xref: /freebsd/sys/vm/vm_map.c (revision 52f72944b8f5abb2386eae924357dee8aea17d5b)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62 
63 /*
64  *	Virtual memory mapping module.
65  */
66 
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/kernel.h>
73 #include <sys/ktr.h>
74 #include <sys/lock.h>
75 #include <sys/mutex.h>
76 #include <sys/proc.h>
77 #include <sys/vmmeter.h>
78 #include <sys/mman.h>
79 #include <sys/vnode.h>
80 #include <sys/racct.h>
81 #include <sys/resourcevar.h>
82 #include <sys/rwlock.h>
83 #include <sys/file.h>
84 #include <sys/sysctl.h>
85 #include <sys/sysent.h>
86 #include <sys/shm.h>
87 
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_object.h>
94 #include <vm/vm_pager.h>
95 #include <vm/vm_kern.h>
96 #include <vm/vm_extern.h>
97 #include <vm/vnode_pager.h>
98 #include <vm/swap_pager.h>
99 #include <vm/uma.h>
100 
101 /*
102  *	Virtual memory maps provide for the mapping, protection,
103  *	and sharing of virtual memory objects.  In addition,
104  *	this module provides for an efficient virtual copy of
105  *	memory from one map to another.
106  *
107  *	Synchronization is required prior to most operations.
108  *
109  *	Maps consist of an ordered doubly-linked list of simple
110  *	entries; a self-adjusting binary search tree of these
111  *	entries is used to speed up lookups.
112  *
113  *	Since portions of maps are specified by start/end addresses,
114  *	which may not align with existing map entries, all
115  *	routines merely "clip" entries to these start/end values.
116  *	[That is, an entry is split into two, bordering at a
117  *	start or end value.]  Note that these clippings may not
118  *	always be necessary (as the two resulting entries are then
119  *	not changed); however, the clipping is done for convenience.
120  *
121  *	As mentioned above, virtual copy operations are performed
122  *	by copying VM object references from one map to
123  *	another, and then marking both regions as copy-on-write.
124  */
125 
126 static struct mtx map_sleep_mtx;
127 static uma_zone_t mapentzone;
128 static uma_zone_t kmapentzone;
129 static uma_zone_t mapzone;
130 static uma_zone_t vmspace_zone;
131 static int vmspace_zinit(void *mem, int size, int flags);
132 static int vm_map_zinit(void *mem, int ize, int flags);
133 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
134     vm_offset_t max);
135 static int vm_map_alignspace(vm_map_t map, vm_object_t object,
136     vm_ooffset_t offset, vm_offset_t *addr, vm_size_t length,
137     vm_offset_t max_addr, vm_offset_t alignment);
138 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
139 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
140 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
141 static int vm_map_growstack(vm_map_t map, vm_offset_t addr,
142     vm_map_entry_t gap_entry);
143 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
144     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
145 #ifdef INVARIANTS
146 static void vm_map_zdtor(void *mem, int size, void *arg);
147 static void vmspace_zdtor(void *mem, int size, void *arg);
148 #endif
149 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
150     vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
151     int cow);
152 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
153     vm_offset_t failed_addr);
154 
155 #define	ENTRY_CHARGED(e) ((e)->cred != NULL || \
156     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
157      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
158 
159 /*
160  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
161  * stable.
162  */
163 #define PROC_VMSPACE_LOCK(p) do { } while (0)
164 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
165 
166 /*
167  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
168  *
169  *	Asserts that the starting and ending region
170  *	addresses fall within the valid range of the map.
171  */
172 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
173 		{					\
174 		if (start < vm_map_min(map))		\
175 			start = vm_map_min(map);	\
176 		if (end > vm_map_max(map))		\
177 			end = vm_map_max(map);		\
178 		if (start > end)			\
179 			start = end;			\
180 		}
181 
182 /*
183  *	vm_map_startup:
184  *
185  *	Initialize the vm_map module.  Must be called before
186  *	any other vm_map routines.
187  *
188  *	Map and entry structures are allocated from the general
189  *	purpose memory pool with some exceptions:
190  *
191  *	- The kernel map and kmem submap are allocated statically.
192  *	- Kernel map entries are allocated out of a static pool.
193  *
194  *	These restrictions are necessary since malloc() uses the
195  *	maps and requires map entries.
196  */
197 
198 void
199 vm_map_startup(void)
200 {
201 	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
202 	mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
203 #ifdef INVARIANTS
204 	    vm_map_zdtor,
205 #else
206 	    NULL,
207 #endif
208 	    vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
209 	uma_prealloc(mapzone, MAX_KMAP);
210 	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
211 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
212 	    UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
213 	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
214 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
215 	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
216 #ifdef INVARIANTS
217 	    vmspace_zdtor,
218 #else
219 	    NULL,
220 #endif
221 	    vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
222 }
223 
224 static int
225 vmspace_zinit(void *mem, int size, int flags)
226 {
227 	struct vmspace *vm;
228 
229 	vm = (struct vmspace *)mem;
230 
231 	vm->vm_map.pmap = NULL;
232 	(void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
233 	PMAP_LOCK_INIT(vmspace_pmap(vm));
234 	return (0);
235 }
236 
237 static int
238 vm_map_zinit(void *mem, int size, int flags)
239 {
240 	vm_map_t map;
241 
242 	map = (vm_map_t)mem;
243 	memset(map, 0, sizeof(*map));
244 	mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
245 	sx_init(&map->lock, "vm map (user)");
246 	return (0);
247 }
248 
249 #ifdef INVARIANTS
250 static void
251 vmspace_zdtor(void *mem, int size, void *arg)
252 {
253 	struct vmspace *vm;
254 
255 	vm = (struct vmspace *)mem;
256 
257 	vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
258 }
259 static void
260 vm_map_zdtor(void *mem, int size, void *arg)
261 {
262 	vm_map_t map;
263 
264 	map = (vm_map_t)mem;
265 	KASSERT(map->nentries == 0,
266 	    ("map %p nentries == %d on free.",
267 	    map, map->nentries));
268 	KASSERT(map->size == 0,
269 	    ("map %p size == %lu on free.",
270 	    map, (unsigned long)map->size));
271 }
272 #endif	/* INVARIANTS */
273 
274 /*
275  * Allocate a vmspace structure, including a vm_map and pmap,
276  * and initialize those structures.  The refcnt is set to 1.
277  *
278  * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit().
279  */
280 struct vmspace *
281 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
282 {
283 	struct vmspace *vm;
284 
285 	vm = uma_zalloc(vmspace_zone, M_WAITOK);
286 
287 	KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
288 
289 	if (pinit == NULL)
290 		pinit = &pmap_pinit;
291 
292 	if (!pinit(vmspace_pmap(vm))) {
293 		uma_zfree(vmspace_zone, vm);
294 		return (NULL);
295 	}
296 	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
297 	_vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
298 	vm->vm_refcnt = 1;
299 	vm->vm_shm = NULL;
300 	vm->vm_swrss = 0;
301 	vm->vm_tsize = 0;
302 	vm->vm_dsize = 0;
303 	vm->vm_ssize = 0;
304 	vm->vm_taddr = 0;
305 	vm->vm_daddr = 0;
306 	vm->vm_maxsaddr = 0;
307 	return (vm);
308 }
309 
310 #ifdef RACCT
311 static void
312 vmspace_container_reset(struct proc *p)
313 {
314 
315 	PROC_LOCK(p);
316 	racct_set(p, RACCT_DATA, 0);
317 	racct_set(p, RACCT_STACK, 0);
318 	racct_set(p, RACCT_RSS, 0);
319 	racct_set(p, RACCT_MEMLOCK, 0);
320 	racct_set(p, RACCT_VMEM, 0);
321 	PROC_UNLOCK(p);
322 }
323 #endif
324 
325 static inline void
326 vmspace_dofree(struct vmspace *vm)
327 {
328 
329 	CTR1(KTR_VM, "vmspace_free: %p", vm);
330 
331 	/*
332 	 * Make sure any SysV shm is freed, it might not have been in
333 	 * exit1().
334 	 */
335 	shmexit(vm);
336 
337 	/*
338 	 * Lock the map, to wait out all other references to it.
339 	 * Delete all of the mappings and pages they hold, then call
340 	 * the pmap module to reclaim anything left.
341 	 */
342 	(void)vm_map_remove(&vm->vm_map, vm->vm_map.min_offset,
343 	    vm->vm_map.max_offset);
344 
345 	pmap_release(vmspace_pmap(vm));
346 	vm->vm_map.pmap = NULL;
347 	uma_zfree(vmspace_zone, vm);
348 }
349 
350 void
351 vmspace_free(struct vmspace *vm)
352 {
353 
354 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
355 	    "vmspace_free() called");
356 
357 	if (vm->vm_refcnt == 0)
358 		panic("vmspace_free: attempt to free already freed vmspace");
359 
360 	if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
361 		vmspace_dofree(vm);
362 }
363 
364 void
365 vmspace_exitfree(struct proc *p)
366 {
367 	struct vmspace *vm;
368 
369 	PROC_VMSPACE_LOCK(p);
370 	vm = p->p_vmspace;
371 	p->p_vmspace = NULL;
372 	PROC_VMSPACE_UNLOCK(p);
373 	KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
374 	vmspace_free(vm);
375 }
376 
377 void
378 vmspace_exit(struct thread *td)
379 {
380 	int refcnt;
381 	struct vmspace *vm;
382 	struct proc *p;
383 
384 	/*
385 	 * Release user portion of address space.
386 	 * This releases references to vnodes,
387 	 * which could cause I/O if the file has been unlinked.
388 	 * Need to do this early enough that we can still sleep.
389 	 *
390 	 * The last exiting process to reach this point releases as
391 	 * much of the environment as it can. vmspace_dofree() is the
392 	 * slower fallback in case another process had a temporary
393 	 * reference to the vmspace.
394 	 */
395 
396 	p = td->td_proc;
397 	vm = p->p_vmspace;
398 	atomic_add_int(&vmspace0.vm_refcnt, 1);
399 	do {
400 		refcnt = vm->vm_refcnt;
401 		if (refcnt > 1 && p->p_vmspace != &vmspace0) {
402 			/* Switch now since other proc might free vmspace */
403 			PROC_VMSPACE_LOCK(p);
404 			p->p_vmspace = &vmspace0;
405 			PROC_VMSPACE_UNLOCK(p);
406 			pmap_activate(td);
407 		}
408 	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt - 1));
409 	if (refcnt == 1) {
410 		if (p->p_vmspace != vm) {
411 			/* vmspace not yet freed, switch back */
412 			PROC_VMSPACE_LOCK(p);
413 			p->p_vmspace = vm;
414 			PROC_VMSPACE_UNLOCK(p);
415 			pmap_activate(td);
416 		}
417 		pmap_remove_pages(vmspace_pmap(vm));
418 		/* Switch now since this proc will free vmspace */
419 		PROC_VMSPACE_LOCK(p);
420 		p->p_vmspace = &vmspace0;
421 		PROC_VMSPACE_UNLOCK(p);
422 		pmap_activate(td);
423 		vmspace_dofree(vm);
424 	}
425 #ifdef RACCT
426 	if (racct_enable)
427 		vmspace_container_reset(p);
428 #endif
429 }
430 
431 /* Acquire reference to vmspace owned by another process. */
432 
433 struct vmspace *
434 vmspace_acquire_ref(struct proc *p)
435 {
436 	struct vmspace *vm;
437 	int refcnt;
438 
439 	PROC_VMSPACE_LOCK(p);
440 	vm = p->p_vmspace;
441 	if (vm == NULL) {
442 		PROC_VMSPACE_UNLOCK(p);
443 		return (NULL);
444 	}
445 	do {
446 		refcnt = vm->vm_refcnt;
447 		if (refcnt <= 0) { 	/* Avoid 0->1 transition */
448 			PROC_VMSPACE_UNLOCK(p);
449 			return (NULL);
450 		}
451 	} while (!atomic_cmpset_int(&vm->vm_refcnt, refcnt, refcnt + 1));
452 	if (vm != p->p_vmspace) {
453 		PROC_VMSPACE_UNLOCK(p);
454 		vmspace_free(vm);
455 		return (NULL);
456 	}
457 	PROC_VMSPACE_UNLOCK(p);
458 	return (vm);
459 }
460 
461 /*
462  * Switch between vmspaces in an AIO kernel process.
463  *
464  * The AIO kernel processes switch to and from a user process's
465  * vmspace while performing an I/O operation on behalf of a user
466  * process.  The new vmspace is either the vmspace of a user process
467  * obtained from an active AIO request or the initial vmspace of the
468  * AIO kernel process (when it is idling).  Because user processes
469  * will block to drain any active AIO requests before proceeding in
470  * exit() or execve(), the vmspace reference count for these vmspaces
471  * can never be 0.  This allows for a much simpler implementation than
472  * the loop in vmspace_acquire_ref() above.  Similarly, AIO kernel
473  * processes hold an extra reference on their initial vmspace for the
474  * life of the process so that this guarantee is true for any vmspace
475  * passed as 'newvm'.
476  */
477 void
478 vmspace_switch_aio(struct vmspace *newvm)
479 {
480 	struct vmspace *oldvm;
481 
482 	/* XXX: Need some way to assert that this is an aio daemon. */
483 
484 	KASSERT(newvm->vm_refcnt > 0,
485 	    ("vmspace_switch_aio: newvm unreferenced"));
486 
487 	oldvm = curproc->p_vmspace;
488 	if (oldvm == newvm)
489 		return;
490 
491 	/*
492 	 * Point to the new address space and refer to it.
493 	 */
494 	curproc->p_vmspace = newvm;
495 	atomic_add_int(&newvm->vm_refcnt, 1);
496 
497 	/* Activate the new mapping. */
498 	pmap_activate(curthread);
499 
500 	/* Remove the daemon's reference to the old address space. */
501 	KASSERT(oldvm->vm_refcnt > 1,
502 	    ("vmspace_switch_aio: oldvm dropping last reference"));
503 	vmspace_free(oldvm);
504 }
505 
506 void
507 _vm_map_lock(vm_map_t map, const char *file, int line)
508 {
509 
510 	if (map->system_map)
511 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
512 	else
513 		sx_xlock_(&map->lock, file, line);
514 	map->timestamp++;
515 }
516 
517 static void
518 vm_map_process_deferred(void)
519 {
520 	struct thread *td;
521 	vm_map_entry_t entry, next;
522 	vm_object_t object;
523 
524 	td = curthread;
525 	entry = td->td_map_def_user;
526 	td->td_map_def_user = NULL;
527 	while (entry != NULL) {
528 		next = entry->next;
529 		if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) {
530 			/*
531 			 * Decrement the object's writemappings and
532 			 * possibly the vnode's v_writecount.
533 			 */
534 			KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
535 			    ("Submap with writecount"));
536 			object = entry->object.vm_object;
537 			KASSERT(object != NULL, ("No object for writecount"));
538 			vnode_pager_release_writecount(object, entry->start,
539 			    entry->end);
540 		}
541 		vm_map_entry_deallocate(entry, FALSE);
542 		entry = next;
543 	}
544 }
545 
546 void
547 _vm_map_unlock(vm_map_t map, const char *file, int line)
548 {
549 
550 	if (map->system_map)
551 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
552 	else {
553 		sx_xunlock_(&map->lock, file, line);
554 		vm_map_process_deferred();
555 	}
556 }
557 
558 void
559 _vm_map_lock_read(vm_map_t map, const char *file, int line)
560 {
561 
562 	if (map->system_map)
563 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
564 	else
565 		sx_slock_(&map->lock, file, line);
566 }
567 
568 void
569 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
570 {
571 
572 	if (map->system_map)
573 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
574 	else {
575 		sx_sunlock_(&map->lock, file, line);
576 		vm_map_process_deferred();
577 	}
578 }
579 
580 int
581 _vm_map_trylock(vm_map_t map, const char *file, int line)
582 {
583 	int error;
584 
585 	error = map->system_map ?
586 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
587 	    !sx_try_xlock_(&map->lock, file, line);
588 	if (error == 0)
589 		map->timestamp++;
590 	return (error == 0);
591 }
592 
593 int
594 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
595 {
596 	int error;
597 
598 	error = map->system_map ?
599 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
600 	    !sx_try_slock_(&map->lock, file, line);
601 	return (error == 0);
602 }
603 
604 /*
605  *	_vm_map_lock_upgrade:	[ internal use only ]
606  *
607  *	Tries to upgrade a read (shared) lock on the specified map to a write
608  *	(exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
609  *	non-zero value if the upgrade fails.  If the upgrade fails, the map is
610  *	returned without a read or write lock held.
611  *
612  *	Requires that the map be read locked.
613  */
614 int
615 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
616 {
617 	unsigned int last_timestamp;
618 
619 	if (map->system_map) {
620 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
621 	} else {
622 		if (!sx_try_upgrade_(&map->lock, file, line)) {
623 			last_timestamp = map->timestamp;
624 			sx_sunlock_(&map->lock, file, line);
625 			vm_map_process_deferred();
626 			/*
627 			 * If the map's timestamp does not change while the
628 			 * map is unlocked, then the upgrade succeeds.
629 			 */
630 			sx_xlock_(&map->lock, file, line);
631 			if (last_timestamp != map->timestamp) {
632 				sx_xunlock_(&map->lock, file, line);
633 				return (1);
634 			}
635 		}
636 	}
637 	map->timestamp++;
638 	return (0);
639 }
640 
641 void
642 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
643 {
644 
645 	if (map->system_map) {
646 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
647 	} else
648 		sx_downgrade_(&map->lock, file, line);
649 }
650 
651 /*
652  *	vm_map_locked:
653  *
654  *	Returns a non-zero value if the caller holds a write (exclusive) lock
655  *	on the specified map and the value "0" otherwise.
656  */
657 int
658 vm_map_locked(vm_map_t map)
659 {
660 
661 	if (map->system_map)
662 		return (mtx_owned(&map->system_mtx));
663 	else
664 		return (sx_xlocked(&map->lock));
665 }
666 
667 #ifdef INVARIANTS
668 static void
669 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
670 {
671 
672 	if (map->system_map)
673 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
674 	else
675 		sx_assert_(&map->lock, SA_XLOCKED, file, line);
676 }
677 
678 #define	VM_MAP_ASSERT_LOCKED(map) \
679     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
680 #else
681 #define	VM_MAP_ASSERT_LOCKED(map)
682 #endif
683 
684 /*
685  *	_vm_map_unlock_and_wait:
686  *
687  *	Atomically releases the lock on the specified map and puts the calling
688  *	thread to sleep.  The calling thread will remain asleep until either
689  *	vm_map_wakeup() is performed on the map or the specified timeout is
690  *	exceeded.
