xref: /freebsd/sys/vm/vm_map.c (revision 4cf49a43559ed9fdad601bdcccd2c55963008675)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * The Mach Operating System project at Carnegie-Mellon University.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	from: @(#)vm_map.c	8.3 (Berkeley) 1/12/94
37  *
38  *
39  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
40  * All rights reserved.
41  *
42  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
43  *
44  * Permission to use, copy, modify and distribute this software and
45  * its documentation is hereby granted, provided that both the copyright
46  * notice and this permission notice appear in all copies of the
47  * software, derivative works or modified versions, and any portions
48  * thereof, and that both notices appear in supporting documentation.
49  *
50  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
51  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
52  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
53  *
54  * Carnegie Mellon requests users of this software to return to
55  *
56  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
57  *  School of Computer Science
58  *  Carnegie Mellon University
59  *  Pittsburgh PA 15213-3890
60  *
61  * any improvements or extensions that they make and grant Carnegie the
62  * rights to redistribute these changes.
63  *
64  * $FreeBSD$
65  */
66 
67 /*
68  *	Virtual memory mapping module.
69  */
70 
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/malloc.h>
74 #include <sys/proc.h>
75 #include <sys/vmmeter.h>
76 #include <sys/mman.h>
77 #include <sys/vnode.h>
78 #include <sys/resourcevar.h>
79 
80 #include <vm/vm.h>
81 #include <vm/vm_param.h>
82 #include <vm/vm_prot.h>
83 #include <vm/vm_inherit.h>
84 #include <sys/lock.h>
85 #include <vm/pmap.h>
86 #include <vm/vm_map.h>
87 #include <vm/vm_page.h>
88 #include <vm/vm_object.h>
89 #include <vm/vm_pager.h>
90 #include <vm/vm_kern.h>
91 #include <vm/vm_extern.h>
92 #include <vm/default_pager.h>
93 #include <vm/swap_pager.h>
94 #include <vm/vm_zone.h>
95 
96 /*
97  *	Virtual memory maps provide for the mapping, protection,
98  *	and sharing of virtual memory objects.  In addition,
99  *	this module provides for an efficient virtual copy of
100  *	memory from one map to another.
101  *
102  *	Synchronization is required prior to most operations.
103  *
104  *	Maps consist of an ordered doubly-linked list of simple
105  *	entries; a single hint is used to speed up lookups.
106  *
107  *	Since portions of maps are specified by start/end addreses,
108  *	which may not align with existing map entries, all
109  *	routines merely "clip" entries to these start/end values.
110  *	[That is, an entry is split into two, bordering at a
111  *	start or end value.]  Note that these clippings may not
112  *	always be necessary (as the two resulting entries are then
113  *	not changed); however, the clipping is done for convenience.
114  *
115  *	As mentioned above, virtual copy operations are performed
116  *	by copying VM object references from one map to
117  *	another, and then marking both regions as copy-on-write.
118  */
119 
120 /*
121  *	vm_map_startup:
122  *
123  *	Initialize the vm_map module.  Must be called before
124  *	any other vm_map routines.
125  *
126  *	Map and entry structures are allocated from the general
127  *	purpose memory pool with some exceptions:
128  *
129  *	- The kernel map and kmem submap are allocated statically.
130  *	- Kernel map entries are allocated out of a static pool.
131  *
132  *	These restrictions are necessary since malloc() uses the
133  *	maps and requires map entries.
134  */
135 
136 static struct vm_zone kmapentzone_store, mapentzone_store, mapzone_store;
137 static vm_zone_t mapentzone, kmapentzone, mapzone, vmspace_zone;
138 static struct vm_object kmapentobj, mapentobj, mapobj;
139 
140 static struct vm_map_entry map_entry_init[MAX_MAPENT];
141 static struct vm_map_entry kmap_entry_init[MAX_KMAPENT];
142 static struct vm_map map_init[MAX_KMAP];
143 
144 static void _vm_map_clip_end __P((vm_map_t, vm_map_entry_t, vm_offset_t));
145 static void _vm_map_clip_start __P((vm_map_t, vm_map_entry_t, vm_offset_t));
146 static vm_map_entry_t vm_map_entry_create __P((vm_map_t));
147 static void vm_map_entry_delete __P((vm_map_t, vm_map_entry_t));
148 static void vm_map_entry_dispose __P((vm_map_t, vm_map_entry_t));
149 static void vm_map_entry_unwire __P((vm_map_t, vm_map_entry_t));
150 static void vm_map_copy_entry __P((vm_map_t, vm_map_t, vm_map_entry_t,
151 		vm_map_entry_t));
152 static void vm_map_split __P((vm_map_entry_t));
153 
154 void
155 vm_map_startup()
156 {
157 	mapzone = &mapzone_store;
158 	zbootinit(mapzone, "MAP", sizeof (struct vm_map),
159 		map_init, MAX_KMAP);
160 	kmapentzone = &kmapentzone_store;
161 	zbootinit(kmapentzone, "KMAP ENTRY", sizeof (struct vm_map_entry),
162 		kmap_entry_init, MAX_KMAPENT);
163 	mapentzone = &mapentzone_store;
164 	zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry),
165 		map_entry_init, MAX_MAPENT);
166 }
167 
168 /*
169  * Allocate a vmspace structure, including a vm_map and pmap,
170  * and initialize those structures.  The refcnt is set to 1.
171  * The remaining fields must be initialized by the caller.
172  */
173 struct vmspace *
174 vmspace_alloc(min, max)
175 	vm_offset_t min, max;
176 {
177 	struct vmspace *vm;
178 
179 	vm = zalloc(vmspace_zone);
180 	vm_map_init(&vm->vm_map, min, max);
181 	pmap_pinit(vmspace_pmap(vm));
182 	vm->vm_map.pmap = vmspace_pmap(vm);		/* XXX */
183 	vm->vm_refcnt = 1;
184 	vm->vm_shm = NULL;
185 	return (vm);
186 }
187 
188 void
189 vm_init2(void) {
190 	zinitna(kmapentzone, &kmapentobj,
191 		NULL, 0, cnt.v_page_count / 4, ZONE_INTERRUPT, 1);
192 	zinitna(mapentzone, &mapentobj,
193 		NULL, 0, 0, 0, 1);
194 	zinitna(mapzone, &mapobj,
195 		NULL, 0, 0, 0, 1);
196 	vmspace_zone = zinit("VMSPACE", sizeof (struct vmspace), 0, 0, 3);
197 	pmap_init2();
198 	vm_object_init2();
199 }
200 
201 void
202 vmspace_free(vm)
203 	struct vmspace *vm;
204 {
205 
206 	if (vm->vm_refcnt == 0)
207 		panic("vmspace_free: attempt to free already freed vmspace");
208 
209 	if (--vm->vm_refcnt == 0) {
210 
211 		/*
212 		 * Lock the map, to wait out all other references to it.
213 		 * Delete all of the mappings and pages they hold, then call
214 		 * the pmap module to reclaim anything left.
215 		 */
216 		vm_map_lock(&vm->vm_map);
217 		(void) vm_map_delete(&vm->vm_map, vm->vm_map.min_offset,
218 		    vm->vm_map.max_offset);
219 		vm_map_unlock(&vm->vm_map);
220 
221 		pmap_release(vmspace_pmap(vm));
222 		zfree(vmspace_zone, vm);
223 	}
224 }
225 
226 /*
227  *	vm_map_create:
228  *
229  *	Creates and returns a new empty VM map with
230  *	the given physical map structure, and having
231  *	the given lower and upper address bounds.
232  */
233 vm_map_t
234 vm_map_create(pmap, min, max)
235 	pmap_t pmap;
236 	vm_offset_t min, max;
237 {
238 	vm_map_t result;
239 
240 	result = zalloc(mapzone);
241 	vm_map_init(result, min, max);
242 	result->pmap = pmap;
243 	return (result);
244 }
245 
246 /*
247  * Initialize an existing vm_map structure
248  * such as that in the vmspace structure.
249  * The pmap is set elsewhere.
250  */
251 void
252 vm_map_init(map, min, max)
253 	struct vm_map *map;
254 	vm_offset_t min, max;
255 {
256 	map->header.next = map->header.prev = &map->header;
257 	map->nentries = 0;
258 	map->size = 0;
259 	map->system_map = 0;
260 	map->min_offset = min;
261 	map->max_offset = max;
262 	map->first_free = &map->header;
263 	map->hint = &map->header;
264 	map->timestamp = 0;
265 	lockinit(&map->lock, PVM, "thrd_sleep", 0, LK_NOPAUSE);
266 }
267 
268 /*
269  *	vm_map_entry_dispose:	[ internal use only ]
270  *
271  *	Inverse of vm_map_entry_create.
272  */
273 static void
274 vm_map_entry_dispose(map, entry)
275 	vm_map_t map;
276 	vm_map_entry_t entry;
277 {
278 	zfree((map->system_map || !mapentzone) ? kmapentzone : mapentzone, entry);
279 }
280 
281 /*
282  *	vm_map_entry_create:	[ internal use only ]
283  *
284  *	Allocates a VM map entry for insertion.
285  *	No entry fields are filled in.  This routine is
286  */
287 static vm_map_entry_t
288 vm_map_entry_create(map)
289 	vm_map_t map;
290 {
291 	return zalloc((map->system_map || !mapentzone) ? kmapentzone : mapentzone);
292 }
293 
294 /*
295  *	vm_map_entry_{un,}link:
296  *
297  *	Insert/remove entries from maps.
298  */
299 static __inline void
300 vm_map_entry_link(vm_map_t map,
301 		  vm_map_entry_t after_where,
302 		  vm_map_entry_t entry)
303 {
304 	map->nentries++;
305 	entry->prev = after_where;
306 	entry->next = after_where->next;
307 	entry->next->prev = entry;
308 	after_where->next = entry;
309 }
310 
311 static __inline void
312 vm_map_entry_unlink(vm_map_t map,
313 		    vm_map_entry_t entry)
314 {
315 	vm_map_entry_t prev = entry->prev;
316 	vm_map_entry_t next = entry->next;
317 
318 	next->prev = prev;
319 	prev->next = next;
320 	map->nentries--;
321 }
322 
323 /*
324  *	SAVE_HINT:
325  *
326  *	Saves the specified entry as the hint for
327  *	future lookups.
328  */
329 #define	SAVE_HINT(map,value) \
330 		(map)->hint = (value);
331 
332 /*
333  *	vm_map_lookup_entry:	[ internal use only ]
334  *
335  *	Finds the map entry containing (or
336  *	immediately preceding) the specified address
337  *	in the given map; the entry is returned
338  *	in the "entry" parameter.  The boolean
339  *	result indicates whether the address is
340  *	actually contained in the map.
341  */
342 boolean_t
343 vm_map_lookup_entry(map, address, entry)
344 	vm_map_t map;
345 	vm_offset_t address;
346 	vm_map_entry_t *entry;	/* OUT */
347 {
348 	vm_map_entry_t cur;
349 	vm_map_entry_t last;
350 
351 	/*
352 	 * Start looking either from the head of the list, or from the hint.
353 	 */
354 
355 	cur = map->hint;
356 
357 	if (cur == &map->header)
358 		cur = cur->next;
359 
360 	if (address >= cur->start) {
361 		/*
362 		 * Go from hint to end of list.
363 		 *
364 		 * But first, make a quick check to see if we are already looking
365 		 * at the entry we want (which is usually the case). Note also
366 		 * that we don't need to save the hint here... it is the same
367 		 * hint (unless we are at the header, in which case the hint
368 		 * didn't buy us anything anyway).
369 		 */
370 		last = &map->header;
371 		if ((cur != last) && (cur->end > address)) {
372 			*entry = cur;
373 			return (TRUE);
374 		}
375 	} else {
376 		/*
377 		 * Go from start to hint, *inclusively*
378 		 */
379 		last = cur->next;
380 		cur = map->header.next;
381 	}
382 
383 	/*
384 	 * Search linearly
385 	 */
386 
387 	while (cur != last) {
388 		if (cur->end > address) {
389 			if (address >= cur->start) {
390 				/*
391 				 * Save this lookup for future hints, and
392 				 * return
393 				 */
394 
395 				*entry = cur;
396 				SAVE_HINT(map, cur);
397 				return (TRUE);
398 			}
399 			break;
400 		}
401 		cur = cur->next;
402 	}
403 	*entry = cur->prev;
404 	SAVE_HINT(map, *entry);
405 	return (FALSE);
406 }
407 
408 /*
409  *	vm_map_insert:
410  *
411  *	Inserts the given whole VM object into the target
412  *	map at the specified address range.  The object's
413  *	size should match that of the address range.
414  *
415  *	Requires that the map be locked, and leaves it so.
416  *
417  *	If object is non-NULL, ref count must be bumped by caller
418  *	prior to making call to account for the new entry.
