. The entries *must* be aligned properly. 3007 */ 3008 static void 3009 vm_map_copy_entry( 3010 vm_map_t src_map, 3011 vm_map_t dst_map, 3012 vm_map_entry_t src_entry, 3013 vm_map_entry_t dst_entry, 3014 vm_ooffset_t *fork_charge) 3015 { 3016 vm_object_t src_object; 3017 vm_map_entry_t fake_entry; 3018 vm_offset_t size; 3019 struct ucred *cred; 3020 int charged; 3021 3022 VM_MAP_ASSERT_LOCKED(dst_map); 3023 3024 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP) 3025 return; 3026 3027 if (src_entry->wired_count == 0 || 3028 (src_entry->protection & VM_PROT_WRITE) == 0) { 3029 /* 3030 * If the source entry is marked needs_copy, it is already 3031 * write-protected. 3032 */ 3033 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 && 3034 (src_entry->protection & VM_PROT_WRITE) != 0) { 3035 pmap_protect(src_map->pmap, 3036 src_entry->start, 3037 src_entry->end, 3038 src_entry->protection & ~VM_PROT_WRITE); 3039 } 3040 3041 /* 3042 * Make a copy of the object. 3043 */ 3044 size = src_entry->end - src_entry->start; 3045 if ((src_object = src_entry->object.vm_object) != NULL) { 3046 VM_OBJECT_WLOCK(src_object); 3047 charged = ENTRY_CHARGED(src_entry); 3048 if ((src_object->handle == NULL) && 3049 (src_object->type == OBJT_DEFAULT || 3050 src_object->type == OBJT_SWAP)) { 3051 vm_object_collapse(src_object); 3052 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) { 3053 vm_object_split(src_entry); 3054 src_object = src_entry->object.vm_object; 3055 } 3056 } 3057 vm_object_reference_locked(src_object); 3058 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 3059 if (src_entry->cred != NULL && 3060 !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 3061 KASSERT(src_object->cred == NULL, 3062 ("OVERCOMMIT: vm_map_copy_entry: cred %p", 3063 src_object)); 3064 src_object->cred = src_entry->cred; 3065 src_object->charge = size; 3066 } 3067 VM_OBJECT_WUNLOCK(src_object); 3068 dst_entry->object.vm_object = src_object; 3069 if (charged) { 3070 cred = curthread->td_ucred; 3071 crhold(cred); 3072 dst_entry->cred = cred; 3073 *fork_charge += size; 3074 if (!(src_entry->eflags & 3075 MAP_ENTRY_NEEDS_COPY)) { 3076 crhold(cred); 3077 src_entry->cred = cred; 3078 *fork_charge += size; 3079 } 3080 } 3081 src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 3082 dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 3083 dst_entry->offset = src_entry->offset; 3084 if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) { 3085 /* 3086 * MAP_ENTRY_VN_WRITECNT cannot 3087 * indicate write reference from 3088 * src_entry, since the entry is 3089 * marked as needs copy. Allocate a 3090 * fake entry that is used to 3091 * decrement object->un_pager.vnp.writecount 3092 * at the appropriate time. Attach 3093 * fake_entry to the deferred list. 3094 */ 3095 fake_entry = vm_map_entry_create(dst_map); 3096 fake_entry->eflags = MAP_ENTRY_VN_WRITECNT; 3097 src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT; 3098 vm_object_reference(src_object); 3099 fake_entry->object.vm_object = src_object; 3100 fake_entry->start = src_entry->start; 3101 fake_entry->end = src_entry->end; 3102 fake_entry->next = curthread->td_map_def_user; 3103 curthread->td_map_def_user = fake_entry; 3104 } 3105 } else { 3106 dst_entry->object.vm_object = NULL; 3107 dst_entry->offset = 0; 3108 if (src_entry->cred != NULL) { 3109 dst_entry->cred = curthread->td_ucred; 3110 crhold(dst_entry->cred); 3111 *fork_charge += size; 3112 } 3113 } 3114 3115 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start, 3116 dst_entry->end - dst_entry->start, src_entry->start); 3117 } else { 3118 /* 3119 * We don't want to make writeable wired pages copy-on-write. 3120 * Immediately copy these pages into the new map by simulating 3121 * page faults. The new pages are pageable. 3122 */ 3123 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry, 3124 fork_charge); 3125 } 3126 } 3127 3128 /* 3129 * vmspace_map_entry_forked: 3130 * Update the newly-forked vmspace each time a map entry is inherited 3131 * or copied. The values for vm_dsize and vm_tsize are approximate 3132 * (and mostly-obsolete ideas in the face of mmap(2) et al.) 3133 */ 3134 static void 3135 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2, 3136 vm_map_entry_t entry) 3137 { 3138 vm_size_t entrysize; 3139 vm_offset_t newend; 3140 3141 entrysize = entry->end - entry->start; 3142 vm2->vm_map.size += entrysize; 3143 if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) { 3144 vm2->vm_ssize += btoc(entrysize); 3145 } else if (entry->start >= (vm_offset_t)vm1->vm_daddr && 3146 entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) { 