1 /* 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by the University of 19 * California, Berkeley and its contributors. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 37 * 38 * 39 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 40 * All rights reserved. 41 * 42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 43 * 44 * Permission to use, copy, modify and distribute this software and 45 * its documentation is hereby granted, provided that both the copyright 46 * notice and this permission notice appear in all copies of the 47 * software, derivative works or modified versions, and any portions 48 * thereof, and that both notices appear in supporting documentation. 49 * 50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 53 * 54 * Carnegie Mellon requests users of this software to return to 55 * 56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 57 * School of Computer Science 58 * Carnegie Mellon University 59 * Pittsburgh PA 15213-3890 60 * 61 * any improvements or extensions that they make and grant Carnegie the 62 * rights to redistribute these changes. 63 * 64 * $FreeBSD$ 65 */ 66 67 /* 68 * Virtual memory mapping module. 69 */ 70 71 #include <sys/param.h> 72 #include <sys/systm.h> 73 #include <sys/ktr.h> 74 #include <sys/lock.h> 75 #include <sys/mutex.h> 76 #include <sys/proc.h> 77 #include <sys/vmmeter.h> 78 #include <sys/mman.h> 79 #include <sys/vnode.h> 80 #include <sys/resourcevar.h> 81 #include <sys/sysent.h> 82 #include <sys/stdint.h> 83 84 #include <vm/vm.h> 85 #include <vm/vm_param.h> 86 #include <vm/pmap.h> 87 #include <vm/vm_map.h> 88 #include <vm/vm_page.h> 89 #include <vm/vm_object.h> 90 #include <vm/vm_pager.h> 91 #include <vm/vm_kern.h> 92 #include <vm/vm_extern.h> 93 #include <vm/swap_pager.h> 94 #include <vm/uma.h> 95 96 /* 97 * Virtual memory maps provide for the mapping, protection, 98 * and sharing of virtual memory objects. In addition, 99 * this module provides for an efficient virtual copy of 100 * memory from one map to another. 101 * 102 * Synchronization is required prior to most operations. 103 * 104 * Maps consist of an ordered doubly-linked list of simple 105 * entries; a single hint is used to speed up lookups. 106 * 107 * Since portions of maps are specified by start/end addresses, 108 * which may not align with existing map entries, all 109 * routines merely "clip" entries to these start/end values. 110 * [That is, an entry is split into two, bordering at a 111 * start or end value.] Note that these clippings may not 112 * always be necessary (as the two resulting entries are then 113 * not changed); however, the clipping is done for convenience. 114 * 115 * As mentioned above, virtual copy operations are performed 116 * by copying VM object references from one map to 117 * another, and then marking both regions as copy-on-write. 118 */ 119 120 /* 121 * vm_map_startup: 122 * 123 * Initialize the vm_map module. Must be called before 124 * any other vm_map routines. 125 * 126 * Map and entry structures are allocated from the general 127 * purpose memory pool with some exceptions: 128 * 129 * - The kernel map and kmem submap are allocated statically. 130 * - Kernel map entries are allocated out of a static pool. 131 * 132 * These restrictions are necessary since malloc() uses the 133 * maps and requires map entries. 134 */ 135 136 static uma_zone_t mapentzone; 137 static uma_zone_t kmapentzone; 138 static uma_zone_t mapzone; 139 static uma_zone_t vmspace_zone; 140 static struct vm_object kmapentobj; 141 static void vmspace_zinit(void *mem, int size); 142 static void vmspace_zfini(void *mem, int size); 143 static void vm_map_zinit(void *mem, int size); 144 static void vm_map_zfini(void *mem, int size); 145 static void _vm_map_init(vm_map_t map, vm_offset_t min, vm_offset_t max); 146 147 #ifdef INVARIANTS 148 static void vm_map_zdtor(void *mem, int size, void *arg); 149 static void vmspace_zdtor(void *mem, int size, void *arg); 150 #endif 151 152 void 153 vm_map_startup(void) 154 { 155 mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL, 156 #ifdef INVARIANTS 157 vm_map_zdtor, 158 #else 159 NULL, 160 #endif 161 vm_map_zinit, vm_map_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 162 uma_prealloc(mapzone, MAX_KMAP); 163 kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry), 164 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 165 UMA_ZONE_MTXCLASS | UMA_ZONE_VM); 166 uma_prealloc(kmapentzone, MAX_KMAPENT); 167 mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry), 168 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 169 uma_prealloc(mapentzone, MAX_MAPENT); 170 } 171 172 static void 173 vmspace_zfini(void *mem, int size) 174 { 175 struct vmspace *vm; 176 177 vm = (struct vmspace *)mem; 178 179 vm_map_zfini(&vm->vm_map, sizeof(vm->vm_map)); 180 } 181 182 static void 183 vmspace_zinit(void *mem, int size) 184 { 185 struct vmspace *vm; 186 187 vm = (struct vmspace *)mem; 188 189 vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map)); 190 } 191 192 static void 193 vm_map_zfini(void *mem, int size) 194 { 195 vm_map_t map; 196 197 map = (vm_map_t)mem; 198 199 lockdestroy(&map->lock); 200 } 201 202 static void 203 vm_map_zinit(void *mem, int size) 204 { 205 vm_map_t map; 206 207 map = (vm_map_t)mem; 208 map->nentries = 0; 209 map->size = 0; 210 map->infork = 0; 211 lockinit(&map->lock, PVM, "thrd_sleep", 0, LK_NOPAUSE); 212 } 213 214 #ifdef INVARIANTS 215 static void 216 vmspace_zdtor(void *mem, int size, void *arg) 217 { 218 struct vmspace *vm; 219 220 vm = (struct vmspace *)mem; 221 222 vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg); 223 } 224 static void 225 vm_map_zdtor(void *mem, int size, void *arg) 226 { 227 vm_map_t map; 228 229 map = (vm_map_t)mem; 230 KASSERT(map->nentries == 0, 231 ("map %p nentries == %d on free.", 232 map, map->nentries)); 233 KASSERT(map->size == 0, 234 ("map %p size == %lu on free.", 235 map, (unsigned long)map->size)); 236 KASSERT(map->infork == 0, 237 ("map %p infork == %d on free.", 238 map, map->infork)); 239 } 240 #endif /* INVARIANTS */ 241 242 /* 243 * Allocate a vmspace structure, including a vm_map and pmap, 244 * and initialize those structures. The refcnt is set to 1. 245 * The remaining fields must be initialized by the caller. 246 */ 247 struct vmspace * 248 vmspace_alloc(min, max) 249 vm_offset_t min, max; 250 { 251 struct vmspace *vm; 252 253 GIANT_REQUIRED; 254 vm = uma_zalloc(vmspace_zone, M_WAITOK); 255 CTR1(KTR_VM, "vmspace_alloc: %p", vm); 256 _vm_map_init(&vm->vm_map, min, max); 257 pmap_pinit(vmspace_pmap(vm)); 258 vm->vm_map.pmap = vmspace_pmap(vm); /* XXX */ 259 vm->vm_refcnt = 1; 260 vm->vm_shm = NULL; 261 vm->vm_freer = NULL; 262 return (vm); 263 } 264 265 void 266 vm_init2(void) 267 { 268 uma_zone_set_obj(kmapentzone, &kmapentobj, lmin(cnt.v_page_count, 269 (VM_MAX_KERNEL_ADDRESS - KERNBASE) / PAGE_SIZE) / 8); 270 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL, 271 #ifdef INVARIANTS 272 vmspace_zdtor, 273 #else 274 NULL, 275 #endif 276 vmspace_zinit, vmspace_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 277 pmap_init2(); 278 vm_object_init2(); 279 } 280 281 static __inline void 282 vmspace_dofree(struct vmspace *vm) 283 { 284 CTR1(KTR_VM, "vmspace_free: %p", vm); 285 /* 286 * Lock the map, to wait out all other references to it. 287 * Delete all of the mappings and pages they hold, then call 288 * the pmap module to reclaim anything left. 289 */ 290 vm_map_lock(&vm->vm_map); 291 (void) vm_map_delete(&vm->vm_map, vm->vm_map.min_offset, 292 vm->vm_map.max_offset); 293 vm_map_unlock(&vm->vm_map); 294 295 pmap_release(vmspace_pmap(vm)); 296 uma_zfree(vmspace_zone, vm); 297 } 298 299 void 300 vmspace_free(struct vmspace *vm) 301 { 302 GIANT_REQUIRED; 303 304 if (vm->vm_refcnt == 0) 305 panic("vmspace_free: attempt to free already freed vmspace"); 306 307 if (--vm->vm_refcnt == 0) 308 vmspace_dofree(vm); 309 } 310 311 void 312 vmspace_exitfree(struct proc *p) 313 { 314 struct vmspace *vm; 315 316 GIANT_REQUIRED; 317 if (p == p->p_vmspace->vm_freer) { 318 vm = p->p_vmspace; 319 p->p_vmspace = NULL; 320 vmspace_dofree(vm); 321 } 322 } 323 324 /* 325 * vmspace_swap_count() - count the approximate swap useage in pages for a 326 * vmspace. 327 * 328 * Swap useage is determined by taking the proportional swap used by 329 * VM objects backing the VM map. To make up for fractional losses, 330 * if the VM object has any swap use at all the associated map entries 331 * count for at least 1 swap page. 332 */ 333 int 334 vmspace_swap_count(struct vmspace *vmspace) 335 { 336 vm_map_t map = &vmspace->vm_map; 337 vm_map_entry_t cur; 338 int count = 0; 339 340 vm_map_lock_read(map); 341 for (cur = map->header.next; cur != &map->header; cur = cur->next) { 342 vm_object_t object; 343 344 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 && 345 (object = cur->object.vm_object) != NULL && 346 object->type == OBJT_SWAP 347 ) { 348 int n = (cur->end - cur->start) / PAGE_SIZE; 349 350 if (object->un_pager.swp.swp_bcount) { 351 count += object->un_pager.swp.swp_bcount * 352 SWAP_META_PAGES * n / object->size + 1; 353 } 354 } 355 } 356 vm_map_unlock_read(map); 357 return (count); 358 } 359 360 void 361 _vm_map_lock(vm_map_t map, const char *file, int line) 362 { 363 int error; 364 365 if (map->system_map) 366 GIANT_REQUIRED; 367 error = lockmgr(&map->lock, LK_EXCLUSIVE, NULL, curthread); 368 KASSERT(error == 0, ("%s: failed to get lock", __func__)); 369 map->timestamp++; 370 } 371 372 void 373 _vm_map_unlock(vm_map_t map, const char *file, int line) 374 { 375 376 lockmgr(&map->lock, LK_RELEASE, NULL, curthread); 377 } 378 379 void 380 _vm_map_lock_read(vm_map_t map, const char *file, int line) 381 { 382 int error; 383 384 if (map->system_map) 385 GIANT_REQUIRED; 386 error = lockmgr(&map->lock, LK_EXCLUSIVE, NULL, curthread); 387 KASSERT(error == 0, ("%s: failed to get lock", __func__)); 388 } 389 390 void 391 _vm_map_unlock_read(vm_map_t map, const char *file, int line) 392 { 393 394 lockmgr(&map->lock, LK_RELEASE, NULL, curthread); 395 } 396 397 int 398 _vm_map_trylock(vm_map_t map, const char *file, int line) 399 { 400 int error; 401 402 if (map->system_map) 403 GIANT_REQUIRED; 404 error = lockmgr(&map->lock, LK_EXCLUSIVE | LK_NOWAIT, NULL, curthread); 405 return (error == 0); 406 } 407 408 int 409 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line) 410 { 411 412 KASSERT(lockstatus(&map->lock, curthread) == LK_EXCLUSIVE, 413 ("%s: lock not held", __func__)); 414 map->timestamp++; 415 return (0); 416 } 417 418 void 419 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line) 420 { 421 422 KASSERT(lockstatus(&map->lock, curthread) == LK_EXCLUSIVE, 423 ("%s: lock not held", __func__)); 424 } 425 426 /* 427 * vm_map_unlock_and_wait: 428 */ 429 int 430 vm_map_unlock_and_wait(vm_map_t map, boolean_t user_wait) 431 { 432 int retval; 433 434 mtx_lock(&Giant); 435 vm_map_unlock(map); 436 retval = tsleep(&map->root, PVM, "vmmapw", 0); 437 mtx_unlock(&Giant); 438 return (retval); 439 } 440 441 /* 442 * vm_map_wakeup: 443 */ 444 void 445 vm_map_wakeup(vm_map_t map) 446 { 447 448 /* 449 * Acquire and release Giant to prevent a wakeup() from being 450 * performed (and lost) between the vm_map_unlock() and the 451 * tsleep() in vm_map_unlock_and_wait(). 