xref: /freebsd/sys/vm/vm_map.c (revision 52c2bb75163559a6e2866ad374a7de67a4ea1273)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62 
63 /*
64  *	Virtual memory mapping module.
65  */
66 
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/kernel.h>
73 #include <sys/ktr.h>
74 #include <sys/lock.h>
75 #include <sys/mutex.h>
76 #include <sys/proc.h>
77 #include <sys/vmmeter.h>
78 #include <sys/mman.h>
79 #include <sys/vnode.h>
80 #include <sys/racct.h>
81 #include <sys/resourcevar.h>
82 #include <sys/rwlock.h>
83 #include <sys/file.h>
84 #include <sys/sysctl.h>
85 #include <sys/sysent.h>
86 #include <sys/shm.h>
87 
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_pageout.h>
94 #include <vm/vm_object.h>
95 #include <vm/vm_pager.h>
96 #include <vm/vm_kern.h>
97 #include <vm/vm_extern.h>
98 #include <vm/vnode_pager.h>
99 #include <vm/swap_pager.h>
100 #include <vm/uma.h>
101 
102 /*
103  *	Virtual memory maps provide for the mapping, protection,
104  *	and sharing of virtual memory objects.  In addition,
105  *	this module provides for an efficient virtual copy of
106  *	memory from one map to another.
107  *
108  *	Synchronization is required prior to most operations.
109  *
110  *	Maps consist of an ordered doubly-linked list of simple
111  *	entries; a self-adjusting binary search tree of these
112  *	entries is used to speed up lookups.
113  *
114  *	Since portions of maps are specified by start/end addresses,
115  *	which may not align with existing map entries, all
116  *	routines merely "clip" entries to these start/end values.
117  *	[That is, an entry is split into two, bordering at a
118  *	start or end value.]  Note that these clippings may not
119  *	always be necessary (as the two resulting entries are then
120  *	not changed); however, the clipping is done for convenience.
121  *
122  *	As mentioned above, virtual copy operations are performed
123  *	by copying VM object references from one map to
124  *	another, and then marking both regions as copy-on-write.
125  */
126 
127 static struct mtx map_sleep_mtx;
128 static uma_zone_t mapentzone;
129 static uma_zone_t kmapentzone;
130 static uma_zone_t mapzone;
131 static uma_zone_t vmspace_zone;
132 static int vmspace_zinit(void *mem, int size, int flags);
133 static int vm_map_zinit(void *mem, int ize, int flags);
134 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
135     vm_offset_t max);
136 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
137 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
138 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
139 static int vm_map_growstack(vm_map_t map, vm_offset_t addr,
140     vm_map_entry_t gap_entry);
141 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
142     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
143 #ifdef INVARIANTS
144 static void vm_map_zdtor(void *mem, int size, void *arg);
145 static void vmspace_zdtor(void *mem, int size, void *arg);
146 #endif
147 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
148     vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
149     int cow);
150 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
151     vm_offset_t failed_addr);
152 
153 #define	ENTRY_CHARGED(e) ((e)->cred != NULL || \
154     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
155      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
156 
157 /*
158  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
159  * stable.
160  */
161 #define PROC_VMSPACE_LOCK(p) do { } while (0)
162 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
163 
164 /*
165  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
166  *
167  *	Asserts that the starting and ending region
168  *	addresses fall within the valid range of the map.
169  */
170 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
171 		{					\
172 		if (start < vm_map_min(map))		\
173 			start = vm_map_min(map);	\
174 		if (end > vm_map_max(map))		\
175 			end = vm_map_max(map);		\
176 		if (start > end)			\
177 			start = end;			\
178 		}
179 
180 /*
181  *	vm_map_startup:
182  *
183  *	Initialize the vm_map module.  Must be called before
184  *	any other vm_map routines.
185  *
186  *	Map and entry structures are allocated from the general
187  *	purpose memory pool with some exceptions:
188  *
189  *	- The kernel map and kmem submap are allocated statically.
190  *	- Kernel map entries are allocated out of a static pool.
191  *
192  *	These restrictions are necessary since malloc() uses the
193  *	maps and requires map entries.
194  */
195 
196 void
197 vm_map_startup(void)
198 {
199 	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
200 	mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
201 #ifdef INVARIANTS
202 	    vm_map_zdtor,
203 #else
204 	    NULL,
205 #endif
206 	    vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
207 	uma_prealloc(mapzone, MAX_KMAP);
208 	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
209 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
210 	    UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
211 	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
212 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
213 	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
214 #ifdef INVARIANTS
215 	    vmspace_zdtor,
216 #else
217 	    NULL,
218 #endif
219 	    vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
220 }
221 
222 static int
223 vmspace_zinit(void *mem, int size, int flags)
224 {
225 	struct vmspace *vm;
226 
227 	vm = (struct vmspace *)mem;
228 
229 	vm->vm_map.pmap = NULL;
230 	(void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
231 	PMAP_LOCK_INIT(vmspace_pmap(vm));
232 	return (0);
233 }
234 
235 static int
236 vm_map_zinit(void *mem, int size, int flags)
237 {
238 	vm_map_t map;
239 
240 	map = (vm_map_t)mem;
241 	memset(map, 0, sizeof(*map));
242 	mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
243 	sx_init(&map->lock, "vm map (user)");
244 	return (0);
245 }
246 
247 #ifdef INVARIANTS
248 static void
249 vmspace_zdtor(void *mem, int size, void *arg)
250 {
251 	struct vmspace *vm;
252 
253 	vm = (struct vmspace *)mem;
254 
255 	vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
256 }
257 static void
258 vm_map_zdtor(void *mem, int size, void *arg)
259 {
260 	vm_map_t map;
261 
262 	map = (vm_map_t)mem;
263 	KASSERT(map->nentries == 0,
264 	    ("map %p nentries == %d on free.",
265 	    map, map->nentries));
266 	KASSERT(map->size == 0,
267 	    ("map %p size == %lu on free.",
268 	    map, (unsigned long)map->size));
269 }
270 #endif	/* INVARIANTS */
271 
272 /*
273  * Allocate a vmspace structure, including a vm_map and pmap,
274  * and initialize those structures.  The refcnt is set to 1.
275  *
276  * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit().
277  */
278 struct vmspace *
279 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
280 {
281 	struct vmspace *vm;
282 
283 	vm = uma_zalloc(vmspace_zone, M_WAITOK);
284 	KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
285 	if (!pinit(vmspace_pmap(vm))) {
286 		uma_zfree(vmspace_zone, vm);
287 		return (NULL);
288 	}
289 	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
290 	_vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
291 	vm->vm_refcnt = 1;
292 	vm->vm_shm = NULL;
293 	vm->vm_swrss = 0;
294 	vm->vm_tsize = 0;
295 	vm->vm_dsize = 0;
296 	vm->vm_ssize = 0;
297 	vm->vm_taddr = 0;
298 	vm->vm_daddr = 0;
299 	vm->vm_maxsaddr = 0;
300 	return (vm);
301 }
302 
303 #ifdef RACCT
304 static void
305 vmspace_container_reset(struct proc *p)
306 {
307 
308 	PROC_LOCK(p);
309 	racct_set(p, RACCT_DATA, 0);
310 	racct_set(p, RACCT_STACK, 0);
311 	racct_set(p, RACCT_RSS, 0);
312 	racct_set(p, RACCT_MEMLOCK, 0);
313 	racct_set(p, RACCT_VMEM, 0);
314 	PROC_UNLOCK(p);
315 }
316 #endif
317 
318 static inline void
319 vmspace_dofree(struct vmspace *vm)
320 {
321 
322 	CTR1(KTR_VM, "vmspace_free: %p", vm);
323 
324 	/*
325 	 * Make sure any SysV shm is freed, it might not have been in
326 	 * exit1().
327 	 */
328 	shmexit(vm);
329 
330 	/*
331 	 * Lock the map, to wait out all other references to it.
332 	 * Delete all of the mappings and pages they hold, then call
333 	 * the pmap module to reclaim anything left.
334 	 */
335 	(void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map),
336 	    vm_map_max(&vm->vm_map));
337 
338 	pmap_release(vmspace_pmap(vm));
339 	vm->vm_map.pmap = NULL;
340 	uma_zfree(vmspace_zone, vm);
341 }
342 
343 void
344 vmspace_free(struct vmspace *vm)
345 {
346 
347 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
348 	    "vmspace_free() called");
349 
350 	if (vm->vm_refcnt == 0)
351 		panic("vmspace_free: attempt to free already freed vmspace");
352 
353 	if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
354 		vmspace_dofree(vm);
355 }
356 
357 void
358 vmspace_exitfree(struct proc *p)
359 {
360 	struct vmspace *vm;
361 
362 	PROC_VMSPACE_LOCK(p);
363 	vm = p->p_vmspace;
364 	p->p_vmspace = NULL;
365 	PROC_VMSPACE_UNLOCK(p);
366 	KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
367 	vmspace_free(vm);
368 }
369 
370 void
371 vmspace_exit(struct thread *td)
372 {
373 	int refcnt;
374 	struct vmspace *vm;
375 	struct proc *p;
376 
377 	/*
378 	 * Release user portion of address space.
379 	 * This releases references to vnodes,
380 	 * which could cause I/O if the file has been unlinked.
381 	 * Need to do this early enough that we can still sleep.
382 	 *
383 	 * The last exiting process to reach this point releases as
384 	 * much of the environment as it can. vmspace_dofree() is the
385 	 * slower fallback in case another process had a temporary
386 	 * reference to the vmspace.
387 	 */
388 
389 	p = td->td_proc;
390 	vm = p->p_vmspace;
391 	atomic_add_int(&vmspace0.vm_refcnt, 1);
392 	refcnt = vm->vm_refcnt;
393 	do {
394 		if (refcnt > 1 && p->p_vmspace != &vmspace0) {
395 			/* Switch now since other proc might free vmspace */
396 			PROC_VMSPACE_LOCK(p);
397 			p->p_vmspace = &vmspace0;
398 			PROC_VMSPACE_UNLOCK(p);
399 			pmap_activate(td);
400 		}
401 	} while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt - 1));
402 	if (refcnt == 1) {
403 		if (p->p_vmspace != vm) {
404 			/* vmspace not yet freed, switch back */
405 			PROC_VMSPACE_LOCK(p);
406 			p->p_vmspace = vm;
407 			PROC_VMSPACE_UNLOCK(p);
408 			pmap_activate(td);
409 		}
410 		pmap_remove_pages(vmspace_pmap(vm));
411 		/* Switch now since this proc will free vmspace */
412 		PROC_VMSPACE_LOCK(p);
413 		p->p_vmspace = &vmspace0;
414 		PROC_VMSPACE_UNLOCK(p);
415 		pmap_activate(td);
416 		vmspace_dofree(vm);
417 	}
418 #ifdef RACCT
419 	if (racct_enable)
420 		vmspace_container_reset(p);
421 #endif
422 }
423 
424 /* Acquire reference to vmspace owned by another process. */
425 
426 struct vmspace *
427 vmspace_acquire_ref(struct proc *p)
428 {
429 	struct vmspace *vm;
430 	int refcnt;
431 
432 	PROC_VMSPACE_LOCK(p);
433 	vm = p->p_vmspace;
434 	if (vm == NULL) {
435 		PROC_VMSPACE_UNLOCK(p);
436 		return (NULL);
437 	}
438 	refcnt = vm->vm_refcnt;
439 	do {
440 		if (refcnt <= 0) { 	/* Avoid 0->1 transition */
441 			PROC_VMSPACE_UNLOCK(p);
442 			return (NULL);
443 		}
444 	} while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt + 1));
445 	if (vm != p->p_vmspace) {
446 		PROC_VMSPACE_UNLOCK(p);
447 		vmspace_free(vm);
448 		return (NULL);
449 	}
450 	PROC_VMSPACE_UNLOCK(p);
451 	return (vm);
452 }
453 
454 /*
455  * Switch between vmspaces in an AIO kernel process.
456  *
457  * The AIO kernel processes switch to and from a user process's
458  * vmspace while performing an I/O operation on behalf of a user
459  * process.  The new vmspace is either the vmspace of a user process
460  * obtained from an active AIO request or the initial vmspace of the
461  * AIO kernel process (when it is idling).  Because user processes
462  * will block to drain any active AIO requests before proceeding in
463  * exit() or execve(), the vmspace reference count for these vmspaces
464  * can never be 0.  This allows for a much simpler implementation than
465  * the loop in vmspace_acquire_ref() above.  Similarly, AIO kernel
466  * processes hold an extra reference on their initial vmspace for the
467  * life of the process so that this guarantee is true for any vmspace
468  * passed as 'newvm'.
469  */
470 void
471 vmspace_switch_aio(struct vmspace *newvm)
472 {
473 	struct vmspace *oldvm;
474 
475 	/* XXX: Need some way to assert that this is an aio daemon. */
476 
477 	KASSERT(newvm->vm_refcnt > 0,
478 	    ("vmspace_switch_aio: newvm unreferenced"));
479 
480 	oldvm = curproc->p_vmspace;
481 	if (oldvm == newvm)
482 		return;
483 
484 	/*
485 	 * Point to the new address space and refer to it.
486 	 */
487 	curproc->p_vmspace = newvm;
488 	atomic_add_int(&newvm->vm_refcnt, 1);
489 
490 	/* Activate the new mapping. */
491 	pmap_activate(curthread);
492 
493 	/* Remove the daemon's reference to the old address space. */
494 	KASSERT(oldvm->vm_refcnt > 1,
495 	    ("vmspace_switch_aio: oldvm dropping last reference"));
496 	vmspace_free(oldvm);
497 }
498 
499 void
500 _vm_map_lock(vm_map_t map, const char *file, int line)
501 {
502 
503 	if (map->system_map)
504 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
505 	else
506 		sx_xlock_(&map->lock, file, line);
507 	map->timestamp++;
508 }
509 
510 void
511 vm_map_entry_set_vnode_text(vm_map_entry_t entry, bool add)
512 {
513 	vm_object_t object, object1;
514 	struct vnode *vp;
515 
516 	if ((entry->eflags & MAP_ENTRY_VN_EXEC) == 0)
517 		return;
518 	KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
519 	    ("Submap with execs"));
520 	object = entry->object.vm_object;
521 	KASSERT(object != NULL, ("No object for text, entry %p", entry));
522 	VM_OBJECT_RLOCK(object);
523 	while ((object1 = object->backing_object) != NULL) {
524 		VM_OBJECT_RLOCK(object1);
525 		VM_OBJECT_RUNLOCK(object);
526 		object = object1;
527 	}
528 
529 	/*
530 	 * For OBJT_DEAD objects, v_writecount was handled in
531 	 * vnode_pager_dealloc().
532 	 */
533 	if (object->type != OBJT_DEAD) {
534 		KASSERT(((object->flags & OBJ_TMPFS) == 0 &&
535 		    object->type == OBJT_VNODE) ||
536 		    ((object->flags & OBJ_TMPFS) != 0 &&
537 		    object->type == OBJT_SWAP),
538 		    ("vm_map_entry_set_vnode_text: wrong object type, "
539 		    "entry %p, object %p, add %d", entry, object, add));
540 		vp = (object->flags & OBJ_TMPFS) == 0 ? object->handle :
541 		    object->un_pager.swp.swp_tmpfs;
542 		if (add)
543 			VOP_SET_TEXT_CHECKED(vp);
544 		else
545 			VOP_UNSET_TEXT_CHECKED(vp);
546 	}
547 	VM_OBJECT_RUNLOCK(object);
548 }
549 
550 static void
551 vm_map_process_deferred(void)
552 {
553 	struct thread *td;
554 	vm_map_entry_t entry, next;
555 	vm_object_t object;
556 
557 	td = curthread;
558 	entry = td->td_map_def_user;
559 	td->td_map_def_user = NULL;
560 	while (entry != NULL) {
561 		next = entry->next;
562 		MPASS((entry->eflags & (MAP_ENTRY_VN_WRITECNT |
563 		    MAP_ENTRY_VN_EXEC)) != (MAP_ENTRY_VN_WRITECNT |
564 		    MAP_ENTRY_VN_EXEC));
565 		if ((entry->eflags & MAP_ENTRY_VN_WRITECNT) != 0) {
566 			/*
567 			 * Decrement the object's writemappings and
568 			 * possibly the vnode's v_writecount.
569 			 */
570 			KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
571 			    ("Submap with writecount"));
572 			object = entry->object.vm_object;
573 			KASSERT(object != NULL, ("No object for writecount"));
574 			vnode_pager_release_writecount(object, entry->start,
575 			    entry->end);
576 		}
577 		vm_map_entry_set_vnode_text(entry, false);
578 		vm_map_entry_deallocate(entry, FALSE);
579 		entry = next;
580 	}
581 }
582 
583 void
584 _vm_map_unlock(vm_map_t map, const char *file, int line)
585 {
586 
587 	if (map->system_map)
588 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
589 	else {
590 		sx_xunlock_(&map->lock, file, line);
591 		vm_map_process_deferred();
592 	}
593 }
594 
595 void
596 _vm_map_lock_read(vm_map_t map, const char *file, int line)
597 {
598 
599 	if (map->system_map)
600 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
601 	else
602 		sx_slock_(&map->lock, file, line);
603 }
604 
605 void
606 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
607 {
608 
609 	if (map->system_map)
610 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
611 	else {
612 		sx_sunlock_(&map->lock, file, line);
613 		vm_map_process_deferred();
614 	}
615 }
616 
617 int
618 _vm_map_trylock(vm_map_t map, const char *file, int line)
619 {
620 	int error;
621 
622 	error = map->system_map ?
623 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
624 	    !sx_try_xlock_(&map->lock, file, line);
625 	if (error == 0)
626 		map->timestamp++;
627 	return (error == 0);
628 }
629 
630 int
631 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
632 {
633 	int error;
634 
635 	error = map->system_map ?
636 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
637 	    !sx_try_slock_(&map->lock, file, line);
638 	return (error == 0);
639 }
640 
641 /*
642  *	_vm_map_lock_upgrade:	[ internal use only ]
643  *
644  *	Tries to upgrade a read (shared) lock on the specified map to a write
645  *	(exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
646  *	non-zero value if the upgrade fails.  If the upgrade fails, the map is
647  *	returned without a read or write lock held.
648  *
649  *	Requires that the map be read locked.
650  */
651 int
652 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
653 {
654 	unsigned int last_timestamp;
655 
656 	if (map->system_map) {
657 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
658 	} else {
659 		if (!sx_try_upgrade_(&map->lock, file, line)) {
660 			last_timestamp = map->timestamp;
661 			sx_sunlock_(&map->lock, file, line);
662 			vm_map_process_deferred();
663 			/*
664 			 * If the map's timestamp does not change while the
665 			 * map is unlocked, then the upgrade succeeds.
666 			 */
667 			sx_xlock_(&map->lock, file, line);
668 			if (last_timestamp != map->timestamp) {
669 				sx_xunlock_(&map->lock, file, line);
670 				return (1);
671 			}
672 		}
673 	}
674 	map->timestamp++;
675 	return (0);
676 }
677 
678 void
679 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
680 {
681 
682 	if (map->system_map) {
683 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
684 	} else
685 		sx_downgrade_(&map->lock, file, line);
686 }
687 
688 /*
689  *	vm_map_locked:
690  *
691  *	Returns a non-zero value if the caller holds a write (exclusive) lock
692  *	on the specified map and the value "0" otherwise.