3147 newend = MIN(entry->end, 3148 (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)); 3149 vm2->vm_dsize += btoc(newend - entry->start); 3150 } else if (entry->start >= (vm_offset_t)vm1->vm_taddr && 3151 entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) { 3152 newend = MIN(entry->end, 3153 (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)); 3154 vm2->vm_tsize += btoc(newend - entry->start); 3155 } 3156 } 3157 3158 /* 3159 * vmspace_fork: 3160 * Create a new process vmspace structure and vm_map 3161 * based on those of an existing process. The new map 3162 * is based on the old map, according to the inheritance 3163 * values on the regions in that map. 3164 * 3165 * XXX It might be worth coalescing the entries added to the new vmspace. 3166 * 3167 * The source map must not be locked. 3168 */ 3169 struct vmspace * 3170 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge) 3171 { 3172 struct vmspace *vm2; 3173 vm_map_t new_map, old_map; 3174 vm_map_entry_t new_entry, old_entry; 3175 vm_object_t object; 3176 int locked; 3177 3178 old_map = &vm1->vm_map; 3179 /* Copy immutable fields of vm1 to vm2. */ 3180 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset, NULL); 3181 if (vm2 == NULL) 3182 return (NULL); 3183 vm2->vm_taddr = vm1->vm_taddr; 3184 vm2->vm_daddr = vm1->vm_daddr; 3185 vm2->vm_maxsaddr = vm1->vm_maxsaddr; 3186 vm_map_lock(old_map); 3187 if (old_map->busy) 3188 vm_map_wait_busy(old_map); 3189 new_map = &vm2->vm_map; 3190 locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */ 3191 KASSERT(locked, ("vmspace_fork: lock failed")); 3192 3193 old_entry = old_map->header.next; 3194 3195 while (old_entry != &old_map->header) { 3196 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) 3197 panic("vm_map_fork: encountered a submap"); 3198 3199 switch (old_entry->inheritance) { 3200 case VM_INHERIT_NONE: 3201 break; 3202 3203 case VM_INHERIT_SHARE: 3204 /* 3205 * Clone the entry, creating the shared object if necessary. 3206 */ 3207 object = old_entry->object.vm_object; 3208 if (object == NULL) { 3209 object = vm_object_allocate(OBJT_DEFAULT, 3210 atop(old_entry->end - old_entry->start)); 3211 old_entry->object.vm_object = object; 3212 old_entry->offset = 0; 3213 if (old_entry->cred != NULL) { 3214 object->cred = old_entry->cred; 3215 object->charge = old_entry->end - 3216 old_entry->start; 3217 old_entry->cred = NULL; 3218 } 3219 } 3220 3221 /* 3222 * Add the reference before calling vm_object_shadow 3223 * to insure that a shadow object is created. 3224 */ 3225 vm_object_reference(object); 3226 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3227 vm_object_shadow(&old_entry->object.vm_object, 3228 &old_entry->offset, 3229 old_entry->end - old_entry->start); 3230 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 3231 /* Transfer the second reference too. */ 3232 vm_object_reference( 3233 old_entry->object.vm_object); 3234 3235 /* 3236 * As in vm_map_simplify_entry(), the 3237 * vnode lock will not be acquired in 3238 * this call to vm_object_deallocate(). 3239 */ 3240 vm_object_deallocate(object); 3241 object = old_entry->object.vm_object; 3242 } 3243 VM_OBJECT_WLOCK(object); 3244 vm_object_clear_flag(object, OBJ_ONEMAPPING); 3245 if (old_entry->cred != NULL) { 3246 KASSERT(object->cred == NULL, ("vmspace_fork both cred")); 3247 object->cred = old_entry->cred; 3248 object->charge = old_entry->end - old_entry->start; 3249 old_entry->cred = NULL; 3250 } 3251 3252 /* 3253 * Assert the correct state of the vnode 3254 * v_writecount while the object is locked, to 3255 * not relock it later for the assertion 3256 * correctness. 3257 */ 3258 if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT && 3259 object->type == OBJT_VNODE) { 3260 KASSERT(((struct vnode *)object->handle)-> 3261 v_writecount > 0, 3262 ("vmspace_fork: v_writecount %p", object)); 3263 KASSERT(object->un_pager.vnp.writemappings > 0, 3264 ("vmspace_fork: vnp.writecount %p", 3265 object)); 3266 } 3267 VM_OBJECT_WUNLOCK(object); 3268 3269 /* 3270 * Clone the entry, referencing the shared object. 