419  */
420 int
421 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
422 	      vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max,
423 	      int cow)
424 {
425 	vm_map_entry_t new_entry;
426 	vm_map_entry_t prev_entry;
427 	vm_map_entry_t temp_entry;
428 	u_char protoeflags;
429 
430 	/*
431 	 * Check that the start and end points are not bogus.
432 	 */
433 
434 	if ((start < map->min_offset) || (end > map->max_offset) ||
435 	    (start >= end))
436 		return (KERN_INVALID_ADDRESS);
437 
438 	/*
439 	 * Find the entry prior to the proposed starting address; if it's part
440 	 * of an existing entry, this range is bogus.
441 	 */
442 
443 	if (vm_map_lookup_entry(map, start, &temp_entry))
444 		return (KERN_NO_SPACE);
445 
446 	prev_entry = temp_entry;
447 
448 	/*
449 	 * Assert that the next entry doesn't overlap the end point.
450 	 */
451 
452 	if ((prev_entry->next != &map->header) &&
453 	    (prev_entry->next->start < end))
454 		return (KERN_NO_SPACE);
455 
456 	protoeflags = 0;
457 
458 	if (cow & MAP_COPY_ON_WRITE)
459 		protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY;
460 
461 	if (cow & MAP_NOFAULT) {
462 		protoeflags |= MAP_ENTRY_NOFAULT;
463 
464 		KASSERT(object == NULL,
465 			("vm_map_insert: paradoxical MAP_NOFAULT request"));
466 	}
467 	if (object) {
468 		/*
469 		 * When object is non-NULL, it could be shared with another
470 		 * process.  We have to set or clear OBJ_ONEMAPPING
471 		 * appropriately.
472 		 */
473 		if ((object->ref_count > 1) || (object->shadow_count != 0)) {
474 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
475 		}
476 	}
477 	else if ((prev_entry != &map->header) &&
478 		 (prev_entry->eflags == protoeflags) &&
479 		 (prev_entry->end == start) &&
480 		 (prev_entry->wired_count == 0) &&
481 		 ((prev_entry->object.vm_object == NULL) ||
482 		  vm_object_coalesce(prev_entry->object.vm_object,
483 				     OFF_TO_IDX(prev_entry->offset),
484 				     (vm_size_t)(prev_entry->end - prev_entry->start),
485 				     (vm_size_t)(end - prev_entry->end)))) {
486 		/*
487 		 * We were able to extend the object.  Determine if we
488 		 * can extend the previous map entry to include the
489 		 * new range as well.
490 		 */
491 		if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) &&
492 		    (prev_entry->protection == prot) &&
493 		    (prev_entry->max_protection == max)) {
494 			map->size += (end - prev_entry->end);
495 			prev_entry->end = end;
496 			return (KERN_SUCCESS);
497 		}
498 
499 		/*
500 		 * If we can extend the object but cannot extend the
501 		 * map entry, we have to create a new map entry.  We
502 		 * must bump the ref count on the extended object to
503 		 * account for it.
504 		 */
505 		object = prev_entry->object.vm_object;
506 		offset = prev_entry->offset +
507 			(prev_entry->end - prev_entry->start);
508 		vm_object_reference(object);
509 	}
510 
511 	/*
512 	 * NOTE: if conditionals fail, object can be NULL here.  This occurs
513 	 * in things like the buffer map where we manage kva but do not manage
514 	 * backing objects.
515 	 */
516 
517 	/*
518 	 * Create a new entry
519 	 */
520 
521 	new_entry = vm_map_entry_create(map);
522 	new_entry->start = start;
523 	new_entry->end = end;
524 
525 	new_entry->eflags = protoeflags;
526 	new_entry->object.vm_object = object;
527 	new_entry->offset = offset;
528 	new_entry->avail_ssize = 0;
529 
530 	new_entry->inheritance = VM_INHERIT_DEFAULT;
531 	new_entry->protection = prot;
532 	new_entry->max_protection = max;
533 	new_entry->wired_count = 0;
534 
535 	/*
536 	 * Insert the new entry into the list
537 	 */
538 
539 	vm_map_entry_link(map, prev_entry, new_entry);
540 	map->size += new_entry->end - new_entry->start;
541 
542 	/*
543 	 * Update the free space hint
544 	 */
545 	if ((map->first_free == prev_entry) &&
546 	    (prev_entry->end >= new_entry->start))
547 		map->first_free = new_entry;
548 
549 	if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL))
550 		pmap_object_init_pt(map->pmap, start,
551 				    object, OFF_TO_IDX(offset), end - start,
552 				    cow & MAP_PREFAULT_PARTIAL);
553 
554 	return (KERN_SUCCESS);
555 }
556 
557 /*
558  * Find sufficient space for `length' bytes in the given map, starting at
559  * `start'.  The map must be locked.  Returns 0 on success, 1 on no space.
560  */
561 int
562 vm_map_findspace(map, start, length, addr)
563 	vm_map_t map;
564 	vm_offset_t start;
565 	vm_size_t length;
566 	vm_offset_t *addr;
567 {
568 	vm_map_entry_t entry, next;
569 	vm_offset_t end;
570 
571 	if (start < map->min_offset)
572 		start = map->min_offset;
573 	if (start > map->max_offset)
574 		return (1);
575 
576 	/*
577 	 * Look for the first possible address; if there's already something
578 	 * at this address, we have to start after it.
579 	 */
580 	if (start == map->min_offset) {
581 		if ((entry = map->first_free) != &map->header)
582 			start = entry->end;
583 	} else {
584 		vm_map_entry_t tmp;
585 
586 		if (vm_map_lookup_entry(map, start, &tmp))
587 			start = tmp->end;
588 		entry = tmp;
589 	}
590 
591 	/*
592 	 * Look through the rest of the map, trying to fit a new region in the
593 	 * gap between existing regions, or after the very last region.
594 	 */
595 	for (;; start = (entry = next)->end) {
596 		/*
597 		 * Find the end of the proposed new region.  Be sure we didn't
598 		 * go beyond the end of the map, or wrap around the address;
599 		 * if so, we lose.  Otherwise, if this is the last entry, or
600 		 * if the proposed new region fits before the next entry, we
601 		 * win.
602 		 */
603 		end = start + length;
604 		if (end > map->max_offset || end < start)
605 			return (1);
606 		next = entry->next;
607 		if (next == &map->header || next->start >= end)
608 			break;
609 	}
610 	SAVE_HINT(map, entry);
611 	*addr = start;
612 	if (map == kernel_map) {
613 		vm_offset_t ksize;
614 		if ((ksize = round_page(start + length)) > kernel_vm_end) {
615 			pmap_growkernel(ksize);
616 		}
617 	}
618 	return (0);
619 }
620 
621 /*
622  *	vm_map_find finds an unallocated region in the target address
623  *	map with the given length.  The search is defined to be
624  *	first-fit from the specified address; the region found is
625  *	returned in the same parameter.
626  *
627  *	If object is non-NULL, ref count must be bumped by caller
628  *	prior to making call to account for the new entry.
629  */
630 int
631 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset,
632 	    vm_offset_t *addr,	/* IN/OUT */
633 	    vm_size_t length, boolean_t find_space, vm_prot_t prot,
634 	    vm_prot_t max, int cow)
635 {
636 	vm_offset_t start;
637 	int result, s = 0;
638 
639 	start = *addr;
640 
641 	if (map == kmem_map || map == mb_map)
642 		s = splvm();
643 
644 	vm_map_lock(map);
645 	if (find_space) {
646 		if (vm_map_findspace(map, start, length, addr)) {
647 			vm_map_unlock(map);
648 			if (map == kmem_map || map == mb_map)
649 				splx(s);
650 			return (KERN_NO_SPACE);
651 		}
652 		start = *addr;
653 	}
654 	result = vm_map_insert(map, object, offset,
655 		start, start + length, prot, max, cow);
656 	vm_map_unlock(map);
657 
658 	if (map == kmem_map || map == mb_map)
659 		splx(s);
660 
661 	return (result);
662 }
663 
664 /*
665  *	vm_map_simplify_entry:
666  *
667  *	Simplify the given map entry by merging with either neighbor.
668  */
669 void
670 vm_map_simplify_entry(map, entry)
671 	vm_map_t map;
672 	vm_map_entry_t entry;
673 {
674 	vm_map_entry_t next, prev;
675 	vm_size_t prevsize, esize;
676 
677 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP)
678 		return;
679 
680 	prev = entry->prev;
681 	if (prev != &map->header) {
682 		prevsize = prev->end - prev->start;
683 		if ( (prev->end == entry->start) &&
684 		     (prev->object.vm_object == entry->object.vm_object) &&
685 		     (!prev->object.vm_object ||
686 			(prev->offset + prevsize == entry->offset)) &&
687 		     (prev->eflags == entry->eflags) &&
688 		     (prev->protection == entry->protection) &&
689 		     (prev->max_protection == entry->max_protection) &&
690 		     (prev->inheritance == entry->inheritance) &&
691 		     (prev->wired_count == entry->wired_count)) {
692 			if (map->first_free == prev)
693 				map->first_free = entry;
694 			if (map->hint == prev)
695 				map->hint = entry;
696 			vm_map_entry_unlink(map, prev);
697 			entry->start = prev->start;
698 			entry->offset = prev->offset;
699 			if (prev->object.vm_object)
700 				vm_object_deallocate(prev->object.vm_object);
701 			vm_map_entry_dispose(map, prev);
702 		}
703 	}
704 
705 	next = entry->next;
706 	if (next != &map->header) {
707 		esize = entry->end - entry->start;
708 		if ((entry->end == next->start) &&
709 		    (next->object.vm_object == entry->object.vm_object) &&
710 		     (!entry->object.vm_object ||
711 			(entry->offset + esize == next->offset)) &&
712 		    (next->eflags == entry->eflags) &&
713 		    (next->protection == entry->protection) &&
714 		    (next->max_protection == entry->max_protection) &&
715 		    (next->inheritance == entry->inheritance) &&
716 		    (next->wired_count == entry->wired_count)) {
717 			if (map->first_free == next)
718 				map->first_free = entry;
719 			if (map->hint == next)
720 				map->hint = entry;
721 			vm_map_entry_unlink(map, next);
722 			entry->end = next->end;
723 			if (next->object.vm_object)
724 				vm_object_deallocate(next->object.vm_object);
725 			vm_map_entry_dispose(map, next);
726 	        }
727 	}
728 }
729 /*
730  *	vm_map_clip_start:	[ internal use only ]
731  *
732  *	Asserts that the given entry begins at or after
733  *	the specified address; if necessary,
734  *	it splits the entry into two.
735  */
736 #define vm_map_clip_start(map, entry, startaddr) \
737 { \
738 	if (startaddr > entry->start) \
739 		_vm_map_clip_start(map, entry, startaddr); \
740 }
741 
742 /*
743  *	This routine is called only when it is known that
744  *	the entry must be split.
745  */
746 static void
747 _vm_map_clip_start(map, entry, start)
748 	vm_map_t map;
749 	vm_map_entry_t entry;
750 	vm_offset_t start;
751 {
752 	vm_map_entry_t new_entry;
753 
754 	/*
755 	 * Split off the front portion -- note that we must insert the new
756 	 * entry BEFORE this one, so that this entry has the specified
757 	 * starting address.
758 	 */
759 
760 	vm_map_simplify_entry(map, entry);
761 
762 	/*
763 	 * If there is no object backing this entry, we might as well create
764 	 * one now.  If we defer it, an object can get created after the map
765 	 * is clipped, and individual objects will be created for the split-up
766 	 * map.  This is a bit of a hack, but is also about the best place to
767 	 * put this improvement.
768 	 */
769 
770 	if (entry->object.vm_object == NULL) {
771 		vm_object_t object;
772 		object = vm_object_allocate(OBJT_DEFAULT,
773 				atop(entry->end - entry->start));
774 		entry->object.vm_object = object;
775 		entry->offset = 0;
776 	}
777 
778 	new_entry = vm_map_entry_create(map);
779 	*new_entry = *entry;
780 
781 	new_entry->end = start;
782 	entry->offset += (start - entry->start);
783 	entry->start = start;
784 
785 	vm_map_entry_link(map, entry->prev, new_entry);
786 
787 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
788 		vm_object_reference(new_entry->object.vm_object);
789 	}
790 }
791 
792 /*
793  *	vm_map_clip_end:	[ internal use only ]
794  *
795  *	Asserts that the given entry ends at or before
796  *	the specified address; if necessary,
797  *	it splits the entry into two.
798  */
799 
800 #define vm_map_clip_end(map, entry, endaddr) \
801 { \
802 	if (endaddr < entry->end) \
803 		_vm_map_clip_end(map, entry, endaddr); \
804 }
805 
806 /*
807  *	This routine is called only when it is known that
808  *	the entry must be split.
