1 /*- 2 * SPDX-License-Identifier: (BSD-3-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * This code is derived from software contributed to Berkeley by 8 * The Mach Operating System project at Carnegie-Mellon University. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the University nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * from: @(#)vm_map.c 8.3 (Berkeley) 1/12/94 35 * 36 * 37 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 38 * All rights reserved. 39 * 40 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 41 * 42 * Permission to use, copy, modify and distribute this software and 43 * its documentation is hereby granted, provided that both the copyright 44 * notice and this permission notice appear in all copies of the 45 * software, derivative works or modified versions, and any portions 46 * thereof, and that both notices appear in supporting documentation. 47 * 48 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 49 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 50 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 51 * 52 * Carnegie Mellon requests users of this software to return to 53 * 54 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 55 * School of Computer Science 56 * Carnegie Mellon University 57 * Pittsburgh PA 15213-3890 58 * 59 * any improvements or extensions that they make and grant Carnegie the 60 * rights to redistribute these changes. 61 */ 62 63 /* 64 * Virtual memory mapping module. 65 */ 66 67 #include <sys/cdefs.h> 68 __FBSDID("$FreeBSD$"); 69 70 #include <sys/param.h> 71 #include <sys/systm.h> 72 #include <sys/elf.h> 73 #include <sys/kernel.h> 74 #include <sys/ktr.h> 75 #include <sys/lock.h> 76 #include <sys/mutex.h> 77 #include <sys/proc.h> 78 #include <sys/vmmeter.h> 79 #include <sys/mman.h> 80 #include <sys/vnode.h> 81 #include <sys/racct.h> 82 #include <sys/resourcevar.h> 83 #include <sys/rwlock.h> 84 #include <sys/file.h> 85 #include <sys/sysctl.h> 86 #include <sys/sysent.h> 87 #include <sys/shm.h> 88 89 #include <vm/vm.h> 90 #include <vm/vm_param.h> 91 #include <vm/pmap.h> 92 #include <vm/vm_map.h> 93 #include <vm/vm_page.h> 94 #include <vm/vm_pageout.h> 95 #include <vm/vm_object.h> 96 #include <vm/vm_pager.h> 97 #include <vm/vm_kern.h> 98 #include <vm/vm_extern.h> 99 #include <vm/vnode_pager.h> 100 #include <vm/swap_pager.h> 101 #include <vm/uma.h> 102 103 /* 104 * Virtual memory maps provide for the mapping, protection, 105 * and sharing of virtual memory objects. In addition, 106 * this module provides for an efficient virtual copy of 107 * memory from one map to another. 108 * 109 * Synchronization is required prior to most operations. 110 * 111 * Maps consist of an ordered doubly-linked list of simple 112 * entries; a self-adjusting binary search tree of these 113 * entries is used to speed up lookups. 114 * 115 * Since portions of maps are specified by start/end addresses, 116 * which may not align with existing map entries, all 117 * routines merely "clip" entries to these start/end values. 118 * [That is, an entry is split into two, bordering at a 119 * start or end value.] Note that these clippings may not 120 * always be necessary (as the two resulting entries are then 121 * not changed); however, the clipping is done for convenience. 122 * 123 * As mentioned above, virtual copy operations are performed 124 * by copying VM object references from one map to 125 * another, and then marking both regions as copy-on-write. 126 */ 127 128 static struct mtx map_sleep_mtx; 129 static uma_zone_t mapentzone; 130 static uma_zone_t kmapentzone; 131 static uma_zone_t mapzone; 132 static uma_zone_t vmspace_zone; 133 static int vmspace_zinit(void *mem, int size, int flags); 134 static int vm_map_zinit(void *mem, int ize, int flags); 135 static void _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, 136 vm_offset_t max); 137 static void vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map); 138 static void vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry); 139 static void vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry); 140 static int vm_map_growstack(vm_map_t map, vm_offset_t addr, 141 vm_map_entry_t gap_entry); 142 static void vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 143 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags); 144 #ifdef INVARIANTS 145 static void vm_map_zdtor(void *mem, int size, void *arg); 146 static void vmspace_zdtor(void *mem, int size, void *arg); 147 #endif 148 static int vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, 149 vm_size_t max_ssize, vm_size_t growsize, vm_prot_t prot, vm_prot_t max, 150 int cow); 151 static void vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry, 152 vm_offset_t failed_addr); 153 154 #define ENTRY_CHARGED(e) ((e)->cred != NULL || \ 155 ((e)->object.vm_object != NULL && (e)->object.vm_object->cred != NULL && \ 156 !((e)->eflags & MAP_ENTRY_NEEDS_COPY))) 157 158 /* 159 * PROC_VMSPACE_{UN,}LOCK() can be a noop as long as vmspaces are type 160 * stable. 161 */ 162 #define PROC_VMSPACE_LOCK(p) do { } while (0) 163 #define PROC_VMSPACE_UNLOCK(p) do { } while (0) 164 165 /* 166 * VM_MAP_RANGE_CHECK: [ internal use only ] 167 * 168 * Asserts that the starting and ending region 169 * addresses fall within the valid range of the map. 170 */ 171 #define VM_MAP_RANGE_CHECK(map, start, end) \ 172 { \ 173 if (start < vm_map_min(map)) \ 174 start = vm_map_min(map); \ 175 if (end > vm_map_max(map)) \ 176 end = vm_map_max(map); \ 177 if (start > end) \ 178 start = end; \ 179 } 180 181 /* 182 * vm_map_startup: 183 * 184 * Initialize the vm_map module. Must be called before 185 * any other vm_map routines. 186 * 187 * Map and entry structures are allocated from the general 188 * purpose memory pool with some exceptions: 189 * 190 * - The kernel map and kmem submap are allocated statically. 191 * - Kernel map entries are allocated out of a static pool. 192 * 193 * These restrictions are necessary since malloc() uses the 194 * maps and requires map entries. 195 */ 196 197 void 198 vm_map_startup(void) 199 { 200 mtx_init(&map_sleep_mtx, "vm map sleep mutex", NULL, MTX_DEF); 201 mapzone = uma_zcreate("MAP", sizeof(struct vm_map), NULL, 202 #ifdef INVARIANTS 203 vm_map_zdtor, 204 #else 205 NULL, 206 #endif 207 vm_map_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 208 uma_prealloc(mapzone, MAX_KMAP); 209 kmapentzone = uma_zcreate("KMAP ENTRY", sizeof(struct vm_map_entry), 210 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 211 UMA_ZONE_MTXCLASS | UMA_ZONE_VM); 212 mapentzone = uma_zcreate("MAP ENTRY", sizeof(struct vm_map_entry), 213 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 214 vmspace_zone = uma_zcreate("VMSPACE", sizeof(struct vmspace), NULL, 215 #ifdef INVARIANTS 216 vmspace_zdtor, 217 #else 218 NULL, 219 #endif 220 vmspace_zinit, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE); 221 } 222 223 static int 224 vmspace_zinit(void *mem, int size, int flags) 225 { 226 struct vmspace *vm; 227 228 vm = (struct vmspace *)mem; 229 230 vm->vm_map.pmap = NULL; 231 (void)vm_map_zinit(&vm->vm_map, sizeof(vm->vm_map), flags); 232 PMAP_LOCK_INIT(vmspace_pmap(vm)); 233 return (0); 234 } 235 236 static int 237 vm_map_zinit(void *mem, int size, int flags) 238 { 239 vm_map_t map; 240 241 map = (vm_map_t)mem; 242 memset(map, 0, sizeof(*map)); 243 mtx_init(&map->system_mtx, "vm map (system)", NULL, MTX_DEF | MTX_DUPOK); 244 sx_init(&map->lock, "vm map (user)"); 245 return (0); 246 } 247 248 #ifdef INVARIANTS 249 static void 250 vmspace_zdtor(void *mem, int size, void *arg) 251 { 252 struct vmspace *vm; 253 254 vm = (struct vmspace *)mem; 255 256 vm_map_zdtor(&vm->vm_map, sizeof(vm->vm_map), arg); 257 } 258 static void 259 vm_map_zdtor(void *mem, int size, void *arg) 260 { 261 vm_map_t map; 262 263 map = (vm_map_t)mem; 264 KASSERT(map->nentries == 0, 265 ("map %p nentries == %d on free.", 266 map, map->nentries)); 267 KASSERT(map->size == 0, 268 ("map %p size == %lu on free.", 269 map, (unsigned long)map->size)); 270 } 271 #endif /* INVARIANTS */ 272 273 /* 274 * Allocate a vmspace structure, including a vm_map and pmap, 275 * and initialize those structures. The refcnt is set to 1. 276 * 277 * If 'pinit' is NULL then the embedded pmap is initialized via pmap_pinit(). 278 */ 279 struct vmspace * 280 vmspace_alloc(vm_offset_t min, vm_offset_t max, pmap_pinit_t pinit) 281 { 282 struct vmspace *vm; 283 284 vm = uma_zalloc(vmspace_zone, M_WAITOK); 285 KASSERT(vm->vm_map.pmap == NULL, ("vm_map.pmap must be NULL")); 286 if (!pinit(vmspace_pmap(vm))) { 287 uma_zfree(vmspace_zone, vm); 288 return (NULL); 289 } 290 CTR1(KTR_VM, "vmspace_alloc: %p", vm); 291 _vm_map_init(&vm->vm_map, vmspace_pmap(vm), min, max); 292 vm->vm_refcnt = 1; 293 vm->vm_shm = NULL; 294 vm->vm_swrss = 0; 295 vm->vm_tsize = 0; 296 vm->vm_dsize = 0; 297 vm->vm_ssize = 0; 298 vm->vm_taddr = 0; 299 vm->vm_daddr = 0; 300 vm->vm_maxsaddr = 0; 301 return (vm); 302 } 303 304 #ifdef RACCT 305 static void 306 vmspace_container_reset(struct proc *p) 307 { 308 309 PROC_LOCK(p); 310 racct_set(p, RACCT_DATA, 0); 311 racct_set(p, RACCT_STACK, 0); 312 racct_set(p, RACCT_RSS, 0); 313 racct_set(p, RACCT_MEMLOCK, 0); 314 racct_set(p, RACCT_VMEM, 0); 315 PROC_UNLOCK(p); 316 } 317 #endif 318 319 static inline void 320 vmspace_dofree(struct vmspace *vm) 321 { 322 323 CTR1(KTR_VM, "vmspace_free: %p", vm); 324 325 /* 326 * Make sure any SysV shm is freed, it might not have been in 327 * exit1(). 328 */ 329 shmexit(vm); 330 331 /* 332 * Lock the map, to wait out all other references to it. 333 * Delete all of the mappings and pages they hold, then call 334 * the pmap module to reclaim anything left. 335 */ 336 (void)vm_map_remove(&vm->vm_map, vm_map_min(&vm->vm_map), 337 vm_map_max(&vm->vm_map)); 338 339 pmap_release(vmspace_pmap(vm)); 340 vm->vm_map.pmap = NULL; 341 uma_zfree(vmspace_zone, vm); 342 } 343 344 void 345 vmspace_free(struct vmspace *vm) 346 { 347 348 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 349 "vmspace_free() called"); 350 351 if (vm->vm_refcnt == 0) 352 panic("vmspace_free: attempt to free already freed vmspace"); 353 354 if (atomic_fetchadd_int(&vm->vm_refcnt, -1) == 1) 355 vmspace_dofree(vm); 356 } 357 358 void 359 vmspace_exitfree(struct proc *p) 360 { 361 struct vmspace *vm; 362 363 PROC_VMSPACE_LOCK(p); 364 vm = p->p_vmspace; 365 p->p_vmspace = NULL; 366 PROC_VMSPACE_UNLOCK(p); 367 KASSERT(vm == &vmspace0, ("vmspace_exitfree: wrong vmspace")); 368 vmspace_free(vm); 369 } 370 371 void 372 vmspace_exit(struct thread *td) 373 { 374 int refcnt; 375 struct vmspace *vm; 376 struct proc *p; 377 378 /* 379 * Release user portion of address space. 380 * This releases references to vnodes, 381 * which could cause I/O if the file has been unlinked. 382 * Need to do this early enough that we can still sleep. 383 * 384 * The last exiting process to reach this point releases as 385 * much of the environment as it can. vmspace_dofree() is the 386 * slower fallback in case another process had a temporary 387 * reference to the vmspace. 388 */ 389 390 p = td->td_proc; 391 vm = p->p_vmspace; 392 atomic_add_int(&vmspace0.vm_refcnt, 1); 393 refcnt = vm->vm_refcnt; 394 do { 395 if (refcnt > 1 && p->p_vmspace != &vmspace0) { 396 /* Switch now since other proc might free vmspace */ 397 PROC_VMSPACE_LOCK(p); 398 p->p_vmspace = &vmspace0; 399 PROC_VMSPACE_UNLOCK(p); 400 pmap_activate(td); 401 } 402 } while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt - 1)); 403 if (refcnt == 1) { 404 if (p->p_vmspace != vm) { 405 /* vmspace not yet freed, switch back */ 406 PROC_VMSPACE_LOCK(p); 407 p->p_vmspace = vm; 408 PROC_VMSPACE_UNLOCK(p); 409 pmap_activate(td); 410 } 411 pmap_remove_pages(vmspace_pmap(vm)); 412 /* Switch now since this proc will free vmspace */ 413 PROC_VMSPACE_LOCK(p); 414 p->p_vmspace = &vmspace0; 415 PROC_VMSPACE_UNLOCK(p); 416 pmap_activate(td); 417 vmspace_dofree(vm); 418 } 419 #ifdef RACCT 420 if (racct_enable) 421 vmspace_container_reset(p); 422 #endif 423 } 424 425 /* Acquire reference to vmspace owned by another process. */ 426 427 struct vmspace * 428 vmspace_acquire_ref(struct proc *p) 429 { 430 struct vmspace *vm; 431 int refcnt; 432 433 PROC_VMSPACE_LOCK(p); 434 vm = p->p_vmspace; 435 if (vm == NULL) { 436 PROC_VMSPACE_UNLOCK(p); 437 return (NULL); 438 } 439 refcnt = vm->vm_refcnt; 440 do { 441 if (refcnt <= 0) { /* Avoid 0->1 transition */ 442 PROC_VMSPACE_UNLOCK(p); 443 return (NULL); 444 } 445 } while (!atomic_fcmpset_int(&vm->vm_refcnt, &refcnt, refcnt + 1)); 446 if (vm != p->p_vmspace) { 447 PROC_VMSPACE_UNLOCK(p); 448 vmspace_free(vm); 449 return (NULL); 450 } 451 PROC_VMSPACE_UNLOCK(p); 452 return (vm); 453 } 454 455 /* 456 * Switch between vmspaces in an AIO kernel process. 457 * 458 * The new vmspace is either the vmspace of a user process obtained 459 * from an active AIO request or the initial vmspace of the AIO kernel 460 * process (when it is idling). Because user processes will block to 461 * drain any active AIO requests before proceeding in exit() or 462 * execve(), the reference count for vmspaces from AIO requests can 463 * never be 0. Similarly, AIO kernel processes hold an extra 464 * reference on their initial vmspace for the life of the process. As 465 * a result, the 'newvm' vmspace always has a non-zero reference 466 * count. This permits an additional reference on 'newvm' to be 467 * acquired via a simple atomic increment rather than the loop in 468 * vmspace_acquire_ref() above. 469 */ 470 void 471 vmspace_switch_aio(struct vmspace *newvm) 472 { 473 struct vmspace *oldvm; 474 475 /* XXX: Need some way to assert that this is an aio daemon. */ 476 477 KASSERT(newvm->vm_refcnt > 0, 478 ("vmspace_switch_aio: newvm unreferenced")); 479 480 oldvm = curproc->p_vmspace; 481 if (oldvm == newvm) 482 return; 483 484 /* 485 * Point to the new address space and refer to it. 486 */ 487 curproc->p_vmspace = newvm; 488 atomic_add_int(&newvm->vm_refcnt, 1); 489 490 /* Activate the new mapping. */ 491 pmap_activate(curthread); 492 493 vmspace_free(oldvm); 494 } 495 496 void 497 _vm_map_lock(vm_map_t map, const char *file, int line) 498 { 499 500 if (map->system_map) 501 mtx_lock_flags_(&map->system_mtx, 0, file, line); 502 else 503 sx_xlock_(&map->lock, file, line); 504 map->timestamp++; 505 } 506 507 void 508 vm_map_entry_set_vnode_text(vm_map_entry_t entry, bool add) 509 { 510 vm_object_t object; 511 struct vnode *vp; 512 bool vp_held; 513 514 if ((entry->eflags & MAP_ENTRY_VN_EXEC) == 0) 515 return; 516 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 517 ("Submap with execs")); 518 object = entry->object.vm_object; 519 KASSERT(object != NULL, ("No object for text, entry %p", entry)); 520 if ((object->flags & OBJ_ANON) != 0) 521 object = object->handle; 522 else 523 KASSERT(object->backing_object == NULL, 524 ("non-anon object %p shadows", object)); 525 KASSERT(object != NULL, ("No content object for text, entry %p obj %p", 526 entry, entry->object.vm_object)); 527 528 /* 529 * Mostly, we do not lock the backing object. It is 530 * referenced by the entry we are processing, so it cannot go 531 * away. 532 */ 533 vp = NULL; 534 vp_held = false; 535 if (object->type == OBJT_DEAD) { 536 /* 537 * For OBJT_DEAD objects, v_writecount was handled in 538 * vnode_pager_dealloc(). 539 */ 540 } else if (object->type == OBJT_VNODE) { 541 vp = object->handle; 542 } else if (object->type == OBJT_SWAP) { 543 KASSERT((object->flags & OBJ_TMPFS_NODE) != 0, 544 ("vm_map_entry_set_vnode_text: swap and !TMPFS " 545 "entry %p, object %p, add %d", entry, object, add)); 546 /* 547 * Tmpfs VREG node, which was reclaimed, has 548 * OBJ_TMPFS_NODE flag set, but not OBJ_TMPFS. In 549 * this case there is no v_writecount to adjust. 550 */ 551 VM_OBJECT_RLOCK(object); 552 if ((object->flags & OBJ_TMPFS) != 0) { 553 vp = object->un_pager.swp.swp_tmpfs; 554 if (vp != NULL) { 555 vhold(vp); 556 vp_held = true; 557 } 558 } 559 VM_OBJECT_RUNLOCK(object); 560 } else { 561 KASSERT(0, 562 ("vm_map_entry_set_vnode_text: wrong object type, " 563 "entry %p, object %p, add %d", entry, object, add)); 564 } 565 if (vp != NULL) { 566 if (add) { 567 VOP_SET_TEXT_CHECKED(vp); 568 } else { 569 vn_lock(vp, LK_SHARED | LK_RETRY); 570 VOP_UNSET_TEXT_CHECKED(vp); 571 VOP_UNLOCK(vp); 572 } 573 if (vp_held) 574 vdrop(vp); 575 } 576 } 577 578 /* 579 * Use a different name for this vm_map_entry field when it's use 580 * is not consistent with its use as part of an ordered search tree. 581 */ 582 #define defer_next right 583 584 static void 585 vm_map_process_deferred(void) 586 { 587 struct thread *td; 588 vm_map_entry_t entry, next; 589 vm_object_t object; 590 591 td = curthread; 592 entry = td->td_map_def_user; 593 td->td_map_def_user = NULL; 594 while (entry != NULL) { 595 next = entry->defer_next; 596 MPASS((entry->eflags & (MAP_ENTRY_WRITECNT | 597 MAP_ENTRY_VN_EXEC)) != (MAP_ENTRY_WRITECNT | 598 MAP_ENTRY_VN_EXEC)); 599 if ((entry->eflags & MAP_ENTRY_WRITECNT) != 0) { 600 /* 601 * Decrement the object's writemappings and 602 * possibly the vnode's v_writecount. 603 */ 604 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 605 ("Submap with writecount")); 606 object = entry->object.vm_object; 607 KASSERT(object != NULL, ("No object for writecount")); 608 vm_pager_release_writecount(object, entry->start, 609 entry->end); 610 } 611 vm_map_entry_set_vnode_text(entry, false); 612 vm_map_entry_deallocate(entry, FALSE); 613 entry = next; 614 } 615 } 616 617 #ifdef INVARIANTS 618 static void 619 _vm_map_assert_locked(vm_map_t map, const char *file, int line) 620 { 621 622 if (map->system_map) 623 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 624 else 625 sx_assert_(&map->lock, SA_XLOCKED, file, line); 626 } 627 628 #define VM_MAP_ASSERT_LOCKED(map) \ 629 _vm_map_assert_locked(map, LOCK_FILE, LOCK_LINE) 630 631 enum { VMMAP_CHECK_NONE, VMMAP_CHECK_UNLOCK, VMMAP_CHECK_ALL }; 632 #ifdef DIAGNOSTIC 633 static int enable_vmmap_check = VMMAP_CHECK_UNLOCK; 634 #else 635 static int enable_vmmap_check = VMMAP_CHECK_NONE; 636 #endif 637 SYSCTL_INT(_debug, OID_AUTO, vmmap_check, CTLFLAG_RWTUN, 638 &enable_vmmap_check, 0, "Enable vm map consistency checking"); 639 640 static void _vm_map_assert_consistent(vm_map_t map, int check); 641 642 #define VM_MAP_ASSERT_CONSISTENT(map) \ 643 _vm_map_assert_consistent(map, VMMAP_CHECK_ALL) 644 #ifdef DIAGNOSTIC 645 #define VM_MAP_UNLOCK_CONSISTENT(map) do { \ 646 if (map->nupdates > map->nentries) { \ 647 _vm_map_assert_consistent(map, VMMAP_CHECK_UNLOCK); \ 648 map->nupdates = 0; \ 649 } \ 650 } while (0) 651 #else 652 #define VM_MAP_UNLOCK_CONSISTENT(map) 653 #endif 654 #else 655 #define VM_MAP_ASSERT_LOCKED(map) 656 #define VM_MAP_ASSERT_CONSISTENT(map) 657 #define VM_MAP_UNLOCK_CONSISTENT(map) 658 #endif /* INVARIANTS */ 659 660 void 661 _vm_map_unlock(vm_map_t map, const char *file, int line) 662 { 663 664 VM_MAP_UNLOCK_CONSISTENT(map); 665 if (map->system_map) 666 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 667 else { 668 sx_xunlock_(&map->lock, file, line); 669 vm_map_process_deferred(); 670 } 671 } 672 673 void 674 _vm_map_lock_read(vm_map_t map, const char *file, int line) 675 { 676 677 if (map->system_map) 678 mtx_lock_flags_(&map->system_mtx, 0, file, line); 679 else 680 sx_slock_(&map->lock, file, line); 681 } 682 683 void 684 _vm_map_unlock_read(vm_map_t map, const char *file, int line) 685 { 686 687 if (map->system_map) 688 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 689 else { 690 sx_sunlock_(&map->lock, file, line); 691 vm_map_process_deferred(); 692 } 693 } 694 695 int 696 _vm_map_trylock(vm_map_t map, const char *file, int line) 697 { 698 int error; 699 700 error = map->system_map ? 701 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 702 !sx_try_xlock_(&map->lock, file, line); 703 if (error == 0) 704 map->timestamp++; 705 return (error == 0); 706 } 707 708 int 709 _vm_map_trylock_read(vm_map_t map, const char *file, int line) 710 { 711 int error; 712 713 error = map->system_map ? 