3271 */ 3272 new_entry = vm_map_entry_create(new_map); 3273 *new_entry = *old_entry; 3274 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 3275 MAP_ENTRY_IN_TRANSITION); 3276 new_entry->wiring_thread = NULL; 3277 new_entry->wired_count = 0; 3278 if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) { 3279 vnode_pager_update_writecount(object, 3280 new_entry->start, new_entry->end); 3281 } 3282 3283 /* 3284 * Insert the entry into the new map -- we know we're 3285 * inserting at the end of the new map. 3286 */ 3287 vm_map_entry_link(new_map, new_map->header.prev, 3288 new_entry); 3289 vmspace_map_entry_forked(vm1, vm2, new_entry); 3290 3291 /* 3292 * Update the physical map 3293 */ 3294 pmap_copy(new_map->pmap, old_map->pmap, 3295 new_entry->start, 3296 (old_entry->end - old_entry->start), 3297 old_entry->start); 3298 break; 3299 3300 case VM_INHERIT_COPY: 3301 /* 3302 * Clone the entry and link into the map. 3303 */ 3304 new_entry = vm_map_entry_create(new_map); 3305 *new_entry = *old_entry; 3306 /* 3307 * Copied entry is COW over the old object. 3308 */ 3309 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 3310 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT); 3311 new_entry->wiring_thread = NULL; 3312 new_entry->wired_count = 0; 3313 new_entry->object.vm_object = NULL; 3314 new_entry->cred = NULL; 3315 vm_map_entry_link(new_map, new_map->header.prev, 3316 new_entry); 3317 vmspace_map_entry_forked(vm1, vm2, new_entry); 3318 vm_map_copy_entry(old_map, new_map, old_entry, 3319 new_entry, fork_charge); 3320 break; 3321 } 3322 old_entry = old_entry->next; 3323 } 3324 /* 3325 * Use inlined vm_map_unlock() to postpone handling the deferred 3326 * map entries, which cannot be done until both old_map and 3327 * new_map locks are released. 3328 */ 3329 sx_xunlock(&old_map->lock); 3330 sx_xunlock(&new_map->lock); 3331 vm_map_process_deferred(); 3332 3333 return (vm2); 3334 } 3335 3336 int 3337 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 3338 vm_prot_t prot, vm_prot_t max, int cow) 3339 { 3340 vm_map_entry_t new_entry, prev_entry; 3341 vm_offset_t bot, top; 3342 vm_size_t growsize, init_ssize; 3343 int orient, rv; 3344 rlim_t lmemlim, vmemlim; 3345 3346 /* 3347 * The stack orientation is piggybacked with the cow argument. 3348 * Extract it into orient and mask the cow argument so that we 3349 * don't pass it around further. 3350 * NOTE: We explicitly allow bi-directional stacks. 3351 */ 3352 orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP); 3353 KASSERT(orient != 0, ("No stack grow direction")); 3354 3355 if (addrbos < vm_map_min(map) || 3356 addrbos > vm_map_max(map) || 3357 addrbos + max_ssize < addrbos) 3358 return (KERN_NO_SPACE); 3359 3360 growsize = sgrowsiz; 3361 init_ssize = (max_ssize < growsize) ? max_ssize : growsize; 3362 3363 PROC_LOCK(curproc); 3364 lmemlim = lim_cur(curproc, RLIMIT_MEMLOCK); 3365 vmemlim = lim_cur(curproc, RLIMIT_VMEM); 3366 PROC_UNLOCK(curproc); 3367 3368 vm_map_lock(map); 3369 3370 /* If addr is already mapped, no go */ 3371 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) { 3372 vm_map_unlock(map); 3373 return (KERN_NO_SPACE); 3374 } 3375 3376 if (!old_mlock && map->flags & MAP_WIREFUTURE) { 3377 if (ptoa(pmap_wired_count(map->pmap)) + init_ssize > lmemlim) { 3378 vm_map_unlock(map); 3379 return (KERN_NO_SPACE); 3380 } 3381 } 3382 3383 /* If we would blow our VMEM resource limit, no go */ 3384 if (map->size + init_ssize > vmemlim) { 3385 vm_map_unlock(map); 3386 return (KERN_NO_SPACE); 3387 } 3388 3389 /* 3390 * If we can't accomodate max_ssize in the current mapping, no go. 3391 * However, we need to be aware that subsequent user mappings might 3392 * map into the space we have reserved for stack, and currently this 3393 * space is not protected. 3394 * 3395 * Hopefully we will at least detect this condition when we try to 3396 * grow the stack. 3397 */ 3398 if ((prev_entry->next != &map->header) && 3399 (prev_entry->next->start < addrbos + max_ssize)) { 3400 vm_map_unlock(map); 3401 return (KERN_NO_SPACE); 3402 } 3403 3404 /* 3405 * We initially map a stack of only init_ssize. We will grow as 3406 * needed later. Depending on the orientation of the stack (i.e. 3407 * the grow direction) we either map at the top of the range, the 3408 * bottom of the range or in the middle. 3409 * 3410 * Note: we would normally expect prot and max to be VM_PROT_ALL, 3411 * and cow to be 0. Possibly we should eliminate these as input 3412 * parameters, and just pass these values here in the insert call. 3413 */ 3414 if (orient == MAP_STACK_GROWS_DOWN) 3415 bot = addrbos + max_ssize - init_ssize; 3416 else if (orient == MAP_STACK_GROWS_UP) 3417 bot = addrbos; 3418 else 3419 bot = round_page(addrbos + max_ssize/2 - init_ssize/2); 3420 top = bot + init_ssize; 3421 rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow); 3422 3423 /* Now set the avail_ssize amount. */ 3424 if (rv == KERN_SUCCESS) { 3425 if (prev_entry != &map->header) 3426 vm_map_clip_end(map, prev_entry, bot); 3427 new_entry = prev_entry->next; 3428 if (new_entry->end != top || new_entry->start != bot) 3429 