xref: /freebsd/sys/vm/vm_map.c (revision 58a08f9e9910ea986e0f1103f47274a781b11874)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62 
63 /*
64  *	Virtual memory mapping module.
65  */
66 
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/elf.h>
73 #include <sys/kernel.h>
74 #include <sys/ktr.h>
75 #include <sys/lock.h>
76 #include <sys/mutex.h>
77 #include <sys/proc.h>
78 #include <sys/vmmeter.h>
79 #include <sys/mman.h>
80 #include <sys/vnode.h>
81 #include <sys/racct.h>
82 #include <sys/resourcevar.h>
83 #include <sys/rwlock.h>
84 #include <sys/file.h>
85 #include <sys/sysctl.h>
86 #include <sys/sysent.h>
87 #include <sys/shm.h>
88 
89 #include <vm/vm.h>
90 #include <vm/vm_param.h>
91 #include <vm/pmap.h>
92 #include <vm/vm_map.h>
93 #include <vm/vm_page.h>
94 #include <vm/vm_pageout.h>
95 #include <vm/vm_object.h>
96 #include <vm/vm_pager.h>
97 #include <vm/vm_kern.h>
98 #include <vm/vm_extern.h>
99 #include <vm/vnode_pager.h>
100 #include <vm/swap_pager.h>
101 #include <vm/uma.h>
102 
103 /*
104  *	Virtual memory maps provide for the mapping, protection,
105  *	and sharing of virtual memory objects.  In addition,
106  *	this module provides for an efficient virtual copy of
107  *	memory from one map to another.
108  *
109  *	Synchronization is required prior to most operations.
110  *
111  *	Maps consist of an ordered doubly-linked list of simple
112  *	entries; a self-adjusting binary search tree of these
113  *	entries is used to speed up lookups.
114  *
115  *	Since portions of maps are specified by start/end addresses,
116  *	which may not align with existing map entries, all
117  *	routines merely "clip" entries to these start/end values.
118  *	[That is, an entry is split into two, bordering at a
119  *	start or end value.]  Note that these clippings may not
120  *	always be necessary (as the two resulting entries are then
121  *	not changed); however, the clipping is done for convenience.
122  *
123  *	As mentioned above, virtual copy operations are performed
124  *	by copying VM object references from one map to
125  *	another, and then marking both regions as copy-on-write.
126  */
127 
128 static struct mtx map_sleep_mtx;
129 static uma_zone_t mapentzone;
130 static uma_zone_t kmapentzone;
131 static uma_zone_t vmspace_zone;
132 static int vmspace_zinit(void *mem, int size, int flags);
133 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
134     vm_offset_t max);
135 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
136 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
137 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
138 static int vm_map_growstack(vm_map_t map, vm_offset_t addr,
139     vm_map_entry_t gap_entry);
140 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
141     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
142 #ifdef INVARIANTS
143 static void vmspace_zdtor(void *mem, int size, void *arg);
144 #endif
145 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
146     vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
147     int cow);
148 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
149     vm_offset_t failed_addr);
150 
151 #define	ENTRY_CHARGED(e) ((e)->cred != NULL || \
152     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
153      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
154 
155 /*
156  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
157  * stable.
158  */
159 #define PROC_VMSPACE_LOCK(p) do { } while (0)
160 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
161 
162 /*
163  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
164  *
165  *	Asserts that the starting and ending region
166  *	addresses fall within the valid range of the map.
167  */
168 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
169 		{					\
170 		if (start < vm_map_min(map))		\
171 			start = vm_map_min(map);	\
172 		if (end > vm_map_max(map))		\
173 			end = vm_map_max(map);		\
174 		if (start > end)			\
175 			start = end;			\
176 		}
177 
178 #ifndef UMA_MD_SMALL_ALLOC
179 
180 /*
181  * Allocate a new slab for kernel map entries.  The kernel map may be locked or
182  * unlocked, depending on whether the request is coming from the kernel map or a
183  * submap.  This function allocates a virtual address range directly from the
184  * kernel map instead of the kmem_* layer to avoid recursion on the kernel map
185  * lock and also to avoid triggering allocator recursion in the vmem boundary
186  * tag allocator.
187  */
188 static void *
189 kmapent_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag,
190     int wait)
191 {
192 	vm_offset_t addr;
193 	int error, locked;
194 
195 	*pflag = UMA_SLAB_PRIV;
196 
197 	if (!(locked = vm_map_locked(kernel_map)))
198 		vm_map_lock(kernel_map);
199 	addr = vm_map_findspace(kernel_map, vm_map_min(kernel_map), bytes);
200 	if (addr + bytes < addr || addr + bytes > vm_map_max(kernel_map))
201 		panic("%s: kernel map is exhausted", __func__);
202 	error = vm_map_insert(kernel_map, NULL, 0, addr, addr + bytes,
203 	    VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT);
204 	if (error != KERN_SUCCESS)
205 		panic("%s: vm_map_insert() failed: %d", __func__, error);
206 	if (!locked)
207 		vm_map_unlock(kernel_map);
208 	error = kmem_back_domain(domain, kernel_object, addr, bytes, M_NOWAIT |
209 	    M_USE_RESERVE | (wait & M_ZERO));
210 	if (error == KERN_SUCCESS) {
211 		return ((void *)addr);
212 	} else {
213 		if (!locked)
214 			vm_map_lock(kernel_map);
215 		vm_map_delete(kernel_map, addr, bytes);
216 		if (!locked)
217 			vm_map_unlock(kernel_map);
218 		return (NULL);
219 	}
220 }
221 
222 static void
223 kmapent_free(void *item, vm_size_t size, uint8_t pflag)
224 {
225 	vm_offset_t addr;
226 	int error;
227 
228 	if ((pflag & UMA_SLAB_PRIV) == 0)
229 		/* XXX leaked */
230 		return;
231 
232 	addr = (vm_offset_t)item;
233 	kmem_unback(kernel_object, addr, size);
234 	error = vm_map_remove(kernel_map, addr, addr + size);
235 	KASSERT(error == KERN_SUCCESS,
236 	    ("%s: vm_map_remove failed: %d", __func__, error));
237 }
238 
239 /*
240  * The worst-case upper bound on the number of kernel map entries that may be
241  * created before the zone must be replenished in _vm_map_unlock().
242  */
243 #define	KMAPENT_RESERVE		1
244 
245 #endif /* !UMD_MD_SMALL_ALLOC */
246 
247 /*
248  *	vm_map_startup:
249  *
250  *	Initialize the vm_map module.  Must be called before any other vm_map
251  *	routines.
252  *
253  *	User map and entry structures are allocated from the general purpose
254  *	memory pool.  Kernel maps are statically defined.  Kernel map entries
255  *	require special handling to avoid recursion; see the comments above
256  *	kmapent_alloc() and in vm_map_entry_create().
257  */
258 void
259 vm_map_startup(void)
260 {
261 	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
262 
263 	/*
264 	 * Disable the use of per-CPU buckets: map entry allocation is
265 	 * serialized by the kernel map lock.
266 	 */
267 	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
268 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
269 	    UMA_ZONE_VM | UMA_ZONE_NOBUCKET);
270 #ifndef UMA_MD_SMALL_ALLOC
271 	/* Reserve an extra map entry for use when replenishing the reserve. */
272 	uma_zone_reserve(kmapentzone, KMAPENT_RESERVE + 1);
273 	uma_prealloc(kmapentzone, KMAPENT_RESERVE + 1);
274 	uma_zone_set_allocf(kmapentzone, kmapent_alloc);
275 	uma_zone_set_freef(kmapentzone, kmapent_free);
276 #endif
277 
278 	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
279 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
280 	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
281 #ifdef INVARIANTS
282 	    vmspace_zdtor,
283 #else
284 	    NULL,
285 #endif
286 	    vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
287 }
288 
289 static int
290 vmspace_zinit(void *mem, int size, int flags)
291 {
292 	struct vmspace *vm;
293 	vm_map_t map;
294 
295 	vm = (struct vmspace *)mem;
296 	map = &vm->vm_map;
297 
298 	memset(map, 0, sizeof(*map));
299 	mtx_init(&map->system_mtx, "vm map (system)", NULL,
300 	    MTX_DEF | MTX_DUPOK);
301 	sx_init(&map->lock, "vm map (user)");
302 	PMAP_LOCK_INIT(vmspace_pmap(vm));
303 	return (0);
304 }
305 
306 #ifdef INVARIANTS
307 static void
308 vmspace_zdtor(void *mem, int size, void *arg)
309 {
310 	struct vmspace *vm;
311 
312 	vm = (struct vmspace *)mem;
313 	KASSERT(vm->vm_map.nentries == 0,
314 	    ("vmspace %p nentries == %d on free", vm, vm->vm_map.nentries));
315 	KASSERT(vm->vm_map.size == 0,
316 	    ("vmspace %p size == %ju on free", vm, (uintmax_t)vm->vm_map.size));
317 }
318 #endif	/* INVARIANTS */
319 
320 /*
321  * Allocate a vmspace structure, including a vm_map and pmap,
322  * and initialize those structures.  The refcnt is set to 1.
323  */
324 struct vmspace *
325 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
326 {
327 	struct vmspace *vm;
328 
329 	vm = uma_zalloc(vmspace_zone, M_WAITOK);
330 	KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
331 	if (!pinit(vmspace_pmap(vm))) {
332 		uma_zfree(vmspace_zone, vm);
333 		return (NULL);
334 	}
335 	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
336 	_vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
337 	refcount_init(&vm->vm_refcnt, 1);
338 	vm->vm_shm = NULL;
339 	vm->vm_swrss = 0;
340 	vm->vm_tsize = 0;
341 	vm->vm_dsize = 0;
342 	vm->vm_ssize = 0;
343 	vm->vm_taddr = 0;
344 	vm->vm_daddr = 0;
345 	vm->vm_maxsaddr = 0;
346 	return (vm);
347 }
348 
349 #ifdef RACCT
350 static void
351 vmspace_container_reset(struct proc *p)
352 {
353 
354 	PROC_LOCK(p);
355 	racct_set(p, RACCT_DATA, 0);
356 	racct_set(p, RACCT_STACK, 0);
357 	racct_set(p, RACCT_RSS, 0);
358 	racct_set(p, RACCT_MEMLOCK, 0);
359 	racct_set(p, RACCT_VMEM, 0);
360 	PROC_UNLOCK(p);
361 }
362 #endif
363 
364 static inline void
365 vmspace_dofree(struct vmspace *vm)
366 {
367 
368 	CTR1(KTR_VM, "vmspace_free: %p", vm);
369 
370 	/*
371 	 * Make sure any SysV shm is freed, it might not have been in
372 	 * exit1().
373 	 */
374 	shmexit(vm);
375 
376 	/*
377 	 * Lock the map, to wait out all other references to it.
378 	 * Delete all of the mappings and pages they hold, then call
379 	 * the pmap module to reclaim anything left.
380 	 */
381 	(void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map),
382 	    vm_map_max(&vm->vm_map));
383 
384 	pmap_release(vmspace_pmap(vm));
385 	vm->vm_map.pmap = NULL;
386 	uma_zfree(vmspace_zone, vm);
387 }
388 
389 void
390 vmspace_free(struct vmspace *vm)
391 {
392 
393 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
394 	    "vmspace_free() called");
395 
396 	if (refcount_release(&vm->vm_refcnt))
397 		vmspace_dofree(vm);
398 }
399 
400 void
401 vmspace_exitfree(struct proc *p)
402 {
403 	struct vmspace *vm;
404 
405 	PROC_VMSPACE_LOCK(p);
406 	vm = p->p_vmspace;
407 	p->p_vmspace = NULL;
408 	PROC_VMSPACE_UNLOCK(p);
409 	KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
410 	vmspace_free(vm);
411 }
412 
413 void
414 vmspace_exit(struct thread *td)
415 {
416 	struct vmspace *vm;
417 	struct proc *p;
418 	bool released;
419 
420 	p = td->td_proc;
421 	vm = p->p_vmspace;
422 
423 	/*
424 	 * Prepare to release the vmspace reference.  The thread that releases
425 	 * the last reference is responsible for tearing down the vmspace.
426 	 * However, threads not releasing the final reference must switch to the
427 	 * kernel's vmspace0 before the decrement so that the subsequent pmap
428 	 * deactivation does not modify a freed vmspace.
429 	 */
430 	refcount_acquire(&vmspace0.vm_refcnt);
431 	if (!(released = refcount_release_if_last(&vm->vm_refcnt))) {
432 		if (p->p_vmspace != &vmspace0) {
433 			PROC_VMSPACE_LOCK(p);
434 			p->p_vmspace = &vmspace0;
435 			PROC_VMSPACE_UNLOCK(p);
436 			pmap_activate(td);
437 		}
438 		released = refcount_release(&vm->vm_refcnt);
439 	}
440 	if (released) {
441 		/*
442 		 * pmap_remove_pages() expects the pmap to be active, so switch
443 		 * back first if necessary.
444 		 */
445 		if (p->p_vmspace != vm) {
446 			PROC_VMSPACE_LOCK(p);
447 			p->p_vmspace = vm;
448 			PROC_VMSPACE_UNLOCK(p);
449 			pmap_activate(td);
450 		}
451 		pmap_remove_pages(vmspace_pmap(vm));
452 		PROC_VMSPACE_LOCK(p);
453 		p->p_vmspace = &vmspace0;
454 		PROC_VMSPACE_UNLOCK(p);
455 		pmap_activate(td);
456 		vmspace_dofree(vm);
457 	}
458 #ifdef RACCT
459 	if (racct_enable)
460 		vmspace_container_reset(p);
461 #endif
462 }
463 
464 /* Acquire reference to vmspace owned by another process. */
465 
466 struct vmspace *
467 vmspace_acquire_ref(struct proc *p)
468 {
469 	struct vmspace *vm;
470 
471 	PROC_VMSPACE_LOCK(p);
472 	vm = p->p_vmspace;
473 	if (vm == NULL || !refcount_acquire_if_not_zero(&vm->vm_refcnt)) {
474 		PROC_VMSPACE_UNLOCK(p);
475 		return (NULL);
476 	}
477 	if (vm != p->p_vmspace) {
478 		PROC_VMSPACE_UNLOCK(p);
479 		vmspace_free(vm);
480 		return (NULL);
481 	}
482 	PROC_VMSPACE_UNLOCK(p);
483 	return (vm);
484 }
485 
486 /*
487  * Switch between vmspaces in an AIO kernel process.
488  *
489  * The new vmspace is either the vmspace of a user process obtained
490  * from an active AIO request or the initial vmspace of the AIO kernel
491  * process (when it is idling).  Because user processes will block to
492  * drain any active AIO requests before proceeding in exit() or
493  * execve(), the reference count for vmspaces from AIO requests can
494  * never be 0.  Similarly, AIO kernel processes hold an extra
495  * reference on their initial vmspace for the life of the process.  As
496  * a result, the 'newvm' vmspace always has a non-zero reference
497  * count.  This permits an additional reference on 'newvm' to be
498  * acquired via a simple atomic increment rather than the loop in
499  * vmspace_acquire_ref() above.
500  */
501 void
502 vmspace_switch_aio(struct vmspace *newvm)
503 {
504 	struct vmspace *oldvm;
505 
506 	/* XXX: Need some way to assert that this is an aio daemon. */
507 
508 	KASSERT(refcount_load(&newvm->vm_refcnt) > 0,
509 	    ("vmspace_switch_aio: newvm unreferenced"));
510 
511 	oldvm = curproc->p_vmspace;
512 	if (oldvm == newvm)
513 		return;
514 
515 	/*
516 	 * Point to the new address space and refer to it.
517 	 */
518 	curproc->p_vmspace = newvm;
519 	refcount_acquire(&newvm->vm_refcnt);
520 
521 	/* Activate the new mapping. */
522 	pmap_activate(curthread);
523 
524 	vmspace_free(oldvm);
525 }
526 
527 void
528 _vm_map_lock(vm_map_t map, const char *file, int line)
529 {
530 
531 	if (map->system_map)
532 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
533 	else
534 		sx_xlock_(&map->lock, file, line);
535 	map->timestamp++;
536 }
537 
538 void
539 vm_map_entry_set_vnode_text(vm_map_entry_t entry, bool add)
540 {
541 	vm_object_t object;
542 	struct vnode *vp;
543 	bool vp_held;
544 
545 	if ((entry->eflags & MAP_ENTRY_VN_EXEC) == 0)
546 		return;
547 	KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
548 	    ("Submap with execs"));
549 	object = entry->object.vm_object;
550 	KASSERT(object != NULL, ("No object for text, entry %p", entry));
551 	if ((object->flags & OBJ_ANON) != 0)
552 		object = object->handle;
553 	else
554 		KASSERT(object->backing_object == NULL,
555 		    ("non-anon object %p shadows", object));
556 	KASSERT(object != NULL, ("No content object for text, entry %p obj %p",
557 	    entry, entry->object.vm_object));
558 
559 	/*
560 	 * Mostly, we do not lock the backing object.  It is
561 	 * referenced by the entry we are processing, so it cannot go
562 	 * away.
563 	 */
564 	vp = NULL;
565 	vp_held = false;
566 	if (object->type == OBJT_DEAD) {
567 		/*
568 		 * For OBJT_DEAD objects, v_writecount was handled in
569 		 * vnode_pager_dealloc().
570 		 */
571 	} else if (object->type == OBJT_VNODE) {
572 		vp = object->handle;
573 	} else if (object->type == OBJT_SWAP) {
574 		KASSERT((object->flags & OBJ_TMPFS_NODE) != 0,
575 		    ("vm_map_entry_set_vnode_text: swap and !TMPFS "
576 		    "entry %p, object %p, add %d", entry, object, add));
577 		/*
578 		 * Tmpfs VREG node, which was reclaimed, has
579 		 * OBJ_TMPFS_NODE flag set, but not OBJ_TMPFS.  In
580 		 * this case there is no v_writecount to adjust.
581 		 */
582 		VM_OBJECT_RLOCK(object);
583 		if ((object->flags & OBJ_TMPFS) != 0) {
584 			vp = object->un_pager.swp.swp_tmpfs;
585 			if (vp != NULL) {
586 				vhold(vp);
587 				vp_held = true;
588 			}
589 		}
590 		VM_OBJECT_RUNLOCK(object);
591 	} else {
592 		KASSERT(0,
593 		    ("vm_map_entry_set_vnode_text: wrong object type, "
594 		    "entry %p, object %p, add %d", entry, object, add));
595 	}
596 	if (vp != NULL) {
597 		if (add) {
598 			VOP_SET_TEXT_CHECKED(vp);
599 		} else {
600 			vn_lock(vp, LK_SHARED | LK_RETRY);
601 			VOP_UNSET_TEXT_CHECKED(vp);
602 			VOP_UNLOCK(vp);
603 		}
604 		if (vp_held)
605 			vdrop(vp);
606 	}
607 }
608 
609 /*
610  * Use a different name for this vm_map_entry field when it's use
611  * is not consistent with its use as part of an ordered search tree.
612  */
613 #define defer_next right
614 
615 static void
616 vm_map_process_deferred(void)
617 {
618 	struct thread *td;
619 	vm_map_entry_t entry, next;
620 	vm_object_t object;
621 
622 	td = curthread;
623 	entry = td->td_map_def_user;
624 	td->td_map_def_user = NULL;
625 	while (entry != NULL) {
626 		next = entry->defer_next;
627 		MPASS((entry->eflags & (MAP_ENTRY_WRITECNT |
628 		    MAP_ENTRY_VN_EXEC)) != (MAP_ENTRY_WRITECNT |
629 		    MAP_ENTRY_VN_EXEC));
630 		if ((entry->eflags & MAP_ENTRY_WRITECNT) != 0) {
631 			/*
632 			 * Decrement the object's writemappings and
633 			 * possibly the vnode's v_writecount.
634 			 */
635 			KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
636 			    ("Submap with writecount"));
637 			object = entry->object.vm_object;
638 			KASSERT(object != NULL, ("No object for writecount"));
639 			vm_pager_release_writecount(object, entry->start,
640 			    entry->end);
641 		}
642 		vm_map_entry_set_vnode_text(entry, false);
643 		vm_map_entry_deallocate(entry, FALSE);
644 		entry = next;
645 	}
646 }
647 
648 #ifdef INVARIANTS
649 static void
650 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
651 {
652 
653 	if (map->system_map)
654 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
655 	else
656 		sx_assert_(&map->lock, SA_XLOCKED, file, line);
657 }
658 
659 #define	VM_MAP_ASSERT_LOCKED(map) \
660     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
661 
662 enum { VMMAP_CHECK_NONE, VMMAP_CHECK_UNLOCK, VMMAP_CHECK_ALL };
663 #ifdef DIAGNOSTIC
664 static int enable_vmmap_check = VMMAP_CHECK_UNLOCK;
665 #else
666 static int enable_vmmap_check = VMMAP_CHECK_NONE;
667 #endif
668 SYSCTL_INT(_debug, OID_AUTO, vmmap_check, CTLFLAG_RWTUN,
669     &enable_vmmap_check, 0, "Enable vm map consistency checking");
670 
671 static void _vm_map_assert_consistent(vm_map_t map, int check);
672 
673 #define VM_MAP_ASSERT_CONSISTENT(map) \
674     _vm_map_assert_consistent(map, VMMAP_CHECK_ALL)
675 #ifdef DIAGNOSTIC
676 #define VM_MAP_UNLOCK_CONSISTENT(map) do {				\
677 	if (map->nupdates > map->nentries) {				\
678 		_vm_map_assert_consistent(map, VMMAP_CHECK_UNLOCK);	\
679 		map->nupdates = 0;					\
680 	}								\
681 } while (0)
682 #else
683 #define VM_MAP_UNLOCK_CONSISTENT(map)
684 #endif
685 #else
686 #define	VM_MAP_ASSERT_LOCKED(map)
687 #define VM_MAP_ASSERT_CONSISTENT(map)
688 #define VM_MAP_UNLOCK_CONSISTENT(map)
689 #endif /* INVARIANTS */
690 
691 void
692 _vm_map_unlock(vm_map_t map, const char *file, int line)
693 {
694 
695 	VM_MAP_UNLOCK_CONSISTENT(map);
696 	if (map->system_map) {
697 #ifndef UMA_MD_SMALL_ALLOC
698 		if (map == kernel_map && (map->flags & MAP_REPLENISH) != 0) {
699 			uma_prealloc(kmapentzone, 1);
700 			map->flags &= ~MAP_REPLENISH;
701 		}
702 #endif
703 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
704 	} else {
705 		sx_xunlock_(&map->lock, file, line);
706 		vm_map_process_deferred();
707 	}
708 }
709 
710 void
711 _vm_map_lock_read(vm_map_t map, const char *file, int line)
712 {
713 
714 	if (map->system_map)
715 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
716 	else
717 		sx_slock_(&map->lock, file, line);
718 }
719 
720 void
721 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
722 {
723 
724 	if (map->system_map) {
725 		KASSERT((map->flags & MAP_REPLENISH) == 0,
726 		    ("%s: MAP_REPLENISH leaked", __func__));
727 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
728 	} else {
729 		sx_sunlock_(&map->lock, file, line);
730 		vm_map_process_deferred();
731 	}
732 }
733 
734 int
735 _vm_map_trylock(vm_map_t map, const char *file, int line)
736 {
737 	int error;
738 
739 	error = map->system_map ?
740 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
741 	    !sx_try_xlock_(&map->lock, file, line);
742 	if (error == 0)
743 		map->timestamp++;
744 	return (error == 0);
745 }
746 
747 int
748 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
749 {
750 	int error;
751 
752 	error = map->system_map ?
753 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
754 	    !sx_try_slock_(&map->lock, file, line);
755 	return (error == 0);
756 }
757 
758 /*
759  *	_vm_map_lock_upgrade:	[ internal use only ]
760  *
761  *	Tries to upgrade a read (shared) lock on the specified map to a write
762  *	(exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
763  *	non-zero value if the upgrade fails.  If the upgrade fails, the map is
764  *	returned without a read or write lock held.
765  *
766  *	Requires that the map be read locked.
767  */
768 int
769 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
770 {
771 	unsigned int last_timestamp;
772 
773 	if (map->system_map) {
774 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
775 	} else {
776 		if (!sx_try_upgrade_(&map->lock, file, line)) {
777 			last_timestamp = map->timestamp;
778 			sx_sunlock_(&map->lock, file, line);
779 			vm_map_process_deferred();
780 			/*
781 			 * If the map's timestamp does not change while the
782 			 * map is unlocked, then the upgrade succeeds.
