xref: /freebsd/sys/vm/vm_map.c (revision 5129159789cc9d7bc514e4546b88e3427695002d)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD$
65  */
66 
67 /*
68  *	Virtual memory mapping module.
69  */
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/proc.h>
74 #include <sys/vmmeter.h>
75 #include <sys/mman.h>
76 #include <sys/vnode.h>
77 #include <sys/resourcevar.h>
78 
79 #include <vm/vm.h>
80 #include <vm/vm_param.h>
81 #include <sys/lock.h>
82 #include <vm/pmap.h>
83 #include <vm/vm_map.h>
84 #include <vm/vm_page.h>
85 #include <vm/vm_object.h>
86 #include <vm/vm_pager.h>
87 #include <vm/vm_kern.h>
88 #include <vm/vm_extern.h>
89 #include <vm/swap_pager.h>
90 #include <vm/vm_zone.h>
91 
92 /*
93  *	Virtual memory maps provide for the mapping, protection,
94  *	and sharing of virtual memory objects.  In addition,
95  *	this module provides for an efficient virtual copy of
96  *	memory from one map to another.
97  *
98  *	Synchronization is required prior to most operations.
99  *
100  *	Maps consist of an ordered doubly-linked list of simple
101  *	entries; a single hint is used to speed up lookups.
102  *
103  *	Since portions of maps are specified by start/end addreses,
104  *	which may not align with existing map entries, all
105  *	routines merely "clip" entries to these start/end values.
106  *	[That is, an entry is split into two, bordering at a
107  *	start or end value.]  Note that these clippings may not
108  *	always be necessary (as the two resulting entries are then
109  *	not changed); however, the clipping is done for convenience.
110  *
111  *	As mentioned above, virtual copy operations are performed
112  *	by copying VM object references from one map to
113  *	another, and then marking both regions as copy-on-write.
114  */
115 
116 /*
117  *	vm_map_startup:
118  *
119  *	Initialize the vm_map module.  Must be called before
120  *	any other vm_map routines.
121  *
122  *	Map and entry structures are allocated from the general
123  *	purpose memory pool with some exceptions:
124  *
125  *	- The kernel map and kmem submap are allocated statically.
126  *	- Kernel map entries are allocated out of a static pool.
127  *
128  *	These restrictions are necessary since malloc() uses the
129  *	maps and requires map entries.
130  */
131 
132 static struct vm_zone kmapentzone_store, mapentzone_store, mapzone_store;
133 static vm_zone_t mapentzone, kmapentzone, mapzone, vmspace_zone;
134 static struct vm_object kmapentobj, mapentobj, mapobj;
135 
136 static struct vm_map_entry map_entry_init[MAX_MAPENT];
137 static struct vm_map_entry kmap_entry_init[MAX_KMAPENT];
138 static struct vm_map map_init[MAX_KMAP];
139 
140 static void _vm_map_clip_end __P((vm_map_t, vm_map_entry_t, vm_offset_t));
141 static void _vm_map_clip_start __P((vm_map_t, vm_map_entry_t, vm_offset_t));
142 static vm_map_entry_t vm_map_entry_create __P((vm_map_t));
143 static void vm_map_entry_delete __P((vm_map_t, vm_map_entry_t));
144 static void vm_map_entry_dispose __P((vm_map_t, vm_map_entry_t));
145 static void vm_map_entry_unwire __P((vm_map_t, vm_map_entry_t));
146 static void vm_map_copy_entry __P((vm_map_t, vm_map_t, vm_map_entry_t,
147 		vm_map_entry_t));
148 static void vm_map_split __P((vm_map_entry_t));
149 
150 void
151 vm_map_startup()
152 {
153 	mapzone = &mapzone_store;
154 	zbootinit(mapzone, "MAP", sizeof (struct vm_map),
155 		map_init, MAX_KMAP);
156 	kmapentzone = &kmapentzone_store;
157 	zbootinit(kmapentzone, "KMAP ENTRY", sizeof (struct vm_map_entry),
158 		kmap_entry_init, MAX_KMAPENT);
159 	mapentzone = &mapentzone_store;
160 	zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry),
161 		map_entry_init, MAX_MAPENT);
162 }
163 
164 /*
165  * Allocate a vmspace structure, including a vm_map and pmap,
166  * and initialize those structures.  The refcnt is set to 1.
167  * The remaining fields must be initialized by the caller.
168  */
169 struct vmspace *
170 vmspace_alloc(min, max)
171 	vm_offset_t min, max;
172 {
173 	struct vmspace *vm;
174 
175 	vm = zalloc(vmspace_zone);
176 	vm_map_init(&vm->vm_map, min, max);
177 	pmap_pinit(vmspace_pmap(vm));
178 	vm->vm_map.pmap = vmspace_pmap(vm);		/* XXX */
179 	vm->vm_refcnt = 1;
180 	vm->vm_shm = NULL;
181 	return (vm);
182 }
183 
184 void
185 vm_init2(void) {
186 	zinitna(kmapentzone, &kmapentobj,
187 		NULL, 0, cnt.v_page_count / 4, ZONE_INTERRUPT, 1);
188 	zinitna(mapentzone, &mapentobj,
189 		NULL, 0, 0, 0, 1);
190 	zinitna(mapzone, &mapobj,
191 		NULL, 0, 0, 0, 1);
192 	vmspace_zone = zinit("VMSPACE", sizeof (struct vmspace), 0, 0, 3);
193 	pmap_init2();
194 	vm_object_init2();
195 }
196 
197 void
198 vmspace_free(vm)
199 	struct vmspace *vm;
200 {
201 
202 	if (vm->vm_refcnt == 0)
203 		panic("vmspace_free: attempt to free already freed vmspace");
204 
205 	if (--vm->vm_refcnt == 0) {
206 
207 		/*
208 		 * Lock the map, to wait out all other references to it.
209 		 * Delete all of the mappings and pages they hold, then call
210 		 * the pmap module to reclaim anything left.
211 		 */
212 		vm_map_lock(&vm->vm_map);
213 		(void) vm_map_delete(&vm->vm_map, vm->vm_map.min_offset,
214 		    vm->vm_map.max_offset);
215 		vm_map_unlock(&vm->vm_map);
216 
217 		pmap_release(vmspace_pmap(vm));
218 		zfree(vmspace_zone, vm);
219 	}
220 }
221 
222 /*
223  *	vm_map_create:
224  *
225  *	Creates and returns a new empty VM map with
226  *	the given physical map structure, and having
227  *	the given lower and upper address bounds.
228  */
229 vm_map_t
230 vm_map_create(pmap, min, max)
231 	pmap_t pmap;
232 	vm_offset_t min, max;
233 {
234 	vm_map_t result;
235 
236 	result = zalloc(mapzone);
237 	vm_map_init(result, min, max);
238 	result->pmap = pmap;
239 	return (result);
240 }
241 
242 /*
243  * Initialize an existing vm_map structure
244  * such as that in the vmspace structure.
245  * The pmap is set elsewhere.
246  */
247 void
248 vm_map_init(map, min, max)
249 	struct vm_map *map;
250 	vm_offset_t min, max;
251 {
252 	map->header.next = map->header.prev = &map->header;
253 	map->nentries = 0;
254 	map->size = 0;
255 	map->system_map = 0;
256 	map->min_offset = min;
257 	map->max_offset = max;
258 	map->first_free = &map->header;
259 	map->hint = &map->header;
260 	map->timestamp = 0;
261 	lockinit(&map->lock, PVM, "thrd_sleep", 0, LK_NOPAUSE);
262 }
263 
264 /*
265  *	vm_map_entry_dispose:	[ internal use only ]
266  *
267  *	Inverse of vm_map_entry_create.
268  */
269 static void
270 vm_map_entry_dispose(map, entry)
271 	vm_map_t map;
272 	vm_map_entry_t entry;
273 {
274 	zfree((map->system_map || !mapentzone) ? kmapentzone : mapentzone, entry);
275 }
276 
277 /*
278  *	vm_map_entry_create:	[ internal use only ]
279  *
280  *	Allocates a VM map entry for insertion.
281  *	No entry fields are filled in.  This routine is
282  */
283 static vm_map_entry_t
284 vm_map_entry_create(map)
285 	vm_map_t map;
286 {
287 	return zalloc((map->system_map || !mapentzone) ? kmapentzone : mapentzone);
288 }
289 
290 /*
291  *	vm_map_entry_{un,}link:
292  *
293  *	Insert/remove entries from maps.
294  */
295 static __inline void
296 vm_map_entry_link(vm_map_t map,
297 		  vm_map_entry_t after_where,
298 		  vm_map_entry_t entry)
299 {
300 	map->nentries++;
301 	entry->prev = after_where;
302 	entry->next = after_where->next;
303 	entry->next->prev = entry;
304 	after_where->next = entry;
305 }
306 
307 static __inline void
308 vm_map_entry_unlink(vm_map_t map,
309 		    vm_map_entry_t entry)
310 {
311 	vm_map_entry_t prev = entry->prev;
312 	vm_map_entry_t next = entry->next;
313 
314 	next->prev = prev;
315 	prev->next = next;
316 	map->nentries--;
317 }
318 
319 /*
320  *	SAVE_HINT:
321  *
322  *	Saves the specified entry as the hint for
323  *	future lookups.
324  */
325 #define	SAVE_HINT(map,value) \
326 		(map)->hint = (value);
327 
328 /*
329  *	vm_map_lookup_entry:	[ internal use only ]
330  *
331  *	Finds the map entry containing (or
332  *	immediately preceding) the specified address
333  *	in the given map; the entry is returned
334  *	in the "entry" parameter.  The boolean
335  *	result indicates whether the address is
336  *	actually contained in the map.
337  */
338 boolean_t
339 vm_map_lookup_entry(map, address, entry)
340 	vm_map_t map;
341 	vm_offset_t address;
342 	vm_map_entry_t *entry;	/* OUT */
343 {
344 	vm_map_entry_t cur;
345 	vm_map_entry_t last;
346 
347 	/*
348 	 * Start looking either from the head of the list, or from the hint.
349 	 */
350 
351 	cur = map->hint;
352 
353 	if (cur == &map->header)
354 		cur = cur->next;
355 
356 	if (address >= cur->start) {
357 		/*
358 		 * Go from hint to end of list.
359 		 *
360 		 * But first, make a quick check to see if we are already looking
361 		 * at the entry we want (which is usually the case). Note also
362 		 * that we don't need to save the hint here... it is the same
363 		 * hint (unless we are at the header, in which case the hint
364 		 * didn't buy us anything anyway).
365 		 */
366 		last = &map->header;
367 		if ((cur != last) && (cur->end > address)) {
368 			*entry = cur;
369 			return (TRUE);
370 		}
371 	} else {
372 		/*
373 		 * Go from start to hint, *inclusively*
374 		 */
375 		last = cur->next;
376 		cur = map->header.next;
377 	}
378 
379 	/*
380 	 * Search linearly
381 	 */
382 
383 	while (cur != last) {
384 		if (cur->end > address) {
385 			if (address >= cur->start) {
386 				/*
387 				 * Save this lookup for future hints, and
388 				 * return
389 				 */
390 
391 				*entry = cur;
392 				SAVE_HINT(map, cur);
393 				return (TRUE);
394 			}
395 			break;
396 		}
397 		cur = cur->next;
398 	}
399 	*entry = cur->prev;
400 	SAVE_HINT(map, *entry);
401 	return (FALSE);
402 }
403 
404 /*
405  *	vm_map_insert:
406  *
407  *	Inserts the given whole VM object into the target
408  *	map at the specified address range.  The object's
409  *	size should match that of the address range.
410  *
411  *	Requires that the map be locked, and leaves it so.
412  *
413  *	If object is non-NULL, ref count must be bumped by caller
414  *	prior to making call to account for the new entry.
415  */
416 int
417 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
418 	      vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max,
419 	      int cow)
420 {
421 	vm_map_entry_t new_entry;
422 	vm_map_entry_t prev_entry;
423 	vm_map_entry_t temp_entry;
424 	u_char protoeflags;
425 
426 	/*
427 	 * Check that the start and end points are not bogus.
428 	 */
429 
430 	if ((start < map->min_offset) || (end > map->max_offset) ||
431 	    (start >= end))
432 		return (KERN_INVALID_ADDRESS);
433 
434 	/*
435 	 * Find the entry prior to the proposed starting address; if it's part
436 	 * of an existing entry, this range is bogus.