panic("Bad entry start/end for new stack entry"); 3430 3431 new_entry->avail_ssize = max_ssize - init_ssize; 3432 if (orient & MAP_STACK_GROWS_DOWN) 3433 new_entry->eflags |= MAP_ENTRY_GROWS_DOWN; 3434 if (orient & MAP_STACK_GROWS_UP) 3435 new_entry->eflags |= MAP_ENTRY_GROWS_UP; 3436 } 3437 3438 vm_map_unlock(map); 3439 return (rv); 3440 } 3441 3442 static int stack_guard_page = 0; 3443 TUNABLE_INT("security.bsd.stack_guard_page", &stack_guard_page); 3444 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RW, 3445 &stack_guard_page, 0, 3446 "Insert stack guard page ahead of the growable segments."); 3447 3448 /* Attempts to grow a vm stack entry. Returns KERN_SUCCESS if the 3449 * desired address is already mapped, or if we successfully grow 3450 * the stack. Also returns KERN_SUCCESS if addr is outside the 3451 * stack range (this is strange, but preserves compatibility with 3452 * the grow function in vm_machdep.c). 3453 */ 3454 int 3455 vm_map_growstack(struct proc *p, vm_offset_t addr) 3456 { 3457 vm_map_entry_t next_entry, prev_entry; 3458 vm_map_entry_t new_entry, stack_entry; 3459 struct vmspace *vm = p->p_vmspace; 3460 vm_map_t map = &vm->vm_map; 3461 vm_offset_t end; 3462 vm_size_t growsize; 3463 size_t grow_amount, max_grow; 3464 rlim_t lmemlim, stacklim, vmemlim; 3465 int is_procstack, rv; 3466 struct ucred *cred; 3467 #ifdef notyet 3468 uint64_t limit; 3469 #endif 3470 #ifdef RACCT 3471 int error; 3472 #endif 3473 3474 Retry: 3475 PROC_LOCK(p); 3476 lmemlim = lim_cur(p, RLIMIT_MEMLOCK); 3477 stacklim = lim_cur(p, RLIMIT_STACK); 3478 vmemlim = lim_cur(p, RLIMIT_VMEM); 3479 PROC_UNLOCK(p); 3480 3481 vm_map_lock_read(map); 3482 3483 /* If addr is already in the entry range, no need to grow.*/ 3484 if (vm_map_lookup_entry(map, addr, &prev_entry)) { 3485 vm_map_unlock_read(map); 3486 return (KERN_SUCCESS); 3487 } 3488 3489 next_entry = prev_entry->next; 3490 if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) { 3491 /* 3492 * This entry does not grow upwards. Since the address lies 3493 * beyond this entry, the next entry (if one exists) has to 3494 * be a downward growable entry. The entry list header is 3495 * never a growable entry, so it suffices to check the flags. 3496 */ 3497 if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) { 3498 vm_map_unlock_read(map); 3499 return (KERN_SUCCESS); 3500 } 3501 stack_entry = next_entry; 3502 } else { 3503 /* 3504 * This entry grows upward. If the next entry does not at 3505 * least grow downwards, this is the entry we need to grow. 3506 * otherwise we have two possible choices and we have to 3507 * select one. 3508 */ 3509 if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) { 3510 /* 3511 * We have two choices; grow the entry closest to 3512 * the address to minimize the amount of growth. 3513 */ 3514 if (addr - prev_entry->end <= next_entry->start - addr) 3515 stack_entry = prev_entry; 3516 else 3517 stack_entry = next_entry; 3518 } else 3519 stack_entry = prev_entry; 3520 } 3521 3522 if (stack_entry == next_entry) { 3523 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo")); 3524 KASSERT(addr < stack_entry->start, ("foo")); 3525 end = (prev_entry != &map->header) ? prev_entry->end : 3526 stack_entry->start - stack_entry->avail_ssize; 3527 grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE); 3528 max_grow = stack_entry->start - end; 3529 } else { 3530 KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo")); 3531 KASSERT(addr >= stack_entry->end, ("foo")); 3532 end = (next_entry != &map->header) ? next_entry->start : 3533 stack_entry->end + stack_entry->avail_ssize; 3534 grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE); 3535 max_grow = end - stack_entry->end; 3536 } 3537 3538 if (grow_amount > stack_entry->avail_ssize) { 3539 vm_map_unlock_read(map); 3540 return (KERN_NO_SPACE); 3541 } 3542 3543 /* 3544 * If there is no longer enough space between the entries nogo, and 3545 * adjust the available space. Note: this should only happen if the 3546 * user has mapped into the stack area after the stack was created, 3547 * and is probably an error. 3548 * 3549 * This also effectively destroys any guard page the user might have 3550 * intended by limiting the stack size. 3551 */ 3552 if (grow_amount + (stack_guard_page ? PAGE_SIZE : 0) > max_grow) { 3553 if (vm_map_lock_upgrade(map)) 3554 goto Retry; 3555 3556 stack_entry->avail_ssize = max_grow; 3557 3558 vm_map_unlock(map); 3559 return (KERN_NO_SPACE); 3560 } 3561 3562 is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr) ? 1 : 0; 3563 3564 /* 3565 * If this is the main process stack, see if we're over the stack 3566 * limit. 