452 */ 453 mtx_lock(&Giant); 454 mtx_unlock(&Giant); 455 wakeup(&map->root); 456 } 457 458 long 459 vmspace_resident_count(struct vmspace *vmspace) 460 { 461 return pmap_resident_count(vmspace_pmap(vmspace)); 462 } 463 464 /* 465 * vm_map_create: 466 * 467 * Creates and returns a new empty VM map with 468 * the given physical map structure, and having 469 * the given lower and upper address bounds. 470 */ 471 vm_map_t 472 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max) 473 { 474 vm_map_t result; 475 476 result = uma_zalloc(mapzone, M_WAITOK); 477 CTR1(KTR_VM, "vm_map_create: %p", result); 478 _vm_map_init(result, min, max); 479 result->pmap = pmap; 480 return (result); 481 } 482 483 /* 484 * Initialize an existing vm_map structure 485 * such as that in the vmspace structure. 486 * The pmap is set elsewhere. 487 */ 488 static void 489 _vm_map_init(vm_map_t map, vm_offset_t min, vm_offset_t max) 490 { 491 492 map->header.next = map->header.prev = &map->header; 493 map->needs_wakeup = FALSE; 494 map->system_map = 0; 495 map->min_offset = min; 496 map->max_offset = max; 497 map->first_free = &map->header; 498 map->root = NULL; 499 map->timestamp = 0; 500 } 501 502 void 503 vm_map_init(vm_map_t map, vm_offset_t min, vm_offset_t max) 504 { 505 _vm_map_init(map, min, max); 506 lockinit(&map->lock, PVM, "thrd_sleep", 0, LK_NOPAUSE); 507 } 508 509 /* 510 * vm_map_entry_dispose: [ internal use only ] 511 * 512 * Inverse of vm_map_entry_create. 513 */ 514 static void 515 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry) 516 { 517 uma_zfree(map->system_map ? kmapentzone : mapentzone, entry); 518 } 519 520 /* 521 * vm_map_entry_create: [ internal use only ] 522 * 523 * Allocates a VM map entry for insertion. 524 * No entry fields are filled in. 525 */ 526 static vm_map_entry_t 527 vm_map_entry_create(vm_map_t map) 528 { 529 vm_map_entry_t new_entry; 530 531 if (map->system_map) 532 new_entry = uma_zalloc(kmapentzone, M_NOWAIT); 533 else 534 new_entry = uma_zalloc(mapentzone, M_WAITOK); 535 if (new_entry == NULL) 536 panic("vm_map_entry_create: kernel resources exhausted"); 537 return (new_entry); 538 } 539 540 /* 541 * vm_map_entry_set_behavior: 542 * 543 * Set the expected access behavior, either normal, random, or 544 * sequential. 545 */ 546 static __inline void 547 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior) 548 { 549 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) | 550 (behavior & MAP_ENTRY_BEHAV_MASK); 551 } 552 553 /* 554 * vm_map_entry_splay: 555 * 556 * Implements Sleator and Tarjan's top-down splay algorithm. Returns 557 * the vm_map_entry containing the given address. If, however, that 558 * address is not found in the vm_map, returns a vm_map_entry that is 559 * adjacent to the address, coming before or after it. 560 */ 561 static vm_map_entry_t 562 vm_map_entry_splay(vm_offset_t address, vm_map_entry_t root) 563 { 564 struct vm_map_entry dummy; 565 vm_map_entry_t lefttreemax, righttreemin, y; 566 567 if (root == NULL) 568 return (root); 569 lefttreemax = righttreemin = &dummy; 570 for (;; root = y) { 571 if (address < root->start) { 572 if ((y = root->left) == NULL) 573 break; 574 if (address < y->start) { 575 /* Rotate right. */ 576 root->left = y->right; 577 y->right = root; 578 root = y; 579 if ((y = root->left) == NULL) 580 break; 581 } 582 /* Link into the new root's right tree. */ 583 righttreemin->left = root; 584 righttreemin = root; 585 } else if (address >= root->end) { 586 if ((y = root->right) == NULL) 587 break; 588 if (address >= y->end) { 589 /* Rotate left. */ 590 root->right = y->left; 591 y->left = root; 592 root = y; 593 if ((y = root->right) == NULL) 594 break; 595 } 596 /* Link into the new root's left tree. */ 597 lefttreemax->right = root; 598 lefttreemax = root; 599 } else 600 break; 601 } 602 /* Assemble the new root. */ 603 lefttreemax->right = root->left; 604 righttreemin->left = root->right; 605 root->left = dummy.right; 606 root->right = dummy.left; 607 return (root); 608 } 609 610 /* 611 * vm_map_entry_{un,}link: 612 * 613 * Insert/remove entries from maps. 614 */ 615 static void 616 vm_map_entry_link(vm_map_t map, 617 vm_map_entry_t after_where, 618 vm_map_entry_t entry) 619 { 620 621 CTR4(KTR_VM, 622 "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map, 623 map->nentries, entry, after_where); 624 map->nentries++; 625 entry->prev = after_where; 626 entry->next = after_where->next; 627 entry->next->prev = entry; 628 after_where->next = entry; 629 630 if (after_where != &map->header) { 631 if (after_where != map->root) 632 vm_map_entry_splay(after_where->start, map->root); 633 entry->right = after_where->right; 634 entry->left = after_where; 635 after_where->right = NULL; 636 } else { 637 entry->right = map->root; 638 entry->left = NULL; 639 } 640 map->root = entry; 641 } 642 643 static void 644 vm_map_entry_unlink(vm_map_t map, 645 vm_map_entry_t entry) 646 { 647 vm_map_entry_t next, prev, root; 648 649 if (entry != map->root) 650 vm_map_entry_splay(entry->start, map->root); 651 if (entry->left == NULL) 652 root = entry->right; 653 else { 654 root = vm_map_entry_splay(entry->start, entry->left); 655 root->right = entry->right; 656 } 657 map->root = root; 658 659 prev = entry->prev; 660 next = entry->next; 661 next->prev = prev; 662 prev->next = next; 663 map->nentries--; 664 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map, 665 map->nentries, entry); 666 } 667 668 /* 669 * vm_map_lookup_entry: [ internal use only ] 670 * 671 * Finds the map entry containing (or 672 * immediately preceding) the specified address 673 * in the given map; the entry is returned 674 * in the "entry" parameter. The boolean 675 * result indicates whether the address is 676 * actually contained in the map. 677 */ 678 boolean_t 679 vm_map_lookup_entry( 680 vm_map_t map, 681 vm_offset_t address, 682 vm_map_entry_t *entry) /* OUT */ 683 { 684 vm_map_entry_t cur; 685 686 cur = vm_map_entry_splay(address, map->root); 687 if (cur == NULL) 688 *entry = &map->header; 689 else { 690 map->root = cur; 691 692 if (address >= cur->start) { 693 *entry = cur; 694 if (cur->end > address) 695 return (TRUE); 696 } else 697 *entry = cur->prev; 698 } 699 return (FALSE); 700 } 701 702 /* 703 * vm_map_insert: 704 * 705 * Inserts the given whole VM object into the target 706 * map at the specified address range. The object's 707 * size should match that of the address range. 708 * 709 * Requires that the map be locked, and leaves it so. 710 * 711 * If object is non-NULL, ref count must be bumped by caller 712 * prior to making call to account for the new entry. 713 */ 714 int 715 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 716 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, 717 int cow) 718 { 719 vm_map_entry_t new_entry; 720 vm_map_entry_t prev_entry; 721 vm_map_entry_t temp_entry; 722 vm_eflags_t protoeflags; 723 724 /* 725 * Check that the start and end points are not bogus. 726 */ 727 if ((start < map->min_offset) || (end > map->max_offset) || 728 (start >= end)) 729 return (KERN_INVALID_ADDRESS); 730 731 /* 732 * Find the entry prior to the proposed starting address; if it's part 733 * of an existing entry, this range is bogus. 734 */ 735 if (vm_map_lookup_entry(map, start, &temp_entry)) 736 return (KERN_NO_SPACE); 737 738 prev_entry = temp_entry; 739 740 /* 741 * Assert that the next entry doesn't overlap the end point. 742 */ 743 if ((prev_entry->next != &map->header) && 744 (prev_entry->next->start < end)) 745 return (KERN_NO_SPACE); 746 747 protoeflags = 0; 748 749 if (cow & MAP_COPY_ON_WRITE) 750 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY; 751 752 if (cow & MAP_NOFAULT) { 753 protoeflags |= MAP_ENTRY_NOFAULT; 754 755 KASSERT(object == NULL, 756 ("vm_map_insert: paradoxical MAP_NOFAULT request")); 757 } 758 if (cow & MAP_DISABLE_SYNCER) 759 protoeflags |= MAP_ENTRY_NOSYNC; 760 if (cow & MAP_DISABLE_COREDUMP) 761 protoeflags |= MAP_ENTRY_NOCOREDUMP; 762 763 if (object) { 764 /* 765 * When object is non-NULL, it could be shared with another 766 * process. We have to set or clear OBJ_ONEMAPPING 767 * appropriately. 768 */ 769 vm_object_lock(object); 770 if ((object->ref_count > 1) || (object->shadow_count != 0)) { 771 vm_object_clear_flag(object, OBJ_ONEMAPPING); 772 } 773 vm_object_unlock(object); 774 } 775 else if ((prev_entry != &map->header) && 776 (prev_entry->eflags == protoeflags) && 777 (prev_entry->end == start) && 778 (prev_entry->wired_count == 0) && 779 ((prev_entry->object.vm_object == NULL) || 780 vm_object_coalesce(prev_entry->object.vm_object, 781 OFF_TO_IDX(prev_entry->offset), 782 (vm_size_t)(prev_entry->end - prev_entry->start), 783 (vm_size_t)(end - prev_entry->end)))) { 784 /* 785 * We were able to extend the object. Determine if we 786 * can extend the previous map entry to include the 787 * new range as well. 788 */ 789 if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) && 790 (prev_entry->protection == prot) && 791 (prev_entry->max_protection == max)) { 792 map->size += (end - prev_entry->end); 793 prev_entry->end = end; 794 vm_map_simplify_entry(map, prev_entry); 795 return (KERN_SUCCESS); 796 } 797 798 /* 799 * If we can extend the object but cannot extend the 800 * map entry, we have to create a new map entry. We 801 * must bump the ref count on the extended object to 802 * account for it. object may be NULL. 803 */ 804 object = prev_entry->object.vm_object; 805 offset = prev_entry->offset + 806 (prev_entry->end - prev_entry->start); 807 vm_object_reference(object); 808 } 809 810 /* 811 * NOTE: if conditionals fail, object can be NULL here. This occurs 812 * in things like the buffer map where we manage kva but do not manage 813 * backing objects. 814 */ 815 816 /* 817 * Create a new entry 818 */ 819 new_entry = vm_map_entry_create(map); 820 new_entry->start = start; 821 new_entry->end = end; 822 823 new_entry->eflags = protoeflags; 824 new_entry->object.vm_object = object; 825 new_entry->offset = offset; 826 new_entry->avail_ssize = 0; 827 828 new_entry->inheritance = VM_INHERIT_DEFAULT; 829 new_entry->protection = prot; 830 new_entry->max_protection = max; 831 new_entry->wired_count = 0; 832 833 /* 834 * Insert the new entry into the list 835 */ 836 vm_map_entry_link(map, prev_entry, new_entry); 837 map->size += new_entry->end - new_entry->start; 838 839 /* 840 * Update the free space hint 841 */ 842 if ((map->first_free == prev_entry) && 843 (prev_entry->end >= new_entry->start)) { 844 map->first_free = new_entry; 845 } 846 847 #if 0 848 /* 849 * Temporarily removed to avoid MAP_STACK panic, due to 850 * MAP_STACK being a huge hack. Will be added back in 851 * when MAP_STACK (and the user stack mapping) is fixed. 