1 /*- 2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * The Mach Operating System project at Carnegie-Mellon University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 35 * 36 * 37 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 38 * All rights reserved. 39 * 40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 41 * 42 * Permission to use, copy, modify and distribute this software and 43 * its documentation is hereby granted, provided that both the copyright 44 * notice and this permission notice appear in all copies of the 45 * software, derivative works or modified versions, and any portions 46 * thereof, and that both notices appear in supporting documentation. 47 * 48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 51 * 52 * Carnegie Mellon requests users of this software to return to 53 * 54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 55 * School of Computer Science 56 * Carnegie Mellon University 57 * Pittsburgh PA 15213-3890 58 * 59 * any improvements or extensions that they make and grant Carnegie the 60 * rights to redistribute these changes. 61 */ 62 63 /* 64 * Virtual memory mapping module. 65 */ 66 67 #include <sys/cdefs.h> 68 __FBSDID("$FreeBSD$"); 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/kernel.h> 73 #include <sys/ktr.h> 74 #include <sys/lock.h> 75 #include <sys/mutex.h> 76 #include <sys/proc.h> 77 #include <sys/vmmeter.h> 78 #include <sys/mman.h> 79 #include <sys/vnode.h> 80 #include <sys/racct.h> 81 #include <sys/resourcevar.h> 82 #include <sys/rwlock.h> 83 #include <sys/file.h> 84 #include <sys/sysctl.h> 85 #include <sys/sysent.h> 86 #include <sys/shm.h> 87 88 #include <vm/vm.h> 89 #include <vm/vm_param.h> 90 #include <vm/pmap.h> 91 #include <vm/vm_map.h> 92 #include <vm/vm_page.h> 93 #include <vm/vm_pageout.h> 94 #include <vm/vm_object.h> 95 #include <vm/vm_pager.h> 96 #include <vm/vm_kern.h> 97 #include <vm/vm_extern.h> 98 #include <vm/vnode_pager.h> 99 #include <vm/swap_pager.h> 100 #include <vm/uma.h> 101 102 /* 103 * Virtual memory maps provide for the mapping, protection, 104 * and sharing of virtual memory objects. In addition, 105 * this module provides for an efficient virtual copy of 106 * memory from one map to another. 107 * 108 * Synchronization is required prior to most operations. 109 * 110 * Maps consist of an ordered doubly-linked list of simple 111 * entries; a self-adjusting binary search tree of these 112 * entries is used to speed up lookups. 113 * 114 * Since portions of maps are specified by start/end addresses, 115 * which may not align with existing map entries, all 116 * routines merely "clip" entries to these start/end values. 117 * [That is, an entry is split into two, bordering at a 118 * start or end value.] Note that these clippings may not 119 * always be necessary (as the two resulting entries are then 120 * not changed); however, the clipping is done for convenience. 121 * 122 * As mentioned above, virtual copy operations are performed 123 * by copying VM object references from one map to 124 * another, and then marking both regions as copy-on-write. 125 */ 126 127 static struct mtx map_sleep_mtx; 128 static uma_zone_t mapentzone; 129 static uma_zone_t kmapentzone; 130 static uma_zone_t mapzone; 131 static uma_zone_t vmspace_zone; 132 static int vmspace_zinit(void *mem, int size, int flags); 133 static int vm_map_zinit(void *mem, int ize, int flags); 134 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, 135 vm_offset_t max); 136 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map); 137 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry); 138 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry); 139 static int vm_map_growstack(vm_map_t map, vm_offset_t addr, 140 vm_map_entry_t gap_entry); 141 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 142 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags); 143 #ifdef INVARIANTS 144 static void vm_map_zdtor(void *mem, int size, void *arg); 145 static void vmspace_zdtor(void *mem, int size, void *arg); 146 #endif 147 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, 148 vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max, 149 int cow); 150 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry, 151 vm_offset_t failed_addr); 152 153 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \ 154 ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \ 155 !((e)->eflags & MAP_ENTRY_NEEDS_COPY))) 156 157 /* 158 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type 159 * stable. 160 */ 161 #define PROC_VMSPACE_LOCK(p) do { } while (0) 162 #define PROC_VMSPACE_UNLOCK(p) do { } while (0) 163 164 /* 165 * VM_MAP_RANGE_CHECK: [ internal use only ] 166 * 167 * Asserts that the starting and ending region 168 * addresses fall within the valid range of the map. 169 */ 170 #define VM_MAP_RANGE_CHECK(map, start, end) \ 171 { \ 172 if (start < vm_map_min(map)) \ 173 start = vm_map_min(map); \ 174 if (end > vm_map_max(map)) \ 175 end = vm_map_max(map); \ 176 if (start > end) \ 177 start = end; \ 178 } 179 180 /* 181 * vm_map_startup: 182 * 183 * Initialize the vm_map module. Must be called before 184 * any other vm_map routines. 185 * 186 * Map and entry structures are allocated from the general 187 * purpose memory pool with some exceptions: 188 * 189 * - The kernel map and kmem submap are allocated statically. 190 * - Kernel map entries are allocated out of a static pool. 191 * 192 * These restrictions are necessary since malloc() uses the 193 * maps and requires map entries. 194 */ 195 196 void 197 vm_map_startup(void) 198 { 199 mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF); 200 mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL, 201 #ifdef INVARIANTS 202 vm_map_zdtor, 203 #else 204 NULL, 205 #endif 206 vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 207 uma_prealloc(mapzone, MAX_KMAP); 208 kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry), 209 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 210 UMA_ZONE_MTXCLASS | UMA_ZONE_VM); 211 mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry), 212 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 213 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL, 214 #ifdef INVARIANTS 215 vmspace_zdtor, 216 #else 217 NULL, 218 #endif 219 vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 220 } 221 222 static int 223 vmspace_zinit(void *mem, int size, int flags) 224 { 225 struct vmspace *vm; 226 227 vm = (struct vmspace *)mem; 228 229 vm->vm_map.pmap = NULL; 230 (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags); 231 PMAP_LOCK_INIT(vmspace_pmap(vm)); 232 return (0); 233 } 234 235 static int 236 vm_map_zinit(void *mem, int size, int flags) 237 { 238 vm_map_t map; 239 240 map = (vm_map_t)mem; 241 memset(map, 0, sizeof(*map)); 242 mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK); 243 sx_init(&map->lock, "vm map (user)"); 244 return (0); 245 } 246 247 #ifdef INVARIANTS 248 static void 249 vmspace_zdtor(void *mem, int size, void *arg) 250 { 251 struct vmspace *vm; 252 253 vm = (struct vmspace *)mem; 254 255 vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg); 256 } 257 static void 258 vm_map_zdtor(void *mem, int size, void *arg) 259 { 260 vm_map_t map; 261 262 map = (vm_map_t)mem; 263 KASSERT(map->nentries == 0, 264 ("map %p nentries == %d on free.", 265 map, map->nentries)); 266 KASSERT(map->size == 0, 267 ("map %p size == %lu on free.", 268 map, (unsigned long)map->size)); 269 } 270 #endif /* INVARIANTS */ 271 272 /* 273 * Allocate a vmspace structure, including a vm_map and pmap, 274 * and initialize those structures. The refcnt is set to 1. 275 * 276 * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit(). 277 */ 278 struct vmspace * 279 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit) 280 { 281 struct vmspace *vm; 282 283 vm = uma_zalloc(vmspace_zone, M_WAITOK); 284 KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL")); 285 if (!pinit(vmspace_pmap(vm))) { 286 uma_zfree(vmspace_zone, vm); 287 return (NULL); 288 } 289 CTR1(KTR_VM, "vmspace_alloc: %p", vm); 290 _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max); 291 vm->vm_refcnt = 1; 292 vm->vm_shm = NULL; 293 vm->vm_swrss = 0; 294 vm->vm_tsize = 0; 295 vm->vm_dsize = 0; 296 vm->vm_ssize = 0; 297 vm->vm_taddr = 0; 298 vm->vm_daddr = 0; 299 vm->vm_maxsaddr = 0; 300 return (vm); 301 } 302 303 #ifdef RACCT 304 static void 305 vmspace_container_reset(struct proc *p) 306 { 307 308 PROC_LOCK(p); 309 racct_set(p, RACCT_DATA, 0); 310 racct_set(p, RACCT_STACK, 0); 311 racct_set(p, RACCT_RSS, 0); 312 racct_set(p, RACCT_MEMLOCK, 0); 313 racct_set(p, RACCT_VMEM, 0); 314 PROC_UNLOCK(p); 315 } 316 #endif 317 318 static inline void 319 vmspace_dofree(struct vmspace *vm) 320 { 321 322 CTR1(KTR_VM, "vmspace_free: %p", vm); 323 324 /* 325 * Make sure any SysV shm is freed, it might not have been in 326 * exit1(). 327 */ 328 shmexit(vm); 329 330 /* 331 * Lock the map, to wait out all other references to it. 332 * Delete all of the mappings and pages they hold, then call 333 * the pmap module to reclaim anything left. 334 */ 335 (void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map), 336 vm_map_max(&vm->vm_map)); 337 338 pmap_release(vmspace_pmap(vm)); 339 vm->vm_map.pmap = NULL; 340 uma_zfree(vmspace_zone, vm); 341 } 342 343 void 344 vmspace_free(struct vmspace *vm) 345 { 346 347 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 348 "vmspace_free() called"); 349 350 if (vm->vm_refcnt == 0) 351 panic("vmspace_free: attempt to free already freed vmspace"); 352 353 if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1) 354 vmspace_dofree(vm); 355 } 356 357 void 358 vmspace_exitfree(struct proc *p) 359 { 360 struct vmspace *vm; 361 362 PROC_VMSPACE_LOCK(p); 363 vm = p->p_vmspace; 364 p->p_vmspace = NULL; 365 PROC_VMSPACE_UNLOCK(p); 366 KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace")); 367 vmspace_free(vm); 368 } 369 370 void 371 vmspace_exit(struct thread *td) 372 { 373 int refcnt; 374 struct vmspace *vm; 375 struct proc *p; 376 377 /* 378 * Release user portion of address space. 379 * This releases references to vnodes, 380 * which could cause I/O if the file has been unlinked. 381 * Need to do this early enough that we can still sleep. 382 * 383 * The last exiting process to reach this point releases as 384 * much of the environment as it can. vmspace_dofree() is the 385 * slower fallback in case another process had a temporary 386 * reference to the vmspace. 387 */ 388 389 p = td->td_proc; 390 vm = p->p_vmspace; 391 atomic_add_int(&vmspace0.vm_refcnt, 1); 392 refcnt = vm->vm_refcnt; 393 do { 394 if (refcnt > 1 && p->p_vmspace != &vmspace0) { 395 /* Switch now since other proc might free vmspace */ 396 PROC_VMSPACE_LOCK(p); 397 p->p_vmspace = &vmspace0; 398 PROC_VMSPACE_UNLOCK(p); 399 pmap_activate(td); 400 } 401 } while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt - 1)); 402 if (refcnt == 1) { 403 if (p->p_vmspace != vm) { 404 /* vmspace not yet freed, switch back */ 405 PROC_VMSPACE_LOCK(p); 406 p->p_vmspace = vm; 407 PROC_VMSPACE_UNLOCK(p); 408 pmap_activate(td); 409 } 410 pmap_remove_pages(vmspace_pmap(vm)); 411 /* Switch now since this proc will free vmspace */ 412 PROC_VMSPACE_LOCK(p); 413 p->p_vmspace = &vmspace0; 414 PROC_VMSPACE_UNLOCK(p); 415 pmap_activate(td); 416 vmspace_dofree(vm); 417 } 418 #ifdef RACCT 419 if (racct_enable) 420 vmspace_container_reset(p); 421 #endif 422 } 423 424 /* Acquire reference to vmspace owned by another process. */ 425 426 struct vmspace * 427 vmspace_acquire_ref(struct proc *p) 428 { 429 struct vmspace *vm; 430 int refcnt; 431 432 PROC_VMSPACE_LOCK(p); 433 vm = p->p_vmspace; 434 if (vm == NULL) { 435 PROC_VMSPACE_UNLOCK(p); 436 return (NULL); 437 } 438 refcnt = vm->vm_refcnt; 439 do { 440 if (refcnt <= 0) { /* Avoid 0->1 transition */ 441 PROC_VMSPACE_UNLOCK(p); 442 return (NULL); 443 } 444 } while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt + 1)); 445 if (vm != p->p_vmspace) { 446 PROC_VMSPACE_UNLOCK(p); 447 vmspace_free(vm); 448 return (NULL); 449 } 450 PROC_VMSPACE_UNLOCK(p); 451 return (vm); 452 } 453 454 /* 455 * Switch between vmspaces in an AIO kernel process. 456 * 457 * The AIO kernel processes switch to and from a user process's 458 * vmspace while performing an I/O operation on behalf of a user 459 * process. The new vmspace is either the vmspace of a user process 460 * obtained from an active AIO request or the initial vmspace of the 461 * AIO kernel process (when it is idling). Because user processes 462 * will block to drain any active AIO requests before proceeding in 463 * exit() or execve(), the vmspace reference count for these vmspaces 464 * can never be 0. This allows for a much simpler implementation than 465 * the loop in vmspace_acquire_ref() above. Similarly, AIO kernel 466 * processes hold an extra reference on their initial vmspace for the 467 * life of the process so that this guarantee is true for any vmspace 468 * passed as 'newvm'. 469 */ 470 void 471 vmspace_switch_aio(struct vmspace *newvm) 472 { 473 struct vmspace *oldvm; 474 475 /* XXX: Need some way to assert that this is an aio daemon. */ 476 477 KASSERT(newvm->vm_refcnt > 0, 478 ("vmspace_switch_aio: newvm unreferenced")); 479 480 oldvm = curproc->p_vmspace; 481 if (oldvm == newvm) 482 return; 483 484 /* 485 * Point to the new address space and refer to it. 486 */ 487 curproc->p_vmspace = newvm; 488 atomic_add_int(&newvm->vm_refcnt, 1); 489 490 /* Activate the new mapping. */ 491 pmap_activate(curthread); 492 493 /* Remove the daemon's reference to the old address space. */ 494 KASSERT(oldvm->vm_refcnt > 1, 495 ("vmspace_switch_aio: oldvm dropping last reference")); 496 vmspace_free(oldvm); 497 } 498 499 void 500 _vm_map_lock(vm_map_t map, const char *file, int line) 501 { 502 503 if (map->system_map) 504 mtx_lock_flags_(&map->system_mtx, 0, file, line); 505 else 506 sx_xlock_(&map->lock, file, line); 507 map->timestamp++; 508 } 509 510 void 511 vm_map_entry_set_vnode_text(vm_map_entry_t entry, bool add) 512 { 513 vm_object_t object, object1; 514 struct vnode *vp; 515 516 if ((entry->eflags & MAP_ENTRY_VN_EXEC) == 0) 517 return; 518 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 519 ("Submap with execs")); 520 object = entry->object.vm_object; 521 KASSERT(object != NULL, ("No object for text, entry %p", entry)); 522 VM_OBJECT_RLOCK(object); 523 while ((object1 = object->backing_object) != NULL) { 524 VM_OBJECT_RLOCK(object1); 525 VM_OBJECT_RUNLOCK(object); 526 object = object1; 527 } 528 529 /* 530 * For OBJT_DEAD objects, v_writecount was handled in 531 * vnode_pager_dealloc(). 532 */ 533 if (object->type != OBJT_DEAD) { 534 KASSERT(((object->flags & OBJ_TMPFS) == 0 && 535 object->type == OBJT_VNODE) || 536 ((object->flags & OBJ_TMPFS) != 0 && 537 object->type == OBJT_SWAP), 538 ("vm_map_entry_set_vnode_text: wrong object type, " 539 "entry %p, object %p, add %d", entry, object, add)); 540 vp = (object->flags & OBJ_TMPFS) == 0 ? object->handle : 541 object->un_pager.swp.swp_tmpfs; 542 if (add) 543 VOP_SET_TEXT_CHECKED(vp); 544 else 545 VOP_UNSET_TEXT_CHECKED(vp); 546 } 547 VM_OBJECT_RUNLOCK(object); 548 } 549 550 static void 551 vm_map_process_deferred(void) 552 { 553 struct thread *td; 554 vm_map_entry_t entry, next; 555 vm_object_t object; 556 557 td = curthread; 558 entry = td->td_map_def_user; 559 td->td_map_def_user = NULL; 560 while (entry != NULL) { 561 next = entry->next; 562 MPASS((entry->eflags & (MAP_ENTRY_VN_WRITECNT | 563 MAP_ENTRY_VN_EXEC)) != (MAP_ENTRY_VN_WRITECNT | 564 MAP_ENTRY_VN_EXEC)); 565 if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) { 566 /* 567 * Decrement the object's writemappings and 568 * possibly the vnode's v_writecount. 569 */ 570 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 571 ("Submap with writecount")); 572 object = entry->object.vm_object; 573 KASSERT(object != NULL, ("No object for writecount")); 574 vnode_pager_release_writecount(object, entry->start, 575 entry->end); 576 } 577 vm_map_entry_set_vnode_text(entry, false); 578 vm_map_entry_deallocate(entry, FALSE); 579 entry = next; 580 } 581 } 582 583 void 584 _vm_map_unlock(vm_map_t map, const char *file, int line) 585 { 586 587 if (map->system_map) 588 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 589 else { 590 sx_xunlock_(&map->lock, file, line); 591 vm_map_process_deferred(); 592 } 593 } 594 595 void 596 _vm_map_lock_read(vm_map_t map, const char *file, int line) 597 { 598 599 if (map->system_map) 600 mtx_lock_flags_(&map->system_mtx, 0, file, line); 601 else 602 sx_slock_(&map->lock, file, line); 603 } 604 605 void 606 _vm_map_unlock_read(vm_map_t map, const char *file, int line) 607 { 608 609 if (map->system_map) 610 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 611 else { 612 sx_sunlock_(&map->lock, file, line); 613 vm_map_process_deferred(); 614 } 615 } 616 617 int 618 _vm_map_trylock(vm_map_t map, const char *file, int line) 619 { 620 int error; 621 622 error = map->system_map ? 623 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 624 !sx_try_xlock_(&map->lock, file, line); 625 if (error == 0) 626 map->timestamp++; 627 return (error == 0); 628 } 629 630 int 631 _vm_map_trylock_read(vm_map_t map, const char *file, int line) 632 { 633 int error; 634 635 error = map->system_map ? 636 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 637 !sx_try_slock_(&map->lock, file, line); 638 return (error == 0); 639 } 640 641 /* 642 * _vm_map_lock_upgrade: [ internal use only ] 643 * 644 * Tries to upgrade a read (shared) lock on the specified map to a write 645 * (exclusive) lock. Returns the value "0" if the upgrade succeeds and a 646 * non-zero value if the upgrade fails. If the upgrade fails, the map is 647 * returned without a read or write lock held. 648 * 649 * Requires that the map be read locked. 650 */ 651 int 652 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line) 653 { 654 unsigned int last_timestamp; 655 656 if (map->system_map) { 657 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 658 } else { 659 if (!sx_try_upgrade_(&map->lock, file, line)) { 660 last_timestamp = map->timestamp; 661 sx_sunlock_(&map->lock, file, line); 662 vm_map_process_deferred(); 663 /* 664 * If the map's timestamp does not change while the 665 * map is unlocked, then the upgrade succeeds. 