3567 */ 3568 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 3569 vm_map_unlock_read(map); 3570 return (KERN_NO_SPACE); 3571 } 3572 #ifdef RACCT 3573 PROC_LOCK(p); 3574 if (is_procstack && 3575 racct_set(p, RACCT_STACK, ctob(vm->vm_ssize) + grow_amount)) { 3576 PROC_UNLOCK(p); 3577 vm_map_unlock_read(map); 3578 return (KERN_NO_SPACE); 3579 } 3580 PROC_UNLOCK(p); 3581 #endif 3582 3583 /* Round up the grow amount modulo sgrowsiz */ 3584 growsize = sgrowsiz; 3585 grow_amount = roundup(grow_amount, growsize); 3586 if (grow_amount > stack_entry->avail_ssize) 3587 grow_amount = stack_entry->avail_ssize; 3588 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 3589 grow_amount = trunc_page((vm_size_t)stacklim) - 3590 ctob(vm->vm_ssize); 3591 } 3592 #ifdef notyet 3593 PROC_LOCK(p); 3594 limit = racct_get_available(p, RACCT_STACK); 3595 PROC_UNLOCK(p); 3596 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit)) 3597 grow_amount = limit - ctob(vm->vm_ssize); 3598 #endif 3599 if (!old_mlock && map->flags & MAP_WIREFUTURE) { 3600 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) { 3601 vm_map_unlock_read(map); 3602 rv = KERN_NO_SPACE; 3603 goto out; 3604 } 3605 #ifdef RACCT 3606 PROC_LOCK(p); 3607 if (racct_set(p, RACCT_MEMLOCK, 3608 ptoa(pmap_wired_count(map->pmap)) + grow_amount)) { 3609 PROC_UNLOCK(p); 3610 vm_map_unlock_read(map); 3611 rv = KERN_NO_SPACE; 3612 goto out; 3613 } 3614 PROC_UNLOCK(p); 3615 #endif 3616 } 3617 /* If we would blow our VMEM resource limit, no go */ 3618 if (map->size + grow_amount > vmemlim) { 3619 vm_map_unlock_read(map); 3620 rv = KERN_NO_SPACE; 3621 goto out; 3622 } 3623 #ifdef RACCT 3624 PROC_LOCK(p); 3625 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) { 3626 PROC_UNLOCK(p); 3627 vm_map_unlock_read(map); 3628 rv = KERN_NO_SPACE; 3629 goto out; 3630 } 3631 PROC_UNLOCK(p); 3632 #endif 3633 3634 if (vm_map_lock_upgrade(map)) 3635 goto Retry; 3636 3637 if (stack_entry == next_entry) { 3638 /* 3639 * Growing downward. 3640 */ 3641 /* Get the preliminary new entry start value */ 3642 addr = stack_entry->start - grow_amount; 3643 3644 /* 3645 * If this puts us into the previous entry, cut back our 3646 * growth to the available space. Also, see the note above. 3647 */ 3648 if (addr < end) { 3649 stack_entry->avail_ssize = max_grow; 3650 addr = end; 3651 if (stack_guard_page) 3652 addr += PAGE_SIZE; 3653 } 3654 3655 rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start, 3656 next_entry->protection, next_entry->max_protection, 0); 3657 3658 /* Adjust the available stack space by the amount we grew. */ 3659 if (rv == KERN_SUCCESS) { 3660 if (prev_entry != &map->header) 3661 vm_map_clip_end(map, prev_entry, addr); 3662 new_entry = prev_entry->next; 3663 KASSERT(new_entry == stack_entry->prev, ("foo")); 3664 KASSERT(new_entry->end == stack_entry->start, ("foo")); 3665 KASSERT(new_entry->start == addr, ("foo")); 3666 grow_amount = new_entry->end - new_entry->start; 3667 new_entry->avail_ssize = stack_entry->avail_ssize - 3668 grow_amount; 3669 stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN; 3670 new_entry->eflags |= MAP_ENTRY_GROWS_DOWN; 3671 } 3672 } else { 3673 /* 3674 * Growing upward. 3675 */ 3676 addr = stack_entry->end + grow_amount; 3677 3678 /* 3679 * If this puts us into the next entry, cut back our growth 3680 * to the available space. Also, see the note above. 3681 */ 3682 if (addr > end) { 3683 stack_entry->avail_ssize = end - stack_entry->end; 3684 addr = end; 3685 if (stack_guard_page) 3686 addr -= PAGE_SIZE; 3687 } 3688 3689 grow_amount = addr - stack_entry->end; 3690 cred = stack_entry->cred; 3691 if (cred == NULL && stack_entry->object.vm_object != NULL) 3692 cred = stack_entry->object.vm_object->cred; 3693 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred)) 3694 rv = KERN_NO_SPACE; 3695 /* Grow the underlying object if applicable. */ 3696 else if (stack_entry->object.vm_object == NULL || 3697 vm_object_coalesce(stack_entry->object.vm_object, 3698 stack_entry->offset, 3699 (vm_size_t)(stack_entry->end - stack_entry->start), 3700 (vm_size_t)grow_amount, cred != NULL)) { 3701 map->size += (addr - stack_entry->end); 3702 /* Update the current entry. */ 3703 stack_entry->end = addr; 3704 stack_entry->avail_ssize -= grow_amount; 3705 vm_map_entry_resize_free(map, stack_entry); 3706 rv = KERN_SUCCESS; 3707 3708 if (next_entry != &map->header) 3709 vm_map_clip_start(map, next_entry, addr); 3710 } else 3711 rv = KERN_FAILURE; 3712 } 3713 3714 if (rv == KERN_SUCCESS && is_procstack) 3715 vm->vm_ssize += btoc(grow_amount); 3716 3717 vm_map_unlock(map); 3718 3719 /* 3720 * Heed the MAP_WIREFUTURE flag if it was set for this process. 