852 */ 853 /* 854 * It may be possible to simplify the entry 855 */ 856 vm_map_simplify_entry(map, new_entry); 857 #endif 858 859 if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) { 860 mtx_lock(&Giant); 861 pmap_object_init_pt(map->pmap, start, 862 object, OFF_TO_IDX(offset), end - start, 863 cow & MAP_PREFAULT_PARTIAL); 864 mtx_unlock(&Giant); 865 } 866 867 return (KERN_SUCCESS); 868 } 869 870 /* 871 * Find sufficient space for `length' bytes in the given map, starting at 872 * `start'. The map must be locked. Returns 0 on success, 1 on no space. 873 */ 874 int 875 vm_map_findspace( 876 vm_map_t map, 877 vm_offset_t start, 878 vm_size_t length, 879 vm_offset_t *addr) 880 { 881 vm_map_entry_t entry, next; 882 vm_offset_t end; 883 884 if (start < map->min_offset) 885 start = map->min_offset; 886 if (start > map->max_offset) 887 return (1); 888 889 /* 890 * Look for the first possible address; if there's already something 891 * at this address, we have to start after it. 892 */ 893 if (start == map->min_offset) { 894 if ((entry = map->first_free) != &map->header) 895 start = entry->end; 896 } else { 897 vm_map_entry_t tmp; 898 899 if (vm_map_lookup_entry(map, start, &tmp)) 900 start = tmp->end; 901 entry = tmp; 902 } 903 904 /* 905 * Look through the rest of the map, trying to fit a new region in the 906 * gap between existing regions, or after the very last region. 907 */ 908 for (;; start = (entry = next)->end) { 909 /* 910 * Find the end of the proposed new region. Be sure we didn't 911 * go beyond the end of the map, or wrap around the address; 912 * if so, we lose. Otherwise, if this is the last entry, or 913 * if the proposed new region fits before the next entry, we 914 * win. 915 */ 916 end = start + length; 917 if (end > map->max_offset || end < start) 918 return (1); 919 next = entry->next; 920 if (next == &map->header || next->start >= end) 921 break; 922 } 923 *addr = start; 924 if (map == kernel_map) { 925 vm_offset_t ksize; 926 if ((ksize = round_page(start + length)) > kernel_vm_end) { 927 mtx_lock(&Giant); 928 pmap_growkernel(ksize); 929 mtx_unlock(&Giant); 930 } 931 } 932 return (0); 933 } 934 935 /* 936 * vm_map_find finds an unallocated region in the target address 937 * map with the given length. The search is defined to be 938 * first-fit from the specified address; the region found is 939 * returned in the same parameter. 940 * 941 * If object is non-NULL, ref count must be bumped by caller 942 * prior to making call to account for the new entry. 943 */ 944 int 945 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 946 vm_offset_t *addr, /* IN/OUT */ 947 vm_size_t length, boolean_t find_space, vm_prot_t prot, 948 vm_prot_t max, int cow) 949 { 950 vm_offset_t start; 951 int result, s = 0; 952 953 start = *addr; 954 955 if (map == kmem_map) 956 s = splvm(); 957 958 vm_map_lock(map); 959 if (find_space) { 960 if (vm_map_findspace(map, start, length, addr)) { 961 vm_map_unlock(map); 962 if (map == kmem_map) 963 splx(s); 964 return (KERN_NO_SPACE); 965 } 966 start = *addr; 967 } 968 result = vm_map_insert(map, object, offset, 969 start, start + length, prot, max, cow); 970 vm_map_unlock(map); 971 972 if (map == kmem_map) 973 splx(s); 974 975 return (result); 976 } 977 978 /* 979 * vm_map_simplify_entry: 980 * 981 * Simplify the given map entry by merging with either neighbor. This 982 * routine also has the ability to merge with both neighbors. 983 * 984 * The map must be locked. 985 * 986 * This routine guarentees that the passed entry remains valid (though 987 * possibly extended). When merging, this routine may delete one or 988 * both neighbors. 989 */ 990 void 991 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry) 992 { 993 vm_map_entry_t next, prev; 994 vm_size_t prevsize, esize; 995 996 if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) 997 return; 998 999 prev = entry->prev; 1000 if (prev != &map->header) { 1001 prevsize = prev->end - prev->start; 1002 if ( (prev->end == entry->start) && 1003 (prev->object.vm_object == entry->object.vm_object) && 1004 (!prev->object.vm_object || 1005 (prev->offset + prevsize == entry->offset)) && 1006 (prev->eflags == entry->eflags) && 1007 (prev->protection == entry->protection) && 1008 (prev->max_protection == entry->max_protection) && 1009 (prev->inheritance == entry->inheritance) && 1010 (prev->wired_count == entry->wired_count)) { 1011 if (map->first_free == prev) 1012 map->first_free = entry; 1013 vm_map_entry_unlink(map, prev); 1014 entry->start = prev->start; 1015 entry->offset = prev->offset; 1016 if (prev->object.vm_object) 1017 vm_object_deallocate(prev->object.vm_object); 1018 vm_map_entry_dispose(map, prev); 1019 } 1020 } 1021 1022 next = entry->next; 1023 if (next != &map->header) { 1024 esize = entry->end - entry->start; 1025 if ((entry->end == next->start) && 1026 (next->object.vm_object == entry->object.vm_object) && 1027 (!entry->object.vm_object || 1028 (entry->offset + esize == next->offset)) && 1029 (next->eflags == entry->eflags) && 1030 (next->protection == entry->protection) && 1031 (next->max_protection == entry->max_protection) && 1032 (next->inheritance == entry->inheritance) && 1033 (next->wired_count == entry->wired_count)) { 1034 if (map->first_free == next) 1035 map->first_free = entry; 1036 vm_map_entry_unlink(map, next); 1037 entry->end = next->end; 1038 if (next->object.vm_object) 1039 vm_object_deallocate(next->object.vm_object); 1040 vm_map_entry_dispose(map, next); 1041 } 1042 } 1043 } 1044 /* 1045 * vm_map_clip_start: [ internal use only ] 1046 * 1047 * Asserts that the given entry begins at or after 1048 * the specified address; if necessary, 1049 * it splits the entry into two. 1050 */ 1051 #define vm_map_clip_start(map, entry, startaddr) \ 1052 { \ 1053 if (startaddr > entry->start) \ 1054 _vm_map_clip_start(map, entry, startaddr); \ 1055 } 1056 1057 /* 1058 * This routine is called only when it is known that 1059 * the entry must be split. 1060 */ 1061 static void 1062 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start) 1063 { 1064 vm_map_entry_t new_entry; 1065 1066 /* 1067 * Split off the front portion -- note that we must insert the new 1068 * entry BEFORE this one, so that this entry has the specified 1069 * starting address. 1070 */ 1071 vm_map_simplify_entry(map, entry); 1072 1073 /* 1074 * If there is no object backing this entry, we might as well create 1075 * one now. If we defer it, an object can get created after the map 1076 * is clipped, and individual objects will be created for the split-up 1077 * map. This is a bit of a hack, but is also about the best place to 1078 * put this improvement. 1079 */ 1080 if (entry->object.vm_object == NULL && !map->system_map) { 1081 vm_object_t object; 1082 object = vm_object_allocate(OBJT_DEFAULT, 1083 atop(entry->end - entry->start)); 1084 entry->object.vm_object = object; 1085 entry->offset = 0; 1086 } 1087 1088 new_entry = vm_map_entry_create(map); 1089 *new_entry = *entry; 1090 1091 new_entry->end = start; 1092 entry->offset += (start - entry->start); 1093 entry->start = start; 1094 1095 vm_map_entry_link(map, entry->prev, new_entry); 1096 1097 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1098 vm_object_reference(new_entry->object.vm_object); 1099 } 1100 } 1101 1102 /* 1103 * vm_map_clip_end: [ internal use only ] 1104 * 1105 * Asserts that the given entry ends at or before 1106 * the specified address; if necessary, 1107 * it splits the entry into two. 1108 */ 1109 #define vm_map_clip_end(map, entry, endaddr) \ 1110 { \ 1111 if ((endaddr) < (entry->end)) \ 1112 _vm_map_clip_end((map), (entry), (endaddr)); \ 1113 } 1114 1115 /* 1116 * This routine is called only when it is known that 1117 * the entry must be split. 1118 */ 1119 static void 1120 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end) 1121 { 1122 vm_map_entry_t new_entry; 1123 1124 /* 1125 * If there is no object backing this entry, we might as well create 1126 * one now. If we defer it, an object can get created after the map 1127 * is clipped, and individual objects will be created for the split-up 1128 * map. This is a bit of a hack, but is also about the best place to 1129 * put this improvement. 1130 */ 1131 if (entry->object.vm_object == NULL && !map->system_map) { 1132 vm_object_t object; 1133 object = vm_object_allocate(OBJT_DEFAULT, 1134 atop(entry->end - entry->start)); 1135 entry->object.vm_object = object; 1136 entry->offset = 0; 1137 } 1138 1139 /* 1140 * Create a new entry and insert it AFTER the specified entry 1141 */ 1142 new_entry = vm_map_entry_create(map); 1143 *new_entry = *entry; 1144 1145 new_entry->start = entry->end = end; 1146 new_entry->offset += (end - entry->start); 1147 1148 vm_map_entry_link(map, entry, new_entry); 1149 1150 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1151 vm_object_reference(new_entry->object.vm_object); 1152 } 1153 } 1154 1155 /* 1156 * VM_MAP_RANGE_CHECK: [ internal use only ] 1157 * 1158 * Asserts that the starting and ending region 1159 * addresses fall within the valid range of the map. 1160 */ 1161 #define VM_MAP_RANGE_CHECK(map, start, end) \ 1162 { \ 1163 if (start < vm_map_min(map)) \ 1164 start = vm_map_min(map); \ 1165 if (end > vm_map_max(map)) \ 1166 end = vm_map_max(map); \ 1167 if (start > end) \ 1168 start = end; \ 1169 } 1170 1171 /* 1172 * vm_map_submap: [ kernel use only ] 1173 * 1174 * Mark the given range as handled by a subordinate map. 1175 * 1176 * This range must have been created with vm_map_find, 1177 * and no other operations may have been performed on this 1178 * range prior to calling vm_map_submap. 1179 * 1180 * Only a limited number of operations can be performed 1181 * within this rage after calling vm_map_submap: 1182 * vm_fault 1183 * [Don't try vm_map_copy!] 1184 * 1185 * To remove a submapping, one must first remove the 1186 * range from the superior map, and then destroy the 1187 * submap (if desired). [Better yet, don't try it.] 1188 */ 1189 int 1190 vm_map_submap( 1191 vm_map_t map, 1192 vm_offset_t start, 1193 vm_offset_t end, 1194 vm_map_t submap) 1195 { 1196 vm_map_entry_t entry; 1197 int result = KERN_INVALID_ARGUMENT; 1198 1199 vm_map_lock(map); 1200 1201 VM_MAP_RANGE_CHECK(map, start, end); 1202 1203 if (vm_map_lookup_entry(map, start, &entry)) { 1204 vm_map_clip_start(map, entry, start); 1205 } else 1206 entry = entry->next; 1207 1208 vm_map_clip_end(map, entry, end); 1209 1210 if ((entry->start == start) && (entry->end == end) && 1211 ((entry->eflags & MAP_ENTRY_COW) == 0) && 1212 (entry->object.vm_object == NULL)) { 1213 entry->object.sub_map = submap; 1214 entry->eflags |= MAP_ENTRY_IS_SUB_MAP; 1215 result = KERN_SUCCESS; 1216 } 1217 vm_map_unlock(map); 1218 1219 return (result); 1220 } 1221 1222 /* 1223 * vm_map_protect: 1224 * 1225 * Sets the protection of the specified address 1226 * region in the target map. If "set_max" is 1227 * specified, the maximum protection is to be set; 1228 * otherwise, only the current protection is affected. 