691  *
692  *	WARNING!  This function does not perform deferred deallocations of
693  *	objects and map	entries.  Therefore, the calling thread is expected to
694  *	reacquire the map lock after reawakening and later perform an ordinary
695  *	unlock operation, such as vm_map_unlock(), before completing its
696  *	operation on the map.
697  */
698 int
699 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
700 {
701 
702 	mtx_lock(&map_sleep_mtx);
703 	if (map->system_map)
704 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
705 	else
706 		sx_xunlock_(&map->lock, file, line);
707 	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
708 	    timo));
709 }
710 
711 /*
712  *	vm_map_wakeup:
713  *
714  *	Awaken any threads that have slept on the map using
715  *	vm_map_unlock_and_wait().
716  */
717 void
718 vm_map_wakeup(vm_map_t map)
719 {
720 
721 	/*
722 	 * Acquire and release map_sleep_mtx to prevent a wakeup()
723 	 * from being performed (and lost) between the map unlock
724 	 * and the msleep() in _vm_map_unlock_and_wait().
725 	 */
726 	mtx_lock(&map_sleep_mtx);
727 	mtx_unlock(&map_sleep_mtx);
728 	wakeup(&map->root);
729 }
730 
731 void
732 vm_map_busy(vm_map_t map)
733 {
734 
735 	VM_MAP_ASSERT_LOCKED(map);
736 	map->busy++;
737 }
738 
739 void
740 vm_map_unbusy(vm_map_t map)
741 {
742 
743 	VM_MAP_ASSERT_LOCKED(map);
744 	KASSERT(map->busy, ("vm_map_unbusy: not busy"));
745 	if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
746 		vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
747 		wakeup(&map->busy);
748 	}
749 }
750 
751 void
752 vm_map_wait_busy(vm_map_t map)
753 {
754 
755 	VM_MAP_ASSERT_LOCKED(map);
756 	while (map->busy) {
757 		vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
758 		if (map->system_map)
759 			msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
760 		else
761 			sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
762 	}
763 	map->timestamp++;
764 }
765 
766 long
767 vmspace_resident_count(struct vmspace *vmspace)
768 {
769 	return pmap_resident_count(vmspace_pmap(vmspace));
770 }
771 
772 /*
773  *	vm_map_create:
774  *
775  *	Creates and returns a new empty VM map with
776  *	the given physical map structure, and having
777  *	the given lower and upper address bounds.
778  */
779 vm_map_t
780 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
781 {
782 	vm_map_t result;
783 
784 	result = uma_zalloc(mapzone, M_WAITOK);
785 	CTR1(KTR_VM, "vm_map_create: %p", result);
786 	_vm_map_init(result, pmap, min, max);
787 	return (result);
788 }
789 
790 /*
791  * Initialize an existing vm_map structure
792  * such as that in the vmspace structure.
793  */
794 static void
795 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
796 {
797 
798 	map->header.next = map->header.prev = &map->header;
799 	map->needs_wakeup = FALSE;
800 	map->system_map = 0;
801 	map->pmap = pmap;
802 	map->min_offset = min;
803 	map->max_offset = max;
804 	map->flags = 0;
805 	map->root = NULL;
806 	map->timestamp = 0;
807 	map->busy = 0;
808 }
809 
810 void
811 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
812 {
813 
814 	_vm_map_init(map, pmap, min, max);
815 	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
816 	sx_init(&map->lock, "user map");
817 }
818 
819 /*
820  *	vm_map_entry_dispose:	[ internal use only ]
821  *
822  *	Inverse of vm_map_entry_create.
823  */
824 static void
825 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
826 {
827 	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
828 }
829 
830 /*
831  *	vm_map_entry_create:	[ internal use only ]
832  *
833  *	Allocates a VM map entry for insertion.
834  *	No entry fields are filled in.
835  */
836 static vm_map_entry_t
837 vm_map_entry_create(vm_map_t map)
838 {
839 	vm_map_entry_t new_entry;
840 
841 	if (map->system_map)
842 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
843 	else
844 		new_entry = uma_zalloc(mapentzone, M_WAITOK);
845 	if (new_entry == NULL)
846 		panic("vm_map_entry_create: kernel resources exhausted");
847 	return (new_entry);
848 }
849 
850 /*
851  *	vm_map_entry_set_behavior:
852  *
853  *	Set the expected access behavior, either normal, random, or
854  *	sequential.
855  */
856 static inline void
857 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
858 {
859 	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
860 	    (behavior & MAP_ENTRY_BEHAV_MASK);
861 }
862 
863 /*
864  *	vm_map_entry_set_max_free:
865  *
866  *	Set the max_free field in a vm_map_entry.
867  */
868 static inline void
869 vm_map_entry_set_max_free(vm_map_entry_t entry)
870 {
871 
872 	entry->max_free = entry->adj_free;
873 	if (entry->left != NULL && entry->left->max_free > entry->max_free)
874 		entry->max_free = entry->left->max_free;
875 	if (entry->right != NULL && entry->right->max_free > entry->max_free)
876 		entry->max_free = entry->right->max_free;
877 }
878 
879 /*
880  *	vm_map_entry_splay:
881  *
882  *	The Sleator and Tarjan top-down splay algorithm with the
883  *	following variation.  Max_free must be computed bottom-up, so
884  *	on the downward pass, maintain the left and right spines in
885  *	reverse order.  Then, make a second pass up each side to fix
886  *	the pointers and compute max_free.  The time bound is O(log n)
887  *	amortized.
888  *
889  *	The new root is the vm_map_entry containing "addr", or else an
890  *	adjacent entry (lower or higher) if addr is not in the tree.
891  *
892  *	The map must be locked, and leaves it so.
893  *
894  *	Returns: the new root.
895  */
896 static vm_map_entry_t
897 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
898 {
899 	vm_map_entry_t llist, rlist;
900 	vm_map_entry_t ltree, rtree;
901 	vm_map_entry_t y;
902 
903 	/* Special case of empty tree. */
904 	if (root == NULL)
905 		return (root);
906 
907 	/*
908 	 * Pass One: Splay down the tree until we find addr or a NULL
909 	 * pointer where addr would go.  llist and rlist are the two
910 	 * sides in reverse order (bottom-up), with llist linked by
911 	 * the right pointer and rlist linked by the left pointer in
912 	 * the vm_map_entry.  Wait until Pass Two to set max_free on
913 	 * the two spines.
914 	 */
915 	llist = NULL;
916 	rlist = NULL;
917 	for (;;) {
918 		/* root is never NULL in here. */
919 		if (addr < root->start) {
920 			y = root->left;
921 			if (y == NULL)
922 				break;
923 			if (addr < y->start && y->left != NULL) {
924 				/* Rotate right and put y on rlist. */
925 				root->left = y->right;
926 				y->right = root;
927 				vm_map_entry_set_max_free(root);
928 				root = y->left;
929 				y->left = rlist;
930 				rlist = y;
931 			} else {
932 				/* Put root on rlist. */
933 				root->left = rlist;
934 				rlist = root;
935 				root = y;
936 			}
937 		} else if (addr >= root->end) {
938 			y = root->right;
939 			if (y == NULL)
940 				break;
941 			if (addr >= y->end && y->right != NULL) {
942 				/* Rotate left and put y on llist. */
943 				root->right = y->left;
944 				y->left = root;
945 				vm_map_entry_set_max_free(root);
946 				root = y->right;
947 				y->right = llist;
948 				llist = y;
949 			} else {
950 				/* Put root on llist. */
951 				root->right = llist;
952 				llist = root;
953 				root = y;
954 			}
955 		} else
956 			break;
957 	}
958 
959 	/*
960 	 * Pass Two: Walk back up the two spines, flip the pointers
961 	 * and set max_free.  The subtrees of the root go at the
962 	 * bottom of llist and rlist.
963 	 */
964 	ltree = root->left;
965 	while (llist != NULL) {
966 		y = llist->right;
967 		llist->right = ltree;
968 		vm_map_entry_set_max_free(llist);
969 		ltree = llist;
970 		llist = y;
971 	}
972 	rtree = root->right;
973 	while (rlist != NULL) {
974 		y = rlist->left;
975 		rlist->left = rtree;
976 		vm_map_entry_set_max_free(rlist);
977 		rtree = rlist;
978 		rlist = y;
979 	}
980 
981 	/*
982 	 * Final assembly: add ltree and rtree as subtrees of root.
983 	 */
984 	root->left = ltree;
985 	root->right = rtree;
986 	vm_map_entry_set_max_free(root);
987 
988 	return (root);
989 }
990 
991 /*
992  *	vm_map_entry_{un,}link:
993  *
994  *	Insert/remove entries from maps.
995  */
996 static void
997 vm_map_entry_link(vm_map_t map,
998 		  vm_map_entry_t after_where,
999 		  vm_map_entry_t entry)
1000 {
1001 
1002 	CTR4(KTR_VM,
1003 	    "vm_map_entry_link: map %p, nentries %d, entry %p, after %p", map,
1004 	    map->nentries, entry, after_where);
1005 	VM_MAP_ASSERT_LOCKED(map);
1006 	KASSERT(after_where->end <= entry->start,
1007 	    ("vm_map_entry_link: prev end %jx new start %jx overlap",
1008 	    (uintmax_t)after_where->end, (uintmax_t)entry->start));
1009 	KASSERT(entry->end <= after_where->next->start,
1010 	    ("vm_map_entry_link: new end %jx next start %jx overlap",
1011 	    (uintmax_t)entry->end, (uintmax_t)after_where->next->start));
1012 
1013 	map->nentries++;
1014 	entry->prev = after_where;
1015 	entry->next = after_where->next;
1016 	entry->next->prev = entry;
1017 	after_where->next = entry;
1018 
1019 	if (after_where != &map->header) {
1020 		if (after_where != map->root)
1021 			vm_map_entry_splay(after_where->start, map->root);
1022 		entry->right = after_where->right;
1023 		entry->left = after_where;
1024 		after_where->right = NULL;
1025 		after_where->adj_free = entry->start - after_where->end;
1026 		vm_map_entry_set_max_free(after_where);
1027 	} else {
1028 		entry->right = map->root;
1029 		entry->left = NULL;
1030 	}
1031 	entry->adj_free = entry->next->start - entry->end;
1032 	vm_map_entry_set_max_free(entry);
1033 	map->root = entry;
1034 }
1035 
1036 static void
1037 vm_map_entry_unlink(vm_map_t map,
1038 		    vm_map_entry_t entry)
1039 {
1040 	vm_map_entry_t next, prev, root;
1041 
1042 	VM_MAP_ASSERT_LOCKED(map);
1043 	if (entry != map->root)
1044 		vm_map_entry_splay(entry->start, map->root);
1045 	if (entry->left == NULL)
1046 		root = entry->right;
1047 	else {
1048 		root = vm_map_entry_splay(entry->start, entry->left);
1049 		root->right = entry->right;
1050 		root->adj_free = entry->next->start - root->end;
1051 		vm_map_entry_set_max_free(root);
1052 	}
1053 	map->root = root;
1054 
1055 	prev = entry->prev;
1056 	next = entry->next;
1057 	next->prev = prev;
1058 	prev->next = next;
1059 	map->nentries--;
1060 	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1061 	    map->nentries, entry);
1062 }
1063 
1064 /*
1065  *	vm_map_entry_resize_free:
1066  *
1067  *	Recompute the amount of free space following a vm_map_entry
1068  *	and propagate that value up the tree.  Call this function after
1069  *	resizing a map entry in-place, that is, without a call to
1070  *	vm_map_entry_link() or _unlink().
1071  *
1072  *	The map must be locked, and leaves it so.
1073  */
1074 static void
1075 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
1076 {
1077 
1078 	/*
1079 	 * Using splay trees without parent pointers, propagating
1080 	 * max_free up the tree is done by moving the entry to the
1081 	 * root and making the change there.
1082 	 */
1083 	if (entry != map->root)
1084 		map->root = vm_map_entry_splay(entry->start, map->root);
1085 
1086 	entry->adj_free = entry->next->start - entry->end;
1087 	vm_map_entry_set_max_free(entry);
1088 }
1089 
1090 /*
1091  *	vm_map_lookup_entry:	[ internal use only ]
1092  *
1093  *	Finds the map entry containing (or
1094  *	immediately preceding) the specified address
1095  *	in the given map; the entry is returned
1096  *	in the "entry" parameter.  The boolean
1097  *	result indicates whether the address is
1098  *	actually contained in the map.
1099  */
1100 boolean_t
1101 vm_map_lookup_entry(
1102 	vm_map_t map,
1103 	vm_offset_t address,
1104 	vm_map_entry_t *entry)	/* OUT */
1105 {
1106 	vm_map_entry_t cur;
1107 	boolean_t locked;
1108 
1109 	/*
1110 	 * If the map is empty, then the map entry immediately preceding
1111 	 * "address" is the map's header.
1112 	 */
1113 	cur = map->root;
1114 	if (cur == NULL)
1115 		*entry = &map->header;
1116 	else if (address >= cur->start && cur->end > address) {
1117 		*entry = cur;
1118 		return (TRUE);
1119 	} else if ((locked = vm_map_locked(map)) ||
1120 	    sx_try_upgrade(&map->lock)) {
1121 		/*
1122 		 * Splay requires a write lock on the map.  However, it only
1123 		 * restructures the binary search tree; it does not otherwise
1124 		 * change the map.  Thus, the map's timestamp need not change
1125 		 * on a temporary upgrade.
1126 		 */
1127 		map->root = cur = vm_map_entry_splay(address, cur);
1128 		if (!locked)
1129 			sx_downgrade(&map->lock);
1130 
1131 		/*
1132 		 * If "address" is contained within a map entry, the new root
1133 		 * is that map entry.  Otherwise, the new root is a map entry
1134 		 * immediately before or after "address".
1135 		 */
1136 		if (address >= cur->start) {
1137 			*entry = cur;
1138 			if (cur->end > address)
1139 				return (TRUE);
1140 		} else
1141 			*entry = cur->prev;
1142 	} else
1143 		/*
1144 		 * Since the map is only locked for read access, perform a
1145 		 * standard binary search tree lookup for "address".
1146 		 */
1147 		for (;;) {
1148 			if (address < cur->start) {
1149 				if (cur->left == NULL) {
1150 					*entry = cur->prev;
1151 					break;
1152 				}
1153 				cur = cur->left;
1154 			} else if (cur->end > address) {
1155 				*entry = cur;
1156 				return (TRUE);
1157 			} else {
1158 				if (cur->right == NULL) {
1159 					*entry = cur;
1160 					break;
1161 				}
1162 				cur = cur->right;
1163 			}
1164 		}
1165 	return (FALSE);
1166 }
1167 
1168 /*
1169  *	vm_map_insert:
1170  *
1171  *	Inserts the given whole VM object into the target
1172  *	map at the specified address range.  The object's
1173  *	size should match that of the address range.
1174  *
1175  *	Requires that the map be locked, and leaves it so.
1176  *
1177  *	If object is non-NULL, ref count must be bumped by caller
1178  *	prior to making call to account for the new entry.
1179  */
1180 int
1181 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1182     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1183 {
1184 	vm_map_entry_t new_entry, prev_entry, temp_entry;
1185 	struct ucred *cred;
1186 	vm_eflags_t protoeflags;
1187 	vm_inherit_t inheritance;
1188 
1189 	VM_MAP_ASSERT_LOCKED(map);
1190 	KASSERT(object != kernel_object ||
1191 	    (cow & MAP_COPY_ON_WRITE) == 0,
1192 	    ("vm_map_insert: kernel object and COW"));
1193 	KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0,
1194 	    ("vm_map_insert: paradoxical MAP_NOFAULT request"));
1195 	KASSERT((prot & ~max) == 0,
1196 	    ("prot %#x is not subset of max_prot %#x", prot, max));
1197 
1198 	/*
1199 	 * Check that the start and end points are not bogus.
1200 	 */
1201 	if (start < map->min_offset || end > map->max_offset || start >= end)
1202 		return (KERN_INVALID_ADDRESS);
1203 
1204 	/*
1205 	 * Find the entry prior to the proposed starting address; if it's part
1206 	 * of an existing entry, this range is bogus.
1207 	 */
1208 	if (vm_map_lookup_entry(map, start, &temp_entry))
1209 		return (KERN_NO_SPACE);
1210 
1211 	prev_entry = temp_entry;
1212 
1213 	/*
1214 	 * Assert that the next entry doesn't overlap the end point.
1215 	 */
1216 	if (prev_entry->next->start < end)
1217 		return (KERN_NO_SPACE);
1218 
1219 	if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL ||
1220 	    max != VM_PROT_NONE))
1221 		return (KERN_INVALID_ARGUMENT);
1222 
1223 	protoeflags = 0;
1224 	if (cow & MAP_COPY_ON_WRITE)
1225 		protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1226 	if (cow & MAP_NOFAULT)
1227 		protoeflags |= MAP_ENTRY_NOFAULT;
1228 	if (cow & MAP_DISABLE_SYNCER)
1229 		protoeflags |= MAP_ENTRY_NOSYNC;
1230 	if (cow & MAP_DISABLE_COREDUMP)
1231 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1232 	if (cow & MAP_STACK_GROWS_DOWN)
1233 		protoeflags |= MAP_ENTRY_GROWS_DOWN;
1234 	if (cow & MAP_STACK_GROWS_UP)
1235 		protoeflags |= MAP_ENTRY_GROWS_UP;
1236 	if (cow & MAP_VN_WRITECOUNT)
1237 		protoeflags |= MAP_ENTRY_VN_WRITECNT;
1238 	if ((cow & MAP_CREATE_GUARD) != 0)
1239 		protoeflags |= MAP_ENTRY_GUARD;
1240 	if ((cow & MAP_CREATE_STACK_GAP_DN) != 0)
1241 		protoeflags |= MAP_ENTRY_STACK_GAP_DN;
1242 	if ((cow & MAP_CREATE_STACK_GAP_UP) != 0)
1243 		protoeflags |= MAP_ENTRY_STACK_GAP_UP;
1244 	if (cow & MAP_INHERIT_SHARE)
1245 		inheritance = VM_INHERIT_SHARE;
1246 	else
1247 		inheritance = VM_INHERIT_DEFAULT;
1248 
1249 	cred = NULL;
1250 	if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0)
1251 		goto charged;
1252 	if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1253 	    ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1254 		if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1255 			return (KERN_RESOURCE_SHORTAGE);
1256 		KASSERT(object == NULL ||
1257 		    (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
1258 		    object->cred == NULL,
1259 		    ("overcommit: vm_map_insert o %p", object));
1260 		cred = curthread->td_ucred;
1261 	}
1262 
1263 charged:
1264 	/* Expand the kernel pmap, if necessary. */
1265 	if (map == kernel_map && end > kernel_vm_end)
1266 		pmap_growkernel(end);
1267 	if (object != NULL) {
1268 		/*
1269 		 * OBJ_ONEMAPPING must be cleared unless this mapping
1270 		 * is trivially proven to be the only mapping for any
1271 		 * of the object's pages.  (Object granularity
1272 		 * reference counting is insufficient to recognize
1273 		 * aliases with precision.)