714 !mtx_trylock_flags_(&map->system_mtx, 0, file, line) : 715 !sx_try_slock_(&map->lock, file, line); 716 return (error == 0); 717 } 718 719 /* 720 * _vm_map_lock_upgrade: [ internal use only ] 721 * 722 * Tries to upgrade a read (shared) lock on the specified map to a write 723 * (exclusive) lock. Returns the value "0" if the upgrade succeeds and a 724 * non-zero value if the upgrade fails. If the upgrade fails, the map is 725 * returned without a read or write lock held. 726 * 727 * Requires that the map be read locked. 728 */ 729 int 730 _vm_map_lock_upgrade(vm_map_t map, const char *file, int line) 731 { 732 unsigned int last_timestamp; 733 734 if (map->system_map) { 735 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 736 } else { 737 if (!sx_try_upgrade_(&map->lock, file, line)) { 738 last_timestamp = map->timestamp; 739 sx_sunlock_(&map->lock, file, line); 740 vm_map_process_deferred(); 741 /* 742 * If the map's timestamp does not change while the 743 * map is unlocked, then the upgrade succeeds. 744 */ 745 sx_xlock_(&map->lock, file, line); 746 if (last_timestamp != map->timestamp) { 747 sx_xunlock_(&map->lock, file, line); 748 return (1); 749 } 750 } 751 } 752 map->timestamp++; 753 return (0); 754 } 755 756 void 757 _vm_map_lock_downgrade(vm_map_t map, const char *file, int line) 758 { 759 760 if (map->system_map) { 761 mtx_assert_(&map->system_mtx, MA_OWNED, file, line); 762 } else { 763 VM_MAP_UNLOCK_CONSISTENT(map); 764 sx_downgrade_(&map->lock, file, line); 765 } 766 } 767 768 /* 769 * vm_map_locked: 770 * 771 * Returns a non-zero value if the caller holds a write (exclusive) lock 772 * on the specified map and the value "0" otherwise. 773 */ 774 int 775 vm_map_locked(vm_map_t map) 776 { 777 778 if (map->system_map) 779 return (mtx_owned(&map->system_mtx)); 780 else 781 return (sx_xlocked(&map->lock)); 782 } 783 784 /* 785 * _vm_map_unlock_and_wait: 786 * 787 * Atomically releases the lock on the specified map and puts the calling 788 * thread to sleep. The calling thread will remain asleep until either 789 * vm_map_wakeup() is performed on the map or the specified timeout is 790 * exceeded. 791 * 792 * WARNING! This function does not perform deferred deallocations of 793 * objects and map entries. Therefore, the calling thread is expected to 794 * reacquire the map lock after reawakening and later perform an ordinary 795 * unlock operation, such as vm_map_unlock(), before completing its 796 * operation on the map. 797 */ 798 int 799 _vm_map_unlock_and_wait(vm_map_t map, int timo, const char *file, int line) 800 { 801 802 VM_MAP_UNLOCK_CONSISTENT(map); 803 mtx_lock(&map_sleep_mtx); 804 if (map->system_map) 805 mtx_unlock_flags_(&map->system_mtx, 0, file, line); 806 else 807 sx_xunlock_(&map->lock, file, line); 808 return (msleep(&map->root, &map_sleep_mtx, PDROP | PVM, "vmmaps", 809 timo)); 810 } 811 812 /* 813 * vm_map_wakeup: 814 * 815 * Awaken any threads that have slept on the map using 816 * vm_map_unlock_and_wait(). 817 */ 818 void 819 vm_map_wakeup(vm_map_t map) 820 { 821 822 /* 823 * Acquire and release map_sleep_mtx to prevent a wakeup() 824 * from being performed (and lost) between the map unlock 825 * and the msleep() in _vm_map_unlock_and_wait(). 826 */ 827 mtx_lock(&map_sleep_mtx); 828 mtx_unlock(&map_sleep_mtx); 829 wakeup(&map->root); 830 } 831 832 void 833 vm_map_busy(vm_map_t map) 834 { 835 836 VM_MAP_ASSERT_LOCKED(map); 837 map->busy++; 838 } 839 840 void 841 vm_map_unbusy(vm_map_t map) 842 { 843 844 VM_MAP_ASSERT_LOCKED(map); 845 KASSERT(map->busy, ("vm_map_unbusy: not busy")); 846 if (--map->busy == 0 && (map->flags & MAP_BUSY_WAKEUP)) { 847 vm_map_modflags(map, 0, MAP_BUSY_WAKEUP); 848 wakeup(&map->busy); 849 } 850 } 851 852 void 853 vm_map_wait_busy(vm_map_t map) 854 { 855 856 VM_MAP_ASSERT_LOCKED(map); 857 while (map->busy) { 858 vm_map_modflags(map, MAP_BUSY_WAKEUP, 0); 859 if (map->system_map) 860 msleep(&map->busy, &map->system_mtx, 0, "mbusy", 0); 861 else 862 sx_sleep(&map->busy, &map->lock, 0, "mbusy", 0); 863 } 864 map->timestamp++; 865 } 866 867 long 868 vmspace_resident_count(struct vmspace *vmspace) 869 { 870 return pmap_resident_count(vmspace_pmap(vmspace)); 871 } 872 873 /* 874 * vm_map_create: 875 * 876 * Creates and returns a new empty VM map with 877 * the given physical map structure, and having 878 * the given lower and upper address bounds. 879 */ 880 vm_map_t 881 vm_map_create(pmap_t pmap, vm_offset_t min, vm_offset_t max) 882 { 883 vm_map_t result; 884 885 result = uma_zalloc(mapzone, M_WAITOK); 886 CTR1(KTR_VM, "vm_map_create: %p", result); 887 _vm_map_init(result, pmap, min, max); 888 return (result); 889 } 890 891 /* 892 * Initialize an existing vm_map structure 893 * such as that in the vmspace structure. 894 */ 895 static void 896 _vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 897 { 898 899 map->header.eflags = MAP_ENTRY_HEADER; 900 map->needs_wakeup = FALSE; 901 map->system_map = 0; 902 map->pmap = pmap; 903 map->header.end = min; 904 map->header.start = max; 905 map->flags = 0; 906 map->header.left = map->header.right = &map->header; 907 map->root = NULL; 908 map->timestamp = 0; 909 map->busy = 0; 910 map->anon_loc = 0; 911 #ifdef DIAGNOSTIC 912 map->nupdates = 0; 913 #endif 914 } 915 916 void 917 vm_map_init(vm_map_t map, pmap_t pmap, vm_offset_t min, vm_offset_t max) 918 { 919 920 _vm_map_init(map, pmap, min, max); 921 mtx_init(&map->system_mtx, "system map", NULL, MTX_DEF | MTX_DUPOK); 922 sx_init(&map->lock, "user map"); 923 } 924 925 /* 926 * vm_map_entry_dispose: [ internal use only ] 927 * 928 * Inverse of vm_map_entry_create. 929 */ 930 static void 931 vm_map_entry_dispose(vm_map_t map, vm_map_entry_t entry) 932 { 933 uma_zfree(map->system_map ? kmapentzone : mapentzone, entry); 934 } 935 936 /* 937 * vm_map_entry_create: [ internal use only ] 938 * 939 * Allocates a VM map entry for insertion. 940 * No entry fields are filled in. 941 */ 942 static vm_map_entry_t 943 vm_map_entry_create(vm_map_t map) 944 { 945 vm_map_entry_t new_entry; 946 947 if (map->system_map) 948 new_entry = uma_zalloc(kmapentzone, M_NOWAIT); 949 else 950 new_entry = uma_zalloc(mapentzone, M_WAITOK); 951 if (new_entry == NULL) 952 panic("vm_map_entry_create: kernel resources exhausted"); 953 return (new_entry); 954 } 955 956 /* 957 * vm_map_entry_set_behavior: 958 * 959 * Set the expected access behavior, either normal, random, or 960 * sequential. 961 */ 962 static inline void 963 vm_map_entry_set_behavior(vm_map_entry_t entry, u_char behavior) 964 { 965 entry->eflags = (entry->eflags & ~MAP_ENTRY_BEHAV_MASK) | 966 (behavior & MAP_ENTRY_BEHAV_MASK); 967 } 968 969 /* 970 * vm_map_entry_max_free_{left,right}: 971 * 972 * Compute the size of the largest free gap between two entries, 973 * one the root of a tree and the other the ancestor of that root 974 * that is the least or greatest ancestor found on the search path. 975 */ 976 static inline vm_size_t 977 vm_map_entry_max_free_left(vm_map_entry_t root, vm_map_entry_t left_ancestor) 978 { 979 980 return (root->left != left_ancestor ? 981 root->left->max_free : root->start - left_ancestor->end); 982 } 983 984 static inline vm_size_t 985 vm_map_entry_max_free_right(vm_map_entry_t root, vm_map_entry_t right_ancestor) 986 { 987 988 return (root->right != right_ancestor ? 989 root->right->max_free : right_ancestor->start - root->end); 990 } 991 992 /* 993 * vm_map_entry_{pred,succ}: 994 * 995 * Find the {predecessor, successor} of the entry by taking one step 996 * in the appropriate direction and backtracking as much as necessary. 997 * vm_map_entry_succ is defined in vm_map.h. 998 */ 999 static inline vm_map_entry_t 1000 vm_map_entry_pred(vm_map_entry_t entry) 1001 { 1002 vm_map_entry_t prior; 1003 1004 prior = entry->left; 1005 if (prior->right->start < entry->start) { 1006 do 1007 prior = prior->right; 1008 while (prior->right != entry); 1009 } 1010 return (prior); 1011 } 1012 1013 static inline vm_size_t 1014 vm_size_max(vm_size_t a, vm_size_t b) 1015 { 1016 1017 return (a > b ? a : b); 1018 } 1019 1020 #define SPLAY_LEFT_STEP(root, y, llist, rlist, test) do { \ 1021 vm_map_entry_t z; \ 1022 vm_size_t max_free; \ 1023 \ 1024 /* \ 1025 * Infer root->right->max_free == root->max_free when \ 1026 * y->max_free < root->max_free || root->max_free == 0. \ 1027 * Otherwise, look right to find it. \ 1028 */ \ 1029 y = root->left; \ 1030 max_free = root->max_free; \ 1031 KASSERT(max_free == vm_size_max( \ 1032 vm_map_entry_max_free_left(root, llist), \ 1033 vm_map_entry_max_free_right(root, rlist)), \ 1034 ("%s: max_free invariant fails", __func__)); \ 1035 if (max_free - 1 < vm_map_entry_max_free_left(root, llist)) \ 1036 max_free = vm_map_entry_max_free_right(root, rlist); \ 1037 if (y != llist && (test)) { \ 1038 /* Rotate right and make y root. */ \ 1039 z = y->right; \ 1040 if (z != root) { \ 1041 root->left = z; \ 1042 y->right = root; \ 1043 if (max_free < y->max_free) \ 1044 root->max_free = max_free = \ 1045 vm_size_max(max_free, z->max_free); \ 1046 } else if (max_free < y->max_free) \ 1047 root->max_free = max_free = \ 1048 vm_size_max(max_free, root->start - y->end);\ 1049 root = y; \ 1050 y = root->left; \ 1051 } \ 1052 /* Copy right->max_free. Put root on rlist. */ \ 1053 root->max_free = max_free; \ 1054 KASSERT(max_free == vm_map_entry_max_free_right(root, rlist), \ 1055 ("%s: max_free not copied from right", __func__)); \ 1056 root->left = rlist; \ 1057 rlist = root; \ 1058 root = y != llist ? y : NULL; \ 1059 } while (0) 1060 1061 #define SPLAY_RIGHT_STEP(root, y, llist, rlist, test) do { \ 1062 vm_map_entry_t z; \ 1063 vm_size_t max_free; \ 1064 \ 1065 /* \ 1066 * Infer root->left->max_free == root->max_free when \ 1067 * y->max_free < root->max_free || root->max_free == 0. \ 1068 * Otherwise, look left to find it. \ 1069 */ \ 1070 y = root->right; \ 1071 max_free = root->max_free; \ 1072 KASSERT(max_free == vm_size_max( \ 1073 vm_map_entry_max_free_left(root, llist), \ 1074 vm_map_entry_max_free_right(root, rlist)), \ 1075 ("%s: max_free invariant fails", __func__)); \ 1076 if (max_free - 1 < vm_map_entry_max_free_right(root, rlist)) \ 1077 max_free = vm_map_entry_max_free_left(root, llist); \ 1078 if (y != rlist && (test)) { \ 1079 /* Rotate left and make y root. */ \ 1080 z = y->left; \ 1081 if (z != root) { \ 1082 root->right = z; \ 1083 y->left = root; \ 1084 if (max_free < y->max_free) \ 1085 root->max_free = max_free = \ 1086 vm_size_max(max_free, z->max_free); \ 1087 } else if (max_free < y->max_free) \ 1088 root->max_free = max_free = \ 1089 vm_size_max(max_free, y->start - root->end);\ 1090 root = y; \ 1091 y = root->right; \ 1092 } \ 1093 /* Copy left->max_free. Put root on llist. */ \ 1094 root->max_free = max_free; \ 1095 KASSERT(max_free == vm_map_entry_max_free_left(root, llist), \ 1096 ("%s: max_free not copied from left", __func__)); \ 1097 root->right = llist; \ 1098 llist = root; \ 1099 root = y != rlist ? y : NULL; \ 1100 } while (0) 1101 1102 /* 1103 * Walk down the tree until we find addr or a gap where addr would go, breaking 1104 * off left and right subtrees of nodes less than, or greater than addr. Treat 1105 * subtrees with root->max_free < length as empty trees. llist and rlist are 1106 * the two sides in reverse order (bottom-up), with llist linked by the right 1107 * pointer and rlist linked by the left pointer in the vm_map_entry, and both 1108 * lists terminated by &map->header. This function, and the subsequent call to 1109 * vm_map_splay_merge_{left,right,pred,succ}, rely on the start and end address 1110 * values in &map->header. 1111 */ 1112 static __always_inline vm_map_entry_t 1113 vm_map_splay_split(vm_map_t map, vm_offset_t addr, vm_size_t length, 1114 vm_map_entry_t *llist, vm_map_entry_t *rlist) 1115 { 1116 vm_map_entry_t left, right, root, y; 1117 1118 left = right = &map->header; 1119 root = map->root; 1120 while (root != NULL && root->max_free >= length) { 1121 KASSERT(left->end <= root->start && 1122 root->end <= right->start, 1123 ("%s: root not within tree bounds", __func__)); 1124 if (addr < root->start) { 1125 SPLAY_LEFT_STEP(root, y, left, right, 1126 y->max_free >= length && addr < y->start); 1127 } else if (addr >= root->end) { 1128 SPLAY_RIGHT_STEP(root, y, left, right, 1129 y->max_free >= length && addr >= y->end); 1130 } else 1131 break; 1132 } 1133 *llist = left; 1134 *rlist = right; 1135 return (root); 1136 } 1137 1138 static __always_inline void 1139 vm_map_splay_findnext(vm_map_entry_t root, vm_map_entry_t *rlist) 1140 { 1141 vm_map_entry_t hi, right, y; 1142 1143 right = *rlist; 1144 hi = root->right == right ? NULL : root->right; 1145 if (hi == NULL) 1146 return; 1147 do 1148 SPLAY_LEFT_STEP(hi, y, root, right, true); 1149 while (hi != NULL); 1150 *rlist = right; 1151 } 1152 1153 static __always_inline void 1154 vm_map_splay_findprev(vm_map_entry_t root, vm_map_entry_t *llist) 1155 { 1156 vm_map_entry_t left, lo, y; 1157 1158 left = *llist; 1159 lo = root->left == left ? NULL : root->left; 1160 if (lo == NULL) 1161 return; 1162 do 1163 SPLAY_RIGHT_STEP(lo, y, left, root, true); 1164 while (lo != NULL); 1165 *llist = left; 1166 } 1167 1168 static inline void 1169 vm_map_entry_swap(vm_map_entry_t *a, vm_map_entry_t *b) 1170 { 1171 vm_map_entry_t tmp; 1172 1173 tmp = *b; 1174 *b = *a; 1175 *a = tmp; 1176 } 1177 1178 /* 1179 * Walk back up the two spines, flip the pointers and set max_free. The 1180 * subtrees of the root go at the bottom of llist and rlist. 1181 */ 1182 static vm_size_t 1183 vm_map_splay_merge_left_walk(vm_map_entry_t header, vm_map_entry_t root, 1184 vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t llist) 1185 { 1186 do { 1187 /* 1188 * The max_free values of the children of llist are in 1189 * llist->max_free and max_free. Update with the 1190 * max value. 1191 */ 1192 llist->max_free = max_free = 1193 vm_size_max(llist->max_free, max_free); 1194 vm_map_entry_swap(&llist->right, &tail); 1195 vm_map_entry_swap(&tail, &llist); 1196 } while (llist != header); 1197 root->left = tail; 1198 return (max_free); 1199 } 1200 1201 /* 1202 * When llist is known to be the predecessor of root. 1203 */ 1204 static inline vm_size_t 1205 vm_map_splay_merge_pred(vm_map_entry_t header, vm_map_entry_t root, 1206 vm_map_entry_t llist) 1207 { 1208 vm_size_t max_free; 1209 1210 max_free = root->start - llist->end; 1211 if (llist != header) { 1212 max_free = vm_map_splay_merge_left_walk(header, root, 1213 root, max_free, llist); 1214 } else { 1215 root->left = header; 1216 header->right = root; 1217 } 1218 return (max_free); 1219 } 1220 1221 /* 1222 * When llist may or may not be the predecessor of root. 1223 */ 1224 static inline vm_size_t 1225 vm_map_splay_merge_left(vm_map_entry_t header, vm_map_entry_t root, 1226 vm_map_entry_t llist) 1227 { 1228 vm_size_t max_free; 1229 1230 max_free = vm_map_entry_max_free_left(root, llist); 1231 if (llist != header) { 1232 max_free = vm_map_splay_merge_left_walk(header, root, 1233 root->left == llist ? root : root->left, 1234 max_free, llist); 1235 } 1236 return (max_free); 1237 } 1238 1239 static vm_size_t 1240 vm_map_splay_merge_right_walk(vm_map_entry_t header, vm_map_entry_t root, 1241 vm_map_entry_t tail, vm_size_t max_free, vm_map_entry_t rlist) 1242 { 1243 do { 1244 /* 1245 * The max_free values of the children of rlist are in 1246 * rlist->max_free and max_free. Update with the 1247 * max value. 1248 */ 1249 rlist->max_free = max_free = 1250 vm_size_max(rlist->max_free, max_free); 1251 vm_map_entry_swap(&rlist->left, &tail); 1252 vm_map_entry_swap(&tail, &rlist); 1253 } while (rlist != header); 1254 root->right = tail; 1255 return (max_free); 1256 } 1257 1258 /* 1259 * When rlist is known to be the succecessor of root. 1260 */ 1261 static inline vm_size_t 1262 vm_map_splay_merge_succ(vm_map_entry_t header, vm_map_entry_t root, 1263 vm_map_entry_t rlist) 1264 { 1265 vm_size_t max_free; 1266 1267 max_free = rlist->start - root->end; 1268 if (rlist != header) { 1269 max_free = vm_map_splay_merge_right_walk(header, root, 1270 root, max_free, rlist); 1271 } else { 1272 root->right = header; 1273 header->left = root; 1274 } 1275 return (max_free); 1276 } 1277 1278 /* 1279 * When rlist may or may not be the succecessor of root. 1280 */ 1281 static inline vm_size_t 1282 vm_map_splay_merge_right(vm_map_entry_t header, vm_map_entry_t root, 1283 vm_map_entry_t rlist) 1284 { 1285 vm_size_t max_free; 1286 1287 max_free = vm_map_entry_max_free_right(root, rlist); 1288 if (rlist != header) { 1289 max_free = vm_map_splay_merge_right_walk(header, root, 1290 root->right == rlist ? root : root->right, 1291 max_free, rlist); 1292 } 1293 return (max_free); 1294 } 1295 1296 /* 1297 * vm_map_splay: 1298 * 1299 * The Sleator and Tarjan top-down splay algorithm with the 1300 * following variation. Max_free must be computed bottom-up, so 1301 * on the downward pass, maintain the left and right spines in 1302 * reverse order. Then, make a second pass up each side to fix 1303 * the pointers and compute max_free. The time bound is O(log n) 1304 * amortized. 1305 * 1306 * The tree is threaded, which means that there are no null pointers. 1307 * When a node has no left child, its left pointer points to its 1308 * predecessor, which the last ancestor on the search path from the root 1309 * where the search branched right. Likewise, when a node has no right 1310 * child, its right pointer points to its successor. The map header node 1311 * is the predecessor of the first map entry, and the successor of the 1312 * last. 1313 * 1314 * The new root is the vm_map_entry containing "addr", or else an 1315 * adjacent entry (lower if possible) if addr is not in the tree. 1316 * 1317 * The map must be locked, and leaves it so. 1318 * 1319 * Returns: the new root. 1320 */ 1321 static vm_map_entry_t 1322 vm_map_splay(vm_map_t map, vm_offset_t addr) 1323 { 1324 vm_map_entry_t header, llist, rlist, root; 1325 vm_size_t max_free_left, max_free_right; 1326 1327 header = &map->header; 1328 root = vm_map_splay_split(map, addr, 0, &llist, &rlist); 1329 if (root != NULL) { 1330 max_free_left = vm_map_splay_merge_left(header, root, llist); 1331 max_free_right = vm_map_splay_merge_right(header, root, rlist); 1332 } else if (llist != header) { 1333 /* 1334 * Recover the greatest node in the left 1335 * subtree and make it the root. 1336 */ 1337 root = llist; 1338 llist = root->right; 1339 max_free_left = vm_map_splay_merge_left(header, root, llist); 1340 max_free_right = vm_map_splay_merge_succ(header, root, rlist); 1341 } else if (rlist != header) { 1342 /* 1343 * Recover the least node in the right 1344 * subtree and make it the root. 1345 */ 1346 root = rlist; 1347 rlist = root->left; 1348 max_free_left = vm_map_splay_merge_pred(header, root, llist); 1349 max_free_right = vm_map_splay_merge_right(header, root, rlist); 1350 } else { 1351 /* There is no root. */ 1352 return (NULL); 1353 } 1354 root->max_free = vm_size_max(max_free_left, max_free_right); 1355 map->root = root; 1356 VM_MAP_ASSERT_CONSISTENT(map); 1357 return (root); 1358 } 1359 1360 /* 1361 * vm_map_entry_{un,}link: 1362 * 1363 * Insert/remove entries from maps. On linking, if new entry clips 1364 * existing entry, trim existing entry to avoid overlap, and manage 1365 * offsets. On unlinking, merge disappearing entry with neighbor, if 1366 * called for, and manage offsets. Callers should not modify fields in 1367 * entries already mapped. 