437 	 */
438 
439 	if (vm_map_lookup_entry(map, start, &temp_entry))
440 		return (KERN_NO_SPACE);
441 
442 	prev_entry = temp_entry;
443 
444 	/*
445 	 * Assert that the next entry doesn't overlap the end point.
446 	 */
447 
448 	if ((prev_entry->next != &map->header) &&
449 	    (prev_entry->next->start < end))
450 		return (KERN_NO_SPACE);
451 
452 	protoeflags = 0;
453 
454 	if (cow & MAP_COPY_ON_WRITE)
455 		protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
456 
457 	if (cow & MAP_NOFAULT) {
458 		protoeflags |= MAP_ENTRY_NOFAULT;
459 
460 		KASSERT(object == NULL,
461 			("vm_map_insert: paradoxical MAP_NOFAULT request"));
462 	}
463 	if (cow & MAP_DISABLE_SYNCER)
464 		protoeflags |= MAP_ENTRY_NOSYNC;
465 
466 	if (object) {
467 		/*
468 		 * When object is non-NULL, it could be shared with another
469 		 * process.  We have to set or clear OBJ_ONEMAPPING
470 		 * appropriately.
471 		 */
472 		if ((object->ref_count > 1) || (object->shadow_count != 0)) {
473 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
474 		}
475 	}
476 	else if ((prev_entry != &map->header) &&
477 		 (prev_entry->eflags == protoeflags) &&
478 		 (prev_entry->end == start) &&
479 		 (prev_entry->wired_count == 0) &&
480 		 ((prev_entry->object.vm_object == NULL) ||
481 		  vm_object_coalesce(prev_entry->object.vm_object,
482 				     OFF_TO_IDX(prev_entry->offset),
483 				     (vm_size_t)(prev_entry->end - prev_entry->start),
484 				     (vm_size_t)(end - prev_entry->end)))) {
485 		/*
486 		 * We were able to extend the object.  Determine if we
487 		 * can extend the previous map entry to include the
488 		 * new range as well.
489 		 */
490 		if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
491 		    (prev_entry->protection == prot) &&
492 		    (prev_entry->max_protection == max)) {
493 			map->size += (end - prev_entry->end);
494 			prev_entry->end = end;
495 			return (KERN_SUCCESS);
496 		}
497 
498 		/*
499 		 * If we can extend the object but cannot extend the
500 		 * map entry, we have to create a new map entry.  We
501 		 * must bump the ref count on the extended object to
502 		 * account for it.
503 		 */
504 		object = prev_entry->object.vm_object;
505 		offset = prev_entry->offset +
506 			(prev_entry->end - prev_entry->start);
507 		vm_object_reference(object);
508 	}
509 
510 	/*
511 	 * NOTE: if conditionals fail, object can be NULL here.  This occurs
512 	 * in things like the buffer map where we manage kva but do not manage
513 	 * backing objects.
514 	 */
515 
516 	/*
517 	 * Create a new entry
518 	 */
519 
520 	new_entry = vm_map_entry_create(map);
521 	new_entry->start = start;
522 	new_entry->end = end;
523 
524 	new_entry->eflags = protoeflags;
525 	new_entry->object.vm_object = object;
526 	new_entry->offset = offset;
527 	new_entry->avail_ssize = 0;
528 
529 	new_entry->inheritance = VM_INHERIT_DEFAULT;
530 	new_entry->protection = prot;
531 	new_entry->max_protection = max;
532 	new_entry->wired_count = 0;
533 
534 	/*
535 	 * Insert the new entry into the list
536 	 */
537 
538 	vm_map_entry_link(map, prev_entry, new_entry);
539 	map->size += new_entry->end - new_entry->start;
540 
541 	/*
542 	 * Update the free space hint
543 	 */
544 	if ((map->first_free == prev_entry) &&
545 	    (prev_entry->end >= new_entry->start)) {
546 		map->first_free = new_entry;
547 	}
548 
549 	if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) {
550 		pmap_object_init_pt(map->pmap, start,
551 				    object, OFF_TO_IDX(offset), end - start,
552 				    cow & MAP_PREFAULT_PARTIAL);
553 	}
554 
555 	return (KERN_SUCCESS);
556 }
557 
558 /*
559  * Find sufficient space for `length' bytes in the given map, starting at
560  * `start'.  The map must be locked.  Returns 0 on success, 1 on no space.
561  */
562 int
563 vm_map_findspace(map, start, length, addr)
564 	vm_map_t map;
565 	vm_offset_t start;
566 	vm_size_t length;
567 	vm_offset_t *addr;
568 {
569 	vm_map_entry_t entry, next;
570 	vm_offset_t end;
571 
572 	if (start < map->min_offset)
573 		start = map->min_offset;
574 	if (start > map->max_offset)
575 		return (1);
576 
577 	/*
578 	 * Look for the first possible address; if there's already something
579 	 * at this address, we have to start after it.
580 	 */
581 	if (start == map->min_offset) {
582 		if ((entry = map->first_free) != &map->header)
583 			start = entry->end;
584 	} else {
585 		vm_map_entry_t tmp;
586 
587 		if (vm_map_lookup_entry(map, start, &tmp))
588 			start = tmp->end;
589 		entry = tmp;
590 	}
591 
592 	/*
593 	 * Look through the rest of the map, trying to fit a new region in the
594 	 * gap between existing regions, or after the very last region.
595 	 */
596 	for (;; start = (entry = next)->end) {
597 		/*
598 		 * Find the end of the proposed new region.  Be sure we didn't
599 		 * go beyond the end of the map, or wrap around the address;
600 		 * if so, we lose.  Otherwise, if this is the last entry, or
601 		 * if the proposed new region fits before the next entry, we
602 		 * win.
603 		 */
604 		end = start + length;
605 		if (end > map->max_offset || end < start)
606 			return (1);
607 		next = entry->next;
608 		if (next == &map->header || next->start >= end)
609 			break;
610 	}
611 	SAVE_HINT(map, entry);
612 	*addr = start;
613 	if (map == kernel_map) {
614 		vm_offset_t ksize;
615 		if ((ksize = round_page(start + length)) > kernel_vm_end) {
616 			pmap_growkernel(ksize);
617 		}
618 	}
619 	return (0);
620 }
621 
622 /*
623  *	vm_map_find finds an unallocated region in the target address
624  *	map with the given length.  The search is defined to be
625  *	first-fit from the specified address; the region found is
626  *	returned in the same parameter.
627  *
628  *	If object is non-NULL, ref count must be bumped by caller
629  *	prior to making call to account for the new entry.
630  */
631 int
632 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
633 	    vm_offset_t *addr,	/* IN/OUT */
634 	    vm_size_t length, boolean_t find_space, vm_prot_t prot,
635 	    vm_prot_t max, int cow)
636 {
637 	vm_offset_t start;
638 	int result, s = 0;
639 
640 	start = *addr;
641 
642 	if (map == kmem_map || map == mb_map)
643 		s = splvm();
644 
645 	vm_map_lock(map);
646 	if (find_space) {
647 		if (vm_map_findspace(map, start, length, addr)) {
648 			vm_map_unlock(map);
649 			if (map == kmem_map || map == mb_map)
650 				splx(s);
651 			return (KERN_NO_SPACE);
652 		}
653 		start = *addr;
654 	}
655 	result = vm_map_insert(map, object, offset,
656 		start, start + length, prot, max, cow);
657 	vm_map_unlock(map);
658 
659 	if (map == kmem_map || map == mb_map)
660 		splx(s);
661 
662 	return (result);
663 }
664 
665 /*
666  *	vm_map_simplify_entry:
667  *
668  *	Simplify the given map entry by merging with either neighbor.
669  */
670 void
671 vm_map_simplify_entry(map, entry)
672 	vm_map_t map;
673 	vm_map_entry_t entry;
674 {
675 	vm_map_entry_t next, prev;
676 	vm_size_t prevsize, esize;
677 
678 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
679 		return;
680 
681 	prev = entry->prev;
682 	if (prev != &map->header) {
683 		prevsize = prev->end - prev->start;
684 		if ( (prev->end == entry->start) &&
685 		     (prev->object.vm_object == entry->object.vm_object) &&
686 		     (!prev->object.vm_object ||
687 			(prev->offset + prevsize == entry->offset)) &&
688 		     (prev->eflags == entry->eflags) &&
689 		     (prev->protection == entry->protection) &&
690 		     (prev->max_protection == entry->max_protection) &&
691 		     (prev->inheritance == entry->inheritance) &&
692 		     (prev->wired_count == entry->wired_count)) {
693 			if (map->first_free == prev)
694 				map->first_free = entry;
695 			if (map->hint == prev)
696 				map->hint = entry;
697 			vm_map_entry_unlink(map, prev);
698 			entry->start = prev->start;
699 			entry->offset = prev->offset;
700 			if (prev->object.vm_object)
701 				vm_object_deallocate(prev->object.vm_object);
702 			vm_map_entry_dispose(map, prev);
703 		}
704 	}
705 
706 	next = entry->next;
707 	if (next != &map->header) {
708 		esize = entry->end - entry->start;
709 		if ((entry->end == next->start) &&
710 		    (next->object.vm_object == entry->object.vm_object) &&
711 		     (!entry->object.vm_object ||
712 			(entry->offset + esize == next->offset)) &&
713 		    (next->eflags == entry->eflags) &&
714 		    (next->protection == entry->protection) &&
715 		    (next->max_protection == entry->max_protection) &&
716 		    (next->inheritance == entry->inheritance) &&
717 		    (next->wired_count == entry->wired_count)) {
718 			if (map->first_free == next)
719 				map->first_free = entry;
720 			if (map->hint == next)
721 				map->hint = entry;
722 			vm_map_entry_unlink(map, next);
723 			entry->end = next->end;
724 			if (next->object.vm_object)
725 				vm_object_deallocate(next->object.vm_object);
726 			vm_map_entry_dispose(map, next);
727 	        }
728 	}
729 }
730 /*
731  *	vm_map_clip_start:	[ internal use only ]
732  *
733  *	Asserts that the given entry begins at or after
734  *	the specified address; if necessary,
735  *	it splits the entry into two.
736  */
737 #define vm_map_clip_start(map, entry, startaddr) \
738 { \
739 	if (startaddr > entry->start) \
740 		_vm_map_clip_start(map, entry, startaddr); \
741 }
742 
743 /*
744  *	This routine is called only when it is known that
745  *	the entry must be split.
746  */
747 static void
748 _vm_map_clip_start(map, entry, start)
749 	vm_map_t map;
750 	vm_map_entry_t entry;
751 	vm_offset_t start;
752 {
753 	vm_map_entry_t new_entry;
754 
755 	/*
756 	 * Split off the front portion -- note that we must insert the new
757 	 * entry BEFORE this one, so that this entry has the specified
758 	 * starting address.
759 	 */
760 
761 	vm_map_simplify_entry(map, entry);
762 
763 	/*
764 	 * If there is no object backing this entry, we might as well create
765 	 * one now.  If we defer it, an object can get created after the map
766 	 * is clipped, and individual objects will be created for the split-up
767 	 * map.  This is a bit of a hack, but is also about the best place to
768 	 * put this improvement.
769 	 */
770 
771 	if (entry->object.vm_object == NULL) {
772 		vm_object_t object;
773 		object = vm_object_allocate(OBJT_DEFAULT,
774 				atop(entry->end - entry->start));
775 		entry->object.vm_object = object;
776 		entry->offset = 0;
777 	}
778 
779 	new_entry = vm_map_entry_create(map);
780 	*new_entry = *entry;
781 
782 	new_entry->end = start;
783 	entry->offset += (start - entry->start);
784 	entry->start = start;
785 
786 	vm_map_entry_link(map, entry->prev, new_entry);
787 
788 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
789 		vm_object_reference(new_entry->object.vm_object);
790 	}
791 }
792 
793 /*
794  *	vm_map_clip_end:	[ internal use only ]
795  *
796  *	Asserts that the given entry ends at or before
797  *	the specified address; if necessary,
798  *	it splits the entry into two.
799  */
800 
801 #define vm_map_clip_end(map, entry, endaddr) \
802 { \
803 	if (endaddr < entry->end) \
804 		_vm_map_clip_end(map, entry, endaddr); \
805 }
806 
807 /*
808  *	This routine is called only when it is known that
809  *	the entry must be split.