666 */ 667 sx_xlock_(&map->lock, file, line); 668 if (last_timestamp != map->timestamp) { 669 sx_xunlock_(&map->lock, file, line); 670 return (1); 671 } 672 } 673 } 674 map->timestamp++; 675 return (0); 676 } 677 678 void 679 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line) 680 { 681 682 if (map->system_map) { 683 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 684 } else 685 sx_downgrade_(&map->lock, file, line); 686 } 687 688 /* 689 * vm_map_locked: 690 * 691 * Returns a non-zero value if the caller holds a write (exclusive) lock 692 * on the specified map and the value "0" otherwise. 693 */ 694 int 695 vm_map_locked(vm_map_t map) 696 { 697 698 if (map->system_map) 699 return (mtx_owned(&map->system_mtx)); 700 else 701 return (sx_xlocked(&map->lock)); 702 } 703 704 #ifdef INVARIANTS 705 static void 706 _vm_map_assert_locked(vm_map_t map, const char *file, int line) 707 { 708 709 if (map->system_map) 710 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 711 else 712 sx_assert_(&map->lock, SA_XLOCKED, file, line); 713 } 714 715 #define VM_MAP_ASSERT_LOCKED(map) \ 716 _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE) 717 718 #ifdef DIAGNOSTIC 719 static int enable_vmmap_check = 1; 720 #else 721 static int enable_vmmap_check = 0; 722 #endif 723 SYSCTL_INT(_debug, OID_AUTO, vmmap_check, CTLFLAG_RWTUN, 724 &enable_vmmap_check, 0, "Enable vm map consistency checking"); 725 726 static void 727 _vm_map_assert_consistent(vm_map_t map) 728 { 729 vm_map_entry_t entry; 730 vm_map_entry_t child; 731 vm_size_t max_left, max_right; 732 733 if (!enable_vmmap_check) 734 return; 735 736 for (entry = map->header.next; entry != &map->header; 737 entry = entry->next) { 738 KASSERT(entry->prev->end <= entry->start, 739 ("map %p prev->end = %jx, start = %jx", map, 740 (uintmax_t)entry->prev->end, (uintmax_t)entry->start)); 741 KASSERT(entry->start < entry->end, 742 ("map %p start = %jx, end = %jx", map, 743 (uintmax_t)entry->start, (uintmax_t)entry->end)); 744 KASSERT(entry->end <= entry->next->start, 745 ("map %p end = %jx, next->start = %jx", map, 746 (uintmax_t)entry->end, (uintmax_t)entry->next->start)); 747 KASSERT(entry->left == NULL || 748 entry->left->start < entry->start, 749 ("map %p left->start = %jx, start = %jx", map, 750 (uintmax_t)entry->left->start, (uintmax_t)entry->start)); 751 KASSERT(entry->right == NULL || 752 entry->start < entry->right->start, 753 ("map %p start = %jx, right->start = %jx", map, 754 (uintmax_t)entry->start, (uintmax_t)entry->right->start)); 755 child = entry->left; 756 max_left = (child != NULL) ? child->max_free : 757 entry->start - entry->prev->end; 758 child = entry->right; 759 max_right = (child != NULL) ? child->max_free : 760 entry->next->start - entry->end; 761 KASSERT(entry->max_free == MAX(max_left, max_right), 762 ("map %p max = %jx, max_left = %jx, max_right = %jx", map, 763 (uintmax_t)entry->max_free, 764 (uintmax_t)max_left, (uintmax_t)max_right)); 765 } 766 } 767 768 #define VM_MAP_ASSERT_CONSISTENT(map) \ 769 _vm_map_assert_consistent(map) 770 #else 771 #define VM_MAP_ASSERT_LOCKED(map) 772 #define VM_MAP_ASSERT_CONSISTENT(map) 773 #endif /* INVARIANTS */ 774 775 /* 776 * _vm_map_unlock_and_wait: 777 * 778 * Atomically releases the lock on the specified map and puts the calling 779 * thread to sleep. The calling thread will remain asleep until either 780 * vm_map_wakeup() is performed on the map or the specified timeout is 781 * exceeded. 782 * 783 * WARNING! This function does not perform deferred deallocations of 784 * objects and map entries. Therefore, the calling thread is expected to 785 * reacquire the map lock after reawakening and later perform an ordinary 786 * unlock operation, such as vm_map_unlock(), before completing its 787 * operation on the map. 788 */ 789 int 790 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line) 791 { 792 793 mtx_lock(&map_sleep_mtx); 794 if (map->system_map) 795 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 796 else 797 sx_xunlock_(&map->lock, file, line); 798 return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps", 799 timo)); 800 } 801 802 /* 803 * vm_map_wakeup: 804 * 805 * Awaken any threads that have slept on the map using 806 * vm_map_unlock_and_wait(). 807 */ 808 void 809 vm_map_wakeup(vm_map_t map) 810 { 811 812 /* 813 * Acquire and release map_sleep_mtx to prevent a wakeup() 814 * from being performed (and lost) between the map unlock 815 * and the msleep() in _vm_map_unlock_and_wait(). 816 */ 817 mtx_lock(&map_sleep_mtx); 818 mtx_unlock(&map_sleep_mtx); 819 wakeup(&map->root); 820 } 821 822 void 823 vm_map_busy(vm_map_t map) 824 { 825 826 VM_MAP_ASSERT_LOCKED(map); 827 map->busy++; 828 } 829 830 void 831 vm_map_unbusy(vm_map_t map) 832 { 833 834 VM_MAP_ASSERT_LOCKED(map); 835 KASSERT(map->busy, ("vm_map_unbusy: not busy")); 836 if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) { 837 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP); 838 wakeup(&map->busy); 839 } 840 } 841 842 void 843 vm_map_wait_busy(vm_map_t map) 844 { 845 846 VM_MAP_ASSERT_LOCKED(map); 847 while (map->busy) { 848 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0); 849 if (map->system_map) 850 msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0); 851 else 852 sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0); 853 } 854 map->timestamp++; 855 } 856 857 long 858 vmspace_resident_count(struct vmspace *vmspace) 859 { 860 return pmap_resident_count(vmspace_pmap(vmspace)); 861 } 862 863 /* 864 * vm_map_create: 865 * 866 * Creates and returns a new empty VM map with 867 * the given physical map structure, and having 868 * the given lower and upper address bounds. 869 */ 870 vm_map_t 871 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max) 872 { 873 vm_map_t result; 874 875 result = uma_zalloc(mapzone, M_WAITOK); 876 CTR1(KTR_VM, "vm_map_create: %p", result); 877 _vm_map_init(result, pmap, min, max); 878 return (result); 879 } 880 881 /* 882 * Initialize an existing vm_map structure 883 * such as that in the vmspace structure. 884 */ 885 static void 886 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 887 { 888 889 map->header.next = map->header.prev = &map->header; 890 map->header.eflags = MAP_ENTRY_HEADER; 891 map->needs_wakeup = FALSE; 892 map->system_map = 0; 893 map->pmap = pmap; 894 map->header.end = min; 895 map->header.start = max; 896 map->flags = 0; 897 map->root = NULL; 898 map->timestamp = 0; 899 map->busy = 0; 900 map->anon_loc = 0; 901 } 902 903 void 904 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 905 { 906 907 _vm_map_init(map, pmap, min, max); 908 mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK); 909 sx_init(&map->lock, "user map"); 910 } 911 912 /* 913 * vm_map_entry_dispose: [ internal use only ] 914 * 915 * Inverse of vm_map_entry_create. 916 */ 917 static void 918 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry) 919 { 920 uma_zfree(map->system_map ? kmapentzone : mapentzone, entry); 921 } 922 923 /* 924 * vm_map_entry_create: [ internal use only ] 925 * 926 * Allocates a VM map entry for insertion. 927 * No entry fields are filled in. 928 */ 929 static vm_map_entry_t 930 vm_map_entry_create(vm_map_t map) 931 { 932 vm_map_entry_t new_entry; 933 934 if (map->system_map) 935 new_entry = uma_zalloc(kmapentzone, M_NOWAIT); 936 else 937 new_entry = uma_zalloc(mapentzone, M_WAITOK); 938 if (new_entry == NULL) 939 panic("vm_map_entry_create: kernel resources exhausted"); 940 return (new_entry); 941 } 942 943 /* 944 * vm_map_entry_set_behavior: 945 * 946 * Set the expected access behavior, either normal, random, or 947 * sequential. 948 */ 949 static inline void 950 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior) 951 { 952 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) | 953 (behavior & MAP_ENTRY_BEHAV_MASK); 954 } 955 956 /* 957 * vm_map_entry_set_max_free: 958 * 959 * Set the max_free field in a vm_map_entry. 960 */ 961 static inline void 962 vm_map_entry_set_max_free(vm_map_entry_t entry) 963 { 964 vm_map_entry_t child; 965 vm_size_t max_left, max_right; 966 967 child = entry->left; 968 max_left = (child != NULL) ? child->max_free : 969 entry->start - entry->prev->end; 970 child = entry->right; 971 max_right = (child != NULL) ? child->max_free : 972 entry->next->start - entry->end; 973 entry->max_free = MAX(max_left, max_right); 974 } 975 976 #define SPLAY_LEFT_STEP(root, y, rlist, test) do { \ 977 y = root->left; \ 978 if (y != NULL && (test)) { \ 979 /* Rotate right and make y root. */ \ 980 root->left = y->right; \ 981 y->right = root; \ 982 vm_map_entry_set_max_free(root); \ 983 root = y; \ 984 y = root->left; \ 985 } \ 986 /* Put root on rlist. */ \ 987 root->left = rlist; \ 988 rlist = root; \ 989 root = y; \ 990 } while (0) 991 992 #define SPLAY_RIGHT_STEP(root, y, llist, test) do { \ 993 y = root->right; \ 994 if (y != NULL && (test)) { \ 995 /* Rotate left and make y root. */ \ 996 root->right = y->left; \ 997 y->left = root; \ 998 vm_map_entry_set_max_free(root); \ 999 root = y; \ 1000 y = root->right; \ 1001 } \ 1002 /* Put root on llist. */ \ 1003 root->right = llist; \ 1004 llist = root; \ 1005 root = y; \ 1006 } while (0) 1007 1008 /* 1009 * Walk down the tree until we find addr or a NULL pointer where addr would go, 1010 * breaking off left and right subtrees of nodes less than, or greater than 1011 * addr. Treat pointers to nodes with max_free < length as NULL pointers. 1012 * llist and rlist are the two sides in reverse order (bottom-up), with llist 1013 * linked by the right pointer and rlist linked by the left pointer in the 1014 * vm_map_entry. 1015 */ 1016 static vm_map_entry_t 1017 vm_map_splay_split(vm_offset_t addr, vm_size_t length, 1018 vm_map_entry_t root, vm_map_entry_t *out_llist, vm_map_entry_t *out_rlist) 1019 { 1020 vm_map_entry_t llist, rlist; 1021 vm_map_entry_t y; 1022 1023 llist = NULL; 1024 rlist = NULL; 1025 while (root != NULL && root->max_free >= length) { 1026 if (addr < root->start) { 1027 SPLAY_LEFT_STEP(root, y, rlist, 1028 y->max_free >= length && addr < y->start); 1029 } else if (addr >= root->end) { 1030 SPLAY_RIGHT_STEP(root, y, llist, 1031 y->max_free >= length && addr >= y->end); 1032 } else 1033 break; 1034 } 1035 *out_llist = llist; 1036 *out_rlist = rlist; 1037 return (root); 1038 } 1039 1040 static void 1041 vm_map_splay_findnext(vm_map_entry_t root, vm_map_entry_t *iolist) 1042 { 1043 vm_map_entry_t rlist, y; 1044 1045 root = root->right; 1046 rlist = *iolist; 1047 while (root != NULL) 1048 SPLAY_LEFT_STEP(root, y, rlist, true); 1049 *iolist = rlist; 1050 } 1051 1052 static void 1053 vm_map_splay_findprev(vm_map_entry_t root, vm_map_entry_t *iolist) 1054 { 1055 vm_map_entry_t llist, y; 1056 1057 root = root->left; 1058 llist = *iolist; 1059 while (root != NULL) 1060 SPLAY_RIGHT_STEP(root, y, llist, true); 1061 *iolist = llist; 1062 } 1063 1064 /* 1065 * Walk back up the two spines, flip the pointers and set max_free. The 1066 * subtrees of the root go at the bottom of llist and rlist. 1067 */ 1068 static vm_map_entry_t 1069 vm_map_splay_merge(vm_map_entry_t root, 1070 vm_map_entry_t llist, vm_map_entry_t rlist, 1071 vm_map_entry_t ltree, vm_map_entry_t rtree) 1072 { 1073 vm_map_entry_t y; 1074 1075 while (llist != NULL) { 1076 y = llist->right; 1077 llist->right = ltree; 1078 vm_map_entry_set_max_free(llist); 1079 ltree = llist; 1080 llist = y; 1081 } 1082 while (rlist != NULL) { 1083 y = rlist->left; 1084 rlist->left = rtree; 1085 vm_map_entry_set_max_free(rlist); 1086 rtree = rlist; 1087 rlist = y; 1088 } 1089 1090 /* 1091 * Final assembly: add ltree and rtree as subtrees of root. 1092 */ 1093 root->left = ltree; 1094 root->right = rtree; 1095 vm_map_entry_set_max_free(root); 1096 1097 return (root); 1098 } 1099 1100 /* 1101 * vm_map_entry_splay: 1102 * 1103 * The Sleator and Tarjan top-down splay algorithm with the 1104 * following variation. Max_free must be computed bottom-up, so 1105 * on the downward pass, maintain the left and right spines in 1106 * reverse order. Then, make a second pass up each side to fix 1107 * the pointers and compute max_free. The time bound is O(log n) 1108 * amortized. 1109 * 1110 * The new root is the vm_map_entry containing "addr", or else an 1111 * adjacent entry (lower if possible) if addr is not in the tree. 1112 * 1113 * The map must be locked, and leaves it so. 1114 * 1115 * Returns: the new root. 1116 */ 1117 static vm_map_entry_t 1118 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root) 1119 { 1120 vm_map_entry_t llist, rlist; 1121 1122 root = vm_map_splay_split(addr, 0, root, &llist, &rlist); 1123 if (root != NULL) { 1124 /* do nothing */ 1125 } else if (llist != NULL) { 1126 /* 1127 * Recover the greatest node in the left 1128 * subtree and make it the root. 1129 */ 1130 root = llist; 1131 llist = root->right; 1132 root->right = NULL; 1133 } else if (rlist != NULL) { 1134 /* 1135 * Recover the least node in the right 1136 * subtree and make it the root. 1137 */ 1138 root = rlist; 1139 rlist = root->left; 1140 root->left = NULL; 1141 } else { 1142 /* There is no root. */ 1143 return (NULL); 1144 } 1145 return (vm_map_splay_merge(root, llist, rlist, 1146 root->left, root->right)); 1147 } 1148 1149 /* 1150 * vm_map_entry_{un,}link: 1151 * 1152 * Insert/remove entries from maps. 1153 */ 1154 static void 1155 vm_map_entry_link(vm_map_t map, 1156 vm_map_entry_t entry) 1157 { 1158 vm_map_entry_t llist, rlist, root; 1159 1160 CTR3(KTR_VM, 1161 "vm_map_entry_link: map %p, nentries %d, entry %p", map, 1162 map->nentries, entry); 1163 VM_MAP_ASSERT_LOCKED(map); 1164 map->nentries++; 1165 root = map->root; 1166 root = vm_map_splay_split(entry->start, 0, root, &llist, &rlist); 1167 KASSERT(root == NULL, 1168 ("vm_map_entry_link: link object already mapped")); 1169 entry->prev = (llist == NULL) ? &map->header : llist; 1170 entry->next = (rlist == NULL) ? &map->header : rlist; 1171 entry->prev->next = entry->next->prev = entry; 1172 root = vm_map_splay_merge(entry, llist, rlist, NULL, NULL); 1173 map->root = entry; 1174 VM_MAP_ASSERT_CONSISTENT(map); 1175 } 1176 1177 enum unlink_merge_type { 1178 UNLINK_MERGE_PREV, 1179 UNLINK_MERGE_NONE, 1180 UNLINK_MERGE_NEXT 1181 }; 1182 1183 static void 1184 vm_map_entry_unlink(vm_map_t map, 1185 vm_map_entry_t entry, 1186 enum unlink_merge_type op) 1187 { 1188 vm_map_entry_t llist, rlist, root, y; 1189 1190 VM_MAP_ASSERT_LOCKED(map); 1191 llist = entry->prev; 1192 rlist = entry->next; 1193 llist->next = rlist; 1194 rlist->prev = llist; 1195 root = map->root; 1196 root = vm_map_splay_split(entry->start, 0, root, &llist, &rlist); 1197 KASSERT(root != NULL, 1198 ("vm_map_entry_unlink: unlink object not mapped")); 1199 1200 switch (op) { 1201 case UNLINK_MERGE_PREV: 1202 vm_map_splay_findprev(root, &llist); 1203 llist->end = root->end; 1204 y = root->right; 1205 root = llist; 1206 llist = root->right; 1207 root->right = y; 1208 break; 1209 case UNLINK_MERGE_NEXT: 1210 vm_map_splay_findnext(root, &rlist); 1211 rlist->start = root->start; 1212 rlist->offset = root->offset; 1213 y = root->left; 1214 root = rlist; 1215 rlist = root->left; 1216 root->left = y; 1217 break; 1218 case UNLINK_MERGE_NONE: 1219 vm_map_splay_findprev(root, &llist); 1220 vm_map_splay_findnext(root, &rlist); 1221 if (llist != NULL) { 1222 root = llist; 1223 llist = root->right; 1224 root->right = NULL; 1225 } else if (rlist != NULL) { 1226 root = rlist; 1227 rlist = root->left; 1228 root->left = NULL; 1229 } else 1230 root = NULL; 1231 break; 1232 } 1233 if (root != NULL) 1234 root = vm_map_splay_merge(root, llist, rlist, 1235 root->left, root->right); 1236 map->root = root; 1237 VM_MAP_ASSERT_CONSISTENT(map); 1238 map->nentries--; 1239 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map, 1240 map->nentries, entry); 1241 } 1242 1243 /* 1244 * vm_map_entry_resize_free: 1245 * 1246 * Recompute the amount of free space following a modified vm_map_entry 1247 * and propagate those values up the tree. Call this function after 1248 * resizing a map entry in-place by changing the end value, without a 1249 * call to vm_map_entry_link() or _unlink(). 1250 * 1251 * The map must be locked, and leaves it so. 1252 */ 1253 static void 1254 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry) 1255 { 1256 vm_map_entry_t llist, rlist, root; 1257 1258 VM_MAP_ASSERT_LOCKED(map); 1259 root = map->root; 1260 root = vm_map_splay_split(entry->start, 0, root, &llist, &rlist); 1261 KASSERT(root != NULL, 1262 ("vm_map_entry_resize_free: resize_free object not mapped")); 1263 vm_map_splay_findnext(root, &rlist); 1264 root->right = NULL; 1265 map->root = vm_map_splay_merge(root, llist, rlist, 1266 root->left, root->right); 1267 VM_MAP_ASSERT_CONSISTENT(map); 1268 CTR3(KTR_VM, "vm_map_entry_resize_free: map %p, nentries %d, entry %p", map, 1269 map->nentries, entry); 1270 } 1271 1272 /* 1273 * vm_map_lookup_entry: [ internal use only ] 1274 * 1275 * Finds the map entry containing (or 1276 * immediately preceding) the specified address 1277 * in the given map; the entry is returned 1278 * in the "entry" parameter. The boolean 1279 * result indicates whether the address is 1280 * actually contained in the map. 1281 */ 1282 boolean_t 1283 vm_map_lookup_entry( 1284 vm_map_t map, 1285 vm_offset_t address, 1286 vm_map_entry_t *entry) /* OUT */ 1287 { 1288 vm_map_entry_t cur, lbound; 1289 boolean_t locked; 1290 1291 /* 1292 * If the map is empty, then the map entry immediately preceding 1293 * "address" is the map's header. 1294 */ 1295 cur = map->root; 1296 if (cur == NULL) { 1297 *entry = &map->header; 1298 return (FALSE); 1299 } 1300 if (address >= cur->start && cur->end > address) { 1301 *entry = cur; 1302 return (TRUE); 1303 } 1304 if ((locked = vm_map_locked(map)) || 1305 sx_try_upgrade(&map->lock)) { 1306 /* 1307 * Splay requires a write lock on the map. However, it only 1308 * restructures the binary search tree; it does not otherwise 1309 * change the map. Thus, the map's timestamp need not change 1310 * on a temporary upgrade. 