1274 		 */
1275 		VM_OBJECT_WLOCK(object);
1276 		if (object->ref_count > 1 || object->shadow_count != 0)
1277 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
1278 		VM_OBJECT_WUNLOCK(object);
1279 	} else if (prev_entry != &map->header &&
1280 	    prev_entry->eflags == protoeflags &&
1281 	    (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 &&
1282 	    prev_entry->end == start && prev_entry->wired_count == 0 &&
1283 	    (prev_entry->cred == cred ||
1284 	    (prev_entry->object.vm_object != NULL &&
1285 	    prev_entry->object.vm_object->cred == cred)) &&
1286 	    vm_object_coalesce(prev_entry->object.vm_object,
1287 	    prev_entry->offset,
1288 	    (vm_size_t)(prev_entry->end - prev_entry->start),
1289 	    (vm_size_t)(end - prev_entry->end), cred != NULL &&
1290 	    (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1291 		/*
1292 		 * We were able to extend the object.  Determine if we
1293 		 * can extend the previous map entry to include the
1294 		 * new range as well.
1295 		 */
1296 		if (prev_entry->inheritance == inheritance &&
1297 		    prev_entry->protection == prot &&
1298 		    prev_entry->max_protection == max) {
1299 			if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0)
1300 				map->size += end - prev_entry->end;
1301 			prev_entry->end = end;
1302 			vm_map_entry_resize_free(map, prev_entry);
1303 			vm_map_simplify_entry(map, prev_entry);
1304 			return (KERN_SUCCESS);
1305 		}
1306 
1307 		/*
1308 		 * If we can extend the object but cannot extend the
1309 		 * map entry, we have to create a new map entry.  We
1310 		 * must bump the ref count on the extended object to
1311 		 * account for it.  object may be NULL.
1312 		 */
1313 		object = prev_entry->object.vm_object;
1314 		offset = prev_entry->offset +
1315 		    (prev_entry->end - prev_entry->start);
1316 		vm_object_reference(object);
1317 		if (cred != NULL && object != NULL && object->cred != NULL &&
1318 		    !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1319 			/* Object already accounts for this uid. */
1320 			cred = NULL;
1321 		}
1322 	}
1323 	if (cred != NULL)
1324 		crhold(cred);
1325 
1326 	/*
1327 	 * Create a new entry
1328 	 */
1329 	new_entry = vm_map_entry_create(map);
1330 	new_entry->start = start;
1331 	new_entry->end = end;
1332 	new_entry->cred = NULL;
1333 
1334 	new_entry->eflags = protoeflags;
1335 	new_entry->object.vm_object = object;
1336 	new_entry->offset = offset;
1337 
1338 	new_entry->inheritance = inheritance;
1339 	new_entry->protection = prot;
1340 	new_entry->max_protection = max;
1341 	new_entry->wired_count = 0;
1342 	new_entry->wiring_thread = NULL;
1343 	new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1344 	new_entry->next_read = start;
1345 
1346 	KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1347 	    ("overcommit: vm_map_insert leaks vm_map %p", new_entry));
1348 	new_entry->cred = cred;
1349 
1350 	/*
1351 	 * Insert the new entry into the list
1352 	 */
1353 	vm_map_entry_link(map, prev_entry, new_entry);
1354 	if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0)
1355 		map->size += new_entry->end - new_entry->start;
1356 
1357 	/*
1358 	 * Try to coalesce the new entry with both the previous and next
1359 	 * entries in the list.  Previously, we only attempted to coalesce
1360 	 * with the previous entry when object is NULL.  Here, we handle the
1361 	 * other cases, which are less common.
1362 	 */
1363 	vm_map_simplify_entry(map, new_entry);
1364 
1365 	if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) {
1366 		vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset),
1367 		    end - start, cow & MAP_PREFAULT_PARTIAL);
1368 	}
1369 
1370 	return (KERN_SUCCESS);
1371 }
1372 
1373 /*
1374  *	vm_map_findspace:
1375  *
1376  *	Find the first fit (lowest VM address) for "length" free bytes
1377  *	beginning at address >= start in the given map.
1378  *
1379  *	In a vm_map_entry, "adj_free" is the amount of free space
1380  *	adjacent (higher address) to this entry, and "max_free" is the
1381  *	maximum amount of contiguous free space in its subtree.  This
1382  *	allows finding a free region in one path down the tree, so
1383  *	O(log n) amortized with splay trees.
1384  *
1385  *	The map must be locked, and leaves it so.
1386  *
1387  *	Returns: 0 on success, and starting address in *addr,
1388  *		 1 if insufficient space.
1389  */
1390 int
1391 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length,
1392     vm_offset_t *addr)	/* OUT */
1393 {
1394 	vm_map_entry_t entry;
1395 	vm_offset_t st;
1396 
1397 	/*
1398 	 * Request must fit within min/max VM address and must avoid
1399 	 * address wrap.
1400 	 */
1401 	if (start < map->min_offset)
1402 		start = map->min_offset;
1403 	if (start + length > map->max_offset || start + length < start)
1404 		return (1);
1405 
1406 	/* Empty tree means wide open address space. */
1407 	if (map->root == NULL) {
1408 		*addr = start;
1409 		return (0);
1410 	}
1411 
1412 	/*
1413 	 * After splay, if start comes before root node, then there
1414 	 * must be a gap from start to the root.
1415 	 */
1416 	map->root = vm_map_entry_splay(start, map->root);
1417 	if (start + length <= map->root->start) {
1418 		*addr = start;
1419 		return (0);
1420 	}
1421 
1422 	/*
1423 	 * Root is the last node that might begin its gap before
1424 	 * start, and this is the last comparison where address
1425 	 * wrap might be a problem.
1426 	 */
1427 	st = (start > map->root->end) ? start : map->root->end;
1428 	if (length <= map->root->end + map->root->adj_free - st) {
1429 		*addr = st;
1430 		return (0);
1431 	}
1432 
1433 	/* With max_free, can immediately tell if no solution. */
1434 	entry = map->root->right;
1435 	if (entry == NULL || length > entry->max_free)
1436 		return (1);
1437 
1438 	/*
1439 	 * Search the right subtree in the order: left subtree, root,
1440 	 * right subtree (first fit).  The previous splay implies that
1441 	 * all regions in the right subtree have addresses > start.
1442 	 */
1443 	while (entry != NULL) {
1444 		if (entry->left != NULL && entry->left->max_free >= length)
1445 			entry = entry->left;
1446 		else if (entry->adj_free >= length) {
1447 			*addr = entry->end;
1448 			return (0);
1449 		} else
1450 			entry = entry->right;
1451 	}
1452 
1453 	/* Can't get here, so panic if we do. */
1454 	panic("vm_map_findspace: max_free corrupt");
1455 }
1456 
1457 int
1458 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1459     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1460     vm_prot_t max, int cow)
1461 {
1462 	vm_offset_t end;
1463 	int result;
1464 
1465 	end = start + length;
1466 	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1467 	    object == NULL,
1468 	    ("vm_map_fixed: non-NULL backing object for stack"));
1469 	vm_map_lock(map);
1470 	VM_MAP_RANGE_CHECK(map, start, end);
1471 	if ((cow & MAP_CHECK_EXCL) == 0)
1472 		vm_map_delete(map, start, end);
1473 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1474 		result = vm_map_stack_locked(map, start, length, sgrowsiz,
1475 		    prot, max, cow);
1476 	} else {
1477 		result = vm_map_insert(map, object, offset, start, end,
1478 		    prot, max, cow);
1479 	}
1480 	vm_map_unlock(map);
1481 	return (result);
1482 }
1483 
1484 /*
1485  * Searches for the specified amount of free space in the given map with the
1486  * specified alignment.  Performs an address-ordered, first-fit search from
1487  * the given address "*addr", with an optional upper bound "max_addr".  If the
1488  * parameter "alignment" is zero, then the alignment is computed from the
1489  * given (object, offset) pair so as to enable the greatest possible use of
1490  * superpage mappings.  Returns KERN_SUCCESS and the address of the free space
1491  * in "*addr" if successful.  Otherwise, returns KERN_NO_SPACE.
1492  *
1493  * The map must be locked.  Initially, there must be at least "length" bytes
1494  * of free space at the given address.
1495  */
1496 static int
1497 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1498     vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr,
1499     vm_offset_t alignment)
1500 {
1501 	vm_offset_t aligned_addr, free_addr;
1502 
1503 	VM_MAP_ASSERT_LOCKED(map);
1504 	free_addr = *addr;
1505 	KASSERT(!vm_map_findspace(map, free_addr, length, addr) &&
1506 	    free_addr == *addr, ("caller provided insufficient free space"));
1507 	for (;;) {
1508 		/*
1509 		 * At the start of every iteration, the free space at address
1510 		 * "*addr" is at least "length" bytes.
1511 		 */
1512 		if (alignment == 0)
1513 			pmap_align_superpage(object, offset, addr, length);
1514 		else if ((*addr & (alignment - 1)) != 0) {
1515 			*addr &= ~(alignment - 1);
1516 			*addr += alignment;
1517 		}
1518 		aligned_addr = *addr;
1519 		if (aligned_addr == free_addr) {
1520 			/*
1521 			 * Alignment did not change "*addr", so "*addr" must
1522 			 * still provide sufficient free space.
1523 			 */
1524 			return (KERN_SUCCESS);
1525 		}
1526 
1527 		/*
1528 		 * Test for address wrap on "*addr".  A wrapped "*addr" could
1529 		 * be a valid address, in which case vm_map_findspace() cannot
1530 		 * be relied upon to fail.
1531 		 */
1532 		if (aligned_addr < free_addr ||
1533 		    vm_map_findspace(map, aligned_addr, length, addr) ||
1534 		    (max_addr != 0 && *addr + length > max_addr))
1535 			return (KERN_NO_SPACE);
1536 		free_addr = *addr;
1537 		if (free_addr == aligned_addr) {
1538 			/*
1539 			 * If a successful call to vm_map_findspace() did not
1540 			 * change "*addr", then "*addr" must still be aligned
1541 			 * and provide sufficient free space.
1542 			 */
1543 			return (KERN_SUCCESS);
1544 		}
1545 	}
1546 }
1547 
1548 /*
1549  *	vm_map_find finds an unallocated region in the target address
1550  *	map with the given length.  The search is defined to be
1551  *	first-fit from the specified address; the region found is
1552  *	returned in the same parameter.
1553  *
1554  *	If object is non-NULL, ref count must be bumped by caller
1555  *	prior to making call to account for the new entry.
1556  */
1557 int
1558 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1559 	    vm_offset_t *addr,	/* IN/OUT */
1560 	    vm_size_t length, vm_offset_t max_addr, int find_space,
1561 	    vm_prot_t prot, vm_prot_t max, int cow)
1562 {
1563 	vm_offset_t alignment, min_addr;
1564 	int rv;
1565 
1566 	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1567 	    object == NULL,
1568 	    ("vm_map_find: non-NULL backing object for stack"));
1569 	if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
1570 	    (object->flags & OBJ_COLORED) == 0))
1571 		find_space = VMFS_ANY_SPACE;
1572 	if (find_space >> 8 != 0) {
1573 		KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
1574 		alignment = (vm_offset_t)1 << (find_space >> 8);
1575 	} else
1576 		alignment = 0;
1577 	vm_map_lock(map);
1578 	if (find_space != VMFS_NO_SPACE) {
1579 		KASSERT(find_space == VMFS_ANY_SPACE ||
1580 		    find_space == VMFS_OPTIMAL_SPACE ||
1581 		    find_space == VMFS_SUPER_SPACE ||
1582 		    alignment != 0, ("unexpected VMFS flag"));
1583 		min_addr = *addr;
1584 again:
1585 		if (vm_map_findspace(map, min_addr, length, addr) ||
1586 		    (max_addr != 0 && *addr + length > max_addr)) {
1587 			rv = KERN_NO_SPACE;
1588 			goto done;
1589 		}
1590 		if (find_space != VMFS_ANY_SPACE &&
1591 		    (rv = vm_map_alignspace(map, object, offset, addr, length,
1592 		    max_addr, alignment)) != KERN_SUCCESS) {
1593 			if (find_space == VMFS_OPTIMAL_SPACE) {
1594 				find_space = VMFS_ANY_SPACE;
1595 				goto again;
1596 			}
1597 			goto done;
1598 		}
1599 	}
1600 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1601 		rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot,
1602 		    max, cow);
1603 	} else {
1604 		rv = vm_map_insert(map, object, offset, *addr, *addr + length,
1605 		    prot, max, cow);
1606 	}
1607 done:
1608 	vm_map_unlock(map);
1609 	return (rv);
1610 }
1611 
1612 /*
1613  *	vm_map_find_min() is a variant of vm_map_find() that takes an
1614  *	additional parameter (min_addr) and treats the given address
1615  *	(*addr) differently.  Specifically, it treats *addr as a hint
1616  *	and not as the minimum address where the mapping is created.
1617  *
1618  *	This function works in two phases.  First, it tries to
1619  *	allocate above the hint.  If that fails and the hint is
1620  *	greater than min_addr, it performs a second pass, replacing
1621  *	the hint with min_addr as the minimum address for the
1622  *	allocation.
1623  */
1624 int
1625 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1626     vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr,
1627     vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max,
1628     int cow)
1629 {
1630 	vm_offset_t hint;
1631 	int rv;
1632 
1633 	hint = *addr;
1634 	for (;;) {
1635 		rv = vm_map_find(map, object, offset, addr, length, max_addr,
1636 		    find_space, prot, max, cow);
1637 		if (rv == KERN_SUCCESS || min_addr >= hint)
1638 			return (rv);
1639 		*addr = hint = min_addr;
1640 	}
1641 }
1642 
1643 /*
1644  *	vm_map_simplify_entry:
1645  *
1646  *	Simplify the given map entry by merging with either neighbor.  This
1647  *	routine also has the ability to merge with both neighbors.
1648  *
1649  *	The map must be locked.
1650  *
1651  *	This routine guarantees that the passed entry remains valid (though
1652  *	possibly extended).  When merging, this routine may delete one or
1653  *	both neighbors.
1654  */
1655 void
1656 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
1657 {
1658 	vm_map_entry_t next, prev;
1659 	vm_size_t prevsize, esize;
1660 
1661 	if ((entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP |
1662 	    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP)) != 0)
1663 		return;
1664 
1665 	prev = entry->prev;
1666 	if (prev != &map->header) {
1667 		prevsize = prev->end - prev->start;
1668 		if ( (prev->end == entry->start) &&
1669 		     (prev->object.vm_object == entry->object.vm_object) &&
1670 		     (!prev->object.vm_object ||
1671 			(prev->offset + prevsize == entry->offset)) &&
1672 		     (prev->eflags == entry->eflags) &&
1673 		     (prev->protection == entry->protection) &&
1674 		     (prev->max_protection == entry->max_protection) &&
1675 		     (prev->inheritance == entry->inheritance) &&
1676 		     (prev->wired_count == entry->wired_count) &&
1677 		     (prev->cred == entry->cred)) {
1678 			vm_map_entry_unlink(map, prev);
1679 			entry->start = prev->start;
1680 			entry->offset = prev->offset;
1681 			if (entry->prev != &map->header)
1682 				vm_map_entry_resize_free(map, entry->prev);
1683 
1684 			/*
1685 			 * If the backing object is a vnode object,
1686 			 * vm_object_deallocate() calls vrele().
1687 			 * However, vrele() does not lock the vnode
1688 			 * because the vnode has additional
1689 			 * references.  Thus, the map lock can be kept
1690 			 * without causing a lock-order reversal with
1691 			 * the vnode lock.
1692 			 *
1693 			 * Since we count the number of virtual page
1694 			 * mappings in object->un_pager.vnp.writemappings,
1695 			 * the writemappings value should not be adjusted
1696 			 * when the entry is disposed of.
1697 			 */
1698 			if (prev->object.vm_object)
1699 				vm_object_deallocate(prev->object.vm_object);
1700 			if (prev->cred != NULL)
1701 				crfree(prev->cred);
1702 			vm_map_entry_dispose(map, prev);
1703 		}
1704 	}
1705 
1706 	next = entry->next;
1707 	if (next != &map->header) {
1708 		esize = entry->end - entry->start;
1709 		if ((entry->end == next->start) &&
1710 		    (next->object.vm_object == entry->object.vm_object) &&
1711 		     (!entry->object.vm_object ||
1712 			(entry->offset + esize == next->offset)) &&
1713 		    (next->eflags == entry->eflags) &&
1714 		    (next->protection == entry->protection) &&
1715 		    (next->max_protection == entry->max_protection) &&
1716 		    (next->inheritance == entry->inheritance) &&
1717 		    (next->wired_count == entry->wired_count) &&
1718 		    (next->cred == entry->cred)) {
1719 			vm_map_entry_unlink(map, next);
1720 			entry->end = next->end;
1721 			vm_map_entry_resize_free(map, entry);
1722 
1723 			/*
1724 			 * See comment above.
1725 			 */
1726 			if (next->object.vm_object)
1727 				vm_object_deallocate(next->object.vm_object);
1728 			if (next->cred != NULL)
1729 				crfree(next->cred);
1730 			vm_map_entry_dispose(map, next);
1731 		}
1732 	}
1733 }
1734 /*
1735  *	vm_map_clip_start:	[ internal use only ]
1736  *
1737  *	Asserts that the given entry begins at or after
1738  *	the specified address; if necessary,
1739  *	it splits the entry into two.
1740  */
1741 #define vm_map_clip_start(map, entry, startaddr) \
1742 { \
1743 	if (startaddr > entry->start) \
1744 		_vm_map_clip_start(map, entry, startaddr); \
1745 }
1746 
1747 /*
1748  *	This routine is called only when it is known that
1749  *	the entry must be split.
1750  */
1751 static void
1752 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
1753 {
1754 	vm_map_entry_t new_entry;
1755 
1756 	VM_MAP_ASSERT_LOCKED(map);
1757 	KASSERT(entry->end > start && entry->start < start,
1758 	    ("_vm_map_clip_start: invalid clip of entry %p", entry));
1759 
1760 	/*
1761 	 * Split off the front portion -- note that we must insert the new
1762 	 * entry BEFORE this one, so that this entry has the specified
1763 	 * starting address.