810  */
811 static void
812 _vm_map_clip_end(map, entry, end)
813 	vm_map_t map;
814 	vm_map_entry_t entry;
815 	vm_offset_t end;
816 {
817 	vm_map_entry_t new_entry;
818 
819 	/*
820 	 * If there is no object backing this entry, we might as well create
821 	 * one now.  If we defer it, an object can get created after the map
822 	 * is clipped, and individual objects will be created for the split-up
823 	 * map.  This is a bit of a hack, but is also about the best place to
824 	 * put this improvement.
825 	 */
826 
827 	if (entry->object.vm_object == NULL) {
828 		vm_object_t object;
829 		object = vm_object_allocate(OBJT_DEFAULT,
830 				atop(entry->end - entry->start));
831 		entry->object.vm_object = object;
832 		entry->offset = 0;
833 	}
834 
835 	/*
836 	 * Create a new entry and insert it AFTER the specified entry
837 	 */
838 
839 	new_entry = vm_map_entry_create(map);
840 	*new_entry = *entry;
841 
842 	new_entry->start = entry->end = end;
843 	new_entry->offset += (end - entry->start);
844 
845 	vm_map_entry_link(map, entry, new_entry);
846 
847 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
848 		vm_object_reference(new_entry->object.vm_object);
849 	}
850 }
851 
852 /*
853  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
854  *
855  *	Asserts that the starting and ending region
856  *	addresses fall within the valid range of the map.
857  */
858 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
859 		{					\
860 		if (start < vm_map_min(map))		\
861 			start = vm_map_min(map);	\
862 		if (end > vm_map_max(map))		\
863 			end = vm_map_max(map);		\
864 		if (start > end)			\
865 			start = end;			\
866 		}
867 
868 /*
869  *	vm_map_submap:		[ kernel use only ]
870  *
871  *	Mark the given range as handled by a subordinate map.
872  *
873  *	This range must have been created with vm_map_find,
874  *	and no other operations may have been performed on this
875  *	range prior to calling vm_map_submap.
876  *
877  *	Only a limited number of operations can be performed
878  *	within this rage after calling vm_map_submap:
879  *		vm_fault
880  *	[Don't try vm_map_copy!]
881  *
882  *	To remove a submapping, one must first remove the
883  *	range from the superior map, and then destroy the
884  *	submap (if desired).  [Better yet, don't try it.]
885  */
886 int
887 vm_map_submap(map, start, end, submap)
888 	vm_map_t map;
889 	vm_offset_t start;
890 	vm_offset_t end;
891 	vm_map_t submap;
892 {
893 	vm_map_entry_t entry;
894 	int result = KERN_INVALID_ARGUMENT;
895 
896 	vm_map_lock(map);
897 
898 	VM_MAP_RANGE_CHECK(map, start, end);
899 
900 	if (vm_map_lookup_entry(map, start, &entry)) {
901 		vm_map_clip_start(map, entry, start);
902 	} else
903 		entry = entry->next;
904 
905 	vm_map_clip_end(map, entry, end);
906 
907 	if ((entry->start == start) && (entry->end == end) &&
908 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
909 	    (entry->object.vm_object == NULL)) {
910 		entry->object.sub_map = submap;
911 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
912 		result = KERN_SUCCESS;
913 	}
914 	vm_map_unlock(map);
915 
916 	return (result);
917 }
918 
919 /*
920  *	vm_map_protect:
921  *
922  *	Sets the protection of the specified address
923  *	region in the target map.  If "set_max" is
924  *	specified, the maximum protection is to be set;
925  *	otherwise, only the current protection is affected.
926  */
927 int
928 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
929 	       vm_prot_t new_prot, boolean_t set_max)
930 {
931 	vm_map_entry_t current;
932 	vm_map_entry_t entry;
933 
934 	vm_map_lock(map);
935 
936 	VM_MAP_RANGE_CHECK(map, start, end);
937 
938 	if (vm_map_lookup_entry(map, start, &entry)) {
939 		vm_map_clip_start(map, entry, start);
940 	} else {
941 		entry = entry->next;
942 	}
943 
944 	/*
945 	 * Make a first pass to check for protection violations.
946 	 */
947 
948 	current = entry;
949 	while ((current != &map->header) && (current->start < end)) {
950 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
951 			vm_map_unlock(map);
952 			return (KERN_INVALID_ARGUMENT);
953 		}
954 		if ((new_prot & current->max_protection) != new_prot) {
955 			vm_map_unlock(map);
956 			return (KERN_PROTECTION_FAILURE);
957 		}
958 		current = current->next;
959 	}
960 
961 	/*
962 	 * Go back and fix up protections. [Note that clipping is not
963 	 * necessary the second time.]
964 	 */
965 
966 	current = entry;
967 
968 	while ((current != &map->header) && (current->start < end)) {
969 		vm_prot_t old_prot;
970 
971 		vm_map_clip_end(map, current, end);
972 
973 		old_prot = current->protection;
974 		if (set_max)
975 			current->protection =
976 			    (current->max_protection = new_prot) &
977 			    old_prot;
978 		else
979 			current->protection = new_prot;
980 
981 		/*
982 		 * Update physical map if necessary. Worry about copy-on-write
983 		 * here -- CHECK THIS XXX
984 		 */
985 
986 		if (current->protection != old_prot) {
987 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
988 							VM_PROT_ALL)
989 
990 			pmap_protect(map->pmap, current->start,
991 			    current->end,
992 			    current->protection & MASK(current));
993 #undef	MASK
994 		}
995 
996 		vm_map_simplify_entry(map, current);
997 
998 		current = current->next;
999 	}
1000 
1001 	vm_map_unlock(map);
1002 	return (KERN_SUCCESS);
1003 }
1004 
1005 /*
1006  *	vm_map_madvise:
1007  *
1008  * 	This routine traverses a processes map handling the madvise
1009  *	system call.  Advisories are classified as either those effecting
1010  *	the vm_map_entry structure, or those effecting the underlying
1011  *	objects.
1012  */
1013 
1014 int
1015 vm_map_madvise(map, start, end, behav)
1016 	vm_map_t map;
1017 	vm_offset_t start, end;
1018 	int behav;
1019 {
1020 	vm_map_entry_t current, entry;
1021 	int modify_map = 0;
1022 
1023 	/*
1024 	 * Some madvise calls directly modify the vm_map_entry, in which case
1025 	 * we need to use an exclusive lock on the map and we need to perform
1026 	 * various clipping operations.  Otherwise we only need a read-lock
1027 	 * on the map.
1028 	 */
1029 
1030 	switch(behav) {
1031 	case MADV_NORMAL:
1032 	case MADV_SEQUENTIAL:
1033 	case MADV_RANDOM:
1034 	case MADV_NOSYNC:
1035 	case MADV_AUTOSYNC:
1036 		modify_map = 1;
1037 		vm_map_lock(map);
1038 		break;
1039 	case MADV_WILLNEED:
1040 	case MADV_DONTNEED:
1041 	case MADV_FREE:
1042 		vm_map_lock_read(map);
1043 		break;
1044 	default:
1045 		return (KERN_INVALID_ARGUMENT);
1046 	}
1047 
1048 	/*
1049 	 * Locate starting entry and clip if necessary.
1050 	 */
1051 
1052 	VM_MAP_RANGE_CHECK(map, start, end);
1053 
1054 	if (vm_map_lookup_entry(map, start, &entry)) {
1055 		if (modify_map)
1056 			vm_map_clip_start(map, entry, start);
1057 	} else {
1058 		entry = entry->next;
1059 	}
1060 
1061 	if (modify_map) {
1062 		/*
1063 		 * madvise behaviors that are implemented in the vm_map_entry.
1064 		 *
1065 		 * We clip the vm_map_entry so that behavioral changes are
1066 		 * limited to the specified address range.
1067 		 */
1068 		for (current = entry;
1069 		     (current != &map->header) && (current->start < end);
1070 		     current = current->next
1071 		) {
1072 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
1073 				continue;
1074 
1075 			vm_map_clip_end(map, current, end);
1076 
1077 			switch (behav) {
1078 			case MADV_NORMAL:
1079 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
1080 				break;
1081 			case MADV_SEQUENTIAL:
1082 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
1083 				break;
1084 			case MADV_RANDOM:
1085 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
1086 				break;
1087 			case MADV_NOSYNC:
1088 				current->eflags |= MAP_ENTRY_NOSYNC;
1089 				break;
1090 			case MADV_AUTOSYNC:
1091 				current->eflags &= ~MAP_ENTRY_NOSYNC;
1092 				break;
1093 			default:
1094 				break;
1095 			}
1096 			vm_map_simplify_entry(map, current);
1097 		}
1098 		vm_map_unlock(map);
1099 	} else {
1100 		vm_pindex_t pindex;
1101 		int count;
1102 
1103 		/*
1104 		 * madvise behaviors that are implemented in the underlying
1105 		 * vm_object.
1106 		 *
1107 		 * Since we don't clip the vm_map_entry, we have to clip
1108 		 * the vm_object pindex and count.
1109 		 */
1110 		for (current = entry;
1111 		     (current != &map->header) && (current->start < end);
1112 		     current = current->next
1113 		) {
1114 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
1115 				continue;
1116 
1117 			pindex = OFF_TO_IDX(current->offset);
1118 			count = atop(current->end - current->start);
1119 
1120 			if (current->start < start) {
1121 				pindex += atop(start - current->start);
1122 				count -= atop(start - current->start);
1123 			}
1124 			if (current->end > end)
1125 				count -= atop(current->end - end);
1126 
1127 			if (count <= 0)
1128 				continue;
1129 
1130 			vm_object_madvise(current->object.vm_object,
1131 					  pindex, count, behav);
1132 			if (behav == MADV_WILLNEED) {
1133 				pmap_object_init_pt(
1134 				    map->pmap,
1135 				    current->start,
1136 				    current->object.vm_object,
1137 				    pindex,
1138 				    (count << PAGE_SHIFT),
1139 				    0
1140 				);
1141 			}
1142 		}
1143 		vm_map_unlock_read(map);
1144 	}
1145 	return(0);
1146 }
1147 
1148 
1149 /*
1150  *	vm_map_inherit:
1151  *
1152  *	Sets the inheritance of the specified address
1153  *	range in the target map.  Inheritance
1154  *	affects how the map will be shared with
1155  *	child maps at the time of vm_map_fork.
1156  */
1157 int
1158 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
1159 	       vm_inherit_t new_inheritance)
1160 {
1161 	vm_map_entry_t entry;
1162 	vm_map_entry_t temp_entry;
1163 
1164 	switch (new_inheritance) {
1165 	case VM_INHERIT_NONE:
1166 	case VM_INHERIT_COPY:
1167 	case VM_INHERIT_SHARE:
1168 		break;
1169 	default:
1170 		return (KERN_INVALID_ARGUMENT);
1171 	}
1172 
1173 	vm_map_lock(map);
1174 
1175 	VM_MAP_RANGE_CHECK(map, start, end);
1176 
1177 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
1178 		entry = temp_entry;
1179 		vm_map_clip_start(map, entry, start);
1180 	} else
1181 		entry = temp_entry->next;
1182 
1183 	while ((entry != &map->header) && (entry->start < end)) {
1184 		vm_map_clip_end(map, entry, end);
1185 
1186 		entry->inheritance = new_inheritance;
1187 
1188 		vm_map_simplify_entry(map, entry);
1189 
1190 		entry = entry->next;
1191 	}
1192 
1193 	vm_map_unlock(map);
1194 	return (KERN_SUCCESS);
1195 }
1196 
1197 /*
1198  * Implement the semantics of mlock
1199  */
1200 int
1201 vm_map_user_pageable(map, start, end, new_pageable)
1202 	vm_map_t map;
1203 	vm_offset_t start;
1204 	vm_offset_t end;
1205 	boolean_t new_pageable;
1206 {
1207 	vm_map_entry_t entry;
1208 	vm_map_entry_t start_entry;
1209 	vm_offset_t estart;
1210 	int rv;
1211 
1212 	vm_map_lock(map);
1213 	VM_MAP_RANGE_CHECK(map, start, end);
1214 
1215 	if (vm_map_lookup_entry(map, start, &start_entry) == FALSE) {
1216 		vm_map_unlock(map);
1217 		return (KERN_INVALID_ADDRESS);
1218 	}
1219 
1220 	if (new_pageable) {
1221 
1222 		entry = start_entry;
1223 		vm_map_clip_start(map, entry, start);
1224 
1225 		/*
1226 		 * Now decrement the wiring count for each region. If a region
1227 		 * becomes completely unwired, unwire its physical pages and
1228 		 * mappings.
