1 /* 2 * Copyright (c) 1991, 1993 3 * The Regents of the University of California. All rights reserved. 4 * 5 * This code is derived from software contributed to Berkeley by 6 * The Mach Operating System project at Carnegie-Mellon University. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by the University of 19 * California, Berkeley and its contributors. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 * 36 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 37 * 38 * 39 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 40 * All rights reserved. 41 * 42 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 43 * 44 * Permission to use, copy, modify and distribute this software and 45 * its documentation is hereby granted, provided that both the copyright 46 * notice and this permission notice appear in all copies of the 47 * software, derivative works or modified versions, and any portions 48 * thereof, and that both notices appear in supporting documentation. 49 * 50 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 51 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 52 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 53 * 54 * Carnegie Mellon requests users of this software to return to 55 * 56 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 57 * School of Computer Science 58 * Carnegie Mellon University 59 * Pittsburgh PA 15213-3890 60 * 61 * any improvements or extensions that they make and grant Carnegie the 62 * rights to redistribute these changes. 63 * 64 * $FreeBSD$ 65 */ 66 67 /* 68 * Virtual memory mapping module. 69 */ 70 71 #include <sys/param.h> 72 #include <sys/systm.h> 73 #include <sys/proc.h> 74 #include <sys/vmmeter.h> 75 #include <sys/mman.h> 76 #include <sys/vnode.h> 77 #include <sys/resourcevar.h> 78 79 #include <vm/vm.h> 80 #include <vm/vm_param.h> 81 #include <sys/lock.h> 82 #include <vm/pmap.h> 83 #include <vm/vm_map.h> 84 #include <vm/vm_page.h> 85 #include <vm/vm_object.h> 86 #include <vm/vm_pager.h> 87 #include <vm/vm_kern.h> 88 #include <vm/vm_extern.h> 89 #include <vm/vm_zone.h> 90 #include <vm/swap_pager.h> 91 92 /* 93 * Virtual memory maps provide for the mapping, protection, 94 * and sharing of virtual memory objects. In addition, 95 * this module provides for an efficient virtual copy of 96 * memory from one map to another. 97 * 98 * Synchronization is required prior to most operations. 99 * 100 * Maps consist of an ordered doubly-linked list of simple 101 * entries; a single hint is used to speed up lookups. 102 * 103 * Since portions of maps are specified by start/end addresses, 104 * which may not align with existing map entries, all 105 * routines merely "clip" entries to these start/end values. 106 * [That is, an entry is split into two, bordering at a 107 * start or end value.] Note that these clippings may not 108 * always be necessary (as the two resulting entries are then 109 * not changed); however, the clipping is done for convenience. 110 * 111 * As mentioned above, virtual copy operations are performed 112 * by copying VM object references from one map to 113 * another, and then marking both regions as copy-on-write. 114 */ 115 116 /* 117 * vm_map_startup: 118 * 119 * Initialize the vm_map module. Must be called before 120 * any other vm_map routines. 121 * 122 * Map and entry structures are allocated from the general 123 * purpose memory pool with some exceptions: 124 * 125 * - The kernel map and kmem submap are allocated statically. 126 * - Kernel map entries are allocated out of a static pool. 127 * 128 * These restrictions are necessary since malloc() uses the 129 * maps and requires map entries. 130 */ 131 132 static struct vm_zone kmapentzone_store, mapentzone_store, mapzone_store; 133 static vm_zone_t mapentzone, kmapentzone, mapzone, vmspace_zone; 134 static struct vm_object kmapentobj, mapentobj, mapobj; 135 136 static struct vm_map_entry map_entry_init[MAX_MAPENT]; 137 static struct vm_map_entry kmap_entry_init[MAX_KMAPENT]; 138 static struct vm_map map_init[MAX_KMAP]; 139 140 static void _vm_map_clip_end __P((vm_map_t, vm_map_entry_t, vm_offset_t)); 141 static void _vm_map_clip_start __P((vm_map_t, vm_map_entry_t, vm_offset_t)); 142 static vm_map_entry_t vm_map_entry_create __P((vm_map_t)); 143 static void vm_map_entry_delete __P((vm_map_t, vm_map_entry_t)); 144 static void vm_map_entry_dispose __P((vm_map_t, vm_map_entry_t)); 145 static void vm_map_entry_unwire __P((vm_map_t, vm_map_entry_t)); 146 static void vm_map_copy_entry __P((vm_map_t, vm_map_t, vm_map_entry_t, 147 vm_map_entry_t)); 148 static void vm_map_split __P((vm_map_entry_t)); 149 150 void 151 vm_map_startup() 152 { 153 mapzone = &mapzone_store; 154 zbootinit(mapzone, "MAP", sizeof (struct vm_map), 155 map_init, MAX_KMAP); 156 kmapentzone = &kmapentzone_store; 157 zbootinit(kmapentzone, "KMAP ENTRY", sizeof (struct vm_map_entry), 158 kmap_entry_init, MAX_KMAPENT); 159 mapentzone = &mapentzone_store; 160 zbootinit(mapentzone, "MAP ENTRY", sizeof (struct vm_map_entry), 161 map_entry_init, MAX_MAPENT); 162 } 163 164 /* 165 * Allocate a vmspace structure, including a vm_map and pmap, 166 * and initialize those structures. The refcnt is set to 1. 167 * The remaining fields must be initialized by the caller. 168 */ 169 struct vmspace * 170 vmspace_alloc(min, max) 171 vm_offset_t min, max; 172 { 173 struct vmspace *vm; 174 175 vm = zalloc(vmspace_zone); 176 vm_map_init(&vm->vm_map, min, max); 177 pmap_pinit(vmspace_pmap(vm)); 178 vm->vm_map.pmap = vmspace_pmap(vm); /* XXX */ 179 vm->vm_refcnt = 1; 180 vm->vm_shm = NULL; 181 return (vm); 182 } 183 184 void 185 vm_init2(void) { 186 zinitna(kmapentzone, &kmapentobj, 187 NULL, 0, cnt.v_page_count / 4, ZONE_INTERRUPT, 1); 188 zinitna(mapentzone, &mapentobj, 189 NULL, 0, 0, 0, 1); 190 zinitna(mapzone, &mapobj, 191 NULL, 0, 0, 0, 1); 192 vmspace_zone = zinit("VMSPACE", sizeof (struct vmspace), 0, 0, 3); 193 pmap_init2(); 194 vm_object_init2(); 195 } 196 197 void 198 vmspace_free(vm) 199 struct vmspace *vm; 200 { 201 202 if (vm->vm_refcnt == 0) 203 panic("vmspace_free: attempt to free already freed vmspace"); 204 205 if (--vm->vm_refcnt == 0) { 206 207 /* 208 * Lock the map, to wait out all other references to it. 209 * Delete all of the mappings and pages they hold, then call 210 * the pmap module to reclaim anything left. 211 */ 212 vm_map_lock(&vm->vm_map); 213 (void) vm_map_delete(&vm->vm_map, vm->vm_map.min_offset, 214 vm->vm_map.max_offset); 215 vm_map_unlock(&vm->vm_map); 216 217 pmap_release(vmspace_pmap(vm)); 218 vm_map_destroy(&vm->vm_map); 219 zfree(vmspace_zone, vm); 220 } 221 } 222 223 /* 224 * vm_map_create: 225 * 226 * Creates and returns a new empty VM map with 227 * the given physical map structure, and having 228 * the given lower and upper address bounds. 229 */ 230 vm_map_t 231 vm_map_create(pmap, min, max) 232 pmap_t pmap; 233 vm_offset_t min, max; 234 { 235 vm_map_t result; 236 237 result = zalloc(mapzone); 238 vm_map_init(result, min, max); 239 result->pmap = pmap; 240 return (result); 241 } 242 243 /* 244 * Initialize an existing vm_map structure 245 * such as that in the vmspace structure. 246 * The pmap is set elsewhere. 247 */ 248 void 249 vm_map_init(map, min, max) 250 struct vm_map *map; 251 vm_offset_t min, max; 252 { 253 map->header.next = map->header.prev = &map->header; 254 map->nentries = 0; 255 map->size = 0; 256 map->system_map = 0; 257 map->infork = 0; 258 map->min_offset = min; 259 map->max_offset = max; 260 map->first_free = &map->header; 261 map->hint = &map->header; 262 map->timestamp = 0; 263 lockinit(&map->lock, PVM, "thrd_sleep", 0, LK_NOPAUSE); 264 } 265 266 void 267 vm_map_destroy(map) 268 struct vm_map *map; 269 { 270 lockdestroy(&map->lock); 271 } 272 273 /* 274 * vm_map_entry_dispose: [ internal use only ] 275 * 276 * Inverse of vm_map_entry_create. 277 */ 278 static void 279 vm_map_entry_dispose(map, entry) 280 vm_map_t map; 281 vm_map_entry_t entry; 282 { 283 zfree((map->system_map || !mapentzone) ? kmapentzone : mapentzone, entry); 284 } 285 286 /* 287 * vm_map_entry_create: [ internal use only ] 288 * 289 * Allocates a VM map entry for insertion. 290 * No entry fields are filled in. This routine is 291 */ 292 static vm_map_entry_t 293 vm_map_entry_create(map) 294 vm_map_t map; 295 { 296 vm_map_entry_t new_entry; 297 298 new_entry = zalloc((map->system_map || !mapentzone) ? 299 kmapentzone : mapentzone); 300 if (new_entry == NULL) 301 panic("vm_map_entry_create: kernel resources exhausted"); 302 return(new_entry); 303 } 304 305 /* 306 * vm_map_entry_{un,}link: 307 * 308 * Insert/remove entries from maps. 309 */ 310 static __inline void 311 vm_map_entry_link(vm_map_t map, 312 vm_map_entry_t after_where, 313 vm_map_entry_t entry) 314 { 315 map->nentries++; 316 entry->prev = after_where; 317 entry->next = after_where->next; 318 entry->next->prev = entry; 319 after_where->next = entry; 320 } 321 322 static __inline void 323 vm_map_entry_unlink(vm_map_t map, 324 vm_map_entry_t entry) 325 { 326 vm_map_entry_t prev = entry->prev; 327 vm_map_entry_t next = entry->next; 328 329 next->prev = prev; 330 prev->next = next; 331 map->nentries--; 332 } 333 334 /* 335 * SAVE_HINT: 336 * 337 * Saves the specified entry as the hint for 338 * future lookups. 339 */ 340 #define SAVE_HINT(map,value) \ 341 (map)->hint = (value); 342 343 /* 344 * vm_map_lookup_entry: [ internal use only ] 345 * 346 * Finds the map entry containing (or 347 * immediately preceding) the specified address 348 * in the given map; the entry is returned 349 * in the "entry" parameter. The boolean 350 * result indicates whether the address is 351 * actually contained in the map. 352 */ 353 boolean_t 354 vm_map_lookup_entry(map, address, entry) 355 vm_map_t map; 356 vm_offset_t address; 357 vm_map_entry_t *entry; /* OUT */ 358 { 359 vm_map_entry_t cur; 360 vm_map_entry_t last; 361 362 /* 363 * Start looking either from the head of the list, or from the hint. 364 */ 365 366 cur = map->hint; 367 368 if (cur == &map->header) 369 cur = cur->next; 370 371 if (address >= cur->start) { 372 /* 373 * Go from hint to end of list. 374 * 375 * But first, make a quick check to see if we are already looking 376 * at the entry we want (which is usually the case). Note also 377 * that we don't need to save the hint here... it is the same 378 * hint (unless we are at the header, in which case the hint 379 * didn't buy us anything anyway). 