693  */
694 int
695 vm_map_locked(vm_map_t map)
696 {
697 
698 	if (map->system_map)
699 		return (mtx_owned(&map->system_mtx));
700 	else
701 		return (sx_xlocked(&map->lock));
702 }
703 
704 #ifdef INVARIANTS
705 static void
706 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
707 {
708 
709 	if (map->system_map)
710 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
711 	else
712 		sx_assert_(&map->lock, SA_XLOCKED, file, line);
713 }
714 
715 #define	VM_MAP_ASSERT_LOCKED(map) \
716     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
717 
718 #ifdef DIAGNOSTIC
719 static int enable_vmmap_check = 1;
720 #else
721 static int enable_vmmap_check = 0;
722 #endif
723 SYSCTL_INT(_debug, OID_AUTO, vmmap_check, CTLFLAG_RWTUN,
724     &enable_vmmap_check, 0, "Enable vm map consistency checking");
725 
726 static void
727 _vm_map_assert_consistent(vm_map_t map)
728 {
729 	vm_map_entry_t entry;
730 	vm_map_entry_t child;
731 	vm_size_t max_left, max_right;
732 
733 	if (!enable_vmmap_check)
734 		return;
735 
736 	for (entry = map->header.next; entry != &map->header;
737 	    entry = entry->next) {
738 		KASSERT(entry->prev->end <= entry->start,
739 		    ("map %p prev->end = %jx, start = %jx", map,
740 		    (uintmax_t)entry->prev->end, (uintmax_t)entry->start));
741 		KASSERT(entry->start < entry->end,
742 		    ("map %p start = %jx, end = %jx", map,
743 		    (uintmax_t)entry->start, (uintmax_t)entry->end));
744 		KASSERT(entry->end <= entry->next->start,
745 		    ("map %p end = %jx, next->start = %jx", map,
746 		    (uintmax_t)entry->end, (uintmax_t)entry->next->start));
747 		KASSERT(entry->left == NULL ||
748 		    entry->left->start < entry->start,
749 		    ("map %p left->start = %jx, start = %jx", map,
750 		    (uintmax_t)entry->left->start, (uintmax_t)entry->start));
751 		KASSERT(entry->right == NULL ||
752 		    entry->start < entry->right->start,
753 		    ("map %p start = %jx, right->start = %jx", map,
754 		    (uintmax_t)entry->start, (uintmax_t)entry->right->start));
755 		child = entry->left;
756 		max_left = (child != NULL) ? child->max_free :
757 			entry->start - entry->prev->end;
758 		child = entry->right;
759 		max_right = (child != NULL) ? child->max_free :
760 			entry->next->start - entry->end;
761 		KASSERT(entry->max_free == MAX(max_left, max_right),
762 		    ("map %p max = %jx, max_left = %jx, max_right = %jx", map,
763 		     (uintmax_t)entry->max_free,
764 		     (uintmax_t)max_left, (uintmax_t)max_right));
765 	}
766 }
767 
768 #define VM_MAP_ASSERT_CONSISTENT(map) \
769     _vm_map_assert_consistent(map)
770 #else
771 #define	VM_MAP_ASSERT_LOCKED(map)
772 #define VM_MAP_ASSERT_CONSISTENT(map)
773 #endif /* INVARIANTS */
774 
775 /*
776  *	_vm_map_unlock_and_wait:
777  *
778  *	Atomically releases the lock on the specified map and puts the calling
779  *	thread to sleep.  The calling thread will remain asleep until either
780  *	vm_map_wakeup() is performed on the map or the specified timeout is
781  *	exceeded.
782  *
783  *	WARNING!  This function does not perform deferred deallocations of
784  *	objects and map	entries.  Therefore, the calling thread is expected to
785  *	reacquire the map lock after reawakening and later perform an ordinary
786  *	unlock operation, such as vm_map_unlock(), before completing its
787  *	operation on the map.
788  */
789 int
790 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
791 {
792 
793 	mtx_lock(&map_sleep_mtx);
794 	if (map->system_map)
795 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
796 	else
797 		sx_xunlock_(&map->lock, file, line);
798 	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
799 	    timo));
800 }
801 
802 /*
803  *	vm_map_wakeup:
804  *
805  *	Awaken any threads that have slept on the map using
806  *	vm_map_unlock_and_wait().
807  */
808 void
809 vm_map_wakeup(vm_map_t map)
810 {
811 
812 	/*
813 	 * Acquire and release map_sleep_mtx to prevent a wakeup()
814 	 * from being performed (and lost) between the map unlock
815 	 * and the msleep() in _vm_map_unlock_and_wait().
816 	 */
817 	mtx_lock(&map_sleep_mtx);
818 	mtx_unlock(&map_sleep_mtx);
819 	wakeup(&map->root);
820 }
821 
822 void
823 vm_map_busy(vm_map_t map)
824 {
825 
826 	VM_MAP_ASSERT_LOCKED(map);
827 	map->busy++;
828 }
829 
830 void
831 vm_map_unbusy(vm_map_t map)
832 {
833 
834 	VM_MAP_ASSERT_LOCKED(map);
835 	KASSERT(map->busy, ("vm_map_unbusy: not busy"));
836 	if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
837 		vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
838 		wakeup(&map->busy);
839 	}
840 }
841 
842 void
843 vm_map_wait_busy(vm_map_t map)
844 {
845 
846 	VM_MAP_ASSERT_LOCKED(map);
847 	while (map->busy) {
848 		vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
849 		if (map->system_map)
850 			msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
851 		else
852 			sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
853 	}
854 	map->timestamp++;
855 }
856 
857 long
858 vmspace_resident_count(struct vmspace *vmspace)
859 {
860 	return pmap_resident_count(vmspace_pmap(vmspace));
861 }
862 
863 /*
864  *	vm_map_create:
865  *
866  *	Creates and returns a new empty VM map with
867  *	the given physical map structure, and having
868  *	the given lower and upper address bounds.
869  */
870 vm_map_t
871 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
872 {
873 	vm_map_t result;
874 
875 	result = uma_zalloc(mapzone, M_WAITOK);
876 	CTR1(KTR_VM, "vm_map_create: %p", result);
877 	_vm_map_init(result, pmap, min, max);
878 	return (result);
879 }
880 
881 /*
882  * Initialize an existing vm_map structure
883  * such as that in the vmspace structure.
884  */
885 static void
886 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
887 {
888 
889 	map->header.next = map->header.prev = &map->header;
890 	map->header.eflags = MAP_ENTRY_HEADER;
891 	map->needs_wakeup = FALSE;
892 	map->system_map = 0;
893 	map->pmap = pmap;
894 	map->header.end = min;
895 	map->header.start = max;
896 	map->flags = 0;
897 	map->root = NULL;
898 	map->timestamp = 0;
899 	map->busy = 0;
900 	map->anon_loc = 0;
901 }
902 
903 void
904 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
905 {
906 
907 	_vm_map_init(map, pmap, min, max);
908 	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
909 	sx_init(&map->lock, "user map");
910 }
911 
912 /*
913  *	vm_map_entry_dispose:	[ internal use only ]
914  *
915  *	Inverse of vm_map_entry_create.
916  */
917 static void
918 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
919 {
920 	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
921 }
922 
923 /*
924  *	vm_map_entry_create:	[ internal use only ]
925  *
926  *	Allocates a VM map entry for insertion.
927  *	No entry fields are filled in.
928  */
929 static vm_map_entry_t
930 vm_map_entry_create(vm_map_t map)
931 {
932 	vm_map_entry_t new_entry;
933 
934 	if (map->system_map)
935 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
936 	else
937 		new_entry = uma_zalloc(mapentzone, M_WAITOK);
938 	if (new_entry == NULL)
939 		panic("vm_map_entry_create: kernel resources exhausted");
940 	return (new_entry);
941 }
942 
943 /*
944  *	vm_map_entry_set_behavior:
945  *
946  *	Set the expected access behavior, either normal, random, or
947  *	sequential.
948  */
949 static inline void
950 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
951 {
952 	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
953 	    (behavior & MAP_ENTRY_BEHAV_MASK);
954 }
955 
956 /*
957  *	vm_map_entry_set_max_free:
958  *
959  *	Set the max_free field in a vm_map_entry.
960  */
961 static inline void
962 vm_map_entry_set_max_free(vm_map_entry_t entry)
963 {
964 	vm_map_entry_t child;
965 	vm_size_t max_left, max_right;
966 
967 	child = entry->left;
968 	max_left = (child != NULL) ? child->max_free :
969 	    entry->start - entry->prev->end;
970 	child = entry->right;
971 	max_right = (child != NULL) ? child->max_free :
972 	    entry->next->start - entry->end;
973 	entry->max_free = MAX(max_left, max_right);
974 }
975 
976 #define SPLAY_LEFT_STEP(root, y, rlist, test) do {	\
977 	y = root->left;					\
978 	if (y != NULL && (test)) {			\
979 		/* Rotate right and make y root. */	\
980 		root->left = y->right;			\
981 		y->right = root;			\
982 		vm_map_entry_set_max_free(root);	\
983 		root = y;				\
984 		y = root->left;				\
985 	}						\
986 	/* Put root on rlist. */			\
987 	root->left = rlist;				\
988 	rlist = root;					\
989 	root = y;					\
990 } while (0)
991 
992 #define SPLAY_RIGHT_STEP(root, y, llist, test) do {	\
993 	y = root->right;				\
994 	if (y != NULL && (test)) {			\
995 		/* Rotate left and make y root. */	\
996 		root->right = y->left;			\
997 		y->left = root;				\
998 		vm_map_entry_set_max_free(root);	\
999 		root = y;				\
1000 		y = root->right;			\
1001 	}						\
1002 	/* Put root on llist. */			\
1003 	root->right = llist;				\
1004 	llist = root;					\
1005 	root = y;					\
1006 } while (0)
1007 
1008 /*
1009  * Walk down the tree until we find addr or a NULL pointer where addr would go,
1010  * breaking off left and right subtrees of nodes less than, or greater than
1011  * addr.  Treat pointers to nodes with max_free < length as NULL pointers.
1012  * llist and rlist are the two sides in reverse order (bottom-up), with llist
1013  * linked by the right pointer and rlist linked by the left pointer in the
1014  * vm_map_entry.
1015  */
1016 static vm_map_entry_t
1017 vm_map_splay_split(vm_offset_t addr, vm_size_t length,
1018     vm_map_entry_t root, vm_map_entry_t *out_llist, vm_map_entry_t *out_rlist)
1019 {
1020 	vm_map_entry_t llist, rlist;
1021 	vm_map_entry_t y;
1022 
1023 	llist = NULL;
1024 	rlist = NULL;
1025 	while (root != NULL && root->max_free >= length) {
1026 		if (addr < root->start) {
1027 			SPLAY_LEFT_STEP(root, y, rlist,
1028 			    y->max_free >= length && addr < y->start);
1029 		} else if (addr >= root->end) {
1030 			SPLAY_RIGHT_STEP(root, y, llist,
1031 			    y->max_free >= length && addr >= y->end);
1032 		} else
1033 			break;
1034 	}
1035 	*out_llist = llist;
1036 	*out_rlist = rlist;
1037 	return (root);
1038 }
1039 
1040 static void
1041 vm_map_splay_findnext(vm_map_entry_t root, vm_map_entry_t *iolist)
1042 {
1043 	vm_map_entry_t rlist, y;
1044 
1045 	root = root->right;
1046 	rlist = *iolist;
1047 	while (root != NULL)
1048 		SPLAY_LEFT_STEP(root, y, rlist, true);
1049 	*iolist = rlist;
1050 }
1051 
1052 static void
1053 vm_map_splay_findprev(vm_map_entry_t root, vm_map_entry_t *iolist)
1054 {
1055 	vm_map_entry_t llist, y;
1056 
1057 	root = root->left;
1058 	llist = *iolist;
1059 	while (root != NULL)
1060 		SPLAY_RIGHT_STEP(root, y, llist, true);
1061 	*iolist = llist;
1062 }
1063 
1064 /*
1065  * Walk back up the two spines, flip the pointers and set max_free.  The
1066  * subtrees of the root go at the bottom of llist and rlist.
1067  */
1068 static vm_map_entry_t
1069 vm_map_splay_merge(vm_map_entry_t root,
1070     vm_map_entry_t llist, vm_map_entry_t rlist,
1071     vm_map_entry_t ltree, vm_map_entry_t rtree)
1072 {
1073 	vm_map_entry_t y;
1074 
1075 	while (llist != NULL) {
1076 		y = llist->right;
1077 		llist->right = ltree;
1078 		vm_map_entry_set_max_free(llist);
1079 		ltree = llist;
1080 		llist = y;
1081 	}
1082 	while (rlist != NULL) {
1083 		y = rlist->left;
1084 		rlist->left = rtree;
1085 		vm_map_entry_set_max_free(rlist);
1086 		rtree = rlist;
1087 		rlist = y;
1088 	}
1089 
1090 	/*
1091 	 * Final assembly: add ltree and rtree as subtrees of root.
1092 	 */
1093 	root->left = ltree;
1094 	root->right = rtree;
1095 	vm_map_entry_set_max_free(root);
1096 
1097 	return (root);
1098 }
1099 
1100 /*
1101  *	vm_map_entry_splay:
1102  *
1103  *	The Sleator and Tarjan top-down splay algorithm with the
1104  *	following variation.  Max_free must be computed bottom-up, so
1105  *	on the downward pass, maintain the left and right spines in
1106  *	reverse order.  Then, make a second pass up each side to fix
1107  *	the pointers and compute max_free.  The time bound is O(log n)
1108  *	amortized.
1109  *
1110  *	The new root is the vm_map_entry containing "addr", or else an
1111  *	adjacent entry (lower if possible) if addr is not in the tree.
1112  *
1113  *	The map must be locked, and leaves it so.
1114  *
1115  *	Returns: the new root.
1116  */
1117 static vm_map_entry_t
1118 vm_map_entry_splay(vm_offset_t addr, vm_map_entry_t root)
1119 {
1120 	vm_map_entry_t llist, rlist;
1121 
1122 	root = vm_map_splay_split(addr, 0, root, &llist, &rlist);
1123 	if (root != NULL) {
1124 		/* do nothing */
1125 	} else if (llist != NULL) {
1126 		/*
1127 		 * Recover the greatest node in the left
1128 		 * subtree and make it the root.
1129 		 */
1130 		root = llist;
1131 		llist = root->right;
1132 		root->right = NULL;
1133 	} else if (rlist != NULL) {
1134 		/*
1135 		 * Recover the least node in the right
1136 		 * subtree and make it the root.
1137 		 */
1138 		root = rlist;
1139 		rlist = root->left;
1140 		root->left = NULL;
1141 	} else {
1142 		/* There is no root. */
1143 		return (NULL);
1144 	}
1145 	return (vm_map_splay_merge(root, llist, rlist,
1146 	    root->left, root->right));
1147 }
1148 
1149 /*
1150  *	vm_map_entry_{un,}link:
1151  *
1152  *	Insert/remove entries from maps.
1153  */
1154 static void
1155 vm_map_entry_link(vm_map_t map,
1156 		  vm_map_entry_t entry)
1157 {
1158 	vm_map_entry_t llist, rlist, root;
1159 
1160 	CTR3(KTR_VM,
1161 	    "vm_map_entry_link: map %p, nentries %d, entry %p", map,
1162 	    map->nentries, entry);
1163 	VM_MAP_ASSERT_LOCKED(map);
1164 	map->nentries++;
1165 	root = map->root;
1166 	root = vm_map_splay_split(entry->start, 0, root, &llist, &rlist);
1167 	KASSERT(root == NULL,
1168 	    ("vm_map_entry_link: link object already mapped"));
1169 	entry->prev = (llist == NULL) ? &map->header : llist;
1170 	entry->next = (rlist == NULL) ? &map->header : rlist;
1171 	entry->prev->next = entry->next->prev = entry;
1172 	root = vm_map_splay_merge(entry, llist, rlist, NULL, NULL);
1173 	map->root = entry;
1174 	VM_MAP_ASSERT_CONSISTENT(map);
1175 }
1176 
1177 enum unlink_merge_type {
1178 	UNLINK_MERGE_PREV,
1179 	UNLINK_MERGE_NONE,
1180 	UNLINK_MERGE_NEXT
1181 };
1182 
1183 static void
1184 vm_map_entry_unlink(vm_map_t map,
1185 		    vm_map_entry_t entry,
1186 		    enum unlink_merge_type op)
1187 {
1188 	vm_map_entry_t llist, rlist, root, y;
1189 
1190 	VM_MAP_ASSERT_LOCKED(map);
1191 	llist = entry->prev;
1192 	rlist = entry->next;
1193 	llist->next = rlist;
1194 	rlist->prev = llist;
1195 	root = map->root;
1196 	root = vm_map_splay_split(entry->start, 0, root, &llist, &rlist);
1197 	KASSERT(root != NULL,
1198 	    ("vm_map_entry_unlink: unlink object not mapped"));
1199 
1200 	switch (op) {
1201 	case UNLINK_MERGE_PREV:
1202 		vm_map_splay_findprev(root, &llist);
1203 		llist->end = root->end;
1204 		y = root->right;
1205 		root = llist;
1206 		llist = root->right;
1207 		root->right = y;
1208 		break;
1209 	case UNLINK_MERGE_NEXT:
1210 		vm_map_splay_findnext(root, &rlist);
1211 		rlist->start = root->start;
1212 		rlist->offset = root->offset;
1213 		y = root->left;
1214 		root = rlist;
1215 		rlist = root->left;
1216 		root->left = y;
1217 		break;
1218 	case UNLINK_MERGE_NONE:
1219 		vm_map_splay_findprev(root, &llist);
1220 		vm_map_splay_findnext(root, &rlist);
1221 		if (llist != NULL) {
1222 			root = llist;
1223 			llist = root->right;
1224 			root->right = NULL;
1225 		} else if (rlist != NULL) {
1226 			root = rlist;
1227 			rlist = root->left;
1228 			root->left = NULL;
1229 		} else
1230 			root = NULL;
1231 		break;
1232 	}
1233 	if (root != NULL)
1234 		root = vm_map_splay_merge(root, llist, rlist,
1235 		    root->left, root->right);
1236 	map->root = root;
1237 	VM_MAP_ASSERT_CONSISTENT(map);
1238 	map->nentries--;
1239 	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1240 	    map->nentries, entry);
1241 }
1242 
1243 /*
1244  *	vm_map_entry_resize_free:
1245  *
1246  *	Recompute the amount of free space following a modified vm_map_entry
1247  *	and propagate those values up the tree.  Call this function after
1248  *	resizing a map entry in-place by changing the end value, without a
1249  *	call to vm_map_entry_link() or _unlink().
1250  *
1251  *	The map must be locked, and leaves it so.
1252  */
1253 static void
1254 vm_map_entry_resize_free(vm_map_t map, vm_map_entry_t entry)
1255 {
1256 	vm_map_entry_t llist, rlist, root;
1257 
1258 	VM_MAP_ASSERT_LOCKED(map);
1259 	root = map->root;
1260 	root = vm_map_splay_split(entry->start, 0, root, &llist, &rlist);
1261 	KASSERT(root != NULL,
1262 	    ("vm_map_entry_resize_free: resize_free object not mapped"));
1263 	vm_map_splay_findnext(root, &rlist);
1264 	root->right = NULL;
1265 	map->root = vm_map_splay_merge(root, llist, rlist,
1266 	    root->left, root->right);
1267 	VM_MAP_ASSERT_CONSISTENT(map);
1268 	CTR3(KTR_VM, "vm_map_entry_resize_free: map %p, nentries %d, entry %p", map,
1269 	    map->nentries, entry);
1270 }
1271 
1272 /*
1273  *	vm_map_lookup_entry:	[ internal use only ]
1274  *
1275  *	Finds the map entry containing (or
1276  *	immediately preceding) the specified address
1277  *	in the given map; the entry is returned
1278  *	in the "entry" parameter.  The boolean
1279  *	result indicates whether the address is
1280  *	actually contained in the map.
1281  */
1282 boolean_t
1283 vm_map_lookup_entry(
1284 	vm_map_t map,
1285 	vm_offset_t address,
1286 	vm_map_entry_t *entry)	/* OUT */
1287 {
1288 	vm_map_entry_t cur, lbound;
1289 	boolean_t locked;
1290 
1291 	/*
1292 	 * If the map is empty, then the map entry immediately preceding
1293 	 * "address" is the map's header.
1294 	 */
1295 	cur = map->root;
1296 	if (cur == NULL) {
1297 		*entry = &map->header;
1298 		return (FALSE);
1299 	}
1300 	if (address >= cur->start && cur->end > address) {
1301 		*entry = cur;
1302 		return (TRUE);
1303 	}
1304 	if ((locked = vm_map_locked(map)) ||
1305 	    sx_try_upgrade(&map->lock)) {
1306 		/*
1307 		 * Splay requires a write lock on the map.  However, it only
1308 		 * restructures the binary search tree; it does not otherwise
1309 		 * change the map.  Thus, the map's timestamp need not change
1310 		 * on a temporary upgrade.
1311 		 */
1312 		map->root = cur = vm_map_entry_splay(address, cur);
1313 		VM_MAP_ASSERT_CONSISTENT(map);
1314 		if (!locked)
1315 			sx_downgrade(&map->lock);
1316 
1317 		/*
1318 		 * If "address" is contained within a map entry, the new root
1319 		 * is that map entry.  Otherwise, the new root is a map entry
1320 		 * immediately before or after "address".
1321 		 */
1322 		if (address < cur->start) {
1323 			*entry = &map->header;
1324 			return (FALSE);
1325 		}
1326 		*entry = cur;
1327 		return (address < cur->end);
1328 	}
1329 	/*
1330 	 * Since the map is only locked for read access, perform a
1331 	 * standard binary search tree lookup for "address".
1332 	 */
1333 	lbound = &map->header;
1334 	do {
1335 		if (address < cur->start) {
1336 			cur = cur->left;
1337 		} else if (cur->end <= address) {
1338 			lbound = cur;
1339 			cur = cur->right;
1340 		} else {
1341 			*entry = cur;
1342 			return (TRUE);
1343 		}
1344 	} while (cur != NULL);
1345 	*entry = lbound;
1346 	return (FALSE);
1347 }
1348 
1349 /*
1350  *	vm_map_insert:
1351  *
1352  *	Inserts the given whole VM object into the target
1353  *	map at the specified address range.  The object's
1354  *	size should match that of the address range.
1355  *
1356  *	Requires that the map be locked, and leaves it so.
1357  *
1358  *	If object is non-NULL, ref count must be bumped by caller
1359  *	prior to making call to account for the new entry.