1229 		 */
1230 		while ((entry != &map->header) && (entry->start < end)) {
1231 			if (entry->eflags & MAP_ENTRY_USER_WIRED) {
1232 				vm_map_clip_end(map, entry, end);
1233 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
1234 				entry->wired_count--;
1235 				if (entry->wired_count == 0)
1236 					vm_fault_unwire(map, entry->start, entry->end);
1237 			}
1238 			vm_map_simplify_entry(map,entry);
1239 			entry = entry->next;
1240 		}
1241 	} else {
1242 
1243 		entry = start_entry;
1244 
1245 		while ((entry != &map->header) && (entry->start < end)) {
1246 
1247 			if (entry->eflags & MAP_ENTRY_USER_WIRED) {
1248 				entry = entry->next;
1249 				continue;
1250 			}
1251 
1252 			if (entry->wired_count != 0) {
1253 				entry->wired_count++;
1254 				entry->eflags |= MAP_ENTRY_USER_WIRED;
1255 				entry = entry->next;
1256 				continue;
1257 			}
1258 
1259 			/* Here on entry being newly wired */
1260 
1261 			if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1262 				int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
1263 				if (copyflag && ((entry->protection & VM_PROT_WRITE) != 0)) {
1264 
1265 					vm_object_shadow(&entry->object.vm_object,
1266 					    &entry->offset,
1267 					    atop(entry->end - entry->start));
1268 					entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
1269 
1270 				} else if (entry->object.vm_object == NULL) {
1271 
1272 					entry->object.vm_object =
1273 					    vm_object_allocate(OBJT_DEFAULT,
1274 						atop(entry->end - entry->start));
1275 					entry->offset = (vm_offset_t) 0;
1276 
1277 				}
1278 			}
1279 
1280 			vm_map_clip_start(map, entry, start);
1281 			vm_map_clip_end(map, entry, end);
1282 
1283 			entry->wired_count++;
1284 			entry->eflags |= MAP_ENTRY_USER_WIRED;
1285 			estart = entry->start;
1286 
1287 			/* First we need to allow map modifications */
1288 			vm_map_set_recursive(map);
1289 			vm_map_lock_downgrade(map);
1290 			map->timestamp++;
1291 
1292 			rv = vm_fault_user_wire(map, entry->start, entry->end);
1293 			if (rv) {
1294 
1295 				entry->wired_count--;
1296 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
1297 
1298 				vm_map_clear_recursive(map);
1299 				vm_map_unlock(map);
1300 
1301 				(void) vm_map_user_pageable(map, start, entry->start, TRUE);
1302 				return rv;
1303 			}
1304 
1305 			vm_map_clear_recursive(map);
1306 			if (vm_map_lock_upgrade(map)) {
1307 				vm_map_lock(map);
1308 				if (vm_map_lookup_entry(map, estart, &entry)
1309 				    == FALSE) {
1310 					vm_map_unlock(map);
1311 					(void) vm_map_user_pageable(map,
1312 								    start,
1313 								    estart,
1314 								    TRUE);
1315 					return (KERN_INVALID_ADDRESS);
1316 				}
1317 			}
1318 			vm_map_simplify_entry(map,entry);
1319 		}
1320 	}
1321 	map->timestamp++;
1322 	vm_map_unlock(map);
1323 	return KERN_SUCCESS;
1324 }
1325 
1326 /*
1327  *	vm_map_pageable:
1328  *
1329  *	Sets the pageability of the specified address
1330  *	range in the target map.  Regions specified
1331  *	as not pageable require locked-down physical
1332  *	memory and physical page maps.
1333  *
1334  *	The map must not be locked, but a reference
1335  *	must remain to the map throughout the call.
1336  */
1337 int
1338 vm_map_pageable(map, start, end, new_pageable)
1339 	vm_map_t map;
1340 	vm_offset_t start;
1341 	vm_offset_t end;
1342 	boolean_t new_pageable;
1343 {
1344 	vm_map_entry_t entry;
1345 	vm_map_entry_t start_entry;
1346 	vm_offset_t failed = 0;
1347 	int rv;
1348 
1349 	vm_map_lock(map);
1350 
1351 	VM_MAP_RANGE_CHECK(map, start, end);
1352 
1353 	/*
1354 	 * Only one pageability change may take place at one time, since
1355 	 * vm_fault assumes it will be called only once for each
1356 	 * wiring/unwiring.  Therefore, we have to make sure we're actually
1357 	 * changing the pageability for the entire region.  We do so before
1358 	 * making any changes.
1359 	 */
1360 
1361 	if (vm_map_lookup_entry(map, start, &start_entry) == FALSE) {
1362 		vm_map_unlock(map);
1363 		return (KERN_INVALID_ADDRESS);
1364 	}
1365 	entry = start_entry;
1366 
1367 	/*
1368 	 * Actions are rather different for wiring and unwiring, so we have
1369 	 * two separate cases.
1370 	 */
1371 
1372 	if (new_pageable) {
1373 
1374 		vm_map_clip_start(map, entry, start);
1375 
1376 		/*
1377 		 * Unwiring.  First ensure that the range to be unwired is
1378 		 * really wired down and that there are no holes.
1379 		 */
1380 		while ((entry != &map->header) && (entry->start < end)) {
1381 
1382 			if (entry->wired_count == 0 ||
1383 			    (entry->end < end &&
1384 				(entry->next == &map->header ||
1385 				    entry->next->start > entry->end))) {
1386 				vm_map_unlock(map);
1387 				return (KERN_INVALID_ARGUMENT);
1388 			}
1389 			entry = entry->next;
1390 		}
1391 
1392 		/*
1393 		 * Now decrement the wiring count for each region. If a region
1394 		 * becomes completely unwired, unwire its physical pages and
1395 		 * mappings.
1396 		 */
1397 		entry = start_entry;
1398 		while ((entry != &map->header) && (entry->start < end)) {
1399 			vm_map_clip_end(map, entry, end);
1400 
1401 			entry->wired_count--;
1402 			if (entry->wired_count == 0)
1403 				vm_fault_unwire(map, entry->start, entry->end);
1404 
1405 			vm_map_simplify_entry(map, entry);
1406 
1407 			entry = entry->next;
1408 		}
1409 	} else {
1410 		/*
1411 		 * Wiring.  We must do this in two passes:
1412 		 *
1413 		 * 1.  Holding the write lock, we create any shadow or zero-fill
1414 		 * objects that need to be created. Then we clip each map
1415 		 * entry to the region to be wired and increment its wiring
1416 		 * count.  We create objects before clipping the map entries
1417 		 * to avoid object proliferation.
1418 		 *
1419 		 * 2.  We downgrade to a read lock, and call vm_fault_wire to
1420 		 * fault in the pages for any newly wired area (wired_count is
1421 		 * 1).
1422 		 *
1423 		 * Downgrading to a read lock for vm_fault_wire avoids a possible
1424 		 * deadlock with another process that may have faulted on one
1425 		 * of the pages to be wired (it would mark the page busy,
1426 		 * blocking us, then in turn block on the map lock that we
1427 		 * hold).  Because of problems in the recursive lock package,
1428 		 * we cannot upgrade to a write lock in vm_map_lookup.  Thus,
1429 		 * any actions that require the write lock must be done
1430 		 * beforehand.  Because we keep the read lock on the map, the
1431 		 * copy-on-write status of the entries we modify here cannot
1432 		 * change.
1433 		 */
1434 
1435 		/*
1436 		 * Pass 1.
1437 		 */
1438 		while ((entry != &map->header) && (entry->start < end)) {
1439 			if (entry->wired_count == 0) {
1440 
1441 				/*
1442 				 * Perform actions of vm_map_lookup that need
1443 				 * the write lock on the map: create a shadow
1444 				 * object for a copy-on-write region, or an
1445 				 * object for a zero-fill region.
1446 				 *
1447 				 * We don't have to do this for entries that
1448 				 * point to sub maps, because we won't
1449 				 * hold the lock on the sub map.
1450 				 */
1451 				if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1452 					int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
1453 					if (copyflag &&
1454 					    ((entry->protection & VM_PROT_WRITE) != 0)) {
1455 
1456 						vm_object_shadow(&entry->object.vm_object,
1457 						    &entry->offset,
1458 						    atop(entry->end - entry->start));
1459 						entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
1460 					} else if (entry->object.vm_object == NULL) {
1461 						entry->object.vm_object =
1462 						    vm_object_allocate(OBJT_DEFAULT,
1463 							atop(entry->end - entry->start));
1464 						entry->offset = (vm_offset_t) 0;
1465 					}
1466 				}
1467 			}
1468 			vm_map_clip_start(map, entry, start);
1469 			vm_map_clip_end(map, entry, end);
1470 			entry->wired_count++;
1471 
1472 			/*
1473 			 * Check for holes
1474 			 */
1475 			if (entry->end < end &&
1476 			    (entry->next == &map->header ||
1477 				entry->next->start > entry->end)) {
1478 				/*
1479 				 * Found one.  Object creation actions do not
1480 				 * need to be undone, but the wired counts
1481 				 * need to be restored.
1482 				 */
1483 				while (entry != &map->header && entry->end > start) {
1484 					entry->wired_count--;
1485 					entry = entry->prev;
1486 				}
1487 				vm_map_unlock(map);
1488 				return (KERN_INVALID_ARGUMENT);
1489 			}
1490 			entry = entry->next;
1491 		}
1492 
1493 		/*
1494 		 * Pass 2.
1495 		 */
1496 
1497 		/*
1498 		 * HACK HACK HACK HACK
1499 		 *
1500 		 * If we are wiring in the kernel map or a submap of it,
1501 		 * unlock the map to avoid deadlocks.  We trust that the
1502 		 * kernel is well-behaved, and therefore will not do
1503 		 * anything destructive to this region of the map while
1504 		 * we have it unlocked.  We cannot trust user processes
1505 		 * to do the same.
1506 		 *
1507 		 * HACK HACK HACK HACK
1508 		 */
1509 		if (vm_map_pmap(map) == kernel_pmap) {
1510 			vm_map_unlock(map);	/* trust me ... */
1511 		} else {
1512 			vm_map_lock_downgrade(map);
1513 		}
1514 
1515 		rv = 0;
1516 		entry = start_entry;
1517 		while (entry != &map->header && entry->start < end) {
1518 			/*
1519 			 * If vm_fault_wire fails for any page we need to undo
1520 			 * what has been done.  We decrement the wiring count
1521 			 * for those pages which have not yet been wired (now)
1522 			 * and unwire those that have (later).
1523 			 *
1524 			 * XXX this violates the locking protocol on the map,
1525 			 * needs to be fixed.
1526 			 */
1527 			if (rv)
1528 				entry->wired_count--;
1529 			else if (entry->wired_count == 1) {
1530 				rv = vm_fault_wire(map, entry->start, entry->end);
1531 				if (rv) {
1532 					failed = entry->start;
1533 					entry->wired_count--;
1534 				}
1535 			}
1536 			entry = entry->next;
1537 		}
1538 
1539 		if (vm_map_pmap(map) == kernel_pmap) {
1540 			vm_map_lock(map);
1541 		}
1542 		if (rv) {
1543 			vm_map_unlock(map);
1544 			(void) vm_map_pageable(map, start, failed, TRUE);
1545 			return (rv);
1546 		}
1547 		vm_map_simplify_entry(map, start_entry);
1548 	}
1549 
1550 	vm_map_unlock(map);
1551 
1552 	return (KERN_SUCCESS);
1553 }
1554 
1555 /*
1556  * vm_map_clean
1557  *
1558  * Push any dirty cached pages in the address range to their pager.
1559  * If syncio is TRUE, dirty pages are written synchronously.
1560  * If invalidate is TRUE, any cached pages are freed as well.
1561  *
1562  * Returns an error if any part of the specified range is not mapped.
1563  */
1564 int
1565 vm_map_clean(map, start, end, syncio, invalidate)
1566 	vm_map_t map;
1567 	vm_offset_t start;
1568 	vm_offset_t end;
1569 	boolean_t syncio;
1570 	boolean_t invalidate;
1571 {
1572 	vm_map_entry_t current;
1573 	vm_map_entry_t entry;
1574 	vm_size_t size;
1575 	vm_object_t object;
1576 	vm_ooffset_t offset;
1577 
1578 	vm_map_lock_read(map);
1579 	VM_MAP_RANGE_CHECK(map, start, end);
1580 	if (!vm_map_lookup_entry(map, start, &entry)) {
1581 		vm_map_unlock_read(map);
1582 		return (KERN_INVALID_ADDRESS);
1583 	}
1584 	/*
1585 	 * Make a first pass to check for holes.