783 			 */
784 			sx_xlock_(&map->lock, file, line);
785 			if (last_timestamp != map->timestamp) {
786 				sx_xunlock_(&map->lock, file, line);
787 				return (1);
788 			}
789 		}
790 	}
791 	map->timestamp++;
792 	return (0);
793 }
794 
795 void
796 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
797 {
798 
799 	if (map->system_map) {
800 		KASSERT((map->flags & MAP_REPLENISH) == 0,
801 		    ("%s: MAP_REPLENISH leaked", __func__));
802 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
803 	} else {
804 		VM_MAP_UNLOCK_CONSISTENT(map);
805 		sx_downgrade_(&map->lock, file, line);
806 	}
807 }
808 
809 /*
810  *	vm_map_locked:
811  *
812  *	Returns a non-zero value if the caller holds a write (exclusive) lock
813  *	on the specified map and the value "0" otherwise.
814  */
815 int
816 vm_map_locked(vm_map_t map)
817 {
818 
819 	if (map->system_map)
820 		return (mtx_owned(&map->system_mtx));
821 	else
822 		return (sx_xlocked(&map->lock));
823 }
824 
825 /*
826  *	_vm_map_unlock_and_wait:
827  *
828  *	Atomically releases the lock on the specified map and puts the calling
829  *	thread to sleep.  The calling thread will remain asleep until either
830  *	vm_map_wakeup() is performed on the map or the specified timeout is
831  *	exceeded.
832  *
833  *	WARNING!  This function does not perform deferred deallocations of
834  *	objects and map	entries.  Therefore, the calling thread is expected to
835  *	reacquire the map lock after reawakening and later perform an ordinary
836  *	unlock operation, such as vm_map_unlock(), before completing its
837  *	operation on the map.
838  */
839 int
840 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
841 {
842 
843 	VM_MAP_UNLOCK_CONSISTENT(map);
844 	mtx_lock(&map_sleep_mtx);
845 	if (map->system_map) {
846 		KASSERT((map->flags & MAP_REPLENISH) == 0,
847 		    ("%s: MAP_REPLENISH leaked", __func__));
848 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
849 	} else {
850 		sx_xunlock_(&map->lock, file, line);
851 	}
852 	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
853 	    timo));
854 }
855 
856 /*
857  *	vm_map_wakeup:
858  *
859  *	Awaken any threads that have slept on the map using
860  *	vm_map_unlock_and_wait().
861  */
862 void
863 vm_map_wakeup(vm_map_t map)
864 {
865 
866 	/*
867 	 * Acquire and release map_sleep_mtx to prevent a wakeup()
868 	 * from being performed (and lost) between the map unlock
869 	 * and the msleep() in _vm_map_unlock_and_wait().
870 	 */
871 	mtx_lock(&map_sleep_mtx);
872 	mtx_unlock(&map_sleep_mtx);
873 	wakeup(&map->root);
874 }
875 
876 void
877 vm_map_busy(vm_map_t map)
878 {
879 
880 	VM_MAP_ASSERT_LOCKED(map);
881 	map->busy++;
882 }
883 
884 void
885 vm_map_unbusy(vm_map_t map)
886 {
887 
888 	VM_MAP_ASSERT_LOCKED(map);
889 	KASSERT(map->busy, ("vm_map_unbusy: not busy"));
890 	if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
891 		vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
892 		wakeup(&map->busy);
893 	}
894 }
895 
896 void
897 vm_map_wait_busy(vm_map_t map)
898 {
899 
900 	VM_MAP_ASSERT_LOCKED(map);
901 	while (map->busy) {
902 		vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
903 		if (map->system_map)
904 			msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
905 		else
906 			sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
907 	}
908 	map->timestamp++;
909 }
910 
911 long
912 vmspace_resident_count(struct vmspace *vmspace)
913 {
914 	return pmap_resident_count(vmspace_pmap(vmspace));
915 }
916 
917 /*
918  * Initialize an existing vm_map structure
919  * such as that in the vmspace structure.
920  */
921 static void
922 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
923 {
924 
925 	map->header.eflags = MAP_ENTRY_HEADER;
926 	map->needs_wakeup = FALSE;
927 	map->system_map = 0;
928 	map->pmap = pmap;
929 	map->header.end = min;
930 	map->header.start = max;
931 	map->flags = 0;
932 	map->header.left = map->header.right = &map->header;
933 	map->root = NULL;
934 	map->timestamp = 0;
935 	map->busy = 0;
936 	map->anon_loc = 0;
937 #ifdef DIAGNOSTIC
938 	map->nupdates = 0;
939 #endif
940 }
941 
942 void
943 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
944 {
945 
946 	_vm_map_init(map, pmap, min, max);
947 	mtx_init(&map->system_mtx, "vm map (system)", NULL,
948 	    MTX_DEF | MTX_DUPOK);
949 	sx_init(&map->lock, "vm map (user)");
950 }
951 
952 /*
953  *	vm_map_entry_dispose:	[ internal use only ]
954  *
955  *	Inverse of vm_map_entry_create.
956  */
957 static void
958 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
959 {
960 	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
961 }
962 
963 /*
964  *	vm_map_entry_create:	[ internal use only ]
965  *
966  *	Allocates a VM map entry for insertion.
967  *	No entry fields are filled in.
968  */
969 static vm_map_entry_t
970 vm_map_entry_create(vm_map_t map)
971 {
972 	vm_map_entry_t new_entry;
973 
974 #ifndef UMA_MD_SMALL_ALLOC
975 	if (map == kernel_map) {
976 		VM_MAP_ASSERT_LOCKED(map);
977 
978 		/*
979 		 * A new slab of kernel map entries cannot be allocated at this
980 		 * point because the kernel map has not yet been updated to
981 		 * reflect the caller's request.  Therefore, we allocate a new
982 		 * map entry, dipping into the reserve if necessary, and set a
983 		 * flag indicating that the reserve must be replenished before
984 		 * the map is unlocked.
985 		 */
986 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT | M_NOVM);
987 		if (new_entry == NULL) {
988 			new_entry = uma_zalloc(kmapentzone,
989 			    M_NOWAIT | M_NOVM | M_USE_RESERVE);
990 			kernel_map->flags |= MAP_REPLENISH;
991 		}
992 	} else
993 #endif
994 	if (map->system_map) {
995 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
996 	} else {
997 		new_entry = uma_zalloc(mapentzone, M_WAITOK);
998 	}
999 	KASSERT(new_entry != NULL,
1000 	    ("vm_map_entry_create: kernel resources exhausted"));
1001 	return (new_entry);
1002 }
1003 
1004 /*
1005  *	vm_map_entry_set_behavior:
1006  *
1007  *	Set the expected access behavior, either normal, random, or
1008  *	sequential.
1009  */
1010 static inline void
1011 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
1012 {
1013 	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
1014 	    (behavior & MAP_ENTRY_BEHAV_MASK);
1015 }
1016 
1017 /*
1018  *	vm_map_entry_max_free_{left,right}:
1019  *
1020  *	Compute the size of the largest free gap between two entries,
1021  *	one the root of a tree and the other the ancestor of that root
1022  *	that is the least or greatest ancestor found on the search path.
1023  */
1024 static inline vm_size_t
1025 vm_map_entry_max_free_left(vm_map_entry_t root, vm_map_entry_t left_ancestor)
1026 {
1027 
1028 	return (root->left != left_ancestor ?
1029 	    root->left->max_free : root->start - left_ancestor->end);
1030 }
1031 
1032 static inline vm_size_t
1033 vm_map_entry_max_free_right(vm_map_entry_t root, vm_map_entry_t right_ancestor)
1034 {
1035 
1036 	return (root->right != right_ancestor ?
1037 	    root->right->max_free : right_ancestor->start - root->end);
1038 }
1039 
1040 /*
1041  *	vm_map_entry_{pred,succ}:
1042  *
1043  *	Find the {predecessor, successor} of the entry by taking one step
1044  *	in the appropriate direction and backtracking as much as necessary.
1045  *	vm_map_entry_succ is defined in vm_map.h.
1046  */
1047 static inline vm_map_entry_t
1048 vm_map_entry_pred(vm_map_entry_t entry)
1049 {
1050 	vm_map_entry_t prior;
1051 
1052 	prior = entry->left;
1053 	if (prior->right->start < entry->start) {
1054 		do
1055 			prior = prior->right;
1056 		while (prior->right != entry);
1057 	}
1058 	return (prior);
1059 }
1060 
1061 static inline vm_size_t
1062 vm_size_max(vm_size_t a, vm_size_t b)
1063 {
1064 
1065 	return (a > b ? a : b);
1066 }
1067 
1068 #define SPLAY_LEFT_STEP(root, y, llist, rlist, test) do {		\
1069 	vm_map_entry_t z;						\
1070 	vm_size_t max_free;						\
1071 									\
1072 	/*								\
1073 	 * Infer root->right->max_free == root->max_free when		\
1074 	 * y->max_free < root->max_free || root->max_free == 0.		\
1075 	 * Otherwise, look right to find it.				\
1076 	 */								\
1077 	y = root->left;							\
1078 	max_free = root->max_free;					\
1079 	KASSERT(max_free == vm_size_max(				\
1080 	    vm_map_entry_max_free_left(root, llist),			\
1081 	    vm_map_entry_max_free_right(root, rlist)),			\
1082 	    ("%s: max_free invariant fails", __func__));		\
1083 	if (max_free - 1 < vm_map_entry_max_free_left(root, llist))	\
1084 		max_free = vm_map_entry_max_free_right(root, rlist);	\
1085 	if (y != llist && (test)) {					\
1086 		/* Rotate right and make y root. */			\
1087 		z = y->right;						\
1088 		if (z != root) {					\
1089 			root->left = z;					\
1090 			y->right = root;				\
1091 			if (max_free < y->max_free)			\
1092 			    root->max_free = max_free =			\
1093 			    vm_size_max(max_free, z->max_free);		\
1094 		} else if (max_free < y->max_free)			\
1095 			root->max_free = max_free =			\
1096 			    vm_size_max(max_free, root->start - y->end);\
1097 		root = y;						\
1098 		y = root->left;						\
1099 	}								\
1100 	/* Copy right->max_free.  Put root on rlist. */			\
1101 	root->max_free = max_free;					\
1102 	KASSERT(max_free == vm_map_entry_max_free_right(root, rlist),	\
1103 	    ("%s: max_free not copied from right", __func__));		\
1104 	root->left = rlist;						\
1105 	rlist = root;							\
1106 	root = y != llist ? y : NULL;					\
1107 } while (0)
1108 
1109 #define SPLAY_RIGHT_STEP(root, y, llist, rlist, test) do {		\
1110 	vm_map_entry_t z;						\
1111 	vm_size_t max_free;						\
1112 									\
1113 	/*								\
1114 	 * Infer root->left->max_free == root->max_free when		\
1115 	 * y->max_free < root->max_free || root->max_free == 0.		\
1116 	 * Otherwise, look left to find it.				\
1117 	 */								\
1118 	y = root->right;						\
1119 	max_free = root->max_free;					\
1120 	KASSERT(max_free == vm_size_max(				\
1121 	    vm_map_entry_max_free_left(root, llist),			\
1122 	    vm_map_entry_max_free_right(root, rlist)),			\
1123 	    ("%s: max_free invariant fails", __func__));		\
1124 	if (max_free - 1 < vm_map_entry_max_free_right(root, rlist))	\
1125 		max_free = vm_map_entry_max_free_left(root, llist);	\
1126 	if (y != rlist && (test)) {					\
1127 		/* Rotate left and make y root. */			\
1128 		z = y->left;						\
1129 		if (z != root) {					\
1130 			root->right = z;				\
1131 			y->left = root;					\
1132 			if (max_free < y->max_free)			\
1133 			    root->max_free = max_free =			\
1134 			    vm_size_max(max_free, z->max_free);		\
1135 		} else if (max_free < y->max_free)			\
1136 			root->max_free = max_free =			\
1137 			    vm_size_max(max_free, y->start - root->end);\
1138 		root = y;						\
1139 		y = root->right;					\
1140 	}								\
1141 	/* Copy left->max_free.  Put root on llist. */			\
1142 	root->max_free = max_free;					\
1143 	KASSERT(max_free == vm_map_entry_max_free_left(root, llist),	\
1144 	    ("%s: max_free not copied from left", __func__));		\
1145 	root->right = llist;						\
1146 	llist = root;							\
1147 	root = y != rlist ? y : NULL;					\
1148 } while (0)
1149 
1150 /*
1151  * Walk down the tree until we find addr or a gap where addr would go, breaking
1152  * off left and right subtrees of nodes less than, or greater than addr.  Treat
1153  * subtrees with root->max_free < length as empty trees.  llist and rlist are
1154  * the two sides in reverse order (bottom-up), with llist linked by the right
1155  * pointer and rlist linked by the left pointer in the vm_map_entry, and both
1156  * lists terminated by &map->header.  This function, and the subsequent call to
1157  * vm_map_splay_merge_{left,right,pred,succ}, rely on the start and end address
1158  * values in &map->header.
1159  */
1160 static __always_inline vm_map_entry_t
1161 vm_map_splay_split(vm_map_t map, vm_offset_t addr, vm_size_t length,
1162     vm_map_entry_t *llist, vm_map_entry_t *rlist)
1163 {
1164 	vm_map_entry_t left, right, root, y;
1165 
1166 	left = right = &map->header;
1167 	root = map->root;
1168 	while (root != NULL && root->max_free >= length) {
1169 		KASSERT(left->end <= root->start &&
1170 		    root->end <= right->start,
1171 		    ("%s: root not within tree bounds", __func__));
1172 		if (addr < root->start) {
1173 			SPLAY_LEFT_STEP(root, y, left, right,
1174 			    y->max_free >= length && addr < y->start);
1175 		} else if (addr >= root->end) {
1176 			SPLAY_RIGHT_STEP(root, y, left, right,
1177 			    y->max_free >= length && addr >= y->end);
1178 		} else
1179 			break;
1180 	}
1181 	*llist = left;
1182 	*rlist = right;
1183 	return (root);
1184 }
1185 
1186 static __always_inline void
1187 vm_map_splay_findnext(vm_map_entry_t root, vm_map_entry_t *rlist)
1188 {
1189 	vm_map_entry_t hi, right, y;
1190 
1191 	right = *rlist;
1192 	hi = root->right == right ? NULL : root->right;
1193 	if (hi == NULL)
1194 		return;
1195 	do
1196 		SPLAY_LEFT_STEP(hi, y, root, right, true);
1197 	while (hi != NULL);
1198 	*rlist = right;
1199 }
1200 
1201 static __always_inline void
1202 vm_map_splay_findprev(vm_map_entry_t root, vm_map_entry_t *llist)
1203 {
1204 	vm_map_entry_t left, lo, y;
1205 
1206 	left = *llist;
1207 	lo = root->left == left ? NULL : root->left;
1208 	if (lo == NULL)
1209 		return;
1210 	do
1211 		SPLAY_RIGHT_STEP(lo, y, left, root, true);
1212 	while (lo != NULL);
1213 	*llist = left;
1214 }
1215 
1216 static inline void
1217 vm_map_entry_swap(vm_map_entry_t *a, vm_map_entry_t *b)
1218 {
1219 	vm_map_entry_t tmp;
1220 
1221 	tmp = *b;
1222 	*b = *a;
1223 	*a = tmp;
1224 }
1225 
1226 /*
1227  * Walk back up the two spines, flip the pointers and set max_free.  The
1228  * subtrees of the root go at the bottom of llist and rlist.
1229  */
1230 static vm_size_t
1231 vm_map_splay_merge_left_walk(vm_map_entry_t header, vm_map_entry_t root,
1232     vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t llist)
1233 {
1234 	do {
1235 		/*
1236 		 * The max_free values of the children of llist are in
1237 		 * llist->max_free and max_free.  Update with the
1238 		 * max value.
1239 		 */
1240 		llist->max_free = max_free =
1241 		    vm_size_max(llist->max_free, max_free);
1242 		vm_map_entry_swap(&llist->right, &tail);
1243 		vm_map_entry_swap(&tail, &llist);
1244 	} while (llist != header);
1245 	root->left = tail;
1246 	return (max_free);
1247 }
1248 
1249 /*
1250  * When llist is known to be the predecessor of root.
1251  */
1252 static inline vm_size_t
1253 vm_map_splay_merge_pred(vm_map_entry_t header, vm_map_entry_t root,
1254     vm_map_entry_t llist)
1255 {
1256 	vm_size_t max_free;
1257 
1258 	max_free = root->start - llist->end;
1259 	if (llist != header) {
1260 		max_free = vm_map_splay_merge_left_walk(header, root,
1261 		    root, max_free, llist);
1262 	} else {
1263 		root->left = header;
1264 		header->right = root;
1265 	}
1266 	return (max_free);
1267 }
1268 
1269 /*
1270  * When llist may or may not be the predecessor of root.
1271  */
1272 static inline vm_size_t
1273 vm_map_splay_merge_left(vm_map_entry_t header, vm_map_entry_t root,
1274     vm_map_entry_t llist)
1275 {
1276 	vm_size_t max_free;
1277 
1278 	max_free = vm_map_entry_max_free_left(root, llist);
1279 	if (llist != header) {
1280 		max_free = vm_map_splay_merge_left_walk(header, root,
1281 		    root->left == llist ? root : root->left,
1282 		    max_free, llist);
1283 	}
1284 	return (max_free);
1285 }
1286 
1287 static vm_size_t
1288 vm_map_splay_merge_right_walk(vm_map_entry_t header, vm_map_entry_t root,
1289     vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t rlist)
1290 {
1291 	do {
1292 		/*
1293 		 * The max_free values of the children of rlist are in
1294 		 * rlist->max_free and max_free.  Update with the
1295 		 * max value.
1296 		 */
1297 		rlist->max_free = max_free =
1298 		    vm_size_max(rlist->max_free, max_free);
1299 		vm_map_entry_swap(&rlist->left, &tail);
1300 		vm_map_entry_swap(&tail, &rlist);
1301 	} while (rlist != header);
1302 	root->right = tail;
1303 	return (max_free);
1304 }
1305 
1306 /*
1307  * When rlist is known to be the succecessor of root.
1308  */
1309 static inline vm_size_t
1310 vm_map_splay_merge_succ(vm_map_entry_t header, vm_map_entry_t root,
1311     vm_map_entry_t rlist)
1312 {
1313 	vm_size_t max_free;
1314 
1315 	max_free = rlist->start - root->end;
1316 	if (rlist != header) {
1317 		max_free = vm_map_splay_merge_right_walk(header, root,
1318 		    root, max_free, rlist);
1319 	} else {
1320 		root->right = header;
1321 		header->left = root;
1322 	}
1323 	return (max_free);
1324 }
1325 
1326 /*
1327  * When rlist may or may not be the succecessor of root.
1328  */
1329 static inline vm_size_t
1330 vm_map_splay_merge_right(vm_map_entry_t header, vm_map_entry_t root,
1331     vm_map_entry_t rlist)
1332 {
1333 	vm_size_t max_free;
1334 
1335 	max_free = vm_map_entry_max_free_right(root, rlist);
1336 	if (rlist != header) {
1337 		max_free = vm_map_splay_merge_right_walk(header, root,
1338 		    root->right == rlist ? root : root->right,
1339 		    max_free, rlist);
1340 	}
1341 	return (max_free);
1342 }
1343 
1344 /*
1345  *	vm_map_splay:
1346  *
1347  *	The Sleator and Tarjan top-down splay algorithm with the
1348  *	following variation.  Max_free must be computed bottom-up, so
1349  *	on the downward pass, maintain the left and right spines in
1350  *	reverse order.  Then, make a second pass up each side to fix
1351  *	the pointers and compute max_free.  The time bound is O(log n)
1352  *	amortized.
1353  *
1354  *	The tree is threaded, which means that there are no null pointers.
1355  *	When a node has no left child, its left pointer points to its
1356  *	predecessor, which the last ancestor on the search path from the root
1357  *	where the search branched right.  Likewise, when a node has no right
1358  *	child, its right pointer points to its successor.  The map header node
1359  *	is the predecessor of the first map entry, and the successor of the
1360  *	last.
1361  *
1362  *	The new root is the vm_map_entry containing "addr", or else an
1363  *	adjacent entry (lower if possible) if addr is not in the tree.
1364  *
1365  *	The map must be locked, and leaves it so.
1366  *
1367  *	Returns: the new root.
1368  */
1369 static vm_map_entry_t
1370 vm_map_splay(vm_map_t map, vm_offset_t addr)
1371 {
1372 	vm_map_entry_t header, llist, rlist, root;
1373 	vm_size_t max_free_left, max_free_right;
1374 
1375 	header = &map->header;
1376 	root = vm_map_splay_split(map, addr, 0, &llist, &rlist);
1377 	if (root != NULL) {
1378 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1379 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1380 	} else if (llist != header) {
1381 		/*
1382 		 * Recover the greatest node in the left
1383 		 * subtree and make it the root.
1384 		 */
1385 		root = llist;
1386 		llist = root->right;
1387 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1388 		max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1389 	} else if (rlist != header) {
1390 		/*
1391 		 * Recover the least node in the right
1392 		 * subtree and make it the root.
1393 		 */
1394 		root = rlist;
1395 		rlist = root->left;
1396 		max_free_left = vm_map_splay_merge_pred(header, root, llist);
1397 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1398 	} else {
1399 		/* There is no root. */
1400 		return (NULL);
1401 	}
1402 	root->max_free = vm_size_max(max_free_left, max_free_right);
1403 	map->root = root;
1404 	VM_MAP_ASSERT_CONSISTENT(map);
1405 	return (root);
1406 }
1407 
1408 /*
1409  *	vm_map_entry_{un,}link:
1410  *
1411  *	Insert/remove entries from maps.  On linking, if new entry clips
1412  *	existing entry, trim existing entry to avoid overlap, and manage
1413  *	offsets.  On unlinking, merge disappearing entry with neighbor, if
1414  *	called for, and manage offsets.  Callers should not modify fields in
1415  *	entries already mapped.
1416  */
1417 static void
1418 vm_map_entry_link(vm_map_t map, vm_map_entry_t entry)
1419 {
1420 	vm_map_entry_t header, llist, rlist, root;
1421 	vm_size_t max_free_left, max_free_right;
1422 
1423 	CTR3(KTR_VM,
1424 	    "vm_map_entry_link: map %p, nentries %d, entry %p", map,
1425 	    map->nentries, entry);
1426 	VM_MAP_ASSERT_LOCKED(map);
1427 	map->nentries++;
1428 	header = &map->header;
1429 	root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1430 	if (root == NULL) {
1431 		/*
1432 		 * The new entry does not overlap any existing entry in the
1433 		 * map, so it becomes the new root of the map tree.
1434 		 */
1435 		max_free_left = vm_map_splay_merge_pred(header, entry, llist);
1436 		max_free_right = vm_map_splay_merge_succ(header, entry, rlist);
1437 	} else if (entry->start == root->start) {
1438 		/*
1439 		 * The new entry is a clone of root, with only the end field
1440 		 * changed.  The root entry will be shrunk to abut the new
1441 		 * entry, and will be the right child of the new root entry in
1442 		 * the modified map.
1443 		 */
1444 		KASSERT(entry->end < root->end,
1445 		    ("%s: clip_start not within entry", __func__));
1446 		vm_map_splay_findprev(root, &llist);
1447 		root->offset += entry->end - root->start;
1448 		root->start = entry->end;
1449 		max_free_left = vm_map_splay_merge_pred(header, entry, llist);
1450 		max_free_right = root->max_free = vm_size_max(
1451 		    vm_map_splay_merge_pred(entry, root, entry),
1452 		    vm_map_splay_merge_right(header, root, rlist));
1453 	} else {
1454 		/*
1455 		 * The new entry is a clone of root, with only the start field
1456 		 * changed.  The root entry will be shrunk to abut the new
1457 		 * entry, and will be the left child of the new root entry in
1458 		 * the modified map.