380 */ 381 last = &map->header; 382 if ((cur != last) && (cur->end > address)) { 383 *entry = cur; 384 return (TRUE); 385 } 386 } else { 387 /* 388 * Go from start to hint, *inclusively* 389 */ 390 last = cur->next; 391 cur = map->header.next; 392 } 393 394 /* 395 * Search linearly 396 */ 397 398 while (cur != last) { 399 if (cur->end > address) { 400 if (address >= cur->start) { 401 /* 402 * Save this lookup for future hints, and 403 * return 404 */ 405 406 *entry = cur; 407 SAVE_HINT(map, cur); 408 return (TRUE); 409 } 410 break; 411 } 412 cur = cur->next; 413 } 414 *entry = cur->prev; 415 SAVE_HINT(map, *entry); 416 return (FALSE); 417 } 418 419 /* 420 * vm_map_insert: 421 * 422 * Inserts the given whole VM object into the target 423 * map at the specified address range. The object's 424 * size should match that of the address range. 425 * 426 * Requires that the map be locked, and leaves it so. 427 * 428 * If object is non-NULL, ref count must be bumped by caller 429 * prior to making call to account for the new entry. 430 */ 431 int 432 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 433 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, 434 int cow) 435 { 436 vm_map_entry_t new_entry; 437 vm_map_entry_t prev_entry; 438 vm_map_entry_t temp_entry; 439 vm_eflags_t protoeflags; 440 441 /* 442 * Check that the start and end points are not bogus. 443 */ 444 445 if ((start < map->min_offset) || (end > map->max_offset) || 446 (start >= end)) 447 return (KERN_INVALID_ADDRESS); 448 449 /* 450 * Find the entry prior to the proposed starting address; if it's part 451 * of an existing entry, this range is bogus. 452 */ 453 454 if (vm_map_lookup_entry(map, start, &temp_entry)) 455 return (KERN_NO_SPACE); 456 457 prev_entry = temp_entry; 458 459 /* 460 * Assert that the next entry doesn't overlap the end point. 461 */ 462 463 if ((prev_entry->next != &map->header) && 464 (prev_entry->next->start < end)) 465 return (KERN_NO_SPACE); 466 467 protoeflags = 0; 468 469 if (cow & MAP_COPY_ON_WRITE) 470 protoeflags |= MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY; 471 472 if (cow & MAP_NOFAULT) { 473 protoeflags |= MAP_ENTRY_NOFAULT; 474 475 KASSERT(object == NULL, 476 ("vm_map_insert: paradoxical MAP_NOFAULT request")); 477 } 478 if (cow & MAP_DISABLE_SYNCER) 479 protoeflags |= MAP_ENTRY_NOSYNC; 480 if (cow & MAP_DISABLE_COREDUMP) 481 protoeflags |= MAP_ENTRY_NOCOREDUMP; 482 483 if (object) { 484 /* 485 * When object is non-NULL, it could be shared with another 486 * process. We have to set or clear OBJ_ONEMAPPING 487 * appropriately. 488 */ 489 if ((object->ref_count > 1) || (object->shadow_count != 0)) { 490 vm_object_clear_flag(object, OBJ_ONEMAPPING); 491 } 492 } 493 else if ((prev_entry != &map->header) && 494 (prev_entry->eflags == protoeflags) && 495 (prev_entry->end == start) && 496 (prev_entry->wired_count == 0) && 497 ((prev_entry->object.vm_object == NULL) || 498 vm_object_coalesce(prev_entry->object.vm_object, 499 OFF_TO_IDX(prev_entry->offset), 500 (vm_size_t)(prev_entry->end - prev_entry->start), 501 (vm_size_t)(end - prev_entry->end)))) { 502 /* 503 * We were able to extend the object. Determine if we 504 * can extend the previous map entry to include the 505 * new range as well. 506 */ 507 if ((prev_entry->inheritance == VM_INHERIT_DEFAULT) && 508 (prev_entry->protection == prot) && 509 (prev_entry->max_protection == max)) { 510 map->size += (end - prev_entry->end); 511 prev_entry->end = end; 512 vm_map_simplify_entry(map, prev_entry); 513 return (KERN_SUCCESS); 514 } 515 516 /* 517 * If we can extend the object but cannot extend the 518 * map entry, we have to create a new map entry. We 519 * must bump the ref count on the extended object to 520 * account for it. object may be NULL. 521 */ 522 object = prev_entry->object.vm_object; 523 offset = prev_entry->offset + 524 (prev_entry->end - prev_entry->start); 525 vm_object_reference(object); 526 } 527 528 /* 529 * NOTE: if conditionals fail, object can be NULL here. This occurs 530 * in things like the buffer map where we manage kva but do not manage 531 * backing objects. 532 */ 533 534 /* 535 * Create a new entry 536 */ 537 538 new_entry = vm_map_entry_create(map); 539 new_entry->start = start; 540 new_entry->end = end; 541 542 new_entry->eflags = protoeflags; 543 new_entry->object.vm_object = object; 544 new_entry->offset = offset; 545 new_entry->avail_ssize = 0; 546 547 new_entry->inheritance = VM_INHERIT_DEFAULT; 548 new_entry->protection = prot; 549 new_entry->max_protection = max; 550 new_entry->wired_count = 0; 551 552 /* 553 * Insert the new entry into the list 554 */ 555 556 vm_map_entry_link(map, prev_entry, new_entry); 557 map->size += new_entry->end - new_entry->start; 558 559 /* 560 * Update the free space hint 561 */ 562 if ((map->first_free == prev_entry) && 563 (prev_entry->end >= new_entry->start)) { 564 map->first_free = new_entry; 565 } 566 567 #if 0 568 /* 569 * Temporarily removed to avoid MAP_STACK panic, due to 570 * MAP_STACK being a huge hack. Will be added back in 571 * when MAP_STACK (and the user stack mapping) is fixed. 572 */ 573 /* 574 * It may be possible to simplify the entry 575 */ 576 vm_map_simplify_entry(map, new_entry); 577 #endif 578 579 if (cow & (MAP_PREFAULT|MAP_PREFAULT_PARTIAL)) { 580 pmap_object_init_pt(map->pmap, start, 581 object, OFF_TO_IDX(offset), end - start, 582 cow & MAP_PREFAULT_PARTIAL); 583 } 584 585 return (KERN_SUCCESS); 586 } 587 588 /* 589 * Find sufficient space for `length' bytes in the given map, starting at 590 * `start'. The map must be locked. Returns 0 on success, 1 on no space. 591 */ 592 int 593 vm_map_findspace(map, start, length, addr) 594 vm_map_t map; 595 vm_offset_t start; 596 vm_size_t length; 597 vm_offset_t *addr; 598 { 599 vm_map_entry_t entry, next; 600 vm_offset_t end; 601 602 if (start < map->min_offset) 603 start = map->min_offset; 604 if (start > map->max_offset) 605 return (1); 606 607 /* 608 * Look for the first possible address; if there's already something 609 * at this address, we have to start after it. 610 */ 611 if (start == map->min_offset) { 612 if ((entry = map->first_free) != &map->header) 613 start = entry->end; 614 } else { 615 vm_map_entry_t tmp; 616 617 if (vm_map_lookup_entry(map, start, &tmp)) 618 start = tmp->end; 619 entry = tmp; 620 } 621 622 /* 623 * Look through the rest of the map, trying to fit a new region in the 624 * gap between existing regions, or after the very last region. 625 */ 626 for (;; start = (entry = next)->end) { 627 /* 628 * Find the end of the proposed new region. Be sure we didn't 629 * go beyond the end of the map, or wrap around the address; 630 * if so, we lose. Otherwise, if this is the last entry, or 631 * if the proposed new region fits before the next entry, we 632 * win. 633 */ 634 end = start + length; 635 if (end > map->max_offset || end < start) 636 return (1); 637 next = entry->next; 638 if (next == &map->header || next->start >= end) 639 break; 640 } 641 SAVE_HINT(map, entry); 642 *addr = start; 643 if (map == kernel_map) { 644 vm_offset_t ksize; 645 if ((ksize = round_page(start + length)) > kernel_vm_end) { 646 pmap_growkernel(ksize); 647 } 648 } 649 return (0); 650 } 651 652 /* 653 * vm_map_find finds an unallocated region in the target address 654 * map with the given length. The search is defined to be 655 * first-fit from the specified address; the region found is 656 * returned in the same parameter. 657 * 658 * If object is non-NULL, ref count must be bumped by caller 659 * prior to making call to account for the new entry. 660 */ 661 int 662 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 663 vm_offset_t *addr, /* IN/OUT */ 664 vm_size_t length, boolean_t find_space, vm_prot_t prot, 665 vm_prot_t max, int cow) 666 { 667 vm_offset_t start; 668 int result, s = 0; 669 670 start = *addr; 671 672 if (map == kmem_map || map == mb_map) 673 s = splvm(); 674 675 vm_map_lock(map); 676 if (find_space) { 677 if (vm_map_findspace(map, start, length, addr)) { 678 vm_map_unlock(map); 679 if (map == kmem_map || map == mb_map) 680 splx(s); 681 return (KERN_NO_SPACE); 682 } 683 start = *addr; 684 } 685 result = vm_map_insert(map, object, offset, 686 start, start + length, prot, max, cow); 687 vm_map_unlock(map); 688 689 if (map == kmem_map || map == mb_map) 690 splx(s); 691 692 return (result); 693 } 694 695 /* 696 * vm_map_simplify_entry: 697 * 698 * Simplify the given map entry by merging with either neighbor. This 699 * routine also has the ability to merge with both neighbors. 700 * 701 * The map must be locked. 702 * 703 * This routine guarentees that the passed entry remains valid (though 704 * possibly extended). When merging, this routine may delete one or 705 * both neighbors. 706 */ 707 void 708 vm_map_simplify_entry(map, entry) 709 vm_map_t map; 710 vm_map_entry_t entry; 711 { 712 vm_map_entry_t next, prev; 713 vm_size_t prevsize, esize; 714 715 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 716 return; 717 718 prev = entry->prev; 719 if (prev != &map->header) { 720 prevsize = prev->end - prev->start; 721 if ( (prev->end == entry->start) && 722 (prev->object.vm_object == entry->object.vm_object) && 723 (!prev->object.vm_object || 724 (prev->offset + prevsize == entry->offset)) && 725 (prev->eflags == entry->eflags) && 726 (prev->protection == entry->protection) && 727 (prev->max_protection == entry->max_protection) && 728 (prev->inheritance == entry->inheritance) && 729 (prev->wired_count == entry->wired_count)) { 730 if (map->first_free == prev) 731 map->first_free = entry; 732 if (map->hint == prev) 733 map->hint = entry; 734 vm_map_entry_unlink(map, prev); 735 entry->start = prev->start; 736 entry->offset = prev->offset; 737 if (prev->object.vm_object) 738 vm_object_deallocate(prev->object.vm_object); 739 vm_map_entry_dispose(map, prev); 740 } 741 } 742 743 next = entry->next; 744 if (next != &map->header) { 745 esize = entry->end - entry->start; 746 if ((entry->end == next->start) && 747 (next->object.vm_object == entry->object.vm_object) && 748 (!entry->object.vm_object || 749 (entry->offset + esize == next->offset)) && 750 (next->eflags == entry->eflags) && 751 (next->protection == entry->protection) && 752 (next->max_protection == entry->max_protection) && 753 (next->inheritance == entry->inheritance) && 754 (next->wired_count == entry->wired_count)) { 755 if (map->first_free == next) 756 map->first_free = entry; 757 if (map->hint == next) 758 map->hint = entry; 759 vm_map_entry_unlink(map, next); 760 entry->end = next->end; 761 if (next->object.vm_object) 762 vm_object_deallocate(next->object.vm_object); 763 vm_map_entry_dispose(map, next); 764 } 765 } 766 } 767 /* 768 * vm_map_clip_start: [ internal use only ] 769 * 770 * Asserts that the given entry begins at or after 771 * the specified address; if necessary, 772 * it splits the entry into two. 773 */ 774 #define vm_map_clip_start(map, entry, startaddr) \ 775 { \ 776 if (startaddr > entry->start) \ 777 _vm_map_clip_start(map, entry, startaddr); \ 778 } 779 780 /* 781 * This routine is called only when it is known that 782 * the entry must be split. 