1586 	 */
1587 	for (current = entry; current->start < end; current = current->next) {
1588 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1589 			vm_map_unlock_read(map);
1590 			return (KERN_INVALID_ARGUMENT);
1591 		}
1592 		if (end > current->end &&
1593 		    (current->next == &map->header ||
1594 			current->end != current->next->start)) {
1595 			vm_map_unlock_read(map);
1596 			return (KERN_INVALID_ADDRESS);
1597 		}
1598 	}
1599 
1600 	if (invalidate)
1601 		pmap_remove(vm_map_pmap(map), start, end);
1602 	/*
1603 	 * Make a second pass, cleaning/uncaching pages from the indicated
1604 	 * objects as we go.
1605 	 */
1606 	for (current = entry; current->start < end; current = current->next) {
1607 		offset = current->offset + (start - current->start);
1608 		size = (end <= current->end ? end : current->end) - start;
1609 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1610 			vm_map_t smap;
1611 			vm_map_entry_t tentry;
1612 			vm_size_t tsize;
1613 
1614 			smap = current->object.sub_map;
1615 			vm_map_lock_read(smap);
1616 			(void) vm_map_lookup_entry(smap, offset, &tentry);
1617 			tsize = tentry->end - offset;
1618 			if (tsize < size)
1619 				size = tsize;
1620 			object = tentry->object.vm_object;
1621 			offset = tentry->offset + (offset - tentry->start);
1622 			vm_map_unlock_read(smap);
1623 		} else {
1624 			object = current->object.vm_object;
1625 		}
1626 		/*
1627 		 * Note that there is absolutely no sense in writing out
1628 		 * anonymous objects, so we track down the vnode object
1629 		 * to write out.
1630 		 * We invalidate (remove) all pages from the address space
1631 		 * anyway, for semantic correctness.
1632 		 */
1633 		while (object->backing_object) {
1634 			object = object->backing_object;
1635 			offset += object->backing_object_offset;
1636 			if (object->size < OFF_TO_IDX( offset + size))
1637 				size = IDX_TO_OFF(object->size) - offset;
1638 		}
1639 		if (object && (object->type == OBJT_VNODE)) {
1640 			/*
1641 			 * Flush pages if writing is allowed. XXX should we continue
1642 			 * on an error?
1643 			 *
1644 			 * XXX Doing async I/O and then removing all the pages from
1645 			 *     the object before it completes is probably a very bad
1646 			 *     idea.
1647 			 */
1648 			if (current->protection & VM_PROT_WRITE) {
1649 				int flags;
1650 				if (object->type == OBJT_VNODE)
1651 					vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY, curproc);
1652 				flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1653 				flags |= invalidate ? OBJPC_INVAL : 0;
1654 		   	    vm_object_page_clean(object,
1655 					OFF_TO_IDX(offset),
1656 					OFF_TO_IDX(offset + size + PAGE_MASK),
1657 					flags);
1658 				if (invalidate) {
1659 					vm_object_pip_wait(object, "objmcl");
1660 					vm_object_page_remove(object,
1661 						OFF_TO_IDX(offset),
1662 						OFF_TO_IDX(offset + size + PAGE_MASK),
1663 						FALSE);
1664 				}
1665 				if (object->type == OBJT_VNODE)
1666 					VOP_UNLOCK(object->handle, 0, curproc);
1667 			}
1668 		}
1669 		start += size;
1670 	}
1671 
1672 	vm_map_unlock_read(map);
1673 	return (KERN_SUCCESS);
1674 }
1675 
1676 /*
1677  *	vm_map_entry_unwire:	[ internal use only ]
1678  *
1679  *	Make the region specified by this entry pageable.
1680  *
1681  *	The map in question should be locked.
1682  *	[This is the reason for this routine's existence.]
1683  */
1684 static void
1685 vm_map_entry_unwire(map, entry)
1686 	vm_map_t map;
1687 	vm_map_entry_t entry;
1688 {
1689 	vm_fault_unwire(map, entry->start, entry->end);
1690 	entry->wired_count = 0;
1691 }
1692 
1693 /*
1694  *	vm_map_entry_delete:	[ internal use only ]
1695  *
1696  *	Deallocate the given entry from the target map.
1697  */
1698 static void
1699 vm_map_entry_delete(map, entry)
1700 	vm_map_t map;
1701 	vm_map_entry_t entry;
1702 {
1703 	vm_map_entry_unlink(map, entry);
1704 	map->size -= entry->end - entry->start;
1705 
1706 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1707 		vm_object_deallocate(entry->object.vm_object);
1708 	}
1709 
1710 	vm_map_entry_dispose(map, entry);
1711 }
1712 
1713 /*
1714  *	vm_map_delete:	[ internal use only ]
1715  *
1716  *	Deallocates the given address range from the target
1717  *	map.
1718  */
1719 int
1720 vm_map_delete(map, start, end)
1721 	vm_map_t map;
1722 	vm_offset_t start;
1723 	vm_offset_t end;
1724 {
1725 	vm_object_t object;
1726 	vm_map_entry_t entry;
1727 	vm_map_entry_t first_entry;
1728 
1729 	/*
1730 	 * Find the start of the region, and clip it
1731 	 */
1732 
1733 	if (!vm_map_lookup_entry(map, start, &first_entry))
1734 		entry = first_entry->next;
1735 	else {
1736 		entry = first_entry;
1737 		vm_map_clip_start(map, entry, start);
1738 		/*
1739 		 * Fix the lookup hint now, rather than each time though the
1740 		 * loop.
1741 		 */
1742 		SAVE_HINT(map, entry->prev);
1743 	}
1744 
1745 	/*
1746 	 * Save the free space hint
1747 	 */
1748 
1749 	if (entry == &map->header) {
1750 		map->first_free = &map->header;
1751 	} else if (map->first_free->start >= start) {
1752 		map->first_free = entry->prev;
1753 	}
1754 
1755 	/*
1756 	 * Step through all entries in this region
1757 	 */
1758 
1759 	while ((entry != &map->header) && (entry->start < end)) {
1760 		vm_map_entry_t next;
1761 		vm_offset_t s, e;
1762 		vm_pindex_t offidxstart, offidxend, count;
1763 
1764 		vm_map_clip_end(map, entry, end);
1765 
1766 		s = entry->start;
1767 		e = entry->end;
1768 		next = entry->next;
1769 
1770 		offidxstart = OFF_TO_IDX(entry->offset);
1771 		count = OFF_TO_IDX(e - s);
1772 		object = entry->object.vm_object;
1773 
1774 		/*
1775 		 * Unwire before removing addresses from the pmap; otherwise,
1776 		 * unwiring will put the entries back in the pmap.
1777 		 */
1778 		if (entry->wired_count != 0) {
1779 			vm_map_entry_unwire(map, entry);
1780 		}
1781 
1782 		offidxend = offidxstart + count;
1783 
1784 		if ((object == kernel_object) || (object == kmem_object)) {
1785 			vm_object_page_remove(object, offidxstart, offidxend, FALSE);
1786 		} else {
1787 			pmap_remove(map->pmap, s, e);
1788 			if (object != NULL &&
1789 			    object->ref_count != 1 &&
1790 			    (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING &&
1791 			    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
1792 				vm_object_collapse(object);
1793 				vm_object_page_remove(object, offidxstart, offidxend, FALSE);
1794 				if (object->type == OBJT_SWAP) {
1795 					swap_pager_freespace(object, offidxstart, count);
1796 				}
1797 				if (offidxend >= object->size &&
1798 				    offidxstart < object->size) {
1799 					object->size = offidxstart;
1800 				}
1801 			}
1802 		}
1803 
1804 		/*
1805 		 * Delete the entry (which may delete the object) only after
1806 		 * removing all pmap entries pointing to its pages.
1807 		 * (Otherwise, its page frames may be reallocated, and any
1808 		 * modify bits will be set in the wrong object!)
1809 		 */
1810 		vm_map_entry_delete(map, entry);
1811 		entry = next;
1812 	}
1813 	return (KERN_SUCCESS);
1814 }
1815 
1816 /*
1817  *	vm_map_remove:
1818  *
1819  *	Remove the given address range from the target map.
1820  *	This is the exported form of vm_map_delete.
1821  */
1822 int
1823 vm_map_remove(map, start, end)
1824 	vm_map_t map;
1825 	vm_offset_t start;
1826 	vm_offset_t end;
1827 {
1828 	int result, s = 0;
1829 
1830 	if (map == kmem_map || map == mb_map)
1831 		s = splvm();
1832 
1833 	vm_map_lock(map);
1834 	VM_MAP_RANGE_CHECK(map, start, end);
1835 	result = vm_map_delete(map, start, end);
1836 	vm_map_unlock(map);
1837 
1838 	if (map == kmem_map || map == mb_map)
1839 		splx(s);
1840 
1841 	return (result);
1842 }
1843 
1844 /*
1845  *	vm_map_check_protection:
1846  *
1847  *	Assert that the target map allows the specified
1848  *	privilege on the entire address region given.
1849  *	The entire region must be allocated.
1850  */
1851 boolean_t
1852 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
1853 			vm_prot_t protection)
1854 {
1855 	vm_map_entry_t entry;
1856 	vm_map_entry_t tmp_entry;
1857 
1858 	if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
1859 		return (FALSE);
1860 	}
1861 	entry = tmp_entry;
1862 
1863 	while (start < end) {
1864 		if (entry == &map->header) {
1865 			return (FALSE);
1866 		}
1867 		/*
1868 		 * No holes allowed!
1869 		 */
1870 
1871 		if (start < entry->start) {
1872 			return (FALSE);
1873 		}
1874 		/*
1875 		 * Check protection associated with entry.
1876 		 */
1877 
1878 		if ((entry->protection & protection) != protection) {
1879 			return (FALSE);
1880 		}
1881 		/* go to next entry */
1882 
1883 		start = entry->end;
1884 		entry = entry->next;
1885 	}
1886 	return (TRUE);
1887 }
1888 
1889 /*
1890  * Split the pages in a map entry into a new object.  This affords
1891  * easier removal of unused pages, and keeps object inheritance from
1892  * being a negative impact on memory usage.
1893  */
1894 static void
1895 vm_map_split(entry)
1896 	vm_map_entry_t entry;
1897 {
1898 	vm_page_t m;
1899 	vm_object_t orig_object, new_object, source;
1900 	vm_offset_t s, e;
1901 	vm_pindex_t offidxstart, offidxend, idx;
1902 	vm_size_t size;
1903 	vm_ooffset_t offset;
1904 
1905 	orig_object = entry->object.vm_object;
1906 	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1907 		return;
1908 	if (orig_object->ref_count <= 1)
1909 		return;
1910 
1911 	offset = entry->offset;
1912 	s = entry->start;
1913 	e = entry->end;
1914 
1915 	offidxstart = OFF_TO_IDX(offset);
1916 	offidxend = offidxstart + OFF_TO_IDX(e - s);
1917 	size = offidxend - offidxstart;
1918 
1919 	new_object = vm_pager_allocate(orig_object->type,
1920 		NULL, IDX_TO_OFF(size), VM_PROT_ALL, 0LL);
1921 	if (new_object == NULL)
1922 		return;
1923 
1924 	source = orig_object->backing_object;
1925 	if (source != NULL) {
1926 		vm_object_reference(source);	/* Referenced by new_object */
1927 		TAILQ_INSERT_TAIL(&source->shadow_head,
1928 				  new_object, shadow_list);
1929 		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1930 		new_object->backing_object_offset =
1931 			orig_object->backing_object_offset + IDX_TO_OFF(offidxstart);
1932 		new_object->backing_object = source;
1933 		source->shadow_count++;
1934 		source->generation++;
1935 	}
1936 
1937 	for (idx = 0; idx < size; idx++) {
1938 		vm_page_t m;
1939 
1940 	retry:
1941 		m = vm_page_lookup(orig_object, offidxstart + idx);
1942 		if (m == NULL)
1943 			continue;
1944 
1945 		/*
1946 		 * We must wait for pending I/O to complete before we can
1947 		 * rename the page.
1948 		 *
1949 		 * We do not have to VM_PROT_NONE the page as mappings should
1950 		 * not be changed by this operation.