1360  */
1361 int
1362 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1363     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1364 {
1365 	vm_map_entry_t new_entry, prev_entry, temp_entry;
1366 	struct ucred *cred;
1367 	vm_eflags_t protoeflags;
1368 	vm_inherit_t inheritance;
1369 
1370 	VM_MAP_ASSERT_LOCKED(map);
1371 	KASSERT(object != kernel_object ||
1372 	    (cow & MAP_COPY_ON_WRITE) == 0,
1373 	    ("vm_map_insert: kernel object and COW"));
1374 	KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0,
1375 	    ("vm_map_insert: paradoxical MAP_NOFAULT request"));
1376 	KASSERT((prot & ~max) == 0,
1377 	    ("prot %#x is not subset of max_prot %#x", prot, max));
1378 
1379 	/*
1380 	 * Check that the start and end points are not bogus.
1381 	 */
1382 	if (start < vm_map_min(map) || end > vm_map_max(map) ||
1383 	    start >= end)
1384 		return (KERN_INVALID_ADDRESS);
1385 
1386 	/*
1387 	 * Find the entry prior to the proposed starting address; if it's part
1388 	 * of an existing entry, this range is bogus.
1389 	 */
1390 	if (vm_map_lookup_entry(map, start, &temp_entry))
1391 		return (KERN_NO_SPACE);
1392 
1393 	prev_entry = temp_entry;
1394 
1395 	/*
1396 	 * Assert that the next entry doesn't overlap the end point.
1397 	 */
1398 	if (prev_entry->next->start < end)
1399 		return (KERN_NO_SPACE);
1400 
1401 	if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL ||
1402 	    max != VM_PROT_NONE))
1403 		return (KERN_INVALID_ARGUMENT);
1404 
1405 	protoeflags = 0;
1406 	if (cow & MAP_COPY_ON_WRITE)
1407 		protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1408 	if (cow & MAP_NOFAULT)
1409 		protoeflags |= MAP_ENTRY_NOFAULT;
1410 	if (cow & MAP_DISABLE_SYNCER)
1411 		protoeflags |= MAP_ENTRY_NOSYNC;
1412 	if (cow & MAP_DISABLE_COREDUMP)
1413 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1414 	if (cow & MAP_STACK_GROWS_DOWN)
1415 		protoeflags |= MAP_ENTRY_GROWS_DOWN;
1416 	if (cow & MAP_STACK_GROWS_UP)
1417 		protoeflags |= MAP_ENTRY_GROWS_UP;
1418 	if (cow & MAP_VN_WRITECOUNT)
1419 		protoeflags |= MAP_ENTRY_VN_WRITECNT;
1420 	if (cow & MAP_VN_EXEC)
1421 		protoeflags |= MAP_ENTRY_VN_EXEC;
1422 	if ((cow & MAP_CREATE_GUARD) != 0)
1423 		protoeflags |= MAP_ENTRY_GUARD;
1424 	if ((cow & MAP_CREATE_STACK_GAP_DN) != 0)
1425 		protoeflags |= MAP_ENTRY_STACK_GAP_DN;
1426 	if ((cow & MAP_CREATE_STACK_GAP_UP) != 0)
1427 		protoeflags |= MAP_ENTRY_STACK_GAP_UP;
1428 	if (cow & MAP_INHERIT_SHARE)
1429 		inheritance = VM_INHERIT_SHARE;
1430 	else
1431 		inheritance = VM_INHERIT_DEFAULT;
1432 
1433 	cred = NULL;
1434 	if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0)
1435 		goto charged;
1436 	if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1437 	    ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1438 		if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1439 			return (KERN_RESOURCE_SHORTAGE);
1440 		KASSERT(object == NULL ||
1441 		    (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
1442 		    object->cred == NULL,
1443 		    ("overcommit: vm_map_insert o %p", object));
1444 		cred = curthread->td_ucred;
1445 	}
1446 
1447 charged:
1448 	/* Expand the kernel pmap, if necessary. */
1449 	if (map == kernel_map && end > kernel_vm_end)
1450 		pmap_growkernel(end);
1451 	if (object != NULL) {
1452 		/*
1453 		 * OBJ_ONEMAPPING must be cleared unless this mapping
1454 		 * is trivially proven to be the only mapping for any
1455 		 * of the object's pages.  (Object granularity
1456 		 * reference counting is insufficient to recognize
1457 		 * aliases with precision.)
1458 		 */
1459 		VM_OBJECT_WLOCK(object);
1460 		if (object->ref_count > 1 || object->shadow_count != 0)
1461 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
1462 		VM_OBJECT_WUNLOCK(object);
1463 	} else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) ==
1464 	    protoeflags &&
1465 	    (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP |
1466 	    MAP_VN_EXEC)) == 0 &&
1467 	    prev_entry->end == start && (prev_entry->cred == cred ||
1468 	    (prev_entry->object.vm_object != NULL &&
1469 	    prev_entry->object.vm_object->cred == cred)) &&
1470 	    vm_object_coalesce(prev_entry->object.vm_object,
1471 	    prev_entry->offset,
1472 	    (vm_size_t)(prev_entry->end - prev_entry->start),
1473 	    (vm_size_t)(end - prev_entry->end), cred != NULL &&
1474 	    (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1475 		/*
1476 		 * We were able to extend the object.  Determine if we
1477 		 * can extend the previous map entry to include the
1478 		 * new range as well.
1479 		 */
1480 		if (prev_entry->inheritance == inheritance &&
1481 		    prev_entry->protection == prot &&
1482 		    prev_entry->max_protection == max &&
1483 		    prev_entry->wired_count == 0) {
1484 			KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) ==
1485 			    0, ("prev_entry %p has incoherent wiring",
1486 			    prev_entry));
1487 			if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0)
1488 				map->size += end - prev_entry->end;
1489 			prev_entry->end = end;
1490 			vm_map_entry_resize_free(map, prev_entry);
1491 			vm_map_simplify_entry(map, prev_entry);
1492 			return (KERN_SUCCESS);
1493 		}
1494 
1495 		/*
1496 		 * If we can extend the object but cannot extend the
1497 		 * map entry, we have to create a new map entry.  We
1498 		 * must bump the ref count on the extended object to
1499 		 * account for it.  object may be NULL.
1500 		 */
1501 		object = prev_entry->object.vm_object;
1502 		offset = prev_entry->offset +
1503 		    (prev_entry->end - prev_entry->start);
1504 		vm_object_reference(object);
1505 		if (cred != NULL && object != NULL && object->cred != NULL &&
1506 		    !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1507 			/* Object already accounts for this uid. */
1508 			cred = NULL;
1509 		}
1510 	}
1511 	if (cred != NULL)
1512 		crhold(cred);
1513 
1514 	/*
1515 	 * Create a new entry
1516 	 */
1517 	new_entry = vm_map_entry_create(map);
1518 	new_entry->start = start;
1519 	new_entry->end = end;
1520 	new_entry->cred = NULL;
1521 
1522 	new_entry->eflags = protoeflags;
1523 	new_entry->object.vm_object = object;
1524 	new_entry->offset = offset;
1525 
1526 	new_entry->inheritance = inheritance;
1527 	new_entry->protection = prot;
1528 	new_entry->max_protection = max;
1529 	new_entry->wired_count = 0;
1530 	new_entry->wiring_thread = NULL;
1531 	new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1532 	new_entry->next_read = start;
1533 
1534 	KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1535 	    ("overcommit: vm_map_insert leaks vm_map %p", new_entry));
1536 	new_entry->cred = cred;
1537 
1538 	/*
1539 	 * Insert the new entry into the list
1540 	 */
1541 	vm_map_entry_link(map, new_entry);
1542 	if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0)
1543 		map->size += new_entry->end - new_entry->start;
1544 
1545 	/*
1546 	 * Try to coalesce the new entry with both the previous and next
1547 	 * entries in the list.  Previously, we only attempted to coalesce
1548 	 * with the previous entry when object is NULL.  Here, we handle the
1549 	 * other cases, which are less common.
1550 	 */
1551 	vm_map_simplify_entry(map, new_entry);
1552 
1553 	if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) {
1554 		vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset),
1555 		    end - start, cow & MAP_PREFAULT_PARTIAL);
1556 	}
1557 
1558 	return (KERN_SUCCESS);
1559 }
1560 
1561 /*
1562  *	vm_map_findspace:
1563  *
1564  *	Find the first fit (lowest VM address) for "length" free bytes
1565  *	beginning at address >= start in the given map.
1566  *
1567  *	In a vm_map_entry, "max_free" is the maximum amount of
1568  *	contiguous free space between an entry in its subtree and a
1569  *	neighbor of that entry.  This allows finding a free region in
1570  *	one path down the tree, so O(log n) amortized with splay
1571  *	trees.
1572  *
1573  *	The map must be locked, and leaves it so.
1574  *
1575  *	Returns: starting address if sufficient space,
1576  *		 vm_map_max(map)-length+1 if insufficient space.
1577  */
1578 vm_offset_t
1579 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length)
1580 {
1581 	vm_map_entry_t llist, rlist, root, y;
1582 	vm_size_t left_length;
1583 
1584 	/*
1585 	 * Request must fit within min/max VM address and must avoid
1586 	 * address wrap.
1587 	 */
1588 	start = MAX(start, vm_map_min(map));
1589 	if (start + length > vm_map_max(map) || start + length < start)
1590 		return (vm_map_max(map) - length + 1);
1591 
1592 	/* Empty tree means wide open address space. */
1593 	if (map->root == NULL)
1594 		return (start);
1595 
1596 	/*
1597 	 * After splay, if start comes before root node, then there
1598 	 * must be a gap from start to the root.
1599 	 */
1600 	root = vm_map_splay_split(start, length, map->root,
1601 	    &llist, &rlist);
1602 	if (root != NULL)
1603 		start = root->end;
1604 	else if (rlist != NULL) {
1605 		root = rlist;
1606 		rlist = root->left;
1607 		root->left = NULL;
1608 	} else {
1609 		root = llist;
1610 		llist = root->right;
1611 		root->right = NULL;
1612 	}
1613 	map->root = vm_map_splay_merge(root, llist, rlist,
1614 	    root->left, root->right);
1615 	VM_MAP_ASSERT_CONSISTENT(map);
1616 	if (start + length <= root->start)
1617 		return (start);
1618 
1619 	/*
1620 	 * Root is the last node that might begin its gap before
1621 	 * start, and this is the last comparison where address
1622 	 * wrap might be a problem.
1623 	 */
1624 	if (root->right == NULL &&
1625 	    start + length <= vm_map_max(map))
1626 		return (start);
1627 
1628 	/* With max_free, can immediately tell if no solution. */
1629 	if (root->right == NULL || length > root->right->max_free)
1630 		return (vm_map_max(map) - length + 1);
1631 
1632 	/*
1633 	 * Splay for the least large-enough gap in the right subtree.
1634 	 */
1635 	llist = NULL;
1636         rlist = NULL;
1637 	for (left_length = 0; ;
1638 	     left_length = root->left != NULL ?
1639 	     root->left->max_free : root->start - llist->end) {
1640 		if (length <= left_length)
1641 			SPLAY_LEFT_STEP(root, y, rlist,
1642 			    length <= (y->left != NULL ?
1643 			    y->left->max_free : y->start - llist->end));
1644 		else
1645 			SPLAY_RIGHT_STEP(root, y, llist,
1646 			    length > (y->left != NULL ?
1647 			    y->left->max_free : y->start - root->end));
1648 		if (root == NULL)
1649 			break;
1650 	}
1651 	root = llist;
1652 	llist = root->right;
1653 	if ((y = rlist) == NULL)
1654 		root->right = NULL;
1655 	else {
1656 		rlist = y->left;
1657 		y->left = NULL;
1658 		root->right = y->right;
1659 	}
1660 	root = vm_map_splay_merge(root, llist, rlist,
1661 	    root->left, root->right);
1662 	if (y != NULL) {
1663 		y->right = root->right;
1664 		vm_map_entry_set_max_free(y);
1665 		root->right = y;
1666 		vm_map_entry_set_max_free(root);
1667 	}
1668 	map->root = root;
1669 	VM_MAP_ASSERT_CONSISTENT(map);
1670 	return (root->end);
1671 }
1672 
1673 int
1674 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1675     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1676     vm_prot_t max, int cow)
1677 {
1678 	vm_offset_t end;
1679 	int result;
1680 
1681 	end = start + length;
1682 	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1683 	    object == NULL,
1684 	    ("vm_map_fixed: non-NULL backing object for stack"));
1685 	vm_map_lock(map);
1686 	VM_MAP_RANGE_CHECK(map, start, end);
1687 	if ((cow & MAP_CHECK_EXCL) == 0)
1688 		vm_map_delete(map, start, end);
1689 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1690 		result = vm_map_stack_locked(map, start, length, sgrowsiz,
1691 		    prot, max, cow);
1692 	} else {
1693 		result = vm_map_insert(map, object, offset, start, end,
1694 		    prot, max, cow);
1695 	}
1696 	vm_map_unlock(map);
1697 	return (result);
1698 }
1699 
1700 static const int aslr_pages_rnd_64[2] = {0x1000, 0x10};
1701 static const int aslr_pages_rnd_32[2] = {0x100, 0x4};
1702 
1703 static int cluster_anon = 1;
1704 SYSCTL_INT(_vm, OID_AUTO, cluster_anon, CTLFLAG_RW,
1705     &cluster_anon, 0,
1706     "Cluster anonymous mappings: 0 = no, 1 = yes if no hint, 2 = always");
1707 
1708 static bool
1709 clustering_anon_allowed(vm_offset_t addr)
1710 {
1711 
1712 	switch (cluster_anon) {
1713 	case 0:
1714 		return (false);
1715 	case 1:
1716 		return (addr == 0);
1717 	case 2:
1718 	default:
1719 		return (true);
1720 	}
1721 }
1722 
1723 static long aslr_restarts;
1724 SYSCTL_LONG(_vm, OID_AUTO, aslr_restarts, CTLFLAG_RD,
1725     &aslr_restarts, 0,
1726     "Number of aslr failures");
1727 
1728 #define	MAP_32BIT_MAX_ADDR	((vm_offset_t)1 << 31)
1729 
1730 /*
1731  * Searches for the specified amount of free space in the given map with the
1732  * specified alignment.  Performs an address-ordered, first-fit search from
1733  * the given address "*addr", with an optional upper bound "max_addr".  If the
1734  * parameter "alignment" is zero, then the alignment is computed from the
1735  * given (object, offset) pair so as to enable the greatest possible use of
1736  * superpage mappings.  Returns KERN_SUCCESS and the address of the free space
1737  * in "*addr" if successful.  Otherwise, returns KERN_NO_SPACE.
1738  *
1739  * The map must be locked.  Initially, there must be at least "length" bytes
1740  * of free space at the given address.
1741  */
1742 static int
1743 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1744     vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr,
1745     vm_offset_t alignment)
1746 {
1747 	vm_offset_t aligned_addr, free_addr;
1748 
1749 	VM_MAP_ASSERT_LOCKED(map);
1750 	free_addr = *addr;
1751 	KASSERT(free_addr == vm_map_findspace(map, free_addr, length),
1752 	    ("caller failed to provide space %d at address %p",
1753 	     (int)length, (void*)free_addr));
1754 	for (;;) {
1755 		/*
1756 		 * At the start of every iteration, the free space at address
1757 		 * "*addr" is at least "length" bytes.
1758 		 */
1759 		if (alignment == 0)
1760 			pmap_align_superpage(object, offset, addr, length);
1761 		else if ((*addr & (alignment - 1)) != 0) {
1762 			*addr &= ~(alignment - 1);
1763 			*addr += alignment;
1764 		}
1765 		aligned_addr = *addr;
1766 		if (aligned_addr == free_addr) {
1767 			/*
1768 			 * Alignment did not change "*addr", so "*addr" must
1769 			 * still provide sufficient free space.
1770 			 */
1771 			return (KERN_SUCCESS);
1772 		}
1773 
1774 		/*
1775 		 * Test for address wrap on "*addr".  A wrapped "*addr" could
1776 		 * be a valid address, in which case vm_map_findspace() cannot
1777 		 * be relied upon to fail.
1778 		 */
1779 		if (aligned_addr < free_addr)
1780 			return (KERN_NO_SPACE);
1781 		*addr = vm_map_findspace(map, aligned_addr, length);
1782 		if (*addr + length > vm_map_max(map) ||
1783 		    (max_addr != 0 && *addr + length > max_addr))
1784 			return (KERN_NO_SPACE);
1785 		free_addr = *addr;
1786 		if (free_addr == aligned_addr) {
1787 			/*
1788 			 * If a successful call to vm_map_findspace() did not
1789 			 * change "*addr", then "*addr" must still be aligned
1790 			 * and provide sufficient free space.
1791 			 */
1792 			return (KERN_SUCCESS);
1793 		}
1794 	}
1795 }
1796 
1797 /*
1798  *	vm_map_find finds an unallocated region in the target address
1799  *	map with the given length.  The search is defined to be
1800  *	first-fit from the specified address; the region found is
1801  *	returned in the same parameter.
1802  *
1803  *	If object is non-NULL, ref count must be bumped by caller
1804  *	prior to making call to account for the new entry.
1805  */
1806 int
1807 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1808 	    vm_offset_t *addr,	/* IN/OUT */
1809 	    vm_size_t length, vm_offset_t max_addr, int find_space,
1810 	    vm_prot_t prot, vm_prot_t max, int cow)
1811 {
1812 	vm_offset_t alignment, curr_min_addr, min_addr;
1813 	int gap, pidx, rv, try;
1814 	bool cluster, en_aslr, update_anon;
1815 
1816 	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1817 	    object == NULL,
1818 	    ("vm_map_find: non-NULL backing object for stack"));
1819 	MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE &&
1820 	    (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0));
1821 	if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
1822 	    (object->flags & OBJ_COLORED) == 0))
1823 		find_space = VMFS_ANY_SPACE;
1824 	if (find_space >> 8 != 0) {
1825 		KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
1826 		alignment = (vm_offset_t)1 << (find_space >> 8);
1827 	} else
1828 		alignment = 0;
1829 	en_aslr = (map->flags & MAP_ASLR) != 0;
1830 	update_anon = cluster = clustering_anon_allowed(*addr) &&
1831 	    (map->flags & MAP_IS_SUB_MAP) == 0 && max_addr == 0 &&
1832 	    find_space != VMFS_NO_SPACE && object == NULL &&
1833 	    (cow & (MAP_INHERIT_SHARE | MAP_STACK_GROWS_UP |
1834 	    MAP_STACK_GROWS_DOWN)) == 0 && prot != PROT_NONE;
1835 	curr_min_addr = min_addr = *addr;
1836 	if (en_aslr && min_addr == 0 && !cluster &&
1837 	    find_space != VMFS_NO_SPACE &&
1838 	    (map->flags & MAP_ASLR_IGNSTART) != 0)
1839 		curr_min_addr = min_addr = vm_map_min(map);
1840 	try = 0;
1841 	vm_map_lock(map);
1842 	if (cluster) {
1843 		curr_min_addr = map->anon_loc;
1844 		if (curr_min_addr == 0)
1845 			cluster = false;
1846 	}
1847 	if (find_space != VMFS_NO_SPACE) {
1848 		KASSERT(find_space == VMFS_ANY_SPACE ||
1849 		    find_space == VMFS_OPTIMAL_SPACE ||
1850 		    find_space == VMFS_SUPER_SPACE ||
1851 		    alignment != 0, ("unexpected VMFS flag"));
1852 again:
1853 		/*
1854 		 * When creating an anonymous mapping, try clustering
1855 		 * with an existing anonymous mapping first.
1856 		 *
1857 		 * We make up to two attempts to find address space
1858 		 * for a given find_space value. The first attempt may
1859 		 * apply randomization or may cluster with an existing
1860 		 * anonymous mapping. If this first attempt fails,
1861 		 * perform a first-fit search of the available address
1862 		 * space.
1863 		 *
1864 		 * If all tries failed, and find_space is
1865 		 * VMFS_OPTIMAL_SPACE, fallback to VMFS_ANY_SPACE.
1866 		 * Again enable clustering and randomization.
1867 		 */
1868 		try++;
1869 		MPASS(try <= 2);
1870 
1871 		if (try == 2) {
1872 			/*
1873 			 * Second try: we failed either to find a
1874 			 * suitable region for randomizing the
1875 			 * allocation, or to cluster with an existing
1876 			 * mapping.  Retry with free run.
1877 			 */
1878 			curr_min_addr = (map->flags & MAP_ASLR_IGNSTART) != 0 ?
1879 			    vm_map_min(map) : min_addr;
1880 			atomic_add_long(&aslr_restarts, 1);
1881 		}
1882 
1883 		if (try == 1 && en_aslr && !cluster) {
1884 			/*
1885 			 * Find space for allocation, including
1886 			 * gap needed for later randomization.
1887 			 */
1888 			pidx = MAXPAGESIZES > 1 && pagesizes[1] != 0 &&
1889 			    (find_space == VMFS_SUPER_SPACE || find_space ==
1890 			    VMFS_OPTIMAL_SPACE) ? 1 : 0;
1891 			gap = vm_map_max(map) > MAP_32BIT_MAX_ADDR &&
1892 			    (max_addr == 0 || max_addr > MAP_32BIT_MAX_ADDR) ?