783 */ 784 static void 785 _vm_map_clip_start(map, entry, start) 786 vm_map_t map; 787 vm_map_entry_t entry; 788 vm_offset_t start; 789 { 790 vm_map_entry_t new_entry; 791 792 /* 793 * Split off the front portion -- note that we must insert the new 794 * entry BEFORE this one, so that this entry has the specified 795 * starting address. 796 */ 797 798 vm_map_simplify_entry(map, entry); 799 800 /* 801 * If there is no object backing this entry, we might as well create 802 * one now. If we defer it, an object can get created after the map 803 * is clipped, and individual objects will be created for the split-up 804 * map. This is a bit of a hack, but is also about the best place to 805 * put this improvement. 806 */ 807 808 if (entry->object.vm_object == NULL && !map->system_map) { 809 vm_object_t object; 810 object = vm_object_allocate(OBJT_DEFAULT, 811 atop(entry->end - entry->start)); 812 entry->object.vm_object = object; 813 entry->offset = 0; 814 } 815 816 new_entry = vm_map_entry_create(map); 817 *new_entry = *entry; 818 819 new_entry->end = start; 820 entry->offset += (start - entry->start); 821 entry->start = start; 822 823 vm_map_entry_link(map, entry->prev, new_entry); 824 825 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 826 vm_object_reference(new_entry->object.vm_object); 827 } 828 } 829 830 /* 831 * vm_map_clip_end: [ internal use only ] 832 * 833 * Asserts that the given entry ends at or before 834 * the specified address; if necessary, 835 * it splits the entry into two. 836 */ 837 838 #define vm_map_clip_end(map, entry, endaddr) \ 839 { \ 840 if (endaddr < entry->end) \ 841 _vm_map_clip_end(map, entry, endaddr); \ 842 } 843 844 /* 845 * This routine is called only when it is known that 846 * the entry must be split. 847 */ 848 static void 849 _vm_map_clip_end(map, entry, end) 850 vm_map_t map; 851 vm_map_entry_t entry; 852 vm_offset_t end; 853 { 854 vm_map_entry_t new_entry; 855 856 /* 857 * If there is no object backing this entry, we might as well create 858 * one now. If we defer it, an object can get created after the map 859 * is clipped, and individual objects will be created for the split-up 860 * map. This is a bit of a hack, but is also about the best place to 861 * put this improvement. 862 */ 863 864 if (entry->object.vm_object == NULL && !map->system_map) { 865 vm_object_t object; 866 object = vm_object_allocate(OBJT_DEFAULT, 867 atop(entry->end - entry->start)); 868 entry->object.vm_object = object; 869 entry->offset = 0; 870 } 871 872 /* 873 * Create a new entry and insert it AFTER the specified entry 874 */ 875 876 new_entry = vm_map_entry_create(map); 877 *new_entry = *entry; 878 879 new_entry->start = entry->end = end; 880 new_entry->offset += (end - entry->start); 881 882 vm_map_entry_link(map, entry, new_entry); 883 884 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 885 vm_object_reference(new_entry->object.vm_object); 886 } 887 } 888 889 /* 890 * VM_MAP_RANGE_CHECK: [ internal use only ] 891 * 892 * Asserts that the starting and ending region 893 * addresses fall within the valid range of the map. 894 */ 895 #define VM_MAP_RANGE_CHECK(map, start, end) \ 896 { \ 897 if (start < vm_map_min(map)) \ 898 start = vm_map_min(map); \ 899 if (end > vm_map_max(map)) \ 900 end = vm_map_max(map); \ 901 if (start > end) \ 902 start = end; \ 903 } 904 905 /* 906 * vm_map_submap: [ kernel use only ] 907 * 908 * Mark the given range as handled by a subordinate map. 909 * 910 * This range must have been created with vm_map_find, 911 * and no other operations may have been performed on this 912 * range prior to calling vm_map_submap. 913 * 914 * Only a limited number of operations can be performed 915 * within this rage after calling vm_map_submap: 916 * vm_fault 917 * [Don't try vm_map_copy!] 918 * 919 * To remove a submapping, one must first remove the 920 * range from the superior map, and then destroy the 921 * submap (if desired). [Better yet, don't try it.] 922 */ 923 int 924 vm_map_submap(map, start, end, submap) 925 vm_map_t map; 926 vm_offset_t start; 927 vm_offset_t end; 928 vm_map_t submap; 929 { 930 vm_map_entry_t entry; 931 int result = KERN_INVALID_ARGUMENT; 932 933 vm_map_lock(map); 934 935 VM_MAP_RANGE_CHECK(map, start, end); 936 937 if (vm_map_lookup_entry(map, start, &entry)) { 938 vm_map_clip_start(map, entry, start); 939 } else 940 entry = entry->next; 941 942 vm_map_clip_end(map, entry, end); 943 944 if ((entry->start == start) && (entry->end == end) && 945 ((entry->eflags & MAP_ENTRY_COW) == 0) && 946 (entry->object.vm_object == NULL)) { 947 entry->object.sub_map = submap; 948 entry->eflags |= MAP_ENTRY_IS_SUB_MAP; 949 result = KERN_SUCCESS; 950 } 951 vm_map_unlock(map); 952 953 return (result); 954 } 955 956 /* 957 * vm_map_protect: 958 * 959 * Sets the protection of the specified address 960 * region in the target map. If "set_max" is 961 * specified, the maximum protection is to be set; 962 * otherwise, only the current protection is affected. 963 */ 964 int 965 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 966 vm_prot_t new_prot, boolean_t set_max) 967 { 968 vm_map_entry_t current; 969 vm_map_entry_t entry; 970 971 vm_map_lock(map); 972 973 VM_MAP_RANGE_CHECK(map, start, end); 974 975 if (vm_map_lookup_entry(map, start, &entry)) { 976 vm_map_clip_start(map, entry, start); 977 } else { 978 entry = entry->next; 979 } 980 981 /* 982 * Make a first pass to check for protection violations. 983 */ 984 985 current = entry; 986 while ((current != &map->header) && (current->start < end)) { 987 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 988 vm_map_unlock(map); 989 return (KERN_INVALID_ARGUMENT); 990 } 991 if ((new_prot & current->max_protection) != new_prot) { 992 vm_map_unlock(map); 993 return (KERN_PROTECTION_FAILURE); 994 } 995 current = current->next; 996 } 997 998 /* 999 * Go back and fix up protections. [Note that clipping is not 1000 * necessary the second time.] 1001 */ 1002 1003 current = entry; 1004 1005 while ((current != &map->header) && (current->start < end)) { 1006 vm_prot_t old_prot; 1007 1008 vm_map_clip_end(map, current, end); 1009 1010 old_prot = current->protection; 1011 if (set_max) 1012 current->protection = 1013 (current->max_protection = new_prot) & 1014 old_prot; 1015 else 1016 current->protection = new_prot; 1017 1018 /* 1019 * Update physical map if necessary. Worry about copy-on-write 1020 * here -- CHECK THIS XXX 1021 */ 1022 1023 if (current->protection != old_prot) { 1024 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 1025 VM_PROT_ALL) 1026 1027 pmap_protect(map->pmap, current->start, 1028 current->end, 1029 current->protection & MASK(current)); 1030 #undef MASK 1031 } 1032 1033 vm_map_simplify_entry(map, current); 1034 1035 current = current->next; 1036 } 1037 1038 vm_map_unlock(map); 1039 return (KERN_SUCCESS); 1040 } 1041 1042 /* 1043 * vm_map_madvise: 1044 * 1045 * This routine traverses a processes map handling the madvise 1046 * system call. Advisories are classified as either those effecting 1047 * the vm_map_entry structure, or those effecting the underlying 1048 * objects. 1049 */ 1050 1051 int 1052 vm_map_madvise(map, start, end, behav) 1053 vm_map_t map; 1054 vm_offset_t start, end; 1055 int behav; 1056 { 1057 vm_map_entry_t current, entry; 1058 int modify_map = 0; 1059 1060 /* 1061 * Some madvise calls directly modify the vm_map_entry, in which case 1062 * we need to use an exclusive lock on the map and we need to perform 1063 * various clipping operations. Otherwise we only need a read-lock 1064 * on the map. 1065 */ 1066 1067 switch(behav) { 1068 case MADV_NORMAL: 1069 case MADV_SEQUENTIAL: 1070 case MADV_RANDOM: 1071 case MADV_NOSYNC: 1072 case MADV_AUTOSYNC: 1073 case MADV_NOCORE: 1074 case MADV_CORE: 1075 modify_map = 1; 1076 vm_map_lock(map); 1077 break; 1078 case MADV_WILLNEED: 1079 case MADV_DONTNEED: 1080 case MADV_FREE: 1081 vm_map_lock_read(map); 1082 break; 1083 default: 1084 return (KERN_INVALID_ARGUMENT); 1085 } 1086 1087 /* 1088 * Locate starting entry and clip if necessary. 1089 */ 1090 1091 VM_MAP_RANGE_CHECK(map, start, end); 1092 1093 if (vm_map_lookup_entry(map, start, &entry)) { 1094 if (modify_map) 1095 vm_map_clip_start(map, entry, start); 1096 } else { 1097 entry = entry->next; 1098 } 1099 1100 if (modify_map) { 1101 /* 1102 * madvise behaviors that are implemented in the vm_map_entry. 1103 * 1104 * We clip the vm_map_entry so that behavioral changes are 1105 * limited to the specified address range. 1106 */ 1107 for (current = entry; 1108 (current != &map->header) && (current->start < end); 1109 current = current->next 1110 ) { 1111 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 1112 continue; 1113 1114 vm_map_clip_end(map, current, end); 1115 1116 switch (behav) { 1117 case MADV_NORMAL: 1118 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_NORMAL); 1119 break; 1120 case MADV_SEQUENTIAL: 1121 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_SEQUENTIAL); 1122 break; 1123 case MADV_RANDOM: 1124 vm_map_entry_set_behavior(current, MAP_ENTRY_BEHAV_RANDOM); 1125 break; 1126 case MADV_NOSYNC: 1127 current->eflags |= MAP_ENTRY_NOSYNC; 1128 break; 1129 case MADV_AUTOSYNC: 1130 current->eflags &= ~MAP_ENTRY_NOSYNC; 1131 break; 1132 case MADV_NOCORE: 1133 current->eflags |= MAP_ENTRY_NOCOREDUMP; 1134 break; 1135 case MADV_CORE: 1136 current->eflags &= ~MAP_ENTRY_NOCOREDUMP; 1137 break; 1138 default: 1139 break; 1140 } 1141 vm_map_simplify_entry(map, current); 1142 } 1143 vm_map_unlock(map); 1144 } else { 1145 vm_pindex_t pindex; 1146 int count; 1147 1148 /* 1149 * madvise behaviors that are implemented in the underlying 1150 * vm_object. 1151 * 1152 * Since we don't clip the vm_map_entry, we have to clip 1153 * the vm_object pindex and count. 