1459 		 */
1460 		KASSERT(entry->end == root->end,
1461 		    ("%s: clip_start not within entry", __func__));
1462 		vm_map_splay_findnext(root, &rlist);
1463 		entry->offset += entry->start - root->start;
1464 		root->end = entry->start;
1465 		max_free_left = root->max_free = vm_size_max(
1466 		    vm_map_splay_merge_left(header, root, llist),
1467 		    vm_map_splay_merge_succ(entry, root, entry));
1468 		max_free_right = vm_map_splay_merge_succ(header, entry, rlist);
1469 	}
1470 	entry->max_free = vm_size_max(max_free_left, max_free_right);
1471 	map->root = entry;
1472 	VM_MAP_ASSERT_CONSISTENT(map);
1473 }
1474 
1475 enum unlink_merge_type {
1476 	UNLINK_MERGE_NONE,
1477 	UNLINK_MERGE_NEXT
1478 };
1479 
1480 static void
1481 vm_map_entry_unlink(vm_map_t map, vm_map_entry_t entry,
1482     enum unlink_merge_type op)
1483 {
1484 	vm_map_entry_t header, llist, rlist, root;
1485 	vm_size_t max_free_left, max_free_right;
1486 
1487 	VM_MAP_ASSERT_LOCKED(map);
1488 	header = &map->header;
1489 	root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1490 	KASSERT(root != NULL,
1491 	    ("vm_map_entry_unlink: unlink object not mapped"));
1492 
1493 	vm_map_splay_findprev(root, &llist);
1494 	vm_map_splay_findnext(root, &rlist);
1495 	if (op == UNLINK_MERGE_NEXT) {
1496 		rlist->start = root->start;
1497 		rlist->offset = root->offset;
1498 	}
1499 	if (llist != header) {
1500 		root = llist;
1501 		llist = root->right;
1502 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1503 		max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1504 	} else if (rlist != header) {
1505 		root = rlist;
1506 		rlist = root->left;
1507 		max_free_left = vm_map_splay_merge_pred(header, root, llist);
1508 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1509 	} else {
1510 		header->left = header->right = header;
1511 		root = NULL;
1512 	}
1513 	if (root != NULL)
1514 		root->max_free = vm_size_max(max_free_left, max_free_right);
1515 	map->root = root;
1516 	VM_MAP_ASSERT_CONSISTENT(map);
1517 	map->nentries--;
1518 	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1519 	    map->nentries, entry);
1520 }
1521 
1522 /*
1523  *	vm_map_entry_resize:
1524  *
1525  *	Resize a vm_map_entry, recompute the amount of free space that
1526  *	follows it and propagate that value up the tree.
1527  *
1528  *	The map must be locked, and leaves it so.
1529  */
1530 static void
1531 vm_map_entry_resize(vm_map_t map, vm_map_entry_t entry, vm_size_t grow_amount)
1532 {
1533 	vm_map_entry_t header, llist, rlist, root;
1534 
1535 	VM_MAP_ASSERT_LOCKED(map);
1536 	header = &map->header;
1537 	root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1538 	KASSERT(root != NULL, ("%s: resize object not mapped", __func__));
1539 	vm_map_splay_findnext(root, &rlist);
1540 	entry->end += grow_amount;
1541 	root->max_free = vm_size_max(
1542 	    vm_map_splay_merge_left(header, root, llist),
1543 	    vm_map_splay_merge_succ(header, root, rlist));
1544 	map->root = root;
1545 	VM_MAP_ASSERT_CONSISTENT(map);
1546 	CTR4(KTR_VM, "%s: map %p, nentries %d, entry %p",
1547 	    __func__, map, map->nentries, entry);
1548 }
1549 
1550 /*
1551  *	vm_map_lookup_entry:	[ internal use only ]
1552  *
1553  *	Finds the map entry containing (or
1554  *	immediately preceding) the specified address
1555  *	in the given map; the entry is returned
1556  *	in the "entry" parameter.  The boolean
1557  *	result indicates whether the address is
1558  *	actually contained in the map.
1559  */
1560 boolean_t
1561 vm_map_lookup_entry(
1562 	vm_map_t map,
1563 	vm_offset_t address,
1564 	vm_map_entry_t *entry)	/* OUT */
1565 {
1566 	vm_map_entry_t cur, header, lbound, ubound;
1567 	boolean_t locked;
1568 
1569 	/*
1570 	 * If the map is empty, then the map entry immediately preceding
1571 	 * "address" is the map's header.
1572 	 */
1573 	header = &map->header;
1574 	cur = map->root;
1575 	if (cur == NULL) {
1576 		*entry = header;
1577 		return (FALSE);
1578 	}
1579 	if (address >= cur->start && cur->end > address) {
1580 		*entry = cur;
1581 		return (TRUE);
1582 	}
1583 	if ((locked = vm_map_locked(map)) ||
1584 	    sx_try_upgrade(&map->lock)) {
1585 		/*
1586 		 * Splay requires a write lock on the map.  However, it only
1587 		 * restructures the binary search tree; it does not otherwise
1588 		 * change the map.  Thus, the map's timestamp need not change
1589 		 * on a temporary upgrade.
1590 		 */
1591 		cur = vm_map_splay(map, address);
1592 		if (!locked) {
1593 			VM_MAP_UNLOCK_CONSISTENT(map);
1594 			sx_downgrade(&map->lock);
1595 		}
1596 
1597 		/*
1598 		 * If "address" is contained within a map entry, the new root
1599 		 * is that map entry.  Otherwise, the new root is a map entry
1600 		 * immediately before or after "address".
1601 		 */
1602 		if (address < cur->start) {
1603 			*entry = header;
1604 			return (FALSE);
1605 		}
1606 		*entry = cur;
1607 		return (address < cur->end);
1608 	}
1609 	/*
1610 	 * Since the map is only locked for read access, perform a
1611 	 * standard binary search tree lookup for "address".
1612 	 */
1613 	lbound = ubound = header;
1614 	for (;;) {
1615 		if (address < cur->start) {
1616 			ubound = cur;
1617 			cur = cur->left;
1618 			if (cur == lbound)
1619 				break;
1620 		} else if (cur->end <= address) {
1621 			lbound = cur;
1622 			cur = cur->right;
1623 			if (cur == ubound)
1624 				break;
1625 		} else {
1626 			*entry = cur;
1627 			return (TRUE);
1628 		}
1629 	}
1630 	*entry = lbound;
1631 	return (FALSE);
1632 }
1633 
1634 /*
1635  *	vm_map_insert:
1636  *
1637  *	Inserts the given whole VM object into the target
1638  *	map at the specified address range.  The object's
1639  *	size should match that of the address range.
1640  *
1641  *	Requires that the map be locked, and leaves it so.
1642  *
1643  *	If object is non-NULL, ref count must be bumped by caller
1644  *	prior to making call to account for the new entry.
1645  */
1646 int
1647 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1648     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1649 {
1650 	vm_map_entry_t new_entry, next_entry, prev_entry;
1651 	struct ucred *cred;
1652 	vm_eflags_t protoeflags;
1653 	vm_inherit_t inheritance;
1654 	u_long bdry;
1655 	u_int bidx;
1656 
1657 	VM_MAP_ASSERT_LOCKED(map);
1658 	KASSERT(object != kernel_object ||
1659 	    (cow & MAP_COPY_ON_WRITE) == 0,
1660 	    ("vm_map_insert: kernel object and COW"));
1661 	KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0 ||
1662 	    (cow & MAP_SPLIT_BOUNDARY_MASK) != 0,
1663 	    ("vm_map_insert: paradoxical MAP_NOFAULT request, obj %p cow %#x",
1664 	    object, cow));
1665 	KASSERT((prot & ~max) == 0,
1666 	    ("prot %#x is not subset of max_prot %#x", prot, max));
1667 
1668 	/*
1669 	 * Check that the start and end points are not bogus.
1670 	 */
1671 	if (start == end || !vm_map_range_valid(map, start, end))
1672 		return (KERN_INVALID_ADDRESS);
1673 
1674 	if ((map->flags & MAP_WXORX) != 0 && (prot & (VM_PROT_WRITE |
1675 	    VM_PROT_EXECUTE)) == (VM_PROT_WRITE | VM_PROT_EXECUTE))
1676 		return (KERN_PROTECTION_FAILURE);
1677 
1678 	/*
1679 	 * Find the entry prior to the proposed starting address; if it's part
1680 	 * of an existing entry, this range is bogus.
1681 	 */
1682 	if (vm_map_lookup_entry(map, start, &prev_entry))
1683 		return (KERN_NO_SPACE);
1684 
1685 	/*
1686 	 * Assert that the next entry doesn't overlap the end point.
1687 	 */
1688 	next_entry = vm_map_entry_succ(prev_entry);
1689 	if (next_entry->start < end)
1690 		return (KERN_NO_SPACE);
1691 
1692 	if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL ||
1693 	    max != VM_PROT_NONE))
1694 		return (KERN_INVALID_ARGUMENT);
1695 
1696 	protoeflags = 0;
1697 	if (cow & MAP_COPY_ON_WRITE)
1698 		protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1699 	if (cow & MAP_NOFAULT)
1700 		protoeflags |= MAP_ENTRY_NOFAULT;
1701 	if (cow & MAP_DISABLE_SYNCER)
1702 		protoeflags |= MAP_ENTRY_NOSYNC;
1703 	if (cow & MAP_DISABLE_COREDUMP)
1704 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1705 	if (cow & MAP_STACK_GROWS_DOWN)
1706 		protoeflags |= MAP_ENTRY_GROWS_DOWN;
1707 	if (cow & MAP_STACK_GROWS_UP)
1708 		protoeflags |= MAP_ENTRY_GROWS_UP;
1709 	if (cow & MAP_WRITECOUNT)
1710 		protoeflags |= MAP_ENTRY_WRITECNT;
1711 	if (cow & MAP_VN_EXEC)
1712 		protoeflags |= MAP_ENTRY_VN_EXEC;
1713 	if ((cow & MAP_CREATE_GUARD) != 0)
1714 		protoeflags |= MAP_ENTRY_GUARD;
1715 	if ((cow & MAP_CREATE_STACK_GAP_DN) != 0)
1716 		protoeflags |= MAP_ENTRY_STACK_GAP_DN;
1717 	if ((cow & MAP_CREATE_STACK_GAP_UP) != 0)
1718 		protoeflags |= MAP_ENTRY_STACK_GAP_UP;
1719 	if (cow & MAP_INHERIT_SHARE)
1720 		inheritance = VM_INHERIT_SHARE;
1721 	else
1722 		inheritance = VM_INHERIT_DEFAULT;
1723 	if ((cow & MAP_SPLIT_BOUNDARY_MASK) != 0) {
1724 		/* This magically ignores index 0, for usual page size. */
1725 		bidx = (cow & MAP_SPLIT_BOUNDARY_MASK) >>
1726 		    MAP_SPLIT_BOUNDARY_SHIFT;
1727 		if (bidx >= MAXPAGESIZES)
1728 			return (KERN_INVALID_ARGUMENT);
1729 		bdry = pagesizes[bidx] - 1;
1730 		if ((start & bdry) != 0 || (end & bdry) != 0)
1731 			return (KERN_INVALID_ARGUMENT);
1732 		protoeflags |= bidx << MAP_ENTRY_SPLIT_BOUNDARY_SHIFT;
1733 	}
1734 
1735 	cred = NULL;
1736 	if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0)
1737 		goto charged;
1738 	if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1739 	    ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1740 		if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1741 			return (KERN_RESOURCE_SHORTAGE);
1742 		KASSERT(object == NULL ||
1743 		    (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
1744 		    object->cred == NULL,
1745 		    ("overcommit: vm_map_insert o %p", object));
1746 		cred = curthread->td_ucred;
1747 	}
1748 
1749 charged:
1750 	/* Expand the kernel pmap, if necessary. */
1751 	if (map == kernel_map && end > kernel_vm_end)
1752 		pmap_growkernel(end);
1753 	if (object != NULL) {
1754 		/*
1755 		 * OBJ_ONEMAPPING must be cleared unless this mapping
1756 		 * is trivially proven to be the only mapping for any
1757 		 * of the object's pages.  (Object granularity
1758 		 * reference counting is insufficient to recognize
1759 		 * aliases with precision.)
1760 		 */
1761 		if ((object->flags & OBJ_ANON) != 0) {
1762 			VM_OBJECT_WLOCK(object);
1763 			if (object->ref_count > 1 || object->shadow_count != 0)
1764 				vm_object_clear_flag(object, OBJ_ONEMAPPING);
1765 			VM_OBJECT_WUNLOCK(object);
1766 		}
1767 	} else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) ==
1768 	    protoeflags &&
1769 	    (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP |
1770 	    MAP_VN_EXEC)) == 0 &&
1771 	    prev_entry->end == start && (prev_entry->cred == cred ||
1772 	    (prev_entry->object.vm_object != NULL &&
1773 	    prev_entry->object.vm_object->cred == cred)) &&
1774 	    vm_object_coalesce(prev_entry->object.vm_object,
1775 	    prev_entry->offset,
1776 	    (vm_size_t)(prev_entry->end - prev_entry->start),
1777 	    (vm_size_t)(end - prev_entry->end), cred != NULL &&
1778 	    (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1779 		/*
1780 		 * We were able to extend the object.  Determine if we
1781 		 * can extend the previous map entry to include the
1782 		 * new range as well.
1783 		 */
1784 		if (prev_entry->inheritance == inheritance &&
1785 		    prev_entry->protection == prot &&
1786 		    prev_entry->max_protection == max &&
1787 		    prev_entry->wired_count == 0) {
1788 			KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) ==
1789 			    0, ("prev_entry %p has incoherent wiring",
1790 			    prev_entry));
1791 			if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0)
1792 				map->size += end - prev_entry->end;
1793 			vm_map_entry_resize(map, prev_entry,
1794 			    end - prev_entry->end);
1795 			vm_map_try_merge_entries(map, prev_entry, next_entry);
1796 			return (KERN_SUCCESS);
1797 		}
1798 
1799 		/*
1800 		 * If we can extend the object but cannot extend the
1801 		 * map entry, we have to create a new map entry.  We
1802 		 * must bump the ref count on the extended object to
1803 		 * account for it.  object may be NULL.
1804 		 */
1805 		object = prev_entry->object.vm_object;
1806 		offset = prev_entry->offset +
1807 		    (prev_entry->end - prev_entry->start);
1808 		vm_object_reference(object);
1809 		if (cred != NULL && object != NULL && object->cred != NULL &&
1810 		    !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1811 			/* Object already accounts for this uid. */
1812 			cred = NULL;
1813 		}
1814 	}
1815 	if (cred != NULL)
1816 		crhold(cred);
1817 
1818 	/*
1819 	 * Create a new entry
1820 	 */
1821 	new_entry = vm_map_entry_create(map);
1822 	new_entry->start = start;
1823 	new_entry->end = end;
1824 	new_entry->cred = NULL;
1825 
1826 	new_entry->eflags = protoeflags;
1827 	new_entry->object.vm_object = object;
1828 	new_entry->offset = offset;
1829 
1830 	new_entry->inheritance = inheritance;
1831 	new_entry->protection = prot;
1832 	new_entry->max_protection = max;
1833 	new_entry->wired_count = 0;
1834 	new_entry->wiring_thread = NULL;
1835 	new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1836 	new_entry->next_read = start;
1837 
1838 	KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1839 	    ("overcommit: vm_map_insert leaks vm_map %p", new_entry));
1840 	new_entry->cred = cred;
1841 
1842 	/*
1843 	 * Insert the new entry into the list
1844 	 */
1845 	vm_map_entry_link(map, new_entry);
1846 	if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0)
1847 		map->size += new_entry->end - new_entry->start;
1848 
1849 	/*
1850 	 * Try to coalesce the new entry with both the previous and next
1851 	 * entries in the list.  Previously, we only attempted to coalesce
1852 	 * with the previous entry when object is NULL.  Here, we handle the
1853 	 * other cases, which are less common.
1854 	 */
1855 	vm_map_try_merge_entries(map, prev_entry, new_entry);
1856 	vm_map_try_merge_entries(map, new_entry, next_entry);
1857 
1858 	if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) {
1859 		vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset),
1860 		    end - start, cow & MAP_PREFAULT_PARTIAL);
1861 	}
1862 
1863 	return (KERN_SUCCESS);
1864 }
1865 
1866 /*
1867  *	vm_map_findspace:
1868  *
1869  *	Find the first fit (lowest VM address) for "length" free bytes
1870  *	beginning at address >= start in the given map.
1871  *
1872  *	In a vm_map_entry, "max_free" is the maximum amount of
1873  *	contiguous free space between an entry in its subtree and a
1874  *	neighbor of that entry.  This allows finding a free region in
1875  *	one path down the tree, so O(log n) amortized with splay
1876  *	trees.
1877  *
1878  *	The map must be locked, and leaves it so.
1879  *
1880  *	Returns: starting address if sufficient space,
1881  *		 vm_map_max(map)-length+1 if insufficient space.
1882  */
1883 vm_offset_t
1884 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length)
1885 {
1886 	vm_map_entry_t header, llist, rlist, root, y;
1887 	vm_size_t left_length, max_free_left, max_free_right;
1888 	vm_offset_t gap_end;
1889 
1890 	VM_MAP_ASSERT_LOCKED(map);
1891 
1892 	/*
1893 	 * Request must fit within min/max VM address and must avoid
1894 	 * address wrap.
1895 	 */
1896 	start = MAX(start, vm_map_min(map));
1897 	if (start >= vm_map_max(map) || length > vm_map_max(map) - start)
1898 		return (vm_map_max(map) - length + 1);
1899 
1900 	/* Empty tree means wide open address space. */
1901 	if (map->root == NULL)
1902 		return (start);
1903 
1904 	/*
1905 	 * After splay_split, if start is within an entry, push it to the start
1906 	 * of the following gap.  If rlist is at the end of the gap containing
1907 	 * start, save the end of that gap in gap_end to see if the gap is big
1908 	 * enough; otherwise set gap_end to start skip gap-checking and move
1909 	 * directly to a search of the right subtree.
1910 	 */
1911 	header = &map->header;
1912 	root = vm_map_splay_split(map, start, length, &llist, &rlist);
1913 	gap_end = rlist->start;
1914 	if (root != NULL) {
1915 		start = root->end;
1916 		if (root->right != rlist)
1917 			gap_end = start;
1918 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1919 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1920 	} else if (rlist != header) {
1921 		root = rlist;
1922 		rlist = root->left;
1923 		max_free_left = vm_map_splay_merge_pred(header, root, llist);
1924 		max_free_right = vm_map_splay_merge_right(header, root, rlist);
1925 	} else {
1926 		root = llist;
1927 		llist = root->right;
1928 		max_free_left = vm_map_splay_merge_left(header, root, llist);
1929 		max_free_right = vm_map_splay_merge_succ(header, root, rlist);
1930 	}
1931 	root->max_free = vm_size_max(max_free_left, max_free_right);
1932 	map->root = root;
1933 	VM_MAP_ASSERT_CONSISTENT(map);
1934 	if (length <= gap_end - start)
1935 		return (start);
1936 
1937 	/* With max_free, can immediately tell if no solution. */
1938 	if (root->right == header || length > root->right->max_free)
1939 		return (vm_map_max(map) - length + 1);
1940 
1941 	/*
1942 	 * Splay for the least large-enough gap in the right subtree.
1943 	 */
1944 	llist = rlist = header;
1945 	for (left_length = 0;;
1946 	    left_length = vm_map_entry_max_free_left(root, llist)) {
1947 		if (length <= left_length)
1948 			SPLAY_LEFT_STEP(root, y, llist, rlist,
1949 			    length <= vm_map_entry_max_free_left(y, llist));
1950 		else
1951 			SPLAY_RIGHT_STEP(root, y, llist, rlist,
1952 			    length > vm_map_entry_max_free_left(y, root));
1953 		if (root == NULL)
1954 			break;
1955 	}
1956 	root = llist;
1957 	llist = root->right;
1958 	max_free_left = vm_map_splay_merge_left(header, root, llist);
1959 	if (rlist == header) {
1960 		root->max_free = vm_size_max(max_free_left,
1961 		    vm_map_splay_merge_succ(header, root, rlist));
1962 	} else {
1963 		y = rlist;
1964 		rlist = y->left;
1965 		y->max_free = vm_size_max(
1966 		    vm_map_splay_merge_pred(root, y, root),
1967 		    vm_map_splay_merge_right(header, y, rlist));
1968 		root->max_free = vm_size_max(max_free_left, y->max_free);
1969 	}
1970 	map->root = root;
1971 	VM_MAP_ASSERT_CONSISTENT(map);
1972 	return (root->end);
1973 }
1974 
1975 int
1976 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1977     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1978     vm_prot_t max, int cow)
1979 {
1980 	vm_offset_t end;
1981 	int result;
1982 
1983 	end = start + length;
1984 	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1985 	    object == NULL,
1986 	    ("vm_map_fixed: non-NULL backing object for stack"));
1987 	vm_map_lock(map);
1988 	VM_MAP_RANGE_CHECK(map, start, end);
1989 	if ((cow & MAP_CHECK_EXCL) == 0) {
1990 		result = vm_map_delete(map, start, end);
1991 		if (result != KERN_SUCCESS)
1992 			goto out;
1993 	}
1994 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1995 		result = vm_map_stack_locked(map, start, length, sgrowsiz,
1996 		    prot, max, cow);
1997 	} else {
1998 		result = vm_map_insert(map, object, offset, start, end,
1999 		    prot, max, cow);
2000 	}
2001 out:
2002 	vm_map_unlock(map);
2003 	return (result);
2004 }
2005 
2006 static const int aslr_pages_rnd_64[2] = {0x1000, 0x10};
2007 static const int aslr_pages_rnd_32[2] = {0x100, 0x4};
2008 
2009 static int cluster_anon = 1;
2010 SYSCTL_INT(_vm, OID_AUTO, cluster_anon, CTLFLAG_RW,
2011     &cluster_anon, 0,
2012     "Cluster anonymous mappings: 0 = no, 1 = yes if no hint, 2 = always");
2013 
2014 static bool
2015 clustering_anon_allowed(vm_offset_t addr)
2016 {
2017 
2018 	switch (cluster_anon) {
2019 	case 0:
2020 		return (false);
2021 	case 1:
2022 		return (addr == 0);
2023 	case 2:
2024 	default:
2025 		return (true);
2026 	}
2027 }
2028 
2029 static long aslr_restarts;
2030 SYSCTL_LONG(_vm, OID_AUTO, aslr_restarts, CTLFLAG_RD,
2031     &aslr_restarts, 0,
2032     "Number of aslr failures");
2033 
2034 /*
2035  * Searches for the specified amount of free space in the given map with the
2036  * specified alignment.  Performs an address-ordered, first-fit search from
2037  * the given address "*addr", with an optional upper bound "max_addr".  If the
2038  * parameter "alignment" is zero, then the alignment is computed from the
2039  * given (object, offset) pair so as to enable the greatest possible use of
2040  * superpage mappings.  Returns KERN_SUCCESS and the address of the free space
2041  * in "*addr" if successful.  Otherwise, returns KERN_NO_SPACE.
2042  *
2043  * The map must be locked.  Initially, there must be at least "length" bytes
2044  * of free space at the given address.
2045  */
2046 static int
2047 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2048     vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr,
2049     vm_offset_t alignment)
2050 {
2051 	vm_offset_t aligned_addr, free_addr;
2052 
2053 	VM_MAP_ASSERT_LOCKED(map);
2054 	free_addr = *addr;
2055 	KASSERT(free_addr == vm_map_findspace(map, free_addr, length),
2056 	    ("caller failed to provide space %#jx at address %p",
2057 	     (uintmax_t)length, (void *)free_addr));
2058 	for (;;) {
2059 		/*
2060 		 * At the start of every iteration, the free space at address
2061 		 * "*addr" is at least "length" bytes.
2062 		 */
2063 		if (alignment == 0)
2064 			pmap_align_superpage(object, offset, addr, length);
2065 		else if ((*addr & (alignment - 1)) != 0) {
2066 			*addr &= ~(alignment - 1);
2067 			*addr += alignment;
2068 		}
2069 		aligned_addr = *addr;
2070 		if (aligned_addr == free_addr) {
2071 			/*
2072 			 * Alignment did not change "*addr", so "*addr" must
2073 			 * still provide sufficient free space.
2074 			 */
2075 			return (KERN_SUCCESS);
2076 		}
2077 
2078 		/*
2079 		 * Test for address wrap on "*addr".  A wrapped "*addr" could
2080 		 * be a valid address, in which case vm_map_findspace() cannot
2081 		 * be relied upon to fail.