1229 */ 1230 int 1231 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 1232 vm_prot_t new_prot, boolean_t set_max) 1233 { 1234 vm_map_entry_t current; 1235 vm_map_entry_t entry; 1236 1237 vm_map_lock(map); 1238 1239 VM_MAP_RANGE_CHECK(map, start, end); 1240 1241 if (vm_map_lookup_entry(map, start, &entry)) { 1242 vm_map_clip_start(map, entry, start); 1243 } else { 1244 entry = entry->next; 1245 } 1246 1247 /* 1248 * Make a first pass to check for protection violations. 1249 */ 1250 current = entry; 1251 while ((current != &map->header) && (current->start < end)) { 1252 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 1253 vm_map_unlock(map); 1254 return (KERN_INVALID_ARGUMENT); 1255 } 1256 if ((new_prot & current->max_protection) != new_prot) { 1257 vm_map_unlock(map); 1258 return (KERN_PROTECTION_FAILURE); 1259 } 1260 current = current->next; 1261 } 1262 1263 /* 1264 * Go back and fix up protections. [Note that clipping is not 1265 * necessary the second time.] 1266 */ 1267 current = entry; 1268 while ((current != &map->header) && (current->start < end)) { 1269 vm_prot_t old_prot; 1270 1271 vm_map_clip_end(map, current, end); 1272 1273 old_prot = current->protection; 1274 if (set_max) 1275 current->protection = 1276 (current->max_protection = new_prot) & 1277 old_prot; 1278 else 1279 current->protection = new_prot; 1280 1281 /* 1282 * Update physical map if necessary. Worry about copy-on-write 1283 * here -- CHECK THIS XXX 1284 */ 1285 if (current->protection != old_prot) { 1286 mtx_lock(&Giant); 1287 vm_page_lock_queues(); 1288 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 1289 VM_PROT_ALL) 1290 pmap_protect(map->pmap, current->start, 1291 current->end, 1292 current->protection & MASK(current)); 1293 #undef MASK 1294 vm_page_unlock_queues(); 1295 mtx_unlock(&Giant); 1296 } 1297 vm_map_simplify_entry(map, current); 1298 current = current->next; 1299 } 1300 vm_map_unlock(map); 1301 return (KERN_SUCCESS); 1302 } 1303 1304 /* 1305 * vm_map_madvise: 1306 * 1307 * This routine traverses a processes map handling the madvise 1308 * system call. Advisories are classified as either those effecting 1309 * the vm_map_entry structure, or those effecting the underlying 1310 * objects. 1311 */ 1312 int 1313 vm_map_madvise( 1314 vm_map_t map, 1315 vm_offset_t start, 1316 vm_offset_t end, 1317 int behav) 1318 { 1319 vm_map_entry_t current, entry; 1320 int modify_map = 0; 1321 1322 /* 1323 * Some madvise calls directly modify the vm_map_entry, in which case 1324 * we need to use an exclusive lock on the map and we need to perform 1325 * various clipping operations. Otherwise we only need a read-lock 1326 * on the map. 1327 */ 1328 switch(behav) { 1329 case MADV_NORMAL: 1330 case MADV_SEQUENTIAL: 1331 case MADV_RANDOM: 1332 case MADV_NOSYNC: 1333 case MADV_AUTOSYNC: 1334 case MADV_NOCORE: 1335 case MADV_CORE: 1336 modify_map = 1; 1337 vm_map_lock(map); 1338 break; 1339 case MADV_WILLNEED: 1340 case MADV_DONTNEED: 1341 case MADV_FREE: 1342 vm_map_lock_read(map); 1343 break; 1344 default: 1345 return (KERN_INVALID_ARGUMENT); 1346 } 1347 1348 /* 1349 * Locate starting entry and clip if necessary. 1350 */ 1351 VM_MAP_RANGE_CHECK(map, start, end); 1352 1353 if (vm_map_lookup_entry(map, start, &entry)) { 1354 if (modify_map) 1355 vm_map_clip_start(map, entry, start); 1356 } else { 1357 entry = entry->next; 1358 } 1359 1360 if (modify_map) { 1361 /* 1362 * madvise behaviors that are implemented in the vm_map_entry. 1363 * 1364 * We clip the vm_map_entry so that behavioral changes are 1365 * limited to the specified address range. 1366 */ 1367 for (current = entry; 1368 (current != &map->header) && (current->start < end); 1369 current = current->next 1370 ) { 1371 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 1372 continue; 1373 1374 vm_map_clip_end(map, current, end); 1375 1376 switch (behav) { 1377 case MADV_NORMAL: 1378 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL); 1379 break; 1380 case MADV_SEQUENTIAL: 1381 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL); 1382 break; 1383 case MADV_RANDOM: 1384 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM); 1385 break; 1386 case MADV_NOSYNC: 1387 current->eflags |= MAP_ENTRY_NOSYNC; 1388 break; 1389 case MADV_AUTOSYNC: 1390 current->eflags &= ~MAP_ENTRY_NOSYNC; 1391 break; 1392 case MADV_NOCORE: 1393 current->eflags |= MAP_ENTRY_NOCOREDUMP; 1394 break; 1395 case MADV_CORE: 1396 current->eflags &= ~MAP_ENTRY_NOCOREDUMP; 1397 break; 1398 default: 1399 break; 1400 } 1401 vm_map_simplify_entry(map, current); 1402 } 1403 vm_map_unlock(map); 1404 } else { 1405 vm_pindex_t pindex; 1406 int count; 1407 1408 /* 1409 * madvise behaviors that are implemented in the underlying 1410 * vm_object. 1411 * 1412 * Since we don't clip the vm_map_entry, we have to clip 1413 * the vm_object pindex and count. 1414 */ 1415 for (current = entry; 1416 (current != &map->header) && (current->start < end); 1417 current = current->next 1418 ) { 1419 vm_offset_t useStart; 1420 1421 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 1422 continue; 1423 1424 pindex = OFF_TO_IDX(current->offset); 1425 count = atop(current->end - current->start); 1426 useStart = current->start; 1427 1428 if (current->start < start) { 1429 pindex += atop(start - current->start); 1430 count -= atop(start - current->start); 1431 useStart = start; 1432 } 1433 if (current->end > end) 1434 count -= atop(current->end - end); 1435 1436 if (count <= 0) 1437 continue; 1438 1439 vm_object_madvise(current->object.vm_object, 1440 pindex, count, behav); 1441 if (behav == MADV_WILLNEED) { 1442 mtx_lock(&Giant); 1443 pmap_object_init_pt( 1444 map->pmap, 1445 useStart, 1446 current->object.vm_object, 1447 pindex, 1448 (count << PAGE_SHIFT), 1449 MAP_PREFAULT_MADVISE 1450 ); 1451 mtx_unlock(&Giant); 1452 } 1453 } 1454 vm_map_unlock_read(map); 1455 } 1456 return (0); 1457 } 1458 1459 1460 /* 1461 * vm_map_inherit: 1462 * 1463 * Sets the inheritance of the specified address 1464 * range in the target map. Inheritance 1465 * affects how the map will be shared with 1466 * child maps at the time of vm_map_fork. 1467 */ 1468 int 1469 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 1470 vm_inherit_t new_inheritance) 1471 { 1472 vm_map_entry_t entry; 1473 vm_map_entry_t temp_entry; 1474 1475 switch (new_inheritance) { 1476 case VM_INHERIT_NONE: 1477 case VM_INHERIT_COPY: 1478 case VM_INHERIT_SHARE: 1479 break; 1480 default: 1481 return (KERN_INVALID_ARGUMENT); 1482 } 1483 vm_map_lock(map); 1484 VM_MAP_RANGE_CHECK(map, start, end); 1485 if (vm_map_lookup_entry(map, start, &temp_entry)) { 1486 entry = temp_entry; 1487 vm_map_clip_start(map, entry, start); 1488 } else 1489 entry = temp_entry->next; 1490 while ((entry != &map->header) && (entry->start < end)) { 1491 vm_map_clip_end(map, entry, end); 1492 entry->inheritance = new_inheritance; 1493 vm_map_simplify_entry(map, entry); 1494 entry = entry->next; 1495 } 1496 vm_map_unlock(map); 1497 return (KERN_SUCCESS); 1498 } 1499 1500 /* 1501 * vm_map_unwire: 1502 * 1503 * Implements both kernel and user unwiring. 1504 */ 1505 int 1506 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end, 1507 boolean_t user_unwire) 1508 { 1509 vm_map_entry_t entry, first_entry, tmp_entry; 1510 vm_offset_t saved_start; 1511 unsigned int last_timestamp; 1512 int rv; 1513 boolean_t need_wakeup, result; 1514 1515 vm_map_lock(map); 1516 VM_MAP_RANGE_CHECK(map, start, end); 1517 if (!vm_map_lookup_entry(map, start, &first_entry)) { 1518 vm_map_unlock(map); 1519 return (KERN_INVALID_ADDRESS); 1520 } 1521 last_timestamp = map->timestamp; 1522 entry = first_entry; 1523 while (entry != &map->header && entry->start < end) { 1524 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 1525 /* 1526 * We have not yet clipped the entry. 1527 */ 1528 saved_start = (start >= entry->start) ? start : 1529 entry->start; 1530 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 1531 if (vm_map_unlock_and_wait(map, user_unwire)) { 1532 /* 1533 * Allow interruption of user unwiring? 1534 */ 1535 } 1536 vm_map_lock(map); 1537 if (last_timestamp+1 != map->timestamp) { 1538 /* 1539 * Look again for the entry because the map was 1540 * modified while it was unlocked. 1541 * Specifically, the entry may have been 1542 * clipped, merged, or deleted. 1543 */ 1544 if (!vm_map_lookup_entry(map, saved_start, 1545 &tmp_entry)) { 1546 if (saved_start == start) { 1547 /* 1548 * First_entry has been deleted. 1549 */ 1550 vm_map_unlock(map); 1551 return (KERN_INVALID_ADDRESS); 1552 } 1553 end = saved_start; 1554 rv = KERN_INVALID_ADDRESS; 1555 goto done; 1556 } 1557 if (entry == first_entry) 1558 first_entry = tmp_entry; 1559 else 1560 first_entry = NULL; 1561 entry = tmp_entry; 1562 } 1563 last_timestamp = map->timestamp; 1564 continue; 1565 } 1566 vm_map_clip_start(map, entry, start); 1567 vm_map_clip_end(map, entry, end); 1568 /* 1569 * Mark the entry in case the map lock is released. (See 1570 * above.) 1571 */ 1572 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 1573 /* 1574 * Check the map for holes in the specified region. 1575 */ 1576 if (entry->end < end && (entry->next == &map->header || 1577 entry->next->start > entry->end)) { 1578 end = entry->end; 1579 rv = KERN_INVALID_ADDRESS; 1580 goto done; 1581 } 1582 /* 1583 * Require that the entry is wired. 1584 */ 1585 if (entry->wired_count == 0 || (user_unwire && 1586 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0)) { 1587 end = entry->end; 1588 rv = KERN_INVALID_ARGUMENT; 1589 goto done; 1590 } 1591 entry = entry->next; 1592 } 1593 rv = KERN_SUCCESS; 1594 done: 1595 need_wakeup = FALSE; 1596 if (first_entry == NULL) { 1597 result = vm_map_lookup_entry(map, start, &first_entry); 1598 KASSERT(result, ("vm_map_unwire: lookup failed")); 1599 } 1600 entry = first_entry; 1601 while (entry != &map->header && entry->start < end) { 1602 if (rv == KERN_SUCCESS) { 1603 if (user_unwire) 1604 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 1605 entry->wired_count--; 1606 if (entry->wired_count == 0) { 1607 /* 1608 * Retain the map lock. 1609 */ 1610 vm_fault_unwire(map, entry->start, entry->end); 1611 } 1612 } 1613 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, 1614 ("vm_map_unwire: in-transition flag missing")); 1615 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 1616 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 1617 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 1618 need_wakeup = TRUE; 1619 } 1620 vm_map_simplify_entry(map, entry); 1621 entry = entry->next; 1622 } 1623 vm_map_unlock(map); 1624 if (need_wakeup) 1625 vm_map_wakeup(map); 1626 return (rv); 1627 } 1628 1629 /* 1630 * vm_map_wire: 1631 * 1632 * Implements both kernel and user wiring. 