xref: /freebsd/sys/vm/vm_map.c (revision 54ebdd631db8c0bba2baab0155f603a8b5cf014a)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 4. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
33  *
34  *
35  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
36  * All rights reserved.
37  *
38  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
39  *
40  * Permission to use, copy, modify and distribute this software and
41  * its documentation is hereby granted, provided that both the copyright
42  * notice and this permission notice appear in all copies of the
43  * software, derivative works or modified versions, and any portions
44  * thereof, and that both notices appear in supporting documentation.
45  *
46  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
47  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
48  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
49  *
50  * Carnegie Mellon requests users of this software to return to
51  *
52  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
53  *  School of Computer Science
54  *  Carnegie Mellon University
55  *  Pittsburgh PA 15213-3890
56  *
57  * any improvements or extensions that they make and grant Carnegie the
58  * rights to redistribute these changes.
59  */
60 
61 /*
62  *	Virtual memory mapping module.
63  */
64 
65 #include <sys/cdefs.h>
66 __FBSDID("$FreeBSD$");
67 
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/ktr.h>
71 #include <sys/lock.h>
72 #include <sys/mutex.h>
73 #include <sys/proc.h>
74 #include <sys/vmmeter.h>
75 #include <sys/mman.h>
76 #include <sys/vnode.h>
77 #include <sys/resourcevar.h>
78 #include <sys/file.h>
79 #include <sys/sysent.h>
80 #include <sys/shm.h>
81 
82 #include <vm/vm.h>
83 #include <vm/vm_param.h>
84 #include <vm/pmap.h>
85 #include <vm/vm_map.h>
86 #include <vm/vm_page.h>
87 #include <vm/vm_object.h>
88 #include <vm/vm_pager.h>
89 #include <vm/vm_kern.h>
90 #include <vm/vm_extern.h>
91 #include <vm/swap_pager.h>
92 #include <vm/uma.h>
93 
94 /*
95  *	Virtual memory maps provide for the mapping, protection,
96  *	and sharing of virtual memory objects.  In addition,
97  *	this module provides for an efficient virtual copy of
98  *	memory from one map to another.
99  *
100  *	Synchronization is required prior to most operations.
101  *
102  *	Maps consist of an ordered doubly-linked list of simple
103  *	entries; a single hint is used to speed up lookups.
104  *
105  *	Since portions of maps are specified by start/end addresses,
106  *	which may not align with existing map entries, all
107  *	routines merely "clip" entries to these start/end values.
108  *	[That is, an entry is split into two, bordering at a
109  *	start or end value.]  Note that these clippings may not
110  *	always be necessary (as the two resulting entries are then
111  *	not changed); however, the clipping is done for convenience.
112  *
113  *	As mentioned above, virtual copy operations are performed
114  *	by copying VM object references from one map to
115  *	another, and then marking both regions as copy-on-write.
116  */
117 
118 /*
119  *	vm_map_startup:
120  *
121  *	Initialize the vm_map module.  Must be called before
122  *	any other vm_map routines.
123  *
124  *	Map and entry structures are allocated from the general
125  *	purpose memory pool with some exceptions:
126  *
127  *	- The kernel map and kmem submap are allocated statically.
128  *	- Kernel map entries are allocated out of a static pool.
129  *
130  *	These restrictions are necessary since malloc() uses the
131  *	maps and requires map entries.
132  */
133 
134 static struct mtx map_sleep_mtx;
135 static uma_zone_t mapentzone;
136 static uma_zone_t kmapentzone;
137 static uma_zone_t mapzone;
138 static uma_zone_t vmspace_zone;
139 static struct vm_object kmapentobj;
140 static int vmspace_zinit(void *mem, int size, int flags);
141 static void vmspace_zfini(void *mem, int size);
142 static int vm_map_zinit(void *mem, int ize, int flags);
143 static void vm_map_zfini(void *mem, int size);
144 static void _vm_map_init(vm_map_t map, vm_offset_t min, vm_offset_t max);
145 
146 #ifdef INVARIANTS
147 static void vm_map_zdtor(void *mem, int size, void *arg);
148 static void vmspace_zdtor(void *mem, int size, void *arg);
149 #endif
150 
151 /*
152  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
153  * stable.
154  */
155 #define PROC_VMSPACE_LOCK(p) do { } while (0)
156 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
157 
158 /*
159  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
160  *
161  *	Asserts that the starting and ending region
162  *	addresses fall within the valid range of the map.
163  */
164 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
165 		{					\
166 		if (start < vm_map_min(map))		\
167 			start = vm_map_min(map);	\
168 		if (end > vm_map_max(map))		\
169 			end = vm_map_max(map);		\
170 		if (start > end)			\
171 			start = end;			\
172 		}
173 
174 void
175 vm_map_startup(void)
176 {
177 	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
178 	mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
179 #ifdef INVARIANTS
180 	    vm_map_zdtor,
181 #else
182 	    NULL,
183 #endif
184 	    vm_map_zinit, vm_map_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
185 	uma_prealloc(mapzone, MAX_KMAP);
186 	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
187 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
188 	    UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
189 	uma_prealloc(kmapentzone, MAX_KMAPENT);
190 	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
191 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
192 }
193 
194 static void
195 vmspace_zfini(void *mem, int size)
196 {
197 	struct vmspace *vm;
198 
199 	vm = (struct vmspace *)mem;
200 	vm_map_zfini(&vm->vm_map, sizeof(vm->vm_map));
201 }
202 
203 static int
204 vmspace_zinit(void *mem, int size, int flags)
205 {
206 	struct vmspace *vm;
207 
208 	vm = (struct vmspace *)mem;
209 
210 	vm->vm_map.pmap = NULL;
211 	(void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
212 	return (0);
213 }
214 
215 static void
216 vm_map_zfini(void *mem, int size)
217 {
218 	vm_map_t map;
219 
220 	map = (vm_map_t)mem;
221 	mtx_destroy(&map->system_mtx);
222 	sx_destroy(&map->lock);
223 }
224 
225 static int
226 vm_map_zinit(void *mem, int size, int flags)
227 {
228 	vm_map_t map;
229 
230 	map = (vm_map_t)mem;
231 	map->nentries = 0;
232 	map->size = 0;
233 	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
234 	sx_init(&map->lock, "user map");
235 	return (0);
236 }
237 
238 #ifdef INVARIANTS
239 static void
240 vmspace_zdtor(void *mem, int size, void *arg)
241 {
242 	struct vmspace *vm;
243 
244 	vm = (struct vmspace *)mem;
245 
246 	vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
247 }
248 static void
249 vm_map_zdtor(void *mem, int size, void *arg)
250 {
251 	vm_map_t map;
252 
253 	map = (vm_map_t)mem;
254 	KASSERT(map->nentries == 0,
255 	    ("map %p nentries == %d on free.",
256 	    map, map->nentries));
257 	KASSERT(map->size == 0,
258 	    ("map %p size == %lu on free.",
259 	    map, (unsigned long)map->size));
260 }
261 #endif	/* INVARIANTS */
262 
263 /*
264  * Allocate a vmspace structure, including a vm_map and pmap,
265  * and initialize those structures.  The refcnt is set to 1.
266  */
267 struct vmspace *
268 vmspace_alloc(min, max)
269 	vm_offset_t min, max;
270 {
271 	struct vmspace *vm;
272 
273 	vm = uma_zalloc(vmspace_zone, M_WAITOK);
274 	if (vm->vm_map.pmap == NULL && !pmap_pinit(vmspace_pmap(vm))) {
275 		uma_zfree(vmspace_zone, vm);
276 		return (NULL);
277 	}
278 	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
279 	_vm_map_init(&vm->vm_map, min, max);
280 	vm->vm_map.pmap = vmspace_pmap(vm);		/* XXX */
281 	vm->vm_refcnt = 1;
282 	vm->vm_shm = NULL;
283 	vm->vm_swrss = 0;
284 	vm->vm_tsize = 0;
285 	vm->vm_dsize = 0;
286 	vm->vm_ssize = 0;
287 	vm->vm_taddr = 0;
288 	vm->vm_daddr = 0;
289 	vm->vm_maxsaddr = 0;
290 	return (vm);
291 }
292 
293 void
294 vm_init2(void)
295 {
296 	uma_zone_set_obj(kmapentzone, &kmapentobj, lmin(cnt.v_page_count,
297 	    (VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS) / PAGE_SIZE) / 8 +
298 	     maxproc * 2 + maxfiles);
299 	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
300 #ifdef INVARIANTS
301 	    vmspace_zdtor,
302 #else
303 	    NULL,
304 #endif
305 	    vmspace_zinit, vmspace_zfini, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
306 }
307 
308 static inline void
309 vmspace_dofree(struct vmspace *vm)
310 {
311 	CTR1(KTR_VM, "vmspace_free: %p", vm);
312 
313 	/*
314 	 * Make sure any SysV shm is freed, it might not have been in
315 	 * exit1().
316 	 */
317 	shmexit(vm);
318 
319 	/*
320 	 * Lock the map, to wait out all other references to it.
321 	 * Delete all of the mappings and pages they hold, then call
322 	 * the pmap module to reclaim anything left.
323 	 */
324 	(void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset,
325 	    vm->vm_map.max_offset);
326 
327 	/*
328 	 * XXX Comment out the pmap_release call for now. The
329 	 * vmspace_zone is marked as UMA_ZONE_NOFREE, and bugs cause
330 	 * pmap.resident_count to be != 0 on exit sometimes.
331 	 */
332 /* 	pmap_release(vmspace_pmap(vm)); */
333 	uma_zfree(vmspace_zone, vm);
334 }
335 
336 void
337 vmspace_free(struct vmspace *vm)
338 {
339 	int refcnt;
340 
341 	if (vm->vm_refcnt == 0)
342 		panic("vmspace_free: attempt to free already freed vmspace");
343 
344 	do
345 		refcnt = vm->vm_refcnt;
346 	while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
347 	if (refcnt == 1)
348 		vmspace_dofree(vm);
349 }
350 
351 void
352 vmspace_exitfree(struct proc *p)
353 {
354 	struct vmspace *vm;
355 
356 	PROC_VMSPACE_LOCK(p);
357 	vm = p->p_vmspace;
358 	p->p_vmspace = NULL;
359 	PROC_VMSPACE_UNLOCK(p);
360 	KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
361 	vmspace_free(vm);
362 }
363 
364 void
365 vmspace_exit(struct thread *td)
366 {
367 	int refcnt;
368 	struct vmspace *vm;
369 	struct proc *p;
370 
371 	/*
372 	 * Release user portion of address space.
373 	 * This releases references to vnodes,
374 	 * which could cause I/O if the file has been unlinked.
375 	 * Need to do this early enough that we can still sleep.
376 	 *
377 	 * The last exiting process to reach this point releases as
378 	 * much of the environment as it can. vmspace_dofree() is the
379 	 * slower fallback in case another process had a temporary
380 	 * reference to the vmspace.
381 	 */
382 
383 	p = td->td_proc;
384 	vm = p->p_vmspace;
385 	atomic_add_int(&vmspace0.vm_refcnt, 1);
386 	do {
387 		refcnt = vm->vm_refcnt;
388 		if (refcnt > 1 && p->p_vmspace != &vmspace0) {
389 			/* Switch now since other proc might free vmspace */
390 			PROC_VMSPACE_LOCK(p);
391 			p->p_vmspace = &vmspace0;
392 			PROC_VMSPACE_UNLOCK(p);
393 			pmap_activate(td);
394 		}
395 	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
396 	if (refcnt == 1) {
397 		if (p->p_vmspace != vm) {
398 			/* vmspace not yet freed, switch back */
399 			PROC_VMSPACE_LOCK(p);
400 			p->p_vmspace = vm;
401 			PROC_VMSPACE_UNLOCK(p);
402 			pmap_activate(td);
403 		}
404 		pmap_remove_pages(vmspace_pmap(vm));
405 		/* Switch now since this proc will free vmspace */
406 		PROC_VMSPACE_LOCK(p);
407 		p->p_vmspace = &vmspace0;
408 		PROC_VMSPACE_UNLOCK(p);
409 		pmap_activate(td);
410 		vmspace_dofree(vm);
411 	}
412 }
413 
414 /* Acquire reference to vmspace owned by another process. */
415 
416 struct vmspace *
417 vmspace_acquire_ref(struct proc *p)
418 {
419 	struct vmspace *vm;
420 	int refcnt;
421 
422 	PROC_VMSPACE_LOCK(p);
423 	vm = p->p_vmspace;
424 	if (vm == NULL) {
425 		PROC_VMSPACE_UNLOCK(p);
426 		return (NULL);
427 	}
428 	do {
429 		refcnt = vm->vm_refcnt;
430 		if (refcnt <= 0) { 	/* Avoid 0->1 transition */
431 			PROC_VMSPACE_UNLOCK(p);
432 			return (NULL);
433 		}
434 	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
435 	if (vm != p->p_vmspace) {
436 		PROC_VMSPACE_UNLOCK(p);
437 		vmspace_free(vm);
438 		return (NULL);
439 	}
440 	PROC_VMSPACE_UNLOCK(p);
441 	return (vm);
442 }
443 
444 void
445 _vm_map_lock(vm_map_t map, const char *file, int line)
446 {
447 
448 	if (map->system_map)
449 		_mtx_lock_flags(&map->system_mtx, 0, file, line);
450 	else
451 		(void)_sx_xlock(&map->lock, 0, file, line);
452 	map->timestamp++;
453 }
454 
455 void
456 _vm_map_unlock(vm_map_t map, const char *file, int line)
457 {
458 
459 	if (map->system_map)
460 		_mtx_unlock_flags(&map->system_mtx, 0, file, line);
461 	else
462 		_sx_xunlock(&map->lock, file, line);
463 }
464 
465 void
466 _vm_map_lock_read(vm_map_t map, const char *file, int line)
467 {
468 
469 	if (map->system_map)
470 		_mtx_lock_flags(&map->system_mtx, 0, file, line);
471 	else
472 		(void)_sx_xlock(&map->lock, 0, file, line);
473 }
474 
475 void
476 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
477 {
478 
479 	if (map->system_map)
480 		_mtx_unlock_flags(&map->system_mtx, 0, file, line);
481 	else
482 		_sx_xunlock(&map->lock, file, line);
483 }
484 
485 int
486 _vm_map_trylock(vm_map_t map, const char *file, int line)
487 {
488 	int error;
489 
490 	error = map->system_map ?