2082 		 */
2083 		if (aligned_addr < free_addr)
2084 			return (KERN_NO_SPACE);
2085 		*addr = vm_map_findspace(map, aligned_addr, length);
2086 		if (*addr + length > vm_map_max(map) ||
2087 		    (max_addr != 0 && *addr + length > max_addr))
2088 			return (KERN_NO_SPACE);
2089 		free_addr = *addr;
2090 		if (free_addr == aligned_addr) {
2091 			/*
2092 			 * If a successful call to vm_map_findspace() did not
2093 			 * change "*addr", then "*addr" must still be aligned
2094 			 * and provide sufficient free space.
2095 			 */
2096 			return (KERN_SUCCESS);
2097 		}
2098 	}
2099 }
2100 
2101 int
2102 vm_map_find_aligned(vm_map_t map, vm_offset_t *addr, vm_size_t length,
2103     vm_offset_t max_addr, vm_offset_t alignment)
2104 {
2105 	/* XXXKIB ASLR eh ? */
2106 	*addr = vm_map_findspace(map, *addr, length);
2107 	if (*addr + length > vm_map_max(map) ||
2108 	    (max_addr != 0 && *addr + length > max_addr))
2109 		return (KERN_NO_SPACE);
2110 	return (vm_map_alignspace(map, NULL, 0, addr, length, max_addr,
2111 	    alignment));
2112 }
2113 
2114 /*
2115  *	vm_map_find finds an unallocated region in the target address
2116  *	map with the given length.  The search is defined to be
2117  *	first-fit from the specified address; the region found is
2118  *	returned in the same parameter.
2119  *
2120  *	If object is non-NULL, ref count must be bumped by caller
2121  *	prior to making call to account for the new entry.
2122  */
2123 int
2124 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2125 	    vm_offset_t *addr,	/* IN/OUT */
2126 	    vm_size_t length, vm_offset_t max_addr, int find_space,
2127 	    vm_prot_t prot, vm_prot_t max, int cow)
2128 {
2129 	vm_offset_t alignment, curr_min_addr, min_addr;
2130 	int gap, pidx, rv, try;
2131 	bool cluster, en_aslr, update_anon;
2132 
2133 	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
2134 	    object == NULL,
2135 	    ("vm_map_find: non-NULL backing object for stack"));
2136 	MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE &&
2137 	    (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0));
2138 	if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
2139 	    (object->flags & OBJ_COLORED) == 0))
2140 		find_space = VMFS_ANY_SPACE;
2141 	if (find_space >> 8 != 0) {
2142 		KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
2143 		alignment = (vm_offset_t)1 << (find_space >> 8);
2144 	} else
2145 		alignment = 0;
2146 	en_aslr = (map->flags & MAP_ASLR) != 0;
2147 	update_anon = cluster = clustering_anon_allowed(*addr) &&
2148 	    (map->flags & MAP_IS_SUB_MAP) == 0 && max_addr == 0 &&
2149 	    find_space != VMFS_NO_SPACE && object == NULL &&
2150 	    (cow & (MAP_INHERIT_SHARE | MAP_STACK_GROWS_UP |
2151 	    MAP_STACK_GROWS_DOWN)) == 0 && prot != PROT_NONE;
2152 	curr_min_addr = min_addr = *addr;
2153 	if (en_aslr && min_addr == 0 && !cluster &&
2154 	    find_space != VMFS_NO_SPACE &&
2155 	    (map->flags & MAP_ASLR_IGNSTART) != 0)
2156 		curr_min_addr = min_addr = vm_map_min(map);
2157 	try = 0;
2158 	vm_map_lock(map);
2159 	if (cluster) {
2160 		curr_min_addr = map->anon_loc;
2161 		if (curr_min_addr == 0)
2162 			cluster = false;
2163 	}
2164 	if (find_space != VMFS_NO_SPACE) {
2165 		KASSERT(find_space == VMFS_ANY_SPACE ||
2166 		    find_space == VMFS_OPTIMAL_SPACE ||
2167 		    find_space == VMFS_SUPER_SPACE ||
2168 		    alignment != 0, ("unexpected VMFS flag"));
2169 again:
2170 		/*
2171 		 * When creating an anonymous mapping, try clustering
2172 		 * with an existing anonymous mapping first.
2173 		 *
2174 		 * We make up to two attempts to find address space
2175 		 * for a given find_space value. The first attempt may
2176 		 * apply randomization or may cluster with an existing
2177 		 * anonymous mapping. If this first attempt fails,
2178 		 * perform a first-fit search of the available address
2179 		 * space.
2180 		 *
2181 		 * If all tries failed, and find_space is
2182 		 * VMFS_OPTIMAL_SPACE, fallback to VMFS_ANY_SPACE.
2183 		 * Again enable clustering and randomization.
2184 		 */
2185 		try++;
2186 		MPASS(try <= 2);
2187 
2188 		if (try == 2) {
2189 			/*
2190 			 * Second try: we failed either to find a
2191 			 * suitable region for randomizing the
2192 			 * allocation, or to cluster with an existing
2193 			 * mapping.  Retry with free run.
2194 			 */
2195 			curr_min_addr = (map->flags & MAP_ASLR_IGNSTART) != 0 ?
2196 			    vm_map_min(map) : min_addr;
2197 			atomic_add_long(&aslr_restarts, 1);
2198 		}
2199 
2200 		if (try == 1 && en_aslr && !cluster) {
2201 			/*
2202 			 * Find space for allocation, including
2203 			 * gap needed for later randomization.
2204 			 */
2205 			pidx = MAXPAGESIZES > 1 && pagesizes[1] != 0 &&
2206 			    (find_space == VMFS_SUPER_SPACE || find_space ==
2207 			    VMFS_OPTIMAL_SPACE) ? 1 : 0;
2208 			gap = vm_map_max(map) > MAP_32BIT_MAX_ADDR &&
2209 			    (max_addr == 0 || max_addr > MAP_32BIT_MAX_ADDR) ?
2210 			    aslr_pages_rnd_64[pidx] : aslr_pages_rnd_32[pidx];
2211 			*addr = vm_map_findspace(map, curr_min_addr,
2212 			    length + gap * pagesizes[pidx]);
2213 			if (*addr + length + gap * pagesizes[pidx] >
2214 			    vm_map_max(map))
2215 				goto again;
2216 			/* And randomize the start address. */
2217 			*addr += (arc4random() % gap) * pagesizes[pidx];
2218 			if (max_addr != 0 && *addr + length > max_addr)
2219 				goto again;
2220 		} else {
2221 			*addr = vm_map_findspace(map, curr_min_addr, length);
2222 			if (*addr + length > vm_map_max(map) ||
2223 			    (max_addr != 0 && *addr + length > max_addr)) {
2224 				if (cluster) {
2225 					cluster = false;
2226 					MPASS(try == 1);
2227 					goto again;
2228 				}
2229 				rv = KERN_NO_SPACE;
2230 				goto done;
2231 			}
2232 		}
2233 
2234 		if (find_space != VMFS_ANY_SPACE &&
2235 		    (rv = vm_map_alignspace(map, object, offset, addr, length,
2236 		    max_addr, alignment)) != KERN_SUCCESS) {
2237 			if (find_space == VMFS_OPTIMAL_SPACE) {
2238 				find_space = VMFS_ANY_SPACE;
2239 				curr_min_addr = min_addr;
2240 				cluster = update_anon;
2241 				try = 0;
2242 				goto again;
2243 			}
2244 			goto done;
2245 		}
2246 	} else if ((cow & MAP_REMAP) != 0) {
2247 		if (!vm_map_range_valid(map, *addr, *addr + length)) {
2248 			rv = KERN_INVALID_ADDRESS;
2249 			goto done;
2250 		}
2251 		rv = vm_map_delete(map, *addr, *addr + length);
2252 		if (rv != KERN_SUCCESS)
2253 			goto done;
2254 	}
2255 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
2256 		rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot,
2257 		    max, cow);
2258 	} else {
2259 		rv = vm_map_insert(map, object, offset, *addr, *addr + length,
2260 		    prot, max, cow);
2261 	}
2262 	if (rv == KERN_SUCCESS && update_anon)
2263 		map->anon_loc = *addr + length;
2264 done:
2265 	vm_map_unlock(map);
2266 	return (rv);
2267 }
2268 
2269 /*
2270  *	vm_map_find_min() is a variant of vm_map_find() that takes an
2271  *	additional parameter (min_addr) and treats the given address
2272  *	(*addr) differently.  Specifically, it treats *addr as a hint
2273  *	and not as the minimum address where the mapping is created.
2274  *
2275  *	This function works in two phases.  First, it tries to
2276  *	allocate above the hint.  If that fails and the hint is
2277  *	greater than min_addr, it performs a second pass, replacing
2278  *	the hint with min_addr as the minimum address for the
2279  *	allocation.
2280  */
2281 int
2282 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2283     vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr,
2284     vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max,
2285     int cow)
2286 {
2287 	vm_offset_t hint;
2288 	int rv;
2289 
2290 	hint = *addr;
2291 	for (;;) {
2292 		rv = vm_map_find(map, object, offset, addr, length, max_addr,
2293 		    find_space, prot, max, cow);
2294 		if (rv == KERN_SUCCESS || min_addr >= hint)
2295 			return (rv);
2296 		*addr = hint = min_addr;
2297 	}
2298 }
2299 
2300 /*
2301  * A map entry with any of the following flags set must not be merged with
2302  * another entry.
2303  */
2304 #define	MAP_ENTRY_NOMERGE_MASK	(MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | \
2305 	    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP | MAP_ENTRY_VN_EXEC)
2306 
2307 static bool
2308 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry)
2309 {
2310 
2311 	KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 ||
2312 	    (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0,
2313 	    ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable",
2314 	    prev, entry));
2315 	return (prev->end == entry->start &&
2316 	    prev->object.vm_object == entry->object.vm_object &&
2317 	    (prev->object.vm_object == NULL ||
2318 	    prev->offset + (prev->end - prev->start) == entry->offset) &&
2319 	    prev->eflags == entry->eflags &&
2320 	    prev->protection == entry->protection &&
2321 	    prev->max_protection == entry->max_protection &&
2322 	    prev->inheritance == entry->inheritance &&
2323 	    prev->wired_count == entry->wired_count &&
2324 	    prev->cred == entry->cred);
2325 }
2326 
2327 static void
2328 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry)
2329 {
2330 
2331 	/*
2332 	 * If the backing object is a vnode object, vm_object_deallocate()
2333 	 * calls vrele().  However, vrele() does not lock the vnode because
2334 	 * the vnode has additional references.  Thus, the map lock can be
2335 	 * kept without causing a lock-order reversal with the vnode lock.
2336 	 *
2337 	 * Since we count the number of virtual page mappings in
2338 	 * object->un_pager.vnp.writemappings, the writemappings value
2339 	 * should not be adjusted when the entry is disposed of.
2340 	 */
2341 	if (entry->object.vm_object != NULL)
2342 		vm_object_deallocate(entry->object.vm_object);
2343 	if (entry->cred != NULL)
2344 		crfree(entry->cred);
2345 	vm_map_entry_dispose(map, entry);
2346 }
2347 
2348 /*
2349  *	vm_map_try_merge_entries:
2350  *
2351  *	Compare the given map entry to its predecessor, and merge its precessor
2352  *	into it if possible.  The entry remains valid, and may be extended.
2353  *	The predecessor may be deleted.
2354  *
2355  *	The map must be locked.
2356  */
2357 void
2358 vm_map_try_merge_entries(vm_map_t map, vm_map_entry_t prev_entry,
2359     vm_map_entry_t entry)
2360 {
2361 
2362 	VM_MAP_ASSERT_LOCKED(map);
2363 	if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 &&
2364 	    vm_map_mergeable_neighbors(prev_entry, entry)) {
2365 		vm_map_entry_unlink(map, prev_entry, UNLINK_MERGE_NEXT);
2366 		vm_map_merged_neighbor_dispose(map, prev_entry);
2367 	}
2368 }
2369 
2370 /*
2371  *	vm_map_entry_back:
2372  *
2373  *	Allocate an object to back a map entry.
2374  */
2375 static inline void
2376 vm_map_entry_back(vm_map_entry_t entry)
2377 {
2378 	vm_object_t object;
2379 
2380 	KASSERT(entry->object.vm_object == NULL,
2381 	    ("map entry %p has backing object", entry));
2382 	KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
2383 	    ("map entry %p is a submap", entry));
2384 	object = vm_object_allocate_anon(atop(entry->end - entry->start), NULL,
2385 	    entry->cred, entry->end - entry->start);
2386 	entry->object.vm_object = object;
2387 	entry->offset = 0;
2388 	entry->cred = NULL;
2389 }
2390 
2391 /*
2392  *	vm_map_entry_charge_object
2393  *
2394  *	If there is no object backing this entry, create one.  Otherwise, if
2395  *	the entry has cred, give it to the backing object.
2396  */
2397 static inline void
2398 vm_map_entry_charge_object(vm_map_t map, vm_map_entry_t entry)
2399 {
2400 
2401 	VM_MAP_ASSERT_LOCKED(map);
2402 	KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
2403 	    ("map entry %p is a submap", entry));
2404 	if (entry->object.vm_object == NULL && !map->system_map &&
2405 	    (entry->eflags & MAP_ENTRY_GUARD) == 0)
2406 		vm_map_entry_back(entry);
2407 	else if (entry->object.vm_object != NULL &&
2408 	    ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
2409 	    entry->cred != NULL) {
2410 		VM_OBJECT_WLOCK(entry->object.vm_object);
2411 		KASSERT(entry->object.vm_object->cred == NULL,
2412 		    ("OVERCOMMIT: %s: both cred e %p", __func__, entry));
2413 		entry->object.vm_object->cred = entry->cred;
2414 		entry->object.vm_object->charge = entry->end - entry->start;
2415 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
2416 		entry->cred = NULL;
2417 	}
2418 }
2419 
2420 /*
2421  *	vm_map_entry_clone
2422  *
2423  *	Create a duplicate map entry for clipping.
2424  */
2425 static vm_map_entry_t
2426 vm_map_entry_clone(vm_map_t map, vm_map_entry_t entry)
2427 {
2428 	vm_map_entry_t new_entry;
2429 
2430 	VM_MAP_ASSERT_LOCKED(map);
2431 
2432 	/*
2433 	 * Create a backing object now, if none exists, so that more individual
2434 	 * objects won't be created after the map entry is split.
2435 	 */
2436 	vm_map_entry_charge_object(map, entry);
2437 
2438 	/* Clone the entry. */
2439 	new_entry = vm_map_entry_create(map);
2440 	*new_entry = *entry;
2441 	if (new_entry->cred != NULL)
2442 		crhold(entry->cred);
2443 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2444 		vm_object_reference(new_entry->object.vm_object);
2445 		vm_map_entry_set_vnode_text(new_entry, true);
2446 		/*
2447 		 * The object->un_pager.vnp.writemappings for the object of
2448 		 * MAP_ENTRY_WRITECNT type entry shall be kept as is here.  The
2449 		 * virtual pages are re-distributed among the clipped entries,
2450 		 * so the sum is left the same.
2451 		 */
2452 	}
2453 	return (new_entry);
2454 }
2455 
2456 /*
2457  *	vm_map_clip_start:	[ internal use only ]
2458  *
2459  *	Asserts that the given entry begins at or after
2460  *	the specified address; if necessary,
2461  *	it splits the entry into two.
2462  */
2463 static int
2464 vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t startaddr)
2465 {
2466 	vm_map_entry_t new_entry;
2467 	int bdry_idx;
2468 
2469 	if (!map->system_map)
2470 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2471 		    "%s: map %p entry %p start 0x%jx", __func__, map, entry,
2472 		    (uintmax_t)startaddr);
2473 
2474 	if (startaddr <= entry->start)
2475 		return (KERN_SUCCESS);
2476 
2477 	VM_MAP_ASSERT_LOCKED(map);
2478 	KASSERT(entry->end > startaddr && entry->start < startaddr,
2479 	    ("%s: invalid clip of entry %p", __func__, entry));
2480 
2481 	bdry_idx = (entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) >>
2482 	    MAP_ENTRY_SPLIT_BOUNDARY_SHIFT;
2483 	if (bdry_idx != 0) {
2484 		if ((startaddr & (pagesizes[bdry_idx] - 1)) != 0)
2485 			return (KERN_INVALID_ARGUMENT);
2486 	}
2487 
2488 	new_entry = vm_map_entry_clone(map, entry);
2489 
2490 	/*
2491 	 * Split off the front portion.  Insert the new entry BEFORE this one,
2492 	 * so that this entry has the specified starting address.
2493 	 */
2494 	new_entry->end = startaddr;
2495 	vm_map_entry_link(map, new_entry);
2496 	return (KERN_SUCCESS);
2497 }
2498 
2499 /*
2500  *	vm_map_lookup_clip_start:
2501  *
2502  *	Find the entry at or just after 'start', and clip it if 'start' is in
2503  *	the interior of the entry.  Return entry after 'start', and in
2504  *	prev_entry set the entry before 'start'.
2505  */
2506 static int
2507 vm_map_lookup_clip_start(vm_map_t map, vm_offset_t start,
2508     vm_map_entry_t *res_entry, vm_map_entry_t *prev_entry)
2509 {
2510 	vm_map_entry_t entry;
2511 	int rv;
2512 
2513 	if (!map->system_map)
2514 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2515 		    "%s: map %p start 0x%jx prev %p", __func__, map,
2516 		    (uintmax_t)start, prev_entry);
2517 
2518 	if (vm_map_lookup_entry(map, start, prev_entry)) {
2519 		entry = *prev_entry;
2520 		rv = vm_map_clip_start(map, entry, start);
2521 		if (rv != KERN_SUCCESS)
2522 			return (rv);
2523 		*prev_entry = vm_map_entry_pred(entry);
2524 	} else
2525 		entry = vm_map_entry_succ(*prev_entry);
2526 	*res_entry = entry;
2527 	return (KERN_SUCCESS);
2528 }
2529 
2530 /*
2531  *	vm_map_clip_end:	[ internal use only ]
2532  *
2533  *	Asserts that the given entry ends at or before
2534  *	the specified address; if necessary,
2535  *	it splits the entry into two.
2536  */
2537 static int
2538 vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t endaddr)
2539 {
2540 	vm_map_entry_t new_entry;
2541 	int bdry_idx;
2542 
2543 	if (!map->system_map)
2544 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2545 		    "%s: map %p entry %p end 0x%jx", __func__, map, entry,
2546 		    (uintmax_t)endaddr);
2547 
2548 	if (endaddr >= entry->end)
2549 		return (KERN_SUCCESS);
2550 
2551 	VM_MAP_ASSERT_LOCKED(map);
2552 	KASSERT(entry->start < endaddr && entry->end > endaddr,
2553 	    ("%s: invalid clip of entry %p", __func__, entry));
2554 
2555 	bdry_idx = (entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) >>
2556 	    MAP_ENTRY_SPLIT_BOUNDARY_SHIFT;
2557 	if (bdry_idx != 0) {
2558 		if ((endaddr & (pagesizes[bdry_idx] - 1)) != 0)
2559 			return (KERN_INVALID_ARGUMENT);
2560 	}
2561 
2562 	new_entry = vm_map_entry_clone(map, entry);
2563 
2564 	/*
2565 	 * Split off the back portion.  Insert the new entry AFTER this one,
2566 	 * so that this entry has the specified ending address.
2567 	 */
2568 	new_entry->start = endaddr;
2569 	vm_map_entry_link(map, new_entry);
2570 
2571 	return (KERN_SUCCESS);
2572 }
2573 
2574 /*
2575  *	vm_map_submap:		[ kernel use only ]
2576  *
2577  *	Mark the given range as handled by a subordinate map.
2578  *
2579  *	This range must have been created with vm_map_find,
2580  *	and no other operations may have been performed on this
2581  *	range prior to calling vm_map_submap.
2582  *
2583  *	Only a limited number of operations can be performed
2584  *	within this rage after calling vm_map_submap:
2585  *		vm_fault
2586  *	[Don't try vm_map_copy!]
2587  *
2588  *	To remove a submapping, one must first remove the
2589  *	range from the superior map, and then destroy the
2590  *	submap (if desired).  [Better yet, don't try it.]
2591  */
2592 int
2593 vm_map_submap(
2594 	vm_map_t map,
2595 	vm_offset_t start,
2596 	vm_offset_t end,
2597 	vm_map_t submap)
2598 {
2599 	vm_map_entry_t entry;
2600 	int result;
2601 
2602 	result = KERN_INVALID_ARGUMENT;
2603 
2604 	vm_map_lock(submap);
2605 	submap->flags |= MAP_IS_SUB_MAP;
2606 	vm_map_unlock(submap);
2607 
2608 	vm_map_lock(map);
2609 	VM_MAP_RANGE_CHECK(map, start, end);
2610 	if (vm_map_lookup_entry(map, start, &entry) && entry->end >= end &&
2611 	    (entry->eflags & MAP_ENTRY_COW) == 0 &&
2612 	    entry->object.vm_object == NULL) {
2613 		result = vm_map_clip_start(map, entry, start);
2614 		if (result != KERN_SUCCESS)
2615 			goto unlock;
2616 		result = vm_map_clip_end(map, entry, end);
2617 		if (result != KERN_SUCCESS)
2618 			goto unlock;
2619 		entry->object.sub_map = submap;
2620 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
2621 		result = KERN_SUCCESS;
2622 	}
2623 unlock:
2624 	vm_map_unlock(map);
2625 
2626 	if (result != KERN_SUCCESS) {
2627 		vm_map_lock(submap);
2628 		submap->flags &= ~MAP_IS_SUB_MAP;
2629 		vm_map_unlock(submap);
2630 	}
2631 	return (result);
2632 }
2633 
2634 /*
2635  * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
2636  */
2637 #define	MAX_INIT_PT	96
2638 
2639 /*
2640  *	vm_map_pmap_enter:
2641  *
2642  *	Preload the specified map's pmap with mappings to the specified
2643  *	object's memory-resident pages.  No further physical pages are
2644  *	allocated, and no further virtual pages are retrieved from secondary
2645  *	storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
2646  *	limited number of page mappings are created at the low-end of the
2647  *	specified address range.  (For this purpose, a superpage mapping
2648  *	counts as one page mapping.)  Otherwise, all resident pages within
2649  *	the specified address range are mapped.
2650  */
2651 static void
2652 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
2653     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
2654 {
2655 	vm_offset_t start;
2656 	vm_page_t p, p_start;
2657 	vm_pindex_t mask, psize, threshold, tmpidx;
2658 
2659 	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
2660 		return;
2661 	if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2662 		VM_OBJECT_WLOCK(object);
2663 		if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2664 			pmap_object_init_pt(map->pmap, addr, object, pindex,
2665 			    size);
2666 			VM_OBJECT_WUNLOCK(object);
2667 			return;
2668 		}
2669 		VM_OBJECT_LOCK_DOWNGRADE(object);
2670 	} else
2671 		VM_OBJECT_RLOCK(object);
2672 
2673 	psize = atop(size);
2674 	if (psize + pindex > object->size) {
2675 		if (pindex >= object->size) {
2676 			VM_OBJECT_RUNLOCK(object);
2677 			return;
2678 		}
2679 		psize = object->size - pindex;
2680 	}
2681 
2682 	start = 0;
2683 	p_start = NULL;
2684 	threshold = MAX_INIT_PT;
2685 
2686 	p = vm_page_find_least(object, pindex);
2687 	/*
2688 	 * Assert: the variable p is either (1) the page with the
2689 	 * least pindex greater than or equal to the parameter pindex
2690 	 * or (2) NULL.
2691 	 */
2692 	for (;
2693 	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
2694 	     p = TAILQ_NEXT(p, listq)) {
2695 		/*
2696 		 * don't allow an madvise to blow away our really
2697 		 * free pages allocating pv entries.