809  */
810 static void
811 _vm_map_clip_end(map, entry, end)
812 	vm_map_t map;
813 	vm_map_entry_t entry;
814 	vm_offset_t end;
815 {
816 	vm_map_entry_t new_entry;
817 
818 	/*
819 	 * If there is no object backing this entry, we might as well create
820 	 * one now.  If we defer it, an object can get created after the map
821 	 * is clipped, and individual objects will be created for the split-up
822 	 * map.  This is a bit of a hack, but is also about the best place to
823 	 * put this improvement.
824 	 */
825 
826 	if (entry->object.vm_object == NULL) {
827 		vm_object_t object;
828 		object = vm_object_allocate(OBJT_DEFAULT,
829 				atop(entry->end - entry->start));
830 		entry->object.vm_object = object;
831 		entry->offset = 0;
832 	}
833 
834 	/*
835 	 * Create a new entry and insert it AFTER the specified entry
836 	 */
837 
838 	new_entry = vm_map_entry_create(map);
839 	*new_entry = *entry;
840 
841 	new_entry->start = entry->end = end;
842 	new_entry->offset += (end - entry->start);
843 
844 	vm_map_entry_link(map, entry, new_entry);
845 
846 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
847 		vm_object_reference(new_entry->object.vm_object);
848 	}
849 }
850 
851 /*
852  *	VM_MAP_RANGE_CHECK:	[ internal use only ]
853  *
854  *	Asserts that the starting and ending region
855  *	addresses fall within the valid range of the map.
856  */
857 #define	VM_MAP_RANGE_CHECK(map, start, end)		\
858 		{					\
859 		if (start < vm_map_min(map))		\
860 			start = vm_map_min(map);	\
861 		if (end > vm_map_max(map))		\
862 			end = vm_map_max(map);		\
863 		if (start > end)			\
864 			start = end;			\
865 		}
866 
867 /*
868  *	vm_map_submap:		[ kernel use only ]
869  *
870  *	Mark the given range as handled by a subordinate map.
871  *
872  *	This range must have been created with vm_map_find,
873  *	and no other operations may have been performed on this
874  *	range prior to calling vm_map_submap.
875  *
876  *	Only a limited number of operations can be performed
877  *	within this rage after calling vm_map_submap:
878  *		vm_fault
879  *	[Don't try vm_map_copy!]
880  *
881  *	To remove a submapping, one must first remove the
882  *	range from the superior map, and then destroy the
883  *	submap (if desired).  [Better yet, don't try it.]
884  */
885 int
886 vm_map_submap(map, start, end, submap)
887 	vm_map_t map;
888 	vm_offset_t start;
889 	vm_offset_t end;
890 	vm_map_t submap;
891 {
892 	vm_map_entry_t entry;
893 	int result = KERN_INVALID_ARGUMENT;
894 
895 	vm_map_lock(map);
896 
897 	VM_MAP_RANGE_CHECK(map, start, end);
898 
899 	if (vm_map_lookup_entry(map, start, &entry)) {
900 		vm_map_clip_start(map, entry, start);
901 	} else
902 		entry = entry->next;
903 
904 	vm_map_clip_end(map, entry, end);
905 
906 	if ((entry->start == start) && (entry->end == end) &&
907 	    ((entry->eflags & MAP_ENTRY_COW) == 0) &&
908 	    (entry->object.vm_object == NULL)) {
909 		entry->object.sub_map = submap;
910 		entry->eflags |= MAP_ENTRY_IS_SUB_MAP;
911 		result = KERN_SUCCESS;
912 	}
913 	vm_map_unlock(map);
914 
915 	return (result);
916 }
917 
918 /*
919  *	vm_map_protect:
920  *
921  *	Sets the protection of the specified address
922  *	region in the target map.  If "set_max" is
923  *	specified, the maximum protection is to be set;
924  *	otherwise, only the current protection is affected.
925  */
926 int
927 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end,
928 	       vm_prot_t new_prot, boolean_t set_max)
929 {
930 	vm_map_entry_t current;
931 	vm_map_entry_t entry;
932 
933 	vm_map_lock(map);
934 
935 	VM_MAP_RANGE_CHECK(map, start, end);
936 
937 	if (vm_map_lookup_entry(map, start, &entry)) {
938 		vm_map_clip_start(map, entry, start);
939 	} else {
940 		entry = entry->next;
941 	}
942 
943 	/*
944 	 * Make a first pass to check for protection violations.
945 	 */
946 
947 	current = entry;
948 	while ((current != &map->header) && (current->start < end)) {
949 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
950 			vm_map_unlock(map);
951 			return (KERN_INVALID_ARGUMENT);
952 		}
953 		if ((new_prot & current->max_protection) != new_prot) {
954 			vm_map_unlock(map);
955 			return (KERN_PROTECTION_FAILURE);
956 		}
957 		current = current->next;
958 	}
959 
960 	/*
961 	 * Go back and fix up protections. [Note that clipping is not
962 	 * necessary the second time.]
963 	 */
964 
965 	current = entry;
966 
967 	while ((current != &map->header) && (current->start < end)) {
968 		vm_prot_t old_prot;
969 
970 		vm_map_clip_end(map, current, end);
971 
972 		old_prot = current->protection;
973 		if (set_max)
974 			current->protection =
975 			    (current->max_protection = new_prot) &
976 			    old_prot;
977 		else
978 			current->protection = new_prot;
979 
980 		/*
981 		 * Update physical map if necessary. Worry about copy-on-write
982 		 * here -- CHECK THIS XXX
983 		 */
984 
985 		if (current->protection != old_prot) {
986 #define MASK(entry)	(((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \
987 							VM_PROT_ALL)
988 
989 			pmap_protect(map->pmap, current->start,
990 			    current->end,
991 			    current->protection & MASK(current));
992 #undef	MASK
993 		}
994 
995 		vm_map_simplify_entry(map, current);
996 
997 		current = current->next;
998 	}
999 
1000 	vm_map_unlock(map);
1001 	return (KERN_SUCCESS);
1002 }
1003 
1004 /*
1005  *	vm_map_madvise:
1006  *
1007  * 	This routine traverses a processes map handling the madvise
1008  *	system call.  Advisories are classified as either those effecting
1009  *	the vm_map_entry structure, or those effecting the underlying
1010  *	objects.
1011  */
1012 
1013 int
1014 vm_map_madvise(map, start, end, behav)
1015 	vm_map_t map;
1016 	vm_offset_t start, end;
1017 	int behav;
1018 {
1019 	vm_map_entry_t current, entry;
1020 	int modify_map = 0;
1021 
1022 	/*
1023 	 * Some madvise calls directly modify the vm_map_entry, in which case
1024 	 * we need to use an exclusive lock on the map and we need to perform
1025 	 * various clipping operations.  Otherwise we only need a read-lock
1026 	 * on the map.
1027 	 */
1028 
1029 	switch(behav) {
1030 	case MADV_NORMAL:
1031 	case MADV_SEQUENTIAL:
1032 	case MADV_RANDOM:
1033 		modify_map = 1;
1034 		vm_map_lock(map);
1035 		break;
1036 	case MADV_WILLNEED:
1037 	case MADV_DONTNEED:
1038 	case MADV_FREE:
1039 		vm_map_lock_read(map);
1040 		break;
1041 	default:
1042 		return (KERN_INVALID_ARGUMENT);
1043 	}
1044 
1045 	/*
1046 	 * Locate starting entry and clip if necessary.
1047 	 */
1048 
1049 	VM_MAP_RANGE_CHECK(map, start, end);
1050 
1051 	if (vm_map_lookup_entry(map, start, &entry)) {
1052 		if (modify_map)
1053 			vm_map_clip_start(map, entry, start);
1054 	} else {
1055 		entry = entry->next;
1056 	}
1057 
1058 	if (modify_map) {
1059 		/*
1060 		 * madvise behaviors that are implemented in the vm_map_entry.
1061 		 *
1062 		 * We clip the vm_map_entry so that behavioral changes are
1063 		 * limited to the specified address range.
1064 		 */
1065 		for (current = entry;
1066 		     (current != &map->header) && (current->start < end);
1067 		     current = current->next
1068 		) {
1069 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
1070 				continue;
1071 
1072 			vm_map_clip_end(map, current, end);
1073 
1074 			switch (behav) {
1075 			case MADV_NORMAL:
1076 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL);
1077 				break;
1078 			case MADV_SEQUENTIAL:
1079 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL);
1080 				break;
1081 			case MADV_RANDOM:
1082 				vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM);
1083 				break;
1084 			default:
1085 				break;
1086 			}
1087 			vm_map_simplify_entry(map, current);
1088 		}
1089 		vm_map_unlock(map);
1090 	} else {
1091 		vm_pindex_t pindex;
1092 		int count;
1093 
1094 		/*
1095 		 * madvise behaviors that are implemented in the underlying
1096 		 * vm_object.
1097 		 *
1098 		 * Since we don't clip the vm_map_entry, we have to clip
1099 		 * the vm_object pindex and count.
1100 		 */
1101 		for (current = entry;
1102 		     (current != &map->header) && (current->start < end);
1103 		     current = current->next
1104 		) {
1105 			if (current->eflags & MAP_ENTRY_IS_SUB_MAP)
1106 				continue;
1107 
1108 			pindex = OFF_TO_IDX(current->offset);
1109 			count = atop(current->end - current->start);
1110 
1111 			if (current->start < start) {
1112 				pindex += atop(start - current->start);
1113 				count -= atop(start - current->start);
1114 			}
1115 			if (current->end > end)
1116 				count -= atop(current->end - end);
1117 
1118 			if (count <= 0)
1119 				continue;
1120 
1121 			vm_object_madvise(current->object.vm_object,
1122 					  pindex, count, behav);
1123 			if (behav == MADV_WILLNEED) {
1124 				pmap_object_init_pt(
1125 				    map->pmap,
1126 				    current->start,
1127 				    current->object.vm_object,
1128 				    pindex,
1129 				    (count << PAGE_SHIFT),
1130 				    0
1131 				);
1132 			}
1133 		}
1134 		vm_map_unlock_read(map);
1135 	}
1136 	return(0);
1137 }
1138 
1139 
1140 /*
1141  *	vm_map_inherit:
1142  *
1143  *	Sets the inheritance of the specified address
1144  *	range in the target map.  Inheritance
1145  *	affects how the map will be shared with
1146  *	child maps at the time of vm_map_fork.
1147  */
1148 int
1149 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end,
1150 	       vm_inherit_t new_inheritance)
1151 {
1152 	vm_map_entry_t entry;
1153 	vm_map_entry_t temp_entry;
1154 
1155 	switch (new_inheritance) {
1156 	case VM_INHERIT_NONE:
1157 	case VM_INHERIT_COPY:
1158 	case VM_INHERIT_SHARE:
1159 		break;
1160 	default:
1161 		return (KERN_INVALID_ARGUMENT);
1162 	}
1163 
1164 	vm_map_lock(map);
1165 
1166 	VM_MAP_RANGE_CHECK(map, start, end);
1167 
1168 	if (vm_map_lookup_entry(map, start, &temp_entry)) {
1169 		entry = temp_entry;
1170 		vm_map_clip_start(map, entry, start);
1171 	} else
1172 		entry = temp_entry->next;
1173 
1174 	while ((entry != &map->header) && (entry->start < end)) {
1175 		vm_map_clip_end(map, entry, end);
1176 
1177 		entry->inheritance = new_inheritance;
1178 
1179 		vm_map_simplify_entry(map, entry);
1180 
1181 		entry = entry->next;
1182 	}
1183 
1184 	vm_map_unlock(map);
1185 	return (KERN_SUCCESS);
1186 }
1187 
1188 /*
1189  * Implement the semantics of mlock
1190  */
1191 int
1192 vm_map_user_pageable(map, start, end, new_pageable)
1193 	vm_map_t map;
1194 	vm_offset_t start;
1195 	vm_offset_t end;
1196 	boolean_t new_pageable;
1197 {
1198 	vm_map_entry_t entry;
1199 	vm_map_entry_t start_entry;
1200 	vm_offset_t estart;
1201 	int rv;
1202 
1203 	vm_map_lock(map);
1204 	VM_MAP_RANGE_CHECK(map, start, end);
1205 
1206 	if (vm_map_lookup_entry(map, start, &start_entry) == FALSE) {
1207 		vm_map_unlock(map);
1208 		return (KERN_INVALID_ADDRESS);
1209 	}
1210 
1211 	if (new_pageable) {
1212 
1213 		entry = start_entry;
1214 		vm_map_clip_start(map, entry, start);
1215 
1216 		/*
1217 		 * Now decrement the wiring count for each region. If a region
1218 		 * becomes completely unwired, unwire its physical pages and
1219 		 * mappings.