1368 */ 1369 static void 1370 vm_map_entry_link(vm_map_t map, vm_map_entry_t entry) 1371 { 1372 vm_map_entry_t header, llist, rlist, root; 1373 vm_size_t max_free_left, max_free_right; 1374 1375 CTR3(KTR_VM, 1376 "vm_map_entry_link: map %p, nentries %d, entry %p", map, 1377 map->nentries, entry); 1378 VM_MAP_ASSERT_LOCKED(map); 1379 map->nentries++; 1380 header = &map->header; 1381 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist); 1382 if (root == NULL) { 1383 /* 1384 * The new entry does not overlap any existing entry in the 1385 * map, so it becomes the new root of the map tree. 1386 */ 1387 max_free_left = vm_map_splay_merge_pred(header, entry, llist); 1388 max_free_right = vm_map_splay_merge_succ(header, entry, rlist); 1389 } else if (entry->start == root->start) { 1390 /* 1391 * The new entry is a clone of root, with only the end field 1392 * changed. The root entry will be shrunk to abut the new 1393 * entry, and will be the right child of the new root entry in 1394 * the modified map. 1395 */ 1396 KASSERT(entry->end < root->end, 1397 ("%s: clip_start not within entry", __func__)); 1398 vm_map_splay_findprev(root, &llist); 1399 root->offset += entry->end - root->start; 1400 root->start = entry->end; 1401 max_free_left = vm_map_splay_merge_pred(header, entry, llist); 1402 max_free_right = root->max_free = vm_size_max( 1403 vm_map_splay_merge_pred(entry, root, entry), 1404 vm_map_splay_merge_right(header, root, rlist)); 1405 } else { 1406 /* 1407 * The new entry is a clone of root, with only the start field 1408 * changed. The root entry will be shrunk to abut the new 1409 * entry, and will be the left child of the new root entry in 1410 * the modified map. 1411 */ 1412 KASSERT(entry->end == root->end, 1413 ("%s: clip_start not within entry", __func__)); 1414 vm_map_splay_findnext(root, &rlist); 1415 entry->offset += entry->start - root->start; 1416 root->end = entry->start; 1417 max_free_left = root->max_free = vm_size_max( 1418 vm_map_splay_merge_left(header, root, llist), 1419 vm_map_splay_merge_succ(entry, root, entry)); 1420 max_free_right = vm_map_splay_merge_succ(header, entry, rlist); 1421 } 1422 entry->max_free = vm_size_max(max_free_left, max_free_right); 1423 map->root = entry; 1424 VM_MAP_ASSERT_CONSISTENT(map); 1425 } 1426 1427 enum unlink_merge_type { 1428 UNLINK_MERGE_NONE, 1429 UNLINK_MERGE_NEXT 1430 }; 1431 1432 static void 1433 vm_map_entry_unlink(vm_map_t map, vm_map_entry_t entry, 1434 enum unlink_merge_type op) 1435 { 1436 vm_map_entry_t header, llist, rlist, root; 1437 vm_size_t max_free_left, max_free_right; 1438 1439 VM_MAP_ASSERT_LOCKED(map); 1440 header = &map->header; 1441 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist); 1442 KASSERT(root != NULL, 1443 ("vm_map_entry_unlink: unlink object not mapped")); 1444 1445 vm_map_splay_findprev(root, &llist); 1446 vm_map_splay_findnext(root, &rlist); 1447 if (op == UNLINK_MERGE_NEXT) { 1448 rlist->start = root->start; 1449 rlist->offset = root->offset; 1450 } 1451 if (llist != header) { 1452 root = llist; 1453 llist = root->right; 1454 max_free_left = vm_map_splay_merge_left(header, root, llist); 1455 max_free_right = vm_map_splay_merge_succ(header, root, rlist); 1456 } else if (rlist != header) { 1457 root = rlist; 1458 rlist = root->left; 1459 max_free_left = vm_map_splay_merge_pred(header, root, llist); 1460 max_free_right = vm_map_splay_merge_right(header, root, rlist); 1461 } else { 1462 header->left = header->right = header; 1463 root = NULL; 1464 } 1465 if (root != NULL) 1466 root->max_free = vm_size_max(max_free_left, max_free_right); 1467 map->root = root; 1468 VM_MAP_ASSERT_CONSISTENT(map); 1469 map->nentries--; 1470 CTR3(KTR_VM, "vm_map_entry_unlink: map %p, nentries %d, entry %p", map, 1471 map->nentries, entry); 1472 } 1473 1474 /* 1475 * vm_map_entry_resize: 1476 * 1477 * Resize a vm_map_entry, recompute the amount of free space that 1478 * follows it and propagate that value up the tree. 1479 * 1480 * The map must be locked, and leaves it so. 1481 */ 1482 static void 1483 vm_map_entry_resize(vm_map_t map, vm_map_entry_t entry, vm_size_t grow_amount) 1484 { 1485 vm_map_entry_t header, llist, rlist, root; 1486 1487 VM_MAP_ASSERT_LOCKED(map); 1488 header = &map->header; 1489 root = vm_map_splay_split(map, entry->start, 0, &llist, &rlist); 1490 KASSERT(root != NULL, ("%s: resize object not mapped", __func__)); 1491 vm_map_splay_findnext(root, &rlist); 1492 entry->end += grow_amount; 1493 root->max_free = vm_size_max( 1494 vm_map_splay_merge_left(header, root, llist), 1495 vm_map_splay_merge_succ(header, root, rlist)); 1496 map->root = root; 1497 VM_MAP_ASSERT_CONSISTENT(map); 1498 CTR4(KTR_VM, "%s: map %p, nentries %d, entry %p", 1499 __func__, map, map->nentries, entry); 1500 } 1501 1502 /* 1503 * vm_map_lookup_entry: [ internal use only ] 1504 * 1505 * Finds the map entry containing (or 1506 * immediately preceding) the specified address 1507 * in the given map; the entry is returned 1508 * in the "entry" parameter. The boolean 1509 * result indicates whether the address is 1510 * actually contained in the map. 1511 */ 1512 boolean_t 1513 vm_map_lookup_entry( 1514 vm_map_t map, 1515 vm_offset_t address, 1516 vm_map_entry_t *entry) /* OUT */ 1517 { 1518 vm_map_entry_t cur, header, lbound, ubound; 1519 boolean_t locked; 1520 1521 /* 1522 * If the map is empty, then the map entry immediately preceding 1523 * "address" is the map's header. 1524 */ 1525 header = &map->header; 1526 cur = map->root; 1527 if (cur == NULL) { 1528 *entry = header; 1529 return (FALSE); 1530 } 1531 if (address >= cur->start && cur->end > address) { 1532 *entry = cur; 1533 return (TRUE); 1534 } 1535 if ((locked = vm_map_locked(map)) || 1536 sx_try_upgrade(&map->lock)) { 1537 /* 1538 * Splay requires a write lock on the map. However, it only 1539 * restructures the binary search tree; it does not otherwise 1540 * change the map. Thus, the map's timestamp need not change 1541 * on a temporary upgrade. 1542 */ 1543 cur = vm_map_splay(map, address); 1544 if (!locked) { 1545 VM_MAP_UNLOCK_CONSISTENT(map); 1546 sx_downgrade(&map->lock); 1547 } 1548 1549 /* 1550 * If "address" is contained within a map entry, the new root 1551 * is that map entry. Otherwise, the new root is a map entry 1552 * immediately before or after "address". 1553 */ 1554 if (address < cur->start) { 1555 *entry = header; 1556 return (FALSE); 1557 } 1558 *entry = cur; 1559 return (address < cur->end); 1560 } 1561 /* 1562 * Since the map is only locked for read access, perform a 1563 * standard binary search tree lookup for "address". 1564 */ 1565 lbound = ubound = header; 1566 for (;;) { 1567 if (address < cur->start) { 1568 ubound = cur; 1569 cur = cur->left; 1570 if (cur == lbound) 1571 break; 1572 } else if (cur->end <= address) { 1573 lbound = cur; 1574 cur = cur->right; 1575 if (cur == ubound) 1576 break; 1577 } else { 1578 *entry = cur; 1579 return (TRUE); 1580 } 1581 } 1582 *entry = lbound; 1583 return (FALSE); 1584 } 1585 1586 /* 1587 * vm_map_insert: 1588 * 1589 * Inserts the given whole VM object into the target 1590 * map at the specified address range. The object's 1591 * size should match that of the address range. 1592 * 1593 * Requires that the map be locked, and leaves it so. 1594 * 1595 * If object is non-NULL, ref count must be bumped by caller 1596 * prior to making call to account for the new entry. 1597 */ 1598 int 1599 vm_map_insert(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1600 vm_offset_t start, vm_offset_t end, vm_prot_t prot, vm_prot_t max, int cow) 1601 { 1602 vm_map_entry_t new_entry, next_entry, prev_entry; 1603 struct ucred *cred; 1604 vm_eflags_t protoeflags; 1605 vm_inherit_t inheritance; 1606 1607 VM_MAP_ASSERT_LOCKED(map); 1608 KASSERT(object != kernel_object || 1609 (cow & MAP_COPY_ON_WRITE) == 0, 1610 ("vm_map_insert: kernel object and COW")); 1611 KASSERT(object == NULL || (cow & MAP_NOFAULT) == 0, 1612 ("vm_map_insert: paradoxical MAP_NOFAULT request")); 1613 KASSERT((prot & ~max) == 0, 1614 ("prot %#x is not subset of max_prot %#x", prot, max)); 1615 1616 /* 1617 * Check that the start and end points are not bogus. 1618 */ 1619 if (start < vm_map_min(map) || end > vm_map_max(map) || 1620 start >= end) 1621 return (KERN_INVALID_ADDRESS); 1622 1623 /* 1624 * Find the entry prior to the proposed starting address; if it's part 1625 * of an existing entry, this range is bogus. 1626 */ 1627 if (vm_map_lookup_entry(map, start, &prev_entry)) 1628 return (KERN_NO_SPACE); 1629 1630 /* 1631 * Assert that the next entry doesn't overlap the end point. 1632 */ 1633 next_entry = vm_map_entry_succ(prev_entry); 1634 if (next_entry->start < end) 1635 return (KERN_NO_SPACE); 1636 1637 if ((cow & MAP_CREATE_GUARD) != 0 && (object != NULL || 1638 max != VM_PROT_NONE)) 1639 return (KERN_INVALID_ARGUMENT); 1640 1641 protoeflags = 0; 1642 if (cow & MAP_COPY_ON_WRITE) 1643 protoeflags |= MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY; 1644 if (cow & MAP_NOFAULT) 1645 protoeflags |= MAP_ENTRY_NOFAULT; 1646 if (cow & MAP_DISABLE_SYNCER) 1647 protoeflags |= MAP_ENTRY_NOSYNC; 1648 if (cow & MAP_DISABLE_COREDUMP) 1649 protoeflags |= MAP_ENTRY_NOCOREDUMP; 1650 if (cow & MAP_STACK_GROWS_DOWN) 1651 protoeflags |= MAP_ENTRY_GROWS_DOWN; 1652 if (cow & MAP_STACK_GROWS_UP) 1653 protoeflags |= MAP_ENTRY_GROWS_UP; 1654 if (cow & MAP_WRITECOUNT) 1655 protoeflags |= MAP_ENTRY_WRITECNT; 1656 if (cow & MAP_VN_EXEC) 1657 protoeflags |= MAP_ENTRY_VN_EXEC; 1658 if ((cow & MAP_CREATE_GUARD) != 0) 1659 protoeflags |= MAP_ENTRY_GUARD; 1660 if ((cow & MAP_CREATE_STACK_GAP_DN) != 0) 1661 protoeflags |= MAP_ENTRY_STACK_GAP_DN; 1662 if ((cow & MAP_CREATE_STACK_GAP_UP) != 0) 1663 protoeflags |= MAP_ENTRY_STACK_GAP_UP; 1664 if (cow & MAP_INHERIT_SHARE) 1665 inheritance = VM_INHERIT_SHARE; 1666 else 1667 inheritance = VM_INHERIT_DEFAULT; 1668 1669 cred = NULL; 1670 if ((cow & (MAP_ACC_NO_CHARGE | MAP_NOFAULT | MAP_CREATE_GUARD)) != 0) 1671 goto charged; 1672 if ((cow & MAP_ACC_CHARGED) || ((prot & VM_PROT_WRITE) && 1673 ((protoeflags & MAP_ENTRY_NEEDS_COPY) || object == NULL))) { 1674 if (!(cow & MAP_ACC_CHARGED) && !swap_reserve(end - start)) 1675 return (KERN_RESOURCE_SHORTAGE); 1676 KASSERT(object == NULL || 1677 (protoeflags & MAP_ENTRY_NEEDS_COPY) != 0 || 1678 object->cred == NULL, 1679 ("overcommit: vm_map_insert o %p", object)); 1680 cred = curthread->td_ucred; 1681 } 1682 1683 charged: 1684 /* Expand the kernel pmap, if necessary. */ 1685 if (map == kernel_map && end > kernel_vm_end) 1686 pmap_growkernel(end); 1687 if (object != NULL) { 1688 /* 1689 * OBJ_ONEMAPPING must be cleared unless this mapping 1690 * is trivially proven to be the only mapping for any 1691 * of the object's pages. (Object granularity 1692 * reference counting is insufficient to recognize 1693 * aliases with precision.) 1694 */ 1695 if ((object->flags & OBJ_ANON) != 0) { 1696 VM_OBJECT_WLOCK(object); 1697 if (object->ref_count > 1 || object->shadow_count != 0) 1698 vm_object_clear_flag(object, OBJ_ONEMAPPING); 1699 VM_OBJECT_WUNLOCK(object); 1700 } 1701 } else if ((prev_entry->eflags & ~MAP_ENTRY_USER_WIRED) == 1702 protoeflags && 1703 (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP | 1704 MAP_VN_EXEC)) == 0 && 1705 prev_entry->end == start && (prev_entry->cred == cred || 1706 (prev_entry->object.vm_object != NULL && 1707 prev_entry->object.vm_object->cred == cred)) && 1708 vm_object_coalesce(prev_entry->object.vm_object, 1709 prev_entry->offset, 1710 (vm_size_t)(prev_entry->end - prev_entry->start), 1711 (vm_size_t)(end - prev_entry->end), cred != NULL && 1712 (protoeflags & MAP_ENTRY_NEEDS_COPY) == 0)) { 1713 /* 1714 * We were able to extend the object. Determine if we 1715 * can extend the previous map entry to include the 1716 * new range as well. 1717 */ 1718 if (prev_entry->inheritance == inheritance && 1719 prev_entry->protection == prot && 1720 prev_entry->max_protection == max && 1721 prev_entry->wired_count == 0) { 1722 KASSERT((prev_entry->eflags & MAP_ENTRY_USER_WIRED) == 1723 0, ("prev_entry %p has incoherent wiring", 1724 prev_entry)); 1725 if ((prev_entry->eflags & MAP_ENTRY_GUARD) == 0) 1726 map->size += end - prev_entry->end; 1727 vm_map_entry_resize(map, prev_entry, 1728 end - prev_entry->end); 1729 vm_map_try_merge_entries(map, prev_entry, next_entry); 1730 return (KERN_SUCCESS); 1731 } 1732 1733 /* 1734 * If we can extend the object but cannot extend the 1735 * map entry, we have to create a new map entry. We 1736 * must bump the ref count on the extended object to 1737 * account for it. object may be NULL. 1738 */ 1739 object = prev_entry->object.vm_object; 1740 offset = prev_entry->offset + 1741 (prev_entry->end - prev_entry->start); 1742 vm_object_reference(object); 1743 if (cred != NULL && object != NULL && object->cred != NULL && 1744 !(prev_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 1745 /* Object already accounts for this uid. */ 1746 cred = NULL; 1747 } 1748 } 1749 if (cred != NULL) 1750 crhold(cred); 1751 1752 /* 1753 * Create a new entry 1754 */ 1755 new_entry = vm_map_entry_create(map); 1756 new_entry->start = start; 1757 new_entry->end = end; 1758 new_entry->cred = NULL; 1759 1760 new_entry->eflags = protoeflags; 1761 new_entry->object.vm_object = object; 1762 new_entry->offset = offset; 1763 1764 new_entry->inheritance = inheritance; 1765 new_entry->protection = prot; 1766 new_entry->max_protection = max; 1767 new_entry->wired_count = 0; 1768 new_entry->wiring_thread = NULL; 1769 new_entry->read_ahead = VM_FAULT_READ_AHEAD_INIT; 1770 new_entry->next_read = start; 1771 1772 KASSERT(cred == NULL || !ENTRY_CHARGED(new_entry), 1773 ("overcommit: vm_map_insert leaks vm_map %p", new_entry)); 1774 new_entry->cred = cred; 1775 1776 /* 1777 * Insert the new entry into the list 1778 */ 1779 vm_map_entry_link(map, new_entry); 1780 if ((new_entry->eflags & MAP_ENTRY_GUARD) == 0) 1781 map->size += new_entry->end - new_entry->start; 1782 1783 /* 1784 * Try to coalesce the new entry with both the previous and next 1785 * entries in the list. Previously, we only attempted to coalesce 1786 * with the previous entry when object is NULL. Here, we handle the 1787 * other cases, which are less common. 1788 */ 1789 vm_map_try_merge_entries(map, prev_entry, new_entry); 1790 vm_map_try_merge_entries(map, new_entry, next_entry); 1791 1792 if ((cow & (MAP_PREFAULT | MAP_PREFAULT_PARTIAL)) != 0) { 1793 vm_map_pmap_enter(map, start, prot, object, OFF_TO_IDX(offset), 1794 end - start, cow & MAP_PREFAULT_PARTIAL); 1795 } 1796 1797 return (KERN_SUCCESS); 1798 } 1799 1800 /* 1801 * vm_map_findspace: 1802 * 1803 * Find the first fit (lowest VM address) for "length" free bytes 1804 * beginning at address >= start in the given map. 1805 * 1806 * In a vm_map_entry, "max_free" is the maximum amount of 1807 * contiguous free space between an entry in its subtree and a 1808 * neighbor of that entry. This allows finding a free region in 1809 * one path down the tree, so O(log n) amortized with splay 1810 * trees. 1811 * 1812 * The map must be locked, and leaves it so. 1813 * 1814 * Returns: starting address if sufficient space, 1815 * vm_map_max(map)-length+1 if insufficient space. 1816 */ 1817 vm_offset_t 1818 vm_map_findspace(vm_map_t map, vm_offset_t start, vm_size_t length) 1819 { 1820 vm_map_entry_t header, llist, rlist, root, y; 1821 vm_size_t left_length, max_free_left, max_free_right; 1822 vm_offset_t gap_end; 1823 1824 /* 1825 * Request must fit within min/max VM address and must avoid 1826 * address wrap. 1827 */ 1828 start = MAX(start, vm_map_min(map)); 1829 if (start >= vm_map_max(map) || length > vm_map_max(map) - start) 1830 return (vm_map_max(map) - length + 1); 1831 1832 /* Empty tree means wide open address space. */ 1833 if (map->root == NULL) 1834 return (start); 1835 1836 /* 1837 * After splay_split, if start is within an entry, push it to the start 1838 * of the following gap. If rlist is at the end of the gap containing 1839 * start, save the end of that gap in gap_end to see if the gap is big 1840 * enough; otherwise set gap_end to start skip gap-checking and move 1841 * directly to a search of the right subtree. 1842 */ 1843 header = &map->header; 1844 root = vm_map_splay_split(map, start, length, &llist, &rlist); 1845 gap_end = rlist->start; 1846 if (root != NULL) { 1847 start = root->end; 1848 if (root->right != rlist) 1849 gap_end = start; 1850 max_free_left = vm_map_splay_merge_left(header, root, llist); 1851 max_free_right = vm_map_splay_merge_right(header, root, rlist); 1852 } else if (rlist != header) { 1853 root = rlist; 1854 rlist = root->left; 1855 max_free_left = vm_map_splay_merge_pred(header, root, llist); 1856 max_free_right = vm_map_splay_merge_right(header, root, rlist); 1857 } else { 1858 root = llist; 1859 llist = root->right; 1860 max_free_left = vm_map_splay_merge_left(header, root, llist); 1861 max_free_right = vm_map_splay_merge_succ(header, root, rlist); 1862 } 1863 root->max_free = vm_size_max(max_free_left, max_free_right); 1864 map->root = root; 1865 VM_MAP_ASSERT_CONSISTENT(map); 1866 if (length <= gap_end - start) 1867 return (start); 1868 1869 /* With max_free, can immediately tell if no solution. */ 1870 if (root->right == header || length > root->right->max_free) 1871 return (vm_map_max(map) - length + 1); 1872 1873 /* 1874 * Splay for the least large-enough gap in the right subtree. 1875 */ 1876 llist = rlist = header; 1877 for (left_length = 0;; 1878 left_length = vm_map_entry_max_free_left(root, llist)) { 1879 if (length <= left_length) 1880 SPLAY_LEFT_STEP(root, y, llist, rlist, 1881 length <= vm_map_entry_max_free_left(y, llist)); 1882 else 1883 SPLAY_RIGHT_STEP(root, y, llist, rlist, 1884 length > vm_map_entry_max_free_left(y, root)); 1885 if (root == NULL) 1886 break; 1887 } 1888 root = llist; 1889 llist = root->right; 1890 max_free_left = vm_map_splay_merge_left(header, root, llist); 1891 if (rlist == header) { 1892 root->max_free = vm_size_max(max_free_left, 1893 vm_map_splay_merge_succ(header, root, rlist)); 1894 } else { 1895 y = rlist; 1896 rlist = y->left; 1897 y->max_free = vm_size_max( 1898 vm_map_splay_merge_pred(root, y, root), 1899 vm_map_splay_merge_right(header, y, rlist)); 1900 root->max_free = vm_size_max(max_free_left, y->max_free); 1901 } 1902 map->root = root; 1903 VM_MAP_ASSERT_CONSISTENT(map); 1904 return (root->end); 1905 } 1906 1907 int 1908 vm_map_fixed(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1909 vm_offset_t start, vm_size_t length, vm_prot_t prot, 1910 vm_prot_t max, int cow) 1911 { 1912 vm_offset_t end; 1913 int result; 1914 1915 end = start + length; 1916 KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 || 1917 object == NULL, 1918 ("vm_map_fixed: non-NULL backing object for stack")); 1919 vm_map_lock(map); 1920 VM_MAP_RANGE_CHECK(map, start, end); 1921 if ((cow & MAP_CHECK_EXCL) == 0) 1922 vm_map_delete(map, start, end); 1923 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) { 1924 result = vm_map_stack_locked(map, start, length, sgrowsiz, 1925 prot, max, cow); 1926 } else { 1927 result = vm_map_insert(map, object, offset, start, end, 1928 prot, max, cow); 1929 } 1930 vm_map_unlock(map); 1931 return (result); 1932 } 1933 1934 static const int aslr_pages_rnd_64[2] = {0x1000, 0x10}; 1935 static const int aslr_pages_rnd_32[2] = {0x100, 0x4}; 1936 1937 static int cluster_anon = 1; 1938 SYSCTL_INT(_vm, OID_AUTO, cluster_anon, CTLFLAG_RW, 1939 &cluster_anon, 0, 1940 "Cluster anonymous mappings: 0 = no, 1 = yes if no hint, 2 = always"); 1941 1942 static bool 1943 clustering_anon_allowed(vm_offset_t addr) 1944 { 1945 1946 switch (cluster_anon) { 1947 case 0: 1948 return (false); 1949 case 1: 1950 return (addr == 0); 1951 case 2: 1952 default: 1953 return (true); 1954 } 1955 } 1956 1957 static long aslr_restarts; 1958 SYSCTL_LONG(_vm, OID_AUTO, aslr_restarts, CTLFLAG_RD, 1959 &aslr_restarts, 0, 1960 "Number of aslr failures"); 1961 1962 #define MAP_32BIT_MAX_ADDR ((vm_offset_t)1 << 31) 1963 1964 /* 1965 * Searches for the specified amount of free space in the given map with the 1966 * specified alignment. Performs an address-ordered, first-fit search from 1967 * the given address "*addr", with an optional upper bound "max_addr". If the 1968 * parameter "alignment" is zero, then the alignment is computed from the 1969 * given (object, offset) pair so as to enable the greatest possible use of 1970 * superpage mappings. Returns KERN_SUCCESS and the address of the free space 1971 * in "*addr" if successful. Otherwise, returns KERN_NO_SPACE. 