xref: /freebsd/sys/vm/vm_map.c (revision 4e0706cbdff434fd4153dca3738d30272e0f4594)
1 /*-
2  * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * The Mach Operating System project at Carnegie-Mellon University.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
35  *
36  *
37  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
38  * All rights reserved.
39  *
40  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
41  *
42  * Permission to use, copy, modify and distribute this software and
43  * its documentation is hereby granted, provided that both the copyright
44  * notice and this permission notice appear in all copies of the
45  * software, derivative works or modified versions, and any portions
46  * thereof, and that both notices appear in supporting documentation.
47  *
48  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
49  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
50  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
51  *
52  * Carnegie Mellon requests users of this software to return to
53  *
54  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
55  *  School of Computer Science
56  *  Carnegie Mellon University
57  *  Pittsburgh PA 15213-3890
58  *
59  * any improvements or extensions that they make and grant Carnegie the
60  * rights to redistribute these changes.
61  */
62 
63 /*
64  *	Virtual memory mapping module.
65  */
66 
67 #include <sys/cdefs.h>
68 __FBSDID("$FreeBSD$");
69 
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/kernel.h>
73 #include <sys/ktr.h>
74 #include <sys/lock.h>
75 #include <sys/mutex.h>
76 #include <sys/proc.h>
77 #include <sys/vmmeter.h>
78 #include <sys/mman.h>
79 #include <sys/vnode.h>
80 #include <sys/racct.h>
81 #include <sys/resourcevar.h>
82 #include <sys/rwlock.h>
83 #include <sys/file.h>
84 #include <sys/sysctl.h>
85 #include <sys/sysent.h>
86 #include <sys/shm.h>
87 
88 #include <vm/vm.h>
89 #include <vm/vm_param.h>
90 #include <vm/pmap.h>
91 #include <vm/vm_map.h>
92 #include <vm/vm_page.h>
93 #include <vm/vm_pageout.h>
94 #include <vm/vm_object.h>
95 #include <vm/vm_pager.h>
96 #include <vm/vm_kern.h>
97 #include <vm/vm_extern.h>
98 #include <vm/vnode_pager.h>
99 #include <vm/swap_pager.h>
100 #include <vm/uma.h>
101 
102 /*
103  *	Virtual memory maps provide for the mapping, protection,
104  *	and sharing of virtual memory objects.  In addition,
105  *	this module provides for an efficient virtual copy of
106  *	memory from one map to another.
107  *
108  *	Synchronization is required prior to most operations.
109  *
110  *	Maps consist of an ordered doubly-linked list of simple
111  *	entries; a self-adjusting binary search tree of these
112  *	entries is used to speed up lookups.
113  *
114  *	Since portions of maps are specified by start/end addresses,
115  *	which may not align with existing map entries, all
116  *	routines merely "clip" entries to these start/end values.
117  *	[That is, an entry is split into two, bordering at a
118  *	start or end value.]  Note that these clippings may not
119  *	always be necessary (as the two resulting entries are then
120  *	not changed); however, the clipping is done for convenience.
121  *
122  *	As mentioned above, virtual copy operations are performed
123  *	by copying VM object references from one map to
124  *	another, and then marking both regions as copy-on-write.
125  */
126 
127 static struct mtx map_sleep_mtx;
128 static uma_zone_t mapentzone;
129 static uma_zone_t kmapentzone;
130 static uma_zone_t mapzone;
131 static uma_zone_t vmspace_zone;
132 static int vmspace_zinit(void *mem, int size, int flags);
133 static int vm_map_zinit(void *mem, int ize, int flags);
134 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min,
135     vm_offset_t max);
136 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map);
137 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry);
138 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry);
139 static int vm_map_growstack(vm_map_t map, vm_offset_t addr,
140     vm_map_entry_t gap_entry);
141 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
142     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags);
143 #ifdef INVARIANTS
144 static void vm_map_zdtor(void *mem, int size, void *arg);
145 static void vmspace_zdtor(void *mem, int size, void *arg);
146 #endif
147 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos,
148     vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max,
149     int cow);
150 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
151     vm_offset_t failed_addr);
152 
153 #define	ENTRY_CHARGED(e) ((e)->cred != NULL || \
154     ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \
155      !((e)->eflags & MAP_ENTRY_NEEDS_COPY)))
156 
157 /*
158  * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type
159  * stable.
160  */
161 #define PROC_VMSPACE_LOCK(p) do { } while (0)
162 #define PROC_VMSPACE_UNLOCK(p) do { } while (0)
163 
164 /*
165  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
166  *
167  *	Asserts that the starting and ending region
168  *	addresses fall within the valid range of the map.
169  */
170 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
171 		{					\
172 		if (start < vm_map_min(map))		\
173 			start = vm_map_min(map);	\
174 		if (end > vm_map_max(map))		\
175 			end = vm_map_max(map);		\
176 		if (start > end)			\
177 			start = end;			\
178 		}
179 
180 /*
181  *	vm_map_startup:
182  *
183  *	Initialize the vm_map module.  Must be called before
184  *	any other vm_map routines.
185  *
186  *	Map and entry structures are allocated from the general
187  *	purpose memory pool with some exceptions:
188  *
189  *	- The kernel map and kmem submap are allocated statically.
190  *	- Kernel map entries are allocated out of a static pool.
191  *
192  *	These restrictions are necessary since malloc() uses the
193  *	maps and requires map entries.
194  */
195 
196 void
197 vm_map_startup(void)
198 {
199 	mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF);
200 	mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL,
201 #ifdef INVARIANTS
202 	    vm_map_zdtor,
203 #else
204 	    NULL,
205 #endif
206 	    vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
207 	uma_prealloc(mapzone, MAX_KMAP);
208 	kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry),
209 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
210 	    UMA_ZONE_MTXCLASS | UMA_ZONE_VM);
211 	mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry),
212 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
213 	vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL,
214 #ifdef INVARIANTS
215 	    vmspace_zdtor,
216 #else
217 	    NULL,
218 #endif
219 	    vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
220 }
221 
222 static int
223 vmspace_zinit(void *mem, int size, int flags)
224 {
225 	struct vmspace *vm;
226 
227 	vm = (struct vmspace *)mem;
228 
229 	vm->vm_map.pmap = NULL;
230 	(void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags);
231 	PMAP_LOCK_INIT(vmspace_pmap(vm));
232 	return (0);
233 }
234 
235 static int
236 vm_map_zinit(void *mem, int size, int flags)
237 {
238 	vm_map_t map;
239 
240 	map = (vm_map_t)mem;
241 	memset(map, 0, sizeof(*map));
242 	mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK);
243 	sx_init(&map->lock, "vm map (user)");
244 	return (0);
245 }
246 
247 #ifdef INVARIANTS
248 static void
249 vmspace_zdtor(void *mem, int size, void *arg)
250 {
251 	struct vmspace *vm;
252 
253 	vm = (struct vmspace *)mem;
254 
255 	vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg);
256 }
257 static void
258 vm_map_zdtor(void *mem, int size, void *arg)
259 {
260 	vm_map_t map;
261 
262 	map = (vm_map_t)mem;
263 	KASSERT(map->nentries == 0,
264 	    ("map %p nentries == %d on free.",
265 	    map, map->nentries));
266 	KASSERT(map->size == 0,
267 	    ("map %p size == %lu on free.",
268 	    map, (unsigned long)map->size));
269 }
270 #endif	/* INVARIANTS */
271 
272 /*
273  * Allocate a vmspace structure, including a vm_map and pmap,
274  * and initialize those structures.  The refcnt is set to 1.
275  *
276  * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit().
277  */
278 struct vmspace *
279 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit)
280 {
281 	struct vmspace *vm;
282 
283 	vm = uma_zalloc(vmspace_zone, M_WAITOK);
284 	KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL"));
285 	if (!pinit(vmspace_pmap(vm))) {
286 		uma_zfree(vmspace_zone, vm);
287 		return (NULL);
288 	}
289 	CTR1(KTR_VM, "vmspace_alloc: %p", vm);
290 	_vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max);
291 	vm->vm_refcnt = 1;
292 	vm->vm_shm = NULL;
293 	vm->vm_swrss = 0;
294 	vm->vm_tsize = 0;
295 	vm->vm_dsize = 0;
296 	vm->vm_ssize = 0;
297 	vm->vm_taddr = 0;
298 	vm->vm_daddr = 0;
299 	vm->vm_maxsaddr = 0;
300 	return (vm);
301 }
302 
303 #ifdef RACCT
304 static void
305 vmspace_container_reset(struct proc *p)
306 {
307 
308 	PROC_LOCK(p);
309 	racct_set(p, RACCT_DATA, 0);
310 	racct_set(p, RACCT_STACK, 0);
311 	racct_set(p, RACCT_RSS, 0);
312 	racct_set(p, RACCT_MEMLOCK, 0);
313 	racct_set(p, RACCT_VMEM, 0);
314 	PROC_UNLOCK(p);
315 }
316 #endif
317 
318 static inline void
319 vmspace_dofree(struct vmspace *vm)
320 {
321 
322 	CTR1(KTR_VM, "vmspace_free: %p", vm);
323 
324 	/*
325 	 * Make sure any SysV shm is freed, it might not have been in
326 	 * exit1().
327 	 */
328 	shmexit(vm);
329 
330 	/*
331 	 * Lock the map, to wait out all other references to it.
332 	 * Delete all of the mappings and pages they hold, then call
333 	 * the pmap module to reclaim anything left.
334 	 */
335 	(void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map),
336 	    vm_map_max(&vm->vm_map));
337 
338 	pmap_release(vmspace_pmap(vm));
339 	vm->vm_map.pmap = NULL;
340 	uma_zfree(vmspace_zone, vm);
341 }
342 
343 void
344 vmspace_free(struct vmspace *vm)
345 {
346 
347 	WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
348 	    "vmspace_free() called");
349 
350 	if (vm->vm_refcnt == 0)
351 		panic("vmspace_free: attempt to free already freed vmspace");
352 
353 	if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1)
354 		vmspace_dofree(vm);
355 }
356 
357 void
358 vmspace_exitfree(struct proc *p)
359 {
360 	struct vmspace *vm;
361 
362 	PROC_VMSPACE_LOCK(p);
363 	vm = p->p_vmspace;
364 	p->p_vmspace = NULL;
365 	PROC_VMSPACE_UNLOCK(p);
366 	KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace"));
367 	vmspace_free(vm);
368 }
369 
370 void
371 vmspace_exit(struct thread *td)
372 {
373 	int refcnt;
374 	struct vmspace *vm;
375 	struct proc *p;
376 
377 	/*
378 	 * Release user portion of address space.
379 	 * This releases references to vnodes,
380 	 * which could cause I/O if the file has been unlinked.
381 	 * Need to do this early enough that we can still sleep.
382 	 *
383 	 * The last exiting process to reach this point releases as
384 	 * much of the environment as it can. vmspace_dofree() is the
385 	 * slower fallback in case another process had a temporary
386 	 * reference to the vmspace.
387 	 */
388 
389 	p = td->td_proc;
390 	vm = p->p_vmspace;
391 	atomic_add_int(&vmspace0.vm_refcnt, 1);
392 	refcnt = vm->vm_refcnt;
393 	do {
394 		if (refcnt > 1 && p->p_vmspace != &vmspace0) {
395 			/* Switch now since other proc might free vmspace */
396 			PROC_VMSPACE_LOCK(p);
397 			p->p_vmspace = &vmspace0;
398 			PROC_VMSPACE_UNLOCK(p);
399 			pmap_activate(td);
400 		}
401 	} while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt - 1));
402 	if (refcnt == 1) {
403 		if (p->p_vmspace != vm) {
404 			/* vmspace not yet freed, switch back */
405 			PROC_VMSPACE_LOCK(p);
406 			p->p_vmspace = vm;
407 			PROC_VMSPACE_UNLOCK(p);
408 			pmap_activate(td);
409 		}
410 		pmap_remove_pages(vmspace_pmap(vm));
411 		/* Switch now since this proc will free vmspace */
412 		PROC_VMSPACE_LOCK(p);
413 		p->p_vmspace = &vmspace0;
414 		PROC_VMSPACE_UNLOCK(p);
415 		pmap_activate(td);
416 		vmspace_dofree(vm);
417 	}
418 #ifdef RACCT
419 	if (racct_enable)
420 		vmspace_container_reset(p);
421 #endif
422 }
423 
424 /* Acquire reference to vmspace owned by another process. */
425 
426 struct vmspace *
427 vmspace_acquire_ref(struct proc *p)
428 {
429 	struct vmspace *vm;
430 	int refcnt;
431 
432 	PROC_VMSPACE_LOCK(p);
433 	vm = p->p_vmspace;
434 	if (vm == NULL) {
435 		PROC_VMSPACE_UNLOCK(p);
436 		return (NULL);
437 	}
438 	refcnt = vm->vm_refcnt;
439 	do {
440 		if (refcnt <= 0) { 	/* Avoid 0->1 transition */
441 			PROC_VMSPACE_UNLOCK(p);
442 			return (NULL);
443 		}
444 	} while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt + 1));
445 	if (vm != p->p_vmspace) {
446 		PROC_VMSPACE_UNLOCK(p);
447 		vmspace_free(vm);
448 		return (NULL);
449 	}
450 	PROC_VMSPACE_UNLOCK(p);
451 	return (vm);
452 }
453 
454 /*
455  * Switch between vmspaces in an AIO kernel process.
456  *
457  * The new vmspace is either the vmspace of a user process obtained
458  * from an active AIO request or the initial vmspace of the AIO kernel
459  * process (when it is idling).  Because user processes will block to
460  * drain any active AIO requests before proceeding in exit() or
461  * execve(), the reference count for vmspaces from AIO requests can
462  * never be 0.  Similarly, AIO kernel processes hold an extra
463  * reference on their initial vmspace for the life of the process.  As
464  * a result, the 'newvm' vmspace always has a non-zero reference
465  * count.  This permits an additional reference on 'newvm' to be
466  * acquired via a simple atomic increment rather than the loop in
467  * vmspace_acquire_ref() above.
468  */
469 void
470 vmspace_switch_aio(struct vmspace *newvm)
471 {
472 	struct vmspace *oldvm;
473 
474 	/* XXX: Need some way to assert that this is an aio daemon. */
475 
476 	KASSERT(newvm->vm_refcnt > 0,
477 	    ("vmspace_switch_aio: newvm unreferenced"));
478 
479 	oldvm = curproc->p_vmspace;
480 	if (oldvm == newvm)
481 		return;
482 
483 	/*
484 	 * Point to the new address space and refer to it.
485 	 */
486 	curproc->p_vmspace = newvm;
487 	atomic_add_int(&newvm->vm_refcnt, 1);
488 
489 	/* Activate the new mapping. */
490 	pmap_activate(curthread);
491 
492 	vmspace_free(oldvm);
493 }
494 
495 void
496 _vm_map_lock(vm_map_t map, const char *file, int line)
497 {
498 
499 	if (map->system_map)
500 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
501 	else
502 		sx_xlock_(&map->lock, file, line);
503 	map->timestamp++;
504 }
505 
506 void
507 vm_map_entry_set_vnode_text(vm_map_entry_t entry, bool add)
508 {
509 	vm_object_t object, object1;
510 	struct vnode *vp;
511 
512 	if ((entry->eflags & MAP_ENTRY_VN_EXEC) == 0)
513 		return;
514 	KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
515 	    ("Submap with execs"));
516 	object = entry->object.vm_object;
517 	KASSERT(object != NULL, ("No object for text, entry %p", entry));
518 	VM_OBJECT_RLOCK(object);
519 	while ((object1 = object->backing_object) != NULL) {
520 		VM_OBJECT_RLOCK(object1);
521 		VM_OBJECT_RUNLOCK(object);
522 		object = object1;
523 	}
524 
525 	vp = NULL;
526 	if (object->type == OBJT_DEAD) {
527 		/*
528 		 * For OBJT_DEAD objects, v_writecount was handled in
529 		 * vnode_pager_dealloc().
530 		 */
531 	} else if (object->type == OBJT_VNODE) {
532 		vp = object->handle;
533 	} else if (object->type == OBJT_SWAP) {
534 		KASSERT((object->flags & OBJ_TMPFS_NODE) != 0,
535 		    ("vm_map_entry_set_vnode_text: swap and !TMPFS "
536 		    "entry %p, object %p, add %d", entry, object, add));
537 		/*
538 		 * Tmpfs VREG node, which was reclaimed, has
539 		 * OBJ_TMPFS_NODE flag set, but not OBJ_TMPFS.  In
540 		 * this case there is no v_writecount to adjust.
541 		 */
542 		if ((object->flags & OBJ_TMPFS) != 0)
543 			vp = object->un_pager.swp.swp_tmpfs;
544 	} else {
545 		KASSERT(0,
546 		    ("vm_map_entry_set_vnode_text: wrong object type, "
547 		    "entry %p, object %p, add %d", entry, object, add));
548 	}
549 	if (vp != NULL) {
550 		if (add) {
551 			VOP_SET_TEXT_CHECKED(vp);
552 			VM_OBJECT_RUNLOCK(object);
553 		} else {
554 			vhold(vp);
555 			VM_OBJECT_RUNLOCK(object);
556 			vn_lock(vp, LK_SHARED | LK_RETRY);
557 			VOP_UNSET_TEXT_CHECKED(vp);
558 			VOP_UNLOCK(vp, 0);
559 			vdrop(vp);
560 		}
561 	} else {
562 		VM_OBJECT_RUNLOCK(object);
563 	}
564 }
565 
566 /*
567  * Use a different name for this vm_map_entry field when it's use
568  * is not consistent with its use as part of an ordered search tree.
569  */
570 #define defer_next right
571 
572 static void
573 vm_map_process_deferred(void)
574 {
575 	struct thread *td;
576 	vm_map_entry_t entry, next;
577 	vm_object_t object;
578 
579 	td = curthread;
580 	entry = td->td_map_def_user;
581 	td->td_map_def_user = NULL;
582 	while (entry != NULL) {
583 		next = entry->defer_next;
584 		MPASS((entry->eflags & (MAP_ENTRY_WRITECNT |
585 		    MAP_ENTRY_VN_EXEC)) != (MAP_ENTRY_WRITECNT |
586 		    MAP_ENTRY_VN_EXEC));
587 		if ((entry->eflags & MAP_ENTRY_WRITECNT) != 0) {
588 			/*
589 			 * Decrement the object's writemappings and
590 			 * possibly the vnode's v_writecount.
591 			 */
592 			KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
593 			    ("Submap with writecount"));
594 			object = entry->object.vm_object;
595 			KASSERT(object != NULL, ("No object for writecount"));
596 			vm_pager_release_writecount(object, entry->start,
597 			    entry->end);
598 		}
599 		vm_map_entry_set_vnode_text(entry, false);
600 		vm_map_entry_deallocate(entry, FALSE);
601 		entry = next;
602 	}
603 }
604 
605 #ifdef INVARIANTS
606 static void
607 _vm_map_assert_locked(vm_map_t map, const char *file, int line)
608 {
609 
610 	if (map->system_map)
611 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
612 	else
613 		sx_assert_(&map->lock, SA_XLOCKED, file, line);
614 }
615 
616 #define	VM_MAP_ASSERT_LOCKED(map) \
617     _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE)
618 
619 enum { VMMAP_CHECK_NONE, VMMAP_CHECK_UNLOCK, VMMAP_CHECK_ALL };
620 #ifdef DIAGNOSTIC
621 static int enable_vmmap_check = VMMAP_CHECK_UNLOCK;
622 #else
623 static int enable_vmmap_check = VMMAP_CHECK_NONE;
624 #endif
625 SYSCTL_INT(_debug, OID_AUTO, vmmap_check, CTLFLAG_RWTUN,
626     &enable_vmmap_check, 0, "Enable vm map consistency checking");
627 
628 static void _vm_map_assert_consistent(vm_map_t map, int check);
629 
630 #define VM_MAP_ASSERT_CONSISTENT(map) \
631     _vm_map_assert_consistent(map, VMMAP_CHECK_ALL)
632 #ifdef DIAGNOSTIC
633 #define VM_MAP_UNLOCK_CONSISTENT(map) do {				\
634 	if (map->nupdates > map->nentries) {				\
635 		_vm_map_assert_consistent(map, VMMAP_CHECK_UNLOCK);	\
636 		map->nupdates = 0;					\
637 	}								\
638 } while (0)
639 #else
640 #define VM_MAP_UNLOCK_CONSISTENT(map)
641 #endif
642 #else
643 #define	VM_MAP_ASSERT_LOCKED(map)
644 #define VM_MAP_ASSERT_CONSISTENT(map)
645 #define VM_MAP_UNLOCK_CONSISTENT(map)
646 #endif /* INVARIANTS */
647 
648 void
649 _vm_map_unlock(vm_map_t map, const char *file, int line)
650 {
651 
652 	VM_MAP_UNLOCK_CONSISTENT(map);
653 	if (map->system_map)
654 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
655 	else {
656 		sx_xunlock_(&map->lock, file, line);
657 		vm_map_process_deferred();
658 	}
659 }
660 
661 void
662 _vm_map_lock_read(vm_map_t map, const char *file, int line)
663 {
664 
665 	if (map->system_map)
666 		mtx_lock_flags_(&map->system_mtx, 0, file, line);
667 	else
668 		sx_slock_(&map->lock, file, line);
669 }
670 
671 void
672 _vm_map_unlock_read(vm_map_t map, const char *file, int line)
673 {
674 
675 	if (map->system_map)
676 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
677 	else {
678 		sx_sunlock_(&map->lock, file, line);
679 		vm_map_process_deferred();
680 	}
681 }
682 
683 int
684 _vm_map_trylock(vm_map_t map, const char *file, int line)
685 {
686 	int error;
687 
688 	error = map->system_map ?
689 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
690 	    !sx_try_xlock_(&map->lock, file, line);
691 	if (error == 0)
692 		map->timestamp++;
693 	return (error == 0);
694 }
695 
696 int
697 _vm_map_trylock_read(vm_map_t map, const char *file, int line)
698 {
699 	int error;
700 
701 	error = map->system_map ?
702 	    !mtx_trylock_flags_(&map->system_mtx, 0, file, line) :
703 	    !sx_try_slock_(&map->lock, file, line);
704 	return (error == 0);
705 }
706 
707 /*
708  *	_vm_map_lock_upgrade:	[ internal use only ]
709  *
710  *	Tries to upgrade a read (shared) lock on the specified map to a write
711  *	(exclusive) lock.  Returns the value "0" if the upgrade succeeds and a
712  *	non-zero value if the upgrade fails.  If the upgrade fails, the map is
713  *	returned without a read or write lock held.