1893 			    aslr_pages_rnd_64[pidx] : aslr_pages_rnd_32[pidx];
1894 			*addr = vm_map_findspace(map, curr_min_addr,
1895 			    length + gap * pagesizes[pidx]);
1896 			if (*addr + length + gap * pagesizes[pidx] >
1897 			    vm_map_max(map))
1898 				goto again;
1899 			/* And randomize the start address. */
1900 			*addr += (arc4random() % gap) * pagesizes[pidx];
1901 			if (max_addr != 0 && *addr + length > max_addr)
1902 				goto again;
1903 		} else {
1904 			*addr = vm_map_findspace(map, curr_min_addr, length);
1905 			if (*addr + length > vm_map_max(map) ||
1906 			    (max_addr != 0 && *addr + length > max_addr)) {
1907 				if (cluster) {
1908 					cluster = false;
1909 					MPASS(try == 1);
1910 					goto again;
1911 				}
1912 				rv = KERN_NO_SPACE;
1913 				goto done;
1914 			}
1915 		}
1916 
1917 		if (find_space != VMFS_ANY_SPACE &&
1918 		    (rv = vm_map_alignspace(map, object, offset, addr, length,
1919 		    max_addr, alignment)) != KERN_SUCCESS) {
1920 			if (find_space == VMFS_OPTIMAL_SPACE) {
1921 				find_space = VMFS_ANY_SPACE;
1922 				curr_min_addr = min_addr;
1923 				cluster = update_anon;
1924 				try = 0;
1925 				goto again;
1926 			}
1927 			goto done;
1928 		}
1929 	} else if ((cow & MAP_REMAP) != 0) {
1930 		if (*addr < vm_map_min(map) ||
1931 		    *addr + length > vm_map_max(map) ||
1932 		    *addr + length <= length) {
1933 			rv = KERN_INVALID_ADDRESS;
1934 			goto done;
1935 		}
1936 		vm_map_delete(map, *addr, *addr + length);
1937 	}
1938 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1939 		rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot,
1940 		    max, cow);
1941 	} else {
1942 		rv = vm_map_insert(map, object, offset, *addr, *addr + length,
1943 		    prot, max, cow);
1944 	}
1945 	if (rv == KERN_SUCCESS && update_anon)
1946 		map->anon_loc = *addr + length;
1947 done:
1948 	vm_map_unlock(map);
1949 	return (rv);
1950 }
1951 
1952 /*
1953  *	vm_map_find_min() is a variant of vm_map_find() that takes an
1954  *	additional parameter (min_addr) and treats the given address
1955  *	(*addr) differently.  Specifically, it treats *addr as a hint
1956  *	and not as the minimum address where the mapping is created.
1957  *
1958  *	This function works in two phases.  First, it tries to
1959  *	allocate above the hint.  If that fails and the hint is
1960  *	greater than min_addr, it performs a second pass, replacing
1961  *	the hint with min_addr as the minimum address for the
1962  *	allocation.
1963  */
1964 int
1965 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1966     vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr,
1967     vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max,
1968     int cow)
1969 {
1970 	vm_offset_t hint;
1971 	int rv;
1972 
1973 	hint = *addr;
1974 	for (;;) {
1975 		rv = vm_map_find(map, object, offset, addr, length, max_addr,
1976 		    find_space, prot, max, cow);
1977 		if (rv == KERN_SUCCESS || min_addr >= hint)
1978 			return (rv);
1979 		*addr = hint = min_addr;
1980 	}
1981 }
1982 
1983 /*
1984  * A map entry with any of the following flags set must not be merged with
1985  * another entry.
1986  */
1987 #define	MAP_ENTRY_NOMERGE_MASK	(MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | \
1988 	    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP | MAP_ENTRY_VN_EXEC)
1989 
1990 static bool
1991 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry)
1992 {
1993 
1994 	KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 ||
1995 	    (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0,
1996 	    ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable",
1997 	    prev, entry));
1998 	return (prev->end == entry->start &&
1999 	    prev->object.vm_object == entry->object.vm_object &&
2000 	    (prev->object.vm_object == NULL ||
2001 	    prev->offset + (prev->end - prev->start) == entry->offset) &&
2002 	    prev->eflags == entry->eflags &&
2003 	    prev->protection == entry->protection &&
2004 	    prev->max_protection == entry->max_protection &&
2005 	    prev->inheritance == entry->inheritance &&
2006 	    prev->wired_count == entry->wired_count &&
2007 	    prev->cred == entry->cred);
2008 }
2009 
2010 static void
2011 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry)
2012 {
2013 
2014 	/*
2015 	 * If the backing object is a vnode object, vm_object_deallocate()
2016 	 * calls vrele().  However, vrele() does not lock the vnode because
2017 	 * the vnode has additional references.  Thus, the map lock can be
2018 	 * kept without causing a lock-order reversal with the vnode lock.
2019 	 *
2020 	 * Since we count the number of virtual page mappings in
2021 	 * object->un_pager.vnp.writemappings, the writemappings value
2022 	 * should not be adjusted when the entry is disposed of.
2023 	 */
2024 	if (entry->object.vm_object != NULL)
2025 		vm_object_deallocate(entry->object.vm_object);
2026 	if (entry->cred != NULL)
2027 		crfree(entry->cred);
2028 	vm_map_entry_dispose(map, entry);
2029 }
2030 
2031 /*
2032  *	vm_map_simplify_entry:
2033  *
2034  *	Simplify the given map entry by merging with either neighbor.  This
2035  *	routine also has the ability to merge with both neighbors.
2036  *
2037  *	The map must be locked.
2038  *
2039  *	This routine guarantees that the passed entry remains valid (though
2040  *	possibly extended).  When merging, this routine may delete one or
2041  *	both neighbors.
2042  */
2043 void
2044 vm_map_simplify_entry(vm_map_t map, vm_map_entry_t entry)
2045 {
2046 	vm_map_entry_t next, prev;
2047 
2048 	if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) != 0)
2049 		return;
2050 	prev = entry->prev;
2051 	if (vm_map_mergeable_neighbors(prev, entry)) {
2052 		vm_map_entry_unlink(map, prev, UNLINK_MERGE_NEXT);
2053 		vm_map_merged_neighbor_dispose(map, prev);
2054 	}
2055 	next = entry->next;
2056 	if (vm_map_mergeable_neighbors(entry, next)) {
2057 		vm_map_entry_unlink(map, next, UNLINK_MERGE_PREV);
2058 		vm_map_merged_neighbor_dispose(map, next);
2059 	}
2060 }
2061 
2062 /*
2063  *	vm_map_clip_start:	[ internal use only ]
2064  *
2065  *	Asserts that the given entry begins at or after
2066  *	the specified address; if necessary,
2067  *	it splits the entry into two.
2068  */
2069 #define vm_map_clip_start(map, entry, startaddr) \
2070 { \
2071 	if (startaddr > entry->start) \
2072 		_vm_map_clip_start(map, entry, startaddr); \
2073 }
2074 
2075 /*
2076  *	This routine is called only when it is known that
2077  *	the entry must be split.
2078  */
2079 static void
2080 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
2081 {
2082 	vm_map_entry_t new_entry;
2083 
2084 	VM_MAP_ASSERT_LOCKED(map);
2085 	KASSERT(entry->end > start && entry->start < start,
2086 	    ("_vm_map_clip_start: invalid clip of entry %p", entry));
2087 
2088 	/*
2089 	 * Split off the front portion -- note that we must insert the new
2090 	 * entry BEFORE this one, so that this entry has the specified
2091 	 * starting address.
2092 	 */
2093 	vm_map_simplify_entry(map, entry);
2094 
2095 	/*
2096 	 * If there is no object backing this entry, we might as well create
2097 	 * one now.  If we defer it, an object can get created after the map
2098 	 * is clipped, and individual objects will be created for the split-up
2099 	 * map.  This is a bit of a hack, but is also about the best place to
2100 	 * put this improvement.
2101 	 */
2102 	if (entry->object.vm_object == NULL && !map->system_map &&
2103 	    (entry->eflags & MAP_ENTRY_GUARD) == 0) {
2104 		vm_object_t object;
2105 		object = vm_object_allocate(OBJT_DEFAULT,
2106 				atop(entry->end - entry->start));
2107 		entry->object.vm_object = object;
2108 		entry->offset = 0;
2109 		if (entry->cred != NULL) {
2110 			object->cred = entry->cred;
2111 			object->charge = entry->end - entry->start;
2112 			entry->cred = NULL;
2113 		}
2114 	} else if (entry->object.vm_object != NULL &&
2115 		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
2116 		   entry->cred != NULL) {
2117 		VM_OBJECT_WLOCK(entry->object.vm_object);
2118 		KASSERT(entry->object.vm_object->cred == NULL,
2119 		    ("OVERCOMMIT: vm_entry_clip_start: both cred e %p", entry));
2120 		entry->object.vm_object->cred = entry->cred;
2121 		entry->object.vm_object->charge = entry->end - entry->start;
2122 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
2123 		entry->cred = NULL;
2124 	}
2125 
2126 	new_entry = vm_map_entry_create(map);
2127 	*new_entry = *entry;
2128 
2129 	new_entry->end = start;
2130 	entry->offset += (start - entry->start);
2131 	entry->start = start;
2132 	if (new_entry->cred != NULL)
2133 		crhold(entry->cred);
2134 
2135 	vm_map_entry_link(map, new_entry);
2136 
2137 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2138 		vm_object_reference(new_entry->object.vm_object);
2139 		vm_map_entry_set_vnode_text(new_entry, true);
2140 		/*
2141 		 * The object->un_pager.vnp.writemappings for the
2142 		 * object of MAP_ENTRY_VN_WRITECNT type entry shall be
2143 		 * kept as is here.  The virtual pages are
2144 		 * re-distributed among the clipped entries, so the sum is
2145 		 * left the same.
2146 		 */
2147 	}
2148 }
2149 
2150 /*
2151  *	vm_map_clip_end:	[ internal use only ]
2152  *
2153  *	Asserts that the given entry ends at or before
2154  *	the specified address; if necessary,
2155  *	it splits the entry into two.
2156  */
2157 #define vm_map_clip_end(map, entry, endaddr) \
2158 { \
2159 	if ((endaddr) < (entry->end)) \
2160 		_vm_map_clip_end((map), (entry), (endaddr)); \
2161 }
2162 
2163 /*
2164  *	This routine is called only when it is known that
2165  *	the entry must be split.
2166  */
2167 static void
2168 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
2169 {
2170 	vm_map_entry_t new_entry;
2171 
2172 	VM_MAP_ASSERT_LOCKED(map);
2173 	KASSERT(entry->start < end && entry->end > end,
2174 	    ("_vm_map_clip_end: invalid clip of entry %p", entry));
2175 
2176 	/*
2177 	 * If there is no object backing this entry, we might as well create
2178 	 * one now.  If we defer it, an object can get created after the map
2179 	 * is clipped, and individual objects will be created for the split-up
2180 	 * map.  This is a bit of a hack, but is also about the best place to
2181 	 * put this improvement.
2182 	 */
2183 	if (entry->object.vm_object == NULL && !map->system_map &&
2184 	    (entry->eflags & MAP_ENTRY_GUARD) == 0) {
2185 		vm_object_t object;
2186 		object = vm_object_allocate(OBJT_DEFAULT,
2187 				atop(entry->end - entry->start));
2188 		entry->object.vm_object = object;
2189 		entry->offset = 0;
2190 		if (entry->cred != NULL) {
2191 			object->cred = entry->cred;
2192 			object->charge = entry->end - entry->start;
2193 			entry->cred = NULL;
2194 		}
2195 	} else if (entry->object.vm_object != NULL &&
2196 		   ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
2197 		   entry->cred != NULL) {
2198 		VM_OBJECT_WLOCK(entry->object.vm_object);
2199 		KASSERT(entry->object.vm_object->cred == NULL,
2200 		    ("OVERCOMMIT: vm_entry_clip_end: both cred e %p", entry));
2201 		entry->object.vm_object->cred = entry->cred;
2202 		entry->object.vm_object->charge = entry->end - entry->start;
2203 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
2204 		entry->cred = NULL;
2205 	}
2206 
2207 	/*
2208 	 * Create a new entry and insert it AFTER the specified entry
2209 	 */
2210 	new_entry = vm_map_entry_create(map);
2211 	*new_entry = *entry;
2212 
2213 	new_entry->start = entry->end = end;
2214 	new_entry->offset += (end - entry->start);
2215 	if (new_entry->cred != NULL)
2216 		crhold(entry->cred);
2217 
2218 	vm_map_entry_link(map, new_entry);
2219 
2220 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2221 		vm_object_reference(new_entry->object.vm_object);
2222 		vm_map_entry_set_vnode_text(new_entry, true);
2223 	}
2224 }
2225 
2226 /*
2227  *	vm_map_submap:		[ kernel use only ]
2228  *
2229  *	Mark the given range as handled by a subordinate map.
2230  *
2231  *	This range must have been created with vm_map_find,
2232  *	and no other operations may have been performed on this
2233  *	range prior to calling vm_map_submap.
2234  *
2235  *	Only a limited number of operations can be performed
2236  *	within this rage after calling vm_map_submap:
2237  *		vm_fault
2238  *	[Don't try vm_map_copy!]
2239  *
2240  *	To remove a submapping, one must first remove the
2241  *	range from the superior map, and then destroy the
2242  *	submap (if desired).  [Better yet, don't try it.]
2243  */
2244 int
2245 vm_map_submap(
2246 	vm_map_t map,
2247 	vm_offset_t start,
2248 	vm_offset_t end,
2249 	vm_map_t submap)
2250 {
2251 	vm_map_entry_t entry;
2252 	int result;
2253 
2254 	result = KERN_INVALID_ARGUMENT;
2255 
2256 	vm_map_lock(submap);
2257 	submap->flags |= MAP_IS_SUB_MAP;
2258 	vm_map_unlock(submap);
2259 
2260 	vm_map_lock(map);
2261 
2262 	VM_MAP_RANGE_CHECK(map, start, end);
2263 
2264 	if (vm_map_lookup_entry(map, start, &entry)) {
2265 		vm_map_clip_start(map, entry, start);
2266 	} else
2267 		entry = entry->next;
2268 
2269 	vm_map_clip_end(map, entry, end);
2270 
2271 	if ((entry->start == start) && (entry->end == end) &&
2272 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
2273 	    (entry->object.vm_object == NULL)) {
2274 		entry->object.sub_map = submap;
2275 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
2276 		result = KERN_SUCCESS;
2277 	}
2278 	vm_map_unlock(map);
2279 
2280 	if (result != KERN_SUCCESS) {
2281 		vm_map_lock(submap);
2282 		submap->flags &= ~MAP_IS_SUB_MAP;
2283 		vm_map_unlock(submap);
2284 	}
2285 	return (result);
2286 }
2287 
2288 /*
2289  * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
2290  */
2291 #define	MAX_INIT_PT	96
2292 
2293 /*
2294  *	vm_map_pmap_enter:
2295  *
2296  *	Preload the specified map's pmap with mappings to the specified
2297  *	object's memory-resident pages.  No further physical pages are
2298  *	allocated, and no further virtual pages are retrieved from secondary
2299  *	storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
2300  *	limited number of page mappings are created at the low-end of the
2301  *	specified address range.  (For this purpose, a superpage mapping
2302  *	counts as one page mapping.)  Otherwise, all resident pages within
2303  *	the specified address range are mapped.
2304  */
2305 static void
2306 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
2307     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
2308 {
2309 	vm_offset_t start;
2310 	vm_page_t p, p_start;
2311 	vm_pindex_t mask, psize, threshold, tmpidx;
2312 
2313 	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
2314 		return;
2315 	VM_OBJECT_RLOCK(object);
2316 	if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2317 		VM_OBJECT_RUNLOCK(object);
2318 		VM_OBJECT_WLOCK(object);
2319 		if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2320 			pmap_object_init_pt(map->pmap, addr, object, pindex,
2321 			    size);
2322 			VM_OBJECT_WUNLOCK(object);
2323 			return;
2324 		}
2325 		VM_OBJECT_LOCK_DOWNGRADE(object);
2326 	}
2327 
2328 	psize = atop(size);
2329 	if (psize + pindex > object->size) {
2330 		if (object->size < pindex) {
2331 			VM_OBJECT_RUNLOCK(object);
2332 			return;
2333 		}
2334 		psize = object->size - pindex;
2335 	}
2336 
2337 	start = 0;
2338 	p_start = NULL;
2339 	threshold = MAX_INIT_PT;
2340 
2341 	p = vm_page_find_least(object, pindex);
2342 	/*
2343 	 * Assert: the variable p is either (1) the page with the
2344 	 * least pindex greater than or equal to the parameter pindex
2345 	 * or (2) NULL.
2346 	 */
2347 	for (;
2348 	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
2349 	     p = TAILQ_NEXT(p, listq)) {
2350 		/*
2351 		 * don't allow an madvise to blow away our really
2352 		 * free pages allocating pv entries.
2353 		 */
2354 		if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
2355 		    vm_page_count_severe()) ||
2356 		    ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
2357 		    tmpidx >= threshold)) {
2358 			psize = tmpidx;
2359 			break;
2360 		}
2361 		if (p->valid == VM_PAGE_BITS_ALL) {
2362 			if (p_start == NULL) {
2363 				start = addr + ptoa(tmpidx);
2364 				p_start = p;
2365 			}
2366 			/* Jump ahead if a superpage mapping is possible. */
2367 			if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
2368 			    (pagesizes[p->psind] - 1)) == 0) {
2369 				mask = atop(pagesizes[p->psind]) - 1;
2370 				if (tmpidx + mask < psize &&
2371 				    vm_page_ps_test(p, PS_ALL_VALID, NULL)) {
2372 					p += mask;
2373 					threshold += mask;
2374 				}
2375 			}
2376 		} else if (p_start != NULL) {
2377 			pmap_enter_object(map->pmap, start, addr +
2378 			    ptoa(tmpidx), p_start, prot);
2379 			p_start = NULL;
2380 		}
2381 	}
2382 	if (p_start != NULL)
2383 		pmap_enter_object(map->pmap, start, addr + ptoa(psize),
2384 		    p_start, prot);
2385 	VM_OBJECT_RUNLOCK(object);
2386 }
2387 
2388 /*
2389  *	vm_map_protect:
2390  *
2391  *	Sets the protection of the specified address
2392  *	region in the target map.  If "set_max" is
2393  *	specified, the maximum protection is to be set;
2394  *	otherwise, only the current protection is affected.
2395  */
2396 int
2397 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
2398 	       vm_prot_t new_prot, boolean_t set_max)
2399 {
2400 	vm_map_entry_t current, entry, in_tran;
2401 	vm_object_t obj;
2402 	struct ucred *cred;
2403 	vm_prot_t old_prot;
2404 
2405 	if (start == end)
2406 		return (KERN_SUCCESS);
2407 
2408 again:
2409 	in_tran = NULL;
2410 	vm_map_lock(map);
2411 
2412 	/*
2413 	 * Ensure that we are not concurrently wiring pages.  vm_map_wire() may
2414 	 * need to fault pages into the map and will drop the map lock while
2415 	 * doing so, and the VM object may end up in an inconsistent state if we
2416 	 * update the protection on the map entry in between faults.
2417 	 */
2418 	vm_map_wait_busy(map);
2419 
2420 	VM_MAP_RANGE_CHECK(map, start, end);
2421 
2422 	if (vm_map_lookup_entry(map, start, &entry)) {
2423 		vm_map_clip_start(map, entry, start);
2424 	} else {
2425 		entry = entry->next;
2426 	}
2427 
2428 	/*
2429 	 * Make a first pass to check for protection violations.
2430 	 */
2431 	for (current = entry; current->start < end; current = current->next) {
2432 		if ((current->eflags & MAP_ENTRY_GUARD) != 0)
2433 			continue;
2434 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2435 			vm_map_unlock(map);
2436 			return (KERN_INVALID_ARGUMENT);
2437 		}
2438 		if ((new_prot & current->max_protection) != new_prot) {
2439 			vm_map_unlock(map);
2440 			return (KERN_PROTECTION_FAILURE);
2441 		}
2442 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0)
2443 			in_tran = entry;
2444 	}
2445 
2446 	/*
2447 	 * Postpone the operation until all in transition map entries
2448 	 * are stabilized.  In-transition entry might already have its
2449 	 * pages wired and wired_count incremented, but
2450 	 * MAP_ENTRY_USER_WIRED flag not yet set, and visible to other
2451 	 * threads because the map lock is dropped.  In this case we
2452 	 * would miss our call to vm_fault_copy_entry().