1764 	 */
1765 	vm_map_simplify_entry(map, entry);
1766 
1767 	/*
1768 	 * If there is no object backing this entry, we might as well create
1769 	 * one now.  If we defer it, an object can get created after the map
1770 	 * is clipped, and individual objects will be created for the split-up
1771 	 * map.  This is a bit of a hack, but is also about the best place to
1772 	 * put this improvement.
1773 	 */
1774 	if (entry->object.vm_object == NULL && !map->system_map &&
1775 	    (entry->eflags & MAP_ENTRY_GUARD) == 0) {
1776 		vm_object_t object;
1777 		object = vm_object_allocate(OBJT_DEFAULT,
1778 				atop(entry->end - entry->start));
1779 		entry->object.vm_object = object;
1780 		entry->offset = 0;
1781 		if (entry->cred != NULL) {
1782 			object->cred = entry->cred;
1783 			object->charge = entry->end - entry->start;
1784 			entry->cred = NULL;
1785 		}
1786 	} else if (entry->object.vm_object != NULL &&
1787 		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1788 		   entry->cred != NULL) {
1789 		VM_OBJECT_WLOCK(entry->object.vm_object);
1790 		KASSERT(entry->object.vm_object->cred == NULL,
1791 		    ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
1792 		entry->object.vm_object->cred = entry->cred;
1793 		entry->object.vm_object->charge = entry->end - entry->start;
1794 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
1795 		entry->cred = NULL;
1796 	}
1797 
1798 	new_entry = vm_map_entry_create(map);
1799 	*new_entry = *entry;
1800 
1801 	new_entry->end = start;
1802 	entry->offset += (start - entry->start);
1803 	entry->start = start;
1804 	if (new_entry->cred != NULL)
1805 		crhold(entry->cred);
1806 
1807 	vm_map_entry_link(map, entry->prev, new_entry);
1808 
1809 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1810 		vm_object_reference(new_entry->object.vm_object);
1811 		/*
1812 		 * The object->un_pager.vnp.writemappings for the
1813 		 * object of MAP_ENTRY_VN_WRITECNT type entry shall be
1814 		 * kept as is here.  The virtual pages are
1815 		 * re-distributed among the clipped entries, so the sum is
1816 		 * left the same.
1817 		 */
1818 	}
1819 }
1820 
1821 /*
1822  *	vm_map_clip_end:	[ internal use only ]
1823  *
1824  *	Asserts that the given entry ends at or before
1825  *	the specified address; if necessary,
1826  *	it splits the entry into two.
1827  */
1828 #define vm_map_clip_end(map, entry, endaddr) \
1829 { \
1830 	if ((endaddr) < (entry->end)) \
1831 		_vm_map_clip_end((map), (entry), (endaddr)); \
1832 }
1833 
1834 /*
1835  *	This routine is called only when it is known that
1836  *	the entry must be split.
1837  */
1838 static void
1839 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
1840 {
1841 	vm_map_entry_t new_entry;
1842 
1843 	VM_MAP_ASSERT_LOCKED(map);
1844 	KASSERT(entry->start < end && entry->end > end,
1845 	    ("_vm_map_clip_end: invalid clip of entry %p", entry));
1846 
1847 	/*
1848 	 * If there is no object backing this entry, we might as well create
1849 	 * one now.  If we defer it, an object can get created after the map
1850 	 * is clipped, and individual objects will be created for the split-up
1851 	 * map.  This is a bit of a hack, but is also about the best place to
1852 	 * put this improvement.
1853 	 */
1854 	if (entry->object.vm_object == NULL && !map->system_map &&
1855 	    (entry->eflags & MAP_ENTRY_GUARD) == 0) {
1856 		vm_object_t object;
1857 		object = vm_object_allocate(OBJT_DEFAULT,
1858 				atop(entry->end - entry->start));
1859 		entry->object.vm_object = object;
1860 		entry->offset = 0;
1861 		if (entry->cred != NULL) {
1862 			object->cred = entry->cred;
1863 			object->charge = entry->end - entry->start;
1864 			entry->cred = NULL;
1865 		}
1866 	} else if (entry->object.vm_object != NULL &&
1867 		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
1868 		   entry->cred != NULL) {
1869 		VM_OBJECT_WLOCK(entry->object.vm_object);
1870 		KASSERT(entry->object.vm_object->cred == NULL,
1871 		    ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
1872 		entry->object.vm_object->cred = entry->cred;
1873 		entry->object.vm_object->charge = entry->end - entry->start;
1874 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
1875 		entry->cred = NULL;
1876 	}
1877 
1878 	/*
1879 	 * Create a new entry and insert it AFTER the specified entry
1880 	 */
1881 	new_entry = vm_map_entry_create(map);
1882 	*new_entry = *entry;
1883 
1884 	new_entry->start = entry->end = end;
1885 	new_entry->offset += (end - entry->start);
1886 	if (new_entry->cred != NULL)
1887 		crhold(entry->cred);
1888 
1889 	vm_map_entry_link(map, entry, new_entry);
1890 
1891 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1892 		vm_object_reference(new_entry->object.vm_object);
1893 	}
1894 }
1895 
1896 /*
1897  *	vm_map_submap:		[ kernel use only ]
1898  *
1899  *	Mark the given range as handled by a subordinate map.
1900  *
1901  *	This range must have been created with vm_map_find,
1902  *	and no other operations may have been performed on this
1903  *	range prior to calling vm_map_submap.
1904  *
1905  *	Only a limited number of operations can be performed
1906  *	within this rage after calling vm_map_submap:
1907  *		vm_fault
1908  *	[Don't try vm_map_copy!]
1909  *
1910  *	To remove a submapping, one must first remove the
1911  *	range from the superior map, and then destroy the
1912  *	submap (if desired).  [Better yet, don't try it.]
1913  */
1914 int
1915 vm_map_submap(
1916 	vm_map_t map,
1917 	vm_offset_t start,
1918 	vm_offset_t end,
1919 	vm_map_t submap)
1920 {
1921 	vm_map_entry_t entry;
1922 	int result = KERN_INVALID_ARGUMENT;
1923 
1924 	vm_map_lock(map);
1925 
1926 	VM_MAP_RANGE_CHECK(map, start, end);
1927 
1928 	if (vm_map_lookup_entry(map, start, &entry)) {
1929 		vm_map_clip_start(map, entry, start);
1930 	} else
1931 		entry = entry->next;
1932 
1933 	vm_map_clip_end(map, entry, end);
1934 
1935 	if ((entry->start == start) && (entry->end == end) &&
1936 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
1937 	    (entry->object.vm_object == NULL)) {
1938 		entry->object.sub_map = submap;
1939 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
1940 		result = KERN_SUCCESS;
1941 	}
1942 	vm_map_unlock(map);
1943 
1944 	return (result);
1945 }
1946 
1947 /*
1948  * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
1949  */
1950 #define	MAX_INIT_PT	96
1951 
1952 /*
1953  *	vm_map_pmap_enter:
1954  *
1955  *	Preload the specified map's pmap with mappings to the specified
1956  *	object's memory-resident pages.  No further physical pages are
1957  *	allocated, and no further virtual pages are retrieved from secondary
1958  *	storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
1959  *	limited number of page mappings are created at the low-end of the
1960  *	specified address range.  (For this purpose, a superpage mapping
1961  *	counts as one page mapping.)  Otherwise, all resident pages within
1962  *	the specified address range are mapped.
1963  */
1964 static void
1965 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
1966     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
1967 {
1968 	vm_offset_t start;
1969 	vm_page_t p, p_start;
1970 	vm_pindex_t mask, psize, threshold, tmpidx;
1971 
1972 	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
1973 		return;
1974 	VM_OBJECT_RLOCK(object);
1975 	if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1976 		VM_OBJECT_RUNLOCK(object);
1977 		VM_OBJECT_WLOCK(object);
1978 		if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
1979 			pmap_object_init_pt(map->pmap, addr, object, pindex,
1980 			    size);
1981 			VM_OBJECT_WUNLOCK(object);
1982 			return;
1983 		}
1984 		VM_OBJECT_LOCK_DOWNGRADE(object);
1985 	}
1986 
1987 	psize = atop(size);
1988 	if (psize + pindex > object->size) {
1989 		if (object->size < pindex) {
1990 			VM_OBJECT_RUNLOCK(object);
1991 			return;
1992 		}
1993 		psize = object->size - pindex;
1994 	}
1995 
1996 	start = 0;
1997 	p_start = NULL;
1998 	threshold = MAX_INIT_PT;
1999 
2000 	p = vm_page_find_least(object, pindex);
2001 	/*
2002 	 * Assert: the variable p is either (1) the page with the
2003 	 * least pindex greater than or equal to the parameter pindex
2004 	 * or (2) NULL.
2005 	 */
2006 	for (;
2007 	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
2008 	     p = TAILQ_NEXT(p, listq)) {
2009 		/*
2010 		 * don't allow an madvise to blow away our really
2011 		 * free pages allocating pv entries.
2012 		 */
2013 		if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
2014 		    vm_page_count_severe()) ||
2015 		    ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
2016 		    tmpidx >= threshold)) {
2017 			psize = tmpidx;
2018 			break;
2019 		}
2020 		if (p->valid == VM_PAGE_BITS_ALL) {
2021 			if (p_start == NULL) {
2022 				start = addr + ptoa(tmpidx);
2023 				p_start = p;
2024 			}
2025 			/* Jump ahead if a superpage mapping is possible. */
2026 			if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
2027 			    (pagesizes[p->psind] - 1)) == 0) {
2028 				mask = atop(pagesizes[p->psind]) - 1;
2029 				if (tmpidx + mask < psize &&
2030 				    vm_page_ps_test(p, PS_ALL_VALID, NULL)) {
2031 					p += mask;
2032 					threshold += mask;
2033 				}
2034 			}
2035 		} else if (p_start != NULL) {
2036 			pmap_enter_object(map->pmap, start, addr +
2037 			    ptoa(tmpidx), p_start, prot);
2038 			p_start = NULL;
2039 		}
2040 	}
2041 	if (p_start != NULL)
2042 		pmap_enter_object(map->pmap, start, addr + ptoa(psize),
2043 		    p_start, prot);
2044 	VM_OBJECT_RUNLOCK(object);
2045 }
2046 
2047 /*
2048  *	vm_map_protect:
2049  *
2050  *	Sets the protection of the specified address
2051  *	region in the target map.  If "set_max" is
2052  *	specified, the maximum protection is to be set;
2053  *	otherwise, only the current protection is affected.
2054  */
2055 int
2056 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
2057 	       vm_prot_t new_prot, boolean_t set_max)
2058 {
2059 	vm_map_entry_t current, entry;
2060 	vm_object_t obj;
2061 	struct ucred *cred;
2062 	vm_prot_t old_prot;
2063 
2064 	if (start == end)
2065 		return (KERN_SUCCESS);
2066 
2067 	vm_map_lock(map);
2068 
2069 	/*
2070 	 * Ensure that we are not concurrently wiring pages.  vm_map_wire() may
2071 	 * need to fault pages into the map and will drop the map lock while
2072 	 * doing so, and the VM object may end up in an inconsistent state if we
2073 	 * update the protection on the map entry in between faults.
2074 	 */
2075 	vm_map_wait_busy(map);
2076 
2077 	VM_MAP_RANGE_CHECK(map, start, end);
2078 
2079 	if (vm_map_lookup_entry(map, start, &entry)) {
2080 		vm_map_clip_start(map, entry, start);
2081 	} else {
2082 		entry = entry->next;
2083 	}
2084 
2085 	/*
2086 	 * Make a first pass to check for protection violations.
2087 	 */
2088 	for (current = entry; current->start < end; current = current->next) {
2089 		if ((current->eflags & MAP_ENTRY_GUARD) != 0)
2090 			continue;
2091 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2092 			vm_map_unlock(map);
2093 			return (KERN_INVALID_ARGUMENT);
2094 		}
2095 		if ((new_prot & current->max_protection) != new_prot) {
2096 			vm_map_unlock(map);
2097 			return (KERN_PROTECTION_FAILURE);
2098 		}
2099 	}
2100 
2101 	/*
2102 	 * Do an accounting pass for private read-only mappings that
2103 	 * now will do cow due to allowed write (e.g. debugger sets
2104 	 * breakpoint on text segment)
2105 	 */
2106 	for (current = entry; current->start < end; current = current->next) {
2107 
2108 		vm_map_clip_end(map, current, end);
2109 
2110 		if (set_max ||
2111 		    ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
2112 		    ENTRY_CHARGED(current) ||
2113 		    (current->eflags & MAP_ENTRY_GUARD) != 0) {
2114 			continue;
2115 		}
2116 
2117 		cred = curthread->td_ucred;
2118 		obj = current->object.vm_object;
2119 
2120 		if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
2121 			if (!swap_reserve(current->end - current->start)) {
2122 				vm_map_unlock(map);
2123 				return (KERN_RESOURCE_SHORTAGE);
2124 			}
2125 			crhold(cred);
2126 			current->cred = cred;
2127 			continue;
2128 		}
2129 
2130 		VM_OBJECT_WLOCK(obj);
2131 		if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
2132 			VM_OBJECT_WUNLOCK(obj);
2133 			continue;
2134 		}
2135 
2136 		/*
2137 		 * Charge for the whole object allocation now, since
2138 		 * we cannot distinguish between non-charged and
2139 		 * charged clipped mapping of the same object later.
2140 		 */
2141 		KASSERT(obj->charge == 0,
2142 		    ("vm_map_protect: object %p overcharged (entry %p)",
2143 		    obj, current));
2144 		if (!swap_reserve(ptoa(obj->size))) {
2145 			VM_OBJECT_WUNLOCK(obj);
2146 			vm_map_unlock(map);
2147 			return (KERN_RESOURCE_SHORTAGE);
2148 		}
2149 
2150 		crhold(cred);
2151 		obj->cred = cred;
2152 		obj->charge = ptoa(obj->size);
2153 		VM_OBJECT_WUNLOCK(obj);
2154 	}
2155 
2156 	/*
2157 	 * Go back and fix up protections. [Note that clipping is not
2158 	 * necessary the second time.]
2159 	 */
2160 	for (current = entry; current->start < end; current = current->next) {
2161 		if ((current->eflags & MAP_ENTRY_GUARD) != 0)
2162 			continue;
2163 
2164 		old_prot = current->protection;
2165 
2166 		if (set_max)
2167 			current->protection =
2168 			    (current->max_protection = new_prot) &
2169 			    old_prot;
2170 		else
2171 			current->protection = new_prot;
2172 
2173 		/*
2174 		 * For user wired map entries, the normal lazy evaluation of
2175 		 * write access upgrades through soft page faults is
2176 		 * undesirable.  Instead, immediately copy any pages that are
2177 		 * copy-on-write and enable write access in the physical map.
2178 		 */
2179 		if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2180 		    (current->protection & VM_PROT_WRITE) != 0 &&
2181 		    (old_prot & VM_PROT_WRITE) == 0)
2182 			vm_fault_copy_entry(map, map, current, current, NULL);
2183 
2184 		/*
2185 		 * When restricting access, update the physical map.  Worry
2186 		 * about copy-on-write here.
2187 		 */
2188 		if ((old_prot & ~current->protection) != 0) {
2189 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2190 							VM_PROT_ALL)
2191 			pmap_protect(map->pmap, current->start,
2192 			    current->end,
2193 			    current->protection & MASK(current));
2194 #undef	MASK
2195 		}
2196 		vm_map_simplify_entry(map, current);
2197 	}
2198 	vm_map_unlock(map);
2199 	return (KERN_SUCCESS);
2200 }
2201 
2202 /*
2203  *	vm_map_madvise:
2204  *
2205  *	This routine traverses a processes map handling the madvise
2206  *	system call.  Advisories are classified as either those effecting
2207  *	the vm_map_entry structure, or those effecting the underlying
2208  *	objects.
2209  */
2210 int
2211 vm_map_madvise(
2212 	vm_map_t map,
2213 	vm_offset_t start,
2214 	vm_offset_t end,
2215 	int behav)
2216 {
2217 	vm_map_entry_t current, entry;
2218 	int modify_map = 0;
2219 
2220 	/*
2221 	 * Some madvise calls directly modify the vm_map_entry, in which case
2222 	 * we need to use an exclusive lock on the map and we need to perform
2223 	 * various clipping operations.  Otherwise we only need a read-lock
2224 	 * on the map.
2225 	 */
2226 	switch(behav) {
2227 	case MADV_NORMAL:
2228 	case MADV_SEQUENTIAL:
2229 	case MADV_RANDOM:
2230 	case MADV_NOSYNC:
2231 	case MADV_AUTOSYNC:
2232 	case MADV_NOCORE:
2233 	case MADV_CORE:
2234 		if (start == end)
2235 			return (KERN_SUCCESS);
2236 		modify_map = 1;
2237 		vm_map_lock(map);
2238 		break;
2239 	case MADV_WILLNEED:
2240 	case MADV_DONTNEED:
2241 	case MADV_FREE:
2242 		if (start == end)
2243 			return (KERN_SUCCESS);
2244 		vm_map_lock_read(map);
2245 		break;
2246 	default:
2247 		return (KERN_INVALID_ARGUMENT);
2248 	}
2249 
2250 	/*
2251 	 * Locate starting entry and clip if necessary.
2252 	 */
2253 	VM_MAP_RANGE_CHECK(map, start, end);
2254 
2255 	if (vm_map_lookup_entry(map, start, &entry)) {
2256 		if (modify_map)
2257 			vm_map_clip_start(map, entry, start);
2258 	} else {
2259 		entry = entry->next;
2260 	}
2261 
2262 	if (modify_map) {
2263 		/*
2264 		 * madvise behaviors that are implemented in the vm_map_entry.
2265 		 *
2266 		 * We clip the vm_map_entry so that behavioral changes are
2267 		 * limited to the specified address range.
2268 		 */
2269 		for (current = entry; current->start < end;
2270 		    current = current->next) {
2271 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2272 				continue;
2273 
2274 			vm_map_clip_end(map, current, end);
2275 
2276 			switch (behav) {
2277 			case MADV_NORMAL:
2278 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2279 				break;
2280 			case MADV_SEQUENTIAL:
2281 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2282 				break;
2283 			case MADV_RANDOM:
2284 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2285 				break;
2286 			case MADV_NOSYNC:
2287 				current->eflags |= MAP_ENTRY_NOSYNC;
2288 				break;
2289 			case MADV_AUTOSYNC:
2290 				current->eflags &= ~MAP_ENTRY_NOSYNC;
2291 				break;
2292 			case MADV_NOCORE:
2293 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
2294 				break;
2295 			case MADV_CORE:
2296 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2297 				break;
2298 			default:
2299 				break;
2300 			}
2301 			vm_map_simplify_entry(map, current);
2302 		}
2303 		vm_map_unlock(map);
2304 	} else {
2305 		vm_pindex_t pstart, pend;
2306 
2307 		/*
2308 		 * madvise behaviors that are implemented in the underlying
2309 		 * vm_object.