1220 		 */
1221 		while ((entry != &map->header) && (entry->start < end)) {
1222 			if (entry->eflags & MAP_ENTRY_USER_WIRED) {
1223 				vm_map_clip_end(map, entry, end);
1224 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
1225 				entry->wired_count--;
1226 				if (entry->wired_count == 0)
1227 					vm_fault_unwire(map, entry->start, entry->end);
1228 			}
1229 			vm_map_simplify_entry(map,entry);
1230 			entry = entry->next;
1231 		}
1232 	} else {
1233 
1234 		entry = start_entry;
1235 
1236 		while ((entry != &map->header) && (entry->start < end)) {
1237 
1238 			if (entry->eflags & MAP_ENTRY_USER_WIRED) {
1239 				entry = entry->next;
1240 				continue;
1241 			}
1242 
1243 			if (entry->wired_count != 0) {
1244 				entry->wired_count++;
1245 				entry->eflags |= MAP_ENTRY_USER_WIRED;
1246 				entry = entry->next;
1247 				continue;
1248 			}
1249 
1250 			/* Here on entry being newly wired */
1251 
1252 			if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1253 				int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
1254 				if (copyflag && ((entry->protection & VM_PROT_WRITE) != 0)) {
1255 
1256 					vm_object_shadow(&entry->object.vm_object,
1257 					    &entry->offset,
1258 					    atop(entry->end - entry->start));
1259 					entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
1260 
1261 				} else if (entry->object.vm_object == NULL) {
1262 
1263 					entry->object.vm_object =
1264 					    vm_object_allocate(OBJT_DEFAULT,
1265 						atop(entry->end - entry->start));
1266 					entry->offset = (vm_offset_t) 0;
1267 
1268 				}
1269 			}
1270 
1271 			vm_map_clip_start(map, entry, start);
1272 			vm_map_clip_end(map, entry, end);
1273 
1274 			entry->wired_count++;
1275 			entry->eflags |= MAP_ENTRY_USER_WIRED;
1276 			estart = entry->start;
1277 
1278 			/* First we need to allow map modifications */
1279 			vm_map_set_recursive(map);
1280 			vm_map_lock_downgrade(map);
1281 			map->timestamp++;
1282 
1283 			rv = vm_fault_user_wire(map, entry->start, entry->end);
1284 			if (rv) {
1285 
1286 				entry->wired_count--;
1287 				entry->eflags &= ~MAP_ENTRY_USER_WIRED;
1288 
1289 				vm_map_clear_recursive(map);
1290 				vm_map_unlock(map);
1291 
1292 				(void) vm_map_user_pageable(map, start, entry->start, TRUE);
1293 				return rv;
1294 			}
1295 
1296 			vm_map_clear_recursive(map);
1297 			if (vm_map_lock_upgrade(map)) {
1298 				vm_map_lock(map);
1299 				if (vm_map_lookup_entry(map, estart, &entry)
1300 				    == FALSE) {
1301 					vm_map_unlock(map);
1302 					(void) vm_map_user_pageable(map,
1303 								    start,
1304 								    estart,
1305 								    TRUE);
1306 					return (KERN_INVALID_ADDRESS);
1307 				}
1308 			}
1309 			vm_map_simplify_entry(map,entry);
1310 		}
1311 	}
1312 	map->timestamp++;
1313 	vm_map_unlock(map);
1314 	return KERN_SUCCESS;
1315 }
1316 
1317 /*
1318  *	vm_map_pageable:
1319  *
1320  *	Sets the pageability of the specified address
1321  *	range in the target map.  Regions specified
1322  *	as not pageable require locked-down physical
1323  *	memory and physical page maps.
1324  *
1325  *	The map must not be locked, but a reference
1326  *	must remain to the map throughout the call.
1327  */
1328 int
1329 vm_map_pageable(map, start, end, new_pageable)
1330 	vm_map_t map;
1331 	vm_offset_t start;
1332 	vm_offset_t end;
1333 	boolean_t new_pageable;
1334 {
1335 	vm_map_entry_t entry;
1336 	vm_map_entry_t start_entry;
1337 	vm_offset_t failed = 0;
1338 	int rv;
1339 
1340 	vm_map_lock(map);
1341 
1342 	VM_MAP_RANGE_CHECK(map, start, end);
1343 
1344 	/*
1345 	 * Only one pageability change may take place at one time, since
1346 	 * vm_fault assumes it will be called only once for each
1347 	 * wiring/unwiring.  Therefore, we have to make sure we're actually
1348 	 * changing the pageability for the entire region.  We do so before
1349 	 * making any changes.
1350 	 */
1351 
1352 	if (vm_map_lookup_entry(map, start, &start_entry) == FALSE) {
1353 		vm_map_unlock(map);
1354 		return (KERN_INVALID_ADDRESS);
1355 	}
1356 	entry = start_entry;
1357 
1358 	/*
1359 	 * Actions are rather different for wiring and unwiring, so we have
1360 	 * two separate cases.
1361 	 */
1362 
1363 	if (new_pageable) {
1364 
1365 		vm_map_clip_start(map, entry, start);
1366 
1367 		/*
1368 		 * Unwiring.  First ensure that the range to be unwired is
1369 		 * really wired down and that there are no holes.
1370 		 */
1371 		while ((entry != &map->header) && (entry->start < end)) {
1372 
1373 			if (entry->wired_count == 0 ||
1374 			    (entry->end < end &&
1375 				(entry->next == &map->header ||
1376 				    entry->next->start > entry->end))) {
1377 				vm_map_unlock(map);
1378 				return (KERN_INVALID_ARGUMENT);
1379 			}
1380 			entry = entry->next;
1381 		}
1382 
1383 		/*
1384 		 * Now decrement the wiring count for each region. If a region
1385 		 * becomes completely unwired, unwire its physical pages and
1386 		 * mappings.
1387 		 */
1388 		entry = start_entry;
1389 		while ((entry != &map->header) && (entry->start < end)) {
1390 			vm_map_clip_end(map, entry, end);
1391 
1392 			entry->wired_count--;
1393 			if (entry->wired_count == 0)
1394 				vm_fault_unwire(map, entry->start, entry->end);
1395 
1396 			vm_map_simplify_entry(map, entry);
1397 
1398 			entry = entry->next;
1399 		}
1400 	} else {
1401 		/*
1402 		 * Wiring.  We must do this in two passes:
1403 		 *
1404 		 * 1.  Holding the write lock, we create any shadow or zero-fill
1405 		 * objects that need to be created. Then we clip each map
1406 		 * entry to the region to be wired and increment its wiring
1407 		 * count.  We create objects before clipping the map entries
1408 		 * to avoid object proliferation.
1409 		 *
1410 		 * 2.  We downgrade to a read lock, and call vm_fault_wire to
1411 		 * fault in the pages for any newly wired area (wired_count is
1412 		 * 1).
1413 		 *
1414 		 * Downgrading to a read lock for vm_fault_wire avoids a possible
1415 		 * deadlock with another process that may have faulted on one
1416 		 * of the pages to be wired (it would mark the page busy,
1417 		 * blocking us, then in turn block on the map lock that we
1418 		 * hold).  Because of problems in the recursive lock package,
1419 		 * we cannot upgrade to a write lock in vm_map_lookup.  Thus,
1420 		 * any actions that require the write lock must be done
1421 		 * beforehand.  Because we keep the read lock on the map, the
1422 		 * copy-on-write status of the entries we modify here cannot
1423 		 * change.
1424 		 */
1425 
1426 		/*
1427 		 * Pass 1.
1428 		 */
1429 		while ((entry != &map->header) && (entry->start < end)) {
1430 			if (entry->wired_count == 0) {
1431 
1432 				/*
1433 				 * Perform actions of vm_map_lookup that need
1434 				 * the write lock on the map: create a shadow
1435 				 * object for a copy-on-write region, or an
1436 				 * object for a zero-fill region.
1437 				 *
1438 				 * We don't have to do this for entries that
1439 				 * point to sub maps, because we won't
1440 				 * hold the lock on the sub map.
1441 				 */
1442 				if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1443 					int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY;
1444 					if (copyflag &&
1445 					    ((entry->protection & VM_PROT_WRITE) != 0)) {
1446 
1447 						vm_object_shadow(&entry->object.vm_object,
1448 						    &entry->offset,
1449 						    atop(entry->end - entry->start));
1450 						entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
1451 					} else if (entry->object.vm_object == NULL) {
1452 						entry->object.vm_object =
1453 						    vm_object_allocate(OBJT_DEFAULT,
1454 							atop(entry->end - entry->start));
1455 						entry->offset = (vm_offset_t) 0;
1456 					}
1457 				}
1458 			}
1459 			vm_map_clip_start(map, entry, start);
1460 			vm_map_clip_end(map, entry, end);
1461 			entry->wired_count++;
1462 
1463 			/*
1464 			 * Check for holes
1465 			 */
1466 			if (entry->end < end &&
1467 			    (entry->next == &map->header ||
1468 				entry->next->start > entry->end)) {
1469 				/*
1470 				 * Found one.  Object creation actions do not
1471 				 * need to be undone, but the wired counts
1472 				 * need to be restored.
1473 				 */
1474 				while (entry != &map->header && entry->end > start) {
1475 					entry->wired_count--;
1476 					entry = entry->prev;
1477 				}
1478 				vm_map_unlock(map);
1479 				return (KERN_INVALID_ARGUMENT);
1480 			}
1481 			entry = entry->next;
1482 		}
1483 
1484 		/*
1485 		 * Pass 2.
1486 		 */
1487 
1488 		/*
1489 		 * HACK HACK HACK HACK
1490 		 *
1491 		 * If we are wiring in the kernel map or a submap of it,
1492 		 * unlock the map to avoid deadlocks.  We trust that the
1493 		 * kernel is well-behaved, and therefore will not do
1494 		 * anything destructive to this region of the map while
1495 		 * we have it unlocked.  We cannot trust user processes
1496 		 * to do the same.
1497 		 *
1498 		 * HACK HACK HACK HACK
1499 		 */
1500 		if (vm_map_pmap(map) == kernel_pmap) {
1501 			vm_map_unlock(map);	/* trust me ... */
1502 		} else {
1503 			vm_map_set_recursive(map);
1504 			vm_map_lock_downgrade(map);
1505 		}
1506 
1507 		rv = 0;
1508 		entry = start_entry;
1509 		while (entry != &map->header && entry->start < end) {
1510 			/*
1511 			 * If vm_fault_wire fails for any page we need to undo
1512 			 * what has been done.  We decrement the wiring count
1513 			 * for those pages which have not yet been wired (now)
1514 			 * and unwire those that have (later).
1515 			 *
1516 			 * XXX this violates the locking protocol on the map,
1517 			 * needs to be fixed.
1518 			 */
1519 			if (rv)
1520 				entry->wired_count--;
1521 			else if (entry->wired_count == 1) {
1522 				rv = vm_fault_wire(map, entry->start, entry->end);
1523 				if (rv) {
1524 					failed = entry->start;
1525 					entry->wired_count--;
1526 				}
1527 			}
1528 			entry = entry->next;
1529 		}
1530 
1531 		if (vm_map_pmap(map) == kernel_pmap) {
1532 			vm_map_lock(map);
1533 		} else {
1534 			vm_map_clear_recursive(map);
1535 		}
1536 		if (rv) {
1537 			vm_map_unlock(map);
1538 			(void) vm_map_pageable(map, start, failed, TRUE);
1539 			return (rv);
1540 		}
1541 		vm_map_simplify_entry(map, start_entry);
1542 	}
1543 
1544 	vm_map_unlock(map);
1545 
1546 	return (KERN_SUCCESS);
1547 }
1548 
1549 /*
1550  * vm_map_clean
1551  *
1552  * Push any dirty cached pages in the address range to their pager.
1553  * If syncio is TRUE, dirty pages are written synchronously.
1554  * If invalidate is TRUE, any cached pages are freed as well.
1555  *
1556  * Returns an error if any part of the specified range is not mapped.
1557  */
1558 int
1559 vm_map_clean(map, start, end, syncio, invalidate)
1560 	vm_map_t map;
1561 	vm_offset_t start;
1562 	vm_offset_t end;
1563 	boolean_t syncio;
1564 	boolean_t invalidate;
1565 {
1566 	vm_map_entry_t current;
1567 	vm_map_entry_t entry;
1568 	vm_size_t size;
1569 	vm_object_t object;
1570 	vm_ooffset_t offset;
1571 
1572 	vm_map_lock_read(map);
1573 	VM_MAP_RANGE_CHECK(map, start, end);
1574 	if (!vm_map_lookup_entry(map, start, &entry)) {
1575 		vm_map_unlock_read(map);
1576 		return (KERN_INVALID_ADDRESS);
1577 	}
1578 	/*
1579 	 * Make a first pass to check for holes.