1972 * 1973 * The map must be locked. Initially, there must be at least "length" bytes 1974 * of free space at the given address. 1975 */ 1976 static int 1977 vm_map_alignspace(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 1978 vm_offset_t *addr, vm_size_t length, vm_offset_t max_addr, 1979 vm_offset_t alignment) 1980 { 1981 vm_offset_t aligned_addr, free_addr; 1982 1983 VM_MAP_ASSERT_LOCKED(map); 1984 free_addr = *addr; 1985 KASSERT(free_addr == vm_map_findspace(map, free_addr, length), 1986 ("caller failed to provide space %#jx at address %p", 1987 (uintmax_t)length, (void *)free_addr)); 1988 for (;;) { 1989 /* 1990 * At the start of every iteration, the free space at address 1991 * "*addr" is at least "length" bytes. 1992 */ 1993 if (alignment == 0) 1994 pmap_align_superpage(object, offset, addr, length); 1995 else if ((*addr & (alignment - 1)) != 0) { 1996 *addr &= ~(alignment - 1); 1997 *addr += alignment; 1998 } 1999 aligned_addr = *addr; 2000 if (aligned_addr == free_addr) { 2001 /* 2002 * Alignment did not change "*addr", so "*addr" must 2003 * still provide sufficient free space. 2004 */ 2005 return (KERN_SUCCESS); 2006 } 2007 2008 /* 2009 * Test for address wrap on "*addr". A wrapped "*addr" could 2010 * be a valid address, in which case vm_map_findspace() cannot 2011 * be relied upon to fail. 2012 */ 2013 if (aligned_addr < free_addr) 2014 return (KERN_NO_SPACE); 2015 *addr = vm_map_findspace(map, aligned_addr, length); 2016 if (*addr + length > vm_map_max(map) || 2017 (max_addr != 0 && *addr + length > max_addr)) 2018 return (KERN_NO_SPACE); 2019 free_addr = *addr; 2020 if (free_addr == aligned_addr) { 2021 /* 2022 * If a successful call to vm_map_findspace() did not 2023 * change "*addr", then "*addr" must still be aligned 2024 * and provide sufficient free space. 2025 */ 2026 return (KERN_SUCCESS); 2027 } 2028 } 2029 } 2030 2031 /* 2032 * vm_map_find finds an unallocated region in the target address 2033 * map with the given length. The search is defined to be 2034 * first-fit from the specified address; the region found is 2035 * returned in the same parameter. 2036 * 2037 * If object is non-NULL, ref count must be bumped by caller 2038 * prior to making call to account for the new entry. 2039 */ 2040 int 2041 vm_map_find(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 2042 vm_offset_t *addr, /* IN/OUT */ 2043 vm_size_t length, vm_offset_t max_addr, int find_space, 2044 vm_prot_t prot, vm_prot_t max, int cow) 2045 { 2046 vm_offset_t alignment, curr_min_addr, min_addr; 2047 int gap, pidx, rv, try; 2048 bool cluster, en_aslr, update_anon; 2049 2050 KASSERT((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0 || 2051 object == NULL, 2052 ("vm_map_find: non-NULL backing object for stack")); 2053 MPASS((cow & MAP_REMAP) == 0 || (find_space == VMFS_NO_SPACE && 2054 (cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) == 0)); 2055 if (find_space == VMFS_OPTIMAL_SPACE && (object == NULL || 2056 (object->flags & OBJ_COLORED) == 0)) 2057 find_space = VMFS_ANY_SPACE; 2058 if (find_space >> 8 != 0) { 2059 KASSERT((find_space & 0xff) == 0, ("bad VMFS flags")); 2060 alignment = (vm_offset_t)1 << (find_space >> 8); 2061 } else 2062 alignment = 0; 2063 en_aslr = (map->flags & MAP_ASLR) != 0; 2064 update_anon = cluster = clustering_anon_allowed(*addr) && 2065 (map->flags & MAP_IS_SUB_MAP) == 0 && max_addr == 0 && 2066 find_space != VMFS_NO_SPACE && object == NULL && 2067 (cow & (MAP_INHERIT_SHARE | MAP_STACK_GROWS_UP | 2068 MAP_STACK_GROWS_DOWN)) == 0 && prot != PROT_NONE; 2069 curr_min_addr = min_addr = *addr; 2070 if (en_aslr && min_addr == 0 && !cluster && 2071 find_space != VMFS_NO_SPACE && 2072 (map->flags & MAP_ASLR_IGNSTART) != 0) 2073 curr_min_addr = min_addr = vm_map_min(map); 2074 try = 0; 2075 vm_map_lock(map); 2076 if (cluster) { 2077 curr_min_addr = map->anon_loc; 2078 if (curr_min_addr == 0) 2079 cluster = false; 2080 } 2081 if (find_space != VMFS_NO_SPACE) { 2082 KASSERT(find_space == VMFS_ANY_SPACE || 2083 find_space == VMFS_OPTIMAL_SPACE || 2084 find_space == VMFS_SUPER_SPACE || 2085 alignment != 0, ("unexpected VMFS flag")); 2086 again: 2087 /* 2088 * When creating an anonymous mapping, try clustering 2089 * with an existing anonymous mapping first. 2090 * 2091 * We make up to two attempts to find address space 2092 * for a given find_space value. The first attempt may 2093 * apply randomization or may cluster with an existing 2094 * anonymous mapping. If this first attempt fails, 2095 * perform a first-fit search of the available address 2096 * space. 2097 * 2098 * If all tries failed, and find_space is 2099 * VMFS_OPTIMAL_SPACE, fallback to VMFS_ANY_SPACE. 2100 * Again enable clustering and randomization. 2101 */ 2102 try++; 2103 MPASS(try <= 2); 2104 2105 if (try == 2) { 2106 /* 2107 * Second try: we failed either to find a 2108 * suitable region for randomizing the 2109 * allocation, or to cluster with an existing 2110 * mapping. Retry with free run. 2111 */ 2112 curr_min_addr = (map->flags & MAP_ASLR_IGNSTART) != 0 ? 2113 vm_map_min(map) : min_addr; 2114 atomic_add_long(&aslr_restarts, 1); 2115 } 2116 2117 if (try == 1 && en_aslr && !cluster) { 2118 /* 2119 * Find space for allocation, including 2120 * gap needed for later randomization. 2121 */ 2122 pidx = MAXPAGESIZES > 1 && pagesizes[1] != 0 && 2123 (find_space == VMFS_SUPER_SPACE || find_space == 2124 VMFS_OPTIMAL_SPACE) ? 1 : 0; 2125 gap = vm_map_max(map) > MAP_32BIT_MAX_ADDR && 2126 (max_addr == 0 || max_addr > MAP_32BIT_MAX_ADDR) ? 2127 aslr_pages_rnd_64[pidx] : aslr_pages_rnd_32[pidx]; 2128 *addr = vm_map_findspace(map, curr_min_addr, 2129 length + gap * pagesizes[pidx]); 2130 if (*addr + length + gap * pagesizes[pidx] > 2131 vm_map_max(map)) 2132 goto again; 2133 /* And randomize the start address. */ 2134 *addr += (arc4random() % gap) * pagesizes[pidx]; 2135 if (max_addr != 0 && *addr + length > max_addr) 2136 goto again; 2137 } else { 2138 *addr = vm_map_findspace(map, curr_min_addr, length); 2139 if (*addr + length > vm_map_max(map) || 2140 (max_addr != 0 && *addr + length > max_addr)) { 2141 if (cluster) { 2142 cluster = false; 2143 MPASS(try == 1); 2144 goto again; 2145 } 2146 rv = KERN_NO_SPACE; 2147 goto done; 2148 } 2149 } 2150 2151 if (find_space != VMFS_ANY_SPACE && 2152 (rv = vm_map_alignspace(map, object, offset, addr, length, 2153 max_addr, alignment)) != KERN_SUCCESS) { 2154 if (find_space == VMFS_OPTIMAL_SPACE) { 2155 find_space = VMFS_ANY_SPACE; 2156 curr_min_addr = min_addr; 2157 cluster = update_anon; 2158 try = 0; 2159 goto again; 2160 } 2161 goto done; 2162 } 2163 } else if ((cow & MAP_REMAP) != 0) { 2164 if (*addr < vm_map_min(map) || 2165 *addr + length > vm_map_max(map) || 2166 *addr + length <= length) { 2167 rv = KERN_INVALID_ADDRESS; 2168 goto done; 2169 } 2170 vm_map_delete(map, *addr, *addr + length); 2171 } 2172 if ((cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP)) != 0) { 2173 rv = vm_map_stack_locked(map, *addr, length, sgrowsiz, prot, 2174 max, cow); 2175 } else { 2176 rv = vm_map_insert(map, object, offset, *addr, *addr + length, 2177 prot, max, cow); 2178 } 2179 if (rv == KERN_SUCCESS && update_anon) 2180 map->anon_loc = *addr + length; 2181 done: 2182 vm_map_unlock(map); 2183 return (rv); 2184 } 2185 2186 /* 2187 * vm_map_find_min() is a variant of vm_map_find() that takes an 2188 * additional parameter (min_addr) and treats the given address 2189 * (*addr) differently. Specifically, it treats *addr as a hint 2190 * and not as the minimum address where the mapping is created. 2191 * 2192 * This function works in two phases. First, it tries to 2193 * allocate above the hint. If that fails and the hint is 2194 * greater than min_addr, it performs a second pass, replacing 2195 * the hint with min_addr as the minimum address for the 2196 * allocation. 2197 */ 2198 int 2199 vm_map_find_min(vm_map_t map, vm_object_t object, vm_ooffset_t offset, 2200 vm_offset_t *addr, vm_size_t length, vm_offset_t min_addr, 2201 vm_offset_t max_addr, int find_space, vm_prot_t prot, vm_prot_t max, 2202 int cow) 2203 { 2204 vm_offset_t hint; 2205 int rv; 2206 2207 hint = *addr; 2208 for (;;) { 2209 rv = vm_map_find(map, object, offset, addr, length, max_addr, 2210 find_space, prot, max, cow); 2211 if (rv == KERN_SUCCESS || min_addr >= hint) 2212 return (rv); 2213 *addr = hint = min_addr; 2214 } 2215 } 2216 2217 /* 2218 * A map entry with any of the following flags set must not be merged with 2219 * another entry. 2220 */ 2221 #define MAP_ENTRY_NOMERGE_MASK (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP | \ 2222 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_IS_SUB_MAP | MAP_ENTRY_VN_EXEC) 2223 2224 static bool 2225 vm_map_mergeable_neighbors(vm_map_entry_t prev, vm_map_entry_t entry) 2226 { 2227 2228 KASSERT((prev->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 || 2229 (entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0, 2230 ("vm_map_mergeable_neighbors: neither %p nor %p are mergeable", 2231 prev, entry)); 2232 return (prev->end == entry->start && 2233 prev->object.vm_object == entry->object.vm_object && 2234 (prev->object.vm_object == NULL || 2235 prev->offset + (prev->end - prev->start) == entry->offset) && 2236 prev->eflags == entry->eflags && 2237 prev->protection == entry->protection && 2238 prev->max_protection == entry->max_protection && 2239 prev->inheritance == entry->inheritance && 2240 prev->wired_count == entry->wired_count && 2241 prev->cred == entry->cred); 2242 } 2243 2244 static void 2245 vm_map_merged_neighbor_dispose(vm_map_t map, vm_map_entry_t entry) 2246 { 2247 2248 /* 2249 * If the backing object is a vnode object, vm_object_deallocate() 2250 * calls vrele(). However, vrele() does not lock the vnode because 2251 * the vnode has additional references. Thus, the map lock can be 2252 * kept without causing a lock-order reversal with the vnode lock. 2253 * 2254 * Since we count the number of virtual page mappings in 2255 * object->un_pager.vnp.writemappings, the writemappings value 2256 * should not be adjusted when the entry is disposed of. 2257 */ 2258 if (entry->object.vm_object != NULL) 2259 vm_object_deallocate(entry->object.vm_object); 2260 if (entry->cred != NULL) 2261 crfree(entry->cred); 2262 vm_map_entry_dispose(map, entry); 2263 } 2264 2265 /* 2266 * vm_map_try_merge_entries: 2267 * 2268 * Compare the given map entry to its predecessor, and merge its precessor 2269 * into it if possible. The entry remains valid, and may be extended. 2270 * The predecessor may be deleted. 2271 * 2272 * The map must be locked. 2273 */ 2274 void 2275 vm_map_try_merge_entries(vm_map_t map, vm_map_entry_t prev_entry, 2276 vm_map_entry_t entry) 2277 { 2278 2279 VM_MAP_ASSERT_LOCKED(map); 2280 if ((entry->eflags & MAP_ENTRY_NOMERGE_MASK) == 0 && 2281 vm_map_mergeable_neighbors(prev_entry, entry)) { 2282 vm_map_entry_unlink(map, prev_entry, UNLINK_MERGE_NEXT); 2283 vm_map_merged_neighbor_dispose(map, prev_entry); 2284 } 2285 } 2286 2287 /* 2288 * vm_map_entry_back: 2289 * 2290 * Allocate an object to back a map entry. 2291 */ 2292 static inline void 2293 vm_map_entry_back(vm_map_entry_t entry) 2294 { 2295 vm_object_t object; 2296 2297 KASSERT(entry->object.vm_object == NULL, 2298 ("map entry %p has backing object", entry)); 2299 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 2300 ("map entry %p is a submap", entry)); 2301 object = vm_object_allocate_anon(atop(entry->end - entry->start), NULL, 2302 entry->cred, entry->end - entry->start); 2303 entry->object.vm_object = object; 2304 entry->offset = 0; 2305 entry->cred = NULL; 2306 } 2307 2308 /* 2309 * vm_map_entry_charge_object 2310 * 2311 * If there is no object backing this entry, create one. Otherwise, if 2312 * the entry has cred, give it to the backing object. 2313 */ 2314 static inline void 2315 vm_map_entry_charge_object(vm_map_t map, vm_map_entry_t entry) 2316 { 2317 2318 VM_MAP_ASSERT_LOCKED(map); 2319 KASSERT((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0, 2320 ("map entry %p is a submap", entry)); 2321 if (entry->object.vm_object == NULL && !map->system_map && 2322 (entry->eflags & MAP_ENTRY_GUARD) == 0) 2323 vm_map_entry_back(entry); 2324 else if (entry->object.vm_object != NULL && 2325 ((entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) && 2326 entry->cred != NULL) { 2327 VM_OBJECT_WLOCK(entry->object.vm_object); 2328 KASSERT(entry->object.vm_object->cred == NULL, 2329 ("OVERCOMMIT: %s: both cred e %p", __func__, entry)); 2330 entry->object.vm_object->cred = entry->cred; 2331 entry->object.vm_object->charge = entry->end - entry->start; 2332 VM_OBJECT_WUNLOCK(entry->object.vm_object); 2333 entry->cred = NULL; 2334 } 2335 } 2336 2337 /* 2338 * vm_map_entry_clone 2339 * 2340 * Create a duplicate map entry for clipping. 2341 */ 2342 static vm_map_entry_t 2343 vm_map_entry_clone(vm_map_t map, vm_map_entry_t entry) 2344 { 2345 vm_map_entry_t new_entry; 2346 2347 VM_MAP_ASSERT_LOCKED(map); 2348 2349 /* 2350 * Create a backing object now, if none exists, so that more individual 2351 * objects won't be created after the map entry is split. 2352 */ 2353 vm_map_entry_charge_object(map, entry); 2354 2355 /* Clone the entry. */ 2356 new_entry = vm_map_entry_create(map); 2357 *new_entry = *entry; 2358 if (new_entry->cred != NULL) 2359 crhold(entry->cred); 2360 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) { 2361 vm_object_reference(new_entry->object.vm_object); 2362 vm_map_entry_set_vnode_text(new_entry, true); 2363 /* 2364 * The object->un_pager.vnp.writemappings for the object of 2365 * MAP_ENTRY_WRITECNT type entry shall be kept as is here. The 2366 * virtual pages are re-distributed among the clipped entries, 2367 * so the sum is left the same. 2368 */ 2369 } 2370 return (new_entry); 2371 } 2372 2373 /* 2374 * vm_map_clip_start: [ internal use only ] 2375 * 2376 * Asserts that the given entry begins at or after 2377 * the specified address; if necessary, 2378 * it splits the entry into two. 2379 */ 2380 #define vm_map_clip_start(map, entry, startaddr) \ 2381 { \ 2382 if (startaddr > entry->start) \ 2383 _vm_map_clip_start(map, entry, startaddr); \ 2384 } 2385 2386 /* 2387 * This routine is called only when it is known that 2388 * the entry must be split. 2389 */ 2390 static void 2391 _vm_map_clip_start(vm_map_t map, vm_map_entry_t entry, vm_offset_t start) 2392 { 2393 vm_map_entry_t new_entry; 2394 2395 VM_MAP_ASSERT_LOCKED(map); 2396 KASSERT(entry->end > start && entry->start < start, 2397 ("_vm_map_clip_start: invalid clip of entry %p", entry)); 2398 2399 new_entry = vm_map_entry_clone(map, entry); 2400 2401 /* 2402 * Split off the front portion. Insert the new entry BEFORE this one, 2403 * so that this entry has the specified starting address. 2404 */ 2405 new_entry->end = start; 2406 vm_map_entry_link(map, new_entry); 2407 } 2408 2409 /* 2410 * vm_map_clip_end: [ internal use only ] 2411 * 2412 * Asserts that the given entry ends at or before 2413 * the specified address; if necessary, 2414 * it splits the entry into two. 2415 */ 2416 #define vm_map_clip_end(map, entry, endaddr) \ 2417 { \ 2418 if ((endaddr) < (entry->end)) \ 2419 _vm_map_clip_end((map), (entry), (endaddr)); \ 2420 } 2421 2422 /* 2423 * This routine is called only when it is known that 2424 * the entry must be split. 2425 */ 2426 static void 2427 _vm_map_clip_end(vm_map_t map, vm_map_entry_t entry, vm_offset_t end) 2428 { 2429 vm_map_entry_t new_entry; 2430 2431 VM_MAP_ASSERT_LOCKED(map); 2432 KASSERT(entry->start < end && entry->end > end, 2433 ("_vm_map_clip_end: invalid clip of entry %p", entry)); 2434 2435 new_entry = vm_map_entry_clone(map, entry); 2436 2437 /* 2438 * Split off the back portion. Insert the new entry AFTER this one, 2439 * so that this entry has the specified ending address. 2440 */ 2441 new_entry->start = end; 2442 vm_map_entry_link(map, new_entry); 2443 } 2444 2445 /* 2446 * vm_map_submap: [ kernel use only ] 2447 * 2448 * Mark the given range as handled by a subordinate map. 2449 * 2450 * This range must have been created with vm_map_find, 2451 * and no other operations may have been performed on this 2452 * range prior to calling vm_map_submap. 2453 * 2454 * Only a limited number of operations can be performed 2455 * within this rage after calling vm_map_submap: 2456 * vm_fault 2457 * [Don't try vm_map_copy!] 2458 * 2459 * To remove a submapping, one must first remove the 2460 * range from the superior map, and then destroy the 2461 * submap (if desired). [Better yet, don't try it.] 2462 */ 2463 int 2464 vm_map_submap( 2465 vm_map_t map, 2466 vm_offset_t start, 2467 vm_offset_t end, 2468 vm_map_t submap) 2469 { 2470 vm_map_entry_t entry; 2471 int result; 2472 2473 result = KERN_INVALID_ARGUMENT; 2474 2475 vm_map_lock(submap); 2476 submap->flags |= MAP_IS_SUB_MAP; 2477 vm_map_unlock(submap); 2478 2479 vm_map_lock(map); 2480 2481 VM_MAP_RANGE_CHECK(map, start, end); 2482 2483 if (vm_map_lookup_entry(map, start, &entry)) { 2484 vm_map_clip_start(map, entry, start); 2485 } else 2486 entry = vm_map_entry_succ(entry); 2487 2488 vm_map_clip_end(map, entry, end); 2489 2490 if ((entry->start == start) && (entry->end == end) && 2491 ((entry->eflags & MAP_ENTRY_COW) == 0) && 2492 (entry->object.vm_object == NULL)) { 2493 entry->object.sub_map = submap; 2494 entry->eflags |= MAP_ENTRY_IS_SUB_MAP; 2495 result = KERN_SUCCESS; 2496 } 2497 vm_map_unlock(map); 2498 2499 if (result != KERN_SUCCESS) { 2500 vm_map_lock(submap); 2501 submap->flags &= ~MAP_IS_SUB_MAP; 2502 vm_map_unlock(submap); 2503 } 2504 return (result); 2505 } 2506 2507 /* 2508 * The maximum number of pages to map if MAP_PREFAULT_PARTIAL is specified 2509 */ 2510 #define MAX_INIT_PT 96 2511 2512 /* 2513 * vm_map_pmap_enter: 2514 * 2515 * Preload the specified map's pmap with mappings to the specified 2516 * object's memory-resident pages. No further physical pages are 2517 * allocated, and no further virtual pages are retrieved from secondary 2518 * storage. If the specified flags include MAP_PREFAULT_PARTIAL, then a 2519 * limited number of page mappings are created at the low-end of the 2520 * specified address range. (For this purpose, a superpage mapping 2521 * counts as one page mapping.) Otherwise, all resident pages within 2522 * the specified address range are mapped. 2523 */ 2524 static void 2525 vm_map_pmap_enter(vm_map_t map, vm_offset_t addr, vm_prot_t prot, 2526 vm_object_t object, vm_pindex_t pindex, vm_size_t size, int flags) 2527 { 2528 vm_offset_t start; 2529 vm_page_t p, p_start; 2530 vm_pindex_t mask, psize, threshold, tmpidx; 2531 2532 if ((prot & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 || object == NULL) 2533 return; 2534 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 2535 VM_OBJECT_WLOCK(object); 2536 if (object->type == OBJT_DEVICE || object->type == OBJT_SG) { 2537 pmap_object_init_pt(map->pmap, addr, object, pindex, 2538 size); 2539 VM_OBJECT_WUNLOCK(object); 2540 return; 2541 } 2542 VM_OBJECT_LOCK_DOWNGRADE(object); 2543 } else 2544 VM_OBJECT_RLOCK(object); 2545 2546 psize = atop(size); 2547 if (psize + pindex > object->size) { 2548 if (pindex >= object->size) { 2549 VM_OBJECT_RUNLOCK(object); 2550 return; 2551 } 2552 psize = object->size - pindex; 2553 } 2554 2555 start = 0; 2556 p_start = NULL; 2557 threshold = MAX_INIT_PT; 2558 2559 p = vm_page_find_least(object, pindex); 2560 /* 2561 * Assert: the variable p is either (1) the page with the 2562 * least pindex greater than or equal to the parameter pindex 2563 * or (2) NULL. 2564 */ 2565 for (; 2566 p != NULL && (tmpidx = p->pindex - pindex) < psize; 2567 p = TAILQ_NEXT(p, listq)) { 2568 /* 2569 * don't allow an madvise to blow away our really 2570 * free pages allocating pv entries. 