1633 */ 1634 int 1635 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, 1636 boolean_t user_wire) 1637 { 1638 vm_map_entry_t entry, first_entry, tmp_entry; 1639 vm_offset_t saved_end, saved_start; 1640 unsigned int last_timestamp; 1641 int rv; 1642 boolean_t need_wakeup, result; 1643 1644 vm_map_lock(map); 1645 VM_MAP_RANGE_CHECK(map, start, end); 1646 if (!vm_map_lookup_entry(map, start, &first_entry)) { 1647 vm_map_unlock(map); 1648 return (KERN_INVALID_ADDRESS); 1649 } 1650 last_timestamp = map->timestamp; 1651 entry = first_entry; 1652 while (entry != &map->header && entry->start < end) { 1653 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 1654 /* 1655 * We have not yet clipped the entry. 1656 */ 1657 saved_start = (start >= entry->start) ? start : 1658 entry->start; 1659 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 1660 if (vm_map_unlock_and_wait(map, user_wire)) { 1661 /* 1662 * Allow interruption of user wiring? 1663 */ 1664 } 1665 vm_map_lock(map); 1666 if (last_timestamp + 1 != map->timestamp) { 1667 /* 1668 * Look again for the entry because the map was 1669 * modified while it was unlocked. 1670 * Specifically, the entry may have been 1671 * clipped, merged, or deleted. 1672 */ 1673 if (!vm_map_lookup_entry(map, saved_start, 1674 &tmp_entry)) { 1675 if (saved_start == start) { 1676 /* 1677 * first_entry has been deleted. 1678 */ 1679 vm_map_unlock(map); 1680 return (KERN_INVALID_ADDRESS); 1681 } 1682 end = saved_start; 1683 rv = KERN_INVALID_ADDRESS; 1684 goto done; 1685 } 1686 if (entry == first_entry) 1687 first_entry = tmp_entry; 1688 else 1689 first_entry = NULL; 1690 entry = tmp_entry; 1691 } 1692 last_timestamp = map->timestamp; 1693 continue; 1694 } 1695 vm_map_clip_start(map, entry, start); 1696 vm_map_clip_end(map, entry, end); 1697 /* 1698 * Mark the entry in case the map lock is released. (See 1699 * above.) 1700 */ 1701 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 1702 /* 1703 * 1704 */ 1705 if (entry->wired_count == 0) { 1706 entry->wired_count++; 1707 saved_start = entry->start; 1708 saved_end = entry->end; 1709 /* 1710 * Release the map lock, relying on the in-transition 1711 * mark. 1712 */ 1713 vm_map_unlock(map); 1714 rv = vm_fault_wire(map, saved_start, saved_end, 1715 user_wire); 1716 vm_map_lock(map); 1717 if (last_timestamp + 1 != map->timestamp) { 1718 /* 1719 * Look again for the entry because the map was 1720 * modified while it was unlocked. The entry 1721 * may have been clipped, but NOT merged or 1722 * deleted. 1723 */ 1724 result = vm_map_lookup_entry(map, saved_start, 1725 &tmp_entry); 1726 KASSERT(result, ("vm_map_wire: lookup failed")); 1727 if (entry == first_entry) 1728 first_entry = tmp_entry; 1729 else 1730 first_entry = NULL; 1731 entry = tmp_entry; 1732 while (entry->end < saved_end) { 1733 if (rv != KERN_SUCCESS) { 1734 KASSERT(entry->wired_count == 1, 1735 ("vm_map_wire: bad count")); 1736 entry->wired_count = -1; 1737 } 1738 entry = entry->next; 1739 } 1740 } 1741 last_timestamp = map->timestamp; 1742 if (rv != KERN_SUCCESS) { 1743 KASSERT(entry->wired_count == 1, 1744 ("vm_map_wire: bad count")); 1745 /* 1746 * Assign an out-of-range value to represent 1747 * the failure to wire this entry. 1748 */ 1749 entry->wired_count = -1; 1750 end = entry->end; 1751 goto done; 1752 } 1753 } else if (!user_wire || 1754 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 1755 entry->wired_count++; 1756 } 1757 /* 1758 * Check the map for holes in the specified region. 1759 */ 1760 if (entry->end < end && (entry->next == &map->header || 1761 entry->next->start > entry->end)) { 1762 end = entry->end; 1763 rv = KERN_INVALID_ADDRESS; 1764 goto done; 1765 } 1766 entry = entry->next; 1767 } 1768 rv = KERN_SUCCESS; 1769 done: 1770 need_wakeup = FALSE; 1771 if (first_entry == NULL) { 1772 result = vm_map_lookup_entry(map, start, &first_entry); 1773 KASSERT(result, ("vm_map_wire: lookup failed")); 1774 } 1775 entry = first_entry; 1776 while (entry != &map->header && entry->start < end) { 1777 if (rv == KERN_SUCCESS) { 1778 if (user_wire) 1779 entry->eflags |= MAP_ENTRY_USER_WIRED; 1780 } else if (entry->wired_count == -1) { 1781 /* 1782 * Wiring failed on this entry. Thus, unwiring is 1783 * unnecessary. 1784 */ 1785 entry->wired_count = 0; 1786 } else { 1787 if (!user_wire || 1788 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) 1789 entry->wired_count--; 1790 if (entry->wired_count == 0) { 1791 /* 1792 * Retain the map lock. 1793 */ 1794 vm_fault_unwire(map, entry->start, entry->end); 1795 } 1796 } 1797 KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION, 1798 ("vm_map_wire: in-transition flag missing")); 1799 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 1800 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 1801 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 1802 need_wakeup = TRUE; 1803 } 1804 vm_map_simplify_entry(map, entry); 1805 entry = entry->next; 1806 } 1807 vm_map_unlock(map); 1808 if (need_wakeup) 1809 vm_map_wakeup(map); 1810 return (rv); 1811 } 1812 1813 /* 1814 * vm_map_clean 1815 * 1816 * Push any dirty cached pages in the address range to their pager. 1817 * If syncio is TRUE, dirty pages are written synchronously. 1818 * If invalidate is TRUE, any cached pages are freed as well. 1819 * 1820 * Returns an error if any part of the specified range is not mapped. 1821 */ 1822 int 1823 vm_map_clean( 1824 vm_map_t map, 1825 vm_offset_t start, 1826 vm_offset_t end, 1827 boolean_t syncio, 1828 boolean_t invalidate) 1829 { 1830 vm_map_entry_t current; 1831 vm_map_entry_t entry; 1832 vm_size_t size; 1833 vm_object_t object; 1834 vm_ooffset_t offset; 1835 1836 GIANT_REQUIRED; 1837 1838 vm_map_lock_read(map); 1839 VM_MAP_RANGE_CHECK(map, start, end); 1840 if (!vm_map_lookup_entry(map, start, &entry)) { 1841 vm_map_unlock_read(map); 1842 return (KERN_INVALID_ADDRESS); 1843 } 1844 /* 1845 * Make a first pass to check for holes. 1846 */ 1847 for (current = entry; current->start < end; current = current->next) { 1848 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 1849 vm_map_unlock_read(map); 1850 return (KERN_INVALID_ARGUMENT); 1851 } 1852 if (end > current->end && 1853 (current->next == &map->header || 1854 current->end != current->next->start)) { 1855 vm_map_unlock_read(map); 1856 return (KERN_INVALID_ADDRESS); 1857 } 1858 } 1859 1860 if (invalidate) 1861 pmap_remove(vm_map_pmap(map), start, end); 1862 /* 1863 * Make a second pass, cleaning/uncaching pages from the indicated 1864 * objects as we go. 1865 */ 1866 for (current = entry; current->start < end; current = current->next) { 1867 offset = current->offset + (start - current->start); 1868 size = (end <= current->end ? end : current->end) - start; 1869 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 1870 vm_map_t smap; 1871 vm_map_entry_t tentry; 1872 vm_size_t tsize; 1873 1874 smap = current->object.sub_map; 1875 vm_map_lock_read(smap); 1876 (void) vm_map_lookup_entry(smap, offset, &tentry); 1877 tsize = tentry->end - offset; 1878 if (tsize < size) 1879 size = tsize; 1880 object = tentry->object.vm_object; 1881 offset = tentry->offset + (offset - tentry->start); 1882 vm_map_unlock_read(smap); 1883 } else { 1884 object = current->object.vm_object; 1885 } 1886 /* 1887 * Note that there is absolutely no sense in writing out 1888 * anonymous objects, so we track down the vnode object 1889 * to write out. 1890 * We invalidate (remove) all pages from the address space 1891 * anyway, for semantic correctness. 1892 * 1893 * note: certain anonymous maps, such as MAP_NOSYNC maps, 1894 * may start out with a NULL object. 1895 */ 1896 while (object && object->backing_object) { 1897 object = object->backing_object; 1898 offset += object->backing_object_offset; 1899 if (object->size < OFF_TO_IDX(offset + size)) 1900 size = IDX_TO_OFF(object->size) - offset; 1901 } 1902 if (object && (object->type == OBJT_VNODE) && 1903 (current->protection & VM_PROT_WRITE)) { 1904 /* 1905 * Flush pages if writing is allowed, invalidate them 1906 * if invalidation requested. Pages undergoing I/O 1907 * will be ignored by vm_object_page_remove(). 1908 * 1909 * We cannot lock the vnode and then wait for paging 1910 * to complete without deadlocking against vm_fault. 1911 * Instead we simply call vm_object_page_remove() and 1912 * allow it to block internally on a page-by-page 1913 * basis when it encounters pages undergoing async 1914 * I/O. 1915 */ 1916 int flags; 1917 1918 vm_object_reference(object); 1919 vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY, curthread); 1920 flags = (syncio || invalidate) ? OBJPC_SYNC : 0; 1921 flags |= invalidate ? OBJPC_INVAL : 0; 1922 vm_object_page_clean(object, 1923 OFF_TO_IDX(offset), 1924 OFF_TO_IDX(offset + size + PAGE_MASK), 1925 flags); 1926 VOP_UNLOCK(object->handle, 0, curthread); 1927 vm_object_deallocate(object); 1928 } 1929 if (object && invalidate && 1930 ((object->type == OBJT_VNODE) || 1931 (object->type == OBJT_DEVICE))) { 1932 vm_object_reference(object); 1933 vm_object_page_remove(object, 1934 OFF_TO_IDX(offset), 1935 OFF_TO_IDX(offset + size + PAGE_MASK), 1936 FALSE); 1937 vm_object_deallocate(object); 1938 } 1939 start += size; 1940 } 1941 1942 vm_map_unlock_read(map); 1943 return (KERN_SUCCESS); 1944 } 1945 1946 /* 1947 * vm_map_entry_unwire: [ internal use only ] 1948 * 1949 * Make the region specified by this entry pageable. 1950 * 1951 * The map in question should be locked. 1952 * [This is the reason for this routine's existence.] 1953 */ 1954 static void 1955 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 1956 { 1957 vm_fault_unwire(map, entry->start, entry->end); 1958 entry->wired_count = 0; 1959 } 1960 1961 /* 1962 * vm_map_entry_delete: [ internal use only ] 1963 * 1964 * Deallocate the given entry from the target map. 1965 */ 1966 static void 1967 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry) 1968 { 1969 vm_map_entry_unlink(map, entry); 1970 map->size -= entry->end - entry->start; 1971 1972 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1973 vm_object_deallocate(entry->object.vm_object); 1974 } 1975 1976 vm_map_entry_dispose(map, entry); 1977 } 1978 1979 /* 1980 * vm_map_delete: [ internal use only ] 1981 * 1982 * Deallocates the given address range from the target 1983 * map. 1984 */ 1985 int 1986 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end) 1987 { 1988 vm_object_t object; 1989 vm_map_entry_t entry; 1990 vm_map_entry_t first_entry; 1991 1992 /* 1993 * Find the start of the region, and clip it 1994 */ 1995 if (!vm_map_lookup_entry(map, start, &first_entry)) 1996 entry = first_entry->next; 1997 else { 1998 entry = first_entry; 1999 vm_map_clip_start(map, entry, start); 2000 } 2001 2002 /* 2003 * Save the free space hint 2004 */ 2005 if (entry == &map->header) { 2006 map->first_free = &map->header; 2007 } else if (map->first_free->start >= start) { 2008 map->first_free = entry->prev; 2009 } 2010 2011 /* 2012 * Step through all entries in this region 2013 */ 2014 while ((entry != &map->header) && (entry->start < end)) { 2015 vm_map_entry_t next; 2016 vm_offset_t s, e; 2017 vm_pindex_t offidxstart, offidxend, count; 2018 2019 /* 2020 * Wait for wiring or unwiring of an entry to complete. 