491 	    !_mtx_trylock(&map->system_mtx, 0, file, line) :
492 	    !_sx_try_xlock(&map->lock, file, line);
493 	if (error == 0)
494 		map->timestamp++;
495 	return (error == 0);
496 }
497 
498 int
499 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
500 {
501 	int error;
502 
503 	error = map->system_map ?
504 	    !_mtx_trylock(&map->system_mtx, 0, file, line) :
505 	    !_sx_try_xlock(&map->lock, file, line);
506 	return (error == 0);
507 }
508 
509 int
510 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
511 {
512 
513 #ifdef INVARIANTS
514 	if (map->system_map) {
515 		_mtx_assert(&map->system_mtx, MA_OWNED, file, line);
516 	} else
517 		_sx_assert(&map->lock, SX_XLOCKED, file, line);
518 #endif
519 	map->timestamp++;
520 	return (0);
521 }
522 
523 void
524 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
525 {
526 
527 #ifdef INVARIANTS
528 	if (map->system_map) {
529 		_mtx_assert(&map->system_mtx, MA_OWNED, file, line);
530 	} else
531 		_sx_assert(&map->lock, SX_XLOCKED, file, line);
532 #endif
533 }
534 
535 /*
536  *	vm_map_unlock_and_wait:
537  */
538 int
539 vm_map_unlock_and_wait(vm_map_t map, int timo)
540 {
541 
542 	mtx_lock(&map_sleep_mtx);
543 	vm_map_unlock(map);
544 	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps", timo));
545 }
546 
547 /*
548  *	vm_map_wakeup:
549  */
550 void
551 vm_map_wakeup(vm_map_t map)
552 {
553 
554 	/*
555 	 * Acquire and release map_sleep_mtx to prevent a wakeup()
556 	 * from being performed (and lost) between the vm_map_unlock()
557 	 * and the msleep() in vm_map_unlock_and_wait().
558 	 */
559 	mtx_lock(&map_sleep_mtx);
560 	mtx_unlock(&map_sleep_mtx);
561 	wakeup(&map->root);
562 }
563 
564 long
565 vmspace_resident_count(struct vmspace *vmspace)
566 {
567 	return pmap_resident_count(vmspace_pmap(vmspace));
568 }
569 
570 long
571 vmspace_wired_count(struct vmspace *vmspace)
572 {
573 	return pmap_wired_count(vmspace_pmap(vmspace));
574 }
575 
576 /*
577  *	vm_map_create:
578  *
579  *	Creates and returns a new empty VM map with
580  *	the given physical map structure, and having
581  *	the given lower and upper address bounds.
582  */
583 vm_map_t
584 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
585 {
586 	vm_map_t result;
587 
588 	result = uma_zalloc(mapzone, M_WAITOK);
589 	CTR1(KTR_VM, "vm_map_create: %p", result);
590 	_vm_map_init(result, min, max);
591 	result->pmap = pmap;
592 	return (result);
593 }
594 
595 /*
596  * Initialize an existing vm_map structure
597  * such as that in the vmspace structure.
598  * The pmap is set elsewhere.
599  */
600 static void
601 _vm_map_init(vm_map_t map, vm_offset_t min, vm_offset_t max)
602 {
603 
604 	map->header.next = map->header.prev = &map->header;
605 	map->needs_wakeup = FALSE;
606 	map->system_map = 0;
607 	map->min_offset = min;
608 	map->max_offset = max;
609 	map->flags = 0;
610 	map->root = NULL;
611 	map->timestamp = 0;
612 }
613 
614 void
615 vm_map_init(vm_map_t map, vm_offset_t min, vm_offset_t max)
616 {
617 	_vm_map_init(map, min, max);
618 	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
619 	sx_init(&map->lock, "user map");
620 }
621 
622 /*
623  *	vm_map_entry_dispose:	[ internal use only ]
624  *
625  *	Inverse of vm_map_entry_create.
626  */
627 static void
628 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
629 {
630 	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
631 }
632 
633 /*
634  *	vm_map_entry_create:	[ internal use only ]
635  *
636  *	Allocates a VM map entry for insertion.
637  *	No entry fields are filled in.
638  */
639 static vm_map_entry_t
640 vm_map_entry_create(vm_map_t map)
641 {
642 	vm_map_entry_t new_entry;
643 
644 	if (map->system_map)
645 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
646 	else
647 		new_entry = uma_zalloc(mapentzone, M_WAITOK);
648 	if (new_entry == NULL)
649 		panic("vm_map_entry_create: kernel resources exhausted");
650 	return (new_entry);
651 }
652 
653 /*
654  *	vm_map_entry_set_behavior:
655  *
656  *	Set the expected access behavior, either normal, random, or
657  *	sequential.
658  */
659 static inline void
660 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
661 {
662 	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
663 	    (behavior & MAP_ENTRY_BEHAV_MASK);
664 }
665 
666 /*
667  *	vm_map_entry_set_max_free:
668  *
669  *	Set the max_free field in a vm_map_entry.
670  */
671 static inline void
672 vm_map_entry_set_max_free(vm_map_entry_t entry)
673 {
674 
675 	entry->max_free = entry->adj_free;
676 	if (entry->left != NULL && entry->left->max_free > entry->max_free)
677 		entry->max_free = entry->left->max_free;
678 	if (entry->right != NULL && entry->right->max_free > entry->max_free)
679 		entry->max_free = entry->right->max_free;
680 }
681 
682 /*
683  *	vm_map_entry_splay:
684  *
685  *	The Sleator and Tarjan top-down splay algorithm with the
686  *	following variation.  Max_free must be computed bottom-up, so
687  *	on the downward pass, maintain the left and right spines in
688  *	reverse order.  Then, make a second pass up each side to fix
689  *	the pointers and compute max_free.  The time bound is O(log n)
690  *	amortized.
691  *
692  *	The new root is the vm_map_entry containing "addr", or else an
693  *	adjacent entry (lower or higher) if addr is not in the tree.
694  *
695  *	The map must be locked, and leaves it so.
696  *
697  *	Returns: the new root.
698  */
699 static vm_map_entry_t
700 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
701 {
702 	vm_map_entry_t llist, rlist;
703 	vm_map_entry_t ltree, rtree;
704 	vm_map_entry_t y;
705 
706 	/* Special case of empty tree. */
707 	if (root == NULL)
708 		return (root);
709 
710 	/*
711 	 * Pass One: Splay down the tree until we find addr or a NULL
712 	 * pointer where addr would go.  llist and rlist are the two
713 	 * sides in reverse order (bottom-up), with llist linked by
714 	 * the right pointer and rlist linked by the left pointer in
715 	 * the vm_map_entry.  Wait until Pass Two to set max_free on
716 	 * the two spines.
717 	 */
718 	llist = NULL;
719 	rlist = NULL;
720 	for (;;) {
721 		/* root is never NULL in here. */
722 		if (addr < root->start) {
723 			y = root->left;
724 			if (y == NULL)
725 				break;
726 			if (addr < y->start && y->left != NULL) {
727 				/* Rotate right and put y on rlist. */
728 				root->left = y->right;
729 				y->right = root;
730 				vm_map_entry_set_max_free(root);
731 				root = y->left;
732 				y->left = rlist;
733 				rlist = y;
734 			} else {
735 				/* Put root on rlist. */
736 				root->left = rlist;
737 				rlist = root;
738 				root = y;
739 			}
740 		} else {
741 			y = root->right;
742 			if (addr < root->end || y == NULL)
743 				break;
744 			if (addr >= y->end && y->right != NULL) {
745 				/* Rotate left and put y on llist. */
746 				root->right = y->left;
747 				y->left = root;
748 				vm_map_entry_set_max_free(root);
749 				root = y->right;
750 				y->right = llist;
751 				llist = y;
752 			} else {
753 				/* Put root on llist. */
754 				root->right = llist;
755 				llist = root;
756 				root = y;
757 			}
758 		}
759 	}
760 
761 	/*
762 	 * Pass Two: Walk back up the two spines, flip the pointers
763 	 * and set max_free.  The subtrees of the root go at the
764 	 * bottom of llist and rlist.
765 	 */
766 	ltree = root->left;
767 	while (llist != NULL) {
768 		y = llist->right;
769 		llist->right = ltree;
770 		vm_map_entry_set_max_free(llist);
771 		ltree = llist;
772 		llist = y;
773 	}
774 	rtree = root->right;
775 	while (rlist != NULL) {
776 		y = rlist->left;
777 		rlist->left = rtree;
778 		vm_map_entry_set_max_free(rlist);
779 		rtree = rlist;
780 		rlist = y;
781 	}
782 
783 	/*
784 	 * Final assembly: add ltree and rtree as subtrees of root.
785 	 */
786 	root->left = ltree;
787 	root->right = rtree;
788 	vm_map_entry_set_max_free(root);
789 
790 	return (root);
791 }
792 
793 /*
794  *	vm_map_entry_{un,}link:
795  *
796  *	Insert/remove entries from maps.
797  */
798 static void
799 vm_map_entry_link(vm_map_t map,
800 		  vm_map_entry_t after_where,
801 		  vm_map_entry_t entry)
802 {
803 
804 	CTR4(KTR_VM,
805 	    "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
806 	    map->nentries, entry, after_where);
807 	map->nentries++;
808 	entry->prev = after_where;
809 	entry->next = after_where->next;
810 	entry->next->prev = entry;
811 	after_where->next = entry;
812 
813 	if (after_where != &map->header) {
814 		if (after_where != map->root)
815 			vm_map_entry_splay(after_where->start, map->root);
816 		entry->right = after_where->right;
817 		entry->left = after_where;
818 		after_where->right = NULL;
819 		after_where->adj_free = entry->start - after_where->end;
820 		vm_map_entry_set_max_free(after_where);
821 	} else {
822 		entry->right = map->root;
823 		entry->left = NULL;
824 	}
825 	entry->adj_free = (entry->next == &map->header ? map->max_offset :
826 	    entry->next->start) - entry->end;
827 	vm_map_entry_set_max_free(entry);
828 	map->root = entry;
829 }
830 
831 static void
832 vm_map_entry_unlink(vm_map_t map,
833 		    vm_map_entry_t entry)
834 {
835 	vm_map_entry_t next, prev, root;
836 
837 	if (entry != map->root)
838 		vm_map_entry_splay(entry->start, map->root);
839 	if (entry->left == NULL)
840 		root = entry->right;
841 	else {
842 		root = vm_map_entry_splay(entry->start, entry->left);
843 		root->right = entry->right;
844 		root->adj_free = (entry->next == &map->header ? map->max_offset :
845 		    entry->next->start) - root->end;
846 		vm_map_entry_set_max_free(root);
847 	}
848 	map->root = root;
849 
850 	prev = entry->prev;
851 	next = entry->next;
852 	next->prev = prev;
853 	prev->next = next;
854 	map->nentries--;
855 	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
856 	    map->nentries, entry);
857 }
858 
859 /*
860  *	vm_map_entry_resize_free:
861  *
862  *	Recompute the amount of free space following a vm_map_entry
863  *	and propagate that value up the tree.  Call this function after
864  *	resizing a map entry in-place, that is, without a call to
865  *	vm_map_entry_link() or _unlink().
866  *
867  *	The map must be locked, and leaves it so.
868  */
869 static void
870 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
871 {
872 
873 	/*
874 	 * Using splay trees without parent pointers, propagating
875 	 * max_free up the tree is done by moving the entry to the
876 	 * root and making the change there.
877 	 */
878 	if (entry != map->root)
879 		map->root = vm_map_entry_splay(entry->start, map->root);
880 
881 	entry->adj_free = (entry->next == &map->header ? map->max_offset :
882 	    entry->next->start) - entry->end;
883 	vm_map_entry_set_max_free(entry);
884 }
885 
886 /*
887  *	vm_map_lookup_entry:	[ internal use only ]
888  *
889  *	Finds the map entry containing (or
890  *	immediately preceding) the specified address
891  *	in the given map; the entry is returned
892  *	in the "entry" parameter.  The boolean
893  *	result indicates whether the address is
894  *	actually contained in the map.
895  */
896 boolean_t
897 vm_map_lookup_entry(
898 	vm_map_t map,
899 	vm_offset_t address,
900 	vm_map_entry_t *entry)	/* OUT */
901 {
902 	vm_map_entry_t cur;
903 
904 	cur = vm_map_entry_splay(address, map->root);
905 	if (cur == NULL)
906 		*entry = &map->header;
907 	else {
908 		map->root = cur;
909 
910 		if (address >= cur->start) {
911 			*entry = cur;
912 			if (cur->end > address)
913 				return (TRUE);
914 		} else
915 			*entry = cur->prev;
916 	}
917 	return (FALSE);
918 }
919 
920 /*
921  *	vm_map_insert:
922  *
923  *	Inserts the given whole VM object into the target
924  *	map at the specified address range.  The object's
925  *	size should match that of the address range.
926  *
927  *	Requires that the map be locked, and leaves it so.
928  *
929  *	If object is non-NULL, ref count must be bumped by caller
930  *	prior to making call to account for the new entry.
931  */
932 int
933 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
934 	      vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max,
935 	      int cow)
936 {
937 	vm_map_entry_t new_entry;
938 	vm_map_entry_t prev_entry;
939 	vm_map_entry_t temp_entry;
940 	vm_eflags_t protoeflags;
941 
942 	/*
943 	 * Check that the start and end points are not bogus.
944 	 */
945 	if ((start < map->min_offset) || (end > map->max_offset) ||
946 	    (start >= end))
947 		return (KERN_INVALID_ADDRESS);
948 
949 	/*
950 	 * Find the entry prior to the proposed starting address; if it's part
951 	 * of an existing entry, this range is bogus.
952 	 */
953 	if (vm_map_lookup_entry(map, start, &temp_entry))
954 		return (KERN_NO_SPACE);
955 
956 	prev_entry = temp_entry;
957 
958 	/*
959 	 * Assert that the next entry doesn't overlap the end point.
960 	 */
961 	if ((prev_entry->next != &map->header) &&
962 	    (prev_entry->next->start < end))
963 		return (KERN_NO_SPACE);
964 
965 	protoeflags = 0;
966 
967 	if (cow & MAP_COPY_ON_WRITE)
968 		protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
969 
970 	if (cow & MAP_NOFAULT) {
971 		protoeflags |= MAP_ENTRY_NOFAULT;
972 
973 		KASSERT(object == NULL,
974 			("vm_map_insert: paradoxical MAP_NOFAULT request"));
975 	}
976 	if (cow & MAP_DISABLE_SYNCER)
977 		protoeflags |= MAP_ENTRY_NOSYNC;
978 	if (cow & MAP_DISABLE_COREDUMP)
979 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
980 
981 	if (object != NULL) {
982 		/*
983 		 * OBJ_ONEMAPPING must be cleared unless this mapping
984 		 * is trivially proven to be the only mapping for any
985 		 * of the object's pages.  (Object granularity
986 		 * reference counting is insufficient to recognize
987 		 * aliases with precision.)