2698 		 */
2699 		if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
2700 		    vm_page_count_severe()) ||
2701 		    ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
2702 		    tmpidx >= threshold)) {
2703 			psize = tmpidx;
2704 			break;
2705 		}
2706 		if (vm_page_all_valid(p)) {
2707 			if (p_start == NULL) {
2708 				start = addr + ptoa(tmpidx);
2709 				p_start = p;
2710 			}
2711 			/* Jump ahead if a superpage mapping is possible. */
2712 			if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
2713 			    (pagesizes[p->psind] - 1)) == 0) {
2714 				mask = atop(pagesizes[p->psind]) - 1;
2715 				if (tmpidx + mask < psize &&
2716 				    vm_page_ps_test(p, PS_ALL_VALID, NULL)) {
2717 					p += mask;
2718 					threshold += mask;
2719 				}
2720 			}
2721 		} else if (p_start != NULL) {
2722 			pmap_enter_object(map->pmap, start, addr +
2723 			    ptoa(tmpidx), p_start, prot);
2724 			p_start = NULL;
2725 		}
2726 	}
2727 	if (p_start != NULL)
2728 		pmap_enter_object(map->pmap, start, addr + ptoa(psize),
2729 		    p_start, prot);
2730 	VM_OBJECT_RUNLOCK(object);
2731 }
2732 
2733 /*
2734  *	vm_map_protect:
2735  *
2736  *	Sets the protection of the specified address
2737  *	region in the target map.  If "set_max" is
2738  *	specified, the maximum protection is to be set;
2739  *	otherwise, only the current protection is affected.
2740  */
2741 int
2742 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
2743 	       vm_prot_t new_prot, boolean_t set_max)
2744 {
2745 	vm_map_entry_t entry, first_entry, in_tran, prev_entry;
2746 	vm_object_t obj;
2747 	struct ucred *cred;
2748 	vm_prot_t old_prot;
2749 	int rv;
2750 
2751 	if (start == end)
2752 		return (KERN_SUCCESS);
2753 
2754 again:
2755 	in_tran = NULL;
2756 	vm_map_lock(map);
2757 
2758 	if ((map->flags & MAP_WXORX) != 0 && (new_prot &
2759 	    (VM_PROT_WRITE | VM_PROT_EXECUTE)) == (VM_PROT_WRITE |
2760 	    VM_PROT_EXECUTE)) {
2761 		vm_map_unlock(map);
2762 		return (KERN_PROTECTION_FAILURE);
2763 	}
2764 
2765 	/*
2766 	 * Ensure that we are not concurrently wiring pages.  vm_map_wire() may
2767 	 * need to fault pages into the map and will drop the map lock while
2768 	 * doing so, and the VM object may end up in an inconsistent state if we
2769 	 * update the protection on the map entry in between faults.
2770 	 */
2771 	vm_map_wait_busy(map);
2772 
2773 	VM_MAP_RANGE_CHECK(map, start, end);
2774 
2775 	if (!vm_map_lookup_entry(map, start, &first_entry))
2776 		first_entry = vm_map_entry_succ(first_entry);
2777 
2778 	/*
2779 	 * Make a first pass to check for protection violations.
2780 	 */
2781 	for (entry = first_entry; entry->start < end;
2782 	    entry = vm_map_entry_succ(entry)) {
2783 		if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
2784 			continue;
2785 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) {
2786 			vm_map_unlock(map);
2787 			return (KERN_INVALID_ARGUMENT);
2788 		}
2789 		if ((new_prot & entry->max_protection) != new_prot) {
2790 			vm_map_unlock(map);
2791 			return (KERN_PROTECTION_FAILURE);
2792 		}
2793 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0)
2794 			in_tran = entry;
2795 	}
2796 
2797 	/*
2798 	 * Postpone the operation until all in-transition map entries have
2799 	 * stabilized.  An in-transition entry might already have its pages
2800 	 * wired and wired_count incremented, but not yet have its
2801 	 * MAP_ENTRY_USER_WIRED flag set.  In which case, we would fail to call
2802 	 * vm_fault_copy_entry() in the final loop below.
2803 	 */
2804 	if (in_tran != NULL) {
2805 		in_tran->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2806 		vm_map_unlock_and_wait(map, 0);
2807 		goto again;
2808 	}
2809 
2810 	/*
2811 	 * Before changing the protections, try to reserve swap space for any
2812 	 * private (i.e., copy-on-write) mappings that are transitioning from
2813 	 * read-only to read/write access.  If a reservation fails, break out
2814 	 * of this loop early and let the next loop simplify the entries, since
2815 	 * some may now be mergeable.
2816 	 */
2817 	rv = vm_map_clip_start(map, first_entry, start);
2818 	if (rv != KERN_SUCCESS) {
2819 		vm_map_unlock(map);
2820 		return (rv);
2821 	}
2822 	for (entry = first_entry; entry->start < end;
2823 	    entry = vm_map_entry_succ(entry)) {
2824 		rv = vm_map_clip_end(map, entry, end);
2825 		if (rv != KERN_SUCCESS) {
2826 			vm_map_unlock(map);
2827 			return (rv);
2828 		}
2829 
2830 		if (set_max ||
2831 		    ((new_prot & ~entry->protection) & VM_PROT_WRITE) == 0 ||
2832 		    ENTRY_CHARGED(entry) ||
2833 		    (entry->eflags & MAP_ENTRY_GUARD) != 0) {
2834 			continue;
2835 		}
2836 
2837 		cred = curthread->td_ucred;
2838 		obj = entry->object.vm_object;
2839 
2840 		if (obj == NULL ||
2841 		    (entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0) {
2842 			if (!swap_reserve(entry->end - entry->start)) {
2843 				rv = KERN_RESOURCE_SHORTAGE;
2844 				end = entry->end;
2845 				break;
2846 			}
2847 			crhold(cred);
2848 			entry->cred = cred;
2849 			continue;
2850 		}
2851 
2852 		if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP)
2853 			continue;
2854 		VM_OBJECT_WLOCK(obj);
2855 		if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
2856 			VM_OBJECT_WUNLOCK(obj);
2857 			continue;
2858 		}
2859 
2860 		/*
2861 		 * Charge for the whole object allocation now, since
2862 		 * we cannot distinguish between non-charged and
2863 		 * charged clipped mapping of the same object later.
2864 		 */
2865 		KASSERT(obj->charge == 0,
2866 		    ("vm_map_protect: object %p overcharged (entry %p)",
2867 		    obj, entry));
2868 		if (!swap_reserve(ptoa(obj->size))) {
2869 			VM_OBJECT_WUNLOCK(obj);
2870 			rv = KERN_RESOURCE_SHORTAGE;
2871 			end = entry->end;
2872 			break;
2873 		}
2874 
2875 		crhold(cred);
2876 		obj->cred = cred;
2877 		obj->charge = ptoa(obj->size);
2878 		VM_OBJECT_WUNLOCK(obj);
2879 	}
2880 
2881 	/*
2882 	 * If enough swap space was available, go back and fix up protections.
2883 	 * Otherwise, just simplify entries, since some may have been modified.
2884 	 * [Note that clipping is not necessary the second time.]
2885 	 */
2886 	for (prev_entry = vm_map_entry_pred(first_entry), entry = first_entry;
2887 	    entry->start < end;
2888 	    vm_map_try_merge_entries(map, prev_entry, entry),
2889 	    prev_entry = entry, entry = vm_map_entry_succ(entry)) {
2890 		if (rv != KERN_SUCCESS ||
2891 		    (entry->eflags & MAP_ENTRY_GUARD) != 0)
2892 			continue;
2893 
2894 		old_prot = entry->protection;
2895 
2896 		if (set_max)
2897 			entry->protection =
2898 			    (entry->max_protection = new_prot) &
2899 			    old_prot;
2900 		else
2901 			entry->protection = new_prot;
2902 
2903 		/*
2904 		 * For user wired map entries, the normal lazy evaluation of
2905 		 * write access upgrades through soft page faults is
2906 		 * undesirable.  Instead, immediately copy any pages that are
2907 		 * copy-on-write and enable write access in the physical map.
2908 		 */
2909 		if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2910 		    (entry->protection & VM_PROT_WRITE) != 0 &&
2911 		    (old_prot & VM_PROT_WRITE) == 0)
2912 			vm_fault_copy_entry(map, map, entry, entry, NULL);
2913 
2914 		/*
2915 		 * When restricting access, update the physical map.  Worry
2916 		 * about copy-on-write here.
2917 		 */
2918 		if ((old_prot & ~entry->protection) != 0) {
2919 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2920 							VM_PROT_ALL)
2921 			pmap_protect(map->pmap, entry->start,
2922 			    entry->end,
2923 			    entry->protection & MASK(entry));
2924 #undef	MASK
2925 		}
2926 	}
2927 	vm_map_try_merge_entries(map, prev_entry, entry);
2928 	vm_map_unlock(map);
2929 	return (rv);
2930 }
2931 
2932 /*
2933  *	vm_map_madvise:
2934  *
2935  *	This routine traverses a processes map handling the madvise
2936  *	system call.  Advisories are classified as either those effecting
2937  *	the vm_map_entry structure, or those effecting the underlying
2938  *	objects.
2939  */
2940 int
2941 vm_map_madvise(
2942 	vm_map_t map,
2943 	vm_offset_t start,
2944 	vm_offset_t end,
2945 	int behav)
2946 {
2947 	vm_map_entry_t entry, prev_entry;
2948 	int rv;
2949 	bool modify_map;
2950 
2951 	/*
2952 	 * Some madvise calls directly modify the vm_map_entry, in which case
2953 	 * we need to use an exclusive lock on the map and we need to perform
2954 	 * various clipping operations.  Otherwise we only need a read-lock
2955 	 * on the map.
2956 	 */
2957 	switch(behav) {
2958 	case MADV_NORMAL:
2959 	case MADV_SEQUENTIAL:
2960 	case MADV_RANDOM:
2961 	case MADV_NOSYNC:
2962 	case MADV_AUTOSYNC:
2963 	case MADV_NOCORE:
2964 	case MADV_CORE:
2965 		if (start == end)
2966 			return (0);
2967 		modify_map = true;
2968 		vm_map_lock(map);
2969 		break;
2970 	case MADV_WILLNEED:
2971 	case MADV_DONTNEED:
2972 	case MADV_FREE:
2973 		if (start == end)
2974 			return (0);
2975 		modify_map = false;
2976 		vm_map_lock_read(map);
2977 		break;
2978 	default:
2979 		return (EINVAL);
2980 	}
2981 
2982 	/*
2983 	 * Locate starting entry and clip if necessary.
2984 	 */
2985 	VM_MAP_RANGE_CHECK(map, start, end);
2986 
2987 	if (modify_map) {
2988 		/*
2989 		 * madvise behaviors that are implemented in the vm_map_entry.
2990 		 *
2991 		 * We clip the vm_map_entry so that behavioral changes are
2992 		 * limited to the specified address range.
2993 		 */
2994 		rv = vm_map_lookup_clip_start(map, start, &entry, &prev_entry);
2995 		if (rv != KERN_SUCCESS) {
2996 			vm_map_unlock(map);
2997 			return (vm_mmap_to_errno(rv));
2998 		}
2999 
3000 		for (; entry->start < end; prev_entry = entry,
3001 		    entry = vm_map_entry_succ(entry)) {
3002 			if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
3003 				continue;
3004 
3005 			rv = vm_map_clip_end(map, entry, end);
3006 			if (rv != KERN_SUCCESS) {
3007 				vm_map_unlock(map);
3008 				return (vm_mmap_to_errno(rv));
3009 			}
3010 
3011 			switch (behav) {
3012 			case MADV_NORMAL:
3013 				vm_map_entry_set_behavior(entry,
3014 				    MAP_ENTRY_BEHAV_NORMAL);
3015 				break;
3016 			case MADV_SEQUENTIAL:
3017 				vm_map_entry_set_behavior(entry,
3018 				    MAP_ENTRY_BEHAV_SEQUENTIAL);
3019 				break;
3020 			case MADV_RANDOM:
3021 				vm_map_entry_set_behavior(entry,
3022 				    MAP_ENTRY_BEHAV_RANDOM);
3023 				break;
3024 			case MADV_NOSYNC:
3025 				entry->eflags |= MAP_ENTRY_NOSYNC;
3026 				break;
3027 			case MADV_AUTOSYNC:
3028 				entry->eflags &= ~MAP_ENTRY_NOSYNC;
3029 				break;
3030 			case MADV_NOCORE:
3031 				entry->eflags |= MAP_ENTRY_NOCOREDUMP;
3032 				break;
3033 			case MADV_CORE:
3034 				entry->eflags &= ~MAP_ENTRY_NOCOREDUMP;
3035 				break;
3036 			default:
3037 				break;
3038 			}
3039 			vm_map_try_merge_entries(map, prev_entry, entry);
3040 		}
3041 		vm_map_try_merge_entries(map, prev_entry, entry);
3042 		vm_map_unlock(map);
3043 	} else {
3044 		vm_pindex_t pstart, pend;
3045 
3046 		/*
3047 		 * madvise behaviors that are implemented in the underlying
3048 		 * vm_object.
3049 		 *
3050 		 * Since we don't clip the vm_map_entry, we have to clip
3051 		 * the vm_object pindex and count.
3052 		 */
3053 		if (!vm_map_lookup_entry(map, start, &entry))
3054 			entry = vm_map_entry_succ(entry);
3055 		for (; entry->start < end;
3056 		    entry = vm_map_entry_succ(entry)) {
3057 			vm_offset_t useEnd, useStart;
3058 
3059 			if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
3060 				continue;
3061 
3062 			/*
3063 			 * MADV_FREE would otherwise rewind time to
3064 			 * the creation of the shadow object.  Because
3065 			 * we hold the VM map read-locked, neither the
3066 			 * entry's object nor the presence of a
3067 			 * backing object can change.
3068 			 */
3069 			if (behav == MADV_FREE &&
3070 			    entry->object.vm_object != NULL &&
3071 			    entry->object.vm_object->backing_object != NULL)
3072 				continue;
3073 
3074 			pstart = OFF_TO_IDX(entry->offset);
3075 			pend = pstart + atop(entry->end - entry->start);
3076 			useStart = entry->start;
3077 			useEnd = entry->end;
3078 
3079 			if (entry->start < start) {
3080 				pstart += atop(start - entry->start);
3081 				useStart = start;
3082 			}
3083 			if (entry->end > end) {
3084 				pend -= atop(entry->end - end);
3085 				useEnd = end;
3086 			}
3087 
3088 			if (pstart >= pend)
3089 				continue;
3090 
3091 			/*
3092 			 * Perform the pmap_advise() before clearing
3093 			 * PGA_REFERENCED in vm_page_advise().  Otherwise, a
3094 			 * concurrent pmap operation, such as pmap_remove(),
3095 			 * could clear a reference in the pmap and set
3096 			 * PGA_REFERENCED on the page before the pmap_advise()
3097 			 * had completed.  Consequently, the page would appear
3098 			 * referenced based upon an old reference that
3099 			 * occurred before this pmap_advise() ran.
3100 			 */
3101 			if (behav == MADV_DONTNEED || behav == MADV_FREE)
3102 				pmap_advise(map->pmap, useStart, useEnd,
3103 				    behav);
3104 
3105 			vm_object_madvise(entry->object.vm_object, pstart,
3106 			    pend, behav);
3107 
3108 			/*
3109 			 * Pre-populate paging structures in the
3110 			 * WILLNEED case.  For wired entries, the
3111 			 * paging structures are already populated.
3112 			 */
3113 			if (behav == MADV_WILLNEED &&
3114 			    entry->wired_count == 0) {
3115 				vm_map_pmap_enter(map,
3116 				    useStart,
3117 				    entry->protection,
3118 				    entry->object.vm_object,
3119 				    pstart,
3120 				    ptoa(pend - pstart),
3121 				    MAP_PREFAULT_MADVISE
3122 				);
3123 			}
3124 		}
3125 		vm_map_unlock_read(map);
3126 	}
3127 	return (0);
3128 }
3129 
3130 /*
3131  *	vm_map_inherit:
3132  *
3133  *	Sets the inheritance of the specified address
3134  *	range in the target map.  Inheritance
3135  *	affects how the map will be shared with
3136  *	child maps at the time of vmspace_fork.
3137  */
3138 int
3139 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
3140 	       vm_inherit_t new_inheritance)
3141 {
3142 	vm_map_entry_t entry, lentry, prev_entry, start_entry;
3143 	int rv;
3144 
3145 	switch (new_inheritance) {
3146 	case VM_INHERIT_NONE:
3147 	case VM_INHERIT_COPY:
3148 	case VM_INHERIT_SHARE:
3149 	case VM_INHERIT_ZERO:
3150 		break;
3151 	default:
3152 		return (KERN_INVALID_ARGUMENT);
3153 	}
3154 	if (start == end)
3155 		return (KERN_SUCCESS);
3156 	vm_map_lock(map);
3157 	VM_MAP_RANGE_CHECK(map, start, end);
3158 	rv = vm_map_lookup_clip_start(map, start, &start_entry, &prev_entry);
3159 	if (rv != KERN_SUCCESS)
3160 		goto unlock;
3161 	if (vm_map_lookup_entry(map, end - 1, &lentry)) {
3162 		rv = vm_map_clip_end(map, lentry, end);
3163 		if (rv != KERN_SUCCESS)
3164 			goto unlock;
3165 	}
3166 	if (new_inheritance == VM_INHERIT_COPY) {
3167 		for (entry = start_entry; entry->start < end;
3168 		    prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3169 			if ((entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK)
3170 			    != 0) {
3171 				rv = KERN_INVALID_ARGUMENT;
3172 				goto unlock;
3173 			}
3174 		}
3175 	}
3176 	for (entry = start_entry; entry->start < end; prev_entry = entry,
3177 	    entry = vm_map_entry_succ(entry)) {
3178 		KASSERT(entry->end <= end, ("non-clipped entry %p end %jx %jx",
3179 		    entry, (uintmax_t)entry->end, (uintmax_t)end));
3180 		if ((entry->eflags & MAP_ENTRY_GUARD) == 0 ||
3181 		    new_inheritance != VM_INHERIT_ZERO)
3182 			entry->inheritance = new_inheritance;
3183 		vm_map_try_merge_entries(map, prev_entry, entry);
3184 	}
3185 	vm_map_try_merge_entries(map, prev_entry, entry);
3186 unlock:
3187 	vm_map_unlock(map);
3188 	return (rv);
3189 }
3190 
3191 /*
3192  *	vm_map_entry_in_transition:
3193  *
3194  *	Release the map lock, and sleep until the entry is no longer in
3195  *	transition.  Awake and acquire the map lock.  If the map changed while
3196  *	another held the lock, lookup a possibly-changed entry at or after the
3197  *	'start' position of the old entry.
3198  */
3199 static vm_map_entry_t
3200 vm_map_entry_in_transition(vm_map_t map, vm_offset_t in_start,
3201     vm_offset_t *io_end, bool holes_ok, vm_map_entry_t in_entry)
3202 {
3203 	vm_map_entry_t entry;
3204 	vm_offset_t start;
3205 	u_int last_timestamp;
3206 
3207 	VM_MAP_ASSERT_LOCKED(map);
3208 	KASSERT((in_entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3209 	    ("not in-tranition map entry %p", in_entry));
3210 	/*
3211 	 * We have not yet clipped the entry.
3212 	 */
3213 	start = MAX(in_start, in_entry->start);
3214 	in_entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3215 	last_timestamp = map->timestamp;
3216 	if (vm_map_unlock_and_wait(map, 0)) {
3217 		/*
3218 		 * Allow interruption of user wiring/unwiring?
3219 		 */
3220 	}
3221 	vm_map_lock(map);
3222 	if (last_timestamp + 1 == map->timestamp)
3223 		return (in_entry);
3224 
3225 	/*
3226 	 * Look again for the entry because the map was modified while it was
3227 	 * unlocked.  Specifically, the entry may have been clipped, merged, or
3228 	 * deleted.
3229 	 */
3230 	if (!vm_map_lookup_entry(map, start, &entry)) {
3231 		if (!holes_ok) {
3232 			*io_end = start;
3233 			return (NULL);
3234 		}
3235 		entry = vm_map_entry_succ(entry);
3236 	}
3237 	return (entry);
3238 }
3239 
3240 /*
3241  *	vm_map_unwire:
3242  *
3243  *	Implements both kernel and user unwiring.
3244  */
3245 int
3246 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
3247     int flags)
3248 {
3249 	vm_map_entry_t entry, first_entry, next_entry, prev_entry;
3250 	int rv;
3251 	bool holes_ok, need_wakeup, user_unwire;
3252 
3253 	if (start == end)
3254 		return (KERN_SUCCESS);
3255 	holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0;
3256 	user_unwire = (flags & VM_MAP_WIRE_USER) != 0;
3257 	vm_map_lock(map);
3258 	VM_MAP_RANGE_CHECK(map, start, end);
3259 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
3260 		if (holes_ok)
3261 			first_entry = vm_map_entry_succ(first_entry);
3262 		else {
3263 			vm_map_unlock(map);
3264 			return (KERN_INVALID_ADDRESS);
3265 		}
3266 	}
3267 	rv = KERN_SUCCESS;
3268 	for (entry = first_entry; entry->start < end; entry = next_entry) {
3269 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
3270 			/*
3271 			 * We have not yet clipped the entry.
3272 			 */
3273 			next_entry = vm_map_entry_in_transition(map, start,
3274 			    &end, holes_ok, entry);
3275 			if (next_entry == NULL) {
3276 				if (entry == first_entry) {
3277 					vm_map_unlock(map);
3278 					return (KERN_INVALID_ADDRESS);
3279 				}
3280 				rv = KERN_INVALID_ADDRESS;
3281 				break;
3282 			}
3283 			first_entry = (entry == first_entry) ?
3284 			    next_entry : NULL;
3285 			continue;
3286 		}
3287 		rv = vm_map_clip_start(map, entry, start);
3288 		if (rv != KERN_SUCCESS)
3289 			break;
3290 		rv = vm_map_clip_end(map, entry, end);
3291 		if (rv != KERN_SUCCESS)
3292 			break;
3293 
3294 		/*
3295 		 * Mark the entry in case the map lock is released.  (See
3296 		 * above.)
3297 		 */
3298 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
3299 		    entry->wiring_thread == NULL,
3300 		    ("owned map entry %p", entry));
3301 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
3302 		entry->wiring_thread = curthread;
3303 		next_entry = vm_map_entry_succ(entry);
3304 		/*
3305 		 * Check the map for holes in the specified region.
3306 		 * If holes_ok, skip this check.
3307 		 */
3308 		if (!holes_ok &&
3309 		    entry->end < end && next_entry->start > entry->end) {
3310 			end = entry->end;
3311 			rv = KERN_INVALID_ADDRESS;
3312 			break;
3313 		}
3314 		/*
3315 		 * If system unwiring, require that the entry is system wired.
3316 		 */
3317 		if (!user_unwire &&
3318 		    vm_map_entry_system_wired_count(entry) == 0) {
3319 			end = entry->end;
3320 			rv = KERN_INVALID_ARGUMENT;
3321 			break;
3322 		}
3323 	}
3324 	need_wakeup = false;
3325 	if (first_entry == NULL &&
3326 	    !vm_map_lookup_entry(map, start, &first_entry)) {
3327 		KASSERT(holes_ok, ("vm_map_unwire: lookup failed"));
3328 		prev_entry = first_entry;
3329 		entry = vm_map_entry_succ(first_entry);
3330 	} else {
3331 		prev_entry = vm_map_entry_pred(first_entry);
3332 		entry = first_entry;
3333 	}
3334 	for (; entry->start < end;
3335 	    prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3336 		/*
3337 		 * If holes_ok was specified, an empty
3338 		 * space in the unwired region could have been mapped
3339 		 * while the map lock was dropped for draining
3340 		 * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
3341 		 * could be simultaneously wiring this new mapping
3342 		 * entry.  Detect these cases and skip any entries
3343 		 * marked as in transition by us.
3344 		 */
3345 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
3346 		    entry->wiring_thread != curthread) {
3347 			KASSERT(holes_ok,
3348 			    ("vm_map_unwire: !HOLESOK and new/changed entry"));
3349 			continue;
3350 		}
3351 
3352 		if (rv == KERN_SUCCESS && (!user_unwire ||
3353 		    (entry->eflags & MAP_ENTRY_USER_WIRED))) {
3354 			if (entry->wired_count == 1)
3355 				vm_map_entry_unwire(map, entry);
3356 			else
3357 				entry->wired_count--;
3358 			if (user_unwire)
3359 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3360 		}
3361 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3362 		    ("vm_map_unwire: in-transition flag missing %p", entry));
3363 		KASSERT(entry->wiring_thread == curthread,
3364 		    ("vm_map_unwire: alien wire %p", entry));
3365 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
3366 		entry->wiring_thread = NULL;
3367 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3368 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3369 			need_wakeup = true;
3370 		}
3371 		vm_map_try_merge_entries(map, prev_entry, entry);
3372 	}
3373 	vm_map_try_merge_entries(map, prev_entry, entry);
3374 	vm_map_unlock(map);
3375 	if (need_wakeup)
3376 		vm_map_wakeup(map);
3377 	return (rv);
3378 }
3379 
3380 static void
3381 vm_map_wire_user_count_sub(u_long npages)
3382 {
3383 
3384 	atomic_subtract_long(&vm_user_wire_count, npages);
3385 }
3386 
3387 static bool
3388 vm_map_wire_user_count_add(u_long npages)
3389 {
3390 	u_long wired;
3391 
3392 	wired = vm_user_wire_count;
3393 	do {
3394 		if (npages + wired > vm_page_max_user_wired)
3395 			return (false);
3396 	} while (!atomic_fcmpset_long(&vm_user_wire_count, &wired,
3397 	    npages + wired));
3398 
3399 	return (true);
3400 }
3401 
3402 /*
3403  *	vm_map_wire_entry_failure:
3404  *
3405  *	Handle a wiring failure on the given entry.