714  *
715  *	Requires that the map be read locked.
716  */
717 int
718 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line)
719 {
720 	unsigned int last_timestamp;
721 
722 	if (map->system_map) {
723 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
724 	} else {
725 		if (!sx_try_upgrade_(&map->lock, file, line)) {
726 			last_timestamp = map->timestamp;
727 			sx_sunlock_(&map->lock, file, line);
728 			vm_map_process_deferred();
729 			/*
730 			 * If the map's timestamp does not change while the
731 			 * map is unlocked, then the upgrade succeeds.
732 			 */
733 			sx_xlock_(&map->lock, file, line);
734 			if (last_timestamp != map->timestamp) {
735 				sx_xunlock_(&map->lock, file, line);
736 				return (1);
737 			}
738 		}
739 	}
740 	map->timestamp++;
741 	return (0);
742 }
743 
744 void
745 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line)
746 {
747 
748 	if (map->system_map) {
749 		mtx_assert_(&map->system_mtx, MA_OWNED, file, line);
750 	} else {
751 		VM_MAP_UNLOCK_CONSISTENT(map);
752 		sx_downgrade_(&map->lock, file, line);
753 	}
754 }
755 
756 /*
757  *	vm_map_locked:
758  *
759  *	Returns a non-zero value if the caller holds a write (exclusive) lock
760  *	on the specified map and the value "0" otherwise.
761  */
762 int
763 vm_map_locked(vm_map_t map)
764 {
765 
766 	if (map->system_map)
767 		return (mtx_owned(&map->system_mtx));
768 	else
769 		return (sx_xlocked(&map->lock));
770 }
771 
772 /*
773  *	_vm_map_unlock_and_wait:
774  *
775  *	Atomically releases the lock on the specified map and puts the calling
776  *	thread to sleep.  The calling thread will remain asleep until either
777  *	vm_map_wakeup() is performed on the map or the specified timeout is
778  *	exceeded.
779  *
780  *	WARNING!  This function does not perform deferred deallocations of
781  *	objects and map	entries.  Therefore, the calling thread is expected to
782  *	reacquire the map lock after reawakening and later perform an ordinary
783  *	unlock operation, such as vm_map_unlock(), before completing its
784  *	operation on the map.
785  */
786 int
787 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line)
788 {
789 
790 	VM_MAP_UNLOCK_CONSISTENT(map);
791 	mtx_lock(&map_sleep_mtx);
792 	if (map->system_map)
793 		mtx_unlock_flags_(&map->system_mtx, 0, file, line);
794 	else
795 		sx_xunlock_(&map->lock, file, line);
796 	return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps",
797 	    timo));
798 }
799 
800 /*
801  *	vm_map_wakeup:
802  *
803  *	Awaken any threads that have slept on the map using
804  *	vm_map_unlock_and_wait().
805  */
806 void
807 vm_map_wakeup(vm_map_t map)
808 {
809 
810 	/*
811 	 * Acquire and release map_sleep_mtx to prevent a wakeup()
812 	 * from being performed (and lost) between the map unlock
813 	 * and the msleep() in _vm_map_unlock_and_wait().
814 	 */
815 	mtx_lock(&map_sleep_mtx);
816 	mtx_unlock(&map_sleep_mtx);
817 	wakeup(&map->root);
818 }
819 
820 void
821 vm_map_busy(vm_map_t map)
822 {
823 
824 	VM_MAP_ASSERT_LOCKED(map);
825 	map->busy++;
826 }
827 
828 void
829 vm_map_unbusy(vm_map_t map)
830 {
831 
832 	VM_MAP_ASSERT_LOCKED(map);
833 	KASSERT(map->busy, ("vm_map_unbusy: not busy"));
834 	if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) {
835 		vm_map_modflags(map, 0, MAP_BUSY_WAKEUP);
836 		wakeup(&map->busy);
837 	}
838 }
839 
840 void
841 vm_map_wait_busy(vm_map_t map)
842 {
843 
844 	VM_MAP_ASSERT_LOCKED(map);
845 	while (map->busy) {
846 		vm_map_modflags(map, MAP_BUSY_WAKEUP, 0);
847 		if (map->system_map)
848 			msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0);
849 		else
850 			sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0);
851 	}
852 	map->timestamp++;
853 }
854 
855 long
856 vmspace_resident_count(struct vmspace *vmspace)
857 {
858 	return pmap_resident_count(vmspace_pmap(vmspace));
859 }
860 
861 /*
862  *	vm_map_create:
863  *
864  *	Creates and returns a new empty VM map with
865  *	the given physical map structure, and having
866  *	the given lower and upper address bounds.
867  */
868 vm_map_t
869 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max)
870 {
871 	vm_map_t result;
872 
873 	result = uma_zalloc(mapzone, M_WAITOK);
874 	CTR1(KTR_VM, "vm_map_create: %p", result);
875 	_vm_map_init(result, pmap, min, max);
876 	return (result);
877 }
878 
879 /*
880  * Initialize an existing vm_map structure
881  * such as that in the vmspace structure.
882  */
883 static void
884 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
885 {
886 
887 	map->header.next = map->header.prev = &map->header;
888 	map->header.eflags = MAP_ENTRY_HEADER;
889 	map->needs_wakeup = FALSE;
890 	map->system_map = 0;
891 	map->pmap = pmap;
892 	map->header.end = min;
893 	map->header.start = max;
894 	map->flags = 0;
895 	map->root = NULL;
896 	map->timestamp = 0;
897 	map->busy = 0;
898 	map->anon_loc = 0;
899 #ifdef DIAGNOSTIC
900 	map->nupdates = 0;
901 #endif
902 }
903 
904 void
905 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max)
906 {
907 
908 	_vm_map_init(map, pmap, min, max);
909 	mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK);
910 	sx_init(&map->lock, "user map");
911 }
912 
913 /*
914  *	vm_map_entry_dispose:	[ internal use only ]
915  *
916  *	Inverse of vm_map_entry_create.
917  */
918 static void
919 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry)
920 {
921 	uma_zfree(map->system_map ? kmapentzone : mapentzone, entry);
922 }
923 
924 /*
925  *	vm_map_entry_create:	[ internal use only ]
926  *
927  *	Allocates a VM map entry for insertion.
928  *	No entry fields are filled in.
929  */
930 static vm_map_entry_t
931 vm_map_entry_create(vm_map_t map)
932 {
933 	vm_map_entry_t new_entry;
934 
935 	if (map->system_map)
936 		new_entry = uma_zalloc(kmapentzone, M_NOWAIT);
937 	else
938 		new_entry = uma_zalloc(mapentzone, M_WAITOK);
939 	if (new_entry == NULL)
940 		panic("vm_map_entry_create: kernel resources exhausted");
941 	return (new_entry);
942 }
943 
944 /*
945  *	vm_map_entry_set_behavior:
946  *
947  *	Set the expected access behavior, either normal, random, or
948  *	sequential.
949  */
950 static inline void
951 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior)
952 {
953 	entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) |
954 	    (behavior & MAP_ENTRY_BEHAV_MASK);
955 }
956 
957 /*
958  *	vm_map_entry_max_free_{left,right}:
959  *
960  *	Compute the size of the largest free gap between two entries,
961  *	one the root of a tree and the other the ancestor of that root
962  *	that is the least or greatest ancestor found on the search path.
963  */
964 static inline vm_size_t
965 vm_map_entry_max_free_left(vm_map_entry_t root, vm_map_entry_t left_ancestor)
966 {
967 
968 	return (root->left != NULL ?
969 	    root->left->max_free : root->start - left_ancestor->end);
970 }
971 
972 static inline vm_size_t
973 vm_map_entry_max_free_right(vm_map_entry_t root, vm_map_entry_t right_ancestor)
974 {
975 
976 	return (root->right != NULL ?
977 	    root->right->max_free : right_ancestor->start - root->end);
978 }
979 
980 #define SPLAY_LEFT_STEP(root, y, rlist, test) do {			\
981 	vm_size_t max_free;						\
982 									\
983 	/*								\
984 	 * Infer root->right->max_free == root->max_free when		\
985 	 * y->max_free < root->max_free || root->max_free == 0.		\
986 	 * Otherwise, look right to find it.				\
987 	 */								\
988 	y = root->left;							\
989 	max_free = root->max_free;					\
990 	KASSERT(max_free >= vm_map_entry_max_free_right(root, rlist),	\
991 	    ("%s: max_free invariant fails", __func__));		\
992 	if (y == NULL ? max_free > 0 : max_free - 1 < y->max_free)	\
993 		max_free = vm_map_entry_max_free_right(root, rlist);	\
994 	if (y != NULL && (test)) {					\
995 		/* Rotate right and make y root. */			\
996 		root->left = y->right;					\
997 		y->right = root;					\
998 		if (max_free < y->max_free)				\
999 			root->max_free = max_free = MAX(max_free,	\
1000 			    vm_map_entry_max_free_left(root, y));	\
1001 		root = y;						\
1002 		y = root->left;						\
1003 	}								\
1004 	/* Copy right->max_free.  Put root on rlist. */			\
1005 	root->max_free = max_free;					\
1006 	KASSERT(max_free == vm_map_entry_max_free_right(root, rlist),	\
1007 	    ("%s: max_free not copied from right", __func__));		\
1008 	root->left = rlist;						\
1009 	rlist = root;							\
1010 	root = y;							\
1011 } while (0)
1012 
1013 #define SPLAY_RIGHT_STEP(root, y, llist, test) do {			\
1014 	vm_size_t max_free;						\
1015 									\
1016 	/*								\
1017 	 * Infer root->left->max_free == root->max_free when		\
1018 	 * y->max_free < root->max_free || root->max_free == 0.		\
1019 	 * Otherwise, look left to find it.				\
1020 	 */								\
1021 	y = root->right;						\
1022 	max_free = root->max_free;					\
1023 	KASSERT(max_free >= vm_map_entry_max_free_left(root, llist),	\
1024 	    ("%s: max_free invariant fails", __func__));		\
1025 	if (y == NULL ? max_free > 0 : max_free - 1 < y->max_free)	\
1026 		max_free = vm_map_entry_max_free_left(root, llist);	\
1027 	if (y != NULL && (test)) {					\
1028 		/* Rotate left and make y root. */			\
1029 		root->right = y->left;					\
1030 		y->left = root;						\
1031 		if (max_free < y->max_free)				\
1032 			root->max_free = max_free = MAX(max_free,	\
1033 			    vm_map_entry_max_free_right(root, y));	\
1034 		root = y;						\
1035 		y = root->right;					\
1036 	}								\
1037 	/* Copy left->max_free.  Put root on llist. */			\
1038 	root->max_free = max_free;					\
1039 	KASSERT(max_free == vm_map_entry_max_free_left(root, llist),	\
1040 	    ("%s: max_free not copied from left", __func__));		\
1041 	root->right = llist;						\
1042 	llist = root;							\
1043 	root = y;							\
1044 } while (0)
1045 
1046 /*
1047  * Walk down the tree until we find addr or a NULL pointer where addr would go,
1048  * breaking off left and right subtrees of nodes less than, or greater than
1049  * addr.  Treat pointers to nodes with max_free < length as NULL pointers.
1050  * llist and rlist are the two sides in reverse order (bottom-up), with llist
1051  * linked by the right pointer and rlist linked by the left pointer in the
1052  * vm_map_entry, and both lists terminated by &map->header.  This function, and
1053  * the subsequent call to vm_map_splay_merge, rely on the start and end address
1054  * values in &map->header.
1055  */
1056 static vm_map_entry_t
1057 vm_map_splay_split(vm_map_t map, vm_offset_t addr, vm_size_t length,
1058     vm_map_entry_t *out_llist, vm_map_entry_t *out_rlist)
1059 {
1060 	vm_map_entry_t llist, rlist, root, y;
1061 
1062 	llist = rlist = &map->header;
1063 	root = map->root;
1064 	while (root != NULL && root->max_free >= length) {
1065 		KASSERT(llist->end <= root->start && root->end <= rlist->start,
1066 		    ("%s: root not within tree bounds", __func__));
1067 		if (addr < root->start) {
1068 			SPLAY_LEFT_STEP(root, y, rlist,
1069 			    y->max_free >= length && addr < y->start);
1070 		} else if (addr >= root->end) {
1071 			SPLAY_RIGHT_STEP(root, y, llist,
1072 			    y->max_free >= length && addr >= y->end);
1073 		} else
1074 			break;
1075 	}
1076 	*out_llist = llist;
1077 	*out_rlist = rlist;
1078 	return (root);
1079 }
1080 
1081 static void
1082 vm_map_splay_findnext(vm_map_entry_t root, vm_map_entry_t *iolist)
1083 {
1084 	vm_map_entry_t rlist, y;
1085 
1086 	root = root->right;
1087 	rlist = *iolist;
1088 	while (root != NULL)
1089 		SPLAY_LEFT_STEP(root, y, rlist, true);
1090 	*iolist = rlist;
1091 }
1092 
1093 static void
1094 vm_map_splay_findprev(vm_map_entry_t root, vm_map_entry_t *iolist)
1095 {
1096 	vm_map_entry_t llist, y;
1097 
1098 	root = root->left;
1099 	llist = *iolist;
1100 	while (root != NULL)
1101 		SPLAY_RIGHT_STEP(root, y, llist, true);
1102 	*iolist = llist;
1103 }
1104 
1105 static inline void
1106 vm_map_entry_swap(vm_map_entry_t *a, vm_map_entry_t *b)
1107 {
1108 	vm_map_entry_t tmp;
1109 
1110 	tmp = *b;
1111 	*b = *a;
1112 	*a = tmp;
1113 }
1114 
1115 /*
1116  * Walk back up the two spines, flip the pointers and set max_free.  The
1117  * subtrees of the root go at the bottom of llist and rlist.
1118  */
1119 static void
1120 vm_map_splay_merge(vm_map_t map, vm_map_entry_t root,
1121     vm_map_entry_t llist, vm_map_entry_t rlist)
1122 {
1123 	vm_map_entry_t prev;
1124 	vm_size_t max_free_left, max_free_right;
1125 
1126 	max_free_left = vm_map_entry_max_free_left(root, llist);
1127 	if (llist != &map->header) {
1128 		prev = root->left;
1129 		do {
1130 			/*
1131 			 * The max_free values of the children of llist are in
1132 			 * llist->max_free and max_free_left.  Update with the
1133 			 * max value.
1134 			 */
1135 			llist->max_free = max_free_left =
1136 			    MAX(llist->max_free, max_free_left);
1137 			vm_map_entry_swap(&llist->right, &prev);
1138 			vm_map_entry_swap(&prev, &llist);
1139 		} while (llist != &map->header);
1140 		root->left = prev;
1141 	}
1142 	max_free_right = vm_map_entry_max_free_right(root, rlist);
1143 	if (rlist != &map->header) {
1144 		prev = root->right;
1145 		do {
1146 			/*
1147 			 * The max_free values of the children of rlist are in
1148 			 * rlist->max_free and max_free_right.  Update with the
1149 			 * max value.
1150 			 */
1151 			rlist->max_free = max_free_right =
1152 			    MAX(rlist->max_free, max_free_right);
1153 			vm_map_entry_swap(&rlist->left, &prev);
1154 			vm_map_entry_swap(&prev, &rlist);
1155 		} while (rlist != &map->header);
1156 		root->right = prev;
1157 	}
1158 	root->max_free = MAX(max_free_left, max_free_right);
1159 	map->root = root;
1160 #ifdef DIAGNOSTIC
1161 	++map->nupdates;
1162 #endif
1163 }
1164 
1165 /*
1166  *	vm_map_splay:
1167  *
1168  *	The Sleator and Tarjan top-down splay algorithm with the
1169  *	following variation.  Max_free must be computed bottom-up, so
1170  *	on the downward pass, maintain the left and right spines in
1171  *	reverse order.  Then, make a second pass up each side to fix
1172  *	the pointers and compute max_free.  The time bound is O(log n)
1173  *	amortized.
1174  *
1175  *	The new root is the vm_map_entry containing "addr", or else an
1176  *	adjacent entry (lower if possible) if addr is not in the tree.
1177  *
1178  *	The map must be locked, and leaves it so.
1179  *
1180  *	Returns: the new root.
1181  */
1182 static vm_map_entry_t
1183 vm_map_splay(vm_map_t map, vm_offset_t addr)
1184 {
1185 	vm_map_entry_t llist, rlist, root;
1186 
1187 	root = vm_map_splay_split(map, addr, 0, &llist, &rlist);
1188 	if (root != NULL) {
1189 		/* do nothing */
1190 	} else if (llist != &map->header) {
1191 		/*
1192 		 * Recover the greatest node in the left
1193 		 * subtree and make it the root.
1194 		 */
1195 		root = llist;
1196 		llist = root->right;
1197 		root->right = NULL;
1198 	} else if (rlist != &map->header) {
1199 		/*
1200 		 * Recover the least node in the right
1201 		 * subtree and make it the root.
1202 		 */
1203 		root = rlist;
1204 		rlist = root->left;
1205 		root->left = NULL;
1206 	} else {
1207 		/* There is no root. */
1208 		return (NULL);
1209 	}
1210 	vm_map_splay_merge(map, root, llist, rlist);
1211 	VM_MAP_ASSERT_CONSISTENT(map);
1212 	return (root);
1213 }
1214 
1215 /*
1216  *	vm_map_entry_{un,}link:
1217  *
1218  *	Insert/remove entries from maps.
1219  */
1220 static void
1221 vm_map_entry_link(vm_map_t map, vm_map_entry_t entry)
1222 {
1223 	vm_map_entry_t llist, rlist, root;
1224 
1225 	CTR3(KTR_VM,
1226 	    "vm_map_entry_link: map %p, nentries %d, entry %p", map,
1227 	    map->nentries, entry);
1228 	VM_MAP_ASSERT_LOCKED(map);
1229 	map->nentries++;
1230 	root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1231 	KASSERT(root == NULL,
1232 	    ("vm_map_entry_link: link object already mapped"));
1233 	entry->prev = llist;
1234 	entry->next = rlist;
1235 	llist->next = rlist->prev = entry;
1236 	entry->left = entry->right = NULL;
1237 	vm_map_splay_merge(map, entry, llist, rlist);
1238 	VM_MAP_ASSERT_CONSISTENT(map);
1239 }
1240 
1241 enum unlink_merge_type {
1242 	UNLINK_MERGE_NONE,
1243 	UNLINK_MERGE_NEXT
1244 };
1245 
1246 static void
1247 vm_map_entry_unlink(vm_map_t map, vm_map_entry_t entry,
1248     enum unlink_merge_type op)
1249 {
1250 	vm_map_entry_t llist, rlist, root, y;
1251 
1252 	VM_MAP_ASSERT_LOCKED(map);
1253 	root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1254 	KASSERT(root != NULL,
1255 	    ("vm_map_entry_unlink: unlink object not mapped"));
1256 
1257 	vm_map_splay_findnext(root, &rlist);
1258 	switch (op) {
1259 	case UNLINK_MERGE_NEXT:
1260 		rlist->start = root->start;
1261 		rlist->offset = root->offset;
1262 		y = root->left;
1263 		root = rlist;
1264 		rlist = root->left;
1265 		root->left = y;
1266 		break;
1267 	case UNLINK_MERGE_NONE:
1268 		vm_map_splay_findprev(root, &llist);
1269 		if (llist != &map->header) {
1270 			root = llist;
1271 			llist = root->right;
1272 			root->right = NULL;
1273 		} else if (rlist != &map->header) {
1274 			root = rlist;
1275 			rlist = root->left;
1276 			root->left = NULL;
1277 		} else
1278 			root = NULL;
1279 		break;
1280 	}
1281 	y = entry->next;
1282 	y->prev = entry->prev;
1283 	y->prev->next = y;
1284 	if (root != NULL)
1285 		vm_map_splay_merge(map, root, llist, rlist);
1286 	else
1287 		map->root = NULL;
1288 	VM_MAP_ASSERT_CONSISTENT(map);
1289 	map->nentries--;
1290 	CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map,
1291 	    map->nentries, entry);
1292 }
1293 
1294 /*
1295  *	vm_map_entry_resize:
1296  *
1297  *	Resize a vm_map_entry, recompute the amount of free space that
1298  *	follows it and propagate that value up the tree.
1299  *
1300  *	The map must be locked, and leaves it so.
1301  */
1302 static void
1303 vm_map_entry_resize(vm_map_t map, vm_map_entry_t entry, vm_size_t grow_amount)
1304 {
1305 	vm_map_entry_t llist, rlist, root;
1306 
1307 	VM_MAP_ASSERT_LOCKED(map);
1308 	root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist);
1309 	KASSERT(root != NULL,
1310 	    ("%s: resize object not mapped", __func__));
1311 	vm_map_splay_findnext(root, &rlist);
1312 	root->right = NULL;
1313 	entry->end += grow_amount;
1314 	vm_map_splay_merge(map, root, llist, rlist);
1315 	VM_MAP_ASSERT_CONSISTENT(map);
1316 	CTR4(KTR_VM, "%s: map %p, nentries %d, entry %p",
1317 	    __func__, map, map->nentries, entry);
1318 }
1319 
1320 /*
1321  *	vm_map_lookup_entry:	[ internal use only ]
1322  *
1323  *	Finds the map entry containing (or
1324  *	immediately preceding) the specified address
1325  *	in the given map; the entry is returned
1326  *	in the "entry" parameter.  The boolean
1327  *	result indicates whether the address is
1328  *	actually contained in the map.
1329  */
1330 boolean_t
1331 vm_map_lookup_entry(
1332 	vm_map_t map,
1333 	vm_offset_t address,
1334 	vm_map_entry_t *entry)	/* OUT */
1335 {
1336 	vm_map_entry_t cur, lbound;
1337 	boolean_t locked;
1338 
1339 	/*
1340 	 * If the map is empty, then the map entry immediately preceding
1341 	 * "address" is the map's header.
1342 	 */
1343 	cur = map->root;
1344 	if (cur == NULL) {
1345 		*entry = &map->header;
1346 		return (FALSE);
1347 	}
1348 	if (address >= cur->start && cur->end > address) {
1349 		*entry = cur;
1350 		return (TRUE);
1351 	}
1352 	if ((locked = vm_map_locked(map)) ||
1353 	    sx_try_upgrade(&map->lock)) {
1354 		/*
1355 		 * Splay requires a write lock on the map.  However, it only
1356 		 * restructures the binary search tree; it does not otherwise
1357 		 * change the map.  Thus, the map's timestamp need not change
1358 		 * on a temporary upgrade.