2021 */ 2022 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0) { 2023 unsigned int last_timestamp; 2024 vm_offset_t saved_start; 2025 vm_map_entry_t tmp_entry; 2026 2027 saved_start = entry->start; 2028 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2029 last_timestamp = map->timestamp; 2030 (void) vm_map_unlock_and_wait(map, FALSE); 2031 vm_map_lock(map); 2032 if (last_timestamp + 1 != map->timestamp) { 2033 /* 2034 * Look again for the entry because the map was 2035 * modified while it was unlocked. 2036 * Specifically, the entry may have been 2037 * clipped, merged, or deleted. 2038 */ 2039 if (!vm_map_lookup_entry(map, saved_start, 2040 &tmp_entry)) 2041 entry = tmp_entry->next; 2042 else { 2043 entry = tmp_entry; 2044 vm_map_clip_start(map, entry, 2045 saved_start); 2046 } 2047 } 2048 continue; 2049 } 2050 vm_map_clip_end(map, entry, end); 2051 2052 s = entry->start; 2053 e = entry->end; 2054 next = entry->next; 2055 2056 offidxstart = OFF_TO_IDX(entry->offset); 2057 count = OFF_TO_IDX(e - s); 2058 object = entry->object.vm_object; 2059 2060 /* 2061 * Unwire before removing addresses from the pmap; otherwise, 2062 * unwiring will put the entries back in the pmap. 2063 */ 2064 if (entry->wired_count != 0) { 2065 vm_map_entry_unwire(map, entry); 2066 } 2067 2068 offidxend = offidxstart + count; 2069 2070 if ((object == kernel_object) || (object == kmem_object)) { 2071 vm_object_page_remove(object, offidxstart, offidxend, FALSE); 2072 } else { 2073 mtx_lock(&Giant); 2074 pmap_remove(map->pmap, s, e); 2075 if (object != NULL && 2076 object->ref_count != 1 && 2077 (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING && 2078 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) { 2079 vm_object_collapse(object); 2080 vm_object_page_remove(object, offidxstart, offidxend, FALSE); 2081 if (object->type == OBJT_SWAP) { 2082 swap_pager_freespace(object, offidxstart, count); 2083 } 2084 if (offidxend >= object->size && 2085 offidxstart < object->size) { 2086 object->size = offidxstart; 2087 } 2088 } 2089 mtx_unlock(&Giant); 2090 } 2091 2092 /* 2093 * Delete the entry (which may delete the object) only after 2094 * removing all pmap entries pointing to its pages. 2095 * (Otherwise, its page frames may be reallocated, and any 2096 * modify bits will be set in the wrong object!) 2097 */ 2098 vm_map_entry_delete(map, entry); 2099 entry = next; 2100 } 2101 return (KERN_SUCCESS); 2102 } 2103 2104 /* 2105 * vm_map_remove: 2106 * 2107 * Remove the given address range from the target map. 2108 * This is the exported form of vm_map_delete. 2109 */ 2110 int 2111 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 2112 { 2113 int result, s = 0; 2114 2115 if (map == kmem_map) 2116 s = splvm(); 2117 2118 vm_map_lock(map); 2119 VM_MAP_RANGE_CHECK(map, start, end); 2120 result = vm_map_delete(map, start, end); 2121 vm_map_unlock(map); 2122 2123 if (map == kmem_map) 2124 splx(s); 2125 2126 return (result); 2127 } 2128 2129 /* 2130 * vm_map_check_protection: 2131 * 2132 * Assert that the target map allows the specified 2133 * privilege on the entire address region given. 2134 * The entire region must be allocated. 2135 */ 2136 boolean_t 2137 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 2138 vm_prot_t protection) 2139 { 2140 vm_map_entry_t entry; 2141 vm_map_entry_t tmp_entry; 2142 2143 vm_map_lock_read(map); 2144 if (!vm_map_lookup_entry(map, start, &tmp_entry)) { 2145 vm_map_unlock_read(map); 2146 return (FALSE); 2147 } 2148 entry = tmp_entry; 2149 2150 while (start < end) { 2151 if (entry == &map->header) { 2152 vm_map_unlock_read(map); 2153 return (FALSE); 2154 } 2155 /* 2156 * No holes allowed! 2157 */ 2158 if (start < entry->start) { 2159 vm_map_unlock_read(map); 2160 return (FALSE); 2161 } 2162 /* 2163 * Check protection associated with entry. 2164 */ 2165 if ((entry->protection & protection) != protection) { 2166 vm_map_unlock_read(map); 2167 return (FALSE); 2168 } 2169 /* go to next entry */ 2170 start = entry->end; 2171 entry = entry->next; 2172 } 2173 vm_map_unlock_read(map); 2174 return (TRUE); 2175 } 2176 2177 /* 2178 * vm_map_copy_entry: 2179 * 2180 * Copies the contents of the source entry to the destination 2181 * entry. The entries *must* be aligned properly. 2182 */ 2183 static void 2184 vm_map_copy_entry( 2185 vm_map_t src_map, 2186 vm_map_t dst_map, 2187 vm_map_entry_t src_entry, 2188 vm_map_entry_t dst_entry) 2189 { 2190 vm_object_t src_object; 2191 2192 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP) 2193 return; 2194 2195 if (src_entry->wired_count == 0) { 2196 2197 /* 2198 * If the source entry is marked needs_copy, it is already 2199 * write-protected. 2200 */ 2201 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) { 2202 vm_page_lock_queues(); 2203 pmap_protect(src_map->pmap, 2204 src_entry->start, 2205 src_entry->end, 2206 src_entry->protection & ~VM_PROT_WRITE); 2207 vm_page_unlock_queues(); 2208 } 2209 2210 /* 2211 * Make a copy of the object. 2212 */ 2213 if ((src_object = src_entry->object.vm_object) != NULL) { 2214 2215 if ((src_object->handle == NULL) && 2216 (src_object->type == OBJT_DEFAULT || 2217 src_object->type == OBJT_SWAP)) { 2218 vm_object_collapse(src_object); 2219 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) { 2220 vm_object_split(src_entry); 2221 src_object = src_entry->object.vm_object; 2222 } 2223 } 2224 2225 vm_object_reference(src_object); 2226 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 2227 dst_entry->object.vm_object = src_object; 2228 src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 2229 dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 2230 dst_entry->offset = src_entry->offset; 2231 } else { 2232 dst_entry->object.vm_object = NULL; 2233 dst_entry->offset = 0; 2234 } 2235 2236 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start, 2237 dst_entry->end - dst_entry->start, src_entry->start); 2238 } else { 2239 /* 2240 * Of course, wired down pages can't be set copy-on-write. 2241 * Cause wired pages to be copied into the new map by 2242 * simulating faults (the new pages are pageable) 2243 */ 2244 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry); 2245 } 2246 } 2247 2248 /* 2249 * vmspace_fork: 2250 * Create a new process vmspace structure and vm_map 2251 * based on those of an existing process. The new map 2252 * is based on the old map, according to the inheritance 2253 * values on the regions in that map. 2254 * 2255 * The source map must not be locked. 2256 */ 2257 struct vmspace * 2258 vmspace_fork(struct vmspace *vm1) 2259 { 2260 struct vmspace *vm2; 2261 vm_map_t old_map = &vm1->vm_map; 2262 vm_map_t new_map; 2263 vm_map_entry_t old_entry; 2264 vm_map_entry_t new_entry; 2265 vm_object_t object; 2266 2267 GIANT_REQUIRED; 2268 2269 vm_map_lock(old_map); 2270 old_map->infork = 1; 2271 2272 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset); 2273 bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy, 2274 (caddr_t) &vm1->vm_endcopy - (caddr_t) &vm1->vm_startcopy); 2275 new_map = &vm2->vm_map; /* XXX */ 2276 new_map->timestamp = 1; 2277 2278 old_entry = old_map->header.next; 2279 2280 while (old_entry != &old_map->header) { 2281 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2282 panic("vm_map_fork: encountered a submap"); 2283 2284 switch (old_entry->inheritance) { 2285 case VM_INHERIT_NONE: 2286 break; 2287 2288 case VM_INHERIT_SHARE: 2289 /* 2290 * Clone the entry, creating the shared object if necessary. 2291 */ 2292 object = old_entry->object.vm_object; 2293 if (object == NULL) { 2294 object = vm_object_allocate(OBJT_DEFAULT, 2295 atop(old_entry->end - old_entry->start)); 2296 old_entry->object.vm_object = object; 2297 old_entry->offset = (vm_offset_t) 0; 2298 } 2299 2300 /* 2301 * Add the reference before calling vm_object_shadow 2302 * to insure that a shadow object is created. 2303 */ 2304 vm_object_reference(object); 2305 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 2306 vm_object_shadow(&old_entry->object.vm_object, 2307 &old_entry->offset, 2308 atop(old_entry->end - old_entry->start)); 2309 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 2310 /* Transfer the second reference too. */ 2311 vm_object_reference( 2312 old_entry->object.vm_object); 2313 vm_object_deallocate(object); 2314 object = old_entry->object.vm_object; 2315 } 2316 vm_object_clear_flag(object, OBJ_ONEMAPPING); 2317 2318 /* 2319 * Clone the entry, referencing the shared object. 2320 */ 2321 new_entry = vm_map_entry_create(new_map); 2322 *new_entry = *old_entry; 2323 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2324 new_entry->wired_count = 0; 2325 2326 /* 2327 * Insert the entry into the new map -- we know we're 2328 * inserting at the end of the new map. 2329 */ 2330 vm_map_entry_link(new_map, new_map->header.prev, 2331 new_entry); 2332 2333 /* 2334 * Update the physical map 2335 */ 2336 pmap_copy(new_map->pmap, old_map->pmap, 2337 new_entry->start, 2338 (old_entry->end - old_entry->start), 2339 old_entry->start); 2340 break; 2341 2342 case VM_INHERIT_COPY: 2343 /* 2344 * Clone the entry and link into the map. 2345 */ 2346 new_entry = vm_map_entry_create(new_map); 2347 *new_entry = *old_entry; 2348 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2349 new_entry->wired_count = 0; 2350 new_entry->object.vm_object = NULL; 2351 vm_map_entry_link(new_map, new_map->header.prev, 2352 new_entry); 2353 vm_map_copy_entry(old_map, new_map, old_entry, 2354 new_entry); 2355 break; 2356 } 2357 old_entry = old_entry->next; 2358 } 2359 2360 new_map->size = old_map->size; 2361 old_map->infork = 0; 2362 vm_map_unlock(old_map); 2363 2364 return (vm2); 2365 } 2366 2367 int 2368 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 2369 vm_prot_t prot, vm_prot_t max, int cow) 2370 { 2371 vm_map_entry_t prev_entry; 2372 vm_map_entry_t new_stack_entry; 2373 vm_size_t init_ssize; 2374 int rv; 2375 2376 if (addrbos < vm_map_min(map)) 2377 return (KERN_NO_SPACE); 2378 2379 if (max_ssize < sgrowsiz) 2380 init_ssize = max_ssize; 2381 else 2382 init_ssize = sgrowsiz; 2383 2384 vm_map_lock(map); 2385 2386 /* If addr is already mapped, no go */ 2387 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) { 2388 vm_map_unlock(map); 2389 return (KERN_NO_SPACE); 2390 } 2391 2392 /* If we would blow our VMEM resource limit, no go */ 2393 if (map->size + init_ssize > 2394 curthread->td_proc->p_rlimit[RLIMIT_VMEM].rlim_cur) { 2395 vm_map_unlock(map); 2396 return (KERN_NO_SPACE); 2397 } 2398 2399 /* If we can't accomodate max_ssize in the current mapping, 2400 * no go. However, we need to be aware that subsequent user 2401 * mappings might map into the space we have reserved for 2402 * stack, and currently this space is not protected. 