1311 */ 1312 map->root = cur = vm_map_entry_splay(address, cur); 1313 VM_MAP_ASSERT_CONSISTENT(map); 1314 if (!locked) 1315 sx_downgrade(&map->lock); 1316 1317 /* 1318 * If "address" is contained within a map entry, the new root 1319 * is that map entry. Otherwise, the new root is a map entry 1320 * immediately before or after "address". 1321 */ 1322 if (address < cur->start) { 1323 *entry = &map->header; 1324 return (FALSE); 1325 } 1326 *entry = cur; 1327 return (address < cur->end); 1328 } 1329 /* 1330 * Since the map is only locked for read access, perform a 1331 * standard binary search tree lookup for "address". 1332 */ 1333 lbound = &map->header; 1334 do { 1335 if (address < cur->start) { 1336 cur = cur->left; 1337 } else if (cur->end <= address) { 1338 lbound = cur; 1339 cur = cur->right; 1340 } else { 1341 *entry = cur; 1342 return (TRUE); 1343 } 1344 } while (cur != NULL); 1345 *entry = lbound; 1346 return (FALSE); 1347 } 1348 1349 /* 1350 * vm_map_insert: 1351 * 1352 * Inserts the given whole VM object into the target 1353 * map at the specified address range. The object's 1354 * size should match that of the address range. 1355 * 1356 * Requires that the map be locked, and leaves it so. 1357 * 1358 * If object is non-NULL, ref count must be bumped by caller 1359 * prior to making call to account for the new entry. 1360 */ 1361 int 1362 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1363 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow) 1364 { 1365 vm_map_entry_t new_entry, prev_entry, temp_entry; 1366 struct ucred *cred; 1367 vm_eflags_t protoeflags; 1368 vm_inherit_t inheritance; 1369 1370 VM_MAP_ASSERT_LOCKED(map); 1371 KASSERT(object != kernel_object || 1372 (cow & MAP_COPY_ON_WRITE) == 0, 1373 ("vm_map_insert: kernel object and COW")); 1374 KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0, 1375 ("vm_map_insert: paradoxical MAP_NOFAULT request")); 1376 KASSERT((prot & ~max) == 0, 1377 ("prot %#x is not subset of max_prot %#x", prot, max)); 1378 1379 /* 1380 * Check that the start and end points are not bogus. 1381 */ 1382 if (start < vm_map_min(map) || end > vm_map_max(map) || 1383 start >= end) 1384 return (KERN_INVALID_ADDRESS); 1385 1386 /* 1387 * Find the entry prior to the proposed starting address; if it's part 1388 * of an existing entry, this range is bogus. 1389 */ 1390 if (vm_map_lookup_entry(map, start, &temp_entry)) 1391 return (KERN_NO_SPACE); 1392 1393 prev_entry = temp_entry; 1394 1395 /* 1396 * Assert that the next entry doesn't overlap the end point. 1397 */ 1398 if (prev_entry->next->start < end) 1399 return (KERN_NO_SPACE); 1400 1401 if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL || 1402 max != VM_PROT_NONE)) 1403 return (KERN_INVALID_ARGUMENT); 1404 1405 protoeflags = 0; 1406 if (cow & MAP_COPY_ON_WRITE) 1407 protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY; 1408 if (cow & MAP_NOFAULT) 1409 protoeflags |= MAP_ENTRY_NOFAULT; 1410 if (cow & MAP_DISABLE_SYNCER) 1411 protoeflags |= MAP_ENTRY_NOSYNC; 1412 if (cow & MAP_DISABLE_COREDUMP) 1413 protoeflags |= MAP_ENTRY_NOCOREDUMP; 1414 if (cow & MAP_STACK_GROWS_DOWN) 1415 protoeflags |= MAP_ENTRY_GROWS_DOWN; 1416 if (cow & MAP_STACK_GROWS_UP) 1417 protoeflags |= MAP_ENTRY_GROWS_UP; 1418 if (cow & MAP_VN_WRITECOUNT) 1419 protoeflags |= MAP_ENTRY_VN_WRITECNT; 1420 if (cow & MAP_VN_EXEC) 1421 protoeflags |= MAP_ENTRY_VN_EXEC; 1422 if ((cow & MAP_CREATE_GUARD) != 0) 1423 protoeflags |= MAP_ENTRY_GUARD; 1424 if ((cow & MAP_CREATE_STACK_GAP_DN) != 0) 1425 protoeflags |= MAP_ENTRY_STACK_GAP_DN; 1426 if ((cow & MAP_CREATE_STACK_GAP_UP) != 0) 1427 protoeflags |= MAP_ENTRY_STACK_GAP_UP; 1428 if (cow & MAP_INHERIT_SHARE) 1429 inheritance = VM_INHERIT_SHARE; 1430 else 1431 inheritance = VM_INHERIT_DEFAULT; 1432 1433 cred = NULL; 1434 if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0) 1435 goto charged; 1436 if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) && 1437 ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) { 1438 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start)) 1439 return (KERN_RESOURCE_SHORTAGE); 1440 KASSERT(object == NULL || 1441 (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 || 1442 object->cred == NULL, 1443 ("overcommit: vm_map_insert o %p", object)); 1444 cred = curthread->td_ucred; 1445 } 1446 1447 charged: 1448 /* Expand the kernel pmap, if necessary. */ 1449 if (map == kernel_map && end > kernel_vm_end) 1450 pmap_growkernel(end); 1451 if (object != NULL) { 1452 /* 1453 * OBJ_ONEMAPPING must be cleared unless this mapping 1454 * is trivially proven to be the only mapping for any 1455 * of the object's pages. (Object granularity 1456 * reference counting is insufficient to recognize 1457 * aliases with precision.) 1458 */ 1459 VM_OBJECT_WLOCK(object); 1460 if (object->ref_count > 1 || object->shadow_count != 0) 1461 vm_object_clear_flag(object, OBJ_ONEMAPPING); 1462 VM_OBJECT_WUNLOCK(object); 1463 } else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) == 1464 protoeflags && 1465 (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP | 1466 MAP_VN_EXEC)) == 0 && 1467 prev_entry->end == start && (prev_entry->cred == cred || 1468 (prev_entry->object.vm_object != NULL && 1469 prev_entry->object.vm_object->cred == cred)) && 1470 vm_object_coalesce(prev_entry->object.vm_object, 1471 prev_entry->offset, 1472 (vm_size_t)(prev_entry->end - prev_entry->start), 1473 (vm_size_t)(end - prev_entry->end), cred != NULL && 1474 (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) { 1475 /* 1476 * We were able to extend the object. Determine if we 1477 * can extend the previous map entry to include the 1478 * new range as well. 1479 */ 1480 if (prev_entry->inheritance == inheritance && 1481 prev_entry->protection == prot && 1482 prev_entry->max_protection == max && 1483 prev_entry->wired_count == 0) { 1484 KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) == 1485 0, ("prev_entry %p has incoherent wiring", 1486 prev_entry)); 1487 if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0) 1488 map->size += end - prev_entry->end; 1489 prev_entry->end = end; 1490 vm_map_entry_resize_free(map, prev_entry); 1491 vm_map_simplify_entry(map, prev_entry); 1492 return (KERN_SUCCESS); 1493 } 1494 1495 /* 1496 * If we can extend the object but cannot extend the 1497 * map entry, we have to create a new map entry. We 1498 * must bump the ref count on the extended object to 1499 * account for it. object may be NULL. 1500 */ 1501 object = prev_entry->object.vm_object; 1502 offset = prev_entry->offset + 1503 (prev_entry->end - prev_entry->start); 1504 vm_object_reference(object); 1505 if (cred != NULL && object != NULL && object->cred != NULL && 1506 !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 1507 /* Object already accounts for this uid. */ 1508 cred = NULL; 1509 } 1510 } 1511 if (cred != NULL) 1512 crhold(cred); 1513 1514 /* 1515 * Create a new entry 1516 */ 1517 new_entry = vm_map_entry_create(map); 1518 new_entry->start = start; 1519 new_entry->end = end; 1520 new_entry->cred = NULL; 1521 1522 new_entry->eflags = protoeflags; 1523 new_entry->object.vm_object = object; 1524 new_entry->offset = offset; 1525 1526 new_entry->inheritance = inheritance; 1527 new_entry->protection = prot; 1528 new_entry->max_protection = max; 1529 new_entry->wired_count = 0; 1530 new_entry->wiring_thread = NULL; 1531 new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT; 1532 new_entry->next_read = start; 1533 1534 KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry), 1535 ("overcommit: vm_map_insert leaks vm_map %p", new_entry)); 1536 new_entry->cred = cred; 1537 1538 /* 1539 * Insert the new entry into the list 1540 */ 1541 vm_map_entry_link(map, new_entry); 1542 if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0) 1543 map->size += new_entry->end - new_entry->start; 1544 1545 /* 1546 * Try to coalesce the new entry with both the previous and next 1547 * entries in the list. Previously, we only attempted to coalesce 1548 * with the previous entry when object is NULL. Here, we handle the 1549 * other cases, which are less common. 1550 */ 1551 vm_map_simplify_entry(map, new_entry); 1552 1553 if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) { 1554 vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset), 1555 end - start, cow & MAP_PREFAULT_PARTIAL); 1556 } 1557 1558 return (KERN_SUCCESS); 1559 } 1560 1561 /* 1562 * vm_map_findspace: 1563 * 1564 * Find the first fit (lowest VM address) for "length" free bytes 1565 * beginning at address >= start in the given map. 1566 * 1567 * In a vm_map_entry, "max_free" is the maximum amount of 1568 * contiguous free space between an entry in its subtree and a 1569 * neighbor of that entry. This allows finding a free region in 1570 * one path down the tree, so O(log n) amortized with splay 1571 * trees. 1572 * 1573 * The map must be locked, and leaves it so. 1574 * 1575 * Returns: starting address if sufficient space, 1576 * vm_map_max(map)-length+1 if insufficient space. 1577 */ 1578 vm_offset_t 1579 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length) 1580 { 1581 vm_map_entry_t llist, rlist, root, y; 1582 vm_size_t left_length; 1583 1584 /* 1585 * Request must fit within min/max VM address and must avoid 1586 * address wrap. 1587 */ 1588 start = MAX(start, vm_map_min(map)); 1589 if (start + length > vm_map_max(map) || start + length < start) 1590 return (vm_map_max(map) - length + 1); 1591 1592 /* Empty tree means wide open address space. */ 1593 if (map->root == NULL) 1594 return (start); 1595 1596 /* 1597 * After splay, if start comes before root node, then there 1598 * must be a gap from start to the root. 1599 */ 1600 root = vm_map_splay_split(start, length, map->root, 1601 &llist, &rlist); 1602 if (root != NULL) 1603 start = root->end; 1604 else if (rlist != NULL) { 1605 root = rlist; 1606 rlist = root->left; 1607 root->left = NULL; 1608 } else { 1609 root = llist; 1610 llist = root->right; 1611 root->right = NULL; 1612 } 1613 map->root = vm_map_splay_merge(root, llist, rlist, 1614 root->left, root->right); 1615 VM_MAP_ASSERT_CONSISTENT(map); 1616 if (start + length <= root->start) 1617 return (start); 1618 1619 /* 1620 * Root is the last node that might begin its gap before 1621 * start, and this is the last comparison where address 1622 * wrap might be a problem. 1623 */ 1624 if (root->right == NULL && 1625 start + length <= vm_map_max(map)) 1626 return (start); 1627 1628 /* With max_free, can immediately tell if no solution. */ 1629 if (root->right == NULL || length > root->right->max_free) 1630 return (vm_map_max(map) - length + 1); 1631 1632 /* 1633 * Splay for the least large-enough gap in the right subtree. 1634 */ 1635 llist = NULL; 1636 rlist = NULL; 1637 for (left_length = 0; ; 1638 left_length = root->left != NULL ? 1639 root->left->max_free : root->start - llist->end) { 1640 if (length <= left_length) 1641 SPLAY_LEFT_STEP(root, y, rlist, 1642 length <= (y->left != NULL ? 1643 y->left->max_free : y->start - llist->end)); 1644 else 1645 SPLAY_RIGHT_STEP(root, y, llist, 1646 length > (y->left != NULL ? 1647 y->left->max_free : y->start - root->end)); 1648 if (root == NULL) 1649 break; 1650 } 1651 root = llist; 1652 llist = root->right; 1653 if ((y = rlist) == NULL) 1654 root->right = NULL; 1655 else { 1656 rlist = y->left; 1657 y->left = NULL; 1658 root->right = y->right; 1659 } 1660 root = vm_map_splay_merge(root, llist, rlist, 1661 root->left, root->right); 1662 if (y != NULL) { 1663 y->right = root->right; 1664 vm_map_entry_set_max_free(y); 1665 root->right = y; 1666 vm_map_entry_set_max_free(root); 1667 } 1668 map->root = root; 1669 VM_MAP_ASSERT_CONSISTENT(map); 1670 return (root->end); 1671 } 1672 1673 int 1674 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1675 vm_offset_t start, vm_size_t length, vm_prot_t prot, 1676 vm_prot_t max, int cow) 1677 { 1678 vm_offset_t end; 1679 int result; 1680 1681 end = start + length; 1682 KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 || 1683 object == NULL, 1684 ("vm_map_fixed: non-NULL backing object for stack")); 1685 vm_map_lock(map); 1686 VM_MAP_RANGE_CHECK(map, start, end); 1687 if ((cow & MAP_CHECK_EXCL) == 0) 1688 vm_map_delete(map, start, end); 1689 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) { 1690 result = vm_map_stack_locked(map, start, length, sgrowsiz, 1691 prot, max, cow); 1692 } else { 1693 result = vm_map_insert(map, object, offset, start, end, 1694 prot, max, cow); 1695 } 1696 vm_map_unlock(map); 1697 return (result); 1698 } 1699 1700 static const int aslr_pages_rnd_64[2] = {0x1000, 0x10}; 1701 static const int aslr_pages_rnd_32[2] = {0x100, 0x4}; 1702 1703 static int cluster_anon = 1; 1704 SYSCTL_INT(_vm, OID_AUTO, cluster_anon, CTLFLAG_RW, 1705 &cluster_anon, 0, 1706 "Cluster anonymous mappings: 0 = no, 1 = yes if no hint, 2 = always"); 1707 1708 static bool 1709 clustering_anon_allowed(vm_offset_t addr) 1710 { 1711 1712 switch (cluster_anon) { 1713 case 0: 1714 return (false); 1715 case 1: 1716 return (addr == 0); 1717 case 2: 1718 default: 1719 return (true); 1720 } 1721 } 1722 1723 static long aslr_restarts; 1724 SYSCTL_LONG(_vm, OID_AUTO, aslr_restarts, CTLFLAG_RD, 1725 &aslr_restarts, 0, 1726 "Number of aslr failures"); 1727 1728 #define MAP_32BIT_MAX_ADDR ((vm_offset_t)1 << 31) 1729 1730 /* 1731 * Searches for the specified amount of free space in the given map with the 1732 * specified alignment. Performs an address-ordered, first-fit search from 1733 * the given address "*addr", with an optional upper bound "max_addr". If the 1734 * parameter "alignment" is zero, then the alignment is computed from the 1735 * given (object, offset) pair so as to enable the greatest possible use of 1736 * superpage mappings. Returns KERN_SUCCESS and the address of the free space 1737 * in "*addr" if successful. Otherwise, returns KERN_NO_SPACE. 1738 * 1739 * The map must be locked. Initially, there must be at least "length" bytes 1740 * of free space at the given address. 1741 */ 1742 static int 1743 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1744 vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr, 1745 vm_offset_t alignment) 1746 { 1747 vm_offset_t aligned_addr, free_addr; 1748 1749 VM_MAP_ASSERT_LOCKED(map); 1750 free_addr = *addr; 1751 KASSERT(free_addr == vm_map_findspace(map, free_addr, length), 1752 ("caller failed to provide space %d at address %p", 1753 (int)length, (void*)free_addr)); 1754 for (;;) { 1755 /* 1756 * At the start of every iteration, the free space at address 1757 * "*addr" is at least "length" bytes. 1758 */ 1759 if (alignment == 0) 1760 pmap_align_superpage(object, offset, addr, length); 1761 else if ((*addr & (alignment - 1)) != 0) { 1762 *addr &= ~(alignment - 1); 1763 *addr += alignment; 1764 } 1765 aligned_addr = *addr; 1766 if (aligned_addr == free_addr) { 1767 /* 1768 * Alignment did not change "*addr", so "*addr" must 1769 * still provide sufficient free space. 1770 */ 1771 return (KERN_SUCCESS); 1772 } 1773 1774 /* 1775 * Test for address wrap on "*addr". A wrapped "*addr" could 1776 * be a valid address, in which case vm_map_findspace() cannot 1777 * be relied upon to fail. 1778 */ 1779 if (aligned_addr < free_addr) 1780 return (KERN_NO_SPACE); 1781 *addr = vm_map_findspace(map, aligned_addr, length); 1782 if (*addr + length > vm_map_max(map) || 1783 (max_addr != 0 && *addr + length > max_addr)) 1784 return (KERN_NO_SPACE); 1785 free_addr = *addr; 1786 if (free_addr == aligned_addr) { 1787 /* 1788 * If a successful call to vm_map_findspace() did not 1789 * change "*addr", then "*addr" must still be aligned 1790 * and provide sufficient free space. 1791 */ 1792 return (KERN_SUCCESS); 1793 } 1794 } 1795 } 1796 1797 /* 1798 * vm_map_find finds an unallocated region in the target address 1799 * map with the given length. The search is defined to be 1800 * first-fit from the specified address; the region found is 1801 * returned in the same parameter. 1802 * 1803 * If object is non-NULL, ref count must be bumped by caller 1804 * prior to making call to account for the new entry. 1805 */ 1806 int 1807 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1808 vm_offset_t *addr, /* IN/OUT */ 1809 vm_size_t length, vm_offset_t max_addr, int find_space, 1810 vm_prot_t prot, vm_prot_t max, int cow) 1811 { 1812 vm_offset_t alignment, curr_min_addr, min_addr; 1813 int gap, pidx, rv, try; 1814 bool cluster, en_aslr, update_anon; 1815 1816 KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 || 1817 object == NULL, 1818 ("vm_map_find: non-NULL backing object for stack")); 1819 MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE && 1820 (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0)); 1821 if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL || 1822 (object->flags & OBJ_COLORED) == 0)) 1823 find_space = VMFS_ANY_SPACE; 1824 if (find_space >> 8 != 0) { 1825 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags")); 1826 alignment = (vm_offset_t)1 << (find_space >> 8); 1827 } else 1828 alignment = 0; 1829 en_aslr = (map->flags & MAP_ASLR) != 0; 1830 update_anon = cluster = clustering_anon_allowed(*addr) && 1831 (map->flags & MAP_IS_SUB_MAP) == 0 && max_addr == 0 && 1832 find_space != VMFS_NO_SPACE && object == NULL && 1833 (cow & (MAP_INHERIT_SHARE | MAP_STACK_GROWS_UP | 1834 MAP_STACK_GROWS_DOWN)) == 0 && prot != PROT_NONE; 1835 curr_min_addr = min_addr = *addr; 1836 if (en_aslr && min_addr == 0 && !cluster && 1837 find_space != VMFS_NO_SPACE && 1838 (map->flags & MAP_ASLR_IGNSTART) != 0) 1839 curr_min_addr = min_addr = vm_map_min(map); 1840 try = 0; 1841 vm_map_lock(map); 1842 if (cluster) { 1843 curr_min_addr = map->anon_loc; 1844 if (curr_min_addr == 0) 1845 cluster = false; 1846 } 1847 if (find_space != VMFS_NO_SPACE) { 1848 KASSERT(find_space == VMFS_ANY_SPACE || 1849 find_space == VMFS_OPTIMAL_SPACE || 1850 find_space == VMFS_SUPER_SPACE || 1851 alignment != 0, ("unexpected VMFS flag")); 1852 again: 1853 /* 1854 * When creating an anonymous mapping, try clustering 1855 * with an existing anonymous mapping first. 1856 * 1857 * We make up to two attempts to find address space 1858 * for a given find_space value. The first attempt may 1859 * apply randomization or may cluster with an existing 1860 * anonymous mapping. If this first attempt fails, 1861 * perform a first-fit search of the available address 1862 * space. 