988 		 */
989 		VM_OBJECT_LOCK(object);
990 		if (object->ref_count > 1 || object->shadow_count != 0)
991 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
992 		VM_OBJECT_UNLOCK(object);
993 	}
994 	else if ((prev_entry != &map->header) &&
995 		 (prev_entry->eflags == protoeflags) &&
996 		 (prev_entry->end == start) &&
997 		 (prev_entry->wired_count == 0) &&
998 		 ((prev_entry->object.vm_object == NULL) ||
999 		  vm_object_coalesce(prev_entry->object.vm_object,
1000 				     prev_entry->offset,
1001 				     (vm_size_t)(prev_entry->end - prev_entry->start),
1002 				     (vm_size_t)(end - prev_entry->end)))) {
1003 		/*
1004 		 * We were able to extend the object.  Determine if we
1005 		 * can extend the previous map entry to include the
1006 		 * new range as well.
1007 		 */
1008 		if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
1009 		    (prev_entry->protection == prot) &&
1010 		    (prev_entry->max_protection == max)) {
1011 			map->size += (end - prev_entry->end);
1012 			prev_entry->end = end;
1013 			vm_map_entry_resize_free(map, prev_entry);
1014 			vm_map_simplify_entry(map, prev_entry);
1015 			return (KERN_SUCCESS);
1016 		}
1017 
1018 		/*
1019 		 * If we can extend the object but cannot extend the
1020 		 * map entry, we have to create a new map entry.  We
1021 		 * must bump the ref count on the extended object to
1022 		 * account for it.  object may be NULL.
1023 		 */
1024 		object = prev_entry->object.vm_object;
1025 		offset = prev_entry->offset +
1026 			(prev_entry->end - prev_entry->start);
1027 		vm_object_reference(object);
1028 	}
1029 
1030 	/*
1031 	 * NOTE: if conditionals fail, object can be NULL here.  This occurs
1032 	 * in things like the buffer map where we manage kva but do not manage
1033 	 * backing objects.
1034 	 */
1035 
1036 	/*
1037 	 * Create a new entry
1038 	 */
1039 	new_entry = vm_map_entry_create(map);
1040 	new_entry->start = start;
1041 	new_entry->end = end;
1042 
1043 	new_entry->eflags = protoeflags;
1044 	new_entry->object.vm_object = object;
1045 	new_entry->offset = offset;
1046 	new_entry->avail_ssize = 0;
1047 
1048 	new_entry->inheritance = VM_INHERIT_DEFAULT;
1049 	new_entry->protection = prot;
1050 	new_entry->max_protection = max;
1051 	new_entry->wired_count = 0;
1052 
1053 	/*
1054 	 * Insert the new entry into the list
1055 	 */
1056 	vm_map_entry_link(map, prev_entry, new_entry);
1057 	map->size += new_entry->end - new_entry->start;
1058 
1059 #if 0
1060 	/*
1061 	 * Temporarily removed to avoid MAP_STACK panic, due to
1062 	 * MAP_STACK being a huge hack.  Will be added back in
1063 	 * when MAP_STACK (and the user stack mapping) is fixed.
1064 	 */
1065 	/*
1066 	 * It may be possible to simplify the entry
1067 	 */
1068 	vm_map_simplify_entry(map, new_entry);
1069 #endif
1070 
1071 	if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
1072 		vm_map_pmap_enter(map, start, prot,
1073 				    object, OFF_TO_IDX(offset), end - start,
1074 				    cow & MAP_PREFAULT_PARTIAL);
1075 	}
1076 
1077 	return (KERN_SUCCESS);
1078 }
1079 
1080 /*
1081  *	vm_map_findspace:
1082  *
1083  *	Find the first fit (lowest VM address) for "length" free bytes
1084  *	beginning at address >= start in the given map.
1085  *
1086  *	In a vm_map_entry, "adj_free" is the amount of free space
1087  *	adjacent (higher address) to this entry, and "max_free" is the
1088  *	maximum amount of contiguous free space in its subtree.  This
1089  *	allows finding a free region in one path down the tree, so
1090  *	O(log n) amortized with splay trees.
1091  *
1092  *	The map must be locked, and leaves it so.
1093  *
1094  *	Returns: 0 on success, and starting address in *addr,
1095  *		 1 if insufficient space.
1096  */
1097 int
1098 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1099     vm_offset_t *addr)	/* OUT */
1100 {
1101 	vm_map_entry_t entry;
1102 	vm_offset_t end, st;
1103 
1104 	/*
1105 	 * Request must fit within min/max VM address and must avoid
1106 	 * address wrap.
1107 	 */
1108 	if (start < map->min_offset)
1109 		start = map->min_offset;
1110 	if (start + length > map->max_offset || start + length < start)
1111 		return (1);
1112 
1113 	/* Empty tree means wide open address space. */
1114 	if (map->root == NULL) {
1115 		*addr = start;
1116 		goto found;
1117 	}
1118 
1119 	/*
1120 	 * After splay, if start comes before root node, then there
1121 	 * must be a gap from start to the root.
1122 	 */
1123 	map->root = vm_map_entry_splay(start, map->root);
1124 	if (start + length <= map->root->start) {
1125 		*addr = start;
1126 		goto found;
1127 	}
1128 
1129 	/*
1130 	 * Root is the last node that might begin its gap before
1131 	 * start, and this is the last comparison where address
1132 	 * wrap might be a problem.
1133 	 */
1134 	st = (start > map->root->end) ? start : map->root->end;
1135 	if (length <= map->root->end + map->root->adj_free - st) {
1136 		*addr = st;
1137 		goto found;
1138 	}
1139 
1140 	/* With max_free, can immediately tell if no solution. */
1141 	entry = map->root->right;
1142 	if (entry == NULL || length > entry->max_free)
1143 		return (1);
1144 
1145 	/*
1146 	 * Search the right subtree in the order: left subtree, root,
1147 	 * right subtree (first fit).  The previous splay implies that
1148 	 * all regions in the right subtree have addresses > start.
1149 	 */
1150 	while (entry != NULL) {
1151 		if (entry->left != NULL && entry->left->max_free >= length)
1152 			entry = entry->left;
1153 		else if (entry->adj_free >= length) {
1154 			*addr = entry->end;
1155 			goto found;
1156 		} else
1157 			entry = entry->right;
1158 	}
1159 
1160 	/* Can't get here, so panic if we do. */
1161 	panic("vm_map_findspace: max_free corrupt");
1162 
1163 found:
1164 	/* Expand the kernel pmap, if necessary. */
1165 	if (map == kernel_map) {
1166 		end = round_page(*addr + length);
1167 		if (end > kernel_vm_end)
1168 			pmap_growkernel(end);
1169 	}
1170 	return (0);
1171 }
1172 
1173 int
1174 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1175     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1176     vm_prot_t max, int cow)
1177 {
1178 	vm_offset_t end;
1179 	int result;
1180 
1181 	vm_map_lock(map);
1182 	end = start + length;
1183 	VM_MAP_RANGE_CHECK(map, start, end);
1184 	(void) vm_map_delete(map, start, end);
1185 	result = vm_map_insert(map, object, offset, start, end, prot,
1186 	    max, cow);
1187 	vm_map_unlock(map);
1188 	return (result);
1189 }
1190 
1191 /*
1192  *	vm_map_find finds an unallocated region in the target address
1193  *	map with the given length.  The search is defined to be
1194  *	first-fit from the specified address; the region found is
1195  *	returned in the same parameter.
1196  *
1197  *	If object is non-NULL, ref count must be bumped by caller
1198  *	prior to making call to account for the new entry.
1199  */
1200 int
1201 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1202 	    vm_offset_t *addr,	/* IN/OUT */
1203 	    vm_size_t length, int find_space, vm_prot_t prot,
1204 	    vm_prot_t max, int cow)
1205 {
1206 	vm_offset_t start;
1207 	int result;
1208 
1209 	start = *addr;
1210 	vm_map_lock(map);
1211 	do {
1212 		if (find_space != VMFS_NO_SPACE) {
1213 			if (vm_map_findspace(map, start, length, addr)) {
1214 				vm_map_unlock(map);
1215 				return (KERN_NO_SPACE);
1216 			}
1217 			if (find_space == VMFS_ALIGNED_SPACE)
1218 				pmap_align_superpage(object, offset, addr,
1219 				    length);
1220 			start = *addr;
1221 		}
1222 		result = vm_map_insert(map, object, offset, start, start +
1223 		    length, prot, max, cow);
1224 	} while (result == KERN_NO_SPACE && find_space == VMFS_ALIGNED_SPACE);
1225 	vm_map_unlock(map);
1226 	return (result);
1227 }
1228 
1229 /*
1230  *	vm_map_simplify_entry:
1231  *
1232  *	Simplify the given map entry by merging with either neighbor.  This
1233  *	routine also has the ability to merge with both neighbors.
1234  *
1235  *	The map must be locked.
1236  *
1237  *	This routine guarentees that the passed entry remains valid (though
1238  *	possibly extended).  When merging, this routine may delete one or
1239  *	both neighbors.
1240  */
1241 void
1242 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1243 {
1244 	vm_map_entry_t next, prev;
1245 	vm_size_t prevsize, esize;
1246 
1247 	if (entry->eflags & (MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP))
1248 		return;
1249 
1250 	prev = entry->prev;
1251 	if (prev != &map->header) {
1252 		prevsize = prev->end - prev->start;
1253 		if ( (prev->end == entry->start) &&
1254 		     (prev->object.vm_object == entry->object.vm_object) &&
1255 		     (!prev->object.vm_object ||
1256 			(prev->offset + prevsize == entry->offset)) &&
1257 		     (prev->eflags == entry->eflags) &&
1258 		     (prev->protection == entry->protection) &&
1259 		     (prev->max_protection == entry->max_protection) &&
1260 		     (prev->inheritance == entry->inheritance) &&
1261 		     (prev->wired_count == entry->wired_count)) {
1262 			vm_map_entry_unlink(map, prev);
1263 			entry->start = prev->start;
1264 			entry->offset = prev->offset;
1265 			if (entry->prev != &map->header)
1266 				vm_map_entry_resize_free(map, entry->prev);
1267 			if (prev->object.vm_object)
1268 				vm_object_deallocate(prev->object.vm_object);
1269 			vm_map_entry_dispose(map, prev);
1270 		}
1271 	}
1272 
1273 	next = entry->next;
1274 	if (next != &map->header) {
1275 		esize = entry->end - entry->start;
1276 		if ((entry->end == next->start) &&
1277 		    (next->object.vm_object == entry->object.vm_object) &&
1278 		     (!entry->object.vm_object ||
1279 			(entry->offset + esize == next->offset)) &&
1280 		    (next->eflags == entry->eflags) &&
1281 		    (next->protection == entry->protection) &&
1282 		    (next->max_protection == entry->max_protection) &&
1283 		    (next->inheritance == entry->inheritance) &&
1284 		    (next->wired_count == entry->wired_count)) {
1285 			vm_map_entry_unlink(map, next);
1286 			entry->end = next->end;
1287 			vm_map_entry_resize_free(map, entry);
1288 			if (next->object.vm_object)
1289 				vm_object_deallocate(next->object.vm_object);
1290 			vm_map_entry_dispose(map, next);
1291 		}
1292 	}
1293 }
1294 /*
1295  *	vm_map_clip_start:	[ internal use only ]
1296  *
1297  *	Asserts that the given entry begins at or after
1298  *	the specified address; if necessary,
1299  *	it splits the entry into two.
1300  */
1301 #define vm_map_clip_start(map, entry, startaddr) \
1302 { \
1303 	if (startaddr > entry->start) \
1304 		_vm_map_clip_start(map, entry, startaddr); \
1305 }
1306 
1307 /*
1308  *	This routine is called only when it is known that
1309  *	the entry must be split.
1310  */
1311 static void
1312 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1313 {
1314 	vm_map_entry_t new_entry;
1315 
1316 	/*
1317 	 * Split off the front portion -- note that we must insert the new
1318 	 * entry BEFORE this one, so that this entry has the specified
1319 	 * starting address.
1320 	 */
1321 	vm_map_simplify_entry(map, entry);
1322 
1323 	/*
1324 	 * If there is no object backing this entry, we might as well create
1325 	 * one now.  If we defer it, an object can get created after the map
1326 	 * is clipped, and individual objects will be created for the split-up
1327 	 * map.  This is a bit of a hack, but is also about the best place to
1328 	 * put this improvement.
1329 	 */
1330 	if (entry->object.vm_object == NULL && !map->system_map) {
1331 		vm_object_t object;
1332 		object = vm_object_allocate(OBJT_DEFAULT,
1333 				atop(entry->end - entry->start));
1334 		entry->object.vm_object = object;
1335 		entry->offset = 0;
1336 	}
1337 
1338 	new_entry = vm_map_entry_create(map);
1339 	*new_entry = *entry;
1340 
1341 	new_entry->end = start;
1342 	entry->offset += (start - entry->start);
1343 	entry->start = start;
1344 
1345 	vm_map_entry_link(map, entry->prev, new_entry);
1346 
1347 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1348 		vm_object_reference(new_entry->object.vm_object);
1349 	}
1350 }
1351 
1352 /*
1353  *	vm_map_clip_end:	[ internal use only ]
1354  *
1355  *	Asserts that the given entry ends at or before
1356  *	the specified address; if necessary,
1357  *	it splits the entry into two.
1358  */
1359 #define vm_map_clip_end(map, entry, endaddr) \
1360 { \
1361 	if ((endaddr) < (entry->end)) \
1362 		_vm_map_clip_end((map), (entry), (endaddr)); \
1363 }
1364 
1365 /*
1366  *	This routine is called only when it is known that
1367  *	the entry must be split.
1368  */
1369 static void
1370 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1371 {
1372 	vm_map_entry_t new_entry;
1373 
1374 	/*
1375 	 * If there is no object backing this entry, we might as well create
1376 	 * one now.  If we defer it, an object can get created after the map
1377 	 * is clipped, and individual objects will be created for the split-up
1378 	 * map.  This is a bit of a hack, but is also about the best place to
1379 	 * put this improvement.