2453 	 */
2454 	if (in_tran != NULL) {
2455 		in_tran->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2456 		vm_map_unlock_and_wait(map, 0);
2457 		goto again;
2458 	}
2459 
2460 	/*
2461 	 * Do an accounting pass for private read-only mappings that
2462 	 * now will do cow due to allowed write (e.g. debugger sets
2463 	 * breakpoint on text segment)
2464 	 */
2465 	for (current = entry; current->start < end; current = current->next) {
2466 
2467 		vm_map_clip_end(map, current, end);
2468 
2469 		if (set_max ||
2470 		    ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
2471 		    ENTRY_CHARGED(current) ||
2472 		    (current->eflags & MAP_ENTRY_GUARD) != 0) {
2473 			continue;
2474 		}
2475 
2476 		cred = curthread->td_ucred;
2477 		obj = current->object.vm_object;
2478 
2479 		if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
2480 			if (!swap_reserve(current->end - current->start)) {
2481 				vm_map_unlock(map);
2482 				return (KERN_RESOURCE_SHORTAGE);
2483 			}
2484 			crhold(cred);
2485 			current->cred = cred;
2486 			continue;
2487 		}
2488 
2489 		VM_OBJECT_WLOCK(obj);
2490 		if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
2491 			VM_OBJECT_WUNLOCK(obj);
2492 			continue;
2493 		}
2494 
2495 		/*
2496 		 * Charge for the whole object allocation now, since
2497 		 * we cannot distinguish between non-charged and
2498 		 * charged clipped mapping of the same object later.
2499 		 */
2500 		KASSERT(obj->charge == 0,
2501 		    ("vm_map_protect: object %p overcharged (entry %p)",
2502 		    obj, current));
2503 		if (!swap_reserve(ptoa(obj->size))) {
2504 			VM_OBJECT_WUNLOCK(obj);
2505 			vm_map_unlock(map);
2506 			return (KERN_RESOURCE_SHORTAGE);
2507 		}
2508 
2509 		crhold(cred);
2510 		obj->cred = cred;
2511 		obj->charge = ptoa(obj->size);
2512 		VM_OBJECT_WUNLOCK(obj);
2513 	}
2514 
2515 	/*
2516 	 * Go back and fix up protections. [Note that clipping is not
2517 	 * necessary the second time.]
2518 	 */
2519 	for (current = entry; current->start < end; current = current->next) {
2520 		if ((current->eflags & MAP_ENTRY_GUARD) != 0)
2521 			continue;
2522 
2523 		old_prot = current->protection;
2524 
2525 		if (set_max)
2526 			current->protection =
2527 			    (current->max_protection = new_prot) &
2528 			    old_prot;
2529 		else
2530 			current->protection = new_prot;
2531 
2532 		/*
2533 		 * For user wired map entries, the normal lazy evaluation of
2534 		 * write access upgrades through soft page faults is
2535 		 * undesirable.  Instead, immediately copy any pages that are
2536 		 * copy-on-write and enable write access in the physical map.
2537 		 */
2538 		if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2539 		    (current->protection & VM_PROT_WRITE) != 0 &&
2540 		    (old_prot & VM_PROT_WRITE) == 0)
2541 			vm_fault_copy_entry(map, map, current, current, NULL);
2542 
2543 		/*
2544 		 * When restricting access, update the physical map.  Worry
2545 		 * about copy-on-write here.
2546 		 */
2547 		if ((old_prot & ~current->protection) != 0) {
2548 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2549 							VM_PROT_ALL)
2550 			pmap_protect(map->pmap, current->start,
2551 			    current->end,
2552 			    current->protection & MASK(current));
2553 #undef	MASK
2554 		}
2555 		vm_map_simplify_entry(map, current);
2556 	}
2557 	vm_map_unlock(map);
2558 	return (KERN_SUCCESS);
2559 }
2560 
2561 /*
2562  *	vm_map_madvise:
2563  *
2564  *	This routine traverses a processes map handling the madvise
2565  *	system call.  Advisories are classified as either those effecting
2566  *	the vm_map_entry structure, or those effecting the underlying
2567  *	objects.
2568  */
2569 int
2570 vm_map_madvise(
2571 	vm_map_t map,
2572 	vm_offset_t start,
2573 	vm_offset_t end,
2574 	int behav)
2575 {
2576 	vm_map_entry_t current, entry;
2577 	bool modify_map;
2578 
2579 	/*
2580 	 * Some madvise calls directly modify the vm_map_entry, in which case
2581 	 * we need to use an exclusive lock on the map and we need to perform
2582 	 * various clipping operations.  Otherwise we only need a read-lock
2583 	 * on the map.
2584 	 */
2585 	switch(behav) {
2586 	case MADV_NORMAL:
2587 	case MADV_SEQUENTIAL:
2588 	case MADV_RANDOM:
2589 	case MADV_NOSYNC:
2590 	case MADV_AUTOSYNC:
2591 	case MADV_NOCORE:
2592 	case MADV_CORE:
2593 		if (start == end)
2594 			return (0);
2595 		modify_map = true;
2596 		vm_map_lock(map);
2597 		break;
2598 	case MADV_WILLNEED:
2599 	case MADV_DONTNEED:
2600 	case MADV_FREE:
2601 		if (start == end)
2602 			return (0);
2603 		modify_map = false;
2604 		vm_map_lock_read(map);
2605 		break;
2606 	default:
2607 		return (EINVAL);
2608 	}
2609 
2610 	/*
2611 	 * Locate starting entry and clip if necessary.
2612 	 */
2613 	VM_MAP_RANGE_CHECK(map, start, end);
2614 
2615 	if (vm_map_lookup_entry(map, start, &entry)) {
2616 		if (modify_map)
2617 			vm_map_clip_start(map, entry, start);
2618 	} else {
2619 		entry = entry->next;
2620 	}
2621 
2622 	if (modify_map) {
2623 		/*
2624 		 * madvise behaviors that are implemented in the vm_map_entry.
2625 		 *
2626 		 * We clip the vm_map_entry so that behavioral changes are
2627 		 * limited to the specified address range.
2628 		 */
2629 		for (current = entry; current->start < end;
2630 		    current = current->next) {
2631 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2632 				continue;
2633 
2634 			vm_map_clip_end(map, current, end);
2635 
2636 			switch (behav) {
2637 			case MADV_NORMAL:
2638 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2639 				break;
2640 			case MADV_SEQUENTIAL:
2641 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2642 				break;
2643 			case MADV_RANDOM:
2644 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2645 				break;
2646 			case MADV_NOSYNC:
2647 				current->eflags |= MAP_ENTRY_NOSYNC;
2648 				break;
2649 			case MADV_AUTOSYNC:
2650 				current->eflags &= ~MAP_ENTRY_NOSYNC;
2651 				break;
2652 			case MADV_NOCORE:
2653 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
2654 				break;
2655 			case MADV_CORE:
2656 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2657 				break;
2658 			default:
2659 				break;
2660 			}
2661 			vm_map_simplify_entry(map, current);
2662 		}
2663 		vm_map_unlock(map);
2664 	} else {
2665 		vm_pindex_t pstart, pend;
2666 
2667 		/*
2668 		 * madvise behaviors that are implemented in the underlying
2669 		 * vm_object.
2670 		 *
2671 		 * Since we don't clip the vm_map_entry, we have to clip
2672 		 * the vm_object pindex and count.
2673 		 */
2674 		for (current = entry; current->start < end;
2675 		    current = current->next) {
2676 			vm_offset_t useEnd, useStart;
2677 
2678 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2679 				continue;
2680 
2681 			pstart = OFF_TO_IDX(current->offset);
2682 			pend = pstart + atop(current->end - current->start);
2683 			useStart = current->start;
2684 			useEnd = current->end;
2685 
2686 			if (current->start < start) {
2687 				pstart += atop(start - current->start);
2688 				useStart = start;
2689 			}
2690 			if (current->end > end) {
2691 				pend -= atop(current->end - end);
2692 				useEnd = end;
2693 			}
2694 
2695 			if (pstart >= pend)
2696 				continue;
2697 
2698 			/*
2699 			 * Perform the pmap_advise() before clearing
2700 			 * PGA_REFERENCED in vm_page_advise().  Otherwise, a
2701 			 * concurrent pmap operation, such as pmap_remove(),
2702 			 * could clear a reference in the pmap and set
2703 			 * PGA_REFERENCED on the page before the pmap_advise()
2704 			 * had completed.  Consequently, the page would appear
2705 			 * referenced based upon an old reference that
2706 			 * occurred before this pmap_advise() ran.
2707 			 */
2708 			if (behav == MADV_DONTNEED || behav == MADV_FREE)
2709 				pmap_advise(map->pmap, useStart, useEnd,
2710 				    behav);
2711 
2712 			vm_object_madvise(current->object.vm_object, pstart,
2713 			    pend, behav);
2714 
2715 			/*
2716 			 * Pre-populate paging structures in the
2717 			 * WILLNEED case.  For wired entries, the
2718 			 * paging structures are already populated.
2719 			 */
2720 			if (behav == MADV_WILLNEED &&
2721 			    current->wired_count == 0) {
2722 				vm_map_pmap_enter(map,
2723 				    useStart,
2724 				    current->protection,
2725 				    current->object.vm_object,
2726 				    pstart,
2727 				    ptoa(pend - pstart),
2728 				    MAP_PREFAULT_MADVISE
2729 				);
2730 			}
2731 		}
2732 		vm_map_unlock_read(map);
2733 	}
2734 	return (0);
2735 }
2736 
2737 
2738 /*
2739  *	vm_map_inherit:
2740  *
2741  *	Sets the inheritance of the specified address
2742  *	range in the target map.  Inheritance
2743  *	affects how the map will be shared with
2744  *	child maps at the time of vmspace_fork.
2745  */
2746 int
2747 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2748 	       vm_inherit_t new_inheritance)
2749 {
2750 	vm_map_entry_t entry;
2751 	vm_map_entry_t temp_entry;
2752 
2753 	switch (new_inheritance) {
2754 	case VM_INHERIT_NONE:
2755 	case VM_INHERIT_COPY:
2756 	case VM_INHERIT_SHARE:
2757 	case VM_INHERIT_ZERO:
2758 		break;
2759 	default:
2760 		return (KERN_INVALID_ARGUMENT);
2761 	}
2762 	if (start == end)
2763 		return (KERN_SUCCESS);
2764 	vm_map_lock(map);
2765 	VM_MAP_RANGE_CHECK(map, start, end);
2766 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
2767 		entry = temp_entry;
2768 		vm_map_clip_start(map, entry, start);
2769 	} else
2770 		entry = temp_entry->next;
2771 	while (entry->start < end) {
2772 		vm_map_clip_end(map, entry, end);
2773 		if ((entry->eflags & MAP_ENTRY_GUARD) == 0 ||
2774 		    new_inheritance != VM_INHERIT_ZERO)
2775 			entry->inheritance = new_inheritance;
2776 		vm_map_simplify_entry(map, entry);
2777 		entry = entry->next;
2778 	}
2779 	vm_map_unlock(map);
2780 	return (KERN_SUCCESS);
2781 }
2782 
2783 /*
2784  *	vm_map_unwire:
2785  *
2786  *	Implements both kernel and user unwiring.
2787  */
2788 int
2789 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2790     int flags)
2791 {
2792 	vm_map_entry_t entry, first_entry, tmp_entry;
2793 	vm_offset_t saved_start;
2794 	unsigned int last_timestamp;
2795 	int rv;
2796 	boolean_t need_wakeup, result, user_unwire;
2797 
2798 	if (start == end)
2799 		return (KERN_SUCCESS);
2800 	user_unwire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
2801 	vm_map_lock(map);
2802 	VM_MAP_RANGE_CHECK(map, start, end);
2803 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2804 		if (flags & VM_MAP_WIRE_HOLESOK)
2805 			first_entry = first_entry->next;
2806 		else {
2807 			vm_map_unlock(map);
2808 			return (KERN_INVALID_ADDRESS);
2809 		}
2810 	}
2811 	last_timestamp = map->timestamp;
2812 	entry = first_entry;
2813 	while (entry->start < end) {
2814 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2815 			/*
2816 			 * We have not yet clipped the entry.
2817 			 */
2818 			saved_start = (start >= entry->start) ? start :
2819 			    entry->start;
2820 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2821 			if (vm_map_unlock_and_wait(map, 0)) {
2822 				/*
2823 				 * Allow interruption of user unwiring?
2824 				 */
2825 			}
2826 			vm_map_lock(map);
2827 			if (last_timestamp+1 != map->timestamp) {
2828 				/*
2829 				 * Look again for the entry because the map was
2830 				 * modified while it was unlocked.
2831 				 * Specifically, the entry may have been
2832 				 * clipped, merged, or deleted.
2833 				 */
2834 				if (!vm_map_lookup_entry(map, saved_start,
2835 				    &tmp_entry)) {
2836 					if (flags & VM_MAP_WIRE_HOLESOK)
2837 						tmp_entry = tmp_entry->next;
2838 					else {
2839 						if (saved_start == start) {
2840 							/*
2841 							 * First_entry has been deleted.
2842 							 */
2843 							vm_map_unlock(map);
2844 							return (KERN_INVALID_ADDRESS);
2845 						}
2846 						end = saved_start;
2847 						rv = KERN_INVALID_ADDRESS;
2848 						goto done;
2849 					}
2850 				}
2851 				if (entry == first_entry)
2852 					first_entry = tmp_entry;
2853 				else
2854 					first_entry = NULL;
2855 				entry = tmp_entry;
2856 			}
2857 			last_timestamp = map->timestamp;
2858 			continue;
2859 		}
2860 		vm_map_clip_start(map, entry, start);
2861 		vm_map_clip_end(map, entry, end);
2862 		/*
2863 		 * Mark the entry in case the map lock is released.  (See
2864 		 * above.)
2865 		 */
2866 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2867 		    entry->wiring_thread == NULL,
2868 		    ("owned map entry %p", entry));
2869 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2870 		entry->wiring_thread = curthread;
2871 		/*
2872 		 * Check the map for holes in the specified region.
2873 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
2874 		 */
2875 		if (((flags & VM_MAP_WIRE_HOLESOK) == 0) &&
2876 		    (entry->end < end && entry->next->start > entry->end)) {
2877 			end = entry->end;
2878 			rv = KERN_INVALID_ADDRESS;
2879 			goto done;
2880 		}
2881 		/*
2882 		 * If system unwiring, require that the entry is system wired.
2883 		 */
2884 		if (!user_unwire &&
2885 		    vm_map_entry_system_wired_count(entry) == 0) {
2886 			end = entry->end;
2887 			rv = KERN_INVALID_ARGUMENT;
2888 			goto done;
2889 		}
2890 		entry = entry->next;
2891 	}
2892 	rv = KERN_SUCCESS;
2893 done:
2894 	need_wakeup = FALSE;
2895 	if (first_entry == NULL) {
2896 		result = vm_map_lookup_entry(map, start, &first_entry);
2897 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
2898 			first_entry = first_entry->next;
2899 		else
2900 			KASSERT(result, ("vm_map_unwire: lookup failed"));
2901 	}
2902 	for (entry = first_entry; entry->start < end; entry = entry->next) {
2903 		/*
2904 		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
2905 		 * space in the unwired region could have been mapped
2906 		 * while the map lock was dropped for draining
2907 		 * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
2908 		 * could be simultaneously wiring this new mapping
2909 		 * entry.  Detect these cases and skip any entries
2910 		 * marked as in transition by us.
2911 		 */
2912 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2913 		    entry->wiring_thread != curthread) {
2914 			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
2915 			    ("vm_map_unwire: !HOLESOK and new/changed entry"));
2916 			continue;
2917 		}
2918 
2919 		if (rv == KERN_SUCCESS && (!user_unwire ||
2920 		    (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2921 			if (entry->wired_count == 1)
2922 				vm_map_entry_unwire(map, entry);
2923 			else
2924 				entry->wired_count--;
2925 			if (user_unwire)
2926 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
2927 		}
2928 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2929 		    ("vm_map_unwire: in-transition flag missing %p", entry));
2930 		KASSERT(entry->wiring_thread == curthread,
2931 		    ("vm_map_unwire: alien wire %p", entry));
2932 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
2933 		entry->wiring_thread = NULL;
2934 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
2935 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
2936 			need_wakeup = TRUE;
2937 		}
2938 		vm_map_simplify_entry(map, entry);
2939 	}
2940 	vm_map_unlock(map);
2941 	if (need_wakeup)
2942 		vm_map_wakeup(map);
2943 	return (rv);
2944 }
2945 
2946 static void
2947 vm_map_wire_user_count_sub(u_long npages)
2948 {
2949 
2950 	atomic_subtract_long(&vm_user_wire_count, npages);
2951 }
2952 
2953 static bool
2954 vm_map_wire_user_count_add(u_long npages)
2955 {
2956 	u_long wired;
2957 
2958 	wired = vm_user_wire_count;
2959 	do {
2960 		if (npages + wired > vm_page_max_user_wired)
2961 			return (false);
2962 	} while (!atomic_fcmpset_long(&vm_user_wire_count, &wired,
2963 	    npages + wired));
2964 
2965 	return (true);
2966 }
2967 
2968 /*
2969  *	vm_map_wire_entry_failure:
2970  *
2971  *	Handle a wiring failure on the given entry.
2972  *
2973  *	The map should be locked.
2974  */
2975 static void
2976 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
2977     vm_offset_t failed_addr)
2978 {
2979 
2980 	VM_MAP_ASSERT_LOCKED(map);
2981 	KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
2982 	    entry->wired_count == 1,
2983 	    ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
2984 	KASSERT(failed_addr < entry->end,
2985 	    ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
2986 
2987 	/*
2988 	 * If any pages at the start of this entry were successfully wired,
2989 	 * then unwire them.
2990 	 */
2991 	if (failed_addr > entry->start) {
2992 		pmap_unwire(map->pmap, entry->start, failed_addr);
2993 		vm_object_unwire(entry->object.vm_object, entry->offset,
2994 		    failed_addr - entry->start, PQ_ACTIVE);
2995 	}
2996 
2997 	/*
2998 	 * Assign an out-of-range value to represent the failure to wire this
2999 	 * entry.
3000 	 */
3001 	entry->wired_count = -1;
3002 }
3003 
3004 int
3005 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3006 {
3007 	int rv;
3008 
3009 	vm_map_lock(map);
3010 	rv = vm_map_wire_locked(map, start, end, flags);
3011 	vm_map_unlock(map);
3012 	return (rv);
3013 }
3014 
3015 
3016 /*
3017  *	vm_map_wire_locked:
3018  *
3019  *	Implements both kernel and user wiring.  Returns with the map locked,
3020  *	the map lock may be dropped.
3021  */
3022 int
3023 vm_map_wire_locked(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3024 {
3025 	vm_map_entry_t entry, first_entry, tmp_entry;
3026 	vm_offset_t faddr, saved_end, saved_start;
3027 	u_long npages;
3028 	u_int last_timestamp;
3029 	int rv;
3030 	boolean_t need_wakeup, result, user_wire;
3031 	vm_prot_t prot;
3032 
3033 	VM_MAP_ASSERT_LOCKED(map);
3034 
3035 	if (start == end)
3036 		return (KERN_SUCCESS);
3037 	prot = 0;
3038 	if (flags & VM_MAP_WIRE_WRITE)
3039 		prot |= VM_PROT_WRITE;
3040 	user_wire = (flags & VM_MAP_WIRE_USER) ? TRUE : FALSE;
3041 	VM_MAP_RANGE_CHECK(map, start, end);
3042 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
3043 		if (flags & VM_MAP_WIRE_HOLESOK)
3044 			first_entry = first_entry->next;
3045 		else
3046 			return (KERN_INVALID_ADDRESS);
3047 	}
3048 	last_timestamp = map->timestamp;
3049 	entry = first_entry;
3050 	while (entry->start < end) {
3051 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
3052 			/*
3053 			 * We have not yet clipped the entry.
3054 			 */
3055 			saved_start = (start >= entry->start) ? start :
3056 			    entry->start;
3057 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3058 			if (vm_map_unlock_and_wait(map, 0)) {
3059 				/*
3060 				 * Allow interruption of user wiring?
3061 				 */
3062 			}
3063 			vm_map_lock(map);
3064 			if (last_timestamp + 1 != map->timestamp) {
3065 				/*
3066 				 * Look again for the entry because the map was
3067 				 * modified while it was unlocked.
3068 				 * Specifically, the entry may have been
3069 				 * clipped, merged, or deleted.
3070 				 */
3071 				if (!vm_map_lookup_entry(map, saved_start,
3072 				    &tmp_entry)) {
3073 					if (flags & VM_MAP_WIRE_HOLESOK)
3074 						tmp_entry = tmp_entry->next;
3075 					else {
3076 						if (saved_start == start) {
3077 							/*
3078 							 * first_entry has been deleted.
3079 							 */
3080 							return (KERN_INVALID_ADDRESS);
3081 						}
3082 						end = saved_start;
3083 						rv = KERN_INVALID_ADDRESS;
3084 						goto done;
3085 					}
3086 				}
3087 				if (entry == first_entry)
3088 					first_entry = tmp_entry;
3089 				else
3090 					first_entry = NULL;
3091 				entry = tmp_entry;
3092 			}
3093 			last_timestamp = map->timestamp;
3094 			continue;
3095 		}
3096 		vm_map_clip_start(map, entry, start);
3097 		vm_map_clip_end(map, entry, end);
3098 		/*
3099 		 * Mark the entry in case the map lock is released.  (See
3100 		 * above.)