2310 		 *
2311 		 * Since we don't clip the vm_map_entry, we have to clip
2312 		 * the vm_object pindex and count.
2313 		 */
2314 		for (current = entry; current->start < end;
2315 		    current = current->next) {
2316 			vm_offset_t useEnd, useStart;
2317 
2318 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2319 				continue;
2320 
2321 			pstart = OFF_TO_IDX(current->offset);
2322 			pend = pstart + atop(current->end - current->start);
2323 			useStart = current->start;
2324 			useEnd = current->end;
2325 
2326 			if (current->start < start) {
2327 				pstart += atop(start - current->start);
2328 				useStart = start;
2329 			}
2330 			if (current->end > end) {
2331 				pend -= atop(current->end - end);
2332 				useEnd = end;
2333 			}
2334 
2335 			if (pstart >= pend)
2336 				continue;
2337 
2338 			/*
2339 			 * Perform the pmap_advise() before clearing
2340 			 * PGA_REFERENCED in vm_page_advise().  Otherwise, a
2341 			 * concurrent pmap operation, such as pmap_remove(),
2342 			 * could clear a reference in the pmap and set
2343 			 * PGA_REFERENCED on the page before the pmap_advise()
2344 			 * had completed.  Consequently, the page would appear
2345 			 * referenced based upon an old reference that
2346 			 * occurred before this pmap_advise() ran.
2347 			 */
2348 			if (behav == MADV_DONTNEED || behav == MADV_FREE)
2349 				pmap_advise(map->pmap, useStart, useEnd,
2350 				    behav);
2351 
2352 			vm_object_madvise(current->object.vm_object, pstart,
2353 			    pend, behav);
2354 
2355 			/*
2356 			 * Pre-populate paging structures in the
2357 			 * WILLNEED case.  For wired entries, the
2358 			 * paging structures are already populated.
2359 			 */
2360 			if (behav == MADV_WILLNEED &&
2361 			    current->wired_count == 0) {
2362 				vm_map_pmap_enter(map,
2363 				    useStart,
2364 				    current->protection,
2365 				    current->object.vm_object,
2366 				    pstart,
2367 				    ptoa(pend - pstart),
2368 				    MAP_PREFAULT_MADVISE
2369 				);
2370 			}
2371 		}
2372 		vm_map_unlock_read(map);
2373 	}
2374 	return (0);
2375 }
2376 
2377 
2378 /*
2379  *	vm_map_inherit:
2380  *
2381  *	Sets the inheritance of the specified address
2382  *	range in the target map.  Inheritance
2383  *	affects how the map will be shared with
2384  *	child maps at the time of vmspace_fork.
2385  */
2386 int
2387 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2388 	       vm_inherit_t new_inheritance)
2389 {
2390 	vm_map_entry_t entry;
2391 	vm_map_entry_t temp_entry;
2392 
2393 	switch (new_inheritance) {
2394 	case VM_INHERIT_NONE:
2395 	case VM_INHERIT_COPY:
2396 	case VM_INHERIT_SHARE:
2397 	case VM_INHERIT_ZERO:
2398 		break;
2399 	default:
2400 		return (KERN_INVALID_ARGUMENT);
2401 	}
2402 	if (start == end)
2403 		return (KERN_SUCCESS);
2404 	vm_map_lock(map);
2405 	VM_MAP_RANGE_CHECK(map, start, end);
2406 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
2407 		entry = temp_entry;
2408 		vm_map_clip_start(map, entry, start);
2409 	} else
2410 		entry = temp_entry->next;
2411 	while (entry->start < end) {
2412 		vm_map_clip_end(map, entry, end);
2413 		if ((entry->eflags & MAP_ENTRY_GUARD) == 0 ||
2414 		    new_inheritance != VM_INHERIT_ZERO)
2415 			entry->inheritance = new_inheritance;
2416 		vm_map_simplify_entry(map, entry);
2417 		entry = entry->next;
2418 	}
2419 	vm_map_unlock(map);
2420 	return (KERN_SUCCESS);
2421 }
2422 
2423 /*
2424  *	vm_map_unwire:
2425  *
2426  *	Implements both kernel and user unwiring.
2427  */
2428 int
2429 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2430     int flags)
2431 {
2432 	vm_map_entry_t entry, first_entry, tmp_entry;
2433 	vm_offset_t saved_start;
2434 	unsigned int last_timestamp;
2435 	int rv;
2436 	boolean_t need_wakeup, result, user_unwire;
2437 
2438 	if (start == end)
2439 		return (KERN_SUCCESS);
2440 	user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2441 	vm_map_lock(map);
2442 	VM_MAP_RANGE_CHECK(map, start, end);
2443 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2444 		if (flags & VM_MAP_WIRE_HOLESOK)
2445 			first_entry = first_entry->next;
2446 		else {
2447 			vm_map_unlock(map);
2448 			return (KERN_INVALID_ADDRESS);
2449 		}
2450 	}
2451 	last_timestamp = map->timestamp;
2452 	entry = first_entry;
2453 	while (entry->start < end) {
2454 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2455 			/*
2456 			 * We have not yet clipped the entry.
2457 			 */
2458 			saved_start = (start >= entry->start) ? start :
2459 			    entry->start;
2460 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2461 			if (vm_map_unlock_and_wait(map, 0)) {
2462 				/*
2463 				 * Allow interruption of user unwiring?
2464 				 */
2465 			}
2466 			vm_map_lock(map);
2467 			if (last_timestamp+1 != map->timestamp) {
2468 				/*
2469 				 * Look again for the entry because the map was
2470 				 * modified while it was unlocked.
2471 				 * Specifically, the entry may have been
2472 				 * clipped, merged, or deleted.
2473 				 */
2474 				if (!vm_map_lookup_entry(map, saved_start,
2475 				    &tmp_entry)) {
2476 					if (flags & VM_MAP_WIRE_HOLESOK)
2477 						tmp_entry = tmp_entry->next;
2478 					else {
2479 						if (saved_start == start) {
2480 							/*
2481 							 * First_entry has been deleted.
2482 							 */
2483 							vm_map_unlock(map);
2484 							return (KERN_INVALID_ADDRESS);
2485 						}
2486 						end = saved_start;
2487 						rv = KERN_INVALID_ADDRESS;
2488 						goto done;
2489 					}
2490 				}
2491 				if (entry == first_entry)
2492 					first_entry = tmp_entry;
2493 				else
2494 					first_entry = NULL;
2495 				entry = tmp_entry;
2496 			}
2497 			last_timestamp = map->timestamp;
2498 			continue;
2499 		}
2500 		vm_map_clip_start(map, entry, start);
2501 		vm_map_clip_end(map, entry, end);
2502 		/*
2503 		 * Mark the entry in case the map lock is released.  (See
2504 		 * above.)
2505 		 */
2506 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2507 		    entry->wiring_thread == NULL,
2508 		    ("owned map entry %p", entry));
2509 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2510 		entry->wiring_thread = curthread;
2511 		/*
2512 		 * Check the map for holes in the specified region.
2513 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2514 		 */
2515 		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2516 		    (entry->end < end && entry->next->start > entry->end)) {
2517 			end = entry->end;
2518 			rv = KERN_INVALID_ADDRESS;
2519 			goto done;
2520 		}
2521 		/*
2522 		 * If system unwiring, require that the entry is system wired.
2523 		 */
2524 		if (!user_unwire &&
2525 		    vm_map_entry_system_wired_count(entry) == 0) {
2526 			end = entry->end;
2527 			rv = KERN_INVALID_ARGUMENT;
2528 			goto done;
2529 		}
2530 		entry = entry->next;
2531 	}
2532 	rv = KERN_SUCCESS;
2533 done:
2534 	need_wakeup = FALSE;
2535 	if (first_entry == NULL) {
2536 		result = vm_map_lookup_entry(map, start, &first_entry);
2537 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2538 			first_entry = first_entry->next;
2539 		else
2540 			KASSERT(result, ("vm_map_unwire: lookup failed"));
2541 	}
2542 	for (entry = first_entry; entry->start < end; entry = entry->next) {
2543 		/*
2544 		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2545 		 * space in the unwired region could have been mapped
2546 		 * while the map lock was dropped for draining
2547 		 * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
2548 		 * could be simultaneously wiring this new mapping
2549 		 * entry.  Detect these cases and skip any entries
2550 		 * marked as in transition by us.
2551 		 */
2552 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2553 		    entry->wiring_thread != curthread) {
2554 			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2555 			    ("vm_map_unwire: !HOLESOK and new/changed entry"));
2556 			continue;
2557 		}
2558 
2559 		if (rv == KERN_SUCCESS && (!user_unwire ||
2560 		    (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2561 			if (user_unwire)
2562 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2563 			if (entry->wired_count == 1)
2564 				vm_map_entry_unwire(map, entry);
2565 			else
2566 				entry->wired_count--;
2567 		}
2568 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2569 		    ("vm_map_unwire: in-transition flag missing %p", entry));
2570 		KASSERT(entry->wiring_thread == curthread,
2571 		    ("vm_map_unwire: alien wire %p", entry));
2572 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2573 		entry->wiring_thread = NULL;
2574 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2575 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2576 			need_wakeup = TRUE;
2577 		}
2578 		vm_map_simplify_entry(map, entry);
2579 	}
2580 	vm_map_unlock(map);
2581 	if (need_wakeup)
2582 		vm_map_wakeup(map);
2583 	return (rv);
2584 }
2585 
2586 /*
2587  *	vm_map_wire_entry_failure:
2588  *
2589  *	Handle a wiring failure on the given entry.
2590  *
2591  *	The map should be locked.
2592  */
2593 static void
2594 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
2595     vm_offset_t failed_addr)
2596 {
2597 
2598 	VM_MAP_ASSERT_LOCKED(map);
2599 	KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
2600 	    entry->wired_count == 1,
2601 	    ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
2602 	KASSERT(failed_addr < entry->end,
2603 	    ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
2604 
2605 	/*
2606 	 * If any pages at the start of this entry were successfully wired,
2607 	 * then unwire them.
2608 	 */
2609 	if (failed_addr > entry->start) {
2610 		pmap_unwire(map->pmap, entry->start, failed_addr);
2611 		vm_object_unwire(entry->object.vm_object, entry->offset,
2612 		    failed_addr - entry->start, PQ_ACTIVE);
2613 	}
2614 
2615 	/*
2616 	 * Assign an out-of-range value to represent the failure to wire this
2617 	 * entry.
2618 	 */
2619 	entry->wired_count = -1;
2620 }
2621 
2622 /*
2623  *	vm_map_wire:
2624  *
2625  *	Implements both kernel and user wiring.
2626  */
2627 int
2628 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2629     int flags)
2630 {
2631 	vm_map_entry_t entry, first_entry, tmp_entry;
2632 	vm_offset_t faddr, saved_end, saved_start;
2633 	unsigned int last_timestamp;
2634 	int rv;
2635 	boolean_t need_wakeup, result, user_wire;
2636 	vm_prot_t prot;
2637 
2638 	if (start == end)
2639 		return (KERN_SUCCESS);
2640 	prot = 0;
2641 	if (flags & VM_MAP_WIRE_WRITE)
2642 		prot |= VM_PROT_WRITE;
2643 	user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2644 	vm_map_lock(map);
2645 	VM_MAP_RANGE_CHECK(map, start, end);
2646 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2647 		if (flags & VM_MAP_WIRE_HOLESOK)
2648 			first_entry = first_entry->next;
2649 		else {
2650 			vm_map_unlock(map);
2651 			return (KERN_INVALID_ADDRESS);
2652 		}
2653 	}
2654 	last_timestamp = map->timestamp;
2655 	entry = first_entry;
2656 	while (entry->start < end) {
2657 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2658 			/*
2659 			 * We have not yet clipped the entry.
2660 			 */
2661 			saved_start = (start >= entry->start) ? start :
2662 			    entry->start;
2663 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2664 			if (vm_map_unlock_and_wait(map, 0)) {
2665 				/*
2666 				 * Allow interruption of user wiring?
2667 				 */
2668 			}
2669 			vm_map_lock(map);
2670 			if (last_timestamp + 1 != map->timestamp) {
2671 				/*
2672 				 * Look again for the entry because the map was
2673 				 * modified while it was unlocked.
2674 				 * Specifically, the entry may have been
2675 				 * clipped, merged, or deleted.
2676 				 */
2677 				if (!vm_map_lookup_entry(map, saved_start,
2678 				    &tmp_entry)) {
2679 					if (flags & VM_MAP_WIRE_HOLESOK)
2680 						tmp_entry = tmp_entry->next;
2681 					else {
2682 						if (saved_start == start) {
2683 							/*
2684 							 * first_entry has been deleted.
2685 							 */
2686 							vm_map_unlock(map);
2687 							return (KERN_INVALID_ADDRESS);
2688 						}
2689 						end = saved_start;
2690 						rv = KERN_INVALID_ADDRESS;
2691 						goto done;
2692 					}
2693 				}
2694 				if (entry == first_entry)
2695 					first_entry = tmp_entry;
2696 				else
2697 					first_entry = NULL;
2698 				entry = tmp_entry;
2699 			}
2700 			last_timestamp = map->timestamp;
2701 			continue;
2702 		}
2703 		vm_map_clip_start(map, entry, start);
2704 		vm_map_clip_end(map, entry, end);
2705 		/*
2706 		 * Mark the entry in case the map lock is released.  (See
2707 		 * above.)
2708 		 */
2709 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2710 		    entry->wiring_thread == NULL,
2711 		    ("owned map entry %p", entry));
2712 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2713 		entry->wiring_thread = curthread;
2714 		if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
2715 		    || (entry->protection & prot) != prot) {
2716 			entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
2717 			if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
2718 				end = entry->end;
2719 				rv = KERN_INVALID_ADDRESS;
2720 				goto done;
2721 			}
2722 			goto next_entry;
2723 		}
2724 		if (entry->wired_count == 0) {
2725 			entry->wired_count++;
2726 			saved_start = entry->start;
2727 			saved_end = entry->end;
2728 
2729 			/*
2730 			 * Release the map lock, relying on the in-transition
2731 			 * mark.  Mark the map busy for fork.
2732 			 */
2733 			vm_map_busy(map);
2734 			vm_map_unlock(map);
2735 
2736 			faddr = saved_start;
2737 			do {
2738 				/*
2739 				 * Simulate a fault to get the page and enter
2740 				 * it into the physical map.
2741 				 */
2742 				if ((rv = vm_fault(map, faddr, VM_PROT_NONE,
2743 				    VM_FAULT_WIRE)) != KERN_SUCCESS)
2744 					break;
2745 			} while ((faddr += PAGE_SIZE) < saved_end);
2746 			vm_map_lock(map);
2747 			vm_map_unbusy(map);
2748 			if (last_timestamp + 1 != map->timestamp) {
2749 				/*
2750 				 * Look again for the entry because the map was
2751 				 * modified while it was unlocked.  The entry
2752 				 * may have been clipped, but NOT merged or
2753 				 * deleted.
2754 				 */
2755 				result = vm_map_lookup_entry(map, saved_start,
2756 				    &tmp_entry);
2757 				KASSERT(result, ("vm_map_wire: lookup failed"));
2758 				if (entry == first_entry)
2759 					first_entry = tmp_entry;
2760 				else
2761 					first_entry = NULL;
2762 				entry = tmp_entry;
2763 				while (entry->end < saved_end) {
2764 					/*
2765 					 * In case of failure, handle entries
2766 					 * that were not fully wired here;
2767 					 * fully wired entries are handled
2768 					 * later.
2769 					 */
2770 					if (rv != KERN_SUCCESS &&
2771 					    faddr < entry->end)
2772 						vm_map_wire_entry_failure(map,
2773 						    entry, faddr);
2774 					entry = entry->next;
2775 				}
2776 			}
2777 			last_timestamp = map->timestamp;
2778 			if (rv != KERN_SUCCESS) {
2779 				vm_map_wire_entry_failure(map, entry, faddr);
2780 				end = entry->end;
2781 				goto done;
2782 			}
2783 		} else if (!user_wire ||
2784 			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2785 			entry->wired_count++;
2786 		}
2787 		/*
2788 		 * Check the map for holes in the specified region.
2789 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2790 		 */
2791 	next_entry:
2792 		if ((flags & VM_MAP_WIRE_HOLESOK) == 0 &&
2793 		    entry->end < end && entry->next->start > entry->end) {
2794 			end = entry->end;
2795 			rv = KERN_INVALID_ADDRESS;
2796 			goto done;
2797 		}
2798 		entry = entry->next;
2799 	}
2800 	rv = KERN_SUCCESS;
2801 done:
2802 	need_wakeup = FALSE;
2803 	if (first_entry == NULL) {
2804 		result = vm_map_lookup_entry(map, start, &first_entry);
2805 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2806 			first_entry = first_entry->next;
2807 		else
2808 			KASSERT(result, ("vm_map_wire: lookup failed"));
2809 	}
2810 	for (entry = first_entry; entry->start < end; entry = entry->next) {
2811 		/*
2812 		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2813 		 * space in the unwired region could have been mapped
2814 		 * while the map lock was dropped for faulting in the
2815 		 * pages or draining MAP_ENTRY_IN_TRANSITION.
2816 		 * Moreover, another thread could be simultaneously
2817 		 * wiring this new mapping entry.  Detect these cases
2818 		 * and skip any entries marked as in transition not by us.
2819 		 */
2820 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2821 		    entry->wiring_thread != curthread) {
2822 			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2823 			    ("vm_map_wire: !HOLESOK and new/changed entry"));
2824 			continue;
2825 		}
2826 
2827 		if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
2828 			goto next_entry_done;
2829 
2830 		if (rv == KERN_SUCCESS) {
2831 			if (user_wire)
2832 				entry->eflags |= MAP_ENTRY_USER_WIRED;
2833 		} else if (entry->wired_count == -1) {
2834 			/*
2835 			 * Wiring failed on this entry.  Thus, unwiring is
2836 			 * unnecessary.
2837 			 */
2838 			entry->wired_count = 0;
2839 		} else if (!user_wire ||
2840 		    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
2841 			/*
2842 			 * Undo the wiring.  Wiring succeeded on this entry
2843 			 * but failed on a later entry.