2403 * 2404 * Hopefully we will at least detect this condition 2405 * when we try to grow the stack. 2406 */ 2407 if ((prev_entry->next != &map->header) && 2408 (prev_entry->next->start < addrbos + max_ssize)) { 2409 vm_map_unlock(map); 2410 return (KERN_NO_SPACE); 2411 } 2412 2413 /* We initially map a stack of only init_ssize. We will 2414 * grow as needed later. Since this is to be a grow 2415 * down stack, we map at the top of the range. 2416 * 2417 * Note: we would normally expect prot and max to be 2418 * VM_PROT_ALL, and cow to be 0. Possibly we should 2419 * eliminate these as input parameters, and just 2420 * pass these values here in the insert call. 2421 */ 2422 rv = vm_map_insert(map, NULL, 0, addrbos + max_ssize - init_ssize, 2423 addrbos + max_ssize, prot, max, cow); 2424 2425 /* Now set the avail_ssize amount */ 2426 if (rv == KERN_SUCCESS){ 2427 if (prev_entry != &map->header) 2428 vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize); 2429 new_stack_entry = prev_entry->next; 2430 if (new_stack_entry->end != addrbos + max_ssize || 2431 new_stack_entry->start != addrbos + max_ssize - init_ssize) 2432 panic ("Bad entry start/end for new stack entry"); 2433 else 2434 new_stack_entry->avail_ssize = max_ssize - init_ssize; 2435 } 2436 2437 vm_map_unlock(map); 2438 return (rv); 2439 } 2440 2441 /* Attempts to grow a vm stack entry. Returns KERN_SUCCESS if the 2442 * desired address is already mapped, or if we successfully grow 2443 * the stack. Also returns KERN_SUCCESS if addr is outside the 2444 * stack range (this is strange, but preserves compatibility with 2445 * the grow function in vm_machdep.c). 2446 */ 2447 int 2448 vm_map_growstack (struct proc *p, vm_offset_t addr) 2449 { 2450 vm_map_entry_t prev_entry; 2451 vm_map_entry_t stack_entry; 2452 vm_map_entry_t new_stack_entry; 2453 struct vmspace *vm = p->p_vmspace; 2454 vm_map_t map = &vm->vm_map; 2455 vm_offset_t end; 2456 int grow_amount; 2457 int rv; 2458 int is_procstack; 2459 2460 GIANT_REQUIRED; 2461 2462 Retry: 2463 vm_map_lock_read(map); 2464 2465 /* If addr is already in the entry range, no need to grow.*/ 2466 if (vm_map_lookup_entry(map, addr, &prev_entry)) { 2467 vm_map_unlock_read(map); 2468 return (KERN_SUCCESS); 2469 } 2470 2471 if ((stack_entry = prev_entry->next) == &map->header) { 2472 vm_map_unlock_read(map); 2473 return (KERN_SUCCESS); 2474 } 2475 if (prev_entry == &map->header) 2476 end = stack_entry->start - stack_entry->avail_ssize; 2477 else 2478 end = prev_entry->end; 2479 2480 /* This next test mimics the old grow function in vm_machdep.c. 2481 * It really doesn't quite make sense, but we do it anyway 2482 * for compatibility. 2483 * 2484 * If not growable stack, return success. This signals the 2485 * caller to proceed as he would normally with normal vm. 2486 */ 2487 if (stack_entry->avail_ssize < 1 || 2488 addr >= stack_entry->start || 2489 addr < stack_entry->start - stack_entry->avail_ssize) { 2490 vm_map_unlock_read(map); 2491 return (KERN_SUCCESS); 2492 } 2493 2494 /* Find the minimum grow amount */ 2495 grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE); 2496 if (grow_amount > stack_entry->avail_ssize) { 2497 vm_map_unlock_read(map); 2498 return (KERN_NO_SPACE); 2499 } 2500 2501 /* If there is no longer enough space between the entries 2502 * nogo, and adjust the available space. Note: this 2503 * should only happen if the user has mapped into the 2504 * stack area after the stack was created, and is 2505 * probably an error. 2506 * 2507 * This also effectively destroys any guard page the user 2508 * might have intended by limiting the stack size. 2509 */ 2510 if (grow_amount > stack_entry->start - end) { 2511 if (vm_map_lock_upgrade(map)) 2512 goto Retry; 2513 2514 stack_entry->avail_ssize = stack_entry->start - end; 2515 2516 vm_map_unlock(map); 2517 return (KERN_NO_SPACE); 2518 } 2519 2520 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr; 2521 2522 /* If this is the main process stack, see if we're over the 2523 * stack limit. 2524 */ 2525 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > 2526 p->p_rlimit[RLIMIT_STACK].rlim_cur)) { 2527 vm_map_unlock_read(map); 2528 return (KERN_NO_SPACE); 2529 } 2530 2531 /* Round up the grow amount modulo SGROWSIZ */ 2532 grow_amount = roundup (grow_amount, sgrowsiz); 2533 if (grow_amount > stack_entry->avail_ssize) { 2534 grow_amount = stack_entry->avail_ssize; 2535 } 2536 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > 2537 p->p_rlimit[RLIMIT_STACK].rlim_cur)) { 2538 grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur - 2539 ctob(vm->vm_ssize); 2540 } 2541 2542 /* If we would blow our VMEM resource limit, no go */ 2543 if (map->size + grow_amount > 2544 curthread->td_proc->p_rlimit[RLIMIT_VMEM].rlim_cur) { 2545 vm_map_unlock_read(map); 2546 return (KERN_NO_SPACE); 2547 } 2548 2549 if (vm_map_lock_upgrade(map)) 2550 goto Retry; 2551 2552 /* Get the preliminary new entry start value */ 2553 addr = stack_entry->start - grow_amount; 2554 2555 /* If this puts us into the previous entry, cut back our growth 2556 * to the available space. Also, see the note above. 2557 */ 2558 if (addr < end) { 2559 stack_entry->avail_ssize = stack_entry->start - end; 2560 addr = end; 2561 } 2562 2563 rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start, 2564 p->p_sysent->sv_stackprot, VM_PROT_ALL, 0); 2565 2566 /* Adjust the available stack space by the amount we grew. */ 2567 if (rv == KERN_SUCCESS) { 2568 if (prev_entry != &map->header) 2569 vm_map_clip_end(map, prev_entry, addr); 2570 new_stack_entry = prev_entry->next; 2571 if (new_stack_entry->end != stack_entry->start || 2572 new_stack_entry->start != addr) 2573 panic ("Bad stack grow start/end in new stack entry"); 2574 else { 2575 new_stack_entry->avail_ssize = stack_entry->avail_ssize - 2576 (new_stack_entry->end - 2577 new_stack_entry->start); 2578 if (is_procstack) 2579 vm->vm_ssize += btoc(new_stack_entry->end - 2580 new_stack_entry->start); 2581 } 2582 } 2583 2584 vm_map_unlock(map); 2585 return (rv); 2586 } 2587 2588 /* 2589 * Unshare the specified VM space for exec. If other processes are 2590 * mapped to it, then create a new one. The new vmspace is null. 2591 */ 2592 void 2593 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser) 2594 { 2595 struct vmspace *oldvmspace = p->p_vmspace; 2596 struct vmspace *newvmspace; 2597 2598 GIANT_REQUIRED; 2599 newvmspace = vmspace_alloc(minuser, maxuser); 2600 bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy, 2601 (caddr_t) (newvmspace + 1) - (caddr_t) &newvmspace->vm_startcopy); 2602 /* 2603 * This code is written like this for prototype purposes. The 2604 * goal is to avoid running down the vmspace here, but let the 2605 * other process's that are still using the vmspace to finally 2606 * run it down. Even though there is little or no chance of blocking 2607 * here, it is a good idea to keep this form for future mods. 2608 */ 2609 p->p_vmspace = newvmspace; 2610 pmap_pinit2(vmspace_pmap(newvmspace)); 2611 vmspace_free(oldvmspace); 2612 if (p == curthread->td_proc) /* XXXKSE ? */ 2613 pmap_activate(curthread); 2614 } 2615 2616 /* 2617 * Unshare the specified VM space for forcing COW. This 2618 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 2619 */ 2620 void 2621 vmspace_unshare(struct proc *p) 2622 { 2623 struct vmspace *oldvmspace = p->p_vmspace; 2624 struct vmspace *newvmspace; 2625 2626 GIANT_REQUIRED; 2627 if (oldvmspace->vm_refcnt == 1) 2628 return; 2629 newvmspace = vmspace_fork(oldvmspace); 2630 p->p_vmspace = newvmspace; 2631 pmap_pinit2(vmspace_pmap(newvmspace)); 2632 vmspace_free(oldvmspace); 2633 if (p == curthread->td_proc) /* XXXKSE ? */ 2634 pmap_activate(curthread); 2635 } 2636 2637 /* 2638 * vm_map_lookup: 2639 * 2640 * Finds the VM object, offset, and 2641 * protection for a given virtual address in the 2642 * specified map, assuming a page fault of the 2643 * type specified. 2644 * 2645 * Leaves the map in question locked for read; return 2646 * values are guaranteed until a vm_map_lookup_done 2647 * call is performed. Note that the map argument 2648 * is in/out; the returned map must be used in 2649 * the call to vm_map_lookup_done. 2650 * 2651 * A handle (out_entry) is returned for use in 2652 * vm_map_lookup_done, to make that fast. 2653 * 2654 * If a lookup is requested with "write protection" 2655 * specified, the map may be changed to perform virtual 2656 * copying operations, although the data referenced will 2657 * remain the same. 2658 */ 2659 int 2660 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 2661 vm_offset_t vaddr, 2662 vm_prot_t fault_typea, 2663 vm_map_entry_t *out_entry, /* OUT */ 2664 vm_object_t *object, /* OUT */ 2665 vm_pindex_t *pindex, /* OUT */ 2666 vm_prot_t *out_prot, /* OUT */ 2667 boolean_t *wired) /* OUT */ 2668 { 2669 vm_map_entry_t entry; 2670 vm_map_t map = *var_map; 2671 vm_prot_t prot; 2672 vm_prot_t fault_type = fault_typea; 2673 2674 RetryLookup:; 2675 /* 2676 * Lookup the faulting address. 2677 */ 2678 2679 vm_map_lock_read(map); 2680 #define RETURN(why) \ 2681 { \ 2682 vm_map_unlock_read(map); \ 2683 return (why); \ 2684 } 2685 2686 /* 2687 * If the map has an interesting hint, try it before calling full 2688 * blown lookup routine. 2689 */ 2690 entry = map->root; 2691 *out_entry = entry; 2692 if (entry == NULL || 2693 (vaddr < entry->start) || (vaddr >= entry->end)) { 2694 /* 2695 * Entry was either not a valid hint, or the vaddr was not 2696 * contained in the entry, so do a full lookup. 2697 */ 2698 if (!vm_map_lookup_entry(map, vaddr, out_entry)) 2699 RETURN(KERN_INVALID_ADDRESS); 2700 2701 entry = *out_entry; 2702 } 2703 2704 /* 2705 * Handle submaps. 2706 */ 2707 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 2708 vm_map_t old_map = map; 2709 2710 *var_map = map = entry->object.sub_map; 2711 vm_map_unlock_read(old_map); 2712 goto RetryLookup; 2713 } 2714 2715 /* 2716 * Check whether this task is allowed to have this page. 2717 * Note the special case for MAP_ENTRY_COW 2718 * pages with an override. This is to implement a forced 2719 * COW for debuggers. 2720 */ 2721 if (fault_type & VM_PROT_OVERRIDE_WRITE) 2722 prot = entry->max_protection; 2723 else 2724 prot = entry->protection; 2725 fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE); 2726 if ((fault_type & prot) != fault_type) { 2727 RETURN(KERN_PROTECTION_FAILURE); 2728 } 2729 if ((entry->eflags & MAP_ENTRY_USER_WIRED) && 2730 (entry->eflags & MAP_ENTRY_COW) && 2731 (fault_type & VM_PROT_WRITE) && 2732 (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) { 2733 RETURN(KERN_PROTECTION_FAILURE); 2734 } 2735 2736 /* 2737 * If this page is not pageable, we have to get it for all possible 2738 * accesses. 