1951 		 */
1952 		if (vm_page_sleep_busy(m, TRUE, "spltwt"))
1953 			goto retry;
1954 
1955 		vm_page_busy(m);
1956 		vm_page_rename(m, new_object, idx);
1957 		/* page automatically made dirty by rename and cache handled */
1958 		vm_page_busy(m);
1959 	}
1960 
1961 	if (orig_object->type == OBJT_SWAP) {
1962 		vm_object_pip_add(orig_object, 1);
1963 		/*
1964 		 * copy orig_object pages into new_object
1965 		 * and destroy unneeded pages in
1966 		 * shadow object.
1967 		 */
1968 		swap_pager_copy(orig_object, new_object, offidxstart, 0);
1969 		vm_object_pip_wakeup(orig_object);
1970 	}
1971 
1972 	for (idx = 0; idx < size; idx++) {
1973 		m = vm_page_lookup(new_object, idx);
1974 		if (m) {
1975 			vm_page_wakeup(m);
1976 		}
1977 	}
1978 
1979 	entry->object.vm_object = new_object;
1980 	entry->offset = 0LL;
1981 	vm_object_deallocate(orig_object);
1982 }
1983 
1984 /*
1985  *	vm_map_copy_entry:
1986  *
1987  *	Copies the contents of the source entry to the destination
1988  *	entry.  The entries *must* be aligned properly.
1989  */
1990 static void
1991 vm_map_copy_entry(src_map, dst_map, src_entry, dst_entry)
1992 	vm_map_t src_map, dst_map;
1993 	vm_map_entry_t src_entry, dst_entry;
1994 {
1995 	vm_object_t src_object;
1996 
1997 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
1998 		return;
1999 
2000 	if (src_entry->wired_count == 0) {
2001 
2002 		/*
2003 		 * If the source entry is marked needs_copy, it is already
2004 		 * write-protected.
2005 		 */
2006 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2007 			pmap_protect(src_map->pmap,
2008 			    src_entry->start,
2009 			    src_entry->end,
2010 			    src_entry->protection & ~VM_PROT_WRITE);
2011 		}
2012 
2013 		/*
2014 		 * Make a copy of the object.
2015 		 */
2016 		if ((src_object = src_entry->object.vm_object) != NULL) {
2017 
2018 			if ((src_object->handle == NULL) &&
2019 				(src_object->type == OBJT_DEFAULT ||
2020 				 src_object->type == OBJT_SWAP)) {
2021 				vm_object_collapse(src_object);
2022 				if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
2023 					vm_map_split(src_entry);
2024 					src_object = src_entry->object.vm_object;
2025 				}
2026 			}
2027 
2028 			vm_object_reference(src_object);
2029 			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
2030 			dst_entry->object.vm_object = src_object;
2031 			src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2032 			dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2033 			dst_entry->offset = src_entry->offset;
2034 		} else {
2035 			dst_entry->object.vm_object = NULL;
2036 			dst_entry->offset = 0;
2037 		}
2038 
2039 		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
2040 		    dst_entry->end - dst_entry->start, src_entry->start);
2041 	} else {
2042 		/*
2043 		 * Of course, wired down pages can't be set copy-on-write.
2044 		 * Cause wired pages to be copied into the new map by
2045 		 * simulating faults (the new pages are pageable)
2046 		 */
2047 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
2048 	}
2049 }
2050 
2051 /*
2052  * vmspace_fork:
2053  * Create a new process vmspace structure and vm_map
2054  * based on those of an existing process.  The new map
2055  * is based on the old map, according to the inheritance
2056  * values on the regions in that map.
2057  *
2058  * The source map must not be locked.
2059  */
2060 struct vmspace *
2061 vmspace_fork(vm1)
2062 	struct vmspace *vm1;
2063 {
2064 	struct vmspace *vm2;
2065 	vm_map_t old_map = &vm1->vm_map;
2066 	vm_map_t new_map;
2067 	vm_map_entry_t old_entry;
2068 	vm_map_entry_t new_entry;
2069 	vm_object_t object;
2070 
2071 	vm_map_lock(old_map);
2072 
2073 	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
2074 	bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy,
2075 	    (caddr_t) (vm1 + 1) - (caddr_t) &vm1->vm_startcopy);
2076 	new_map = &vm2->vm_map;	/* XXX */
2077 	new_map->timestamp = 1;
2078 
2079 	old_entry = old_map->header.next;
2080 
2081 	while (old_entry != &old_map->header) {
2082 		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2083 			panic("vm_map_fork: encountered a submap");
2084 
2085 		switch (old_entry->inheritance) {
2086 		case VM_INHERIT_NONE:
2087 			break;
2088 
2089 		case VM_INHERIT_SHARE:
2090 			/*
2091 			 * Clone the entry, creating the shared object if necessary.
2092 			 */
2093 			object = old_entry->object.vm_object;
2094 			if (object == NULL) {
2095 				object = vm_object_allocate(OBJT_DEFAULT,
2096 					atop(old_entry->end - old_entry->start));
2097 				old_entry->object.vm_object = object;
2098 				old_entry->offset = (vm_offset_t) 0;
2099 			}
2100 
2101 			/*
2102 			 * Add the reference before calling vm_object_shadow
2103 			 * to insure that a shadow object is created.
2104 			 */
2105 			vm_object_reference(object);
2106 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
2107 				vm_object_shadow(&old_entry->object.vm_object,
2108 					&old_entry->offset,
2109 					atop(old_entry->end - old_entry->start));
2110 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
2111 				object = old_entry->object.vm_object;
2112 			}
2113 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
2114 
2115 			/*
2116 			 * Clone the entry, referencing the shared object.
2117 			 */
2118 			new_entry = vm_map_entry_create(new_map);
2119 			*new_entry = *old_entry;
2120 			new_entry->wired_count = 0;
2121 
2122 			/*
2123 			 * Insert the entry into the new map -- we know we're
2124 			 * inserting at the end of the new map.
2125 			 */
2126 
2127 			vm_map_entry_link(new_map, new_map->header.prev,
2128 			    new_entry);
2129 
2130 			/*
2131 			 * Update the physical map
2132 			 */
2133 
2134 			pmap_copy(new_map->pmap, old_map->pmap,
2135 			    new_entry->start,
2136 			    (old_entry->end - old_entry->start),
2137 			    old_entry->start);
2138 			break;
2139 
2140 		case VM_INHERIT_COPY:
2141 			/*
2142 			 * Clone the entry and link into the map.
2143 			 */
2144 			new_entry = vm_map_entry_create(new_map);
2145 			*new_entry = *old_entry;
2146 			new_entry->wired_count = 0;
2147 			new_entry->object.vm_object = NULL;
2148 			vm_map_entry_link(new_map, new_map->header.prev,
2149 			    new_entry);
2150 			vm_map_copy_entry(old_map, new_map, old_entry,
2151 			    new_entry);
2152 			break;
2153 		}
2154 		old_entry = old_entry->next;
2155 	}
2156 
2157 	new_map->size = old_map->size;
2158 	vm_map_unlock(old_map);
2159 
2160 	return (vm2);
2161 }
2162 
2163 int
2164 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
2165 	      vm_prot_t prot, vm_prot_t max, int cow)
2166 {
2167 	vm_map_entry_t prev_entry;
2168 	vm_map_entry_t new_stack_entry;
2169 	vm_size_t      init_ssize;
2170 	int            rv;
2171 
2172 	if (VM_MIN_ADDRESS > 0 && addrbos < VM_MIN_ADDRESS)
2173 		return (KERN_NO_SPACE);
2174 
2175 	if (max_ssize < SGROWSIZ)
2176 		init_ssize = max_ssize;
2177 	else
2178 		init_ssize = SGROWSIZ;
2179 
2180 	vm_map_lock(map);
2181 
2182 	/* If addr is already mapped, no go */
2183 	if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
2184 		vm_map_unlock(map);
2185 		return (KERN_NO_SPACE);
2186 	}
2187 
2188 	/* If we can't accomodate max_ssize in the current mapping,
2189 	 * no go.  However, we need to be aware that subsequent user
2190 	 * mappings might map into the space we have reserved for
2191 	 * stack, and currently this space is not protected.
2192 	 *
2193 	 * Hopefully we will at least detect this condition
2194 	 * when we try to grow the stack.
2195 	 */
2196 	if ((prev_entry->next != &map->header) &&
2197 	    (prev_entry->next->start < addrbos + max_ssize)) {
2198 		vm_map_unlock(map);
2199 		return (KERN_NO_SPACE);
2200 	}
2201 
2202 	/* We initially map a stack of only init_ssize.  We will
2203 	 * grow as needed later.  Since this is to be a grow
2204 	 * down stack, we map at the top of the range.
2205 	 *
2206 	 * Note: we would normally expect prot and max to be
2207 	 * VM_PROT_ALL, and cow to be 0.  Possibly we should
2208 	 * eliminate these as input parameters, and just
2209 	 * pass these values here in the insert call.
2210 	 */
2211 	rv = vm_map_insert(map, NULL, 0, addrbos + max_ssize - init_ssize,
2212 	                   addrbos + max_ssize, prot, max, cow);
2213 
2214 	/* Now set the avail_ssize amount */
2215 	if (rv == KERN_SUCCESS){
2216 		if (prev_entry != &map->header)
2217 			vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize);
2218 		new_stack_entry = prev_entry->next;
2219 		if (new_stack_entry->end   != addrbos + max_ssize ||
2220 		    new_stack_entry->start != addrbos + max_ssize - init_ssize)
2221 			panic ("Bad entry start/end for new stack entry");
2222 		else
2223 			new_stack_entry->avail_ssize = max_ssize - init_ssize;
2224 	}
2225 
2226 	vm_map_unlock(map);
2227 	return (rv);
2228 }
2229 
2230 /* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
2231  * desired address is already mapped, or if we successfully grow
2232  * the stack.  Also returns KERN_SUCCESS if addr is outside the
2233  * stack range (this is strange, but preserves compatibility with
2234  * the grow function in vm_machdep.c).
2235  */
2236 int
2237 vm_map_growstack (struct proc *p, vm_offset_t addr)
2238 {
2239 	vm_map_entry_t prev_entry;
2240 	vm_map_entry_t stack_entry;
2241 	vm_map_entry_t new_stack_entry;
2242 	struct vmspace *vm = p->p_vmspace;
2243 	vm_map_t map = &vm->vm_map;
2244 	vm_offset_t    end;
2245 	int      grow_amount;
2246 	int      rv;
2247 	int      is_procstack;
2248 Retry:
2249 	vm_map_lock_read(map);
2250 
2251 	/* If addr is already in the entry range, no need to grow.*/
2252 	if (vm_map_lookup_entry(map, addr, &prev_entry)) {
2253 		vm_map_unlock_read(map);
2254 		return (KERN_SUCCESS);
2255 	}
2256 
2257 	if ((stack_entry = prev_entry->next) == &map->header) {
2258 		vm_map_unlock_read(map);
2259 		return (KERN_SUCCESS);
2260 	}
2261 	if (prev_entry == &map->header)
2262 		end = stack_entry->start - stack_entry->avail_ssize;
2263 	else
2264 		end = prev_entry->end;
2265 
2266 	/* This next test mimics the old grow function in vm_machdep.c.
2267 	 * It really doesn't quite make sense, but we do it anyway
2268 	 * for compatibility.
2269 	 *
2270 	 * If not growable stack, return success.  This signals the
2271 	 * caller to proceed as he would normally with normal vm.
2272 	 */
2273 	if (stack_entry->avail_ssize < 1 ||
2274 	    addr >= stack_entry->start ||
2275 	    addr <  stack_entry->start - stack_entry->avail_ssize) {
2276 		vm_map_unlock_read(map);
2277 		return (KERN_SUCCESS);
2278 	}
2279 
2280 	/* Find the minimum grow amount */
2281 	grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE);
2282 	if (grow_amount > stack_entry->avail_ssize) {
2283 		vm_map_unlock_read(map);
2284 		return (KERN_NO_SPACE);
2285 	}
2286 
2287 	/* If there is no longer enough space between the entries
2288 	 * nogo, and adjust the available space.  Note: this
2289 	 * should only happen if the user has mapped into the
2290 	 * stack area after the stack was created, and is
2291 	 * probably an error.
2292 	 *
2293 	 * This also effectively destroys any guard page the user
2294 	 * might have intended by limiting the stack size.
2295 	 */
2296 	if (grow_amount > stack_entry->start - end) {
2297 		if (vm_map_lock_upgrade(map))
2298 			goto Retry;
2299 
2300 		stack_entry->avail_ssize = stack_entry->start - end;
2301 
2302 		vm_map_unlock(map);
2303 		return (KERN_NO_SPACE);
2304 	}
2305 
2306 	is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr;
2307 
2308 	/* If this is the main process stack, see if we're over the
2309 	 * stack limit.