3101 		 */
3102 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
3103 		    entry->wiring_thread == NULL,
3104 		    ("owned map entry %p", entry));
3105 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
3106 		entry->wiring_thread = curthread;
3107 		if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
3108 		    || (entry->protection & prot) != prot) {
3109 			entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
3110 			if ((flags & VM_MAP_WIRE_HOLESOK) == 0) {
3111 				end = entry->end;
3112 				rv = KERN_INVALID_ADDRESS;
3113 				goto done;
3114 			}
3115 			goto next_entry;
3116 		}
3117 		if (entry->wired_count == 0) {
3118 			entry->wired_count++;
3119 
3120 			npages = atop(entry->end - entry->start);
3121 			if (user_wire && !vm_map_wire_user_count_add(npages)) {
3122 				vm_map_wire_entry_failure(map, entry,
3123 				    entry->start);
3124 				end = entry->end;
3125 				rv = KERN_RESOURCE_SHORTAGE;
3126 				goto done;
3127 			}
3128 
3129 			/*
3130 			 * Release the map lock, relying on the in-transition
3131 			 * mark.  Mark the map busy for fork.
3132 			 */
3133 			saved_start = entry->start;
3134 			saved_end = entry->end;
3135 			vm_map_busy(map);
3136 			vm_map_unlock(map);
3137 
3138 			faddr = saved_start;
3139 			do {
3140 				/*
3141 				 * Simulate a fault to get the page and enter
3142 				 * it into the physical map.
3143 				 */
3144 				if ((rv = vm_fault(map, faddr, VM_PROT_NONE,
3145 				    VM_FAULT_WIRE)) != KERN_SUCCESS)
3146 					break;
3147 			} while ((faddr += PAGE_SIZE) < saved_end);
3148 			vm_map_lock(map);
3149 			vm_map_unbusy(map);
3150 			if (last_timestamp + 1 != map->timestamp) {
3151 				/*
3152 				 * Look again for the entry because the map was
3153 				 * modified while it was unlocked.  The entry
3154 				 * may have been clipped, but NOT merged or
3155 				 * deleted.
3156 				 */
3157 				result = vm_map_lookup_entry(map, saved_start,
3158 				    &tmp_entry);
3159 				KASSERT(result, ("vm_map_wire: lookup failed"));
3160 				if (entry == first_entry)
3161 					first_entry = tmp_entry;
3162 				else
3163 					first_entry = NULL;
3164 				entry = tmp_entry;
3165 				while (entry->end < saved_end) {
3166 					/*
3167 					 * In case of failure, handle entries
3168 					 * that were not fully wired here;
3169 					 * fully wired entries are handled
3170 					 * later.
3171 					 */
3172 					if (rv != KERN_SUCCESS &&
3173 					    faddr < entry->end)
3174 						vm_map_wire_entry_failure(map,
3175 						    entry, faddr);
3176 					entry = entry->next;
3177 				}
3178 			}
3179 			last_timestamp = map->timestamp;
3180 			if (rv != KERN_SUCCESS) {
3181 				vm_map_wire_entry_failure(map, entry, faddr);
3182 				if (user_wire)
3183 					vm_map_wire_user_count_sub(npages);
3184 				end = entry->end;
3185 				goto done;
3186 			}
3187 		} else if (!user_wire ||
3188 			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3189 			entry->wired_count++;
3190 		}
3191 		/*
3192 		 * Check the map for holes in the specified region.
3193 		 * If VM_MAP_WIRE_HOLESOK was specified, skip this check.
3194 		 */
3195 	next_entry:
3196 		if ((flags & VM_MAP_WIRE_HOLESOK) == 0 &&
3197 		    entry->end < end && entry->next->start > entry->end) {
3198 			end = entry->end;
3199 			rv = KERN_INVALID_ADDRESS;
3200 			goto done;
3201 		}
3202 		entry = entry->next;
3203 	}
3204 	rv = KERN_SUCCESS;
3205 done:
3206 	need_wakeup = FALSE;
3207 	if (first_entry == NULL) {
3208 		result = vm_map_lookup_entry(map, start, &first_entry);
3209 		if (!result && (flags & VM_MAP_WIRE_HOLESOK))
3210 			first_entry = first_entry->next;
3211 		else
3212 			KASSERT(result, ("vm_map_wire: lookup failed"));
3213 	}
3214 	for (entry = first_entry; entry->start < end; entry = entry->next) {
3215 		/*
3216 		 * If VM_MAP_WIRE_HOLESOK was specified, an empty
3217 		 * space in the unwired region could have been mapped
3218 		 * while the map lock was dropped for faulting in the
3219 		 * pages or draining MAP_ENTRY_IN_TRANSITION.
3220 		 * Moreover, another thread could be simultaneously
3221 		 * wiring this new mapping entry.  Detect these cases
3222 		 * and skip any entries marked as in transition not by us.
3223 		 */
3224 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
3225 		    entry->wiring_thread != curthread) {
3226 			KASSERT((flags & VM_MAP_WIRE_HOLESOK) != 0,
3227 			    ("vm_map_wire: !HOLESOK and new/changed entry"));
3228 			continue;
3229 		}
3230 
3231 		if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0)
3232 			goto next_entry_done;
3233 
3234 		if (rv == KERN_SUCCESS) {
3235 			if (user_wire)
3236 				entry->eflags |= MAP_ENTRY_USER_WIRED;
3237 		} else if (entry->wired_count == -1) {
3238 			/*
3239 			 * Wiring failed on this entry.  Thus, unwiring is
3240 			 * unnecessary.
3241 			 */
3242 			entry->wired_count = 0;
3243 		} else if (!user_wire ||
3244 		    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3245 			/*
3246 			 * Undo the wiring.  Wiring succeeded on this entry
3247 			 * but failed on a later entry.
3248 			 */
3249 			if (entry->wired_count == 1) {
3250 				vm_map_entry_unwire(map, entry);
3251 				if (user_wire)
3252 					vm_map_wire_user_count_sub(
3253 					    atop(entry->end - entry->start));
3254 			} else
3255 				entry->wired_count--;
3256 		}
3257 	next_entry_done:
3258 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3259 		    ("vm_map_wire: in-transition flag missing %p", entry));
3260 		KASSERT(entry->wiring_thread == curthread,
3261 		    ("vm_map_wire: alien wire %p", entry));
3262 		entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
3263 		    MAP_ENTRY_WIRE_SKIPPED);
3264 		entry->wiring_thread = NULL;
3265 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3266 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3267 			need_wakeup = TRUE;
3268 		}
3269 		vm_map_simplify_entry(map, entry);
3270 	}
3271 	if (need_wakeup)
3272 		vm_map_wakeup(map);
3273 	return (rv);
3274 }
3275 
3276 /*
3277  * vm_map_sync
3278  *
3279  * Push any dirty cached pages in the address range to their pager.
3280  * If syncio is TRUE, dirty pages are written synchronously.
3281  * If invalidate is TRUE, any cached pages are freed as well.
3282  *
3283  * If the size of the region from start to end is zero, we are
3284  * supposed to flush all modified pages within the region containing
3285  * start.  Unfortunately, a region can be split or coalesced with
3286  * neighboring regions, making it difficult to determine what the
3287  * original region was.  Therefore, we approximate this requirement by
3288  * flushing the current region containing start.
3289  *
3290  * Returns an error if any part of the specified range is not mapped.
3291  */
3292 int
3293 vm_map_sync(
3294 	vm_map_t map,
3295 	vm_offset_t start,
3296 	vm_offset_t end,
3297 	boolean_t syncio,
3298 	boolean_t invalidate)
3299 {
3300 	vm_map_entry_t current;
3301 	vm_map_entry_t entry;
3302 	vm_size_t size;
3303 	vm_object_t object;
3304 	vm_ooffset_t offset;
3305 	unsigned int last_timestamp;
3306 	boolean_t failed;
3307 
3308 	vm_map_lock_read(map);
3309 	VM_MAP_RANGE_CHECK(map, start, end);
3310 	if (!vm_map_lookup_entry(map, start, &entry)) {
3311 		vm_map_unlock_read(map);
3312 		return (KERN_INVALID_ADDRESS);
3313 	} else if (start == end) {
3314 		start = entry->start;
3315 		end = entry->end;
3316 	}
3317 	/*
3318 	 * Make a first pass to check for user-wired memory and holes.
3319 	 */
3320 	for (current = entry; current->start < end; current = current->next) {
3321 		if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
3322 			vm_map_unlock_read(map);
3323 			return (KERN_INVALID_ARGUMENT);
3324 		}
3325 		if (end > current->end &&
3326 		    current->end != current->next->start) {
3327 			vm_map_unlock_read(map);
3328 			return (KERN_INVALID_ADDRESS);
3329 		}
3330 	}
3331 
3332 	if (invalidate)
3333 		pmap_remove(map->pmap, start, end);
3334 	failed = FALSE;
3335 
3336 	/*
3337 	 * Make a second pass, cleaning/uncaching pages from the indicated
3338 	 * objects as we go.
3339 	 */
3340 	for (current = entry; current->start < end;) {
3341 		offset = current->offset + (start - current->start);
3342 		size = (end <= current->end ? end : current->end) - start;
3343 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
3344 			vm_map_t smap;
3345 			vm_map_entry_t tentry;
3346 			vm_size_t tsize;
3347 
3348 			smap = current->object.sub_map;
3349 			vm_map_lock_read(smap);
3350 			(void) vm_map_lookup_entry(smap, offset, &tentry);
3351 			tsize = tentry->end - offset;
3352 			if (tsize < size)
3353 				size = tsize;
3354 			object = tentry->object.vm_object;
3355 			offset = tentry->offset + (offset - tentry->start);
3356 			vm_map_unlock_read(smap);
3357 		} else {
3358 			object = current->object.vm_object;
3359 		}
3360 		vm_object_reference(object);
3361 		last_timestamp = map->timestamp;
3362 		vm_map_unlock_read(map);
3363 		if (!vm_object_sync(object, offset, size, syncio, invalidate))
3364 			failed = TRUE;
3365 		start += size;
3366 		vm_object_deallocate(object);
3367 		vm_map_lock_read(map);
3368 		if (last_timestamp == map->timestamp ||
3369 		    !vm_map_lookup_entry(map, start, &current))
3370 			current = current->next;
3371 	}
3372 
3373 	vm_map_unlock_read(map);
3374 	return (failed ? KERN_FAILURE : KERN_SUCCESS);
3375 }
3376 
3377 /*
3378  *	vm_map_entry_unwire:	[ internal use only ]
3379  *
3380  *	Make the region specified by this entry pageable.
3381  *
3382  *	The map in question should be locked.
3383  *	[This is the reason for this routine's existence.]
3384  */
3385 static void
3386 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
3387 {
3388 	vm_size_t size;
3389 
3390 	VM_MAP_ASSERT_LOCKED(map);
3391 	KASSERT(entry->wired_count > 0,
3392 	    ("vm_map_entry_unwire: entry %p isn't wired", entry));
3393 
3394 	size = entry->end - entry->start;
3395 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0)
3396 		vm_map_wire_user_count_sub(atop(size));
3397 	pmap_unwire(map->pmap, entry->start, entry->end);
3398 	vm_object_unwire(entry->object.vm_object, entry->offset, size,
3399 	    PQ_ACTIVE);
3400 	entry->wired_count = 0;
3401 }
3402 
3403 static void
3404 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
3405 {
3406 
3407 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
3408 		vm_object_deallocate(entry->object.vm_object);
3409 	uma_zfree(system_map ? kmapentzone : mapentzone, entry);
3410 }
3411 
3412 /*
3413  *	vm_map_entry_delete:	[ internal use only ]
3414  *
3415  *	Deallocate the given entry from the target map.
3416  */
3417 static void
3418 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
3419 {
3420 	vm_object_t object;
3421 	vm_pindex_t offidxstart, offidxend, count, size1;
3422 	vm_size_t size;
3423 
3424 	vm_map_entry_unlink(map, entry, UNLINK_MERGE_NONE);
3425 	object = entry->object.vm_object;
3426 
3427 	if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
3428 		MPASS(entry->cred == NULL);
3429 		MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0);
3430 		MPASS(object == NULL);
3431 		vm_map_entry_deallocate(entry, map->system_map);
3432 		return;
3433 	}
3434 
3435 	size = entry->end - entry->start;
3436 	map->size -= size;
3437 
3438 	if (entry->cred != NULL) {
3439 		swap_release_by_cred(size, entry->cred);
3440 		crfree(entry->cred);
3441 	}
3442 
3443 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
3444 	    (object != NULL)) {
3445 		KASSERT(entry->cred == NULL || object->cred == NULL ||
3446 		    (entry->eflags & MAP_ENTRY_NEEDS_COPY),
3447 		    ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
3448 		count = atop(size);
3449 		offidxstart = OFF_TO_IDX(entry->offset);
3450 		offidxend = offidxstart + count;
3451 		VM_OBJECT_WLOCK(object);
3452 		if (object->ref_count != 1 && ((object->flags & (OBJ_NOSPLIT |
3453 		    OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
3454 		    object == kernel_object)) {
3455 			vm_object_collapse(object);
3456 
3457 			/*
3458 			 * The option OBJPR_NOTMAPPED can be passed here
3459 			 * because vm_map_delete() already performed
3460 			 * pmap_remove() on the only mapping to this range
3461 			 * of pages.
3462 			 */
3463 			vm_object_page_remove(object, offidxstart, offidxend,
3464 			    OBJPR_NOTMAPPED);
3465 			if (object->type == OBJT_SWAP)
3466 				swap_pager_freespace(object, offidxstart,
3467 				    count);
3468 			if (offidxend >= object->size &&
3469 			    offidxstart < object->size) {
3470 				size1 = object->size;
3471 				object->size = offidxstart;
3472 				if (object->cred != NULL) {
3473 					size1 -= object->size;
3474 					KASSERT(object->charge >= ptoa(size1),
3475 					    ("object %p charge < 0", object));
3476 					swap_release_by_cred(ptoa(size1),
3477 					    object->cred);
3478 					object->charge -= ptoa(size1);
3479 				}
3480 			}
3481 		}
3482 		VM_OBJECT_WUNLOCK(object);
3483 	} else
3484 		entry->object.vm_object = NULL;
3485 	if (map->system_map)
3486 		vm_map_entry_deallocate(entry, TRUE);
3487 	else {
3488 		entry->next = curthread->td_map_def_user;
3489 		curthread->td_map_def_user = entry;
3490 	}
3491 }
3492 
3493 /*
3494  *	vm_map_delete:	[ internal use only ]
3495  *
3496  *	Deallocates the given address range from the target
3497  *	map.
3498  */
3499 int
3500 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
3501 {
3502 	vm_map_entry_t entry;
3503 	vm_map_entry_t first_entry;
3504 
3505 	VM_MAP_ASSERT_LOCKED(map);
3506 	if (start == end)
3507 		return (KERN_SUCCESS);
3508 
3509 	/*
3510 	 * Find the start of the region, and clip it
3511 	 */
3512 	if (!vm_map_lookup_entry(map, start, &first_entry))
3513 		entry = first_entry->next;
3514 	else {
3515 		entry = first_entry;
3516 		vm_map_clip_start(map, entry, start);
3517 	}
3518 
3519 	/*
3520 	 * Step through all entries in this region
3521 	 */
3522 	while (entry->start < end) {
3523 		vm_map_entry_t next;
3524 
3525 		/*
3526 		 * Wait for wiring or unwiring of an entry to complete.
3527 		 * Also wait for any system wirings to disappear on
3528 		 * user maps.
3529 		 */
3530 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
3531 		    (vm_map_pmap(map) != kernel_pmap &&
3532 		    vm_map_entry_system_wired_count(entry) != 0)) {
3533 			unsigned int last_timestamp;
3534 			vm_offset_t saved_start;
3535 			vm_map_entry_t tmp_entry;
3536 
3537 			saved_start = entry->start;
3538 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3539 			last_timestamp = map->timestamp;
3540 			(void) vm_map_unlock_and_wait(map, 0);
3541 			vm_map_lock(map);
3542 			if (last_timestamp + 1 != map->timestamp) {
3543 				/*
3544 				 * Look again for the entry because the map was
3545 				 * modified while it was unlocked.
3546 				 * Specifically, the entry may have been
3547 				 * clipped, merged, or deleted.
3548 				 */
3549 				if (!vm_map_lookup_entry(map, saved_start,
3550 							 &tmp_entry))
3551 					entry = tmp_entry->next;
3552 				else {
3553 					entry = tmp_entry;
3554 					vm_map_clip_start(map, entry,
3555 							  saved_start);
3556 				}
3557 			}
3558 			continue;
3559 		}
3560 		vm_map_clip_end(map, entry, end);
3561 
3562 		next = entry->next;
3563 
3564 		/*
3565 		 * Unwire before removing addresses from the pmap; otherwise,
3566 		 * unwiring will put the entries back in the pmap.
3567 		 */
3568 		if (entry->wired_count != 0)
3569 			vm_map_entry_unwire(map, entry);
3570 
3571 		/*
3572 		 * Remove mappings for the pages, but only if the
3573 		 * mappings could exist.  For instance, it does not
3574 		 * make sense to call pmap_remove() for guard entries.
3575 		 */
3576 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 ||
3577 		    entry->object.vm_object != NULL)
3578 			pmap_remove(map->pmap, entry->start, entry->end);
3579 
3580 		if (entry->end == map->anon_loc)
3581 			map->anon_loc = entry->start;
3582 
3583 		/*
3584 		 * Delete the entry only after removing all pmap
3585 		 * entries pointing to its pages.  (Otherwise, its
3586 		 * page frames may be reallocated, and any modify bits
3587 		 * will be set in the wrong object!)
3588 		 */
3589 		vm_map_entry_delete(map, entry);
3590 		entry = next;
3591 	}
3592 	return (KERN_SUCCESS);
3593 }
3594 
3595 /*
3596  *	vm_map_remove:
3597  *
3598  *	Remove the given address range from the target map.
3599  *	This is the exported form of vm_map_delete.
3600  */
3601 int
3602 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3603 {
3604 	int result;
3605 
3606 	vm_map_lock(map);
3607 	VM_MAP_RANGE_CHECK(map, start, end);
3608 	result = vm_map_delete(map, start, end);
3609 	vm_map_unlock(map);
3610 	return (result);
3611 }
3612 
3613 /*
3614  *	vm_map_check_protection:
3615  *
3616  *	Assert that the target map allows the specified privilege on the
3617  *	entire address region given.  The entire region must be allocated.
3618  *
3619  *	WARNING!  This code does not and should not check whether the
3620  *	contents of the region is accessible.  For example a smaller file
3621  *	might be mapped into a larger address space.
3622  *
3623  *	NOTE!  This code is also called by munmap().
3624  *
3625  *	The map must be locked.  A read lock is sufficient.
3626  */
3627 boolean_t
3628 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
3629 			vm_prot_t protection)
3630 {
3631 	vm_map_entry_t entry;
3632 	vm_map_entry_t tmp_entry;
3633 
3634 	if (!vm_map_lookup_entry(map, start, &tmp_entry))
3635 		return (FALSE);
3636 	entry = tmp_entry;
3637 
3638 	while (start < end) {
3639 		/*
3640 		 * No holes allowed!
3641 		 */
3642 		if (start < entry->start)
3643 			return (FALSE);
3644 		/*
3645 		 * Check protection associated with entry.
3646 		 */
3647 		if ((entry->protection & protection) != protection)
3648 			return (FALSE);
3649 		/* go to next entry */
3650 		start = entry->end;
3651 		entry = entry->next;
3652 	}
3653 	return (TRUE);
3654 }
3655 
3656 /*
3657  *	vm_map_copy_entry:
3658  *
3659  *	Copies the contents of the source entry to the destination
3660  *	entry.  The entries *must* be aligned properly.
3661  */
3662 static void
3663 vm_map_copy_entry(
3664 	vm_map_t src_map,
3665 	vm_map_t dst_map,
3666 	vm_map_entry_t src_entry,
3667 	vm_map_entry_t dst_entry,
3668 	vm_ooffset_t *fork_charge)
3669 {
3670 	vm_object_t src_object;
3671 	vm_map_entry_t fake_entry;
3672 	vm_offset_t size;
3673 	struct ucred *cred;
3674 	int charged;
3675 
3676 	VM_MAP_ASSERT_LOCKED(dst_map);
3677 
3678 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
3679 		return;
3680 
3681 	if (src_entry->wired_count == 0 ||
3682 	    (src_entry->protection & VM_PROT_WRITE) == 0) {
3683 		/*
3684 		 * If the source entry is marked needs_copy, it is already
3685 		 * write-protected.
3686 		 */
3687 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
3688 		    (src_entry->protection & VM_PROT_WRITE) != 0) {
3689 			pmap_protect(src_map->pmap,
3690 			    src_entry->start,
3691 			    src_entry->end,
3692 			    src_entry->protection & ~VM_PROT_WRITE);
3693 		}
3694 
3695 		/*
3696 		 * Make a copy of the object.