3721 */ 3722 if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) { 3723 vm_map_wire(map, 3724 (stack_entry == next_entry) ? addr : addr - grow_amount, 3725 (stack_entry == next_entry) ? stack_entry->start : addr, 3726 (p->p_flag & P_SYSTEM) 3727 ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES 3728 : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES); 3729 } 3730 3731 out: 3732 #ifdef RACCT 3733 if (rv != KERN_SUCCESS) { 3734 PROC_LOCK(p); 3735 error = racct_set(p, RACCT_VMEM, map->size); 3736 KASSERT(error == 0, ("decreasing RACCT_VMEM failed")); 3737 if (!old_mlock) { 3738 error = racct_set(p, RACCT_MEMLOCK, 3739 ptoa(pmap_wired_count(map->pmap))); 3740 KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed")); 3741 } 3742 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize)); 3743 KASSERT(error == 0, ("decreasing RACCT_STACK failed")); 3744 PROC_UNLOCK(p); 3745 } 3746 #endif 3747 3748 return (rv); 3749 } 3750 3751 /* 3752 * Unshare the specified VM space for exec. If other processes are 3753 * mapped to it, then create a new one. The new vmspace is null. 3754 */ 3755 int 3756 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser) 3757 { 3758 struct vmspace *oldvmspace = p->p_vmspace; 3759 struct vmspace *newvmspace; 3760 3761 newvmspace = vmspace_alloc(minuser, maxuser, NULL); 3762 if (newvmspace == NULL) 3763 return (ENOMEM); 3764 newvmspace->vm_swrss = oldvmspace->vm_swrss; 3765 /* 3766 * This code is written like this for prototype purposes. The 3767 * goal is to avoid running down the vmspace here, but let the 3768 * other process's that are still using the vmspace to finally 3769 * run it down. Even though there is little or no chance of blocking 3770 * here, it is a good idea to keep this form for future mods. 3771 */ 3772 PROC_VMSPACE_LOCK(p); 3773 p->p_vmspace = newvmspace; 3774 PROC_VMSPACE_UNLOCK(p); 3775 if (p == curthread->td_proc) 3776 pmap_activate(curthread); 3777 vmspace_free(oldvmspace); 3778 return (0); 3779 } 3780 3781 /* 3782 * Unshare the specified VM space for forcing COW. This 3783 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 3784 */ 3785 int 3786 vmspace_unshare(struct proc *p) 3787 { 3788 struct vmspace *oldvmspace = p->p_vmspace; 3789 struct vmspace *newvmspace; 3790 vm_ooffset_t fork_charge; 3791 3792 if (oldvmspace->vm_refcnt == 1) 3793 return (0); 3794 fork_charge = 0; 3795 newvmspace = vmspace_fork(oldvmspace, &fork_charge); 3796 if (newvmspace == NULL) 3797 return (ENOMEM); 3798 if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) { 3799 vmspace_free(newvmspace); 3800 return (ENOMEM); 3801 } 3802 PROC_VMSPACE_LOCK(p); 3803 p->p_vmspace = newvmspace; 3804 PROC_VMSPACE_UNLOCK(p); 3805 if (p == curthread->td_proc) 3806 pmap_activate(curthread); 3807 vmspace_free(oldvmspace); 3808 return (0); 3809 } 3810 3811 /* 3812 * vm_map_lookup: 3813 * 3814 * Finds the VM object, offset, and 3815 * protection for a given virtual address in the 3816 * specified map, assuming a page fault of the 3817 * type specified. 3818 * 3819 * Leaves the map in question locked for read; return 3820 * values are guaranteed until a vm_map_lookup_done 3821 * call is performed. Note that the map argument 3822 * is in/out; the returned map must be used in 3823 * the call to vm_map_lookup_done. 3824 * 3825 * A handle (out_entry) is returned for use in 3826 * vm_map_lookup_done, to make that fast. 3827 * 3828 * If a lookup is requested with "write protection" 3829 * specified, the map may be changed to perform virtual 3830 * copying operations, although the data referenced will 3831 * remain the same. 3832 */ 3833 int 3834 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 3835 vm_offset_t vaddr, 3836 vm_prot_t fault_typea, 3837 vm_map_entry_t *out_entry, /* OUT */ 3838 vm_object_t *object, /* OUT */ 3839 vm_pindex_t *pindex, /* OUT */ 3840 vm_prot_t *out_prot, /* OUT */ 3841 boolean_t *wired) /* OUT */ 3842 { 3843 vm_map_entry_t entry; 3844 vm_map_t map = *var_map; 3845 vm_prot_t prot; 3846 vm_prot_t fault_type = fault_typea; 3847 vm_object_t eobject; 3848 vm_size_t size; 3849 struct ucred *cred; 3850 3851 RetryLookup:; 3852 3853 vm_map_lock_read(map); 3854 3855 /* 3856 * Lookup the faulting address. 3857 */ 3858 if (!vm_map_lookup_entry(map, vaddr, out_entry)) { 3859 vm_map_unlock_read(map); 3860 return (KERN_INVALID_ADDRESS); 3861 } 3862 3863 entry = *out_entry; 3864 3865 /* 3866 * Handle submaps. 