2310 	 */
2311 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
2312 			     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
2313 		vm_map_unlock_read(map);
2314 		return (KERN_NO_SPACE);
2315 	}
2316 
2317 	/* Round up the grow amount modulo SGROWSIZ */
2318 	grow_amount = roundup (grow_amount, SGROWSIZ);
2319 	if (grow_amount > stack_entry->avail_ssize) {
2320 		grow_amount = stack_entry->avail_ssize;
2321 	}
2322 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
2323 	                     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
2324 		grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur -
2325 		              ctob(vm->vm_ssize);
2326 	}
2327 
2328 	if (vm_map_lock_upgrade(map))
2329 		goto Retry;
2330 
2331 	/* Get the preliminary new entry start value */
2332 	addr = stack_entry->start - grow_amount;
2333 
2334 	/* If this puts us into the previous entry, cut back our growth
2335 	 * to the available space.  Also, see the note above.
2336 	 */
2337 	if (addr < end) {
2338 		stack_entry->avail_ssize = stack_entry->start - end;
2339 		addr = end;
2340 	}
2341 
2342 	rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start,
2343 			   VM_PROT_ALL,
2344 			   VM_PROT_ALL,
2345 			   0);
2346 
2347 	/* Adjust the available stack space by the amount we grew. */
2348 	if (rv == KERN_SUCCESS) {
2349 		if (prev_entry != &map->header)
2350 			vm_map_clip_end(map, prev_entry, addr);
2351 		new_stack_entry = prev_entry->next;
2352 		if (new_stack_entry->end   != stack_entry->start  ||
2353 		    new_stack_entry->start != addr)
2354 			panic ("Bad stack grow start/end in new stack entry");
2355 		else {
2356 			new_stack_entry->avail_ssize = stack_entry->avail_ssize -
2357 							(new_stack_entry->end -
2358 							 new_stack_entry->start);
2359 			if (is_procstack)
2360 				vm->vm_ssize += btoc(new_stack_entry->end -
2361 						     new_stack_entry->start);
2362 		}
2363 	}
2364 
2365 	vm_map_unlock(map);
2366 	return (rv);
2367 
2368 }
2369 
2370 /*
2371  * Unshare the specified VM space for exec.  If other processes are
2372  * mapped to it, then create a new one.  The new vmspace is null.
2373  */
2374 
2375 void
2376 vmspace_exec(struct proc *p) {
2377 	struct vmspace *oldvmspace = p->p_vmspace;
2378 	struct vmspace *newvmspace;
2379 	vm_map_t map = &p->p_vmspace->vm_map;
2380 
2381 	newvmspace = vmspace_alloc(map->min_offset, map->max_offset);
2382 	bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy,
2383 	    (caddr_t) (newvmspace + 1) - (caddr_t) &newvmspace->vm_startcopy);
2384 	/*
2385 	 * This code is written like this for prototype purposes.  The
2386 	 * goal is to avoid running down the vmspace here, but let the
2387 	 * other process's that are still using the vmspace to finally
2388 	 * run it down.  Even though there is little or no chance of blocking
2389 	 * here, it is a good idea to keep this form for future mods.
2390 	 */
2391 	vmspace_free(oldvmspace);
2392 	p->p_vmspace = newvmspace;
2393 	pmap_pinit2(vmspace_pmap(newvmspace));
2394 	if (p == curproc)
2395 		pmap_activate(p);
2396 }
2397 
2398 /*
2399  * Unshare the specified VM space for forcing COW.  This
2400  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
2401  */
2402 
2403 void
2404 vmspace_unshare(struct proc *p) {
2405 	struct vmspace *oldvmspace = p->p_vmspace;
2406 	struct vmspace *newvmspace;
2407 
2408 	if (oldvmspace->vm_refcnt == 1)
2409 		return;
2410 	newvmspace = vmspace_fork(oldvmspace);
2411 	vmspace_free(oldvmspace);
2412 	p->p_vmspace = newvmspace;
2413 	pmap_pinit2(vmspace_pmap(newvmspace));
2414 	if (p == curproc)
2415 		pmap_activate(p);
2416 }
2417 
2418 
2419 /*
2420  *	vm_map_lookup:
2421  *
2422  *	Finds the VM object, offset, and
2423  *	protection for a given virtual address in the
2424  *	specified map, assuming a page fault of the
2425  *	type specified.
2426  *
2427  *	Leaves the map in question locked for read; return
2428  *	values are guaranteed until a vm_map_lookup_done
2429  *	call is performed.  Note that the map argument
2430  *	is in/out; the returned map must be used in
2431  *	the call to vm_map_lookup_done.
2432  *
2433  *	A handle (out_entry) is returned for use in
2434  *	vm_map_lookup_done, to make that fast.
2435  *
2436  *	If a lookup is requested with "write protection"
2437  *	specified, the map may be changed to perform virtual
2438  *	copying operations, although the data referenced will
2439  *	remain the same.
2440  */
2441 int
2442 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
2443 	      vm_offset_t vaddr,
2444 	      vm_prot_t fault_typea,
2445 	      vm_map_entry_t *out_entry,	/* OUT */
2446 	      vm_object_t *object,		/* OUT */
2447 	      vm_pindex_t *pindex,		/* OUT */
2448 	      vm_prot_t *out_prot,		/* OUT */
2449 	      boolean_t *wired)			/* OUT */
2450 {
2451 	vm_map_entry_t entry;
2452 	vm_map_t map = *var_map;
2453 	vm_prot_t prot;
2454 	vm_prot_t fault_type = fault_typea;
2455 
2456 RetryLookup:;
2457 
2458 	/*
2459 	 * Lookup the faulting address.
2460 	 */
2461 
2462 	vm_map_lock_read(map);
2463 
2464 #define	RETURN(why) \
2465 		{ \
2466 		vm_map_unlock_read(map); \
2467 		return(why); \
2468 		}
2469 
2470 	/*
2471 	 * If the map has an interesting hint, try it before calling full
2472 	 * blown lookup routine.
2473 	 */
2474 
2475 	entry = map->hint;
2476 
2477 	*out_entry = entry;
2478 
2479 	if ((entry == &map->header) ||
2480 	    (vaddr < entry->start) || (vaddr >= entry->end)) {
2481 		vm_map_entry_t tmp_entry;
2482 
2483 		/*
2484 		 * Entry was either not a valid hint, or the vaddr was not
2485 		 * contained in the entry, so do a full lookup.
2486 		 */
2487 		if (!vm_map_lookup_entry(map, vaddr, &tmp_entry))
2488 			RETURN(KERN_INVALID_ADDRESS);
2489 
2490 		entry = tmp_entry;
2491 		*out_entry = entry;
2492 	}
2493 
2494 	/*
2495 	 * Handle submaps.
2496 	 */
2497 
2498 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2499 		vm_map_t old_map = map;
2500 
2501 		*var_map = map = entry->object.sub_map;
2502 		vm_map_unlock_read(old_map);
2503 		goto RetryLookup;
2504 	}
2505 
2506 	/*
2507 	 * Check whether this task is allowed to have this page.
2508 	 * Note the special case for MAP_ENTRY_COW
2509 	 * pages with an override.  This is to implement a forced
2510 	 * COW for debuggers.
2511 	 */
2512 
2513 	if (fault_type & VM_PROT_OVERRIDE_WRITE)
2514 		prot = entry->max_protection;
2515 	else
2516 		prot = entry->protection;
2517 
2518 	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
2519 	if ((fault_type & prot) != fault_type) {
2520 			RETURN(KERN_PROTECTION_FAILURE);
2521 	}
2522 
2523 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) &&
2524 	    (entry->eflags & MAP_ENTRY_COW) &&
2525 	    (fault_type & VM_PROT_WRITE) &&
2526 	    (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
2527 		RETURN(KERN_PROTECTION_FAILURE);
2528 	}
2529 
2530 	/*
2531 	 * If this page is not pageable, we have to get it for all possible
2532 	 * accesses.
2533 	 */
2534 
2535 	*wired = (entry->wired_count != 0);
2536 	if (*wired)
2537 		prot = fault_type = entry->protection;
2538 
2539 	/*
2540 	 * If the entry was copy-on-write, we either ...
2541 	 */
2542 
2543 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
2544 		/*
2545 		 * If we want to write the page, we may as well handle that
2546 		 * now since we've got the map locked.
2547 		 *
2548 		 * If we don't need to write the page, we just demote the
2549 		 * permissions allowed.
2550 		 */
2551 
2552 		if (fault_type & VM_PROT_WRITE) {
2553 			/*
2554 			 * Make a new object, and place it in the object
2555 			 * chain.  Note that no new references have appeared
2556 			 * -- one just moved from the map to the new
2557 			 * object.
2558 			 */
2559 
2560 			if (vm_map_lock_upgrade(map))
2561 				goto RetryLookup;
2562 
2563 			vm_object_shadow(
2564 			    &entry->object.vm_object,
2565 			    &entry->offset,
2566 			    atop(entry->end - entry->start));
2567 
2568 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
2569 			vm_map_lock_downgrade(map);
2570 		} else {
2571 			/*
2572 			 * We're attempting to read a copy-on-write page --
2573 			 * don't allow writes.
2574 			 */
2575 
2576 			prot &= ~VM_PROT_WRITE;
2577 		}
2578 	}
2579 
2580 	/*
2581 	 * Create an object if necessary.
2582 	 */
2583 	if (entry->object.vm_object == NULL) {
2584 		if (vm_map_lock_upgrade(map))
2585 			goto RetryLookup;
2586 
2587 		entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
2588 		    atop(entry->end - entry->start));
2589 		entry->offset = 0;
2590 		vm_map_lock_downgrade(map);
2591 	}
2592 
2593 	/*
2594 	 * Return the object/offset from this entry.  If the entry was
2595 	 * copy-on-write or empty, it has been fixed up.
2596 	 */
2597 
2598 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
2599 	*object = entry->object.vm_object;
2600 
2601 	/*
2602 	 * Return whether this is the only map sharing this data.
2603 	 */
2604 
2605 	*out_prot = prot;
2606 	return (KERN_SUCCESS);
2607 
2608 #undef	RETURN
2609 }
2610 
2611 /*
2612  *	vm_map_lookup_done:
2613  *
2614  *	Releases locks acquired by a vm_map_lookup
2615  *	(according to the handle returned by that lookup).
2616  */
2617 
2618 void
2619 vm_map_lookup_done(map, entry)
2620 	vm_map_t map;
2621 	vm_map_entry_t entry;
2622 {
2623 	/*
2624 	 * Unlock the main-level map
2625 	 */
2626 
2627 	vm_map_unlock_read(map);
2628 }
2629 
2630 /*
2631  * Implement uiomove with VM operations.  This handles (and collateral changes)
2632  * support every combination of source object modification, and COW type
2633  * operations.
2634  */
2635 int
2636 vm_uiomove(mapa, srcobject, cp, cnta, uaddra, npages)
2637 	vm_map_t mapa;
2638 	vm_object_t srcobject;
2639 	off_t cp;
2640 	int cnta;
2641 	vm_offset_t uaddra;
2642 	int *npages;
2643 {
2644 	vm_map_t map;
2645 	vm_object_t first_object, oldobject, object;
2646 	vm_map_entry_t entry;
2647 	vm_prot_t prot;
2648 	boolean_t wired;
2649 	int tcnt, rv;
2650 	vm_offset_t uaddr, start, end, tend;
2651 	vm_pindex_t first_pindex, osize, oindex;
2652 	off_t ooffset;
2653 	int cnt;
2654 
2655 	if (npages)
2656 		*npages = 0;
2657 
2658 	cnt = cnta;
2659 	uaddr = uaddra;
2660 
2661 	while (cnt > 0) {
2662 		map = mapa;
2663 
2664 		if ((vm_map_lookup(&map, uaddr,
2665 			VM_PROT_READ, &entry, &first_object,
2666 			&first_pindex, &prot, &wired)) != KERN_SUCCESS) {
2667 			return EFAULT;
2668 		}
2669 
2670 		vm_map_clip_start(map, entry, uaddr);
2671 
2672 		tcnt = cnt;
2673 		tend = uaddr + tcnt;
2674 		if (tend > entry->end) {
2675 			tcnt = entry->end - uaddr;
2676 			tend = entry->end;
2677 		}
2678 
2679 		vm_map_clip_end(map, entry, tend);
2680 
2681 		start = entry->start;
2682 		end = entry->end;
2683 
2684 		osize = atop(tcnt);
2685 
2686 		oindex = OFF_TO_IDX(cp);
2687 		if (npages) {
2688 			vm_pindex_t idx;
2689 			for (idx = 0; idx < osize; idx++) {
2690 				vm_page_t m;
2691 				if ((m = vm_page_lookup(srcobject, oindex + idx)) == NULL) {
2692 					vm_map_lookup_done(map, entry);
2693 					return 0;
2694 				}
2695 				/*
2696 				 * disallow busy or invalid pages, but allow
2697 				 * m->busy pages if they are entirely valid.