2571 */ 2572 if (((flags & MAP_PREFAULT_MADVISE) != 0 && 2573 vm_page_count_severe()) || 2574 ((flags & MAP_PREFAULT_PARTIAL) != 0 && 2575 tmpidx >= threshold)) { 2576 psize = tmpidx; 2577 break; 2578 } 2579 if (vm_page_all_valid(p)) { 2580 if (p_start == NULL) { 2581 start = addr + ptoa(tmpidx); 2582 p_start = p; 2583 } 2584 /* Jump ahead if a superpage mapping is possible. */ 2585 if (p->psind > 0 && ((addr + ptoa(tmpidx)) & 2586 (pagesizes[p->psind] - 1)) == 0) { 2587 mask = atop(pagesizes[p->psind]) - 1; 2588 if (tmpidx + mask < psize && 2589 vm_page_ps_test(p, PS_ALL_VALID, NULL)) { 2590 p += mask; 2591 threshold += mask; 2592 } 2593 } 2594 } else if (p_start != NULL) { 2595 pmap_enter_object(map->pmap, start, addr + 2596 ptoa(tmpidx), p_start, prot); 2597 p_start = NULL; 2598 } 2599 } 2600 if (p_start != NULL) 2601 pmap_enter_object(map->pmap, start, addr + ptoa(psize), 2602 p_start, prot); 2603 VM_OBJECT_RUNLOCK(object); 2604 } 2605 2606 /* 2607 * vm_map_protect: 2608 * 2609 * Sets the protection of the specified address 2610 * region in the target map. If "set_max" is 2611 * specified, the maximum protection is to be set; 2612 * otherwise, only the current protection is affected. 2613 */ 2614 int 2615 vm_map_protect(vm_map_t map, vm_offset_t start, vm_offset_t end, 2616 vm_prot_t new_prot, boolean_t set_max) 2617 { 2618 vm_map_entry_t entry, first_entry, in_tran, prev_entry; 2619 vm_object_t obj; 2620 struct ucred *cred; 2621 vm_prot_t old_prot; 2622 int rv; 2623 2624 if (start == end) 2625 return (KERN_SUCCESS); 2626 2627 again: 2628 in_tran = NULL; 2629 vm_map_lock(map); 2630 2631 /* 2632 * Ensure that we are not concurrently wiring pages. vm_map_wire() may 2633 * need to fault pages into the map and will drop the map lock while 2634 * doing so, and the VM object may end up in an inconsistent state if we 2635 * update the protection on the map entry in between faults. 2636 */ 2637 vm_map_wait_busy(map); 2638 2639 VM_MAP_RANGE_CHECK(map, start, end); 2640 2641 if (!vm_map_lookup_entry(map, start, &first_entry)) 2642 first_entry = vm_map_entry_succ(first_entry); 2643 2644 /* 2645 * Make a first pass to check for protection violations. 2646 */ 2647 for (entry = first_entry; entry->start < end; 2648 entry = vm_map_entry_succ(entry)) { 2649 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) 2650 continue; 2651 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) { 2652 vm_map_unlock(map); 2653 return (KERN_INVALID_ARGUMENT); 2654 } 2655 if ((new_prot & entry->max_protection) != new_prot) { 2656 vm_map_unlock(map); 2657 return (KERN_PROTECTION_FAILURE); 2658 } 2659 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0) 2660 in_tran = entry; 2661 } 2662 2663 /* 2664 * Postpone the operation until all in-transition map entries have 2665 * stabilized. An in-transition entry might already have its pages 2666 * wired and wired_count incremented, but not yet have its 2667 * MAP_ENTRY_USER_WIRED flag set. In which case, we would fail to call 2668 * vm_fault_copy_entry() in the final loop below. 2669 */ 2670 if (in_tran != NULL) { 2671 in_tran->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 2672 vm_map_unlock_and_wait(map, 0); 2673 goto again; 2674 } 2675 2676 /* 2677 * Before changing the protections, try to reserve swap space for any 2678 * private (i.e., copy-on-write) mappings that are transitioning from 2679 * read-only to read/write access. If a reservation fails, break out 2680 * of this loop early and let the next loop simplify the entries, since 2681 * some may now be mergeable. 2682 */ 2683 rv = KERN_SUCCESS; 2684 vm_map_clip_start(map, first_entry, start); 2685 for (entry = first_entry; entry->start < end; 2686 entry = vm_map_entry_succ(entry)) { 2687 vm_map_clip_end(map, entry, end); 2688 2689 if (set_max || 2690 ((new_prot & ~entry->protection) & VM_PROT_WRITE) == 0 || 2691 ENTRY_CHARGED(entry) || 2692 (entry->eflags & MAP_ENTRY_GUARD) != 0) { 2693 continue; 2694 } 2695 2696 cred = curthread->td_ucred; 2697 obj = entry->object.vm_object; 2698 2699 if (obj == NULL || 2700 (entry->eflags & MAP_ENTRY_NEEDS_COPY) != 0) { 2701 if (!swap_reserve(entry->end - entry->start)) { 2702 rv = KERN_RESOURCE_SHORTAGE; 2703 end = entry->end; 2704 break; 2705 } 2706 crhold(cred); 2707 entry->cred = cred; 2708 continue; 2709 } 2710 2711 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) 2712 continue; 2713 VM_OBJECT_WLOCK(obj); 2714 if (obj->type != OBJT_DEFAULT && obj->type != OBJT_SWAP) { 2715 VM_OBJECT_WUNLOCK(obj); 2716 continue; 2717 } 2718 2719 /* 2720 * Charge for the whole object allocation now, since 2721 * we cannot distinguish between non-charged and 2722 * charged clipped mapping of the same object later. 2723 */ 2724 KASSERT(obj->charge == 0, 2725 ("vm_map_protect: object %p overcharged (entry %p)", 2726 obj, entry)); 2727 if (!swap_reserve(ptoa(obj->size))) { 2728 VM_OBJECT_WUNLOCK(obj); 2729 rv = KERN_RESOURCE_SHORTAGE; 2730 end = entry->end; 2731 break; 2732 } 2733 2734 crhold(cred); 2735 obj->cred = cred; 2736 obj->charge = ptoa(obj->size); 2737 VM_OBJECT_WUNLOCK(obj); 2738 } 2739 2740 /* 2741 * If enough swap space was available, go back and fix up protections. 2742 * Otherwise, just simplify entries, since some may have been modified. 2743 * [Note that clipping is not necessary the second time.] 2744 */ 2745 for (prev_entry = vm_map_entry_pred(first_entry), entry = first_entry; 2746 entry->start < end; 2747 vm_map_try_merge_entries(map, prev_entry, entry), 2748 prev_entry = entry, entry = vm_map_entry_succ(entry)) { 2749 if (rv != KERN_SUCCESS || 2750 (entry->eflags & MAP_ENTRY_GUARD) != 0) 2751 continue; 2752 2753 old_prot = entry->protection; 2754 2755 if (set_max) 2756 entry->protection = 2757 (entry->max_protection = new_prot) & 2758 old_prot; 2759 else 2760 entry->protection = new_prot; 2761 2762 /* 2763 * For user wired map entries, the normal lazy evaluation of 2764 * write access upgrades through soft page faults is 2765 * undesirable. Instead, immediately copy any pages that are 2766 * copy-on-write and enable write access in the physical map. 2767 */ 2768 if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0 && 2769 (entry->protection & VM_PROT_WRITE) != 0 && 2770 (old_prot & VM_PROT_WRITE) == 0) 2771 vm_fault_copy_entry(map, map, entry, entry, NULL); 2772 2773 /* 2774 * When restricting access, update the physical map. Worry 2775 * about copy-on-write here. 2776 */ 2777 if ((old_prot & ~entry->protection) != 0) { 2778 #define MASK(entry) (((entry)->eflags & MAP_ENTRY_COW) ? ~VM_PROT_WRITE : \ 2779 VM_PROT_ALL) 2780 pmap_protect(map->pmap, entry->start, 2781 entry->end, 2782 entry->protection & MASK(entry)); 2783 #undef MASK 2784 } 2785 } 2786 vm_map_try_merge_entries(map, prev_entry, entry); 2787 vm_map_unlock(map); 2788 return (rv); 2789 } 2790 2791 /* 2792 * vm_map_madvise: 2793 * 2794 * This routine traverses a processes map handling the madvise 2795 * system call. Advisories are classified as either those effecting 2796 * the vm_map_entry structure, or those effecting the underlying 2797 * objects. 2798 */ 2799 int 2800 vm_map_madvise( 2801 vm_map_t map, 2802 vm_offset_t start, 2803 vm_offset_t end, 2804 int behav) 2805 { 2806 vm_map_entry_t entry, prev_entry; 2807 bool modify_map; 2808 2809 /* 2810 * Some madvise calls directly modify the vm_map_entry, in which case 2811 * we need to use an exclusive lock on the map and we need to perform 2812 * various clipping operations. Otherwise we only need a read-lock 2813 * on the map. 2814 */ 2815 switch(behav) { 2816 case MADV_NORMAL: 2817 case MADV_SEQUENTIAL: 2818 case MADV_RANDOM: 2819 case MADV_NOSYNC: 2820 case MADV_AUTOSYNC: 2821 case MADV_NOCORE: 2822 case MADV_CORE: 2823 if (start == end) 2824 return (0); 2825 modify_map = true; 2826 vm_map_lock(map); 2827 break; 2828 case MADV_WILLNEED: 2829 case MADV_DONTNEED: 2830 case MADV_FREE: 2831 if (start == end) 2832 return (0); 2833 modify_map = false; 2834 vm_map_lock_read(map); 2835 break; 2836 default: 2837 return (EINVAL); 2838 } 2839 2840 /* 2841 * Locate starting entry and clip if necessary. 2842 */ 2843 VM_MAP_RANGE_CHECK(map, start, end); 2844 2845 if (vm_map_lookup_entry(map, start, &entry)) { 2846 if (modify_map) 2847 vm_map_clip_start(map, entry, start); 2848 prev_entry = vm_map_entry_pred(entry); 2849 } else { 2850 prev_entry = entry; 2851 entry = vm_map_entry_succ(entry); 2852 } 2853 2854 if (modify_map) { 2855 /* 2856 * madvise behaviors that are implemented in the vm_map_entry. 2857 * 2858 * We clip the vm_map_entry so that behavioral changes are 2859 * limited to the specified address range. 2860 */ 2861 for (; entry->start < end; 2862 prev_entry = entry, entry = vm_map_entry_succ(entry)) { 2863 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) 2864 continue; 2865 2866 vm_map_clip_end(map, entry, end); 2867 2868 switch (behav) { 2869 case MADV_NORMAL: 2870 vm_map_entry_set_behavior(entry, 2871 MAP_ENTRY_BEHAV_NORMAL); 2872 break; 2873 case MADV_SEQUENTIAL: 2874 vm_map_entry_set_behavior(entry, 2875 MAP_ENTRY_BEHAV_SEQUENTIAL); 2876 break; 2877 case MADV_RANDOM: 2878 vm_map_entry_set_behavior(entry, 2879 MAP_ENTRY_BEHAV_RANDOM); 2880 break; 2881 case MADV_NOSYNC: 2882 entry->eflags |= MAP_ENTRY_NOSYNC; 2883 break; 2884 case MADV_AUTOSYNC: 2885 entry->eflags &= ~MAP_ENTRY_NOSYNC; 2886 break; 2887 case MADV_NOCORE: 2888 entry->eflags |= MAP_ENTRY_NOCOREDUMP; 2889 break; 2890 case MADV_CORE: 2891 entry->eflags &= ~MAP_ENTRY_NOCOREDUMP; 2892 break; 2893 default: 2894 break; 2895 } 2896 vm_map_try_merge_entries(map, prev_entry, entry); 2897 } 2898 vm_map_try_merge_entries(map, prev_entry, entry); 2899 vm_map_unlock(map); 2900 } else { 2901 vm_pindex_t pstart, pend; 2902 2903 /* 2904 * madvise behaviors that are implemented in the underlying 2905 * vm_object. 2906 * 2907 * Since we don't clip the vm_map_entry, we have to clip 2908 * the vm_object pindex and count. 2909 */ 2910 for (; entry->start < end; 2911 entry = vm_map_entry_succ(entry)) { 2912 vm_offset_t useEnd, useStart; 2913 2914 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) 2915 continue; 2916 2917 /* 2918 * MADV_FREE would otherwise rewind time to 2919 * the creation of the shadow object. Because 2920 * we hold the VM map read-locked, neither the 2921 * entry's object nor the presence of a 2922 * backing object can change. 2923 */ 2924 if (behav == MADV_FREE && 2925 entry->object.vm_object != NULL && 2926 entry->object.vm_object->backing_object != NULL) 2927 continue; 2928 2929 pstart = OFF_TO_IDX(entry->offset); 2930 pend = pstart + atop(entry->end - entry->start); 2931 useStart = entry->start; 2932 useEnd = entry->end; 2933 2934 if (entry->start < start) { 2935 pstart += atop(start - entry->start); 2936 useStart = start; 2937 } 2938 if (entry->end > end) { 2939 pend -= atop(entry->end - end); 2940 useEnd = end; 2941 } 2942 2943 if (pstart >= pend) 2944 continue; 2945 2946 /* 2947 * Perform the pmap_advise() before clearing 2948 * PGA_REFERENCED in vm_page_advise(). Otherwise, a 2949 * concurrent pmap operation, such as pmap_remove(), 2950 * could clear a reference in the pmap and set 2951 * PGA_REFERENCED on the page before the pmap_advise() 2952 * had completed. Consequently, the page would appear 2953 * referenced based upon an old reference that 2954 * occurred before this pmap_advise() ran. 2955 */ 2956 if (behav == MADV_DONTNEED || behav == MADV_FREE) 2957 pmap_advise(map->pmap, useStart, useEnd, 2958 behav); 2959 2960 vm_object_madvise(entry->object.vm_object, pstart, 2961 pend, behav); 2962 2963 /* 2964 * Pre-populate paging structures in the 2965 * WILLNEED case. For wired entries, the 2966 * paging structures are already populated. 2967 */ 2968 if (behav == MADV_WILLNEED && 2969 entry->wired_count == 0) { 2970 vm_map_pmap_enter(map, 2971 useStart, 2972 entry->protection, 2973 entry->object.vm_object, 2974 pstart, 2975 ptoa(pend - pstart), 2976 MAP_PREFAULT_MADVISE 2977 ); 2978 } 2979 } 2980 vm_map_unlock_read(map); 2981 } 2982 return (0); 2983 } 2984 2985 2986 /* 2987 * vm_map_inherit: 2988 * 2989 * Sets the inheritance of the specified address 2990 * range in the target map. Inheritance 2991 * affects how the map will be shared with 2992 * child maps at the time of vmspace_fork. 2993 */ 2994 int 2995 vm_map_inherit(vm_map_t map, vm_offset_t start, vm_offset_t end, 2996 vm_inherit_t new_inheritance) 2997 { 2998 vm_map_entry_t entry, prev_entry; 2999 3000 switch (new_inheritance) { 3001 case VM_INHERIT_NONE: 3002 case VM_INHERIT_COPY: 3003 case VM_INHERIT_SHARE: 3004 case VM_INHERIT_ZERO: 3005 break; 3006 default: 3007 return (KERN_INVALID_ARGUMENT); 3008 } 3009 if (start == end) 3010 return (KERN_SUCCESS); 3011 vm_map_lock(map); 3012 VM_MAP_RANGE_CHECK(map, start, end); 3013 if (vm_map_lookup_entry(map, start, &prev_entry)) { 3014 entry = prev_entry; 3015 vm_map_clip_start(map, entry, start); 3016 prev_entry = vm_map_entry_pred(entry); 3017 } else 3018 entry = vm_map_entry_succ(prev_entry); 3019 for (; entry->start < end; 3020 prev_entry = entry, entry = vm_map_entry_succ(entry)) { 3021 vm_map_clip_end(map, entry, end); 3022 if ((entry->eflags & MAP_ENTRY_GUARD) == 0 || 3023 new_inheritance != VM_INHERIT_ZERO) 3024 entry->inheritance = new_inheritance; 3025 vm_map_try_merge_entries(map, prev_entry, entry); 3026 } 3027 vm_map_try_merge_entries(map, prev_entry, entry); 3028 vm_map_unlock(map); 3029 return (KERN_SUCCESS); 3030 } 3031 3032 /* 3033 * vm_map_entry_in_transition: 3034 * 3035 * Release the map lock, and sleep until the entry is no longer in 3036 * transition. Awake and acquire the map lock. If the map changed while 3037 * another held the lock, lookup a possibly-changed entry at or after the 3038 * 'start' position of the old entry. 3039 */ 3040 static vm_map_entry_t 3041 vm_map_entry_in_transition(vm_map_t map, vm_offset_t in_start, 3042 vm_offset_t *io_end, bool holes_ok, vm_map_entry_t in_entry) 3043 { 3044 vm_map_entry_t entry; 3045 vm_offset_t start; 3046 u_int last_timestamp; 3047 3048 VM_MAP_ASSERT_LOCKED(map); 3049 KASSERT((in_entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 3050 ("not in-tranition map entry %p", in_entry)); 3051 /* 3052 * We have not yet clipped the entry. 3053 */ 3054 start = MAX(in_start, in_entry->start); 3055 in_entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 3056 last_timestamp = map->timestamp; 3057 if (vm_map_unlock_and_wait(map, 0)) { 3058 /* 3059 * Allow interruption of user wiring/unwiring? 3060 */ 3061 } 3062 vm_map_lock(map); 3063 if (last_timestamp + 1 == map->timestamp) 3064 return (in_entry); 3065 3066 /* 3067 * Look again for the entry because the map was modified while it was 3068 * unlocked. Specifically, the entry may have been clipped, merged, or 3069 * deleted. 3070 */ 3071 if (!vm_map_lookup_entry(map, start, &entry)) { 3072 if (!holes_ok) { 3073 *io_end = start; 3074 return (NULL); 3075 } 3076 entry = vm_map_entry_succ(entry); 3077 } 3078 return (entry); 3079 } 3080 3081 /* 3082 * vm_map_unwire: 3083 * 3084 * Implements both kernel and user unwiring. 3085 */ 3086 int 3087 vm_map_unwire(vm_map_t map, vm_offset_t start, vm_offset_t end, 3088 int flags) 3089 { 3090 vm_map_entry_t entry, first_entry, next_entry, prev_entry; 3091 int rv; 3092 bool holes_ok, need_wakeup, user_unwire; 3093 3094 if (start == end) 3095 return (KERN_SUCCESS); 3096 holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0; 3097 user_unwire = (flags & VM_MAP_WIRE_USER) != 0; 3098 vm_map_lock(map); 3099 VM_MAP_RANGE_CHECK(map, start, end); 3100 if (!vm_map_lookup_entry(map, start, &first_entry)) { 3101 if (holes_ok) 3102 first_entry = vm_map_entry_succ(first_entry); 3103 else { 3104 vm_map_unlock(map); 3105 return (KERN_INVALID_ADDRESS); 3106 } 3107 } 3108 rv = KERN_SUCCESS; 3109 for (entry = first_entry; entry->start < end; entry = next_entry) { 3110 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 3111 /* 3112 * We have not yet clipped the entry. 3113 */ 3114 next_entry = vm_map_entry_in_transition(map, start, 3115 &end, holes_ok, entry); 3116 if (next_entry == NULL) { 3117 if (entry == first_entry) { 3118 vm_map_unlock(map); 3119 return (KERN_INVALID_ADDRESS); 3120 } 3121 rv = KERN_INVALID_ADDRESS; 3122 break; 3123 } 3124 first_entry = (entry == first_entry) ? 3125 next_entry : NULL; 3126 continue; 3127 } 3128 vm_map_clip_start(map, entry, start); 3129 vm_map_clip_end(map, entry, end); 3130 /* 3131 * Mark the entry in case the map lock is released. (See 3132 * above.) 3133 */ 3134 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 3135 entry->wiring_thread == NULL, 3136 ("owned map entry %p", entry)); 3137 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 3138 entry->wiring_thread = curthread; 3139 next_entry = vm_map_entry_succ(entry); 3140 /* 3141 * Check the map for holes in the specified region. 3142 * If holes_ok, skip this check. 3143 */ 3144 if (!holes_ok && 3145 entry->end < end && next_entry->start > entry->end) { 3146 end = entry->end; 3147 rv = KERN_INVALID_ADDRESS; 3148 break; 3149 } 3150 /* 3151 * If system unwiring, require that the entry is system wired. 3152 */ 3153 if (!user_unwire && 3154 vm_map_entry_system_wired_count(entry) == 0) { 3155 end = entry->end; 3156 rv = KERN_INVALID_ARGUMENT; 3157 break; 3158 } 3159 } 3160 need_wakeup = false; 3161 if (first_entry == NULL && 3162 !vm_map_lookup_entry(map, start, &first_entry)) { 3163 KASSERT(holes_ok, ("vm_map_unwire: lookup failed")); 3164 prev_entry = first_entry; 3165 entry = vm_map_entry_succ(first_entry); 3166 } else { 3167 prev_entry = vm_map_entry_pred(first_entry); 3168 entry = first_entry; 3169 } 3170 for (; entry->start < end; 3171 prev_entry = entry, entry = vm_map_entry_succ(entry)) { 3172 /* 3173 * If holes_ok was specified, an empty 3174 * space in the unwired region could have been mapped 3175 * while the map lock was dropped for draining 3176 * MAP_ENTRY_IN_TRANSITION. Moreover, another thread 3177 * could be simultaneously wiring this new mapping 3178 * entry. Detect these cases and skip any entries 3179 * marked as in transition by us. 3180 */ 3181 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 3182 entry->wiring_thread != curthread) { 3183 KASSERT(holes_ok, 3184 ("vm_map_unwire: !HOLESOK and new/changed entry")); 3185 continue; 3186 } 3187 3188 if (rv == KERN_SUCCESS && (!user_unwire || 3189 (entry->eflags & MAP_ENTRY_USER_WIRED))) { 3190 if (entry->wired_count == 1) 3191 vm_map_entry_unwire(map, entry); 3192 else 3193 entry->wired_count--; 3194 if (user_unwire) 3195 entry->eflags &= ~MAP_ENTRY_USER_WIRED; 3196 } 3197 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 3198 ("vm_map_unwire: in-transition flag missing %p", entry)); 3199 KASSERT(entry->wiring_thread == curthread, 3200 ("vm_map_unwire: alien wire %p", entry)); 3201 entry->eflags &= ~MAP_ENTRY_IN_TRANSITION; 3202 entry->wiring_thread = NULL; 3203 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 3204 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 3205 need_wakeup = true; 3206 } 3207 vm_map_try_merge_entries(map, prev_entry, entry); 3208 } 3209 vm_map_try_merge_entries(map, prev_entry, entry); 3210 vm_map_unlock(map); 3211 if (need_wakeup) 3212 vm_map_wakeup(map); 3213 return (rv); 3214 } 3215 3216 static void 3217 vm_map_wire_user_count_sub(u_long npages) 3218 { 3219 3220 atomic_subtract_long(&vm_user_wire_count, npages); 3221 } 3222 3223 static bool 3224 vm_map_wire_user_count_add(u_long npages) 3225 { 3226 u_long wired; 3227 3228 wired = vm_user_wire_count; 3229 do { 3230 if (npages + wired > vm_page_max_user_wired) 3231 return (false); 3232 } while (!atomic_fcmpset_long(&vm_user_wire_count, &wired, 3233 npages + wired)); 3234 3235 return (true); 3236 } 3237 3238 /* 3239 * vm_map_wire_entry_failure: 3240 * 3241 * Handle a wiring failure on the given entry. 3242 * 3243 * The map should be locked. 