1863 * 1864 * If all tries failed, and find_space is 1865 * VMFS_OPTIMAL_SPACE, fallback to VMFS_ANY_SPACE. 1866 * Again enable clustering and randomization. 1867 */ 1868 try++; 1869 MPASS(try <= 2); 1870 1871 if (try == 2) { 1872 /* 1873 * Second try: we failed either to find a 1874 * suitable region for randomizing the 1875 * allocation, or to cluster with an existing 1876 * mapping. Retry with free run. 1877 */ 1878 curr_min_addr = (map->flags & MAP_ASLR_IGNSTART) != 0 ? 1879 vm_map_min(map) : min_addr; 1880 atomic_add_long(&aslr_restarts, 1); 1881 } 1882 1883 if (try == 1 && en_aslr && !cluster) { 1884 /* 1885 * Find space for allocation, including 1886 * gap needed for later randomization. 1887 */ 1888 pidx = MAXPAGESIZES > 1 && pagesizes[1] != 0 && 1889 (find_space == VMFS_SUPER_SPACE || find_space == 1890 VMFS_OPTIMAL_SPACE) ? 1 : 0; 1891 gap = vm_map_max(map) > MAP_32BIT_MAX_ADDR && 1892 (max_addr == 0 || max_addr > MAP_32BIT_MAX_ADDR) ? 1893 aslr_pages_rnd_64[pidx] : aslr_pages_rnd_32[pidx]; 1894 *addr = vm_map_findspace(map, curr_min_addr, 1895 length + gap * pagesizes[pidx]); 1896 if (*addr + length + gap * pagesizes[pidx] > 1897 vm_map_max(map)) 1898 goto again; 1899 /* And randomize the start address. */ 1900 *addr += (arc4random() % gap) * pagesizes[pidx]; 1901 if (max_addr != 0 && *addr + length > max_addr) 1902 goto again; 1903 } else { 1904 *addr = vm_map_findspace(map, curr_min_addr, length); 1905 if (*addr + length > vm_map_max(map) || 1906 (max_addr != 0 && *addr + length > max_addr)) { 1907 if (cluster) { 1908 cluster = false; 1909 MPASS(try == 1); 1910 goto again; 1911 } 1912 rv = KERN_NO_SPACE; 1913 goto done; 1914 } 1915 } 1916 1917 if (find_space != VMFS_ANY_SPACE && 1918 (rv = vm_map_alignspace(map, object, offset, addr, length, 1919 max_addr, alignment)) != KERN_SUCCESS) { 1920 if (find_space == VMFS_OPTIMAL_SPACE) { 1921 find_space = VMFS_ANY_SPACE; 1922 curr_min_addr = min_addr; 1923 cluster = update_anon; 1924 try = 0; 1925 goto again; 1926 } 1927 goto done; 1928 } 1929 } else if ((cow & MAP_REMAP) != 0) { 1930 if (*addr < vm_map_min(map) || 1931 *addr + length > vm_map_max(map) || 1932 *addr + length <= length) { 1933 rv = KERN_INVALID_ADDRESS; 1934 goto done; 1935 } 1936 vm_map_delete(map, *addr, *addr + length); 1937 } 1938 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) { 1939 rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot, 1940 max, cow); 1941 } else { 1942 rv = vm_map_insert(map, object, offset, *addr, *addr + length, 1943 prot, max, cow); 1944 } 1945 if (rv == KERN_SUCCESS && update_anon) 1946 map->anon_loc = *addr + length; 1947 done: 1948 vm_map_unlock(map); 1949 return (rv); 1950 } 1951 1952 /* 1953 * vm_map_find_min() is a variant of vm_map_find() that takes an 1954 * additional parameter (min_addr) and treats the given address 1955 * (*addr) differently. Specifically, it treats *addr as a hint 1956 * and not as the minimum address where the mapping is created. 1957 * 1958 * This function works in two phases. First, it tries to 1959 * allocate above the hint. If that fails and the hint is 1960 * greater than min_addr, it performs a second pass, replacing 1961 * the hint with min_addr as the minimum address for the 1962 * allocation. 1963 */ 1964 int 1965 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1966 vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr, 1967 vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max, 1968 int cow) 1969 { 1970 vm_offset_t hint; 1971 int rv; 1972 1973 hint = *addr; 1974 for (;;) { 1975 rv = vm_map_find(map, object, offset, addr, length, max_addr, 1976 find_space, prot, max, cow); 1977 if (rv == KERN_SUCCESS || min_addr >= hint) 1978 return (rv); 1979 *addr = hint = min_addr; 1980 } 1981 } 1982 1983 /* 1984 * A map entry with any of the following flags set must not be merged with 1985 * another entry. 1986 */ 1987 #define MAP_ENTRY_NOMERGE_MASK (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | \ 1988 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP | MAP_ENTRY_VN_EXEC) 1989 1990 static bool 1991 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry) 1992 { 1993 1994 KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 || 1995 (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0, 1996 ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable", 1997 prev, entry)); 1998 return (prev->end == entry->start && 1999 prev->object.vm_object == entry->object.vm_object && 2000 (prev->object.vm_object == NULL || 2001 prev->offset + (prev->end - prev->start) == entry->offset) && 2002 prev->eflags == entry->eflags && 2003 prev->protection == entry->protection && 2004 prev->max_protection == entry->max_protection && 2005 prev->inheritance == entry->inheritance && 2006 prev->wired_count == entry->wired_count && 2007 prev->cred == entry->cred); 2008 } 2009 2010 static void 2011 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry) 2012 { 2013 2014 /* 2015 * If the backing object is a vnode object, vm_object_deallocate() 2016 * calls vrele(). However, vrele() does not lock the vnode because 2017 * the vnode has additional references. Thus, the map lock can be 2018 * kept without causing a lock-order reversal with the vnode lock. 2019 * 2020 * Since we count the number of virtual page mappings in 2021 * object->un_pager.vnp.writemappings, the writemappings value 2022 * should not be adjusted when the entry is disposed of. 2023 */ 2024 if (entry->object.vm_object != NULL) 2025 vm_object_deallocate(entry->object.vm_object); 2026 if (entry->cred != NULL) 2027 crfree(entry->cred); 2028 vm_map_entry_dispose(map, entry); 2029 } 2030 2031 /* 2032 * vm_map_simplify_entry: 2033 * 2034 * Simplify the given map entry by merging with either neighbor. This 2035 * routine also has the ability to merge with both neighbors. 2036 * 2037 * The map must be locked. 2038 * 2039 * This routine guarantees that the passed entry remains valid (though 2040 * possibly extended). When merging, this routine may delete one or 2041 * both neighbors. 2042 */ 2043 void 2044 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry) 2045 { 2046 vm_map_entry_t next, prev; 2047 2048 if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) != 0) 2049 return; 2050 prev = entry->prev; 2051 if (vm_map_mergeable_neighbors(prev, entry)) { 2052 vm_map_entry_unlink(map, prev, UNLINK_MERGE_NEXT); 2053 vm_map_merged_neighbor_dispose(map, prev); 2054 } 2055 next = entry->next; 2056 if (vm_map_mergeable_neighbors(entry, next)) { 2057 vm_map_entry_unlink(map, next, UNLINK_MERGE_PREV); 2058 vm_map_merged_neighbor_dispose(map, next); 2059 } 2060 } 2061 2062 /* 2063 * vm_map_clip_start: [ internal use only ] 2064 * 2065 * Asserts that the given entry begins at or after 2066 * the specified address; if necessary, 2067 * it splits the entry into two. 2068 */ 2069 #define vm_map_clip_start(map, entry, startaddr) \ 2070 { \ 2071 if (startaddr > entry->start) \ 2072 _vm_map_clip_start(map, entry, startaddr); \ 2073 } 2074 2075 /* 2076 * This routine is called only when it is known that 2077 * the entry must be split. 2078 */ 2079 static void 2080 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start) 2081 { 2082 vm_map_entry_t new_entry; 2083 2084 VM_MAP_ASSERT_LOCKED(map); 2085 KASSERT(entry->end > start && entry->start < start, 2086 ("_vm_map_clip_start: invalid clip of entry %p", entry)); 2087 2088 /* 2089 * Split off the front portion -- note that we must insert the new 2090 * entry BEFORE this one, so that this entry has the specified 2091 * starting address. 2092 */ 2093 vm_map_simplify_entry(map, entry); 2094 2095 /* 2096 * If there is no object backing this entry, we might as well create 2097 * one now. If we defer it, an object can get created after the map 2098 * is clipped, and individual objects will be created for the split-up 2099 * map. This is a bit of a hack, but is also about the best place to 2100 * put this improvement. 2101 */ 2102 if (entry->object.vm_object == NULL && !map->system_map && 2103 (entry->eflags & MAP_ENTRY_GUARD) == 0) { 2104 vm_object_t object; 2105 object = vm_object_allocate(OBJT_DEFAULT, 2106 atop(entry->end - entry->start)); 2107 entry->object.vm_object = object; 2108 entry->offset = 0; 2109 if (entry->cred != NULL) { 2110 object->cred = entry->cred; 2111 object->charge = entry->end - entry->start; 2112 entry->cred = NULL; 2113 } 2114 } else if (entry->object.vm_object != NULL && 2115 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 2116 entry->cred != NULL) { 2117 VM_OBJECT_WLOCK(entry->object.vm_object); 2118 KASSERT(entry->object.vm_object->cred == NULL, 2119 ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry)); 2120 entry->object.vm_object->cred = entry->cred; 2121 entry->object.vm_object->charge = entry->end - entry->start; 2122 VM_OBJECT_WUNLOCK(entry->object.vm_object); 2123 entry->cred = NULL; 2124 } 2125 2126 new_entry = vm_map_entry_create(map); 2127 *new_entry = *entry; 2128 2129 new_entry->end = start; 2130 entry->offset += (start - entry->start); 2131 entry->start = start; 2132 if (new_entry->cred != NULL) 2133 crhold(entry->cred); 2134 2135 vm_map_entry_link(map, new_entry); 2136 2137 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 2138 vm_object_reference(new_entry->object.vm_object); 2139 vm_map_entry_set_vnode_text(new_entry, true); 2140 /* 2141 * The object->un_pager.vnp.writemappings for the 2142 * object of MAP_ENTRY_VN_WRITECNT type entry shall be 2143 * kept as is here. The virtual pages are 2144 * re-distributed among the clipped entries, so the sum is 2145 * left the same. 2146 */ 2147 } 2148 } 2149 2150 /* 2151 * vm_map_clip_end: [ internal use only ] 2152 * 2153 * Asserts that the given entry ends at or before 2154 * the specified address; if necessary, 2155 * it splits the entry into two. 2156 */ 2157 #define vm_map_clip_end(map, entry, endaddr) \ 2158 { \ 2159 if ((endaddr) < (entry->end)) \ 2160 _vm_map_clip_end((map), (entry), (endaddr)); \ 2161 } 2162 2163 /* 2164 * This routine is called only when it is known that 2165 * the entry must be split. 2166 */ 2167 static void 2168 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end) 2169 { 2170 vm_map_entry_t new_entry; 2171 2172 VM_MAP_ASSERT_LOCKED(map); 2173 KASSERT(entry->start < end && entry->end > end, 2174 ("_vm_map_clip_end: invalid clip of entry %p", entry)); 2175 2176 /* 2177 * If there is no object backing this entry, we might as well create 2178 * one now. If we defer it, an object can get created after the map 2179 * is clipped, and individual objects will be created for the split-up 2180 * map. This is a bit of a hack, but is also about the best place to 2181 * put this improvement. 2182 */ 2183 if (entry->object.vm_object == NULL && !map->system_map && 2184 (entry->eflags & MAP_ENTRY_GUARD) == 0) { 2185 vm_object_t object; 2186 object = vm_object_allocate(OBJT_DEFAULT, 2187 atop(entry->end - entry->start)); 2188 entry->object.vm_object = object; 2189 entry->offset = 0; 2190 if (entry->cred != NULL) { 2191 object->cred = entry->cred; 2192 object->charge = entry->end - entry->start; 2193 entry->cred = NULL; 2194 } 2195 } else if (entry->object.vm_object != NULL && 2196 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 2197 entry->cred != NULL) { 2198 VM_OBJECT_WLOCK(entry->object.vm_object); 2199 KASSERT(entry->object.vm_object->cred == NULL, 2200 ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry)); 2201 entry->object.vm_object->cred = entry->cred; 2202 entry->object.vm_object->charge = entry->end - entry->start; 2203 VM_OBJECT_WUNLOCK(entry->object.vm_object); 2204 entry->cred = NULL; 2205 } 2206 2207 /* 2208 * Create a new entry and insert it AFTER the specified entry 2209 */ 2210 new_entry = vm_map_entry_create(map); 2211 *new_entry = *entry; 2212 2213 new_entry->start = entry->end = end; 2214 new_entry->offset += (end - entry->start); 2215 if (new_entry->cred != NULL) 2216 crhold(entry->cred); 2217 2218 vm_map_entry_link(map, new_entry); 2219 2220 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 2221 vm_object_reference(new_entry->object.vm_object); 2222 vm_map_entry_set_vnode_text(new_entry, true); 2223 } 2224 } 2225 2226 /* 2227 * vm_map_submap: [ kernel use only ] 2228 * 2229 * Mark the given range as handled by a subordinate map. 2230 * 2231 * This range must have been created with vm_map_find, 2232 * and no other operations may have been performed on this 2233 * range prior to calling vm_map_submap. 2234 * 2235 * Only a limited number of operations can be performed 2236 * within this rage after calling vm_map_submap: 2237 * vm_fault 2238 * [Don't try vm_map_copy!] 2239 * 2240 * To remove a submapping, one must first remove the 2241 * range from the superior map, and then destroy the 2242 * submap (if desired). [Better yet, don't try it.] 2243 */ 2244 int 2245 vm_map_submap( 2246 vm_map_t map, 2247 vm_offset_t start, 2248 vm_offset_t end, 2249 vm_map_t submap) 2250 { 2251 vm_map_entry_t entry; 2252 int result; 2253 2254 result = KERN_INVALID_ARGUMENT; 2255 2256 vm_map_lock(submap); 2257 submap->flags |= MAP_IS_SUB_MAP; 2258 vm_map_unlock(submap); 2259 2260 vm_map_lock(map); 2261 2262 VM_MAP_RANGE_CHECK(map, start, end); 2263 2264 if (vm_map_lookup_entry(map, start, &entry)) { 2265 vm_map_clip_start(map, entry, start); 2266 } else 2267 entry = entry->next; 2268 2269 vm_map_clip_end(map, entry, end); 2270 2271 if ((entry->start == start) && (entry->end == end) && 2272 ((entry->eflags & MAP_ENTRY_COW) == 0) && 2273 (entry->object.vm_object == NULL)) { 2274 entry->object.sub_map = submap; 2275 entry->eflags |= MAP_ENTRY_IS_SUB_MAP; 2276 result = KERN_SUCCESS; 2277 } 2278 vm_map_unlock(map); 2279 2280 if (result != KERN_SUCCESS) { 2281 vm_map_lock(submap); 2282 submap->flags &= ~MAP_IS_SUB_MAP; 2283 vm_map_unlock(submap); 2284 } 2285 return (result); 2286 } 2287 2288 /* 2289 * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified 2290 */ 2291 #define MAX_INIT_PT 96 2292 2293 /* 2294 * vm_map_pmap_enter: 2295 * 2296 * Preload the specified map's pmap with mappings to the specified 2297 * object's memory-resident pages. No further physical pages are 2298 * allocated, and no further virtual pages are retrieved from secondary 2299 * storage. If the specified flags include MAP_PREFAULT_PARTIAL, then a 2300 * limited number of page mappings are created at the low-end of the 2301 * specified address range. (For this purpose, a superpage mapping 2302 * counts as one page mapping.) Otherwise, all resident pages within 2303 * the specified address range are mapped. 2304 */ 2305 static void 2306 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 2307 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags) 2308 { 2309 vm_offset_t start; 2310 vm_page_t p, p_start; 2311 vm_pindex_t mask, psize, threshold, tmpidx; 2312 2313 if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL) 2314 return; 2315 VM_OBJECT_RLOCK(object); 2316 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 2317 VM_OBJECT_RUNLOCK(object); 2318 VM_OBJECT_WLOCK(object); 2319 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 2320 pmap_object_init_pt(map->pmap, addr, object, pindex, 2321 size); 2322 VM_OBJECT_WUNLOCK(object); 2323 return; 2324 } 2325 VM_OBJECT_LOCK_DOWNGRADE(object); 2326 } 2327 2328 psize = atop(size); 2329 if (psize + pindex > object->size) { 2330 if (object->size < pindex) { 2331 VM_OBJECT_RUNLOCK(object); 2332 return; 2333 } 2334 psize = object->size - pindex; 2335 } 2336 2337 start = 0; 2338 p_start = NULL; 2339 threshold = MAX_INIT_PT; 2340 2341 p = vm_page_find_least(object, pindex); 2342 /* 2343 * Assert: the variable p is either (1) the page with the 2344 * least pindex greater than or equal to the parameter pindex 2345 * or (2) NULL. 2346 */ 2347 for (; 2348 p != NULL && (tmpidx = p->pindex - pindex) < psize; 2349 p = TAILQ_NEXT(p, listq)) { 2350 /* 2351 * don't allow an madvise to blow away our really 2352 * free pages allocating pv entries. 2353 */ 2354 if (((flags & MAP_PREFAULT_MADVISE) != 0 && 2355 vm_page_count_severe()) || 2356 ((flags & MAP_PREFAULT_PARTIAL) != 0 && 2357 tmpidx >= threshold)) { 2358 psize = tmpidx; 2359 break; 2360 } 2361 if (p->valid == VM_PAGE_BITS_ALL) { 2362 if (p_start == NULL) { 2363 start = addr + ptoa(tmpidx); 2364 p_start = p; 2365 } 2366 /* Jump ahead if a superpage mapping is possible. */ 2367 if (p->psind > 0 && ((addr + ptoa(tmpidx)) & 2368 (pagesizes[p->psind] - 1)) == 0) { 2369 mask = atop(pagesizes[p->psind]) - 1; 2370 if (tmpidx + mask < psize && 2371 vm_page_ps_test(p, PS_ALL_VALID, NULL)) { 2372 p += mask; 2373 threshold += mask; 2374 } 2375 } 2376 } else if (p_start != NULL) { 2377 pmap_enter_object(map->pmap, start, addr + 2378 ptoa(tmpidx), p_start, prot); 2379 p_start = NULL; 2380 } 2381 } 2382 if (p_start != NULL) 2383 pmap_enter_object(map->pmap, start, addr + ptoa(psize), 2384 p_start, prot); 2385 VM_OBJECT_RUNLOCK(object); 2386 } 2387 2388 /* 2389 * vm_map_protect: 2390 * 2391 * Sets the protection of the specified address 2392 * region in the target map. If "set_max" is 2393 * specified, the maximum protection is to be set; 2394 * otherwise, only the current protection is affected. 2395 */ 2396 int 2397 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 2398 vm_prot_t new_prot, boolean_t set_max) 2399 { 2400 vm_map_entry_t current, entry, in_tran; 2401 vm_object_t obj; 2402 struct ucred *cred; 2403 vm_prot_t old_prot; 2404 2405 if (start == end) 2406 return (KERN_SUCCESS); 2407 2408 again: 2409 in_tran = NULL; 2410 vm_map_lock(map); 2411 2412 /* 2413 * Ensure that we are not concurrently wiring pages. vm_map_wire() may 2414 * need to fault pages into the map and will drop the map lock while 2415 * doing so, and the VM object may end up in an inconsistent state if we 2416 * update the protection on the map entry in between faults. 2417 */ 2418 vm_map_wait_busy(map); 2419 2420 VM_MAP_RANGE_CHECK(map, start, end); 2421 2422 if (vm_map_lookup_entry(map, start, &entry)) { 2423 vm_map_clip_start(map, entry, start); 2424 } else { 2425 entry = entry->next; 2426 } 2427 2428 /* 2429 * Make a first pass to check for protection violations. 