1380 	 */
1381 	if (entry->object.vm_object == NULL && !map->system_map) {
1382 		vm_object_t object;
1383 		object = vm_object_allocate(OBJT_DEFAULT,
1384 				atop(entry->end - entry->start));
1385 		entry->object.vm_object = object;
1386 		entry->offset = 0;
1387 	}
1388 
1389 	/*
1390 	 * Create a new entry and insert it AFTER the specified entry
1391 	 */
1392 	new_entry = vm_map_entry_create(map);
1393 	*new_entry = *entry;
1394 
1395 	new_entry->start = entry->end = end;
1396 	new_entry->offset += (end - entry->start);
1397 
1398 	vm_map_entry_link(map, entry, new_entry);
1399 
1400 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1401 		vm_object_reference(new_entry->object.vm_object);
1402 	}
1403 }
1404 
1405 /*
1406  *	vm_map_submap:		[ kernel use only ]
1407  *
1408  *	Mark the given range as handled by a subordinate map.
1409  *
1410  *	This range must have been created with vm_map_find,
1411  *	and no other operations may have been performed on this
1412  *	range prior to calling vm_map_submap.
1413  *
1414  *	Only a limited number of operations can be performed
1415  *	within this rage after calling vm_map_submap:
1416  *		vm_fault
1417  *	[Don't try vm_map_copy!]
1418  *
1419  *	To remove a submapping, one must first remove the
1420  *	range from the superior map, and then destroy the
1421  *	submap (if desired).  [Better yet, don't try it.]
1422  */
1423 int
1424 vm_map_submap(
1425 	vm_map_t map,
1426 	vm_offset_t start,
1427 	vm_offset_t end,
1428 	vm_map_t submap)
1429 {
1430 	vm_map_entry_t entry;
1431 	int result = KERN_INVALID_ARGUMENT;
1432 
1433 	vm_map_lock(map);
1434 
1435 	VM_MAP_RANGE_CHECK(map, start, end);
1436 
1437 	if (vm_map_lookup_entry(map, start, &entry)) {
1438 		vm_map_clip_start(map, entry, start);
1439 	} else
1440 		entry = entry->next;
1441 
1442 	vm_map_clip_end(map, entry, end);
1443 
1444 	if ((entry->start == start) && (entry->end == end) &&
1445 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1446 	    (entry->object.vm_object == NULL)) {
1447 		entry->object.sub_map = submap;
1448 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1449 		result = KERN_SUCCESS;
1450 	}
1451 	vm_map_unlock(map);
1452 
1453 	return (result);
1454 }
1455 
1456 /*
1457  * The maximum number of pages to map
1458  */
1459 #define	MAX_INIT_PT	96
1460 
1461 /*
1462  *	vm_map_pmap_enter:
1463  *
1464  *	Preload read-only mappings for the given object's resident pages into
1465  *	the given map.  This eliminates the soft faults on process startup and
1466  *	immediately after an mmap(2).  Because these are speculative mappings,
1467  *	cached pages are not reactivated and mapped.
1468  */
1469 void
1470 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
1471     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
1472 {
1473 	vm_offset_t start;
1474 	vm_page_t p, p_start;
1475 	vm_pindex_t psize, tmpidx;
1476 	boolean_t are_queues_locked;
1477 
1478 	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
1479 		return;
1480 	VM_OBJECT_LOCK(object);
1481 	if (object->type == OBJT_DEVICE) {
1482 		pmap_object_init_pt(map->pmap, addr, object, pindex, size);
1483 		goto unlock_return;
1484 	}
1485 
1486 	psize = atop(size);
1487 
1488 	if (object->type != OBJT_VNODE ||
1489 	    ((flags & MAP_PREFAULT_PARTIAL) && (psize > MAX_INIT_PT) &&
1490 	     (object->resident_page_count > MAX_INIT_PT))) {
1491 		goto unlock_return;
1492 	}
1493 
1494 	if (psize + pindex > object->size) {
1495 		if (object->size < pindex)
1496 			goto unlock_return;
1497 		psize = object->size - pindex;
1498 	}
1499 
1500 	are_queues_locked = FALSE;
1501 	start = 0;
1502 	p_start = NULL;
1503 
1504 	if ((p = TAILQ_FIRST(&object->memq)) != NULL) {
1505 		if (p->pindex < pindex) {
1506 			p = vm_page_splay(pindex, object->root);
1507 			if ((object->root = p)->pindex < pindex)
1508 				p = TAILQ_NEXT(p, listq);
1509 		}
1510 	}
1511 	/*
1512 	 * Assert: the variable p is either (1) the page with the
1513 	 * least pindex greater than or equal to the parameter pindex
1514 	 * or (2) NULL.
1515 	 */
1516 	for (;
1517 	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
1518 	     p = TAILQ_NEXT(p, listq)) {
1519 		/*
1520 		 * don't allow an madvise to blow away our really
1521 		 * free pages allocating pv entries.
1522 		 */
1523 		if ((flags & MAP_PREFAULT_MADVISE) &&
1524 		    cnt.v_free_count < cnt.v_free_reserved) {
1525 			psize = tmpidx;
1526 			break;
1527 		}
1528 		if ((p->valid & VM_PAGE_BITS_ALL) == VM_PAGE_BITS_ALL &&
1529 		    (p->busy == 0)) {
1530 			if (p_start == NULL) {
1531 				start = addr + ptoa(tmpidx);
1532 				p_start = p;
1533 			}
1534 		} else if (p_start != NULL) {
1535 			if (!are_queues_locked) {
1536 				are_queues_locked = TRUE;
1537 				vm_page_lock_queues();
1538 			}
1539 			pmap_enter_object(map->pmap, start, addr +
1540 			    ptoa(tmpidx), p_start, prot);
1541 			p_start = NULL;
1542 		}
1543 	}
1544 	if (p_start != NULL) {
1545 		if (!are_queues_locked) {
1546 			are_queues_locked = TRUE;
1547 			vm_page_lock_queues();
1548 		}
1549 		pmap_enter_object(map->pmap, start, addr + ptoa(psize),
1550 		    p_start, prot);
1551 	}
1552 	if (are_queues_locked)
1553 		vm_page_unlock_queues();
1554 unlock_return:
1555 	VM_OBJECT_UNLOCK(object);
1556 }
1557 
1558 /*
1559  *	vm_map_protect:
1560  *
1561  *	Sets the protection of the specified address
1562  *	region in the target map.  If "set_max" is
1563  *	specified, the maximum protection is to be set;
1564  *	otherwise, only the current protection is affected.
1565  */
1566 int
1567 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
1568 	       vm_prot_t new_prot, boolean_t set_max)
1569 {
1570 	vm_map_entry_t current;
1571 	vm_map_entry_t entry;
1572 
1573 	vm_map_lock(map);
1574 
1575 	VM_MAP_RANGE_CHECK(map, start, end);
1576 
1577 	if (vm_map_lookup_entry(map, start, &entry)) {
1578 		vm_map_clip_start(map, entry, start);
1579 	} else {
1580 		entry = entry->next;
1581 	}
1582 
1583 	/*
1584 	 * Make a first pass to check for protection violations.
1585 	 */
1586 	current = entry;
1587 	while ((current != &map->header) && (current->start < end)) {
1588 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1589 			vm_map_unlock(map);
1590 			return (KERN_INVALID_ARGUMENT);
1591 		}
1592 		if ((new_prot & current->max_protection) != new_prot) {
1593 			vm_map_unlock(map);
1594 			return (KERN_PROTECTION_FAILURE);
1595 		}
1596 		current = current->next;
1597 	}
1598 
1599 	/*
1600 	 * Go back and fix up protections. [Note that clipping is not
1601 	 * necessary the second time.]
1602 	 */
1603 	current = entry;
1604 	while ((current != &map->header) && (current->start < end)) {
1605 		vm_prot_t old_prot;
1606 
1607 		vm_map_clip_end(map, current, end);
1608 
1609 		old_prot = current->protection;
1610 		if (set_max)
1611 			current->protection =
1612 			    (current->max_protection = new_prot) &
1613 			    old_prot;
1614 		else
1615 			current->protection = new_prot;
1616 
1617 		/*
1618 		 * Update physical map if necessary. Worry about copy-on-write
1619 		 * here -- CHECK THIS XXX
1620 		 */
1621 		if (current->protection != old_prot) {
1622 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
1623 							VM_PROT_ALL)
1624 			pmap_protect(map->pmap, current->start,
1625 			    current->end,
1626 			    current->protection & MASK(current));
1627 #undef	MASK
1628 		}
1629 		vm_map_simplify_entry(map, current);
1630 		current = current->next;
1631 	}
1632 	vm_map_unlock(map);
1633 	return (KERN_SUCCESS);
1634 }
1635 
1636 /*
1637  *	vm_map_madvise:
1638  *
1639  *	This routine traverses a processes map handling the madvise
1640  *	system call.  Advisories are classified as either those effecting
1641  *	the vm_map_entry structure, or those effecting the underlying
1642  *	objects.
1643  */
1644 int
1645 vm_map_madvise(
1646 	vm_map_t map,
1647 	vm_offset_t start,
1648 	vm_offset_t end,
1649 	int behav)
1650 {
1651 	vm_map_entry_t current, entry;
1652 	int modify_map = 0;
1653 
1654 	/*
1655 	 * Some madvise calls directly modify the vm_map_entry, in which case
1656 	 * we need to use an exclusive lock on the map and we need to perform
1657 	 * various clipping operations.  Otherwise we only need a read-lock
1658 	 * on the map.
1659 	 */
1660 	switch(behav) {
1661 	case MADV_NORMAL:
1662 	case MADV_SEQUENTIAL:
1663 	case MADV_RANDOM:
1664 	case MADV_NOSYNC:
1665 	case MADV_AUTOSYNC:
1666 	case MADV_NOCORE:
1667 	case MADV_CORE:
1668 		modify_map = 1;
1669 		vm_map_lock(map);
1670 		break;
1671 	case MADV_WILLNEED:
1672 	case MADV_DONTNEED:
1673 	case MADV_FREE:
1674 		vm_map_lock_read(map);
1675 		break;
1676 	default:
1677 		return (KERN_INVALID_ARGUMENT);
1678 	}
1679 
1680 	/*
1681 	 * Locate starting entry and clip if necessary.
1682 	 */
1683 	VM_MAP_RANGE_CHECK(map, start, end);
1684 
1685 	if (vm_map_lookup_entry(map, start, &entry)) {
1686 		if (modify_map)
1687 			vm_map_clip_start(map, entry, start);
1688 	} else {
1689 		entry = entry->next;
1690 	}
1691 
1692 	if (modify_map) {
1693 		/*
1694 		 * madvise behaviors that are implemented in the vm_map_entry.
1695 		 *
1696 		 * We clip the vm_map_entry so that behavioral changes are
1697 		 * limited to the specified address range.
1698 		 */
1699 		for (current = entry;
1700 		     (current != &map->header) && (current->start < end);
1701 		     current = current->next
1702 		) {
1703 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
1704 				continue;
1705 
1706 			vm_map_clip_end(map, current, end);
1707 
1708 			switch (behav) {
1709 			case MADV_NORMAL:
1710 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
1711 				break;
1712 			case MADV_SEQUENTIAL:
1713 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
1714 				break;
1715 			case MADV_RANDOM:
1716 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
1717 				break;
1718 			case MADV_NOSYNC:
1719 				current->eflags |= MAP_ENTRY_NOSYNC;
1720 				break;
1721 			case MADV_AUTOSYNC:
1722 				current->eflags &= ~MAP_ENTRY_NOSYNC;
1723 				break;
1724 			case MADV_NOCORE:
1725 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
1726 				break;
1727 			case MADV_CORE:
1728 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
1729 				break;
1730 			default:
1731 				break;
1732 			}
1733 			vm_map_simplify_entry(map, current);
1734 		}
1735 		vm_map_unlock(map);
1736 	} else {
1737 		vm_pindex_t pindex;
1738 		int count;
1739 
1740 		/*
1741 		 * madvise behaviors that are implemented in the underlying
1742 		 * vm_object.
1743 		 *
1744 		 * Since we don't clip the vm_map_entry, we have to clip
1745 		 * the vm_object pindex and count.
1746 		 */
1747 		for (current = entry;
1748 		     (current != &map->header) && (current->start < end);
1749 		     current = current->next
1750 		) {
1751 			vm_offset_t useStart;
1752 
1753 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
1754 				continue;
1755 
1756 			pindex = OFF_TO_IDX(current->offset);
1757 			count = atop(current->end - current->start);
1758 			useStart = current->start;
1759 
1760 			if (current->start < start) {
1761 				pindex += atop(start - current->start);
1762 				count -= atop(start - current->start);
1763 				useStart = start;
1764 			}
1765 			if (current->end > end)
1766 				count -= atop(current->end - end);
1767 
1768 			if (count <= 0)
1769 				continue;
1770 
1771 			vm_object_madvise(current->object.vm_object,
1772 					  pindex, count, behav);
1773 			if (behav == MADV_WILLNEED) {
1774 				vm_map_pmap_enter(map,
1775 				    useStart,
1776 				    current->protection,
1777 				    current->object.vm_object,
1778 				    pindex,
1779 				    (count << PAGE_SHIFT),
1780 				    MAP_PREFAULT_MADVISE
1781 				);
1782 			}
1783 		}
1784 		vm_map_unlock_read(map);
1785 	}
1786 	return (0);
1787 }
1788 
1789 
1790 /*
1791  *	vm_map_inherit:
1792  *
1793  *	Sets the inheritance of the specified address
1794  *	range in the target map.  Inheritance
1795  *	affects how the map will be shared with
1796  *	child maps at the time of vm_map_fork.
1797  */
1798 int
1799 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
1800 	       vm_inherit_t new_inheritance)
1801 {
1802 	vm_map_entry_t entry;
1803 	vm_map_entry_t temp_entry;
1804 
1805 	switch (new_inheritance) {
1806 	case VM_INHERIT_NONE:
1807 	case VM_INHERIT_COPY:
1808 	case VM_INHERIT_SHARE:
1809 		break;
1810 	default:
1811 		return (KERN_INVALID_ARGUMENT);
1812 	}
1813 	vm_map_lock(map);
1814 	VM_MAP_RANGE_CHECK(map, start, end);
1815 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
1816 		entry = temp_entry;
1817 		vm_map_clip_start(map, entry, start);
1818 	} else
1819 		entry = temp_entry->next;
1820 	while ((entry != &map->header) && (entry->start < end)) {
1821 		vm_map_clip_end(map, entry, end);
1822 		entry->inheritance = new_inheritance;
1823 		vm_map_simplify_entry(map, entry);
1824 		entry = entry->next;
1825 	}
1826 	vm_map_unlock(map);
1827 	return (KERN_SUCCESS);
1828 }
1829 
1830 /*
1831  *	vm_map_unwire:
1832  *
1833  *	Implements both kernel and user unwiring.