3406  *
3407  *	The map should be locked.
3408  */
3409 static void
3410 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
3411     vm_offset_t failed_addr)
3412 {
3413 
3414 	VM_MAP_ASSERT_LOCKED(map);
3415 	KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
3416 	    entry->wired_count == 1,
3417 	    ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
3418 	KASSERT(failed_addr < entry->end,
3419 	    ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
3420 
3421 	/*
3422 	 * If any pages at the start of this entry were successfully wired,
3423 	 * then unwire them.
3424 	 */
3425 	if (failed_addr > entry->start) {
3426 		pmap_unwire(map->pmap, entry->start, failed_addr);
3427 		vm_object_unwire(entry->object.vm_object, entry->offset,
3428 		    failed_addr - entry->start, PQ_ACTIVE);
3429 	}
3430 
3431 	/*
3432 	 * Assign an out-of-range value to represent the failure to wire this
3433 	 * entry.
3434 	 */
3435 	entry->wired_count = -1;
3436 }
3437 
3438 int
3439 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3440 {
3441 	int rv;
3442 
3443 	vm_map_lock(map);
3444 	rv = vm_map_wire_locked(map, start, end, flags);
3445 	vm_map_unlock(map);
3446 	return (rv);
3447 }
3448 
3449 /*
3450  *	vm_map_wire_locked:
3451  *
3452  *	Implements both kernel and user wiring.  Returns with the map locked,
3453  *	the map lock may be dropped.
3454  */
3455 int
3456 vm_map_wire_locked(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3457 {
3458 	vm_map_entry_t entry, first_entry, next_entry, prev_entry;
3459 	vm_offset_t faddr, saved_end, saved_start;
3460 	u_long incr, npages;
3461 	u_int bidx, last_timestamp;
3462 	int rv;
3463 	bool holes_ok, need_wakeup, user_wire;
3464 	vm_prot_t prot;
3465 
3466 	VM_MAP_ASSERT_LOCKED(map);
3467 
3468 	if (start == end)
3469 		return (KERN_SUCCESS);
3470 	prot = 0;
3471 	if (flags & VM_MAP_WIRE_WRITE)
3472 		prot |= VM_PROT_WRITE;
3473 	holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0;
3474 	user_wire = (flags & VM_MAP_WIRE_USER) != 0;
3475 	VM_MAP_RANGE_CHECK(map, start, end);
3476 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
3477 		if (holes_ok)
3478 			first_entry = vm_map_entry_succ(first_entry);
3479 		else
3480 			return (KERN_INVALID_ADDRESS);
3481 	}
3482 	for (entry = first_entry; entry->start < end; entry = next_entry) {
3483 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
3484 			/*
3485 			 * We have not yet clipped the entry.
3486 			 */
3487 			next_entry = vm_map_entry_in_transition(map, start,
3488 			    &end, holes_ok, entry);
3489 			if (next_entry == NULL) {
3490 				if (entry == first_entry)
3491 					return (KERN_INVALID_ADDRESS);
3492 				rv = KERN_INVALID_ADDRESS;
3493 				goto done;
3494 			}
3495 			first_entry = (entry == first_entry) ?
3496 			    next_entry : NULL;
3497 			continue;
3498 		}
3499 		rv = vm_map_clip_start(map, entry, start);
3500 		if (rv != KERN_SUCCESS)
3501 			goto done;
3502 		rv = vm_map_clip_end(map, entry, end);
3503 		if (rv != KERN_SUCCESS)
3504 			goto done;
3505 
3506 		/*
3507 		 * Mark the entry in case the map lock is released.  (See
3508 		 * above.)
3509 		 */
3510 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
3511 		    entry->wiring_thread == NULL,
3512 		    ("owned map entry %p", entry));
3513 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
3514 		entry->wiring_thread = curthread;
3515 		if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
3516 		    || (entry->protection & prot) != prot) {
3517 			entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
3518 			if (!holes_ok) {
3519 				end = entry->end;
3520 				rv = KERN_INVALID_ADDRESS;
3521 				goto done;
3522 			}
3523 		} else if (entry->wired_count == 0) {
3524 			entry->wired_count++;
3525 
3526 			npages = atop(entry->end - entry->start);
3527 			if (user_wire && !vm_map_wire_user_count_add(npages)) {
3528 				vm_map_wire_entry_failure(map, entry,
3529 				    entry->start);
3530 				end = entry->end;
3531 				rv = KERN_RESOURCE_SHORTAGE;
3532 				goto done;
3533 			}
3534 
3535 			/*
3536 			 * Release the map lock, relying on the in-transition
3537 			 * mark.  Mark the map busy for fork.
3538 			 */
3539 			saved_start = entry->start;
3540 			saved_end = entry->end;
3541 			last_timestamp = map->timestamp;
3542 			bidx = (entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK)
3543 			    >> MAP_ENTRY_SPLIT_BOUNDARY_SHIFT;
3544 			incr =  pagesizes[bidx];
3545 			vm_map_busy(map);
3546 			vm_map_unlock(map);
3547 
3548 			for (faddr = saved_start; faddr < saved_end;
3549 			    faddr += incr) {
3550 				/*
3551 				 * Simulate a fault to get the page and enter
3552 				 * it into the physical map.
3553 				 */
3554 				rv = vm_fault(map, faddr, VM_PROT_NONE,
3555 				    VM_FAULT_WIRE, NULL);
3556 				if (rv != KERN_SUCCESS)
3557 					break;
3558 			}
3559 			vm_map_lock(map);
3560 			vm_map_unbusy(map);
3561 			if (last_timestamp + 1 != map->timestamp) {
3562 				/*
3563 				 * Look again for the entry because the map was
3564 				 * modified while it was unlocked.  The entry
3565 				 * may have been clipped, but NOT merged or
3566 				 * deleted.
3567 				 */
3568 				if (!vm_map_lookup_entry(map, saved_start,
3569 				    &next_entry))
3570 					KASSERT(false,
3571 					    ("vm_map_wire: lookup failed"));
3572 				first_entry = (entry == first_entry) ?
3573 				    next_entry : NULL;
3574 				for (entry = next_entry; entry->end < saved_end;
3575 				    entry = vm_map_entry_succ(entry)) {
3576 					/*
3577 					 * In case of failure, handle entries
3578 					 * that were not fully wired here;
3579 					 * fully wired entries are handled
3580 					 * later.
3581 					 */
3582 					if (rv != KERN_SUCCESS &&
3583 					    faddr < entry->end)
3584 						vm_map_wire_entry_failure(map,
3585 						    entry, faddr);
3586 				}
3587 			}
3588 			if (rv != KERN_SUCCESS) {
3589 				vm_map_wire_entry_failure(map, entry, faddr);
3590 				if (user_wire)
3591 					vm_map_wire_user_count_sub(npages);
3592 				end = entry->end;
3593 				goto done;
3594 			}
3595 		} else if (!user_wire ||
3596 			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3597 			entry->wired_count++;
3598 		}
3599 		/*
3600 		 * Check the map for holes in the specified region.
3601 		 * If holes_ok was specified, skip this check.
3602 		 */
3603 		next_entry = vm_map_entry_succ(entry);
3604 		if (!holes_ok &&
3605 		    entry->end < end && next_entry->start > entry->end) {
3606 			end = entry->end;
3607 			rv = KERN_INVALID_ADDRESS;
3608 			goto done;
3609 		}
3610 	}
3611 	rv = KERN_SUCCESS;
3612 done:
3613 	need_wakeup = false;
3614 	if (first_entry == NULL &&
3615 	    !vm_map_lookup_entry(map, start, &first_entry)) {
3616 		KASSERT(holes_ok, ("vm_map_wire: lookup failed"));
3617 		prev_entry = first_entry;
3618 		entry = vm_map_entry_succ(first_entry);
3619 	} else {
3620 		prev_entry = vm_map_entry_pred(first_entry);
3621 		entry = first_entry;
3622 	}
3623 	for (; entry->start < end;
3624 	    prev_entry = entry, entry = vm_map_entry_succ(entry)) {
3625 		/*
3626 		 * If holes_ok was specified, an empty
3627 		 * space in the unwired region could have been mapped
3628 		 * while the map lock was dropped for faulting in the
3629 		 * pages or draining MAP_ENTRY_IN_TRANSITION.
3630 		 * Moreover, another thread could be simultaneously
3631 		 * wiring this new mapping entry.  Detect these cases
3632 		 * and skip any entries marked as in transition not by us.
3633 		 *
3634 		 * Another way to get an entry not marked with
3635 		 * MAP_ENTRY_IN_TRANSITION is after failed clipping,
3636 		 * which set rv to KERN_INVALID_ARGUMENT.
3637 		 */
3638 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
3639 		    entry->wiring_thread != curthread) {
3640 			KASSERT(holes_ok || rv == KERN_INVALID_ARGUMENT,
3641 			    ("vm_map_wire: !HOLESOK and new/changed entry"));
3642 			continue;
3643 		}
3644 
3645 		if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) {
3646 			/* do nothing */
3647 		} else if (rv == KERN_SUCCESS) {
3648 			if (user_wire)
3649 				entry->eflags |= MAP_ENTRY_USER_WIRED;
3650 		} else if (entry->wired_count == -1) {
3651 			/*
3652 			 * Wiring failed on this entry.  Thus, unwiring is
3653 			 * unnecessary.
3654 			 */
3655 			entry->wired_count = 0;
3656 		} else if (!user_wire ||
3657 		    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3658 			/*
3659 			 * Undo the wiring.  Wiring succeeded on this entry
3660 			 * but failed on a later entry.
3661 			 */
3662 			if (entry->wired_count == 1) {
3663 				vm_map_entry_unwire(map, entry);
3664 				if (user_wire)
3665 					vm_map_wire_user_count_sub(
3666 					    atop(entry->end - entry->start));
3667 			} else
3668 				entry->wired_count--;
3669 		}
3670 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3671 		    ("vm_map_wire: in-transition flag missing %p", entry));
3672 		KASSERT(entry->wiring_thread == curthread,
3673 		    ("vm_map_wire: alien wire %p", entry));
3674 		entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
3675 		    MAP_ENTRY_WIRE_SKIPPED);
3676 		entry->wiring_thread = NULL;
3677 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3678 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3679 			need_wakeup = true;
3680 		}
3681 		vm_map_try_merge_entries(map, prev_entry, entry);
3682 	}
3683 	vm_map_try_merge_entries(map, prev_entry, entry);
3684 	if (need_wakeup)
3685 		vm_map_wakeup(map);
3686 	return (rv);
3687 }
3688 
3689 /*
3690  * vm_map_sync
3691  *
3692  * Push any dirty cached pages in the address range to their pager.
3693  * If syncio is TRUE, dirty pages are written synchronously.
3694  * If invalidate is TRUE, any cached pages are freed as well.
3695  *
3696  * If the size of the region from start to end is zero, we are
3697  * supposed to flush all modified pages within the region containing
3698  * start.  Unfortunately, a region can be split or coalesced with
3699  * neighboring regions, making it difficult to determine what the
3700  * original region was.  Therefore, we approximate this requirement by
3701  * flushing the current region containing start.
3702  *
3703  * Returns an error if any part of the specified range is not mapped.
3704  */
3705 int
3706 vm_map_sync(
3707 	vm_map_t map,
3708 	vm_offset_t start,
3709 	vm_offset_t end,
3710 	boolean_t syncio,
3711 	boolean_t invalidate)
3712 {
3713 	vm_map_entry_t entry, first_entry, next_entry;
3714 	vm_size_t size;
3715 	vm_object_t object;
3716 	vm_ooffset_t offset;
3717 	unsigned int last_timestamp;
3718 	int bdry_idx;
3719 	boolean_t failed;
3720 
3721 	vm_map_lock_read(map);
3722 	VM_MAP_RANGE_CHECK(map, start, end);
3723 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
3724 		vm_map_unlock_read(map);
3725 		return (KERN_INVALID_ADDRESS);
3726 	} else if (start == end) {
3727 		start = first_entry->start;
3728 		end = first_entry->end;
3729 	}
3730 
3731 	/*
3732 	 * Make a first pass to check for user-wired memory, holes,
3733 	 * and partial invalidation of largepage mappings.
3734 	 */
3735 	for (entry = first_entry; entry->start < end; entry = next_entry) {
3736 		if (invalidate) {
3737 			if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0) {
3738 				vm_map_unlock_read(map);
3739 				return (KERN_INVALID_ARGUMENT);
3740 			}
3741 			bdry_idx = (entry->eflags &
3742 			    MAP_ENTRY_SPLIT_BOUNDARY_MASK) >>
3743 			    MAP_ENTRY_SPLIT_BOUNDARY_SHIFT;
3744 			if (bdry_idx != 0 &&
3745 			    ((start & (pagesizes[bdry_idx] - 1)) != 0 ||
3746 			    (end & (pagesizes[bdry_idx] - 1)) != 0)) {
3747 				vm_map_unlock_read(map);
3748 				return (KERN_INVALID_ARGUMENT);
3749 			}
3750 		}
3751 		next_entry = vm_map_entry_succ(entry);
3752 		if (end > entry->end &&
3753 		    entry->end != next_entry->start) {
3754 			vm_map_unlock_read(map);
3755 			return (KERN_INVALID_ADDRESS);
3756 		}
3757 	}
3758 
3759 	if (invalidate)
3760 		pmap_remove(map->pmap, start, end);
3761 	failed = FALSE;
3762 
3763 	/*
3764 	 * Make a second pass, cleaning/uncaching pages from the indicated
3765 	 * objects as we go.
3766 	 */
3767 	for (entry = first_entry; entry->start < end;) {
3768 		offset = entry->offset + (start - entry->start);
3769 		size = (end <= entry->end ? end : entry->end) - start;
3770 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) {
3771 			vm_map_t smap;
3772 			vm_map_entry_t tentry;
3773 			vm_size_t tsize;
3774 
3775 			smap = entry->object.sub_map;
3776 			vm_map_lock_read(smap);
3777 			(void) vm_map_lookup_entry(smap, offset, &tentry);
3778 			tsize = tentry->end - offset;
3779 			if (tsize < size)
3780 				size = tsize;
3781 			object = tentry->object.vm_object;
3782 			offset = tentry->offset + (offset - tentry->start);
3783 			vm_map_unlock_read(smap);
3784 		} else {
3785 			object = entry->object.vm_object;
3786 		}
3787 		vm_object_reference(object);
3788 		last_timestamp = map->timestamp;
3789 		vm_map_unlock_read(map);
3790 		if (!vm_object_sync(object, offset, size, syncio, invalidate))
3791 			failed = TRUE;
3792 		start += size;
3793 		vm_object_deallocate(object);
3794 		vm_map_lock_read(map);
3795 		if (last_timestamp == map->timestamp ||
3796 		    !vm_map_lookup_entry(map, start, &entry))
3797 			entry = vm_map_entry_succ(entry);
3798 	}
3799 
3800 	vm_map_unlock_read(map);
3801 	return (failed ? KERN_FAILURE : KERN_SUCCESS);
3802 }
3803 
3804 /*
3805  *	vm_map_entry_unwire:	[ internal use only ]
3806  *
3807  *	Make the region specified by this entry pageable.
3808  *
3809  *	The map in question should be locked.
3810  *	[This is the reason for this routine's existence.]
3811  */
3812 static void
3813 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
3814 {
3815 	vm_size_t size;
3816 
3817 	VM_MAP_ASSERT_LOCKED(map);
3818 	KASSERT(entry->wired_count > 0,
3819 	    ("vm_map_entry_unwire: entry %p isn't wired", entry));
3820 
3821 	size = entry->end - entry->start;
3822 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0)
3823 		vm_map_wire_user_count_sub(atop(size));
3824 	pmap_unwire(map->pmap, entry->start, entry->end);
3825 	vm_object_unwire(entry->object.vm_object, entry->offset, size,
3826 	    PQ_ACTIVE);
3827 	entry->wired_count = 0;
3828 }
3829 
3830 static void
3831 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
3832 {
3833 
3834 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
3835 		vm_object_deallocate(entry->object.vm_object);
3836 	uma_zfree(system_map ? kmapentzone : mapentzone, entry);
3837 }
3838 
3839 /*
3840  *	vm_map_entry_delete:	[ internal use only ]
3841  *
3842  *	Deallocate the given entry from the target map.
3843  */
3844 static void
3845 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
3846 {
3847 	vm_object_t object;
3848 	vm_pindex_t offidxstart, offidxend, size1;
3849 	vm_size_t size;
3850 
3851 	vm_map_entry_unlink(map, entry, UNLINK_MERGE_NONE);
3852 	object = entry->object.vm_object;
3853 
3854 	if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
3855 		MPASS(entry->cred == NULL);
3856 		MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0);
3857 		MPASS(object == NULL);
3858 		vm_map_entry_deallocate(entry, map->system_map);
3859 		return;
3860 	}
3861 
3862 	size = entry->end - entry->start;
3863 	map->size -= size;
3864 
3865 	if (entry->cred != NULL) {
3866 		swap_release_by_cred(size, entry->cred);
3867 		crfree(entry->cred);
3868 	}
3869 
3870 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || object == NULL) {
3871 		entry->object.vm_object = NULL;
3872 	} else if ((object->flags & OBJ_ANON) != 0 ||
3873 	    object == kernel_object) {
3874 		KASSERT(entry->cred == NULL || object->cred == NULL ||
3875 		    (entry->eflags & MAP_ENTRY_NEEDS_COPY),
3876 		    ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
3877 		offidxstart = OFF_TO_IDX(entry->offset);
3878 		offidxend = offidxstart + atop(size);
3879 		VM_OBJECT_WLOCK(object);
3880 		if (object->ref_count != 1 &&
3881 		    ((object->flags & OBJ_ONEMAPPING) != 0 ||
3882 		    object == kernel_object)) {
3883 			vm_object_collapse(object);
3884 
3885 			/*
3886 			 * The option OBJPR_NOTMAPPED can be passed here
3887 			 * because vm_map_delete() already performed
3888 			 * pmap_remove() on the only mapping to this range
3889 			 * of pages.
3890 			 */
3891 			vm_object_page_remove(object, offidxstart, offidxend,
3892 			    OBJPR_NOTMAPPED);
3893 			if (offidxend >= object->size &&
3894 			    offidxstart < object->size) {
3895 				size1 = object->size;
3896 				object->size = offidxstart;
3897 				if (object->cred != NULL) {
3898 					size1 -= object->size;
3899 					KASSERT(object->charge >= ptoa(size1),
3900 					    ("object %p charge < 0", object));
3901 					swap_release_by_cred(ptoa(size1),
3902 					    object->cred);
3903 					object->charge -= ptoa(size1);
3904 				}
3905 			}
3906 		}
3907 		VM_OBJECT_WUNLOCK(object);
3908 	}
3909 	if (map->system_map)
3910 		vm_map_entry_deallocate(entry, TRUE);
3911 	else {
3912 		entry->defer_next = curthread->td_map_def_user;
3913 		curthread->td_map_def_user = entry;
3914 	}
3915 }
3916 
3917 /*
3918  *	vm_map_delete:	[ internal use only ]
3919  *
3920  *	Deallocates the given address range from the target
3921  *	map.
3922  */
3923 int
3924 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
3925 {
3926 	vm_map_entry_t entry, next_entry, scratch_entry;
3927 	int rv;
3928 
3929 	VM_MAP_ASSERT_LOCKED(map);
3930 
3931 	if (start == end)
3932 		return (KERN_SUCCESS);
3933 
3934 	/*
3935 	 * Find the start of the region, and clip it.
3936 	 * Step through all entries in this region.
3937 	 */
3938 	rv = vm_map_lookup_clip_start(map, start, &entry, &scratch_entry);
3939 	if (rv != KERN_SUCCESS)
3940 		return (rv);
3941 	for (; entry->start < end; entry = next_entry) {
3942 		/*
3943 		 * Wait for wiring or unwiring of an entry to complete.
3944 		 * Also wait for any system wirings to disappear on
3945 		 * user maps.
3946 		 */
3947 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
3948 		    (vm_map_pmap(map) != kernel_pmap &&
3949 		    vm_map_entry_system_wired_count(entry) != 0)) {
3950 			unsigned int last_timestamp;
3951 			vm_offset_t saved_start;
3952 
3953 			saved_start = entry->start;
3954 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3955 			last_timestamp = map->timestamp;
3956 			(void) vm_map_unlock_and_wait(map, 0);
3957 			vm_map_lock(map);
3958 			if (last_timestamp + 1 != map->timestamp) {
3959 				/*
3960 				 * Look again for the entry because the map was
3961 				 * modified while it was unlocked.
3962 				 * Specifically, the entry may have been
3963 				 * clipped, merged, or deleted.
3964 				 */
3965 				rv = vm_map_lookup_clip_start(map, saved_start,
3966 				    &next_entry, &scratch_entry);
3967 				if (rv != KERN_SUCCESS)
3968 					break;
3969 			} else
3970 				next_entry = entry;
3971 			continue;
3972 		}
3973 
3974 		/* XXXKIB or delete to the upper superpage boundary ? */
3975 		rv = vm_map_clip_end(map, entry, end);
3976 		if (rv != KERN_SUCCESS)
3977 			break;
3978 		next_entry = vm_map_entry_succ(entry);
3979 
3980 		/*
3981 		 * Unwire before removing addresses from the pmap; otherwise,
3982 		 * unwiring will put the entries back in the pmap.
3983 		 */
3984 		if (entry->wired_count != 0)
3985 			vm_map_entry_unwire(map, entry);
3986 
3987 		/*
3988 		 * Remove mappings for the pages, but only if the
3989 		 * mappings could exist.  For instance, it does not
3990 		 * make sense to call pmap_remove() for guard entries.
3991 		 */
3992 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 ||
3993 		    entry->object.vm_object != NULL)
3994 			pmap_remove(map->pmap, entry->start, entry->end);
3995 
3996 		if (entry->end == map->anon_loc)
3997 			map->anon_loc = entry->start;
3998 
3999 		/*
4000 		 * Delete the entry only after removing all pmap
4001 		 * entries pointing to its pages.  (Otherwise, its
4002 		 * page frames may be reallocated, and any modify bits
4003 		 * will be set in the wrong object!)
4004 		 */
4005 		vm_map_entry_delete(map, entry);
4006 	}
4007 	return (rv);
4008 }
4009 
4010 /*
4011  *	vm_map_remove:
4012  *
4013  *	Remove the given address range from the target map.
4014  *	This is the exported form of vm_map_delete.
4015  */
4016 int
4017 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
4018 {
4019 	int result;
4020 
4021 	vm_map_lock(map);
4022 	VM_MAP_RANGE_CHECK(map, start, end);
4023 	result = vm_map_delete(map, start, end);
4024 	vm_map_unlock(map);
4025 	return (result);
4026 }
4027 
4028 /*
4029  *	vm_map_check_protection:
4030  *
4031  *	Assert that the target map allows the specified privilege on the
4032  *	entire address region given.  The entire region must be allocated.
4033  *
4034  *	WARNING!  This code does not and should not check whether the
4035  *	contents of the region is accessible.  For example a smaller file
4036  *	might be mapped into a larger address space.
4037  *
4038  *	NOTE!  This code is also called by munmap().
4039  *
4040  *	The map must be locked.  A read lock is sufficient.