1154 */ 1155 for (current = entry; 1156 (current != &map->header) && (current->start < end); 1157 current = current->next 1158 ) { 1159 vm_offset_t useStart; 1160 1161 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) 1162 continue; 1163 1164 pindex = OFF_TO_IDX(current->offset); 1165 count = atop(current->end - current->start); 1166 useStart = current->start; 1167 1168 if (current->start < start) { 1169 pindex += atop(start - current->start); 1170 count -= atop(start - current->start); 1171 useStart = start; 1172 } 1173 if (current->end > end) 1174 count -= atop(current->end - end); 1175 1176 if (count <= 0) 1177 continue; 1178 1179 vm_object_madvise(current->object.vm_object, 1180 pindex, count, behav); 1181 if (behav == MADV_WILLNEED) { 1182 pmap_object_init_pt( 1183 map->pmap, 1184 useStart, 1185 current->object.vm_object, 1186 pindex, 1187 (count << PAGE_SHIFT), 1188 0 1189 ); 1190 } 1191 } 1192 vm_map_unlock_read(map); 1193 } 1194 return(0); 1195 } 1196 1197 1198 /* 1199 * vm_map_inherit: 1200 * 1201 * Sets the inheritance of the specified address 1202 * range in the target map. Inheritance 1203 * affects how the map will be shared with 1204 * child maps at the time of vm_map_fork. 1205 */ 1206 int 1207 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 1208 vm_inherit_t new_inheritance) 1209 { 1210 vm_map_entry_t entry; 1211 vm_map_entry_t temp_entry; 1212 1213 switch (new_inheritance) { 1214 case VM_INHERIT_NONE: 1215 case VM_INHERIT_COPY: 1216 case VM_INHERIT_SHARE: 1217 break; 1218 default: 1219 return (KERN_INVALID_ARGUMENT); 1220 } 1221 1222 vm_map_lock(map); 1223 1224 VM_MAP_RANGE_CHECK(map, start, end); 1225 1226 if (vm_map_lookup_entry(map, start, &temp_entry)) { 1227 entry = temp_entry; 1228 vm_map_clip_start(map, entry, start); 1229 } else 1230 entry = temp_entry->next; 1231 1232 while ((entry != &map->header) && (entry->start < end)) { 1233 vm_map_clip_end(map, entry, end); 1234 1235 entry->inheritance = new_inheritance; 1236 1237 vm_map_simplify_entry(map, entry); 1238 1239 entry = entry->next; 1240 } 1241 1242 vm_map_unlock(map); 1243 return (KERN_SUCCESS); 1244 } 1245 1246 /* 1247 * Implement the semantics of mlock 1248 */ 1249 int 1250 vm_map_user_pageable(map, start, end, new_pageable) 1251 vm_map_t map; 1252 vm_offset_t start; 1253 vm_offset_t end; 1254 boolean_t new_pageable; 1255 { 1256 vm_map_entry_t entry; 1257 vm_map_entry_t start_entry; 1258 vm_offset_t estart; 1259 int rv; 1260 1261 vm_map_lock(map); 1262 VM_MAP_RANGE_CHECK(map, start, end); 1263 1264 if (vm_map_lookup_entry(map, start, &start_entry) == FALSE) { 1265 vm_map_unlock(map); 1266 return (KERN_INVALID_ADDRESS); 1267 } 1268 1269 if (new_pageable) { 1270 1271 entry = start_entry; 1272 vm_map_clip_start(map, entry, start); 1273 1274 /* 1275 * Now decrement the wiring count for each region. If a region 1276 * becomes completely unwired, unwire its physical pages and 1277 * mappings. 1278 */ 1279 while ((entry != &map->header) && (entry->start < end)) { 1280 if (entry->eflags & MAP_ENTRY_USER_WIRED) { 1281 vm_map_clip_end(map, entry, end); 1282 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 1283 entry->wired_count--; 1284 if (entry->wired_count == 0) 1285 vm_fault_unwire(map, entry->start, entry->end); 1286 } 1287 vm_map_simplify_entry(map,entry); 1288 entry = entry->next; 1289 } 1290 } else { 1291 1292 entry = start_entry; 1293 1294 while ((entry != &map->header) && (entry->start < end)) { 1295 1296 if (entry->eflags & MAP_ENTRY_USER_WIRED) { 1297 entry = entry->next; 1298 continue; 1299 } 1300 1301 if (entry->wired_count != 0) { 1302 entry->wired_count++; 1303 entry->eflags |= MAP_ENTRY_USER_WIRED; 1304 entry = entry->next; 1305 continue; 1306 } 1307 1308 /* Here on entry being newly wired */ 1309 1310 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1311 int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY; 1312 if (copyflag && ((entry->protection & VM_PROT_WRITE) != 0)) { 1313 1314 vm_object_shadow(&entry->object.vm_object, 1315 &entry->offset, 1316 atop(entry->end - entry->start)); 1317 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 1318 1319 } else if (entry->object.vm_object == NULL && 1320 !map->system_map) { 1321 1322 entry->object.vm_object = 1323 vm_object_allocate(OBJT_DEFAULT, 1324 atop(entry->end - entry->start)); 1325 entry->offset = (vm_offset_t) 0; 1326 1327 } 1328 } 1329 1330 vm_map_clip_start(map, entry, start); 1331 vm_map_clip_end(map, entry, end); 1332 1333 entry->wired_count++; 1334 entry->eflags |= MAP_ENTRY_USER_WIRED; 1335 estart = entry->start; 1336 1337 /* First we need to allow map modifications */ 1338 vm_map_set_recursive(map); 1339 vm_map_lock_downgrade(map); 1340 map->timestamp++; 1341 1342 rv = vm_fault_user_wire(map, entry->start, entry->end); 1343 if (rv) { 1344 1345 entry->wired_count--; 1346 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 1347 1348 vm_map_clear_recursive(map); 1349 vm_map_unlock(map); 1350 1351 (void) vm_map_user_pageable(map, start, entry->start, TRUE); 1352 return rv; 1353 } 1354 1355 vm_map_clear_recursive(map); 1356 if (vm_map_lock_upgrade(map)) { 1357 vm_map_lock(map); 1358 if (vm_map_lookup_entry(map, estart, &entry) 1359 == FALSE) { 1360 vm_map_unlock(map); 1361 (void) vm_map_user_pageable(map, 1362 start, 1363 estart, 1364 TRUE); 1365 return (KERN_INVALID_ADDRESS); 1366 } 1367 } 1368 vm_map_simplify_entry(map,entry); 1369 } 1370 } 1371 map->timestamp++; 1372 vm_map_unlock(map); 1373 return KERN_SUCCESS; 1374 } 1375 1376 /* 1377 * vm_map_pageable: 1378 * 1379 * Sets the pageability of the specified address 1380 * range in the target map. Regions specified 1381 * as not pageable require locked-down physical 1382 * memory and physical page maps. 1383 * 1384 * The map must not be locked, but a reference 1385 * must remain to the map throughout the call. 1386 */ 1387 int 1388 vm_map_pageable(map, start, end, new_pageable) 1389 vm_map_t map; 1390 vm_offset_t start; 1391 vm_offset_t end; 1392 boolean_t new_pageable; 1393 { 1394 vm_map_entry_t entry; 1395 vm_map_entry_t start_entry; 1396 vm_offset_t failed = 0; 1397 int rv; 1398 1399 vm_map_lock(map); 1400 1401 VM_MAP_RANGE_CHECK(map, start, end); 1402 1403 /* 1404 * Only one pageability change may take place at one time, since 1405 * vm_fault assumes it will be called only once for each 1406 * wiring/unwiring. Therefore, we have to make sure we're actually 1407 * changing the pageability for the entire region. We do so before 1408 * making any changes. 1409 */ 1410 1411 if (vm_map_lookup_entry(map, start, &start_entry) == FALSE) { 1412 vm_map_unlock(map); 1413 return (KERN_INVALID_ADDRESS); 1414 } 1415 entry = start_entry; 1416 1417 /* 1418 * Actions are rather different for wiring and unwiring, so we have 1419 * two separate cases. 1420 */ 1421 1422 if (new_pageable) { 1423 1424 vm_map_clip_start(map, entry, start); 1425 1426 /* 1427 * Unwiring. First ensure that the range to be unwired is 1428 * really wired down and that there are no holes. 1429 */ 1430 while ((entry != &map->header) && (entry->start < end)) { 1431 1432 if (entry->wired_count == 0 || 1433 (entry->end < end && 1434 (entry->next == &map->header || 1435 entry->next->start > entry->end))) { 1436 vm_map_unlock(map); 1437 return (KERN_INVALID_ARGUMENT); 1438 } 1439 entry = entry->next; 1440 } 1441 1442 /* 1443 * Now decrement the wiring count for each region. If a region 1444 * becomes completely unwired, unwire its physical pages and 1445 * mappings. 1446 */ 1447 entry = start_entry; 1448 while ((entry != &map->header) && (entry->start < end)) { 1449 vm_map_clip_end(map, entry, end); 1450 1451 entry->wired_count--; 1452 if (entry->wired_count == 0) 1453 vm_fault_unwire(map, entry->start, entry->end); 1454 1455 vm_map_simplify_entry(map, entry); 1456 1457 entry = entry->next; 1458 } 1459 } else { 1460 /* 1461 * Wiring. We must do this in two passes: 1462 * 1463 * 1. Holding the write lock, we create any shadow or zero-fill 1464 * objects that need to be created. Then we clip each map 1465 * entry to the region to be wired and increment its wiring 1466 * count. We create objects before clipping the map entries 1467 * to avoid object proliferation. 1468 * 1469 * 2. We downgrade to a read lock, and call vm_fault_wire to 1470 * fault in the pages for any newly wired area (wired_count is 1471 * 1). 1472 * 1473 * Downgrading to a read lock for vm_fault_wire avoids a possible 1474 * deadlock with another process that may have faulted on one 1475 * of the pages to be wired (it would mark the page busy, 1476 * blocking us, then in turn block on the map lock that we 1477 * hold). Because of problems in the recursive lock package, 1478 * we cannot upgrade to a write lock in vm_map_lookup. Thus, 1479 * any actions that require the write lock must be done 1480 * beforehand. Because we keep the read lock on the map, the 1481 * copy-on-write status of the entries we modify here cannot 1482 * change. 1483 */ 1484 1485 /* 1486 * Pass 1. 1487 */ 1488 while ((entry != &map->header) && (entry->start < end)) { 1489 if (entry->wired_count == 0) { 1490 1491 /* 1492 * Perform actions of vm_map_lookup that need 1493 * the write lock on the map: create a shadow 1494 * object for a copy-on-write region, or an 1495 * object for a zero-fill region. 1496 * 1497 * We don't have to do this for entries that 1498 * point to sub maps, because we won't 1499 * hold the lock on the sub map. 1500 */ 1501 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1502 int copyflag = entry->eflags & MAP_ENTRY_NEEDS_COPY; 1503 if (copyflag && 1504 ((entry->protection & VM_PROT_WRITE) != 0)) { 1505 1506 vm_object_shadow(&entry->object.vm_object, 1507 &entry->offset, 1508 atop(entry->end - entry->start)); 1509 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 1510 } else if (entry->object.vm_object == NULL && 1511 !map->system_map) { 1512 entry->object.vm_object = 1513 vm_object_allocate(OBJT_DEFAULT, 1514 atop(entry->end - entry->start)); 1515 entry->offset = (vm_offset_t) 0; 1516 } 1517 } 1518 } 1519 vm_map_clip_start(map, entry, start); 1520 vm_map_clip_end(map, entry, end); 1521 entry->wired_count++; 1522 1523 /* 1524 * Check for holes 1525 */ 1526 if (entry->end < end && 1527 (entry->next == &map->header || 1528 entry->next->start > entry->end)) { 1529 /* 1530 * Found one. Object creation actions do not 1531 * need to be undone, but the wired counts 1532 * need to be restored. 1533 */ 1534 while (entry != &map->header && entry->end > start) { 1535 entry->wired_count--; 1536 entry = entry->prev; 1537 } 1538 vm_map_unlock(map); 1539 return (KERN_INVALID_ARGUMENT); 1540 } 1541 entry = entry->next; 1542 } 1543 1544 /* 1545 * Pass 2. 1546 */ 1547 1548 /* 1549 * HACK HACK HACK HACK 1550 * 1551 * If we are wiring in the kernel map or a submap of it, 1552 * unlock the map to avoid deadlocks. We trust that the 1553 * kernel is well-behaved, and therefore will not do 1554 * anything destructive to this region of the map while 1555 * we have it unlocked. We cannot trust user processes 1556 * to do the same. 1557 * 1558 * HACK HACK HACK HACK 1559 */ 1560 if (vm_map_pmap(map) == kernel_pmap) { 1561 vm_map_unlock(map); /* trust me ... */ 1562 } else { 1563 vm_map_lock_downgrade(map); 1564 } 1565 1566 rv = 0; 1567 entry = start_entry; 1568 while (entry != &map->header && entry->start < end) { 1569 /* 1570 * If vm_fault_wire fails for any page we need to undo 1571 * what has been done. We decrement the wiring count 1572 * for those pages which have not yet been wired (now) 1573 * and unwire those that have (later). 