1580 	 */
1581 	for (current = entry; current->start < end; current = current->next) {
1582 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1583 			vm_map_unlock_read(map);
1584 			return (KERN_INVALID_ARGUMENT);
1585 		}
1586 		if (end > current->end &&
1587 		    (current->next == &map->header ||
1588 			current->end != current->next->start)) {
1589 			vm_map_unlock_read(map);
1590 			return (KERN_INVALID_ADDRESS);
1591 		}
1592 	}
1593 
1594 	if (invalidate)
1595 		pmap_remove(vm_map_pmap(map), start, end);
1596 	/*
1597 	 * Make a second pass, cleaning/uncaching pages from the indicated
1598 	 * objects as we go.
1599 	 */
1600 	for (current = entry; current->start < end; current = current->next) {
1601 		offset = current->offset + (start - current->start);
1602 		size = (end <= current->end ? end : current->end) - start;
1603 		if (current->eflags & MAP_ENTRY_IS_SUB_MAP) {
1604 			vm_map_t smap;
1605 			vm_map_entry_t tentry;
1606 			vm_size_t tsize;
1607 
1608 			smap = current->object.sub_map;
1609 			vm_map_lock_read(smap);
1610 			(void) vm_map_lookup_entry(smap, offset, &tentry);
1611 			tsize = tentry->end - offset;
1612 			if (tsize < size)
1613 				size = tsize;
1614 			object = tentry->object.vm_object;
1615 			offset = tentry->offset + (offset - tentry->start);
1616 			vm_map_unlock_read(smap);
1617 		} else {
1618 			object = current->object.vm_object;
1619 		}
1620 		/*
1621 		 * Note that there is absolutely no sense in writing out
1622 		 * anonymous objects, so we track down the vnode object
1623 		 * to write out.
1624 		 * We invalidate (remove) all pages from the address space
1625 		 * anyway, for semantic correctness.
1626 		 */
1627 		while (object->backing_object) {
1628 			object = object->backing_object;
1629 			offset += object->backing_object_offset;
1630 			if (object->size < OFF_TO_IDX( offset + size))
1631 				size = IDX_TO_OFF(object->size) - offset;
1632 		}
1633 		if (object && (object->type == OBJT_VNODE)) {
1634 			/*
1635 			 * Flush pages if writing is allowed. XXX should we continue
1636 			 * on an error?
1637 			 *
1638 			 * XXX Doing async I/O and then removing all the pages from
1639 			 *     the object before it completes is probably a very bad
1640 			 *     idea.
1641 			 */
1642 			if (current->protection & VM_PROT_WRITE) {
1643 				int flags;
1644 				if (object->type == OBJT_VNODE)
1645 					vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY, curproc);
1646 				flags = (syncio || invalidate) ? OBJPC_SYNC : 0;
1647 				flags |= invalidate ? OBJPC_INVAL : 0;
1648 		   	    vm_object_page_clean(object,
1649 					OFF_TO_IDX(offset),
1650 					OFF_TO_IDX(offset + size + PAGE_MASK),
1651 					flags);
1652 				if (invalidate) {
1653 					vm_object_pip_wait(object, "objmcl");
1654 					vm_object_page_remove(object,
1655 						OFF_TO_IDX(offset),
1656 						OFF_TO_IDX(offset + size + PAGE_MASK),
1657 						FALSE);
1658 				}
1659 				if (object->type == OBJT_VNODE)
1660 					VOP_UNLOCK(object->handle, 0, curproc);
1661 			}
1662 		}
1663 		start += size;
1664 	}
1665 
1666 	vm_map_unlock_read(map);
1667 	return (KERN_SUCCESS);
1668 }
1669 
1670 /*
1671  *	vm_map_entry_unwire:	[ internal use only ]
1672  *
1673  *	Make the region specified by this entry pageable.
1674  *
1675  *	The map in question should be locked.
1676  *	[This is the reason for this routine's existence.]
1677  */
1678 static void
1679 vm_map_entry_unwire(map, entry)
1680 	vm_map_t map;
1681 	vm_map_entry_t entry;
1682 {
1683 	vm_fault_unwire(map, entry->start, entry->end);
1684 	entry->wired_count = 0;
1685 }
1686 
1687 /*
1688  *	vm_map_entry_delete:	[ internal use only ]
1689  *
1690  *	Deallocate the given entry from the target map.
1691  */
1692 static void
1693 vm_map_entry_delete(map, entry)
1694 	vm_map_t map;
1695 	vm_map_entry_t entry;
1696 {
1697 	vm_map_entry_unlink(map, entry);
1698 	map->size -= entry->end - entry->start;
1699 
1700 	if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) {
1701 		vm_object_deallocate(entry->object.vm_object);
1702 	}
1703 
1704 	vm_map_entry_dispose(map, entry);
1705 }
1706 
1707 /*
1708  *	vm_map_delete:	[ internal use only ]
1709  *
1710  *	Deallocates the given address range from the target
1711  *	map.
1712  */
1713 int
1714 vm_map_delete(map, start, end)
1715 	vm_map_t map;
1716 	vm_offset_t start;
1717 	vm_offset_t end;
1718 {
1719 	vm_object_t object;
1720 	vm_map_entry_t entry;
1721 	vm_map_entry_t first_entry;
1722 
1723 	/*
1724 	 * Find the start of the region, and clip it
1725 	 */
1726 
1727 	if (!vm_map_lookup_entry(map, start, &first_entry))
1728 		entry = first_entry->next;
1729 	else {
1730 		entry = first_entry;
1731 		vm_map_clip_start(map, entry, start);
1732 		/*
1733 		 * Fix the lookup hint now, rather than each time though the
1734 		 * loop.
1735 		 */
1736 		SAVE_HINT(map, entry->prev);
1737 	}
1738 
1739 	/*
1740 	 * Save the free space hint
1741 	 */
1742 
1743 	if (entry == &map->header) {
1744 		map->first_free = &map->header;
1745 	} else if (map->first_free->start >= start) {
1746 		map->first_free = entry->prev;
1747 	}
1748 
1749 	/*
1750 	 * Step through all entries in this region
1751 	 */
1752 
1753 	while ((entry != &map->header) && (entry->start < end)) {
1754 		vm_map_entry_t next;
1755 		vm_offset_t s, e;
1756 		vm_pindex_t offidxstart, offidxend, count;
1757 
1758 		vm_map_clip_end(map, entry, end);
1759 
1760 		s = entry->start;
1761 		e = entry->end;
1762 		next = entry->next;
1763 
1764 		offidxstart = OFF_TO_IDX(entry->offset);
1765 		count = OFF_TO_IDX(e - s);
1766 		object = entry->object.vm_object;
1767 
1768 		/*
1769 		 * Unwire before removing addresses from the pmap; otherwise,
1770 		 * unwiring will put the entries back in the pmap.
1771 		 */
1772 		if (entry->wired_count != 0) {
1773 			vm_map_entry_unwire(map, entry);
1774 		}
1775 
1776 		offidxend = offidxstart + count;
1777 
1778 		if ((object == kernel_object) || (object == kmem_object)) {
1779 			vm_object_page_remove(object, offidxstart, offidxend, FALSE);
1780 		} else {
1781 			pmap_remove(map->pmap, s, e);
1782 			if (object != NULL &&
1783 			    object->ref_count != 1 &&
1784 			    (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING &&
1785 			    (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) {
1786 				vm_object_collapse(object);
1787 				vm_object_page_remove(object, offidxstart, offidxend, FALSE);
1788 				if (object->type == OBJT_SWAP) {
1789 					swap_pager_freespace(object, offidxstart, count);
1790 				}
1791 				if (offidxend >= object->size &&
1792 				    offidxstart < object->size) {
1793 					object->size = offidxstart;
1794 				}
1795 			}
1796 		}
1797 
1798 		/*
1799 		 * Delete the entry (which may delete the object) only after
1800 		 * removing all pmap entries pointing to its pages.
1801 		 * (Otherwise, its page frames may be reallocated, and any
1802 		 * modify bits will be set in the wrong object!)
1803 		 */
1804 		vm_map_entry_delete(map, entry);
1805 		entry = next;
1806 	}
1807 	return (KERN_SUCCESS);
1808 }
1809 
1810 /*
1811  *	vm_map_remove:
1812  *
1813  *	Remove the given address range from the target map.
1814  *	This is the exported form of vm_map_delete.
1815  */
1816 int
1817 vm_map_remove(map, start, end)
1818 	vm_map_t map;
1819 	vm_offset_t start;
1820 	vm_offset_t end;
1821 {
1822 	int result, s = 0;
1823 
1824 	if (map == kmem_map || map == mb_map)
1825 		s = splvm();
1826 
1827 	vm_map_lock(map);
1828 	VM_MAP_RANGE_CHECK(map, start, end);
1829 	result = vm_map_delete(map, start, end);
1830 	vm_map_unlock(map);
1831 
1832 	if (map == kmem_map || map == mb_map)
1833 		splx(s);
1834 
1835 	return (result);
1836 }
1837 
1838 /*
1839  *	vm_map_check_protection:
1840  *
1841  *	Assert that the target map allows the specified
1842  *	privilege on the entire address region given.
1843  *	The entire region must be allocated.
1844  */
1845 boolean_t
1846 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end,
1847 			vm_prot_t protection)
1848 {
1849 	vm_map_entry_t entry;
1850 	vm_map_entry_t tmp_entry;
1851 
1852 	if (!vm_map_lookup_entry(map, start, &tmp_entry)) {
1853 		return (FALSE);
1854 	}
1855 	entry = tmp_entry;
1856 
1857 	while (start < end) {
1858 		if (entry == &map->header) {
1859 			return (FALSE);
1860 		}
1861 		/*
1862 		 * No holes allowed!
1863 		 */
1864 
1865 		if (start < entry->start) {
1866 			return (FALSE);
1867 		}
1868 		/*
1869 		 * Check protection associated with entry.
1870 		 */
1871 
1872 		if ((entry->protection & protection) != protection) {
1873 			return (FALSE);
1874 		}
1875 		/* go to next entry */
1876 
1877 		start = entry->end;
1878 		entry = entry->next;
1879 	}
1880 	return (TRUE);
1881 }
1882 
1883 /*
1884  * Split the pages in a map entry into a new object.  This affords
1885  * easier removal of unused pages, and keeps object inheritance from
1886  * being a negative impact on memory usage.
1887  */
1888 static void
1889 vm_map_split(entry)
1890 	vm_map_entry_t entry;
1891 {
1892 	vm_page_t m;
1893 	vm_object_t orig_object, new_object, source;
1894 	vm_offset_t s, e;
1895 	vm_pindex_t offidxstart, offidxend, idx;
1896 	vm_size_t size;
1897 	vm_ooffset_t offset;
1898 
1899 	orig_object = entry->object.vm_object;
1900 	if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP)
1901 		return;
1902 	if (orig_object->ref_count <= 1)
1903 		return;
1904 
1905 	offset = entry->offset;
1906 	s = entry->start;
1907 	e = entry->end;
1908 
1909 	offidxstart = OFF_TO_IDX(offset);
1910 	offidxend = offidxstart + OFF_TO_IDX(e - s);
1911 	size = offidxend - offidxstart;
1912 
1913 	new_object = vm_pager_allocate(orig_object->type,
1914 		NULL, IDX_TO_OFF(size), VM_PROT_ALL, 0LL);
1915 	if (new_object == NULL)
1916 		return;
1917 
1918 	source = orig_object->backing_object;
1919 	if (source != NULL) {
1920 		vm_object_reference(source);	/* Referenced by new_object */
1921 		TAILQ_INSERT_TAIL(&source->shadow_head,
1922 				  new_object, shadow_list);
1923 		vm_object_clear_flag(source, OBJ_ONEMAPPING);
1924 		new_object->backing_object_offset =
1925 			orig_object->backing_object_offset + IDX_TO_OFF(offidxstart);
1926 		new_object->backing_object = source;
1927 		source->shadow_count++;
1928 		source->generation++;
1929 	}
1930 
1931 	for (idx = 0; idx < size; idx++) {
1932 		vm_page_t m;
1933 
1934 	retry:
1935 		m = vm_page_lookup(orig_object, offidxstart + idx);
1936 		if (m == NULL)
1937 			continue;
1938 
1939 		/*
1940 		 * We must wait for pending I/O to complete before we can
1941 		 * rename the page.
1942 		 *
1943 		 * We do not have to VM_PROT_NONE the page as mappings should
1944 		 * not be changed by this operation.