2430 */ 2431 for (current = entry; current->start < end; current = current->next) { 2432 if ((current->eflags & MAP_ENTRY_GUARD) != 0) 2433 continue; 2434 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 2435 vm_map_unlock(map); 2436 return (KERN_INVALID_ARGUMENT); 2437 } 2438 if ((new_prot & current->max_protection) != new_prot) { 2439 vm_map_unlock(map); 2440 return (KERN_PROTECTION_FAILURE); 2441 } 2442 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0) 2443 in_tran = entry; 2444 } 2445 2446 /* 2447 * Postpone the operation until all in transition map entries 2448 * are stabilized. In-transition entry might already have its 2449 * pages wired and wired_count incremented, but 2450 * MAP_ENTRY_USER_WIRED flag not yet set, and visible to other 2451 * threads because the map lock is dropped. In this case we 2452 * would miss our call to vm_fault_copy_entry(). 2453 */ 2454 if (in_tran != NULL) { 2455 in_tran->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2456 vm_map_unlock_and_wait(map, 0); 2457 goto again; 2458 } 2459 2460 /* 2461 * Do an accounting pass for private read-only mappings that 2462 * now will do cow due to allowed write (e.g. debugger sets 2463 * breakpoint on text segment) 2464 */ 2465 for (current = entry; current->start < end; current = current->next) { 2466 2467 vm_map_clip_end(map, current, end); 2468 2469 if (set_max || 2470 ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 || 2471 ENTRY_CHARGED(current) || 2472 (current->eflags & MAP_ENTRY_GUARD) != 0) { 2473 continue; 2474 } 2475 2476 cred = curthread->td_ucred; 2477 obj = current->object.vm_object; 2478 2479 if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) { 2480 if (!swap_reserve(current->end - current->start)) { 2481 vm_map_unlock(map); 2482 return (KERN_RESOURCE_SHORTAGE); 2483 } 2484 crhold(cred); 2485 current->cred = cred; 2486 continue; 2487 } 2488 2489 VM_OBJECT_WLOCK(obj); 2490 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) { 2491 VM_OBJECT_WUNLOCK(obj); 2492 continue; 2493 } 2494 2495 /* 2496 * Charge for the whole object allocation now, since 2497 * we cannot distinguish between non-charged and 2498 * charged clipped mapping of the same object later. 2499 */ 2500 KASSERT(obj->charge == 0, 2501 ("vm_map_protect: object %p overcharged (entry %p)", 2502 obj, current)); 2503 if (!swap_reserve(ptoa(obj->size))) { 2504 VM_OBJECT_WUNLOCK(obj); 2505 vm_map_unlock(map); 2506 return (KERN_RESOURCE_SHORTAGE); 2507 } 2508 2509 crhold(cred); 2510 obj->cred = cred; 2511 obj->charge = ptoa(obj->size); 2512 VM_OBJECT_WUNLOCK(obj); 2513 } 2514 2515 /* 2516 * Go back and fix up protections. [Note that clipping is not 2517 * necessary the second time.] 2518 */ 2519 for (current = entry; current->start < end; current = current->next) { 2520 if ((current->eflags & MAP_ENTRY_GUARD) != 0) 2521 continue; 2522 2523 old_prot = current->protection; 2524 2525 if (set_max) 2526 current->protection = 2527 (current->max_protection = new_prot) & 2528 old_prot; 2529 else 2530 current->protection = new_prot; 2531 2532 /* 2533 * For user wired map entries, the normal lazy evaluation of 2534 * write access upgrades through soft page faults is 2535 * undesirable. Instead, immediately copy any pages that are 2536 * copy-on-write and enable write access in the physical map. 2537 */ 2538 if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 && 2539 (current->protection & VM_PROT_WRITE) != 0 && 2540 (old_prot & VM_PROT_WRITE) == 0) 2541 vm_fault_copy_entry(map, map, current, current, NULL); 2542 2543 /* 2544 * When restricting access, update the physical map. Worry 2545 * about copy-on-write here. 2546 */ 2547 if ((old_prot & ~current->protection) != 0) { 2548 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 2549 VM_PROT_ALL) 2550 pmap_protect(map->pmap, current->start, 2551 current->end, 2552 current->protection & MASK(current)); 2553 #undef MASK 2554 } 2555 vm_map_simplify_entry(map, current); 2556 } 2557 vm_map_unlock(map); 2558 return (KERN_SUCCESS); 2559 } 2560 2561 /* 2562 * vm_map_madvise: 2563 * 2564 * This routine traverses a processes map handling the madvise 2565 * system call. Advisories are classified as either those effecting 2566 * the vm_map_entry structure, or those effecting the underlying 2567 * objects. 2568 */ 2569 int 2570 vm_map_madvise( 2571 vm_map_t map, 2572 vm_offset_t start, 2573 vm_offset_t end, 2574 int behav) 2575 { 2576 vm_map_entry_t current, entry; 2577 bool modify_map; 2578 2579 /* 2580 * Some madvise calls directly modify the vm_map_entry, in which case 2581 * we need to use an exclusive lock on the map and we need to perform 2582 * various clipping operations. Otherwise we only need a read-lock 2583 * on the map. 2584 */ 2585 switch(behav) { 2586 case MADV_NORMAL: 2587 case MADV_SEQUENTIAL: 2588 case MADV_RANDOM: 2589 case MADV_NOSYNC: 2590 case MADV_AUTOSYNC: 2591 case MADV_NOCORE: 2592 case MADV_CORE: 2593 if (start == end) 2594 return (0); 2595 modify_map = true; 2596 vm_map_lock(map); 2597 break; 2598 case MADV_WILLNEED: 2599 case MADV_DONTNEED: 2600 case MADV_FREE: 2601 if (start == end) 2602 return (0); 2603 modify_map = false; 2604 vm_map_lock_read(map); 2605 break; 2606 default: 2607 return (EINVAL); 2608 } 2609 2610 /* 2611 * Locate starting entry and clip if necessary. 2612 */ 2613 VM_MAP_RANGE_CHECK(map, start, end); 2614 2615 if (vm_map_lookup_entry(map, start, &entry)) { 2616 if (modify_map) 2617 vm_map_clip_start(map, entry, start); 2618 } else { 2619 entry = entry->next; 2620 } 2621 2622 if (modify_map) { 2623 /* 2624 * madvise behaviors that are implemented in the vm_map_entry. 2625 * 2626 * We clip the vm_map_entry so that behavioral changes are 2627 * limited to the specified address range. 2628 */ 2629 for (current = entry; current->start < end; 2630 current = current->next) { 2631 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2632 continue; 2633 2634 vm_map_clip_end(map, current, end); 2635 2636 switch (behav) { 2637 case MADV_NORMAL: 2638 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL); 2639 break; 2640 case MADV_SEQUENTIAL: 2641 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL); 2642 break; 2643 case MADV_RANDOM: 2644 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM); 2645 break; 2646 case MADV_NOSYNC: 2647 current->eflags |= MAP_ENTRY_NOSYNC; 2648 break; 2649 case MADV_AUTOSYNC: 2650 current->eflags &= ~MAP_ENTRY_NOSYNC; 2651 break; 2652 case MADV_NOCORE: 2653 current->eflags |= MAP_ENTRY_NOCOREDUMP; 2654 break; 2655 case MADV_CORE: 2656 current->eflags &= ~MAP_ENTRY_NOCOREDUMP; 2657 break; 2658 default: 2659 break; 2660 } 2661 vm_map_simplify_entry(map, current); 2662 } 2663 vm_map_unlock(map); 2664 } else { 2665 vm_pindex_t pstart, pend; 2666 2667 /* 2668 * madvise behaviors that are implemented in the underlying 2669 * vm_object. 2670 * 2671 * Since we don't clip the vm_map_entry, we have to clip 2672 * the vm_object pindex and count. 2673 */ 2674 for (current = entry; current->start < end; 2675 current = current->next) { 2676 vm_offset_t useEnd, useStart; 2677 2678 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 2679 continue; 2680 2681 pstart = OFF_TO_IDX(current->offset); 2682 pend = pstart + atop(current->end - current->start); 2683 useStart = current->start; 2684 useEnd = current->end; 2685 2686 if (current->start < start) { 2687 pstart += atop(start - current->start); 2688 useStart = start; 2689 } 2690 if (current->end > end) { 2691 pend -= atop(current->end - end); 2692 useEnd = end; 2693 } 2694 2695 if (pstart >= pend) 2696 continue; 2697 2698 /* 2699 * Perform the pmap_advise() before clearing 2700 * PGA_REFERENCED in vm_page_advise(). Otherwise, a 2701 * concurrent pmap operation, such as pmap_remove(), 2702 * could clear a reference in the pmap and set 2703 * PGA_REFERENCED on the page before the pmap_advise() 2704 * had completed. Consequently, the page would appear 2705 * referenced based upon an old reference that 2706 * occurred before this pmap_advise() ran. 2707 */ 2708 if (behav == MADV_DONTNEED || behav == MADV_FREE) 2709 pmap_advise(map->pmap, useStart, useEnd, 2710 behav); 2711 2712 vm_object_madvise(current->object.vm_object, pstart, 2713 pend, behav); 2714 2715 /* 2716 * Pre-populate paging structures in the 2717 * WILLNEED case. For wired entries, the 2718 * paging structures are already populated. 2719 */ 2720 if (behav == MADV_WILLNEED && 2721 current->wired_count == 0) { 2722 vm_map_pmap_enter(map, 2723 useStart, 2724 current->protection, 2725 current->object.vm_object, 2726 pstart, 2727 ptoa(pend - pstart), 2728 MAP_PREFAULT_MADVISE 2729 ); 2730 } 2731 } 2732 vm_map_unlock_read(map); 2733 } 2734 return (0); 2735 } 2736 2737 2738 /* 2739 * vm_map_inherit: 2740 * 2741 * Sets the inheritance of the specified address 2742 * range in the target map. Inheritance 2743 * affects how the map will be shared with 2744 * child maps at the time of vmspace_fork. 2745 */ 2746 int 2747 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 2748 vm_inherit_t new_inheritance) 2749 { 2750 vm_map_entry_t entry; 2751 vm_map_entry_t temp_entry; 2752 2753 switch (new_inheritance) { 2754 case VM_INHERIT_NONE: 2755 case VM_INHERIT_COPY: 2756 case VM_INHERIT_SHARE: 2757 case VM_INHERIT_ZERO: 2758 break; 2759 default: 2760 return (KERN_INVALID_ARGUMENT); 2761 } 2762 if (start == end) 2763 return (KERN_SUCCESS); 2764 vm_map_lock(map); 2765 VM_MAP_RANGE_CHECK(map, start, end); 2766 if (vm_map_lookup_entry(map, start, &temp_entry)) { 2767 entry = temp_entry; 2768 vm_map_clip_start(map, entry, start); 2769 } else 2770 entry = temp_entry->next; 2771 while (entry->start < end) { 2772 vm_map_clip_end(map, entry, end); 2773 if ((entry->eflags & MAP_ENTRY_GUARD) == 0 || 2774 new_inheritance != VM_INHERIT_ZERO) 2775 entry->inheritance = new_inheritance; 2776 vm_map_simplify_entry(map, entry); 2777 entry = entry->next; 2778 } 2779 vm_map_unlock(map); 2780 return (KERN_SUCCESS); 2781 } 2782 2783 /* 2784 * vm_map_unwire: 2785 * 2786 * Implements both kernel and user unwiring. 2787 */ 2788 int 2789 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end, 2790 int flags) 2791 { 2792 vm_map_entry_t entry, first_entry, tmp_entry; 2793 vm_offset_t saved_start; 2794 unsigned int last_timestamp; 2795 int rv; 2796 boolean_t need_wakeup, result, user_unwire; 2797 2798 if (start == end) 2799 return (KERN_SUCCESS); 2800 user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 2801 vm_map_lock(map); 2802 VM_MAP_RANGE_CHECK(map, start, end); 2803 if (!vm_map_lookup_entry(map, start, &first_entry)) { 2804 if (flags & VM_MAP_WIRE_HOLESOK) 2805 first_entry = first_entry->next; 2806 else { 2807 vm_map_unlock(map); 2808 return (KERN_INVALID_ADDRESS); 2809 } 2810 } 2811 last_timestamp = map->timestamp; 2812 entry = first_entry; 2813 while (entry->start < end) { 2814 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 2815 /* 2816 * We have not yet clipped the entry. 2817 */ 2818 saved_start = (start >= entry->start) ? start : 2819 entry->start; 2820 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2821 if (vm_map_unlock_and_wait(map, 0)) { 2822 /* 2823 * Allow interruption of user unwiring? 2824 */ 2825 } 2826 vm_map_lock(map); 2827 if (last_timestamp+1 != map->timestamp) { 2828 /* 2829 * Look again for the entry because the map was 2830 * modified while it was unlocked. 2831 * Specifically, the entry may have been 2832 * clipped, merged, or deleted. 2833 */ 2834 if (!vm_map_lookup_entry(map, saved_start, 2835 &tmp_entry)) { 2836 if (flags & VM_MAP_WIRE_HOLESOK) 2837 tmp_entry = tmp_entry->next; 2838 else { 2839 if (saved_start == start) { 2840 /* 2841 * First_entry has been deleted. 2842 */ 2843 vm_map_unlock(map); 2844 return (KERN_INVALID_ADDRESS); 2845 } 2846 end = saved_start; 2847 rv = KERN_INVALID_ADDRESS; 2848 goto done; 2849 } 2850 } 2851 if (entry == first_entry) 2852 first_entry = tmp_entry; 2853 else 2854 first_entry = NULL; 2855 entry = tmp_entry; 2856 } 2857 last_timestamp = map->timestamp; 2858 continue; 2859 } 2860 vm_map_clip_start(map, entry, start); 2861 vm_map_clip_end(map, entry, end); 2862 /* 2863 * Mark the entry in case the map lock is released. (See 2864 * above.) 2865 */ 2866 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 2867 entry->wiring_thread == NULL, 2868 ("owned map entry %p", entry)); 2869 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 2870 entry->wiring_thread = curthread; 2871 /* 2872 * Check the map for holes in the specified region. 2873 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 2874 */ 2875 if (((flags & VM_MAP_WIRE_HOLESOK) == 0) && 2876 (entry->end < end && entry->next->start > entry->end)) { 2877 end = entry->end; 2878 rv = KERN_INVALID_ADDRESS; 2879 goto done; 2880 } 2881 /* 2882 * If system unwiring, require that the entry is system wired. 2883 */ 2884 if (!user_unwire && 2885 vm_map_entry_system_wired_count(entry) == 0) { 2886 end = entry->end; 2887 rv = KERN_INVALID_ARGUMENT; 2888 goto done; 2889 } 2890 entry = entry->next; 2891 } 2892 rv = KERN_SUCCESS; 2893 done: 2894 need_wakeup = FALSE; 2895 if (first_entry == NULL) { 2896 result = vm_map_lookup_entry(map, start, &first_entry); 2897 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 2898 first_entry = first_entry->next; 2899 else 2900 KASSERT(result, ("vm_map_unwire: lookup failed")); 2901 } 2902 for (entry = first_entry; entry->start < end; entry = entry->next) { 2903 /* 2904 * If VM_MAP_WIRE_HOLESOK was specified, an empty 2905 * space in the unwired region could have been mapped 2906 * while the map lock was dropped for draining 2907 * MAP_ENTRY_IN_TRANSITION. Moreover, another thread 2908 * could be simultaneously wiring this new mapping 2909 * entry. Detect these cases and skip any entries 2910 * marked as in transition by us. 2911 */ 2912 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 2913 entry->wiring_thread != curthread) { 2914 KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0, 2915 ("vm_map_unwire: !HOLESOK and new/changed entry")); 2916 continue; 2917 } 2918 2919 if (rv == KERN_SUCCESS && (!user_unwire || 2920 (entry->eflags & MAP_ENTRY_USER_WIRED))) { 2921 if (entry->wired_count == 1) 2922 vm_map_entry_unwire(map, entry); 2923 else 2924 entry->wired_count--; 2925 if (user_unwire) 2926 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2927 } 2928 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 2929 ("vm_map_unwire: in-transition flag missing %p", entry)); 2930 KASSERT(entry->wiring_thread == curthread, 2931 ("vm_map_unwire: alien wire %p", entry)); 2932 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 2933 entry->wiring_thread = NULL; 2934 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 2935 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 2936 need_wakeup = TRUE; 2937 } 2938 vm_map_simplify_entry(map, entry); 2939 } 2940 vm_map_unlock(map); 2941 if (need_wakeup) 2942 vm_map_wakeup(map); 2943 return (rv); 2944 } 2945 2946 static void 2947 vm_map_wire_user_count_sub(u_long npages) 2948 { 2949 2950 atomic_subtract_long(&vm_user_wire_count, npages); 2951 } 2952 2953 static bool 2954 vm_map_wire_user_count_add(u_long npages) 2955 { 2956 u_long wired; 2957 2958 wired = vm_user_wire_count; 2959 do { 2960 if (npages + wired > vm_page_max_user_wired) 2961 return (false); 2962 } while (!atomic_fcmpset_long(&vm_user_wire_count, &wired, 2963 npages + wired)); 2964 2965 return (true); 2966 } 2967 2968 /* 2969 * vm_map_wire_entry_failure: 2970 * 2971 * Handle a wiring failure on the given entry. 2972 * 2973 * The map should be locked. 2974 */ 2975 static void 2976 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry, 2977 vm_offset_t failed_addr) 2978 { 2979 2980 VM_MAP_ASSERT_LOCKED(map); 2981 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 && 2982 entry->wired_count == 1, 2983 ("vm_map_wire_entry_failure: entry %p isn't being wired", entry)); 2984 KASSERT(failed_addr < entry->end, 2985 ("vm_map_wire_entry_failure: entry %p was fully wired", entry)); 2986 2987 /* 2988 * If any pages at the start of this entry were successfully wired, 2989 * then unwire them. 2990 */ 2991 if (failed_addr > entry->start) { 2992 pmap_unwire(map->pmap, entry->start, failed_addr); 2993 vm_object_unwire(entry->object.vm_object, entry->offset, 2994 failed_addr - entry->start, PQ_ACTIVE); 2995 } 2996 2997 /* 2998 * Assign an out-of-range value to represent the failure to wire this 2999 * entry. 3000 */ 3001 entry->wired_count = -1; 3002 } 3003 3004 int 3005 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags) 3006 { 3007 int rv; 3008 3009 vm_map_lock(map); 3010 rv = vm_map_wire_locked(map, start, end, flags); 3011 vm_map_unlock(map); 3012 return (rv); 3013 } 3014 3015 3016 /* 3017 * vm_map_wire_locked: 3018 * 3019 * Implements both kernel and user wiring. Returns with the map locked, 3020 * the map lock may be dropped. 3021 */ 3022 int 3023 vm_map_wire_locked(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags) 3024 { 3025 vm_map_entry_t entry, first_entry, tmp_entry; 3026 vm_offset_t faddr, saved_end, saved_start; 3027 u_long npages; 3028 u_int last_timestamp; 3029 int rv; 3030 boolean_t need_wakeup, result, user_wire; 3031 vm_prot_t prot; 3032 3033 VM_MAP_ASSERT_LOCKED(map); 3034 3035 if (start == end) 3036 return (KERN_SUCCESS); 3037 prot = 0; 3038 if (flags & VM_MAP_WIRE_WRITE) 3039 prot |= VM_PROT_WRITE; 3040 user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE; 3041 VM_MAP_RANGE_CHECK(map, start, end); 3042 if (!vm_map_lookup_entry(map, start, &first_entry)) { 3043 if (flags & VM_MAP_WIRE_HOLESOK) 3044 first_entry = first_entry->next; 3045 else 3046 return (KERN_INVALID_ADDRESS); 3047 } 3048 last_timestamp = map->timestamp; 3049 entry = first_entry; 3050 while (entry->start < end) { 3051 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 3052 /* 3053 * We have not yet clipped the entry. 3054 */ 3055 saved_start = (start >= entry->start) ? start : 3056 entry->start; 3057 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 3058 if (vm_map_unlock_and_wait(map, 0)) { 3059 /* 3060 * Allow interruption of user wiring? 3061 */ 3062 } 3063 vm_map_lock(map); 3064 if (last_timestamp + 1 != map->timestamp) { 3065 /* 3066 * Look again for the entry because the map was 3067 * modified while it was unlocked. 