4041  */
4042 boolean_t
4043 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
4044 			vm_prot_t protection)
4045 {
4046 	vm_map_entry_t entry;
4047 	vm_map_entry_t tmp_entry;
4048 
4049 	if (!vm_map_lookup_entry(map, start, &tmp_entry))
4050 		return (FALSE);
4051 	entry = tmp_entry;
4052 
4053 	while (start < end) {
4054 		/*
4055 		 * No holes allowed!
4056 		 */
4057 		if (start < entry->start)
4058 			return (FALSE);
4059 		/*
4060 		 * Check protection associated with entry.
4061 		 */
4062 		if ((entry->protection & protection) != protection)
4063 			return (FALSE);
4064 		/* go to next entry */
4065 		start = entry->end;
4066 		entry = vm_map_entry_succ(entry);
4067 	}
4068 	return (TRUE);
4069 }
4070 
4071 /*
4072  *
4073  *	vm_map_copy_swap_object:
4074  *
4075  *	Copies a swap-backed object from an existing map entry to a
4076  *	new one.  Carries forward the swap charge.  May change the
4077  *	src object on return.
4078  */
4079 static void
4080 vm_map_copy_swap_object(vm_map_entry_t src_entry, vm_map_entry_t dst_entry,
4081     vm_offset_t size, vm_ooffset_t *fork_charge)
4082 {
4083 	vm_object_t src_object;
4084 	struct ucred *cred;
4085 	int charged;
4086 
4087 	src_object = src_entry->object.vm_object;
4088 	charged = ENTRY_CHARGED(src_entry);
4089 	if ((src_object->flags & OBJ_ANON) != 0) {
4090 		VM_OBJECT_WLOCK(src_object);
4091 		vm_object_collapse(src_object);
4092 		if ((src_object->flags & OBJ_ONEMAPPING) != 0) {
4093 			vm_object_split(src_entry);
4094 			src_object = src_entry->object.vm_object;
4095 		}
4096 		vm_object_reference_locked(src_object);
4097 		vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
4098 		VM_OBJECT_WUNLOCK(src_object);
4099 	} else
4100 		vm_object_reference(src_object);
4101 	if (src_entry->cred != NULL &&
4102 	    !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
4103 		KASSERT(src_object->cred == NULL,
4104 		    ("OVERCOMMIT: vm_map_copy_anon_entry: cred %p",
4105 		     src_object));
4106 		src_object->cred = src_entry->cred;
4107 		src_object->charge = size;
4108 	}
4109 	dst_entry->object.vm_object = src_object;
4110 	if (charged) {
4111 		cred = curthread->td_ucred;
4112 		crhold(cred);
4113 		dst_entry->cred = cred;
4114 		*fork_charge += size;
4115 		if (!(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
4116 			crhold(cred);
4117 			src_entry->cred = cred;
4118 			*fork_charge += size;
4119 		}
4120 	}
4121 }
4122 
4123 /*
4124  *	vm_map_copy_entry:
4125  *
4126  *	Copies the contents of the source entry to the destination
4127  *	entry.  The entries *must* be aligned properly.
4128  */
4129 static void
4130 vm_map_copy_entry(
4131 	vm_map_t src_map,
4132 	vm_map_t dst_map,
4133 	vm_map_entry_t src_entry,
4134 	vm_map_entry_t dst_entry,
4135 	vm_ooffset_t *fork_charge)
4136 {
4137 	vm_object_t src_object;
4138 	vm_map_entry_t fake_entry;
4139 	vm_offset_t size;
4140 
4141 	VM_MAP_ASSERT_LOCKED(dst_map);
4142 
4143 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
4144 		return;
4145 
4146 	if (src_entry->wired_count == 0 ||
4147 	    (src_entry->protection & VM_PROT_WRITE) == 0) {
4148 		/*
4149 		 * If the source entry is marked needs_copy, it is already
4150 		 * write-protected.
4151 		 */
4152 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
4153 		    (src_entry->protection & VM_PROT_WRITE) != 0) {
4154 			pmap_protect(src_map->pmap,
4155 			    src_entry->start,
4156 			    src_entry->end,
4157 			    src_entry->protection & ~VM_PROT_WRITE);
4158 		}
4159 
4160 		/*
4161 		 * Make a copy of the object.
4162 		 */
4163 		size = src_entry->end - src_entry->start;
4164 		if ((src_object = src_entry->object.vm_object) != NULL) {
4165 			if (src_object->type == OBJT_DEFAULT ||
4166 			    src_object->type == OBJT_SWAP) {
4167 				vm_map_copy_swap_object(src_entry, dst_entry,
4168 				    size, fork_charge);
4169 				/* May have split/collapsed, reload obj. */
4170 				src_object = src_entry->object.vm_object;
4171 			} else {
4172 				vm_object_reference(src_object);
4173 				dst_entry->object.vm_object = src_object;
4174 			}
4175 			src_entry->eflags |= MAP_ENTRY_COW |
4176 			    MAP_ENTRY_NEEDS_COPY;
4177 			dst_entry->eflags |= MAP_ENTRY_COW |
4178 			    MAP_ENTRY_NEEDS_COPY;
4179 			dst_entry->offset = src_entry->offset;
4180 			if (src_entry->eflags & MAP_ENTRY_WRITECNT) {
4181 				/*
4182 				 * MAP_ENTRY_WRITECNT cannot
4183 				 * indicate write reference from
4184 				 * src_entry, since the entry is
4185 				 * marked as needs copy.  Allocate a
4186 				 * fake entry that is used to
4187 				 * decrement object->un_pager writecount
4188 				 * at the appropriate time.  Attach
4189 				 * fake_entry to the deferred list.
4190 				 */
4191 				fake_entry = vm_map_entry_create(dst_map);
4192 				fake_entry->eflags = MAP_ENTRY_WRITECNT;
4193 				src_entry->eflags &= ~MAP_ENTRY_WRITECNT;
4194 				vm_object_reference(src_object);
4195 				fake_entry->object.vm_object = src_object;
4196 				fake_entry->start = src_entry->start;
4197 				fake_entry->end = src_entry->end;
4198 				fake_entry->defer_next =
4199 				    curthread->td_map_def_user;
4200 				curthread->td_map_def_user = fake_entry;
4201 			}
4202 
4203 			pmap_copy(dst_map->pmap, src_map->pmap,
4204 			    dst_entry->start, dst_entry->end - dst_entry->start,
4205 			    src_entry->start);
4206 		} else {
4207 			dst_entry->object.vm_object = NULL;
4208 			dst_entry->offset = 0;
4209 			if (src_entry->cred != NULL) {
4210 				dst_entry->cred = curthread->td_ucred;
4211 				crhold(dst_entry->cred);
4212 				*fork_charge += size;
4213 			}
4214 		}
4215 	} else {
4216 		/*
4217 		 * We don't want to make writeable wired pages copy-on-write.
4218 		 * Immediately copy these pages into the new map by simulating
4219 		 * page faults.  The new pages are pageable.
4220 		 */
4221 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
4222 		    fork_charge);
4223 	}
4224 }
4225 
4226 /*
4227  * vmspace_map_entry_forked:
4228  * Update the newly-forked vmspace each time a map entry is inherited
4229  * or copied.  The values for vm_dsize and vm_tsize are approximate
4230  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
4231  */
4232 static void
4233 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
4234     vm_map_entry_t entry)
4235 {
4236 	vm_size_t entrysize;
4237 	vm_offset_t newend;
4238 
4239 	if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
4240 		return;
4241 	entrysize = entry->end - entry->start;
4242 	vm2->vm_map.size += entrysize;
4243 	if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
4244 		vm2->vm_ssize += btoc(entrysize);
4245 	} else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
4246 	    entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
4247 		newend = MIN(entry->end,
4248 		    (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
4249 		vm2->vm_dsize += btoc(newend - entry->start);
4250 	} else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
4251 	    entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
4252 		newend = MIN(entry->end,
4253 		    (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
4254 		vm2->vm_tsize += btoc(newend - entry->start);
4255 	}
4256 }
4257 
4258 /*
4259  * vmspace_fork:
4260  * Create a new process vmspace structure and vm_map
4261  * based on those of an existing process.  The new map
4262  * is based on the old map, according to the inheritance
4263  * values on the regions in that map.
4264  *
4265  * XXX It might be worth coalescing the entries added to the new vmspace.
4266  *
4267  * The source map must not be locked.
4268  */
4269 struct vmspace *
4270 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
4271 {
4272 	struct vmspace *vm2;
4273 	vm_map_t new_map, old_map;
4274 	vm_map_entry_t new_entry, old_entry;
4275 	vm_object_t object;
4276 	int error, locked;
4277 	vm_inherit_t inh;
4278 
4279 	old_map = &vm1->vm_map;
4280 	/* Copy immutable fields of vm1 to vm2. */
4281 	vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map),
4282 	    pmap_pinit);
4283 	if (vm2 == NULL)
4284 		return (NULL);
4285 
4286 	vm2->vm_taddr = vm1->vm_taddr;
4287 	vm2->vm_daddr = vm1->vm_daddr;
4288 	vm2->vm_maxsaddr = vm1->vm_maxsaddr;
4289 	vm_map_lock(old_map);
4290 	if (old_map->busy)
4291 		vm_map_wait_busy(old_map);
4292 	new_map = &vm2->vm_map;
4293 	locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
4294 	KASSERT(locked, ("vmspace_fork: lock failed"));
4295 
4296 	error = pmap_vmspace_copy(new_map->pmap, old_map->pmap);
4297 	if (error != 0) {
4298 		sx_xunlock(&old_map->lock);
4299 		sx_xunlock(&new_map->lock);
4300 		vm_map_process_deferred();
4301 		vmspace_free(vm2);
4302 		return (NULL);
4303 	}
4304 
4305 	new_map->anon_loc = old_map->anon_loc;
4306 	new_map->flags |= old_map->flags & (MAP_ASLR | MAP_ASLR_IGNSTART);
4307 
4308 	VM_MAP_ENTRY_FOREACH(old_entry, old_map) {
4309 		if ((old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
4310 			panic("vm_map_fork: encountered a submap");
4311 
4312 		inh = old_entry->inheritance;
4313 		if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4314 		    inh != VM_INHERIT_NONE)
4315 			inh = VM_INHERIT_COPY;
4316 
4317 		switch (inh) {
4318 		case VM_INHERIT_NONE:
4319 			break;
4320 
4321 		case VM_INHERIT_SHARE:
4322 			/*
4323 			 * Clone the entry, creating the shared object if
4324 			 * necessary.
4325 			 */
4326 			object = old_entry->object.vm_object;
4327 			if (object == NULL) {
4328 				vm_map_entry_back(old_entry);
4329 				object = old_entry->object.vm_object;
4330 			}
4331 
4332 			/*
4333 			 * Add the reference before calling vm_object_shadow
4334 			 * to insure that a shadow object is created.
4335 			 */
4336 			vm_object_reference(object);
4337 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4338 				vm_object_shadow(&old_entry->object.vm_object,
4339 				    &old_entry->offset,
4340 				    old_entry->end - old_entry->start,
4341 				    old_entry->cred,
4342 				    /* Transfer the second reference too. */
4343 				    true);
4344 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4345 				old_entry->cred = NULL;
4346 
4347 				/*
4348 				 * As in vm_map_merged_neighbor_dispose(),
4349 				 * the vnode lock will not be acquired in
4350 				 * this call to vm_object_deallocate().
4351 				 */
4352 				vm_object_deallocate(object);
4353 				object = old_entry->object.vm_object;
4354 			} else {
4355 				VM_OBJECT_WLOCK(object);
4356 				vm_object_clear_flag(object, OBJ_ONEMAPPING);
4357 				if (old_entry->cred != NULL) {
4358 					KASSERT(object->cred == NULL,
4359 					    ("vmspace_fork both cred"));
4360 					object->cred = old_entry->cred;
4361 					object->charge = old_entry->end -
4362 					    old_entry->start;
4363 					old_entry->cred = NULL;
4364 				}
4365 
4366 				/*
4367 				 * Assert the correct state of the vnode
4368 				 * v_writecount while the object is locked, to
4369 				 * not relock it later for the assertion
4370 				 * correctness.
4371 				 */
4372 				if (old_entry->eflags & MAP_ENTRY_WRITECNT &&
4373 				    object->type == OBJT_VNODE) {
4374 					KASSERT(((struct vnode *)object->
4375 					    handle)->v_writecount > 0,
4376 					    ("vmspace_fork: v_writecount %p",
4377 					    object));
4378 					KASSERT(object->un_pager.vnp.
4379 					    writemappings > 0,
4380 					    ("vmspace_fork: vnp.writecount %p",
4381 					    object));
4382 				}
4383 				VM_OBJECT_WUNLOCK(object);
4384 			}
4385 
4386 			/*
4387 			 * Clone the entry, referencing the shared object.
4388 			 */
4389 			new_entry = vm_map_entry_create(new_map);
4390 			*new_entry = *old_entry;
4391 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
4392 			    MAP_ENTRY_IN_TRANSITION);
4393 			new_entry->wiring_thread = NULL;
4394 			new_entry->wired_count = 0;
4395 			if (new_entry->eflags & MAP_ENTRY_WRITECNT) {
4396 				vm_pager_update_writecount(object,
4397 				    new_entry->start, new_entry->end);
4398 			}
4399 			vm_map_entry_set_vnode_text(new_entry, true);
4400 
4401 			/*
4402 			 * Insert the entry into the new map -- we know we're
4403 			 * inserting at the end of the new map.
4404 			 */
4405 			vm_map_entry_link(new_map, new_entry);
4406 			vmspace_map_entry_forked(vm1, vm2, new_entry);
4407 
4408 			/*
4409 			 * Update the physical map
4410 			 */
4411 			pmap_copy(new_map->pmap, old_map->pmap,
4412 			    new_entry->start,
4413 			    (old_entry->end - old_entry->start),
4414 			    old_entry->start);
4415 			break;
4416 
4417 		case VM_INHERIT_COPY:
4418 			/*
4419 			 * Clone the entry and link into the map.
4420 			 */
4421 			new_entry = vm_map_entry_create(new_map);
4422 			*new_entry = *old_entry;
4423 			/*
4424 			 * Copied entry is COW over the old object.
4425 			 */
4426 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
4427 			    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_WRITECNT);
4428 			new_entry->wiring_thread = NULL;
4429 			new_entry->wired_count = 0;
4430 			new_entry->object.vm_object = NULL;
4431 			new_entry->cred = NULL;
4432 			vm_map_entry_link(new_map, new_entry);
4433 			vmspace_map_entry_forked(vm1, vm2, new_entry);
4434 			vm_map_copy_entry(old_map, new_map, old_entry,
4435 			    new_entry, fork_charge);
4436 			vm_map_entry_set_vnode_text(new_entry, true);
4437 			break;
4438 
4439 		case VM_INHERIT_ZERO:
4440 			/*
4441 			 * Create a new anonymous mapping entry modelled from
4442 			 * the old one.
4443 			 */
4444 			new_entry = vm_map_entry_create(new_map);
4445 			memset(new_entry, 0, sizeof(*new_entry));
4446 
4447 			new_entry->start = old_entry->start;
4448 			new_entry->end = old_entry->end;
4449 			new_entry->eflags = old_entry->eflags &
4450 			    ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION |
4451 			    MAP_ENTRY_WRITECNT | MAP_ENTRY_VN_EXEC |
4452 			    MAP_ENTRY_SPLIT_BOUNDARY_MASK);
4453 			new_entry->protection = old_entry->protection;
4454 			new_entry->max_protection = old_entry->max_protection;
4455 			new_entry->inheritance = VM_INHERIT_ZERO;
4456 
4457 			vm_map_entry_link(new_map, new_entry);
4458 			vmspace_map_entry_forked(vm1, vm2, new_entry);
4459 
4460 			new_entry->cred = curthread->td_ucred;
4461 			crhold(new_entry->cred);
4462 			*fork_charge += (new_entry->end - new_entry->start);
4463 
4464 			break;
4465 		}
4466 	}
4467 	/*
4468 	 * Use inlined vm_map_unlock() to postpone handling the deferred
4469 	 * map entries, which cannot be done until both old_map and
4470 	 * new_map locks are released.
4471 	 */
4472 	sx_xunlock(&old_map->lock);
4473 	sx_xunlock(&new_map->lock);
4474 	vm_map_process_deferred();
4475 
4476 	return (vm2);
4477 }
4478 
4479 /*
4480  * Create a process's stack for exec_new_vmspace().  This function is never
4481  * asked to wire the newly created stack.
4482  */
4483 int
4484 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4485     vm_prot_t prot, vm_prot_t max, int cow)
4486 {
4487 	vm_size_t growsize, init_ssize;
4488 	rlim_t vmemlim;
4489 	int rv;
4490 
4491 	MPASS((map->flags & MAP_WIREFUTURE) == 0);
4492 	growsize = sgrowsiz;
4493 	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
4494 	vm_map_lock(map);
4495 	vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4496 	/* If we would blow our VMEM resource limit, no go */
4497 	if (map->size + init_ssize > vmemlim) {
4498 		rv = KERN_NO_SPACE;
4499 		goto out;
4500 	}
4501 	rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
4502 	    max, cow);
4503 out:
4504 	vm_map_unlock(map);
4505 	return (rv);
4506 }
4507 
4508 static int stack_guard_page = 1;
4509 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
4510     &stack_guard_page, 0,
4511     "Specifies the number of guard pages for a stack that grows");
4512 
4513 static int
4514 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4515     vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
4516 {
4517 	vm_map_entry_t new_entry, prev_entry;
4518 	vm_offset_t bot, gap_bot, gap_top, top;
4519 	vm_size_t init_ssize, sgp;
4520 	int orient, rv;
4521 
4522 	/*
4523 	 * The stack orientation is piggybacked with the cow argument.
4524 	 * Extract it into orient and mask the cow argument so that we
4525 	 * don't pass it around further.
4526 	 */
4527 	orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP);
4528 	KASSERT(orient != 0, ("No stack grow direction"));
4529 	KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP),
4530 	    ("bi-dir stack"));
4531 
4532 	if (max_ssize == 0 ||
4533 	    !vm_map_range_valid(map, addrbos, addrbos + max_ssize))
4534 		return (KERN_INVALID_ADDRESS);
4535 	sgp = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ||
4536 	    (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 :
4537 	    (vm_size_t)stack_guard_page * PAGE_SIZE;
4538 	if (sgp >= max_ssize)
4539 		return (KERN_INVALID_ARGUMENT);
4540 
4541 	init_ssize = growsize;
4542 	if (max_ssize < init_ssize + sgp)
4543 		init_ssize = max_ssize - sgp;
4544 
4545 	/* If addr is already mapped, no go */
4546 	if (vm_map_lookup_entry(map, addrbos, &prev_entry))
4547 		return (KERN_NO_SPACE);
4548 
4549 	/*
4550 	 * If we can't accommodate max_ssize in the current mapping, no go.
4551 	 */
4552 	if (vm_map_entry_succ(prev_entry)->start < addrbos + max_ssize)
4553 		return (KERN_NO_SPACE);
4554 
4555 	/*
4556 	 * We initially map a stack of only init_ssize.  We will grow as
4557 	 * needed later.  Depending on the orientation of the stack (i.e.
4558 	 * the grow direction) we either map at the top of the range, the
4559 	 * bottom of the range or in the middle.
4560 	 *
4561 	 * Note: we would normally expect prot and max to be VM_PROT_ALL,
4562 	 * and cow to be 0.  Possibly we should eliminate these as input
4563 	 * parameters, and just pass these values here in the insert call.
4564 	 */
4565 	if (orient == MAP_STACK_GROWS_DOWN) {
4566 		bot = addrbos + max_ssize - init_ssize;
4567 		top = bot + init_ssize;
4568 		gap_bot = addrbos;
4569 		gap_top = bot;
4570 	} else /* if (orient == MAP_STACK_GROWS_UP) */ {
4571 		bot = addrbos;
4572 		top = bot + init_ssize;
4573 		gap_bot = top;
4574 		gap_top = addrbos + max_ssize;
4575 	}
4576 	rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
4577 	if (rv != KERN_SUCCESS)
4578 		return (rv);
4579 	new_entry = vm_map_entry_succ(prev_entry);
4580 	KASSERT(new_entry->end == top || new_entry->start == bot,
4581 	    ("Bad entry start/end for new stack entry"));
4582 	KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
4583 	    (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
4584 	    ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
4585 	KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
4586 	    (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
4587 	    ("new entry lacks MAP_ENTRY_GROWS_UP"));
4588 	if (gap_bot == gap_top)
4589 		return (KERN_SUCCESS);
4590 	rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE,
4591 	    VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ?
4592 	    MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP));
4593 	if (rv == KERN_SUCCESS) {
4594 		/*
4595 		 * Gap can never successfully handle a fault, so
4596 		 * read-ahead logic is never used for it.  Re-use
4597 		 * next_read of the gap entry to store
4598 		 * stack_guard_page for vm_map_growstack().
4599 		 */
4600 		if (orient == MAP_STACK_GROWS_DOWN)
4601 			vm_map_entry_pred(new_entry)->next_read = sgp;
4602 		else
4603 			vm_map_entry_succ(new_entry)->next_read = sgp;
4604 	} else {
4605 		(void)vm_map_delete(map, bot, top);
4606 	}
4607 	return (rv);
4608 }
4609 
4610 /*
4611  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if we
4612  * successfully grow the stack.
4613  */
4614 static int
4615 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry)
4616 {
4617 	vm_map_entry_t stack_entry;
4618 	struct proc *p;
4619 	struct vmspace *vm;
4620 	struct ucred *cred;
4621 	vm_offset_t gap_end, gap_start, grow_start;
4622 	vm_size_t grow_amount, guard, max_grow;
4623 	rlim_t lmemlim, stacklim, vmemlim;
4624 	int rv, rv1;
4625 	bool gap_deleted, grow_down, is_procstack;
4626 #ifdef notyet
4627 	uint64_t limit;
4628 #endif
4629 #ifdef RACCT
4630 	int error;
4631 #endif
4632 
4633 	p = curproc;
4634 	vm = p->p_vmspace;
4635 
4636 	/*
4637 	 * Disallow stack growth when the access is performed by a
4638 	 * debugger or AIO daemon.  The reason is that the wrong
4639 	 * resource limits are applied.
4640 	 */
4641 	if (p != initproc && (map != &p->p_vmspace->vm_map ||
4642 	    p->p_textvp == NULL))
4643 		return (KERN_FAILURE);
4644 
4645 	MPASS(!map->system_map);
4646 
4647 	lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
4648 	stacklim = lim_cur(curthread, RLIMIT_STACK);
4649 	vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4650 retry:
4651 	/* If addr is not in a hole for a stack grow area, no need to grow. */
4652 	if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry))
4653 		return (KERN_FAILURE);
4654 	if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0)
4655 		return (KERN_SUCCESS);
4656 	if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) {
4657 		stack_entry = vm_map_entry_succ(gap_entry);
4658 		if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 ||
4659 		    stack_entry->start != gap_entry->end)
4660 			return (KERN_FAILURE);
4661 		grow_amount = round_page(stack_entry->start - addr);
4662 		grow_down = true;
4663 	} else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) {
4664 		stack_entry = vm_map_entry_pred(gap_entry);
4665 		if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 ||
4666 		    stack_entry->end != gap_entry->start)
4667 			return (KERN_FAILURE);
4668 		grow_amount = round_page(addr + 1 - stack_entry->end);
4669 		grow_down = false;
4670 	} else {
4671 		return (KERN_FAILURE);
4672 	}
4673 	guard = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ||
4674 	    (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 :
4675 	    gap_entry->next_read;
4676 	max_grow = gap_entry->end - gap_entry->start;
4677 	if (guard > max_grow)
4678 		return (KERN_NO_SPACE);
4679 	max_grow -= guard;
4680 	if (grow_amount > max_grow)
4681 		return (KERN_NO_SPACE);
4682 
4683 	/*
4684 	 * If this is the main process stack, see if we're over the stack
4685 	 * limit.