2844 			 */
2845 			if (entry->wired_count == 1)
2846 				vm_map_entry_unwire(map, entry);
2847 			else
2848 				entry->wired_count--;
2849 		}
2850 	next_entry_done:
2851 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2852 		    ("vm_map_wire: in-transition flag missing %p", entry));
2853 		KASSERT(entry->wiring_thread == curthread,
2854 		    ("vm_map_wire: alien wire %p", entry));
2855 		entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
2856 		    MAP_ENTRY_WIRE_SKIPPED);
2857 		entry->wiring_thread = NULL;
2858 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2859 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2860 			need_wakeup = TRUE;
2861 		}
2862 		vm_map_simplify_entry(map, entry);
2863 	}
2864 	vm_map_unlock(map);
2865 	if (need_wakeup)
2866 		vm_map_wakeup(map);
2867 	return (rv);
2868 }
2869 
2870 /*
2871  * vm_map_sync
2872  *
2873  * Push any dirty cached pages in the address range to their pager.
2874  * If syncio is TRUE, dirty pages are written synchronously.
2875  * If invalidate is TRUE, any cached pages are freed as well.
2876  *
2877  * If the size of the region from start to end is zero, we are
2878  * supposed to flush all modified pages within the region containing
2879  * start.  Unfortunately, a region can be split or coalesced with
2880  * neighboring regions, making it difficult to determine what the
2881  * original region was.  Therefore, we approximate this requirement by
2882  * flushing the current region containing start.
2883  *
2884  * Returns an error if any part of the specified range is not mapped.
2885  */
2886 int
2887 vm_map_sync(
2888 	vm_map_t map,
2889 	vm_offset_t start,
2890 	vm_offset_t end,
2891 	boolean_t syncio,
2892 	boolean_t invalidate)
2893 {
2894 	vm_map_entry_t current;
2895 	vm_map_entry_t entry;
2896 	vm_size_t size;
2897 	vm_object_t object;
2898 	vm_ooffset_t offset;
2899 	unsigned int last_timestamp;
2900 	boolean_t failed;
2901 
2902 	vm_map_lock_read(map);
2903 	VM_MAP_RANGE_CHECK(map, start, end);
2904 	if (!vm_map_lookup_entry(map, start, &entry)) {
2905 		vm_map_unlock_read(map);
2906 		return (KERN_INVALID_ADDRESS);
2907 	} else if (start == end) {
2908 		start = entry->start;
2909 		end = entry->end;
2910 	}
2911 	/*
2912 	 * Make a first pass to check for user-wired memory and holes.
2913 	 */
2914 	for (current = entry; current->start < end; current = current->next) {
2915 		if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
2916 			vm_map_unlock_read(map);
2917 			return (KERN_INVALID_ARGUMENT);
2918 		}
2919 		if (end > current->end &&
2920 		    current->end != current->next->start) {
2921 			vm_map_unlock_read(map);
2922 			return (KERN_INVALID_ADDRESS);
2923 		}
2924 	}
2925 
2926 	if (invalidate)
2927 		pmap_remove(map->pmap, start, end);
2928 	failed = FALSE;
2929 
2930 	/*
2931 	 * Make a second pass, cleaning/uncaching pages from the indicated
2932 	 * objects as we go.
2933 	 */
2934 	for (current = entry; current->start < end;) {
2935 		offset = current->offset + (start - current->start);
2936 		size = (end <= current->end ? end : current->end) - start;
2937 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2938 			vm_map_t smap;
2939 			vm_map_entry_t tentry;
2940 			vm_size_t tsize;
2941 
2942 			smap = current->object.sub_map;
2943 			vm_map_lock_read(smap);
2944 			(void) vm_map_lookup_entry(smap, offset, &tentry);
2945 			tsize = tentry->end - offset;
2946 			if (tsize < size)
2947 				size = tsize;
2948 			object = tentry->object.vm_object;
2949 			offset = tentry->offset + (offset - tentry->start);
2950 			vm_map_unlock_read(smap);
2951 		} else {
2952 			object = current->object.vm_object;
2953 		}
2954 		vm_object_reference(object);
2955 		last_timestamp = map->timestamp;
2956 		vm_map_unlock_read(map);
2957 		if (!vm_object_sync(object, offset, size, syncio, invalidate))
2958 			failed = TRUE;
2959 		start += size;
2960 		vm_object_deallocate(object);
2961 		vm_map_lock_read(map);
2962 		if (last_timestamp == map->timestamp ||
2963 		    !vm_map_lookup_entry(map, start, &current))
2964 			current = current->next;
2965 	}
2966 
2967 	vm_map_unlock_read(map);
2968 	return (failed ? KERN_FAILURE : KERN_SUCCESS);
2969 }
2970 
2971 /*
2972  *	vm_map_entry_unwire:	[ internal use only ]
2973  *
2974  *	Make the region specified by this entry pageable.
2975  *
2976  *	The map in question should be locked.
2977  *	[This is the reason for this routine's existence.]
2978  */
2979 static void
2980 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
2981 {
2982 
2983 	VM_MAP_ASSERT_LOCKED(map);
2984 	KASSERT(entry->wired_count > 0,
2985 	    ("vm_map_entry_unwire: entry %p isn't wired", entry));
2986 	pmap_unwire(map->pmap, entry->start, entry->end);
2987 	vm_object_unwire(entry->object.vm_object, entry->offset, entry->end -
2988 	    entry->start, PQ_ACTIVE);
2989 	entry->wired_count = 0;
2990 }
2991 
2992 static void
2993 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
2994 {
2995 
2996 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
2997 		vm_object_deallocate(entry->object.vm_object);
2998 	uma_zfree(system_map ? kmapentzone : mapentzone, entry);
2999 }
3000 
3001 /*
3002  *	vm_map_entry_delete:	[ internal use only ]
3003  *
3004  *	Deallocate the given entry from the target map.
3005  */
3006 static void
3007 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
3008 {
3009 	vm_object_t object;
3010 	vm_pindex_t offidxstart, offidxend, count, size1;
3011 	vm_size_t size;
3012 
3013 	vm_map_entry_unlink(map, entry);
3014 	object = entry->object.vm_object;
3015 
3016 	if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
3017 		MPASS(entry->cred == NULL);
3018 		MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0);
3019 		MPASS(object == NULL);
3020 		vm_map_entry_deallocate(entry, map->system_map);
3021 		return;
3022 	}
3023 
3024 	size = entry->end - entry->start;
3025 	map->size -= size;
3026 
3027 	if (entry->cred != NULL) {
3028 		swap_release_by_cred(size, entry->cred);
3029 		crfree(entry->cred);
3030 	}
3031 
3032 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
3033 	    (object != NULL)) {
3034 		KASSERT(entry->cred == NULL || object->cred == NULL ||
3035 		    (entry->eflags & MAP_ENTRY_NEEDS_COPY),
3036 		    ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
3037 		count = atop(size);
3038 		offidxstart = OFF_TO_IDX(entry->offset);
3039 		offidxend = offidxstart + count;
3040 		VM_OBJECT_WLOCK(object);
3041 		if (object->ref_count != 1 && ((object->flags & (OBJ_NOSPLIT |
3042 		    OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
3043 		    object == kernel_object)) {
3044 			vm_object_collapse(object);
3045 
3046 			/*
3047 			 * The option OBJPR_NOTMAPPED can be passed here
3048 			 * because vm_map_delete() already performed
3049 			 * pmap_remove() on the only mapping to this range
3050 			 * of pages.
3051 			 */
3052 			vm_object_page_remove(object, offidxstart, offidxend,
3053 			    OBJPR_NOTMAPPED);
3054 			if (object->type == OBJT_SWAP)
3055 				swap_pager_freespace(object, offidxstart,
3056 				    count);
3057 			if (offidxend >= object->size &&
3058 			    offidxstart < object->size) {
3059 				size1 = object->size;
3060 				object->size = offidxstart;
3061 				if (object->cred != NULL) {
3062 					size1 -= object->size;
3063 					KASSERT(object->charge >= ptoa(size1),
3064 					    ("object %p charge < 0", object));
3065 					swap_release_by_cred(ptoa(size1),
3066 					    object->cred);
3067 					object->charge -= ptoa(size1);
3068 				}
3069 			}
3070 		}
3071 		VM_OBJECT_WUNLOCK(object);
3072 	} else
3073 		entry->object.vm_object = NULL;
3074 	if (map->system_map)
3075 		vm_map_entry_deallocate(entry, TRUE);
3076 	else {
3077 		entry->next = curthread->td_map_def_user;
3078 		curthread->td_map_def_user = entry;
3079 	}
3080 }
3081 
3082 /*
3083  *	vm_map_delete:	[ internal use only ]
3084  *
3085  *	Deallocates the given address range from the target
3086  *	map.
3087  */
3088 int
3089 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
3090 {
3091 	vm_map_entry_t entry;
3092 	vm_map_entry_t first_entry;
3093 
3094 	VM_MAP_ASSERT_LOCKED(map);
3095 	if (start == end)
3096 		return (KERN_SUCCESS);
3097 
3098 	/*
3099 	 * Find the start of the region, and clip it
3100 	 */
3101 	if (!vm_map_lookup_entry(map, start, &first_entry))
3102 		entry = first_entry->next;
3103 	else {
3104 		entry = first_entry;
3105 		vm_map_clip_start(map, entry, start);
3106 	}
3107 
3108 	/*
3109 	 * Step through all entries in this region
3110 	 */
3111 	while (entry->start < end) {
3112 		vm_map_entry_t next;
3113 
3114 		/*
3115 		 * Wait for wiring or unwiring of an entry to complete.
3116 		 * Also wait for any system wirings to disappear on
3117 		 * user maps.
3118 		 */
3119 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
3120 		    (vm_map_pmap(map) != kernel_pmap &&
3121 		    vm_map_entry_system_wired_count(entry) != 0)) {
3122 			unsigned int last_timestamp;
3123 			vm_offset_t saved_start;
3124 			vm_map_entry_t tmp_entry;
3125 
3126 			saved_start = entry->start;
3127 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3128 			last_timestamp = map->timestamp;
3129 			(void) vm_map_unlock_and_wait(map, 0);
3130 			vm_map_lock(map);
3131 			if (last_timestamp + 1 != map->timestamp) {
3132 				/*
3133 				 * Look again for the entry because the map was
3134 				 * modified while it was unlocked.
3135 				 * Specifically, the entry may have been
3136 				 * clipped, merged, or deleted.
3137 				 */
3138 				if (!vm_map_lookup_entry(map, saved_start,
3139 							 &tmp_entry))
3140 					entry = tmp_entry->next;
3141 				else {
3142 					entry = tmp_entry;
3143 					vm_map_clip_start(map, entry,
3144 							  saved_start);
3145 				}
3146 			}
3147 			continue;
3148 		}
3149 		vm_map_clip_end(map, entry, end);
3150 
3151 		next = entry->next;
3152 
3153 		/*
3154 		 * Unwire before removing addresses from the pmap; otherwise,
3155 		 * unwiring will put the entries back in the pmap.
3156 		 */
3157 		if (entry->wired_count != 0) {
3158 			vm_map_entry_unwire(map, entry);
3159 		}
3160 
3161 		pmap_remove(map->pmap, entry->start, entry->end);
3162 
3163 		/*
3164 		 * Delete the entry only after removing all pmap
3165 		 * entries pointing to its pages.  (Otherwise, its
3166 		 * page frames may be reallocated, and any modify bits
3167 		 * will be set in the wrong object!)
3168 		 */
3169 		vm_map_entry_delete(map, entry);
3170 		entry = next;
3171 	}
3172 	return (KERN_SUCCESS);
3173 }
3174 
3175 /*
3176  *	vm_map_remove:
3177  *
3178  *	Remove the given address range from the target map.
3179  *	This is the exported form of vm_map_delete.
3180  */
3181 int
3182 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3183 {
3184 	int result;
3185 
3186 	vm_map_lock(map);
3187 	VM_MAP_RANGE_CHECK(map, start, end);
3188 	result = vm_map_delete(map, start, end);
3189 	vm_map_unlock(map);
3190 	return (result);
3191 }
3192 
3193 /*
3194  *	vm_map_check_protection:
3195  *
3196  *	Assert that the target map allows the specified privilege on the
3197  *	entire address region given.  The entire region must be allocated.
3198  *
3199  *	WARNING!  This code does not and should not check whether the
3200  *	contents of the region is accessible.  For example a smaller file
3201  *	might be mapped into a larger address space.
3202  *
3203  *	NOTE!  This code is also called by munmap().
3204  *
3205  *	The map must be locked.  A read lock is sufficient.
3206  */
3207 boolean_t
3208 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
3209 			vm_prot_t protection)
3210 {
3211 	vm_map_entry_t entry;
3212 	vm_map_entry_t tmp_entry;
3213 
3214 	if (!vm_map_lookup_entry(map, start, &tmp_entry))
3215 		return (FALSE);
3216 	entry = tmp_entry;
3217 
3218 	while (start < end) {
3219 		/*
3220 		 * No holes allowed!
3221 		 */
3222 		if (start < entry->start)
3223 			return (FALSE);
3224 		/*
3225 		 * Check protection associated with entry.
3226 		 */
3227 		if ((entry->protection & protection) != protection)
3228 			return (FALSE);
3229 		/* go to next entry */
3230 		start = entry->end;
3231 		entry = entry->next;
3232 	}
3233 	return (TRUE);
3234 }
3235 
3236 /*
3237  *	vm_map_copy_entry:
3238  *
3239  *	Copies the contents of the source entry to the destination
3240  *	entry.  The entries *must* be aligned properly.
3241  */
3242 static void
3243 vm_map_copy_entry(
3244 	vm_map_t src_map,
3245 	vm_map_t dst_map,
3246 	vm_map_entry_t src_entry,
3247 	vm_map_entry_t dst_entry,
3248 	vm_ooffset_t *fork_charge)
3249 {
3250 	vm_object_t src_object;
3251 	vm_map_entry_t fake_entry;
3252 	vm_offset_t size;
3253 	struct ucred *cred;
3254 	int charged;
3255 
3256 	VM_MAP_ASSERT_LOCKED(dst_map);
3257 
3258 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
3259 		return;
3260 
3261 	if (src_entry->wired_count == 0 ||
3262 	    (src_entry->protection & VM_PROT_WRITE) == 0) {
3263 		/*
3264 		 * If the source entry is marked needs_copy, it is already
3265 		 * write-protected.
3266 		 */
3267 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
3268 		    (src_entry->protection & VM_PROT_WRITE) != 0) {
3269 			pmap_protect(src_map->pmap,
3270 			    src_entry->start,
3271 			    src_entry->end,
3272 			    src_entry->protection & ~VM_PROT_WRITE);
3273 		}
3274 
3275 		/*
3276 		 * Make a copy of the object.
3277 		 */
3278 		size = src_entry->end - src_entry->start;
3279 		if ((src_object = src_entry->object.vm_object) != NULL) {
3280 			VM_OBJECT_WLOCK(src_object);
3281 			charged = ENTRY_CHARGED(src_entry);
3282 			if (src_object->handle == NULL &&
3283 			    (src_object->type == OBJT_DEFAULT ||
3284 			    src_object->type == OBJT_SWAP)) {
3285 				vm_object_collapse(src_object);
3286 				if ((src_object->flags & (OBJ_NOSPLIT |
3287 				    OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
3288 					vm_object_split(src_entry);
3289 					src_object =
3290 					    src_entry->object.vm_object;
3291 				}
3292 			}
3293 			vm_object_reference_locked(src_object);
3294 			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3295 			if (src_entry->cred != NULL &&
3296 			    !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3297 				KASSERT(src_object->cred == NULL,
3298 				    ("OVERCOMMIT: vm_map_copy_entry: cred %p",
3299 				     src_object));
3300 				src_object->cred = src_entry->cred;
3301 				src_object->charge = size;
3302 			}
3303 			VM_OBJECT_WUNLOCK(src_object);
3304 			dst_entry->object.vm_object = src_object;
3305 			if (charged) {
3306 				cred = curthread->td_ucred;
3307 				crhold(cred);
3308 				dst_entry->cred = cred;
3309 				*fork_charge += size;
3310 				if (!(src_entry->eflags &
3311 				      MAP_ENTRY_NEEDS_COPY)) {
3312 					crhold(cred);
3313 					src_entry->cred = cred;
3314 					*fork_charge += size;
3315 				}
3316 			}
3317 			src_entry->eflags |= MAP_ENTRY_COW |
3318 			    MAP_ENTRY_NEEDS_COPY;
3319 			dst_entry->eflags |= MAP_ENTRY_COW |
3320 			    MAP_ENTRY_NEEDS_COPY;
3321 			dst_entry->offset = src_entry->offset;
3322 			if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3323 				/*
3324 				 * MAP_ENTRY_VN_WRITECNT cannot
3325 				 * indicate write reference from
3326 				 * src_entry, since the entry is
3327 				 * marked as needs copy.  Allocate a
3328 				 * fake entry that is used to
3329 				 * decrement object->un_pager.vnp.writecount
3330 				 * at the appropriate time.  Attach
3331 				 * fake_entry to the deferred list.
3332 				 */
3333 				fake_entry = vm_map_entry_create(dst_map);
3334 				fake_entry->eflags = MAP_ENTRY_VN_WRITECNT;
3335 				src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT;
3336 				vm_object_reference(src_object);
3337 				fake_entry->object.vm_object = src_object;
3338 				fake_entry->start = src_entry->start;
3339 				fake_entry->end = src_entry->end;
3340 				fake_entry->next = curthread->td_map_def_user;
3341 				curthread->td_map_def_user = fake_entry;
3342 			}
3343 
3344 			pmap_copy(dst_map->pmap, src_map->pmap,
3345 			    dst_entry->start, dst_entry->end - dst_entry->start,
3346 			    src_entry->start);
3347 		} else {
3348 			dst_entry->object.vm_object = NULL;
3349 			dst_entry->offset = 0;
3350 			if (src_entry->cred != NULL) {
3351 				dst_entry->cred = curthread->td_ucred;
3352 				crhold(dst_entry->cred);
3353 				*fork_charge += size;
3354 			}
3355 		}
3356 	} else {
3357 		/*
3358 		 * We don't want to make writeable wired pages copy-on-write.
3359 		 * Immediately copy these pages into the new map by simulating
3360 		 * page faults.  The new pages are pageable.