3068 * Specifically, the entry may have been 3069 * clipped, merged, or deleted. 3070 */ 3071 if (!vm_map_lookup_entry(map, saved_start, 3072 &tmp_entry)) { 3073 if (flags & VM_MAP_WIRE_HOLESOK) 3074 tmp_entry = tmp_entry->next; 3075 else { 3076 if (saved_start == start) { 3077 /* 3078 * first_entry has been deleted. 3079 */ 3080 return (KERN_INVALID_ADDRESS); 3081 } 3082 end = saved_start; 3083 rv = KERN_INVALID_ADDRESS; 3084 goto done; 3085 } 3086 } 3087 if (entry == first_entry) 3088 first_entry = tmp_entry; 3089 else 3090 first_entry = NULL; 3091 entry = tmp_entry; 3092 } 3093 last_timestamp = map->timestamp; 3094 continue; 3095 } 3096 vm_map_clip_start(map, entry, start); 3097 vm_map_clip_end(map, entry, end); 3098 /* 3099 * Mark the entry in case the map lock is released. (See 3100 * above.) 3101 */ 3102 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 3103 entry->wiring_thread == NULL, 3104 ("owned map entry %p", entry)); 3105 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 3106 entry->wiring_thread = curthread; 3107 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 3108 || (entry->protection & prot) != prot) { 3109 entry->eflags |= MAP_ENTRY_WIRE_SKIPPED; 3110 if ((flags & VM_MAP_WIRE_HOLESOK) == 0) { 3111 end = entry->end; 3112 rv = KERN_INVALID_ADDRESS; 3113 goto done; 3114 } 3115 goto next_entry; 3116 } 3117 if (entry->wired_count == 0) { 3118 entry->wired_count++; 3119 3120 npages = atop(entry->end - entry->start); 3121 if (user_wire && !vm_map_wire_user_count_add(npages)) { 3122 vm_map_wire_entry_failure(map, entry, 3123 entry->start); 3124 end = entry->end; 3125 rv = KERN_RESOURCE_SHORTAGE; 3126 goto done; 3127 } 3128 3129 /* 3130 * Release the map lock, relying on the in-transition 3131 * mark. Mark the map busy for fork. 3132 */ 3133 saved_start = entry->start; 3134 saved_end = entry->end; 3135 vm_map_busy(map); 3136 vm_map_unlock(map); 3137 3138 faddr = saved_start; 3139 do { 3140 /* 3141 * Simulate a fault to get the page and enter 3142 * it into the physical map. 3143 */ 3144 if ((rv = vm_fault(map, faddr, VM_PROT_NONE, 3145 VM_FAULT_WIRE)) != KERN_SUCCESS) 3146 break; 3147 } while ((faddr += PAGE_SIZE) < saved_end); 3148 vm_map_lock(map); 3149 vm_map_unbusy(map); 3150 if (last_timestamp + 1 != map->timestamp) { 3151 /* 3152 * Look again for the entry because the map was 3153 * modified while it was unlocked. The entry 3154 * may have been clipped, but NOT merged or 3155 * deleted. 3156 */ 3157 result = vm_map_lookup_entry(map, saved_start, 3158 &tmp_entry); 3159 KASSERT(result, ("vm_map_wire: lookup failed")); 3160 if (entry == first_entry) 3161 first_entry = tmp_entry; 3162 else 3163 first_entry = NULL; 3164 entry = tmp_entry; 3165 while (entry->end < saved_end) { 3166 /* 3167 * In case of failure, handle entries 3168 * that were not fully wired here; 3169 * fully wired entries are handled 3170 * later. 3171 */ 3172 if (rv != KERN_SUCCESS && 3173 faddr < entry->end) 3174 vm_map_wire_entry_failure(map, 3175 entry, faddr); 3176 entry = entry->next; 3177 } 3178 } 3179 last_timestamp = map->timestamp; 3180 if (rv != KERN_SUCCESS) { 3181 vm_map_wire_entry_failure(map, entry, faddr); 3182 if (user_wire) 3183 vm_map_wire_user_count_sub(npages); 3184 end = entry->end; 3185 goto done; 3186 } 3187 } else if (!user_wire || 3188 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 3189 entry->wired_count++; 3190 } 3191 /* 3192 * Check the map for holes in the specified region. 3193 * If VM_MAP_WIRE_HOLESOK was specified, skip this check. 3194 */ 3195 next_entry: 3196 if ((flags & VM_MAP_WIRE_HOLESOK) == 0 && 3197 entry->end < end && entry->next->start > entry->end) { 3198 end = entry->end; 3199 rv = KERN_INVALID_ADDRESS; 3200 goto done; 3201 } 3202 entry = entry->next; 3203 } 3204 rv = KERN_SUCCESS; 3205 done: 3206 need_wakeup = FALSE; 3207 if (first_entry == NULL) { 3208 result = vm_map_lookup_entry(map, start, &first_entry); 3209 if (!result && (flags & VM_MAP_WIRE_HOLESOK)) 3210 first_entry = first_entry->next; 3211 else 3212 KASSERT(result, ("vm_map_wire: lookup failed")); 3213 } 3214 for (entry = first_entry; entry->start < end; entry = entry->next) { 3215 /* 3216 * If VM_MAP_WIRE_HOLESOK was specified, an empty 3217 * space in the unwired region could have been mapped 3218 * while the map lock was dropped for faulting in the 3219 * pages or draining MAP_ENTRY_IN_TRANSITION. 3220 * Moreover, another thread could be simultaneously 3221 * wiring this new mapping entry. Detect these cases 3222 * and skip any entries marked as in transition not by us. 3223 */ 3224 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 3225 entry->wiring_thread != curthread) { 3226 KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0, 3227 ("vm_map_wire: !HOLESOK and new/changed entry")); 3228 continue; 3229 } 3230 3231 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) 3232 goto next_entry_done; 3233 3234 if (rv == KERN_SUCCESS) { 3235 if (user_wire) 3236 entry->eflags |= MAP_ENTRY_USER_WIRED; 3237 } else if (entry->wired_count == -1) { 3238 /* 3239 * Wiring failed on this entry. Thus, unwiring is 3240 * unnecessary. 3241 */ 3242 entry->wired_count = 0; 3243 } else if (!user_wire || 3244 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 3245 /* 3246 * Undo the wiring. Wiring succeeded on this entry 3247 * but failed on a later entry. 3248 */ 3249 if (entry->wired_count == 1) { 3250 vm_map_entry_unwire(map, entry); 3251 if (user_wire) 3252 vm_map_wire_user_count_sub( 3253 atop(entry->end - entry->start)); 3254 } else 3255 entry->wired_count--; 3256 } 3257 next_entry_done: 3258 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 3259 ("vm_map_wire: in-transition flag missing %p", entry)); 3260 KASSERT(entry->wiring_thread == curthread, 3261 ("vm_map_wire: alien wire %p", entry)); 3262 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION | 3263 MAP_ENTRY_WIRE_SKIPPED); 3264 entry->wiring_thread = NULL; 3265 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 3266 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 3267 need_wakeup = TRUE; 3268 } 3269 vm_map_simplify_entry(map, entry); 3270 } 3271 if (need_wakeup) 3272 vm_map_wakeup(map); 3273 return (rv); 3274 } 3275 3276 /* 3277 * vm_map_sync 3278 * 3279 * Push any dirty cached pages in the address range to their pager. 3280 * If syncio is TRUE, dirty pages are written synchronously. 3281 * If invalidate is TRUE, any cached pages are freed as well. 3282 * 3283 * If the size of the region from start to end is zero, we are 3284 * supposed to flush all modified pages within the region containing 3285 * start. Unfortunately, a region can be split or coalesced with 3286 * neighboring regions, making it difficult to determine what the 3287 * original region was. Therefore, we approximate this requirement by 3288 * flushing the current region containing start. 3289 * 3290 * Returns an error if any part of the specified range is not mapped. 3291 */ 3292 int 3293 vm_map_sync( 3294 vm_map_t map, 3295 vm_offset_t start, 3296 vm_offset_t end, 3297 boolean_t syncio, 3298 boolean_t invalidate) 3299 { 3300 vm_map_entry_t current; 3301 vm_map_entry_t entry; 3302 vm_size_t size; 3303 vm_object_t object; 3304 vm_ooffset_t offset; 3305 unsigned int last_timestamp; 3306 boolean_t failed; 3307 3308 vm_map_lock_read(map); 3309 VM_MAP_RANGE_CHECK(map, start, end); 3310 if (!vm_map_lookup_entry(map, start, &entry)) { 3311 vm_map_unlock_read(map); 3312 return (KERN_INVALID_ADDRESS); 3313 } else if (start == end) { 3314 start = entry->start; 3315 end = entry->end; 3316 } 3317 /* 3318 * Make a first pass to check for user-wired memory and holes. 3319 */ 3320 for (current = entry; current->start < end; current = current->next) { 3321 if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) { 3322 vm_map_unlock_read(map); 3323 return (KERN_INVALID_ARGUMENT); 3324 } 3325 if (end > current->end && 3326 current->end != current->next->start) { 3327 vm_map_unlock_read(map); 3328 return (KERN_INVALID_ADDRESS); 3329 } 3330 } 3331 3332 if (invalidate) 3333 pmap_remove(map->pmap, start, end); 3334 failed = FALSE; 3335 3336 /* 3337 * Make a second pass, cleaning/uncaching pages from the indicated 3338 * objects as we go. 3339 */ 3340 for (current = entry; current->start < end;) { 3341 offset = current->offset + (start - current->start); 3342 size = (end <= current->end ? end : current->end) - start; 3343 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 3344 vm_map_t smap; 3345 vm_map_entry_t tentry; 3346 vm_size_t tsize; 3347 3348 smap = current->object.sub_map; 3349 vm_map_lock_read(smap); 3350 (void) vm_map_lookup_entry(smap, offset, &tentry); 3351 tsize = tentry->end - offset; 3352 if (tsize < size) 3353 size = tsize; 3354 object = tentry->object.vm_object; 3355 offset = tentry->offset + (offset - tentry->start); 3356 vm_map_unlock_read(smap); 3357 } else { 3358 object = current->object.vm_object; 3359 } 3360 vm_object_reference(object); 3361 last_timestamp = map->timestamp; 3362 vm_map_unlock_read(map); 3363 if (!vm_object_sync(object, offset, size, syncio, invalidate)) 3364 failed = TRUE; 3365 start += size; 3366 vm_object_deallocate(object); 3367 vm_map_lock_read(map); 3368 if (last_timestamp == map->timestamp || 3369 !vm_map_lookup_entry(map, start, ¤t)) 3370 current = current->next; 3371 } 3372 3373 vm_map_unlock_read(map); 3374 return (failed ? KERN_FAILURE : KERN_SUCCESS); 3375 } 3376 3377 /* 3378 * vm_map_entry_unwire: [ internal use only ] 3379 * 3380 * Make the region specified by this entry pageable. 3381 * 3382 * The map in question should be locked. 3383 * [This is the reason for this routine's existence.] 3384 */ 3385 static void 3386 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 3387 { 3388 vm_size_t size; 3389 3390 VM_MAP_ASSERT_LOCKED(map); 3391 KASSERT(entry->wired_count > 0, 3392 ("vm_map_entry_unwire: entry %p isn't wired", entry)); 3393 3394 size = entry->end - entry->start; 3395 if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0) 3396 vm_map_wire_user_count_sub(atop(size)); 3397 pmap_unwire(map->pmap, entry->start, entry->end); 3398 vm_object_unwire(entry->object.vm_object, entry->offset, size, 3399 PQ_ACTIVE); 3400 entry->wired_count = 0; 3401 } 3402 3403 static void 3404 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map) 3405 { 3406 3407 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) 3408 vm_object_deallocate(entry->object.vm_object); 3409 uma_zfree(system_map ? kmapentzone : mapentzone, entry); 3410 } 3411 3412 /* 3413 * vm_map_entry_delete: [ internal use only ] 3414 * 3415 * Deallocate the given entry from the target map. 3416 */ 3417 static void 3418 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry) 3419 { 3420 vm_object_t object; 3421 vm_pindex_t offidxstart, offidxend, count, size1; 3422 vm_size_t size; 3423 3424 vm_map_entry_unlink(map, entry, UNLINK_MERGE_NONE); 3425 object = entry->object.vm_object; 3426 3427 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) { 3428 MPASS(entry->cred == NULL); 3429 MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0); 3430 MPASS(object == NULL); 3431 vm_map_entry_deallocate(entry, map->system_map); 3432 return; 3433 } 3434 3435 size = entry->end - entry->start; 3436 map->size -= size; 3437 3438 if (entry->cred != NULL) { 3439 swap_release_by_cred(size, entry->cred); 3440 crfree(entry->cred); 3441 } 3442 3443 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 && 3444 (object != NULL)) { 3445 KASSERT(entry->cred == NULL || object->cred == NULL || 3446 (entry->eflags & MAP_ENTRY_NEEDS_COPY), 3447 ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry)); 3448 count = atop(size); 3449 offidxstart = OFF_TO_IDX(entry->offset); 3450 offidxend = offidxstart + count; 3451 VM_OBJECT_WLOCK(object); 3452 if (object->ref_count != 1 && ((object->flags & (OBJ_NOSPLIT | 3453 OBJ_ONEMAPPING)) == OBJ_ONEMAPPING || 3454 object == kernel_object)) { 3455 vm_object_collapse(object); 3456 3457 /* 3458 * The option OBJPR_NOTMAPPED can be passed here 3459 * because vm_map_delete() already performed 3460 * pmap_remove() on the only mapping to this range 3461 * of pages. 3462 */ 3463 vm_object_page_remove(object, offidxstart, offidxend, 3464 OBJPR_NOTMAPPED); 3465 if (object->type == OBJT_SWAP) 3466 swap_pager_freespace(object, offidxstart, 3467 count); 3468 if (offidxend >= object->size && 3469 offidxstart < object->size) { 3470 size1 = object->size; 3471 object->size = offidxstart; 3472 if (object->cred != NULL) { 3473 size1 -= object->size; 3474 KASSERT(object->charge >= ptoa(size1), 3475 ("object %p charge < 0", object)); 3476 swap_release_by_cred(ptoa(size1), 3477 object->cred); 3478 object->charge -= ptoa(size1); 3479 } 3480 } 3481 } 3482 VM_OBJECT_WUNLOCK(object); 3483 } else 3484 entry->object.vm_object = NULL; 3485 if (map->system_map) 3486 vm_map_entry_deallocate(entry, TRUE); 3487 else { 3488 entry->next = curthread->td_map_def_user; 3489 curthread->td_map_def_user = entry; 3490 } 3491 } 3492 3493 /* 3494 * vm_map_delete: [ internal use only ] 3495 * 3496 * Deallocates the given address range from the target 3497 * map. 3498 */ 3499 int 3500 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end) 3501 { 3502 vm_map_entry_t entry; 3503 vm_map_entry_t first_entry; 3504 3505 VM_MAP_ASSERT_LOCKED(map); 3506 if (start == end) 3507 return (KERN_SUCCESS); 3508 3509 /* 3510 * Find the start of the region, and clip it 3511 */ 3512 if (!vm_map_lookup_entry(map, start, &first_entry)) 3513 entry = first_entry->next; 3514 else { 3515 entry = first_entry; 3516 vm_map_clip_start(map, entry, start); 3517 } 3518 3519 /* 3520 * Step through all entries in this region 3521 */ 3522 while (entry->start < end) { 3523 vm_map_entry_t next; 3524 3525 /* 3526 * Wait for wiring or unwiring of an entry to complete. 3527 * Also wait for any system wirings to disappear on 3528 * user maps. 3529 */ 3530 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 || 3531 (vm_map_pmap(map) != kernel_pmap && 3532 vm_map_entry_system_wired_count(entry) != 0)) { 3533 unsigned int last_timestamp; 3534 vm_offset_t saved_start; 3535 vm_map_entry_t tmp_entry; 3536 3537 saved_start = entry->start; 3538 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 3539 last_timestamp = map->timestamp; 3540 (void) vm_map_unlock_and_wait(map, 0); 3541 vm_map_lock(map); 3542 if (last_timestamp + 1 != map->timestamp) { 3543 /* 3544 * Look again for the entry because the map was 3545 * modified while it was unlocked. 3546 * Specifically, the entry may have been 3547 * clipped, merged, or deleted. 3548 */ 3549 if (!vm_map_lookup_entry(map, saved_start, 3550 &tmp_entry)) 3551 entry = tmp_entry->next; 3552 else { 3553 entry = tmp_entry; 3554 vm_map_clip_start(map, entry, 3555 saved_start); 3556 } 3557 } 3558 continue; 3559 } 3560 vm_map_clip_end(map, entry, end); 3561 3562 next = entry->next; 3563 3564 /* 3565 * Unwire before removing addresses from the pmap; otherwise, 3566 * unwiring will put the entries back in the pmap. 3567 */ 3568 if (entry->wired_count != 0) 3569 vm_map_entry_unwire(map, entry); 3570 3571 /* 3572 * Remove mappings for the pages, but only if the 3573 * mappings could exist. For instance, it does not 3574 * make sense to call pmap_remove() for guard entries. 3575 */ 3576 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || 3577 entry->object.vm_object != NULL) 3578 pmap_remove(map->pmap, entry->start, entry->end); 3579 3580 if (entry->end == map->anon_loc) 3581 map->anon_loc = entry->start; 3582 3583 /* 3584 * Delete the entry only after removing all pmap 3585 * entries pointing to its pages. (Otherwise, its 3586 * page frames may be reallocated, and any modify bits 3587 * will be set in the wrong object!) 3588 */ 3589 vm_map_entry_delete(map, entry); 3590 entry = next; 3591 } 3592 return (KERN_SUCCESS); 3593 } 3594 3595 /* 3596 * vm_map_remove: 3597 * 3598 * Remove the given address range from the target map. 3599 * This is the exported form of vm_map_delete. 3600 */ 3601 int 3602 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 3603 { 3604 int result; 3605 3606 vm_map_lock(map); 3607 VM_MAP_RANGE_CHECK(map, start, end); 3608 result = vm_map_delete(map, start, end); 3609 vm_map_unlock(map); 3610 return (result); 3611 } 3612 3613 /* 3614 * vm_map_check_protection: 3615 * 3616 * Assert that the target map allows the specified privilege on the 3617 * entire address region given. The entire region must be allocated. 3618 * 3619 * WARNING! This code does not and should not check whether the 3620 * contents of the region is accessible. For example a smaller file 3621 * might be mapped into a larger address space. 3622 * 3623 * NOTE! This code is also called by munmap(). 3624 * 3625 * The map must be locked. A read lock is sufficient. 3626 */ 3627 boolean_t 3628 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 3629 vm_prot_t protection) 3630 { 3631 vm_map_entry_t entry; 3632 vm_map_entry_t tmp_entry; 3633 3634 if (!vm_map_lookup_entry(map, start, &tmp_entry)) 3635 return (FALSE); 3636 entry = tmp_entry; 3637 3638 while (start < end) { 3639 /* 3640 * No holes allowed! 3641 */ 3642 if (start < entry->start) 3643 return (FALSE); 3644 /* 3645 * Check protection associated with entry. 3646 */ 3647 if ((entry->protection & protection) != protection) 3648 return (FALSE); 3649 /* go to next entry */ 3650 start = entry->end; 3651 entry = entry->next; 3652 } 3653 return (TRUE); 3654 } 3655 3656 /* 3657 * vm_map_copy_entry: 3658 * 3659 * Copies the contents of the source entry to the destination 3660 * entry. The entries *must* be aligned properly. 3661 */ 3662 static void 3663 vm_map_copy_entry( 3664 vm_map_t src_map, 3665 vm_map_t dst_map, 3666 vm_map_entry_t src_entry, 3667 vm_map_entry_t dst_entry, 3668 vm_ooffset_t *fork_charge) 3669 { 3670 vm_object_t src_object; 3671 vm_map_entry_t fake_entry; 3672 vm_offset_t size; 3673 struct ucred *cred; 3674 int charged; 3675 3676 VM_MAP_ASSERT_LOCKED(dst_map); 3677 3678 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP) 3679 return; 3680 3681 if (src_entry->wired_count == 0 || 3682 (src_entry->protection & VM_PROT_WRITE) == 0) { 3683 /* 3684 * If the source entry is marked needs_copy, it is already 3685 * write-protected. 