1834  */
1835 int
1836 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1837     int flags)
1838 {
1839 	vm_map_entry_t entry, first_entry, tmp_entry;
1840 	vm_offset_t saved_start;
1841 	unsigned int last_timestamp;
1842 	int rv;
1843 	boolean_t need_wakeup, result, user_unwire;
1844 
1845 	user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
1846 	vm_map_lock(map);
1847 	VM_MAP_RANGE_CHECK(map, start, end);
1848 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
1849 		if (flags & VM_MAP_WIRE_HOLESOK)
1850 			first_entry = first_entry->next;
1851 		else {
1852 			vm_map_unlock(map);
1853 			return (KERN_INVALID_ADDRESS);
1854 		}
1855 	}
1856 	last_timestamp = map->timestamp;
1857 	entry = first_entry;
1858 	while (entry != &map->header && entry->start < end) {
1859 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
1860 			/*
1861 			 * We have not yet clipped the entry.
1862 			 */
1863 			saved_start = (start >= entry->start) ? start :
1864 			    entry->start;
1865 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
1866 			if (vm_map_unlock_and_wait(map, 0)) {
1867 				/*
1868 				 * Allow interruption of user unwiring?
1869 				 */
1870 			}
1871 			vm_map_lock(map);
1872 			if (last_timestamp+1 != map->timestamp) {
1873 				/*
1874 				 * Look again for the entry because the map was
1875 				 * modified while it was unlocked.
1876 				 * Specifically, the entry may have been
1877 				 * clipped, merged, or deleted.
1878 				 */
1879 				if (!vm_map_lookup_entry(map, saved_start,
1880 				    &tmp_entry)) {
1881 					if (flags & VM_MAP_WIRE_HOLESOK)
1882 						tmp_entry = tmp_entry->next;
1883 					else {
1884 						if (saved_start == start) {
1885 							/*
1886 							 * First_entry has been deleted.
1887 							 */
1888 							vm_map_unlock(map);
1889 							return (KERN_INVALID_ADDRESS);
1890 						}
1891 						end = saved_start;
1892 						rv = KERN_INVALID_ADDRESS;
1893 						goto done;
1894 					}
1895 				}
1896 				if (entry == first_entry)
1897 					first_entry = tmp_entry;
1898 				else
1899 					first_entry = NULL;
1900 				entry = tmp_entry;
1901 			}
1902 			last_timestamp = map->timestamp;
1903 			continue;
1904 		}
1905 		vm_map_clip_start(map, entry, start);
1906 		vm_map_clip_end(map, entry, end);
1907 		/*
1908 		 * Mark the entry in case the map lock is released.  (See
1909 		 * above.)
1910 		 */
1911 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
1912 		/*
1913 		 * Check the map for holes in the specified region.
1914 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
1915 		 */
1916 		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
1917 		    (entry->end < end && (entry->next == &map->header ||
1918 		    entry->next->start > entry->end))) {
1919 			end = entry->end;
1920 			rv = KERN_INVALID_ADDRESS;
1921 			goto done;
1922 		}
1923 		/*
1924 		 * If system unwiring, require that the entry is system wired.
1925 		 */
1926 		if (!user_unwire &&
1927 		    vm_map_entry_system_wired_count(entry) == 0) {
1928 			end = entry->end;
1929 			rv = KERN_INVALID_ARGUMENT;
1930 			goto done;
1931 		}
1932 		entry = entry->next;
1933 	}
1934 	rv = KERN_SUCCESS;
1935 done:
1936 	need_wakeup = FALSE;
1937 	if (first_entry == NULL) {
1938 		result = vm_map_lookup_entry(map, start, &first_entry);
1939 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
1940 			first_entry = first_entry->next;
1941 		else
1942 			KASSERT(result, ("vm_map_unwire: lookup failed"));
1943 	}
1944 	entry = first_entry;
1945 	while (entry != &map->header && entry->start < end) {
1946 		if (rv == KERN_SUCCESS && (!user_unwire ||
1947 		    (entry->eflags & MAP_ENTRY_USER_WIRED))) {
1948 			if (user_unwire)
1949 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
1950 			entry->wired_count--;
1951 			if (entry->wired_count == 0) {
1952 				/*
1953 				 * Retain the map lock.
1954 				 */
1955 				vm_fault_unwire(map, entry->start, entry->end,
1956 				    entry->object.vm_object != NULL &&
1957 				    entry->object.vm_object->type == OBJT_DEVICE);
1958 			}
1959 		}
1960 		KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
1961 			("vm_map_unwire: in-transition flag missing"));
1962 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
1963 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
1964 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
1965 			need_wakeup = TRUE;
1966 		}
1967 		vm_map_simplify_entry(map, entry);
1968 		entry = entry->next;
1969 	}
1970 	vm_map_unlock(map);
1971 	if (need_wakeup)
1972 		vm_map_wakeup(map);
1973 	return (rv);
1974 }
1975 
1976 /*
1977  *	vm_map_wire:
1978  *
1979  *	Implements both kernel and user wiring.
1980  */
1981 int
1982 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
1983     int flags)
1984 {
1985 	vm_map_entry_t entry, first_entry, tmp_entry;
1986 	vm_offset_t saved_end, saved_start;
1987 	unsigned int last_timestamp;
1988 	int rv;
1989 	boolean_t fictitious, need_wakeup, result, user_wire;
1990 
1991 	user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
1992 	vm_map_lock(map);
1993 	VM_MAP_RANGE_CHECK(map, start, end);
1994 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
1995 		if (flags & VM_MAP_WIRE_HOLESOK)
1996 			first_entry = first_entry->next;
1997 		else {
1998 			vm_map_unlock(map);
1999 			return (KERN_INVALID_ADDRESS);
2000 		}
2001 	}
2002 	last_timestamp = map->timestamp;
2003 	entry = first_entry;
2004 	while (entry != &map->header && entry->start < end) {
2005 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2006 			/*
2007 			 * We have not yet clipped the entry.
2008 			 */
2009 			saved_start = (start >= entry->start) ? start :
2010 			    entry->start;
2011 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2012 			if (vm_map_unlock_and_wait(map, 0)) {
2013 				/*
2014 				 * Allow interruption of user wiring?
2015 				 */
2016 			}
2017 			vm_map_lock(map);
2018 			if (last_timestamp + 1 != map->timestamp) {
2019 				/*
2020 				 * Look again for the entry because the map was
2021 				 * modified while it was unlocked.
2022 				 * Specifically, the entry may have been
2023 				 * clipped, merged, or deleted.
2024 				 */
2025 				if (!vm_map_lookup_entry(map, saved_start,
2026 				    &tmp_entry)) {
2027 					if (flags & VM_MAP_WIRE_HOLESOK)
2028 						tmp_entry = tmp_entry->next;
2029 					else {
2030 						if (saved_start == start) {
2031 							/*
2032 							 * first_entry has been deleted.
2033 							 */
2034 							vm_map_unlock(map);
2035 							return (KERN_INVALID_ADDRESS);
2036 						}
2037 						end = saved_start;
2038 						rv = KERN_INVALID_ADDRESS;
2039 						goto done;
2040 					}
2041 				}
2042 				if (entry == first_entry)
2043 					first_entry = tmp_entry;
2044 				else
2045 					first_entry = NULL;
2046 				entry = tmp_entry;
2047 			}
2048 			last_timestamp = map->timestamp;
2049 			continue;
2050 		}
2051 		vm_map_clip_start(map, entry, start);
2052 		vm_map_clip_end(map, entry, end);
2053 		/*
2054 		 * Mark the entry in case the map lock is released.  (See
2055 		 * above.)
2056 		 */
2057 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2058 		/*
2059 		 *
2060 		 */
2061 		if (entry->wired_count == 0) {
2062 			entry->wired_count++;
2063 			saved_start = entry->start;
2064 			saved_end = entry->end;
2065 			fictitious = entry->object.vm_object != NULL &&
2066 			    entry->object.vm_object->type == OBJT_DEVICE;
2067 			/*
2068 			 * Release the map lock, relying on the in-transition
2069 			 * mark.
2070 			 */
2071 			vm_map_unlock(map);
2072 			rv = vm_fault_wire(map, saved_start, saved_end,
2073 			    user_wire, fictitious);
2074 			vm_map_lock(map);
2075 			if (last_timestamp + 1 != map->timestamp) {
2076 				/*
2077 				 * Look again for the entry because the map was
2078 				 * modified while it was unlocked.  The entry
2079 				 * may have been clipped, but NOT merged or
2080 				 * deleted.
2081 				 */
2082 				result = vm_map_lookup_entry(map, saved_start,
2083 				    &tmp_entry);
2084 				KASSERT(result, ("vm_map_wire: lookup failed"));
2085 				if (entry == first_entry)
2086 					first_entry = tmp_entry;
2087 				else
2088 					first_entry = NULL;
2089 				entry = tmp_entry;
2090 				while (entry->end < saved_end) {
2091 					if (rv != KERN_SUCCESS) {
2092 						KASSERT(entry->wired_count == 1,
2093 						    ("vm_map_wire: bad count"));
2094 						entry->wired_count = -1;
2095 					}
2096 					entry = entry->next;
2097 				}
2098 			}
2099 			last_timestamp = map->timestamp;
2100 			if (rv != KERN_SUCCESS) {
2101 				KASSERT(entry->wired_count == 1,
2102 				    ("vm_map_wire: bad count"));
2103 				/*
2104 				 * Assign an out-of-range value to represent
2105 				 * the failure to wire this entry.
2106 				 */
2107 				entry->wired_count = -1;
2108 				end = entry->end;
2109 				goto done;
2110 			}
2111 		} else if (!user_wire ||
2112 			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2113 			entry->wired_count++;
2114 		}
2115 		/*
2116 		 * Check the map for holes in the specified region.
2117 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2118 		 */
2119 		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2120 		    (entry->end < end && (entry->next == &map->header ||
2121 		    entry->next->start > entry->end))) {
2122 			end = entry->end;
2123 			rv = KERN_INVALID_ADDRESS;
2124 			goto done;
2125 		}
2126 		entry = entry->next;
2127 	}
2128 	rv = KERN_SUCCESS;
2129 done:
2130 	need_wakeup = FALSE;
2131 	if (first_entry == NULL) {
2132 		result = vm_map_lookup_entry(map, start, &first_entry);
2133 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2134 			first_entry = first_entry->next;
2135 		else
2136 			KASSERT(result, ("vm_map_wire: lookup failed"));
2137 	}
2138 	entry = first_entry;
2139 	while (entry != &map->header && entry->start < end) {
2140 		if (rv == KERN_SUCCESS) {
2141 			if (user_wire)
2142 				entry->eflags |= MAP_ENTRY_USER_WIRED;
2143 		} else if (entry->wired_count == -1) {
2144 			/*
2145 			 * Wiring failed on this entry.  Thus, unwiring is
2146 			 * unnecessary.
2147 			 */
2148 			entry->wired_count = 0;
2149 		} else {
2150 			if (!user_wire ||
2151 			    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0)
2152 				entry->wired_count--;
2153 			if (entry->wired_count == 0) {
2154 				/*
2155 				 * Retain the map lock.
2156 				 */
2157 				vm_fault_unwire(map, entry->start, entry->end,
2158 				    entry->object.vm_object != NULL &&
2159 				    entry->object.vm_object->type == OBJT_DEVICE);
2160 			}
2161 		}
2162 		KASSERT(entry->eflags & MAP_ENTRY_IN_TRANSITION,
2163 			("vm_map_wire: in-transition flag missing"));
2164 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2165 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2166 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2167 			need_wakeup = TRUE;
2168 		}
2169 		vm_map_simplify_entry(map, entry);
2170 		entry = entry->next;
2171 	}
2172 	vm_map_unlock(map);
2173 	if (need_wakeup)
2174 		vm_map_wakeup(map);
2175 	return (rv);
2176 }
2177 
2178 /*
2179  * vm_map_sync
2180  *
2181  * Push any dirty cached pages in the address range to their pager.
2182  * If syncio is TRUE, dirty pages are written synchronously.
2183  * If invalidate is TRUE, any cached pages are freed as well.
2184  *
2185  * If the size of the region from start to end is zero, we are
2186  * supposed to flush all modified pages within the region containing
2187  * start.  Unfortunately, a region can be split or coalesced with
2188  * neighboring regions, making it difficult to determine what the
2189  * original region was.  Therefore, we approximate this requirement by
2190  * flushing the current region containing start.
2191  *
2192  * Returns an error if any part of the specified range is not mapped.
2193  */
2194 int
2195 vm_map_sync(
2196 	vm_map_t map,
2197 	vm_offset_t start,
2198 	vm_offset_t end,
2199 	boolean_t syncio,
2200 	boolean_t invalidate)
2201 {
2202 	vm_map_entry_t current;
2203 	vm_map_entry_t entry;
2204 	vm_size_t size;
2205 	vm_object_t object;
2206 	vm_ooffset_t offset;
2207 
2208 	vm_map_lock_read(map);
2209 	VM_MAP_RANGE_CHECK(map, start, end);
2210 	if (!vm_map_lookup_entry(map, start, &entry)) {
2211 		vm_map_unlock_read(map);
2212 		return (KERN_INVALID_ADDRESS);
2213 	} else if (start == end) {
2214 		start = entry->start;
2215 		end = entry->end;
2216 	}
2217 	/*
2218 	 * Make a first pass to check for user-wired memory and holes.
2219 	 */
2220 	for (current = entry; current != &map->header && current->start < end;
2221 	    current = current->next) {
2222 		if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
2223 			vm_map_unlock_read(map);
2224 			return (KERN_INVALID_ARGUMENT);
2225 		}
2226 		if (end > current->end &&
2227 		    (current->next == &map->header ||
2228 			current->end != current->next->start)) {
2229 			vm_map_unlock_read(map);
2230 			return (KERN_INVALID_ADDRESS);
2231 		}
2232 	}
2233 
2234 	if (invalidate)
2235 		pmap_remove(map->pmap, start, end);
2236 
2237 	/*
2238 	 * Make a second pass, cleaning/uncaching pages from the indicated
2239 	 * objects as we go.