3361 		 */
3362 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3363 		    fork_charge);
3364 	}
3365 }
3366 
3367 /*
3368  * vmspace_map_entry_forked:
3369  * Update the newly-forked vmspace each time a map entry is inherited
3370  * or copied.  The values for vm_dsize and vm_tsize are approximate
3371  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3372  */
3373 static void
3374 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3375     vm_map_entry_t entry)
3376 {
3377 	vm_size_t entrysize;
3378 	vm_offset_t newend;
3379 
3380 	if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
3381 		return;
3382 	entrysize = entry->end - entry->start;
3383 	vm2->vm_map.size += entrysize;
3384 	if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3385 		vm2->vm_ssize += btoc(entrysize);
3386 	} else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3387 	    entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3388 		newend = MIN(entry->end,
3389 		    (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3390 		vm2->vm_dsize += btoc(newend - entry->start);
3391 	} else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3392 	    entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3393 		newend = MIN(entry->end,
3394 		    (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3395 		vm2->vm_tsize += btoc(newend - entry->start);
3396 	}
3397 }
3398 
3399 /*
3400  * vmspace_fork:
3401  * Create a new process vmspace structure and vm_map
3402  * based on those of an existing process.  The new map
3403  * is based on the old map, according to the inheritance
3404  * values on the regions in that map.
3405  *
3406  * XXX It might be worth coalescing the entries added to the new vmspace.
3407  *
3408  * The source map must not be locked.
3409  */
3410 struct vmspace *
3411 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3412 {
3413 	struct vmspace *vm2;
3414 	vm_map_t new_map, old_map;
3415 	vm_map_entry_t new_entry, old_entry;
3416 	vm_object_t object;
3417 	int locked;
3418 	vm_inherit_t inh;
3419 
3420 	old_map = &vm1->vm_map;
3421 	/* Copy immutable fields of vm1 to vm2. */
3422 	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset, NULL);
3423 	if (vm2 == NULL)
3424 		return (NULL);
3425 	vm2->vm_taddr = vm1->vm_taddr;
3426 	vm2->vm_daddr = vm1->vm_daddr;
3427 	vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3428 	vm_map_lock(old_map);
3429 	if (old_map->busy)
3430 		vm_map_wait_busy(old_map);
3431 	new_map = &vm2->vm_map;
3432 	locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3433 	KASSERT(locked, ("vmspace_fork: lock failed"));
3434 
3435 	old_entry = old_map->header.next;
3436 
3437 	while (old_entry != &old_map->header) {
3438 		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3439 			panic("vm_map_fork: encountered a submap");
3440 
3441 		inh = old_entry->inheritance;
3442 		if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 &&
3443 		    inh != VM_INHERIT_NONE)
3444 			inh = VM_INHERIT_COPY;
3445 
3446 		switch (inh) {
3447 		case VM_INHERIT_NONE:
3448 			break;
3449 
3450 		case VM_INHERIT_SHARE:
3451 			/*
3452 			 * Clone the entry, creating the shared object if necessary.
3453 			 */
3454 			object = old_entry->object.vm_object;
3455 			if (object == NULL) {
3456 				object = vm_object_allocate(OBJT_DEFAULT,
3457 					atop(old_entry->end - old_entry->start));
3458 				old_entry->object.vm_object = object;
3459 				old_entry->offset = 0;
3460 				if (old_entry->cred != NULL) {
3461 					object->cred = old_entry->cred;
3462 					object->charge = old_entry->end -
3463 					    old_entry->start;
3464 					old_entry->cred = NULL;
3465 				}
3466 			}
3467 
3468 			/*
3469 			 * Add the reference before calling vm_object_shadow
3470 			 * to insure that a shadow object is created.
3471 			 */
3472 			vm_object_reference(object);
3473 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3474 				vm_object_shadow(&old_entry->object.vm_object,
3475 				    &old_entry->offset,
3476 				    old_entry->end - old_entry->start);
3477 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3478 				/* Transfer the second reference too. */
3479 				vm_object_reference(
3480 				    old_entry->object.vm_object);
3481 
3482 				/*
3483 				 * As in vm_map_simplify_entry(), the
3484 				 * vnode lock will not be acquired in
3485 				 * this call to vm_object_deallocate().
3486 				 */
3487 				vm_object_deallocate(object);
3488 				object = old_entry->object.vm_object;
3489 			}
3490 			VM_OBJECT_WLOCK(object);
3491 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
3492 			if (old_entry->cred != NULL) {
3493 				KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3494 				object->cred = old_entry->cred;
3495 				object->charge = old_entry->end - old_entry->start;
3496 				old_entry->cred = NULL;
3497 			}
3498 
3499 			/*
3500 			 * Assert the correct state of the vnode
3501 			 * v_writecount while the object is locked, to
3502 			 * not relock it later for the assertion
3503 			 * correctness.
3504 			 */
3505 			if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT &&
3506 			    object->type == OBJT_VNODE) {
3507 				KASSERT(((struct vnode *)object->handle)->
3508 				    v_writecount > 0,
3509 				    ("vmspace_fork: v_writecount %p", object));
3510 				KASSERT(object->un_pager.vnp.writemappings > 0,
3511 				    ("vmspace_fork: vnp.writecount %p",
3512 				    object));
3513 			}
3514 			VM_OBJECT_WUNLOCK(object);
3515 
3516 			/*
3517 			 * Clone the entry, referencing the shared object.
3518 			 */
3519 			new_entry = vm_map_entry_create(new_map);
3520 			*new_entry = *old_entry;
3521 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3522 			    MAP_ENTRY_IN_TRANSITION);
3523 			new_entry->wiring_thread = NULL;
3524 			new_entry->wired_count = 0;
3525 			if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3526 				vnode_pager_update_writecount(object,
3527 				    new_entry->start, new_entry->end);
3528 			}
3529 
3530 			/*
3531 			 * Insert the entry into the new map -- we know we're
3532 			 * inserting at the end of the new map.
3533 			 */
3534 			vm_map_entry_link(new_map, new_map->header.prev,
3535 			    new_entry);
3536 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3537 
3538 			/*
3539 			 * Update the physical map
3540 			 */
3541 			pmap_copy(new_map->pmap, old_map->pmap,
3542 			    new_entry->start,
3543 			    (old_entry->end - old_entry->start),
3544 			    old_entry->start);
3545 			break;
3546 
3547 		case VM_INHERIT_COPY:
3548 			/*
3549 			 * Clone the entry and link into the map.
3550 			 */
3551 			new_entry = vm_map_entry_create(new_map);
3552 			*new_entry = *old_entry;
3553 			/*
3554 			 * Copied entry is COW over the old object.
3555 			 */
3556 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3557 			    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT);
3558 			new_entry->wiring_thread = NULL;
3559 			new_entry->wired_count = 0;
3560 			new_entry->object.vm_object = NULL;
3561 			new_entry->cred = NULL;
3562 			vm_map_entry_link(new_map, new_map->header.prev,
3563 			    new_entry);
3564 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3565 			vm_map_copy_entry(old_map, new_map, old_entry,
3566 			    new_entry, fork_charge);
3567 			break;
3568 
3569 		case VM_INHERIT_ZERO:
3570 			/*
3571 			 * Create a new anonymous mapping entry modelled from
3572 			 * the old one.
3573 			 */
3574 			new_entry = vm_map_entry_create(new_map);
3575 			memset(new_entry, 0, sizeof(*new_entry));
3576 
3577 			new_entry->start = old_entry->start;
3578 			new_entry->end = old_entry->end;
3579 			new_entry->eflags = old_entry->eflags &
3580 			    ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION |
3581 			    MAP_ENTRY_VN_WRITECNT);
3582 			new_entry->protection = old_entry->protection;
3583 			new_entry->max_protection = old_entry->max_protection;
3584 			new_entry->inheritance = VM_INHERIT_ZERO;
3585 
3586 			vm_map_entry_link(new_map, new_map->header.prev,
3587 			    new_entry);
3588 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3589 
3590 			new_entry->cred = curthread->td_ucred;
3591 			crhold(new_entry->cred);
3592 			*fork_charge += (new_entry->end - new_entry->start);
3593 
3594 			break;
3595 		}
3596 		old_entry = old_entry->next;
3597 	}
3598 	/*
3599 	 * Use inlined vm_map_unlock() to postpone handling the deferred
3600 	 * map entries, which cannot be done until both old_map and
3601 	 * new_map locks are released.
3602 	 */
3603 	sx_xunlock(&old_map->lock);
3604 	sx_xunlock(&new_map->lock);
3605 	vm_map_process_deferred();
3606 
3607 	return (vm2);
3608 }
3609 
3610 /*
3611  * Create a process's stack for exec_new_vmspace().  This function is never
3612  * asked to wire the newly created stack.
3613  */
3614 int
3615 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3616     vm_prot_t prot, vm_prot_t max, int cow)
3617 {
3618 	vm_size_t growsize, init_ssize;
3619 	rlim_t vmemlim;
3620 	int rv;
3621 
3622 	MPASS((map->flags & MAP_WIREFUTURE) == 0);
3623 	growsize = sgrowsiz;
3624 	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
3625 	vm_map_lock(map);
3626 	vmemlim = lim_cur(curthread, RLIMIT_VMEM);
3627 	/* If we would blow our VMEM resource limit, no go */
3628 	if (map->size + init_ssize > vmemlim) {
3629 		rv = KERN_NO_SPACE;
3630 		goto out;
3631 	}
3632 	rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
3633 	    max, cow);
3634 out:
3635 	vm_map_unlock(map);
3636 	return (rv);
3637 }
3638 
3639 static int stack_guard_page = 1;
3640 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
3641     &stack_guard_page, 0,
3642     "Specifies the number of guard pages for a stack that grows");
3643 
3644 static int
3645 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
3646     vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
3647 {
3648 	vm_map_entry_t new_entry, prev_entry;
3649 	vm_offset_t bot, gap_bot, gap_top, top;
3650 	vm_size_t init_ssize, sgp;
3651 	int orient, rv;
3652 
3653 	/*
3654 	 * The stack orientation is piggybacked with the cow argument.
3655 	 * Extract it into orient and mask the cow argument so that we
3656 	 * don't pass it around further.
3657 	 */
3658 	orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP);
3659 	KASSERT(orient != 0, ("No stack grow direction"));
3660 	KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP),
3661 	    ("bi-dir stack"));
3662 
3663 	if (addrbos < vm_map_min(map) ||
3664 	    addrbos + max_ssize > vm_map_max(map) ||
3665 	    addrbos + max_ssize <= addrbos)
3666 		return (KERN_INVALID_ADDRESS);
3667 	sgp = (vm_size_t)stack_guard_page * PAGE_SIZE;
3668 	if (sgp >= max_ssize)
3669 		return (KERN_INVALID_ARGUMENT);
3670 
3671 	init_ssize = growsize;
3672 	if (max_ssize < init_ssize + sgp)
3673 		init_ssize = max_ssize - sgp;
3674 
3675 	/* If addr is already mapped, no go */
3676 	if (vm_map_lookup_entry(map, addrbos, &prev_entry))
3677 		return (KERN_NO_SPACE);
3678 
3679 	/*
3680 	 * If we can't accommodate max_ssize in the current mapping, no go.
3681 	 */
3682 	if (prev_entry->next->start < addrbos + max_ssize)
3683 		return (KERN_NO_SPACE);
3684 
3685 	/*
3686 	 * We initially map a stack of only init_ssize.  We will grow as
3687 	 * needed later.  Depending on the orientation of the stack (i.e.
3688 	 * the grow direction) we either map at the top of the range, the
3689 	 * bottom of the range or in the middle.
3690 	 *
3691 	 * Note: we would normally expect prot and max to be VM_PROT_ALL,
3692 	 * and cow to be 0.  Possibly we should eliminate these as input
3693 	 * parameters, and just pass these values here in the insert call.
3694 	 */
3695 	if (orient == MAP_STACK_GROWS_DOWN) {
3696 		bot = addrbos + max_ssize - init_ssize;
3697 		top = bot + init_ssize;
3698 		gap_bot = addrbos;
3699 		gap_top = bot;
3700 	} else /* if (orient == MAP_STACK_GROWS_UP) */ {
3701 		bot = addrbos;
3702 		top = bot + init_ssize;
3703 		gap_bot = top;
3704 		gap_top = addrbos + max_ssize;
3705 	}
3706 	rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
3707 	if (rv != KERN_SUCCESS)
3708 		return (rv);
3709 	new_entry = prev_entry->next;
3710 	KASSERT(new_entry->end == top || new_entry->start == bot,
3711 	    ("Bad entry start/end for new stack entry"));
3712 	KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
3713 	    (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
3714 	    ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
3715 	KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
3716 	    (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
3717 	    ("new entry lacks MAP_ENTRY_GROWS_UP"));
3718 	rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE,
3719 	    VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ?
3720 	    MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP));
3721 	if (rv != KERN_SUCCESS)
3722 		(void)vm_map_delete(map, bot, top);
3723 	return (rv);
3724 }
3725 
3726 /*
3727  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if we
3728  * successfully grow the stack.
3729  */
3730 static int
3731 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry)
3732 {
3733 	vm_map_entry_t stack_entry;
3734 	struct proc *p;
3735 	struct vmspace *vm;
3736 	struct ucred *cred;
3737 	vm_offset_t gap_end, gap_start, grow_start;
3738 	size_t grow_amount, guard, max_grow;
3739 	rlim_t lmemlim, stacklim, vmemlim;
3740 	int rv, rv1;
3741 	bool gap_deleted, grow_down, is_procstack;
3742 #ifdef notyet
3743 	uint64_t limit;
3744 #endif
3745 #ifdef RACCT
3746 	int error;
3747 #endif
3748 
3749 	p = curproc;
3750 	vm = p->p_vmspace;
3751 
3752 	/*
3753 	 * Disallow stack growth when the access is performed by a
3754 	 * debugger or AIO daemon.  The reason is that the wrong
3755 	 * resource limits are applied.
3756 	 */
3757 	if (map != &p->p_vmspace->vm_map || p->p_textvp == NULL)
3758 		return (KERN_FAILURE);
3759 
3760 	MPASS(!map->system_map);
3761 
3762 	guard = stack_guard_page * PAGE_SIZE;
3763 	lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
3764 	stacklim = lim_cur(curthread, RLIMIT_STACK);
3765 	vmemlim = lim_cur(curthread, RLIMIT_VMEM);
3766 retry:
3767 	/* If addr is not in a hole for a stack grow area, no need to grow. */
3768 	if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry))
3769 		return (KERN_FAILURE);
3770 	if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0)
3771 		return (KERN_SUCCESS);
3772 	if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) {
3773 		stack_entry = gap_entry->next;
3774 		if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 ||
3775 		    stack_entry->start != gap_entry->end)
3776 			return (KERN_FAILURE);
3777 		grow_amount = round_page(stack_entry->start - addr);
3778 		grow_down = true;
3779 	} else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) {
3780 		stack_entry = gap_entry->prev;
3781 		if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 ||
3782 		    stack_entry->end != gap_entry->start)
3783 			return (KERN_FAILURE);
3784 		grow_amount = round_page(addr + 1 - stack_entry->end);
3785 		grow_down = false;
3786 	} else {
3787 		return (KERN_FAILURE);
3788 	}
3789 	max_grow = gap_entry->end - gap_entry->start;
3790 	if (guard > max_grow)
3791 		return (KERN_NO_SPACE);
3792 	max_grow -= guard;
3793 	if (grow_amount > max_grow)
3794 		return (KERN_NO_SPACE);
3795 
3796 	/*
3797 	 * If this is the main process stack, see if we're over the stack
3798 	 * limit.
3799 	 */
3800 	is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr &&
3801 	    addr < (vm_offset_t)p->p_sysent->sv_usrstack;
3802 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim))
3803 		return (KERN_NO_SPACE);
3804 
3805 #ifdef RACCT
3806 	if (racct_enable) {
3807 		PROC_LOCK(p);
3808 		if (is_procstack && racct_set(p, RACCT_STACK,
3809 		    ctob(vm->vm_ssize) + grow_amount)) {
3810 			PROC_UNLOCK(p);
3811 			return (KERN_NO_SPACE);
3812 		}
3813 		PROC_UNLOCK(p);
3814 	}
3815 #endif
3816 
3817 	grow_amount = roundup(grow_amount, sgrowsiz);
3818 	if (grow_amount > max_grow)
3819 		grow_amount = max_grow;
3820 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
3821 		grow_amount = trunc_page((vm_size_t)stacklim) -
3822 		    ctob(vm->vm_ssize);
3823 	}
3824 
3825 #ifdef notyet
3826 	PROC_LOCK(p);
3827 	limit = racct_get_available(p, RACCT_STACK);
3828 	PROC_UNLOCK(p);
3829 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
3830 		grow_amount = limit - ctob(vm->vm_ssize);
3831 #endif
3832 
3833 	if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) {
3834 		if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
3835 			rv = KERN_NO_SPACE;
3836 			goto out;
3837 		}
3838 #ifdef RACCT
3839 		if (racct_enable) {
3840 			PROC_LOCK(p);
3841 			if (racct_set(p, RACCT_MEMLOCK,
3842 			    ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
3843 				PROC_UNLOCK(p);
3844 				rv = KERN_NO_SPACE;
3845 				goto out;
3846 			}
3847 			PROC_UNLOCK(p);
3848 		}
3849 #endif
3850 	}
3851 
3852 	/* If we would blow our VMEM resource limit, no go */
3853 	if (map->size + grow_amount > vmemlim) {
3854 		rv = KERN_NO_SPACE;
3855 		goto out;
3856 	}
3857 #ifdef RACCT
3858 	if (racct_enable) {
3859 		PROC_LOCK(p);
3860 		if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
3861 			PROC_UNLOCK(p);
3862 			rv = KERN_NO_SPACE;
3863 			goto out;
3864 		}
3865 		PROC_UNLOCK(p);
3866 	}
3867 #endif
3868 
3869 	if (vm_map_lock_upgrade(map)) {
3870 		gap_entry = NULL;
3871 		vm_map_lock_read(map);
3872 		goto retry;
3873 	}
3874 
3875 	if (grow_down) {
3876 		grow_start = gap_entry->end - grow_amount;
3877 		if (gap_entry->start + grow_amount == gap_entry->end) {
3878 			gap_start = gap_entry->start;
3879 			gap_end = gap_entry->end;
3880 			vm_map_entry_delete(map, gap_entry);
3881 			gap_deleted = true;
3882 		} else {
3883 			MPASS(gap_entry->start < gap_entry->end - grow_amount);
3884 			gap_entry->end -= grow_amount;
3885 			vm_map_entry_resize_free(map, gap_entry);
3886 			gap_deleted = false;
3887 		}
3888 		rv = vm_map_insert(map, NULL, 0, grow_start,
3889 		    grow_start + grow_amount,
3890 		    stack_entry->protection, stack_entry->max_protection,
3891 		    MAP_STACK_GROWS_DOWN);
3892 		if (rv != KERN_SUCCESS) {
3893 			if (gap_deleted) {
3894 				rv1 = vm_map_insert(map, NULL, 0, gap_start,
3895 				    gap_end, VM_PROT_NONE, VM_PROT_NONE,
3896 				    MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN);
3897 				MPASS(rv1 == KERN_SUCCESS);
3898 			} else {
3899 				gap_entry->end += grow_amount;
3900 				vm_map_entry_resize_free(map, gap_entry);
3901 			}
3902 		}
3903 	} else {
3904 		grow_start = stack_entry->end;
3905 		cred = stack_entry->cred;
3906 		if (cred == NULL && stack_entry->object.vm_object != NULL)
3907 			cred = stack_entry->object.vm_object->cred;
3908 		if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
3909 			rv = KERN_NO_SPACE;
3910 		/* Grow the underlying object if applicable. */
3911 		else if (stack_entry->object.vm_object == NULL ||
3912 		    vm_object_coalesce(stack_entry->object.vm_object,
3913 		    stack_entry->offset,
3914 		    (vm_size_t)(stack_entry->end - stack_entry->start),
3915 		    (vm_size_t)grow_amount, cred != NULL)) {
3916 			if (gap_entry->start + grow_amount == gap_entry->end)
3917 				vm_map_entry_delete(map, gap_entry);
3918 			else
3919 				gap_entry->start += grow_amount;
3920 			stack_entry->end += grow_amount;
3921 			map->size += grow_amount;
3922 			vm_map_entry_resize_free(map, stack_entry);
3923 			rv = KERN_SUCCESS;
3924 		} else
3925 			rv = KERN_FAILURE;
3926 	}
3927 	if (rv == KERN_SUCCESS && is_procstack)
3928 		vm->vm_ssize += btoc(grow_amount);
3929 
3930 	/*
3931 	 * Heed the MAP_WIREFUTURE flag if it was set for this process.