3686 */ 3687 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 && 3688 (src_entry->protection & VM_PROT_WRITE) != 0) { 3689 pmap_protect(src_map->pmap, 3690 src_entry->start, 3691 src_entry->end, 3692 src_entry->protection & ~VM_PROT_WRITE); 3693 } 3694 3695 /* 3696 * Make a copy of the object. 3697 */ 3698 size = src_entry->end - src_entry->start; 3699 if ((src_object = src_entry->object.vm_object) != NULL) { 3700 VM_OBJECT_WLOCK(src_object); 3701 charged = ENTRY_CHARGED(src_entry); 3702 if (src_object->handle == NULL && 3703 (src_object->type == OBJT_DEFAULT || 3704 src_object->type == OBJT_SWAP)) { 3705 vm_object_collapse(src_object); 3706 if ((src_object->flags & (OBJ_NOSPLIT | 3707 OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) { 3708 vm_object_split(src_entry); 3709 src_object = 3710 src_entry->object.vm_object; 3711 } 3712 } 3713 vm_object_reference_locked(src_object); 3714 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 3715 if (src_entry->cred != NULL && 3716 !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 3717 KASSERT(src_object->cred == NULL, 3718 ("OVERCOMMIT: vm_map_copy_entry: cred %p", 3719 src_object)); 3720 src_object->cred = src_entry->cred; 3721 src_object->charge = size; 3722 } 3723 VM_OBJECT_WUNLOCK(src_object); 3724 dst_entry->object.vm_object = src_object; 3725 if (charged) { 3726 cred = curthread->td_ucred; 3727 crhold(cred); 3728 dst_entry->cred = cred; 3729 *fork_charge += size; 3730 if (!(src_entry->eflags & 3731 MAP_ENTRY_NEEDS_COPY)) { 3732 crhold(cred); 3733 src_entry->cred = cred; 3734 *fork_charge += size; 3735 } 3736 } 3737 src_entry->eflags |= MAP_ENTRY_COW | 3738 MAP_ENTRY_NEEDS_COPY; 3739 dst_entry->eflags |= MAP_ENTRY_COW | 3740 MAP_ENTRY_NEEDS_COPY; 3741 dst_entry->offset = src_entry->offset; 3742 if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) { 3743 /* 3744 * MAP_ENTRY_VN_WRITECNT cannot 3745 * indicate write reference from 3746 * src_entry, since the entry is 3747 * marked as needs copy. Allocate a 3748 * fake entry that is used to 3749 * decrement object->un_pager.vnp.writecount 3750 * at the appropriate time. Attach 3751 * fake_entry to the deferred list. 3752 */ 3753 fake_entry = vm_map_entry_create(dst_map); 3754 fake_entry->eflags = MAP_ENTRY_VN_WRITECNT; 3755 src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT; 3756 vm_object_reference(src_object); 3757 fake_entry->object.vm_object = src_object; 3758 fake_entry->start = src_entry->start; 3759 fake_entry->end = src_entry->end; 3760 fake_entry->next = curthread->td_map_def_user; 3761 curthread->td_map_def_user = fake_entry; 3762 } 3763 3764 pmap_copy(dst_map->pmap, src_map->pmap, 3765 dst_entry->start, dst_entry->end - dst_entry->start, 3766 src_entry->start); 3767 } else { 3768 dst_entry->object.vm_object = NULL; 3769 dst_entry->offset = 0; 3770 if (src_entry->cred != NULL) { 3771 dst_entry->cred = curthread->td_ucred; 3772 crhold(dst_entry->cred); 3773 *fork_charge += size; 3774 } 3775 } 3776 } else { 3777 /* 3778 * We don't want to make writeable wired pages copy-on-write. 3779 * Immediately copy these pages into the new map by simulating 3780 * page faults. The new pages are pageable. 3781 */ 3782 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry, 3783 fork_charge); 3784 } 3785 } 3786 3787 /* 3788 * vmspace_map_entry_forked: 3789 * Update the newly-forked vmspace each time a map entry is inherited 3790 * or copied. The values for vm_dsize and vm_tsize are approximate 3791 * (and mostly-obsolete ideas in the face of mmap(2) et al.) 3792 */ 3793 static void 3794 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2, 3795 vm_map_entry_t entry) 3796 { 3797 vm_size_t entrysize; 3798 vm_offset_t newend; 3799 3800 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) 3801 return; 3802 entrysize = entry->end - entry->start; 3803 vm2->vm_map.size += entrysize; 3804 if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) { 3805 vm2->vm_ssize += btoc(entrysize); 3806 } else if (entry->start >= (vm_offset_t)vm1->vm_daddr && 3807 entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) { 3808 newend = MIN(entry->end, 3809 (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)); 3810 vm2->vm_dsize += btoc(newend - entry->start); 3811 } else if (entry->start >= (vm_offset_t)vm1->vm_taddr && 3812 entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) { 3813 newend = MIN(entry->end, 3814 (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)); 3815 vm2->vm_tsize += btoc(newend - entry->start); 3816 } 3817 } 3818 3819 /* 3820 * vmspace_fork: 3821 * Create a new process vmspace structure and vm_map 3822 * based on those of an existing process. The new map 3823 * is based on the old map, according to the inheritance 3824 * values on the regions in that map. 3825 * 3826 * XXX It might be worth coalescing the entries added to the new vmspace. 3827 * 3828 * The source map must not be locked. 3829 */ 3830 struct vmspace * 3831 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge) 3832 { 3833 struct vmspace *vm2; 3834 vm_map_t new_map, old_map; 3835 vm_map_entry_t new_entry, old_entry; 3836 vm_object_t object; 3837 int error, locked; 3838 vm_inherit_t inh; 3839 3840 old_map = &vm1->vm_map; 3841 /* Copy immutable fields of vm1 to vm2. */ 3842 vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map), 3843 pmap_pinit); 3844 if (vm2 == NULL) 3845 return (NULL); 3846 3847 vm2->vm_taddr = vm1->vm_taddr; 3848 vm2->vm_daddr = vm1->vm_daddr; 3849 vm2->vm_maxsaddr = vm1->vm_maxsaddr; 3850 vm_map_lock(old_map); 3851 if (old_map->busy) 3852 vm_map_wait_busy(old_map); 3853 new_map = &vm2->vm_map; 3854 locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */ 3855 KASSERT(locked, ("vmspace_fork: lock failed")); 3856 3857 error = pmap_vmspace_copy(new_map->pmap, old_map->pmap); 3858 if (error != 0) { 3859 sx_xunlock(&old_map->lock); 3860 sx_xunlock(&new_map->lock); 3861 vm_map_process_deferred(); 3862 vmspace_free(vm2); 3863 return (NULL); 3864 } 3865 3866 new_map->anon_loc = old_map->anon_loc; 3867 3868 old_entry = old_map->header.next; 3869 3870 while (old_entry != &old_map->header) { 3871 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) 3872 panic("vm_map_fork: encountered a submap"); 3873 3874 inh = old_entry->inheritance; 3875 if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 && 3876 inh != VM_INHERIT_NONE) 3877 inh = VM_INHERIT_COPY; 3878 3879 switch (inh) { 3880 case VM_INHERIT_NONE: 3881 break; 3882 3883 case VM_INHERIT_SHARE: 3884 /* 3885 * Clone the entry, creating the shared object if necessary. 3886 */ 3887 object = old_entry->object.vm_object; 3888 if (object == NULL) { 3889 object = vm_object_allocate(OBJT_DEFAULT, 3890 atop(old_entry->end - old_entry->start)); 3891 old_entry->object.vm_object = object; 3892 old_entry->offset = 0; 3893 if (old_entry->cred != NULL) { 3894 object->cred = old_entry->cred; 3895 object->charge = old_entry->end - 3896 old_entry->start; 3897 old_entry->cred = NULL; 3898 } 3899 } 3900 3901 /* 3902 * Add the reference before calling vm_object_shadow 3903 * to insure that a shadow object is created. 3904 */ 3905 vm_object_reference(object); 3906 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 3907 vm_object_shadow(&old_entry->object.vm_object, 3908 &old_entry->offset, 3909 old_entry->end - old_entry->start); 3910 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 3911 /* Transfer the second reference too. */ 3912 vm_object_reference( 3913 old_entry->object.vm_object); 3914 3915 /* 3916 * As in vm_map_simplify_entry(), the 3917 * vnode lock will not be acquired in 3918 * this call to vm_object_deallocate(). 3919 */ 3920 vm_object_deallocate(object); 3921 object = old_entry->object.vm_object; 3922 } 3923 VM_OBJECT_WLOCK(object); 3924 vm_object_clear_flag(object, OBJ_ONEMAPPING); 3925 if (old_entry->cred != NULL) { 3926 KASSERT(object->cred == NULL, ("vmspace_fork both cred")); 3927 object->cred = old_entry->cred; 3928 object->charge = old_entry->end - old_entry->start; 3929 old_entry->cred = NULL; 3930 } 3931 3932 /* 3933 * Assert the correct state of the vnode 3934 * v_writecount while the object is locked, to 3935 * not relock it later for the assertion 3936 * correctness. 3937 */ 3938 if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT && 3939 object->type == OBJT_VNODE) { 3940 KASSERT(((struct vnode *)object->handle)-> 3941 v_writecount > 0, 3942 ("vmspace_fork: v_writecount %p", object)); 3943 KASSERT(object->un_pager.vnp.writemappings > 0, 3944 ("vmspace_fork: vnp.writecount %p", 3945 object)); 3946 } 3947 VM_OBJECT_WUNLOCK(object); 3948 3949 /* 3950 * Clone the entry, referencing the shared object. 3951 */ 3952 new_entry = vm_map_entry_create(new_map); 3953 *new_entry = *old_entry; 3954 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 3955 MAP_ENTRY_IN_TRANSITION); 3956 new_entry->wiring_thread = NULL; 3957 new_entry->wired_count = 0; 3958 if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) { 3959 vnode_pager_update_writecount(object, 3960 new_entry->start, new_entry->end); 3961 } 3962 vm_map_entry_set_vnode_text(new_entry, true); 3963 3964 /* 3965 * Insert the entry into the new map -- we know we're 3966 * inserting at the end of the new map. 3967 */ 3968 vm_map_entry_link(new_map, new_entry); 3969 vmspace_map_entry_forked(vm1, vm2, new_entry); 3970 3971 /* 3972 * Update the physical map 3973 */ 3974 pmap_copy(new_map->pmap, old_map->pmap, 3975 new_entry->start, 3976 (old_entry->end - old_entry->start), 3977 old_entry->start); 3978 break; 3979 3980 case VM_INHERIT_COPY: 3981 /* 3982 * Clone the entry and link into the map. 3983 */ 3984 new_entry = vm_map_entry_create(new_map); 3985 *new_entry = *old_entry; 3986 /* 3987 * Copied entry is COW over the old object. 3988 */ 3989 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 3990 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT); 3991 new_entry->wiring_thread = NULL; 3992 new_entry->wired_count = 0; 3993 new_entry->object.vm_object = NULL; 3994 new_entry->cred = NULL; 3995 vm_map_entry_link(new_map, new_entry); 3996 vmspace_map_entry_forked(vm1, vm2, new_entry); 3997 vm_map_copy_entry(old_map, new_map, old_entry, 3998 new_entry, fork_charge); 3999 vm_map_entry_set_vnode_text(new_entry, true); 4000 break; 4001 4002 case VM_INHERIT_ZERO: 4003 /* 4004 * Create a new anonymous mapping entry modelled from 4005 * the old one. 4006 */ 4007 new_entry = vm_map_entry_create(new_map); 4008 memset(new_entry, 0, sizeof(*new_entry)); 4009 4010 new_entry->start = old_entry->start; 4011 new_entry->end = old_entry->end; 4012 new_entry->eflags = old_entry->eflags & 4013 ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION | 4014 MAP_ENTRY_VN_WRITECNT | MAP_ENTRY_VN_EXEC); 4015 new_entry->protection = old_entry->protection; 4016 new_entry->max_protection = old_entry->max_protection; 4017 new_entry->inheritance = VM_INHERIT_ZERO; 4018 4019 vm_map_entry_link(new_map, new_entry); 4020 vmspace_map_entry_forked(vm1, vm2, new_entry); 4021 4022 new_entry->cred = curthread->td_ucred; 4023 crhold(new_entry->cred); 4024 *fork_charge += (new_entry->end - new_entry->start); 4025 4026 break; 4027 } 4028 old_entry = old_entry->next; 4029 } 4030 /* 4031 * Use inlined vm_map_unlock() to postpone handling the deferred 4032 * map entries, which cannot be done until both old_map and 4033 * new_map locks are released. 4034 */ 4035 sx_xunlock(&old_map->lock); 4036 sx_xunlock(&new_map->lock); 4037 vm_map_process_deferred(); 4038 4039 return (vm2); 4040 } 4041 4042 /* 4043 * Create a process's stack for exec_new_vmspace(). This function is never 4044 * asked to wire the newly created stack. 4045 */ 4046 int 4047 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 4048 vm_prot_t prot, vm_prot_t max, int cow) 4049 { 4050 vm_size_t growsize, init_ssize; 4051 rlim_t vmemlim; 4052 int rv; 4053 4054 MPASS((map->flags & MAP_WIREFUTURE) == 0); 4055 growsize = sgrowsiz; 4056 init_ssize = (max_ssize < growsize) ? max_ssize : growsize; 4057 vm_map_lock(map); 4058 vmemlim = lim_cur(curthread, RLIMIT_VMEM); 4059 /* If we would blow our VMEM resource limit, no go */ 4060 if (map->size + init_ssize > vmemlim) { 4061 rv = KERN_NO_SPACE; 4062 goto out; 4063 } 4064 rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot, 4065 max, cow); 4066 out: 4067 vm_map_unlock(map); 4068 return (rv); 4069 } 4070 4071 static int stack_guard_page = 1; 4072 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN, 4073 &stack_guard_page, 0, 4074 "Specifies the number of guard pages for a stack that grows"); 4075 4076 static int 4077 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 4078 vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow) 4079 { 4080 vm_map_entry_t new_entry, prev_entry; 4081 vm_offset_t bot, gap_bot, gap_top, top; 4082 vm_size_t init_ssize, sgp; 4083 int orient, rv; 4084 4085 /* 4086 * The stack orientation is piggybacked with the cow argument. 4087 * Extract it into orient and mask the cow argument so that we 4088 * don't pass it around further. 4089 */ 4090 orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP); 4091 KASSERT(orient != 0, ("No stack grow direction")); 4092 KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP), 4093 ("bi-dir stack")); 4094 4095 if (addrbos < vm_map_min(map) || 4096 addrbos + max_ssize > vm_map_max(map) || 4097 addrbos + max_ssize <= addrbos) 4098 return (KERN_INVALID_ADDRESS); 4099 sgp = (vm_size_t)stack_guard_page * PAGE_SIZE; 4100 if (sgp >= max_ssize) 4101 return (KERN_INVALID_ARGUMENT); 4102 4103 init_ssize = growsize; 4104 if (max_ssize < init_ssize + sgp) 4105 init_ssize = max_ssize - sgp; 4106 4107 /* If addr is already mapped, no go */ 4108 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) 4109 return (KERN_NO_SPACE); 4110 4111 /* 4112 * If we can't accommodate max_ssize in the current mapping, no go. 4113 */ 4114 if (prev_entry->next->start < addrbos + max_ssize) 4115 return (KERN_NO_SPACE); 4116 4117 /* 4118 * We initially map a stack of only init_ssize. We will grow as 4119 * needed later. Depending on the orientation of the stack (i.e. 4120 * the grow direction) we either map at the top of the range, the 4121 * bottom of the range or in the middle. 4122 * 4123 * Note: we would normally expect prot and max to be VM_PROT_ALL, 4124 * and cow to be 0. Possibly we should eliminate these as input 4125 * parameters, and just pass these values here in the insert call. 4126 */ 4127 if (orient == MAP_STACK_GROWS_DOWN) { 4128 bot = addrbos + max_ssize - init_ssize; 4129 top = bot + init_ssize; 4130 gap_bot = addrbos; 4131 gap_top = bot; 4132 } else /* if (orient == MAP_STACK_GROWS_UP) */ { 4133 bot = addrbos; 4134 top = bot + init_ssize; 4135 gap_bot = top; 4136 gap_top = addrbos + max_ssize; 4137 } 4138 rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow); 4139 if (rv != KERN_SUCCESS) 4140 return (rv); 4141 new_entry = prev_entry->next; 4142 KASSERT(new_entry->end == top || new_entry->start == bot, 4143 ("Bad entry start/end for new stack entry")); 4144 KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 || 4145 (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0, 4146 ("new entry lacks MAP_ENTRY_GROWS_DOWN")); 4147 KASSERT((orient & MAP_STACK_GROWS_UP) == 0 || 4148 (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0, 4149 ("new entry lacks MAP_ENTRY_GROWS_UP")); 4150 rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE, 4151 VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ? 4152 MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP)); 4153 if (rv != KERN_SUCCESS) 4154 (void)vm_map_delete(map, bot, top); 4155 return (rv); 4156 } 4157 4158 /* 4159 * Attempts to grow a vm stack entry. Returns KERN_SUCCESS if we 4160 * successfully grow the stack. 4161 */ 4162 static int 4163 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry) 4164 { 4165 vm_map_entry_t stack_entry; 4166 struct proc *p; 4167 struct vmspace *vm; 4168 struct ucred *cred; 4169 vm_offset_t gap_end, gap_start, grow_start; 4170 size_t grow_amount, guard, max_grow; 4171 rlim_t lmemlim, stacklim, vmemlim; 4172 int rv, rv1; 4173 bool gap_deleted, grow_down, is_procstack; 4174 #ifdef notyet 4175 uint64_t limit; 4176 #endif 4177 #ifdef RACCT 4178 int error; 4179 #endif 4180 4181 p = curproc; 4182 vm = p->p_vmspace; 4183 4184 /* 4185 * Disallow stack growth when the access is performed by a 4186 * debugger or AIO daemon. The reason is that the wrong 4187 * resource limits are applied. 4188 */ 4189 if (map != &p->p_vmspace->vm_map || p->p_textvp == NULL) 4190 return (KERN_FAILURE); 4191 4192 MPASS(!map->system_map); 4193 4194 guard = stack_guard_page * PAGE_SIZE; 4195 lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK); 4196 stacklim = lim_cur(curthread, RLIMIT_STACK); 4197 vmemlim = lim_cur(curthread, RLIMIT_VMEM); 4198 retry: 4199 /* If addr is not in a hole for a stack grow area, no need to grow. */ 4200 if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry)) 4201 return (KERN_FAILURE); 4202 if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0) 4203 return (KERN_SUCCESS); 4204 if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) { 4205 stack_entry = gap_entry->next; 4206 if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 || 4207 stack_entry->start != gap_entry->end) 4208 return (KERN_FAILURE); 4209 grow_amount = round_page(stack_entry->start - addr); 4210 grow_down = true; 4211 } else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) { 4212 stack_entry = gap_entry->prev; 4213 if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 || 4214 stack_entry->end != gap_entry->start) 4215 return (KERN_FAILURE); 4216 grow_amount = round_page(addr + 1 - stack_entry->end); 4217 grow_down = false; 4218 } else { 4219 return (KERN_FAILURE); 4220 } 4221 max_grow = gap_entry->end - gap_entry->start; 4222 if (guard > max_grow) 4223 return (KERN_NO_SPACE); 4224 max_grow -= guard; 4225 if (grow_amount > max_grow) 4226 return (KERN_NO_SPACE); 4227 4228 /* 4229 * If this is the main process stack, see if we're over the stack 4230 * limit. 