1359 		 */
1360 		cur = vm_map_splay(map, address);
1361 		if (!locked) {
1362 			VM_MAP_UNLOCK_CONSISTENT(map);
1363 			sx_downgrade(&map->lock);
1364 		}
1365 
1366 		/*
1367 		 * If "address" is contained within a map entry, the new root
1368 		 * is that map entry.  Otherwise, the new root is a map entry
1369 		 * immediately before or after "address".
1370 		 */
1371 		if (address < cur->start) {
1372 			*entry = &map->header;
1373 			return (FALSE);
1374 		}
1375 		*entry = cur;
1376 		return (address < cur->end);
1377 	}
1378 	/*
1379 	 * Since the map is only locked for read access, perform a
1380 	 * standard binary search tree lookup for "address".
1381 	 */
1382 	lbound = &map->header;
1383 	do {
1384 		if (address < cur->start) {
1385 			cur = cur->left;
1386 		} else if (cur->end <= address) {
1387 			lbound = cur;
1388 			cur = cur->right;
1389 		} else {
1390 			*entry = cur;
1391 			return (TRUE);
1392 		}
1393 	} while (cur != NULL);
1394 	*entry = lbound;
1395 	return (FALSE);
1396 }
1397 
1398 /*
1399  *	vm_map_insert:
1400  *
1401  *	Inserts the given whole VM object into the target
1402  *	map at the specified address range.  The object's
1403  *	size should match that of the address range.
1404  *
1405  *	Requires that the map be locked, and leaves it so.
1406  *
1407  *	If object is non-NULL, ref count must be bumped by caller
1408  *	prior to making call to account for the new entry.
1409  */
1410 int
1411 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1412     vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow)
1413 {
1414 	vm_map_entry_t new_entry, prev_entry;
1415 	struct ucred *cred;
1416 	vm_eflags_t protoeflags;
1417 	vm_inherit_t inheritance;
1418 
1419 	VM_MAP_ASSERT_LOCKED(map);
1420 	KASSERT(object != kernel_object ||
1421 	    (cow & MAP_COPY_ON_WRITE) == 0,
1422 	    ("vm_map_insert: kernel object and COW"));
1423 	KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0,
1424 	    ("vm_map_insert: paradoxical MAP_NOFAULT request"));
1425 	KASSERT((prot & ~max) == 0,
1426 	    ("prot %#x is not subset of max_prot %#x", prot, max));
1427 
1428 	/*
1429 	 * Check that the start and end points are not bogus.
1430 	 */
1431 	if (start < vm_map_min(map) || end > vm_map_max(map) ||
1432 	    start >= end)
1433 		return (KERN_INVALID_ADDRESS);
1434 
1435 	/*
1436 	 * Find the entry prior to the proposed starting address; if it's part
1437 	 * of an existing entry, this range is bogus.
1438 	 */
1439 	if (vm_map_lookup_entry(map, start, &prev_entry))
1440 		return (KERN_NO_SPACE);
1441 
1442 	/*
1443 	 * Assert that the next entry doesn't overlap the end point.
1444 	 */
1445 	if (vm_map_entry_succ(prev_entry)->start < end)
1446 		return (KERN_NO_SPACE);
1447 
1448 	if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL ||
1449 	    max != VM_PROT_NONE))
1450 		return (KERN_INVALID_ARGUMENT);
1451 
1452 	protoeflags = 0;
1453 	if (cow & MAP_COPY_ON_WRITE)
1454 		protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY;
1455 	if (cow & MAP_NOFAULT)
1456 		protoeflags |= MAP_ENTRY_NOFAULT;
1457 	if (cow & MAP_DISABLE_SYNCER)
1458 		protoeflags |= MAP_ENTRY_NOSYNC;
1459 	if (cow & MAP_DISABLE_COREDUMP)
1460 		protoeflags |= MAP_ENTRY_NOCOREDUMP;
1461 	if (cow & MAP_STACK_GROWS_DOWN)
1462 		protoeflags |= MAP_ENTRY_GROWS_DOWN;
1463 	if (cow & MAP_STACK_GROWS_UP)
1464 		protoeflags |= MAP_ENTRY_GROWS_UP;
1465 	if (cow & MAP_WRITECOUNT)
1466 		protoeflags |= MAP_ENTRY_WRITECNT;
1467 	if (cow & MAP_VN_EXEC)
1468 		protoeflags |= MAP_ENTRY_VN_EXEC;
1469 	if ((cow & MAP_CREATE_GUARD) != 0)
1470 		protoeflags |= MAP_ENTRY_GUARD;
1471 	if ((cow & MAP_CREATE_STACK_GAP_DN) != 0)
1472 		protoeflags |= MAP_ENTRY_STACK_GAP_DN;
1473 	if ((cow & MAP_CREATE_STACK_GAP_UP) != 0)
1474 		protoeflags |= MAP_ENTRY_STACK_GAP_UP;
1475 	if (cow & MAP_INHERIT_SHARE)
1476 		inheritance = VM_INHERIT_SHARE;
1477 	else
1478 		inheritance = VM_INHERIT_DEFAULT;
1479 
1480 	cred = NULL;
1481 	if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0)
1482 		goto charged;
1483 	if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) &&
1484 	    ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) {
1485 		if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start))
1486 			return (KERN_RESOURCE_SHORTAGE);
1487 		KASSERT(object == NULL ||
1488 		    (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 ||
1489 		    object->cred == NULL,
1490 		    ("overcommit: vm_map_insert o %p", object));
1491 		cred = curthread->td_ucred;
1492 	}
1493 
1494 charged:
1495 	/* Expand the kernel pmap, if necessary. */
1496 	if (map == kernel_map && end > kernel_vm_end)
1497 		pmap_growkernel(end);
1498 	if (object != NULL) {
1499 		/*
1500 		 * OBJ_ONEMAPPING must be cleared unless this mapping
1501 		 * is trivially proven to be the only mapping for any
1502 		 * of the object's pages.  (Object granularity
1503 		 * reference counting is insufficient to recognize
1504 		 * aliases with precision.)
1505 		 */
1506 		VM_OBJECT_WLOCK(object);
1507 		if (object->ref_count > 1 || object->shadow_count != 0)
1508 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
1509 		VM_OBJECT_WUNLOCK(object);
1510 	} else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) ==
1511 	    protoeflags &&
1512 	    (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP |
1513 	    MAP_VN_EXEC)) == 0 &&
1514 	    prev_entry->end == start && (prev_entry->cred == cred ||
1515 	    (prev_entry->object.vm_object != NULL &&
1516 	    prev_entry->object.vm_object->cred == cred)) &&
1517 	    vm_object_coalesce(prev_entry->object.vm_object,
1518 	    prev_entry->offset,
1519 	    (vm_size_t)(prev_entry->end - prev_entry->start),
1520 	    (vm_size_t)(end - prev_entry->end), cred != NULL &&
1521 	    (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) {
1522 		/*
1523 		 * We were able to extend the object.  Determine if we
1524 		 * can extend the previous map entry to include the
1525 		 * new range as well.
1526 		 */
1527 		if (prev_entry->inheritance == inheritance &&
1528 		    prev_entry->protection == prot &&
1529 		    prev_entry->max_protection == max &&
1530 		    prev_entry->wired_count == 0) {
1531 			KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) ==
1532 			    0, ("prev_entry %p has incoherent wiring",
1533 			    prev_entry));
1534 			if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0)
1535 				map->size += end - prev_entry->end;
1536 			vm_map_entry_resize(map, prev_entry,
1537 			    end - prev_entry->end);
1538 			vm_map_try_merge_entries(map, prev_entry,
1539 			    vm_map_entry_succ(prev_entry));
1540 			return (KERN_SUCCESS);
1541 		}
1542 
1543 		/*
1544 		 * If we can extend the object but cannot extend the
1545 		 * map entry, we have to create a new map entry.  We
1546 		 * must bump the ref count on the extended object to
1547 		 * account for it.  object may be NULL.
1548 		 */
1549 		object = prev_entry->object.vm_object;
1550 		offset = prev_entry->offset +
1551 		    (prev_entry->end - prev_entry->start);
1552 		vm_object_reference(object);
1553 		if (cred != NULL && object != NULL && object->cred != NULL &&
1554 		    !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
1555 			/* Object already accounts for this uid. */
1556 			cred = NULL;
1557 		}
1558 	}
1559 	if (cred != NULL)
1560 		crhold(cred);
1561 
1562 	/*
1563 	 * Create a new entry
1564 	 */
1565 	new_entry = vm_map_entry_create(map);
1566 	new_entry->start = start;
1567 	new_entry->end = end;
1568 	new_entry->cred = NULL;
1569 
1570 	new_entry->eflags = protoeflags;
1571 	new_entry->object.vm_object = object;
1572 	new_entry->offset = offset;
1573 
1574 	new_entry->inheritance = inheritance;
1575 	new_entry->protection = prot;
1576 	new_entry->max_protection = max;
1577 	new_entry->wired_count = 0;
1578 	new_entry->wiring_thread = NULL;
1579 	new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT;
1580 	new_entry->next_read = start;
1581 
1582 	KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry),
1583 	    ("overcommit: vm_map_insert leaks vm_map %p", new_entry));
1584 	new_entry->cred = cred;
1585 
1586 	/*
1587 	 * Insert the new entry into the list
1588 	 */
1589 	vm_map_entry_link(map, new_entry);
1590 	if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0)
1591 		map->size += new_entry->end - new_entry->start;
1592 
1593 	/*
1594 	 * Try to coalesce the new entry with both the previous and next
1595 	 * entries in the list.  Previously, we only attempted to coalesce
1596 	 * with the previous entry when object is NULL.  Here, we handle the
1597 	 * other cases, which are less common.
1598 	 */
1599 	vm_map_try_merge_entries(map, prev_entry, new_entry);
1600 	vm_map_try_merge_entries(map, new_entry, vm_map_entry_succ(new_entry));
1601 
1602 	if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) {
1603 		vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset),
1604 		    end - start, cow & MAP_PREFAULT_PARTIAL);
1605 	}
1606 
1607 	return (KERN_SUCCESS);
1608 }
1609 
1610 /*
1611  *	vm_map_findspace:
1612  *
1613  *	Find the first fit (lowest VM address) for "length" free bytes
1614  *	beginning at address >= start in the given map.
1615  *
1616  *	In a vm_map_entry, "max_free" is the maximum amount of
1617  *	contiguous free space between an entry in its subtree and a
1618  *	neighbor of that entry.  This allows finding a free region in
1619  *	one path down the tree, so O(log n) amortized with splay
1620  *	trees.
1621  *
1622  *	The map must be locked, and leaves it so.
1623  *
1624  *	Returns: starting address if sufficient space,
1625  *		 vm_map_max(map)-length+1 if insufficient space.
1626  */
1627 vm_offset_t
1628 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length)
1629 {
1630 	vm_map_entry_t llist, rlist, root, y;
1631 	vm_size_t left_length;
1632 	vm_offset_t gap_end;
1633 
1634 	/*
1635 	 * Request must fit within min/max VM address and must avoid
1636 	 * address wrap.
1637 	 */
1638 	start = MAX(start, vm_map_min(map));
1639 	if (start >= vm_map_max(map) || length > vm_map_max(map) - start)
1640 		return (vm_map_max(map) - length + 1);
1641 
1642 	/* Empty tree means wide open address space. */
1643 	if (map->root == NULL)
1644 		return (start);
1645 
1646 	/*
1647 	 * After splay_split, if start is within an entry, push it to the start
1648 	 * of the following gap.  If rlist is at the end of the gap containing
1649 	 * start, save the end of that gap in gap_end to see if the gap is big
1650 	 * enough; otherwise set gap_end to start skip gap-checking and move
1651 	 * directly to a search of the right subtree.
1652 	 */
1653 	root = vm_map_splay_split(map, start, length, &llist, &rlist);
1654 	gap_end = rlist->start;
1655 	if (root != NULL) {
1656 		start = root->end;
1657 		if (root->right != NULL)
1658 			gap_end = start;
1659 	} else if (rlist != &map->header) {
1660 		root = rlist;
1661 		rlist = root->left;
1662 		root->left = NULL;
1663 	} else {
1664 		root = llist;
1665 		llist = root->right;
1666 		root->right = NULL;
1667 	}
1668 	vm_map_splay_merge(map, root, llist, rlist);
1669 	VM_MAP_ASSERT_CONSISTENT(map);
1670 	if (length <= gap_end - start)
1671 		return (start);
1672 
1673 	/* With max_free, can immediately tell if no solution. */
1674 	if (root->right == NULL || length > root->right->max_free)
1675 		return (vm_map_max(map) - length + 1);
1676 
1677 	/*
1678 	 * Splay for the least large-enough gap in the right subtree.
1679 	 */
1680 	llist = rlist = &map->header;
1681 	for (left_length = 0;;
1682 	    left_length = vm_map_entry_max_free_left(root, llist)) {
1683 		if (length <= left_length)
1684 			SPLAY_LEFT_STEP(root, y, rlist,
1685 			    length <= vm_map_entry_max_free_left(y, llist));
1686 		else
1687 			SPLAY_RIGHT_STEP(root, y, llist,
1688 			    length > vm_map_entry_max_free_left(y, root));
1689 		if (root == NULL)
1690 			break;
1691 	}
1692 	root = llist;
1693 	llist = root->right;
1694 	root->right = NULL;
1695 	if (rlist != &map->header) {
1696 		y = rlist;
1697 		rlist = y->left;
1698 		y->left = NULL;
1699 		vm_map_splay_merge(map, y, &map->header, rlist);
1700 		y->max_free = MAX(
1701 		    vm_map_entry_max_free_left(y, root),
1702 		    vm_map_entry_max_free_right(y, &map->header));
1703 		root->right = y;
1704 	}
1705 	vm_map_splay_merge(map, root, llist, &map->header);
1706 	VM_MAP_ASSERT_CONSISTENT(map);
1707 	return (root->end);
1708 }
1709 
1710 int
1711 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1712     vm_offset_t start, vm_size_t length, vm_prot_t prot,
1713     vm_prot_t max, int cow)
1714 {
1715 	vm_offset_t end;
1716 	int result;
1717 
1718 	end = start + length;
1719 	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1720 	    object == NULL,
1721 	    ("vm_map_fixed: non-NULL backing object for stack"));
1722 	vm_map_lock(map);
1723 	VM_MAP_RANGE_CHECK(map, start, end);
1724 	if ((cow & MAP_CHECK_EXCL) == 0)
1725 		vm_map_delete(map, start, end);
1726 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1727 		result = vm_map_stack_locked(map, start, length, sgrowsiz,
1728 		    prot, max, cow);
1729 	} else {
1730 		result = vm_map_insert(map, object, offset, start, end,
1731 		    prot, max, cow);
1732 	}
1733 	vm_map_unlock(map);
1734 	return (result);
1735 }
1736 
1737 static const int aslr_pages_rnd_64[2] = {0x1000, 0x10};
1738 static const int aslr_pages_rnd_32[2] = {0x100, 0x4};
1739 
1740 static int cluster_anon = 1;
1741 SYSCTL_INT(_vm, OID_AUTO, cluster_anon, CTLFLAG_RW,
1742     &cluster_anon, 0,
1743     "Cluster anonymous mappings: 0 = no, 1 = yes if no hint, 2 = always");
1744 
1745 static bool
1746 clustering_anon_allowed(vm_offset_t addr)
1747 {
1748 
1749 	switch (cluster_anon) {
1750 	case 0:
1751 		return (false);
1752 	case 1:
1753 		return (addr == 0);
1754 	case 2:
1755 	default:
1756 		return (true);
1757 	}
1758 }
1759 
1760 static long aslr_restarts;
1761 SYSCTL_LONG(_vm, OID_AUTO, aslr_restarts, CTLFLAG_RD,
1762     &aslr_restarts, 0,
1763     "Number of aslr failures");
1764 
1765 #define	MAP_32BIT_MAX_ADDR	((vm_offset_t)1 << 31)
1766 
1767 /*
1768  * Searches for the specified amount of free space in the given map with the
1769  * specified alignment.  Performs an address-ordered, first-fit search from
1770  * the given address "*addr", with an optional upper bound "max_addr".  If the
1771  * parameter "alignment" is zero, then the alignment is computed from the
1772  * given (object, offset) pair so as to enable the greatest possible use of
1773  * superpage mappings.  Returns KERN_SUCCESS and the address of the free space
1774  * in "*addr" if successful.  Otherwise, returns KERN_NO_SPACE.
1775  *
1776  * The map must be locked.  Initially, there must be at least "length" bytes
1777  * of free space at the given address.
1778  */
1779 static int
1780 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1781     vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr,
1782     vm_offset_t alignment)
1783 {
1784 	vm_offset_t aligned_addr, free_addr;
1785 
1786 	VM_MAP_ASSERT_LOCKED(map);
1787 	free_addr = *addr;
1788 	KASSERT(free_addr == vm_map_findspace(map, free_addr, length),
1789 	    ("caller failed to provide space %#jx at address %p",
1790 	     (uintmax_t)length, (void *)free_addr));
1791 	for (;;) {
1792 		/*
1793 		 * At the start of every iteration, the free space at address
1794 		 * "*addr" is at least "length" bytes.
1795 		 */
1796 		if (alignment == 0)
1797 			pmap_align_superpage(object, offset, addr, length);
1798 		else if ((*addr & (alignment - 1)) != 0) {
1799 			*addr &= ~(alignment - 1);
1800 			*addr += alignment;
1801 		}
1802 		aligned_addr = *addr;
1803 		if (aligned_addr == free_addr) {
1804 			/*
1805 			 * Alignment did not change "*addr", so "*addr" must
1806 			 * still provide sufficient free space.
1807 			 */
1808 			return (KERN_SUCCESS);
1809 		}
1810 
1811 		/*
1812 		 * Test for address wrap on "*addr".  A wrapped "*addr" could
1813 		 * be a valid address, in which case vm_map_findspace() cannot
1814 		 * be relied upon to fail.
1815 		 */
1816 		if (aligned_addr < free_addr)
1817 			return (KERN_NO_SPACE);
1818 		*addr = vm_map_findspace(map, aligned_addr, length);
1819 		if (*addr + length > vm_map_max(map) ||
1820 		    (max_addr != 0 && *addr + length > max_addr))
1821 			return (KERN_NO_SPACE);
1822 		free_addr = *addr;
1823 		if (free_addr == aligned_addr) {
1824 			/*
1825 			 * If a successful call to vm_map_findspace() did not
1826 			 * change "*addr", then "*addr" must still be aligned
1827 			 * and provide sufficient free space.
1828 			 */
1829 			return (KERN_SUCCESS);
1830 		}
1831 	}
1832 }
1833 
1834 /*
1835  *	vm_map_find finds an unallocated region in the target address
1836  *	map with the given length.  The search is defined to be
1837  *	first-fit from the specified address; the region found is
1838  *	returned in the same parameter.
1839  *
1840  *	If object is non-NULL, ref count must be bumped by caller
1841  *	prior to making call to account for the new entry.
1842  */
1843 int
1844 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
1845 	    vm_offset_t *addr,	/* IN/OUT */
1846 	    vm_size_t length, vm_offset_t max_addr, int find_space,
1847 	    vm_prot_t prot, vm_prot_t max, int cow)
1848 {
1849 	vm_offset_t alignment, curr_min_addr, min_addr;
1850 	int gap, pidx, rv, try;
1851 	bool cluster, en_aslr, update_anon;
1852 
1853 	KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 ||
1854 	    object == NULL,
1855 	    ("vm_map_find: non-NULL backing object for stack"));
1856 	MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE &&
1857 	    (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0));
1858 	if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL ||
1859 	    (object->flags & OBJ_COLORED) == 0))
1860 		find_space = VMFS_ANY_SPACE;
1861 	if (find_space >> 8 != 0) {
1862 		KASSERT((find_space & 0xff) == 0, ("bad VMFS flags"));
1863 		alignment = (vm_offset_t)1 << (find_space >> 8);
1864 	} else
1865 		alignment = 0;
1866 	en_aslr = (map->flags & MAP_ASLR) != 0;
1867 	update_anon = cluster = clustering_anon_allowed(*addr) &&
1868 	    (map->flags & MAP_IS_SUB_MAP) == 0 && max_addr == 0 &&
1869 	    find_space != VMFS_NO_SPACE && object == NULL &&
1870 	    (cow & (MAP_INHERIT_SHARE | MAP_STACK_GROWS_UP |
1871 	    MAP_STACK_GROWS_DOWN)) == 0 && prot != PROT_NONE;
1872 	curr_min_addr = min_addr = *addr;
1873 	if (en_aslr && min_addr == 0 && !cluster &&
1874 	    find_space != VMFS_NO_SPACE &&
1875 	    (map->flags & MAP_ASLR_IGNSTART) != 0)
1876 		curr_min_addr = min_addr = vm_map_min(map);
1877 	try = 0;
1878 	vm_map_lock(map);
1879 	if (cluster) {
1880 		curr_min_addr = map->anon_loc;
1881 		if (curr_min_addr == 0)
1882 			cluster = false;
1883 	}
1884 	if (find_space != VMFS_NO_SPACE) {
1885 		KASSERT(find_space == VMFS_ANY_SPACE ||
1886 		    find_space == VMFS_OPTIMAL_SPACE ||
1887 		    find_space == VMFS_SUPER_SPACE ||
1888 		    alignment != 0, ("unexpected VMFS flag"));
1889 again:
1890 		/*
1891 		 * When creating an anonymous mapping, try clustering
1892 		 * with an existing anonymous mapping first.
1893 		 *
1894 		 * We make up to two attempts to find address space
1895 		 * for a given find_space value. The first attempt may
1896 		 * apply randomization or may cluster with an existing
1897 		 * anonymous mapping. If this first attempt fails,
1898 		 * perform a first-fit search of the available address
1899 		 * space.
1900 		 *
1901 		 * If all tries failed, and find_space is
1902 		 * VMFS_OPTIMAL_SPACE, fallback to VMFS_ANY_SPACE.
1903 		 * Again enable clustering and randomization.
1904 		 */
1905 		try++;
1906 		MPASS(try <= 2);
1907 
1908 		if (try == 2) {
1909 			/*
1910 			 * Second try: we failed either to find a
1911 			 * suitable region for randomizing the
1912 			 * allocation, or to cluster with an existing
1913 			 * mapping.  Retry with free run.
1914 			 */
1915 			curr_min_addr = (map->flags & MAP_ASLR_IGNSTART) != 0 ?
1916 			    vm_map_min(map) : min_addr;
1917 			atomic_add_long(&aslr_restarts, 1);
1918 		}
1919 
1920 		if (try == 1 && en_aslr && !cluster) {
1921 			/*
1922 			 * Find space for allocation, including
1923 			 * gap needed for later randomization.