4686 	 */
4687 	is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr &&
4688 	    addr < (vm_offset_t)p->p_sysent->sv_usrstack;
4689 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim))
4690 		return (KERN_NO_SPACE);
4691 
4692 #ifdef RACCT
4693 	if (racct_enable) {
4694 		PROC_LOCK(p);
4695 		if (is_procstack && racct_set(p, RACCT_STACK,
4696 		    ctob(vm->vm_ssize) + grow_amount)) {
4697 			PROC_UNLOCK(p);
4698 			return (KERN_NO_SPACE);
4699 		}
4700 		PROC_UNLOCK(p);
4701 	}
4702 #endif
4703 
4704 	grow_amount = roundup(grow_amount, sgrowsiz);
4705 	if (grow_amount > max_grow)
4706 		grow_amount = max_grow;
4707 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
4708 		grow_amount = trunc_page((vm_size_t)stacklim) -
4709 		    ctob(vm->vm_ssize);
4710 	}
4711 
4712 #ifdef notyet
4713 	PROC_LOCK(p);
4714 	limit = racct_get_available(p, RACCT_STACK);
4715 	PROC_UNLOCK(p);
4716 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
4717 		grow_amount = limit - ctob(vm->vm_ssize);
4718 #endif
4719 
4720 	if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) {
4721 		if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
4722 			rv = KERN_NO_SPACE;
4723 			goto out;
4724 		}
4725 #ifdef RACCT
4726 		if (racct_enable) {
4727 			PROC_LOCK(p);
4728 			if (racct_set(p, RACCT_MEMLOCK,
4729 			    ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
4730 				PROC_UNLOCK(p);
4731 				rv = KERN_NO_SPACE;
4732 				goto out;
4733 			}
4734 			PROC_UNLOCK(p);
4735 		}
4736 #endif
4737 	}
4738 
4739 	/* If we would blow our VMEM resource limit, no go */
4740 	if (map->size + grow_amount > vmemlim) {
4741 		rv = KERN_NO_SPACE;
4742 		goto out;
4743 	}
4744 #ifdef RACCT
4745 	if (racct_enable) {
4746 		PROC_LOCK(p);
4747 		if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
4748 			PROC_UNLOCK(p);
4749 			rv = KERN_NO_SPACE;
4750 			goto out;
4751 		}
4752 		PROC_UNLOCK(p);
4753 	}
4754 #endif
4755 
4756 	if (vm_map_lock_upgrade(map)) {
4757 		gap_entry = NULL;
4758 		vm_map_lock_read(map);
4759 		goto retry;
4760 	}
4761 
4762 	if (grow_down) {
4763 		grow_start = gap_entry->end - grow_amount;
4764 		if (gap_entry->start + grow_amount == gap_entry->end) {
4765 			gap_start = gap_entry->start;
4766 			gap_end = gap_entry->end;
4767 			vm_map_entry_delete(map, gap_entry);
4768 			gap_deleted = true;
4769 		} else {
4770 			MPASS(gap_entry->start < gap_entry->end - grow_amount);
4771 			vm_map_entry_resize(map, gap_entry, -grow_amount);
4772 			gap_deleted = false;
4773 		}
4774 		rv = vm_map_insert(map, NULL, 0, grow_start,
4775 		    grow_start + grow_amount,
4776 		    stack_entry->protection, stack_entry->max_protection,
4777 		    MAP_STACK_GROWS_DOWN);
4778 		if (rv != KERN_SUCCESS) {
4779 			if (gap_deleted) {
4780 				rv1 = vm_map_insert(map, NULL, 0, gap_start,
4781 				    gap_end, VM_PROT_NONE, VM_PROT_NONE,
4782 				    MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN);
4783 				MPASS(rv1 == KERN_SUCCESS);
4784 			} else
4785 				vm_map_entry_resize(map, gap_entry,
4786 				    grow_amount);
4787 		}
4788 	} else {
4789 		grow_start = stack_entry->end;
4790 		cred = stack_entry->cred;
4791 		if (cred == NULL && stack_entry->object.vm_object != NULL)
4792 			cred = stack_entry->object.vm_object->cred;
4793 		if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
4794 			rv = KERN_NO_SPACE;
4795 		/* Grow the underlying object if applicable. */
4796 		else if (stack_entry->object.vm_object == NULL ||
4797 		    vm_object_coalesce(stack_entry->object.vm_object,
4798 		    stack_entry->offset,
4799 		    (vm_size_t)(stack_entry->end - stack_entry->start),
4800 		    grow_amount, cred != NULL)) {
4801 			if (gap_entry->start + grow_amount == gap_entry->end) {
4802 				vm_map_entry_delete(map, gap_entry);
4803 				vm_map_entry_resize(map, stack_entry,
4804 				    grow_amount);
4805 			} else {
4806 				gap_entry->start += grow_amount;
4807 				stack_entry->end += grow_amount;
4808 			}
4809 			map->size += grow_amount;
4810 			rv = KERN_SUCCESS;
4811 		} else
4812 			rv = KERN_FAILURE;
4813 	}
4814 	if (rv == KERN_SUCCESS && is_procstack)
4815 		vm->vm_ssize += btoc(grow_amount);
4816 
4817 	/*
4818 	 * Heed the MAP_WIREFUTURE flag if it was set for this process.
4819 	 */
4820 	if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) {
4821 		rv = vm_map_wire_locked(map, grow_start,
4822 		    grow_start + grow_amount,
4823 		    VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
4824 	}
4825 	vm_map_lock_downgrade(map);
4826 
4827 out:
4828 #ifdef RACCT
4829 	if (racct_enable && rv != KERN_SUCCESS) {
4830 		PROC_LOCK(p);
4831 		error = racct_set(p, RACCT_VMEM, map->size);
4832 		KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
4833 		if (!old_mlock) {
4834 			error = racct_set(p, RACCT_MEMLOCK,
4835 			    ptoa(pmap_wired_count(map->pmap)));
4836 			KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
4837 		}
4838 	    	error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
4839 		KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
4840 		PROC_UNLOCK(p);
4841 	}
4842 #endif
4843 
4844 	return (rv);
4845 }
4846 
4847 /*
4848  * Unshare the specified VM space for exec.  If other processes are
4849  * mapped to it, then create a new one.  The new vmspace is null.
4850  */
4851 int
4852 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
4853 {
4854 	struct vmspace *oldvmspace = p->p_vmspace;
4855 	struct vmspace *newvmspace;
4856 
4857 	KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
4858 	    ("vmspace_exec recursed"));
4859 	newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit);
4860 	if (newvmspace == NULL)
4861 		return (ENOMEM);
4862 	newvmspace->vm_swrss = oldvmspace->vm_swrss;
4863 	/*
4864 	 * This code is written like this for prototype purposes.  The
4865 	 * goal is to avoid running down the vmspace here, but let the
4866 	 * other process's that are still using the vmspace to finally
4867 	 * run it down.  Even though there is little or no chance of blocking
4868 	 * here, it is a good idea to keep this form for future mods.
4869 	 */
4870 	PROC_VMSPACE_LOCK(p);
4871 	p->p_vmspace = newvmspace;
4872 	PROC_VMSPACE_UNLOCK(p);
4873 	if (p == curthread->td_proc)
4874 		pmap_activate(curthread);
4875 	curthread->td_pflags |= TDP_EXECVMSPC;
4876 	return (0);
4877 }
4878 
4879 /*
4880  * Unshare the specified VM space for forcing COW.  This
4881  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
4882  */
4883 int
4884 vmspace_unshare(struct proc *p)
4885 {
4886 	struct vmspace *oldvmspace = p->p_vmspace;
4887 	struct vmspace *newvmspace;
4888 	vm_ooffset_t fork_charge;
4889 
4890 	if (refcount_load(&oldvmspace->vm_refcnt) == 1)
4891 		return (0);
4892 	fork_charge = 0;
4893 	newvmspace = vmspace_fork(oldvmspace, &fork_charge);
4894 	if (newvmspace == NULL)
4895 		return (ENOMEM);
4896 	if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
4897 		vmspace_free(newvmspace);
4898 		return (ENOMEM);
4899 	}
4900 	PROC_VMSPACE_LOCK(p);
4901 	p->p_vmspace = newvmspace;
4902 	PROC_VMSPACE_UNLOCK(p);
4903 	if (p == curthread->td_proc)
4904 		pmap_activate(curthread);
4905 	vmspace_free(oldvmspace);
4906 	return (0);
4907 }
4908 
4909 /*
4910  *	vm_map_lookup:
4911  *
4912  *	Finds the VM object, offset, and
4913  *	protection for a given virtual address in the
4914  *	specified map, assuming a page fault of the
4915  *	type specified.
4916  *
4917  *	Leaves the map in question locked for read; return
4918  *	values are guaranteed until a vm_map_lookup_done
4919  *	call is performed.  Note that the map argument
4920  *	is in/out; the returned map must be used in
4921  *	the call to vm_map_lookup_done.
4922  *
4923  *	A handle (out_entry) is returned for use in
4924  *	vm_map_lookup_done, to make that fast.
4925  *
4926  *	If a lookup is requested with "write protection"
4927  *	specified, the map may be changed to perform virtual
4928  *	copying operations, although the data referenced will
4929  *	remain the same.
4930  */
4931 int
4932 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
4933 	      vm_offset_t vaddr,
4934 	      vm_prot_t fault_typea,
4935 	      vm_map_entry_t *out_entry,	/* OUT */
4936 	      vm_object_t *object,		/* OUT */
4937 	      vm_pindex_t *pindex,		/* OUT */
4938 	      vm_prot_t *out_prot,		/* OUT */
4939 	      boolean_t *wired)			/* OUT */
4940 {
4941 	vm_map_entry_t entry;
4942 	vm_map_t map = *var_map;
4943 	vm_prot_t prot;
4944 	vm_prot_t fault_type;
4945 	vm_object_t eobject;
4946 	vm_size_t size;
4947 	struct ucred *cred;
4948 
4949 RetryLookup:
4950 
4951 	vm_map_lock_read(map);
4952 
4953 RetryLookupLocked:
4954 	/*
4955 	 * Lookup the faulting address.
4956 	 */
4957 	if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
4958 		vm_map_unlock_read(map);
4959 		return (KERN_INVALID_ADDRESS);
4960 	}
4961 
4962 	entry = *out_entry;
4963 
4964 	/*
4965 	 * Handle submaps.
4966 	 */
4967 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4968 		vm_map_t old_map = map;
4969 
4970 		*var_map = map = entry->object.sub_map;
4971 		vm_map_unlock_read(old_map);
4972 		goto RetryLookup;
4973 	}
4974 
4975 	/*
4976 	 * Check whether this task is allowed to have this page.
4977 	 */
4978 	prot = entry->protection;
4979 	if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) {
4980 		fault_typea &= ~VM_PROT_FAULT_LOOKUP;
4981 		if (prot == VM_PROT_NONE && map != kernel_map &&
4982 		    (entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4983 		    (entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
4984 		    MAP_ENTRY_STACK_GAP_UP)) != 0 &&
4985 		    vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS)
4986 			goto RetryLookupLocked;
4987 	}
4988 	fault_type = fault_typea & VM_PROT_ALL;
4989 	if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
4990 		vm_map_unlock_read(map);
4991 		return (KERN_PROTECTION_FAILURE);
4992 	}
4993 	KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
4994 	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
4995 	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
4996 	    ("entry %p flags %x", entry, entry->eflags));
4997 	if ((fault_typea & VM_PROT_COPY) != 0 &&
4998 	    (entry->max_protection & VM_PROT_WRITE) == 0 &&
4999 	    (entry->eflags & MAP_ENTRY_COW) == 0) {
5000 		vm_map_unlock_read(map);
5001 		return (KERN_PROTECTION_FAILURE);
5002 	}
5003 
5004 	/*
5005 	 * If this page is not pageable, we have to get it for all possible
5006 	 * accesses.
5007 	 */
5008 	*wired = (entry->wired_count != 0);
5009 	if (*wired)
5010 		fault_type = entry->protection;
5011 	size = entry->end - entry->start;
5012 
5013 	/*
5014 	 * If the entry was copy-on-write, we either ...
5015 	 */
5016 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
5017 		/*
5018 		 * If we want to write the page, we may as well handle that
5019 		 * now since we've got the map locked.
5020 		 *
5021 		 * If we don't need to write the page, we just demote the
5022 		 * permissions allowed.
5023 		 */
5024 		if ((fault_type & VM_PROT_WRITE) != 0 ||
5025 		    (fault_typea & VM_PROT_COPY) != 0) {
5026 			/*
5027 			 * Make a new object, and place it in the object
5028 			 * chain.  Note that no new references have appeared
5029 			 * -- one just moved from the map to the new
5030 			 * object.
5031 			 */
5032 			if (vm_map_lock_upgrade(map))
5033 				goto RetryLookup;
5034 
5035 			if (entry->cred == NULL) {
5036 				/*
5037 				 * The debugger owner is charged for
5038 				 * the memory.
5039 				 */
5040 				cred = curthread->td_ucred;
5041 				crhold(cred);
5042 				if (!swap_reserve_by_cred(size, cred)) {
5043 					crfree(cred);
5044 					vm_map_unlock(map);
5045 					return (KERN_RESOURCE_SHORTAGE);
5046 				}
5047 				entry->cred = cred;
5048 			}
5049 			eobject = entry->object.vm_object;
5050 			vm_object_shadow(&entry->object.vm_object,
5051 			    &entry->offset, size, entry->cred, false);
5052 			if (eobject == entry->object.vm_object) {
5053 				/*
5054 				 * The object was not shadowed.
5055 				 */
5056 				swap_release_by_cred(size, entry->cred);
5057 				crfree(entry->cred);
5058 			}
5059 			entry->cred = NULL;
5060 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
5061 
5062 			vm_map_lock_downgrade(map);
5063 		} else {
5064 			/*
5065 			 * We're attempting to read a copy-on-write page --
5066 			 * don't allow writes.
5067 			 */
5068 			prot &= ~VM_PROT_WRITE;
5069 		}
5070 	}
5071 
5072 	/*
5073 	 * Create an object if necessary.
5074 	 */
5075 	if (entry->object.vm_object == NULL && !map->system_map) {
5076 		if (vm_map_lock_upgrade(map))
5077 			goto RetryLookup;
5078 		entry->object.vm_object = vm_object_allocate_anon(atop(size),
5079 		    NULL, entry->cred, entry->cred != NULL ? size : 0);
5080 		entry->offset = 0;
5081 		entry->cred = NULL;
5082 		vm_map_lock_downgrade(map);
5083 	}
5084 
5085 	/*
5086 	 * Return the object/offset from this entry.  If the entry was
5087 	 * copy-on-write or empty, it has been fixed up.
5088 	 */
5089 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
5090 	*object = entry->object.vm_object;
5091 
5092 	*out_prot = prot;
5093 	return (KERN_SUCCESS);
5094 }
5095 
5096 /*
5097  *	vm_map_lookup_locked:
5098  *
5099  *	Lookup the faulting address.  A version of vm_map_lookup that returns
5100  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
5101  */
5102 int
5103 vm_map_lookup_locked(vm_map_t *var_map,		/* IN/OUT */
5104 		     vm_offset_t vaddr,
5105 		     vm_prot_t fault_typea,
5106 		     vm_map_entry_t *out_entry,	/* OUT */
5107 		     vm_object_t *object,	/* OUT */
5108 		     vm_pindex_t *pindex,	/* OUT */
5109 		     vm_prot_t *out_prot,	/* OUT */
5110 		     boolean_t *wired)		/* OUT */
5111 {
5112 	vm_map_entry_t entry;
5113 	vm_map_t map = *var_map;
5114 	vm_prot_t prot;
5115 	vm_prot_t fault_type = fault_typea;
5116 
5117 	/*
5118 	 * Lookup the faulting address.
5119 	 */
5120 	if (!vm_map_lookup_entry(map, vaddr, out_entry))
5121 		return (KERN_INVALID_ADDRESS);
5122 
5123 	entry = *out_entry;
5124 
5125 	/*
5126 	 * Fail if the entry refers to a submap.
5127 	 */
5128 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
5129 		return (KERN_FAILURE);
5130 
5131 	/*
5132 	 * Check whether this task is allowed to have this page.
5133 	 */
5134 	prot = entry->protection;
5135 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
5136 	if ((fault_type & prot) != fault_type)
5137 		return (KERN_PROTECTION_FAILURE);
5138 
5139 	/*
5140 	 * If this page is not pageable, we have to get it for all possible
5141 	 * accesses.
5142 	 */
5143 	*wired = (entry->wired_count != 0);
5144 	if (*wired)
5145 		fault_type = entry->protection;
5146 
5147 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
5148 		/*
5149 		 * Fail if the entry was copy-on-write for a write fault.
5150 		 */
5151 		if (fault_type & VM_PROT_WRITE)
5152 			return (KERN_FAILURE);
5153 		/*
5154 		 * We're attempting to read a copy-on-write page --
5155 		 * don't allow writes.
5156 		 */
5157 		prot &= ~VM_PROT_WRITE;
5158 	}
5159 
5160 	/*
5161 	 * Fail if an object should be created.
5162 	 */
5163 	if (entry->object.vm_object == NULL && !map->system_map)
5164 		return (KERN_FAILURE);
5165 
5166 	/*
5167 	 * Return the object/offset from this entry.  If the entry was
5168 	 * copy-on-write or empty, it has been fixed up.
5169 	 */
5170 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
5171 	*object = entry->object.vm_object;
5172 
5173 	*out_prot = prot;
5174 	return (KERN_SUCCESS);
5175 }
5176 
5177 /*
5178  *	vm_map_lookup_done:
5179  *
5180  *	Releases locks acquired by a vm_map_lookup
5181  *	(according to the handle returned by that lookup).
5182  */
5183 void
5184 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
5185 {
5186 	/*
5187 	 * Unlock the main-level map
5188 	 */
5189 	vm_map_unlock_read(map);
5190 }
5191 
5192 vm_offset_t
5193 vm_map_max_KBI(const struct vm_map *map)
5194 {
5195 
5196 	return (vm_map_max(map));
5197 }
5198 
5199 vm_offset_t
5200 vm_map_min_KBI(const struct vm_map *map)
5201 {
5202 
5203 	return (vm_map_min(map));
5204 }
5205 
5206 pmap_t
5207 vm_map_pmap_KBI(vm_map_t map)
5208 {
5209 
5210 	return (map->pmap);
5211 }
5212 
5213 bool
5214 vm_map_range_valid_KBI(vm_map_t map, vm_offset_t start, vm_offset_t end)
5215 {
5216 
5217 	return (vm_map_range_valid(map, start, end));
5218 }
5219 
5220 #ifdef INVARIANTS
5221 static void
5222 _vm_map_assert_consistent(vm_map_t map, int check)
5223 {
5224 	vm_map_entry_t entry, prev;
5225 	vm_map_entry_t cur, header, lbound, ubound;
5226 	vm_size_t max_left, max_right;
5227 
5228 #ifdef DIAGNOSTIC
5229 	++map->nupdates;
5230 #endif
5231 	if (enable_vmmap_check != check)
5232 		return;
5233 
5234 	header = prev = &map->header;
5235 	VM_MAP_ENTRY_FOREACH(entry, map) {
5236 		KASSERT(prev->end <= entry->start,
5237 		    ("map %p prev->end = %jx, start = %jx", map,
5238 		    (uintmax_t)prev->end, (uintmax_t)entry->start));
5239 		KASSERT(entry->start < entry->end,
5240 		    ("map %p start = %jx, end = %jx", map,
5241 		    (uintmax_t)entry->start, (uintmax_t)entry->end));
5242 		KASSERT(entry->left == header ||
5243 		    entry->left->start < entry->start,
5244 		    ("map %p left->start = %jx, start = %jx", map,
5245 		    (uintmax_t)entry->left->start, (uintmax_t)entry->start));
5246 		KASSERT(entry->right == header ||
5247 		    entry->start < entry->right->start,
5248 		    ("map %p start = %jx, right->start = %jx", map,
5249 		    (uintmax_t)entry->start, (uintmax_t)entry->right->start));
5250 		cur = map->root;
5251 		lbound = ubound = header;
5252 		for (;;) {
5253 			if (entry->start < cur->start) {
5254 				ubound = cur;
5255 				cur = cur->left;
5256 				KASSERT(cur != lbound,
5257 				    ("map %p cannot find %jx",
5258 				    map, (uintmax_t)entry->start));
5259 			} else if (cur->end <= entry->start) {
5260 				lbound = cur;
5261 				cur = cur->right;
5262 				KASSERT(cur != ubound,
5263 				    ("map %p cannot find %jx",
5264 				    map, (uintmax_t)entry->start));
5265 			} else {
5266 				KASSERT(cur == entry,
5267 				    ("map %p cannot find %jx",
5268 				    map, (uintmax_t)entry->start));
5269 				break;
5270 			}
5271 		}
5272 		max_left = vm_map_entry_max_free_left(entry, lbound);
5273 		max_right = vm_map_entry_max_free_right(entry, ubound);
5274 		KASSERT(entry->max_free == vm_size_max(max_left, max_right),
5275 		    ("map %p max = %jx, max_left = %jx, max_right = %jx", map,
5276 		    (uintmax_t)entry->max_free,
5277 		    (uintmax_t)max_left, (uintmax_t)max_right));
5278 		prev = entry;
5279 	}
5280 	KASSERT(prev->end <= entry->start,
5281 	    ("map %p prev->end = %jx, start = %jx", map,
5282 	    (uintmax_t)prev->end, (uintmax_t)entry->start));
5283 }
5284 #endif
5285 
5286 #include "opt_ddb.h"
5287 #ifdef DDB
5288 #include <sys/kernel.h>
5289 
5290 #include <ddb/ddb.h>
5291 
5292 static void
5293 vm_map_print(vm_map_t map)
5294 {
5295 	vm_map_entry_t entry, prev;
5296 
5297 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
5298 	    (void *)map,
5299 	    (void *)map->pmap, map->nentries, map->timestamp);
5300 
5301 	db_indent += 2;
5302 	prev = &map->header;
5303 	VM_MAP_ENTRY_FOREACH(entry, map) {
5304 		db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n",
5305 		    (void *)entry, (void *)entry->start, (void *)entry->end,
5306 		    entry->eflags);
5307 		{
5308 			static const char * const inheritance_name[4] =
5309 			{"share", "copy", "none", "donate_copy"};
5310 
5311 			db_iprintf(" prot=%x/%x/%s",
5312 			    entry->protection,
5313 			    entry->max_protection,
5314 			    inheritance_name[(int)(unsigned char)
5315 			    entry->inheritance]);
5316 			if (entry->wired_count != 0)
5317 				db_printf(", wired");
5318 		}
5319 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
5320 			db_printf(", share=%p, offset=0x%jx\n",
5321 			    (void *)entry->object.sub_map,
5322 			    (uintmax_t)entry->offset);
5323 			if (prev == &map->header ||
5324 			    prev->object.sub_map !=
5325 				entry->object.sub_map) {
5326 				db_indent += 2;
5327 				vm_map_print((vm_map_t)entry->object.sub_map);
5328 				db_indent -= 2;
5329 			}
5330 		} else {
5331 			if (entry->cred != NULL)
5332 				db_printf(", ruid %d", entry->cred->cr_ruid);
5333 			db_printf(", object=%p, offset=0x%jx",
5334 			    (void *)entry->object.vm_object,
5335 			    (uintmax_t)entry->offset);
5336 			if (entry->object.vm_object && entry->object.vm_object->cred)
5337 				db_printf(", obj ruid %d charge %jx",
5338 				    entry->object.vm_object->cred->cr_ruid,
5339 				    (uintmax_t)entry->object.vm_object->charge);
5340 			if (entry->eflags & MAP_ENTRY_COW)
5341 				db_printf(", copy (%s)",
5342 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
5343 			db_printf("\n");
5344 
5345 			if (prev == &map->header ||
5346 			    prev->object.vm_object !=
5347 				entry->object.vm_object) {
5348 				db_indent += 2;
5349 				vm_object_print((db_expr_t)(intptr_t)
5350 						entry->object.vm_object,
5351 						0, 0, (char *)0);
5352 				db_indent -= 2;
5353 			}
5354 		}
5355 		prev = entry;
5356 	}
5357 	db_indent -= 2;
5358 }
5359 
5360 DB_SHOW_COMMAND(map, map)
5361 {
5362 
5363 	if (!have_addr) {
5364 		db_printf("usage: show map <addr>\n");
5365 		return;
5366 	}
5367 	vm_map_print((vm_map_t)addr);
5368 }
5369 
5370 DB_SHOW_COMMAND(procvm, procvm)
5371 {
5372 	struct proc *p;
5373 
5374 	if (have_addr) {
5375 		p = db_lookup_proc(addr);
5376 	} else {
5377 		p = curproc;
5378 	}
5379 
5380 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
5381 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
5382 	    (void *)vmspace_pmap(p->p_vmspace));
5383 
5384 	vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
5385 }
5386 
5387 #endif /* DDB */
5388