2240 	 */
2241 	for (current = entry; current != &map->header && current->start < end;
2242 	    current = current->next) {
2243 		offset = current->offset + (start - current->start);
2244 		size = (end <= current->end ? end : current->end) - start;
2245 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2246 			vm_map_t smap;
2247 			vm_map_entry_t tentry;
2248 			vm_size_t tsize;
2249 
2250 			smap = current->object.sub_map;
2251 			vm_map_lock_read(smap);
2252 			(void) vm_map_lookup_entry(smap, offset, &tentry);
2253 			tsize = tentry->end - offset;
2254 			if (tsize < size)
2255 				size = tsize;
2256 			object = tentry->object.vm_object;
2257 			offset = tentry->offset + (offset - tentry->start);
2258 			vm_map_unlock_read(smap);
2259 		} else {
2260 			object = current->object.vm_object;
2261 		}
2262 		vm_object_sync(object, offset, size, syncio, invalidate);
2263 		start += size;
2264 	}
2265 
2266 	vm_map_unlock_read(map);
2267 	return (KERN_SUCCESS);
2268 }
2269 
2270 /*
2271  *	vm_map_entry_unwire:	[ internal use only ]
2272  *
2273  *	Make the region specified by this entry pageable.
2274  *
2275  *	The map in question should be locked.
2276  *	[This is the reason for this routine's existence.]
2277  */
2278 static void
2279 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2280 {
2281 	vm_fault_unwire(map, entry->start, entry->end,
2282 	    entry->object.vm_object != NULL &&
2283 	    entry->object.vm_object->type == OBJT_DEVICE);
2284 	entry->wired_count = 0;
2285 }
2286 
2287 /*
2288  *	vm_map_entry_delete:	[ internal use only ]
2289  *
2290  *	Deallocate the given entry from the target map.
2291  */
2292 static void
2293 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
2294 {
2295 	vm_object_t object;
2296 	vm_pindex_t offidxstart, offidxend, count;
2297 
2298 	vm_map_entry_unlink(map, entry);
2299 	map->size -= entry->end - entry->start;
2300 
2301 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
2302 	    (object = entry->object.vm_object) != NULL) {
2303 		count = OFF_TO_IDX(entry->end - entry->start);
2304 		offidxstart = OFF_TO_IDX(entry->offset);
2305 		offidxend = offidxstart + count;
2306 		VM_OBJECT_LOCK(object);
2307 		if (object->ref_count != 1 &&
2308 		    ((object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
2309 		    object == kernel_object || object == kmem_object)) {
2310 			vm_object_collapse(object);
2311 			vm_object_page_remove(object, offidxstart, offidxend, FALSE);
2312 			if (object->type == OBJT_SWAP)
2313 				swap_pager_freespace(object, offidxstart, count);
2314 			if (offidxend >= object->size &&
2315 			    offidxstart < object->size)
2316 				object->size = offidxstart;
2317 		}
2318 		VM_OBJECT_UNLOCK(object);
2319 		vm_object_deallocate(object);
2320 	}
2321 
2322 	vm_map_entry_dispose(map, entry);
2323 }
2324 
2325 /*
2326  *	vm_map_delete:	[ internal use only ]
2327  *
2328  *	Deallocates the given address range from the target
2329  *	map.
2330  */
2331 int
2332 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
2333 {
2334 	vm_map_entry_t entry;
2335 	vm_map_entry_t first_entry;
2336 
2337 	/*
2338 	 * Find the start of the region, and clip it
2339 	 */
2340 	if (!vm_map_lookup_entry(map, start, &first_entry))
2341 		entry = first_entry->next;
2342 	else {
2343 		entry = first_entry;
2344 		vm_map_clip_start(map, entry, start);
2345 	}
2346 
2347 	/*
2348 	 * Step through all entries in this region
2349 	 */
2350 	while ((entry != &map->header) && (entry->start < end)) {
2351 		vm_map_entry_t next;
2352 
2353 		/*
2354 		 * Wait for wiring or unwiring of an entry to complete.
2355 		 * Also wait for any system wirings to disappear on
2356 		 * user maps.
2357 		 */
2358 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
2359 		    (vm_map_pmap(map) != kernel_pmap &&
2360 		    vm_map_entry_system_wired_count(entry) != 0)) {
2361 			unsigned int last_timestamp;
2362 			vm_offset_t saved_start;
2363 			vm_map_entry_t tmp_entry;
2364 
2365 			saved_start = entry->start;
2366 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2367 			last_timestamp = map->timestamp;
2368 			(void) vm_map_unlock_and_wait(map, 0);
2369 			vm_map_lock(map);
2370 			if (last_timestamp + 1 != map->timestamp) {
2371 				/*
2372 				 * Look again for the entry because the map was
2373 				 * modified while it was unlocked.
2374 				 * Specifically, the entry may have been
2375 				 * clipped, merged, or deleted.
2376 				 */
2377 				if (!vm_map_lookup_entry(map, saved_start,
2378 							 &tmp_entry))
2379 					entry = tmp_entry->next;
2380 				else {
2381 					entry = tmp_entry;
2382 					vm_map_clip_start(map, entry,
2383 							  saved_start);
2384 				}
2385 			}
2386 			continue;
2387 		}
2388 		vm_map_clip_end(map, entry, end);
2389 
2390 		next = entry->next;
2391 
2392 		/*
2393 		 * Unwire before removing addresses from the pmap; otherwise,
2394 		 * unwiring will put the entries back in the pmap.
2395 		 */
2396 		if (entry->wired_count != 0) {
2397 			vm_map_entry_unwire(map, entry);
2398 		}
2399 
2400 		pmap_remove(map->pmap, entry->start, entry->end);
2401 
2402 		/*
2403 		 * Delete the entry (which may delete the object) only after
2404 		 * removing all pmap entries pointing to its pages.
2405 		 * (Otherwise, its page frames may be reallocated, and any
2406 		 * modify bits will be set in the wrong object!)
2407 		 */
2408 		vm_map_entry_delete(map, entry);
2409 		entry = next;
2410 	}
2411 	return (KERN_SUCCESS);
2412 }
2413 
2414 /*
2415  *	vm_map_remove:
2416  *
2417  *	Remove the given address range from the target map.
2418  *	This is the exported form of vm_map_delete.
2419  */
2420 int
2421 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
2422 {
2423 	int result;
2424 
2425 	vm_map_lock(map);
2426 	VM_MAP_RANGE_CHECK(map, start, end);
2427 	result = vm_map_delete(map, start, end);
2428 	vm_map_unlock(map);
2429 	return (result);
2430 }
2431 
2432 /*
2433  *	vm_map_check_protection:
2434  *
2435  *	Assert that the target map allows the specified privilege on the
2436  *	entire address region given.  The entire region must be allocated.
2437  *
2438  *	WARNING!  This code does not and should not check whether the
2439  *	contents of the region is accessible.  For example a smaller file
2440  *	might be mapped into a larger address space.
2441  *
2442  *	NOTE!  This code is also called by munmap().
2443  *
2444  *	The map must be locked.  A read lock is sufficient.
2445  */
2446 boolean_t
2447 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
2448 			vm_prot_t protection)
2449 {
2450 	vm_map_entry_t entry;
2451 	vm_map_entry_t tmp_entry;
2452 
2453 	if (!vm_map_lookup_entry(map, start, &tmp_entry))
2454 		return (FALSE);
2455 	entry = tmp_entry;
2456 
2457 	while (start < end) {
2458 		if (entry == &map->header)
2459 			return (FALSE);
2460 		/*
2461 		 * No holes allowed!
2462 		 */
2463 		if (start < entry->start)
2464 			return (FALSE);
2465 		/*
2466 		 * Check protection associated with entry.
2467 		 */
2468 		if ((entry->protection & protection) != protection)
2469 			return (FALSE);
2470 		/* go to next entry */
2471 		start = entry->end;
2472 		entry = entry->next;
2473 	}
2474 	return (TRUE);
2475 }
2476 
2477 /*
2478  *	vm_map_copy_entry:
2479  *
2480  *	Copies the contents of the source entry to the destination
2481  *	entry.  The entries *must* be aligned properly.
2482  */
2483 static void
2484 vm_map_copy_entry(
2485 	vm_map_t src_map,
2486 	vm_map_t dst_map,
2487 	vm_map_entry_t src_entry,
2488 	vm_map_entry_t dst_entry)
2489 {
2490 	vm_object_t src_object;
2491 
2492 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
2493 		return;
2494 
2495 	if (src_entry->wired_count == 0) {
2496 
2497 		/*
2498 		 * If the source entry is marked needs_copy, it is already
2499 		 * write-protected.
2500 		 */
2501 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2502 			pmap_protect(src_map->pmap,
2503 			    src_entry->start,
2504 			    src_entry->end,
2505 			    src_entry->protection & ~VM_PROT_WRITE);
2506 		}
2507 
2508 		/*
2509 		 * Make a copy of the object.
2510 		 */
2511 		if ((src_object = src_entry->object.vm_object) != NULL) {
2512 			VM_OBJECT_LOCK(src_object);
2513 			if ((src_object->handle == NULL) &&
2514 				(src_object->type == OBJT_DEFAULT ||
2515 				 src_object->type == OBJT_SWAP)) {
2516 				vm_object_collapse(src_object);
2517 				if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
2518 					vm_object_split(src_entry);
2519 					src_object = src_entry->object.vm_object;
2520 				}
2521 			}
2522 			vm_object_reference_locked(src_object);
2523 			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
2524 			VM_OBJECT_UNLOCK(src_object);
2525 			dst_entry->object.vm_object = src_object;
2526 			src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2527 			dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2528 			dst_entry->offset = src_entry->offset;
2529 		} else {
2530 			dst_entry->object.vm_object = NULL;
2531 			dst_entry->offset = 0;
2532 		}
2533 
2534 		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
2535 		    dst_entry->end - dst_entry->start, src_entry->start);
2536 	} else {
2537 		/*
2538 		 * Of course, wired down pages can't be set copy-on-write.
2539 		 * Cause wired pages to be copied into the new map by
2540 		 * simulating faults (the new pages are pageable)
2541 		 */
2542 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
2543 	}
2544 }
2545 
2546 /*
2547  * vmspace_map_entry_forked:
2548  * Update the newly-forked vmspace each time a map entry is inherited
2549  * or copied.  The values for vm_dsize and vm_tsize are approximate
2550  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
2551  */
2552 static void
2553 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
2554     vm_map_entry_t entry)
2555 {
2556 	vm_size_t entrysize;
2557 	vm_offset_t newend;
2558 
2559 	entrysize = entry->end - entry->start;
2560 	vm2->vm_map.size += entrysize;
2561 	if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
2562 		vm2->vm_ssize += btoc(entrysize);
2563 	} else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
2564 	    entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
2565 		newend = MIN(entry->end,
2566 		    (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
2567 		vm2->vm_dsize += btoc(newend - entry->start);
2568 	} else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
2569 	    entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
2570 		newend = MIN(entry->end,
2571 		    (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
2572 		vm2->vm_tsize += btoc(newend - entry->start);
2573 	}
2574 }
2575 
2576 /*
2577  * vmspace_fork:
2578  * Create a new process vmspace structure and vm_map
2579  * based on those of an existing process.  The new map
2580  * is based on the old map, according to the inheritance
2581  * values on the regions in that map.
2582  *
2583  * XXX It might be worth coalescing the entries added to the new vmspace.
2584  *
2585  * The source map must not be locked.
2586  */
2587 struct vmspace *
2588 vmspace_fork(struct vmspace *vm1)
2589 {
2590 	struct vmspace *vm2;
2591 	vm_map_t old_map = &vm1->vm_map;
2592 	vm_map_t new_map;
2593 	vm_map_entry_t old_entry;
2594 	vm_map_entry_t new_entry;
2595 	vm_object_t object;
2596 
2597 	vm_map_lock(old_map);
2598 
2599 	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
2600 	if (vm2 == NULL)
2601 		goto unlock_and_return;
2602 	vm2->vm_taddr = vm1->vm_taddr;
2603 	vm2->vm_daddr = vm1->vm_daddr;
2604 	vm2->vm_maxsaddr = vm1->vm_maxsaddr;
2605 	new_map = &vm2->vm_map;	/* XXX */
2606 	new_map->timestamp = 1;
2607 
2608 	old_entry = old_map->header.next;
2609 
2610 	while (old_entry != &old_map->header) {
2611 		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2612 			panic("vm_map_fork: encountered a submap");
2613 
2614 		switch (old_entry->inheritance) {
2615 		case VM_INHERIT_NONE:
2616 			break;
2617 
2618 		case VM_INHERIT_SHARE:
2619 			/*
2620 			 * Clone the entry, creating the shared object if necessary.
2621 			 */
2622 			object = old_entry->object.vm_object;
2623 			if (object == NULL) {
2624 				object = vm_object_allocate(OBJT_DEFAULT,
2625 					atop(old_entry->end - old_entry->start));
2626 				old_entry->object.vm_object = object;
2627 				old_entry->offset = 0;
2628 			}
2629 
2630 			/*
2631 			 * Add the reference before calling vm_object_shadow
2632 			 * to insure that a shadow object is created.
2633 			 */
2634 			vm_object_reference(object);
2635 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
2636 				vm_object_shadow(&old_entry->object.vm_object,
2637 					&old_entry->offset,
2638 					atop(old_entry->end - old_entry->start));
2639 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
2640 				/* Transfer the second reference too. */
2641 				vm_object_reference(
2642 				    old_entry->object.vm_object);
2643 				vm_object_deallocate(object);
2644 				object = old_entry->object.vm_object;
2645 			}
2646 			VM_OBJECT_LOCK(object);
2647 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
2648 			VM_OBJECT_UNLOCK(object);
2649 
2650 			/*
2651 			 * Clone the entry, referencing the shared object.
2652 			 */
2653 			new_entry = vm_map_entry_create(new_map);
2654 			*new_entry = *old_entry;
2655 			new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2656 			new_entry->wired_count = 0;
2657 
2658 			/*
2659 			 * Insert the entry into the new map -- we know we're
2660 			 * inserting at the end of the new map.
2661 			 */
2662 			vm_map_entry_link(new_map, new_map->header.prev,
2663 			    new_entry);
2664 			vmspace_map_entry_forked(vm1, vm2, new_entry);
2665 
2666 			/*
2667 			 * Update the physical map
2668 			 */
2669 			pmap_copy(new_map->pmap, old_map->pmap,
2670 			    new_entry->start,
2671 			    (old_entry->end - old_entry->start),
2672 			    old_entry->start);
2673 			break;
2674 
2675 		case VM_INHERIT_COPY:
2676 			/*
2677 			 * Clone the entry and link into the map.