1924 			 */
1925 			pidx = MAXPAGESIZES > 1 && pagesizes[1] != 0 &&
1926 			    (find_space == VMFS_SUPER_SPACE || find_space ==
1927 			    VMFS_OPTIMAL_SPACE) ? 1 : 0;
1928 			gap = vm_map_max(map) > MAP_32BIT_MAX_ADDR &&
1929 			    (max_addr == 0 || max_addr > MAP_32BIT_MAX_ADDR) ?
1930 			    aslr_pages_rnd_64[pidx] : aslr_pages_rnd_32[pidx];
1931 			*addr = vm_map_findspace(map, curr_min_addr,
1932 			    length + gap * pagesizes[pidx]);
1933 			if (*addr + length + gap * pagesizes[pidx] >
1934 			    vm_map_max(map))
1935 				goto again;
1936 			/* And randomize the start address. */
1937 			*addr += (arc4random() % gap) * pagesizes[pidx];
1938 			if (max_addr != 0 && *addr + length > max_addr)
1939 				goto again;
1940 		} else {
1941 			*addr = vm_map_findspace(map, curr_min_addr, length);
1942 			if (*addr + length > vm_map_max(map) ||
1943 			    (max_addr != 0 && *addr + length > max_addr)) {
1944 				if (cluster) {
1945 					cluster = false;
1946 					MPASS(try == 1);
1947 					goto again;
1948 				}
1949 				rv = KERN_NO_SPACE;
1950 				goto done;
1951 			}
1952 		}
1953 
1954 		if (find_space != VMFS_ANY_SPACE &&
1955 		    (rv = vm_map_alignspace(map, object, offset, addr, length,
1956 		    max_addr, alignment)) != KERN_SUCCESS) {
1957 			if (find_space == VMFS_OPTIMAL_SPACE) {
1958 				find_space = VMFS_ANY_SPACE;
1959 				curr_min_addr = min_addr;
1960 				cluster = update_anon;
1961 				try = 0;
1962 				goto again;
1963 			}
1964 			goto done;
1965 		}
1966 	} else if ((cow & MAP_REMAP) != 0) {
1967 		if (*addr < vm_map_min(map) ||
1968 		    *addr + length > vm_map_max(map) ||
1969 		    *addr + length <= length) {
1970 			rv = KERN_INVALID_ADDRESS;
1971 			goto done;
1972 		}
1973 		vm_map_delete(map, *addr, *addr + length);
1974 	}
1975 	if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) {
1976 		rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot,
1977 		    max, cow);
1978 	} else {
1979 		rv = vm_map_insert(map, object, offset, *addr, *addr + length,
1980 		    prot, max, cow);
1981 	}
1982 	if (rv == KERN_SUCCESS && update_anon)
1983 		map->anon_loc = *addr + length;
1984 done:
1985 	vm_map_unlock(map);
1986 	return (rv);
1987 }
1988 
1989 /*
1990  *	vm_map_find_min() is a variant of vm_map_find() that takes an
1991  *	additional parameter (min_addr) and treats the given address
1992  *	(*addr) differently.  Specifically, it treats *addr as a hint
1993  *	and not as the minimum address where the mapping is created.
1994  *
1995  *	This function works in two phases.  First, it tries to
1996  *	allocate above the hint.  If that fails and the hint is
1997  *	greater than min_addr, it performs a second pass, replacing
1998  *	the hint with min_addr as the minimum address for the
1999  *	allocation.
2000  */
2001 int
2002 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
2003     vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr,
2004     vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max,
2005     int cow)
2006 {
2007 	vm_offset_t hint;
2008 	int rv;
2009 
2010 	hint = *addr;
2011 	for (;;) {
2012 		rv = vm_map_find(map, object, offset, addr, length, max_addr,
2013 		    find_space, prot, max, cow);
2014 		if (rv == KERN_SUCCESS || min_addr >= hint)
2015 			return (rv);
2016 		*addr = hint = min_addr;
2017 	}
2018 }
2019 
2020 /*
2021  * A map entry with any of the following flags set must not be merged with
2022  * another entry.
2023  */
2024 #define	MAP_ENTRY_NOMERGE_MASK	(MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | \
2025 	    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP | MAP_ENTRY_VN_EXEC)
2026 
2027 static bool
2028 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry)
2029 {
2030 
2031 	KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 ||
2032 	    (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0,
2033 	    ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable",
2034 	    prev, entry));
2035 	return (prev->end == entry->start &&
2036 	    prev->object.vm_object == entry->object.vm_object &&
2037 	    (prev->object.vm_object == NULL ||
2038 	    prev->offset + (prev->end - prev->start) == entry->offset) &&
2039 	    prev->eflags == entry->eflags &&
2040 	    prev->protection == entry->protection &&
2041 	    prev->max_protection == entry->max_protection &&
2042 	    prev->inheritance == entry->inheritance &&
2043 	    prev->wired_count == entry->wired_count &&
2044 	    prev->cred == entry->cred);
2045 }
2046 
2047 static void
2048 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry)
2049 {
2050 
2051 	/*
2052 	 * If the backing object is a vnode object, vm_object_deallocate()
2053 	 * calls vrele().  However, vrele() does not lock the vnode because
2054 	 * the vnode has additional references.  Thus, the map lock can be
2055 	 * kept without causing a lock-order reversal with the vnode lock.
2056 	 *
2057 	 * Since we count the number of virtual page mappings in
2058 	 * object->un_pager.vnp.writemappings, the writemappings value
2059 	 * should not be adjusted when the entry is disposed of.
2060 	 */
2061 	if (entry->object.vm_object != NULL)
2062 		vm_object_deallocate(entry->object.vm_object);
2063 	if (entry->cred != NULL)
2064 		crfree(entry->cred);
2065 	vm_map_entry_dispose(map, entry);
2066 }
2067 
2068 /*
2069  *	vm_map_try_merge_entries:
2070  *
2071  *	Compare the given map entry to its predecessor, and merge its precessor
2072  *	into it if possible.  The entry remains valid, and may be extended.
2073  *	The predecessor may be deleted.
2074  *
2075  *	The map must be locked.
2076  */
2077 void
2078 vm_map_try_merge_entries(vm_map_t map, vm_map_entry_t prev, vm_map_entry_t entry)
2079 {
2080 
2081 	VM_MAP_ASSERT_LOCKED(map);
2082 	if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 &&
2083 	    vm_map_mergeable_neighbors(prev, entry)) {
2084 		vm_map_entry_unlink(map, prev, UNLINK_MERGE_NEXT);
2085 		vm_map_merged_neighbor_dispose(map, prev);
2086 	}
2087 }
2088 
2089 /*
2090  *	vm_map_entry_back:
2091  *
2092  *	Allocate an object to back a map entry.
2093  */
2094 static inline void
2095 vm_map_entry_back(vm_map_entry_t entry)
2096 {
2097 	vm_object_t object;
2098 
2099 	KASSERT(entry->object.vm_object == NULL,
2100 	    ("map entry %p has backing object", entry));
2101 	KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
2102 	    ("map entry %p is a submap", entry));
2103 	object = vm_object_allocate(OBJT_DEFAULT,
2104 	    atop(entry->end - entry->start));
2105 	entry->object.vm_object = object;
2106 	entry->offset = 0;
2107 	if (entry->cred != NULL) {
2108 		object->cred = entry->cred;
2109 		object->charge = entry->end - entry->start;
2110 		entry->cred = NULL;
2111 	}
2112 }
2113 
2114 /*
2115  *	vm_map_entry_charge_object
2116  *
2117  *	If there is no object backing this entry, create one.  Otherwise, if
2118  *	the entry has cred, give it to the backing object.
2119  */
2120 static inline void
2121 vm_map_entry_charge_object(vm_map_t map, vm_map_entry_t entry)
2122 {
2123 
2124 	VM_MAP_ASSERT_LOCKED(map);
2125 	KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0,
2126 	    ("map entry %p is a submap", entry));
2127 	if (entry->object.vm_object == NULL && !map->system_map &&
2128 	    (entry->eflags & MAP_ENTRY_GUARD) == 0)
2129 		vm_map_entry_back(entry);
2130 	else if (entry->object.vm_object != NULL &&
2131 	    ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) &&
2132 	    entry->cred != NULL) {
2133 		VM_OBJECT_WLOCK(entry->object.vm_object);
2134 		KASSERT(entry->object.vm_object->cred == NULL,
2135 		    ("OVERCOMMIT: %s: both cred e %p", __func__, entry));
2136 		entry->object.vm_object->cred = entry->cred;
2137 		entry->object.vm_object->charge = entry->end - entry->start;
2138 		VM_OBJECT_WUNLOCK(entry->object.vm_object);
2139 		entry->cred = NULL;
2140 	}
2141 }
2142 
2143 /*
2144  *	vm_map_clip_start:	[ internal use only ]
2145  *
2146  *	Asserts that the given entry begins at or after
2147  *	the specified address; if necessary,
2148  *	it splits the entry into two.
2149  */
2150 #define vm_map_clip_start(map, entry, startaddr) \
2151 { \
2152 	if (startaddr > entry->start) \
2153 		_vm_map_clip_start(map, entry, startaddr); \
2154 }
2155 
2156 /*
2157  *	This routine is called only when it is known that
2158  *	the entry must be split.
2159  */
2160 static void
2161 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start)
2162 {
2163 	vm_map_entry_t new_entry;
2164 
2165 	VM_MAP_ASSERT_LOCKED(map);
2166 	KASSERT(entry->end > start && entry->start < start,
2167 	    ("_vm_map_clip_start: invalid clip of entry %p", entry));
2168 
2169 	/*
2170 	 * Create a backing object now, if none exists, so that more individual
2171 	 * objects won't be created after the map entry is split.
2172 	 */
2173 	vm_map_entry_charge_object(map, entry);
2174 
2175 	/* Clone the entry. */
2176 	new_entry = vm_map_entry_create(map);
2177 	*new_entry = *entry;
2178 
2179 	/*
2180 	 * Split off the front portion.  Insert the new entry BEFORE this one,
2181 	 * so that this entry has the specified starting address.
2182 	 */
2183 	new_entry->end = start;
2184 	entry->offset += (start - entry->start);
2185 	entry->start = start;
2186 	if (new_entry->cred != NULL)
2187 		crhold(entry->cred);
2188 
2189 	vm_map_entry_link(map, new_entry);
2190 
2191 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2192 		vm_object_reference(new_entry->object.vm_object);
2193 		vm_map_entry_set_vnode_text(new_entry, true);
2194 		/*
2195 		 * The object->un_pager.vnp.writemappings for the
2196 		 * object of MAP_ENTRY_WRITECNT type entry shall be
2197 		 * kept as is here.  The virtual pages are
2198 		 * re-distributed among the clipped entries, so the sum is
2199 		 * left the same.
2200 		 */
2201 	}
2202 }
2203 
2204 /*
2205  *	vm_map_clip_end:	[ internal use only ]
2206  *
2207  *	Asserts that the given entry ends at or before
2208  *	the specified address; if necessary,
2209  *	it splits the entry into two.
2210  */
2211 #define vm_map_clip_end(map, entry, endaddr) \
2212 { \
2213 	if ((endaddr) < (entry->end)) \
2214 		_vm_map_clip_end((map), (entry), (endaddr)); \
2215 }
2216 
2217 /*
2218  *	This routine is called only when it is known that
2219  *	the entry must be split.
2220  */
2221 static void
2222 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end)
2223 {
2224 	vm_map_entry_t new_entry;
2225 
2226 	VM_MAP_ASSERT_LOCKED(map);
2227 	KASSERT(entry->start < end && entry->end > end,
2228 	    ("_vm_map_clip_end: invalid clip of entry %p", entry));
2229 
2230 	/*
2231 	 * Create a backing object now, if none exists, so that more individual
2232 	 * objects won't be created after the map entry is split.
2233 	 */
2234 	vm_map_entry_charge_object(map, entry);
2235 
2236 	/* Clone the entry. */
2237 	new_entry = vm_map_entry_create(map);
2238 	*new_entry = *entry;
2239 
2240 	/*
2241 	 * Split off the back portion.  Insert the new entry AFTER this one,
2242 	 * so that this entry has the specified ending address.
2243 	 */
2244 	new_entry->start = entry->end = end;
2245 	new_entry->offset += (end - entry->start);
2246 	if (new_entry->cred != NULL)
2247 		crhold(entry->cred);
2248 
2249 	vm_map_entry_link(map, new_entry);
2250 
2251 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
2252 		vm_object_reference(new_entry->object.vm_object);
2253 		vm_map_entry_set_vnode_text(new_entry, true);
2254 	}
2255 }
2256 
2257 /*
2258  *	vm_map_submap:		[ kernel use only ]
2259  *
2260  *	Mark the given range as handled by a subordinate map.
2261  *
2262  *	This range must have been created with vm_map_find,
2263  *	and no other operations may have been performed on this
2264  *	range prior to calling vm_map_submap.
2265  *
2266  *	Only a limited number of operations can be performed
2267  *	within this rage after calling vm_map_submap:
2268  *		vm_fault
2269  *	[Don't try vm_map_copy!]
2270  *
2271  *	To remove a submapping, one must first remove the
2272  *	range from the superior map, and then destroy the
2273  *	submap (if desired).  [Better yet, don't try it.]
2274  */
2275 int
2276 vm_map_submap(
2277 	vm_map_t map,
2278 	vm_offset_t start,
2279 	vm_offset_t end,
2280 	vm_map_t submap)
2281 {
2282 	vm_map_entry_t entry;
2283 	int result;
2284 
2285 	result = KERN_INVALID_ARGUMENT;
2286 
2287 	vm_map_lock(submap);
2288 	submap->flags |= MAP_IS_SUB_MAP;
2289 	vm_map_unlock(submap);
2290 
2291 	vm_map_lock(map);
2292 
2293 	VM_MAP_RANGE_CHECK(map, start, end);
2294 
2295 	if (vm_map_lookup_entry(map, start, &entry)) {
2296 		vm_map_clip_start(map, entry, start);
2297 	} else
2298 		entry = vm_map_entry_succ(entry);
2299 
2300 	vm_map_clip_end(map, entry, end);
2301 
2302 	if ((entry->start == start) && (entry->end == end) &&
2303 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
2304 	    (entry->object.vm_object == NULL)) {
2305 		entry->object.sub_map = submap;
2306 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
2307 		result = KERN_SUCCESS;
2308 	}
2309 	vm_map_unlock(map);
2310 
2311 	if (result != KERN_SUCCESS) {
2312 		vm_map_lock(submap);
2313 		submap->flags &= ~MAP_IS_SUB_MAP;
2314 		vm_map_unlock(submap);
2315 	}
2316 	return (result);
2317 }
2318 
2319 /*
2320  * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified
2321  */
2322 #define	MAX_INIT_PT	96
2323 
2324 /*
2325  *	vm_map_pmap_enter:
2326  *
2327  *	Preload the specified map's pmap with mappings to the specified
2328  *	object's memory-resident pages.  No further physical pages are
2329  *	allocated, and no further virtual pages are retrieved from secondary
2330  *	storage.  If the specified flags include MAP_PREFAULT_PARTIAL, then a
2331  *	limited number of page mappings are created at the low-end of the
2332  *	specified address range.  (For this purpose, a superpage mapping
2333  *	counts as one page mapping.)  Otherwise, all resident pages within
2334  *	the specified address range are mapped.
2335  */
2336 static void
2337 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot,
2338     vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags)
2339 {
2340 	vm_offset_t start;
2341 	vm_page_t p, p_start;
2342 	vm_pindex_t mask, psize, threshold, tmpidx;
2343 
2344 	if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL)
2345 		return;
2346 	VM_OBJECT_RLOCK(object);
2347 	if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2348 		VM_OBJECT_RUNLOCK(object);
2349 		VM_OBJECT_WLOCK(object);
2350 		if (object->type == OBJT_DEVICE || object->type == OBJT_SG) {
2351 			pmap_object_init_pt(map->pmap, addr, object, pindex,
2352 			    size);
2353 			VM_OBJECT_WUNLOCK(object);
2354 			return;
2355 		}
2356 		VM_OBJECT_LOCK_DOWNGRADE(object);
2357 	}
2358 
2359 	psize = atop(size);
2360 	if (psize + pindex > object->size) {
2361 		if (object->size < pindex) {
2362 			VM_OBJECT_RUNLOCK(object);
2363 			return;
2364 		}
2365 		psize = object->size - pindex;
2366 	}
2367 
2368 	start = 0;
2369 	p_start = NULL;
2370 	threshold = MAX_INIT_PT;
2371 
2372 	p = vm_page_find_least(object, pindex);
2373 	/*
2374 	 * Assert: the variable p is either (1) the page with the
2375 	 * least pindex greater than or equal to the parameter pindex
2376 	 * or (2) NULL.
2377 	 */
2378 	for (;
2379 	     p != NULL && (tmpidx = p->pindex - pindex) < psize;
2380 	     p = TAILQ_NEXT(p, listq)) {
2381 		/*
2382 		 * don't allow an madvise to blow away our really
2383 		 * free pages allocating pv entries.
2384 		 */
2385 		if (((flags & MAP_PREFAULT_MADVISE) != 0 &&
2386 		    vm_page_count_severe()) ||
2387 		    ((flags & MAP_PREFAULT_PARTIAL) != 0 &&
2388 		    tmpidx >= threshold)) {
2389 			psize = tmpidx;
2390 			break;
2391 		}
2392 		if (vm_page_all_valid(p)) {
2393 			if (p_start == NULL) {
2394 				start = addr + ptoa(tmpidx);
2395 				p_start = p;
2396 			}
2397 			/* Jump ahead if a superpage mapping is possible. */
2398 			if (p->psind > 0 && ((addr + ptoa(tmpidx)) &
2399 			    (pagesizes[p->psind] - 1)) == 0) {
2400 				mask = atop(pagesizes[p->psind]) - 1;
2401 				if (tmpidx + mask < psize &&
2402 				    vm_page_ps_test(p, PS_ALL_VALID, NULL)) {
2403 					p += mask;
2404 					threshold += mask;
2405 				}
2406 			}
2407 		} else if (p_start != NULL) {
2408 			pmap_enter_object(map->pmap, start, addr +
2409 			    ptoa(tmpidx), p_start, prot);
2410 			p_start = NULL;
2411 		}
2412 	}
2413 	if (p_start != NULL)
2414 		pmap_enter_object(map->pmap, start, addr + ptoa(psize),
2415 		    p_start, prot);
2416 	VM_OBJECT_RUNLOCK(object);
2417 }
2418 
2419 /*
2420  *	vm_map_protect:
2421  *
2422  *	Sets the protection of the specified address
2423  *	region in the target map.  If "set_max" is
2424  *	specified, the maximum protection is to be set;
2425  *	otherwise, only the current protection is affected.
2426  */
2427 int
2428 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
2429 	       vm_prot_t new_prot, boolean_t set_max)
2430 {
2431 	vm_map_entry_t current, entry, in_tran;
2432 	vm_object_t obj;
2433 	struct ucred *cred;
2434 	vm_prot_t old_prot;
2435 	int rv;
2436 
2437 	if (start == end)
2438 		return (KERN_SUCCESS);
2439 
2440 again:
2441 	in_tran = NULL;
2442 	vm_map_lock(map);
2443 
2444 	/*
2445 	 * Ensure that we are not concurrently wiring pages.  vm_map_wire() may
2446 	 * need to fault pages into the map and will drop the map lock while
2447 	 * doing so, and the VM object may end up in an inconsistent state if we
2448 	 * update the protection on the map entry in between faults.
2449 	 */
2450 	vm_map_wait_busy(map);
2451 
2452 	VM_MAP_RANGE_CHECK(map, start, end);
2453 
2454 	if (!vm_map_lookup_entry(map, start, &entry))
2455 		entry = vm_map_entry_succ(entry);
2456 
2457 	/*
2458 	 * Make a first pass to check for protection violations.
2459 	 */
2460 	for (current = entry; current->start < end;
2461 	    current = vm_map_entry_succ(current)) {
2462 		if ((current->eflags & MAP_ENTRY_GUARD) != 0)
2463 			continue;
2464 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
2465 			vm_map_unlock(map);
2466 			return (KERN_INVALID_ARGUMENT);
2467 		}
2468 		if ((new_prot & current->max_protection) != new_prot) {
2469 			vm_map_unlock(map);
2470 			return (KERN_PROTECTION_FAILURE);
2471 		}
2472 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0)
2473 			in_tran = entry;
2474 	}
2475 
2476 	/*
2477 	 * Postpone the operation until all in transition map entries
2478 	 * are stabilized.  In-transition entry might already have its
2479 	 * pages wired and wired_count incremented, but
2480 	 * MAP_ENTRY_USER_WIRED flag not yet set, and visible to other
2481 	 * threads because the map lock is dropped.  In this case we
2482 	 * would miss our call to vm_fault_copy_entry().
2483 	 */
2484 	if (in_tran != NULL) {
2485 		in_tran->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2486 		vm_map_unlock_and_wait(map, 0);
2487 		goto again;
2488 	}
2489 
2490 	/*
2491 	 * Before changing the protections, try to reserve swap space for any
2492 	 * private (i.e., copy-on-write) mappings that are transitioning from
2493 	 * read-only to read/write access.  If a reservation fails, break out
2494 	 * of this loop early and let the next loop simplify the entries, since
2495 	 * some may now be mergeable.
2496 	 */
2497 	rv = KERN_SUCCESS;
2498 	vm_map_clip_start(map, entry, start);
2499 	for (current = entry; current->start < end;
2500 	    current = vm_map_entry_succ(current)) {
2501 
2502 		vm_map_clip_end(map, current, end);
2503 
2504 		if (set_max ||
2505 		    ((new_prot & ~(current->protection)) & VM_PROT_WRITE) == 0 ||
2506 		    ENTRY_CHARGED(current) ||
2507 		    (current->eflags & MAP_ENTRY_GUARD) != 0) {
2508 			continue;
2509 		}
2510 
2511 		cred = curthread->td_ucred;
2512 		obj = current->object.vm_object;
2513 
2514 		if (obj == NULL || (current->eflags & MAP_ENTRY_NEEDS_COPY)) {
2515 			if (!swap_reserve(current->end - current->start)) {
2516 				rv = KERN_RESOURCE_SHORTAGE;
2517 				end = current->end;
2518 				break;
2519 			}
2520 			crhold(cred);
2521 			current->cred = cred;
2522 			continue;
2523 		}
2524 
2525 		VM_OBJECT_WLOCK(obj);
2526 		if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) {
2527 			VM_OBJECT_WUNLOCK(obj);
2528 			continue;
2529 		}
2530 
2531 		/*
2532 		 * Charge for the whole object allocation now, since
2533 		 * we cannot distinguish between non-charged and
2534 		 * charged clipped mapping of the same object later.