2739 */ 2740 *wired = (entry->wired_count != 0); 2741 if (*wired) 2742 prot = fault_type = entry->protection; 2743 2744 /* 2745 * If the entry was copy-on-write, we either ... 2746 */ 2747 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 2748 /* 2749 * If we want to write the page, we may as well handle that 2750 * now since we've got the map locked. 2751 * 2752 * If we don't need to write the page, we just demote the 2753 * permissions allowed. 2754 */ 2755 if (fault_type & VM_PROT_WRITE) { 2756 /* 2757 * Make a new object, and place it in the object 2758 * chain. Note that no new references have appeared 2759 * -- one just moved from the map to the new 2760 * object. 2761 */ 2762 if (vm_map_lock_upgrade(map)) 2763 goto RetryLookup; 2764 2765 vm_object_shadow( 2766 &entry->object.vm_object, 2767 &entry->offset, 2768 atop(entry->end - entry->start)); 2769 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 2770 2771 vm_map_lock_downgrade(map); 2772 } else { 2773 /* 2774 * We're attempting to read a copy-on-write page -- 2775 * don't allow writes. 2776 */ 2777 prot &= ~VM_PROT_WRITE; 2778 } 2779 } 2780 2781 /* 2782 * Create an object if necessary. 2783 */ 2784 if (entry->object.vm_object == NULL && 2785 !map->system_map) { 2786 if (vm_map_lock_upgrade(map)) 2787 goto RetryLookup; 2788 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT, 2789 atop(entry->end - entry->start)); 2790 entry->offset = 0; 2791 vm_map_lock_downgrade(map); 2792 } 2793 2794 /* 2795 * Return the object/offset from this entry. If the entry was 2796 * copy-on-write or empty, it has been fixed up. 2797 */ 2798 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 2799 *object = entry->object.vm_object; 2800 2801 /* 2802 * Return whether this is the only map sharing this data. 2803 */ 2804 *out_prot = prot; 2805 return (KERN_SUCCESS); 2806 2807 #undef RETURN 2808 } 2809 2810 /* 2811 * vm_map_lookup_done: 2812 * 2813 * Releases locks acquired by a vm_map_lookup 2814 * (according to the handle returned by that lookup). 2815 */ 2816 void 2817 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry) 2818 { 2819 /* 2820 * Unlock the main-level map 2821 */ 2822 vm_map_unlock_read(map); 2823 } 2824 2825 #ifdef ENABLE_VFS_IOOPT 2826 /* 2827 * Experimental support for zero-copy I/O 2828 * 2829 * Implement uiomove with VM operations. This handles (and collateral changes) 2830 * support every combination of source object modification, and COW type 2831 * operations. 2832 */ 2833 int 2834 vm_uiomove( 2835 vm_map_t mapa, 2836 vm_object_t srcobject, 2837 off_t cp, 2838 int cnta, 2839 vm_offset_t uaddra, 2840 int *npages) 2841 { 2842 vm_map_t map; 2843 vm_object_t first_object, oldobject, object; 2844 vm_map_entry_t entry; 2845 vm_prot_t prot; 2846 boolean_t wired; 2847 int tcnt, rv; 2848 vm_offset_t uaddr, start, end, tend; 2849 vm_pindex_t first_pindex, oindex; 2850 vm_size_t osize; 2851 off_t ooffset; 2852 int cnt; 2853 2854 GIANT_REQUIRED; 2855 2856 if (npages) 2857 *npages = 0; 2858 2859 cnt = cnta; 2860 uaddr = uaddra; 2861 2862 while (cnt > 0) { 2863 map = mapa; 2864 2865 if ((vm_map_lookup(&map, uaddr, 2866 VM_PROT_READ, &entry, &first_object, 2867 &first_pindex, &prot, &wired)) != KERN_SUCCESS) { 2868 return EFAULT; 2869 } 2870 2871 vm_map_clip_start(map, entry, uaddr); 2872 2873 tcnt = cnt; 2874 tend = uaddr + tcnt; 2875 if (tend > entry->end) { 2876 tcnt = entry->end - uaddr; 2877 tend = entry->end; 2878 } 2879 2880 vm_map_clip_end(map, entry, tend); 2881 2882 start = entry->start; 2883 end = entry->end; 2884 2885 osize = atop(tcnt); 2886 2887 oindex = OFF_TO_IDX(cp); 2888 if (npages) { 2889 vm_size_t idx; 2890 for (idx = 0; idx < osize; idx++) { 2891 vm_page_t m; 2892 if ((m = vm_page_lookup(srcobject, oindex + idx)) == NULL) { 2893 vm_map_lookup_done(map, entry); 2894 return 0; 2895 } 2896 /* 2897 * disallow busy or invalid pages, but allow 2898 * m->busy pages if they are entirely valid. 2899 */ 2900 if ((m->flags & PG_BUSY) || 2901 ((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL)) { 2902 vm_map_lookup_done(map, entry); 2903 return 0; 2904 } 2905 } 2906 } 2907 2908 /* 2909 * If we are changing an existing map entry, just redirect 2910 * the object, and change mappings. 2911 */ 2912 if ((first_object->type == OBJT_VNODE) && 2913 ((oldobject = entry->object.vm_object) == first_object)) { 2914 2915 if ((entry->offset != cp) || (oldobject != srcobject)) { 2916 /* 2917 * Remove old window into the file 2918 */ 2919 pmap_remove (map->pmap, uaddr, tend); 2920 2921 /* 2922 * Force copy on write for mmaped regions 2923 */ 2924 vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize); 2925 2926 /* 2927 * Point the object appropriately 2928 */ 2929 if (oldobject != srcobject) { 2930 2931 /* 2932 * Set the object optimization hint flag 2933 */ 2934 vm_object_set_flag(srcobject, OBJ_OPT); 2935 vm_object_reference(srcobject); 2936 entry->object.vm_object = srcobject; 2937 2938 if (oldobject) { 2939 vm_object_deallocate(oldobject); 2940 } 2941 } 2942 2943 entry->offset = cp; 2944 map->timestamp++; 2945 } else { 2946 pmap_remove (map->pmap, uaddr, tend); 2947 } 2948 2949 } else if ((first_object->ref_count == 1) && 2950 (first_object->size == osize) && 2951 ((first_object->type == OBJT_DEFAULT) || 2952 (first_object->type == OBJT_SWAP)) ) { 2953 2954 oldobject = first_object->backing_object; 2955 2956 if ((first_object->backing_object_offset != cp) || 2957 (oldobject != srcobject)) { 2958 /* 2959 * Remove old window into the file 2960 */ 2961 pmap_remove (map->pmap, uaddr, tend); 2962 2963 /* 2964 * Remove unneeded old pages 2965 */ 2966 vm_object_page_remove(first_object, 0, 0, 0); 2967 2968 /* 2969 * Invalidate swap space 2970 */ 2971 if (first_object->type == OBJT_SWAP) { 2972 swap_pager_freespace(first_object, 2973 0, 2974 first_object->size); 2975 } 2976 2977 /* 2978 * Force copy on write for mmaped regions 2979 */ 2980 vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize); 2981 2982 /* 2983 * Point the object appropriately 2984 */ 2985 if (oldobject != srcobject) { 2986 /* 2987 * Set the object optimization hint flag 2988 */ 2989 vm_object_set_flag(srcobject, OBJ_OPT); 2990 vm_object_reference(srcobject); 2991 2992 if (oldobject) { 2993 TAILQ_REMOVE(&oldobject->shadow_head, 2994 first_object, shadow_list); 2995 oldobject->shadow_count--; 2996 /* XXX bump generation? */ 2997 vm_object_deallocate(oldobject); 2998 } 2999 3000 TAILQ_INSERT_TAIL(&srcobject->shadow_head, 3001 first_object, shadow_list); 3002 srcobject->shadow_count++; 3003 /* XXX bump generation? */ 3004 3005 first_object->backing_object = srcobject; 3006 } 3007 first_object->backing_object_offset = cp; 3008 map->timestamp++; 3009 } else { 3010 pmap_remove (map->pmap, uaddr, tend); 3011 } 3012 /* 3013 * Otherwise, we have to do a logical mmap. 3014 */ 3015 } else { 3016 3017 vm_object_set_flag(srcobject, OBJ_OPT); 3018 vm_object_reference(srcobject); 3019 3020 pmap_remove (map->pmap, uaddr, tend); 3021 3022 vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize); 3023 vm_map_lock_upgrade(map); 3024 3025 if (entry == &map->header) { 3026 map->first_free = &map->header; 3027 } else if (map->first_free->start >= start) { 3028 map->first_free = entry->prev; 3029 } 3030 3031 vm_map_entry_delete(map, entry); 3032 3033 object = srcobject; 3034 ooffset = cp; 3035 3036 rv = vm_map_insert(map, object, ooffset, start, tend, 3037 VM_PROT_ALL, VM_PROT_ALL, MAP_COPY_ON_WRITE); 3038 3039 if (rv != KERN_SUCCESS) 3040 panic("vm_uiomove: could not insert new entry: %d", rv); 3041 } 3042 3043 /* 3044 * Map the window directly, if it is already in memory 3045 */ 3046 pmap_object_init_pt(map->pmap, uaddr, 3047 srcobject, oindex, tcnt, 0); 3048 3049 map->timestamp++; 3050 vm_map_unlock(map); 3051 3052 cnt -= tcnt; 3053 uaddr += tcnt; 3054 cp += tcnt; 3055 if (npages) 3056 *npages += osize; 3057 } 3058 return 0; 3059 } 3060 #endif 3061 3062 #include "opt_ddb.h" 3063 #ifdef DDB 3064 #include <sys/kernel.h> 3065 3066 #include <ddb/ddb.h> 3067 3068 /* 3069 * vm_map_print: [ debug ] 3070 */ 3071 DB_SHOW_COMMAND(map, vm_map_print) 3072 { 3073 static int nlines; 3074 /* XXX convert args. */ 3075 vm_map_t map = (vm_map_t)addr; 3076 boolean_t full = have_addr; 3077 3078 vm_map_entry_t entry; 3079 3080 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 3081 (void *)map, 3082 (void *)map->pmap, map->nentries, map->timestamp); 3083 nlines++; 3084 3085 if (!full && db_indent) 3086 return; 3087 3088 db_indent += 2; 3089 for (entry = map->header.next; entry != &map->header; 3090 entry = entry->next) { 3091 db_iprintf("map entry %p: start=%p, end=%p\n", 3092 (void *)entry, (void *)entry->start, (void *)entry->end); 3093 nlines++; 3094 { 3095 static char *inheritance_name[4] = 3096 {"share", "copy", "none", "donate_copy"}; 3097 3098 db_iprintf(" prot=%x/%x/%s", 3099 entry->protection, 3100 entry->max_protection, 3101 inheritance_name[(int)(unsigned char)entry->inheritance]); 3102 if (entry->wired_count != 0) 3103 db_printf(", wired"); 3104 } 3105 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 3106 db_printf(", share=%p, offset=0x%jx\n", 3107 (void *)entry->object.sub_map, 3108 (uintmax_t)entry->offset); 3109 nlines++; 3110 if ((entry->prev == &map->header) || 3111 (entry->prev->object.sub_map != 3112 entry->object.sub_map)) { 3113 db_indent += 2; 3114 vm_map_print((db_expr_t)(intptr_t) 3115 entry->object.sub_map, 3116 full, 0, (char *)0); 3117 db_indent -= 2; 3118 } 3119 } else { 3120 db_printf(", object=%p, offset=0x%jx", 3121 (void *)entry->object.vm_object, 3122 (uintmax_t)entry->offset); 3123 if (entry->eflags & MAP_ENTRY_COW) 3124 db_printf(", copy (%s)", 3125 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 3126 db_printf("\n"); 3127 nlines++; 3128 3129 if ((entry->prev == &map->header) || 3130 (entry->prev->object.vm_object != 3131 entry->object.vm_object)) { 3132 db_indent += 2; 3133 vm_object_print((db_expr_t)(intptr_t) 3134 entry->object.vm_object, 3135 full, 0, (char *)0); 3136 nlines += 4; 3137 db_indent -= 2; 3138 } 3139 } 3140 } 3141 db_indent -= 2; 3142 if (db_indent == 0) 3143 nlines = 0; 3144 } 3145 3146 3147 DB_SHOW_COMMAND(procvm, procvm) 3148 { 3149 struct proc *p; 3150 3151 if (have_addr) { 3152 p = (struct proc *) addr; 3153 } else { 3154 p = curproc; 3155 } 3156 3157 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 3158 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 3159 (void *)vmspace_pmap(p->p_vmspace)); 3160 3161 vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL); 3162 } 3163 3164 #endif /* DDB */ 3165