2678 			 */
2679 			new_entry = vm_map_entry_create(new_map);
2680 			*new_entry = *old_entry;
2681 			new_entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2682 			new_entry->wired_count = 0;
2683 			new_entry->object.vm_object = NULL;
2684 			vm_map_entry_link(new_map, new_map->header.prev,
2685 			    new_entry);
2686 			vmspace_map_entry_forked(vm1, vm2, new_entry);
2687 			vm_map_copy_entry(old_map, new_map, old_entry,
2688 			    new_entry);
2689 			break;
2690 		}
2691 		old_entry = old_entry->next;
2692 	}
2693 unlock_and_return:
2694 	vm_map_unlock(old_map);
2695 
2696 	return (vm2);
2697 }
2698 
2699 int
2700 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
2701     vm_prot_t prot, vm_prot_t max, int cow)
2702 {
2703 	vm_map_entry_t new_entry, prev_entry;
2704 	vm_offset_t bot, top;
2705 	vm_size_t init_ssize;
2706 	int orient, rv;
2707 	rlim_t vmemlim;
2708 
2709 	/*
2710 	 * The stack orientation is piggybacked with the cow argument.
2711 	 * Extract it into orient and mask the cow argument so that we
2712 	 * don't pass it around further.
2713 	 * NOTE: We explicitly allow bi-directional stacks.
2714 	 */
2715 	orient = cow & (MAP_STACK_GROWS_DOWN|MAP_STACK_GROWS_UP);
2716 	cow &= ~orient;
2717 	KASSERT(orient != 0, ("No stack grow direction"));
2718 
2719 	if (addrbos < vm_map_min(map) ||
2720 	    addrbos > vm_map_max(map) ||
2721 	    addrbos + max_ssize < addrbos)
2722 		return (KERN_NO_SPACE);
2723 
2724 	init_ssize = (max_ssize < sgrowsiz) ? max_ssize : sgrowsiz;
2725 
2726 	PROC_LOCK(curthread->td_proc);
2727 	vmemlim = lim_cur(curthread->td_proc, RLIMIT_VMEM);
2728 	PROC_UNLOCK(curthread->td_proc);
2729 
2730 	vm_map_lock(map);
2731 
2732 	/* If addr is already mapped, no go */
2733 	if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
2734 		vm_map_unlock(map);
2735 		return (KERN_NO_SPACE);
2736 	}
2737 
2738 	/* If we would blow our VMEM resource limit, no go */
2739 	if (map->size + init_ssize > vmemlim) {
2740 		vm_map_unlock(map);
2741 		return (KERN_NO_SPACE);
2742 	}
2743 
2744 	/*
2745 	 * If we can't accomodate max_ssize in the current mapping, no go.
2746 	 * However, we need to be aware that subsequent user mappings might
2747 	 * map into the space we have reserved for stack, and currently this
2748 	 * space is not protected.
2749 	 *
2750 	 * Hopefully we will at least detect this condition when we try to
2751 	 * grow the stack.
2752 	 */
2753 	if ((prev_entry->next != &map->header) &&
2754 	    (prev_entry->next->start < addrbos + max_ssize)) {
2755 		vm_map_unlock(map);
2756 		return (KERN_NO_SPACE);
2757 	}
2758 
2759 	/*
2760 	 * We initially map a stack of only init_ssize.  We will grow as
2761 	 * needed later.  Depending on the orientation of the stack (i.e.
2762 	 * the grow direction) we either map at the top of the range, the
2763 	 * bottom of the range or in the middle.
2764 	 *
2765 	 * Note: we would normally expect prot and max to be VM_PROT_ALL,
2766 	 * and cow to be 0.  Possibly we should eliminate these as input
2767 	 * parameters, and just pass these values here in the insert call.
2768 	 */
2769 	if (orient == MAP_STACK_GROWS_DOWN)
2770 		bot = addrbos + max_ssize - init_ssize;
2771 	else if (orient == MAP_STACK_GROWS_UP)
2772 		bot = addrbos;
2773 	else
2774 		bot = round_page(addrbos + max_ssize/2 - init_ssize/2);
2775 	top = bot + init_ssize;
2776 	rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
2777 
2778 	/* Now set the avail_ssize amount. */
2779 	if (rv == KERN_SUCCESS) {
2780 		if (prev_entry != &map->header)
2781 			vm_map_clip_end(map, prev_entry, bot);
2782 		new_entry = prev_entry->next;
2783 		if (new_entry->end != top || new_entry->start != bot)
2784 			panic("Bad entry start/end for new stack entry");
2785 
2786 		new_entry->avail_ssize = max_ssize - init_ssize;
2787 		if (orient & MAP_STACK_GROWS_DOWN)
2788 			new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
2789 		if (orient & MAP_STACK_GROWS_UP)
2790 			new_entry->eflags |= MAP_ENTRY_GROWS_UP;
2791 	}
2792 
2793 	vm_map_unlock(map);
2794 	return (rv);
2795 }
2796 
2797 /* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
2798  * desired address is already mapped, or if we successfully grow
2799  * the stack.  Also returns KERN_SUCCESS if addr is outside the
2800  * stack range (this is strange, but preserves compatibility with
2801  * the grow function in vm_machdep.c).
2802  */
2803 int
2804 vm_map_growstack(struct proc *p, vm_offset_t addr)
2805 {
2806 	vm_map_entry_t next_entry, prev_entry;
2807 	vm_map_entry_t new_entry, stack_entry;
2808 	struct vmspace *vm = p->p_vmspace;
2809 	vm_map_t map = &vm->vm_map;
2810 	vm_offset_t end;
2811 	size_t grow_amount, max_grow;
2812 	rlim_t stacklim, vmemlim;
2813 	int is_procstack, rv;
2814 
2815 Retry:
2816 	PROC_LOCK(p);
2817 	stacklim = lim_cur(p, RLIMIT_STACK);
2818 	vmemlim = lim_cur(p, RLIMIT_VMEM);
2819 	PROC_UNLOCK(p);
2820 
2821 	vm_map_lock_read(map);
2822 
2823 	/* If addr is already in the entry range, no need to grow.*/
2824 	if (vm_map_lookup_entry(map, addr, &prev_entry)) {
2825 		vm_map_unlock_read(map);
2826 		return (KERN_SUCCESS);
2827 	}
2828 
2829 	next_entry = prev_entry->next;
2830 	if (!(prev_entry->eflags & MAP_ENTRY_GROWS_UP)) {
2831 		/*
2832 		 * This entry does not grow upwards. Since the address lies
2833 		 * beyond this entry, the next entry (if one exists) has to
2834 		 * be a downward growable entry. The entry list header is
2835 		 * never a growable entry, so it suffices to check the flags.
2836 		 */
2837 		if (!(next_entry->eflags & MAP_ENTRY_GROWS_DOWN)) {
2838 			vm_map_unlock_read(map);
2839 			return (KERN_SUCCESS);
2840 		}
2841 		stack_entry = next_entry;
2842 	} else {
2843 		/*
2844 		 * This entry grows upward. If the next entry does not at
2845 		 * least grow downwards, this is the entry we need to grow.
2846 		 * otherwise we have two possible choices and we have to
2847 		 * select one.
2848 		 */
2849 		if (next_entry->eflags & MAP_ENTRY_GROWS_DOWN) {
2850 			/*
2851 			 * We have two choices; grow the entry closest to
2852 			 * the address to minimize the amount of growth.
2853 			 */
2854 			if (addr - prev_entry->end <= next_entry->start - addr)
2855 				stack_entry = prev_entry;
2856 			else
2857 				stack_entry = next_entry;
2858 		} else
2859 			stack_entry = prev_entry;
2860 	}
2861 
2862 	if (stack_entry == next_entry) {
2863 		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_DOWN, ("foo"));
2864 		KASSERT(addr < stack_entry->start, ("foo"));
2865 		end = (prev_entry != &map->header) ? prev_entry->end :
2866 		    stack_entry->start - stack_entry->avail_ssize;
2867 		grow_amount = roundup(stack_entry->start - addr, PAGE_SIZE);
2868 		max_grow = stack_entry->start - end;
2869 	} else {
2870 		KASSERT(stack_entry->eflags & MAP_ENTRY_GROWS_UP, ("foo"));
2871 		KASSERT(addr >= stack_entry->end, ("foo"));
2872 		end = (next_entry != &map->header) ? next_entry->start :
2873 		    stack_entry->end + stack_entry->avail_ssize;
2874 		grow_amount = roundup(addr + 1 - stack_entry->end, PAGE_SIZE);
2875 		max_grow = end - stack_entry->end;
2876 	}
2877 
2878 	if (grow_amount > stack_entry->avail_ssize) {
2879 		vm_map_unlock_read(map);
2880 		return (KERN_NO_SPACE);
2881 	}
2882 
2883 	/*
2884 	 * If there is no longer enough space between the entries nogo, and
2885 	 * adjust the available space.  Note: this  should only happen if the
2886 	 * user has mapped into the stack area after the stack was created,
2887 	 * and is probably an error.
2888 	 *
2889 	 * This also effectively destroys any guard page the user might have
2890 	 * intended by limiting the stack size.
2891 	 */
2892 	if (grow_amount > max_grow) {
2893 		if (vm_map_lock_upgrade(map))
2894 			goto Retry;
2895 
2896 		stack_entry->avail_ssize = max_grow;
2897 
2898 		vm_map_unlock(map);
2899 		return (KERN_NO_SPACE);
2900 	}
2901 
2902 	is_procstack = (addr >= (vm_offset_t)vm->vm_maxsaddr) ? 1 : 0;
2903 
2904 	/*
2905 	 * If this is the main process stack, see if we're over the stack
2906 	 * limit.
2907 	 */
2908 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
2909 		vm_map_unlock_read(map);
2910 		return (KERN_NO_SPACE);
2911 	}
2912 
2913 	/* Round up the grow amount modulo SGROWSIZ */
2914 	grow_amount = roundup (grow_amount, sgrowsiz);
2915 	if (grow_amount > stack_entry->avail_ssize)
2916 		grow_amount = stack_entry->avail_ssize;
2917 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
2918 		grow_amount = stacklim - ctob(vm->vm_ssize);
2919 	}
2920 
2921 	/* If we would blow our VMEM resource limit, no go */
2922 	if (map->size + grow_amount > vmemlim) {
2923 		vm_map_unlock_read(map);
2924 		return (KERN_NO_SPACE);
2925 	}
2926 
2927 	if (vm_map_lock_upgrade(map))
2928 		goto Retry;
2929 
2930 	if (stack_entry == next_entry) {
2931 		/*
2932 		 * Growing downward.
2933 		 */
2934 		/* Get the preliminary new entry start value */
2935 		addr = stack_entry->start - grow_amount;
2936 
2937 		/*
2938 		 * If this puts us into the previous entry, cut back our
2939 		 * growth to the available space. Also, see the note above.
2940 		 */
2941 		if (addr < end) {
2942 			stack_entry->avail_ssize = max_grow;
2943 			addr = end;
2944 		}
2945 
2946 		rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start,
2947 		    p->p_sysent->sv_stackprot, VM_PROT_ALL, 0);
2948 
2949 		/* Adjust the available stack space by the amount we grew. */
2950 		if (rv == KERN_SUCCESS) {
2951 			if (prev_entry != &map->header)
2952 				vm_map_clip_end(map, prev_entry, addr);
2953 			new_entry = prev_entry->next;
2954 			KASSERT(new_entry == stack_entry->prev, ("foo"));
2955 			KASSERT(new_entry->end == stack_entry->start, ("foo"));
2956 			KASSERT(new_entry->start == addr, ("foo"));
2957 			grow_amount = new_entry->end - new_entry->start;
2958 			new_entry->avail_ssize = stack_entry->avail_ssize -
2959 			    grow_amount;
2960 			stack_entry->eflags &= ~MAP_ENTRY_GROWS_DOWN;
2961 			new_entry->eflags |= MAP_ENTRY_GROWS_DOWN;
2962 		}
2963 	} else {
2964 		/*
2965 		 * Growing upward.
2966 		 */
2967 		addr = stack_entry->end + grow_amount;
2968 
2969 		/*
2970 		 * If this puts us into the next entry, cut back our growth
2971 		 * to the available space. Also, see the note above.
2972 		 */
2973 		if (addr > end) {
2974 			stack_entry->avail_ssize = end - stack_entry->end;
2975 			addr = end;
2976 		}
2977 
2978 		grow_amount = addr - stack_entry->end;
2979 
2980 		/* Grow the underlying object if applicable. */
2981 		if (stack_entry->object.vm_object == NULL ||
2982 		    vm_object_coalesce(stack_entry->object.vm_object,
2983 		    stack_entry->offset,
2984 		    (vm_size_t)(stack_entry->end - stack_entry->start),
2985 		    (vm_size_t)grow_amount)) {
2986 			map->size += (addr - stack_entry->end);
2987 			/* Update the current entry. */
2988 			stack_entry->end = addr;
2989 			stack_entry->avail_ssize -= grow_amount;
2990 			vm_map_entry_resize_free(map, stack_entry);
2991 			rv = KERN_SUCCESS;
2992 
2993 			if (next_entry != &map->header)
2994 				vm_map_clip_start(map, next_entry, addr);
2995 		} else
2996 			rv = KERN_FAILURE;
2997 	}
2998 
2999 	if (rv == KERN_SUCCESS && is_procstack)
3000 		vm->vm_ssize += btoc(grow_amount);
3001 
3002 	vm_map_unlock(map);
3003 
3004 	/*
3005 	 * Heed the MAP_WIREFUTURE flag if it was set for this process.
3006 	 */
3007 	if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE)) {
3008 		vm_map_wire(map,
3009 		    (stack_entry == next_entry) ? addr : addr - grow_amount,
3010 		    (stack_entry == next_entry) ? stack_entry->start : addr,
3011 		    (p->p_flag & P_SYSTEM)
3012 		    ? VM_MAP_WIRE_SYSTEM|VM_MAP_WIRE_NOHOLES
3013 		    : VM_MAP_WIRE_USER|VM_MAP_WIRE_NOHOLES);
3014 	}
3015 
3016 	return (rv);
3017 }
3018 
3019 /*
3020  * Unshare the specified VM space for exec.  If other processes are
3021  * mapped to it, then create a new one.  The new vmspace is null.
3022  */
3023 int
3024 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
3025 {
3026 	struct vmspace *oldvmspace = p->p_vmspace;
3027 	struct vmspace *newvmspace;
3028 
3029 	newvmspace = vmspace_alloc(minuser, maxuser);
3030 	if (newvmspace == NULL)
3031 		return (ENOMEM);
3032 	newvmspace->vm_swrss = oldvmspace->vm_swrss;
3033 	/*
3034 	 * This code is written like this for prototype purposes.  The
3035 	 * goal is to avoid running down the vmspace here, but let the
3036 	 * other process's that are still using the vmspace to finally
3037 	 * run it down.  Even though there is little or no chance of blocking
3038 	 * here, it is a good idea to keep this form for future mods.