4231 */ 4232 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr && 4233 addr < (vm_offset_t)p->p_sysent->sv_usrstack; 4234 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) 4235 return (KERN_NO_SPACE); 4236 4237 #ifdef RACCT 4238 if (racct_enable) { 4239 PROC_LOCK(p); 4240 if (is_procstack && racct_set(p, RACCT_STACK, 4241 ctob(vm->vm_ssize) + grow_amount)) { 4242 PROC_UNLOCK(p); 4243 return (KERN_NO_SPACE); 4244 } 4245 PROC_UNLOCK(p); 4246 } 4247 #endif 4248 4249 grow_amount = roundup(grow_amount, sgrowsiz); 4250 if (grow_amount > max_grow) 4251 grow_amount = max_grow; 4252 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 4253 grow_amount = trunc_page((vm_size_t)stacklim) - 4254 ctob(vm->vm_ssize); 4255 } 4256 4257 #ifdef notyet 4258 PROC_LOCK(p); 4259 limit = racct_get_available(p, RACCT_STACK); 4260 PROC_UNLOCK(p); 4261 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit)) 4262 grow_amount = limit - ctob(vm->vm_ssize); 4263 #endif 4264 4265 if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) { 4266 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) { 4267 rv = KERN_NO_SPACE; 4268 goto out; 4269 } 4270 #ifdef RACCT 4271 if (racct_enable) { 4272 PROC_LOCK(p); 4273 if (racct_set(p, RACCT_MEMLOCK, 4274 ptoa(pmap_wired_count(map->pmap)) + grow_amount)) { 4275 PROC_UNLOCK(p); 4276 rv = KERN_NO_SPACE; 4277 goto out; 4278 } 4279 PROC_UNLOCK(p); 4280 } 4281 #endif 4282 } 4283 4284 /* If we would blow our VMEM resource limit, no go */ 4285 if (map->size + grow_amount > vmemlim) { 4286 rv = KERN_NO_SPACE; 4287 goto out; 4288 } 4289 #ifdef RACCT 4290 if (racct_enable) { 4291 PROC_LOCK(p); 4292 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) { 4293 PROC_UNLOCK(p); 4294 rv = KERN_NO_SPACE; 4295 goto out; 4296 } 4297 PROC_UNLOCK(p); 4298 } 4299 #endif 4300 4301 if (vm_map_lock_upgrade(map)) { 4302 gap_entry = NULL; 4303 vm_map_lock_read(map); 4304 goto retry; 4305 } 4306 4307 if (grow_down) { 4308 grow_start = gap_entry->end - grow_amount; 4309 if (gap_entry->start + grow_amount == gap_entry->end) { 4310 gap_start = gap_entry->start; 4311 gap_end = gap_entry->end; 4312 vm_map_entry_delete(map, gap_entry); 4313 gap_deleted = true; 4314 } else { 4315 MPASS(gap_entry->start < gap_entry->end - grow_amount); 4316 gap_entry->end -= grow_amount; 4317 vm_map_entry_resize_free(map, gap_entry); 4318 gap_deleted = false; 4319 } 4320 rv = vm_map_insert(map, NULL, 0, grow_start, 4321 grow_start + grow_amount, 4322 stack_entry->protection, stack_entry->max_protection, 4323 MAP_STACK_GROWS_DOWN); 4324 if (rv != KERN_SUCCESS) { 4325 if (gap_deleted) { 4326 rv1 = vm_map_insert(map, NULL, 0, gap_start, 4327 gap_end, VM_PROT_NONE, VM_PROT_NONE, 4328 MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN); 4329 MPASS(rv1 == KERN_SUCCESS); 4330 } else { 4331 gap_entry->end += grow_amount; 4332 vm_map_entry_resize_free(map, gap_entry); 4333 } 4334 } 4335 } else { 4336 grow_start = stack_entry->end; 4337 cred = stack_entry->cred; 4338 if (cred == NULL && stack_entry->object.vm_object != NULL) 4339 cred = stack_entry->object.vm_object->cred; 4340 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred)) 4341 rv = KERN_NO_SPACE; 4342 /* Grow the underlying object if applicable. */ 4343 else if (stack_entry->object.vm_object == NULL || 4344 vm_object_coalesce(stack_entry->object.vm_object, 4345 stack_entry->offset, 4346 (vm_size_t)(stack_entry->end - stack_entry->start), 4347 (vm_size_t)grow_amount, cred != NULL)) { 4348 if (gap_entry->start + grow_amount == gap_entry->end) 4349 vm_map_entry_delete(map, gap_entry); 4350 else 4351 gap_entry->start += grow_amount; 4352 stack_entry->end += grow_amount; 4353 map->size += grow_amount; 4354 vm_map_entry_resize_free(map, stack_entry); 4355 rv = KERN_SUCCESS; 4356 } else 4357 rv = KERN_FAILURE; 4358 } 4359 if (rv == KERN_SUCCESS && is_procstack) 4360 vm->vm_ssize += btoc(grow_amount); 4361 4362 /* 4363 * Heed the MAP_WIREFUTURE flag if it was set for this process. 4364 */ 4365 if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) { 4366 rv = vm_map_wire_locked(map, grow_start, 4367 grow_start + grow_amount, 4368 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 4369 } 4370 vm_map_lock_downgrade(map); 4371 4372 out: 4373 #ifdef RACCT 4374 if (racct_enable && rv != KERN_SUCCESS) { 4375 PROC_LOCK(p); 4376 error = racct_set(p, RACCT_VMEM, map->size); 4377 KASSERT(error == 0, ("decreasing RACCT_VMEM failed")); 4378 if (!old_mlock) { 4379 error = racct_set(p, RACCT_MEMLOCK, 4380 ptoa(pmap_wired_count(map->pmap))); 4381 KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed")); 4382 } 4383 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize)); 4384 KASSERT(error == 0, ("decreasing RACCT_STACK failed")); 4385 PROC_UNLOCK(p); 4386 } 4387 #endif 4388 4389 return (rv); 4390 } 4391 4392 /* 4393 * Unshare the specified VM space for exec. If other processes are 4394 * mapped to it, then create a new one. The new vmspace is null. 4395 */ 4396 int 4397 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser) 4398 { 4399 struct vmspace *oldvmspace = p->p_vmspace; 4400 struct vmspace *newvmspace; 4401 4402 KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0, 4403 ("vmspace_exec recursed")); 4404 newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit); 4405 if (newvmspace == NULL) 4406 return (ENOMEM); 4407 newvmspace->vm_swrss = oldvmspace->vm_swrss; 4408 /* 4409 * This code is written like this for prototype purposes. The 4410 * goal is to avoid running down the vmspace here, but let the 4411 * other process's that are still using the vmspace to finally 4412 * run it down. Even though there is little or no chance of blocking 4413 * here, it is a good idea to keep this form for future mods. 4414 */ 4415 PROC_VMSPACE_LOCK(p); 4416 p->p_vmspace = newvmspace; 4417 PROC_VMSPACE_UNLOCK(p); 4418 if (p == curthread->td_proc) 4419 pmap_activate(curthread); 4420 curthread->td_pflags |= TDP_EXECVMSPC; 4421 return (0); 4422 } 4423 4424 /* 4425 * Unshare the specified VM space for forcing COW. This 4426 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 4427 */ 4428 int 4429 vmspace_unshare(struct proc *p) 4430 { 4431 struct vmspace *oldvmspace = p->p_vmspace; 4432 struct vmspace *newvmspace; 4433 vm_ooffset_t fork_charge; 4434 4435 if (oldvmspace->vm_refcnt == 1) 4436 return (0); 4437 fork_charge = 0; 4438 newvmspace = vmspace_fork(oldvmspace, &fork_charge); 4439 if (newvmspace == NULL) 4440 return (ENOMEM); 4441 if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) { 4442 vmspace_free(newvmspace); 4443 return (ENOMEM); 4444 } 4445 PROC_VMSPACE_LOCK(p); 4446 p->p_vmspace = newvmspace; 4447 PROC_VMSPACE_UNLOCK(p); 4448 if (p == curthread->td_proc) 4449 pmap_activate(curthread); 4450 vmspace_free(oldvmspace); 4451 return (0); 4452 } 4453 4454 /* 4455 * vm_map_lookup: 4456 * 4457 * Finds the VM object, offset, and 4458 * protection for a given virtual address in the 4459 * specified map, assuming a page fault of the 4460 * type specified. 4461 * 4462 * Leaves the map in question locked for read; return 4463 * values are guaranteed until a vm_map_lookup_done 4464 * call is performed. Note that the map argument 4465 * is in/out; the returned map must be used in 4466 * the call to vm_map_lookup_done. 4467 * 4468 * A handle (out_entry) is returned for use in 4469 * vm_map_lookup_done, to make that fast. 4470 * 4471 * If a lookup is requested with "write protection" 4472 * specified, the map may be changed to perform virtual 4473 * copying operations, although the data referenced will 4474 * remain the same. 4475 */ 4476 int 4477 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 4478 vm_offset_t vaddr, 4479 vm_prot_t fault_typea, 4480 vm_map_entry_t *out_entry, /* OUT */ 4481 vm_object_t *object, /* OUT */ 4482 vm_pindex_t *pindex, /* OUT */ 4483 vm_prot_t *out_prot, /* OUT */ 4484 boolean_t *wired) /* OUT */ 4485 { 4486 vm_map_entry_t entry; 4487 vm_map_t map = *var_map; 4488 vm_prot_t prot; 4489 vm_prot_t fault_type = fault_typea; 4490 vm_object_t eobject; 4491 vm_size_t size; 4492 struct ucred *cred; 4493 4494 RetryLookup: 4495 4496 vm_map_lock_read(map); 4497 4498 RetryLookupLocked: 4499 /* 4500 * Lookup the faulting address. 4501 */ 4502 if (!vm_map_lookup_entry(map, vaddr, out_entry)) { 4503 vm_map_unlock_read(map); 4504 return (KERN_INVALID_ADDRESS); 4505 } 4506 4507 entry = *out_entry; 4508 4509 /* 4510 * Handle submaps. 4511 */ 4512 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 4513 vm_map_t old_map = map; 4514 4515 *var_map = map = entry->object.sub_map; 4516 vm_map_unlock_read(old_map); 4517 goto RetryLookup; 4518 } 4519 4520 /* 4521 * Check whether this task is allowed to have this page. 4522 */ 4523 prot = entry->protection; 4524 if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) { 4525 fault_typea &= ~VM_PROT_FAULT_LOOKUP; 4526 if (prot == VM_PROT_NONE && map != kernel_map && 4527 (entry->eflags & MAP_ENTRY_GUARD) != 0 && 4528 (entry->eflags & (MAP_ENTRY_STACK_GAP_DN | 4529 MAP_ENTRY_STACK_GAP_UP)) != 0 && 4530 vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS) 4531 goto RetryLookupLocked; 4532 } 4533 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; 4534 if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) { 4535 vm_map_unlock_read(map); 4536 return (KERN_PROTECTION_FAILURE); 4537 } 4538 KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags & 4539 (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) != 4540 (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY), 4541 ("entry %p flags %x", entry, entry->eflags)); 4542 if ((fault_typea & VM_PROT_COPY) != 0 && 4543 (entry->max_protection & VM_PROT_WRITE) == 0 && 4544 (entry->eflags & MAP_ENTRY_COW) == 0) { 4545 vm_map_unlock_read(map); 4546 return (KERN_PROTECTION_FAILURE); 4547 } 4548 4549 /* 4550 * If this page is not pageable, we have to get it for all possible 4551 * accesses. 4552 */ 4553 *wired = (entry->wired_count != 0); 4554 if (*wired) 4555 fault_type = entry->protection; 4556 size = entry->end - entry->start; 4557 /* 4558 * If the entry was copy-on-write, we either ... 4559 */ 4560 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 4561 /* 4562 * If we want to write the page, we may as well handle that 4563 * now since we've got the map locked. 4564 * 4565 * If we don't need to write the page, we just demote the 4566 * permissions allowed. 4567 */ 4568 if ((fault_type & VM_PROT_WRITE) != 0 || 4569 (fault_typea & VM_PROT_COPY) != 0) { 4570 /* 4571 * Make a new object, and place it in the object 4572 * chain. Note that no new references have appeared 4573 * -- one just moved from the map to the new 4574 * object. 4575 */ 4576 if (vm_map_lock_upgrade(map)) 4577 goto RetryLookup; 4578 4579 if (entry->cred == NULL) { 4580 /* 4581 * The debugger owner is charged for 4582 * the memory. 4583 */ 4584 cred = curthread->td_ucred; 4585 crhold(cred); 4586 if (!swap_reserve_by_cred(size, cred)) { 4587 crfree(cred); 4588 vm_map_unlock(map); 4589 return (KERN_RESOURCE_SHORTAGE); 4590 } 4591 entry->cred = cred; 4592 } 4593 vm_object_shadow(&entry->object.vm_object, 4594 &entry->offset, size); 4595 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 4596 eobject = entry->object.vm_object; 4597 if (eobject->cred != NULL) { 4598 /* 4599 * The object was not shadowed. 4600 */ 4601 swap_release_by_cred(size, entry->cred); 4602 crfree(entry->cred); 4603 entry->cred = NULL; 4604 } else if (entry->cred != NULL) { 4605 VM_OBJECT_WLOCK(eobject); 4606 eobject->cred = entry->cred; 4607 eobject->charge = size; 4608 VM_OBJECT_WUNLOCK(eobject); 4609 entry->cred = NULL; 4610 } 4611 4612 vm_map_lock_downgrade(map); 4613 } else { 4614 /* 4615 * We're attempting to read a copy-on-write page -- 4616 * don't allow writes. 4617 */ 4618 prot &= ~VM_PROT_WRITE; 4619 } 4620 } 4621 4622 /* 4623 * Create an object if necessary. 4624 */ 4625 if (entry->object.vm_object == NULL && 4626 !map->system_map) { 4627 if (vm_map_lock_upgrade(map)) 4628 goto RetryLookup; 4629 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT, 4630 atop(size)); 4631 entry->offset = 0; 4632 if (entry->cred != NULL) { 4633 VM_OBJECT_WLOCK(entry->object.vm_object); 4634 entry->object.vm_object->cred = entry->cred; 4635 entry->object.vm_object->charge = size; 4636 VM_OBJECT_WUNLOCK(entry->object.vm_object); 4637 entry->cred = NULL; 4638 } 4639 vm_map_lock_downgrade(map); 4640 } 4641 4642 /* 4643 * Return the object/offset from this entry. If the entry was 4644 * copy-on-write or empty, it has been fixed up. 4645 */ 4646 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 4647 *object = entry->object.vm_object; 4648 4649 *out_prot = prot; 4650 return (KERN_SUCCESS); 4651 } 4652 4653 /* 4654 * vm_map_lookup_locked: 4655 * 4656 * Lookup the faulting address. A version of vm_map_lookup that returns 4657 * KERN_FAILURE instead of blocking on map lock or memory allocation. 4658 */ 4659 int 4660 vm_map_lookup_locked(vm_map_t *var_map, /* IN/OUT */ 4661 vm_offset_t vaddr, 4662 vm_prot_t fault_typea, 4663 vm_map_entry_t *out_entry, /* OUT */ 4664 vm_object_t *object, /* OUT */ 4665 vm_pindex_t *pindex, /* OUT */ 4666 vm_prot_t *out_prot, /* OUT */ 4667 boolean_t *wired) /* OUT */ 4668 { 4669 vm_map_entry_t entry; 4670 vm_map_t map = *var_map; 4671 vm_prot_t prot; 4672 vm_prot_t fault_type = fault_typea; 4673 4674 /* 4675 * Lookup the faulting address. 4676 */ 4677 if (!vm_map_lookup_entry(map, vaddr, out_entry)) 4678 return (KERN_INVALID_ADDRESS); 4679 4680 entry = *out_entry; 4681 4682 /* 4683 * Fail if the entry refers to a submap. 4684 */ 4685 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 4686 return (KERN_FAILURE); 4687 4688 /* 4689 * Check whether this task is allowed to have this page. 4690 */ 4691 prot = entry->protection; 4692 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; 4693 if ((fault_type & prot) != fault_type) 4694 return (KERN_PROTECTION_FAILURE); 4695 4696 /* 4697 * If this page is not pageable, we have to get it for all possible 4698 * accesses. 4699 */ 4700 *wired = (entry->wired_count != 0); 4701 if (*wired) 4702 fault_type = entry->protection; 4703 4704 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 4705 /* 4706 * Fail if the entry was copy-on-write for a write fault. 4707 */ 4708 if (fault_type & VM_PROT_WRITE) 4709 return (KERN_FAILURE); 4710 /* 4711 * We're attempting to read a copy-on-write page -- 4712 * don't allow writes. 4713 */ 4714 prot &= ~VM_PROT_WRITE; 4715 } 4716 4717 /* 4718 * Fail if an object should be created. 4719 */ 4720 if (entry->object.vm_object == NULL && !map->system_map) 4721 return (KERN_FAILURE); 4722 4723 /* 4724 * Return the object/offset from this entry. If the entry was 4725 * copy-on-write or empty, it has been fixed up. 4726 */ 4727 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 4728 *object = entry->object.vm_object; 4729 4730 *out_prot = prot; 4731 return (KERN_SUCCESS); 4732 } 4733 4734 /* 4735 * vm_map_lookup_done: 4736 * 4737 * Releases locks acquired by a vm_map_lookup 4738 * (according to the handle returned by that lookup). 4739 */ 4740 void 4741 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry) 4742 { 4743 /* 4744 * Unlock the main-level map 4745 */ 4746 vm_map_unlock_read(map); 4747 } 4748 4749 vm_offset_t 4750 vm_map_max_KBI(const struct vm_map *map) 4751 { 4752 4753 return (vm_map_max(map)); 4754 } 4755 4756 vm_offset_t 4757 vm_map_min_KBI(const struct vm_map *map) 4758 { 4759 4760 return (vm_map_min(map)); 4761 } 4762 4763 pmap_t 4764 vm_map_pmap_KBI(vm_map_t map) 4765 { 4766 4767 return (map->pmap); 4768 } 4769 4770 #include "opt_ddb.h" 4771 #ifdef DDB 4772 #include <sys/kernel.h> 4773 4774 #include <ddb/ddb.h> 4775 4776 static void 4777 vm_map_print(vm_map_t map) 4778 { 4779 vm_map_entry_t entry; 4780 4781 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 4782 (void *)map, 4783 (void *)map->pmap, map->nentries, map->timestamp); 4784 4785 db_indent += 2; 4786 for (entry = map->header.next; entry != &map->header; 4787 entry = entry->next) { 4788 db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n", 4789 (void *)entry, (void *)entry->start, (void *)entry->end, 4790 entry->eflags); 4791 { 4792 static char *inheritance_name[4] = 4793 {"share", "copy", "none", "donate_copy"}; 4794 4795 db_iprintf(" prot=%x/%x/%s", 4796 entry->protection, 4797 entry->max_protection, 4798 inheritance_name[(int)(unsigned char)entry->inheritance]); 4799 if (entry->wired_count != 0) 4800 db_printf(", wired"); 4801 } 4802 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 4803 db_printf(", share=%p, offset=0x%jx\n", 4804 (void *)entry->object.sub_map, 4805 (uintmax_t)entry->offset); 4806 if ((entry->prev == &map->header) || 4807 (entry->prev->object.sub_map != 4808 entry->object.sub_map)) { 4809 db_indent += 2; 4810 vm_map_print((vm_map_t)entry->object.sub_map); 4811 db_indent -= 2; 4812 } 4813 } else { 4814 if (entry->cred != NULL) 4815 db_printf(", ruid %d", entry->cred->cr_ruid); 4816 db_printf(", object=%p, offset=0x%jx", 4817 (void *)entry->object.vm_object, 4818 (uintmax_t)entry->offset); 4819 if (entry->object.vm_object && entry->object.vm_object->cred) 4820 db_printf(", obj ruid %d charge %jx", 4821 entry->object.vm_object->cred->cr_ruid, 4822 (uintmax_t)entry->object.vm_object->charge); 4823 if (entry->eflags & MAP_ENTRY_COW) 4824 db_printf(", copy (%s)", 4825 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 4826 db_printf("\n"); 4827 4828 if ((entry->prev == &map->header) || 4829 (entry->prev->object.vm_object != 4830 entry->object.vm_object)) { 4831 db_indent += 2; 4832 vm_object_print((db_expr_t)(intptr_t) 4833 entry->object.vm_object, 4834 0, 0, (char *)0); 4835 db_indent -= 2; 4836 } 4837 } 4838 } 4839 db_indent -= 2; 4840 } 4841 4842 DB_SHOW_COMMAND(map, map) 4843 { 4844 4845 if (!have_addr) { 4846 db_printf("usage: show map <addr>\n"); 4847 return; 4848 } 4849 vm_map_print((vm_map_t)addr); 4850 } 4851 4852 DB_SHOW_COMMAND(procvm, procvm) 4853 { 4854 struct proc *p; 4855 4856 if (have_addr) { 4857 p = db_lookup_proc(addr); 4858 } else { 4859 p = curproc; 4860 } 4861 4862 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 4863 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 4864 (void *)vmspace_pmap(p->p_vmspace)); 4865 4866 vm_map_print((vm_map_t)&p->p_vmspace->vm_map); 4867 } 4868 4869 #endif /* DDB */ 4870