2698 				 */
2699 				if ((m->flags & PG_BUSY) ||
2700 					((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL)) {
2701 					vm_map_lookup_done(map, entry);
2702 					return 0;
2703 				}
2704 			}
2705 		}
2706 
2707 /*
2708  * If we are changing an existing map entry, just redirect
2709  * the object, and change mappings.
2710  */
2711 		if ((first_object->type == OBJT_VNODE) &&
2712 			((oldobject = entry->object.vm_object) == first_object)) {
2713 
2714 			if ((entry->offset != cp) || (oldobject != srcobject)) {
2715 				/*
2716    				* Remove old window into the file
2717    				*/
2718 				pmap_remove (map->pmap, uaddr, tend);
2719 
2720 				/*
2721    				* Force copy on write for mmaped regions
2722    				*/
2723 				vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize);
2724 
2725 				/*
2726    				* Point the object appropriately
2727    				*/
2728 				if (oldobject != srcobject) {
2729 
2730 				/*
2731    				* Set the object optimization hint flag
2732    				*/
2733 					vm_object_set_flag(srcobject, OBJ_OPT);
2734 					vm_object_reference(srcobject);
2735 					entry->object.vm_object = srcobject;
2736 
2737 					if (oldobject) {
2738 						vm_object_deallocate(oldobject);
2739 					}
2740 				}
2741 
2742 				entry->offset = cp;
2743 				map->timestamp++;
2744 			} else {
2745 				pmap_remove (map->pmap, uaddr, tend);
2746 			}
2747 
2748 		} else if ((first_object->ref_count == 1) &&
2749 			(first_object->size == osize) &&
2750 			((first_object->type == OBJT_DEFAULT) ||
2751 				(first_object->type == OBJT_SWAP)) ) {
2752 
2753 			oldobject = first_object->backing_object;
2754 
2755 			if ((first_object->backing_object_offset != cp) ||
2756 				(oldobject != srcobject)) {
2757 				/*
2758    				* Remove old window into the file
2759    				*/
2760 				pmap_remove (map->pmap, uaddr, tend);
2761 
2762 				/*
2763 				 * Remove unneeded old pages
2764 				 */
2765 				vm_object_page_remove(first_object, 0, 0, 0);
2766 
2767 				/*
2768 				 * Invalidate swap space
2769 				 */
2770 				if (first_object->type == OBJT_SWAP) {
2771 					swap_pager_freespace(first_object,
2772 						0,
2773 						first_object->size);
2774 				}
2775 
2776 				/*
2777    				* Force copy on write for mmaped regions
2778    				*/
2779 				vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize);
2780 
2781 				/*
2782    				* Point the object appropriately
2783    				*/
2784 				if (oldobject != srcobject) {
2785 
2786 				/*
2787    				* Set the object optimization hint flag
2788    				*/
2789 					vm_object_set_flag(srcobject, OBJ_OPT);
2790 					vm_object_reference(srcobject);
2791 
2792 					if (oldobject) {
2793 						TAILQ_REMOVE(&oldobject->shadow_head,
2794 							first_object, shadow_list);
2795 						oldobject->shadow_count--;
2796 						/* XXX bump generation? */
2797 						vm_object_deallocate(oldobject);
2798 					}
2799 
2800 					TAILQ_INSERT_TAIL(&srcobject->shadow_head,
2801 						first_object, shadow_list);
2802 					srcobject->shadow_count++;
2803 					/* XXX bump generation? */
2804 
2805 					first_object->backing_object = srcobject;
2806 				}
2807 				first_object->backing_object_offset = cp;
2808 				map->timestamp++;
2809 			} else {
2810 				pmap_remove (map->pmap, uaddr, tend);
2811 			}
2812 /*
2813  * Otherwise, we have to do a logical mmap.
2814  */
2815 		} else {
2816 
2817 			vm_object_set_flag(srcobject, OBJ_OPT);
2818 			vm_object_reference(srcobject);
2819 
2820 			pmap_remove (map->pmap, uaddr, tend);
2821 
2822 			vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize);
2823 			vm_map_lock_upgrade(map);
2824 
2825 			if (entry == &map->header) {
2826 				map->first_free = &map->header;
2827 			} else if (map->first_free->start >= start) {
2828 				map->first_free = entry->prev;
2829 			}
2830 
2831 			SAVE_HINT(map, entry->prev);
2832 			vm_map_entry_delete(map, entry);
2833 
2834 			object = srcobject;
2835 			ooffset = cp;
2836 
2837 			rv = vm_map_insert(map, object, ooffset, start, tend,
2838 				VM_PROT_ALL, VM_PROT_ALL, MAP_COPY_ON_WRITE);
2839 
2840 			if (rv != KERN_SUCCESS)
2841 				panic("vm_uiomove: could not insert new entry: %d", rv);
2842 		}
2843 
2844 /*
2845  * Map the window directly, if it is already in memory
2846  */
2847 		pmap_object_init_pt(map->pmap, uaddr,
2848 			srcobject, oindex, tcnt, 0);
2849 
2850 		map->timestamp++;
2851 		vm_map_unlock(map);
2852 
2853 		cnt -= tcnt;
2854 		uaddr += tcnt;
2855 		cp += tcnt;
2856 		if (npages)
2857 			*npages += osize;
2858 	}
2859 	return 0;
2860 }
2861 
2862 /*
2863  * Performs the copy_on_write operations necessary to allow the virtual copies
2864  * into user space to work.  This has to be called for write(2) system calls
2865  * from other processes, file unlinking, and file size shrinkage.
2866  */
2867 void
2868 vm_freeze_copyopts(object, froma, toa)
2869 	vm_object_t object;
2870 	vm_pindex_t froma, toa;
2871 {
2872 	int rv;
2873 	vm_object_t robject;
2874 	vm_pindex_t idx;
2875 
2876 	if ((object == NULL) ||
2877 		((object->flags & OBJ_OPT) == 0))
2878 		return;
2879 
2880 	if (object->shadow_count > object->ref_count)
2881 		panic("vm_freeze_copyopts: sc > rc");
2882 
2883 	while((robject = TAILQ_FIRST(&object->shadow_head)) != NULL) {
2884 		vm_pindex_t bo_pindex;
2885 		vm_page_t m_in, m_out;
2886 
2887 		bo_pindex = OFF_TO_IDX(robject->backing_object_offset);
2888 
2889 		vm_object_reference(robject);
2890 
2891 		vm_object_pip_wait(robject, "objfrz");
2892 
2893 		if (robject->ref_count == 1) {
2894 			vm_object_deallocate(robject);
2895 			continue;
2896 		}
2897 
2898 		vm_object_pip_add(robject, 1);
2899 
2900 		for (idx = 0; idx < robject->size; idx++) {
2901 
2902 			m_out = vm_page_grab(robject, idx,
2903 						VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
2904 
2905 			if (m_out->valid == 0) {
2906 				m_in = vm_page_grab(object, bo_pindex + idx,
2907 						VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
2908 				if (m_in->valid == 0) {
2909 					rv = vm_pager_get_pages(object, &m_in, 1, 0);
2910 					if (rv != VM_PAGER_OK) {
2911 						printf("vm_freeze_copyopts: cannot read page from file: %lx\n", (long)m_in->pindex);
2912 						continue;
2913 					}
2914 					vm_page_deactivate(m_in);
2915 				}
2916 
2917 				vm_page_protect(m_in, VM_PROT_NONE);
2918 				pmap_copy_page(VM_PAGE_TO_PHYS(m_in), VM_PAGE_TO_PHYS(m_out));
2919 				m_out->valid = m_in->valid;
2920 				vm_page_dirty(m_out);
2921 				vm_page_activate(m_out);
2922 				vm_page_wakeup(m_in);
2923 			}
2924 			vm_page_wakeup(m_out);
2925 		}
2926 
2927 		object->shadow_count--;
2928 		object->ref_count--;
2929 		TAILQ_REMOVE(&object->shadow_head, robject, shadow_list);
2930 		robject->backing_object = NULL;
2931 		robject->backing_object_offset = 0;
2932 
2933 		vm_object_pip_wakeup(robject);
2934 		vm_object_deallocate(robject);
2935 	}
2936 
2937 	vm_object_clear_flag(object, OBJ_OPT);
2938 }
2939 
2940 #include "opt_ddb.h"
2941 #ifdef DDB
2942 #include <sys/kernel.h>
2943 
2944 #include <ddb/ddb.h>
2945 
2946 /*
2947  *	vm_map_print:	[ debug ]
2948  */
2949 DB_SHOW_COMMAND(map, vm_map_print)
2950 {
2951 	static int nlines;
2952 	/* XXX convert args. */
2953 	vm_map_t map = (vm_map_t)addr;
2954 	boolean_t full = have_addr;
2955 
2956 	vm_map_entry_t entry;
2957 
2958 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
2959 	    (void *)map,
2960 	    (void *)map->pmap, map->nentries, map->timestamp);
2961 	nlines++;
2962 
2963 	if (!full && db_indent)
2964 		return;
2965 
2966 	db_indent += 2;
2967 	for (entry = map->header.next; entry != &map->header;
2968 	    entry = entry->next) {
2969 		db_iprintf("map entry %p: start=%p, end=%p\n",
2970 		    (void *)entry, (void *)entry->start, (void *)entry->end);
2971 		nlines++;
2972 		{
2973 			static char *inheritance_name[4] =
2974 			{"share", "copy", "none", "donate_copy"};
2975 
2976 			db_iprintf(" prot=%x/%x/%s",
2977 			    entry->protection,
2978 			    entry->max_protection,
2979 			    inheritance_name[(int)(unsigned char)entry->inheritance]);
2980 			if (entry->wired_count != 0)
2981 				db_printf(", wired");
2982 		}
2983 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2984 			/* XXX no %qd in kernel.  Truncate entry->offset. */
2985 			db_printf(", share=%p, offset=0x%lx\n",
2986 			    (void *)entry->object.sub_map,
2987 			    (long)entry->offset);
2988 			nlines++;
2989 			if ((entry->prev == &map->header) ||
2990 			    (entry->prev->object.sub_map !=
2991 				entry->object.sub_map)) {
2992 				db_indent += 2;
2993 				vm_map_print((db_expr_t)(intptr_t)
2994 					     entry->object.sub_map,
2995 					     full, 0, (char *)0);
2996 				db_indent -= 2;
2997 			}
2998 		} else {
2999 			/* XXX no %qd in kernel.  Truncate entry->offset. */
3000 			db_printf(", object=%p, offset=0x%lx",
3001 			    (void *)entry->object.vm_object,
3002 			    (long)entry->offset);
3003 			if (entry->eflags & MAP_ENTRY_COW)
3004 				db_printf(", copy (%s)",
3005 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
3006 			db_printf("\n");
3007 			nlines++;
3008 
3009 			if ((entry->prev == &map->header) ||
3010 			    (entry->prev->object.vm_object !=
3011 				entry->object.vm_object)) {
3012 				db_indent += 2;
3013 				vm_object_print((db_expr_t)(intptr_t)
3014 						entry->object.vm_object,
3015 						full, 0, (char *)0);
3016 				nlines += 4;
3017 				db_indent -= 2;
3018 			}
3019 		}
3020 	}
3021 	db_indent -= 2;
3022 	if (db_indent == 0)
3023 		nlines = 0;
3024 }
3025 
3026 
3027 DB_SHOW_COMMAND(procvm, procvm)
3028 {
3029 	struct proc *p;
3030 
3031 	if (have_addr) {
3032 		p = (struct proc *) addr;
3033 	} else {
3034 		p = curproc;
3035 	}
3036 
3037 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
3038 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
3039 	    (void *)vmspace_pmap(p->p_vmspace));
3040 
3041 	vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
3042 }
3043 
3044 #endif /* DDB */
3045