1574 * 1575 * XXX this violates the locking protocol on the map, 1576 * needs to be fixed. 1577 */ 1578 if (rv) 1579 entry->wired_count--; 1580 else if (entry->wired_count == 1) { 1581 rv = vm_fault_wire(map, entry->start, entry->end); 1582 if (rv) { 1583 failed = entry->start; 1584 entry->wired_count--; 1585 } 1586 } 1587 entry = entry->next; 1588 } 1589 1590 if (vm_map_pmap(map) == kernel_pmap) { 1591 vm_map_lock(map); 1592 } 1593 if (rv) { 1594 vm_map_unlock(map); 1595 (void) vm_map_pageable(map, start, failed, TRUE); 1596 return (rv); 1597 } 1598 vm_map_simplify_entry(map, start_entry); 1599 } 1600 1601 vm_map_unlock(map); 1602 1603 return (KERN_SUCCESS); 1604 } 1605 1606 /* 1607 * vm_map_clean 1608 * 1609 * Push any dirty cached pages in the address range to their pager. 1610 * If syncio is TRUE, dirty pages are written synchronously. 1611 * If invalidate is TRUE, any cached pages are freed as well. 1612 * 1613 * Returns an error if any part of the specified range is not mapped. 1614 */ 1615 int 1616 vm_map_clean(map, start, end, syncio, invalidate) 1617 vm_map_t map; 1618 vm_offset_t start; 1619 vm_offset_t end; 1620 boolean_t syncio; 1621 boolean_t invalidate; 1622 { 1623 vm_map_entry_t current; 1624 vm_map_entry_t entry; 1625 vm_size_t size; 1626 vm_object_t object; 1627 vm_ooffset_t offset; 1628 1629 vm_map_lock_read(map); 1630 VM_MAP_RANGE_CHECK(map, start, end); 1631 if (!vm_map_lookup_entry(map, start, &entry)) { 1632 vm_map_unlock_read(map); 1633 return (KERN_INVALID_ADDRESS); 1634 } 1635 /* 1636 * Make a first pass to check for holes. 1637 */ 1638 for (current = entry; current->start < end; current = current->next) { 1639 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 1640 vm_map_unlock_read(map); 1641 return (KERN_INVALID_ARGUMENT); 1642 } 1643 if (end > current->end && 1644 (current->next == &map->header || 1645 current->end != current->next->start)) { 1646 vm_map_unlock_read(map); 1647 return (KERN_INVALID_ADDRESS); 1648 } 1649 } 1650 1651 if (invalidate) 1652 pmap_remove(vm_map_pmap(map), start, end); 1653 /* 1654 * Make a second pass, cleaning/uncaching pages from the indicated 1655 * objects as we go. 1656 */ 1657 for (current = entry; current->start < end; current = current->next) { 1658 offset = current->offset + (start - current->start); 1659 size = (end <= current->end ? end : current->end) - start; 1660 if (current->eflags & MAP_ENTRY_IS_SUB_MAP) { 1661 vm_map_t smap; 1662 vm_map_entry_t tentry; 1663 vm_size_t tsize; 1664 1665 smap = current->object.sub_map; 1666 vm_map_lock_read(smap); 1667 (void) vm_map_lookup_entry(smap, offset, &tentry); 1668 tsize = tentry->end - offset; 1669 if (tsize < size) 1670 size = tsize; 1671 object = tentry->object.vm_object; 1672 offset = tentry->offset + (offset - tentry->start); 1673 vm_map_unlock_read(smap); 1674 } else { 1675 object = current->object.vm_object; 1676 } 1677 /* 1678 * Note that there is absolutely no sense in writing out 1679 * anonymous objects, so we track down the vnode object 1680 * to write out. 1681 * We invalidate (remove) all pages from the address space 1682 * anyway, for semantic correctness. 1683 */ 1684 while (object->backing_object) { 1685 object = object->backing_object; 1686 offset += object->backing_object_offset; 1687 if (object->size < OFF_TO_IDX( offset + size)) 1688 size = IDX_TO_OFF(object->size) - offset; 1689 } 1690 if (object && (object->type == OBJT_VNODE) && 1691 (current->protection & VM_PROT_WRITE)) { 1692 /* 1693 * Flush pages if writing is allowed, invalidate them 1694 * if invalidation requested. Pages undergoing I/O 1695 * will be ignored by vm_object_page_remove(). 1696 * 1697 * We cannot lock the vnode and then wait for paging 1698 * to complete without deadlocking against vm_fault. 1699 * Instead we simply call vm_object_page_remove() and 1700 * allow it to block internally on a page-by-page 1701 * basis when it encounters pages undergoing async 1702 * I/O. 1703 */ 1704 int flags; 1705 1706 vm_object_reference(object); 1707 vn_lock(object->handle, LK_EXCLUSIVE | LK_RETRY, curproc); 1708 flags = (syncio || invalidate) ? OBJPC_SYNC : 0; 1709 flags |= invalidate ? OBJPC_INVAL : 0; 1710 vm_object_page_clean(object, 1711 OFF_TO_IDX(offset), 1712 OFF_TO_IDX(offset + size + PAGE_MASK), 1713 flags); 1714 if (invalidate) { 1715 /*vm_object_pip_wait(object, "objmcl");*/ 1716 vm_object_page_remove(object, 1717 OFF_TO_IDX(offset), 1718 OFF_TO_IDX(offset + size + PAGE_MASK), 1719 FALSE); 1720 } 1721 VOP_UNLOCK(object->handle, 0, curproc); 1722 vm_object_deallocate(object); 1723 } 1724 start += size; 1725 } 1726 1727 vm_map_unlock_read(map); 1728 return (KERN_SUCCESS); 1729 } 1730 1731 /* 1732 * vm_map_entry_unwire: [ internal use only ] 1733 * 1734 * Make the region specified by this entry pageable. 1735 * 1736 * The map in question should be locked. 1737 * [This is the reason for this routine's existence.] 1738 */ 1739 static void 1740 vm_map_entry_unwire(map, entry) 1741 vm_map_t map; 1742 vm_map_entry_t entry; 1743 { 1744 vm_fault_unwire(map, entry->start, entry->end); 1745 entry->wired_count = 0; 1746 } 1747 1748 /* 1749 * vm_map_entry_delete: [ internal use only ] 1750 * 1751 * Deallocate the given entry from the target map. 1752 */ 1753 static void 1754 vm_map_entry_delete(map, entry) 1755 vm_map_t map; 1756 vm_map_entry_t entry; 1757 { 1758 vm_map_entry_unlink(map, entry); 1759 map->size -= entry->end - entry->start; 1760 1761 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 1762 vm_object_deallocate(entry->object.vm_object); 1763 } 1764 1765 vm_map_entry_dispose(map, entry); 1766 } 1767 1768 /* 1769 * vm_map_delete: [ internal use only ] 1770 * 1771 * Deallocates the given address range from the target 1772 * map. 1773 */ 1774 int 1775 vm_map_delete(map, start, end) 1776 vm_map_t map; 1777 vm_offset_t start; 1778 vm_offset_t end; 1779 { 1780 vm_object_t object; 1781 vm_map_entry_t entry; 1782 vm_map_entry_t first_entry; 1783 1784 /* 1785 * Find the start of the region, and clip it 1786 */ 1787 1788 if (!vm_map_lookup_entry(map, start, &first_entry)) 1789 entry = first_entry->next; 1790 else { 1791 entry = first_entry; 1792 vm_map_clip_start(map, entry, start); 1793 /* 1794 * Fix the lookup hint now, rather than each time though the 1795 * loop. 1796 */ 1797 SAVE_HINT(map, entry->prev); 1798 } 1799 1800 /* 1801 * Save the free space hint 1802 */ 1803 1804 if (entry == &map->header) { 1805 map->first_free = &map->header; 1806 } else if (map->first_free->start >= start) { 1807 map->first_free = entry->prev; 1808 } 1809 1810 /* 1811 * Step through all entries in this region 1812 */ 1813 1814 while ((entry != &map->header) && (entry->start < end)) { 1815 vm_map_entry_t next; 1816 vm_offset_t s, e; 1817 vm_pindex_t offidxstart, offidxend, count; 1818 1819 vm_map_clip_end(map, entry, end); 1820 1821 s = entry->start; 1822 e = entry->end; 1823 next = entry->next; 1824 1825 offidxstart = OFF_TO_IDX(entry->offset); 1826 count = OFF_TO_IDX(e - s); 1827 object = entry->object.vm_object; 1828 1829 /* 1830 * Unwire before removing addresses from the pmap; otherwise, 1831 * unwiring will put the entries back in the pmap. 1832 */ 1833 if (entry->wired_count != 0) { 1834 vm_map_entry_unwire(map, entry); 1835 } 1836 1837 offidxend = offidxstart + count; 1838 1839 if ((object == kernel_object) || (object == kmem_object)) { 1840 vm_object_page_remove(object, offidxstart, offidxend, FALSE); 1841 } else { 1842 pmap_remove(map->pmap, s, e); 1843 if (object != NULL && 1844 object->ref_count != 1 && 1845 (object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING && 1846 (object->type == OBJT_DEFAULT || object->type == OBJT_SWAP)) { 1847 vm_object_collapse(object); 1848 vm_object_page_remove(object, offidxstart, offidxend, FALSE); 1849 if (object->type == OBJT_SWAP) { 1850 swap_pager_freespace(object, offidxstart, count); 1851 } 1852 if (offidxend >= object->size && 1853 offidxstart < object->size) { 1854 object->size = offidxstart; 1855 } 1856 } 1857 } 1858 1859 /* 1860 * Delete the entry (which may delete the object) only after 1861 * removing all pmap entries pointing to its pages. 1862 * (Otherwise, its page frames may be reallocated, and any 1863 * modify bits will be set in the wrong object!) 1864 */ 1865 vm_map_entry_delete(map, entry); 1866 entry = next; 1867 } 1868 return (KERN_SUCCESS); 1869 } 1870 1871 /* 1872 * vm_map_remove: 1873 * 1874 * Remove the given address range from the target map. 1875 * This is the exported form of vm_map_delete. 1876 */ 1877 int 1878 vm_map_remove(map, start, end) 1879 vm_map_t map; 1880 vm_offset_t start; 1881 vm_offset_t end; 1882 { 1883 int result, s = 0; 1884 1885 if (map == kmem_map || map == mb_map) 1886 s = splvm(); 1887 1888 vm_map_lock(map); 1889 VM_MAP_RANGE_CHECK(map, start, end); 1890 result = vm_map_delete(map, start, end); 1891 vm_map_unlock(map); 1892 1893 if (map == kmem_map || map == mb_map) 1894 splx(s); 1895 1896 return (result); 1897 } 1898 1899 /* 1900 * vm_map_check_protection: 1901 * 1902 * Assert that the target map allows the specified 1903 * privilege on the entire address region given. 1904 * The entire region must be allocated. 1905 */ 1906 boolean_t 1907 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 1908 vm_prot_t protection) 1909 { 1910 vm_map_entry_t entry; 1911 vm_map_entry_t tmp_entry; 1912 1913 if (!vm_map_lookup_entry(map, start, &tmp_entry)) { 1914 return (FALSE); 1915 } 1916 entry = tmp_entry; 1917 1918 while (start < end) { 1919 if (entry == &map->header) { 1920 return (FALSE); 1921 } 1922 /* 1923 * No holes allowed! 1924 */ 1925 1926 if (start < entry->start) { 1927 return (FALSE); 1928 } 1929 /* 1930 * Check protection associated with entry. 1931 */ 1932 1933 if ((entry->protection & protection) != protection) { 1934 return (FALSE); 1935 } 1936 /* go to next entry */ 1937 1938 start = entry->end; 1939 entry = entry->next; 1940 } 1941 return (TRUE); 1942 } 1943 1944 /* 1945 * Split the pages in a map entry into a new object. This affords 1946 * easier removal of unused pages, and keeps object inheritance from 1947 * being a negative impact on memory usage. 