3697 		 */
3698 		size = src_entry->end - src_entry->start;
3699 		if ((src_object = src_entry->object.vm_object) != NULL) {
3700 			VM_OBJECT_WLOCK(src_object);
3701 			charged = ENTRY_CHARGED(src_entry);
3702 			if (src_object->handle == NULL &&
3703 			    (src_object->type == OBJT_DEFAULT ||
3704 			    src_object->type == OBJT_SWAP)) {
3705 				vm_object_collapse(src_object);
3706 				if ((src_object->flags & (OBJ_NOSPLIT |
3707 				    OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
3708 					vm_object_split(src_entry);
3709 					src_object =
3710 					    src_entry->object.vm_object;
3711 				}
3712 			}
3713 			vm_object_reference_locked(src_object);
3714 			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3715 			if (src_entry->cred != NULL &&
3716 			    !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3717 				KASSERT(src_object->cred == NULL,
3718 				    ("OVERCOMMIT: vm_map_copy_entry: cred %p",
3719 				     src_object));
3720 				src_object->cred = src_entry->cred;
3721 				src_object->charge = size;
3722 			}
3723 			VM_OBJECT_WUNLOCK(src_object);
3724 			dst_entry->object.vm_object = src_object;
3725 			if (charged) {
3726 				cred = curthread->td_ucred;
3727 				crhold(cred);
3728 				dst_entry->cred = cred;
3729 				*fork_charge += size;
3730 				if (!(src_entry->eflags &
3731 				      MAP_ENTRY_NEEDS_COPY)) {
3732 					crhold(cred);
3733 					src_entry->cred = cred;
3734 					*fork_charge += size;
3735 				}
3736 			}
3737 			src_entry->eflags |= MAP_ENTRY_COW |
3738 			    MAP_ENTRY_NEEDS_COPY;
3739 			dst_entry->eflags |= MAP_ENTRY_COW |
3740 			    MAP_ENTRY_NEEDS_COPY;
3741 			dst_entry->offset = src_entry->offset;
3742 			if (src_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3743 				/*
3744 				 * MAP_ENTRY_VN_WRITECNT cannot
3745 				 * indicate write reference from
3746 				 * src_entry, since the entry is
3747 				 * marked as needs copy.  Allocate a
3748 				 * fake entry that is used to
3749 				 * decrement object->un_pager.vnp.writecount
3750 				 * at the appropriate time.  Attach
3751 				 * fake_entry to the deferred list.
3752 				 */
3753 				fake_entry = vm_map_entry_create(dst_map);
3754 				fake_entry->eflags = MAP_ENTRY_VN_WRITECNT;
3755 				src_entry->eflags &= ~MAP_ENTRY_VN_WRITECNT;
3756 				vm_object_reference(src_object);
3757 				fake_entry->object.vm_object = src_object;
3758 				fake_entry->start = src_entry->start;
3759 				fake_entry->end = src_entry->end;
3760 				fake_entry->next = curthread->td_map_def_user;
3761 				curthread->td_map_def_user = fake_entry;
3762 			}
3763 
3764 			pmap_copy(dst_map->pmap, src_map->pmap,
3765 			    dst_entry->start, dst_entry->end - dst_entry->start,
3766 			    src_entry->start);
3767 		} else {
3768 			dst_entry->object.vm_object = NULL;
3769 			dst_entry->offset = 0;
3770 			if (src_entry->cred != NULL) {
3771 				dst_entry->cred = curthread->td_ucred;
3772 				crhold(dst_entry->cred);
3773 				*fork_charge += size;
3774 			}
3775 		}
3776 	} else {
3777 		/*
3778 		 * We don't want to make writeable wired pages copy-on-write.
3779 		 * Immediately copy these pages into the new map by simulating
3780 		 * page faults.  The new pages are pageable.
3781 		 */
3782 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3783 		    fork_charge);
3784 	}
3785 }
3786 
3787 /*
3788  * vmspace_map_entry_forked:
3789  * Update the newly-forked vmspace each time a map entry is inherited
3790  * or copied.  The values for vm_dsize and vm_tsize are approximate
3791  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3792  */
3793 static void
3794 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3795     vm_map_entry_t entry)
3796 {
3797 	vm_size_t entrysize;
3798 	vm_offset_t newend;
3799 
3800 	if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
3801 		return;
3802 	entrysize = entry->end - entry->start;
3803 	vm2->vm_map.size += entrysize;
3804 	if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3805 		vm2->vm_ssize += btoc(entrysize);
3806 	} else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3807 	    entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3808 		newend = MIN(entry->end,
3809 		    (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3810 		vm2->vm_dsize += btoc(newend - entry->start);
3811 	} else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3812 	    entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3813 		newend = MIN(entry->end,
3814 		    (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3815 		vm2->vm_tsize += btoc(newend - entry->start);
3816 	}
3817 }
3818 
3819 /*
3820  * vmspace_fork:
3821  * Create a new process vmspace structure and vm_map
3822  * based on those of an existing process.  The new map
3823  * is based on the old map, according to the inheritance
3824  * values on the regions in that map.
3825  *
3826  * XXX It might be worth coalescing the entries added to the new vmspace.
3827  *
3828  * The source map must not be locked.
3829  */
3830 struct vmspace *
3831 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3832 {
3833 	struct vmspace *vm2;
3834 	vm_map_t new_map, old_map;
3835 	vm_map_entry_t new_entry, old_entry;
3836 	vm_object_t object;
3837 	int error, locked;
3838 	vm_inherit_t inh;
3839 
3840 	old_map = &vm1->vm_map;
3841 	/* Copy immutable fields of vm1 to vm2. */
3842 	vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map),
3843 	    pmap_pinit);
3844 	if (vm2 == NULL)
3845 		return (NULL);
3846 
3847 	vm2->vm_taddr = vm1->vm_taddr;
3848 	vm2->vm_daddr = vm1->vm_daddr;
3849 	vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3850 	vm_map_lock(old_map);
3851 	if (old_map->busy)
3852 		vm_map_wait_busy(old_map);
3853 	new_map = &vm2->vm_map;
3854 	locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3855 	KASSERT(locked, ("vmspace_fork: lock failed"));
3856 
3857 	error = pmap_vmspace_copy(new_map->pmap, old_map->pmap);
3858 	if (error != 0) {
3859 		sx_xunlock(&old_map->lock);
3860 		sx_xunlock(&new_map->lock);
3861 		vm_map_process_deferred();
3862 		vmspace_free(vm2);
3863 		return (NULL);
3864 	}
3865 
3866 	new_map->anon_loc = old_map->anon_loc;
3867 
3868 	old_entry = old_map->header.next;
3869 
3870 	while (old_entry != &old_map->header) {
3871 		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3872 			panic("vm_map_fork: encountered a submap");
3873 
3874 		inh = old_entry->inheritance;
3875 		if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 &&
3876 		    inh != VM_INHERIT_NONE)
3877 			inh = VM_INHERIT_COPY;
3878 
3879 		switch (inh) {
3880 		case VM_INHERIT_NONE:
3881 			break;
3882 
3883 		case VM_INHERIT_SHARE:
3884 			/*
3885 			 * Clone the entry, creating the shared object if necessary.
3886 			 */
3887 			object = old_entry->object.vm_object;
3888 			if (object == NULL) {
3889 				object = vm_object_allocate(OBJT_DEFAULT,
3890 					atop(old_entry->end - old_entry->start));
3891 				old_entry->object.vm_object = object;
3892 				old_entry->offset = 0;
3893 				if (old_entry->cred != NULL) {
3894 					object->cred = old_entry->cred;
3895 					object->charge = old_entry->end -
3896 					    old_entry->start;
3897 					old_entry->cred = NULL;
3898 				}
3899 			}
3900 
3901 			/*
3902 			 * Add the reference before calling vm_object_shadow
3903 			 * to insure that a shadow object is created.
3904 			 */
3905 			vm_object_reference(object);
3906 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3907 				vm_object_shadow(&old_entry->object.vm_object,
3908 				    &old_entry->offset,
3909 				    old_entry->end - old_entry->start);
3910 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3911 				/* Transfer the second reference too. */
3912 				vm_object_reference(
3913 				    old_entry->object.vm_object);
3914 
3915 				/*
3916 				 * As in vm_map_simplify_entry(), the
3917 				 * vnode lock will not be acquired in
3918 				 * this call to vm_object_deallocate().
3919 				 */
3920 				vm_object_deallocate(object);
3921 				object = old_entry->object.vm_object;
3922 			}
3923 			VM_OBJECT_WLOCK(object);
3924 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
3925 			if (old_entry->cred != NULL) {
3926 				KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3927 				object->cred = old_entry->cred;
3928 				object->charge = old_entry->end - old_entry->start;
3929 				old_entry->cred = NULL;
3930 			}
3931 
3932 			/*
3933 			 * Assert the correct state of the vnode
3934 			 * v_writecount while the object is locked, to
3935 			 * not relock it later for the assertion
3936 			 * correctness.
3937 			 */
3938 			if (old_entry->eflags & MAP_ENTRY_VN_WRITECNT &&
3939 			    object->type == OBJT_VNODE) {
3940 				KASSERT(((struct vnode *)object->handle)->
3941 				    v_writecount > 0,
3942 				    ("vmspace_fork: v_writecount %p", object));
3943 				KASSERT(object->un_pager.vnp.writemappings > 0,
3944 				    ("vmspace_fork: vnp.writecount %p",
3945 				    object));
3946 			}
3947 			VM_OBJECT_WUNLOCK(object);
3948 
3949 			/*
3950 			 * Clone the entry, referencing the shared object.
3951 			 */
3952 			new_entry = vm_map_entry_create(new_map);
3953 			*new_entry = *old_entry;
3954 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3955 			    MAP_ENTRY_IN_TRANSITION);
3956 			new_entry->wiring_thread = NULL;
3957 			new_entry->wired_count = 0;
3958 			if (new_entry->eflags & MAP_ENTRY_VN_WRITECNT) {
3959 				vnode_pager_update_writecount(object,
3960 				    new_entry->start, new_entry->end);
3961 			}
3962 			vm_map_entry_set_vnode_text(new_entry, true);
3963 
3964 			/*
3965 			 * Insert the entry into the new map -- we know we're
3966 			 * inserting at the end of the new map.
3967 			 */
3968 			vm_map_entry_link(new_map, new_entry);
3969 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3970 
3971 			/*
3972 			 * Update the physical map
3973 			 */
3974 			pmap_copy(new_map->pmap, old_map->pmap,
3975 			    new_entry->start,
3976 			    (old_entry->end - old_entry->start),
3977 			    old_entry->start);
3978 			break;
3979 
3980 		case VM_INHERIT_COPY:
3981 			/*
3982 			 * Clone the entry and link into the map.
3983 			 */
3984 			new_entry = vm_map_entry_create(new_map);
3985 			*new_entry = *old_entry;
3986 			/*
3987 			 * Copied entry is COW over the old object.
3988 			 */
3989 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3990 			    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_VN_WRITECNT);
3991 			new_entry->wiring_thread = NULL;
3992 			new_entry->wired_count = 0;
3993 			new_entry->object.vm_object = NULL;
3994 			new_entry->cred = NULL;
3995 			vm_map_entry_link(new_map, new_entry);
3996 			vmspace_map_entry_forked(vm1, vm2, new_entry);
3997 			vm_map_copy_entry(old_map, new_map, old_entry,
3998 			    new_entry, fork_charge);
3999 			vm_map_entry_set_vnode_text(new_entry, true);
4000 			break;
4001 
4002 		case VM_INHERIT_ZERO:
4003 			/*
4004 			 * Create a new anonymous mapping entry modelled from
4005 			 * the old one.
4006 			 */
4007 			new_entry = vm_map_entry_create(new_map);
4008 			memset(new_entry, 0, sizeof(*new_entry));
4009 
4010 			new_entry->start = old_entry->start;
4011 			new_entry->end = old_entry->end;
4012 			new_entry->eflags = old_entry->eflags &
4013 			    ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION |
4014 			    MAP_ENTRY_VN_WRITECNT | MAP_ENTRY_VN_EXEC);
4015 			new_entry->protection = old_entry->protection;
4016 			new_entry->max_protection = old_entry->max_protection;
4017 			new_entry->inheritance = VM_INHERIT_ZERO;
4018 
4019 			vm_map_entry_link(new_map, new_entry);
4020 			vmspace_map_entry_forked(vm1, vm2, new_entry);
4021 
4022 			new_entry->cred = curthread->td_ucred;
4023 			crhold(new_entry->cred);
4024 			*fork_charge += (new_entry->end - new_entry->start);
4025 
4026 			break;
4027 		}
4028 		old_entry = old_entry->next;
4029 	}
4030 	/*
4031 	 * Use inlined vm_map_unlock() to postpone handling the deferred
4032 	 * map entries, which cannot be done until both old_map and
4033 	 * new_map locks are released.
4034 	 */
4035 	sx_xunlock(&old_map->lock);
4036 	sx_xunlock(&new_map->lock);
4037 	vm_map_process_deferred();
4038 
4039 	return (vm2);
4040 }
4041 
4042 /*
4043  * Create a process's stack for exec_new_vmspace().  This function is never
4044  * asked to wire the newly created stack.
4045  */
4046 int
4047 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4048     vm_prot_t prot, vm_prot_t max, int cow)
4049 {
4050 	vm_size_t growsize, init_ssize;
4051 	rlim_t vmemlim;
4052 	int rv;
4053 
4054 	MPASS((map->flags & MAP_WIREFUTURE) == 0);
4055 	growsize = sgrowsiz;
4056 	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
4057 	vm_map_lock(map);
4058 	vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4059 	/* If we would blow our VMEM resource limit, no go */
4060 	if (map->size + init_ssize > vmemlim) {
4061 		rv = KERN_NO_SPACE;
4062 		goto out;
4063 	}
4064 	rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
4065 	    max, cow);
4066 out:
4067 	vm_map_unlock(map);
4068 	return (rv);
4069 }
4070 
4071 static int stack_guard_page = 1;
4072 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
4073     &stack_guard_page, 0,
4074     "Specifies the number of guard pages for a stack that grows");
4075 
4076 static int
4077 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4078     vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
4079 {
4080 	vm_map_entry_t new_entry, prev_entry;
4081 	vm_offset_t bot, gap_bot, gap_top, top;
4082 	vm_size_t init_ssize, sgp;
4083 	int orient, rv;
4084 
4085 	/*
4086 	 * The stack orientation is piggybacked with the cow argument.
4087 	 * Extract it into orient and mask the cow argument so that we
4088 	 * don't pass it around further.
4089 	 */
4090 	orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP);
4091 	KASSERT(orient != 0, ("No stack grow direction"));
4092 	KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP),
4093 	    ("bi-dir stack"));
4094 
4095 	if (addrbos < vm_map_min(map) ||
4096 	    addrbos + max_ssize > vm_map_max(map) ||
4097 	    addrbos + max_ssize <= addrbos)
4098 		return (KERN_INVALID_ADDRESS);
4099 	sgp = (vm_size_t)stack_guard_page * PAGE_SIZE;
4100 	if (sgp >= max_ssize)
4101 		return (KERN_INVALID_ARGUMENT);
4102 
4103 	init_ssize = growsize;
4104 	if (max_ssize < init_ssize + sgp)
4105 		init_ssize = max_ssize - sgp;
4106 
4107 	/* If addr is already mapped, no go */
4108 	if (vm_map_lookup_entry(map, addrbos, &prev_entry))
4109 		return (KERN_NO_SPACE);
4110 
4111 	/*
4112 	 * If we can't accommodate max_ssize in the current mapping, no go.
4113 	 */
4114 	if (prev_entry->next->start < addrbos + max_ssize)
4115 		return (KERN_NO_SPACE);
4116 
4117 	/*
4118 	 * We initially map a stack of only init_ssize.  We will grow as
4119 	 * needed later.  Depending on the orientation of the stack (i.e.
4120 	 * the grow direction) we either map at the top of the range, the
4121 	 * bottom of the range or in the middle.
4122 	 *
4123 	 * Note: we would normally expect prot and max to be VM_PROT_ALL,
4124 	 * and cow to be 0.  Possibly we should eliminate these as input
4125 	 * parameters, and just pass these values here in the insert call.
4126 	 */
4127 	if (orient == MAP_STACK_GROWS_DOWN) {
4128 		bot = addrbos + max_ssize - init_ssize;
4129 		top = bot + init_ssize;
4130 		gap_bot = addrbos;
4131 		gap_top = bot;
4132 	} else /* if (orient == MAP_STACK_GROWS_UP) */ {
4133 		bot = addrbos;
4134 		top = bot + init_ssize;
4135 		gap_bot = top;
4136 		gap_top = addrbos + max_ssize;
4137 	}
4138 	rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
4139 	if (rv != KERN_SUCCESS)
4140 		return (rv);
4141 	new_entry = prev_entry->next;
4142 	KASSERT(new_entry->end == top || new_entry->start == bot,
4143 	    ("Bad entry start/end for new stack entry"));
4144 	KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
4145 	    (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
4146 	    ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
4147 	KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
4148 	    (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
4149 	    ("new entry lacks MAP_ENTRY_GROWS_UP"));
4150 	rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE,
4151 	    VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ?
4152 	    MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP));
4153 	if (rv != KERN_SUCCESS)
4154 		(void)vm_map_delete(map, bot, top);
4155 	return (rv);
4156 }
4157 
4158 /*
4159  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if we
4160  * successfully grow the stack.
4161  */
4162 static int
4163 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry)
4164 {
4165 	vm_map_entry_t stack_entry;
4166 	struct proc *p;
4167 	struct vmspace *vm;
4168 	struct ucred *cred;
4169 	vm_offset_t gap_end, gap_start, grow_start;
4170 	size_t grow_amount, guard, max_grow;
4171 	rlim_t lmemlim, stacklim, vmemlim;
4172 	int rv, rv1;
4173 	bool gap_deleted, grow_down, is_procstack;
4174 #ifdef notyet
4175 	uint64_t limit;
4176 #endif
4177 #ifdef RACCT
4178 	int error;
4179 #endif
4180 
4181 	p = curproc;
4182 	vm = p->p_vmspace;
4183 
4184 	/*
4185 	 * Disallow stack growth when the access is performed by a
4186 	 * debugger or AIO daemon.  The reason is that the wrong
4187 	 * resource limits are applied.
4188 	 */
4189 	if (map != &p->p_vmspace->vm_map || p->p_textvp == NULL)
4190 		return (KERN_FAILURE);
4191 
4192 	MPASS(!map->system_map);
4193 
4194 	guard = stack_guard_page * PAGE_SIZE;
4195 	lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
4196 	stacklim = lim_cur(curthread, RLIMIT_STACK);
4197 	vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4198 retry:
4199 	/* If addr is not in a hole for a stack grow area, no need to grow. */
4200 	if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry))
4201 		return (KERN_FAILURE);
4202 	if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0)
4203 		return (KERN_SUCCESS);
4204 	if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) {
4205 		stack_entry = gap_entry->next;
4206 		if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 ||
4207 		    stack_entry->start != gap_entry->end)
4208 			return (KERN_FAILURE);
4209 		grow_amount = round_page(stack_entry->start - addr);
4210 		grow_down = true;
4211 	} else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) {
4212 		stack_entry = gap_entry->prev;
4213 		if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 ||
4214 		    stack_entry->end != gap_entry->start)
4215 			return (KERN_FAILURE);
4216 		grow_amount = round_page(addr + 1 - stack_entry->end);
4217 		grow_down = false;
4218 	} else {
4219 		return (KERN_FAILURE);
4220 	}
4221 	max_grow = gap_entry->end - gap_entry->start;
4222 	if (guard > max_grow)
4223 		return (KERN_NO_SPACE);
4224 	max_grow -= guard;
4225 	if (grow_amount > max_grow)
4226 		return (KERN_NO_SPACE);
4227 
4228 	/*
4229 	 * If this is the main process stack, see if we're over the stack
4230 	 * limit.