2535 		 */
2536 		KASSERT(obj->charge == 0,
2537 		    ("vm_map_protect: object %p overcharged (entry %p)",
2538 		    obj, current));
2539 		if (!swap_reserve(ptoa(obj->size))) {
2540 			VM_OBJECT_WUNLOCK(obj);
2541 			rv = KERN_RESOURCE_SHORTAGE;
2542 			end = current->end;
2543 			break;
2544 		}
2545 
2546 		crhold(cred);
2547 		obj->cred = cred;
2548 		obj->charge = ptoa(obj->size);
2549 		VM_OBJECT_WUNLOCK(obj);
2550 	}
2551 
2552 	/*
2553 	 * If enough swap space was available, go back and fix up protections.
2554 	 * Otherwise, just simplify entries, since some may have been modified.
2555 	 * [Note that clipping is not necessary the second time.]
2556 	 */
2557 	for (current = entry; current->start < end;
2558 	     vm_map_try_merge_entries(map, vm_map_entry_pred(current), current),
2559 	    current = vm_map_entry_succ(current)) {
2560 		if (rv != KERN_SUCCESS ||
2561 		    (current->eflags & MAP_ENTRY_GUARD) != 0)
2562 			continue;
2563 
2564 		old_prot = current->protection;
2565 
2566 		if (set_max)
2567 			current->protection =
2568 			    (current->max_protection = new_prot) &
2569 			    old_prot;
2570 		else
2571 			current->protection = new_prot;
2572 
2573 		/*
2574 		 * For user wired map entries, the normal lazy evaluation of
2575 		 * write access upgrades through soft page faults is
2576 		 * undesirable.  Instead, immediately copy any pages that are
2577 		 * copy-on-write and enable write access in the physical map.
2578 		 */
2579 		if ((current->eflags & MAP_ENTRY_USER_WIRED) != 0 &&
2580 		    (current->protection & VM_PROT_WRITE) != 0 &&
2581 		    (old_prot & VM_PROT_WRITE) == 0)
2582 			vm_fault_copy_entry(map, map, current, current, NULL);
2583 
2584 		/*
2585 		 * When restricting access, update the physical map.  Worry
2586 		 * about copy-on-write here.
2587 		 */
2588 		if ((old_prot & ~current->protection) != 0) {
2589 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
2590 							VM_PROT_ALL)
2591 			pmap_protect(map->pmap, current->start,
2592 			    current->end,
2593 			    current->protection & MASK(current));
2594 #undef	MASK
2595 		}
2596 	}
2597 	vm_map_try_merge_entries(map, vm_map_entry_pred(current), current);
2598 	vm_map_unlock(map);
2599 	return (rv);
2600 }
2601 
2602 /*
2603  *	vm_map_madvise:
2604  *
2605  *	This routine traverses a processes map handling the madvise
2606  *	system call.  Advisories are classified as either those effecting
2607  *	the vm_map_entry structure, or those effecting the underlying
2608  *	objects.
2609  */
2610 int
2611 vm_map_madvise(
2612 	vm_map_t map,
2613 	vm_offset_t start,
2614 	vm_offset_t end,
2615 	int behav)
2616 {
2617 	vm_map_entry_t current, entry;
2618 	bool modify_map;
2619 
2620 	/*
2621 	 * Some madvise calls directly modify the vm_map_entry, in which case
2622 	 * we need to use an exclusive lock on the map and we need to perform
2623 	 * various clipping operations.  Otherwise we only need a read-lock
2624 	 * on the map.
2625 	 */
2626 	switch(behav) {
2627 	case MADV_NORMAL:
2628 	case MADV_SEQUENTIAL:
2629 	case MADV_RANDOM:
2630 	case MADV_NOSYNC:
2631 	case MADV_AUTOSYNC:
2632 	case MADV_NOCORE:
2633 	case MADV_CORE:
2634 		if (start == end)
2635 			return (0);
2636 		modify_map = true;
2637 		vm_map_lock(map);
2638 		break;
2639 	case MADV_WILLNEED:
2640 	case MADV_DONTNEED:
2641 	case MADV_FREE:
2642 		if (start == end)
2643 			return (0);
2644 		modify_map = false;
2645 		vm_map_lock_read(map);
2646 		break;
2647 	default:
2648 		return (EINVAL);
2649 	}
2650 
2651 	/*
2652 	 * Locate starting entry and clip if necessary.
2653 	 */
2654 	VM_MAP_RANGE_CHECK(map, start, end);
2655 
2656 	if (vm_map_lookup_entry(map, start, &entry)) {
2657 		if (modify_map)
2658 			vm_map_clip_start(map, entry, start);
2659 	} else {
2660 		entry = vm_map_entry_succ(entry);
2661 	}
2662 
2663 	if (modify_map) {
2664 		/*
2665 		 * madvise behaviors that are implemented in the vm_map_entry.
2666 		 *
2667 		 * We clip the vm_map_entry so that behavioral changes are
2668 		 * limited to the specified address range.
2669 		 */
2670 		for (current = entry; current->start < end;
2671 		    current = vm_map_entry_succ(current)) {
2672 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2673 				continue;
2674 
2675 			vm_map_clip_end(map, current, end);
2676 
2677 			switch (behav) {
2678 			case MADV_NORMAL:
2679 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
2680 				break;
2681 			case MADV_SEQUENTIAL:
2682 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
2683 				break;
2684 			case MADV_RANDOM:
2685 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
2686 				break;
2687 			case MADV_NOSYNC:
2688 				current->eflags |= MAP_ENTRY_NOSYNC;
2689 				break;
2690 			case MADV_AUTOSYNC:
2691 				current->eflags &= ~MAP_ENTRY_NOSYNC;
2692 				break;
2693 			case MADV_NOCORE:
2694 				current->eflags |= MAP_ENTRY_NOCOREDUMP;
2695 				break;
2696 			case MADV_CORE:
2697 				current->eflags &= ~MAP_ENTRY_NOCOREDUMP;
2698 				break;
2699 			default:
2700 				break;
2701 			}
2702 			vm_map_try_merge_entries(map,
2703 			    vm_map_entry_pred(current), current);
2704 		}
2705 		vm_map_try_merge_entries(map, vm_map_entry_pred(current),
2706 		    current);
2707 		vm_map_unlock(map);
2708 	} else {
2709 		vm_pindex_t pstart, pend;
2710 
2711 		/*
2712 		 * madvise behaviors that are implemented in the underlying
2713 		 * vm_object.
2714 		 *
2715 		 * Since we don't clip the vm_map_entry, we have to clip
2716 		 * the vm_object pindex and count.
2717 		 */
2718 		for (current = entry; current->start < end;
2719 		    current = vm_map_entry_succ(current)) {
2720 			vm_offset_t useEnd, useStart;
2721 
2722 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
2723 				continue;
2724 
2725 			/*
2726 			 * MADV_FREE would otherwise rewind time to
2727 			 * the creation of the shadow object.  Because
2728 			 * we hold the VM map read-locked, neither the
2729 			 * entry's object nor the presence of a
2730 			 * backing object can change.
2731 			 */
2732 			if (behav == MADV_FREE &&
2733 			    current->object.vm_object != NULL &&
2734 			    current->object.vm_object->backing_object != NULL)
2735 				continue;
2736 
2737 			pstart = OFF_TO_IDX(current->offset);
2738 			pend = pstart + atop(current->end - current->start);
2739 			useStart = current->start;
2740 			useEnd = current->end;
2741 
2742 			if (current->start < start) {
2743 				pstart += atop(start - current->start);
2744 				useStart = start;
2745 			}
2746 			if (current->end > end) {
2747 				pend -= atop(current->end - end);
2748 				useEnd = end;
2749 			}
2750 
2751 			if (pstart >= pend)
2752 				continue;
2753 
2754 			/*
2755 			 * Perform the pmap_advise() before clearing
2756 			 * PGA_REFERENCED in vm_page_advise().  Otherwise, a
2757 			 * concurrent pmap operation, such as pmap_remove(),
2758 			 * could clear a reference in the pmap and set
2759 			 * PGA_REFERENCED on the page before the pmap_advise()
2760 			 * had completed.  Consequently, the page would appear
2761 			 * referenced based upon an old reference that
2762 			 * occurred before this pmap_advise() ran.
2763 			 */
2764 			if (behav == MADV_DONTNEED || behav == MADV_FREE)
2765 				pmap_advise(map->pmap, useStart, useEnd,
2766 				    behav);
2767 
2768 			vm_object_madvise(current->object.vm_object, pstart,
2769 			    pend, behav);
2770 
2771 			/*
2772 			 * Pre-populate paging structures in the
2773 			 * WILLNEED case.  For wired entries, the
2774 			 * paging structures are already populated.
2775 			 */
2776 			if (behav == MADV_WILLNEED &&
2777 			    current->wired_count == 0) {
2778 				vm_map_pmap_enter(map,
2779 				    useStart,
2780 				    current->protection,
2781 				    current->object.vm_object,
2782 				    pstart,
2783 				    ptoa(pend - pstart),
2784 				    MAP_PREFAULT_MADVISE
2785 				);
2786 			}
2787 		}
2788 		vm_map_unlock_read(map);
2789 	}
2790 	return (0);
2791 }
2792 
2793 
2794 /*
2795  *	vm_map_inherit:
2796  *
2797  *	Sets the inheritance of the specified address
2798  *	range in the target map.  Inheritance
2799  *	affects how the map will be shared with
2800  *	child maps at the time of vmspace_fork.
2801  */
2802 int
2803 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
2804 	       vm_inherit_t new_inheritance)
2805 {
2806 	vm_map_entry_t entry;
2807 	vm_map_entry_t temp_entry;
2808 
2809 	switch (new_inheritance) {
2810 	case VM_INHERIT_NONE:
2811 	case VM_INHERIT_COPY:
2812 	case VM_INHERIT_SHARE:
2813 	case VM_INHERIT_ZERO:
2814 		break;
2815 	default:
2816 		return (KERN_INVALID_ARGUMENT);
2817 	}
2818 	if (start == end)
2819 		return (KERN_SUCCESS);
2820 	vm_map_lock(map);
2821 	VM_MAP_RANGE_CHECK(map, start, end);
2822 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
2823 		entry = temp_entry;
2824 		vm_map_clip_start(map, entry, start);
2825 	} else
2826 		entry = vm_map_entry_succ(temp_entry);
2827 	while (entry->start < end) {
2828 		vm_map_clip_end(map, entry, end);
2829 		if ((entry->eflags & MAP_ENTRY_GUARD) == 0 ||
2830 		    new_inheritance != VM_INHERIT_ZERO)
2831 			entry->inheritance = new_inheritance;
2832 		vm_map_try_merge_entries(map, vm_map_entry_pred(entry), entry);
2833 		entry = vm_map_entry_succ(entry);
2834 	}
2835 	vm_map_try_merge_entries(map, vm_map_entry_pred(entry), entry);
2836 	vm_map_unlock(map);
2837 	return (KERN_SUCCESS);
2838 }
2839 
2840 /*
2841  *	vm_map_entry_in_transition:
2842  *
2843  *	Release the map lock, and sleep until the entry is no longer in
2844  *	transition.  Awake and acquire the map lock.  If the map changed while
2845  *	another held the lock, lookup a possibly-changed entry at or after the
2846  *	'start' position of the old entry.
2847  */
2848 static vm_map_entry_t
2849 vm_map_entry_in_transition(vm_map_t map, vm_offset_t in_start,
2850     vm_offset_t *io_end, bool holes_ok, vm_map_entry_t in_entry)
2851 {
2852 	vm_map_entry_t entry;
2853 	vm_offset_t start;
2854 	u_int last_timestamp;
2855 
2856 	VM_MAP_ASSERT_LOCKED(map);
2857 	KASSERT((in_entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
2858 	    ("not in-tranition map entry %p", in_entry));
2859 	/*
2860 	 * We have not yet clipped the entry.
2861 	 */
2862 	start = MAX(in_start, in_entry->start);
2863 	in_entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
2864 	last_timestamp = map->timestamp;
2865 	if (vm_map_unlock_and_wait(map, 0)) {
2866 		/*
2867 		 * Allow interruption of user wiring/unwiring?
2868 		 */
2869 	}
2870 	vm_map_lock(map);
2871 	if (last_timestamp + 1 == map->timestamp)
2872 		return (in_entry);
2873 
2874 	/*
2875 	 * Look again for the entry because the map was modified while it was
2876 	 * unlocked.  Specifically, the entry may have been clipped, merged, or
2877 	 * deleted.
2878 	 */
2879 	if (!vm_map_lookup_entry(map, start, &entry)) {
2880 		if (!holes_ok) {
2881 			*io_end = start;
2882 			return (NULL);
2883 		}
2884 		entry = vm_map_entry_succ(entry);
2885 	}
2886 	return (entry);
2887 }
2888 
2889 /*
2890  *	vm_map_unwire:
2891  *
2892  *	Implements both kernel and user unwiring.
2893  */
2894 int
2895 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end,
2896     int flags)
2897 {
2898 	vm_map_entry_t entry, first_entry;
2899 	int rv;
2900 	bool first_iteration, holes_ok, need_wakeup, user_unwire;
2901 
2902 	if (start == end)
2903 		return (KERN_SUCCESS);
2904 	holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0;
2905 	user_unwire = (flags & VM_MAP_WIRE_USER) != 0;
2906 	vm_map_lock(map);
2907 	VM_MAP_RANGE_CHECK(map, start, end);
2908 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
2909 		if (holes_ok)
2910 			first_entry = vm_map_entry_succ(first_entry);
2911 		else {
2912 			vm_map_unlock(map);
2913 			return (KERN_INVALID_ADDRESS);
2914 		}
2915 	}
2916 	first_iteration = true;
2917 	entry = first_entry;
2918 	rv = KERN_SUCCESS;
2919 	while (entry->start < end) {
2920 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
2921 			/*
2922 			 * We have not yet clipped the entry.
2923 			 */
2924 			entry = vm_map_entry_in_transition(map, start, &end,
2925 			    holes_ok, entry);
2926 			if (entry == NULL) {
2927 				if (first_iteration) {
2928 					vm_map_unlock(map);
2929 					return (KERN_INVALID_ADDRESS);
2930 				}
2931 				rv = KERN_INVALID_ADDRESS;
2932 				break;
2933 			}
2934 			first_entry = first_iteration ? entry : NULL;
2935 			continue;
2936 		}
2937 		first_iteration = false;
2938 		vm_map_clip_start(map, entry, start);
2939 		vm_map_clip_end(map, entry, end);
2940 		/*
2941 		 * Mark the entry in case the map lock is released.  (See
2942 		 * above.)
2943 		 */
2944 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
2945 		    entry->wiring_thread == NULL,
2946 		    ("owned map entry %p", entry));
2947 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
2948 		entry->wiring_thread = curthread;
2949 		/*
2950 		 * Check the map for holes in the specified region.
2951 		 * If holes_ok, skip this check.
2952 		 */
2953 		if (!holes_ok &&
2954 		    (entry->end < end &&
2955 		    vm_map_entry_succ(entry)->start > entry->end)) {
2956 			end = entry->end;
2957 			rv = KERN_INVALID_ADDRESS;
2958 			break;
2959 		}
2960 		/*
2961 		 * If system unwiring, require that the entry is system wired.
2962 		 */
2963 		if (!user_unwire &&
2964 		    vm_map_entry_system_wired_count(entry) == 0) {
2965 			end = entry->end;
2966 			rv = KERN_INVALID_ARGUMENT;
2967 			break;
2968 		}
2969 		entry = vm_map_entry_succ(entry);
2970 	}
2971 	need_wakeup = false;
2972 	if (first_entry == NULL &&
2973 	    !vm_map_lookup_entry(map, start, &first_entry)) {
2974 		KASSERT(holes_ok, ("vm_map_unwire: lookup failed"));
2975 		first_entry = vm_map_entry_succ(first_entry);
2976 	}
2977 	for (entry = first_entry; entry->start < end;
2978 	    entry = vm_map_entry_succ(entry)) {
2979 		/*
2980 		 * If holes_ok was specified, an empty
2981 		 * space in the unwired region could have been mapped
2982 		 * while the map lock was dropped for draining
2983 		 * MAP_ENTRY_IN_TRANSITION.  Moreover, another thread
2984 		 * could be simultaneously wiring this new mapping
2985 		 * entry.  Detect these cases and skip any entries
2986 		 * marked as in transition by us.
2987 		 */
2988 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
2989 		    entry->wiring_thread != curthread) {
2990 			KASSERT(holes_ok,
2991 			    ("vm_map_unwire: !HOLESOK and new/changed entry"));
2992 			continue;
2993 		}
2994 
2995 		if (rv == KERN_SUCCESS && (!user_unwire ||
2996 		    (entry->eflags & MAP_ENTRY_USER_WIRED))) {
2997 			if (entry->wired_count == 1)
2998 				vm_map_entry_unwire(map, entry);
2999 			else
3000 				entry->wired_count--;
3001 			if (user_unwire)
3002 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
3003 		}
3004 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3005 		    ("vm_map_unwire: in-transition flag missing %p", entry));
3006 		KASSERT(entry->wiring_thread == curthread,
3007 		    ("vm_map_unwire: alien wire %p", entry));
3008 		entry->eflags &= ~MAP_ENTRY_IN_TRANSITION;
3009 		entry->wiring_thread = NULL;
3010 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3011 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3012 			need_wakeup = true;
3013 		}
3014 		vm_map_try_merge_entries(map, vm_map_entry_pred(entry), entry);
3015 	}
3016 	vm_map_try_merge_entries(map, vm_map_entry_pred(entry), entry);
3017 	vm_map_unlock(map);
3018 	if (need_wakeup)
3019 		vm_map_wakeup(map);
3020 	return (rv);
3021 }
3022 
3023 static void
3024 vm_map_wire_user_count_sub(u_long npages)
3025 {
3026 
3027 	atomic_subtract_long(&vm_user_wire_count, npages);
3028 }
3029 
3030 static bool
3031 vm_map_wire_user_count_add(u_long npages)
3032 {
3033 	u_long wired;
3034 
3035 	wired = vm_user_wire_count;
3036 	do {
3037 		if (npages + wired > vm_page_max_user_wired)
3038 			return (false);
3039 	} while (!atomic_fcmpset_long(&vm_user_wire_count, &wired,
3040 	    npages + wired));
3041 
3042 	return (true);
3043 }
3044 
3045 /*
3046  *	vm_map_wire_entry_failure:
3047  *
3048  *	Handle a wiring failure on the given entry.
3049  *
3050  *	The map should be locked.
3051  */
3052 static void
3053 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry,
3054     vm_offset_t failed_addr)
3055 {
3056 
3057 	VM_MAP_ASSERT_LOCKED(map);
3058 	KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 &&
3059 	    entry->wired_count == 1,
3060 	    ("vm_map_wire_entry_failure: entry %p isn't being wired", entry));
3061 	KASSERT(failed_addr < entry->end,
3062 	    ("vm_map_wire_entry_failure: entry %p was fully wired", entry));
3063 
3064 	/*
3065 	 * If any pages at the start of this entry were successfully wired,
3066 	 * then unwire them.
3067 	 */
3068 	if (failed_addr > entry->start) {
3069 		pmap_unwire(map->pmap, entry->start, failed_addr);
3070 		vm_object_unwire(entry->object.vm_object, entry->offset,
3071 		    failed_addr - entry->start, PQ_ACTIVE);
3072 	}
3073 
3074 	/*
3075 	 * Assign an out-of-range value to represent the failure to wire this
3076 	 * entry.
3077 	 */
3078 	entry->wired_count = -1;
3079 }
3080 
3081 int
3082 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3083 {
3084 	int rv;
3085 
3086 	vm_map_lock(map);
3087 	rv = vm_map_wire_locked(map, start, end, flags);
3088 	vm_map_unlock(map);
3089 	return (rv);
3090 }
3091 
3092 
3093 /*
3094  *	vm_map_wire_locked:
3095  *
3096  *	Implements both kernel and user wiring.  Returns with the map locked,
3097  *	the map lock may be dropped.
3098  */
3099 int
3100 vm_map_wire_locked(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags)
3101 {
3102 	vm_map_entry_t entry, first_entry, tmp_entry;
3103 	vm_offset_t faddr, saved_end, saved_start;
3104 	u_long npages;
3105 	u_int last_timestamp;
3106 	int rv;
3107 	bool first_iteration, holes_ok, need_wakeup, user_wire;
3108 	vm_prot_t prot;
3109 
3110 	VM_MAP_ASSERT_LOCKED(map);
3111 
3112 	if (start == end)
3113 		return (KERN_SUCCESS);
3114 	prot = 0;
3115 	if (flags & VM_MAP_WIRE_WRITE)
3116 		prot |= VM_PROT_WRITE;
3117 	holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0;
3118 	user_wire = (flags & VM_MAP_WIRE_USER) != 0;
3119 	VM_MAP_RANGE_CHECK(map, start, end);
3120 	if (!vm_map_lookup_entry(map, start, &first_entry)) {
3121 		if (holes_ok)
3122 			first_entry = vm_map_entry_succ(first_entry);
3123 		else
3124 			return (KERN_INVALID_ADDRESS);
3125 	}
3126 	first_iteration = true;
3127 	entry = first_entry;
3128 	while (entry->start < end) {
3129 		if (entry->eflags & MAP_ENTRY_IN_TRANSITION) {
3130 			/*
3131 			 * We have not yet clipped the entry.
3132 			 */
3133 			entry = vm_map_entry_in_transition(map, start, &end,
3134 			    holes_ok, entry);
3135 			if (entry == NULL) {
3136 				if (first_iteration)
3137 					return (KERN_INVALID_ADDRESS);
3138 				rv = KERN_INVALID_ADDRESS;
3139 				goto done;
3140 			}
3141 			first_entry = first_iteration ? entry : NULL;
3142 			continue;
3143 		}
3144 		first_iteration = false;
3145 		vm_map_clip_start(map, entry, start);
3146 		vm_map_clip_end(map, entry, end);
3147 		/*
3148 		 * Mark the entry in case the map lock is released.  (See
3149 		 * above.)