1945 		 */
1946 		if (vm_page_sleep_busy(m, TRUE, "spltwt"))
1947 			goto retry;
1948 
1949 		vm_page_busy(m);
1950 		vm_page_rename(m, new_object, idx);
1951 		/* page automatically made dirty by rename and cache handled */
1952 		vm_page_busy(m);
1953 	}
1954 
1955 	if (orig_object->type == OBJT_SWAP) {
1956 		vm_object_pip_add(orig_object, 1);
1957 		/*
1958 		 * copy orig_object pages into new_object
1959 		 * and destroy unneeded pages in
1960 		 * shadow object.
1961 		 */
1962 		swap_pager_copy(orig_object, new_object, offidxstart, 0);
1963 		vm_object_pip_wakeup(orig_object);
1964 	}
1965 
1966 	for (idx = 0; idx < size; idx++) {
1967 		m = vm_page_lookup(new_object, idx);
1968 		if (m) {
1969 			vm_page_wakeup(m);
1970 		}
1971 	}
1972 
1973 	entry->object.vm_object = new_object;
1974 	entry->offset = 0LL;
1975 	vm_object_deallocate(orig_object);
1976 }
1977 
1978 /*
1979  *	vm_map_copy_entry:
1980  *
1981  *	Copies the contents of the source entry to the destination
1982  *	entry.  The entries *must* be aligned properly.
1983  */
1984 static void
1985 vm_map_copy_entry(src_map, dst_map, src_entry, dst_entry)
1986 	vm_map_t src_map, dst_map;
1987 	vm_map_entry_t src_entry, dst_entry;
1988 {
1989 	vm_object_t src_object;
1990 
1991 	if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP)
1992 		return;
1993 
1994 	if (src_entry->wired_count == 0) {
1995 
1996 		/*
1997 		 * If the source entry is marked needs_copy, it is already
1998 		 * write-protected.
1999 		 */
2000 		if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
2001 			pmap_protect(src_map->pmap,
2002 			    src_entry->start,
2003 			    src_entry->end,
2004 			    src_entry->protection & ~VM_PROT_WRITE);
2005 		}
2006 
2007 		/*
2008 		 * Make a copy of the object.
2009 		 */
2010 		if ((src_object = src_entry->object.vm_object) != NULL) {
2011 
2012 			if ((src_object->handle == NULL) &&
2013 				(src_object->type == OBJT_DEFAULT ||
2014 				 src_object->type == OBJT_SWAP)) {
2015 				vm_object_collapse(src_object);
2016 				if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) {
2017 					vm_map_split(src_entry);
2018 					src_object = src_entry->object.vm_object;
2019 				}
2020 			}
2021 
2022 			vm_object_reference(src_object);
2023 			vm_object_clear_flag(src_object, OBJ_ONEMAPPING);
2024 			dst_entry->object.vm_object = src_object;
2025 			src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2026 			dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY);
2027 			dst_entry->offset = src_entry->offset;
2028 		} else {
2029 			dst_entry->object.vm_object = NULL;
2030 			dst_entry->offset = 0;
2031 		}
2032 
2033 		pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start,
2034 		    dst_entry->end - dst_entry->start, src_entry->start);
2035 	} else {
2036 		/*
2037 		 * Of course, wired down pages can't be set copy-on-write.
2038 		 * Cause wired pages to be copied into the new map by
2039 		 * simulating faults (the new pages are pageable)
2040 		 */
2041 		vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry);
2042 	}
2043 }
2044 
2045 /*
2046  * vmspace_fork:
2047  * Create a new process vmspace structure and vm_map
2048  * based on those of an existing process.  The new map
2049  * is based on the old map, according to the inheritance
2050  * values on the regions in that map.
2051  *
2052  * The source map must not be locked.
2053  */
2054 struct vmspace *
2055 vmspace_fork(vm1)
2056 	struct vmspace *vm1;
2057 {
2058 	struct vmspace *vm2;
2059 	vm_map_t old_map = &vm1->vm_map;
2060 	vm_map_t new_map;
2061 	vm_map_entry_t old_entry;
2062 	vm_map_entry_t new_entry;
2063 	vm_object_t object;
2064 
2065 	vm_map_lock(old_map);
2066 
2067 	vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset);
2068 	bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy,
2069 	    (caddr_t) (vm1 + 1) - (caddr_t) &vm1->vm_startcopy);
2070 	new_map = &vm2->vm_map;	/* XXX */
2071 	new_map->timestamp = 1;
2072 
2073 	old_entry = old_map->header.next;
2074 
2075 	while (old_entry != &old_map->header) {
2076 		if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP)
2077 			panic("vm_map_fork: encountered a submap");
2078 
2079 		switch (old_entry->inheritance) {
2080 		case VM_INHERIT_NONE:
2081 			break;
2082 
2083 		case VM_INHERIT_SHARE:
2084 			/*
2085 			 * Clone the entry, creating the shared object if necessary.
2086 			 */
2087 			object = old_entry->object.vm_object;
2088 			if (object == NULL) {
2089 				object = vm_object_allocate(OBJT_DEFAULT,
2090 					atop(old_entry->end - old_entry->start));
2091 				old_entry->object.vm_object = object;
2092 				old_entry->offset = (vm_offset_t) 0;
2093 			}
2094 
2095 			/*
2096 			 * Add the reference before calling vm_object_shadow
2097 			 * to insure that a shadow object is created.
2098 			 */
2099 			vm_object_reference(object);
2100 			if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) {
2101 				vm_object_shadow(&old_entry->object.vm_object,
2102 					&old_entry->offset,
2103 					atop(old_entry->end - old_entry->start));
2104 				old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
2105 				object = old_entry->object.vm_object;
2106 			}
2107 			vm_object_clear_flag(object, OBJ_ONEMAPPING);
2108 
2109 			/*
2110 			 * Clone the entry, referencing the shared object.
2111 			 */
2112 			new_entry = vm_map_entry_create(new_map);
2113 			*new_entry = *old_entry;
2114 			new_entry->wired_count = 0;
2115 
2116 			/*
2117 			 * Insert the entry into the new map -- we know we're
2118 			 * inserting at the end of the new map.
2119 			 */
2120 
2121 			vm_map_entry_link(new_map, new_map->header.prev,
2122 			    new_entry);
2123 
2124 			/*
2125 			 * Update the physical map
2126 			 */
2127 
2128 			pmap_copy(new_map->pmap, old_map->pmap,
2129 			    new_entry->start,
2130 			    (old_entry->end - old_entry->start),
2131 			    old_entry->start);
2132 			break;
2133 
2134 		case VM_INHERIT_COPY:
2135 			/*
2136 			 * Clone the entry and link into the map.
2137 			 */
2138 			new_entry = vm_map_entry_create(new_map);
2139 			*new_entry = *old_entry;
2140 			new_entry->wired_count = 0;
2141 			new_entry->object.vm_object = NULL;
2142 			vm_map_entry_link(new_map, new_map->header.prev,
2143 			    new_entry);
2144 			vm_map_copy_entry(old_map, new_map, old_entry,
2145 			    new_entry);
2146 			break;
2147 		}
2148 		old_entry = old_entry->next;
2149 	}
2150 
2151 	new_map->size = old_map->size;
2152 	vm_map_unlock(old_map);
2153 
2154 	return (vm2);
2155 }
2156 
2157 int
2158 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize,
2159 	      vm_prot_t prot, vm_prot_t max, int cow)
2160 {
2161 	vm_map_entry_t prev_entry;
2162 	vm_map_entry_t new_stack_entry;
2163 	vm_size_t      init_ssize;
2164 	int            rv;
2165 
2166 	if (VM_MIN_ADDRESS > 0 && addrbos < VM_MIN_ADDRESS)
2167 		return (KERN_NO_SPACE);
2168 
2169 	if (max_ssize < SGROWSIZ)
2170 		init_ssize = max_ssize;
2171 	else
2172 		init_ssize = SGROWSIZ;
2173 
2174 	vm_map_lock(map);
2175 
2176 	/* If addr is already mapped, no go */
2177 	if (vm_map_lookup_entry(map, addrbos, &prev_entry)) {
2178 		vm_map_unlock(map);
2179 		return (KERN_NO_SPACE);
2180 	}
2181 
2182 	/* If we can't accomodate max_ssize in the current mapping,
2183 	 * no go.  However, we need to be aware that subsequent user
2184 	 * mappings might map into the space we have reserved for
2185 	 * stack, and currently this space is not protected.
2186 	 *
2187 	 * Hopefully we will at least detect this condition
2188 	 * when we try to grow the stack.
2189 	 */
2190 	if ((prev_entry->next != &map->header) &&
2191 	    (prev_entry->next->start < addrbos + max_ssize)) {
2192 		vm_map_unlock(map);
2193 		return (KERN_NO_SPACE);
2194 	}
2195 
2196 	/* We initially map a stack of only init_ssize.  We will
2197 	 * grow as needed later.  Since this is to be a grow
2198 	 * down stack, we map at the top of the range.
2199 	 *
2200 	 * Note: we would normally expect prot and max to be
2201 	 * VM_PROT_ALL, and cow to be 0.  Possibly we should
2202 	 * eliminate these as input parameters, and just
2203 	 * pass these values here in the insert call.
2204 	 */
2205 	rv = vm_map_insert(map, NULL, 0, addrbos + max_ssize - init_ssize,
2206 	                   addrbos + max_ssize, prot, max, cow);
2207 
2208 	/* Now set the avail_ssize amount */
2209 	if (rv == KERN_SUCCESS){
2210 		if (prev_entry != &map->header)
2211 			vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize);
2212 		new_stack_entry = prev_entry->next;
2213 		if (new_stack_entry->end   != addrbos + max_ssize ||
2214 		    new_stack_entry->start != addrbos + max_ssize - init_ssize)
2215 			panic ("Bad entry start/end for new stack entry");
2216 		else
2217 			new_stack_entry->avail_ssize = max_ssize - init_ssize;
2218 	}
2219 
2220 	vm_map_unlock(map);
2221 	return (rv);
2222 }
2223 
2224 /* Attempts to grow a vm stack entry.  Returns KERN_SUCCESS if the
2225  * desired address is already mapped, or if we successfully grow
2226  * the stack.  Also returns KERN_SUCCESS if addr is outside the
2227  * stack range (this is strange, but preserves compatibility with
2228  * the grow function in vm_machdep.c).
2229  */
2230 int
2231 vm_map_growstack (struct proc *p, vm_offset_t addr)
2232 {
2233 	vm_map_entry_t prev_entry;
2234 	vm_map_entry_t stack_entry;
2235 	vm_map_entry_t new_stack_entry;
2236 	struct vmspace *vm = p->p_vmspace;
2237 	vm_map_t map = &vm->vm_map;
2238 	vm_offset_t    end;
2239 	int      grow_amount;
2240 	int      rv;
2241 	int      is_procstack;
2242 Retry:
2243 	vm_map_lock_read(map);
2244 
2245 	/* If addr is already in the entry range, no need to grow.*/
2246 	if (vm_map_lookup_entry(map, addr, &prev_entry)) {
2247 		vm_map_unlock_read(map);
2248 		return (KERN_SUCCESS);
2249 	}
2250 
2251 	if ((stack_entry = prev_entry->next) == &map->header) {
2252 		vm_map_unlock_read(map);
2253 		return (KERN_SUCCESS);
2254 	}
2255 	if (prev_entry == &map->header)
2256 		end = stack_entry->start - stack_entry->avail_ssize;
2257 	else
2258 		end = prev_entry->end;
2259 
2260 	/* This next test mimics the old grow function in vm_machdep.c.
2261 	 * It really doesn't quite make sense, but we do it anyway
2262 	 * for compatibility.
2263 	 *
2264 	 * If not growable stack, return success.  This signals the
2265 	 * caller to proceed as he would normally with normal vm.
2266 	 */
2267 	if (stack_entry->avail_ssize < 1 ||
2268 	    addr >= stack_entry->start ||
2269 	    addr <  stack_entry->start - stack_entry->avail_ssize) {
2270 		vm_map_unlock_read(map);
2271 		return (KERN_SUCCESS);
2272 	}
2273 
2274 	/* Find the minimum grow amount */
2275 	grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE);
2276 	if (grow_amount > stack_entry->avail_ssize) {
2277 		vm_map_unlock_read(map);
2278 		return (KERN_NO_SPACE);
2279 	}
2280 
2281 	/* If there is no longer enough space between the entries
2282 	 * nogo, and adjust the available space.  Note: this
2283 	 * should only happen if the user has mapped into the
2284 	 * stack area after the stack was created, and is
2285 	 * probably an error.
2286 	 *
2287 	 * This also effectively destroys any guard page the user
2288 	 * might have intended by limiting the stack size.