4231 	 */
4232 	is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr &&
4233 	    addr < (vm_offset_t)p->p_sysent->sv_usrstack;
4234 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim))
4235 		return (KERN_NO_SPACE);
4236 
4237 #ifdef RACCT
4238 	if (racct_enable) {
4239 		PROC_LOCK(p);
4240 		if (is_procstack && racct_set(p, RACCT_STACK,
4241 		    ctob(vm->vm_ssize) + grow_amount)) {
4242 			PROC_UNLOCK(p);
4243 			return (KERN_NO_SPACE);
4244 		}
4245 		PROC_UNLOCK(p);
4246 	}
4247 #endif
4248 
4249 	grow_amount = roundup(grow_amount, sgrowsiz);
4250 	if (grow_amount > max_grow)
4251 		grow_amount = max_grow;
4252 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
4253 		grow_amount = trunc_page((vm_size_t)stacklim) -
4254 		    ctob(vm->vm_ssize);
4255 	}
4256 
4257 #ifdef notyet
4258 	PROC_LOCK(p);
4259 	limit = racct_get_available(p, RACCT_STACK);
4260 	PROC_UNLOCK(p);
4261 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
4262 		grow_amount = limit - ctob(vm->vm_ssize);
4263 #endif
4264 
4265 	if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) {
4266 		if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
4267 			rv = KERN_NO_SPACE;
4268 			goto out;
4269 		}
4270 #ifdef RACCT
4271 		if (racct_enable) {
4272 			PROC_LOCK(p);
4273 			if (racct_set(p, RACCT_MEMLOCK,
4274 			    ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
4275 				PROC_UNLOCK(p);
4276 				rv = KERN_NO_SPACE;
4277 				goto out;
4278 			}
4279 			PROC_UNLOCK(p);
4280 		}
4281 #endif
4282 	}
4283 
4284 	/* If we would blow our VMEM resource limit, no go */
4285 	if (map->size + grow_amount > vmemlim) {
4286 		rv = KERN_NO_SPACE;
4287 		goto out;
4288 	}
4289 #ifdef RACCT
4290 	if (racct_enable) {
4291 		PROC_LOCK(p);
4292 		if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
4293 			PROC_UNLOCK(p);
4294 			rv = KERN_NO_SPACE;
4295 			goto out;
4296 		}
4297 		PROC_UNLOCK(p);
4298 	}
4299 #endif
4300 
4301 	if (vm_map_lock_upgrade(map)) {
4302 		gap_entry = NULL;
4303 		vm_map_lock_read(map);
4304 		goto retry;
4305 	}
4306 
4307 	if (grow_down) {
4308 		grow_start = gap_entry->end - grow_amount;
4309 		if (gap_entry->start + grow_amount == gap_entry->end) {
4310 			gap_start = gap_entry->start;
4311 			gap_end = gap_entry->end;
4312 			vm_map_entry_delete(map, gap_entry);
4313 			gap_deleted = true;
4314 		} else {
4315 			MPASS(gap_entry->start < gap_entry->end - grow_amount);
4316 			gap_entry->end -= grow_amount;
4317 			vm_map_entry_resize_free(map, gap_entry);
4318 			gap_deleted = false;
4319 		}
4320 		rv = vm_map_insert(map, NULL, 0, grow_start,
4321 		    grow_start + grow_amount,
4322 		    stack_entry->protection, stack_entry->max_protection,
4323 		    MAP_STACK_GROWS_DOWN);
4324 		if (rv != KERN_SUCCESS) {
4325 			if (gap_deleted) {
4326 				rv1 = vm_map_insert(map, NULL, 0, gap_start,
4327 				    gap_end, VM_PROT_NONE, VM_PROT_NONE,
4328 				    MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN);
4329 				MPASS(rv1 == KERN_SUCCESS);
4330 			} else {
4331 				gap_entry->end += grow_amount;
4332 				vm_map_entry_resize_free(map, gap_entry);
4333 			}
4334 		}
4335 	} else {
4336 		grow_start = stack_entry->end;
4337 		cred = stack_entry->cred;
4338 		if (cred == NULL && stack_entry->object.vm_object != NULL)
4339 			cred = stack_entry->object.vm_object->cred;
4340 		if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
4341 			rv = KERN_NO_SPACE;
4342 		/* Grow the underlying object if applicable. */
4343 		else if (stack_entry->object.vm_object == NULL ||
4344 		    vm_object_coalesce(stack_entry->object.vm_object,
4345 		    stack_entry->offset,
4346 		    (vm_size_t)(stack_entry->end - stack_entry->start),
4347 		    (vm_size_t)grow_amount, cred != NULL)) {
4348 			if (gap_entry->start + grow_amount == gap_entry->end)
4349 				vm_map_entry_delete(map, gap_entry);
4350 			else
4351 				gap_entry->start += grow_amount;
4352 			stack_entry->end += grow_amount;
4353 			map->size += grow_amount;
4354 			vm_map_entry_resize_free(map, stack_entry);
4355 			rv = KERN_SUCCESS;
4356 		} else
4357 			rv = KERN_FAILURE;
4358 	}
4359 	if (rv == KERN_SUCCESS && is_procstack)
4360 		vm->vm_ssize += btoc(grow_amount);
4361 
4362 	/*
4363 	 * Heed the MAP_WIREFUTURE flag if it was set for this process.
4364 	 */
4365 	if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) {
4366 		rv = vm_map_wire_locked(map, grow_start,
4367 		    grow_start + grow_amount,
4368 		    VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
4369 	}
4370 	vm_map_lock_downgrade(map);
4371 
4372 out:
4373 #ifdef RACCT
4374 	if (racct_enable && rv != KERN_SUCCESS) {
4375 		PROC_LOCK(p);
4376 		error = racct_set(p, RACCT_VMEM, map->size);
4377 		KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
4378 		if (!old_mlock) {
4379 			error = racct_set(p, RACCT_MEMLOCK,
4380 			    ptoa(pmap_wired_count(map->pmap)));
4381 			KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
4382 		}
4383 	    	error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
4384 		KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
4385 		PROC_UNLOCK(p);
4386 	}
4387 #endif
4388 
4389 	return (rv);
4390 }
4391 
4392 /*
4393  * Unshare the specified VM space for exec.  If other processes are
4394  * mapped to it, then create a new one.  The new vmspace is null.
4395  */
4396 int
4397 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
4398 {
4399 	struct vmspace *oldvmspace = p->p_vmspace;
4400 	struct vmspace *newvmspace;
4401 
4402 	KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
4403 	    ("vmspace_exec recursed"));
4404 	newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit);
4405 	if (newvmspace == NULL)
4406 		return (ENOMEM);
4407 	newvmspace->vm_swrss = oldvmspace->vm_swrss;
4408 	/*
4409 	 * This code is written like this for prototype purposes.  The
4410 	 * goal is to avoid running down the vmspace here, but let the
4411 	 * other process's that are still using the vmspace to finally
4412 	 * run it down.  Even though there is little or no chance of blocking
4413 	 * here, it is a good idea to keep this form for future mods.
4414 	 */
4415 	PROC_VMSPACE_LOCK(p);
4416 	p->p_vmspace = newvmspace;
4417 	PROC_VMSPACE_UNLOCK(p);
4418 	if (p == curthread->td_proc)
4419 		pmap_activate(curthread);
4420 	curthread->td_pflags |= TDP_EXECVMSPC;
4421 	return (0);
4422 }
4423 
4424 /*
4425  * Unshare the specified VM space for forcing COW.  This
4426  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
4427  */
4428 int
4429 vmspace_unshare(struct proc *p)
4430 {
4431 	struct vmspace *oldvmspace = p->p_vmspace;
4432 	struct vmspace *newvmspace;
4433 	vm_ooffset_t fork_charge;
4434 
4435 	if (oldvmspace->vm_refcnt == 1)
4436 		return (0);
4437 	fork_charge = 0;
4438 	newvmspace = vmspace_fork(oldvmspace, &fork_charge);
4439 	if (newvmspace == NULL)
4440 		return (ENOMEM);
4441 	if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
4442 		vmspace_free(newvmspace);
4443 		return (ENOMEM);
4444 	}
4445 	PROC_VMSPACE_LOCK(p);
4446 	p->p_vmspace = newvmspace;
4447 	PROC_VMSPACE_UNLOCK(p);
4448 	if (p == curthread->td_proc)
4449 		pmap_activate(curthread);
4450 	vmspace_free(oldvmspace);
4451 	return (0);
4452 }
4453 
4454 /*
4455  *	vm_map_lookup:
4456  *
4457  *	Finds the VM object, offset, and
4458  *	protection for a given virtual address in the
4459  *	specified map, assuming a page fault of the
4460  *	type specified.
4461  *
4462  *	Leaves the map in question locked for read; return
4463  *	values are guaranteed until a vm_map_lookup_done
4464  *	call is performed.  Note that the map argument
4465  *	is in/out; the returned map must be used in
4466  *	the call to vm_map_lookup_done.
4467  *
4468  *	A handle (out_entry) is returned for use in
4469  *	vm_map_lookup_done, to make that fast.
4470  *
4471  *	If a lookup is requested with "write protection"
4472  *	specified, the map may be changed to perform virtual
4473  *	copying operations, although the data referenced will
4474  *	remain the same.
4475  */
4476 int
4477 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
4478 	      vm_offset_t vaddr,
4479 	      vm_prot_t fault_typea,
4480 	      vm_map_entry_t *out_entry,	/* OUT */
4481 	      vm_object_t *object,		/* OUT */
4482 	      vm_pindex_t *pindex,		/* OUT */
4483 	      vm_prot_t *out_prot,		/* OUT */
4484 	      boolean_t *wired)			/* OUT */
4485 {
4486 	vm_map_entry_t entry;
4487 	vm_map_t map = *var_map;
4488 	vm_prot_t prot;
4489 	vm_prot_t fault_type = fault_typea;
4490 	vm_object_t eobject;
4491 	vm_size_t size;
4492 	struct ucred *cred;
4493 
4494 RetryLookup:
4495 
4496 	vm_map_lock_read(map);
4497 
4498 RetryLookupLocked:
4499 	/*
4500 	 * Lookup the faulting address.
4501 	 */
4502 	if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
4503 		vm_map_unlock_read(map);
4504 		return (KERN_INVALID_ADDRESS);
4505 	}
4506 
4507 	entry = *out_entry;
4508 
4509 	/*
4510 	 * Handle submaps.
4511 	 */
4512 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4513 		vm_map_t old_map = map;
4514 
4515 		*var_map = map = entry->object.sub_map;
4516 		vm_map_unlock_read(old_map);
4517 		goto RetryLookup;
4518 	}
4519 
4520 	/*
4521 	 * Check whether this task is allowed to have this page.
4522 	 */
4523 	prot = entry->protection;
4524 	if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) {
4525 		fault_typea &= ~VM_PROT_FAULT_LOOKUP;
4526 		if (prot == VM_PROT_NONE && map != kernel_map &&
4527 		    (entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4528 		    (entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
4529 		    MAP_ENTRY_STACK_GAP_UP)) != 0 &&
4530 		    vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS)
4531 			goto RetryLookupLocked;
4532 	}
4533 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4534 	if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
4535 		vm_map_unlock_read(map);
4536 		return (KERN_PROTECTION_FAILURE);
4537 	}
4538 	KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
4539 	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
4540 	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
4541 	    ("entry %p flags %x", entry, entry->eflags));
4542 	if ((fault_typea & VM_PROT_COPY) != 0 &&
4543 	    (entry->max_protection & VM_PROT_WRITE) == 0 &&
4544 	    (entry->eflags & MAP_ENTRY_COW) == 0) {
4545 		vm_map_unlock_read(map);
4546 		return (KERN_PROTECTION_FAILURE);
4547 	}
4548 
4549 	/*
4550 	 * If this page is not pageable, we have to get it for all possible
4551 	 * accesses.
4552 	 */
4553 	*wired = (entry->wired_count != 0);
4554 	if (*wired)
4555 		fault_type = entry->protection;
4556 	size = entry->end - entry->start;
4557 	/*
4558 	 * If the entry was copy-on-write, we either ...
4559 	 */
4560 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4561 		/*
4562 		 * If we want to write the page, we may as well handle that
4563 		 * now since we've got the map locked.
4564 		 *
4565 		 * If we don't need to write the page, we just demote the
4566 		 * permissions allowed.
4567 		 */
4568 		if ((fault_type & VM_PROT_WRITE) != 0 ||
4569 		    (fault_typea & VM_PROT_COPY) != 0) {
4570 			/*
4571 			 * Make a new object, and place it in the object
4572 			 * chain.  Note that no new references have appeared
4573 			 * -- one just moved from the map to the new
4574 			 * object.
4575 			 */
4576 			if (vm_map_lock_upgrade(map))
4577 				goto RetryLookup;
4578 
4579 			if (entry->cred == NULL) {
4580 				/*
4581 				 * The debugger owner is charged for
4582 				 * the memory.
4583 				 */
4584 				cred = curthread->td_ucred;
4585 				crhold(cred);
4586 				if (!swap_reserve_by_cred(size, cred)) {
4587 					crfree(cred);
4588 					vm_map_unlock(map);
4589 					return (KERN_RESOURCE_SHORTAGE);
4590 				}
4591 				entry->cred = cred;
4592 			}
4593 			vm_object_shadow(&entry->object.vm_object,
4594 			    &entry->offset, size);
4595 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4596 			eobject = entry->object.vm_object;
4597 			if (eobject->cred != NULL) {
4598 				/*
4599 				 * The object was not shadowed.
4600 				 */
4601 				swap_release_by_cred(size, entry->cred);
4602 				crfree(entry->cred);
4603 				entry->cred = NULL;
4604 			} else if (entry->cred != NULL) {
4605 				VM_OBJECT_WLOCK(eobject);
4606 				eobject->cred = entry->cred;
4607 				eobject->charge = size;
4608 				VM_OBJECT_WUNLOCK(eobject);
4609 				entry->cred = NULL;
4610 			}
4611 
4612 			vm_map_lock_downgrade(map);
4613 		} else {
4614 			/*
4615 			 * We're attempting to read a copy-on-write page --
4616 			 * don't allow writes.
4617 			 */
4618 			prot &= ~VM_PROT_WRITE;
4619 		}
4620 	}
4621 
4622 	/*
4623 	 * Create an object if necessary.
4624 	 */
4625 	if (entry->object.vm_object == NULL &&
4626 	    !map->system_map) {
4627 		if (vm_map_lock_upgrade(map))
4628 			goto RetryLookup;
4629 		entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
4630 		    atop(size));
4631 		entry->offset = 0;
4632 		if (entry->cred != NULL) {
4633 			VM_OBJECT_WLOCK(entry->object.vm_object);
4634 			entry->object.vm_object->cred = entry->cred;
4635 			entry->object.vm_object->charge = size;
4636 			VM_OBJECT_WUNLOCK(entry->object.vm_object);
4637 			entry->cred = NULL;
4638 		}
4639 		vm_map_lock_downgrade(map);
4640 	}
4641 
4642 	/*
4643 	 * Return the object/offset from this entry.  If the entry was
4644 	 * copy-on-write or empty, it has been fixed up.
4645 	 */
4646 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4647 	*object = entry->object.vm_object;
4648 
4649 	*out_prot = prot;
4650 	return (KERN_SUCCESS);
4651 }
4652 
4653 /*
4654  *	vm_map_lookup_locked:
4655  *
4656  *	Lookup the faulting address.  A version of vm_map_lookup that returns
4657  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
4658  */
4659 int
4660 vm_map_lookup_locked(vm_map_t *var_map,		/* IN/OUT */
4661 		     vm_offset_t vaddr,
4662 		     vm_prot_t fault_typea,
4663 		     vm_map_entry_t *out_entry,	/* OUT */
4664 		     vm_object_t *object,	/* OUT */
4665 		     vm_pindex_t *pindex,	/* OUT */
4666 		     vm_prot_t *out_prot,	/* OUT */
4667 		     boolean_t *wired)		/* OUT */
4668 {
4669 	vm_map_entry_t entry;
4670 	vm_map_t map = *var_map;
4671 	vm_prot_t prot;
4672 	vm_prot_t fault_type = fault_typea;
4673 
4674 	/*
4675 	 * Lookup the faulting address.
4676 	 */
4677 	if (!vm_map_lookup_entry(map, vaddr, out_entry))
4678 		return (KERN_INVALID_ADDRESS);
4679 
4680 	entry = *out_entry;
4681 
4682 	/*
4683 	 * Fail if the entry refers to a submap.
4684 	 */
4685 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4686 		return (KERN_FAILURE);
4687 
4688 	/*
4689 	 * Check whether this task is allowed to have this page.
4690 	 */
4691 	prot = entry->protection;
4692 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4693 	if ((fault_type & prot) != fault_type)
4694 		return (KERN_PROTECTION_FAILURE);
4695 
4696 	/*
4697 	 * If this page is not pageable, we have to get it for all possible
4698 	 * accesses.
4699 	 */
4700 	*wired = (entry->wired_count != 0);
4701 	if (*wired)
4702 		fault_type = entry->protection;
4703 
4704 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4705 		/*
4706 		 * Fail if the entry was copy-on-write for a write fault.
4707 		 */
4708 		if (fault_type & VM_PROT_WRITE)
4709 			return (KERN_FAILURE);
4710 		/*
4711 		 * We're attempting to read a copy-on-write page --
4712 		 * don't allow writes.
4713 		 */
4714 		prot &= ~VM_PROT_WRITE;
4715 	}
4716 
4717 	/*
4718 	 * Fail if an object should be created.
4719 	 */
4720 	if (entry->object.vm_object == NULL && !map->system_map)
4721 		return (KERN_FAILURE);
4722 
4723 	/*
4724 	 * Return the object/offset from this entry.  If the entry was
4725 	 * copy-on-write or empty, it has been fixed up.
4726 	 */
4727 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4728 	*object = entry->object.vm_object;
4729 
4730 	*out_prot = prot;
4731 	return (KERN_SUCCESS);
4732 }
4733 
4734 /*
4735  *	vm_map_lookup_done:
4736  *
4737  *	Releases locks acquired by a vm_map_lookup
4738  *	(according to the handle returned by that lookup).
4739  */
4740 void
4741 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
4742 {
4743 	/*
4744 	 * Unlock the main-level map
4745 	 */
4746 	vm_map_unlock_read(map);
4747 }
4748 
4749 vm_offset_t
4750 vm_map_max_KBI(const struct vm_map *map)
4751 {
4752 
4753 	return (vm_map_max(map));
4754 }
4755 
4756 vm_offset_t
4757 vm_map_min_KBI(const struct vm_map *map)
4758 {
4759 
4760 	return (vm_map_min(map));
4761 }
4762 
4763 pmap_t
4764 vm_map_pmap_KBI(vm_map_t map)
4765 {
4766 
4767 	return (map->pmap);
4768 }
4769 
4770 #include "opt_ddb.h"
4771 #ifdef DDB
4772 #include <sys/kernel.h>
4773 
4774 #include <ddb/ddb.h>
4775 
4776 static void
4777 vm_map_print(vm_map_t map)
4778 {
4779 	vm_map_entry_t entry;
4780 
4781 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4782 	    (void *)map,
4783 	    (void *)map->pmap, map->nentries, map->timestamp);
4784 
4785 	db_indent += 2;
4786 	for (entry = map->header.next; entry != &map->header;
4787 	    entry = entry->next) {
4788 		db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n",
4789 		    (void *)entry, (void *)entry->start, (void *)entry->end,
4790 		    entry->eflags);
4791 		{
4792 			static char *inheritance_name[4] =
4793 			{"share", "copy", "none", "donate_copy"};
4794 
4795 			db_iprintf(" prot=%x/%x/%s",
4796 			    entry->protection,
4797 			    entry->max_protection,
4798 			    inheritance_name[(int)(unsigned char)entry->inheritance]);
4799 			if (entry->wired_count != 0)
4800 				db_printf(", wired");
4801 		}
4802 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4803 			db_printf(", share=%p, offset=0x%jx\n",
4804 			    (void *)entry->object.sub_map,
4805 			    (uintmax_t)entry->offset);
4806 			if ((entry->prev == &map->header) ||
4807 			    (entry->prev->object.sub_map !=
4808 				entry->object.sub_map)) {
4809 				db_indent += 2;
4810 				vm_map_print((vm_map_t)entry->object.sub_map);
4811 				db_indent -= 2;
4812 			}
4813 		} else {
4814 			if (entry->cred != NULL)
4815 				db_printf(", ruid %d", entry->cred->cr_ruid);
4816 			db_printf(", object=%p, offset=0x%jx",
4817 			    (void *)entry->object.vm_object,
4818 			    (uintmax_t)entry->offset);
4819 			if (entry->object.vm_object && entry->object.vm_object->cred)
4820 				db_printf(", obj ruid %d charge %jx",
4821 				    entry->object.vm_object->cred->cr_ruid,
4822 				    (uintmax_t)entry->object.vm_object->charge);
4823 			if (entry->eflags & MAP_ENTRY_COW)
4824 				db_printf(", copy (%s)",
4825 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4826 			db_printf("\n");
4827 
4828 			if ((entry->prev == &map->header) ||
4829 			    (entry->prev->object.vm_object !=
4830 				entry->object.vm_object)) {
4831 				db_indent += 2;
4832 				vm_object_print((db_expr_t)(intptr_t)
4833 						entry->object.vm_object,
4834 						0, 0, (char *)0);
4835 				db_indent -= 2;
4836 			}
4837 		}
4838 	}
4839 	db_indent -= 2;
4840 }
4841 
4842 DB_SHOW_COMMAND(map, map)
4843 {
4844 
4845 	if (!have_addr) {
4846 		db_printf("usage: show map <addr>\n");
4847 		return;
4848 	}
4849 	vm_map_print((vm_map_t)addr);
4850 }
4851 
4852 DB_SHOW_COMMAND(procvm, procvm)
4853 {
4854 	struct proc *p;
4855 
4856 	if (have_addr) {
4857 		p = db_lookup_proc(addr);
4858 	} else {
4859 		p = curproc;
4860 	}
4861 
4862 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4863 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4864 	    (void *)vmspace_pmap(p->p_vmspace));
4865 
4866 	vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
4867 }
4868 
4869 #endif /* DDB */
4870