3932 	 */
3933 	if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) {
3934 		vm_map_unlock(map);
3935 		vm_map_wire(map, grow_start, grow_start + grow_amount,
3936 		    VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
3937 		vm_map_lock_read(map);
3938 	} else
3939 		vm_map_lock_downgrade(map);
3940 
3941 out:
3942 #ifdef RACCT
3943 	if (racct_enable && rv != KERN_SUCCESS) {
3944 		PROC_LOCK(p);
3945 		error = racct_set(p, RACCT_VMEM, map->size);
3946 		KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
3947 		if (!old_mlock) {
3948 			error = racct_set(p, RACCT_MEMLOCK,
3949 			    ptoa(pmap_wired_count(map->pmap)));
3950 			KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
3951 		}
3952 	    	error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
3953 		KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
3954 		PROC_UNLOCK(p);
3955 	}
3956 #endif
3957 
3958 	return (rv);
3959 }
3960 
3961 /*
3962  * Unshare the specified VM space for exec.  If other processes are
3963  * mapped to it, then create a new one.  The new vmspace is null.
3964  */
3965 int
3966 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
3967 {
3968 	struct vmspace *oldvmspace = p->p_vmspace;
3969 	struct vmspace *newvmspace;
3970 
3971 	KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
3972 	    ("vmspace_exec recursed"));
3973 	newvmspace = vmspace_alloc(minuser, maxuser, NULL);
3974 	if (newvmspace == NULL)
3975 		return (ENOMEM);
3976 	newvmspace->vm_swrss = oldvmspace->vm_swrss;
3977 	/*
3978 	 * This code is written like this for prototype purposes.  The
3979 	 * goal is to avoid running down the vmspace here, but let the
3980 	 * other process's that are still using the vmspace to finally
3981 	 * run it down.  Even though there is little or no chance of blocking
3982 	 * here, it is a good idea to keep this form for future mods.
3983 	 */
3984 	PROC_VMSPACE_LOCK(p);
3985 	p->p_vmspace = newvmspace;
3986 	PROC_VMSPACE_UNLOCK(p);
3987 	if (p == curthread->td_proc)
3988 		pmap_activate(curthread);
3989 	curthread->td_pflags |= TDP_EXECVMSPC;
3990 	return (0);
3991 }
3992 
3993 /*
3994  * Unshare the specified VM space for forcing COW.  This
3995  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
3996  */
3997 int
3998 vmspace_unshare(struct proc *p)
3999 {
4000 	struct vmspace *oldvmspace = p->p_vmspace;
4001 	struct vmspace *newvmspace;
4002 	vm_ooffset_t fork_charge;
4003 
4004 	if (oldvmspace->vm_refcnt == 1)
4005 		return (0);
4006 	fork_charge = 0;
4007 	newvmspace = vmspace_fork(oldvmspace, &fork_charge);
4008 	if (newvmspace == NULL)
4009 		return (ENOMEM);
4010 	if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
4011 		vmspace_free(newvmspace);
4012 		return (ENOMEM);
4013 	}
4014 	PROC_VMSPACE_LOCK(p);
4015 	p->p_vmspace = newvmspace;
4016 	PROC_VMSPACE_UNLOCK(p);
4017 	if (p == curthread->td_proc)
4018 		pmap_activate(curthread);
4019 	vmspace_free(oldvmspace);
4020 	return (0);
4021 }
4022 
4023 /*
4024  *	vm_map_lookup:
4025  *
4026  *	Finds the VM object, offset, and
4027  *	protection for a given virtual address in the
4028  *	specified map, assuming a page fault of the
4029  *	type specified.
4030  *
4031  *	Leaves the map in question locked for read; return
4032  *	values are guaranteed until a vm_map_lookup_done
4033  *	call is performed.  Note that the map argument
4034  *	is in/out; the returned map must be used in
4035  *	the call to vm_map_lookup_done.
4036  *
4037  *	A handle (out_entry) is returned for use in
4038  *	vm_map_lookup_done, to make that fast.
4039  *
4040  *	If a lookup is requested with "write protection"
4041  *	specified, the map may be changed to perform virtual
4042  *	copying operations, although the data referenced will
4043  *	remain the same.
4044  */
4045 int
4046 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
4047 	      vm_offset_t vaddr,
4048 	      vm_prot_t fault_typea,
4049 	      vm_map_entry_t *out_entry,	/* OUT */
4050 	      vm_object_t *object,		/* OUT */
4051 	      vm_pindex_t *pindex,		/* OUT */
4052 	      vm_prot_t *out_prot,		/* OUT */
4053 	      boolean_t *wired)			/* OUT */
4054 {
4055 	vm_map_entry_t entry;
4056 	vm_map_t map = *var_map;
4057 	vm_prot_t prot;
4058 	vm_prot_t fault_type = fault_typea;
4059 	vm_object_t eobject;
4060 	vm_size_t size;
4061 	struct ucred *cred;
4062 
4063 RetryLookup:
4064 
4065 	vm_map_lock_read(map);
4066 
4067 RetryLookupLocked:
4068 	/*
4069 	 * Lookup the faulting address.
4070 	 */
4071 	if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
4072 		vm_map_unlock_read(map);
4073 		return (KERN_INVALID_ADDRESS);
4074 	}
4075 
4076 	entry = *out_entry;
4077 
4078 	/*
4079 	 * Handle submaps.
4080 	 */
4081 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4082 		vm_map_t old_map = map;
4083 
4084 		*var_map = map = entry->object.sub_map;
4085 		vm_map_unlock_read(old_map);
4086 		goto RetryLookup;
4087 	}
4088 
4089 	/*
4090 	 * Check whether this task is allowed to have this page.
4091 	 */
4092 	prot = entry->protection;
4093 	if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) {
4094 		fault_typea &= ~VM_PROT_FAULT_LOOKUP;
4095 		if (prot == VM_PROT_NONE && map != kernel_map &&
4096 		    (entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4097 		    (entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
4098 		    MAP_ENTRY_STACK_GAP_UP)) != 0 &&
4099 		    vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS)
4100 			goto RetryLookupLocked;
4101 	}
4102 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4103 	if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
4104 		vm_map_unlock_read(map);
4105 		return (KERN_PROTECTION_FAILURE);
4106 	}
4107 	KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
4108 	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
4109 	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
4110 	    ("entry %p flags %x", entry, entry->eflags));
4111 	if ((fault_typea & VM_PROT_COPY) != 0 &&
4112 	    (entry->max_protection & VM_PROT_WRITE) == 0 &&
4113 	    (entry->eflags & MAP_ENTRY_COW) == 0) {
4114 		vm_map_unlock_read(map);
4115 		return (KERN_PROTECTION_FAILURE);
4116 	}
4117 
4118 	/*
4119 	 * If this page is not pageable, we have to get it for all possible
4120 	 * accesses.
4121 	 */
4122 	*wired = (entry->wired_count != 0);
4123 	if (*wired)
4124 		fault_type = entry->protection;
4125 	size = entry->end - entry->start;
4126 	/*
4127 	 * If the entry was copy-on-write, we either ...
4128 	 */
4129 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4130 		/*
4131 		 * If we want to write the page, we may as well handle that
4132 		 * now since we've got the map locked.
4133 		 *
4134 		 * If we don't need to write the page, we just demote the
4135 		 * permissions allowed.
4136 		 */
4137 		if ((fault_type & VM_PROT_WRITE) != 0 ||
4138 		    (fault_typea & VM_PROT_COPY) != 0) {
4139 			/*
4140 			 * Make a new object, and place it in the object
4141 			 * chain.  Note that no new references have appeared
4142 			 * -- one just moved from the map to the new
4143 			 * object.
4144 			 */
4145 			if (vm_map_lock_upgrade(map))
4146 				goto RetryLookup;
4147 
4148 			if (entry->cred == NULL) {
4149 				/*
4150 				 * The debugger owner is charged for
4151 				 * the memory.
4152 				 */
4153 				cred = curthread->td_ucred;
4154 				crhold(cred);
4155 				if (!swap_reserve_by_cred(size, cred)) {
4156 					crfree(cred);
4157 					vm_map_unlock(map);
4158 					return (KERN_RESOURCE_SHORTAGE);
4159 				}
4160 				entry->cred = cred;
4161 			}
4162 			vm_object_shadow(&entry->object.vm_object,
4163 			    &entry->offset, size);
4164 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4165 			eobject = entry->object.vm_object;
4166 			if (eobject->cred != NULL) {
4167 				/*
4168 				 * The object was not shadowed.
4169 				 */
4170 				swap_release_by_cred(size, entry->cred);
4171 				crfree(entry->cred);
4172 				entry->cred = NULL;
4173 			} else if (entry->cred != NULL) {
4174 				VM_OBJECT_WLOCK(eobject);
4175 				eobject->cred = entry->cred;
4176 				eobject->charge = size;
4177 				VM_OBJECT_WUNLOCK(eobject);
4178 				entry->cred = NULL;
4179 			}
4180 
4181 			vm_map_lock_downgrade(map);
4182 		} else {
4183 			/*
4184 			 * We're attempting to read a copy-on-write page --
4185 			 * don't allow writes.
4186 			 */
4187 			prot &= ~VM_PROT_WRITE;
4188 		}
4189 	}
4190 
4191 	/*
4192 	 * Create an object if necessary.
4193 	 */
4194 	if (entry->object.vm_object == NULL &&
4195 	    !map->system_map) {
4196 		if (vm_map_lock_upgrade(map))
4197 			goto RetryLookup;
4198 		entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
4199 		    atop(size));
4200 		entry->offset = 0;
4201 		if (entry->cred != NULL) {
4202 			VM_OBJECT_WLOCK(entry->object.vm_object);
4203 			entry->object.vm_object->cred = entry->cred;
4204 			entry->object.vm_object->charge = size;
4205 			VM_OBJECT_WUNLOCK(entry->object.vm_object);
4206 			entry->cred = NULL;
4207 		}
4208 		vm_map_lock_downgrade(map);
4209 	}
4210 
4211 	/*
4212 	 * Return the object/offset from this entry.  If the entry was
4213 	 * copy-on-write or empty, it has been fixed up.
4214 	 */
4215 	*pindex = UOFF_TO_IDX((vaddr - entry->start) + entry->offset);
4216 	*object = entry->object.vm_object;
4217 
4218 	*out_prot = prot;
4219 	return (KERN_SUCCESS);
4220 }
4221 
4222 /*
4223  *	vm_map_lookup_locked:
4224  *
4225  *	Lookup the faulting address.  A version of vm_map_lookup that returns
4226  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
4227  */
4228 int
4229 vm_map_lookup_locked(vm_map_t *var_map,		/* IN/OUT */
4230 		     vm_offset_t vaddr,
4231 		     vm_prot_t fault_typea,
4232 		     vm_map_entry_t *out_entry,	/* OUT */
4233 		     vm_object_t *object,	/* OUT */
4234 		     vm_pindex_t *pindex,	/* OUT */
4235 		     vm_prot_t *out_prot,	/* OUT */
4236 		     boolean_t *wired)		/* OUT */
4237 {
4238 	vm_map_entry_t entry;
4239 	vm_map_t map = *var_map;
4240 	vm_prot_t prot;
4241 	vm_prot_t fault_type = fault_typea;
4242 
4243 	/*
4244 	 * Lookup the faulting address.
4245 	 */
4246 	if (!vm_map_lookup_entry(map, vaddr, out_entry))
4247 		return (KERN_INVALID_ADDRESS);
4248 
4249 	entry = *out_entry;
4250 
4251 	/*
4252 	 * Fail if the entry refers to a submap.
4253 	 */
4254 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4255 		return (KERN_FAILURE);
4256 
4257 	/*
4258 	 * Check whether this task is allowed to have this page.
4259 	 */
4260 	prot = entry->protection;
4261 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4262 	if ((fault_type & prot) != fault_type)
4263 		return (KERN_PROTECTION_FAILURE);
4264 
4265 	/*
4266 	 * If this page is not pageable, we have to get it for all possible
4267 	 * accesses.
4268 	 */
4269 	*wired = (entry->wired_count != 0);
4270 	if (*wired)
4271 		fault_type = entry->protection;
4272 
4273 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4274 		/*
4275 		 * Fail if the entry was copy-on-write for a write fault.
4276 		 */
4277 		if (fault_type & VM_PROT_WRITE)
4278 			return (KERN_FAILURE);
4279 		/*
4280 		 * We're attempting to read a copy-on-write page --
4281 		 * don't allow writes.
4282 		 */
4283 		prot &= ~VM_PROT_WRITE;
4284 	}
4285 
4286 	/*
4287 	 * Fail if an object should be created.
4288 	 */
4289 	if (entry->object.vm_object == NULL && !map->system_map)
4290 		return (KERN_FAILURE);
4291 
4292 	/*
4293 	 * Return the object/offset from this entry.  If the entry was
4294 	 * copy-on-write or empty, it has been fixed up.
4295 	 */
4296 	*pindex = UOFF_TO_IDX((vaddr - entry->start) + entry->offset);
4297 	*object = entry->object.vm_object;
4298 
4299 	*out_prot = prot;
4300 	return (KERN_SUCCESS);
4301 }
4302 
4303 /*
4304  *	vm_map_lookup_done:
4305  *
4306  *	Releases locks acquired by a vm_map_lookup
4307  *	(according to the handle returned by that lookup).
4308  */
4309 void
4310 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
4311 {
4312 	/*
4313 	 * Unlock the main-level map
4314 	 */
4315 	vm_map_unlock_read(map);
4316 }
4317 
4318 #include "opt_ddb.h"
4319 #ifdef DDB
4320 #include <sys/kernel.h>
4321 
4322 #include <ddb/ddb.h>
4323 
4324 static void
4325 vm_map_print(vm_map_t map)
4326 {
4327 	vm_map_entry_t entry;
4328 
4329 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4330 	    (void *)map,
4331 	    (void *)map->pmap, map->nentries, map->timestamp);
4332 
4333 	db_indent += 2;
4334 	for (entry = map->header.next; entry != &map->header;
4335 	    entry = entry->next) {
4336 		db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n",
4337 		    (void *)entry, (void *)entry->start, (void *)entry->end,
4338 		    entry->eflags);
4339 		{
4340 			static char *inheritance_name[4] =
4341 			{"share", "copy", "none", "donate_copy"};
4342 
4343 			db_iprintf(" prot=%x/%x/%s",
4344 			    entry->protection,
4345 			    entry->max_protection,
4346 			    inheritance_name[(int)(unsigned char)entry->inheritance]);
4347 			if (entry->wired_count != 0)
4348 				db_printf(", wired");
4349 		}
4350 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4351 			db_printf(", share=%p, offset=0x%jx\n",
4352 			    (void *)entry->object.sub_map,
4353 			    (uintmax_t)entry->offset);
4354 			if ((entry->prev == &map->header) ||
4355 			    (entry->prev->object.sub_map !=
4356 				entry->object.sub_map)) {
4357 				db_indent += 2;
4358 				vm_map_print((vm_map_t)entry->object.sub_map);
4359 				db_indent -= 2;
4360 			}
4361 		} else {
4362 			if (entry->cred != NULL)
4363 				db_printf(", ruid %d", entry->cred->cr_ruid);
4364 			db_printf(", object=%p, offset=0x%jx",
4365 			    (void *)entry->object.vm_object,
4366 			    (uintmax_t)entry->offset);
4367 			if (entry->object.vm_object && entry->object.vm_object->cred)
4368 				db_printf(", obj ruid %d charge %jx",
4369 				    entry->object.vm_object->cred->cr_ruid,
4370 				    (uintmax_t)entry->object.vm_object->charge);
4371 			if (entry->eflags & MAP_ENTRY_COW)
4372 				db_printf(", copy (%s)",
4373 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4374 			db_printf("\n");
4375 
4376 			if ((entry->prev == &map->header) ||
4377 			    (entry->prev->object.vm_object !=
4378 				entry->object.vm_object)) {
4379 				db_indent += 2;
4380 				vm_object_print((db_expr_t)(intptr_t)
4381 						entry->object.vm_object,
4382 						0, 0, (char *)0);
4383 				db_indent -= 2;
4384 			}
4385 		}
4386 	}
4387 	db_indent -= 2;
4388 }
4389 
4390 DB_SHOW_COMMAND(map, map)
4391 {
4392 
4393 	if (!have_addr) {
4394 		db_printf("usage: show map <addr>\n");
4395 		return;
4396 	}
4397 	vm_map_print((vm_map_t)addr);
4398 }
4399 
4400 DB_SHOW_COMMAND(procvm, procvm)
4401 {
4402 	struct proc *p;
4403 
4404 	if (have_addr) {
4405 		p = db_lookup_proc(addr);
4406 	} else {
4407 		p = curproc;
4408 	}
4409 
4410 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4411 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4412 	    (void *)vmspace_pmap(p->p_vmspace));
4413 
4414 	vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
4415 }
4416 
4417 #endif /* DDB */
4418