3039 	 */
3040 	PROC_VMSPACE_LOCK(p);
3041 	p->p_vmspace = newvmspace;
3042 	PROC_VMSPACE_UNLOCK(p);
3043 	if (p == curthread->td_proc)
3044 		pmap_activate(curthread);
3045 	vmspace_free(oldvmspace);
3046 	return (0);
3047 }
3048 
3049 /*
3050  * Unshare the specified VM space for forcing COW.  This
3051  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3052  */
3053 int
3054 vmspace_unshare(struct proc *p)
3055 {
3056 	struct vmspace *oldvmspace = p->p_vmspace;
3057 	struct vmspace *newvmspace;
3058 
3059 	if (oldvmspace->vm_refcnt == 1)
3060 		return (0);
3061 	newvmspace = vmspace_fork(oldvmspace);
3062 	if (newvmspace == NULL)
3063 		return (ENOMEM);
3064 	PROC_VMSPACE_LOCK(p);
3065 	p->p_vmspace = newvmspace;
3066 	PROC_VMSPACE_UNLOCK(p);
3067 	if (p == curthread->td_proc)
3068 		pmap_activate(curthread);
3069 	vmspace_free(oldvmspace);
3070 	return (0);
3071 }
3072 
3073 /*
3074  *	vm_map_lookup:
3075  *
3076  *	Finds the VM object, offset, and
3077  *	protection for a given virtual address in the
3078  *	specified map, assuming a page fault of the
3079  *	type specified.
3080  *
3081  *	Leaves the map in question locked for read; return
3082  *	values are guaranteed until a vm_map_lookup_done
3083  *	call is performed.  Note that the map argument
3084  *	is in/out; the returned map must be used in
3085  *	the call to vm_map_lookup_done.
3086  *
3087  *	A handle (out_entry) is returned for use in
3088  *	vm_map_lookup_done, to make that fast.
3089  *
3090  *	If a lookup is requested with "write protection"
3091  *	specified, the map may be changed to perform virtual
3092  *	copying operations, although the data referenced will
3093  *	remain the same.
3094  */
3095 int
3096 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
3097 	      vm_offset_t vaddr,
3098 	      vm_prot_t fault_typea,
3099 	      vm_map_entry_t *out_entry,	/* OUT */
3100 	      vm_object_t *object,		/* OUT */
3101 	      vm_pindex_t *pindex,		/* OUT */
3102 	      vm_prot_t *out_prot,		/* OUT */
3103 	      boolean_t *wired)			/* OUT */
3104 {
3105 	vm_map_entry_t entry;
3106 	vm_map_t map = *var_map;
3107 	vm_prot_t prot;
3108 	vm_prot_t fault_type = fault_typea;
3109 
3110 RetryLookup:;
3111 	/*
3112 	 * Lookup the faulting address.
3113 	 */
3114 
3115 	vm_map_lock_read(map);
3116 #define	RETURN(why) \
3117 		{ \
3118 		vm_map_unlock_read(map); \
3119 		return (why); \
3120 		}
3121 
3122 	/*
3123 	 * If the map has an interesting hint, try it before calling full
3124 	 * blown lookup routine.
3125 	 */
3126 	entry = map->root;
3127 	*out_entry = entry;
3128 	if (entry == NULL ||
3129 	    (vaddr < entry->start) || (vaddr >= entry->end)) {
3130 		/*
3131 		 * Entry was either not a valid hint, or the vaddr was not
3132 		 * contained in the entry, so do a full lookup.
3133 		 */
3134 		if (!vm_map_lookup_entry(map, vaddr, out_entry))
3135 			RETURN(KERN_INVALID_ADDRESS);
3136 
3137 		entry = *out_entry;
3138 	}
3139 
3140 	/*
3141 	 * Handle submaps.
3142 	 */
3143 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3144 		vm_map_t old_map = map;
3145 
3146 		*var_map = map = entry->object.sub_map;
3147 		vm_map_unlock_read(old_map);
3148 		goto RetryLookup;
3149 	}
3150 
3151 	/*
3152 	 * Check whether this task is allowed to have this page.
3153 	 * Note the special case for MAP_ENTRY_COW
3154 	 * pages with an override.  This is to implement a forced
3155 	 * COW for debuggers.
3156 	 */
3157 	if (fault_type & VM_PROT_OVERRIDE_WRITE)
3158 		prot = entry->max_protection;
3159 	else
3160 		prot = entry->protection;
3161 	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
3162 	if ((fault_type & prot) != fault_type) {
3163 			RETURN(KERN_PROTECTION_FAILURE);
3164 	}
3165 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3166 	    (entry->eflags & MAP_ENTRY_COW) &&
3167 	    (fault_type & VM_PROT_WRITE) &&
3168 	    (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
3169 		RETURN(KERN_PROTECTION_FAILURE);
3170 	}
3171 
3172 	/*
3173 	 * If this page is not pageable, we have to get it for all possible
3174 	 * accesses.
3175 	 */
3176 	*wired = (entry->wired_count != 0);
3177 	if (*wired)
3178 		prot = fault_type = entry->protection;
3179 
3180 	/*
3181 	 * If the entry was copy-on-write, we either ...
3182 	 */
3183 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3184 		/*
3185 		 * If we want to write the page, we may as well handle that
3186 		 * now since we've got the map locked.
3187 		 *
3188 		 * If we don't need to write the page, we just demote the
3189 		 * permissions allowed.
3190 		 */
3191 		if (fault_type & VM_PROT_WRITE) {
3192 			/*
3193 			 * Make a new object, and place it in the object
3194 			 * chain.  Note that no new references have appeared
3195 			 * -- one just moved from the map to the new
3196 			 * object.
3197 			 */
3198 			if (vm_map_lock_upgrade(map))
3199 				goto RetryLookup;
3200 
3201 			vm_object_shadow(
3202 			    &entry->object.vm_object,
3203 			    &entry->offset,
3204 			    atop(entry->end - entry->start));
3205 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3206 
3207 			vm_map_lock_downgrade(map);
3208 		} else {
3209 			/*
3210 			 * We're attempting to read a copy-on-write page --
3211 			 * don't allow writes.
3212 			 */
3213 			prot &= ~VM_PROT_WRITE;
3214 		}
3215 	}
3216 
3217 	/*
3218 	 * Create an object if necessary.
3219 	 */
3220 	if (entry->object.vm_object == NULL &&
3221 	    !map->system_map) {
3222 		if (vm_map_lock_upgrade(map))
3223 			goto RetryLookup;
3224 		entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
3225 		    atop(entry->end - entry->start));
3226 		entry->offset = 0;
3227 		vm_map_lock_downgrade(map);
3228 	}
3229 
3230 	/*
3231 	 * Return the object/offset from this entry.  If the entry was
3232 	 * copy-on-write or empty, it has been fixed up.
3233 	 */
3234 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3235 	*object = entry->object.vm_object;
3236 
3237 	*out_prot = prot;
3238 	return (KERN_SUCCESS);
3239 
3240 #undef	RETURN
3241 }
3242 
3243 /*
3244  *	vm_map_lookup_locked:
3245  *
3246  *	Lookup the faulting address.  A version of vm_map_lookup that returns
3247  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
3248  */
3249 int
3250 vm_map_lookup_locked(vm_map_t *var_map,		/* IN/OUT */
3251 		     vm_offset_t vaddr,
3252 		     vm_prot_t fault_typea,
3253 		     vm_map_entry_t *out_entry,	/* OUT */
3254 		     vm_object_t *object,	/* OUT */
3255 		     vm_pindex_t *pindex,	/* OUT */
3256 		     vm_prot_t *out_prot,	/* OUT */
3257 		     boolean_t *wired)		/* OUT */
3258 {
3259 	vm_map_entry_t entry;
3260 	vm_map_t map = *var_map;
3261 	vm_prot_t prot;
3262 	vm_prot_t fault_type = fault_typea;
3263 
3264 	/*
3265 	 * If the map has an interesting hint, try it before calling full
3266 	 * blown lookup routine.
3267 	 */
3268 	entry = map->root;
3269 	*out_entry = entry;
3270 	if (entry == NULL ||
3271 	    (vaddr < entry->start) || (vaddr >= entry->end)) {
3272 		/*
3273 		 * Entry was either not a valid hint, or the vaddr was not
3274 		 * contained in the entry, so do a full lookup.
3275 		 */
3276 		if (!vm_map_lookup_entry(map, vaddr, out_entry))
3277 			return (KERN_INVALID_ADDRESS);
3278 
3279 		entry = *out_entry;
3280 	}
3281 
3282 	/*
3283 	 * Fail if the entry refers to a submap.
3284 	 */
3285 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3286 		return (KERN_FAILURE);
3287 
3288 	/*
3289 	 * Check whether this task is allowed to have this page.
3290 	 * Note the special case for MAP_ENTRY_COW
3291 	 * pages with an override.  This is to implement a forced
3292 	 * COW for debuggers.
3293 	 */
3294 	if (fault_type & VM_PROT_OVERRIDE_WRITE)
3295 		prot = entry->max_protection;
3296 	else
3297 		prot = entry->protection;
3298 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
3299 	if ((fault_type & prot) != fault_type)
3300 		return (KERN_PROTECTION_FAILURE);
3301 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
3302 	    (entry->eflags & MAP_ENTRY_COW) &&
3303 	    (fault_type & VM_PROT_WRITE) &&
3304 	    (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0)
3305 		return (KERN_PROTECTION_FAILURE);
3306 
3307 	/*
3308 	 * If this page is not pageable, we have to get it for all possible
3309 	 * accesses.
3310 	 */
3311 	*wired = (entry->wired_count != 0);
3312 	if (*wired)
3313 		prot = fault_type = entry->protection;
3314 
3315 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3316 		/*
3317 		 * Fail if the entry was copy-on-write for a write fault.
3318 		 */
3319 		if (fault_type & VM_PROT_WRITE)
3320 			return (KERN_FAILURE);
3321 		/*
3322 		 * We're attempting to read a copy-on-write page --
3323 		 * don't allow writes.
3324 		 */
3325 		prot &= ~VM_PROT_WRITE;
3326 	}
3327 
3328 	/*
3329 	 * Fail if an object should be created.
3330 	 */
3331 	if (entry->object.vm_object == NULL && !map->system_map)
3332 		return (KERN_FAILURE);
3333 
3334 	/*
3335 	 * Return the object/offset from this entry.  If the entry was
3336 	 * copy-on-write or empty, it has been fixed up.
3337 	 */
3338 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
3339 	*object = entry->object.vm_object;
3340 
3341 	*out_prot = prot;
3342 	return (KERN_SUCCESS);
3343 }
3344 
3345 /*
3346  *	vm_map_lookup_done:
3347  *
3348  *	Releases locks acquired by a vm_map_lookup
3349  *	(according to the handle returned by that lookup).
3350  */
3351 void
3352 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
3353 {
3354 	/*
3355 	 * Unlock the main-level map
3356 	 */
3357 	vm_map_unlock_read(map);
3358 }
3359 
3360 #include "opt_ddb.h"
3361 #ifdef DDB
3362 #include <sys/kernel.h>
3363 
3364 #include <ddb/ddb.h>
3365 
3366 /*
3367  *	vm_map_print:	[ debug ]
3368  */
3369 DB_SHOW_COMMAND(map, vm_map_print)
3370 {
3371 	static int nlines;
3372 	/* XXX convert args. */
3373 	vm_map_t map = (vm_map_t)addr;
3374 	boolean_t full = have_addr;
3375 
3376 	vm_map_entry_t entry;
3377 
3378 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
3379 	    (void *)map,
3380 	    (void *)map->pmap, map->nentries, map->timestamp);
3381 	nlines++;
3382 
3383 	if (!full && db_indent)
3384 		return;
3385 
3386 	db_indent += 2;
3387 	for (entry = map->header.next; entry != &map->header;
3388 	    entry = entry->next) {
3389 		db_iprintf("map entry %p: start=%p, end=%p\n",
3390 		    (void *)entry, (void *)entry->start, (void *)entry->end);
3391 		nlines++;
3392 		{
3393 			static char *inheritance_name[4] =
3394 			{"share", "copy", "none", "donate_copy"};
3395 
3396 			db_iprintf(" prot=%x/%x/%s",
3397 			    entry->protection,
3398 			    entry->max_protection,
3399 			    inheritance_name[(int)(unsigned char)entry->inheritance]);
3400 			if (entry->wired_count != 0)
3401 				db_printf(", wired");
3402 		}
3403 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
3404 			db_printf(", share=%p, offset=0x%jx\n",
3405 			    (void *)entry->object.sub_map,
3406 			    (uintmax_t)entry->offset);
3407 			nlines++;
3408 			if ((entry->prev == &map->header) ||
3409 			    (entry->prev->object.sub_map !=
3410 				entry->object.sub_map)) {
3411 				db_indent += 2;
3412 				vm_map_print((db_expr_t)(intptr_t)
3413 					     entry->object.sub_map,
3414 					     full, 0, (char *)0);
3415 				db_indent -= 2;
3416 			}
3417 		} else {
3418 			db_printf(", object=%p, offset=0x%jx",
3419 			    (void *)entry->object.vm_object,
3420 			    (uintmax_t)entry->offset);
3421 			if (entry->eflags & MAP_ENTRY_COW)
3422 				db_printf(", copy (%s)",
3423 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
3424 			db_printf("\n");
3425 			nlines++;
3426 
3427 			if ((entry->prev == &map->header) ||
3428 			    (entry->prev->object.vm_object !=
3429 				entry->object.vm_object)) {
3430 				db_indent += 2;
3431 				vm_object_print((db_expr_t)(intptr_t)
3432 						entry->object.vm_object,
3433 						full, 0, (char *)0);
3434 				nlines += 4;
3435 				db_indent -= 2;
3436 			}
3437 		}
3438 	}
3439 	db_indent -= 2;
3440 	if (db_indent == 0)
3441 		nlines = 0;
3442 }
3443 
3444 
3445 DB_SHOW_COMMAND(procvm, procvm)
3446 {
3447 	struct proc *p;
3448 
3449 	if (have_addr) {
3450 		p = (struct proc *) addr;
3451 	} else {
3452 		p = curproc;
3453 	}
3454 
3455 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
3456 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
3457 	    (void *)vmspace_pmap(p->p_vmspace));
3458 
3459 	vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
3460 }
3461 
3462 #endif /* DDB */
3463