3867 */ 3868 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 3869 vm_map_t old_map = map; 3870 3871 *var_map = map = entry->object.sub_map; 3872 vm_map_unlock_read(old_map); 3873 goto RetryLookup; 3874 } 3875 3876 /* 3877 * Check whether this task is allowed to have this page. 3878 */ 3879 prot = entry->protection; 3880 fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE); 3881 if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) { 3882 vm_map_unlock_read(map); 3883 return (KERN_PROTECTION_FAILURE); 3884 } 3885 if ((entry->eflags & MAP_ENTRY_USER_WIRED) && 3886 (entry->eflags & MAP_ENTRY_COW) && 3887 (fault_type & VM_PROT_WRITE)) { 3888 vm_map_unlock_read(map); 3889 return (KERN_PROTECTION_FAILURE); 3890 } 3891 if ((fault_typea & VM_PROT_COPY) != 0 && 3892 (entry->max_protection & VM_PROT_WRITE) == 0 && 3893 (entry->eflags & MAP_ENTRY_COW) == 0) { 3894 vm_map_unlock_read(map); 3895 return (KERN_PROTECTION_FAILURE); 3896 } 3897 3898 /* 3899 * If this page is not pageable, we have to get it for all possible 3900 * accesses. 3901 */ 3902 *wired = (entry->wired_count != 0); 3903 if (*wired) 3904 fault_type = entry->protection; 3905 size = entry->end - entry->start; 3906 /* 3907 * If the entry was copy-on-write, we either ... 3908 */ 3909 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3910 /* 3911 * If we want to write the page, we may as well handle that 3912 * now since we've got the map locked. 3913 * 3914 * If we don't need to write the page, we just demote the 3915 * permissions allowed. 3916 */ 3917 if ((fault_type & VM_PROT_WRITE) != 0 || 3918 (fault_typea & VM_PROT_COPY) != 0) { 3919 /* 3920 * Make a new object, and place it in the object 3921 * chain. Note that no new references have appeared 3922 * -- one just moved from the map to the new 3923 * object. 3924 */ 3925 if (vm_map_lock_upgrade(map)) 3926 goto RetryLookup; 3927 3928 if (entry->cred == NULL) { 3929 /* 3930 * The debugger owner is charged for 3931 * the memory. 3932 */ 3933 cred = curthread->td_ucred; 3934 crhold(cred); 3935 if (!swap_reserve_by_cred(size, cred)) { 3936 crfree(cred); 3937 vm_map_unlock(map); 3938 return (KERN_RESOURCE_SHORTAGE); 3939 } 3940 entry->cred = cred; 3941 } 3942 vm_object_shadow(&entry->object.vm_object, 3943 &entry->offset, size); 3944 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 3945 eobject = entry->object.vm_object; 3946 if (eobject->cred != NULL) { 3947 /* 3948 * The object was not shadowed. 3949 */ 3950 swap_release_by_cred(size, entry->cred); 3951 crfree(entry->cred); 3952 entry->cred = NULL; 3953 } else if (entry->cred != NULL) { 3954 VM_OBJECT_WLOCK(eobject); 3955 eobject->cred = entry->cred; 3956 eobject->charge = size; 3957 VM_OBJECT_WUNLOCK(eobject); 3958 entry->cred = NULL; 3959 } 3960 3961 vm_map_lock_downgrade(map); 3962 } else { 3963 /* 3964 * We're attempting to read a copy-on-write page -- 3965 * don't allow writes. 3966 */ 3967 prot &= ~VM_PROT_WRITE; 3968 } 3969 } 3970 3971 /* 3972 * Create an object if necessary. 3973 */ 3974 if (entry->object.vm_object == NULL && 3975 !map->system_map) { 3976 if (vm_map_lock_upgrade(map)) 3977 goto RetryLookup; 3978 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT, 3979 atop(size)); 3980 entry->offset = 0; 3981 if (entry->cred != NULL) { 3982 VM_OBJECT_WLOCK(entry->object.vm_object); 3983 entry->object.vm_object->cred = entry->cred; 3984 entry->object.vm_object->charge = size; 3985 VM_OBJECT_WUNLOCK(entry->object.vm_object); 3986 entry->cred = NULL; 3987 } 3988 vm_map_lock_downgrade(map); 3989 } 3990 3991 /* 3992 * Return the object/offset from this entry. If the entry was 3993 * copy-on-write or empty, it has been fixed up. 3994 */ 3995 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 3996 *object = entry->object.vm_object; 3997 3998 *out_prot = prot; 3999 return (KERN_SUCCESS); 4000 } 4001 4002 /* 4003 * vm_map_lookup_locked: 4004 * 4005 * Lookup the faulting address. A version of vm_map_lookup that returns 4006 * KERN_FAILURE instead of blocking on map lock or memory allocation. 4007 */ 4008 int 4009 vm_map_lookup_locked(vm_map_t *var_map, /* IN/OUT */ 4010 vm_offset_t vaddr, 4011 vm_prot_t fault_typea, 4012 vm_map_entry_t *out_entry, /* OUT */ 4013 vm_object_t *object, /* OUT */ 4014 vm_pindex_t *pindex, /* OUT */ 4015 vm_prot_t *out_prot, /* OUT */ 4016 boolean_t *wired) /* OUT */ 4017 { 4018 vm_map_entry_t entry; 4019 vm_map_t map = *var_map; 4020 vm_prot_t prot; 4021 vm_prot_t fault_type = fault_typea; 4022 4023 /* 4024 * Lookup the faulting address. 4025 */ 4026 if (!vm_map_lookup_entry(map, vaddr, out_entry)) 4027 return (KERN_INVALID_ADDRESS); 4028 4029 entry = *out_entry; 4030 4031 /* 4032 * Fail if the entry refers to a submap. 