3150 		 */
3151 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 &&
3152 		    entry->wiring_thread == NULL,
3153 		    ("owned map entry %p", entry));
3154 		entry->eflags |= MAP_ENTRY_IN_TRANSITION;
3155 		entry->wiring_thread = curthread;
3156 		if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0
3157 		    || (entry->protection & prot) != prot) {
3158 			entry->eflags |= MAP_ENTRY_WIRE_SKIPPED;
3159 			if (!holes_ok) {
3160 				end = entry->end;
3161 				rv = KERN_INVALID_ADDRESS;
3162 				goto done;
3163 			}
3164 		} else if (entry->wired_count == 0) {
3165 			entry->wired_count++;
3166 
3167 			npages = atop(entry->end - entry->start);
3168 			if (user_wire && !vm_map_wire_user_count_add(npages)) {
3169 				vm_map_wire_entry_failure(map, entry,
3170 				    entry->start);
3171 				end = entry->end;
3172 				rv = KERN_RESOURCE_SHORTAGE;
3173 				goto done;
3174 			}
3175 
3176 			/*
3177 			 * Release the map lock, relying on the in-transition
3178 			 * mark.  Mark the map busy for fork.
3179 			 */
3180 			saved_start = entry->start;
3181 			saved_end = entry->end;
3182 			last_timestamp = map->timestamp;
3183 			vm_map_busy(map);
3184 			vm_map_unlock(map);
3185 
3186 			faddr = saved_start;
3187 			do {
3188 				/*
3189 				 * Simulate a fault to get the page and enter
3190 				 * it into the physical map.
3191 				 */
3192 				if ((rv = vm_fault(map, faddr,
3193 				    VM_PROT_NONE, VM_FAULT_WIRE, NULL)) !=
3194 				    KERN_SUCCESS)
3195 					break;
3196 			} while ((faddr += PAGE_SIZE) < saved_end);
3197 			vm_map_lock(map);
3198 			vm_map_unbusy(map);
3199 			if (last_timestamp + 1 != map->timestamp) {
3200 				/*
3201 				 * Look again for the entry because the map was
3202 				 * modified while it was unlocked.  The entry
3203 				 * may have been clipped, but NOT merged or
3204 				 * deleted.
3205 				 */
3206 				if (!vm_map_lookup_entry(map, saved_start,
3207 				    &tmp_entry))
3208 					KASSERT(false,
3209 					    ("vm_map_wire: lookup failed"));
3210 				if (entry == first_entry)
3211 					first_entry = tmp_entry;
3212 				else
3213 					first_entry = NULL;
3214 				entry = tmp_entry;
3215 				while (entry->end < saved_end) {
3216 					/*
3217 					 * In case of failure, handle entries
3218 					 * that were not fully wired here;
3219 					 * fully wired entries are handled
3220 					 * later.
3221 					 */
3222 					if (rv != KERN_SUCCESS &&
3223 					    faddr < entry->end)
3224 						vm_map_wire_entry_failure(map,
3225 						    entry, faddr);
3226 					entry = vm_map_entry_succ(entry);
3227 				}
3228 			}
3229 			if (rv != KERN_SUCCESS) {
3230 				vm_map_wire_entry_failure(map, entry, faddr);
3231 				if (user_wire)
3232 					vm_map_wire_user_count_sub(npages);
3233 				end = entry->end;
3234 				goto done;
3235 			}
3236 		} else if (!user_wire ||
3237 			   (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3238 			entry->wired_count++;
3239 		}
3240 		/*
3241 		 * Check the map for holes in the specified region.
3242 		 * If holes_ok was specified, skip this check.
3243 		 */
3244 		if (!holes_ok &&
3245 		    entry->end < end &&
3246 		    vm_map_entry_succ(entry)->start > entry->end) {
3247 			end = entry->end;
3248 			rv = KERN_INVALID_ADDRESS;
3249 			goto done;
3250 		}
3251 		entry = vm_map_entry_succ(entry);
3252 	}
3253 	rv = KERN_SUCCESS;
3254 done:
3255 	need_wakeup = false;
3256 	if (first_entry == NULL &&
3257 	    !vm_map_lookup_entry(map, start, &first_entry)) {
3258 		KASSERT(holes_ok, ("vm_map_wire: lookup failed"));
3259 		first_entry = vm_map_entry_succ(first_entry);
3260 	}
3261 	for (entry = first_entry; entry->start < end;
3262 	    entry = vm_map_entry_succ(entry)) {
3263 		/*
3264 		 * If holes_ok was specified, an empty
3265 		 * space in the unwired region could have been mapped
3266 		 * while the map lock was dropped for faulting in the
3267 		 * pages or draining MAP_ENTRY_IN_TRANSITION.
3268 		 * Moreover, another thread could be simultaneously
3269 		 * wiring this new mapping entry.  Detect these cases
3270 		 * and skip any entries marked as in transition not by us.
3271 		 */
3272 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 ||
3273 		    entry->wiring_thread != curthread) {
3274 			KASSERT(holes_ok,
3275 			    ("vm_map_wire: !HOLESOK and new/changed entry"));
3276 			continue;
3277 		}
3278 
3279 		if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) {
3280 			/* do nothing */
3281 		} else if (rv == KERN_SUCCESS) {
3282 			if (user_wire)
3283 				entry->eflags |= MAP_ENTRY_USER_WIRED;
3284 		} else if (entry->wired_count == -1) {
3285 			/*
3286 			 * Wiring failed on this entry.  Thus, unwiring is
3287 			 * unnecessary.
3288 			 */
3289 			entry->wired_count = 0;
3290 		} else if (!user_wire ||
3291 		    (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) {
3292 			/*
3293 			 * Undo the wiring.  Wiring succeeded on this entry
3294 			 * but failed on a later entry.
3295 			 */
3296 			if (entry->wired_count == 1) {
3297 				vm_map_entry_unwire(map, entry);
3298 				if (user_wire)
3299 					vm_map_wire_user_count_sub(
3300 					    atop(entry->end - entry->start));
3301 			} else
3302 				entry->wired_count--;
3303 		}
3304 		KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0,
3305 		    ("vm_map_wire: in-transition flag missing %p", entry));
3306 		KASSERT(entry->wiring_thread == curthread,
3307 		    ("vm_map_wire: alien wire %p", entry));
3308 		entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION |
3309 		    MAP_ENTRY_WIRE_SKIPPED);
3310 		entry->wiring_thread = NULL;
3311 		if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) {
3312 			entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP;
3313 			need_wakeup = true;
3314 		}
3315 		vm_map_try_merge_entries(map, vm_map_entry_pred(entry), entry);
3316 	}
3317 	vm_map_try_merge_entries(map, vm_map_entry_pred(entry), entry);
3318 	if (need_wakeup)
3319 		vm_map_wakeup(map);
3320 	return (rv);
3321 }
3322 
3323 /*
3324  * vm_map_sync
3325  *
3326  * Push any dirty cached pages in the address range to their pager.
3327  * If syncio is TRUE, dirty pages are written synchronously.
3328  * If invalidate is TRUE, any cached pages are freed as well.
3329  *
3330  * If the size of the region from start to end is zero, we are
3331  * supposed to flush all modified pages within the region containing
3332  * start.  Unfortunately, a region can be split or coalesced with
3333  * neighboring regions, making it difficult to determine what the
3334  * original region was.  Therefore, we approximate this requirement by
3335  * flushing the current region containing start.
3336  *
3337  * Returns an error if any part of the specified range is not mapped.
3338  */
3339 int
3340 vm_map_sync(
3341 	vm_map_t map,
3342 	vm_offset_t start,
3343 	vm_offset_t end,
3344 	boolean_t syncio,
3345 	boolean_t invalidate)
3346 {
3347 	vm_map_entry_t current;
3348 	vm_map_entry_t entry;
3349 	vm_size_t size;
3350 	vm_object_t object;
3351 	vm_ooffset_t offset;
3352 	unsigned int last_timestamp;
3353 	boolean_t failed;
3354 
3355 	vm_map_lock_read(map);
3356 	VM_MAP_RANGE_CHECK(map, start, end);
3357 	if (!vm_map_lookup_entry(map, start, &entry)) {
3358 		vm_map_unlock_read(map);
3359 		return (KERN_INVALID_ADDRESS);
3360 	} else if (start == end) {
3361 		start = entry->start;
3362 		end = entry->end;
3363 	}
3364 	/*
3365 	 * Make a first pass to check for user-wired memory and holes.
3366 	 */
3367 	for (current = entry; current->start < end;
3368 	    current = vm_map_entry_succ(current)) {
3369 		if (invalidate && (current->eflags & MAP_ENTRY_USER_WIRED)) {
3370 			vm_map_unlock_read(map);
3371 			return (KERN_INVALID_ARGUMENT);
3372 		}
3373 		if (end > current->end &&
3374 		    current->end != vm_map_entry_succ(current)->start) {
3375 			vm_map_unlock_read(map);
3376 			return (KERN_INVALID_ADDRESS);
3377 		}
3378 	}
3379 
3380 	if (invalidate)
3381 		pmap_remove(map->pmap, start, end);
3382 	failed = FALSE;
3383 
3384 	/*
3385 	 * Make a second pass, cleaning/uncaching pages from the indicated
3386 	 * objects as we go.
3387 	 */
3388 	for (current = entry; current->start < end;) {
3389 		offset = current->offset + (start - current->start);
3390 		size = (end <= current->end ? end : current->end) - start;
3391 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
3392 			vm_map_t smap;
3393 			vm_map_entry_t tentry;
3394 			vm_size_t tsize;
3395 
3396 			smap = current->object.sub_map;
3397 			vm_map_lock_read(smap);
3398 			(void) vm_map_lookup_entry(smap, offset, &tentry);
3399 			tsize = tentry->end - offset;
3400 			if (tsize < size)
3401 				size = tsize;
3402 			object = tentry->object.vm_object;
3403 			offset = tentry->offset + (offset - tentry->start);
3404 			vm_map_unlock_read(smap);
3405 		} else {
3406 			object = current->object.vm_object;
3407 		}
3408 		vm_object_reference(object);
3409 		last_timestamp = map->timestamp;
3410 		vm_map_unlock_read(map);
3411 		if (!vm_object_sync(object, offset, size, syncio, invalidate))
3412 			failed = TRUE;
3413 		start += size;
3414 		vm_object_deallocate(object);
3415 		vm_map_lock_read(map);
3416 		if (last_timestamp == map->timestamp ||
3417 		    !vm_map_lookup_entry(map, start, &current))
3418 			current = vm_map_entry_succ(current);
3419 	}
3420 
3421 	vm_map_unlock_read(map);
3422 	return (failed ? KERN_FAILURE : KERN_SUCCESS);
3423 }
3424 
3425 /*
3426  *	vm_map_entry_unwire:	[ internal use only ]
3427  *
3428  *	Make the region specified by this entry pageable.
3429  *
3430  *	The map in question should be locked.
3431  *	[This is the reason for this routine's existence.]
3432  */
3433 static void
3434 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry)
3435 {
3436 	vm_size_t size;
3437 
3438 	VM_MAP_ASSERT_LOCKED(map);
3439 	KASSERT(entry->wired_count > 0,
3440 	    ("vm_map_entry_unwire: entry %p isn't wired", entry));
3441 
3442 	size = entry->end - entry->start;
3443 	if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0)
3444 		vm_map_wire_user_count_sub(atop(size));
3445 	pmap_unwire(map->pmap, entry->start, entry->end);
3446 	vm_object_unwire(entry->object.vm_object, entry->offset, size,
3447 	    PQ_ACTIVE);
3448 	entry->wired_count = 0;
3449 }
3450 
3451 static void
3452 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map)
3453 {
3454 
3455 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0)
3456 		vm_object_deallocate(entry->object.vm_object);
3457 	uma_zfree(system_map ? kmapentzone : mapentzone, entry);
3458 }
3459 
3460 /*
3461  *	vm_map_entry_delete:	[ internal use only ]
3462  *
3463  *	Deallocate the given entry from the target map.
3464  */
3465 static void
3466 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry)
3467 {
3468 	vm_object_t object;
3469 	vm_pindex_t offidxstart, offidxend, count, size1;
3470 	vm_size_t size;
3471 
3472 	vm_map_entry_unlink(map, entry, UNLINK_MERGE_NONE);
3473 	object = entry->object.vm_object;
3474 
3475 	if ((entry->eflags & MAP_ENTRY_GUARD) != 0) {
3476 		MPASS(entry->cred == NULL);
3477 		MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0);
3478 		MPASS(object == NULL);
3479 		vm_map_entry_deallocate(entry, map->system_map);
3480 		return;
3481 	}
3482 
3483 	size = entry->end - entry->start;
3484 	map->size -= size;
3485 
3486 	if (entry->cred != NULL) {
3487 		swap_release_by_cred(size, entry->cred);
3488 		crfree(entry->cred);
3489 	}
3490 
3491 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0 &&
3492 	    (object != NULL)) {
3493 		KASSERT(entry->cred == NULL || object->cred == NULL ||
3494 		    (entry->eflags & MAP_ENTRY_NEEDS_COPY),
3495 		    ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry));
3496 		count = atop(size);
3497 		offidxstart = OFF_TO_IDX(entry->offset);
3498 		offidxend = offidxstart + count;
3499 		VM_OBJECT_WLOCK(object);
3500 		if (object->ref_count != 1 && ((object->flags & (OBJ_NOSPLIT |
3501 		    OBJ_ONEMAPPING)) == OBJ_ONEMAPPING ||
3502 		    object == kernel_object)) {
3503 			vm_object_collapse(object);
3504 
3505 			/*
3506 			 * The option OBJPR_NOTMAPPED can be passed here
3507 			 * because vm_map_delete() already performed
3508 			 * pmap_remove() on the only mapping to this range
3509 			 * of pages.
3510 			 */
3511 			vm_object_page_remove(object, offidxstart, offidxend,
3512 			    OBJPR_NOTMAPPED);
3513 			if (object->type == OBJT_SWAP)
3514 				swap_pager_freespace(object, offidxstart,
3515 				    count);
3516 			if (offidxend >= object->size &&
3517 			    offidxstart < object->size) {
3518 				size1 = object->size;
3519 				object->size = offidxstart;
3520 				if (object->cred != NULL) {
3521 					size1 -= object->size;
3522 					KASSERT(object->charge >= ptoa(size1),
3523 					    ("object %p charge < 0", object));
3524 					swap_release_by_cred(ptoa(size1),
3525 					    object->cred);
3526 					object->charge -= ptoa(size1);
3527 				}
3528 			}
3529 		}
3530 		VM_OBJECT_WUNLOCK(object);
3531 	} else
3532 		entry->object.vm_object = NULL;
3533 	if (map->system_map)
3534 		vm_map_entry_deallocate(entry, TRUE);
3535 	else {
3536 		entry->defer_next = curthread->td_map_def_user;
3537 		curthread->td_map_def_user = entry;
3538 	}
3539 }
3540 
3541 /*
3542  *	vm_map_delete:	[ internal use only ]
3543  *
3544  *	Deallocates the given address range from the target
3545  *	map.
3546  */
3547 int
3548 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end)
3549 {
3550 	vm_map_entry_t entry;
3551 	vm_map_entry_t first_entry;
3552 
3553 	VM_MAP_ASSERT_LOCKED(map);
3554 	if (start == end)
3555 		return (KERN_SUCCESS);
3556 
3557 	/*
3558 	 * Find the start of the region, and clip it
3559 	 */
3560 	if (!vm_map_lookup_entry(map, start, &first_entry))
3561 		entry = vm_map_entry_succ(first_entry);
3562 	else {
3563 		entry = first_entry;
3564 		vm_map_clip_start(map, entry, start);
3565 	}
3566 
3567 	/*
3568 	 * Step through all entries in this region
3569 	 */
3570 	while (entry->start < end) {
3571 		vm_map_entry_t next;
3572 
3573 		/*
3574 		 * Wait for wiring or unwiring of an entry to complete.
3575 		 * Also wait for any system wirings to disappear on
3576 		 * user maps.
3577 		 */
3578 		if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 ||
3579 		    (vm_map_pmap(map) != kernel_pmap &&
3580 		    vm_map_entry_system_wired_count(entry) != 0)) {
3581 			unsigned int last_timestamp;
3582 			vm_offset_t saved_start;
3583 			vm_map_entry_t tmp_entry;
3584 
3585 			saved_start = entry->start;
3586 			entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
3587 			last_timestamp = map->timestamp;
3588 			(void) vm_map_unlock_and_wait(map, 0);
3589 			vm_map_lock(map);
3590 			if (last_timestamp + 1 != map->timestamp) {
3591 				/*
3592 				 * Look again for the entry because the map was
3593 				 * modified while it was unlocked.
3594 				 * Specifically, the entry may have been
3595 				 * clipped, merged, or deleted.
3596 				 */
3597 				if (!vm_map_lookup_entry(map, saved_start,
3598 							 &tmp_entry))
3599 					entry = vm_map_entry_succ(tmp_entry);
3600 				else {
3601 					entry = tmp_entry;
3602 					vm_map_clip_start(map, entry,
3603 							  saved_start);
3604 				}
3605 			}
3606 			continue;
3607 		}
3608 		vm_map_clip_end(map, entry, end);
3609 
3610 		next = vm_map_entry_succ(entry);
3611 
3612 		/*
3613 		 * Unwire before removing addresses from the pmap; otherwise,
3614 		 * unwiring will put the entries back in the pmap.
3615 		 */
3616 		if (entry->wired_count != 0)
3617 			vm_map_entry_unwire(map, entry);
3618 
3619 		/*
3620 		 * Remove mappings for the pages, but only if the
3621 		 * mappings could exist.  For instance, it does not
3622 		 * make sense to call pmap_remove() for guard entries.
3623 		 */
3624 		if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 ||
3625 		    entry->object.vm_object != NULL)
3626 			pmap_remove(map->pmap, entry->start, entry->end);
3627 
3628 		if (entry->end == map->anon_loc)
3629 			map->anon_loc = entry->start;
3630 
3631 		/*
3632 		 * Delete the entry only after removing all pmap
3633 		 * entries pointing to its pages.  (Otherwise, its
3634 		 * page frames may be reallocated, and any modify bits
3635 		 * will be set in the wrong object!)
3636 		 */
3637 		vm_map_entry_delete(map, entry);
3638 		entry = next;
3639 	}
3640 	return (KERN_SUCCESS);
3641 }
3642 
3643 /*
3644  *	vm_map_remove:
3645  *
3646  *	Remove the given address range from the target map.
3647  *	This is the exported form of vm_map_delete.
3648  */
3649 int
3650 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end)
3651 {
3652 	int result;
3653 
3654 	vm_map_lock(map);
3655 	VM_MAP_RANGE_CHECK(map, start, end);
3656 	result = vm_map_delete(map, start, end);
3657 	vm_map_unlock(map);
3658 	return (result);
3659 }
3660 
3661 /*
3662  *	vm_map_check_protection:
3663  *
3664  *	Assert that the target map allows the specified privilege on the
3665  *	entire address region given.  The entire region must be allocated.
3666  *
3667  *	WARNING!  This code does not and should not check whether the
3668  *	contents of the region is accessible.  For example a smaller file
3669  *	might be mapped into a larger address space.
3670  *
3671  *	NOTE!  This code is also called by munmap().
3672  *
3673  *	The map must be locked.  A read lock is sufficient.
3674  */
3675 boolean_t
3676 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
3677 			vm_prot_t protection)
3678 {
3679 	vm_map_entry_t entry;
3680 	vm_map_entry_t tmp_entry;
3681 
3682 	if (!vm_map_lookup_entry(map, start, &tmp_entry))
3683 		return (FALSE);
3684 	entry = tmp_entry;
3685 
3686 	while (start < end) {
3687 		/*
3688 		 * No holes allowed!
3689 		 */
3690 		if (start < entry->start)
3691 			return (FALSE);
3692 		/*
3693 		 * Check protection associated with entry.
3694 		 */
3695 		if ((entry->protection & protection) != protection)
3696 			return (FALSE);
3697 		/* go to next entry */
3698 		start = entry->end;
3699 		entry = vm_map_entry_succ(entry);
3700 	}
3701 	return (TRUE);
3702 }
3703 
3704 /*
3705  *	vm_map_copy_entry:
3706  *
3707  *	Copies the contents of the source entry to the destination
3708  *	entry.  The entries *must* be aligned properly.
3709  */
3710 static void
3711 vm_map_copy_entry(
3712 	vm_map_t src_map,
3713 	vm_map_t dst_map,
3714 	vm_map_entry_t src_entry,
3715 	vm_map_entry_t dst_entry,
3716 	vm_ooffset_t *fork_charge)
3717 {
3718 	vm_object_t src_object;
3719 	vm_map_entry_t fake_entry;
3720 	vm_offset_t size;
3721 	struct ucred *cred;
3722 	int charged;
3723 
3724 	VM_MAP_ASSERT_LOCKED(dst_map);
3725 
3726 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
3727 		return;
3728 
3729 	if (src_entry->wired_count == 0 ||
3730 	    (src_entry->protection & VM_PROT_WRITE) == 0) {
3731 		/*
3732 		 * If the source entry is marked needs_copy, it is already
3733 		 * write-protected.
3734 		 */
3735 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 &&
3736 		    (src_entry->protection & VM_PROT_WRITE) != 0) {
3737 			pmap_protect(src_map->pmap,
3738 			    src_entry->start,
3739 			    src_entry->end,
3740 			    src_entry->protection & ~VM_PROT_WRITE);
3741 		}
3742 
3743 		/*
3744 		 * Make a copy of the object.
3745 		 */
3746 		size = src_entry->end - src_entry->start;
3747 		if ((src_object = src_entry->object.vm_object) != NULL) {
3748 			VM_OBJECT_WLOCK(src_object);
3749 			charged = ENTRY_CHARGED(src_entry);
3750 			if (src_object->handle == NULL &&
3751 			    (src_object->type == OBJT_DEFAULT ||
3752 			    src_object->type == OBJT_SWAP)) {
3753 				vm_object_collapse(src_object);
3754 				if ((src_object->flags & (OBJ_NOSPLIT |
3755 				    OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
3756 					vm_object_split(src_entry);
3757 					src_object =
3758 					    src_entry->object.vm_object;
3759 				}
3760 			}
3761 			vm_object_reference_locked(src_object);
3762 			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
3763 			if (src_entry->cred != NULL &&
3764 			    !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) {
3765 				KASSERT(src_object->cred == NULL,
3766 				    ("OVERCOMMIT: vm_map_copy_entry: cred %p",
3767 				     src_object));
3768 				src_object->cred = src_entry->cred;
3769 				src_object->charge = size;
3770 			}
3771 			VM_OBJECT_WUNLOCK(src_object);
3772 			dst_entry->object.vm_object = src_object;
3773 			if (charged) {
3774 				cred = curthread->td_ucred;
3775 				crhold(cred);
3776 				dst_entry->cred = cred;
3777 				*fork_charge += size;
3778 				if (!(src_entry->eflags &
3779 				      MAP_ENTRY_NEEDS_COPY)) {
3780 					crhold(cred);
3781 					src_entry->cred = cred;
3782 					*fork_charge += size;
3783 				}
3784 			}
3785 			src_entry->eflags |= MAP_ENTRY_COW |
3786 			    MAP_ENTRY_NEEDS_COPY;
3787 			dst_entry->eflags |= MAP_ENTRY_COW |
3788 			    MAP_ENTRY_NEEDS_COPY;
3789 			dst_entry->offset = src_entry->offset;
3790 			if (src_entry->eflags & MAP_ENTRY_WRITECNT) {
3791 				/*
3792 				 * MAP_ENTRY_WRITECNT cannot
3793 				 * indicate write reference from
3794 				 * src_entry, since the entry is
3795 				 * marked as needs copy.  Allocate a
3796 				 * fake entry that is used to
3797 				 * decrement object->un_pager writecount
3798 				 * at the appropriate time.  Attach
3799 				 * fake_entry to the deferred list.