3244 */ 3245 static void 3246 vm_map_wire_entry_failure(vm_map_t map, vm_map_entry_t entry, 3247 vm_offset_t failed_addr) 3248 { 3249 3250 VM_MAP_ASSERT_LOCKED(map); 3251 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 && 3252 entry->wired_count == 1, 3253 ("vm_map_wire_entry_failure: entry %p isn't being wired", entry)); 3254 KASSERT(failed_addr < entry->end, 3255 ("vm_map_wire_entry_failure: entry %p was fully wired", entry)); 3256 3257 /* 3258 * If any pages at the start of this entry were successfully wired, 3259 * then unwire them. 3260 */ 3261 if (failed_addr > entry->start) { 3262 pmap_unwire(map->pmap, entry->start, failed_addr); 3263 vm_object_unwire(entry->object.vm_object, entry->offset, 3264 failed_addr - entry->start, PQ_ACTIVE); 3265 } 3266 3267 /* 3268 * Assign an out-of-range value to represent the failure to wire this 3269 * entry. 3270 */ 3271 entry->wired_count = -1; 3272 } 3273 3274 int 3275 vm_map_wire(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags) 3276 { 3277 int rv; 3278 3279 vm_map_lock(map); 3280 rv = vm_map_wire_locked(map, start, end, flags); 3281 vm_map_unlock(map); 3282 return (rv); 3283 } 3284 3285 3286 /* 3287 * vm_map_wire_locked: 3288 * 3289 * Implements both kernel and user wiring. Returns with the map locked, 3290 * the map lock may be dropped. 3291 */ 3292 int 3293 vm_map_wire_locked(vm_map_t map, vm_offset_t start, vm_offset_t end, int flags) 3294 { 3295 vm_map_entry_t entry, first_entry, next_entry, prev_entry; 3296 vm_offset_t faddr, saved_end, saved_start; 3297 u_long npages; 3298 u_int last_timestamp; 3299 int rv; 3300 bool holes_ok, need_wakeup, user_wire; 3301 vm_prot_t prot; 3302 3303 VM_MAP_ASSERT_LOCKED(map); 3304 3305 if (start == end) 3306 return (KERN_SUCCESS); 3307 prot = 0; 3308 if (flags & VM_MAP_WIRE_WRITE) 3309 prot |= VM_PROT_WRITE; 3310 holes_ok = (flags & VM_MAP_WIRE_HOLESOK) != 0; 3311 user_wire = (flags & VM_MAP_WIRE_USER) != 0; 3312 VM_MAP_RANGE_CHECK(map, start, end); 3313 if (!vm_map_lookup_entry(map, start, &first_entry)) { 3314 if (holes_ok) 3315 first_entry = vm_map_entry_succ(first_entry); 3316 else 3317 return (KERN_INVALID_ADDRESS); 3318 } 3319 for (entry = first_entry; entry->start < end; entry = next_entry) { 3320 if (entry->eflags & MAP_ENTRY_IN_TRANSITION) { 3321 /* 3322 * We have not yet clipped the entry. 3323 */ 3324 next_entry = vm_map_entry_in_transition(map, start, 3325 &end, holes_ok, entry); 3326 if (next_entry == NULL) { 3327 if (entry == first_entry) 3328 return (KERN_INVALID_ADDRESS); 3329 rv = KERN_INVALID_ADDRESS; 3330 goto done; 3331 } 3332 first_entry = (entry == first_entry) ? 3333 next_entry : NULL; 3334 continue; 3335 } 3336 vm_map_clip_start(map, entry, start); 3337 vm_map_clip_end(map, entry, end); 3338 /* 3339 * Mark the entry in case the map lock is released. (See 3340 * above.) 3341 */ 3342 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 && 3343 entry->wiring_thread == NULL, 3344 ("owned map entry %p", entry)); 3345 entry->eflags |= MAP_ENTRY_IN_TRANSITION; 3346 entry->wiring_thread = curthread; 3347 if ((entry->protection & (VM_PROT_READ | VM_PROT_EXECUTE)) == 0 3348 || (entry->protection & prot) != prot) { 3349 entry->eflags |= MAP_ENTRY_WIRE_SKIPPED; 3350 if (!holes_ok) { 3351 end = entry->end; 3352 rv = KERN_INVALID_ADDRESS; 3353 goto done; 3354 } 3355 } else if (entry->wired_count == 0) { 3356 entry->wired_count++; 3357 3358 npages = atop(entry->end - entry->start); 3359 if (user_wire && !vm_map_wire_user_count_add(npages)) { 3360 vm_map_wire_entry_failure(map, entry, 3361 entry->start); 3362 end = entry->end; 3363 rv = KERN_RESOURCE_SHORTAGE; 3364 goto done; 3365 } 3366 3367 /* 3368 * Release the map lock, relying on the in-transition 3369 * mark. Mark the map busy for fork. 3370 */ 3371 saved_start = entry->start; 3372 saved_end = entry->end; 3373 last_timestamp = map->timestamp; 3374 vm_map_busy(map); 3375 vm_map_unlock(map); 3376 3377 faddr = saved_start; 3378 do { 3379 /* 3380 * Simulate a fault to get the page and enter 3381 * it into the physical map. 3382 */ 3383 if ((rv = vm_fault(map, faddr, 3384 VM_PROT_NONE, VM_FAULT_WIRE, NULL)) != 3385 KERN_SUCCESS) 3386 break; 3387 } while ((faddr += PAGE_SIZE) < saved_end); 3388 vm_map_lock(map); 3389 vm_map_unbusy(map); 3390 if (last_timestamp + 1 != map->timestamp) { 3391 /* 3392 * Look again for the entry because the map was 3393 * modified while it was unlocked. The entry 3394 * may have been clipped, but NOT merged or 3395 * deleted. 3396 */ 3397 if (!vm_map_lookup_entry(map, saved_start, 3398 &next_entry)) 3399 KASSERT(false, 3400 ("vm_map_wire: lookup failed")); 3401 first_entry = (entry == first_entry) ? 3402 next_entry : NULL; 3403 for (entry = next_entry; entry->end < saved_end; 3404 entry = vm_map_entry_succ(entry)) { 3405 /* 3406 * In case of failure, handle entries 3407 * that were not fully wired here; 3408 * fully wired entries are handled 3409 * later. 3410 */ 3411 if (rv != KERN_SUCCESS && 3412 faddr < entry->end) 3413 vm_map_wire_entry_failure(map, 3414 entry, faddr); 3415 } 3416 } 3417 if (rv != KERN_SUCCESS) { 3418 vm_map_wire_entry_failure(map, entry, faddr); 3419 if (user_wire) 3420 vm_map_wire_user_count_sub(npages); 3421 end = entry->end; 3422 goto done; 3423 } 3424 } else if (!user_wire || 3425 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 3426 entry->wired_count++; 3427 } 3428 /* 3429 * Check the map for holes in the specified region. 3430 * If holes_ok was specified, skip this check. 3431 */ 3432 next_entry = vm_map_entry_succ(entry); 3433 if (!holes_ok && 3434 entry->end < end && next_entry->start > entry->end) { 3435 end = entry->end; 3436 rv = KERN_INVALID_ADDRESS; 3437 goto done; 3438 } 3439 } 3440 rv = KERN_SUCCESS; 3441 done: 3442 need_wakeup = false; 3443 if (first_entry == NULL && 3444 !vm_map_lookup_entry(map, start, &first_entry)) { 3445 KASSERT(holes_ok, ("vm_map_wire: lookup failed")); 3446 prev_entry = first_entry; 3447 entry = vm_map_entry_succ(first_entry); 3448 } else { 3449 prev_entry = vm_map_entry_pred(first_entry); 3450 entry = first_entry; 3451 } 3452 for (; entry->start < end; 3453 prev_entry = entry, entry = vm_map_entry_succ(entry)) { 3454 /* 3455 * If holes_ok was specified, an empty 3456 * space in the unwired region could have been mapped 3457 * while the map lock was dropped for faulting in the 3458 * pages or draining MAP_ENTRY_IN_TRANSITION. 3459 * Moreover, another thread could be simultaneously 3460 * wiring this new mapping entry. Detect these cases 3461 * and skip any entries marked as in transition not by us. 3462 */ 3463 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) == 0 || 3464 entry->wiring_thread != curthread) { 3465 KASSERT(holes_ok, 3466 ("vm_map_wire: !HOLESOK and new/changed entry")); 3467 continue; 3468 } 3469 3470 if ((entry->eflags & MAP_ENTRY_WIRE_SKIPPED) != 0) { 3471 /* do nothing */ 3472 } else if (rv == KERN_SUCCESS) { 3473 if (user_wire) 3474 entry->eflags |= MAP_ENTRY_USER_WIRED; 3475 } else if (entry->wired_count == -1) { 3476 /* 3477 * Wiring failed on this entry. Thus, unwiring is 3478 * unnecessary. 3479 */ 3480 entry->wired_count = 0; 3481 } else if (!user_wire || 3482 (entry->eflags & MAP_ENTRY_USER_WIRED) == 0) { 3483 /* 3484 * Undo the wiring. Wiring succeeded on this entry 3485 * but failed on a later entry. 3486 */ 3487 if (entry->wired_count == 1) { 3488 vm_map_entry_unwire(map, entry); 3489 if (user_wire) 3490 vm_map_wire_user_count_sub( 3491 atop(entry->end - entry->start)); 3492 } else 3493 entry->wired_count--; 3494 } 3495 KASSERT((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0, 3496 ("vm_map_wire: in-transition flag missing %p", entry)); 3497 KASSERT(entry->wiring_thread == curthread, 3498 ("vm_map_wire: alien wire %p", entry)); 3499 entry->eflags &= ~(MAP_ENTRY_IN_TRANSITION | 3500 MAP_ENTRY_WIRE_SKIPPED); 3501 entry->wiring_thread = NULL; 3502 if (entry->eflags & MAP_ENTRY_NEEDS_WAKEUP) { 3503 entry->eflags &= ~MAP_ENTRY_NEEDS_WAKEUP; 3504 need_wakeup = true; 3505 } 3506 vm_map_try_merge_entries(map, prev_entry, entry); 3507 } 3508 vm_map_try_merge_entries(map, prev_entry, entry); 3509 if (need_wakeup) 3510 vm_map_wakeup(map); 3511 return (rv); 3512 } 3513 3514 /* 3515 * vm_map_sync 3516 * 3517 * Push any dirty cached pages in the address range to their pager. 3518 * If syncio is TRUE, dirty pages are written synchronously. 3519 * If invalidate is TRUE, any cached pages are freed as well. 3520 * 3521 * If the size of the region from start to end is zero, we are 3522 * supposed to flush all modified pages within the region containing 3523 * start. Unfortunately, a region can be split or coalesced with 3524 * neighboring regions, making it difficult to determine what the 3525 * original region was. Therefore, we approximate this requirement by 3526 * flushing the current region containing start. 3527 * 3528 * Returns an error if any part of the specified range is not mapped. 3529 */ 3530 int 3531 vm_map_sync( 3532 vm_map_t map, 3533 vm_offset_t start, 3534 vm_offset_t end, 3535 boolean_t syncio, 3536 boolean_t invalidate) 3537 { 3538 vm_map_entry_t entry, first_entry, next_entry; 3539 vm_size_t size; 3540 vm_object_t object; 3541 vm_ooffset_t offset; 3542 unsigned int last_timestamp; 3543 boolean_t failed; 3544 3545 vm_map_lock_read(map); 3546 VM_MAP_RANGE_CHECK(map, start, end); 3547 if (!vm_map_lookup_entry(map, start, &first_entry)) { 3548 vm_map_unlock_read(map); 3549 return (KERN_INVALID_ADDRESS); 3550 } else if (start == end) { 3551 start = first_entry->start; 3552 end = first_entry->end; 3553 } 3554 /* 3555 * Make a first pass to check for user-wired memory and holes. 3556 */ 3557 for (entry = first_entry; entry->start < end; entry = next_entry) { 3558 if (invalidate && 3559 (entry->eflags & MAP_ENTRY_USER_WIRED) != 0) { 3560 vm_map_unlock_read(map); 3561 return (KERN_INVALID_ARGUMENT); 3562 } 3563 next_entry = vm_map_entry_succ(entry); 3564 if (end > entry->end && 3565 entry->end != next_entry->start) { 3566 vm_map_unlock_read(map); 3567 return (KERN_INVALID_ADDRESS); 3568 } 3569 } 3570 3571 if (invalidate) 3572 pmap_remove(map->pmap, start, end); 3573 failed = FALSE; 3574 3575 /* 3576 * Make a second pass, cleaning/uncaching pages from the indicated 3577 * objects as we go. 3578 */ 3579 for (entry = first_entry; entry->start < end;) { 3580 offset = entry->offset + (start - entry->start); 3581 size = (end <= entry->end ? end : entry->end) - start; 3582 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) { 3583 vm_map_t smap; 3584 vm_map_entry_t tentry; 3585 vm_size_t tsize; 3586 3587 smap = entry->object.sub_map; 3588 vm_map_lock_read(smap); 3589 (void) vm_map_lookup_entry(smap, offset, &tentry); 3590 tsize = tentry->end - offset; 3591 if (tsize < size) 3592 size = tsize; 3593 object = tentry->object.vm_object; 3594 offset = tentry->offset + (offset - tentry->start); 3595 vm_map_unlock_read(smap); 3596 } else { 3597 object = entry->object.vm_object; 3598 } 3599 vm_object_reference(object); 3600 last_timestamp = map->timestamp; 3601 vm_map_unlock_read(map); 3602 if (!vm_object_sync(object, offset, size, syncio, invalidate)) 3603 failed = TRUE; 3604 start += size; 3605 vm_object_deallocate(object); 3606 vm_map_lock_read(map); 3607 if (last_timestamp == map->timestamp || 3608 !vm_map_lookup_entry(map, start, &entry)) 3609 entry = vm_map_entry_succ(entry); 3610 } 3611 3612 vm_map_unlock_read(map); 3613 return (failed ? KERN_FAILURE : KERN_SUCCESS); 3614 } 3615 3616 /* 3617 * vm_map_entry_unwire: [ internal use only ] 3618 * 3619 * Make the region specified by this entry pageable. 3620 * 3621 * The map in question should be locked. 3622 * [This is the reason for this routine's existence.] 3623 */ 3624 static void 3625 vm_map_entry_unwire(vm_map_t map, vm_map_entry_t entry) 3626 { 3627 vm_size_t size; 3628 3629 VM_MAP_ASSERT_LOCKED(map); 3630 KASSERT(entry->wired_count > 0, 3631 ("vm_map_entry_unwire: entry %p isn't wired", entry)); 3632 3633 size = entry->end - entry->start; 3634 if ((entry->eflags & MAP_ENTRY_USER_WIRED) != 0) 3635 vm_map_wire_user_count_sub(atop(size)); 3636 pmap_unwire(map->pmap, entry->start, entry->end); 3637 vm_object_unwire(entry->object.vm_object, entry->offset, size, 3638 PQ_ACTIVE); 3639 entry->wired_count = 0; 3640 } 3641 3642 static void 3643 vm_map_entry_deallocate(vm_map_entry_t entry, boolean_t system_map) 3644 { 3645 3646 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0) 3647 vm_object_deallocate(entry->object.vm_object); 3648 uma_zfree(system_map ? kmapentzone : mapentzone, entry); 3649 } 3650 3651 /* 3652 * vm_map_entry_delete: [ internal use only ] 3653 * 3654 * Deallocate the given entry from the target map. 3655 */ 3656 static void 3657 vm_map_entry_delete(vm_map_t map, vm_map_entry_t entry) 3658 { 3659 vm_object_t object; 3660 vm_pindex_t offidxstart, offidxend, count, size1; 3661 vm_size_t size; 3662 3663 vm_map_entry_unlink(map, entry, UNLINK_MERGE_NONE); 3664 object = entry->object.vm_object; 3665 3666 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) { 3667 MPASS(entry->cred == NULL); 3668 MPASS((entry->eflags & MAP_ENTRY_IS_SUB_MAP) == 0); 3669 MPASS(object == NULL); 3670 vm_map_entry_deallocate(entry, map->system_map); 3671 return; 3672 } 3673 3674 size = entry->end - entry->start; 3675 map->size -= size; 3676 3677 if (entry->cred != NULL) { 3678 swap_release_by_cred(size, entry->cred); 3679 crfree(entry->cred); 3680 } 3681 3682 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || object == NULL) { 3683 entry->object.vm_object = NULL; 3684 } else if ((object->flags & OBJ_ANON) != 0 || 3685 object == kernel_object) { 3686 KASSERT(entry->cred == NULL || object->cred == NULL || 3687 (entry->eflags & MAP_ENTRY_NEEDS_COPY), 3688 ("OVERCOMMIT vm_map_entry_delete: both cred %p", entry)); 3689 count = atop(size); 3690 offidxstart = OFF_TO_IDX(entry->offset); 3691 offidxend = offidxstart + count; 3692 VM_OBJECT_WLOCK(object); 3693 if (object->ref_count != 1 && 3694 ((object->flags & OBJ_ONEMAPPING) != 0 || 3695 object == kernel_object)) { 3696 vm_object_collapse(object); 3697 3698 /* 3699 * The option OBJPR_NOTMAPPED can be passed here 3700 * because vm_map_delete() already performed 3701 * pmap_remove() on the only mapping to this range 3702 * of pages. 3703 */ 3704 vm_object_page_remove(object, offidxstart, offidxend, 3705 OBJPR_NOTMAPPED); 3706 if (object->type == OBJT_SWAP) 3707 swap_pager_freespace(object, offidxstart, 3708 count); 3709 if (offidxend >= object->size && 3710 offidxstart < object->size) { 3711 size1 = object->size; 3712 object->size = offidxstart; 3713 if (object->cred != NULL) { 3714 size1 -= object->size; 3715 KASSERT(object->charge >= ptoa(size1), 3716 ("object %p charge < 0", object)); 3717 swap_release_by_cred(ptoa(size1), 3718 object->cred); 3719 object->charge -= ptoa(size1); 3720 } 3721 } 3722 } 3723 VM_OBJECT_WUNLOCK(object); 3724 } 3725 if (map->system_map) 3726 vm_map_entry_deallocate(entry, TRUE); 3727 else { 3728 entry->defer_next = curthread->td_map_def_user; 3729 curthread->td_map_def_user = entry; 3730 } 3731 } 3732 3733 /* 3734 * vm_map_delete: [ internal use only ] 3735 * 3736 * Deallocates the given address range from the target 3737 * map. 3738 */ 3739 int 3740 vm_map_delete(vm_map_t map, vm_offset_t start, vm_offset_t end) 3741 { 3742 vm_map_entry_t entry; 3743 vm_map_entry_t first_entry; 3744 3745 VM_MAP_ASSERT_LOCKED(map); 3746 if (start == end) 3747 return (KERN_SUCCESS); 3748 3749 /* 3750 * Find the start of the region, and clip it 3751 */ 3752 if (!vm_map_lookup_entry(map, start, &first_entry)) 3753 entry = vm_map_entry_succ(first_entry); 3754 else { 3755 entry = first_entry; 3756 vm_map_clip_start(map, entry, start); 3757 } 3758 3759 /* 3760 * Step through all entries in this region 3761 */ 3762 while (entry->start < end) { 3763 vm_map_entry_t next; 3764 3765 /* 3766 * Wait for wiring or unwiring of an entry to complete. 3767 * Also wait for any system wirings to disappear on 3768 * user maps. 3769 */ 3770 if ((entry->eflags & MAP_ENTRY_IN_TRANSITION) != 0 || 3771 (vm_map_pmap(map) != kernel_pmap && 3772 vm_map_entry_system_wired_count(entry) != 0)) { 3773 unsigned int last_timestamp; 3774 vm_offset_t saved_start; 3775 vm_map_entry_t tmp_entry; 3776 3777 saved_start = entry->start; 3778 entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 3779 last_timestamp = map->timestamp; 3780 (void) vm_map_unlock_and_wait(map, 0); 3781 vm_map_lock(map); 3782 if (last_timestamp + 1 != map->timestamp) { 3783 /* 3784 * Look again for the entry because the map was 3785 * modified while it was unlocked. 3786 * Specifically, the entry may have been 3787 * clipped, merged, or deleted. 3788 */ 3789 if (!vm_map_lookup_entry(map, saved_start, 3790 &tmp_entry)) 3791 entry = vm_map_entry_succ(tmp_entry); 3792 else { 3793 entry = tmp_entry; 3794 vm_map_clip_start(map, entry, 3795 saved_start); 3796 } 3797 } 3798 continue; 3799 } 3800 vm_map_clip_end(map, entry, end); 3801 3802 next = vm_map_entry_succ(entry); 3803 3804 /* 3805 * Unwire before removing addresses from the pmap; otherwise, 3806 * unwiring will put the entries back in the pmap. 3807 */ 3808 if (entry->wired_count != 0) 3809 vm_map_entry_unwire(map, entry); 3810 3811 /* 3812 * Remove mappings for the pages, but only if the 3813 * mappings could exist. For instance, it does not 3814 * make sense to call pmap_remove() for guard entries. 3815 */ 3816 if ((entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0 || 3817 entry->object.vm_object != NULL) 3818 pmap_remove(map->pmap, entry->start, entry->end); 3819 3820 if (entry->end == map->anon_loc) 3821 map->anon_loc = entry->start; 3822 3823 /* 3824 * Delete the entry only after removing all pmap 3825 * entries pointing to its pages. (Otherwise, its 3826 * page frames may be reallocated, and any modify bits 3827 * will be set in the wrong object!) 3828 */ 3829 vm_map_entry_delete(map, entry); 3830 entry = next; 3831 } 3832 return (KERN_SUCCESS); 3833 } 3834 3835 /* 3836 * vm_map_remove: 3837 * 3838 * Remove the given address range from the target map. 3839 * This is the exported form of vm_map_delete. 3840 */ 3841 int 3842 vm_map_remove(vm_map_t map, vm_offset_t start, vm_offset_t end) 3843 { 3844 int result; 3845 3846 vm_map_lock(map); 3847 VM_MAP_RANGE_CHECK(map, start, end); 3848 result = vm_map_delete(map, start, end); 3849 vm_map_unlock(map); 3850 return (result); 3851 } 3852 3853 /* 3854 * vm_map_check_protection: 3855 * 3856 * Assert that the target map allows the specified privilege on the 3857 * entire address region given. The entire region must be allocated. 3858 * 3859 * WARNING! This code does not and should not check whether the 3860 * contents of the region is accessible. For example a smaller file 3861 * might be mapped into a larger address space. 3862 * 3863 * NOTE! This code is also called by munmap(). 3864 * 3865 * The map must be locked. A read lock is sufficient. 3866 */ 3867 boolean_t 3868 vm_map_check_protection(vm_map_t map, vm_offset_t start, vm_offset_t end, 3869 vm_prot_t protection) 3870 { 3871 vm_map_entry_t entry; 3872 vm_map_entry_t tmp_entry; 3873 3874 if (!vm_map_lookup_entry(map, start, &tmp_entry)) 3875 return (FALSE); 3876 entry = tmp_entry; 3877 3878 while (start < end) { 3879 /* 3880 * No holes allowed! 3881 */ 3882 if (start < entry->start) 3883 return (FALSE); 3884 /* 3885 * Check protection associated with entry. 3886 */ 3887 if ((entry->protection & protection) != protection) 3888 return (FALSE); 3889 /* go to next entry */ 3890 start = entry->end; 3891 entry = vm_map_entry_succ(entry); 3892 } 3893 return (TRUE); 3894 } 3895 3896 3897 /* 3898 * 3899 * vm_map_copy_swap_object: 3900 * 3901 * Copies a swap-backed object from an existing map entry to a 3902 * new one. Carries forward the swap charge. May change the 3903 * src object on return. 