2289 	 */
2290 	if (grow_amount > stack_entry->start - end) {
2291 		if (vm_map_lock_upgrade(map))
2292 			goto Retry;
2293 
2294 		stack_entry->avail_ssize = stack_entry->start - end;
2295 
2296 		vm_map_unlock(map);
2297 		return (KERN_NO_SPACE);
2298 	}
2299 
2300 	is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr;
2301 
2302 	/* If this is the main process stack, see if we're over the
2303 	 * stack limit.
2304 	 */
2305 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
2306 			     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
2307 		vm_map_unlock_read(map);
2308 		return (KERN_NO_SPACE);
2309 	}
2310 
2311 	/* Round up the grow amount modulo SGROWSIZ */
2312 	grow_amount = roundup (grow_amount, SGROWSIZ);
2313 	if (grow_amount > stack_entry->avail_ssize) {
2314 		grow_amount = stack_entry->avail_ssize;
2315 	}
2316 	if (is_procstack && (ctob(vm->vm_ssize) + grow_amount >
2317 	                     p->p_rlimit[RLIMIT_STACK].rlim_cur)) {
2318 		grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur -
2319 		              ctob(vm->vm_ssize);
2320 	}
2321 
2322 	if (vm_map_lock_upgrade(map))
2323 		goto Retry;
2324 
2325 	/* Get the preliminary new entry start value */
2326 	addr = stack_entry->start - grow_amount;
2327 
2328 	/* If this puts us into the previous entry, cut back our growth
2329 	 * to the available space.  Also, see the note above.
2330 	 */
2331 	if (addr < end) {
2332 		stack_entry->avail_ssize = stack_entry->start - end;
2333 		addr = end;
2334 	}
2335 
2336 	rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start,
2337 			   VM_PROT_ALL,
2338 			   VM_PROT_ALL,
2339 			   0);
2340 
2341 	/* Adjust the available stack space by the amount we grew. */
2342 	if (rv == KERN_SUCCESS) {
2343 		if (prev_entry != &map->header)
2344 			vm_map_clip_end(map, prev_entry, addr);
2345 		new_stack_entry = prev_entry->next;
2346 		if (new_stack_entry->end   != stack_entry->start  ||
2347 		    new_stack_entry->start != addr)
2348 			panic ("Bad stack grow start/end in new stack entry");
2349 		else {
2350 			new_stack_entry->avail_ssize = stack_entry->avail_ssize -
2351 							(new_stack_entry->end -
2352 							 new_stack_entry->start);
2353 			if (is_procstack)
2354 				vm->vm_ssize += btoc(new_stack_entry->end -
2355 						     new_stack_entry->start);
2356 		}
2357 	}
2358 
2359 	vm_map_unlock(map);
2360 	return (rv);
2361 
2362 }
2363 
2364 /*
2365  * Unshare the specified VM space for exec.  If other processes are
2366  * mapped to it, then create a new one.  The new vmspace is null.
2367  */
2368 
2369 void
2370 vmspace_exec(struct proc *p) {
2371 	struct vmspace *oldvmspace = p->p_vmspace;
2372 	struct vmspace *newvmspace;
2373 	vm_map_t map = &p->p_vmspace->vm_map;
2374 
2375 	newvmspace = vmspace_alloc(map->min_offset, map->max_offset);
2376 	bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy,
2377 	    (caddr_t) (newvmspace + 1) - (caddr_t) &newvmspace->vm_startcopy);
2378 	/*
2379 	 * This code is written like this for prototype purposes.  The
2380 	 * goal is to avoid running down the vmspace here, but let the
2381 	 * other process's that are still using the vmspace to finally
2382 	 * run it down.  Even though there is little or no chance of blocking
2383 	 * here, it is a good idea to keep this form for future mods.
2384 	 */
2385 	vmspace_free(oldvmspace);
2386 	p->p_vmspace = newvmspace;
2387 	pmap_pinit2(vmspace_pmap(newvmspace));
2388 	if (p == curproc)
2389 		pmap_activate(p);
2390 }
2391 
2392 /*
2393  * Unshare the specified VM space for forcing COW.  This
2394  * is called by rfork, for the (RFMEM|RFPROC) == 0 case.
2395  */
2396 
2397 void
2398 vmspace_unshare(struct proc *p) {
2399 	struct vmspace *oldvmspace = p->p_vmspace;
2400 	struct vmspace *newvmspace;
2401 
2402 	if (oldvmspace->vm_refcnt == 1)
2403 		return;
2404 	newvmspace = vmspace_fork(oldvmspace);
2405 	vmspace_free(oldvmspace);
2406 	p->p_vmspace = newvmspace;
2407 	pmap_pinit2(vmspace_pmap(newvmspace));
2408 	if (p == curproc)
2409 		pmap_activate(p);
2410 }
2411 
2412 
2413 /*
2414  *	vm_map_lookup:
2415  *
2416  *	Finds the VM object, offset, and
2417  *	protection for a given virtual address in the
2418  *	specified map, assuming a page fault of the
2419  *	type specified.
2420  *
2421  *	Leaves the map in question locked for read; return
2422  *	values are guaranteed until a vm_map_lookup_done
2423  *	call is performed.  Note that the map argument
2424  *	is in/out; the returned map must be used in
2425  *	the call to vm_map_lookup_done.
2426  *
2427  *	A handle (out_entry) is returned for use in
2428  *	vm_map_lookup_done, to make that fast.
2429  *
2430  *	If a lookup is requested with "write protection"
2431  *	specified, the map may be changed to perform virtual
2432  *	copying operations, although the data referenced will
2433  *	remain the same.
2434  */
2435 int
2436 vm_map_lookup(vm_map_t *var_map,		/* IN/OUT */
2437 	      vm_offset_t vaddr,
2438 	      vm_prot_t fault_typea,
2439 	      vm_map_entry_t *out_entry,	/* OUT */
2440 	      vm_object_t *object,		/* OUT */
2441 	      vm_pindex_t *pindex,		/* OUT */
2442 	      vm_prot_t *out_prot,		/* OUT */
2443 	      boolean_t *wired)			/* OUT */
2444 {
2445 	vm_map_entry_t entry;
2446 	vm_map_t map = *var_map;
2447 	vm_prot_t prot;
2448 	vm_prot_t fault_type = fault_typea;
2449 
2450 RetryLookup:;
2451 
2452 	/*
2453 	 * Lookup the faulting address.
2454 	 */
2455 
2456 	vm_map_lock_read(map);
2457 
2458 #define	RETURN(why) \
2459 		{ \
2460 		vm_map_unlock_read(map); \
2461 		return(why); \
2462 		}
2463 
2464 	/*
2465 	 * If the map has an interesting hint, try it before calling full
2466 	 * blown lookup routine.
2467 	 */
2468 
2469 	entry = map->hint;
2470 
2471 	*out_entry = entry;
2472 
2473 	if ((entry == &map->header) ||
2474 	    (vaddr < entry->start) || (vaddr >= entry->end)) {
2475 		vm_map_entry_t tmp_entry;
2476 
2477 		/*
2478 		 * Entry was either not a valid hint, or the vaddr was not
2479 		 * contained in the entry, so do a full lookup.
2480 		 */
2481 		if (!vm_map_lookup_entry(map, vaddr, &tmp_entry))
2482 			RETURN(KERN_INVALID_ADDRESS);
2483 
2484 		entry = tmp_entry;
2485 		*out_entry = entry;
2486 	}
2487 
2488 	/*
2489 	 * Handle submaps.
2490 	 */
2491 
2492 	if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2493 		vm_map_t old_map = map;
2494 
2495 		*var_map = map = entry->object.sub_map;
2496 		vm_map_unlock_read(old_map);
2497 		goto RetryLookup;
2498 	}
2499 
2500 	/*
2501 	 * Check whether this task is allowed to have this page.
2502 	 * Note the special case for MAP_ENTRY_COW
2503 	 * pages with an override.  This is to implement a forced
2504 	 * COW for debuggers.
2505 	 */
2506 
2507 	if (fault_type & VM_PROT_OVERRIDE_WRITE)
2508 		prot = entry->max_protection;
2509 	else
2510 		prot = entry->protection;
2511 
2512 	fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE);
2513 	if ((fault_type & prot) != fault_type) {
2514 			RETURN(KERN_PROTECTION_FAILURE);
2515 	}
2516 
2517 	if (entry->wired_count && (fault_type & VM_PROT_WRITE) &&
2518 			(entry->eflags & MAP_ENTRY_COW) &&
2519 			(fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) {
2520 			RETURN(KERN_PROTECTION_FAILURE);
2521 	}
2522 
2523 	/*
2524 	 * If this page is not pageable, we have to get it for all possible
2525 	 * accesses.
2526 	 */
2527 
2528 	*wired = (entry->wired_count != 0);
2529 	if (*wired)
2530 		prot = fault_type = entry->protection;
2531 
2532 	/*
2533 	 * If the entry was copy-on-write, we either ...
2534 	 */
2535 
2536 	if (entry->eflags & MAP_ENTRY_NEEDS_COPY) {
2537 		/*
2538 		 * If we want to write the page, we may as well handle that
2539 		 * now since we've got the map locked.
2540 		 *
2541 		 * If we don't need to write the page, we just demote the
2542 		 * permissions allowed.
2543 		 */
2544 
2545 		if (fault_type & VM_PROT_WRITE) {
2546 			/*
2547 			 * Make a new object, and place it in the object
2548 			 * chain.  Note that no new references have appeared
2549 			 * -- one just moved from the map to the new
2550 			 * object.
2551 			 */
2552 
2553 			if (vm_map_lock_upgrade(map))
2554 				goto RetryLookup;
2555 
2556 			vm_object_shadow(
2557 			    &entry->object.vm_object,
2558 			    &entry->offset,
2559 			    atop(entry->end - entry->start));
2560 
2561 			entry->eflags &= ~MAP_ENTRY_NEEDS_COPY;
2562 			vm_map_lock_downgrade(map);
2563 		} else {
2564 			/*
2565 			 * We're attempting to read a copy-on-write page --
2566 			 * don't allow writes.
2567 			 */
2568 
2569 			prot &= ~VM_PROT_WRITE;
2570 		}
2571 	}
2572 
2573 	/*
2574 	 * Create an object if necessary.
2575 	 */
2576 	if (entry->object.vm_object == NULL) {
2577 		if (vm_map_lock_upgrade(map))
2578 			goto RetryLookup;
2579 
2580 		entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT,
2581 		    atop(entry->end - entry->start));
2582 		entry->offset = 0;
2583 		vm_map_lock_downgrade(map);
2584 	}
2585 
2586 	/*
2587 	 * Return the object/offset from this entry.  If the entry was
2588 	 * copy-on-write or empty, it has been fixed up.
2589 	 */
2590 
2591 	*pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset);
2592 	*object = entry->object.vm_object;
2593 
2594 	/*
2595 	 * Return whether this is the only map sharing this data.
2596 	 */
2597 
2598 	*out_prot = prot;
2599 	return (KERN_SUCCESS);
2600 
2601 #undef	RETURN
2602 }
2603 
2604 /*
2605  *	vm_map_lookup_done:
2606  *
2607  *	Releases locks acquired by a vm_map_lookup
2608  *	(according to the handle returned by that lookup).
2609  */
2610 
2611 void
2612 vm_map_lookup_done(map, entry)
2613 	vm_map_t map;
2614 	vm_map_entry_t entry;
2615 {
2616 	/*
2617 	 * Unlock the main-level map
2618 	 */
2619 
2620 	vm_map_unlock_read(map);
2621 }
2622 
2623 /*
2624  * Implement uiomove with VM operations.  This handles (and collateral changes)
2625  * support every combination of source object modification, and COW type
2626  * operations.
2627  */
2628 int
2629 vm_uiomove(mapa, srcobject, cp, cnta, uaddra, npages)
2630 	vm_map_t mapa;
2631 	vm_object_t srcobject;
2632 	off_t cp;
2633 	int cnta;
2634 	vm_offset_t uaddra;
2635 	int *npages;
2636 {
2637 	vm_map_t map;
2638 	vm_object_t first_object, oldobject, object;
2639 	vm_map_entry_t entry;
2640 	vm_prot_t prot;
2641 	boolean_t wired;
2642 	int tcnt, rv;
2643 	vm_offset_t uaddr, start, end, tend;
2644 	vm_pindex_t first_pindex, osize, oindex;
2645 	off_t ooffset;
2646 	int cnt;
2647 
2648 	if (npages)
2649 		*npages = 0;
2650 
2651 	cnt = cnta;
2652 	uaddr = uaddra;
2653 
2654 	while (cnt > 0) {
2655 		map = mapa;
2656 
2657 		if ((vm_map_lookup(&map, uaddr,
2658 			VM_PROT_READ, &entry, &first_object,
2659 			&first_pindex, &prot, &wired)) != KERN_SUCCESS) {
2660 			return EFAULT;
2661 		}
2662 
2663 		vm_map_clip_start(map, entry, uaddr);
2664 
2665 		tcnt = cnt;
2666 		tend = uaddr + tcnt;
2667 		if (tend > entry->end) {
2668 			tcnt = entry->end - uaddr;
2669 			tend = entry->end;
2670 		}
2671 
2672 		vm_map_clip_end(map, entry, tend);
2673 
2674 		start = entry->start;
2675 		end = entry->end;
2676 
2677 		osize = atop(tcnt);
2678 
2679 		oindex = OFF_TO_IDX(cp);
2680 		if (npages) {
2681 			vm_pindex_t idx;
2682 			for (idx = 0; idx < osize; idx++) {
2683 				vm_page_t m;
2684 				if ((m = vm_page_lookup(srcobject, oindex + idx)) == NULL) {
2685 					vm_map_lookup_done(map, entry);
2686 					return 0;
2687 				}
2688 				/*
2689 				 * disallow busy or invalid pages, but allow
2690 				 * m->busy pages if they are entirely valid.