3800 				 */
3801 				fake_entry = vm_map_entry_create(dst_map);
3802 				fake_entry->eflags = MAP_ENTRY_WRITECNT;
3803 				src_entry->eflags &= ~MAP_ENTRY_WRITECNT;
3804 				vm_object_reference(src_object);
3805 				fake_entry->object.vm_object = src_object;
3806 				fake_entry->start = src_entry->start;
3807 				fake_entry->end = src_entry->end;
3808 				fake_entry->defer_next =
3809 				    curthread->td_map_def_user;
3810 				curthread->td_map_def_user = fake_entry;
3811 			}
3812 
3813 			pmap_copy(dst_map->pmap, src_map->pmap,
3814 			    dst_entry->start, dst_entry->end - dst_entry->start,
3815 			    src_entry->start);
3816 		} else {
3817 			dst_entry->object.vm_object = NULL;
3818 			dst_entry->offset = 0;
3819 			if (src_entry->cred != NULL) {
3820 				dst_entry->cred = curthread->td_ucred;
3821 				crhold(dst_entry->cred);
3822 				*fork_charge += size;
3823 			}
3824 		}
3825 	} else {
3826 		/*
3827 		 * We don't want to make writeable wired pages copy-on-write.
3828 		 * Immediately copy these pages into the new map by simulating
3829 		 * page faults.  The new pages are pageable.
3830 		 */
3831 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry,
3832 		    fork_charge);
3833 	}
3834 }
3835 
3836 /*
3837  * vmspace_map_entry_forked:
3838  * Update the newly-forked vmspace each time a map entry is inherited
3839  * or copied.  The values for vm_dsize and vm_tsize are approximate
3840  * (and mostly-obsolete ideas in the face of mmap(2) et al.)
3841  */
3842 static void
3843 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2,
3844     vm_map_entry_t entry)
3845 {
3846 	vm_size_t entrysize;
3847 	vm_offset_t newend;
3848 
3849 	if ((entry->eflags & MAP_ENTRY_GUARD) != 0)
3850 		return;
3851 	entrysize = entry->end - entry->start;
3852 	vm2->vm_map.size += entrysize;
3853 	if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) {
3854 		vm2->vm_ssize += btoc(entrysize);
3855 	} else if (entry->start >= (vm_offset_t)vm1->vm_daddr &&
3856 	    entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) {
3857 		newend = MIN(entry->end,
3858 		    (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize));
3859 		vm2->vm_dsize += btoc(newend - entry->start);
3860 	} else if (entry->start >= (vm_offset_t)vm1->vm_taddr &&
3861 	    entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) {
3862 		newend = MIN(entry->end,
3863 		    (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize));
3864 		vm2->vm_tsize += btoc(newend - entry->start);
3865 	}
3866 }
3867 
3868 /*
3869  * vmspace_fork:
3870  * Create a new process vmspace structure and vm_map
3871  * based on those of an existing process.  The new map
3872  * is based on the old map, according to the inheritance
3873  * values on the regions in that map.
3874  *
3875  * XXX It might be worth coalescing the entries added to the new vmspace.
3876  *
3877  * The source map must not be locked.
3878  */
3879 struct vmspace *
3880 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge)
3881 {
3882 	struct vmspace *vm2;
3883 	vm_map_t new_map, old_map;
3884 	vm_map_entry_t new_entry, old_entry;
3885 	vm_object_t object;
3886 	int error, locked;
3887 	vm_inherit_t inh;
3888 
3889 	old_map = &vm1->vm_map;
3890 	/* Copy immutable fields of vm1 to vm2. */
3891 	vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map),
3892 	    pmap_pinit);
3893 	if (vm2 == NULL)
3894 		return (NULL);
3895 
3896 	vm2->vm_taddr = vm1->vm_taddr;
3897 	vm2->vm_daddr = vm1->vm_daddr;
3898 	vm2->vm_maxsaddr = vm1->vm_maxsaddr;
3899 	vm_map_lock(old_map);
3900 	if (old_map->busy)
3901 		vm_map_wait_busy(old_map);
3902 	new_map = &vm2->vm_map;
3903 	locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */
3904 	KASSERT(locked, ("vmspace_fork: lock failed"));
3905 
3906 	error = pmap_vmspace_copy(new_map->pmap, old_map->pmap);
3907 	if (error != 0) {
3908 		sx_xunlock(&old_map->lock);
3909 		sx_xunlock(&new_map->lock);
3910 		vm_map_process_deferred();
3911 		vmspace_free(vm2);
3912 		return (NULL);
3913 	}
3914 
3915 	new_map->anon_loc = old_map->anon_loc;
3916 
3917 	old_entry = old_map->header.next;
3918 
3919 	while (old_entry != &old_map->header) {
3920 		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
3921 			panic("vm_map_fork: encountered a submap");
3922 
3923 		inh = old_entry->inheritance;
3924 		if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 &&
3925 		    inh != VM_INHERIT_NONE)
3926 			inh = VM_INHERIT_COPY;
3927 
3928 		switch (inh) {
3929 		case VM_INHERIT_NONE:
3930 			break;
3931 
3932 		case VM_INHERIT_SHARE:
3933 			/*
3934 			 * Clone the entry, creating the shared object if necessary.
3935 			 */
3936 			object = old_entry->object.vm_object;
3937 			if (object == NULL) {
3938 				vm_map_entry_back(old_entry);
3939 				object = old_entry->object.vm_object;
3940 			}
3941 
3942 			/*
3943 			 * Add the reference before calling vm_object_shadow
3944 			 * to insure that a shadow object is created.
3945 			 */
3946 			vm_object_reference(object);
3947 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
3948 				vm_object_shadow(&old_entry->object.vm_object,
3949 				    &old_entry->offset,
3950 				    old_entry->end - old_entry->start);
3951 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
3952 				/* Transfer the second reference too. */
3953 				vm_object_reference(
3954 				    old_entry->object.vm_object);
3955 
3956 				/*
3957 				 * As in vm_map_merged_neighbor_dispose(),
3958 				 * the vnode lock will not be acquired in
3959 				 * this call to vm_object_deallocate().
3960 				 */
3961 				vm_object_deallocate(object);
3962 				object = old_entry->object.vm_object;
3963 			}
3964 			VM_OBJECT_WLOCK(object);
3965 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
3966 			if (old_entry->cred != NULL) {
3967 				KASSERT(object->cred == NULL, ("vmspace_fork both cred"));
3968 				object->cred = old_entry->cred;
3969 				object->charge = old_entry->end - old_entry->start;
3970 				old_entry->cred = NULL;
3971 			}
3972 
3973 			/*
3974 			 * Assert the correct state of the vnode
3975 			 * v_writecount while the object is locked, to
3976 			 * not relock it later for the assertion
3977 			 * correctness.
3978 			 */
3979 			if (old_entry->eflags & MAP_ENTRY_WRITECNT &&
3980 			    object->type == OBJT_VNODE) {
3981 				KASSERT(((struct vnode *)object->handle)->
3982 				    v_writecount > 0,
3983 				    ("vmspace_fork: v_writecount %p", object));
3984 				KASSERT(object->un_pager.vnp.writemappings > 0,
3985 				    ("vmspace_fork: vnp.writecount %p",
3986 				    object));
3987 			}
3988 			VM_OBJECT_WUNLOCK(object);
3989 
3990 			/*
3991 			 * Clone the entry, referencing the shared object.
3992 			 */
3993 			new_entry = vm_map_entry_create(new_map);
3994 			*new_entry = *old_entry;
3995 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
3996 			    MAP_ENTRY_IN_TRANSITION);
3997 			new_entry->wiring_thread = NULL;
3998 			new_entry->wired_count = 0;
3999 			if (new_entry->eflags & MAP_ENTRY_WRITECNT) {
4000 				vm_pager_update_writecount(object,
4001 				    new_entry->start, new_entry->end);
4002 			}
4003 			vm_map_entry_set_vnode_text(new_entry, true);
4004 
4005 			/*
4006 			 * Insert the entry into the new map -- we know we're
4007 			 * inserting at the end of the new map.
4008 			 */
4009 			vm_map_entry_link(new_map, new_entry);
4010 			vmspace_map_entry_forked(vm1, vm2, new_entry);
4011 
4012 			/*
4013 			 * Update the physical map
4014 			 */
4015 			pmap_copy(new_map->pmap, old_map->pmap,
4016 			    new_entry->start,
4017 			    (old_entry->end - old_entry->start),
4018 			    old_entry->start);
4019 			break;
4020 
4021 		case VM_INHERIT_COPY:
4022 			/*
4023 			 * Clone the entry and link into the map.
4024 			 */
4025 			new_entry = vm_map_entry_create(new_map);
4026 			*new_entry = *old_entry;
4027 			/*
4028 			 * Copied entry is COW over the old object.
4029 			 */
4030 			new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED |
4031 			    MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_WRITECNT);
4032 			new_entry->wiring_thread = NULL;
4033 			new_entry->wired_count = 0;
4034 			new_entry->object.vm_object = NULL;
4035 			new_entry->cred = NULL;
4036 			vm_map_entry_link(new_map, new_entry);
4037 			vmspace_map_entry_forked(vm1, vm2, new_entry);
4038 			vm_map_copy_entry(old_map, new_map, old_entry,
4039 			    new_entry, fork_charge);
4040 			vm_map_entry_set_vnode_text(new_entry, true);
4041 			break;
4042 
4043 		case VM_INHERIT_ZERO:
4044 			/*
4045 			 * Create a new anonymous mapping entry modelled from
4046 			 * the old one.
4047 			 */
4048 			new_entry = vm_map_entry_create(new_map);
4049 			memset(new_entry, 0, sizeof(*new_entry));
4050 
4051 			new_entry->start = old_entry->start;
4052 			new_entry->end = old_entry->end;
4053 			new_entry->eflags = old_entry->eflags &
4054 			    ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION |
4055 			    MAP_ENTRY_WRITECNT | MAP_ENTRY_VN_EXEC);
4056 			new_entry->protection = old_entry->protection;
4057 			new_entry->max_protection = old_entry->max_protection;
4058 			new_entry->inheritance = VM_INHERIT_ZERO;
4059 
4060 			vm_map_entry_link(new_map, new_entry);
4061 			vmspace_map_entry_forked(vm1, vm2, new_entry);
4062 
4063 			new_entry->cred = curthread->td_ucred;
4064 			crhold(new_entry->cred);
4065 			*fork_charge += (new_entry->end - new_entry->start);
4066 
4067 			break;
4068 		}
4069 		old_entry = vm_map_entry_succ(old_entry);
4070 	}
4071 	/*
4072 	 * Use inlined vm_map_unlock() to postpone handling the deferred
4073 	 * map entries, which cannot be done until both old_map and
4074 	 * new_map locks are released.
4075 	 */
4076 	sx_xunlock(&old_map->lock);
4077 	sx_xunlock(&new_map->lock);
4078 	vm_map_process_deferred();
4079 
4080 	return (vm2);
4081 }
4082 
4083 /*
4084  * Create a process's stack for exec_new_vmspace().  This function is never
4085  * asked to wire the newly created stack.
4086  */
4087 int
4088 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4089     vm_prot_t prot, vm_prot_t max, int cow)
4090 {
4091 	vm_size_t growsize, init_ssize;
4092 	rlim_t vmemlim;
4093 	int rv;
4094 
4095 	MPASS((map->flags & MAP_WIREFUTURE) == 0);
4096 	growsize = sgrowsiz;
4097 	init_ssize = (max_ssize < growsize) ? max_ssize : growsize;
4098 	vm_map_lock(map);
4099 	vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4100 	/* If we would blow our VMEM resource limit, no go */
4101 	if (map->size + init_ssize > vmemlim) {
4102 		rv = KERN_NO_SPACE;
4103 		goto out;
4104 	}
4105 	rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot,
4106 	    max, cow);
4107 out:
4108 	vm_map_unlock(map);
4109 	return (rv);
4110 }
4111 
4112 static int stack_guard_page = 1;
4113 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN,
4114     &stack_guard_page, 0,
4115     "Specifies the number of guard pages for a stack that grows");
4116 
4117 static int
4118 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
4119     vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow)
4120 {
4121 	vm_map_entry_t new_entry, prev_entry;
4122 	vm_offset_t bot, gap_bot, gap_top, top;
4123 	vm_size_t init_ssize, sgp;
4124 	int orient, rv;
4125 
4126 	/*
4127 	 * The stack orientation is piggybacked with the cow argument.
4128 	 * Extract it into orient and mask the cow argument so that we
4129 	 * don't pass it around further.
4130 	 */
4131 	orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP);
4132 	KASSERT(orient != 0, ("No stack grow direction"));
4133 	KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP),
4134 	    ("bi-dir stack"));
4135 
4136 	if (addrbos < vm_map_min(map) ||
4137 	    addrbos + max_ssize > vm_map_max(map) ||
4138 	    addrbos + max_ssize <= addrbos)
4139 		return (KERN_INVALID_ADDRESS);
4140 	sgp = (curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ? 0 :
4141 	    (vm_size_t)stack_guard_page * PAGE_SIZE;
4142 	if (sgp >= max_ssize)
4143 		return (KERN_INVALID_ARGUMENT);
4144 
4145 	init_ssize = growsize;
4146 	if (max_ssize < init_ssize + sgp)
4147 		init_ssize = max_ssize - sgp;
4148 
4149 	/* If addr is already mapped, no go */
4150 	if (vm_map_lookup_entry(map, addrbos, &prev_entry))
4151 		return (KERN_NO_SPACE);
4152 
4153 	/*
4154 	 * If we can't accommodate max_ssize in the current mapping, no go.
4155 	 */
4156 	if (vm_map_entry_succ(prev_entry)->start < addrbos + max_ssize)
4157 		return (KERN_NO_SPACE);
4158 
4159 	/*
4160 	 * We initially map a stack of only init_ssize.  We will grow as
4161 	 * needed later.  Depending on the orientation of the stack (i.e.
4162 	 * the grow direction) we either map at the top of the range, the
4163 	 * bottom of the range or in the middle.
4164 	 *
4165 	 * Note: we would normally expect prot and max to be VM_PROT_ALL,
4166 	 * and cow to be 0.  Possibly we should eliminate these as input
4167 	 * parameters, and just pass these values here in the insert call.
4168 	 */
4169 	if (orient == MAP_STACK_GROWS_DOWN) {
4170 		bot = addrbos + max_ssize - init_ssize;
4171 		top = bot + init_ssize;
4172 		gap_bot = addrbos;
4173 		gap_top = bot;
4174 	} else /* if (orient == MAP_STACK_GROWS_UP) */ {
4175 		bot = addrbos;
4176 		top = bot + init_ssize;
4177 		gap_bot = top;
4178 		gap_top = addrbos + max_ssize;
4179 	}
4180 	rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow);
4181 	if (rv != KERN_SUCCESS)
4182 		return (rv);
4183 	new_entry = vm_map_entry_succ(prev_entry);
4184 	KASSERT(new_entry->end == top || new_entry->start == bot,
4185 	    ("Bad entry start/end for new stack entry"));
4186 	KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 ||
4187 	    (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0,
4188 	    ("new entry lacks MAP_ENTRY_GROWS_DOWN"));
4189 	KASSERT((orient & MAP_STACK_GROWS_UP) == 0 ||
4190 	    (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0,
4191 	    ("new entry lacks MAP_ENTRY_GROWS_UP"));
4192 	if (gap_bot == gap_top)
4193 		return (KERN_SUCCESS);
4194 	rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE,
4195 	    VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ?
4196 	    MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP));
4197 	if (rv == KERN_SUCCESS) {
4198 		/*
4199 		 * Gap can never successfully handle a fault, so
4200 		 * read-ahead logic is never used for it.  Re-use
4201 		 * next_read of the gap entry to store
4202 		 * stack_guard_page for vm_map_growstack().
4203 		 */
4204 		if (orient == MAP_STACK_GROWS_DOWN)
4205 			vm_map_entry_pred(new_entry)->next_read = sgp;
4206 		else
4207 			vm_map_entry_succ(new_entry)->next_read = sgp;
4208 	} else {
4209 		(void)vm_map_delete(map, bot, top);
4210 	}
4211 	return (rv);
4212 }
4213 
4214 /*
4215  * Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if we
4216  * successfully grow the stack.
4217  */
4218 static int
4219 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry)
4220 {
4221 	vm_map_entry_t stack_entry;
4222 	struct proc *p;
4223 	struct vmspace *vm;
4224 	struct ucred *cred;
4225 	vm_offset_t gap_end, gap_start, grow_start;
4226 	vm_size_t grow_amount, guard, max_grow;
4227 	rlim_t lmemlim, stacklim, vmemlim;
4228 	int rv, rv1;
4229 	bool gap_deleted, grow_down, is_procstack;
4230 #ifdef notyet
4231 	uint64_t limit;
4232 #endif
4233 #ifdef RACCT
4234 	int error;
4235 #endif
4236 
4237 	p = curproc;
4238 	vm = p->p_vmspace;
4239 
4240 	/*
4241 	 * Disallow stack growth when the access is performed by a
4242 	 * debugger or AIO daemon.  The reason is that the wrong
4243 	 * resource limits are applied.
4244 	 */
4245 	if (p != initproc && (map != &p->p_vmspace->vm_map ||
4246 	    p->p_textvp == NULL))
4247 		return (KERN_FAILURE);
4248 
4249 	MPASS(!map->system_map);
4250 
4251 	lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK);
4252 	stacklim = lim_cur(curthread, RLIMIT_STACK);
4253 	vmemlim = lim_cur(curthread, RLIMIT_VMEM);
4254 retry:
4255 	/* If addr is not in a hole for a stack grow area, no need to grow. */
4256 	if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry))
4257 		return (KERN_FAILURE);
4258 	if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0)
4259 		return (KERN_SUCCESS);
4260 	if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) {
4261 		stack_entry = vm_map_entry_succ(gap_entry);
4262 		if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 ||
4263 		    stack_entry->start != gap_entry->end)
4264 			return (KERN_FAILURE);
4265 		grow_amount = round_page(stack_entry->start - addr);
4266 		grow_down = true;
4267 	} else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) {
4268 		stack_entry = vm_map_entry_pred(gap_entry);
4269 		if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 ||
4270 		    stack_entry->end != gap_entry->start)
4271 			return (KERN_FAILURE);
4272 		grow_amount = round_page(addr + 1 - stack_entry->end);
4273 		grow_down = false;
4274 	} else {
4275 		return (KERN_FAILURE);
4276 	}
4277 	guard = (curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 ? 0 :
4278 	    gap_entry->next_read;
4279 	max_grow = gap_entry->end - gap_entry->start;
4280 	if (guard > max_grow)
4281 		return (KERN_NO_SPACE);
4282 	max_grow -= guard;
4283 	if (grow_amount > max_grow)
4284 		return (KERN_NO_SPACE);
4285 
4286 	/*
4287 	 * If this is the main process stack, see if we're over the stack
4288 	 * limit.