1948 */ 1949 static void 1950 vm_map_split(entry) 1951 vm_map_entry_t entry; 1952 { 1953 vm_page_t m; 1954 vm_object_t orig_object, new_object, source; 1955 vm_offset_t s, e; 1956 vm_pindex_t offidxstart, offidxend, idx; 1957 vm_size_t size; 1958 vm_ooffset_t offset; 1959 1960 orig_object = entry->object.vm_object; 1961 if (orig_object->type != OBJT_DEFAULT && orig_object->type != OBJT_SWAP) 1962 return; 1963 if (orig_object->ref_count <= 1) 1964 return; 1965 1966 offset = entry->offset; 1967 s = entry->start; 1968 e = entry->end; 1969 1970 offidxstart = OFF_TO_IDX(offset); 1971 offidxend = offidxstart + OFF_TO_IDX(e - s); 1972 size = offidxend - offidxstart; 1973 1974 new_object = vm_pager_allocate(orig_object->type, 1975 NULL, IDX_TO_OFF(size), VM_PROT_ALL, 0LL); 1976 if (new_object == NULL) 1977 return; 1978 1979 source = orig_object->backing_object; 1980 if (source != NULL) { 1981 vm_object_reference(source); /* Referenced by new_object */ 1982 TAILQ_INSERT_TAIL(&source->shadow_head, 1983 new_object, shadow_list); 1984 vm_object_clear_flag(source, OBJ_ONEMAPPING); 1985 new_object->backing_object_offset = 1986 orig_object->backing_object_offset + IDX_TO_OFF(offidxstart); 1987 new_object->backing_object = source; 1988 source->shadow_count++; 1989 source->generation++; 1990 } 1991 1992 for (idx = 0; idx < size; idx++) { 1993 vm_page_t m; 1994 1995 retry: 1996 m = vm_page_lookup(orig_object, offidxstart + idx); 1997 if (m == NULL) 1998 continue; 1999 2000 /* 2001 * We must wait for pending I/O to complete before we can 2002 * rename the page. 2003 * 2004 * We do not have to VM_PROT_NONE the page as mappings should 2005 * not be changed by this operation. 2006 */ 2007 if (vm_page_sleep_busy(m, TRUE, "spltwt")) 2008 goto retry; 2009 2010 vm_page_busy(m); 2011 vm_page_rename(m, new_object, idx); 2012 /* page automatically made dirty by rename and cache handled */ 2013 vm_page_busy(m); 2014 } 2015 2016 if (orig_object->type == OBJT_SWAP) { 2017 vm_object_pip_add(orig_object, 1); 2018 /* 2019 * copy orig_object pages into new_object 2020 * and destroy unneeded pages in 2021 * shadow object. 2022 */ 2023 swap_pager_copy(orig_object, new_object, offidxstart, 0); 2024 vm_object_pip_wakeup(orig_object); 2025 } 2026 2027 for (idx = 0; idx < size; idx++) { 2028 m = vm_page_lookup(new_object, idx); 2029 if (m) { 2030 vm_page_wakeup(m); 2031 } 2032 } 2033 2034 entry->object.vm_object = new_object; 2035 entry->offset = 0LL; 2036 vm_object_deallocate(orig_object); 2037 } 2038 2039 /* 2040 * vm_map_copy_entry: 2041 * 2042 * Copies the contents of the source entry to the destination 2043 * entry. The entries *must* be aligned properly. 2044 */ 2045 static void 2046 vm_map_copy_entry(src_map, dst_map, src_entry, dst_entry) 2047 vm_map_t src_map, dst_map; 2048 vm_map_entry_t src_entry, dst_entry; 2049 { 2050 vm_object_t src_object; 2051 2052 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP) 2053 return; 2054 2055 if (src_entry->wired_count == 0) { 2056 2057 /* 2058 * If the source entry is marked needs_copy, it is already 2059 * write-protected. 2060 */ 2061 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) { 2062 pmap_protect(src_map->pmap, 2063 src_entry->start, 2064 src_entry->end, 2065 src_entry->protection & ~VM_PROT_WRITE); 2066 } 2067 2068 /* 2069 * Make a copy of the object. 2070 */ 2071 if ((src_object = src_entry->object.vm_object) != NULL) { 2072 2073 if ((src_object->handle == NULL) && 2074 (src_object->type == OBJT_DEFAULT || 2075 src_object->type == OBJT_SWAP)) { 2076 vm_object_collapse(src_object); 2077 if ((src_object->flags & (OBJ_NOSPLIT|OBJ_ONEMAPPING)) == OBJ_ONEMAPPING) { 2078 vm_map_split(src_entry); 2079 src_object = src_entry->object.vm_object; 2080 } 2081 } 2082 2083 vm_object_reference(src_object); 2084 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 2085 dst_entry->object.vm_object = src_object; 2086 src_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 2087 dst_entry->eflags |= (MAP_ENTRY_COW|MAP_ENTRY_NEEDS_COPY); 2088 dst_entry->offset = src_entry->offset; 2089 } else { 2090 dst_entry->object.vm_object = NULL; 2091 dst_entry->offset = 0; 2092 } 2093 2094 pmap_copy(dst_map->pmap, src_map->pmap, dst_entry->start, 2095 dst_entry->end - dst_entry->start, src_entry->start); 2096 } else { 2097 /* 2098 * Of course, wired down pages can't be set copy-on-write. 2099 * Cause wired pages to be copied into the new map by 2100 * simulating faults (the new pages are pageable) 2101 */ 2102 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry); 2103 } 2104 } 2105 2106 /* 2107 * vmspace_fork: 2108 * Create a new process vmspace structure and vm_map 2109 * based on those of an existing process. The new map 2110 * is based on the old map, according to the inheritance 2111 * values on the regions in that map. 2112 * 2113 * The source map must not be locked. 2114 */ 2115 struct vmspace * 2116 vmspace_fork(vm1) 2117 struct vmspace *vm1; 2118 { 2119 struct vmspace *vm2; 2120 vm_map_t old_map = &vm1->vm_map; 2121 vm_map_t new_map; 2122 vm_map_entry_t old_entry; 2123 vm_map_entry_t new_entry; 2124 vm_object_t object; 2125 2126 vm_map_lock(old_map); 2127 old_map->infork = 1; 2128 2129 vm2 = vmspace_alloc(old_map->min_offset, old_map->max_offset); 2130 bcopy(&vm1->vm_startcopy, &vm2->vm_startcopy, 2131 (caddr_t) (vm1 + 1) - (caddr_t) &vm1->vm_startcopy); 2132 new_map = &vm2->vm_map; /* XXX */ 2133 new_map->timestamp = 1; 2134 2135 old_entry = old_map->header.next; 2136 2137 while (old_entry != &old_map->header) { 2138 if (old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) 2139 panic("vm_map_fork: encountered a submap"); 2140 2141 switch (old_entry->inheritance) { 2142 case VM_INHERIT_NONE: 2143 break; 2144 2145 case VM_INHERIT_SHARE: 2146 /* 2147 * Clone the entry, creating the shared object if necessary. 2148 */ 2149 object = old_entry->object.vm_object; 2150 if (object == NULL) { 2151 object = vm_object_allocate(OBJT_DEFAULT, 2152 atop(old_entry->end - old_entry->start)); 2153 old_entry->object.vm_object = object; 2154 old_entry->offset = (vm_offset_t) 0; 2155 } 2156 2157 /* 2158 * Add the reference before calling vm_object_shadow 2159 * to insure that a shadow object is created. 2160 */ 2161 vm_object_reference(object); 2162 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 2163 vm_object_shadow(&old_entry->object.vm_object, 2164 &old_entry->offset, 2165 atop(old_entry->end - old_entry->start)); 2166 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 2167 /* Transfer the second reference too. */ 2168 vm_object_reference( 2169 old_entry->object.vm_object); 2170 vm_object_deallocate(object); 2171 object = old_entry->object.vm_object; 2172 } 2173 vm_object_clear_flag(object, OBJ_ONEMAPPING); 2174 2175 /* 2176 * Clone the entry, referencing the shared object. 2177 */ 2178 new_entry = vm_map_entry_create(new_map); 2179 *new_entry = *old_entry; 2180 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2181 new_entry->wired_count = 0; 2182 2183 /* 2184 * Insert the entry into the new map -- we know we're 2185 * inserting at the end of the new map. 2186 */ 2187 2188 vm_map_entry_link(new_map, new_map->header.prev, 2189 new_entry); 2190 2191 /* 2192 * Update the physical map 2193 */ 2194 2195 pmap_copy(new_map->pmap, old_map->pmap, 2196 new_entry->start, 2197 (old_entry->end - old_entry->start), 2198 old_entry->start); 2199 break; 2200 2201 case VM_INHERIT_COPY: 2202 /* 2203 * Clone the entry and link into the map. 2204 */ 2205 new_entry = vm_map_entry_create(new_map); 2206 *new_entry = *old_entry; 2207 new_entry->eflags &= ~MAP_ENTRY_USER_WIRED; 2208 new_entry->wired_count = 0; 2209 new_entry->object.vm_object = NULL; 2210 vm_map_entry_link(new_map, new_map->header.prev, 2211 new_entry); 2212 vm_map_copy_entry(old_map, new_map, old_entry, 2213 new_entry); 2214 break; 2215 } 2216 old_entry = old_entry->next; 2217 } 2218 2219 new_map->size = old_map->size; 2220 old_map->infork = 0; 2221 vm_map_unlock(old_map); 2222 2223 return (vm2); 2224 } 2225 2226 int 2227 vm_map_stack (vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 2228 vm_prot_t prot, vm_prot_t max, int cow) 2229 { 2230 vm_map_entry_t prev_entry; 2231 vm_map_entry_t new_stack_entry; 2232 vm_size_t init_ssize; 2233 int rv; 2234 2235 if (VM_MIN_ADDRESS > 0 && addrbos < VM_MIN_ADDRESS) 2236 return (KERN_NO_SPACE); 2237 2238 if (max_ssize < SGROWSIZ) 2239 init_ssize = max_ssize; 2240 else 2241 init_ssize = SGROWSIZ; 2242 2243 vm_map_lock(map); 2244 2245 /* If addr is already mapped, no go */ 2246 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) { 2247 vm_map_unlock(map); 2248 return (KERN_NO_SPACE); 2249 } 2250 2251 /* If we can't accomodate max_ssize in the current mapping, 2252 * no go. However, we need to be aware that subsequent user 2253 * mappings might map into the space we have reserved for 2254 * stack, and currently this space is not protected. 2255 * 2256 * Hopefully we will at least detect this condition 2257 * when we try to grow the stack. 2258 */ 2259 if ((prev_entry->next != &map->header) && 2260 (prev_entry->next->start < addrbos + max_ssize)) { 2261 vm_map_unlock(map); 2262 return (KERN_NO_SPACE); 2263 } 2264 2265 /* We initially map a stack of only init_ssize. We will 2266 * grow as needed later. Since this is to be a grow 2267 * down stack, we map at the top of the range. 2268 * 2269 * Note: we would normally expect prot and max to be 2270 * VM_PROT_ALL, and cow to be 0. Possibly we should 2271 * eliminate these as input parameters, and just 2272 * pass these values here in the insert call. 2273 */ 2274 rv = vm_map_insert(map, NULL, 0, addrbos + max_ssize - init_ssize, 2275 addrbos + max_ssize, prot, max, cow); 2276 2277 /* Now set the avail_ssize amount */ 2278 if (rv == KERN_SUCCESS){ 2279 if (prev_entry != &map->header) 2280 vm_map_clip_end(map, prev_entry, addrbos + max_ssize - init_ssize); 2281 new_stack_entry = prev_entry->next; 2282 if (new_stack_entry->end != addrbos + max_ssize || 2283 new_stack_entry->start != addrbos + max_ssize - init_ssize) 2284 panic ("Bad entry start/end for new stack entry"); 2285 else 2286 new_stack_entry->avail_ssize = max_ssize - init_ssize; 2287 } 2288 2289 vm_map_unlock(map); 2290 return (rv); 2291 } 2292 2293 /* Attempts to grow a vm stack entry. Returns KERN_SUCCESS if the 2294 * desired address is already mapped, or if we successfully grow 2295 * the stack. Also returns KERN_SUCCESS if addr is outside the 2296 * stack range (this is strange, but preserves compatibility with 2297 * the grow function in vm_machdep.c). 2298 */ 2299 int 2300 vm_map_growstack (struct proc *p, vm_offset_t addr) 2301 { 2302 vm_map_entry_t prev_entry; 2303 vm_map_entry_t stack_entry; 2304 vm_map_entry_t new_stack_entry; 2305 struct vmspace *vm = p->p_vmspace; 2306 vm_map_t map = &vm->vm_map; 2307 vm_offset_t end; 2308 int grow_amount; 2309 int rv; 2310 int is_procstack; 2311 Retry: 2312 vm_map_lock_read(map); 2313 2314 /* If addr is already in the entry range, no need to grow.