3904 */ 3905 static void 3906 vm_map_copy_swap_object(vm_map_entry_t src_entry, vm_map_entry_t dst_entry, 3907 vm_offset_t size, vm_ooffset_t *fork_charge) 3908 { 3909 vm_object_t src_object; 3910 struct ucred *cred; 3911 int charged; 3912 3913 src_object = src_entry->object.vm_object; 3914 charged = ENTRY_CHARGED(src_entry); 3915 if ((src_object->flags & OBJ_ANON) != 0) { 3916 VM_OBJECT_WLOCK(src_object); 3917 vm_object_collapse(src_object); 3918 if ((src_object->flags & OBJ_ONEMAPPING) != 0) { 3919 vm_object_split(src_entry); 3920 src_object = src_entry->object.vm_object; 3921 } 3922 vm_object_reference_locked(src_object); 3923 vm_object_clear_flag(src_object, OBJ_ONEMAPPING); 3924 VM_OBJECT_WUNLOCK(src_object); 3925 } else 3926 vm_object_reference(src_object); 3927 if (src_entry->cred != NULL && 3928 !(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 3929 KASSERT(src_object->cred == NULL, 3930 ("OVERCOMMIT: vm_map_copy_anon_entry: cred %p", 3931 src_object)); 3932 src_object->cred = src_entry->cred; 3933 src_object->charge = size; 3934 } 3935 dst_entry->object.vm_object = src_object; 3936 if (charged) { 3937 cred = curthread->td_ucred; 3938 crhold(cred); 3939 dst_entry->cred = cred; 3940 *fork_charge += size; 3941 if (!(src_entry->eflags & MAP_ENTRY_NEEDS_COPY)) { 3942 crhold(cred); 3943 src_entry->cred = cred; 3944 *fork_charge += size; 3945 } 3946 } 3947 } 3948 3949 /* 3950 * vm_map_copy_entry: 3951 * 3952 * Copies the contents of the source entry to the destination 3953 * entry. The entries *must* be aligned properly. 3954 */ 3955 static void 3956 vm_map_copy_entry( 3957 vm_map_t src_map, 3958 vm_map_t dst_map, 3959 vm_map_entry_t src_entry, 3960 vm_map_entry_t dst_entry, 3961 vm_ooffset_t *fork_charge) 3962 { 3963 vm_object_t src_object; 3964 vm_map_entry_t fake_entry; 3965 vm_offset_t size; 3966 3967 VM_MAP_ASSERT_LOCKED(dst_map); 3968 3969 if ((dst_entry->eflags|src_entry->eflags) & MAP_ENTRY_IS_SUB_MAP) 3970 return; 3971 3972 if (src_entry->wired_count == 0 || 3973 (src_entry->protection & VM_PROT_WRITE) == 0) { 3974 /* 3975 * If the source entry is marked needs_copy, it is already 3976 * write-protected. 3977 */ 3978 if ((src_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0 && 3979 (src_entry->protection & VM_PROT_WRITE) != 0) { 3980 pmap_protect(src_map->pmap, 3981 src_entry->start, 3982 src_entry->end, 3983 src_entry->protection & ~VM_PROT_WRITE); 3984 } 3985 3986 /* 3987 * Make a copy of the object. 3988 */ 3989 size = src_entry->end - src_entry->start; 3990 if ((src_object = src_entry->object.vm_object) != NULL) { 3991 if (src_object->type == OBJT_DEFAULT || 3992 src_object->type == OBJT_SWAP) { 3993 vm_map_copy_swap_object(src_entry, dst_entry, 3994 size, fork_charge); 3995 /* May have split/collapsed, reload obj. */ 3996 src_object = src_entry->object.vm_object; 3997 } else { 3998 vm_object_reference(src_object); 3999 dst_entry->object.vm_object = src_object; 4000 } 4001 src_entry->eflags |= MAP_ENTRY_COW | 4002 MAP_ENTRY_NEEDS_COPY; 4003 dst_entry->eflags |= MAP_ENTRY_COW | 4004 MAP_ENTRY_NEEDS_COPY; 4005 dst_entry->offset = src_entry->offset; 4006 if (src_entry->eflags & MAP_ENTRY_WRITECNT) { 4007 /* 4008 * MAP_ENTRY_WRITECNT cannot 4009 * indicate write reference from 4010 * src_entry, since the entry is 4011 * marked as needs copy. Allocate a 4012 * fake entry that is used to 4013 * decrement object->un_pager writecount 4014 * at the appropriate time. Attach 4015 * fake_entry to the deferred list. 4016 */ 4017 fake_entry = vm_map_entry_create(dst_map); 4018 fake_entry->eflags = MAP_ENTRY_WRITECNT; 4019 src_entry->eflags &= ~MAP_ENTRY_WRITECNT; 4020 vm_object_reference(src_object); 4021 fake_entry->object.vm_object = src_object; 4022 fake_entry->start = src_entry->start; 4023 fake_entry->end = src_entry->end; 4024 fake_entry->defer_next = 4025 curthread->td_map_def_user; 4026 curthread->td_map_def_user = fake_entry; 4027 } 4028 4029 pmap_copy(dst_map->pmap, src_map->pmap, 4030 dst_entry->start, dst_entry->end - dst_entry->start, 4031 src_entry->start); 4032 } else { 4033 dst_entry->object.vm_object = NULL; 4034 dst_entry->offset = 0; 4035 if (src_entry->cred != NULL) { 4036 dst_entry->cred = curthread->td_ucred; 4037 crhold(dst_entry->cred); 4038 *fork_charge += size; 4039 } 4040 } 4041 } else { 4042 /* 4043 * We don't want to make writeable wired pages copy-on-write. 4044 * Immediately copy these pages into the new map by simulating 4045 * page faults. The new pages are pageable. 4046 */ 4047 vm_fault_copy_entry(dst_map, src_map, dst_entry, src_entry, 4048 fork_charge); 4049 } 4050 } 4051 4052 /* 4053 * vmspace_map_entry_forked: 4054 * Update the newly-forked vmspace each time a map entry is inherited 4055 * or copied. The values for vm_dsize and vm_tsize are approximate 4056 * (and mostly-obsolete ideas in the face of mmap(2) et al.) 4057 */ 4058 static void 4059 vmspace_map_entry_forked(const struct vmspace *vm1, struct vmspace *vm2, 4060 vm_map_entry_t entry) 4061 { 4062 vm_size_t entrysize; 4063 vm_offset_t newend; 4064 4065 if ((entry->eflags & MAP_ENTRY_GUARD) != 0) 4066 return; 4067 entrysize = entry->end - entry->start; 4068 vm2->vm_map.size += entrysize; 4069 if (entry->eflags & (MAP_ENTRY_GROWS_DOWN | MAP_ENTRY_GROWS_UP)) { 4070 vm2->vm_ssize += btoc(entrysize); 4071 } else if (entry->start >= (vm_offset_t)vm1->vm_daddr && 4072 entry->start < (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)) { 4073 newend = MIN(entry->end, 4074 (vm_offset_t)vm1->vm_daddr + ctob(vm1->vm_dsize)); 4075 vm2->vm_dsize += btoc(newend - entry->start); 4076 } else if (entry->start >= (vm_offset_t)vm1->vm_taddr && 4077 entry->start < (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)) { 4078 newend = MIN(entry->end, 4079 (vm_offset_t)vm1->vm_taddr + ctob(vm1->vm_tsize)); 4080 vm2->vm_tsize += btoc(newend - entry->start); 4081 } 4082 } 4083 4084 /* 4085 * vmspace_fork: 4086 * Create a new process vmspace structure and vm_map 4087 * based on those of an existing process. The new map 4088 * is based on the old map, according to the inheritance 4089 * values on the regions in that map. 4090 * 4091 * XXX It might be worth coalescing the entries added to the new vmspace. 4092 * 4093 * The source map must not be locked. 4094 */ 4095 struct vmspace * 4096 vmspace_fork(struct vmspace *vm1, vm_ooffset_t *fork_charge) 4097 { 4098 struct vmspace *vm2; 4099 vm_map_t new_map, old_map; 4100 vm_map_entry_t new_entry, old_entry; 4101 vm_object_t object; 4102 int error, locked; 4103 vm_inherit_t inh; 4104 4105 old_map = &vm1->vm_map; 4106 /* Copy immutable fields of vm1 to vm2. */ 4107 vm2 = vmspace_alloc(vm_map_min(old_map), vm_map_max(old_map), 4108 pmap_pinit); 4109 if (vm2 == NULL) 4110 return (NULL); 4111 4112 vm2->vm_taddr = vm1->vm_taddr; 4113 vm2->vm_daddr = vm1->vm_daddr; 4114 vm2->vm_maxsaddr = vm1->vm_maxsaddr; 4115 vm_map_lock(old_map); 4116 if (old_map->busy) 4117 vm_map_wait_busy(old_map); 4118 new_map = &vm2->vm_map; 4119 locked = vm_map_trylock(new_map); /* trylock to silence WITNESS */ 4120 KASSERT(locked, ("vmspace_fork: lock failed")); 4121 4122 error = pmap_vmspace_copy(new_map->pmap, old_map->pmap); 4123 if (error != 0) { 4124 sx_xunlock(&old_map->lock); 4125 sx_xunlock(&new_map->lock); 4126 vm_map_process_deferred(); 4127 vmspace_free(vm2); 4128 return (NULL); 4129 } 4130 4131 new_map->anon_loc = old_map->anon_loc; 4132 4133 VM_MAP_ENTRY_FOREACH(old_entry, old_map) { 4134 if ((old_entry->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) 4135 panic("vm_map_fork: encountered a submap"); 4136 4137 inh = old_entry->inheritance; 4138 if ((old_entry->eflags & MAP_ENTRY_GUARD) != 0 && 4139 inh != VM_INHERIT_NONE) 4140 inh = VM_INHERIT_COPY; 4141 4142 switch (inh) { 4143 case VM_INHERIT_NONE: 4144 break; 4145 4146 case VM_INHERIT_SHARE: 4147 /* 4148 * Clone the entry, creating the shared object if 4149 * necessary. 4150 */ 4151 object = old_entry->object.vm_object; 4152 if (object == NULL) { 4153 vm_map_entry_back(old_entry); 4154 object = old_entry->object.vm_object; 4155 } 4156 4157 /* 4158 * Add the reference before calling vm_object_shadow 4159 * to insure that a shadow object is created. 4160 */ 4161 vm_object_reference(object); 4162 if (old_entry->eflags & MAP_ENTRY_NEEDS_COPY) { 4163 vm_object_shadow(&old_entry->object.vm_object, 4164 &old_entry->offset, 4165 old_entry->end - old_entry->start, 4166 old_entry->cred, 4167 /* Transfer the second reference too. */ 4168 true); 4169 old_entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 4170 old_entry->cred = NULL; 4171 4172 /* 4173 * As in vm_map_merged_neighbor_dispose(), 4174 * the vnode lock will not be acquired in 4175 * this call to vm_object_deallocate(). 4176 */ 4177 vm_object_deallocate(object); 4178 object = old_entry->object.vm_object; 4179 } else { 4180 VM_OBJECT_WLOCK(object); 4181 vm_object_clear_flag(object, OBJ_ONEMAPPING); 4182 if (old_entry->cred != NULL) { 4183 KASSERT(object->cred == NULL, 4184 ("vmspace_fork both cred")); 4185 object->cred = old_entry->cred; 4186 object->charge = old_entry->end - 4187 old_entry->start; 4188 old_entry->cred = NULL; 4189 } 4190 4191 /* 4192 * Assert the correct state of the vnode 4193 * v_writecount while the object is locked, to 4194 * not relock it later for the assertion 4195 * correctness. 4196 */ 4197 if (old_entry->eflags & MAP_ENTRY_WRITECNT && 4198 object->type == OBJT_VNODE) { 4199 KASSERT(((struct vnode *)object-> 4200 handle)->v_writecount > 0, 4201 ("vmspace_fork: v_writecount %p", 4202 object)); 4203 KASSERT(object->un_pager.vnp. 4204 writemappings > 0, 4205 ("vmspace_fork: vnp.writecount %p", 4206 object)); 4207 } 4208 VM_OBJECT_WUNLOCK(object); 4209 } 4210 4211 /* 4212 * Clone the entry, referencing the shared object. 4213 */ 4214 new_entry = vm_map_entry_create(new_map); 4215 *new_entry = *old_entry; 4216 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 4217 MAP_ENTRY_IN_TRANSITION); 4218 new_entry->wiring_thread = NULL; 4219 new_entry->wired_count = 0; 4220 if (new_entry->eflags & MAP_ENTRY_WRITECNT) { 4221 vm_pager_update_writecount(object, 4222 new_entry->start, new_entry->end); 4223 } 4224 vm_map_entry_set_vnode_text(new_entry, true); 4225 4226 /* 4227 * Insert the entry into the new map -- we know we're 4228 * inserting at the end of the new map. 4229 */ 4230 vm_map_entry_link(new_map, new_entry); 4231 vmspace_map_entry_forked(vm1, vm2, new_entry); 4232 4233 /* 4234 * Update the physical map 4235 */ 4236 pmap_copy(new_map->pmap, old_map->pmap, 4237 new_entry->start, 4238 (old_entry->end - old_entry->start), 4239 old_entry->start); 4240 break; 4241 4242 case VM_INHERIT_COPY: 4243 /* 4244 * Clone the entry and link into the map. 4245 */ 4246 new_entry = vm_map_entry_create(new_map); 4247 *new_entry = *old_entry; 4248 /* 4249 * Copied entry is COW over the old object. 4250 */ 4251 new_entry->eflags &= ~(MAP_ENTRY_USER_WIRED | 4252 MAP_ENTRY_IN_TRANSITION | MAP_ENTRY_WRITECNT); 4253 new_entry->wiring_thread = NULL; 4254 new_entry->wired_count = 0; 4255 new_entry->object.vm_object = NULL; 4256 new_entry->cred = NULL; 4257 vm_map_entry_link(new_map, new_entry); 4258 vmspace_map_entry_forked(vm1, vm2, new_entry); 4259 vm_map_copy_entry(old_map, new_map, old_entry, 4260 new_entry, fork_charge); 4261 vm_map_entry_set_vnode_text(new_entry, true); 4262 break; 4263 4264 case VM_INHERIT_ZERO: 4265 /* 4266 * Create a new anonymous mapping entry modelled from 4267 * the old one. 4268 */ 4269 new_entry = vm_map_entry_create(new_map); 4270 memset(new_entry, 0, sizeof(*new_entry)); 4271 4272 new_entry->start = old_entry->start; 4273 new_entry->end = old_entry->end; 4274 new_entry->eflags = old_entry->eflags & 4275 ~(MAP_ENTRY_USER_WIRED | MAP_ENTRY_IN_TRANSITION | 4276 MAP_ENTRY_WRITECNT | MAP_ENTRY_VN_EXEC); 4277 new_entry->protection = old_entry->protection; 4278 new_entry->max_protection = old_entry->max_protection; 4279 new_entry->inheritance = VM_INHERIT_ZERO; 4280 4281 vm_map_entry_link(new_map, new_entry); 4282 vmspace_map_entry_forked(vm1, vm2, new_entry); 4283 4284 new_entry->cred = curthread->td_ucred; 4285 crhold(new_entry->cred); 4286 *fork_charge += (new_entry->end - new_entry->start); 4287 4288 break; 4289 } 4290 } 4291 /* 4292 * Use inlined vm_map_unlock() to postpone handling the deferred 4293 * map entries, which cannot be done until both old_map and 4294 * new_map locks are released. 4295 */ 4296 sx_xunlock(&old_map->lock); 4297 sx_xunlock(&new_map->lock); 4298 vm_map_process_deferred(); 4299 4300 return (vm2); 4301 } 4302 4303 /* 4304 * Create a process's stack for exec_new_vmspace(). This function is never 4305 * asked to wire the newly created stack. 4306 */ 4307 int 4308 vm_map_stack(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 4309 vm_prot_t prot, vm_prot_t max, int cow) 4310 { 4311 vm_size_t growsize, init_ssize; 4312 rlim_t vmemlim; 4313 int rv; 4314 4315 MPASS((map->flags & MAP_WIREFUTURE) == 0); 4316 growsize = sgrowsiz; 4317 init_ssize = (max_ssize < growsize) ? max_ssize : growsize; 4318 vm_map_lock(map); 4319 vmemlim = lim_cur(curthread, RLIMIT_VMEM); 4320 /* If we would blow our VMEM resource limit, no go */ 4321 if (map->size + init_ssize > vmemlim) { 4322 rv = KERN_NO_SPACE; 4323 goto out; 4324 } 4325 rv = vm_map_stack_locked(map, addrbos, max_ssize, growsize, prot, 4326 max, cow); 4327 out: 4328 vm_map_unlock(map); 4329 return (rv); 4330 } 4331 4332 static int stack_guard_page = 1; 4333 SYSCTL_INT(_security_bsd, OID_AUTO, stack_guard_page, CTLFLAG_RWTUN, 4334 &stack_guard_page, 0, 4335 "Specifies the number of guard pages for a stack that grows"); 4336 4337 static int 4338 vm_map_stack_locked(vm_map_t map, vm_offset_t addrbos, vm_size_t max_ssize, 4339 vm_size_t growsize, vm_prot_t prot, vm_prot_t max, int cow) 4340 { 4341 vm_map_entry_t new_entry, prev_entry; 4342 vm_offset_t bot, gap_bot, gap_top, top; 4343 vm_size_t init_ssize, sgp; 4344 int orient, rv; 4345 4346 /* 4347 * The stack orientation is piggybacked with the cow argument. 4348 * Extract it into orient and mask the cow argument so that we 4349 * don't pass it around further. 4350 */ 4351 orient = cow & (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP); 4352 KASSERT(orient != 0, ("No stack grow direction")); 4353 KASSERT(orient != (MAP_STACK_GROWS_DOWN | MAP_STACK_GROWS_UP), 4354 ("bi-dir stack")); 4355 4356 if (addrbos < vm_map_min(map) || 4357 addrbos + max_ssize > vm_map_max(map) || 4358 addrbos + max_ssize <= addrbos) 4359 return (KERN_INVALID_ADDRESS); 4360 sgp = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 || 4361 (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 : 4362 (vm_size_t)stack_guard_page * PAGE_SIZE; 4363 if (sgp >= max_ssize) 4364 return (KERN_INVALID_ARGUMENT); 4365 4366 init_ssize = growsize; 4367 if (max_ssize < init_ssize + sgp) 4368 init_ssize = max_ssize - sgp; 4369 4370 /* If addr is already mapped, no go */ 4371 if (vm_map_lookup_entry(map, addrbos, &prev_entry)) 4372 return (KERN_NO_SPACE); 4373 4374 /* 4375 * If we can't accommodate max_ssize in the current mapping, no go. 4376 */ 4377 if (vm_map_entry_succ(prev_entry)->start < addrbos + max_ssize) 4378 return (KERN_NO_SPACE); 4379 4380 /* 4381 * We initially map a stack of only init_ssize. We will grow as 4382 * needed later. Depending on the orientation of the stack (i.e. 4383 * the grow direction) we either map at the top of the range, the 4384 * bottom of the range or in the middle. 4385 * 4386 * Note: we would normally expect prot and max to be VM_PROT_ALL, 4387 * and cow to be 0. Possibly we should eliminate these as input 4388 * parameters, and just pass these values here in the insert call. 4389 */ 4390 if (orient == MAP_STACK_GROWS_DOWN) { 4391 bot = addrbos + max_ssize - init_ssize; 4392 top = bot + init_ssize; 4393 gap_bot = addrbos; 4394 gap_top = bot; 4395 } else /* if (orient == MAP_STACK_GROWS_UP) */ { 4396 bot = addrbos; 4397 top = bot + init_ssize; 4398 gap_bot = top; 4399 gap_top = addrbos + max_ssize; 4400 } 4401 rv = vm_map_insert(map, NULL, 0, bot, top, prot, max, cow); 4402 if (rv != KERN_SUCCESS) 4403 return (rv); 4404 new_entry = vm_map_entry_succ(prev_entry); 4405 KASSERT(new_entry->end == top || new_entry->start == bot, 4406 ("Bad entry start/end for new stack entry")); 4407 KASSERT((orient & MAP_STACK_GROWS_DOWN) == 0 || 4408 (new_entry->eflags & MAP_ENTRY_GROWS_DOWN) != 0, 4409 ("new entry lacks MAP_ENTRY_GROWS_DOWN")); 4410 KASSERT((orient & MAP_STACK_GROWS_UP) == 0 || 4411 (new_entry->eflags & MAP_ENTRY_GROWS_UP) != 0, 4412 ("new entry lacks MAP_ENTRY_GROWS_UP")); 4413 if (gap_bot == gap_top) 4414 return (KERN_SUCCESS); 4415 rv = vm_map_insert(map, NULL, 0, gap_bot, gap_top, VM_PROT_NONE, 4416 VM_PROT_NONE, MAP_CREATE_GUARD | (orient == MAP_STACK_GROWS_DOWN ? 4417 MAP_CREATE_STACK_GAP_DN : MAP_CREATE_STACK_GAP_UP)); 4418 if (rv == KERN_SUCCESS) { 4419 /* 4420 * Gap can never successfully handle a fault, so 4421 * read-ahead logic is never used for it. Re-use 4422 * next_read of the gap entry to store 4423 * stack_guard_page for vm_map_growstack(). 4424 */ 4425 if (orient == MAP_STACK_GROWS_DOWN) 4426 vm_map_entry_pred(new_entry)->next_read = sgp; 4427 else 4428 vm_map_entry_succ(new_entry)->next_read = sgp; 4429 } else { 4430 (void)vm_map_delete(map, bot, top); 4431 } 4432 return (rv); 4433 } 4434 4435 /* 4436 * Attempts to grow a vm stack entry. Returns KERN_SUCCESS if we 4437 * successfully grow the stack. 4438 */ 4439 static int 4440 vm_map_growstack(vm_map_t map, vm_offset_t addr, vm_map_entry_t gap_entry) 4441 { 4442 vm_map_entry_t stack_entry; 4443 struct proc *p; 4444 struct vmspace *vm; 4445 struct ucred *cred; 4446 vm_offset_t gap_end, gap_start, grow_start; 4447 vm_size_t grow_amount, guard, max_grow; 4448 rlim_t lmemlim, stacklim, vmemlim; 4449 int rv, rv1; 4450 bool gap_deleted, grow_down, is_procstack; 4451 #ifdef notyet 4452 uint64_t limit; 4453 #endif 4454 #ifdef RACCT 4455 int error; 4456 #endif 4457 4458 p = curproc; 4459 vm = p->p_vmspace; 4460 4461 /* 4462 * Disallow stack growth when the access is performed by a 4463 * debugger or AIO daemon. The reason is that the wrong 4464 * resource limits are applied. 4465 */ 4466 if (p != initproc && (map != &p->p_vmspace->vm_map || 4467 p->p_textvp == NULL)) 4468 return (KERN_FAILURE); 4469 4470 MPASS(!map->system_map); 4471 4472 lmemlim = lim_cur(curthread, RLIMIT_MEMLOCK); 4473 stacklim = lim_cur(curthread, RLIMIT_STACK); 4474 vmemlim = lim_cur(curthread, RLIMIT_VMEM); 4475 retry: 4476 /* If addr is not in a hole for a stack grow area, no need to grow. */ 4477 if (gap_entry == NULL && !vm_map_lookup_entry(map, addr, &gap_entry)) 4478 return (KERN_FAILURE); 4479 if ((gap_entry->eflags & MAP_ENTRY_GUARD) == 0) 4480 return (KERN_SUCCESS); 4481 if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_DN) != 0) { 4482 stack_entry = vm_map_entry_succ(gap_entry); 4483 if ((stack_entry->eflags & MAP_ENTRY_GROWS_DOWN) == 0 || 4484 stack_entry->start != gap_entry->end) 4485 return (KERN_FAILURE); 4486 grow_amount = round_page(stack_entry->start - addr); 4487 grow_down = true; 4488 } else if ((gap_entry->eflags & MAP_ENTRY_STACK_GAP_UP) != 0) { 4489 stack_entry = vm_map_entry_pred(gap_entry); 4490 if ((stack_entry->eflags & MAP_ENTRY_GROWS_UP) == 0 || 4491 stack_entry->end != gap_entry->start) 4492 return (KERN_FAILURE); 4493 grow_amount = round_page(addr + 1 - stack_entry->end); 4494 grow_down = false; 4495 } else { 4496 return (KERN_FAILURE); 4497 } 4498 guard = ((curproc->p_flag2 & P2_STKGAP_DISABLE) != 0 || 4499 (curproc->p_fctl0 & NT_FREEBSD_FCTL_STKGAP_DISABLE) != 0) ? 0 : 4500 gap_entry->next_read; 4501 max_grow = gap_entry->end - gap_entry->start; 4502 if (guard > max_grow) 4503 return (KERN_NO_SPACE); 4504 max_grow -= guard; 4505 if (grow_amount > max_grow) 4506 return (KERN_NO_SPACE); 4507 4508 /* 4509 * If this is the main process stack, see if we're over the stack 4510 * limit. 