2691 				 */
2692 				if ((m->flags & PG_BUSY) ||
2693 					((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL)) {
2694 					vm_map_lookup_done(map, entry);
2695 					return 0;
2696 				}
2697 			}
2698 		}
2699 
2700 /*
2701  * If we are changing an existing map entry, just redirect
2702  * the object, and change mappings.
2703  */
2704 		if ((first_object->type == OBJT_VNODE) &&
2705 			((oldobject = entry->object.vm_object) == first_object)) {
2706 
2707 			if ((entry->offset != cp) || (oldobject != srcobject)) {
2708 				/*
2709    				* Remove old window into the file
2710    				*/
2711 				pmap_remove (map->pmap, uaddr, tend);
2712 
2713 				/*
2714    				* Force copy on write for mmaped regions
2715    				*/
2716 				vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize);
2717 
2718 				/*
2719    				* Point the object appropriately
2720    				*/
2721 				if (oldobject != srcobject) {
2722 
2723 				/*
2724    				* Set the object optimization hint flag
2725    				*/
2726 					vm_object_set_flag(srcobject, OBJ_OPT);
2727 					vm_object_reference(srcobject);
2728 					entry->object.vm_object = srcobject;
2729 
2730 					if (oldobject) {
2731 						vm_object_deallocate(oldobject);
2732 					}
2733 				}
2734 
2735 				entry->offset = cp;
2736 				map->timestamp++;
2737 			} else {
2738 				pmap_remove (map->pmap, uaddr, tend);
2739 			}
2740 
2741 		} else if ((first_object->ref_count == 1) &&
2742 			(first_object->size == osize) &&
2743 			((first_object->type == OBJT_DEFAULT) ||
2744 				(first_object->type == OBJT_SWAP)) ) {
2745 
2746 			oldobject = first_object->backing_object;
2747 
2748 			if ((first_object->backing_object_offset != cp) ||
2749 				(oldobject != srcobject)) {
2750 				/*
2751    				* Remove old window into the file
2752    				*/
2753 				pmap_remove (map->pmap, uaddr, tend);
2754 
2755 				/*
2756 				 * Remove unneeded old pages
2757 				 */
2758 				vm_object_page_remove(first_object, 0, 0, 0);
2759 
2760 				/*
2761 				 * Invalidate swap space
2762 				 */
2763 				if (first_object->type == OBJT_SWAP) {
2764 					swap_pager_freespace(first_object,
2765 						0,
2766 						first_object->size);
2767 				}
2768 
2769 				/*
2770    				* Force copy on write for mmaped regions
2771    				*/
2772 				vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize);
2773 
2774 				/*
2775    				* Point the object appropriately
2776    				*/
2777 				if (oldobject != srcobject) {
2778 
2779 				/*
2780    				* Set the object optimization hint flag
2781    				*/
2782 					vm_object_set_flag(srcobject, OBJ_OPT);
2783 					vm_object_reference(srcobject);
2784 
2785 					if (oldobject) {
2786 						TAILQ_REMOVE(&oldobject->shadow_head,
2787 							first_object, shadow_list);
2788 						oldobject->shadow_count--;
2789 						/* XXX bump generation? */
2790 						vm_object_deallocate(oldobject);
2791 					}
2792 
2793 					TAILQ_INSERT_TAIL(&srcobject->shadow_head,
2794 						first_object, shadow_list);
2795 					srcobject->shadow_count++;
2796 					/* XXX bump generation? */
2797 
2798 					first_object->backing_object = srcobject;
2799 				}
2800 				first_object->backing_object_offset = cp;
2801 				map->timestamp++;
2802 			} else {
2803 				pmap_remove (map->pmap, uaddr, tend);
2804 			}
2805 /*
2806  * Otherwise, we have to do a logical mmap.
2807  */
2808 		} else {
2809 
2810 			vm_object_set_flag(srcobject, OBJ_OPT);
2811 			vm_object_reference(srcobject);
2812 
2813 			pmap_remove (map->pmap, uaddr, tend);
2814 
2815 			vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize);
2816 			vm_map_lock_upgrade(map);
2817 
2818 			if (entry == &map->header) {
2819 				map->first_free = &map->header;
2820 			} else if (map->first_free->start >= start) {
2821 				map->first_free = entry->prev;
2822 			}
2823 
2824 			SAVE_HINT(map, entry->prev);
2825 			vm_map_entry_delete(map, entry);
2826 
2827 			object = srcobject;
2828 			ooffset = cp;
2829 
2830 			rv = vm_map_insert(map, object, ooffset, start, tend,
2831 				VM_PROT_ALL, VM_PROT_ALL, MAP_COPY_ON_WRITE);
2832 
2833 			if (rv != KERN_SUCCESS)
2834 				panic("vm_uiomove: could not insert new entry: %d", rv);
2835 		}
2836 
2837 /*
2838  * Map the window directly, if it is already in memory
2839  */
2840 		pmap_object_init_pt(map->pmap, uaddr,
2841 			srcobject, oindex, tcnt, 0);
2842 
2843 		map->timestamp++;
2844 		vm_map_unlock(map);
2845 
2846 		cnt -= tcnt;
2847 		uaddr += tcnt;
2848 		cp += tcnt;
2849 		if (npages)
2850 			*npages += osize;
2851 	}
2852 	return 0;
2853 }
2854 
2855 /*
2856  * Performs the copy_on_write operations necessary to allow the virtual copies
2857  * into user space to work.  This has to be called for write(2) system calls
2858  * from other processes, file unlinking, and file size shrinkage.
2859  */
2860 void
2861 vm_freeze_copyopts(object, froma, toa)
2862 	vm_object_t object;
2863 	vm_pindex_t froma, toa;
2864 {
2865 	int rv;
2866 	vm_object_t robject;
2867 	vm_pindex_t idx;
2868 
2869 	if ((object == NULL) ||
2870 		((object->flags & OBJ_OPT) == 0))
2871 		return;
2872 
2873 	if (object->shadow_count > object->ref_count)
2874 		panic("vm_freeze_copyopts: sc > rc");
2875 
2876 	while((robject = TAILQ_FIRST(&object->shadow_head)) != NULL) {
2877 		vm_pindex_t bo_pindex;
2878 		vm_page_t m_in, m_out;
2879 
2880 		bo_pindex = OFF_TO_IDX(robject->backing_object_offset);
2881 
2882 		vm_object_reference(robject);
2883 
2884 		vm_object_pip_wait(robject, "objfrz");
2885 
2886 		if (robject->ref_count == 1) {
2887 			vm_object_deallocate(robject);
2888 			continue;
2889 		}
2890 
2891 		vm_object_pip_add(robject, 1);
2892 
2893 		for (idx = 0; idx < robject->size; idx++) {
2894 
2895 			m_out = vm_page_grab(robject, idx,
2896 						VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
2897 
2898 			if (m_out->valid == 0) {
2899 				m_in = vm_page_grab(object, bo_pindex + idx,
2900 						VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
2901 				if (m_in->valid == 0) {
2902 					rv = vm_pager_get_pages(object, &m_in, 1, 0);
2903 					if (rv != VM_PAGER_OK) {
2904 						printf("vm_freeze_copyopts: cannot read page from file: %lx\n", (long)m_in->pindex);
2905 						continue;
2906 					}
2907 					vm_page_deactivate(m_in);
2908 				}
2909 
2910 				vm_page_protect(m_in, VM_PROT_NONE);
2911 				pmap_copy_page(VM_PAGE_TO_PHYS(m_in), VM_PAGE_TO_PHYS(m_out));
2912 				m_out->valid = m_in->valid;
2913 				vm_page_dirty(m_out);
2914 				vm_page_activate(m_out);
2915 				vm_page_wakeup(m_in);
2916 			}
2917 			vm_page_wakeup(m_out);
2918 		}
2919 
2920 		object->shadow_count--;
2921 		object->ref_count--;
2922 		TAILQ_REMOVE(&object->shadow_head, robject, shadow_list);
2923 		robject->backing_object = NULL;
2924 		robject->backing_object_offset = 0;
2925 
2926 		vm_object_pip_wakeup(robject);
2927 		vm_object_deallocate(robject);
2928 	}
2929 
2930 	vm_object_clear_flag(object, OBJ_OPT);
2931 }
2932 
2933 #include "opt_ddb.h"
2934 #ifdef DDB
2935 #include <sys/kernel.h>
2936 
2937 #include <ddb/ddb.h>
2938 
2939 /*
2940  *	vm_map_print:	[ debug ]
2941  */
2942 DB_SHOW_COMMAND(map, vm_map_print)
2943 {
2944 	static int nlines;
2945 	/* XXX convert args. */
2946 	vm_map_t map = (vm_map_t)addr;
2947 	boolean_t full = have_addr;
2948 
2949 	vm_map_entry_t entry;
2950 
2951 	db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n",
2952 	    (void *)map,
2953 	    (void *)map->pmap, map->nentries, map->timestamp);
2954 	nlines++;
2955 
2956 	if (!full && db_indent)
2957 		return;
2958 
2959 	db_indent += 2;
2960 	for (entry = map->header.next; entry != &map->header;
2961 	    entry = entry->next) {
2962 		db_iprintf("map entry %p: start=%p, end=%p\n",
2963 		    (void *)entry, (void *)entry->start, (void *)entry->end);
2964 		nlines++;
2965 		{
2966 			static char *inheritance_name[4] =
2967 			{"share", "copy", "none", "donate_copy"};
2968 
2969 			db_iprintf(" prot=%x/%x/%s",
2970 			    entry->protection,
2971 			    entry->max_protection,
2972 			    inheritance_name[(int)(unsigned char)entry->inheritance]);
2973 			if (entry->wired_count != 0)
2974 				db_printf(", wired");
2975 		}
2976 		if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) {
2977 			/* XXX no %qd in kernel.  Truncate entry->offset. */
2978 			db_printf(", share=%p, offset=0x%lx\n",
2979 			    (void *)entry->object.sub_map,
2980 			    (long)entry->offset);
2981 			nlines++;
2982 			if ((entry->prev == &map->header) ||
2983 			    (entry->prev->object.sub_map !=
2984 				entry->object.sub_map)) {
2985 				db_indent += 2;
2986 				vm_map_print((db_expr_t)(intptr_t)
2987 					     entry->object.sub_map,
2988 					     full, 0, (char *)0);
2989 				db_indent -= 2;
2990 			}
2991 		} else {
2992 			/* XXX no %qd in kernel.  Truncate entry->offset. */
2993 			db_printf(", object=%p, offset=0x%lx",
2994 			    (void *)entry->object.vm_object,
2995 			    (long)entry->offset);
2996 			if (entry->eflags & MAP_ENTRY_COW)
2997 				db_printf(", copy (%s)",
2998 				    (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done");
2999 			db_printf("\n");
3000 			nlines++;
3001 
3002 			if ((entry->prev == &map->header) ||
3003 			    (entry->prev->object.vm_object !=
3004 				entry->object.vm_object)) {
3005 				db_indent += 2;
3006 				vm_object_print((db_expr_t)(intptr_t)
3007 						entry->object.vm_object,
3008 						full, 0, (char *)0);
3009 				nlines += 4;
3010 				db_indent -= 2;
3011 			}
3012 		}
3013 	}
3014 	db_indent -= 2;
3015 	if (db_indent == 0)
3016 		nlines = 0;
3017 }
3018 
3019 
3020 DB_SHOW_COMMAND(procvm, procvm)
3021 {
3022 	struct proc *p;
3023 
3024 	if (have_addr) {
3025 		p = (struct proc *) addr;
3026 	} else {
3027 		p = curproc;
3028 	}
3029 
3030 	db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n",
3031 	    (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map,
3032 	    (void *)vmspace_pmap(p->p_vmspace));
3033 
3034 	vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL);
3035 }
3036 
3037 #endif /* DDB */
3038