*/ 2315 if (vm_map_lookup_entry(map, addr, &prev_entry)) { 2316 vm_map_unlock_read(map); 2317 return (KERN_SUCCESS); 2318 } 2319 2320 if ((stack_entry = prev_entry->next) == &map->header) { 2321 vm_map_unlock_read(map); 2322 return (KERN_SUCCESS); 2323 } 2324 if (prev_entry == &map->header) 2325 end = stack_entry->start - stack_entry->avail_ssize; 2326 else 2327 end = prev_entry->end; 2328 2329 /* This next test mimics the old grow function in vm_machdep.c. 2330 * It really doesn't quite make sense, but we do it anyway 2331 * for compatibility. 2332 * 2333 * If not growable stack, return success. This signals the 2334 * caller to proceed as he would normally with normal vm. 2335 */ 2336 if (stack_entry->avail_ssize < 1 || 2337 addr >= stack_entry->start || 2338 addr < stack_entry->start - stack_entry->avail_ssize) { 2339 vm_map_unlock_read(map); 2340 return (KERN_SUCCESS); 2341 } 2342 2343 /* Find the minimum grow amount */ 2344 grow_amount = roundup (stack_entry->start - addr, PAGE_SIZE); 2345 if (grow_amount > stack_entry->avail_ssize) { 2346 vm_map_unlock_read(map); 2347 return (KERN_NO_SPACE); 2348 } 2349 2350 /* If there is no longer enough space between the entries 2351 * nogo, and adjust the available space. Note: this 2352 * should only happen if the user has mapped into the 2353 * stack area after the stack was created, and is 2354 * probably an error. 2355 * 2356 * This also effectively destroys any guard page the user 2357 * might have intended by limiting the stack size. 2358 */ 2359 if (grow_amount > stack_entry->start - end) { 2360 if (vm_map_lock_upgrade(map)) 2361 goto Retry; 2362 2363 stack_entry->avail_ssize = stack_entry->start - end; 2364 2365 vm_map_unlock(map); 2366 return (KERN_NO_SPACE); 2367 } 2368 2369 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr; 2370 2371 /* If this is the main process stack, see if we're over the 2372 * stack limit. 2373 */ 2374 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > 2375 p->p_rlimit[RLIMIT_STACK].rlim_cur)) { 2376 vm_map_unlock_read(map); 2377 return (KERN_NO_SPACE); 2378 } 2379 2380 /* Round up the grow amount modulo SGROWSIZ */ 2381 grow_amount = roundup (grow_amount, SGROWSIZ); 2382 if (grow_amount > stack_entry->avail_ssize) { 2383 grow_amount = stack_entry->avail_ssize; 2384 } 2385 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > 2386 p->p_rlimit[RLIMIT_STACK].rlim_cur)) { 2387 grow_amount = p->p_rlimit[RLIMIT_STACK].rlim_cur - 2388 ctob(vm->vm_ssize); 2389 } 2390 2391 if (vm_map_lock_upgrade(map)) 2392 goto Retry; 2393 2394 /* Get the preliminary new entry start value */ 2395 addr = stack_entry->start - grow_amount; 2396 2397 /* If this puts us into the previous entry, cut back our growth 2398 * to the available space. Also, see the note above. 2399 */ 2400 if (addr < end) { 2401 stack_entry->avail_ssize = stack_entry->start - end; 2402 addr = end; 2403 } 2404 2405 rv = vm_map_insert(map, NULL, 0, addr, stack_entry->start, 2406 VM_PROT_ALL, 2407 VM_PROT_ALL, 2408 0); 2409 2410 /* Adjust the available stack space by the amount we grew. */ 2411 if (rv == KERN_SUCCESS) { 2412 if (prev_entry != &map->header) 2413 vm_map_clip_end(map, prev_entry, addr); 2414 new_stack_entry = prev_entry->next; 2415 if (new_stack_entry->end != stack_entry->start || 2416 new_stack_entry->start != addr) 2417 panic ("Bad stack grow start/end in new stack entry"); 2418 else { 2419 new_stack_entry->avail_ssize = stack_entry->avail_ssize - 2420 (new_stack_entry->end - 2421 new_stack_entry->start); 2422 if (is_procstack) 2423 vm->vm_ssize += btoc(new_stack_entry->end - 2424 new_stack_entry->start); 2425 } 2426 } 2427 2428 vm_map_unlock(map); 2429 return (rv); 2430 2431 } 2432 2433 /* 2434 * Unshare the specified VM space for exec. If other processes are 2435 * mapped to it, then create a new one. The new vmspace is null. 2436 */ 2437 2438 void 2439 vmspace_exec(struct proc *p) { 2440 struct vmspace *oldvmspace = p->p_vmspace; 2441 struct vmspace *newvmspace; 2442 vm_map_t map = &p->p_vmspace->vm_map; 2443 2444 newvmspace = vmspace_alloc(map->min_offset, map->max_offset); 2445 bcopy(&oldvmspace->vm_startcopy, &newvmspace->vm_startcopy, 2446 (caddr_t) (newvmspace + 1) - (caddr_t) &newvmspace->vm_startcopy); 2447 /* 2448 * This code is written like this for prototype purposes. The 2449 * goal is to avoid running down the vmspace here, but let the 2450 * other process's that are still using the vmspace to finally 2451 * run it down. Even though there is little or no chance of blocking 2452 * here, it is a good idea to keep this form for future mods. 2453 */ 2454 vmspace_free(oldvmspace); 2455 p->p_vmspace = newvmspace; 2456 pmap_pinit2(vmspace_pmap(newvmspace)); 2457 if (p == curproc) 2458 pmap_activate(p); 2459 } 2460 2461 /* 2462 * Unshare the specified VM space for forcing COW. This 2463 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 2464 */ 2465 2466 void 2467 vmspace_unshare(struct proc *p) { 2468 struct vmspace *oldvmspace = p->p_vmspace; 2469 struct vmspace *newvmspace; 2470 2471 if (oldvmspace->vm_refcnt == 1) 2472 return; 2473 newvmspace = vmspace_fork(oldvmspace); 2474 vmspace_free(oldvmspace); 2475 p->p_vmspace = newvmspace; 2476 pmap_pinit2(vmspace_pmap(newvmspace)); 2477 if (p == curproc) 2478 pmap_activate(p); 2479 } 2480 2481 2482 /* 2483 * vm_map_lookup: 2484 * 2485 * Finds the VM object, offset, and 2486 * protection for a given virtual address in the 2487 * specified map, assuming a page fault of the 2488 * type specified. 2489 * 2490 * Leaves the map in question locked for read; return 2491 * values are guaranteed until a vm_map_lookup_done 2492 * call is performed. Note that the map argument 2493 * is in/out; the returned map must be used in 2494 * the call to vm_map_lookup_done. 2495 * 2496 * A handle (out_entry) is returned for use in 2497 * vm_map_lookup_done, to make that fast. 2498 * 2499 * If a lookup is requested with "write protection" 2500 * specified, the map may be changed to perform virtual 2501 * copying operations, although the data referenced will 2502 * remain the same. 2503 */ 2504 int 2505 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 2506 vm_offset_t vaddr, 2507 vm_prot_t fault_typea, 2508 vm_map_entry_t *out_entry, /* OUT */ 2509 vm_object_t *object, /* OUT */ 2510 vm_pindex_t *pindex, /* OUT */ 2511 vm_prot_t *out_prot, /* OUT */ 2512 boolean_t *wired) /* OUT */ 2513 { 2514 vm_map_entry_t entry; 2515 vm_map_t map = *var_map; 2516 vm_prot_t prot; 2517 vm_prot_t fault_type = fault_typea; 2518 2519 RetryLookup:; 2520 2521 /* 2522 * Lookup the faulting address. 2523 */ 2524 2525 vm_map_lock_read(map); 2526 2527 #define RETURN(why) \ 2528 { \ 2529 vm_map_unlock_read(map); \ 2530 return(why); \ 2531 } 2532 2533 /* 2534 * If the map has an interesting hint, try it before calling full 2535 * blown lookup routine. 2536 */ 2537 2538 entry = map->hint; 2539 2540 *out_entry = entry; 2541 2542 if ((entry == &map->header) || 2543 (vaddr < entry->start) || (vaddr >= entry->end)) { 2544 vm_map_entry_t tmp_entry; 2545 2546 /* 2547 * Entry was either not a valid hint, or the vaddr was not 2548 * contained in the entry, so do a full lookup. 2549 */ 2550 if (!vm_map_lookup_entry(map, vaddr, &tmp_entry)) 2551 RETURN(KERN_INVALID_ADDRESS); 2552 2553 entry = tmp_entry; 2554 *out_entry = entry; 2555 } 2556 2557 /* 2558 * Handle submaps. 2559 */ 2560 2561 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 2562 vm_map_t old_map = map; 2563 2564 *var_map = map = entry->object.sub_map; 2565 vm_map_unlock_read(old_map); 2566 goto RetryLookup; 2567 } 2568 2569 /* 2570 * Check whether this task is allowed to have this page. 2571 * Note the special case for MAP_ENTRY_COW 2572 * pages with an override. This is to implement a forced 2573 * COW for debuggers. 2574 */ 2575 2576 if (fault_type & VM_PROT_OVERRIDE_WRITE) 2577 prot = entry->max_protection; 2578 else 2579 prot = entry->protection; 2580 2581 fault_type &= (VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE); 2582 if ((fault_type & prot) != fault_type) { 2583 RETURN(KERN_PROTECTION_FAILURE); 2584 } 2585 2586 if ((entry->eflags & MAP_ENTRY_USER_WIRED) && 2587 (entry->eflags & MAP_ENTRY_COW) && 2588 (fault_type & VM_PROT_WRITE) && 2589 (fault_typea & VM_PROT_OVERRIDE_WRITE) == 0) { 2590 RETURN(KERN_PROTECTION_FAILURE); 2591 } 2592 2593 /* 2594 * If this page is not pageable, we have to get it for all possible 2595 * accesses. 2596 */ 2597 2598 *wired = (entry->wired_count != 0); 2599 if (*wired) 2600 prot = fault_type = entry->protection; 2601 2602 /* 2603 * If the entry was copy-on-write, we either ... 2604 */ 2605 2606 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 2607 /* 2608 * If we want to write the page, we may as well handle that 2609 * now since we've got the map locked. 2610 * 2611 * If we don't need to write the page, we just demote the 2612 * permissions allowed. 2613 */ 2614 2615 if (fault_type & VM_PROT_WRITE) { 2616 /* 2617 * Make a new object, and place it in the object 2618 * chain. Note that no new references have appeared 2619 * -- one just moved from the map to the new 2620 * object. 2621 */ 2622 2623 if (vm_map_lock_upgrade(map)) 2624 goto RetryLookup; 2625 2626 vm_object_shadow( 2627 &entry->object.vm_object, 2628 &entry->offset, 2629 atop(entry->end - entry->start)); 2630 2631 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 2632 vm_map_lock_downgrade(map); 2633 } else { 2634 /* 2635 * We're attempting to read a copy-on-write page -- 2636 * don't allow writes. 2637 */ 2638 2639 prot &= ~VM_PROT_WRITE; 2640 } 2641 } 2642 2643 /* 2644 * Create an object if necessary. 2645 */ 2646 if (entry->object.vm_object == NULL && 2647 !map->system_map) { 2648 if (vm_map_lock_upgrade(map)) 2649 goto RetryLookup; 2650 2651 entry->object.vm_object = vm_object_allocate(OBJT_DEFAULT, 2652 atop(entry->end - entry->start)); 2653 entry->offset = 0; 2654 vm_map_lock_downgrade(map); 2655 } 2656 2657 /* 2658 * Return the object/offset from this entry. If the entry was 2659 * copy-on-write or empty, it has been fixed up. 2660 */ 2661 2662 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 2663 *object = entry->object.vm_object; 2664 2665 /* 2666 * Return whether this is the only map sharing this data. 2667 */ 2668 2669 *out_prot = prot; 2670 return (KERN_SUCCESS); 2671 2672 #undef RETURN 2673 } 2674 2675 /* 2676 * vm_map_lookup_done: 2677 * 2678 * Releases locks acquired by a vm_map_lookup 2679 * (according to the handle returned by that lookup). 