4033 */ 4034 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 4035 return (KERN_FAILURE); 4036 4037 /* 4038 * Check whether this task is allowed to have this page. 4039 */ 4040 prot = entry->protection; 4041 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; 4042 if ((fault_type & prot) != fault_type) 4043 return (KERN_PROTECTION_FAILURE); 4044 if ((entry->eflags & MAP_ENTRY_USER_WIRED) && 4045 (entry->eflags & MAP_ENTRY_COW) && 4046 (fault_type & VM_PROT_WRITE)) 4047 return (KERN_PROTECTION_FAILURE); 4048 4049 /* 4050 * If this page is not pageable, we have to get it for all possible 4051 * accesses. 4052 */ 4053 *wired = (entry->wired_count != 0); 4054 if (*wired) 4055 fault_type = entry->protection; 4056 4057 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 4058 /* 4059 * Fail if the entry was copy-on-write for a write fault. 4060 */ 4061 if (fault_type & VM_PROT_WRITE) 4062 return (KERN_FAILURE); 4063 /* 4064 * We're attempting to read a copy-on-write page -- 4065 * don't allow writes. 4066 */ 4067 prot &= ~VM_PROT_WRITE; 4068 } 4069 4070 /* 4071 * Fail if an object should be created. 4072 */ 4073 if (entry->object.vm_object == NULL && !map->system_map) 4074 return (KERN_FAILURE); 4075 4076 /* 4077 * Return the object/offset from this entry. If the entry was 4078 * copy-on-write or empty, it has been fixed up. 4079 */ 4080 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 4081 *object = entry->object.vm_object; 4082 4083 *out_prot = prot; 4084 return (KERN_SUCCESS); 4085 } 4086 4087 /* 4088 * vm_map_lookup_done: 4089 * 4090 * Releases locks acquired by a vm_map_lookup 4091 * (according to the handle returned by that lookup). 4092 */ 4093 void 4094 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry) 4095 { 4096 /* 4097 * Unlock the main-level map 4098 */ 4099 vm_map_unlock_read(map); 4100 } 4101 4102 #include "opt_ddb.h" 4103 #ifdef DDB 4104 #include <sys/kernel.h> 4105 4106 #include <ddb/ddb.h> 4107 4108 static void 4109 vm_map_print(vm_map_t map) 4110 { 4111 vm_map_entry_t entry; 4112 4113 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 4114 (void *)map, 4115 (void *)map->pmap, map->nentries, map->timestamp); 4116 4117 db_indent += 2; 4118 for (entry = map->header.next; entry != &map->header; 4119 entry = entry->next) { 4120 db_iprintf("map entry %p: start=%p, end=%p\n", 4121 (void *)entry, (void *)entry->start, (void *)entry->end); 4122 { 4123 static char *inheritance_name[4] = 4124 {"share", "copy", "none", "donate_copy"}; 4125 4126 db_iprintf(" prot=%x/%x/%s", 4127 entry->protection, 4128 entry->max_protection, 4129 inheritance_name[(int)(unsigned char)entry->inheritance]); 4130 if (entry->wired_count != 0) 4131 db_printf(", wired"); 4132 } 4133 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 4134 db_printf(", share=%p, offset=0x%jx\n", 4135 (void *)entry->object.sub_map, 4136 (uintmax_t)entry->offset); 4137 if ((entry->prev == &map->header) || 4138 (entry->prev->object.sub_map != 4139 entry->object.sub_map)) { 4140 db_indent += 2; 4141 vm_map_print((vm_map_t)entry->object.sub_map); 4142 db_indent -= 2; 4143 } 4144 } else { 4145 if (entry->cred != NULL) 4146 db_printf(", ruid %d", entry->cred->cr_ruid); 4147 db_printf(", object=%p, offset=0x%jx", 4148 (void *)entry->object.vm_object, 4149 (uintmax_t)entry->offset); 4150 if (entry->object.vm_object && entry->object.vm_object->cred) 4151 db_printf(", obj ruid %d charge %jx", 4152 entry->object.vm_object->cred->cr_ruid, 4153 (uintmax_t)entry->object.vm_object->charge); 4154 if (entry->eflags & MAP_ENTRY_COW) 4155 db_printf(", copy (%s)", 4156 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 4157 db_printf("\n"); 4158 4159 if ((entry->prev == &map->header) || 4160 (entry->prev->object.vm_object != 4161 entry->object.vm_object)) { 4162 db_indent += 2; 4163 vm_object_print((db_expr_t)(intptr_t) 4164 entry->object.vm_object, 4165 0, 0, (char *)0); 4166 db_indent -= 2; 4167 } 4168 } 4169 } 4170 db_indent -= 2; 4171 } 4172 4173 DB_SHOW_COMMAND(map, map) 4174 { 4175 4176 if (!have_addr) { 4177 db_printf("usage: show map <addr>\n"); 4178 return; 4179 } 4180 vm_map_print((vm_map_t)addr); 4181 } 4182 4183 DB_SHOW_COMMAND(procvm, procvm) 4184 { 4185 struct proc *p; 4186 4187 if (have_addr) { 4188 p = (struct proc *) addr; 4189 } else { 4190 p = curproc; 4191 } 4192 4193 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 4194 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 4195 (void *)vmspace_pmap(p->p_vmspace)); 4196 4197 vm_map_print((vm_map_t)&p->p_vmspace->vm_map); 4198 } 4199 4200 #endif /* DDB */ 4201