4511 */ 4512 is_procstack = addr >= (vm_offset_t)vm->vm_maxsaddr && 4513 addr < (vm_offset_t)p->p_sysent->sv_usrstack; 4514 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) 4515 return (KERN_NO_SPACE); 4516 4517 #ifdef RACCT 4518 if (racct_enable) { 4519 PROC_LOCK(p); 4520 if (is_procstack && racct_set(p, RACCT_STACK, 4521 ctob(vm->vm_ssize) + grow_amount)) { 4522 PROC_UNLOCK(p); 4523 return (KERN_NO_SPACE); 4524 } 4525 PROC_UNLOCK(p); 4526 } 4527 #endif 4528 4529 grow_amount = roundup(grow_amount, sgrowsiz); 4530 if (grow_amount > max_grow) 4531 grow_amount = max_grow; 4532 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > stacklim)) { 4533 grow_amount = trunc_page((vm_size_t)stacklim) - 4534 ctob(vm->vm_ssize); 4535 } 4536 4537 #ifdef notyet 4538 PROC_LOCK(p); 4539 limit = racct_get_available(p, RACCT_STACK); 4540 PROC_UNLOCK(p); 4541 if (is_procstack && (ctob(vm->vm_ssize) + grow_amount > limit)) 4542 grow_amount = limit - ctob(vm->vm_ssize); 4543 #endif 4544 4545 if (!old_mlock && (map->flags & MAP_WIREFUTURE) != 0) { 4546 if (ptoa(pmap_wired_count(map->pmap)) + grow_amount > lmemlim) { 4547 rv = KERN_NO_SPACE; 4548 goto out; 4549 } 4550 #ifdef RACCT 4551 if (racct_enable) { 4552 PROC_LOCK(p); 4553 if (racct_set(p, RACCT_MEMLOCK, 4554 ptoa(pmap_wired_count(map->pmap)) + grow_amount)) { 4555 PROC_UNLOCK(p); 4556 rv = KERN_NO_SPACE; 4557 goto out; 4558 } 4559 PROC_UNLOCK(p); 4560 } 4561 #endif 4562 } 4563 4564 /* If we would blow our VMEM resource limit, no go */ 4565 if (map->size + grow_amount > vmemlim) { 4566 rv = KERN_NO_SPACE; 4567 goto out; 4568 } 4569 #ifdef RACCT 4570 if (racct_enable) { 4571 PROC_LOCK(p); 4572 if (racct_set(p, RACCT_VMEM, map->size + grow_amount)) { 4573 PROC_UNLOCK(p); 4574 rv = KERN_NO_SPACE; 4575 goto out; 4576 } 4577 PROC_UNLOCK(p); 4578 } 4579 #endif 4580 4581 if (vm_map_lock_upgrade(map)) { 4582 gap_entry = NULL; 4583 vm_map_lock_read(map); 4584 goto retry; 4585 } 4586 4587 if (grow_down) { 4588 grow_start = gap_entry->end - grow_amount; 4589 if (gap_entry->start + grow_amount == gap_entry->end) { 4590 gap_start = gap_entry->start; 4591 gap_end = gap_entry->end; 4592 vm_map_entry_delete(map, gap_entry); 4593 gap_deleted = true; 4594 } else { 4595 MPASS(gap_entry->start < gap_entry->end - grow_amount); 4596 vm_map_entry_resize(map, gap_entry, -grow_amount); 4597 gap_deleted = false; 4598 } 4599 rv = vm_map_insert(map, NULL, 0, grow_start, 4600 grow_start + grow_amount, 4601 stack_entry->protection, stack_entry->max_protection, 4602 MAP_STACK_GROWS_DOWN); 4603 if (rv != KERN_SUCCESS) { 4604 if (gap_deleted) { 4605 rv1 = vm_map_insert(map, NULL, 0, gap_start, 4606 gap_end, VM_PROT_NONE, VM_PROT_NONE, 4607 MAP_CREATE_GUARD | MAP_CREATE_STACK_GAP_DN); 4608 MPASS(rv1 == KERN_SUCCESS); 4609 } else 4610 vm_map_entry_resize(map, gap_entry, 4611 grow_amount); 4612 } 4613 } else { 4614 grow_start = stack_entry->end; 4615 cred = stack_entry->cred; 4616 if (cred == NULL && stack_entry->object.vm_object != NULL) 4617 cred = stack_entry->object.vm_object->cred; 4618 if (cred != NULL && !swap_reserve_by_cred(grow_amount, cred)) 4619 rv = KERN_NO_SPACE; 4620 /* Grow the underlying object if applicable. */ 4621 else if (stack_entry->object.vm_object == NULL || 4622 vm_object_coalesce(stack_entry->object.vm_object, 4623 stack_entry->offset, 4624 (vm_size_t)(stack_entry->end - stack_entry->start), 4625 grow_amount, cred != NULL)) { 4626 if (gap_entry->start + grow_amount == gap_entry->end) { 4627 vm_map_entry_delete(map, gap_entry); 4628 vm_map_entry_resize(map, stack_entry, 4629 grow_amount); 4630 } else { 4631 gap_entry->start += grow_amount; 4632 stack_entry->end += grow_amount; 4633 } 4634 map->size += grow_amount; 4635 rv = KERN_SUCCESS; 4636 } else 4637 rv = KERN_FAILURE; 4638 } 4639 if (rv == KERN_SUCCESS && is_procstack) 4640 vm->vm_ssize += btoc(grow_amount); 4641 4642 /* 4643 * Heed the MAP_WIREFUTURE flag if it was set for this process. 4644 */ 4645 if (rv == KERN_SUCCESS && (map->flags & MAP_WIREFUTURE) != 0) { 4646 rv = vm_map_wire_locked(map, grow_start, 4647 grow_start + grow_amount, 4648 VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES); 4649 } 4650 vm_map_lock_downgrade(map); 4651 4652 out: 4653 #ifdef RACCT 4654 if (racct_enable && rv != KERN_SUCCESS) { 4655 PROC_LOCK(p); 4656 error = racct_set(p, RACCT_VMEM, map->size); 4657 KASSERT(error == 0, ("decreasing RACCT_VMEM failed")); 4658 if (!old_mlock) { 4659 error = racct_set(p, RACCT_MEMLOCK, 4660 ptoa(pmap_wired_count(map->pmap))); 4661 KASSERT(error == 0, ("decreasing RACCT_MEMLOCK failed")); 4662 } 4663 error = racct_set(p, RACCT_STACK, ctob(vm->vm_ssize)); 4664 KASSERT(error == 0, ("decreasing RACCT_STACK failed")); 4665 PROC_UNLOCK(p); 4666 } 4667 #endif 4668 4669 return (rv); 4670 } 4671 4672 /* 4673 * Unshare the specified VM space for exec. If other processes are 4674 * mapped to it, then create a new one. The new vmspace is null. 4675 */ 4676 int 4677 vmspace_exec(struct proc *p, vm_offset_t minuser, vm_offset_t maxuser) 4678 { 4679 struct vmspace *oldvmspace = p->p_vmspace; 4680 struct vmspace *newvmspace; 4681 4682 KASSERT((curthread->td_pflags & TDP_EXECVMSPC) == 0, 4683 ("vmspace_exec recursed")); 4684 newvmspace = vmspace_alloc(minuser, maxuser, pmap_pinit); 4685 if (newvmspace == NULL) 4686 return (ENOMEM); 4687 newvmspace->vm_swrss = oldvmspace->vm_swrss; 4688 /* 4689 * This code is written like this for prototype purposes. The 4690 * goal is to avoid running down the vmspace here, but let the 4691 * other process's that are still using the vmspace to finally 4692 * run it down. Even though there is little or no chance of blocking 4693 * here, it is a good idea to keep this form for future mods. 4694 */ 4695 PROC_VMSPACE_LOCK(p); 4696 p->p_vmspace = newvmspace; 4697 PROC_VMSPACE_UNLOCK(p); 4698 if (p == curthread->td_proc) 4699 pmap_activate(curthread); 4700 curthread->td_pflags |= TDP_EXECVMSPC; 4701 return (0); 4702 } 4703 4704 /* 4705 * Unshare the specified VM space for forcing COW. This 4706 * is called by rfork, for the (RFMEM|RFPROC) == 0 case. 4707 */ 4708 int 4709 vmspace_unshare(struct proc *p) 4710 { 4711 struct vmspace *oldvmspace = p->p_vmspace; 4712 struct vmspace *newvmspace; 4713 vm_ooffset_t fork_charge; 4714 4715 if (oldvmspace->vm_refcnt == 1) 4716 return (0); 4717 fork_charge = 0; 4718 newvmspace = vmspace_fork(oldvmspace, &fork_charge); 4719 if (newvmspace == NULL) 4720 return (ENOMEM); 4721 if (!swap_reserve_by_cred(fork_charge, p->p_ucred)) { 4722 vmspace_free(newvmspace); 4723 return (ENOMEM); 4724 } 4725 PROC_VMSPACE_LOCK(p); 4726 p->p_vmspace = newvmspace; 4727 PROC_VMSPACE_UNLOCK(p); 4728 if (p == curthread->td_proc) 4729 pmap_activate(curthread); 4730 vmspace_free(oldvmspace); 4731 return (0); 4732 } 4733 4734 /* 4735 * vm_map_lookup: 4736 * 4737 * Finds the VM object, offset, and 4738 * protection for a given virtual address in the 4739 * specified map, assuming a page fault of the 4740 * type specified. 4741 * 4742 * Leaves the map in question locked for read; return 4743 * values are guaranteed until a vm_map_lookup_done 4744 * call is performed. Note that the map argument 4745 * is in/out; the returned map must be used in 4746 * the call to vm_map_lookup_done. 4747 * 4748 * A handle (out_entry) is returned for use in 4749 * vm_map_lookup_done, to make that fast. 4750 * 4751 * If a lookup is requested with "write protection" 4752 * specified, the map may be changed to perform virtual 4753 * copying operations, although the data referenced will 4754 * remain the same. 4755 */ 4756 int 4757 vm_map_lookup(vm_map_t *var_map, /* IN/OUT */ 4758 vm_offset_t vaddr, 4759 vm_prot_t fault_typea, 4760 vm_map_entry_t *out_entry, /* OUT */ 4761 vm_object_t *object, /* OUT */ 4762 vm_pindex_t *pindex, /* OUT */ 4763 vm_prot_t *out_prot, /* OUT */ 4764 boolean_t *wired) /* OUT */ 4765 { 4766 vm_map_entry_t entry; 4767 vm_map_t map = *var_map; 4768 vm_prot_t prot; 4769 vm_prot_t fault_type; 4770 vm_object_t eobject; 4771 vm_size_t size; 4772 struct ucred *cred; 4773 4774 RetryLookup: 4775 4776 vm_map_lock_read(map); 4777 4778 RetryLookupLocked: 4779 /* 4780 * Lookup the faulting address. 4781 */ 4782 if (!vm_map_lookup_entry(map, vaddr, out_entry)) { 4783 vm_map_unlock_read(map); 4784 return (KERN_INVALID_ADDRESS); 4785 } 4786 4787 entry = *out_entry; 4788 4789 /* 4790 * Handle submaps. 4791 */ 4792 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 4793 vm_map_t old_map = map; 4794 4795 *var_map = map = entry->object.sub_map; 4796 vm_map_unlock_read(old_map); 4797 goto RetryLookup; 4798 } 4799 4800 /* 4801 * Check whether this task is allowed to have this page. 4802 */ 4803 prot = entry->protection; 4804 if ((fault_typea & VM_PROT_FAULT_LOOKUP) != 0) { 4805 fault_typea &= ~VM_PROT_FAULT_LOOKUP; 4806 if (prot == VM_PROT_NONE && map != kernel_map && 4807 (entry->eflags & MAP_ENTRY_GUARD) != 0 && 4808 (entry->eflags & (MAP_ENTRY_STACK_GAP_DN | 4809 MAP_ENTRY_STACK_GAP_UP)) != 0 && 4810 vm_map_growstack(map, vaddr, entry) == KERN_SUCCESS) 4811 goto RetryLookupLocked; 4812 } 4813 fault_type = fault_typea & VM_PROT_ALL; 4814 if ((fault_type & prot) != fault_type || prot == VM_PROT_NONE) { 4815 vm_map_unlock_read(map); 4816 return (KERN_PROTECTION_FAILURE); 4817 } 4818 KASSERT((prot & VM_PROT_WRITE) == 0 || (entry->eflags & 4819 (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY)) != 4820 (MAP_ENTRY_USER_WIRED | MAP_ENTRY_NEEDS_COPY), 4821 ("entry %p flags %x", entry, entry->eflags)); 4822 if ((fault_typea & VM_PROT_COPY) != 0 && 4823 (entry->max_protection & VM_PROT_WRITE) == 0 && 4824 (entry->eflags & MAP_ENTRY_COW) == 0) { 4825 vm_map_unlock_read(map); 4826 return (KERN_PROTECTION_FAILURE); 4827 } 4828 4829 /* 4830 * If this page is not pageable, we have to get it for all possible 4831 * accesses. 4832 */ 4833 *wired = (entry->wired_count != 0); 4834 if (*wired) 4835 fault_type = entry->protection; 4836 size = entry->end - entry->start; 4837 4838 /* 4839 * If the entry was copy-on-write, we either ... 4840 */ 4841 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 4842 /* 4843 * If we want to write the page, we may as well handle that 4844 * now since we've got the map locked. 4845 * 4846 * If we don't need to write the page, we just demote the 4847 * permissions allowed. 4848 */ 4849 if ((fault_type & VM_PROT_WRITE) != 0 || 4850 (fault_typea & VM_PROT_COPY) != 0) { 4851 /* 4852 * Make a new object, and place it in the object 4853 * chain. Note that no new references have appeared 4854 * -- one just moved from the map to the new 4855 * object. 4856 */ 4857 if (vm_map_lock_upgrade(map)) 4858 goto RetryLookup; 4859 4860 if (entry->cred == NULL) { 4861 /* 4862 * The debugger owner is charged for 4863 * the memory. 4864 */ 4865 cred = curthread->td_ucred; 4866 crhold(cred); 4867 if (!swap_reserve_by_cred(size, cred)) { 4868 crfree(cred); 4869 vm_map_unlock(map); 4870 return (KERN_RESOURCE_SHORTAGE); 4871 } 4872 entry->cred = cred; 4873 } 4874 eobject = entry->object.vm_object; 4875 vm_object_shadow(&entry->object.vm_object, 4876 &entry->offset, size, entry->cred, false); 4877 if (eobject == entry->object.vm_object) { 4878 /* 4879 * The object was not shadowed. 4880 */ 4881 swap_release_by_cred(size, entry->cred); 4882 crfree(entry->cred); 4883 } 4884 entry->cred = NULL; 4885 entry->eflags &= ~MAP_ENTRY_NEEDS_COPY; 4886 4887 vm_map_lock_downgrade(map); 4888 } else { 4889 /* 4890 * We're attempting to read a copy-on-write page -- 4891 * don't allow writes. 4892 */ 4893 prot &= ~VM_PROT_WRITE; 4894 } 4895 } 4896 4897 /* 4898 * Create an object if necessary. 4899 */ 4900 if (entry->object.vm_object == NULL && !map->system_map) { 4901 if (vm_map_lock_upgrade(map)) 4902 goto RetryLookup; 4903 entry->object.vm_object = vm_object_allocate_anon(atop(size), 4904 NULL, entry->cred, entry->cred != NULL ? size : 0); 4905 entry->offset = 0; 4906 entry->cred = NULL; 4907 vm_map_lock_downgrade(map); 4908 } 4909 4910 /* 4911 * Return the object/offset from this entry. If the entry was 4912 * copy-on-write or empty, it has been fixed up. 4913 */ 4914 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 4915 *object = entry->object.vm_object; 4916 4917 *out_prot = prot; 4918 return (KERN_SUCCESS); 4919 } 4920 4921 /* 4922 * vm_map_lookup_locked: 4923 * 4924 * Lookup the faulting address. A version of vm_map_lookup that returns 4925 * KERN_FAILURE instead of blocking on map lock or memory allocation. 4926 */ 4927 int 4928 vm_map_lookup_locked(vm_map_t *var_map, /* IN/OUT */ 4929 vm_offset_t vaddr, 4930 vm_prot_t fault_typea, 4931 vm_map_entry_t *out_entry, /* OUT */ 4932 vm_object_t *object, /* OUT */ 4933 vm_pindex_t *pindex, /* OUT */ 4934 vm_prot_t *out_prot, /* OUT */ 4935 boolean_t *wired) /* OUT */ 4936 { 4937 vm_map_entry_t entry; 4938 vm_map_t map = *var_map; 4939 vm_prot_t prot; 4940 vm_prot_t fault_type = fault_typea; 4941 4942 /* 4943 * Lookup the faulting address. 4944 */ 4945 if (!vm_map_lookup_entry(map, vaddr, out_entry)) 4946 return (KERN_INVALID_ADDRESS); 4947 4948 entry = *out_entry; 4949 4950 /* 4951 * Fail if the entry refers to a submap. 4952 */ 4953 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) 4954 return (KERN_FAILURE); 4955 4956 /* 4957 * Check whether this task is allowed to have this page. 4958 */ 4959 prot = entry->protection; 4960 fault_type &= VM_PROT_READ | VM_PROT_WRITE | VM_PROT_EXECUTE; 4961 if ((fault_type & prot) != fault_type) 4962 return (KERN_PROTECTION_FAILURE); 4963 4964 /* 4965 * If this page is not pageable, we have to get it for all possible 4966 * accesses. 4967 */ 4968 *wired = (entry->wired_count != 0); 4969 if (*wired) 4970 fault_type = entry->protection; 4971 4972 if (entry->eflags & MAP_ENTRY_NEEDS_COPY) { 4973 /* 4974 * Fail if the entry was copy-on-write for a write fault. 4975 */ 4976 if (fault_type & VM_PROT_WRITE) 4977 return (KERN_FAILURE); 4978 /* 4979 * We're attempting to read a copy-on-write page -- 4980 * don't allow writes. 4981 */ 4982 prot &= ~VM_PROT_WRITE; 4983 } 4984 4985 /* 4986 * Fail if an object should be created. 4987 */ 4988 if (entry->object.vm_object == NULL && !map->system_map) 4989 return (KERN_FAILURE); 4990 4991 /* 4992 * Return the object/offset from this entry. If the entry was 4993 * copy-on-write or empty, it has been fixed up. 4994 */ 4995 *pindex = OFF_TO_IDX((vaddr - entry->start) + entry->offset); 4996 *object = entry->object.vm_object; 4997 4998 *out_prot = prot; 4999 return (KERN_SUCCESS); 5000 } 5001 5002 /* 5003 * vm_map_lookup_done: 5004 * 5005 * Releases locks acquired by a vm_map_lookup 5006 * (according to the handle returned by that lookup). 5007 */ 5008 void 5009 vm_map_lookup_done(vm_map_t map, vm_map_entry_t entry) 5010 { 5011 /* 5012 * Unlock the main-level map 5013 */ 5014 vm_map_unlock_read(map); 5015 } 5016 5017 vm_offset_t 5018 vm_map_max_KBI(const struct vm_map *map) 5019 { 5020 5021 return (vm_map_max(map)); 5022 } 5023 5024 vm_offset_t 5025 vm_map_min_KBI(const struct vm_map *map) 5026 { 5027 5028 return (vm_map_min(map)); 5029 } 5030 5031 pmap_t 5032 vm_map_pmap_KBI(vm_map_t map) 5033 { 5034 5035 return (map->pmap); 5036 } 5037 5038 #ifdef INVARIANTS 5039 static void 5040 _vm_map_assert_consistent(vm_map_t map, int check) 5041 { 5042 vm_map_entry_t entry, prev; 5043 vm_map_entry_t cur, header, lbound, ubound; 5044 vm_size_t max_left, max_right; 5045 5046 #ifdef DIAGNOSTIC 5047 ++map->nupdates; 5048 #endif 5049 if (enable_vmmap_check != check) 5050 return; 5051 5052 header = prev = &map->header; 5053 VM_MAP_ENTRY_FOREACH(entry, map) { 5054 KASSERT(prev->end <= entry->start, 5055 ("map %p prev->end = %jx, start = %jx", map, 5056 (uintmax_t)prev->end, (uintmax_t)entry->start)); 5057 KASSERT(entry->start < entry->end, 5058 ("map %p start = %jx, end = %jx", map, 5059 (uintmax_t)entry->start, (uintmax_t)entry->end)); 5060 KASSERT(entry->left == header || 5061 entry->left->start < entry->start, 5062 ("map %p left->start = %jx, start = %jx", map, 5063 (uintmax_t)entry->left->start, (uintmax_t)entry->start)); 5064 KASSERT(entry->right == header || 5065 entry->start < entry->right->start, 5066 ("map %p start = %jx, right->start = %jx", map, 5067 (uintmax_t)entry->start, (uintmax_t)entry->right->start)); 5068 cur = map->root; 5069 lbound = ubound = header; 5070 for (;;) { 5071 if (entry->start < cur->start) { 5072 ubound = cur; 5073 cur = cur->left; 5074 KASSERT(cur != lbound, 5075 ("map %p cannot find %jx", 5076 map, (uintmax_t)entry->start)); 5077 } else if (cur->end <= entry->start) { 5078 lbound = cur; 5079 cur = cur->right; 5080 KASSERT(cur != ubound, 5081 ("map %p cannot find %jx", 5082 map, (uintmax_t)entry->start)); 5083 } else { 5084 KASSERT(cur == entry, 5085 ("map %p cannot find %jx", 5086 map, (uintmax_t)entry->start)); 5087 break; 5088 } 5089 } 5090 max_left = vm_map_entry_max_free_left(entry, lbound); 5091 max_right = vm_map_entry_max_free_right(entry, ubound); 5092 KASSERT(entry->max_free == vm_size_max(max_left, max_right), 5093 ("map %p max = %jx, max_left = %jx, max_right = %jx", map, 5094 (uintmax_t)entry->max_free, 5095 (uintmax_t)max_left, (uintmax_t)max_right)); 5096 prev = entry; 5097 } 5098 KASSERT(prev->end <= entry->start, 5099 ("map %p prev->end = %jx, start = %jx", map, 5100 (uintmax_t)prev->end, (uintmax_t)entry->start)); 5101 } 5102 #endif 5103 5104 #include "opt_ddb.h" 5105 #ifdef DDB 5106 #include <sys/kernel.h> 5107 5108 #include <ddb/ddb.h> 5109 5110 static void 5111 vm_map_print(vm_map_t map) 5112 { 5113 vm_map_entry_t entry, prev; 5114 5115 db_iprintf("Task map %p: pmap=%p, nentries=%d, version=%u\n", 5116 (void *)map, 5117 (void *)map->pmap, map->nentries, map->timestamp); 5118 5119 db_indent += 2; 5120 prev = &map->header; 5121 VM_MAP_ENTRY_FOREACH(entry, map) { 5122 db_iprintf("map entry %p: start=%p, end=%p, eflags=%#x, \n", 5123 (void *)entry, (void *)entry->start, (void *)entry->end, 5124 entry->eflags); 5125 { 5126 static char *inheritance_name[4] = 5127 {"share", "copy", "none", "donate_copy"}; 5128 5129 db_iprintf(" prot=%x/%x/%s", 5130 entry->protection, 5131 entry->max_protection, 5132 inheritance_name[(int)(unsigned char) 5133 entry->inheritance]); 5134 if (entry->wired_count != 0) 5135 db_printf(", wired"); 5136 } 5137 if (entry->eflags & MAP_ENTRY_IS_SUB_MAP) { 5138 db_printf(", share=%p, offset=0x%jx\n", 5139 (void *)entry->object.sub_map, 5140 (uintmax_t)entry->offset); 5141 if (prev == &map->header || 5142 prev->object.sub_map != 5143 entry->object.sub_map) { 5144 db_indent += 2; 5145 vm_map_print((vm_map_t)entry->object.sub_map); 5146 db_indent -= 2; 5147 } 5148 } else { 5149 if (entry->cred != NULL) 5150 db_printf(", ruid %d", entry->cred->cr_ruid); 5151 db_printf(", object=%p, offset=0x%jx", 5152 (void *)entry->object.vm_object, 5153 (uintmax_t)entry->offset); 5154 if (entry->object.vm_object && entry->object.vm_object->cred) 5155 db_printf(", obj ruid %d charge %jx", 5156 entry->object.vm_object->cred->cr_ruid, 5157 (uintmax_t)entry->object.vm_object->charge); 5158 if (entry->eflags & MAP_ENTRY_COW) 5159 db_printf(", copy (%s)", 5160 (entry->eflags & MAP_ENTRY_NEEDS_COPY) ? "needed" : "done"); 5161 db_printf("\n"); 5162 5163 if (prev == &map->header || 5164 prev->object.vm_object != 5165 entry->object.vm_object) { 5166 db_indent += 2; 5167 vm_object_print((db_expr_t)(intptr_t) 5168 entry->object.vm_object, 5169 0, 0, (char *)0); 5170 db_indent -= 2; 5171 } 5172 } 5173 prev = entry; 5174 } 5175 db_indent -= 2; 5176 } 5177 5178 DB_SHOW_COMMAND(map, map) 5179 { 5180 5181 if (!have_addr) { 5182 db_printf("usage: show map <addr>\n"); 5183 return; 5184 } 5185 vm_map_print((vm_map_t)addr); 5186 } 5187 5188 DB_SHOW_COMMAND(procvm, procvm) 5189 { 5190 struct proc *p; 5191 5192 if (have_addr) { 5193 p = db_lookup_proc(addr); 5194 } else { 5195 p = curproc; 5196 } 5197 5198 db_printf("p = %p, vmspace = %p, map = %p, pmap = %p\n", 5199 (void *)p, (void *)p->p_vmspace, (void *)&p->p_vmspace->vm_map, 5200 (void *)vmspace_pmap(p->p_vmspace)); 5201 5202 vm_map_print((vm_map_t)&p->p_vmspace->vm_map); 5203 } 5204 5205 #endif /* DDB */ 5206