2680 */ 2681 2682 void 2683 vm_map_lookup_done(map, entry) 2684 vm_map_t map; 2685 vm_map_entry_t entry; 2686 { 2687 /* 2688 * Unlock the main-level map 2689 */ 2690 2691 vm_map_unlock_read(map); 2692 } 2693 2694 /* 2695 * Implement uiomove with VM operations. This handles (and collateral changes) 2696 * support every combination of source object modification, and COW type 2697 * operations. 2698 */ 2699 int 2700 vm_uiomove(mapa, srcobject, cp, cnta, uaddra, npages) 2701 vm_map_t mapa; 2702 vm_object_t srcobject; 2703 off_t cp; 2704 int cnta; 2705 vm_offset_t uaddra; 2706 int *npages; 2707 { 2708 vm_map_t map; 2709 vm_object_t first_object, oldobject, object; 2710 vm_map_entry_t entry; 2711 vm_prot_t prot; 2712 boolean_t wired; 2713 int tcnt, rv; 2714 vm_offset_t uaddr, start, end, tend; 2715 vm_pindex_t first_pindex, osize, oindex; 2716 off_t ooffset; 2717 int cnt; 2718 2719 if (npages) 2720 *npages = 0; 2721 2722 cnt = cnta; 2723 uaddr = uaddra; 2724 2725 while (cnt > 0) { 2726 map = mapa; 2727 2728 if ((vm_map_lookup(&map, uaddr, 2729 VM_PROT_READ, &entry, &first_object, 2730 &first_pindex, &prot, &wired)) != KERN_SUCCESS) { 2731 return EFAULT; 2732 } 2733 2734 vm_map_clip_start(map, entry, uaddr); 2735 2736 tcnt = cnt; 2737 tend = uaddr + tcnt; 2738 if (tend > entry->end) { 2739 tcnt = entry->end - uaddr; 2740 tend = entry->end; 2741 } 2742 2743 vm_map_clip_end(map, entry, tend); 2744 2745 start = entry->start; 2746 end = entry->end; 2747 2748 osize = atop(tcnt); 2749 2750 oindex = OFF_TO_IDX(cp); 2751 if (npages) { 2752 vm_pindex_t idx; 2753 for (idx = 0; idx < osize; idx++) { 2754 vm_page_t m; 2755 if ((m = vm_page_lookup(srcobject, oindex + idx)) == NULL) { 2756 vm_map_lookup_done(map, entry); 2757 return 0; 2758 } 2759 /* 2760 * disallow busy or invalid pages, but allow 2761 * m->busy pages if they are entirely valid. 2762 */ 2763 if ((m->flags & PG_BUSY) || 2764 ((m->valid & VM_PAGE_BITS_ALL) != VM_PAGE_BITS_ALL)) { 2765 vm_map_lookup_done(map, entry); 2766 return 0; 2767 } 2768 } 2769 } 2770 2771 /* 2772 * If we are changing an existing map entry, just redirect 2773 * the object, and change mappings. 2774 */ 2775 if ((first_object->type == OBJT_VNODE) && 2776 ((oldobject = entry->object.vm_object) == first_object)) { 2777 2778 if ((entry->offset != cp) || (oldobject != srcobject)) { 2779 /* 2780 * Remove old window into the file 2781 */ 2782 pmap_remove (map->pmap, uaddr, tend); 2783 2784 /* 2785 * Force copy on write for mmaped regions 2786 */ 2787 vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize); 2788 2789 /* 2790 * Point the object appropriately 2791 */ 2792 if (oldobject != srcobject) { 2793 2794 /* 2795 * Set the object optimization hint flag 2796 */ 2797 vm_object_set_flag(srcobject, OBJ_OPT); 2798 vm_object_reference(srcobject); 2799 entry->object.vm_object = srcobject; 2800 2801 if (oldobject) { 2802 vm_object_deallocate(oldobject); 2803 } 2804 } 2805 2806 entry->offset = cp; 2807 map->timestamp++; 2808 } else { 2809 pmap_remove (map->pmap, uaddr, tend); 2810 } 2811 2812 } else if ((first_object->ref_count == 1) && 2813 (first_object->size == osize) && 2814 ((first_object->type == OBJT_DEFAULT) || 2815 (first_object->type == OBJT_SWAP)) ) { 2816 2817 oldobject = first_object->backing_object; 2818 2819 if ((first_object->backing_object_offset != cp) || 2820 (oldobject != srcobject)) { 2821 /* 2822 * Remove old window into the file 2823 */ 2824 pmap_remove (map->pmap, uaddr, tend); 2825 2826 /* 2827 * Remove unneeded old pages 2828 */ 2829 vm_object_page_remove(first_object, 0, 0, 0); 2830 2831 /* 2832 * Invalidate swap space 2833 */ 2834 if (first_object->type == OBJT_SWAP) { 2835 swap_pager_freespace(first_object, 2836 0, 2837 first_object->size); 2838 } 2839 2840 /* 2841 * Force copy on write for mmaped regions 2842 */ 2843 vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize); 2844 2845 /* 2846 * Point the object appropriately 2847 */ 2848 if (oldobject != srcobject) { 2849 2850 /* 2851 * Set the object optimization hint flag 2852 */ 2853 vm_object_set_flag(srcobject, OBJ_OPT); 2854 vm_object_reference(srcobject); 2855 2856 if (oldobject) { 2857 TAILQ_REMOVE(&oldobject->shadow_head, 2858 first_object, shadow_list); 2859 oldobject->shadow_count--; 2860 /* XXX bump generation? */ 2861 vm_object_deallocate(oldobject); 2862 } 2863 2864 TAILQ_INSERT_TAIL(&srcobject->shadow_head, 2865 first_object, shadow_list); 2866 srcobject->shadow_count++; 2867 /* XXX bump generation? */ 2868 2869 first_object->backing_object = srcobject; 2870 } 2871 first_object->backing_object_offset = cp; 2872 map->timestamp++; 2873 } else { 2874 pmap_remove (map->pmap, uaddr, tend); 2875 } 2876 /* 2877 * Otherwise, we have to do a logical mmap. 2878 */ 2879 } else { 2880 2881 vm_object_set_flag(srcobject, OBJ_OPT); 2882 vm_object_reference(srcobject); 2883 2884 pmap_remove (map->pmap, uaddr, tend); 2885 2886 vm_object_pmap_copy_1 (srcobject, oindex, oindex + osize); 2887 vm_map_lock_upgrade(map); 2888 2889 if (entry == &map->header) { 2890 map->first_free = &map->header; 2891 } else if (map->first_free->start >= start) { 2892 map->first_free = entry->prev; 2893 } 2894 2895 SAVE_HINT(map, entry->prev); 2896 vm_map_entry_delete(map, entry); 2897 2898 object = srcobject; 2899 ooffset = cp; 2900 2901 rv = vm_map_insert(map, object, ooffset, start, tend, 2902 VM_PROT_ALL, VM_PROT_ALL, MAP_COPY_ON_WRITE); 2903 2904 if (rv != KERN_SUCCESS) 2905 panic("vm_uiomove: could not insert new entry: %d", rv); 2906 } 2907 2908 /* 2909 * Map the window directly, if it is already in memory 2910 */ 2911 pmap_object_init_pt(map->pmap, uaddr, 2912 srcobject, oindex, tcnt, 0); 2913 2914 map->timestamp++; 2915 vm_map_unlock(map); 2916 2917 cnt -= tcnt; 2918 uaddr += tcnt; 2919 cp += tcnt; 2920 if (npages) 2921 *npages += osize; 2922 } 2923 return 0; 2924 } 2925 2926 /* 2927 * Performs the copy_on_write operations necessary to allow the virtual copies 2928 * into user space to work. This has to be called for write(2) system calls 2929 * from other processes, file unlinking, and file size shrinkage. 2930 */ 2931 void 2932 vm_freeze_copyopts(object, froma, toa) 2933 vm_object_t object; 2934 vm_pindex_t froma, toa; 2935 { 2936 int rv; 2937 vm_object_t robject; 2938 vm_pindex_t idx; 2939 2940 if ((object == NULL) || 2941 ((object->flags & OBJ_OPT) == 0)) 2942 return; 2943 2944 if (object->shadow_count > object->ref_count) 2945 panic("vm_freeze_copyopts: sc > rc"); 2946 2947 while((robject = TAILQ_FIRST(&object->shadow_head)) != NULL) { 2948 vm_pindex_t bo_pindex; 2949 vm_page_t m_in, m_out; 2950 2951 bo_pindex = OFF_TO_IDX(robject->backing_object_offset); 2952 2953 vm_object_reference(robject); 2954 2955 vm_object_pip_wait(robject, "objfrz"); 2956 2957 if (robject->ref_count == 1) { 2958 vm_object_deallocate(robject); 2959 continue; 2960 } 2961 2962 vm_object_pip_add(robject, 1); 2963 2964 for (idx = 0; idx < robject->size; idx++) { 2965 2966 m_out = vm_page_grab(robject, idx, 2967 VM_ALLOC_NORMAL | VM_ALLOC_RETRY); 2968 2969 if (m_out->valid == 0) { 2970 m_in = vm_page_grab(object, bo_pindex + idx, 2971 VM_ALLOC_NORMAL | VM_ALLOC_RETRY); 2972 if (m_in->valid == 0) { 2973 rv = vm_pager_get_pages(object, &m_in, 1, 0); 2974 if (rv != VM_PAGER_OK) { 2975 printf("vm_freeze_copyopts: cannot read page from file: %lx\n", (long)m_in->pindex); 2976 continue; 2977 } 2978 vm_page_deactivate(m_in); 2979 } 2980 2981 vm_page_protect(m_in, VM_PROT_NONE); 2982 pmap_copy_page(VM_PAGE_TO_PHYS(m_in), VM_PAGE_TO_PHYS(m_out)); 2983 m_out->valid = m_in->valid; 2984 vm_page_dirty(m_out); 2985 vm_page_activate(m_out); 2986 vm_page_wakeup(m_in); 2987 } 2988 vm_page_wakeup(m_out); 2989 } 2990 2991 object->shadow_count--; 2992 object->ref_count--; 2993 TAILQ_REMOVE(&object->shadow_head, robject, shadow_list); 2994 robject->backing_object = NULL; 2995 robject->backing_object_offset = 0; 2996 2997 vm_object_pip_wakeup(robject); 2998 vm_object_deallocate(robject); 2999 } 3000 3001 vm_object_clear_flag(object, OBJ_OPT); 3002 } 3003 3004 #include "opt_ddb.h" 3005 #ifdef DDB 3006 #include <sys/kernel.h> 3007 3008 #include <ddb/ddb.h> 3009 3010 /* 3011 * vm_map_print: [ debug ] 3012 */ 3013 DB_SHOW_COMMAND(map, vm_map_print) 3014 { 3015 static int nlines; 3016 /* XXX convert args. */ 3017 vm_map_t map = (vm_map_t)addr; 3018 boolean_t full = have_addr; 3019 3020 vm_map_entry_t entry; 3021 3022 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 3023 (void *)map, 3024 (void *)map->pmap, map->nentries, map->timestamp); 3025 nlines++; 3026 3027 if (!full && db_indent) 3028 return; 3029 3030 db_indent += 2; 3031 for (entry = map->header.next; entry != &map->header; 3032 entry = entry->next) { 3033 db_iprintf("map entry %p: start=%p, end=%p\n", 3034 (void *)entry, (void *)entry->start, (void *)entry->end); 3035 nlines++; 3036 { 3037 static char *inheritance_name[4] = 3038 {"share", "copy", "none", "donate_copy"}; 3039 3040 db_iprintf(" prot=%x/%x/%s", 3041 entry->protection, 3042 entry->max_protection, 3043 inheritance_name[(int)(unsigned char)entry->inheritance]); 3044 if (entry->wired_count != 0) 3045 db_printf(", wired"); 3046 } 3047 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 3048 /* XXX no %qd in kernel. Truncate entry->offset. */ 3049 db_printf(", share=%p, offset=0x%lx\n", 3050 (void *)entry->object.sub_map, 3051 (long)entry->offset); 3052 nlines++; 3053 if ((entry->prev == &map->header) || 3054 (entry->prev->object.sub_map != 3055 entry->object.sub_map)) { 3056 db_indent += 2; 3057 vm_map_print((db_expr_t)(intptr_t) 3058 entry->object.sub_map, 3059 full, 0, (char *)0); 3060 db_indent -= 2; 3061 } 3062 } else { 3063 /* XXX no %qd in kernel. Truncate entry->offset. */ 3064 db_printf(", object=%p, offset=0x%lx", 3065 (void *)entry->object.vm_object, 3066 (long)entry->offset); 3067 if (entry->eflags & MAP_ENTRY_COW) 3068 db_printf(", copy (%s)", 3069 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 3070 db_printf("\n"); 3071 nlines++; 3072 3073 if ((entry->prev == &map->header) || 3074 (entry->prev->object.vm_object != 3075 entry->object.vm_object)) { 3076 db_indent += 2; 3077 vm_object_print((db_expr_t)(intptr_t) 3078 entry->object.vm_object, 3079 full, 0, (char *)0); 3080 nlines += 4; 3081 db_indent -= 2; 3082 } 3083 } 3084 } 3085 db_indent -= 2; 3086 if (db_indent == 0) 3087 nlines = 0; 3088 } 3089 3090 3091 DB_SHOW_COMMAND(procvm, procvm) 3092 { 3093 struct proc *p; 3094 3095 if (have_addr) { 3096 p = (struct proc *) addr; 3097 } else { 3098 p = curproc; 3099 } 3100 3101 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 3102 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 3103 (void *)vmspace_pmap(p->p_vmspace)); 3104 3105 vm_map_print((db_expr_t)(intptr_t)&p->p_vmspace->vm_map, 1, 0, NULL); 3106 } 3107 3108 #endif /* DDB */ 3109