4289 	 */
4290 	is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr &&
4291 	    addr < (vm_offset_t)p->p_sysent->sv_usrstack;
4292 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim))
4293 		return (KERN_NO_SPACE);
4294 
4295 #ifdef RACCT
4296 	if (racct_enable) {
4297 		PROC_LOCK(p);
4298 		if (is_procstack && racct_set(p, RACCT_STACK,
4299 		    ctob(vm->vm_ssize) + grow_amount)) {
4300 			PROC_UNLOCK(p);
4301 			return (KERN_NO_SPACE);
4302 		}
4303 		PROC_UNLOCK(p);
4304 	}
4305 #endif
4306 
4307 	grow_amount = roundup(grow_amount, sgrowsiz);
4308 	if (grow_amount > max_grow)
4309 		grow_amount = max_grow;
4310 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) {
4311 		grow_amount = trunc_page((vm_size_t)stacklim) -
4312 		    ctob(vm->vm_ssize);
4313 	}
4314 
4315 #ifdef notyet
4316 	PROC_LOCK(p);
4317 	limit = racct_get_available(p, RACCT_STACK);
4318 	PROC_UNLOCK(p);
4319 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit))
4320 		grow_amount = limit - ctob(vm->vm_ssize);
4321 #endif
4322 
4323 	if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) {
4324 		if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) {
4325 			rv = KERN_NO_SPACE;
4326 			goto out;
4327 		}
4328 #ifdef RACCT
4329 		if (racct_enable) {
4330 			PROC_LOCK(p);
4331 			if (racct_set(p, RACCT_MEMLOCK,
4332 			    ptoa(pmap_wired_count(map->pmap)) + grow_amount)) {
4333 				PROC_UNLOCK(p);
4334 				rv = KERN_NO_SPACE;
4335 				goto out;
4336 			}
4337 			PROC_UNLOCK(p);
4338 		}
4339 #endif
4340 	}
4341 
4342 	/* If we would blow our VMEM resource limit, no go */
4343 	if (map->size + grow_amount > vmemlim) {
4344 		rv = KERN_NO_SPACE;
4345 		goto out;
4346 	}
4347 #ifdef RACCT
4348 	if (racct_enable) {
4349 		PROC_LOCK(p);
4350 		if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) {
4351 			PROC_UNLOCK(p);
4352 			rv = KERN_NO_SPACE;
4353 			goto out;
4354 		}
4355 		PROC_UNLOCK(p);
4356 	}
4357 #endif
4358 
4359 	if (vm_map_lock_upgrade(map)) {
4360 		gap_entry = NULL;
4361 		vm_map_lock_read(map);
4362 		goto retry;
4363 	}
4364 
4365 	if (grow_down) {
4366 		grow_start = gap_entry->end - grow_amount;
4367 		if (gap_entry->start + grow_amount == gap_entry->end) {
4368 			gap_start = gap_entry->start;
4369 			gap_end = gap_entry->end;
4370 			vm_map_entry_delete(map, gap_entry);
4371 			gap_deleted = true;
4372 		} else {
4373 			MPASS(gap_entry->start < gap_entry->end - grow_amount);
4374 			vm_map_entry_resize(map, gap_entry, -grow_amount);
4375 			gap_deleted = false;
4376 		}
4377 		rv = vm_map_insert(map, NULL, 0, grow_start,
4378 		    grow_start + grow_amount,
4379 		    stack_entry->protection, stack_entry->max_protection,
4380 		    MAP_STACK_GROWS_DOWN);
4381 		if (rv != KERN_SUCCESS) {
4382 			if (gap_deleted) {
4383 				rv1 = vm_map_insert(map, NULL, 0, gap_start,
4384 				    gap_end, VM_PROT_NONE, VM_PROT_NONE,
4385 				    MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN);
4386 				MPASS(rv1 == KERN_SUCCESS);
4387 			} else
4388 				vm_map_entry_resize(map, gap_entry,
4389 				    grow_amount);
4390 		}
4391 	} else {
4392 		grow_start = stack_entry->end;
4393 		cred = stack_entry->cred;
4394 		if (cred == NULL && stack_entry->object.vm_object != NULL)
4395 			cred = stack_entry->object.vm_object->cred;
4396 		if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred))
4397 			rv = KERN_NO_SPACE;
4398 		/* Grow the underlying object if applicable. */
4399 		else if (stack_entry->object.vm_object == NULL ||
4400 		    vm_object_coalesce(stack_entry->object.vm_object,
4401 		    stack_entry->offset,
4402 		    (vm_size_t)(stack_entry->end - stack_entry->start),
4403 		    grow_amount, cred != NULL)) {
4404 			if (gap_entry->start + grow_amount == gap_entry->end) {
4405 				vm_map_entry_delete(map, gap_entry);
4406 				vm_map_entry_resize(map, stack_entry,
4407 				    grow_amount);
4408 			} else {
4409 				gap_entry->start += grow_amount;
4410 				stack_entry->end += grow_amount;
4411 			}
4412 			map->size += grow_amount;
4413 			rv = KERN_SUCCESS;
4414 		} else
4415 			rv = KERN_FAILURE;
4416 	}
4417 	if (rv == KERN_SUCCESS && is_procstack)
4418 		vm->vm_ssize += btoc(grow_amount);
4419 
4420 	/*
4421 	 * Heed the MAP_WIREFUTURE flag if it was set for this process.
4422 	 */
4423 	if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) {
4424 		rv = vm_map_wire_locked(map, grow_start,
4425 		    grow_start + grow_amount,
4426 		    VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
4427 	}
4428 	vm_map_lock_downgrade(map);
4429 
4430 out:
4431 #ifdef RACCT
4432 	if (racct_enable && rv != KERN_SUCCESS) {
4433 		PROC_LOCK(p);
4434 		error = racct_set(p, RACCT_VMEM, map->size);
4435 		KASSERT(error == 0, ("decreasing RACCT_VMEM failed"));
4436 		if (!old_mlock) {
4437 			error = racct_set(p, RACCT_MEMLOCK,
4438 			    ptoa(pmap_wired_count(map->pmap)));
4439 			KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed"));
4440 		}
4441 	    	error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize));
4442 		KASSERT(error == 0, ("decreasing RACCT_STACK failed"));
4443 		PROC_UNLOCK(p);
4444 	}
4445 #endif
4446 
4447 	return (rv);
4448 }
4449 
4450 /*
4451  * Unshare the specified VM space for exec.  If other processes are
4452  * mapped to it, then create a new one.  The new vmspace is null.
4453  */
4454 int
4455 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser)
4456 {
4457 	struct vmspace *oldvmspace = p->p_vmspace;
4458 	struct vmspace *newvmspace;
4459 
4460 	KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0,
4461 	    ("vmspace_exec recursed"));
4462 	newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit);
4463 	if (newvmspace == NULL)
4464 		return (ENOMEM);
4465 	newvmspace->vm_swrss = oldvmspace->vm_swrss;
4466 	/*
4467 	 * This code is written like this for prototype purposes.  The
4468 	 * goal is to avoid running down the vmspace here, but let the
4469 	 * other process's that are still using the vmspace to finally
4470 	 * run it down.  Even though there is little or no chance of blocking
4471 	 * here, it is a good idea to keep this form for future mods.
4472 	 */
4473 	PROC_VMSPACE_LOCK(p);
4474 	p->p_vmspace = newvmspace;
4475 	PROC_VMSPACE_UNLOCK(p);
4476 	if (p == curthread->td_proc)
4477 		pmap_activate(curthread);
4478 	curthread->td_pflags |= TDP_EXECVMSPC;
4479 	return (0);
4480 }
4481 
4482 /*
4483  * Unshare the specified VM space for forcing COW.  This
4484  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
4485  */
4486 int
4487 vmspace_unshare(struct proc *p)
4488 {
4489 	struct vmspace *oldvmspace = p->p_vmspace;
4490 	struct vmspace *newvmspace;
4491 	vm_ooffset_t fork_charge;
4492 
4493 	if (oldvmspace->vm_refcnt == 1)
4494 		return (0);
4495 	fork_charge = 0;
4496 	newvmspace = vmspace_fork(oldvmspace, &fork_charge);
4497 	if (newvmspace == NULL)
4498 		return (ENOMEM);
4499 	if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) {
4500 		vmspace_free(newvmspace);
4501 		return (ENOMEM);
4502 	}
4503 	PROC_VMSPACE_LOCK(p);
4504 	p->p_vmspace = newvmspace;
4505 	PROC_VMSPACE_UNLOCK(p);
4506 	if (p == curthread->td_proc)
4507 		pmap_activate(curthread);
4508 	vmspace_free(oldvmspace);
4509 	return (0);
4510 }
4511 
4512 /*
4513  *	vm_map_lookup:
4514  *
4515  *	Finds the VM object, offset, and
4516  *	protection for a given virtual address in the
4517  *	specified map, assuming a page fault of the
4518  *	type specified.
4519  *
4520  *	Leaves the map in question locked for read; return
4521  *	values are guaranteed until a vm_map_lookup_done
4522  *	call is performed.  Note that the map argument
4523  *	is in/out; the returned map must be used in
4524  *	the call to vm_map_lookup_done.
4525  *
4526  *	A handle (out_entry) is returned for use in
4527  *	vm_map_lookup_done, to make that fast.
4528  *
4529  *	If a lookup is requested with "write protection"
4530  *	specified, the map may be changed to perform virtual
4531  *	copying operations, although the data referenced will
4532  *	remain the same.
4533  */
4534 int
4535 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
4536 	      vm_offset_t vaddr,
4537 	      vm_prot_t fault_typea,
4538 	      vm_map_entry_t *out_entry,	/* OUT */
4539 	      vm_object_t *object,		/* OUT */
4540 	      vm_pindex_t *pindex,		/* OUT */
4541 	      vm_prot_t *out_prot,		/* OUT */
4542 	      boolean_t *wired)			/* OUT */
4543 {
4544 	vm_map_entry_t entry;
4545 	vm_map_t map = *var_map;
4546 	vm_prot_t prot;
4547 	vm_prot_t fault_type = fault_typea;
4548 	vm_object_t eobject;
4549 	vm_size_t size;
4550 	struct ucred *cred;
4551 
4552 RetryLookup:
4553 
4554 	vm_map_lock_read(map);
4555 
4556 RetryLookupLocked:
4557 	/*
4558 	 * Lookup the faulting address.
4559 	 */
4560 	if (!vm_map_lookup_entry(map, vaddr, out_entry)) {
4561 		vm_map_unlock_read(map);
4562 		return (KERN_INVALID_ADDRESS);
4563 	}
4564 
4565 	entry = *out_entry;
4566 
4567 	/*
4568 	 * Handle submaps.
4569 	 */
4570 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4571 		vm_map_t old_map = map;
4572 
4573 		*var_map = map = entry->object.sub_map;
4574 		vm_map_unlock_read(old_map);
4575 		goto RetryLookup;
4576 	}
4577 
4578 	/*
4579 	 * Check whether this task is allowed to have this page.
4580 	 */
4581 	prot = entry->protection;
4582 	if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) {
4583 		fault_typea &= ~VM_PROT_FAULT_LOOKUP;
4584 		if (prot == VM_PROT_NONE && map != kernel_map &&
4585 		    (entry->eflags & MAP_ENTRY_GUARD) != 0 &&
4586 		    (entry->eflags & (MAP_ENTRY_STACK_GAP_DN |
4587 		    MAP_ENTRY_STACK_GAP_UP)) != 0 &&
4588 		    vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS)
4589 			goto RetryLookupLocked;
4590 	}
4591 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4592 	if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) {
4593 		vm_map_unlock_read(map);
4594 		return (KERN_PROTECTION_FAILURE);
4595 	}
4596 	KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags &
4597 	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) !=
4598 	    (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY),
4599 	    ("entry %p flags %x", entry, entry->eflags));
4600 	if ((fault_typea & VM_PROT_COPY) != 0 &&
4601 	    (entry->max_protection & VM_PROT_WRITE) == 0 &&
4602 	    (entry->eflags & MAP_ENTRY_COW) == 0) {
4603 		vm_map_unlock_read(map);
4604 		return (KERN_PROTECTION_FAILURE);
4605 	}
4606 
4607 	/*
4608 	 * If this page is not pageable, we have to get it for all possible
4609 	 * accesses.
4610 	 */
4611 	*wired = (entry->wired_count != 0);
4612 	if (*wired)
4613 		fault_type = entry->protection;
4614 	size = entry->end - entry->start;
4615 	/*
4616 	 * If the entry was copy-on-write, we either ...
4617 	 */
4618 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4619 		/*
4620 		 * If we want to write the page, we may as well handle that
4621 		 * now since we've got the map locked.
4622 		 *
4623 		 * If we don't need to write the page, we just demote the
4624 		 * permissions allowed.
4625 		 */
4626 		if ((fault_type & VM_PROT_WRITE) != 0 ||
4627 		    (fault_typea & VM_PROT_COPY) != 0) {
4628 			/*
4629 			 * Make a new object, and place it in the object
4630 			 * chain.  Note that no new references have appeared
4631 			 * -- one just moved from the map to the new
4632 			 * object.
4633 			 */
4634 			if (vm_map_lock_upgrade(map))
4635 				goto RetryLookup;
4636 
4637 			if (entry->cred == NULL) {
4638 				/*
4639 				 * The debugger owner is charged for
4640 				 * the memory.
4641 				 */
4642 				cred = curthread->td_ucred;
4643 				crhold(cred);
4644 				if (!swap_reserve_by_cred(size, cred)) {
4645 					crfree(cred);
4646 					vm_map_unlock(map);
4647 					return (KERN_RESOURCE_SHORTAGE);
4648 				}
4649 				entry->cred = cred;
4650 			}
4651 			vm_object_shadow(&entry->object.vm_object,
4652 			    &entry->offset, size);
4653 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
4654 			eobject = entry->object.vm_object;
4655 			if (eobject->cred != NULL) {
4656 				/*
4657 				 * The object was not shadowed.
4658 				 */
4659 				swap_release_by_cred(size, entry->cred);
4660 				crfree(entry->cred);
4661 				entry->cred = NULL;
4662 			} else if (entry->cred != NULL) {
4663 				VM_OBJECT_WLOCK(eobject);
4664 				eobject->cred = entry->cred;
4665 				eobject->charge = size;
4666 				VM_OBJECT_WUNLOCK(eobject);
4667 				entry->cred = NULL;
4668 			}
4669 
4670 			vm_map_lock_downgrade(map);
4671 		} else {
4672 			/*
4673 			 * We're attempting to read a copy-on-write page --
4674 			 * don't allow writes.
4675 			 */
4676 			prot &= ~VM_PROT_WRITE;
4677 		}
4678 	}
4679 
4680 	/*
4681 	 * Create an object if necessary.
4682 	 */
4683 	if (entry->object.vm_object == NULL &&
4684 	    !map->system_map) {
4685 		if (vm_map_lock_upgrade(map))
4686 			goto RetryLookup;
4687 		entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
4688 		    atop(size));
4689 		entry->offset = 0;
4690 		if (entry->cred != NULL) {
4691 			VM_OBJECT_WLOCK(entry->object.vm_object);
4692 			entry->object.vm_object->cred = entry->cred;
4693 			entry->object.vm_object->charge = size;
4694 			VM_OBJECT_WUNLOCK(entry->object.vm_object);
4695 			entry->cred = NULL;
4696 		}
4697 		vm_map_lock_downgrade(map);
4698 	}
4699 
4700 	/*
4701 	 * Return the object/offset from this entry.  If the entry was
4702 	 * copy-on-write or empty, it has been fixed up.
4703 	 */
4704 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4705 	*object = entry->object.vm_object;
4706 
4707 	*out_prot = prot;
4708 	return (KERN_SUCCESS);
4709 }
4710 
4711 /*
4712  *	vm_map_lookup_locked:
4713  *
4714  *	Lookup the faulting address.  A version of vm_map_lookup that returns
4715  *      KERN_FAILURE instead of blocking on map lock or memory allocation.
4716  */
4717 int
4718 vm_map_lookup_locked(vm_map_t *var_map,		/* IN/OUT */
4719 		     vm_offset_t vaddr,
4720 		     vm_prot_t fault_typea,
4721 		     vm_map_entry_t *out_entry,	/* OUT */
4722 		     vm_object_t *object,	/* OUT */
4723 		     vm_pindex_t *pindex,	/* OUT */
4724 		     vm_prot_t *out_prot,	/* OUT */
4725 		     boolean_t *wired)		/* OUT */
4726 {
4727 	vm_map_entry_t entry;
4728 	vm_map_t map = *var_map;
4729 	vm_prot_t prot;
4730 	vm_prot_t fault_type = fault_typea;
4731 
4732 	/*
4733 	 * Lookup the faulting address.
4734 	 */
4735 	if (!vm_map_lookup_entry(map, vaddr, out_entry))
4736 		return (KERN_INVALID_ADDRESS);
4737 
4738 	entry = *out_entry;
4739 
4740 	/*
4741 	 * Fail if the entry refers to a submap.
4742 	 */
4743 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
4744 		return (KERN_FAILURE);
4745 
4746 	/*
4747 	 * Check whether this task is allowed to have this page.
4748 	 */
4749 	prot = entry->protection;
4750 	fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE;
4751 	if ((fault_type & prot) != fault_type)
4752 		return (KERN_PROTECTION_FAILURE);
4753 
4754 	/*
4755 	 * If this page is not pageable, we have to get it for all possible
4756 	 * accesses.
4757 	 */
4758 	*wired = (entry->wired_count != 0);
4759 	if (*wired)
4760 		fault_type = entry->protection;
4761 
4762 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
4763 		/*
4764 		 * Fail if the entry was copy-on-write for a write fault.
4765 		 */
4766 		if (fault_type & VM_PROT_WRITE)
4767 			return (KERN_FAILURE);
4768 		/*
4769 		 * We're attempting to read a copy-on-write page --
4770 		 * don't allow writes.
4771 		 */
4772 		prot &= ~VM_PROT_WRITE;
4773 	}
4774 
4775 	/*
4776 	 * Fail if an object should be created.
4777 	 */
4778 	if (entry->object.vm_object == NULL && !map->system_map)
4779 		return (KERN_FAILURE);
4780 
4781 	/*
4782 	 * Return the object/offset from this entry.  If the entry was
4783 	 * copy-on-write or empty, it has been fixed up.
4784 	 */
4785 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
4786 	*object = entry->object.vm_object;
4787 
4788 	*out_prot = prot;
4789 	return (KERN_SUCCESS);
4790 }
4791 
4792 /*
4793  *	vm_map_lookup_done:
4794  *
4795  *	Releases locks acquired by a vm_map_lookup
4796  *	(according to the handle returned by that lookup).
4797  */
4798 void
4799 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry)
4800 {
4801 	/*
4802 	 * Unlock the main-level map
4803 	 */
4804 	vm_map_unlock_read(map);
4805 }
4806 
4807 vm_offset_t
4808 vm_map_max_KBI(const struct vm_map *map)
4809 {
4810 
4811 	return (vm_map_max(map));
4812 }
4813 
4814 vm_offset_t
4815 vm_map_min_KBI(const struct vm_map *map)
4816 {
4817 
4818 	return (vm_map_min(map));
4819 }
4820 
4821 pmap_t
4822 vm_map_pmap_KBI(vm_map_t map)
4823 {
4824 
4825 	return (map->pmap);
4826 }
4827 
4828 #ifdef INVARIANTS
4829 static void
4830 _vm_map_assert_consistent(vm_map_t map, int check)
4831 {
4832 	vm_map_entry_t entry, prev;
4833 	vm_size_t max_left, max_right;
4834 
4835 	if (enable_vmmap_check != check)
4836 		return;
4837 
4838 	prev = &map->header;
4839 	VM_MAP_ENTRY_FOREACH(entry, map) {
4840 		KASSERT(prev->end <= entry->start,
4841 		    ("map %p prev->end = %jx, start = %jx", map,
4842 		    (uintmax_t)prev->end, (uintmax_t)entry->start));
4843 		KASSERT(entry->start < entry->end,
4844 		    ("map %p start = %jx, end = %jx", map,
4845 		    (uintmax_t)entry->start, (uintmax_t)entry->end));
4846 		KASSERT(entry->end <= vm_map_entry_succ(entry)->start,
4847 		    ("map %p end = %jx, next->start = %jx", map,
4848 		     (uintmax_t)entry->end,
4849 		     (uintmax_t)vm_map_entry_succ(entry)->start));
4850 		KASSERT(entry->left == NULL ||
4851 		    entry->left->start < entry->start,
4852 		    ("map %p left->start = %jx, start = %jx", map,
4853 		    (uintmax_t)entry->left->start, (uintmax_t)entry->start));
4854 		KASSERT(entry->right == NULL ||
4855 		    entry->start < entry->right->start,
4856 		    ("map %p start = %jx, right->start = %jx", map,
4857 		    (uintmax_t)entry->start, (uintmax_t)entry->right->start));
4858 		max_left = vm_map_entry_max_free_left(entry,
4859 		    vm_map_entry_pred(entry));
4860 		max_right = vm_map_entry_max_free_right(entry,
4861 		    vm_map_entry_succ(entry));
4862 		KASSERT(entry->max_free == MAX(max_left, max_right),
4863 		    ("map %p max = %jx, max_left = %jx, max_right = %jx", map,
4864 		    (uintmax_t)entry->max_free,
4865 		    (uintmax_t)max_left, (uintmax_t)max_right));
4866 		prev = entry;
4867 	}
4868 	KASSERT(prev->end <= entry->start,
4869 	    ("map %p prev->end = %jx, start = %jx", map,
4870 	    (uintmax_t)prev->end, (uintmax_t)entry->start));
4871 }
4872 #endif
4873 
4874 #include "opt_ddb.h"
4875 #ifdef DDB
4876 #include <sys/kernel.h>
4877 
4878 #include <ddb/ddb.h>
4879 
4880 static void
4881 vm_map_print(vm_map_t map)
4882 {
4883 	vm_map_entry_t entry, prev;
4884 
4885 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
4886 	    (void *)map,
4887 	    (void *)map->pmap, map->nentries, map->timestamp);
4888 
4889 	db_indent += 2;
4890 	prev = &map->header;
4891 	VM_MAP_ENTRY_FOREACH(entry, map) {
4892 		db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n",
4893 		    (void *)entry, (void *)entry->start, (void *)entry->end,
4894 		    entry->eflags);
4895 		{
4896 			static char *inheritance_name[4] =
4897 			{"share", "copy", "none", "donate_copy"};
4898 
4899 			db_iprintf(" prot=%x/%x/%s",
4900 			    entry->protection,
4901 			    entry->max_protection,
4902 			    inheritance_name[(int)(unsigned char)
4903 			    entry->inheritance]);
4904 			if (entry->wired_count != 0)
4905 				db_printf(", wired");
4906 		}
4907 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
4908 			db_printf(", share=%p, offset=0x%jx\n",
4909 			    (void *)entry->object.sub_map,
4910 			    (uintmax_t)entry->offset);
4911 			if (prev == &map->header ||
4912 			    prev->object.sub_map !=
4913 				entry->object.sub_map) {
4914 				db_indent += 2;
4915 				vm_map_print((vm_map_t)entry->object.sub_map);
4916 				db_indent -= 2;
4917 			}
4918 		} else {
4919 			if (entry->cred != NULL)
4920 				db_printf(", ruid %d", entry->cred->cr_ruid);
4921 			db_printf(", object=%p, offset=0x%jx",
4922 			    (void *)entry->object.vm_object,
4923 			    (uintmax_t)entry->offset);
4924 			if (entry->object.vm_object && entry->object.vm_object->cred)
4925 				db_printf(", obj ruid %d charge %jx",
4926 				    entry->object.vm_object->cred->cr_ruid,
4927 				    (uintmax_t)entry->object.vm_object->charge);
4928 			if (entry->eflags & MAP_ENTRY_COW)
4929 				db_printf(", copy (%s)",
4930 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
4931 			db_printf("\n");
4932 
4933 			if (prev == &map->header ||
4934 			    prev->object.vm_object !=
4935 				entry->object.vm_object) {
4936 				db_indent += 2;
4937 				vm_object_print((db_expr_t)(intptr_t)
4938 						entry->object.vm_object,
4939 						0, 0, (char *)0);
4940 				db_indent -= 2;
4941 			}
4942 		}
4943 		prev = entry;
4944 	}
4945 	db_indent -= 2;
4946 }
4947 
4948 DB_SHOW_COMMAND(map, map)
4949 {
4950 
4951 	if (!have_addr) {
4952 		db_printf("usage: show map <addr>\n");
4953 		return;
4954 	}
4955 	vm_map_print((vm_map_t)addr);
4956 }
4957 
4958 DB_SHOW_COMMAND(procvm, procvm)
4959 {
4960 	struct proc *p;
4961 
4962 	if (have_addr) {
4963 		p = db_lookup_proc(addr);
4964 	} else {
4965 		p = curproc;
4966 	}
4967 
4968 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
4969 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
4970 	    (void *)vmspace_pmap(p->p_vmspace));
4971 
4972 	vm_map_print((vm_map_t)&p->p_vmspace->vm_map);
4973 }
4974 
4975 #endif /* DDB */
4976